
HAL Id: tel-04621995
https://hal.science/tel-04621995v1

Submitted on 24 Jun 2024 (v1), last revised 14 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Privacy-preserving AI using declarative constraints
Moitree Basu

To cite this version:
Moitree Basu. Privacy-preserving AI using declarative constraints. Computer Science [cs]. Université
de Lille, 2024. English. �NNT : �. �tel-04621995v1�

https://hal.science/tel-04621995v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Doctoral school of Mathematics and Digital Sciences (MADIS)

Doctoral Dissertation

Privacy-preserving AI using declarative
constraints

Specialization : Computer Science and Applications

prepared and publicly defended by

Moitree Basu

to obtain the degree of
Doctorate from Lille University

at Villeneuve d’Ascq, France
on April 4th, 2024

Theses defended before the jury composed of

Patrick Baillot Research Director, CNRS Lille President
Jean-Francois Couchot Professor, FEMTO-ST Besançon Reviewer
Oana Goga Researcher, CNRS Paris Examiner
Zied Bouraoui Associate Professor HDR, Université d’Artois Reviewer
Jan Ramon Research Director, INRIA Lille Supervisor

1

2

École Doctorale Mathematiques, Sciences du Numérique et de leurs
Interactions (MADIS)

Thèse de Doctorat

IA préservant la vie privée à l’aide de
contraintes déclaratives

Spécialisation : Informatique et applications

préparée et défendue publiquement par

Moitree Basu

pour obtenir le grade de
Docteur de l’Université de Lille

à Villeneuve d’Ascq, France
le 4 Avril 2024

Thèse soutenue devant le jury composé de

Patrick Baillot Directeur de recherches, CNRS Lille Président
Jean-Francois Couchot Professeur, FEMTO-ST Besançon Rapporteur
Oana Goga Chargée de recherches, CNRS Paris Examinatrice
Zied Bouraoui Maître de conférences HDR, Université d’Artois Rapporteur
Jan Ramon Directeur de Recherches, INRIA Lille Directeur

3

4

In loving memory of
my father.

5

6

Declarations
All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission

from the publisher.

Funding. I’m partially funded by the Région Hauts de France and ANR
PAMELA (ANR-16-CE23-0016-01).

7

8

Acknowledgements
I would like to thank everyone who, directly or indirectly, helped me in the
journey of walking towards this PhD.

First, I would like to thank my supervisor Dr. Jan Ramon for his guidance
and supervision. He has been not only a mentor to me, but also a wise critic
of my progress during this whole time. He is often very specific about doing
some things, and never accepts anything less than that, which often pushed me
to explore more. I think, his meticulousness brought the best out of me, every
time.

I thank my reviewers, juries, and examiners, Prof. Patrick Baillot, Prof.
Jean-Francois Couchot, Dr. Oana Goga, and Dr. Zied Bouraoui, for spending
their precious time to read my dissertation, giving feedback to improve the
content, and attending the defense. Their opinion and questions are a strong
guiding force for me towards making the dissertation better.

I thank my supervisors of my Masters thesis, Dr. Ingmar Steiner and Prof.
Dietrich Klakow, for building the foundation of research and also for their rec-
ommendation letter for the PhD position.

I thank Marc Tommasi for being an amazing leader to the Magnet (MAchine
learninG in information NETworks) team, of which I was a part. I spent the
majority of my time in the labs of Inria, and I want to thank all my former
and current officemates for making the office space a positive and reflective
atmosphere. I thank them all, with whom I shared my workspace every day
and ideas often. I was also associated with the Cristal Lab of the University of
Lille, and I would like to thank them.

The members with whom I worked more closely are Dr. Carlos Cotrini (Post
Doctoral Fellow), Pradipta Deb (Research Engineer), and Arijus Pleska (PhD
Student). I would like to extend my gratitude to them for having my back
whenever needed and being more than a colleague to me. Carlos helped me
in understanding academic writing far more than I could have expected in the
short time we worked together. He brought a fresh perspective to my project
as he joined further down the line, and that helped me grow in new dimensions.
Pradipta attended so many meetings with me, and a lot of ideas were conceived
when we brainstormed together. He taught me to question everything and
defend my own ideas unapologetically. Arijus and I jointly put effort into a
project which apart from directly affecting my thesis, helped me absorb and
realize a lot of concepts in more depth. We were so different in our approach,
that I learned to address differences of opinion in my work and be a team-player.
I thank Marc and Mikaela for their constructive feedback to make my defense
slides more professional, concise, and attractive.

I thank the Euraxess center, and Philippe Ducamp for finding the first apart-
ment in France and for helping me settle with assistance to a lot of administra-
tive responsibilities.

I would also like to thank the HR-team of Inria Lille for their enormous sup-
port throughout the process. I thank them for helping with all documentation
and for answering all my questions about the many PhD formalities. I would

9

also like to thank the ’Agence nationale de la recherche’ and region of Hauts de
France for supporting me financially. I want to thank all the other members of
the group and administrations for the company and assistance during academic
trips and events.

I convey my eternal gratitude to my parents, Shyamali Basu and Sumitava
Basu for being the two pillars of my life since day one and providing me with
everything they could, and sometimes even more. Then I am forever grateful
to my life partner Pradipta Deb for supporting me unconditionally, suffering
through every hardship with me, being the cheerleader on the hardest days,
and the torchbearer on the darkest paths.

I thank my friends in different countries and continents who often brought
the light breeze of laughter and fun. Everyone who believed in me at some
points, or was doubtful in my capabilities, has helped me in some way or the
other.

I thank everyone who supported me during the Covid-19 pandemic, mental
ups-and-downs, and assisted in relaxation and sustenance for years. It would
not have been possible to reach here without every one of your big or small
contribution.

Thanks to all for everything.

Best wishes,
Moitree Basu

10

Abstract
Machine learning and Deep learning-based technologies have gained widespread
adoption, quickly displacing traditional artificially intelligent (AI) systems. Con-
temporary computers are remarkable in processing enormous amounts of per-
sonal data through these machine learning (ML) algorithms. However, this
technological advancement brings along significant privacy implications, and
this problem can only be expected to escalate in the foreseeable future.

Studies have shown that it is possible to deduce sensitive information from
statistical models computed on datasets, even without direct access to the un-
derlying training dataset. Apart from the privacy-related concerns regarding
statistical models, the complex systems learning and employing such models
are increasingly difficult for users to understand, and so are the ramifications
of consenting to the submission and use of their private information within
such frameworks. Consequently, transparency and interpretability emerged as
pressing concerns.

In this dissertation, we study the problem of specifying privacy requirements
for machine learning based systems, in a manner that combines interpretability
with operational feasibility. Explaining privacy-improving technology is a chal-
lenging problem, especially when the objective is to construct a system that at
the same time is interpretable and has a high utility. In order to address this
challenge, we propose to specify privacy requirements as constraints, thereby
allowing for both interpretability and automated optimization of the utility.

Keywords: Privacy-preservation, Differential privacy, Logical Bayesian
Networks, Specification language, Verifiability, Interpretability, Prob-
abilistic predicates, Logical predicates

11

12

Résumé
Les technologies basées sur l’apprentissage automatique et l’apprentissage pro-
fond ont été largement adoptées, supplantant rapidement les systèmes tradi-
tionnels d’intelligence artificielle (IA). Les ordinateurs modernes sont remar-
quables pour traiter d’énormes quantités de données personnelles grâce à ces al-
gorithmes d’apprentissage automatique. Toutefois, cette avancée technologique
a des répercussions importantes sur la vie privée, et on ne peut que s’attendre
à ce que ce problème s’aggrave dans un avenir proche.

Des études ont montré qu’il est possible de déduire des informations sensibles
à partir de modèles statistiques calculés sur des ensembles de données, même
sans accès direct à l’ensemble de données d’apprentissage sous-jacent. Outre
les préoccupations liées à la protection de la vie privée concernant les modèles
statistiques, les systèmes complexes qui apprennent et utilisent ces modèles
sont de plus en plus difficiles à comprendre pour les utilisateurs, tout comme
les ramifications du consentement à la soumission et à l’utilisation de leurs
informations privées dans de tels cadres. Par conséquent, la transparence et
l’interprétabilité sont devenues des préoccupations majeures.

Dans cette thèse, nous étudions le problème de la spécification des exi-
gences en matière de protection de la vie privée pour les systèmes basés sur
l’apprentissage automatique, d’une manière qui combine l’interprétabilité et la
faisabilité opérationnelle. Expliquer une technologie améliorant la protection
de la vie privée est un problème difficile, en particulier lorsque l’objectif est de
construire un système qui soit à la fois interprétable et d’une grande utilité.
Afin de relever ce défi, nous proposons de spécifier les exigences en matière de
protection de la vie privée sous forme de contraintes, ce qui permet à la fois
l’interprétabilité et l’optimisation automatisée de l’utilité.

Mots-clés : Préservation de la vie privée, confidentialité différen-
tielle, réseaux bayésiens logiques, langage de représentation, vérifia-
bilité, interprétabilité, prédicats probabilistes, prédicats logiques

13

14

Contents

1 Introduction 26
1.1 Objectives . 26
1.2 Desired properties . 27

1.2.1 Privacy . 27
1.2.2 Utility . 28
1.2.3 Interpretability . 28
1.2.4 Transparency . 29
1.2.5 Verifiability . 29
1.2.6 Automation . 30

1.3 Contribution . 30
1.4 Thesis outline . 32

2 Background 33
2.1 Statistics . 34

2.1.1 Random variable . 34
2.1.2 Mean . 35
2.1.3 Expectation . 36
2.1.4 Variance . 36
2.1.5 Standard deviation . 37
2.1.6 Statistical sampling . 37
2.1.7 U-statistics . 37

2.2 Probability theory . 38
2.2.1 Law of large numbers . 38
2.2.2 Addition law of probability 38
2.2.3 Probability functions and distributions 39

2.2.3.1 Cumulative distribution function (CDF) 39
2.2.3.2 Probability density function (PDF) 39
2.2.3.3 Probability mass function (PMF) 40
2.2.3.4 Joint probability distribution 40
2.2.3.5 Prior probability distribution 40
2.2.3.6 Conditional probability distribution 40
2.2.3.7 Marginal probability distribution 40
2.2.3.8 Likelihood . 41

2.2.4 Bayes’ theorem . 41

15

2.2.5 Common probability distributions 41
2.2.5.1 Definition: Laplace distribution 41
2.2.5.2 Definition: Gaussian distribution 41
2.2.5.3 Definition: Binomial distribution 42
2.2.5.4 Definition: Uniform distribution 42

2.3 Basics of machine learning . 42
2.3.1 Parametric vs non-parametric learning algorithms 43

2.3.1.1 Predictability versus interpretability 43
2.3.2 Different types of learning algorithms 44
2.3.3 Model selection and assessment 45
2.3.4 Input, action, outcome, and hypothesis spaces 45
2.3.5 Basics of optimization . 46

2.3.5.1 Critical points 46
2.3.5.2 Optimization . 47
2.3.5.3 Constraint optimization 49

2.3.6 Dividing the dataset . 50
2.3.6.1 Cross-validation and re-sampling algorithms . . 51

2.3.7 Training and fitting the model 53
2.3.7.1 Bias variance trade-off 53
2.3.7.2 Regularization 55

2.3.8 Different types of loss . 56
2.4 Common machine learning algorithms 58

2.4.1 Prediction . 58
2.4.2 Classification . 60
2.4.3 Dimensionality reduction 61
2.4.4 Ensemble learning . 62
2.4.5 Clustering . 62
2.4.6 Traditional deep neural networks 63

2.4.6.1 Feedforward neural networks 63
2.4.6.2 Convolutional neural network (CNN) 64
2.4.6.3 Recurrent neural network (RNN) 64
2.4.6.4 Long-short term memory (LSTM) 65

2.5 Applications of machine learning 65
2.5.1 Natural language processing (NLP) 65
2.5.2 Speech . 66
2.5.3 Virtual agents and robotics 66
2.5.4 Computer vision . 66
2.5.5 Recommendation systems 66
2.5.6 Fraud detection . 66
2.5.7 Task automation . 67

2.6 Adverse effects and malicious uses of ML 67
2.6.1 Discrimination and bias 67
2.6.2 Automation and job security 67
2.6.3 Unaccountability and personal ethics 67
2.6.4 Privacy attacks . 67

2.7 Data privacy . 68

16

2.7.1 Sensitivity . 68
2.7.2 Differential privacy . 68
2.7.3 Encryption for privacy . 69
2.7.4 Adding noise for privacy 69

2.7.4.1 Laplacian noise mechanism 70
2.7.4.2 Gaussian noise mechanism 71

2.7.5 Classical differential privacy concepts 72
2.7.5.1 Central differential privacy 73
2.7.5.2 Local differential privacy 73
2.7.5.3 Other variants of differential privacy concepts . 73

2.7.5.3.1 Approximate differential privacy. 73
2.7.5.3.2 Hypothesis test differential privacy. . . 74

2.7.6 Differential privacy composition rules 74
2.7.6.1 Classical differential privacy composition 74
2.7.6.2 Rényi differential privacy composition rule . . . 75

2.8 Logic . 75
2.8.1 Logic preliminaries . 76
2.8.2 Logical Bayesian network 78

2.8.2.1 Definition: Random variable declaration 79
2.8.2.2 Definition: Conditional dependency clause . . . 79
2.8.2.3 Definition: Logical CPD 79
2.8.2.4 Definition: Logical Bayesian network 79
2.8.2.5 Definition: Dependency statement 79
2.8.2.6 Definition: Semantics of an LBN 80
2.8.2.7 Definition: Predicate dependency graph of an LBN 80
2.8.2.8 Running example of LBN 80

2.9 Constraint program solvers and CVXOPT 82

3 Interpretable privacy with optimizable utility 84
3.1 Introduction . 84
3.2 Existing approaches . 85
3.3 Privacy constraint optimization 86

3.3.1 Problem specification . 87
3.3.2 Optimizing differential privacy noise as a function of the

desired output . 87
3.3.2.1 A simple case with normal random variables . . 90

3.3.3 Shaping differential privacy noise 95
3.3.4 Combining building blocks 97

3.4 Example scenario: distributed medical centers 98
3.4.1 Problem statement . 98
3.4.2 Privacy requirements . 99
3.4.3 Inferring on our example 100

3.5 Discussion and conclusions . 104

17

4 AI using declarative privacy constraints 106
4.1 Introduction . 106
4.2 Related work . 108

4.2.1 Specification works . 109
4.2.2 Verification works . 109

4.3 Preliminaries . 110
4.3.1 Logic preliminaries . 110
4.3.2 logical Bayesian network 110

4.4 Language . 111
4.4.1 Random variable declaration 112
4.4.2 Dependency declaration 114
4.4.3 Privacy specification . 116
4.4.4 Summarization of declarations 118

4.5 Inference . 119
4.5.1 Design overview of the constraint problem 119
4.5.2 Transformation: specifications to constraints 120

4.5.2.1 Privatization of observed variables 122
4.5.2.2 Privacy constraints from DP guarantees 123

4.5.3 Defining the constraint problem 124
4.5.4 Forming the final constraint optimization problem 131
4.5.5 Inference on our running example 132

4.6 Discussion and conclusion . 134

5 Tailored noise mechanism 136
5.1 Introduction . 137
5.2 Preliminaries . 138

5.2.1 Problem statement . 138
5.2.2 Proposed solution . 139
5.2.3 Notations . 140

5.3 Related work . 140
5.4 Modeling our approach . 142

5.4.1 Domain discretization . 143
5.4.1.1 Equal width discretization 144
5.4.1.2 Equal frequency discretization 144

5.4.2 Defining the objective function 145
5.4.2.1 Variance minimization 145
5.4.2.2 Bias minimization 146

5.4.3 Defining the constraints 146
5.4.3.1 Differential privacy constraints 146
5.4.3.2 Bias minimization constraints 148
5.4.3.3 Implicit constraints 148

5.5 Implementation and experiments 151
5.5.1 Dataset description . 151
5.5.2 Implementation in CVXOPT 154
5.5.3 Experimental setup . 154

5.5.3.1 Regression setup 154

18

5.5.3.2 Privacy guarantees 155
5.5.3.3 Hyperparameter setup 155
5.5.3.4 Experimental method variation setup 156

5.6 Results . 157
5.6.1 Primary result interpretation 157
5.6.2 Secondary result interpretation 164
5.6.3 Result summary . 171

5.7 Future Scope and conclusion . 172

6 Future work 174
6.1 Improve inference . 174
6.2 Language extension: Specifying dynamic behavior 174
6.3 Pufferfish and other privacy frameworks 175
6.4 Fairness . 176
6.5 Data provenance . 176
6.6 Applications . 177
6.7 Related challenges . 177

7 Discussion and conclusion 178
7.1 Discussion . 178
7.2 Summary . 179

19

20

List of Figures

2.1 Venn diagram . 34
2.2 Gradient . 46
2.3 Critical points . 47
2.4 Multiple extrema . 47
2.5 SGD without and with momentum 49
2.6 Cross-validation . 51
2.7 Leave-one-out cross-validation . 52
2.8 K-fold cross-validation . 52
2.9 Different types of fitting capacity 54
2.10 Bias-variance trade-off . 55
2.11 L1 and L2 regularization with the RSS contour 57
2.12 Linear regression . 59
2.13 Logistic regression . 60
2.14 Laplace probability density function 71
2.15 Gaussian probability density function 72
2.16 Logical Bayesian network example 81

3.1 High level Approach . 87
3.2 Detailed pipeline:requirements to parameters 88
3.3 Privatizing center-wise partial aggregations 101
3.4 Encryption method . 101
3.5 Privatization through noise . 102
3.6 End-to-end pipeline diagram . 102

4.1 Modules and the desired properties 108
4.2 Skeleton of the running example 111
4.3 Components and sub-components of the language 112
4.4 Query and database mapping relation 121
4.5 Different zones in an LBN . 125
4.6 LBN graph for a particular observed RV in our example 133

5.1 Experiment 1 on ds0 . 157
5.2 Experiment 1 on ds1a . 158
5.3 Experiment 2 on ds1b . 159
5.4 Experiment 1 on ds2a . 160

21

5.5 Experiment 2 on ds2b . 161
5.6 Experiment 1 on ds3a . 162
5.7 Experiment 2 on ds3b . 163
5.8 Experiment 1 on misra1d . 164
5.9 Experiment for comparison between discretization strategies on

ds1a . 165
5.10 Experiment for comparison between discretization strategies on

ds2a . 166
5.11 Experiment for comparison between discretization strategies on

ds3a . 167
5.12 Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-

tion (equal frequency) strategies on the domains of sensitive
features for ds1b . 168

5.13 Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal frequency) strategies on the domains of sensitive
features for ds2b . 169

5.14 Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal frequency) strategies on the domains of sensitive
features for ds3b . 170

5.15 Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal distance) strategies on the domains of privatized
features for misra1d . 171

22

23

List of Tables

3.1 Mathematical notations for the terms involved in our example
scenario. 99

3.2 Notations for different differential privacy-specifications in terms
of (ϵ, δ) budgets, according to the privacy requirements. 99

4.1 General mathematical notations used for the transformation from
the privacy specification to a generalized constraint problem. . . 121

4.2 The notations used to explain different components of the logical
Bayesian network. 125

4.3 The identifiers for random variables associated with observed RV
expectedSurvivalLength(uma), in our running example. 133

5.1 Notations used in privatization of sensitive features using tailored
noise mechanism. 141

5.2 Notations used in representing the of application of modules. . . 143

24

25

Chapter 1

Introduction

Over the last decade, the cost of storage space has dropped drastically while
computational power has surged, resulting in an explosion of data. Concur-
rently, machine learning and deep learning-based technologies have seen ex-
traordinary usage, rapidly supplanting traditional rule-based AI systems. These
modern computers demonstrate extraordinary proficiency in processing massive
amounts of personal data, albeit with considerable privacy concerns.

In today’s world, a better understanding of these technologies and their po-
tential misuse is critical. This issue’s trajectory is predicted to worsen in the
near future. Studies have revealed the potential of deducing sensitive informa-
tion from statistical outputs provided by machine learning models, so simply
storing data securely is no longer sufficient. Similar deductions can be made
even when one does not have direct access to the underlying training dataset,
as demonstrated in prior research. Moreover, the growing complexity of these
systems renders it increasingly challenging for users to comprehend the implica-
tions of consenting to the submission and utilization of their private information
within such frameworks.

Chapter outline: Next, in Section 1.1, we will state our main objectives.
Then, in Section 1.2, we will elaborate on our desired properties, followed by a
summary of contributions in Section 1.3. Finally, we will outline in Section 1.4
how the body of our work and the findings of our studies are organized in the
next chapters.

1.1 Objectives
The rising complexity in machine learning algorithms, and intelligent computing
systems deploying them to train sensitive personal data, provides an exposure
to fraudulent actors to deduce private information from individuals, often with
negative consequences. A body of literature has discussed techniques for re-
identifying individuals by combining data from various sources, such as voter
registration records, de-identified hospital records [10], or by determining an

26

individual’s inclusion in a machine learning training dataset solely through in-
teractions with the trained model [115], [96].

Many inference tasks possess the potential for producing adverse results,
even without access to the training dataset. In such cases, it is critical to
protect the privacy of the participants as well as any other entities that may
be vulnerable to such risks. So we aim to design a framework that preserves
the privacy of individuals and protects their sensitive information from being
revealed. We emphasize that our principal concern of implementing more strin-
gent privacy-guarantee risks yielding lower utility of results.

We would also like to aim for a more automated design of such a framework,
by eliminating the requirement of making lower-level engineering choices, and
focusing on the privacy requirements while optimizing for utility.

Finally, the ability to articulate the privacy assurances granted by a system is
extremely useful in bridging the often problematic communication gap between
computer scientists who develop solutions and legal experts seeking to grasp
these guarantees without being bogged down by intricate technical details. Our
framework’s goal is to create a system that allows us to describe our privacy
requirements and learn a model while meeting those specifications.

Objective 1 : Our objective will be to design an unambiguous and inter-
pretable declarative language to specify the privacy requirements.

Objective 2 : Another objective is to design an automated utility maximizing
privacy preservation framework from the specifications of privacy requirements.

1.2 Desired properties
This section emphasizes that the framework we intend to develop must have
certain properties like: privacy, interpretability, utility, transparency, verifiabil-
ity, and automation. We discuss the need for these properties and argue how
the state of the art still falls short in achieving some or all of them.

1.2.1 Privacy
To begin, let us consider the first property.

Preserving the privacy of persons or organizations within a dataset is a key
concern and a prominent topic of research. This includes protecting individuals
from inadvertently exposing sensitive information and examining the nature of
privacy assurances provided by a system.

Before delving deeper into the privacy debate, it is critical to understand
that our premise assumes the presence of a semi-honest or honest-but-curious
(HBC) adversary with access to the results of the inference process applied to
the datasets’ contents, as defined by [102]. An HBC adversary is defined in
this context as a genuine participant in a communication protocol who follows
the prescribed protocol without deviation, while actively seeking to harvest
all possible information from legitimately received messages. Furthermore, we
contend that an honest but curious adversary refrains from colluding, thereby

27

avoiding the exchange of information with other parties. Given this scenario, it is
crucial to put in place adequate measures that preserve the dataset’s privacy and
prevent the inadvertent disclosure of sensitive information to such individuals.

Privacy-preserving procedures usually use encryption techniques [32] or in-
sert noise into the data [43]. When using the latter approach, determining
the appropriate noise level required to establish privacy guarantees could prove
exceedingly difficult.

Furthermore, a substantial subset of these technologies is capable of exclu-
sively verifying privacy attributes, necessitating the end-user’s responsibility to
design privacy-preserving techniques. However, this requires expertise in both
cryptography and statistics, making the creation of privacy-preserving systems
a complicated and potentially error-prone undertaking. Additionally, many so-
lutions have limits, especially addressing certain aspects of privacy, such as
information confidentiality or individual anonymity. As a result, there is an
urgent need for solutions that provide more comprehensive and holistic privacy
assurance.

1.2.2 Utility
Next, let us consider the second property.

Data privacy protection through privacy-preserving methods usually imposes
a trade-off with utility [135]. The adoption of privacy safeguards either fre-
quently results in increased computing costs or a reduction in the precision of
computation results. For example, the combination of many techniques, as men-
tioned in [124], is known to result in a perceptible deterioration in the quality
of output in the field of differential privacy.

As a result, solutions that strike a suitable balance between privacy and
utility are in high demand. Ultimately, acquiring relevant insights from inference
work is crucial. At the end of a study, if the output of a machine learning model
lacks significant value and fails to provide insights into the underlying database
on which it was trained, all other desirable qualities become ineffective.

1.2.3 Interpretability
Now, let’s address the third property.

As system complexity grows, users face an increasingly difficult challenge:
understanding the consequences of disclosing information to these intricate sys-
tems. In response to the intricate web of privacy issues woven by such advanced
systems, interpretability-driven solutions have emerged. A subset of these solu-
tions makes use of formal frameworks to assist users in gaining a complete grasp
of the privacy issues connected with communications with a certain system [14],
[131], [101].

Regrettably, these existing methods still have limitations in expressiveness,
particularly in handling the complexities of modern systems that combine di-
verse approaches such as machine learning, differential privacy, and secure multi-
party computation. A key restriction of present systems is their ability to pro-

28

vide mere ‘verification’ - that is, the capability of establishing a system’s pri-
vacy. Declarative specifications, on the other hand, can provide a greater range
of capabilities, such as analysis, automated solution construction, parameter
optimization, privacy strategy selection, and more.

The domain of interpretability encompasses several dimensions, including a
nuanced understanding of the terms and conditions outlined in privacy policies,
a thorough grasp of contractual obligations before consent, a contextual appre-
ciation of the concept of privacy, and verification of the algorithm’s efficacy in
upholding privacy guarantees. It also refers to the mechanisms by which the
algorithm implements these assurances.

The need for openness comes in light of legislative developments, such as
the EU General Data Protection Regulation (GDPR) [2, 65]. This rule specifies
that users have the right to know how their data is used and what measures are
in place to protect their personal information. In addition to that, explaining
privacy protection measures is critical since it encourages confidence among
system users.

1.2.4 Transparency
In addition to the three primary properties previously discussed, we also attain
several desirable properties indirectly. One of them, transparency, is the fourth
property.

Transparency implies that privacy conditions are unambiguous and easily
understood by all parties involved, including data collection agents, those with
limited access to the data, individuals capable of running queries and accessing
the outcomes, and participants in the study. It mandates that all stakehold-
ers have access to privacy terms and associated protocols, which may include
unrestricted access to all source code.

In the traditional centralized model, a central data user combines all data
and performs computations based on their specific requirements. As the number
of participants in a communication increases, so does the complexity of the pro-
cess. In contrast, in a decentralized system, all players must participate in the
complete spectrum of calculations, depending on the individual protocol used
(e.g., due to the encryption requirements). As a result, unless a "data-sharing"
protocol is used to transfer the data, either in its original or more obfuscated
form, the data user cannot prevent the fact that data subjects become aware
of the nature of the computations. Transparency, particularly in such decen-
tralized circumstances, reduces the possibility of privacy conflicts. Numerous
multi-party protocols improve transparency by facilitating the disclosure of com-
putations to all involved parties.

1.2.5 Verifiability
The fifth property is verifiability.

The utilization of a language for representing system components should
also help with the property of verifiability. When the information process is

29

represented using such a language, the various stakeholders involved in the pro-
cess must be able to authenticate the privacy assurances offered by their coun-
terparts. This feature enables companies to ensure unequivocal data privacy
protection throughout the entire process pipeline. In this context, verification
implies being able to validate that all privacy criteria, as expressed in specifica-
tions, are met.

The development and application of such a language in analogous envi-
ronments has the potential to automate the modeling of information process
pipelines, as well as the verification of their privacy-preserving properties and
the detection of any violations thereof. The use of such automation has the po-
tential to significantly improve the efficacy and effectiveness of the review and
verification processes, resulting in significant time, effort, cost, and resource
savings.

1.2.6 Automation
The last one, automation, is the sixth property.

Automation has the potential to streamline and reduce the effort required
to make lower-level design decisions. As a result, engineers may concentrate
their efforts entirely on the definition of system requirements, without having
to consider implementation alternatives.

The optimal choice can be determined automatically by solving the inference
issue described in Chapter 3 and 4. Once the requirements are effortlessly inte-
grated into the language templates and tuned within the inference mechanism,
the optimization process will eliminate the need to address additional, trivial
design considerations.

1.3 Contribution
The fundamental goal of this thesis is to pursue the development of privacy-
preserving systems while adhering to the aforementioned properties, as stated
in the objectives in Section 1.1.

Based on the preceding discussion, it is evident that the current solutions
exhibit shortcomings in meeting the desired properties. They either provide
insufficient privacy measures, or result in significant utility losses, or fail to ac-
curately characterize modern complex information systems. Furthermore, many
frequently used solutions are largely focused on verifying privacy features. In
response to the need to improve user privacy while also improving interpretabil-
ity for complex systems, we propose the implementation of a unique approach
that includes the following important components.

Our scientific contributions are divided into five distinct areas:

1. Designing a privacy specification language
Our first contribution is the development of a novel, robust, and com-

30

prehensive specification language designed for specifying information pro-
cessing pipelines and the privacy requirements that accompany them. The
fundamental goal for this language’s design is to be consistent, with an
emphasis on the interpretability, verifiability, and transparency of its dec-
larations. Furthermore, we intend to evaluate this language across a va-
riety of real-world circumstances to enable the formalization of natural
language texts into a probabilistic framework. This transformation aims
to substantially reduce the uncertainty that is sometimes inherent in the
use of natural language within the privacy policies of websites, corporate
documents, legislative texts, and other legal documents.

2. Development of an analysis framework
Our second contribution focuses on the introduction of an analysis frame-
work based on the aforementioned language that is capable of checking
and certifying compliance with privacy constraints. The primary goal is
to assess the level of privacy preservation provided by complex information
systems using this privacy specification language.

3. Automated synthesizer for privacy-preserving mechanisms
Our third contribution concentrates on the development of an automated
synthesizer capable of developing privacy-preserving mechanisms based
on a set of specified strategies. This program tries to improve algorith-
mic performance while adhering to privacy requirements. In this case, we
aim to use the constraint programming or constraint optimization prob-
lem (CP) approach. It is imperative that the language aligns with this
contribution while maintaining interpretability without sacrificing the al-
gorithm’s performance or utility. Our approach involves systematic prob-
lem formulation and treating privacy requirements as constraints within
an optimization problem, with the objective function representing utility
or, conversely, loss. The loss function accounts for a variety of cost factors,
including predicted output inaccuracy, computational costs, and storage
requirements.

4. Composition strategy for multiple modules
Our fourth contribution proposes a composition strategy for multiple mod-
ules that utilizes the synthesizer’s skills in constructing privacy-preserving
mechanisms based on a specified set of constraints. In this case, the user
only needs to define the privacy requirements and a selection of strategies
(such as secure multi-party computing techniques or differential-privacy-
based noise mechanisms), and the synthesizer decides on the best approach
for them. It also computes the optimal parameters associated with the
selected approach.

5. Tailored noise mechanism
The tailored noise mechanism (TNM), our fifth contribution, explores
the complexities of dealing with highly non-linear attribute transforma-
tions within a given dataset. First, we develop a noise mechanism for

31

privatizing features by solving a constraint problem in such a way that
only relevant intervals of feature transformations are selected while mini-
mizing variance and bias in the privatization noise. Second, we look at two
approaches to creating constraint programs: (a) transforming attributes
into features before privatization, and (b) privatizing attributes before
transforming them into features. Following that, we use the approach
described in our previous contribution to select the superior constraint
optimization problem, thereby providing the best alternative.

To demonstrate the power of our solution, we illustrate how it can model
a scenario based on a distributed setting of medical centers. We formalize and
analyze privacy requirements for patients, hospital staff, and medical centers.
Afterward, we show how to automatically construct mechanisms that compute
statistics about the patients, while following these privacy requirements.

1.4 Thesis outline
Chapter 1 commences with a concise introduction to the thesis.

Chapter 2 describes the background notations, definitions, basic concepts,
and state-of-the-art for this dissertation.

Chapter 3, is based on our work on “Interpretable privacy with opti-
mizable utility” [104].

Chapter 4, presents the different key components of the specification lan-
guage in detail, with examples on the purview of a real-world problem. We
explore how inference tasks can optimize utility while preserving privacy when
equipped with comprehensive problem descriptions and process specifications.

Chapter 5 discusses tailored noise mechanism, explaining how to de-
sign the noise distribution tailored for special situations where traditional noise
mechanisms fall short.

Chapter 6 addresses potential directions for future research within the
various areas examined in this thesis.

Chapter 7 provides a comprehensive thesis conclusion by summarizing the
content, followed by an exhaustive bibliography comprising all the citations
used in this document.

32

Chapter 2

Background

This work sits at the crossroads of multiple fields of study. Each of them is vast
and complex in its own way. Understanding our work requires some knowledge
of all these fields, some very basic and some in-depth. So, before we can jump
onto our projects, we must look thoroughly at the basics of the three main
pillars:

• Machine learning

• Data privacy

• Logic theory

Before delving into all of the principles of the aforementioned three domains,
we remark that we will be using concepts of statistics, probability, linear
algebra, and CVXOPT.

Linear algebra We will commonly use the underlying ideas provided by Lin-
ear algebra to elucidate the formulation of the constraint optimization problem.
We investigate fundamental concepts such as scalar, vector, matrix, determinant
of a matrix, square matrix, trace of a matrix, transpose of a matrix, inverse of
a matrix, identity matrix, eigenvalue, eigenvector, eigenvalue decomposition,
singular value decomposition, and linear, quadratic, cubic, or higher order sys-
tems in this context. It is worth noting that, while these notions are used in
our derivations, as we are not conceptually going to use Linear Algebra, we are
omitting the detailed discussion of them in this summary.

Following that, our discussion gets into a technical review of key topics
from statistics and probability theory. A comprehensive understanding of these
concepts is imperative for grasping the foundational principles upon which our
ideas are built.

Most of the contents in the following Sections 2.1, and 2.2 have been directly
inspired by some websites 1.

1probabilitycourse.com, wikipedia.org, britannica.com, encyclopediaofmath.org

33

Figure 2.1: The niche of the dissertation topic at the intersection of modules.

2.1 Statistics
In this dissertation, a variety of statistical languages will be used in the ex-
planation of the features covering machine learning and privacy, demanding
a clear exposition. To help with this, we drew on relevant literature sources
[38, 69, 88, 120, 125, 127] to create a concise explanation of the principles dis-
cussed in this section.

2.1.1 Random variable
A random variable (RV) X, is a measurable function X : Ω → E, mapping
from a sample space Ω (comprising a set of potential outcomes) to a measurable
space E.

34

The probability that the random variable X assumes a value within a mea-
surable set S ⊆ E is formally defined as follows:

Pr(X ∈ S) = Pr(ω ∈ Ω | X(ω) ∈ S) (2.1)

Random variables can have many variations: independent, dependent, cor-
related, etc. They can also be classified as discrete, continuous, or mixed types,
depending on the probability distribution of the random variable.

2.1.2 Mean
In statistics, given a dataset, mean is used to summarize the dataset for a
better and more holistic understanding. Mean can be of different types.

• Arithmatic mean often referred to simply as the mean, is computed as
the sum of all values within a given list or set of numbers, divided by
the total number of items contained in that specific set or list. Conse-
quently, when considering a list of n numbers denoted as x1, x2, . . . , xn,
the arithmetic mean is formally defined as follows:

x̄ =
1

n

n∑
i=1

xi =
x1 + x2 + ...+ xn

n
(2.2)

• Geometric mean is a mathematical measure computed as the product
of all values within a given list or set of numbers, raised to the power of
the reciprocal of the total number of items contained in that specific set
or list. Therefore, in the context of a list consisting of n numbers, denoted
as x1, x2, . . . , xn, the geometric mean is formally defined as,

x̄ =

(
n∏
i=1

xi

) 1
n

= (x1x2x3 · · ·xn)
1
n (2.3)

• Harmonic mean is calculated as the reciprocal of the sum of all the
reciprocals of the values within a given list or set of numbers. This result
is then multiplied by the total number of items contained in that specific
set or list. Thus, when considering a list composed of n numbers, denoted
as x1, x2, . . . , xn, the formal definition of the harmonic mean is articulated
as follows:

x̄ = n

n∑
i=1

(
1

xi

)−1

=
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

(2.4)

Besides these common ones, many definitions of mean exist and they are
also computed in different contexts, like the mean of a function, weighted mean,
mean of a probability density function, etc.

35

2.1.3 Expectation
The weighted average of a large yet finite number of independently selected
observations driven by the outcome of a random variable is generally called
the expectation of that random variable. For discrete random variables, we
can compute the weighted arithmetic mean, whereas for continuous random
variables, we take an integral over the random variable.

If the random variable is named X, then the expectation will be denoted as
E(X) in our text. If the independently selected finite list of possible outcomes
is x1, x2, · · · , xl, and the list of their corresponding probability of occurrence is
p1, p2, · · · , pl, then the expectation of X is defined as,

µ = E(X) =
∑
i

xipi = x1p1 + x2p2 + · · ·+ xlpl, (2.5)

where, p1 + p2 + · · ·+ pl = 1. Some basic rules around expectation are:

• Non-negativity of expectation: If X > 0, then E[X] ≥ 0.

• Linearity of expectation:

– E[
∑n
i=1Xi] =

∑n
i=1 E[Xi], where Xi(1 ≤ i ≤ n) are random vari-

ables.

– E[
∑n
i=1 aiXi] =

∑n
i=1 aiE[X], where ai(1 ≤ i ≤ n) are constants and

Xi(1 ≤ i ≤ n) are random variables.

• Monotonicity of expectation: If X ≤ Y then E[X] ≤ E[Y], given E[X] and
E[Y] exist.

• Non-degeneracy of expectation: If E[|X|] = 0, then X = 0.

• Non-multiplicativity of expectation: E[XY] ̸= E[X] ·E[Y], if X and Y are
dependent, but E[XY] = E[X] · E[Y], if X and Y are independent.

2.1.4 Variance
Variance is the expectation of the squared deviation of a random variable, a
probability distribution, or a dataset from the mean or expected value of the
sample (or population). It stands as a pivotal indicator of the degree of dis-
persion within a set of values, with its center of reference being the mean. In
essence, a low variance signifies that the data points cluster closely around the
mean or expectation, whereas a high variance signifies a broader range of values
with significantly more dispersed data points.

σ2 = V ar(X) = E[X2]− (E[X])2. (2.6)

36

2.1.5 Standard deviation
The standard deviation (SD) of a random variable, a probability distribution, or
a dataset is the square root of its variance. It is another measure of dispersion,
centered around the mean. Similar to variance, a low SD shows less dispersion
around the mean or the expectation, and a high SD shows wide variation.

σ = SD(X) =
√
E[X2]− (E[X])2. (2.7)

2.1.6 Statistical sampling
In statistics, sampling is a method of selecting a subset of individual people
or items from a population. This subset is called the sample, which is ideally
representative of the population. This sample is studied to understand some
characteristics of the population from which the sample is drawn. Collecting a
sample can be efficient in terms of cost and time and often supports feasibility,
as studying the entire population is not only expensive and time-consuming,
but it can often be an impossible task. Every item or individual point of the
population, hence in the sample, is an observation. Depending on the study of
the sample and the characteristics of the population, we can classify sampling
as stratified sampling, systematic sampling, simple random sampling, cluster
sampling, etc. Depending on the method of choosing samples, the sampling
error and corresponding bias change.

2.1.7 U-statistics
In theoretical statistics, a U-statistic is a class of statistics that can produce an
unbiased, minimum-variance estimation of estimable statistical parameters for
various classes of probability distributions. Hence, they are frequently used in
estimation theory. The “U” in the name of U-statistics comes from the unbi-
asedness of its estimation capability.

Definition. [75] Let X1, · · · , Xn be n independent random vectors, Xν =

(X
(1)
ν , · · · , X(r)

ν), and Φ(x1, · · · , xm) a function of m(≤ n) vectors xν = (X
(1)
ν ,

· · · , X(r)
ν). A statistic of the form U =

∑
”Φ(Xα1

, · · · , Xαm
)/n(n− 1) · · · (n−

m + 1), where the sum
∑

” is extended over all permutations (α1, · · · , αm) of
m different integers, 1 ≤ αi ≤ n, is called a U-statistic.

If X1, · · · , Xn have the same (cumulative) distribution function F (x), U is
an unbiased estimate of the population characteristic.

θ(F) =

∫
· · ·
∫

Φ(x1, · · · , xm)dF (x1) · · · dF (xm). (2.8)

θ(F) is called a regular function of the d.f. F (x).
The variance of a U-statistic is a function of the sample size n and of certain

population characteristics. Also, if X1, · · · , Xn have the same distribution and

37

ϕ(x1, · · · , xm) is independent of n, the d.f. of
√
n(U − θ) tends to a normal d.f.

as n→∞ under the sole condition of the existence of E(Φ2(X1, · · · , Xm)).
Following our discussion of the fundamental ideas of statistics, to which we

will frequently refer in our major body of work, we will look into probability
theory.

2.2 Probability theory
Statistics and probability theory go hand-in-hand, and they are both essential
for understanding the basics of machine learning and privacy. Next, we will
discuss some of the preliminaries of probability. We have consulted some books
[17, 37, 38, 58, 69, 80, 88, 94, 120] to summarize the concepts discussed in this
section.

2.2.1 Law of large numbers
In probability theory, the theorem that describes that the average of all the
results of performing the same experiment a large number of times should be
close to the expected value is called the law of large numbers (LLN) [103],[35].
As the number of experiments or trials increases, the average result gets closer
to the expectation. In mathematical terms, we can state it as,

lim
n→∞

n∑
i=1

Xi

n
= X = E[X]. (2.9)

The difference between, the expression above and the expected value of X,
converges toward zero as n increases. For example, it shows that in many flips
of an unbiased coin, the average probability of heads and tails is equal. We use
these concepts in various situations.

The same intuition is used in another very similar concept, called the cen-
tral limit theorem. It says that the mean or expected value of a sample will
approach a normal distribution as the sample size increases and tends to con-
verge to the mean of the population. So, with a large enough sample size, the
sample mean converges to the population mean.

2.2.2 Addition law of probability
The probability of event X or Y occurring is shown by the addition of the
probabilities of them individually,

Pr(X ∪ Y) = Pr(X) + Pr(Y)− Pr(X ∩ Y). (2.10)

Now, for independent events X and Y , the overlap (X ∩ Y) = ϕ, hence this
law boils down to,

Pr(X ∪ Y) = Pr(X) + Pr(Y), (2.11)

38

where Pr(X ∩ Y) = 0.

2.2.3 Probability functions and distributions
In the sequel, we will look into the standard probability distribution functions.

2.2.3.1 Cumulative distribution function (CDF)

The cumulative distribution function of a random variable X can be defined as,

FX(x) = Pr(X ≤ x), (2.12)

where X can take real values. The CDF takes the value of the probability
that X takes on a value less than or equal to x.

The CDF of a continuous random variable X can be defined as,

FX(x) =

∫ x

−∞
fX(t) dt, (2.13)

where fX is the probability density function of the RV X. So, if fX is
continuous at x, then,

fX(x) =
d

dx
FX(x). (2.14)

If the distribution of the random variable X has a discrete component at a
value a, then the equation above gets the form,

Pr(X = a) = FX(a)− lim
x→a−

FX(x), (2.15)

which takes on value 0, if this discrete component does not exist and FX is
continuous at a.

2.2.3.2 Probability density function (PDF)

In probability theory, PDF is used to express the probability of an observa-
tion around a target value when the observation is of a random variable with
continuous univariate distribution. We can define it as,

Pr[a ≤ X ≤ b] =
∫ b

a

fX(x)dx, (2.16)

where, X has density fX .
From the definition of the cumulative distribution function of RV X in equa-

tions 2.13 and 2.14, we can say, fX(x)dx is the probability of X falling within
the infinitesimal interval [x, x+ dx].

39

2.2.3.3 Probability mass function (PMF)

The probability of a discrete random variable taking a specific value in the
distribution is expressed by the PMF. We can define it as,

f(x) =

{
Pr(X = x), if x ∈ S
0, if x /∈ S

(2.17)

where,
∑
x∈S f(x) = 1.

2.2.3.4 Joint probability distribution

If two random variables are defined on the same probability space, then the
joint probability distribution is the corresponding probability distribution on
any possible pairs of outputs.

We can formulate the joint probability distribution of random variable X
and Y as, fX,Y (x, y).

2.2.3.5 Prior probability distribution

A prior probability distribution of a quantity is the probability distribution that
expresses the prior beliefs about this quantity before some evidence about the
quantity is noticed.

A prior probability distribution can be expressed as Pr(A) is the probability
of observing event A without any given conditions.

2.2.3.6 Conditional probability distribution

Conditional probability is the probability of one event occurring given that
another event is true. The conditional probability distribution is stated as
Pr(A | B), which represents the probability of occurring of event A, given event
B is true. We call this the posterior probability of A, given that B is true.

2.2.3.7 Marginal probability distribution

If more than one random variable is defined in a random experiment, other than
the joint probability distribution and conditional probability distribution, the
individual probability distribution of each variable is referred to as its marginal
probability distribution.

The marginal probability distribution of individual random variables X and
Y in a joint probability distribution can be expressed as,

Pr
X
(xi) =

∑
j

Pr(xi, yj), and (2.18)

Pr
Y
(yj) =

∑
i

Pr(xi, yj). (2.19)

40

2.2.3.8 Likelihood

Likelihood is exactly the opposite of conditional probability distribution. Like-
lihood can be stated as, L(A | B), which represents the probability of occurring
of event B, given event A is true. So, we must notice, that L(A | B) = Pr(B | A)

2.2.4 Bayes’ theorem
One of the most popular theorems used in almost all disciplines of science is the
following,

Pr(A | B) =
Pr(B | A) Pr(A)

Pr(B)
, (2.20)

where Pr(B) ̸= 0.
Bayes’ theorem [13] provides a framework for updating the prior probabil-

ity distribution when new data becomes available, allowing us to calculate the
posterior probability distribution. This is achieved by utilizing the conditional
probability distribution of the uncertain quantity concerning the new data.

2.2.5 Common probability distributions
There are many probability distributions like Laplace, Gaussian, binomial, Pois-
son, uniform, Bernoulli, etc., which are commonly used by all scientific commu-
nities. Every probability distribution has its pros and cons and is suitable for
different problem scenarios. We will use a few of them later in our work as well,
so a quick refresher through their definitions will be useful here.

2.2.5.1 Definition: Laplace distribution

The Laplace distribution [35] (centered at 0) with scale b is the distribution with
probability density function:

Lap(x|b) = 1

2b
exp

(
−|x− µ|

b

)
. (2.21)

2.2.5.2 Definition: Gaussian distribution

The Gaussian distribution [60] represents the probability density function of a
normally distributed random variable X ∼ N (µ, σ2), with mean µ = 0 and
variance σ2 is defined as,

g(X) =
1

σ
√
2π

exp

(
−1

2

(x− µ)2

σ2

)
. (2.22)

41

2.2.5.3 Definition: Binomial distribution

Bernoulli’s trial is an experiment with only two possible outcomes (boolean).
The binomial distribution [36] is a discrete probability distribution with parame-
ter n ∈ N and p ∈ [0, 1], representing the probability of getting exactly k-number
of successes in n independent Bernoulli’s trial with probability of success p and
failure 1− p, defined as,

Pr(k, n, p) = Pr(X = k) =

(
n

k

)
pk(1− p)n−k, (2.23)

where
(
n

k

)
=

n!

k!(n− k)!
, is the binomial co-efficient.

2.2.5.4 Definition: Uniform distribution

A uniform distribution is a symmetric probability distribution where the out-
come lies between two bounds, lower bound a and upper bound b. The proba-
bility density function is defined as,

f(x) =

{
1
b−a , if a ≤ x ≤ b
0, otherwise

(2.24)

Similarly, there are many other frequently used probability density functions
like Poisson, Bernoulli, Student’s t, geometric, etc.

Next, we delve into the concepts of disciplines like machine learning, opti-
mization, data privacy, logic theory, etc.

2.3 Basics of machine learning
Machine learning is an old science, and it has been applied to different real-
world problems like clustering and classification. Ahead of delving into practical
applications, it is essential to discuss how this tool works.

To gain a working knowledge of the key concepts and reasoning behind them,
a brief explanation of these machine intelligence algorithms is provided in the
next few sub-sections. We have consulted some books [16, 37, 66, 94, 125, 127]
to summarize the concepts discussed in this section.

Learning
Learning is the process through which computer systems improve their perfor-
mance on certain tasks by studying and responding to data in machine learning.
It entails the creation of algorithms and models that can recognize patterns,
forecast outcomes, and take actions based on previous experiences. Machine
learning is divided into three types: supervised, unsupervised, and reinforce-
ment learning, each with its own unique approach to extracting knowledge from

42

data. Machines can essentially acquire and apply information from data au-
tonomously, allowing them to solve complicated issues, make decisions, and
improve their performance over time.

Inference
The primary goal of a learning algorithm is to find the internal pattern of a
dataset by setting values for some parameters and using these parameters to
predict outputs for new data points. This process is called inference. Inference
can be of two kinds: deductive inference and inductive inference.

In deductive inference, specific assertions are derived from general principles,
while in inductive inference, general principles are learned from observations.
Inductive inference typically involves the following steps:

• Collecting data.

• Constructing a model.

• Making predictions.

Now, let’s discuss learning algorithms and classify them based on their func-
tional forms.

2.3.1 Parametric vs non-parametric learning algorithms
Some learning algorithms have fixed parametric structures and functional forms,
while others do not. Algorithms with a specific functional form are known as
parametric learning algorithms. These algorithms aim to estimate parameters
to plug into the functional form for predicting values for new data points. An
example of a parametric method is linear regression, which assumes a fixed
linear form, and the slope and bias parameters need to be estimated.

Non-parametric learning algorithms [70] do not make assumptions about
the functional form of the model and are flexible regarding parameters and
their values. For example, in the k-nearest Neighbors (KNN) Algorithm, the
functional form of the underlying model is not assumed, and it varies as the
number k varies. The complexity and degrees of freedom can vary in non-
parametric learning.

2.3.1.1 Predictability versus interpretability

To better understand learning models, two additional terms should be intro-
duced: predictability and interpretability.

Predictability refers to the ease with which a system can predict the relation-
ship between predictor and response variables and interactions among different
predictors. Simpler systems are easier to interpret, but complex functions are

43

difficult to interpret. However, complex models often perform better in pre-
diction tasks. For example, linear regression is interpretable but has low pre-
dictability, while neural networks are highly predictable but less interpretable.
Choosing the model’s complexity depends on the problem’s specific require-
ments.

2.3.2 Different types of learning algorithms
Learning algorithms can be classified into five main types:

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Structured output learning

• Reinforcement learning

Supervised learning
Supervised learning algorithms [16] are driven or supervised by labels corre-
sponding to each data point in the training dataset. Given n pairs of training
data (Xi, Yi)i=1···n, where each data point consists of the predictor variable Xi

and the response variable Yi as the label, the goal of supervised learning is to
learn a mapping function f : X → Y from a set of possible functions in the
hypothesis space. In classification tasks, the output space Y is discrete, while
in regression settings, Y is continuous.

Unsupervised learning
Unsupervised learning algorithms [16] are not supervised by labels. Training
data points consist only of predictor variables. Unsupervised learning includes
clustering, density estimation, and dimensionality reduction.

Semi-supervised learning
Semi-supervised learning algorithms [136] are supervised by labels for some data
points in the training dataset, while others resemble unsupervised learning. The
goal is to construct a function for the entire dataset, A : L× U → F , where F
represents the set of possible functions.

Reinforcement learning
Reinforcement learning [119] is a key paradigm in machine learning and artificial
intelligence that is concerned with teaching agents to make successive decisions
in dynamic situations. Reinforcement learning agents learn through interaction

44

with their surroundings, as opposed to supervised learning, where algorithms
learn from labeled instances. Based on their activities, these agents receive
feedback in the form of incentives or penalties, allowing them to develop optimal
methods through trial and error. Reinforcement learning has found applications
in a wide range of fields, including robotics and computer games, as well as
autonomous vehicles and recommendation systems. It provides a promising
strategy for handling complicated issues where judgments must be made over
time, making it an important field of AI research and development.

2.3.3 Model selection and assessment
In these learning algorithms, we train models, evaluate them, and often select
one model over another.

Model selection
Model selection involves choosing the function space within which a statistical
method learns from data. The selected model’s proximity to the true under-
lying model, which represents the true data population distribution pdata, can
determine the model’s success or failure. Model selection is essential when mul-
tiple models within a function class are evaluated based on their performance
on sample datasets.

Model assessment
Model assessment involves evaluating the performance of different functions
within a function space. Different models within the same function class may
have varying assessments in terms of how well they fit the data and generalize
the distribution. The error introduced by the chosen model compared to the
best model in the function space is called empirical error.

2.3.4 Input, action, outcome, and hypothesis spaces
Describing models and machine learning algorithms requires the introduction of
some relevant terminologies.

• Input space is the domain of values that the input variable or predictor
can take.

• Action space is the set of actions allowed to the agent or algorithm.

• Outcome space is the range of values that the response or dependent
variable can take.

• Hypothesis space is the space of all possible hypotheses to be considered.
The best hypothesis fits the data well and is optimal.

45

2.3.5 Basics of optimization
Now, that we have discussed about key concepts of basic machine learning, we
dig deeper into the concepts of optimization, and critical points, as those are
some of the principal concerns in this dissertation.

2.3.5.1 Critical points

The first-order derivative of the function at any point is the gradient of the
function at that point. The function is only derivable if it is continuous and
differentiable at that point. Now the second-order derivative is called the rate
of change of the gradient of the function at a given point. The points at which
the function gradient reaches a value of zero are called the critical points of
the function. See Fig. 2.2, 2.3 for the illustrations.

Figure 2.2: Gradient: The positive and negative tangent lines, shown in orange
and blue respectively, touch the curve of the function, shown in black, at the
bold orange and blue points. [Source]

There are three different types of critical points:

• Minima

• Maxima

• Saddle point

A point on the function is called a minima if the neighboring points on
that function are higher than the point. Similarly, a point on the function is
called a maxima if the neighboring points on that function are lower than the
point. These maxima and minima can be global, local, or both in the case of a
purely convex function. But in very high dimensional problems reaching a local
extreme point is as good as reaching a global one [34]. The last critical point is
the saddle point, which has both higher and lower points as neighbors on the
function. See Fig. 2.3 for illustration.

46

https://mathspace.co/textbooks/syllabuses/Syllabus-844/topics/Topic-18525/subtopics/Subtopic-278032/

Figure 2.3: Critical points: The bold blue point on the left-most figure is the
minima of the function. The bold blue point on the middle figure is the maxima
of the function. On the right-most figure, the saddle-like structure has a critical
point, shown in bold blue. [Adapted from 66]

Most simple functions are either convex or concave functions where either
minima or maxima exist. But complex problems dealing with complex func-
tions can consist of multiple extrema, both local and global optima. In such
problems, finding the optimum solution is not as easy as simple convex (or con-
cave) functions and requires a more advanced and sophisticated optimization
algorithm to avoid getting stuck at local optimum points. See Fig. 2.4 for
illustration.

Figure 2.4: Multiple extrema: Multiple critical points and extremum points
exist on the function, including local minima, global minima, and saddle points.
[Source]

2.3.5.2 Optimization

Optimization is a method of nudging the solution in the right way so that even-
tually the optimal solution is reached. There are many optimization methods
available like first-order Gradient descent, second-order Newton method, etc.

47

https://viso.ai/deep-learning/machine-learning-algorithms-mathematical-guide/

gradient descent (GD) [108] is the most popular and simple optimization
method which randomly initializes at any point on the function and then takes
a step in the opposite direction of the gradient (for minimization problems).
This step size is decided by a factor called learning rate (η) and it can vary.
Too big a step size can throw the algorithm off track, and the algorithm may
never reach the optima, whereas too small a learning rate can delay the opti-
mization procedure.

Batch gradient descent updates the parameters considering all the data
points in the dataset. Mini-batch gradient descent is a variation of gradient
descent where each update of parameters does not depend on the whole training
dataset; rather, a mini-batch of some randomly selected data points taken from
the original dataset affects every update. The bigger the batch size is, the
less zigzag the trail of optimization, but each parameter update is more time-
consuming. The decision on the mini-batch size and its trade-offs is to be made
as a hyper-parameter and is adjusted using the validation set.

The last but very common variant of gradient descent is stochastic gradi-
ent descent (SGD) [108]. Here, each parameter update depends on only one
training data point. It converges near the solution much faster than batch or
mini-batch gradient descent. Especially when the training dataset is huge, it
requires an enormous amount of computing power to train on them. So, for the
inner product x′iw = xi,1w1 + xi,2w2 + . . .+ xi,pwp, we can express it as,

wnew = wold +
η

1 + η||xi||2
(yi − x′iwold)xi, (2.25)

where features are x1, . . . , xn ∈ Rp and observations are y1, . . . , yn ∈ R.
Here, the learning rate is normalized, hence numerically stable for all η.

But it takes a back-and-forth path towards the optima and can jitter around
the optima rather than reaching the exact point, as depicted in Fig. 2.5a, 2.5b.
This problem can be solved by introducing little tweaks in the updates like in-
troducing simple or Nesterov momentum terms. This takes inspiration from the
concept of momentum in Physics where a moving particle incurs acceleration
as it moves through space. Similarly, the learning rate or the step size gains
momentum over different optimization steps. An exponential decay factor is in-
troduced here to create the momentum depending on the previous gradients and
their influence on the current one while updating the weights w that minimizes
the Q(w) below,

w := w − η∇Qi(w) + α∆w, (2.26)
where η is the learning rate, (0 ≤ α ≤ 1) is the exponential decay factor.
The problem above can also be solved using adaptive learning rates in the

optimization algorithm. This hyper-parameter can be set at the fixed value using
the trial and error method or can be adjusted automatically through the course
of learning, e.g., in algorithms like AdaGrad [41], RMSProp [121], Adam [81],
etc. The Robbins–Monro algorithm [107] theoretically achieves calculating the
optimal convergence rate, concerning the objective function values at O(1/n),
whereas [28] and [53] achieved O(1/

√
n).

48

The momentum accumulates the decaying average of gradients from past
iterations to calculate the current update direction and size. The most common
and best-performing first-order method for many problems is ADAM optimiza-
tion, which uses adaptive momentum. It’s an amalgamation of RMSProp and
momentum.

(a) Naive SGD (b) SGD with Momentum

Figure 2.5: SGD without and with momentum: (a) Contour of Stochastic Gra-
dient Descent cost function, where the jitter (shown in red) effect delays the
optimization. [Adapted from 66]

Sometimes learning rate decay is done with a fixed decay rate, where after
a fixed number of iterations, the learning rate decays by the rate factor. It can
also decay after seeing no noticeable change in performance for a fixed number
of iterations.

Now, we look further into a specialized alley of optimization, constraint op-
timization, and we will thoroughly use this concept in our proposed framework,
as mentioned in Section 1.3.

2.3.5.3 Constraint optimization

In the mathematical world of optimization, the process of optimization in a
constrained environment is called constrained or constraint optimization [15].
Here, an objective function is optimized with respect to some variables in the
presence of some constraints on those variables. Constraint optimization has
two principal components: the objective function and the set of constraints.

Now, the objective function is generally a loss or cost function in a minimiza-
tion problem setting, where we try to find the minimal point after optimization.
In the case of utility, performance, or reward maximization, we try to find the
maximal point as a result of the optimization. The constraints can also be of
various natures:

49

• Hard constraints are the ones that absolutely need satisfying while find-
ing a solution to the optimization problem. These constraints are non-
negotiable and can often slow down the optimizer, making it harder to
find a feasible solution for the objective function while satisfying the hard
constraints.

• Soft constraints are less strict in satisfaction criteria and negotiable
at times. The optimizer should try to find an optimal solution for the
objective function while trying its best to satisfy the soft constraints.

Besides, the constraints can also be classified as equality constraints or in-
equality constraints. The standard nature of a constraint optimization problem
is as follows:

min f(x),

subject to gi(x) = ci for i = 1, . . . , n

and hj(x) ≥ dj for j = 1, . . . ,m (2.27)

where gi(x) = ci for i = 1, . . . , n, and hj(x) ≥ dj for j = 1, . . . ,m are
hard constraints that are required to be satisfied while optimizing the objective
function f(x). The gi(x) = ci for i = 1, . . . , n are the equality constraints,
whereas, hj(x) ≥ dj for j = 1, . . . ,m are inequality constraints.

Having discussed optimization, we now look at how we deal with a dataset
for training, testing, and validation purposes.

2.3.6 Dividing the dataset
An empirical risk minimizer has a probability of not reaching the optimal so-
lution and getting diverted to (or stuck at) a sub-optimal solution for unseen
data. However, the objective of the minimizer is to find the best prediction
result (or inference) on previously unobserved data points. To find a solution to
this, generally, the model is not trained on the whole dataset available; rather,
they are divided into the following three subsets:

• Training dataset

• Test dataset

• Validation dataset

The training algorithm is run on the largest part of the dataset, called the
training dataset. For large datasets, more than eighty percent of the total
dataset is used as the training set. Generally, if more data points are available
for training, the performance of the model improves. The remaining data points
are divided into the validation set and the test set. The test dataset is kept
aside and is never used before the model is finalized. However, every time

50

the model is trained on the training set, the validation set is used to get an
intermediate idea of the model’s performance on unobserved data and to tune
the hyperparameters.

When the dataset is not large enough to divide it into a training set, a test
set, and if required, a validation set, statistical methods like cross-validation
(CV), leave-one-out cross-validation (LOOCV), and k-fold cross-valid-
ation come to the rescue.

2.3.6.1 Cross-validation and re-sampling algorithms

When the dataset is not large enough to divide it into a training set, a test set,
and if required, a validation set, then statistical methods like cross-validation
(CV) [82] and other resampling methods come to the aid. In a naive CV, the
dataset is divided into a random split (generally 50/50) to be used as a training
and test dataset. This way, the trained model is tested on previously unseen
data points. Unfortunately, it reduces the training data size significantly, hence
overestimating the test error. See Fig. 2.6.

Figure 2.6: Cross-validation: The naive cross-validation splits the dataset into
a 50/50 division as the training data and the test data. [Adapted from 77]

Another method called leave-one-out CV (LOOCV) [77] improves over
the vanilla CV, where if there are n data points available, then all but one
data point is used as the training data and the one data point (also called the
held-out data point) acts as the test data. However, the test dataset is too
small to reflect proper test error. So the whole training method is repeated n
times, every time with a different held-out data point as the test data. Then
the final test error is the mean of all the n test errors from n different trainings.
It solves the problem of very few training data points, but as the training sets
from different runs are almost the same, it has a very high variance. It is also
computationally expensive as it needs to train the model n times on the (n− 1)
data points, every time. See Fig. 2.7.

The third resampling method called k-fold cross-validation [72], is some-
where between the above two methods. It tries to address the problems both
these methods have. Here, the dataset of n data points is divided into k differ-
ent non-overlapping folds of almost the same size (∼= n

k). Now the function is
trained with (k− 1) folds of data, i.e., (k−1)∗n

k many data points as the training
set and the rest as the test set. The whole process is repeated k times, every
time with a different fold as the held-out test set and the rest of the (k−1) folds

51

Figure 2.7: Leave-one-out cross-validation: In this cross-validation, at every
run, all data points but one are used as the training dataset and the held-out
data point acts as the test data. [Adapted from 77]

as the training set. In the end, an average is taken over all the k-test errors to
get the final result. This method has more data than CV as well as less overlap
of the training dataset between different runs. The computational expense is
also somewhere in between CV and LOOCV. Though finding the right number
of folds, appropriate for the problem in hand is a challenge, and the test error
estimation depends a lot on the value of k. See Fig. 2.8.

Figure 2.8: K-fold cross-validation: In this cross-validation method, n data
points are divided into nearly equal-sized k folds. At each run, (k− 1) folds are
used as the training set, and the rest of one fold is the test set. [Adapted from
72]

K-fold CV with k < n is computationally more efficient than LOOCV, as k-
fold CV needs to fit the model k times, whereas LOOCV needs to fit the model
n times. Moreover, k-fold CV estimates the test error rate more accurately than

52

LOOCV as a result of the bias-variance trade-off.

2.3.7 Training and fitting the model
The estimated model can approximate the true function using the training
dataset to different extents. Intuitively, if the estimated model fits the training
dataset exactly, then there would be zero loss, which might sound like a perfect
solution to any problem. However, the original goal of any learning algorithm is
to reach a point when the estimated model performs well on previously unseen
data points.

This may seem unintuitive, but in reality, nobody cares much about the
model’s performance on the training data, especially in prediction problems in
supervised learning, and how well it learns to memorize the training dataset.
Instead, a model that has comparatively poor performance on the training data
but performs significantly well on test data is considered better than a perfect
fit on the training dataset.

How well the estimated model fits the observed dataset and performs on the
test dataset also depends on the fitting of the model on the training dataset.
If the estimated function is very flexible and goes through all data points in
the training dataset, then it is called overfitting the dataset. It will perform
well on the training dataset but will not generalize well to perform on the test
data. The system merely memorizes the observed points, learns all the noise
and idiosyncrasies of the training dataset, and does not capture the nature of
the true function. Similarly, an underfit model is so simple that it lacks the
flexibility to capture the variations in the dataset. It fails to represent both
the training and the test dataset and, consequently, the ground truth function,
leading to very low performance. A model that neither underfits nor overfits the
dataset, having the right capacity (similar to the ground truth or the original
distribution unknown to all), is ideal. See Fig. 2.9 for illustration.

A model with flexibility somewhere in between, one that approximates the
training dataset well and has a significantly low test error rate, is called a correct
or perfect fit. A perfect fit should be the model that comes closest to the Bayes
decision function and has an error with the least possible difference from the
Bayes error. The Bayes error is the lowest possible achievable error by any
learning algorithm when the real distribution of data is unknown to the system.
This variation in fitting is subjected to the bias-variance trade-off, which we will
explore next.

2.3.7.1 Bias variance trade-off

As the complexity of the model increases, the training error of the model steadily
decreases. However, this may not hold for the test error. Initially, as the training
error decreases with increasing complexity, the test error also decreases, but only
up to a certain point. After reaching that certain point, despite the training
error continuing to decrease, the test error starts to increase as the complexity
of the model increases.

53

Figure 2.9: Different types of capacity: The left image shows a linear model
underfitting the dataset and failing to follow the pattern. The middle image
has the appropriate capacity where the model can perfectly follow the true
dataset. The right image is overfitting as it blindly follows the data points and
cannot capture the pattern present in the original dataset. [Adapted from 66]

To explain this phenomenon, we need to understand the bias-variance trade-
off [72]. But before that, let’s discuss two fundamental concepts and their
interactions:

• Variance of a fitted model measures how much the model parameters will
change if we use a different sample training set from the original dataset.

• Bias, on the other hand, indicates how closely a model follows the under-
lying trend in the dataset.

If a model closely follows every point in the training dataset, it has a very low
bias but may fail to generalize to the underlying trend in the original dataset
(the unknown distribution), resulting in a very high variance. Conversely, a
highly generalized model has low variance but may exhibit high bias, as it could
deviate significantly from the underlying pattern in the data. Bias and variance
are always in opposition, with one increasing as the other decreases and vice
versa.

The residual error of a fitted model is proportional to the sum of the
variance term and the squared bias term. Our primary goal is to reduce the
overall error of the trained model, so we must set the model parameters in such
a way that both bias and variance settle at their optimal values. Finding the
sweet spot that balances these contributing factors is a significant challenge for
most machine learning algorithms. A model with high bias is underfitting the
dataset, while a model with high variance is overfitting the dataset. See Fig.
2.10 for illustration.

54

2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30 bias
variance
error

Figure 2.10: Bias-variance trade-off: With increasing complexity of the model,
the bias curve in blue monotonically decreases, while the variance curve in
orange monotonically increases. Consequently, a function of both terms in green,
with the growing complexity of the model, initially decreases the test error but
then starts to rise. [Adapted from 72]

2.3.7.2 Regularization

Training less can lead to underfitting, while excessive training can result in
overfitting and an increase in generalization error. Regularization is a popular
technique to combat overfitting. The challenge of determining the appropriate
model capacity during training can be addressed through regularization, which
can be achieved in two ways: constraint and penalty methods.

Constraining the dimensionality of the function space simplifies the func-
tion and prevents it from becoming excessively complex, which helps avoid
overfitting. For example, Ivanov regularization imposes such constraints. In
contrast, penalizing the function does not constrain the original function space
but reduces its complexity to smooth out sharp changes. This regularization
method reduces parameter values and encourages them to approach zero. It
is also known as weight decay. The most well-known regularization techniques
through penalty are Ivanov and Tikhonov regularization methods, [99], which
are essentially equivalent ways to achieve a similar level of regularization on a
function.

The two most popular regularization methods are:

• Lasso or L1 regularization

• Ridge or L2 regularization

Lasso or L1 regularization [77] aims to minimize the error function while
adding an L1 norm term (first-order). This results in reduced parameter values,
effectively bringing the estimated weight vector β̂ closer to the blue diamond in

55

Fig. 2.11. It ultimately settles at the point where the error function contour
touches the diamond:

β̂ ≡ argmin
β

(
||y −Xβ||2 + λ||β||1

)
. (2.28)

Similarly, ridge or L2 regularization [77] aims to minimize the error
function while adding an L2 norm term (second-order). This also leads to
reduced parameter values, bringing β̂ closer to the blue circle in Fig. 2.11. It
ultimately settles at the point where the error function contour touches the
circle:

β̂ ≡ argmin
β

(
||y −Xβ||2 + λ||β||22

)
. (2.29)

Both regularization methods have their advantages. L1 regularization intro-
duces sparsity to the parameters, allowing it to set some parameter values to
zero, reducing the problem’s dimensionality and simplifying the optimization
process. However, L1 regularization is non-differentiable and piecewise, making
gradient updates of parameters challenging through backpropagation. On the
other hand, L2 regularization is continuous and differentiable but cannot induce
sparsity in parameters. As a result, L1 regularization is often used for feature
selection, particularly in high-dimensional problem spaces.

Next, we will provide a brief overview of various types of losses. It is impor-
tant to understand that our main goal, optimizing a desired result (in our case,
utility or privacy parameters), requires us to minimize loss effectively.

2.3.8 Different types of loss
Loss functions are problem-specific, and their properties vary depending on
their application in regression or classification problems. Generally, classifica-
tions focus on the fraction of test data points that are correctly classified, while
regression problems are concerned with the residual error.

The classification loss function is called 0/1 loss, which assigns a “0” for
every correctly classified data point and a “1” for every wrongly classified data
point to count the number of wrongly classified data points, normalized by the
total number of data points in the test set. The 0/1 loss is continuous, convex
but not differentiable, and is defined as:

ℓ(ŷ, y) = 1(ŷ ̸= y). (2.30)

Simple residual loss is the difference between the prediction and the ground
truth, expressed as:

ℓ(ŷ, y) = ŷ − y. (2.31)

Sometimes, absolute loss or Laplace loss is used, but it is not differen-
tiable and is defined as:

56

Figure 2.11: L1 and L2 regularization with the residual sum of squares (RSS)
contour function: The left figure illustrates L1 regularization, where the green
diamond represents the L1 function, and the error contour is shown in red.
Similarly, in the right image, the green circle is the L2 function, and the contour
plot is in red. In both L1 and L2 regularization, total cost minimization aims to
move the error contour’s minimum point toward the regularizer function. The
final value of β⋆ is where the regularizer function plot touches the error contour.
In L1 regularization, the point where the error contour touches the diamond’s
corner sets the weight component along the β2-axis to zero. [Adapted from 77]

ℓ(ŷ, y) = |ŷ − y|. (2.32)

Outliers are data points that can be considered noise and do not follow
the pattern of the true underlying distribution, such as the price of Bill Gates’s
house in a house price prediction problem.

Square loss is used to prevent positive and negative residuals from nullifying
each other and is differentiable. However, the square loss is more affected by
outliers and is not robust. It is defined as:

ℓ(ŷ, y) = (ŷ − y)2. (2.33)

Hinge loss is a maximum margin classification error, commonly used in
support vector machine (SVM) [31], and is sometimes referred to as SVM loss.
In margin-based losses, a positive margin signifies correct classification, while
a negative margin indicates incorrect classification. Here, a larger margin is
considered a classification with more confidence. Hinge loss can be defined as:

ℓ(ŷ, y) = max(0, 1− ŷ · y). (2.34)

57

Logistic loss or binary loss is a normalized loss function that provides
values within the range of 0 and 1. Logistic loss is mainly used in classification
problems. Prediction accuracy increases as the log loss decreases, but it does
not solely consider the boolean nature of a 0/1 loss.

Cross-entropy loss or log loss is another commonly used loss function in
classification problems. Its output has a range ∈ [0,∞) and is defined as:

ℓ(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ). (2.35)

There are many other loss functions like huber loss, ramp loss, or perceptron
loss, but they are not widely used. In all cases, minimizing the error function
is equivalent to maximizing likelihood/log-likelihood, minimizing negative log-
likelihood, or minimizing cross-entropy [21].

2.4 Common machine learning algorithms
Machine learning algorithms are diverse in nature and application. Some of
them have proven to be more popular in terms of ease of use, generalizability
in different applications, adaptability, and other factors. To provide a varied
perspective, we will briefly discuss some of the most versatile ML algorithms
that have stood the test of time and remain useful to this day. We have consulted
several books [16, 37, 66, 94, 125, 127] to summarize the concepts discussed in
this section.

2.4.1 Prediction
Every machine learning algorithm serves a specific purpose, and one of the most
popular purposes is prediction. Prediction algorithms can predict the value
of a target variable for specific values of feature variables that influence the
outcome or the target variable. Whether it’s predicting the weather, rainfall,
or apartment prices in a specific location, prediction algorithms play a crucial
role in understanding the behavior of these target variables. One of the most
common and simplest prediction algorithms is linear regression.

Linear regression Linear regression is an approach for modeling the linear
relationship between one or more explanatory variables and a response variable.
Simple linear regression deals with only one explanatory variable, while multiple
linear regression deals with multiple explanatory variables.

For a dataset of n data points with a response variable yi and explana-
tory variables xij , where i = 1, 2, . . . , n and j = 1, 2, . . . , d, i.e., the explanatory
variables xi are d-dimensional vectors, the linear regression model is defined as:

yi = β0 + β1xi1 + · · ·+ βdxid + εi for i = 1, . . . , n. (2.36)

In vector notation, we can write this as y = XTβ + ϵ, where

58

y =

y1
y2
...
yn

,

X =

xT
1

xT
2
...
xT
n

 =

1 x11 · · · x1d
1 x21 · · · x2d
...

...
. . .

...
1 xn1 · · · xnd

,

β =

β0
β1
β2
...
βp

, ε =

ε1
ε2
...
εn

. (2.37)

Figure 2.12: Linear regression: An example plot of simple linear regression
line on fitted data with one explanatory variable and one dependent variable.
[Source]

To illustrate this concept with a simple plot, refer to Fig. 2.12. This is
a two-dimensional plot where one axis (horizontal) represents the explanatory
variable, and the other axis (vertical) represents the dependent variable. The
red line is the approximation of the line fitted by the linear regression model to
the blue data points. After training, during testing, given a new data point with
a value of the explanatory variable, the corresponding value of the dependent
variable is predicted by the value on the red line.

59

https://commons.wikimedia.org/w/index.php?curid=11967659

2.4.2 Classification
Just as we’ve seen how linear regression is used for prediction, there are many
types of classification algorithms as well. Some of the popular ones like k-nearest
neighbor (KNN) and naive Bayes are straightforward and effective on simple
datasets. However, for more complex datasets where a fine and sophisticated
solution is required, there are advanced classification methods.

Naive Bayes classifier Based on Bayes’ theorem, this supervised learning
algorithm makes the “naive” assumption of conditional independence between
every pair of features to find the outcome with the highest probability. The algo-
rithm calculates the posterior probability using the prior probability, likelihood,
and evidence:

posterior probability =
prior probability× likelihood

evidence
. (2.38)

The Naive Bayes algorithm performs well on tasks like text categorization,
email (spam or ham) classification, and disease diagnosis.

Figure 2.13: Logistic regression: An example plot of a simple logistic regression
curve on fitted data with one explanatory variable and one dependent variable.
The horizontal axis shows the explanatory variable “hours studying”, and the
vertical axis shows the “probability of passing the exam.” [Source]

Logistic regression Logistic regression is one of the most common and prac-
tical classification algorithms, as illustrated in Fig. 2.13. It models the proba-
bility of a binary outcome and is widely used in various applications.

p(x) =
1

1 + e−(β0+β1x)
(2.39)

60

https://commons.wikimedia.org/w/index.php?curid=116449187

K-nearest neighbor (KNN) KNN [16] is a non-parametric supervised al-
gorithm that assigns every point in the dataset to the class where the majority
of its k ≥ 1 nearest data points in the training set are assigned. In specific
applications, KNN can also be used for regression purposes.

Support vector machine (SVM) SVM [123] is a more sophisticated su-
pervised algorithm used for binary classification. It categorizes data points in
a training dataset into one of two classes while maximizing the width of the
boundary between the classes. New test data points are assigned to a class
depending on their position around the boundary.

To achieve this, SVM places a set of hyperplanes in an ideally high-dimension-
al space to separate the classes and tries to find the widest gap between them.
The pair of hyperplanes with the widest gap between them is chosen. The region
between these two parallel hyperplanes is called the margin (or hard margin).
The plane parallel to these hyperplanes, cutting the margin in half, is chosen as
the class separator. Hence, it’s also known as the maximum-margin hyperplane
algorithm. The data points on the two margins are called the support vectors.

If the classes are not linearly separable, the kernel trick is used with a non-
linear kernel to find the hyperplanes. Additionally, when the dataset is not
linearly separable, SVM often finds a soft margin instead of a hard margin. A
soft margin allows the model to make some mistakes, meaning a few training
samples may fall on the wrong side of the class separator. This approach leads
to a more generalized final model at the cost of a higher training cost.

2.4.3 Dimensionality reduction
Another important field of machine learning application is dimensionality reduc-
tion. High-dimensional spaces can lead to sparse and intractable observations,
known as the “curse of dimensionality”. Domains dealing with a high number
of features, such as bioinformatics or speech recognition, often require mecha-
nisms to reduce the dimension of their data for easier analysis. Dimensionality
reduction aids in data visualization, pattern recognition, data interpretation,
and noise reduction.

To address this, we often try to map data into a lower-dimensional space
while retaining the insights from the original high-dimensional representation.
Feature selection aims to find a subset of all initial features that provide a
meaningful representation of a lower-dimensional dataset. Feature extraction
or projection, on the other hand, transforms the dataset into a smaller set of
derived features with a meaningful and non-redundant representation of the
original dataset.

Principal component analysis (PCA) PCA [78]is the most widely used
linear dimensionality reduction technique based on feature projection. It lin-
early maps high-dimensional data into a lower-dimensional representation while
retaining the maximum amount of variance in the data, preserving meaningful
information from the original dataset.

61

This simple yet effective method computes the eigenvectors of the covariance
matrix of the data and then sorts them based on their eigenvalues. To find the
p principal components, we select the first p eigenvectors corresponding to the
largest p eigenvalues in the covariance matrix, as they capture the highest vari-
ance in the high-dimensional space. Kernel or graph-based principal component
analysis deals with a non-linear way of feature projection.

2.4.4 Ensemble learning
Ensemble learning methods rely on a group of individually weak base models to
optimize the final, stronger prediction results through their combined wisdom.
They aggregate a group of base models with high variance to ultimately achieve
a model with lower variance. Ensemble methods often use models prone to
overfitting, such as Decision trees and Random forests, and a more generalized
solution can be obtained by aggregating an ensemble of different models.

Two types of ensemble learning methods are bagging and boosting [66].
In both methods, multiple learning models are trained with their own set of
weights, and by sharing these weights, they tend to reach parameters that lead
to better performance than their individual performances. Bagging methods
are generally used when individual base models show high variance and low
bias while boosting methods are preferred when individual base models exhibit
low variance and high bias.

In bagging, a random sample of training data points is selected with re-
placement to create many datasets with overlap, and they are trained in par-
allel. Random forest uses many decision trees, and aggregating many such
high-variance models yields better performance than individual models.

On the other hand, individual base models are trained sequentially in boost-
ing methods. AdaBoost [56], XGBoost [27], or GradientBoost [57] are
some variants of Boosting algorithms. Iterative learning of multiple weak-learner
models eventually results in a strong learner with improved model performance.

2.4.5 Clustering
Clustering, or cluster analysis, is the unsupervised study of discovering natural
groupings or associations in data. Clusters are dense groups of observations
in feature space that are closer to some clusters and distant from others. The
proximity of observations within a cluster is often measured using a distance or
similarity metric.

Clusters may have centroids and boundaries separating them. Finding clus-
ters can be useful in knowledge discovery or pattern finding among observations.
Beyond using quantitative measurements or distance metrics, domain experts
often subjectively analyze the data to achieve better clustering performance.

K-means One of the most widely used clustering algorithms is known as k-
means clustering [52]. It utilizes variance as the distance metric and aims to
minimize the variance among clusters. The algorithm partitions the population

62

into k sets with optimized inter-cluster variance based on a sample set of size
n. Observations are assigned to the cluster with the nearest centroid.

Given a sample set of observations {x1, x2, . . . , xn}, where each observation
xi is a d-dimensional real vector, k-means clustering divides the sample into a
set of clusters S = {S1, S2, . . . , Sk} by minimizing the within-cluster variance
in terms of the sum of squares:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥22 = argmin
S

|Si|Var(Si), (2.40)

where |Si| is the size of cluster Si, and µi is the centroid of cluster Si, i.e.,
µi =

1
|Si|
∑
x∈Si

x.

2.4.6 Traditional deep neural networks
The recent surge in applying neural networks across various fields has surpassed
traditional implementations and their performances. Neural networks had been
relatively dormant until the last decade when they experienced unprecedented
advancements. Starting from 2009, the widespread adoption of neural networks
can be attributed to significant increases in computational power, including
graphics processing units (GPUs) and more recently TPUs, making efficient
data processing accessible. These networks excel in handling tensors and other
linear algebraic elements efficiently, specializing in matrix operations and paral-
lel processing. Moreover, open access to vast datasets has greatly contributed
to the progress of neural networks as a tool for dealing with such datasets and
uncovering hidden patterns within them.

Numerous research organizations and universities host datasets on open-
source platforms, such as MNIST [39], IMAGENET [109], CIFAR-10, and CIFAR-
100 [84].

2.4.6.1 Feedforward neural networks

A neural network with a single layer is called a single-layer perceptron (SLP),
and a network with multiple hidden layers is referred to as a multi-layer per-
ceptron (MLP) [66]. An SLP is essentially a linear regression model (optionally
with non-linearity applied at the end), while complex networks with multiple
layers are required to solve more challenging problems with intricate functional
forms. An SLP can be expressed using the following functional form:

f(x;w, b) = wTx+ b, (2.41)

whereas the same architecture with one hidden layer between the input and
output layers can be expressed by the following function:

f(x;w1, b1, w2, b2) = wT2 max(0, wT1 x+ b1) + b2, (2.42)

with a ReLU non-linearity applied to the first layer. Similarly, additional layers
can be stacked to increase the complexity of the functional form.

63

Forward propagation involves network depth or the number of layers l,
weight matrices W (i), bias vectors b(i), where i ∈ {1, . . . , l}, the input features
X, and the output or ground truth values y. The feedforward network takes
the input vector X at the input layer, multiplies it with the weights of the
first hidden layer, and adds the bias. After calculating the pre-activation, a
non-linear activation function is applied to it. Similar operations occur in other
hidden layers, propagating activations through the network to the output layer
where the outcome is generated.

Backpropagation Depending on the outcome at the output layer and the
ground truth, the cost is computed. The backward propagation of information
from the cost calculated at the output layer through the network to compute
the gradient concerning the parameters is known as the backpropagation algo-
rithm [26]. The calculated gradient in backpropagation is utilized by gradient-
based methods, such as gradient descent, to perform learning. Backpropagation
follows the chain rule of calculus:

dz

dx
=
dz

dy
· dy
dx
, (2.43)

where y = f1(x) and z = f2(y) = f2(f1(x)), and f1 and f2 are functions.
Many of the details of computing backpropagation are trivial these days, as

advanced tools are used for implementation, which often have built-in libraries
that compute backpropagation implicitly.

2.4.6.2 Convolutional neural network (CNN)

Convolutional neural networks (CNNs) [86] are specialized networks designed for
conducting convolution operations on grid-structured data, such as images (2-D
or higher dimensional grids) or time-series data (1-D grids). Convolution can
be either discrete or continuous, depending on the properties of the signal, with
continuous convolution being used for audio signals and discrete convolution
for digital images. In both cases, the convolution operation can be understood
as a weighted multiplication with a kernel function, which emphasizes local
properties over global ones.

The kernel is placed on the grid, and multiplication and addition operations
are performed to calculate the values in the convoluted matrix. The kernel is
then moved to the next position, eventually covering the entire grid function.
Convolution can be used in multiple directions, but the principles remain the
same as in one-dimensional convolution. Three types of convolution techniques
are available: full convolution, same convolution, and valid convolution, depend-
ing on factors like grid size, edge management, kernel depth, and the number
of convolution layers.

2.4.6.3 Recurrent neural network (RNN)

Recurrent neural networks (RNN) [126] represent a family of neural networks
specialized in handling sequential data. The name ‘recurrent’ comes from its

64

ability to repeatedly apply the same processing units to each time frame of the
input data. RNNs can work with variable input sizes of time-series data. In
an RNN, each unit’s output is a function of the input up to that point and the
previous output unit.

There are many variations of RNN, including teacher-forcing RNN, fully
connected RNN, context-sensitive RNN, conditional RNN, bidirectional RNN,
encoder-decoder sequence-to-sequence RNN, and RNN with attention mecha-
nism. Due to their suitability for handling time-related data, RNNs find ex-
tensive applications in fields like speech recognition, natural language process-
ing (NLP), and time-series analysis. Real-world applications of RNNs include
machine translation, speech synthesis, virtual question-answering systems, and
customer care chatbots.

2.4.6.4 Long-short term memory (LSTM)

Long-short term memory (LSTM) [74] is a type of neural network designed to
address a limitation of traditional RNNs related to handling long-term depen-
dencies caused by the vanishing gradient problem. In situations where there
are long gaps between relevant pieces of information in a sequence, traditional
RNNs struggle to establish connections. For instance, in natural language text,
if a character talks about going to a country (e.g., Finland) and later mentions
learning the language (e.g., Finnish) after several sentences, traditional RNNs
may fail to associate these long-term dependencies and may not identify the
name of the language.

LSTM addresses this problem using a gated recurrent neural network struc-
ture. It introduces a self-loop connection that allows gradients to flow without
vanishing or exploding, enabling the network to create a weighted combination
of previous memory content from earlier cells and more recent memory. This
mechanism significantly improves the network’s ability to capture long-term
dependencies in sequential data.

Having discussed the basic concepts and popular algorithms of machine
learning, we will next take a brief look at their numerous applications.

2.5 Applications of machine learning
The rise of machine learning algorithms has had a profound impact on various
fields of application. Here, we will briefly discuss some of these applications.

2.5.1 Natural language processing (NLP)
Natural language processing (NLP) is a field that focuses on enabling computers
to understand and generate human language. It encompasses tasks such as text
analysis, sentiment analysis, language translation, and chatbot development.
machine translation, a subfield of NLP, involves translating text or speech from
one natural language to another. NLP systems often require domain expertise

65

to understand the nuances and context of language, as literal translation can be
inadequate for capturing the intended meaning.

2.5.2 Speech
The study of speech involves understanding and processing spoken language.
This field includes automatic speech recognition (ASR), text-to-speech (TTS)
synthesis, privacy-preserving speaker recognition, speaker anonymization, and
more. ASR systems convert spoken language into text, while TTS systems
generate natural-sounding speech from written text. Speech-related applications
are widespread, from voice assistants to intelligent medical systems.

2.5.3 Virtual agents and robotics
Robotics, a long-standing field, has witnessed a surge in popularity and applica-
tions in recent years. Virtual agents, including chatbots and customer support
systems, have become integral in various industries. These agents are capable
of understanding and responding to natural language, enabling efficient commu-
nication with users. Robots, both physical and virtual, are used in industries
ranging from manufacturing to healthcare, performing tasks efficiently and au-
tonomously.

2.5.4 Computer vision
Computer vision is a field that leverages AI and machine learning to interpret
and analyze visual data, such as images and videos. Applications include image
recognition, semantic image segmentation, style transfer, and identity verifica-
tion. Computer vision technology is used in self-driving cars, medical imaging,
social media content analysis, and more.

2.5.5 Recommendation systems
Recommendation systems analyze user behavior to suggest relevant content or
products. This technology is widely used on platforms like Netflix, Amazon, and
e-commerce websites to recommend movies, products, and services. Effective
recommendation strategies can lead to increased user engagement and sales.

2.5.6 Fraud detection
Machine learning algorithms are employed in financial organizations to detect
fraudulent activities. These algorithms learn from patterns in financial data to
identify anomalies and potential fraud. Fraud detection is crucial for safeguard-
ing financial systems and protecting consumers.

66

2.5.7 Task automation
Machine learning plays a significant role in automating tasks across various
domains. From high-frequency stock trading and web crawling to automated
content generation and language detection, these technologies streamline pro-
cesses and improve efficiency.

2.6 Adverse effects and malicious uses of ML
Despite its numerous benefits, machine learning also raises concerns regarding
adverse effects and malicious applications. Next, we will explore some of these
concerns.

2.6.1 Discrimination and bias
Machine learning algorithms often face criticism for being biased and discrim-
inatory. Bias can emerge from historical, and societal prejudices present in
the data used for training. AI-powered systems, including those used in hiring
processes and predictive analytics, have been found to exhibit gender, racial,
or physical feature biases. Addressing these biases and achieving fairness in
algorithms remains a challenge.

2.6.2 Automation and job security
The fear of automation replacing human jobs has persisted since the advent
of computers. Recent AI advancements, such as natural language models like
ChatGPT and Dall-e, have amplified concerns about job security. While these
concerns are sometimes unfounded, it’s essential to consider the shifting demand
for new roles created by technological advances and the need for reskilling and
reintegration of the workforce.

2.6.3 Unaccountability and personal ethics
The accountability of AI and machine learning systems is a critical issue. Leg-
islation exists in some regions, but enforcement and oversight are still evolving.
Researchers, governments, and companies must take responsibility for ethical
AI practices. Personal ethics play a vital role, as some AI-related consequences
may not be formally provable but can still have significant societal impacts.

2.6.4 Privacy attacks
Privacy attacks are becoming increasingly common, targeting individuals and
organizations. Bots and cybercriminals spread misinformation, engage in polit-
ical propaganda, and impersonate humans on social media platforms. Hacking,
cybercrimes, data breaches, and unwanted surveillance are ongoing concerns.

67

Legislation like GDPR aims to protect privacy. We will delve deeper into this
concern in the next section.

2.7 Data privacy
Data privacy refers to the right of individuals or communities to control the
usage of their data. It empowers individuals to choose whether to disclose
their data to specific parties or keep it hidden from others. Individuals have
the authority to decide who can access their personal information and to what
extent. For instance, someone may agree to share their aggregated health data
but decline to disclose their medical records. Data privacy also allows individuals
to assign different levels of sensitivity to various types of personal data. They
may be more cautious about revealing their names and addresses compared to
their age.

Data is essential for various types of studies, including model creation, sta-
tistical analysis, prediction generation, data analysis, result inference, interpola-
tion of missing data, and more. Balancing the use of data with the preservation
of data privacy is both a philosophy and a subject of cutting-edge research. The
goal is to strike a balance between privacy preservation and extracting valuable
information from data.

To better understand the concepts related to data privacy, let’s review some
key definitions, including sensitivity and differential privacy.

2.7.1 Sensitivity
For any two neighboring datasets, denoted as D1 and D2, which differ in at
most one element, the sensitivity of a function f : D→ Rk is defined as follows:

∆f = max ||f(D1)− f(D2)||1 (2.44)

Here, ∆f represents the maximum difference in the values of f when applied
to two datasets that differ in at most one data point. Smaller values of ∆f
indicate that less noise is required to achieve differential privacy [48]. Sensitivity
depends on the specific query function and is independent of the underlying
database. Two commonly used sensitivity measures are l1-sensitivity and l2-
sensitivity.

2.7.2 Differential privacy
Differential privacy [48] is a state-of-the-art privacy mechanism that quantifies
privacy guarantees numerically. It defines neighboring datasets as those that
differ in exactly one element (#((D1 −D2) ∪ (D2 −D1)) = 1). A randomized
function A taking datasets as input is said to provide (ϵ, δ)-differential privacy
if, for any subset S ⊆ Range(K) and any two neighboring datasets D1 and D2,
the following inequality holds:

68

Pr[A(D1) ∈ S] ≤ eϵ Pr[A(D2) ∈ S] + δ. (2.45)

Typically, ϵ and δ are very small, and A provides ϵ-differential privacy when
δ = 0.

In simple terms, differential privacy ensures that the output of a function
A(D) does not change significantly when one data point is added to or removed
from the dataset D. The values of ϵ and δ determine the tolerance to changes
in A(D).

A formal verification method of differential privacy in interactive systems
can be found in [122].

Now that we have a basic understanding of the privacy metric, let’s explore
methods for achieving privacy. Privacy can be preserved using mechanisms such
as encryption and the addition of noise.

2.7.3 Encryption for privacy
Data encryption is a mechanism used to protect sensitive information from
unauthorized access or disclosure. Encryption serves three primary purposes:
authentication (verifying the origin of the data), integrity (detecting any unau-
thorized data manipulation), and non-repudiation (creating a binding assurance
that parties involved cannot later deny participation in data exchange).

Encryption is essential for both data at rest (e.g., stored in the cloud) and
data in transit (e.g., during transmission). In encryption, the sensitive data is
referred to as the ‘plaintext’, while the encrypted data is called the ‘ciphertext’.
Encryption mechanisms typically fall into the following two categories.

1. Symmetric encryption (Private-key cryptography): This method
uses a single secret private key for both encryption and decryption. The sender
uses the key to encrypt the plaintext, and the recipient uses the same key to
decrypt the ciphertext. The key must be securely shared between the parties.
Examples of symmetric key cryptography methods include data encryption stan-
dard (DES), triple DES, and advanced encryption standard (AES) [20].

2. Asymmetric encryption (Public-key cryptography): This method
employs a pair of keys, consisting of a public key and a private key [20]. The
public key is used for encryption, while the private key is used for decryp-
tion. Asymmetric encryption allows secure communication even over unsecured
channels, as only the intended recipient with the private key can decrypt the
message. However, managing key pairs requires a more complex key distribu-
tion system. Examples of asymmetric key cryptography methods include RSA
[106] and Paillier cryptosystems [100].

2.7.4 Adding noise for privacy
The central concept here is to avoid sharing the exact result and instead reveal
a noisy version of it. Adding noise is an effective and cost-efficient method for
achieving privacy, but it can be challenging in various aspects. For instance, in

69

an interactive system, a repeated querying attack can compromise privacy even
if only noisy answers are provided consistently.

To illustrate the concept of privacy and how the addition of noise can protect
sensitive information, consider the famous example of Terry Gross’s height [50].
This example has been widely used in related literature:

Suppose one’s exact height was considered a highly sensitive
piece of information, and that revealing the exact height of an

individual was a privacy breach. Assume that the database yields
the average heights of women of different nationalities. An
adversary who has access to the statistical database and the

auxiliary information “Terry Gross is two inches shorter than the
average Lithuanian woman” learns Terry Gross’ height, while

anyone learning only the auxiliary information, without access to
the average height, learns relatively little.

Determining the appropriate noise budget and noise type can be challeng-
ing. Moreover, noise can be added at various stages in an information pipeline,
raising questions about where and how much noise should be introduced. These
decisions can depend on the specific situation, problem setting, the function
to be applied to the data, or the level of trust between the parties involved.
Additionally, increasing the amount of noise generally provides stronger privacy
guarantees but can reduce the utility or performance of the algorithm.

The two most commonly used noise mechanisms are Laplacian and Gaussian
noise.

2.7.4.1 Laplacian noise mechanism

In the Laplacian noise mechanism, noise is added by drawing from a Laplace
distribution, as defined by Eq. (2.21), to perturb the original data and preserve
privacy.

Definition: Laplace mechanism. Given any function f : N|χ| → Rk, the
Laplace mechanism is defined as follows:

ML (x, f(.), ϵ) = f(x) + (Y1, ..., Yk). (2.46)

Here, the Yi are independent Laplace random variables drawn from Lap(∆f/ϵ),
and ∆f is the l1-sensitivity of function f as defined in Eq. (2.21).

70

0

0.1

0.2

0.3

0.4

0.5

-10 -8 -6 -4 -2 0 2 4 6 8 10

μ=0, b=1
μ=0, b=2
μ=0, b=4
μ=-5, b=4

Figure 2.14: Laplace probability density function (for various µ and b). [Source]

The Laplace mechanism provides a privacy guarantee known as ϵ-differential
privacy. The noise is scaled by the sensitivity of the query divided by ϵ, in-
versely proportional to ϵ. This means that more sensitive query results require
a stronger privacy guarantee, leading to the addition of more noise. The Laplace
mechanism is sometimes referred to as (ϵ, 0)-differential privacy, as δ is always
set to 0. Laplace noise provides better accuracy than the Gaussian mechanism
discussed next but is less flexible. We illustrate the Laplace probability density
function in Fig. 2.14.

2.7.4.2 Gaussian noise mechanism

An alternative to the Laplacian mechanism is the Gaussian mechanism, where
noise is added by drawing from a Gaussian distribution, as defined in Eq. (2.22).

Definition: Gaussian mechanism. For ϵ ∈ (0, 1) and δ ∈ (0, 1), given
any function f , the Gaussian mechanism is defined as follows:

MG (x, f(.), ϵ, δ) = f(x) +N (µ, σ2), (2.47)

where, µ = 0, and σ2 = 2ln(1.25/δ).(∆f)2

ϵ2 .
The Gaussian mechanism offers a more relaxed privacy guarantee compared

to the Laplace mechanism. Instead of ϵ-differential privacy, it provides (ϵ, δ)-
differential privacy. The variance of the Gaussian distribution depends on the
privacy parameters, i.e., ϵ, δ, and sensitivity. The Gaussian mechanism is often
more effective than the Laplace mechanism when the l2-sensitivity is lower than
the l1-sensitivity, resulting in the addition of less noise. The Laplace mechanism
is limited to scenarios where only l1-sensitivity is applicable. We illustrate the
Gaussian probability density function in Fig. 2.15.

Now that we have discussed these fundamental methods for achieving pri-
vacy, let’s delve deeper into the practical aspects of how differential privacy

71

https://commons.wikimedia.org/w/index.php?curid=34776178

works. We will explore the various ways in which these concepts can be applied
in the framework of a privacy-preserving system.

φ μ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

x)
0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

Figure 2.15: Gaussian probability density function (for various µ and σ2).
[Source]

2.7.5 Classical differential privacy concepts
Differential privacy says, in a study, the participation of a single individual
mustn’t significantly affect the outcome. This implies, that if a random algo-
rithm is applied to a non-correlated dataset containing the data entry of one
individual, such as Alice, replacing that data entry with another, say, Bob,
should not make the new outcome more or less likely (within the ϵ factor) com-
pared to the previous outcome.

Therefore, if an adversary possesses some prior knowledge (auxiliary infor-
mation) and applies a random algorithm to the dataset to conclude the data
entry, their results should not be significantly better than a factor of eϵ com-
pared to when everything else is the same except for the data entry replacement.
This represents a strong privacy guarantee, but not an absolute one. It does not
rely on computational power or any auxiliary information, yet it may still bear
some minimal risk to privacy. However, the benefits of the results obtained from
algorithm runs on the database outweigh this minimal additional privacy risk.
This concept can also be extended to group privacy but with a linear increase
in the ϵ factor.

The choice of where to add noise can be crucial in terms of the resulting
privacy and utility. This decision can vary widely depending on the problem
setting. Factors such as the data source, collection method, query types, how
the database is treated, and the frequency of such queries can all influence the
choice of privacy mechanisms. There are two different approaches to classical
differential privacy methods: global differential privacy and local differential
privacy.

72

https://commons.wikimedia.org/w/index.php?curid=34776178

2.7.5.1 Central differential privacy

The classic central differential privacy mechanism [43] involves adding noise to
the output variable yi to obtain a noisy version ŷi before revealing the response.
This mechanism protects the privacy of the published output.

This mechanism is useful when the data source and the collection method
are fully trusted, and individual data points in the database are trusted. The
sensitivity of the function does not significantly affect the outcome, as the non-
noisy versions are fed directly into the algorithm. This mechanism performs
particularly well with large datasets and when only a few queries are run over
them, as noise is only added to the output. However, if multiple queries are
made, the realized loss may still be high. Additionally, if the number of outputs
is greater than the number of inputs, the loss may be even higher.

2.7.5.2 Local differential privacy

Local differential privacy (LDP) [42] is a state-of-the-art privacy mechanism
where sufficient noise is added to every input variable xi to obtain a fully private
version x̂i. Any query can then be answered using these noisy versions, and the
output can be computed as O = f(x̂). A major drawback of this approach is
that it requires a significant amount of noise, leading to a larger privacy budget
and, consequently, higher expected loss and sub-optimal utility.

Local DP is more effective when the data collection and processing organi-
zation is not trusted, and individual inputs need to be differentially private. It
also works well when multiple queries are frequently made over the same set of
data points. However, if the queries are run on non-overlapping data points,
LDP may result in lower utility. Additionally, the algorithm needs to be ro-
bust to general perturbations of individual inputs, as locally added noise may
significantly affect algorithms with high sensitivity.

2.7.5.3 Other variants of differential privacy concepts

Research exists on other variants of differential privacy, their analysis, applica-
tion, and comparison with the traditional CDP or LDP mechanisms. In this
paper [6], they discuss three of such variants of differential privacy, namely Ap-
proximate differential privacy [45], Hypothesis test differential privacy [98], and
Renyi differential privacy [92].

2.7.5.3.1 Approximate differential privacy. This is the lenient version
of differential privacy where δ > 0, i.e., the privacy notion allows with an ideally
tiny probability δ, the differential privacy guarantee may not hold. When this
δ probability is set to 0, we get the pure differential privacy, parameterized by
ϵ only. Research [118] exists which tries to find better performance on privacy
preservation in both pure and approximate settings.

73

2.7.5.3.2 Hypothesis test differential privacy. If we have a database
access mechanism M , which returns random output Y , and we consider the
hypothesis testing experiment, where a null hypothesis H0 and alternative hy-
pothesis H1 is chosen such that:

H0 : Y came from a database D0 ,
H1 : Y came from a database D1 .

Now, for a choice of a rejection region S, the probability of type I error, i.e.,
when the null hypothesis is true but rejected, is defined as P (M(D0) ∈ S) ≡
PFA(D0, D1,M, S) and the probability of type II error, i.e., when the null hy-
pothesis is false but retained, is defined as P (M(D1) ∈ (S̄) ≡ PMD(D0, D1,M, S),
and where S̄ is the complement of S.

According to this algorithm [79], for any ϵ ≥ 0 and δ ∈ [0, 1], a database
mechanismM is (ϵ, δ)-differentially private if and only if the following conditions
are satisfied for all pairs of neighboring databases D0 and D1, and all rejection
region S ⊆ χ :

PFA(D0, D1,M, S) + eϵPMD(D0, D1,M, S) ≥ 1− δ, (2.48)
eϵPFA(D0, D1,M, S) + PMD(D0, D1,M, S) ≥ 1− δ. (2.49)

Here, the FA stands for false alarm and MD stands for missed detection.
We can infer from this, that it is impossible to achieve small values for both
probabilities of false alarm (type I error) and probabilities of missed detection
(type II error) from data obtained through a differentially private mechanism,
and vice-versa.

We’ll discuss an analysis on the composition of differentially private mecha-
nisms using Renyi differential privacy mechanism in Section 2.7.6.2.

Works like [3], [114] studies differential privacy mechanism in deep neural
networks. In this paper [25], an alternative approach of perturbing the ob-
jective function to gain better privacy-utility trade-off over traditional output
perturbation methods is studied.

Differential privacy has been studied in the context of different problems
like gradient descent [128], boosting [49], empirical risk minimization [12], data-
mining [47], [18], distributed aggregation [44] etc. Many other works concentrate
on analysis of privacy-preservation under different scenarios and tries to provide
better bounds on the performance [40], [87], [7], [89], [71], [23] in terms of
different differential privacy concepts.

2.7.6 Differential privacy composition rules
Differential privacy composition rules provide upper bounds on privacy parame-
ters when multiple differentially private components in a pipeline are combined.

2.7.6.1 Classical differential privacy composition

It states that if there is one (ϵ1, δ1)-differentially private step and a (ϵ2, δ2)-
differentially private step, then the combination of these two steps will provide

74

at worst a (ϵ1 + ϵ2, δ1 + δ2)-differentially private guarantee [46] .
The composition rule similarly applies to ϵ-differential mechanisms. Accord-

ing to [46], the composition of an ϵ1-differentially private mechanism and an
ϵ2-differentially private mechanism is at worst (ϵ1 + ϵ2)-differentially private.

2.7.6.2 Rényi differential privacy composition rule

Rényi differential privacy [92] provides a tighter bound on the composition of
multiple heterogeneous components with individual differential privacy specifi-
cations. This relaxation of differential privacy is based on the parameterized
Rényi Divergence.

Definition: Rényi divergence. For two probability distributions P and Q
defined over R, the Rényi divergence [105] of order α > 1 is defined as follows:

Dα(P ∥ Q) ≜
1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α
. (2.50)

The interval (1,∞) of Rényi divergence is defined by continuity, where for
α = 1, D1(P ∥ Q) is equal to the Kullback-Leibler divergence. For α = ∞,
D∞(P ∥ Q) or for any randomized mechanism f , it is ϵ-differentially private if
and only if the distribution of f over any two adjacent inputs D and D′ satisfies
the Rényi divergence constraint, which should be less than or equal to the factor
ϵ. This allows us to define Rényi-differential privacy.

Definition: (α, ϵ)-RDP. A randomized mechanism f : D ↣ R is said to
have (α, ϵ)-Rényi differential privacy, or (α, ϵ)-RDP for short, if for any adjacent
D,D′ ∈ D, the following condition holds:

Dα(f(D) ∥ f(D′)) ≤ ϵ. (2.51)

Rényi divergence can be defined for fractional α, i.e., α ≤ 0, and even
negative values. Rényi-DP can be used as a relaxed privacy measure of classic
differential privacy in other situations, such as basic sequential composition or
group privacy.

Studies of advanced composition algorithm of DP can be found in [49] and
[98]. The paper [8] studies Rényi-DP-based interpretation of hypothesis testing.

2.8 Logic
In our work, we utilize elements from logic programming and other constructs
inspired by logic. In this section, we will discuss the preliminary concepts of
logic, followed by a detailed discussion of the logical Bayesian network [54], [55].
These foundational concepts are crucial for building our specification language.

75

2.8.1 Logic preliminaries
Now, let’s delve into the definitions of some essential concepts that we will di-
rectly or indirectly use to design our logic-based privacy specification language.
These definitions have mainly been taken from the book [112] and from this
source.

Logic. Logic is the study of the validity of different kinds of inference.
This term is often used synonymously with deductive logic, the branch of logic
concerned with inferences whose premises cannot be true without the conclusion
also being true. The other major branch of logic, inductive logic, deals with
inferences whose premises can be true even if the conclusion is false.

Premise. A premise is a statement meant to support the conclusion of an
argument.

Term. Traditionally, the subject or predicate in a categorical proposition is
a term.

Atom. An atom is a formula that contains no logical connectives or equiv-
alently a formula that has no strict subformulas.

Literal. A literal is a sentence that is either an atomic sentence or the
negation of an atomic sentence.

Constant. A constant is a symbol that, under the principal interpretation,
is a name for something definite, be it an individual, a property, a relation, etc.

Variable. A variable is an expression of first-order logic that is like in-
dividual constants in that it may be the argument of a predicate, but unlike
constants, it can be bound by quantifiers.

Quantifier. A quantifier is an operator of which it is true that both the con-
stant or form it is used with and the constant or form produced are propositions
or propositional forms.

Logical consequence. A logical predicate is a sentence S, which is a
logical consequence of a set of premises if the premises all can’t be true, while
the conclusion S is false.

Logical contradiction. A logical contradiction is a sentence that comes
out false in every possible circumstance.

Logical truth. A logical truth is a sentence that is a logical consequence
of any set of premises. That is, no matter what the premises may be, the
conclusion can’t be false. A logical truth thus comes out true in every possible
circumstance.

Logically equivalent sentences. Two sentences are logically equivalent if
they have the same truth values in all possible circumstances.

Logical implication. The relation that holds between two propositions
when one is deducible from the other is called logical implication.

Negation. A negation is a first-order logic sentence that begins with a
negation sign (¬). The negation of a true sentence is false; the negation of a
false sentence is true.

Negation elimination (¬ Elim). A negation elimination is a rule of
systems F and FT that permits us to infer a sentence from the negation of its

76

https://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/logical-terms-glossary

negation (e.g., to infer S from ¬¬S).
Negation introduction (¬ Intro). A negation introduction is a rule of

systems F and FT that permits us to prove S by showing that ¬S leads to a
contradiction.

Logical predicate. A logical predicate is a symbol in first-order logic that
is used to express a property of objects or a relation between objects.

Arithmetical predicate. A predicate that can be explicitly expressed in
terms of the truth-functional connectives of propositional calculus, the univer-
sal and existential quantifiers, constant and variable natural numbers, and the
addition and multiplication functions.

Relation. A relation is defined as a set of ordered pairs.
Reflexive relation. A relation R is reflexive if "aRa" holds for all a that

are members of the field of R, irreflexive if "aRa" holds for no members of the
field of R, and nonreflexive if "aRa" holds for some but not all members of the
field of R.

Symmetric relation. A relation R is symmetric if for all a and b that are
members of the field of R, "aRb" if and only if "bRa", asymmetric if for all a
and b that are members of the field of R, "aRb" if and only if not-"bRa", and
nonsymmetric when "aRb" and "bRa" hold for some but not all a and b that
are members of the field of R.

Transitive relation. A relation R is transitive when for all a, b, and c that
are members of the field of R, if "aRb" and "bRc", then "aRc", intransitive
when for all a, b, and c that are members of the field of R, if "aRb" and "bRc",
then not-"aRc", and nontransitive when if "aRb" and "bRc", then "aRc" holds
for some but not all of the a, b, and c that are members of the field of R.

Conjunction. Conjunction is a binary propositional connective, usually
read as "and (∧)", whose truth table is such that "A∧B" is false when A or B
or both are false and is true when both are true.

Disjunction. Disjunction is a binary propositional connective, usually read
as "or (∨)", whose truth table is such that "A∨B" is true when either or both
of A, B is true and is false when both are false.

Clause. A clause is a disjunction of literals; that is, an expression of the
form ℓ1∨ . . .∨ℓn, where ∨ is the disjunction operation and ℓ1, . . . , ℓn are literals.

Prefix vs. infix notation. In prefix notation, the predicate or relation
symbol precedes its arguments, e.g., Larger(a, b). In infix notation, the relation
symbol appears between its two arguments, e.g., a = b.

Logically possible. A sentence is logically possible if there is no logical
reason it cannot be true, i.e., if there is a possible circumstance in which it is
true.

Material conditional. A material conditional is a truth-functional version
of the conditional "if P then Q". The material conditional P → Q is false if P
is true and Q is false but otherwise true.

Well-formed formula (WFF). Well-formed formulas are the “grammati-
cal” expressions of first-order logic. A WFF is either atomic (an n-ary predicate
followed by n individual symbols), or a complex WFF is constructed using

77

connectives, quantifiers, and other WFFs. Atoms are the simplest well-formed
formulas of logic.

Satisfaction. An object named a satisfies an atomic well-formed formula
S(x) if and only if S(a) is true, where S(a) is the result of replacing all free
occurrences of x in S(x) with the name a.

Necessary and sufficient conditions. A necessary condition for a state-
ment S is a condition that must be held for S to obtain. S → P says that
P is a necessary condition for S. A sufficient condition for a statement S is
a condition that guarantees that S will be obtained. P → S says that P is a
sufficient condition for S.

Presupposition. The presuppositions of a sentence S are those conditions
that must be fulfilled for S to have a truth value, i.e., for S to make any claim
at all.

Proof by cases. A proof strategy that consists of proving some statement
S from a disjunction by proving S from each disjunct.

Proof by contradiction (indirect proof). To prove ¬S by contradiction,
we assume S and prove a contradiction. In other words, we assume the negation
of what we wish to prove and show that this assumption leads to a contradiction.

Proofs without premises. A proof without premises, as the name implies,
contains no premises. Such proof typically begins with a subproof assumption
and ends when all subproofs have been closed. The conclusion of a proof without
premises is called a theorem of the system of proof. In a sound system, every
theorem is a logical consequence of the empty set of premises, i.e., a logical
truth.

Conditional proof. A proof that begins by making certain assumptions,
A1, A2, · · · , An, deducing B from them, and then asserting based on this the
truth of the hypothetical proposition ‘if A1, then if A2, then if · · · , then if An,
then B’. The rule of conditionalization is the rule that allows one to make this
last step based on the preceding ones.

After a quick review of the basic definitions of preliminary concepts in logic,
we will proceed to provide a thorough description of the Logical Bayesian net-
work.

2.8.2 Logical Bayesian network
The logical Bayesian network (LBN) model is based on the principles of knowled-
ge-based model construction (KBMC), which combines the concepts of logical
programming and probabilistic models. It leverages the advantages of both
fields: the ability to represent relational data through logical programs and the
ability to model noisy data through probabilistic models. LBN is often used in
conjunction with machine learning.

We chose to use the concepts of LBN among the many alternatives because
we are also utilizing the intersection between the two fields: logical modeling and
probabilistic modeling. Despite not being the most popular framework, LBNs
have the advantage of being quite interpretable, aligning more with our end goal.
Since relational databases can be easily converted into logical programs [33], also

78

known as inductive logic programming [93], logical programs are well-suited for
modeling the data in relational databases.

Next, we will delve into the definitions of the different components of LBN.
We will use these components to formally define the LBN [55].

2.8.2.1 Definition: Random variable declaration

A random variable declaration is a range-restricted clause of the form

random(pAtom)← lit1, . . . , litn,

where n ≥ 0, pAtom is a probabilistic atom, and lit1, . . . , litn are logical literals.

2.8.2.2 Definition: Conditional dependency clause

A conditional dependency clause is a clause of the form

pAtom | pAtom1, . . . , pAtomn ← lit1, . . . , litm,

where n,m ≥ 0, pAtom, pAtom1, . . . , pAtomn are probabilistic atoms, and lit1,
. . . , litm are logical literals.

2.8.2.3 Definition: Logical CPD

A logical CPD for a probabilistic predicate p is a function mapping a set of
ground probabilistic atoms to a conditional probability distribution (CPD) in
the range of p.

Now, let’s look at the formal definition of LBN.

2.8.2.4 Definition: Logical Bayesian network

A Logical Bayesian network [55] is a tuple (R,D, C) with R as a set of random
variable declarations, D as a set of conditional dependency clauses, and C as a
set of logical CPDs, one for each probabilistic predicate.

In addition to the constructs we have encountered so far, we need one more:
the dependency statement, to understand the semantics of the distribution given
by the logical Bayesian network.

2.8.2.5 Definition: Dependency statement

A dependency statement is of the form

a | a1, . . . an ← l1, . . . , lm,

where n ≥ 1, m ≥ 0, a, a1, . . . , an are probabilistic atoms, and l1, . . . , lm are
logical literals.

Here, a is called the head, a1, . . . , an is called the body, and l1, . . . , lm is
called the context, which is also optional. They have also defined the parent

79

term, which can be derived from the above definition. Any variable in the body
is the parent of the variable in the head for a true context.

Bayesian networks are often used for the representation of joint probability
distribution and for computing probabilistic inference. LBNs formally extend
the directed acyclic Bayesian networks to the case of relational data to represent
directed probabilistic logical models. LBN uses the context-specific indepen-
dence property of Bayesian networks, which exploits the superiority of logical
probability trees over logical probability tables with rules of combination.

2.8.2.6 Definition: Semantics of an LBN

The joint probability distribution defined by a Bayesian network for a set of
random variables X = {X1, . . . , Xn} is given by

Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi|Pa(Xi)),

where Pa(Xi) denotes the set of parents of Xi for all i.
Next, we will briefly define how LBN can be used to create a predicate

dependency graph, a concept that will be used in our work to illustrate an
example scenario.

2.8.2.7 Definition: Predicate dependency graph of an LBN

The predicate dependency graph of an LBN is the graph that contains a node
for each probabilistic predicate and a directed edge from a node p1 to a node
p2 if the LBN contains a dependency statement with predicate p2 in the head
and p1 in the body. We will illustrate this with an example taken from [54], in
the next section.

2.8.2.8 Running example of LBN

We now introduce a small example to illustrate the components of the logi-
cal Bayesian network, which we have taken verbatim from [54], based on the
“university”-example [63].

There are students and courses. We know which students take
which courses. Each student has an IQ and a final ranking, and
each course has a difficulty level. A student taking a certain
course gets a grade for that course. The grade of a student for
a course depends on the IQ of the student and the difficulty of
the course. The final ranking of a student depends on their

grades for all the courses they’re taking.

Now we specify the clauses they have used in the original paper (and thesis)
[54] to explain their example. First, we list the logical predicates:

student/1, course/1, and takes/2.

80

Then, the probabilistic predicates are:
iq/1, diff/1, ranking/1, grade/2.
The associated ranges for the above predicates are {low, high}, {low, middle,

high}, {A, B, C}, and {A, B, C}, respectively.

Next, the random variable declarations are as follows:
random(iq(S)) ← student(S).
random(ranking(S)) ← student(S).
random(diff(C)) ← course(C).
random(grade(S,C)) ← takes(S,C).

Then we list the conditional dependency statements:
ranking(S) | grade(S,C) ← takes(S,C).
grade(S,C) | iq(S), diff(C).

The mapping of the problem into the Bayesian network in terms of a normal
logic program or as known as Bayesian ground facts:

student(john)., course(ai)., takes(john,ai)., student(pete).,
course(db)., takes(john,db)., takes(pete,ai).

The LBN contains CPD of iq(john):
p(iq(john)), low: 0.4, high: 0.6.

LBN gives the user the freedom to design their predicates to be either deter-
ministic or probabilistic, as they choose for individual applications. Determinis-
tic predicates become logical predicates, and CPD is defined for the probabilistic
ones. We can see the predicate dependency graph of the running example in
Fig. 2.16.

Also, LBN allows negated atoms. To express if "a student has a grade for
a course if he was taking that course unless he was absent on the exam," we
write:

random(grade(S,C)) ← takes(S,C), not(absent(S,C)).

Figure 2.16: Structure of the Bayesian network induced for the running example.
[Adapted from 54]

81

2.9 Constraint program solvers and CVXOPT
We have discussed constraint optimization in detail in Section 2.3.5.3. We will
now discuss some of the solver tools for such optimization problems in many
iterations. It implements a stopping condition that is met when a certain value
of satisfaction criteria goes lower than a pre-specified threshold. So, we cut some
slack to the constraint satisfaction criteria and declare that we have reached the
optimal solution once the stopping condition is satisfied.

The constraint optimization problem requires empirical evaluation. Aware-
ness of an accessible and well-maintained constraint optimization solver saves
time when preparing experiments. There are many Python-based solvers with
their advantages and disadvantages. We looked into multiple of them like
Gurobi, PuLP, and Scipy methods (scipy.optimize.minimize or scipy.optimize.
lin-prog).

After our evaluation, we decided to use CVXOPT [5], a Python programming
language-based software used for convex optimization. It uses extensive Python
libraries to provide a simpler way to solve convex optimization problems. Next,
we discuss the basic elements of the problem definition that are accepted by the
CVXOPT solver.

Nonlinear convex optimization CVXOPT solvers consider the constraint
optimization problem in the following form:

min f0(x), (2.52)
subject to fk(x) ≤ 0, k = 1, . . . ,m (2.53)

Gx ⪯ h, (2.54)
Ax = b. (2.55)

where x ∈ Rn are constraint variables, and n is the number of constraint
variables.

As we can see in the notations above, the CVXOPT solvers accept some
pre-specified data structures representing the following four structures of the
constraint programs:

• The objective function: Here, f0 is a twice-differentiable convex ob-
jective function and is subject to the constraints. The objective function
f0 : Rn → R+ is mapped to the positive real number space. The form
of the generalized nonlinear objective function stated above changes into
f0(x) = cTx when we have a linear objective function, where c is a real
single-column dense matrix.

• The linear equality constraints: The matrix G ∈ Rl×n is a real dense
or sparse matrix that contains the coefficients of the constraint variables

82

in the linear equality constraints. The argument h is a real single-column
dense matrix that contains the constant terms in the linear equality con-
straints.

• The linear inequality constraints: The matrix A ∈ Rk×n is a real
dense or sparse matrix that contains the coefficients of the constraint
variables in the linear inequality constraints. The argument b is a real
single-column dense matrix that contains the constant terms in the lin-
ear inequality constraints. If there are no equality constraints, then the
default values for matrices A and b are sparse matrices with zero rows.

• The non-linear convex constraints: Each of the constraint functions
f1(x), . . . , fm(x) : Rn → R are also twice-differentiable convex functions,
mapped to the real number space (R). Here, k = 1, . . . ,m ∈ N are the
number of non-linear convex constraints.

In all three next Chapters 3, 4, 5 of this dissertation, which represents our
main body of research work, the constraint optimization problem is implemented
using this tool to find the optimal solution.

83

Chapter 3

Interpretable privacy with
optimizable utility

abstract
In this chapter, we discuss the problem of specifying privacy requirements for
machine learning-based systems in an interpretable yet operational way. Ex-
plaining privacy-improving technology is a challenging problem, especially when
the goal is to construct a system that is interpretable and has high performance.
To address this challenge, we propose to specify privacy requirements as con-
straints, leaving several options for the concrete implementation of the system
open, followed by a constraint optimization approach to achieve an efficient
implementation, next to the interpretable privacy guarantees.

3.1 Introduction
Over recent years, one has seen an increasing interest in privacy as awareness
of the privacy risks of data processing systems has increased. Legislation was
introduced to protect data, and sufficient data and insights became available to
create technology capable of realizing several tasks while preserving the privacy
of participants. One of the most popular notions of privacy, which we will also
adopt in this chapter, is differential privacy [43] and its extensions, e.g., [116],
[51].

An important aspect of this evolution concerns informing users of the pri-
vacy guarantees a system offers. Some legislation, such as Europe’s GDPR [2],
requires transparency, i.e., users have the right to know how their data are used
and how their sensitive data are protected. Explaining privacy protection strate-
gies is also important to increase trust among the users of a system. Finally,
being able to explain what privacy guarantees a system offers is also helpful
in the sometimes challenging communication between computer scientists who

84

develop solutions and legal experts who are interested in understanding the
guarantees without the burden of having to investigate many technical details.

While a large number of papers in the machine learning community study a
single machine learning problem and strategies to perform that machine learning
task in a privacy-preserving way, real-world systems are often complex, consist-
ing of several machine learning, preprocessing, prediction (inference) steps, user
interactions, and data transfers. The privacy requirements of interest to a user
are requirements on the system as a whole, combining the behavior of its many
components, including their privacy guarantees. While some researchers have
focused on analyzing the privacy guarantees of complete systems, the literature
on that topic is still rather limited.

Such large systems combine heterogeneous components, each having its own
characteristics that concern their effects on the privacy of the data. There
is an increasing need for systems that allow one to specify and explain the
privacy guarantees for a complete system. However, next to interpretability,
performance, e.g., in terms of precision of computation, communication, and
storage cost, is also required. In this chapter, we study strategies to achieve
both interpretability and good performance.

In particular, we argue that composition rules for differential privacy, which
start from the building blocks and combine them bottom-up, may not offer
sufficient flexibility. We suggest an alternative approach where privacy require-
ments are specified top-down and implementation choices, such as the allocation
of “privacy budget” to several components or the choice between more costly
multi-party computing and less accurate noisy data sharing, are optimized af-
terward.

We start in Section 3.2 with a brief review of relevant literature and a dis-
cussion of the advantages and drawbacks of several strategies. We then sketch
our ideas in Section 3.3 and provide a number of examples to illustrate them.

3.2 Existing approaches
An important notion in the context of privacy is differential privacy [43] and we
have discussed them in Section 2.7.2.

Several variants and generalizations of differential privacy have been pro-
posed, including proposals focusing on the adversarial model [51] and proposals
allowing for more refined secret definitions [116]. In this chapter, we occasion-
ally adopt the term ‘secret’ as introduced in Pufferfish privacy [116] to describe
variables that are private but not tied to the individual level within a database
of individuals, as typically seen in classic differential privacy. There are ap-
proaches like metric-based DP [4] where it improves utility of algorithms for the
same level of privacy in terms of ϵ-DP guarantee provided by the traditional
(local) differential privacy mechanism.

A wide variety of languages have been proposed to describe the privacy
properties of systems. Some are aimed at compilers or circuit evaluators [83],
and others are not necessarily aimed at privacy-preserving technology but rather

85

at trust or consent [101]. In the sequel, we will focus our discussion on languages
aimed at specifying the privacy properties of systems using privacy-preserving
technology.

A classical approach to studying the privacy of a compound system is to
take the different components as input and analyze the behavior of the com-
pound system. One basic strategy is to apply composition rules for differential
privacy. The basic rule states that if data is queried twice, once with an (ϵ1, δ1)-
differentially private algorithm and once with a (ϵ2, δ2)-differentially private
algorithm, then the combination is (ϵ1 + ϵ2, δ1 + δ2)-differentially private. Even
though this always holds, this is usually not a tight bound on the privacy of the
combination. A number of improved bounds have been proposed, e.g., [79], but
even those are often not immediately practical. One issue is that the order of
steps to be performed in a system may not be known a priori, e.g., a system
could branch due to an if-then-else decision, or parts could be repeated.

To address this problem and at the same time have a more uniform way to
represent privacy properties, many authors have proposed languages to specify
privacy properties, together with associated techniques to verify whether these
properties are satisfied when several rules can be applied [129], [102], [97]. The
advantage is that next to a language, there is a system that can attempt to verify
whether a given system satisfies the described privacy properties. However,
several problems remain. First, theorem-proving style techniques usually only
work for a limited set of rules or reasoning primitives, and they don’t scale
very well with increasing problem size. Second, while verifying that a property
holds, is interesting, optimizing the performance would be even better. In such
theorem-proving settings, it remains the task of the human expert to design the
characteristics of the individual components of the system and combine them
such that they collaborate efficiently.

3.3 Privacy constraint optimization
Similar to earlier work discussed in the previous section, our approach starts
from a language to describe privacy constraints. However, rather than aiming at
verification, we aim at optimization. We propose to first formulate the problem
and its privacy requirements in a systematic way as depicted in Fig. 3.1, and
then to treat these privacy requirements as the constraints of an optimization
problem where the objective function is the utility, or conversely the loss. The
loss function can incorporate various types of costs, such as the expected error
on the output, the computational cost of the resulting system, or its storage
cost.

Below, we first sketch at a high level, how problems can be specified. Next,
we provide examples of this idea applied to different types of problems. In this
chapter, our goal is not to improve some quantifiable performance measures or to
solve more difficult problems than before, but rather to illustrate that the idea
of constraint programming with privacy requirements has several potentially
interesting applications.

86

Figure 3.1: The high-level illustration of our approach.

3.3.1 Problem specification
For this chapter, our main aim is not to develop a complete language allowing
for representing as many as possible privacy properties (languages to describe
privacy properties (as in Fig. 3.2) have been proposed in the literature to some
extent), our main objective is to open the discussion on how to optimize the
performance of a system given fixed global privacy requirements.

Therefore, we will use only a basic language sufficient for our examples. In
particular, we distinguish the following components in a specification:

• Declaring relevant variables. We will treat both data and models
as random variables: data may be public or private and may be drawn
jointly with other data variables from some distribution. According to the
definition of differential privacy, a differentially private learning algorithm
must be a randomized algorithm that outputs a model that follows some
probability distribution conditioned on the training data.

• Specifying relations between variables (background knowledge).
After specifying the relevant random variables, we can specify the condi-
tional dependencies between these variables using a probabilistic model,
e.g., a Bayesian network or a Markov random field.

• Privacy requirements. Then, we can specify the required privacy prop-
erties. This typically involves specifying that the several possible values
of a secret can’t be distinguished with significant probability by parties
not authorized to know the secret.

Below, we present a number of examples of scenarios where we can apply the
proposed technique of compiling privacy requirements to constraint programs.

3.3.2 Optimizing differential privacy noise as a function of
the desired output

Assume we have n sensitive input variables and we want to answer m queries
over these sensitive variables. For the simplicity of our presentation, we will
assume that the answer to each query is a linear combination of the sensitive
variables. We can specify our problem as follows:

87

Figure 3.2: The detailed illustration of the components in our process, starting
from the requirement specification, through inference and solving the constraint
optimization problem, to achieve optimal system parameters like noise variances,
and design choices on privacy strategies.

Variables:

• x ∈ [0, 1]n : input

• y ∈ Rm : intermediate variable

• A ∈ Rm×n : constant

• b ∈ Rm : constant

• O : output

Background knowledge:

• y = Ax+ b

• Loss function: L = ∥O − y∥22
Privacy requirements:

• O is (ϵ, δ)-DP w.r.t. x.

88

Here, we organize our specification as outlined in Section 3.3.1. It is clear
that revealing the exact answers to the queries yi is unacceptable, resulting in
some approximation of the original answers to the queries. So, we specify a loss
function representing the cost of the approximation errors.

There are two classic approaches. First, one can use Local Differential Pri-
vacy (LDP) [42]. This means that to every input variable xi sufficient noise
is added to obtain a fully private version x̂i. Next, any query can be an-
swered starting from these noisy versions, so, the output can be computed as
O = Ax̂ + b. A major drawback of this approach is that this requires a lot of
noise and hence the expected loss will be high. For the simplicity of our analysis,
we use the Gaussian mechanism throughout this example. We get:

E [LLDP] = tr(A⊤A)

(
2 log(1.25/δ)

ϵ2

)
. (3.1)

Second, one can use classic differential privacy for each query yi separately,
adding noise to every yi to obtain a noisy version ŷi. If multiple queries are
obtained, the realized loss may be still high, and if m > n, even higher than in
the LDP case above:

LDP =

 m∑
j=1

(
n∑
i=1

|Ai,j |

)2
(2 log(1.25/δ)

ϵ2

)
. (3.2)

In contrast, given the specifications above, we propose to (semi-automatically)
generate options to address the privacy requirements, not committing to adding
noise to input (as in LDP) or output (as in classic DP), but to address the
possibility to add noise at meaningful points in the computation. This could
result in the following constraint optimization program:

Minimize

Eη,ξ
[
L
(
σ(η), σ(ξ)

)]
= Eη,ξ

[
∥O − (Ax+ b)∥22

]
Subject to

• x̂ = x+ η

• O = ŷ = Ax̂+ b+ ξ

• ηi ∼ N
(
0, σ2

(η),i

)
• ξi ∼ N

(
0, σ2

(ξ),i

)
• O is (ϵ, δ)-DP w.r.t. x.

89

For one query (m = 1), the optimal solution to this problem will correspond
with classic differential privacy. In the case the number of queries m is large,
the solution of the optimization problem will converge to the local differential
privacy case. Between the two extremes, we expect a loss that is lower than
either of the classic strategies.

The constraint program we consider is easy to solve numerically, and if some
approximations are made which are commonly used for the Gaussian mecha-
nism, we get a relaxed constraint optimization problem only involving quadratic
functions.

We hence distinguish four steps to address problems with privacy require-
ments:

1. Specifying the problem and the privacy requirements

2. Adding options to realize the privacy requirements and casting it into a
constraint optimization problem

3. Solving the constraint optimization problem

4. Executing the algorithm with the obtained solutions and parameters

We show next, how these can be realized mathematically. It establishes an
argument that we can translate privacy requirements into a constraint problem,
which we can then optimize using a classic constraint programming solver.

3.3.2.1 A simple case with normal random variables

Suppose that we require a linear model to be locally differentially private. More
concretely, suppose we run m queries on n sensitive variables, where n ≥ m > 0
are integers, and let A ∈ Rm×n and b ∈ Rm be constant, x = (x1, x2, . . . , xn) ∈
Rn, and

y = Ax+ b. (3.3)

Revealing the query-outputs y may reveal information about sensitive x.
To control this leakage, we can instead add noise at different points of the
calculation of y, once before the computation and once after, as follows:

ŷ = A(x+ η) + b+ ξ, (3.4)

where η and ξ are normally-distributed random vectors such that,

ηi ∼ N (0, ση,i) , for i ≤ n, (3.5)

ξj ∼ N (0, σξ,j) , for j ≤ m. (3.6)

Similarly, for an adjacent dataset (with difference in exactly one data-point),
we can assume the output will be,

y′ = Ax′ + b. (3.7)

90

Our goal is to make the observed noisy outputs y′, (ϵ, δ)-differentially private
such that the adjacent datasets where y and y′ come from can’t be differentiated
significantly. So they reveal no significant information about the presence of
either x or x′ in the dataset. In particular, for any k ∈ [n] and for any x, x′ ∈
[0, 1]n such that x− x′ = 1k, we require for some ϵk, δk > 0 :

Pr(x | ŷ) ≤ eϵk Pr(x′ | ŷ) + δk. (3.8)

To achieve this, it is sufficient to prove that the following Eq. (3.9) holds at
least with probability 1− δk (over the noise),∣∣∣∣ Pr(x | ŷ)Pr(x′ | ŷ)

∣∣∣∣ ≤ eϵk . (3.9)

So, from the Eq. (3.9), we can say that the following holds:

∣∣∣∣log(Pr(x | ŷ)
Pr(x′ | ŷ)

)∣∣∣∣
=

∣∣∣∣log(Pr(x) Pr(ŷ | x)/Pr(ŷ)
Pr(x′) Pr(ŷ | x′)/Pr(ŷ)

)∣∣∣∣ (using Bayes’ theorem)

=

∣∣∣∣log(Pr(ŷ | x)
Pr(ŷ | x′)

)∣∣∣∣
=

∣∣∣∣∣log
(

(2πm)−1/2 exp
(
−(ŷ − y)⊤Σ−1(ŷ − y)/2

)
(2πm)−1/2 exp (−(ŷ − y′)⊤Σ−1(ŷ − y′)/2)

)∣∣∣∣∣
=

∣∣∣∣∣log
(

exp
(
−(ŷ − y)⊤Σ−1(ŷ − y)/2

)
exp (−(ŷ − y′)⊤Σ−1(ŷ − y′)/2)

)∣∣∣∣∣
=

∣∣∣∣log(exp(−(ŷ − y)⊤Σ−1(ŷ − y) + (ŷ − y′)⊤Σ−1(ŷ − y′)
2

))∣∣∣∣
=

∣∣∣∣−(ŷ − y)⊤Σ−1(ŷ − y) + (ŷ − y′)⊤Σ−1(ŷ − y′)
2

∣∣∣∣
=

1

2

∣∣∣−ŷ⊤Σ−1ŷ + 2ŷΣ−1y − y⊤Σ−1y + ŷ⊤Σ−1ŷ − 2ŷΣ−1y′ + (y′)
⊤
Σ−1y′

∣∣∣
=

1

2

∣∣∣2ŷΣ−1(y − y′) + (y′ + y)
⊤
Σ−1(y′ − y)

∣∣∣
=

1

2

∣∣∣(y′ + y − 2ŷ)
⊤
Σ−1(y′ − y)

∣∣∣
=

1

2

∣∣∣(Ax′ + b+ (Ax+ b)− 2(A(x+ η) + b+ ξ))
⊤
Σ−1(y′ − y)

∣∣∣
(substituting y and y′, by Ax+ b and Ax′ + b above, respectively)

=
1

2

∣∣∣(Ax′ + b− (Ax+ b)− 2(Aη + ξ))
⊤
Σ−1(y′ − y)

∣∣∣
=

1

2

∣∣∣(y′ − y)⊤ Σ−1 (y′ − y)− 2 (Aη + ξ)
⊤
Σ−1(y′ − y)

∣∣∣ (3.10)

91

So, as we stated in Eq. (3.9), we require this expression on the righthand-
side to be smaller than ϵk with probability at least 1− δk. Due to the absolute
value, we require a probability of at least 1− δk/2 on both sides. This yields us
the following:

Pr

(
1

2

(
−2 (Aη + ξ)

⊤
Σ−1(y′ − y) + (y′ − y)⊤ Σ−1 (y′ − y)

)
≥ ϵk

)
≤ δk

2
.

(3.11)
Equivalently we can write,

Pr
(
2 (Aη + ξ)

⊤
Σ−1(y − y′) ≥ 2ϵk − (y − y′)⊤ Σ−1 (y − y′)

)
≤ δk

2
. (3.12)

The variance of the term appearing on the left side of Eq. (3.12) is,

var
(
2 (Aη + ξ)

⊤
Σ−1(y′ − y)

)
= 4(y′ − y)⊤Σ−1var(Aη + ξ)Σ−1(y′ − y)
= 4(y′ − y)⊤Σ−1(y′ − y). (3.13)

For any centered Gaussian random variable z with variance σ2
z , we have the

following tail bound:

Pr(z ≥ λ) ≤ σz

λ
√
2π

exp
(
−λ2/2σ2

z

)
. (3.14)

We will apply this to Eq. (3.12), setting the following assignments,

z = 2 (Aη + ξ)
⊤
Σ−1(y − y′), (3.15)

λ = 2ϵk − (y − y′)⊤ Σ−1 (y − y′) , (3.16)
σ2
z = 4(y′ − y)⊤Σ−1(y′ − y). (refer to Eq. (3.13)) (3.17)

The term appearing on the right-hand side of Eq. (3.14) is smaller than δk/2
if the following holds,

log

(
λ

σz

)
+

1

2

(
λ

σz

)2

≥ log

(
2

δk
√
2π

)
. (3.18)

We will denote with σ2
GM (ϵ, δ), the minimal variance of additive Gaussian

noise needed to make a variable in the range [0, 1], (ϵ, δ)-differentially private.
E.g., [48] shows that if σϵ ≥ 3/2 and (σϵ)2 ≥ 2 log(1.25/δ) then σ ≥ σ2

GM (ϵ, δ).
We briefly repeat here an adapted version of their derivation, where we set

σ = 2/σz. To make this inequality hold, we require that both the following Eq.
(3.19) and (3.20) hold,

log

(
λ

σz

)
≥ 0 ≡ λ ≥ σz, (3.19)

92

and
1

2

(
λ

σz

)2

≥ log

(
2

δk
√
2π

)
. (3.20)

From Eq (3.16) and (3.17), we see that,

λ = 2ϵk − σ2
z/4. (3.21)

We observe that, if 2ϵk/σz ≥ 3/2, then the following satisfies Eq. (3.19),

λ

σz
=

2ϵk
σz
− σz

4

=
2ϵk
σz
− σz

2ϵk

ϵk
2

≥ 2ϵk
σz
− σz

2ϵk

1

2

≥ 3

2
− 2

3

1

2
> 1.

Moreover, if also 2ϵk/σz ≥
√
2 log(1.25/δk), there holds,

1

2

(
λ

σ

)2

=
1

2

(
2ϵk
σz
− σz

2ϵk

ϵk
2

)2

≥ 1

2

(
2ϵk
σz
− σz

2ϵk

1

2

)2

=
1

2

((
2ϵ

σz

)2

− 1 +

(
σz
2ϵk

1

2

)2
)

≥ 1

2

((
2ϵk
σz

)2

− 1 +

(
2

3

1

2

)2
)

=
1

2

((
2ϵk
σz

)2

− 8

9

)

≥ 1

2

(
2 log(1.25/δk)−

8

9

)
≥ log

(√
2

π

1

δk

)
,

and which satisfies Eq. (3.20).
Next to Dwork’s conditions [48], other upper bounds for the function σ2

GM (ϵ, δ)
have been proposed, e.g., [9]. In general, in the sequel, we will assume that

(2/σz)
2 ≥ σ2

GM (ϵ, δ). (3.22)

Substituting σ2
z from Eq (3.17), we see this is equivalent to

4
(
4(y′ − y)⊤Σ−1(y′ − y)

)−1 ≥ σ2
GM (ϵk, δk).

93

In this equation we can also substitute y−y′ = Ax+b−Ax′−b = A(x−x′),
to obtain, (

(x′ − x)⊤A⊤Σ−1A(x′ − x)
)−1 ≥ σ2

GM (ϵk, δk). (3.23)

We also know that x − x′ = 1k as per our assumption, which simplifies the
inequality to, (

A⊤
:,kΣ

−1A:,k

)−1 ≥ σ2
GM (ϵk, δk) (3.24)

≡ A⊤
:,kΣ

−1A:,k ≤ σ−2
GM (ϵk, δk) (3.25)

≡ A⊤
:,kΣ

−1A:,k ≤
2 log(1.25/δk)

ϵ2k
. (3.26)

For each k, this is a convex constraint on the variables σ2
η and σ2

ξ .
Before we design the final constraint optimization problem, we will need to

calculate the Σ as below,

Σ = varη,ξ(ŷ) (3.27)
= varη,ξ(A(x+ η) + b+ ξ) (3.28)
= Eη,ξ

[
(ŷ − E[ŷ])(ŷ − E[ŷ])⊤

]
(as E[ŷ] = E[A(x+ η) + b+ ξ] = Ax+ b)

= Eη,ξ
[
(A(x+ η) + b+ ξ − (Ax+ b))(A(x+ η) + b+ ξ − (Ax+ b))⊤

]
= Eη,ξ

[
(Aη + ξ)(Aη + ξ)⊤

]
= Eη,ξ

[
Aηη⊤A⊤ + 2Aηξ⊤ + ξξ⊤

]
= AE[ηη⊤]A⊤ + E[ξξ⊤]
= A diag(ση)A⊤ + diag(σξ) (3.29)

= [A I]diag(ση, σξ)2
[
A⊤

I

]
(3.30)

= [A I]diag(ση, σξ)2[A I]T . (3.31)

Forming the final constraint optimization problem

We know, that choosing too large values for each ση,i and each σξ,j aids in
protecting the privacy of x but sacrifices the utility of ŷ. In contrast choos-
ing too small values for ση,i and σξ,j , increases the utility of ŷ but sacrifices
the privacy of x. We strike a balance by constructing a constraint program
that maximizes the utility subject to a constraint on the desired privacy. So,
we formalize our structure using two components: utility maximization and
privacy constraint.

1. Maximizing utility The objective of this program is to minimize a func-
tion that measures the loss in utility between y and ŷ. A natural function
for this is

Eση,σξ

[
∥y − ŷ∥2

]
. (3.32)

94

2. Privacy constraint Obviously, the optimal of this function is when the
variances are all zero, so we constraint ση and σξ so that ŷ is (ϵ, δ)-locally-
differentially private, for a fixed ϵ > 0 and δ > 0. We’ve shown that a
sufficient condition is

A⊤Σ−1A ≤ σ−2
GM (ϵ, δ). (3.33)

We explain the terms appearing in this constraint.

• Σ = [A I]diag(ση, σξ)2[A I]T . is the covariance matrix of ŷ.

• A ∈ Rm×n is the weight matrix.

• σGM (ϵ, δ), for ϵ > 0 and δ > 0 is the minimum additive Gaussian
noise required to make a random variable with range [0, 1], (ϵ, δ)-
differentially private.

Combining the aforementioned objective function to maximize utility and
the constraint to specify privacy requirements, we get a constraint optimization
problem, which is:

minimize∑n
i=1 αη,iσ

2
η,i +

∑m
j=1 αξ,jσ

2
ξ,j

subject to
∀k ∈{1,2 . . . n}: A⊤

:,kΣ
−1A:,k ≤ σ−2

GM (ϵk, δk).

(3.34)

Here, αη and αξ are vectors representing the costs induced by the two noise
variables, ση and σξ respectively, in turn, help minimize the loss expression for
optimum utility.

Solving the derived constraint problem, i.e., optimizing the linear objective
function while satisfying the convex constraints will provide the optimal solution
for the variables σ2

η and σ2
ξ , which are the noise variances. This, in turn, opti-

mizes the utility under the convex constraints or privacy requirements. Because
of the convex nature of the constraints, the optimization problem can be solved
efficiently. This template is the generalized version of both local and global DP
and hence achieves better utility than the two classic DP approaches.

3.3.3 Shaping differential privacy noise
In several situations, the classic additive noise mechanisms don’t provide an
adequate solution. Consider for example the following problem. Suppose that
we have a finite domain X of positive numbers. Consider n parties numbered
from 1 to n. Each party i has a sensitive value xi ∈ X which it doesn’t want to
be revealed. At the same time, the parties collectively would like to compute

95

k ≥ 2 means of their private values, including the arithmetic mean m1 and
harmonic mean m−1 where

mp =

(
1

n

n∑
i=1

xpi

)1/p

. (3.35)

This gives us the following problem:

Variables:
• x ∈ [0, 1]n : input
• p ∈ Rk : constant
• O : output

Background knowledge:
• Loss function: L =

∑k
i=1 (Oi −mpi(x))

2

Privacy requirements:
• O is (ϵ, δ)-DP w.r.t. x.

The several parties don’t trust a common curator and therefore decide they
will all share noisy versions x̂i of their private values xi and perform the com-
putation on these noisy values. This is also the setting considered by local
differential privacy.

Classic additive noise mechanisms such as the Laplace mechanism and the
Gaussian mechanism have the drawback that the noise distribution has an in-
finite domain. So, for every value xi, especially if xi is one of the smallest
elements of X , there is a probability that x̂i is close to 0 or negative, which
would make the estimation of m−1 very difficult.

Several solutions are conceivable. First, for every i we could approximate
the pi-mean mpi(x) using a separate noisy version of xpi . Averaging over values
of xpi with additive zero-mean (Laplacian or Gaussian) error would give an
unbiased estimate. Still, this would imply that the k means to be computed
should share the available privacy budget. We could follow an approach similar
to the one in Section 3.3.2 to optimally spread the privacy budget.

Another option is to use the full privacy budget for a single noisy version
x̂i of xi for every i. As we can’t use classical additive noise mechanisms, we
consider an arbitrary parameterized distribution and aim at estimating optimal
parameters for it subject to a number of desirable properties. We should take
into account that if the smallest (respectively largest) possible noisy versions
of the xi can’t be much smaller (resp. larger) than the smallest (resp. largest)
possible value of X (in our case to avoid zero or negative noisy versions which
may harm the approximation of m−1(x)), then we can’t use zero-mean additive
noise. A common solution is to choose for x̂i with probability α an unbiased
estimator of x and with probability 1− α some background distribution B.

In particular, we consider a distribution over a domain Y ⊇ X . For (x, y) ∈
X ×Y, let fx,y = P (x̂i = y | x), i.e., fx,y is the probability, given that a private

96

value is x, that the noisy version is y. This naturally leads to the following
quadratic program:

Minimize ∑
x∈X ,y∈Y

fx,y(x− y)2

Subject to
• ∀x,

∑
y∈Y fx,yy = αx+ (1− α)E[B]

• ∀x,
∑
y∈Y fx,yy

−1 = αx−1 + (1− α)E
[
B−1

]
• ∀x,

∑
y∈Y fx,y = 1

• O is (ϵ, δ)-DP w.r.t. x, i.e., ∀x1, x2, y : fx1,y ≤ eϵfx2,y +
δ

|X |

3.3.4 Combining building blocks
The examples in Sections 3.3.2 and 3.3.3 focused on isolated problems. Practical
systems are often large and consist of many steps. Even if for each of these steps
a privacy-preserving solution is available, these still need to be combined into a
global solution.

Classic approaches to differential privacy often use combination rules, e.g.,
the combination of an (ϵ1, δ1)- differentially private step and an (ϵ2, δ2)- differ-
entially private step is (ϵ1+ ϵ2, δ1+ δ2)- differentially private. The disadvantage
is that the privacy budget is not recycled and therefore is exhausted quickly.

The same approach can be taken using constraint programs. However, ad-
ditionally, we can attempt to obtain globally better solutions. First, we can
combine two constraint programs, which share variables and/or constraints. An
optimal solution for the combined program may be globally more optimal than
the combination of the solutions of the individual programs. Second, it becomes
easier to program design choices. Often, several possible solution strategies ex-
ist, especially when considering in distributed settings the trade-off between
encryption (which is more expensive in terms of computational cost) or adding
noise (which decreases the utility of the output). In such situations, we can
introduce both solution strategies as separate sub-programs of the larger con-
straint program, and introduce an additional variable π which is 0 when the
first solution is used and 1 if the other solution is used. While constraint opti-
mization typically works with real-valued variables, if the constraint programs
corresponding to the two solutions don’t share parameters then the design choice
variable π will be either 0 or 1 in the optimum of the constraint program. In this
way, in several cases, the user can focus on specifying requirements and possible
solution strategies, while the optimization algorithm computes the value of the
alternatives and selects the best solution.

97

3.4 Example scenario: distributed medical cen-
ters

In this section, we present the modeling, analysis, and synthesis of privacy
requirements in a running example based on a distributed setup of multiple
medical centers where each of them is computing statistics on their dataset. We
will be able to see the concepts that we have built till now being applied in prac-
tice here. We will also demonstrate how to use individual constraint programs
representing individual components as a building block into the framework of a
combination of constraint programs, as discussed in Section 3.3.4.

3.4.1 Problem statement
Let’s assume, that in our setup of multiple medical centers, the patient features,
diagnosis, treatment, and prognosis are sensitive to the patient and the center.
There are different privacy requirements on the patient data, as well as statistics
computed on the data of individual centers (we call this, local aggregation),
and statistics computed on the data of multiple centers (we call this, global
aggregation). We will explain the requirements in Section 3.4.2.

Let’s assume we have r > 1 medical centers, each with their own patients.
We assume, no person is a patient in more than one hospital. Then we can give
the Ui patients of center i the unique numbers, i.e., Ui−1 + 1, · · · , Ui. Total
number of patients is N =

∑r
i=1 |Ui|.

Every patient j has q features xj,k with k = 1...q, where we set xj,0 = 1 for
mathematical convenience, as the co-efficient of the bias term. So, the patient
feature vector with q distinct features, represented by unique patient ID, is
(q + 1)-dimensional.

In an ideal world, with a completely trustworthy central aggregator, the
patient data from all the medical centers could be centralized and accessible for
computation, then the query computed on the patient data could be defined as:

Q =
∑

1≤j≤N

xj,lxj,k, ∀k, l ∈ 0...q. (3.36)

The first feature, xj,1 is a special feature (which we could call for now
“Kalium”, the Latin name for the chemical element Potassium), which indicates
the level of Potassium in a human body.

So, for the first feature, xj,1 (“Kalium” value), our query becomes,

Q =
∑

1≤j≤N

xj,1xj,k, ∀k ∈ 0...q. (3.37)

We remark here that, this can be used to find indication of a disease hyper-
kalemia, which is the medical term that describes a potassium level in human
blood higher than the normal range.

In real world, a distributed multi-centric setup does not facilitate us to com-
pute statistics on a global dataset. So, individual centers will compute their

98

local aggregation. Once the local aggregations of the centers are computed and
published, we can compute the global aggregation.

Publishing the results of a query can have severe repercussions on the vari-
ous stakeholders (patients or centers), which is why privacy requirements play
a major role in alleviating such negative consequences. For instance, in our
running example, the result of a query revealing an aberrant average “Kalium”
value, indicating hyperkalemia in particular, can cause a bad reputation for a
medical center, as it can be caused either by features of the patient population,
or it can indicate incompetence or inadequate care from the medical center.

We summarize the general notations introduced so far in Section 3.4.1 and
used frequently in this example in Table 3.1.

Symbol Meaning
r number of medical centers, where r ≥ 1
Ui the set of patients in center i, where 1 ≤ i ≤ r
N total number of patients
q number of patient features, where q ≥ 0
Q computed query on the patient data
j index for patients
k index for patient features

Table 3.1: Mathematical notations for the terms involved in our example sce-
nario.

3.4.2 Privacy requirements
Now, to shield privacy from such adverse repercussions of revealing useful ag-
gregation, we will specify all the privacy requirements in our scenario. Before
that, we summarize the notations for different privacy models in Table 3.2

Symbol Meaning
ϵ(pp), δ(pp) inter-center differential privacy budget
ϵ(pl), δ(pl) intra-center differential privacy budget
ϵ(u), δ(u) feature specific (here “Kalium”) differential privacy budget

Table 3.2: Notations for different differential privacy-specifications in terms of
(ϵ, δ) budgets, according to the privacy requirements.

• Individual patients need privacy. We assume the following properties for
the privacy budget.

– For all patients (xj,:), with k = 1 . . . q patient features, the privacy
budget should be (ϵ(pp), δ(pp))-DP in any center-wise published partial
statistics.

99

– For all patients (xj,:), with k = 1 . . . q patient features, the privacy
budget should be (ϵ(pl), δ(pl))-DP in any locally published (within the
medical center) partial statistics seen by researchers in the hospital.

– Therefore, (ϵ(pp), δ(pp)) ≪ (ϵ(pl), δ(pl)) as hospital trusts its own re-
searchers better.

• Center-wise partial aggregation also needs privacy. Here, we assume prop-
erties for another privacy budget.

– For any center i, with Ui patients, and k = 1 . . . q patient features,∑
j∈Ui

xj,1xj,k should be (ϵ(u), δ(u))-DP for any aggregation.

• For global aggregations, each

– center calculates partial aggregations, for our generalized query de-
fined in Eq. 3.36,

Qi,k,l =
∑
j∈Ui

xj,kxj,l, where k, l ∈ 1 . . . q,

and choose between
∗ costly encryption for fully private computation of global sumQk,l
∗ adding some more noise to these partial sums and publishing

them for public computation of global sum Qk,l

3.4.3 Inferring on our example
Now, that we have described the setting of our problem and broken down the
goals, what exactly we would like to achieve through the method we proposed
in Section 3.3 is described in the following and illustrated in the Fig. 3.3, 3.4,
3.5, 3.6. We systematically introduce the actions taken to achieve the privacy
requirements.

• Preprocess and normalize all data (scale if needed): xj,k ∈ [0, 1].

• We consider two scenarios: v ∈ {E,C}, as depicted in Fig. 3.4, 3.5,

– v = E is the Encryption-based design choice providing higher ac-
curacy,

– v = C is the Cheaper design choice where more noise is added.

• Add noise ηv,j,k ∼ N
(
0, σ2

v,i

)
to patient data xj,k with j ∈ Ui, as depicted

in Fig. 3.3.

• Compute local statistics: Qv,i,k,l =
∑
j∈Ui

(xj,k + ηv,j,k) (xj,l + ηv,j,l), as
depicted in Fig. 3.3.

• The global aggregation is computed by choosing the optimal design choice,
as depicted in Fig. 3.6. Either (1) publish the QC,i,k,l and then aggregate
publicly (Fig. 3.4), or (2) compute secure private aggregation algorithm
“GOPA”-sum [110] QE,i,k,l (Fig. 3.5).

100

Figure 3.3: Every medical center performs data pre-processing on its noisy
dataset and computes local aggregation specific to its center. This result is
available to their local researchers, but they may add more noise when they
intend to publish the local result to the foreign researchers of other medical
centers.

Figure 3.4: Design choice E, representing the cryptographic method of com-
putationally expensive encryption of individual medical center’s noisy partial
statistics, computing global aggregation on the encrypted data, then decrypting
and publishing the final result.

101

Figure 3.5: Design choice C, representing the computationally inexpensive
method of computing global aggregation on the medical centers’ noisy partial
statistics, then adding more noise before publishing the final result.

Figure 3.6: The Optimal solution will be the one that finds the approach between
the two design choices that provides the minimal loss in terms of utility, privacy,
and computational cost.

102

For illustration, we assume the two design choices, as depicted in Fig. 3.4,
3.5, but we emphasize that the reader can also make other design decisions
depending on the privacy requirements and the problem settings.

Our goal would be to compute the optimal variances of these noise variables,
added before and after the computation. In the process of achieving that, we
would know the positions of these noise variables to be added and how the build-
ing blocks are combined while choosing the most optimal privacy-preservation
strategy. We illustrated that in Fig. 3.6.

We can take the differential-privacy specifications to reason about them,
derive the constraint optimization program, and find the optimal parameters
using a constraint solver. The constraint optimization problem will take the
following form.

Final constraint optimization problem We can infer the following con-
straint optimization program:

Objective function

• minλObjE + (1− λ)ObjC
• ObjE = Lenc +

∑r
i=1 ∥Ui∥σ2

E,i

• ObjC =
∑r
i=1 ∥Ui∥σ2

C,i

• 0 ≤ λ ≤ 1

Privacy Constraints

• Patient privacy:

– In scenario E, only multi-centric aggregate statistics are pub-
lished:

A⊤
(
[A(1) . . . A(r) I]diag(σE)2[A(1) . . . A(r) I]⊤

)−1

A ≤

σ−2
GM (ϵ(pp), δ(pp)).

– In scenario C, statistics of every unit are published:

for i : 1 . . . r: A⊤
(
[A(i) I]σ2

C,i[A
(i) I]⊤

)−1

A ≤ σ−2
GM (ϵ(pp), δ(pp)).

– In scenario v ∈ {E,C}, statistics of every unit are seen by the
local researchers:

for i : 1 . . . r, v ∈ {E,C}: A⊤
(
[A(i) I]σ2

v,i[A
(i) I]⊤

)−1

A ≤

σ−2
GM (ϵ(pl), δ(pl)).

103

• Hyperkalemia confidentiality per unit:

– In scenario C, the local hyperkalemia statistics are published:

for i : 1 . . . r: (A′)
⊤
(
[A(i)′ I]σ2

C,i[A
(i)′ I]⊤

)−1

A′ ≤

σ−2
GM (ϵ(u), δ(u)).

– In scenario E, the local hyperkalemia statistics are part of the
eventually published overall aggregates:

(A′)
⊤
(
[A(1)′ . . . A(r)′ I]diag(σE)2[A(1)′ . . . A(r)′ I]⊤

)−1

A′ ≤

σ−2
GM (ϵ(u), δ(u)).

Here,

• A: feature weight matrix,

• σ−2
GM (ϵ, δ): minimal variance of additive Gaussian noise needed to achieve

(ϵ, δ)-differential privacy ,

• σ2
E , σ

2
C : variances of noise terms in design choice E & C respectively.

3.5 Discussion and conclusions
In this chapter, we argue that the explainability of privacy-preserving systems
can be helped by clearly specifying the privacy guarantees satisfied by the sys-
tems, and we propose to see these privacy requirements as constraints in an
optimization problem.

First, during the design and development phase, this methodology helps the
developer to focus on the requirements rather than on implementation choices.
In fact, the constraint optimization problem represents the space of all possible
high-level implementations, and the solver accordingly finds the most interesting
implementation strategy.

Second, in the deployment phase, such an explicit representation of the pri-
vacy guarantees facilitates answering user queries about exactly to what extent
sensitive data is protected.

We presented a few examples showing that in several cases the translation
of privacy requirements to constraint optimization problems is reasonably easy,
and often yields constraint optimization problems that can be solved efficiently.
Of course, this doesn’t constitute a proof that such a methodology will deliver
good results in all cases. An interesting line of future work is to explore more
different situations and analyze whether the obtained constraint optimization
problems remain tractable and scale well with the problem complexity.

Another idea for future work may be to explore whether this methodol-
ogy also allows us to translate interpretable fairness requirements to efficiently

104

solvable constraint optimization problems. However, a number of additional
challenges may arise there, e.g., there is no widespread consensus on a single
good notion of fairness (as is the case with differential privacy in the privacy do-
main). Second, while in the current chapter on privacy, we rely on the relation
between uncertainty (e.g., variance) and privacy strength, which often leads to
efficiently solvable constraints, it is not immediately clear whether we could rely
on a similar relation in the fairness domain.

105

Chapter 4

AI using declarative privacy
constraints

Abstract
The increasing complexity of systems has resulted in the need for interpretable
systems that protect the users’ privacy, without sacrificing utility. To address
this concern, we propose a novel approach that can model complex systems
and specify privacy requirements for them. Furthermore, we propose a synthe-
sizer that automatically produces solutions meeting those requirements. This
synthesizer automatically chooses among privacy-preserving techniques and op-
timizes the parameters associated with the chosen technique. We demonstrate
the application of our specification language in the context of a medical problem
where useful statistics are computed on sensitive information in a cost-effective,
interpretable, and privacy-preserving way.

4.1 Introduction
The advent of systems based on machine learning that can handle huge amount
of personal data has led to privacy concerns. Indeed, researchers have shown
that it is possible to infer private information from machine-learning models,
even when one does not have access to the training dataset [10, 96, 115]. Fur-
thermore, such systems are becoming increasingly complex, so users cannot
understand the consequences of giving private information to these systems.
This highlights the need for systems that achieve three goals: privacy, inter-
pretability, and utility. We discuss these goals and argue why the state of the
art still falls short of achieving them.

106

Privacy
The increasing complexity of systems can be exploited by malicious users to in-
fer private information from individuals, sometimes with harmful consequences.
Several works have demonstrated how to re-identify individuals by combining in-
formation from different systems like voter-registration records and anonymized
hospital records [10] or how to infer if a person was part of a training dataset
for a machine learning system by only interacting with the trained model [115].

To prevent such leakages, researchers have proposed solutions based on en-
cryption [32] and differential privacy [43]. Unfortunately, these solutions can
only deal with individual components of a data pipeline and cannot provide
security guarantees for the whole pipeline. In addition, many of them can only
verify privacy properties, leaving the burden of designing privacy-preserving
mechanisms to the end user.

Utility
The protection brought by privacy-preserving solutions also comes at the cost of
utility [135]. Adding privacy usually brings extra computation costs or less pre-
cision in the computation outcomes. For example, in differential privacy, com-
posing different mechanisms brings a noticeable loss of outcome quality [124].
Solutions that strike the right balance between privacy and utility are needed.

Interpretability
As systems become more complex, users have a harder time understanding the
consequences of giving information to these systems. To mitigate and under-
stand the privacy risks of complex systems, solutions based on interpretabil-
ity have been proposed. Some of them use formal systems to help all stake-
holders better understand the privacy implications of interacting with a sys-
tem [14, 101, 131]. Unfortunately, these solutions are still not expressive enough
to capture the complex systems that today combine different solutions based on
machine learning, differential privacy, and secure multi-party computation.

Contribution
From this recount, we argue that current solutions fall short in terms of privacy,
utility, or interpretability; they offer limited privacy protection, sacrifice too
much utility, or cannot describe current complex systems. Furthermore, many
popular solutions can only verify privacy properties. To address the need for
providing more privacy to users and more interpretability to complex systems,
we propose a novel mechanism that introduces the following components and
depicts them in Fig. 4.1.

• A novel, powerful, and holistic specification language for describing infor-
mation processing pipelines and their privacy requirements. It can for-

107

Figure 4.1: Block diagram for desired properties through specification and in-
ference.

malize legal documents written in natural language like privacy policies,
terms and conditions, and privacy legislation.

• We present an analysis framework, based on this language, that can verify
and certify that the privacy constraints are being respected.

• We present a synthesizer that automatically produces privacy-preserving
mechanisms, given a set of strategies. One only needs to specify the pri-
vacy requirements and a set of strategies (e.g., secure multi-party compu-
tation strategies or differential-privacy noise mechanisms) and the synthe-
sizer automatically chooses the optimal strategy among them. Further-
more, it computes the optimal parameters for the chosen strategy.

To demonstrate the power of our solution, we illustrate how it can model
a scenario based on a medical study. We formalize and analyze privacy re-
quirements for patients and medical centers. Afterward, we show how to auto-
matically construct mechanisms that compute statistics about the patients and
reveal them to the researchers of medical centers, while respecting the privacy
requirements. Throughout this chapter, we will alternate between concepts and
their illustrations through the running example for better understanding.

4.2 Related work
The increasing awareness of privacy has spawned efforts to make ML-based sys-
tems privacy-preserving. We contribute to these efforts with the first system
that directly synthesizes differentially-private ML-based systems from privacy
specifications. Previous works only propose languages that specify privacy re-
quirements for existing systems or propose verification mechanisms to ensure
that an already built system is differentially private. We give next an overview
of them.

108

4.2.1 Specification works
Several works offer languages for specifying and reasoning about privacy re-
quirements. For example, Jeeves [131] allows us to specify how sensitive values
can be disclosed. Jeeves also comes with a model that checks if the system
adheres to the specified privacy policies. S4P [14] is a language that can specify
privacy policies and, in addition, reason about them. S4P can then give an
understanding of the implications of a specified privacy policy. SecreC [19] is
another language proposed for systems dedicated to secure multi-party compu-
tation. Other works, like CCPL [73], propose languages that are more accessible
and simplify the specification of privacy policies. PILOT [101] empowers users
to specify their privacy preferences and then use these specifications to control
what type of data websites are allowed to collect from users. P2U [76] focuses
on specifying privacy policies for secondary data sharing.

These works are intended to specify and reason about privacy policies, how-
ever, they cannot synthesize differentially private mechanisms from a given spec-
ification, as we do. Our main advantage is that we do not only offer a specifi-
cation language, but we also offer a procedure that automatically computes the
parameters that fulfill the requirements related to the privacy mechanisms.

4.2.2 Verification works
Some works go beyond specification and offer frameworks that can verify and
analyze privacy requirements. Eddy [22] is a framework for specifying privacy
requirements. It can then analyze such requirements to understand information
flows and to identify potential conflicts in those requirements. ZKay [117] is a
language that specifies private values in blockchain contracts and ensures that
they are not unintendedly leaked.

Some works are focused on differential privacy. For example, Duet [97] is a
framework for specifying and verifying differentially-private mechanisms. Duet
can reason about systems that use differentially private mechanisms and verify
that they correctly implement their specifications. CertiPriv [11] provides the
machine-checked proof of correctness for differentially-private mechanisms. Xu’s
work [129] offers a process calculus for reasoning about systems that implement
differentially private mechanisms. In particular, it can investigate the degree
of privacy under the composition of different mechanisms. DFUzz [59] uses a
functional programming language with linearly indexed types to decide if queries
about sensitive information in a system are differentially private. PINQ [90]
is a system for processing queries that guarantees differential privacy of the
outcome. It works for systems with differentially-private mechanisms and it
ensures that the query outcome satisfies differential privacy. Also, privacy-
preserving inference in Bayesian networks has been considered before, e.g., [133]
discusses how to add noise after an inference task to make the result differentially
private.

Despite the expressive power of such systems and their ability to model
and reason about the privacy properties of complex systems, these solutions

109

still require the user to specify and design differentially private mechanisms.
This process requires mathematical expertise, as the design of such mechanisms
is non-trivial. The advantage of our framework is that it only requires the
user to specify the variables that they wish to make differentially private, their
privacy budget, and the mechanisms that should be used for differential privacy.
The system can be adjusted to incorporate additional provisions for privacy-
preservation strategies as well. The process of computing the right parameters
for the mechanism works automatically.

4.3 Preliminaries
We will thoroughly use the concepts of differential privacy [43] (we have dis-
cussed them in detail in Section 2.7.2) in this chapter.

4.3.1 Logic preliminaries
We begin by recalling some notation from logic programming. We assume given
some sets V, C, R, and F , denoting variables, constants, relation symbols, and
function symbols, all of them countable. We assume that each relation symbol
r ∈ R and each function symbol f ∈ F comes with an arity m ∈ N. Sometimes,
we use f/m instead of f or r/m instead of r to make the arity explicit. A term
is any variable, constant or expression of the form f(t1, . . . , tm), where f is a
function symbol of arity m and t1, . . . , tm are terms. An atom is any expression
of the form r(t1, . . . , tm), where r is a relation symbol of arity m and t1, . . . , tm
are terms. A literal is any expression of the form r(t1, . . . , tm) or ¬r(t1, . . . , tm),
where ¬ is the negation operator and r(t1, . . . , tm) is an atom. A clause is an
expression of the form

H : −B1, B2, . . . , Bn, (4.1)

where (i) H is an atom, and (ii) B1, B2, . . . , Bn are literals. The expression on
the left-hand side of ‘: −’ is called the clause’s head and the expression on its
right-hand side is called the body. A (logical) predicate is any literal. A Logic
program is a finite set of clauses.

4.3.2 logical Bayesian network
Now, to quickly review, logical Bayesian networks (LBN)[54] have the following
components: a set of random variable declarations, a set of conditional depen-
dency clauses, and a set of logical CPDs, one for each probabilistic predicate.

Among the components of LBN [55], as reviewed in Section 2.8.2, we will
use probabilistic predicates and logical predicates as used in LBN. Logical pred-
icates describe logical, deterministic background knowledge, whereas probabilis-
tic predicates have an associated range and are used to represent random vari-
ables. We can use LBN for computing conditional probabilities of our random
variables. Besides, the Bayesian network seems fit for our purpose, as there is
no strong need for cyclic dependencies, as in Markov networks.

110

4.4 Language
Before we start discussing the specifications, we introduce the problem scenario
to depict a real-world situation where those specifications can be applied.

Running example: problem statement

We will consider a running example involving cancer patients 1, as depicted
in Fig. 4.2. In our example, we want to predict the prognosis (in terms of
patient’s expected length of survival, and if the patient survives for
more than six months) of patients. For this, we want to take into account
genomic information of the cancer. In particular, cancer causes gene alterations
in patients, e.g., mutations or deletions. Various drugs can be used to treat
these patients but cancers can get resistant to drugs by developing more gene
alterations. In that case, a new drug should be used which is still effective, if
such a drug is available.

Figure 4.2: This is a block diagram illustrating the skeleton of our running
example. The blocks, representing the random variables, may be directly or
transitively dependent on other RVs. The direct dependency is indicated by
solid arrows. The input RVs are age(P), reportedSmoking(P), geneAlter-
ation(P, A), avgCancerSurvival(C). The realSmokingStatus(P), dru-
gResistance(P, D) are the intermediate RVs, which directly depend on some
of the input RVs. The two output RVs are expectedSurvivalLength(P) and
survivalMoreThan6Month(P). The output RVs may directly or indirectly
depend on some or all of the intermediate RVs and input RVs.

Declarations. We now present our declarative language, whose main compo-
nents are represented in Fig. 4.3. We first present basic components which are

1This simplified example is based on a pilot study in the TRUMPET project https://
trumpetproject.eu/

111

https://trumpetproject.eu/
https://trumpetproject.eu/

also relevant in ordinary logical Bayesian networks. Then, we will discuss the
components needed to specify the privacy requirements to make the inference
differentially private.

4.4.1 Random variable declaration
The random/1 predicate declares random variables (RV), members of the set R
in the definition of LBN [54]. We will be using a similar syntax for declaring
RVs in our scenario.

Figure 4.3: Components and sub-components of the language

Example: In our running example the random variable declarations include:

• random(geneAlteration(P, A)) :- patient(P), alteration(A).
% geneAlteration(P, A) indicates (boolean) the existence of gene alter-
ation A in patient P. We can read the declaration as, “if there exists patient
P, and alteration A, then geneAlteration(P, A) is a random variable”.

• random(realSmokingStatus(P)) :- patient(P).
% realSmokingStatus(P) indicates (boolean) if patient P smokes.

• random(reportedSmoking(P)) :- patient(P).
% reportedSmoking(P) indicates (boolean) what the patient P reported
about their smoking status.

• random(age(P)) :- patient(P).
% age(P) indicates (years) the age of patient P.

112

• random(drugResistance(P, D)) :- patient(P), drug(D).
% drugResistance(P, D) indicates the resistance (numeric) of drug D
that is being administered on patient P. We can read the declaration as,
“if there exists patient P, and drug D, then drugResistance(P, D) is a
random variable”.

• random(avgCancerSurvival(C)) :- cancer(C).
% avgCancerSurvival(C) indicates the average survival length (months)
of patients with a certain type of cancer C. We can read the declaration as,
“if C is type of cancer, then avgCancerSurvival(C) is a random variable”.

• random(expectedSurvivalLength(P)) :- patient(P).
% expectedSurvivalLength(P) indicates (months) the expected length
of survival of patient P.

• random(survivalMoreThan6Month(P)) :- patient(P).
% survivalMoreThan6Month(P) indicates (boolean) if patient P is likely
to survive more than six months.

Relational database. This component is used to describe how the data is
organized. We distinguish between relations and random variable declarations.

We take relational database systems for representing data as they have a
suitable layout of related tables or relations. A logical Bayesian network favors
relational databases as relational databases can easily be modeled into logical
programs.

Data organized in relational databases can be described using relation pred-
icates. Now, an individual cell, which is an intersection point of an attribute
and a row in a relation, can be considered as a random variable.

A dataset is a set of identifiers, and then to every identifier we associate
many random variables, and the random variables may be associated with some
relations. We will discuss about this in detail in Section 4.4.3.

Example: In our running example, we declare a dataset patientDataset,
and some relations like patientData, geneAlterationHistory, etc. to repre-
sent the dataset. Now, the random variables associated with the dataset may
come from any of these relations.

For instance, for a patient P, for the random variables age(P), reported-
Smoking(P), the functors age, and reportedSmoking are originated from rela-
tion patientData, whereas, for random variable geneAlteration(P, A), the
functor geneAlteration has originated from relation geneAlteration-
History.

Having learned the association between relations, datasets, and random vari-
ables, from now on, we will primarily use the term random variables and reason
about their characteristics for the rest of the chapter.

113

4.4.2 Dependency declaration
In the context of logical Bayesian networks, if a random variable (RV) u depends
directly on another RV v, we call u the child random variable and v the parent
random variable. Moreover, when a random variable has no parent in a network
and is known to the user even before an algorithm (or query) is run, it is called
an input random variable. An output random variable is a RV that will be
observed by a certain observer.

In a logical Bayesian network, there could be dependencies among multiple
parent and child random variables, which, when stacked on top of each other,
transitively create indirect dependencies between the output and input variables
in the network. To understand the privacy implications of revealing any of these
output variables, we must identify all random variables it depends on (directly
or transitively).

In practice, to have a complete declaration of dependency, we combine the
two components of LBN, conditional dependency clauses and logical conditional
probability distributions, members of the set D, and C, respectively, in the defi-
nition of LBN [54]. In our language, the dependencies among random variables
are declared using the predicate ‘depends’. We show the new declaration below.

depends(ChildRV, ParentRVs, CPF) :- cond_1, ..., cond_n,
CPF = Expression.
% We can read this as "ChildRV is dependent on ParentRVs as defined by the
CPF expression if cond_1, ... , cond_n are all true".

In this chapter, the depends predicate indicates that the ChildRV depends
on the list of random variables ParentRVs. The dependency only holds under
the optional conditions cond_1, ..., cond_n, and is defined by the condi-
tional probability function CPF. The CPF is a function, defined by the given
‘Expression’, which binds the child with the parents. It can have any of the
following nature.

• Probabilistic CPF: As the name suggests, these functions are distin-
guished by the incorporation of randomness. They represent the idea that,
when given an identical set of input conditions, the outcome is not fixed
but rather contains a range of possible outcomes, each associated with a
specific probability. This probabilistic paradigm recognizes that outcomes
in many real-world circumstances are not established with absolute cer-
tainty. Instead, they manifest as stochastic processes with several possible
outcomes, each with its probability.

• Deterministic CPF: On the other hand, this type of function displays
a characteristic of absolute predictability. A deterministic function pro-
duces an outcome with absolute certainty when given a specific set of
input conditions or prior knowledge. In essence, the event’s probability is
either 0 or 1, suggesting that the conclusion is certain and unmistakable.
This type of deterministic framework is frequently used in settings when

114

occurrences are completely predictable and lack randomness, leaving no
opportunity for probabilistic uncertainty.

The clause will provide the list of random variables, ParentRVs, on which
the ChildRV is dependent, based on the CPF provided.

Example: We assume a patient named uma with cancer type c. Drug
{d1, d2, d3, d4} are being administered to her. Gene alterations {a1, a2,
a3, a4, a5, a6} have occurred to uma and she developed resistance to drugs
{d1, d2}. We assume, gene alterations {a1, a2, a3} caused resistance to
drug d1 and gene alterations {a3, a4, a5, a6} caused resistance to drug d2
respectively. In our running example, the dependency declarations include:

• depends(realSmokingStatus(P), ParentRVs, CPF) :-
ParentRVs = [reportedSmoking(P)], % appends all the

% parent RVs in a list and assign them to ParentRVs
CPF = bernoulli(0.2 + 0.8 * reportedSmoking(P)).

% bernoulli(L) is a bernoulli distribution with parameter L:
% 1 with probability L, 0 with probability 1-L

Explanation: Now, this depends predicate, when applied for patient
uma, indicates the dependency of RV realSmokingStatus(uma) on the
ParentRVs, where the CPF provides the probabilistic distribution parame-
terized by the expression given by the ParentRVs, in this case, reported-
Smoking(uma).

We assign the probability of realSmokingStatus(uma) to 1 if the pa-
tient reports smoking. If the patient denies smoking, then the value of
realSmokingStatus(uma) will be 1, with 0.2 probability, which means
we consider the fact that the patient might be withholding actual infor-
mation 20% of the time.

• weightGA_sum([V], W*V) :-
V=geneAlteration(P, A), weightGA(A, D, W).

weightGA_sum([V1|RV], S1+RS) :-
weightGA_sum([V1], S1), weightGA_sum(RV, RS).

% weightGA(A, D, W) : W is the weight
% for gene alteration A and drug D

depends(drugResistance(P, D), ParentRVs, CPF) :-
findall(geneAlteration(P, A), random(geneAlteration(P, A)),

ParentRVs),
% puts all the parent RVs in the list ParentRVs

weightGA_sum(ParentRVs, TotalWeight),
CPF = exp(-TotalWeight).

% exp(-X) is an exponential distribution

Explanation: Now, this depends predicate, when applied for patient
uma, indicates the dependency of RV drugResistance(uma, d1) on the

115

ParentRVs, where the CPF provides the probabilistic distribution parame-
terized by the expression given by the ParentRVs, in this case, geneAlter-
ation(uma, a1), geneAlteration(uma, a2), geneAlteration(uma,
a3). Similarly, it can indicate the dependency of RV drugResistance(uma,
d2), by the combinations of RVs in ParentRVs, in that case, geneAltera-
tion(uma, a3), geneAlteration(uma, a4), geneAlteration(uma,
a5), geneAlteration(uma, a6).

• depends(expectedSurvivalLength(P), ParentRVs, CPF) :-
patientHasCancer(P, C),

% every patient only has one cancer
findall(drugResistance(P,D), random(drugResistance(P,D)),

DRList),
append([avgCancerSurvival(C), realSmokingStatus(P),

age(P)], DRList, ParentRVs),
% appends all the parent RVs in a

% list and assigns to ParentRVs
CPF = poisson(1/(realSmokingStatus(P) * 0.5+

max(DRList) + avgCancerSurvival(C) * 0.02 +
age(uma) * 0.01)). % poisson(L) is a poisson

% distribution with λ parameter L

Explanation: Now, this depends predicate, when applied for patient uma,
indicates the dependency of RV expectedSurvivalLength(uma) on the
ParentRVs, where the CPF provides the probabilistic distribution parame-
terized by the expression given by the ParentRVs, in this case, [avgCancer-
Survival(c), drugResistance(uma, d1), drugResistance(uma, d2),
realSmokingStatus(uma), age(uma)].

So, if the λ value for patient uma turns out to be ≈ 8.1, then the probability
for expectedSurvivalLength(uma)≥ 12 can be computed by:
poisson(expectedSurvivalLength(uma)≥ 12, λ = 8.1) ≈ 0.11928.

Of course, these depends predicates are only examples to show how the
dependencies between RVs can be represented in our language. In reality, for
example, the survival of a patient depends on a lot of other (important) factors
like type and amount of comorbidities of the patient, various kinds and counts
of gene alterations, gender, medical history, drug side effects, etc. We leave the
decision of determining the actual dependency relationship between RVs, to the
domain experts dealing with the actual use case.

4.4.3 Privacy specification
We allow for defining multiple privacy requirements. This enables us to construct
scenarios in which it is beneficial to reveal information to numerous viewers at
times, and certain observers are permitted to obtain more detailed information
than others. For example, a medical center could give doctors full access to
all medical patient data, while only privacy-preserving aggregated information

116

is shared with the public. Now, all privacy specifications connected to a single
privacy requirement should be satisfied with a single privacy budget. Hence, the
privacy budget must be divided into multiple portions if more random variables
are involved in a single privacy requirement.

1. dataset(DatasetName, Domain). declares the dataset DatasetName and
specifies that its domain is Domain, i.e., if we consider D to be an instance
of DatasetName, then D ⊆ Domain.

Example: dataset(patientDataset, domain(P, patient(P))).
Explanation: In our running example, the patientDataset represents
the dataset of all patients and the corresponding Domain is the set con-
taining a complete representation of all possible patients. The Domain is
represented by a term domain(V, Goal) where it can be tested whether an
element belongs to the domain by unifying V with the element and calling
the Goal, which is the condition, that will succeed depending on whether
V is in the domain. For this example, P and patient(P) correspond to V
and Goal respectively.

2. dataset_instance(DatasetName, Instance). declares that Instance
is an instance of the dataset DatasetName.

Example: dataset_instance(patientDataset,
patient_instance(P)) :- patient(P).

Explanation: patient_instance(P) is an instance of dataset patient-
Dataset for patient P.

3. instance_rv(DatasetName, Instance, RV). declares that RV is a ran-
dom variable belonging to the instance Instance of the dataset Dataset-
Name.

Example: instance_rv(patientDataset, patient_instance(P),
age(P))

Explanation: In dataset patientDataset, age(P) is a random variable
belonging to instance patient_instance(P), for patient P.

4. privacy_requirement(PrivReqName, Dataset, PrivMetric). is a dec-
laration specifying that PrivReqName is the name of a privacy requirement
and PrivMetric is a term specifying the used statistical privacy metric
and budget. Examples of such terms include dp(ϵ) for ϵ-differential privacy,
dp(ϵ, δ) for (ϵ, δ)-differential privacy or renyi_dp(α, ϵ) for (α, ϵ)-Rényi dif-
ferential privacy [92].

The declarations of PrivReqName, can be generalized over all observers.
In case we have different access specified for different observers, we can
use Observer as a parameter to the PrivReqName.

117

Example: privacy_requirement(patientPrivacy,
patientDataset, dp(0.1, 0.01)).

Explanation: A privacy requirement named patientPrivacy, which
specifies the privacy to observe dataset patientDataset with privacy met-
ric (ϵ, δ)-dp, where, ϵ = 0.1 and δ = 0.01. We can specify different privacy
requirements for different observers,
privacy_requirement(patientPrivacy(doctor),

patientDataset, dp(0.25, 0.03)).
privacy_requirement(patientPrivacy(researcher),

patientDataset, dp(0.2, 0.02)).
privacy_requirement(patientPrivacy(public),

patientDataset, dp(0.1, 0.01)).
We specify privacy requirement for three different observers, doctor,
researcher, and public, such that doctor observes the patientDataset
with highest precision and the public observes it with least precision.

5. dp_rv(PrivReqName, RV). declares the relevant observations which should
be privatized: all variables RV such that dp_rv(PrivReqName, RV) is true,
should together satisfy the privacy requirement.

Example: dp_rv(patientPrivacy(doctor), age(P)) :- patient(P).
Explanation: The dp_rv predicate declares the random variable age(P)
associated with privacy requirement patientPrivacy(doctor). Accord-
ing to our definition of predicates privacy_requirement and dp_rv, the
random variable age(P) will share the PrivMetric defined by dp(0.25,
0.03) with other random variables associated with the same privacy re-
quirement patientPrivacy(doctor).

Additionally, some random variables are personal in the sense that they are
related to an identifiable natural person. Many privacy regulations, like the
GDPR [2], have special requirements for such personal information, e.g., a per-
son can request the deletion of all their personal information. If some RV is
personal to a party, then implicitly the party has access to observe the RV with
the highest precision. For instance, in our running example, all the random
variables associated with a patient instance, identified by patient(P), in the
dataset patientDataset, are personal to patient P.

Example: personal_rv(P, age(P)) :- patient(P).
Explanation: Random variable age(P) is personal to patient P.

4.4.4 Summarization of declarations
In this section, we present a summary of the various components presented in
our specification language and how they might be organized in the context of
a logical Bayesian network. Here, we will briefly summarize the components of
the declarative language introduced so far.

118

1. Random variable declaration We declare all the random variables
(RV) for a query, using the definitions described in Section 4.4.1.

2. Dependency declaration In Section 4.4.2, we specify which input RVs
(direct or indirect child RVs) are used to compute the value of the observed
output RVs, using one or more depends predicate. The binding between
all the ancestor RVs and observed RV is decided based on the conditional
probability function CPF(s).

3. Privacy specification As described in Section 4.4.3, we specify privacy
requirements using the five principal privacy specification constructs.

These specifications will be used in the inference in Section 4.5.

4.5 Inference
The goal of this section is to discuss our strategy to infer the appropriate privacy
mechanisms and derive the optimal privacy parameters, which in turn will be
used to solve inference tasks. Here, we address which sensitive information is
revealed in the form of random variables if a statistic computed on them, is
released. Moreover, it also inspects the precise spots in the LBN where the
privacy techniques (in this case adding noise) should be positioned to achieve
the best results.

We organize this section as follows. Section 4.5.1, outlines the technique
we employ to construct a constraint problem to achieve the optimal solution
and discuss how to select amongst various noise mechanisms, given a set of
privacy specifications. In Section 4.5.2, 4.5.3, 4.5.4, we delve deeper into the
design of the constraint problem in a generalized scenario. In Section 4.5.5, we
demonstrate how to apply the inference concepts discussed so far, in the context
of our running Example 4.4.

4.5.1 Design overview of the constraint problem
Now, we give an overview of our design process for the constrained optimization
problem, given the specification of the problem and their privacy requirements,
defined in Section 4.4.

Constraint problem structure

We primarily attempt to build an objective function and a set of constraints. In
our approach, the objective function is a loss function that must be optimized,
and the constraints are generated from the privacy requirements. Section 4.5.2
contains more information about this. Once such a constraint problem is gener-
ated, following that, a classical constraint optimization solver can compute the
optimal solution for the constraint problem.

119

Forward computation

Throughout this chapter, for simplicity of explanation, we will assume forward
computation, i.e., we want to infer a random variable given priors and evidence
about some of its ancestors. For example, we see forward inference as inferring
one by one the random variables, starting from the known input nodes until
the queried nodes, where we can add noise to guarantee privacy but can also
maximize utility without being too fixated on either of the traditional differential
privacy approaches [48].

Trade-offs between differential privacy approaches

From [42] and [48], we get the basic definitions of two classical Differential
Privacy approaches. Local differential privacy (LDP), adds noise to the input,
and then computations happen over the noisy data. This often requires a larger
privacy budget, resulting in high loss and low utility. On the other hand, central
differential privacy (CDP) first performs computations on original inputs and
then adds noise to get noisy results. This works well when a few queries are
run on a large number of sensitive variables (refer to Fig. 4.4). So, LDP is
more expensive, than CDP, in terms of noise for the same privacy budget. For
a fixed privacy level, and fewer outputs, CDP has better utility, but if the
number of outputs increases, the utility of LDP will outperform CDP. Hence,
we see that the Local and Central DP approaches have complementary benefits.
Combining the advantages of both can lead to a more optimal noise budget,
thus maximizing the utility of the algorithm.

Combining forward computation with generalized DP approach

We can generalize this idea by looking at forward inference (for simplicity of
deriving the constraint problem, but not restricted only to it) in a probabilistic
model, as the computation of one or more outputs from a set of inputs through
a circuit of optional internal nodes. In our case, we chose to use a logical
Bayesian network, and depending on the graph topology and the conditional
probability functions, adding noise at inputs, outputs, and intermediate nodes
or a combination of these may be optimal. So our solution approaches the middle
road between CDP and LDP and adds noise carefully at places that perform
best in optimizing privacy and utility. We will take this approach in generating
the constraint problem from the specifications in the following section.

4.5.2 Transformation: specifications to constraints
In this section, we sketch on a more granular level, how we can transform the
privacy specifications into a constraint problem.

Let’s assume a logical Bayesian network, where RV = {xi : i ∈ [k]} is the
set of all random variables in the network, and every partial ordering (or node)
in the network is defined by a random variable xi. Each RV xi is dependent
on its direct ancestor RVs, known as its parent RVs, and indexed by the set

120

Figure 4.4: Queries and datasets can have one-to-many, many-to-one, or many-
to-many relationship. So, in a study, a query can run on one or more datasets,
and one dataset can also participate in multiple studies.

Pa(i) = {j : (xj |xi)}. We call xi an input variable if Pa(i) = ∅. We call xi an
output variable if we intend to reveal its value to an observer.

Each xi is defined by a function fi on the combination of its parent random
variable, xj . So, for input RVs, fi ∈ R is a constant. The nature of fi can
be of any operations that are permitted on the xi. We summarize all of the
assumptions and notations frequently used in this section in Table 4.1.

Symbol Meaning
[k] {1, 2, · · · , k}
| Symbol indicating dependency relation,

and induces a partial order on the random variables
1i Unit vector of shape (1 x k) with a 1 on position i

and 0 elsewhere
xi Random variables (RV) for 1 ≤ i ≤ k, where xi ∈ R
fi Functions applied on the combinations of the parent

RVs of xi
RV = {xi : i ∈ [k]} Set of all random variables
Pa(i) Set of indices of all the parents of a node xi
η ∈ Rk Noise, which is a normally distributed random vector
D Dataset, if a particular patient P ∈ Dataset
D′ Dataset, if a particular patient P /∈ Dataset
O Observation

Table 4.1: General mathematical notations used for the transformation from
the privacy specification to a generalized constraint problem.

Our approach incorporates privacy criteria that outlines what can be inferred
about any sensitive variables that are either directly or indirectly connected to
the output variable, from observing the output. The output variable is not
necessarily sensitive; it could be computed from variables, some or all of which
may be sensitive. If an output variable is sensitive in nature, we will also need

121

a privacy requirement for it.

4.5.2.1 Privatization of observed variables

Based on our previous assumptions about inference, we can write,

xi = fi(xPa(i)), for i ∈ [k], (4.2)

as Pa(i) = {j : (xj |xi)} is the set of all indices of direct parents of xi.
To avoid revealing the sensitive value of any xi, one must not publish their

original values or the original values of output variables that are computed
(directly or indirectly) from one or more such xi. Therefore, noise is added
individually to each xi, so that, when we publish the output variables to the
observer, it accumulates the noise added to all the noisy variables that are
used to compute the output. Hence, publishing the output variables is privacy-
preserving.

In our framework, the noise is a random vector η ∈ Rk, and it’s defined as

ηi ∼ N (0, ση,i) , for i ∈ [k]. (4.3)

To protect the privacy of the xi values, we add noise locally to all of them,
including the input RVs and intermediate RVs (partial orderings [54]). These
noisy x̂i enables us to attain differential privacy, which we can define as,

x̂i = fi(x̂Pa(i)) + ηi, for i ∈ [k]. (4.4)

If the noise components ηi (i ∈ [k]) are independent of each other, then we
can consider the variance of a variable x̂i w.r.t ηi as

varηi(x̂i) = varηi(fi(x̂Pa(i))) + varηi(ηi), (4.5)

= σ2
η,i . (since, varηi(fi(x̂Pa(i))) = 0) (4.6)

If we consider Eq. (4.5), we assume that Ση(x̂j) = varη(x̂j) is known for
all j ∈ Pa(i). Then, assuming fi is linear in all its arguments (locally but in a
sufficiently large sphere around xPa(i)) will give us,

fi(x̂Pa(i)) ≈ f(xPa(i)) + (x̂Pa(i) − xPa(i))⊤.∇xPa(i)
fi(xPa(i)). (4.7)

Now, we can substitute the value of x̂i from Eq. (4.4),

Ση(x̂i) = Ση(fi(x̂Pa(i))) + Ση(ηi).

Using, first order Taylor series approximation of fi around xPa(i), we can re-
write as,

Ση(x̂i) = Ση(fi(xPa(i)) + (x̂Pa(i) − xPa(i))⊤∇xPa(i)
fi(xPa(i))) + Ση(ηi),

= Ση(fi(xPa(i))) + Ση((x̂Pa(i) − xPa(i))⊤∇xPa(i)
fi(xPa(i)))

+ Ση(ηi). (4.8)

122

We know that, Ση(fi(xPa(i))) = 0. Therefore, we can write,

Ση(x̂i) =
∑

j∈Pa(i)

(
∂f

∂xj
xPa(i)

)2

Ση(fi(x̂j)) + Ση(ηi)

=
∑

j∈Pa(i)

(
∂f

∂xj
xPa(i)

)2

Ση(fi(x̂j)) + 1i1
⊤
i σ

2
η,i. (4.9)

As we have already assumed that, Ση(x̂j) = varη(x̂j) is known for all j ∈
Pa(i), then from Eq. (4.9), we get an iterative formula of the form,

Ση(x̂i) =
∑

j∈Pa(i)

βi,j + 1i1
⊤
i σ

2
η,i . (4.10)

For input variables, fi being a constant, βi,j would be 0, and we would
simply have Ση(x̂i) = 1i1

⊤
i σ

2
η,i.

In Eq. (4.9), hypothetically, if fi are purely linear and we know the Ση(xj),
where j are parents of i, then we can iteratively compute the noise contributed
by Eq. (4.9) directly. The noise for the current node xi, plus the noise added
at the parents, which is the direct covariance matrix on the xj , multiplied by
the gradients of that function, summed over all parents.

This way, we can start computing with the input variables, where the first
term is zero (as the gradient is zero), and then step by step, go through all the
dependencies in the graph and compute for all variables the variances subjected
to the noise.

Now, of course, in practice, fi is not always linear. Since the derivation
up to this point, is based on our first approximation (i.e. fi is linear in all its
arguments (locally but in a sufficiently large sphere around xPa(i))), it is good
if only a small amount of noise is needed. Otherwise, if we consider a very small
epsilon value which means a lot of noise needs to be added, then for most of the
non-linear dependencies fi, variance approximation for all the variables, will be
way off.

4.5.2.2 Privacy constraints from DP guarantees

Let’s consider, the variable, x̂i, that’s revealed to some observer. The main
criterion is that x̂i must not expose too much about the sensitive variable xi
itself and other sensitive, ancestor random variables in the network.

Using the definition of classical differential privacy [43], we can write, for any
observation O, patient P , adjacent datasets D and D′, the following condition
needs to be true to achieve (ϵ, δ)-differential privacy.

Pr(O | P ∈ D) ≤ eϵ Pr(O | P /∈ D) + δ. (4.11)

If we consider D′, an adjacent dataset to dataset D, where there is one
patient P for which P /∈ D ≡ P ∈ D′, then we can simplify this inequality as,

123

Pr(O | D) ≤ eϵ Pr(O | D′) + δ. (4.12)

In this scenario, O is a noisy random variable that is observed by some
observer. Each of the noisy x̂i is differentially private with corresponding ϵi >
0, δi > 0.

We consider that we have a conditional probability function that yields a
probability distribution for the observed random variable (RV) dependent on its
respective parent RVs. The joint probability decomposition property of basic
Bayesian networks allows us to describe the joint probability of the parents,

Pr(xPa(i)) = Pr(∩j∈Pa(i)xj), (4.13)

as the product of conditional probabilities of the individual parent RVs of the
observed RV,

Pr(xPa(i)) =
∏

j∈Pa(i)

Pr(xj | xPa(j)), (4.14)

where xPa(i) = {xj ,∀j ∈ Pa(i)} and xPa(j) = {xl,∀l ∈ Pa(j)}.

Therefore, the following inequality holds,

Pr(xPa(i), D | x̂i) ≤ eϵ Pr(xPa(i), D′ | x̂i) + δ. (4.15)

4.5.3 Defining the constraint problem
To begin, we represent our random variables and the relationships among them
in an LBN-like structure, where each RV is a partial ordering (or node of the
LBN graph). We start with the sensitive RVs, progress through optional in-
termediate RVs, and reach the observed RV(s), as shown in Fig. 4.5. We also
define notations for each of the network components in terms of (a) input or
sensitive variables (S), (b) intermediate variables (Z), and (c) output or ob-
served variables (O) in Table 4.2. The intermediate variables are all (strict or
otherwise) ancestors of observed variables, and they are also (strict or otherwise)
descendants of sensitive variables.

Now, we recall that in Section 4.5.2.2, we assumed that the sensitive variables
S, as defined in Table 4.2, are functions of the dataset (in our case, D or D′).
We denote by S(D) the vector of values of the sensitive variables S given dataset
D. Conditioning a probability on D implies conditioning the probability (also)
on S(D). Considering the symbols defined in Table 4.2, we can write,

Pr(x̂ZO | D) =
∏

i∈VZO

Pr(x̂i | xPa(i), D). (4.16)

124

Figure 4.5: The different zones in a logical Bayesian network, the set of sensitive
variables (S), the set of intermediate variables (Z), and the set of observed
variables (O).

Symbol Meaning
VS the set of indices of sensitive variables
VO the set of indices of observed variables
VZ the set of indices of the intermediate variable
VA VS ∪ VZ ∪ VO
VZO VZ ∪ VO
xO the vector of all variables represented by the indices in VO,

i.e., xO = (xi)i∈VO

xZ the vector of all variables represented by the indices in VZ ,
i.e., xZ = (xi)i∈VZ

xZO the vector of all variables represented by the indices in VZO,
i.e., xZO = (xi)i∈VZO

.

Table 4.2: The notations used to explain different components of the logical
Bayesian network.

We proceed to marginalize the probabilities:

Pr(x̂O = ψO | D) =
∑

ψZ∈dom(x̂Z)

Pr(x̂O = ψO, x̂Z = ψZ | D)

=
∑

ψZ∈dom(x̂Z)

∏
i∈VZO

Pr(x̂i = ψi | x̂Pa(i) = ψPa(i), D)

(4.17)

Here:

• Pr(x̂O = ψO | D): This is the conditional probability of the random

125

variable x̂O taking on a specific value ψO given the dataset D.

•
∑
ψZ∈dom(x̂Z): This represents the summation over all possible values ψZ

in the domain of the random variables in set x̂Z .

• Pr(x̂O = ψO, x̂Z = ψZ | D): This is the joint probability of both x̂O
taking on the value ψO and x̂Z taking on the value ψZ given the dataset
D. It’s the product of their conditional probabilities.

Expanding the Pr(x̂O = ψO, x̂Z = ψZ | D), we get

•
∏
i∈VZO

: This signifies a product over all random variables x̂i in the set
VZO.

• Pr(x̂i = ψi | x̂Pa(i) = ψPa(i), D): This is the conditional probability of the
random variable x̂i taking on the value ψi given its parents (denoted by
x̂Pa(i)) taking on the values ψPa(i) and the dataset D.

So, the equation is essentially summing over all possible combinations of
values for x̂Z and calculating the joint probability of x̂O and x̂Z by multiplying
the conditional probabilities of each variable in VZO.

Classical Differential privacy condition [43] mandates that,

∀ψO ∈ dom (x̂O) : Pr(x̂O = ψO | D) ≤ eϵ Pr(x̂O = ψO | D′) + δ. (4.18)

We can rewrite this as,

∀ψO ∈ dom (x̂O) :∑
ψZ∈dom(x̂Z)

∏
i∈VZO

Pr(x̂i = ψi | x̂Pa(i) = ψPa(i), D)

≤ eϵ
∑

ψZ∈dom(x̂Z)

∏
i∈VZO

Pr(x̂i = ψi | x̂Pa(i) = ψPa(i), D
′) + δ (4.19)

To prove
∑
x

∏
y px,y ≤

∑
x

∏
y p

′
x,y is true, it is sufficient to prove that the

following holds,
∀x,
∏
y

px,y ≤
∏
y

p′x,y. (4.20)

Therefore, from Eq. (4.19), it is adequate to demonstrate, ∀ψz ∈ dom(x̂Z),∏
i∈VZO

Pr(x̂i | x̂Pa(i), D)∏
i∈VZO

Pr(x̂i | x̂Pa(i), D′)
≤ eϵ, (4.21)

or, ∣∣∣∣∣log
(∏

i∈VZO
Pr(x̂i | x̂Pa(i), D)∏

i∈VZO
Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣∣ ≤ ϵ (4.22)

holds with probability at least (1− δ) (over the noise).

126

From the expression on the left side of Eq. (4.22), we can write:∣∣∣∣∣log
(∏

i∈VZO
Pr(x̂i | x̂Pa(i), D)∏

i∈VZO
Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣∣
=

∣∣log(Πi∈VZO
Pr(x̂i | x̂Pa(i), D))− log(Πi∈VZO

Pr(x̂i | x̂Pa(i), D′))
∣∣

=
∣∣Σi∈VZO

log
[
Pr(x̂i | x̂Pa(i), D)

]
− Σi∈VZO

log
[
Pr(x̂i | x̂Pa(i), D′)

]∣∣
=

∣∣Σi∈VZO

(
log
(
Pr(x̂i | x̂Pa(i), D)

)
− log

(
Pr(x̂i | x̂Pa(i), D′)

))∣∣
=

∣∣∣∣Σi∈VZO
log

(
Pr(x̂i | x̂Pa(i), D)

Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣
= Σi∈VZO

∣∣∣∣log(Pr(x̂i | x̂Pa(i), D)

Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣ .
Considering, the values of x̂i follow a Gaussian distribution, we write,

∣∣∣∣∣log
(∏

i∈VZO
Pr(x̂i | x̂Pa(i), D)∏

i∈VZO
Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣∣ (4.23)

=Σi∈VZO

∣∣∣∣∣∣∣log
 1

ση,i(x̂i).
√
2π

exp(− 1
2

(
x̂i−xi

ση,i(x̂i)

)2
)

1
ση,i(x̂i).

√
2π

exp(− 1
2

(
x̂i−x′

i

ση,i(x̂i)

)2
)

∣∣∣∣∣∣∣ (4.24)

=Σi∈VZO

∣∣∣∣∣∣∣log
exp(− 1

2

(
x̂i−xi

ση,i(x̂i)

)2
)

exp(− 1
2

(
x̂i−x′

i

ση,i(x̂i)

)2
)

∣∣∣∣∣∣∣ (4.25)

=Σi∈VZO

∣∣∣∣∣log
(
exp

(
−1

2

(
x̂i − xi
ση,i(x̂i)

)2

+
1

2

(
x̂i − x′i
ση,i(x̂i)

)2
))∣∣∣∣∣ (4.26)

=Σi∈VZO

∣∣∣∣∣12
(
x̂i − x′i
ση,i(x̂i)

)2

− 1

2

(
x̂i − xi
ση,i(x̂i)

)2
∣∣∣∣∣ (4.27)

=Σi∈VZO

∣∣∣∣∣12
(
x̂i

2 + x′2i − 2x̂ix
′
i − x̂i

2 − x2i + 2x̂ixi
σ2
η,i(x̂i)

)∣∣∣∣∣ . (4.28)

From Eq. (4.5), we write:∣∣∣∣∣log
(∏

i∈VZO
Pr(x̂i | x̂Pa(i), D)∏

i∈VZO
Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣∣ = Σi∈VZO

∣∣∣∣∣12
((

x′2i − x2i
)
+ 2x̂i(xi − x′i)

varηi(x̂i)

)∣∣∣∣∣ .
(4.29)

Assuming the x̂i has come from the noisy parents of xi random variable after

127

applying transformation function fi and adding more noise ηi, we can write,∣∣∣∣∣log
(∏

i∈VZO
Pr(x̂i | x̂Pa(i), D)∏

i∈VZO
Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣∣ (4.30)

=
∑
i∈VZO

∣∣∣∣∣12
((

x′2i − x2i
)
+ 2x̂i(xi − x′i)

varηi(x̂i)

)∣∣∣∣∣ (4.31)

=
∑
i∈VZO

1

2

∣∣∣∣ (x′i + xi)(x
′
i − xi) + 2x̂i(xi − x′i)
varηi(x̂i)

∣∣∣∣ (4.32)

=
∑
i∈VZO

1

2

∣∣(x′i + xi − 2x̂i) (varηi(x̂i))
−1(x′i − xi)

∣∣ (4.33)

=
∑
i∈VZO

1

2

∣∣(x′i − xi + 2(xi − x̂i)) (varηi(x̂i))
−1(x′i − xi)

∣∣ (4.34)

=
∑
i∈VZO

1

2

∣∣∣(x′i − xi)2 (varηi(x̂i))
−1 + 2(xi − x̂i)(varηi(x̂i))

−1(x′i − xi)
∣∣∣ .
(4.35)

So, we can write this as,∣∣∣∣∣log
(∏

i∈VZO
Pr(x̂i | x̂Pa(i), D)∏

i∈VZO
Pr(x̂i | x̂Pa(i), D′)

)∣∣∣∣∣
=

1

2

∣∣∣∣(x′ZO − xZO)⊤ Σ−1
ηZO

(x̂ZO) (x
′
ZO − xZO)

+ 2(xZO − x̂ZO)⊤Σ−1
ηZO

(x̂ZO)(x
′
ZO − xZO)

∣∣∣∣ . (4.36)

So as we stated in Eq. (4.22), we require the expression on the righthand-
side of the equality sign in Eq. (4.36), to be smaller than ϵ with probability
at least 1 − δ. Due to the absolute value, we require a probability of at least
1− δ/2 on both sides:

Pr

(
1

2

(
(x′ZO − xZO)

⊤
Σ−1
ηZO

(x̂ZO) (x
′
ZO − xZO)

+ 2(xZO − x̂ZO)⊤Σ−1
ηZO

(x̂ZO)(x
′
ZO − xZO)

)
≥ ϵ
)
≤ δ

2
. (4.37)

Equivalently, we can write,

Pr

(
2(xZO − x̂ZO)⊤Σ−1

ηZO
(x̂ZO)(x

′
ZO − xZO) ≥

2ϵ− (x′ZO − xZO)
⊤
Σ−1
ηZO

(x̂ZO) (x
′
ZO − xZO)

)
≤ δ

2
. (4.38)

128

The variance of the term w.r.t η appearing on the left side of Eq. (4.38)
inside the probability is,

var
(
2(xZO − x̂ZO)⊤Σ−1

ηZO
(x̂ZO)(x

′
ZO − xZO)

)
= 4(x′ZO − xZO)⊤Σ−1

ηZO
(x̂ZO)var((xZO − x̂ZO)⊤)Σ−1

ηZO
(x̂ZO)(x

′
ZO − xZO)

= 4(x′ZO − xZO)⊤Σ−1
ηZO

(x̂ZO)ΣηZO
(x̂ZO)Σ

−1
ηZO

(x̂ZO)(x
′
ZO − xZO)

= 4(x′ZO − xZO)⊤Σ−1
ηZO

(x̂ZO)(x
′
ZO − xZO) (4.39)

For any centered Gaussian random variable g with variance σ2
g , we have the

following tail bound[43]:

P (g ≥ λ) ≤ σg

λ
√
2π

exp
(
−λ2/2σ2

g

)
. (4.40)

We will apply this to Eq (4.38), setting the following assignments,

g = 2(xZO − x̂ZO)⊤Σ−1
ηZO

(x̂ZO)(x
′
ZO − xZO), (4.41)

λ = 2ϵ− (x′ZO − xZO)
⊤
Σ−1
ηZO

(x̂ZO) (x
′
ZO − xZO) . (4.42)

We can see from Eq. (4.39),

σ2
g = 4(x′ZO − xZO)⊤Σ−1

ηZO
(x̂ZO)(x

′
ZO − xZO). (4.43)

Considering the righthand side is of Eq. (4.40) is smaller than δ/2, we can
write,

log(
σg

λ
√
2π

exp
(
−λ2/2σ2

g

)
) ≤ log(δ/2),

log(
σg

λ
√
2π

) + log(exp
(
−λ2/2σ2

g

)
) ≤ log(δ/2),

log

(
λ

σg

)
+

1

2

(
λ

σg

)2

≥ log

(
2

δ
√
2π

)
. (4.44)

We will denote with σ2
GM (ϵ, δ), the minimal variance of additive Gaussian

noise needed to make a variable in the range [0, 1], (ϵ, δ)-differentially private.
E.g., Authors of [48] showed that if σϵ ≥ 3/2 and (σϵ)2 ≥ 2 log(1.25/δ) then
σ2 ≥ σ2

GM (ϵ, δ) holds.
We briefly repeat here an adapted version of their derivation, where we set

σ = 2
σg

. To make this inequality hold, we require that both the following Eq.
(4.45) and (4.46) hold,

log

(
λ

σg

)
≥ 0 ≡ λ ≥ σg, (4.45)

and
1

2

(
λ

σg

)2

≥ log

(
2

δ
√
2π

)
. (4.46)

From Eq (4.42) and (4.43), we see that,

129

λ

σg
=

2ϵ

σg
− σg

4
=

2ϵ

σg
− σg

2ϵ
× ϵ

2
. (4.47)

We observe that if 2ϵ
σg
≥ 3/2 and ϵ ≤ 1 then, the following satisfies Eq (4.45),

λ

σg
≥ 3

2
− 2

3
.
1

2
> 1. (4.48)

Moreover, if also 2ϵ
σg
≥
√
2 log(1.25/δ), there holds

1

2

(
λ

σ

)2

=
1

2

(
2ϵ

σg
− σg

2ϵ
.
ϵ

2

)2

≥ 1

2

(
2ϵ

σg
− σg

2ϵ
.
1

2

)2

, (because ϵ ≤ 1)

=
1

2

((
2ϵ

σg

)2

− 1 +

(
σg
2ϵ
.
1

2

)2
)

=
1

2

((
2ϵ

σg

)2

− 1 +

(
2

3
.
1

2

)2
)

=
1

2

((
2ϵ

σg

)2

− 8

9

)

≥ 1

2

(
2 log(1.25/δ)− 8

9

)
≥ log

(√
2

π

1

δ

)
, (4.49)

and which satisfies Eq. (4.46).
Next to Dwork’s conditions [48], other upper bounds for σGM (ϵ, δ) have also

been proposed, e.g., [9]. In general, in the sequel we will assume that,(
2

σg

)2

≥ σ2
GM (ϵ, δ). (4.50)

Substituting from Eq. (4.43), we see this is equivalent to

4

4(x′ZO − xZO)⊤Σ
−1
ηZO (x̂ZO)(x

′
ZO − xZO)

≥ σ2
GM (ϵ, δ),

≡ (x′ZO − xZO)⊤Σ−1
ηZO

(x̂ZO)(x
′
ZO − xZO) ≤ σ−2

GM (ϵ, δ). (4.51)

We re-write this as follows,∑
i∈VZO

(x′i − xi)2Σ−2
ηi (x̂i) ≤ σ

−2
GM (ϵ, δ),

130

≡
∑
i∈VZO

(
(fi(x

′
pa(i))− fi(xpa(i)))

2

(Σηi(x̂i))
2

)
≤ σ−2

GM (ϵ, δ). (4.52)

Substituting the value of (Σηi(x̂i))2 from Eq. (4.9) here, we form our final
constraint program as defined in Eq. (4.54).

4.5.4 Forming the final constraint optimization problem
From the tradeoffs between utility and privacy, we know that a large value for
each ση,i protects the privacy of sensitive xi but compromises the utility of any
observed x̂i. On the other hand, a small value for ση,i maximizes the utility of
observable x̂i but loses in terms of the privacy of sensitive xi. We try to strike
a balance by developing a constraint problem that maximizes utility subject
to privacy restrictions. So, we formalize our structure using two components:
utility maximization and privacy constraint.

1. Utility maximization The objective for this part is to minimize a func-
tion that measures the loss in utility between a certain RV xi and the
corresponding x̂i. A natural function for this is

Eση

[
∥xi − x̂i∥2

]
. (4.53)

We define the cost function to be minimized as the weighted sum of the
variance of the noise component, that is added to the xi. We provide a
concrete expression for this in Eq. (4.54).

2. Privacy constraint Obviously, the optima of the objective function in
Eq. (4.53) is reached, when the noise variances are all zero, so we put
a constraint on ση, such that x̂i is (ϵ, δ)-differentially private, for a fixed
ϵ > 0 and δ > 0. The expression of the constraint is also written in Eq.
(4.54).

Final constraint optimization problem Combining the aforementioned
objective function to maximize utility and the constraint to specify privacy
requirements, we get a constraint optimization problem, which is:

minimize∑k
i=1 αη,iσ

2
η,i

subject to∑
i∈VZO

 (fi(x
′
Pa(i))−fi(xPa(i)))

2(∑
j∈Pa(i)

(
∂f
∂xj

xPa(i)

)2
Ση(fi(x̂j))+1i1

⊤
i σ

2
η,i

)2

 ≤ σ−2
GM (ϵ, δ),

(4.54)

131

where αη is a vector representing the cost induced by the noise η. Next, we
explain the components of our constraint as presented in Eq. (4.54).

• In the numerator of the left side of Eq. 4.54, the expression (fi(x
′
Pa(i))−

fi(xPa(i)))
2, is the squared difference between two corresponding interme-

diate or observed (as i ∈ VZO) random variables (or partial orderings of
LBN) belonging to two neighboring dataset D and D′.

• The denominator of the left side of Eq. (4.54) represents the variance
of noisy xi variable w.r.t. noise variable η.

– Expression
(
∂f
∂xj

xPa(i)

)2
is the squared partial derivative of the par-

ent RVs (indexed by j) of a particular RV xj .

– Expression Ση(fi(x̂j)) is the variance of the output of each interme-
diate or observed RVs w.r.t noise variable η.

– Expression 1i1⊤i σ2
η,i represents the noise variance of the i-th RV.

• On the right side of Eq. 4.54, the expression σ2
GM (ϵ, δ) is the variance of

the minimal additive Gaussian noise required to make a random variable
with range [0, 1], (ϵ, δ)-differentially private (e.g., [48] shows that if σϵ ≥
3/2 and (σϵ)2 ≥ 2 log(1.25/δ), then σ2 ≥ σ2

GM (ϵ, δ)).

Solving this Constraint Optimization Problem (CP) optimizes the objective
function while satisfying the constraints. It shows that if we add noise to the
variables in a Bayesian network and translate that into a CP, solving the CP
gives a differentially private solution, with optimized utility and the desired
privacy guarantee, which in turn is achieved by computing the optimized noise
variance ση,i for xi variables.

4.5.5 Inference on our running example
In this section, we present the synthesis of the constraint problem (CP), based
on Eq. (4.54), for the scenario in our running Example 4.4. We will infer privacy
constraints from the specifications 4.4.3 of a query on some observed random
variable. Doing so, we will be able to see the concepts that we have built till
now being applied in practice here.

We assumed a patient named uma with cancer of type c. Drug {d1, d2, d3,
d4} are being administered to her. A doctor observes the RV expectedSurvival-
Length(uma), with (0.25, 0.03)-differentially privacy. We summarize some as-
sumptions for the LBN presented in Fig.4.6 and the assumed notations according
to Table 4.2.

• For the ease of expressing our example mathematically, we assign identi-
fiers to the set of RVs such that the set VA = {age, rsm, rst, ga1, ga2,
ga3, ga4, ga5, ga6, dr1, dr2, acs, esl} stores the identifiers, as
given in Table 4.3, and depicted in Fig. 4.6.

132

Figure 4.6: The different zones of LBN belonging to the sensitive RVs, the
intermediate RVs, and the observed RVs in the logical Bayesian network in our
running example, when we observe the RV expectedSurvivalLength(uma).

Identifiers Random Variable
age age(uma)
rsm reportedSmoking(uma)
rst realSmokingStatus(uma)
ga1 geneAlteration(uma, a1)
ga2 geneAlteration(uma, a2)
ga3 geneAlteration(uma, a3)
ga4 geneAlteration(uma, a4)
ga5 geneAlteration(uma, a5)
ga6 geneAlteration(uma, a6)
dr1 drugResistance(uma, d1)
dr2 drugResistance(uma, d2)
acs avgCancerSurvival(c)
esl expectedSurvivalLength(uma)

Table 4.3: The identifiers for random variables associated with observed RV
expectedSurvivalLength(uma), in our running example.

• We consider the observed RV is expectedSurvivalLength(uma). So, the
set VO holds the identifier {esl} of the RV expectedSurvivalLength(uma).

• The observed RV depends on intermediate RVs realSmokingStatus(uma),
drugResistance(uma, d1), drugResistance(uma, d2). So, set VZ holds
the identifiers {rst, dr1, dr2}.

• The set VZO holds the identifiers {esl, rst, dr1, dr2} representing the
identifiers of intermediate and output RVs.

• These intermediate and observed RVs depend on some sensitive, input RVs.
So, the set VS holds the identifiers {age, rsm, ga1, ga2, ga3, ga4,
ga5, ga6, acs} representing the RVs in the set, {age(uma), reported-
Smoking(uma), geneAlteration(uma, a1), geneAlteration(uma, a2),
geneAlteration(uma, a3), geneAlteration(uma, a4), geneAlter-
ation(uma, a5), geneAlteration(uma, a6), avgCancerSurvival(c)}.

133

Furthermore, from this, we can infer a constraint problem, optimizing which
will help us achieve our objective of publishing expectedSurvivalLength(uma)
to some observer in a privacy-preserving way. This is achieved by satisfying the
(ϵ, δ)-differential privacy requirement, specified in Section 4.4.3. We can use the
constraint problem structure we’ve derived in Eq. 4.54, to model this.

We, minimize∑
i∈VA

αη,iσ
2
η,i

subject to∑
i∈VZO

 (fi(x
′
Pa(i))−fi(xPa(i)))

2(∑
j∈Pa(i)

(
∂f
∂xj

xPa(i)

)2
Ση(fi(x̂j))+1i1

⊤
i σ

2
η,i

)2

 ≤ σ−2
GM (ϵ, δ).

(4.55)
In this case, an observer doctor observes the RV expectedSurvivalLength-

(uma) for patient uma, with (0.25, 0.03)-differential privacy. From this CP, we
can iteratively calculate the ground-level constraints to reach all the sensitive,
input RVs through the intermediate RVs, starting from our observed RV.

Here, we show a small intermediate step of the computation of the constraint
program for the RV realSmokingStatus(uma), represented by identifier rst in
the set VZO. For this RV, the component of the constraint (4.55) is,(

(frst(x
′
rsm)−frst(xrsm))2(

(∂
∂xrsm

frst(xrsm))
2
Ση(frst(x̂rsm))+1rst1

⊤
rstσ

2
η,rst

)2

)
(4.56)

Assuming, the tangent function is applied to the parent random variable of
rst, we can rewrite the above as(

(tan(x′
rsm)−tan(xrsm))2(

(∂
∂xrsm

tan(xrsm))
2
Ση(tan(x̂rsm))+1rst1

⊤
rstσ

2
η,rst

)2

)
(4.57)

Similarly, for every random variable in the set VZO, we can compute the cor-
responding component of the constraint (4.55). Solving the constraint problem
in Eq. (4.55), optimizes the objective function to minimize the loss incurred by
the introduction of noise to the random variables in the LBN 4.6, hence maximiz-
ing the utility, while satisfying the constraints representing the privacy require-
ments 4.4.3. It computes the optimized noise variance for all the RVs associated
with observed RV expectedSurvivalLength(uma). Solving the CP provides
a (0.25, 0.03)-differentially private solution. Similarly, we can synthesize the
constraint problem for our other observed RV survivalMoreThan6Month(uma).

4.6 Discussion and conclusion
In this chapter, we introduce strategies for the development of efficient and
interpretable privacy-preserving systems.

First, we adopt an innovative approach to define privacy requirements in a
data pipeline, which culminates in the design of a constraint optimization prob-
lem that yields privacy-preserving solutions. From the approaches presented in

134

this study, it is evident that privacy specifications can be effectively translated
into constraint problems that can be efficiently resolved.

Second, our proposed declarative language for specifying privacy require-
ments is built on the base of LBN (logical Bayesian network) and presents a
lucid framework. This approach makes it easier to explain the privacy con-
straints imposed on a system. Furthermore, this enables us to answer questions
regarding the privacy-preservation guarantees of the system and encourages us
to reason with them.

Third, our constraint optimization approach liberates developers from the
responsibility of making complex implementation choices, allowing them to
solely focus on the specification of the requirements. The optimal solution is
then determined automatically by solving the constraint optimization problem.

Fourth, the strategy we present is generalizable and easily adaptable to many
scenarios, depending on the particular problem and intended solution. The
outcome of the constraint problem could be used for computing the optimal noise
variance, optimal noise placement within the data pipeline, or other relevant
parameters.

This research opens up new possibilities for investigation, presenting ques-
tions which we will discuss in detail in Chapter 6.

135

Chapter 5

Tailored noise mechanism

Abstract
In this chapter, we study the distributed privacy-preserving averaging (alterna-
tively, aggregation) of sensitive attributes (alternatively, features) locally pri-
vatized by participating parties. Every participant intends to collaboratively
compute the averages over those privatized features, but only after optimizing a
constraint problem to obtain privatization functions for privatizing the sensitive
features. A central curator can run a solver to solve a constraint optimiza-
tion problem to find the optimal value of the privacy parameters or the privacy
functions. The goal of such a mechanism is to compute the privatization func-
tions yielding maximum utility with the desired privacy preservation guarantee.
Once computed, the optimum parameters are shared with distributed parties,
who then locally privatize their sensitive features.

Now, computing these features can be performed by transforming sensi-
tive attributes, and such transformations may contain singularities or high-
magnitude gradients, leading to the risk of obtaining an outlier feature. This
concern can be alleviated by designing a tailored noise mechanism for privatizing
sensitive features using privatization functions. These functions are obtained by
solving a convex constraint optimization problem, which performs bias-variance
minimization of noise and intends to select informative intervals of transforma-
tion only.

Declaration

This work is jointly conducted by my fellow doctoral student Arijus Pleska and
me. It can be divided into the following collaborative axes on which we worked
together:

1. Expression of models whose parameters are obtained from U-statistics.
We mainly focused on this work from different aspects concerning our
theses.

136

• Moitree: Generalized expression of models and their combination.
• Arijus: Comparison of the model where privatization occurs after and

before transformations (with high-magnitude gradients) of sensitive
features.

2. Discretization of domains of features.

3. Expression of the constraints and the objective function of the convex
program for obtaining privatization functions.

4. Experimental setup.

We collaboratively worked on the last three axes, where we both contributed
in improving the final results.

5.1 Introduction
We consider a set of parties that want to collaboratively run some aggregation
on sensitive features, but only after local privatization functions are applied to
them. In this chapter, we study the privacy-preserving aggregation of sensitive
attributes once they are converted into features by applying useful non-linear
transformation functions to them.

So far, we have discussed solutions that involve only additive noise, such as
Laplacian or Gaussian noise distributions. However, we have always agreed that
we may need specially tailored noise distributions for specific problem scenarios.
This takes a step further than using simple classical noise distributions in a lo-
cal differentially private setup. In our earlier chapters, we discussed approaches
involving specific noise distributions and finding the right places to apply them.
In contrast, this chapter takes a more generalized approach that encompasses
the earlier models and explores ways to shape unusual noise distributions care-
fully curated for individual problems and their privacy guarantee needs. This
approach also aims to achieve unbiased estimates of the parameters.

In Chapters 3 and 4, we discussed combining building blocks by either choos-
ing the more optimal building block in a parallel situation or using an aggrega-
tion of multiple such building blocks.

In our tailored noise mechanism (TNM) approach, we create two different
regression models. These regression models can be fit on instances whose lin-
ear attributes are transformed into features by a highly non-linear (possibly
discontinuous) transformation function, either before or after applying noise.

This helps us avoid the problem of calculating highly non-linear functions like
the inverse of sensitive variables. For example, if we take the inverse of sensitive
variables x after adding simple Gaussian noise (with negligible or close-to-zero
value), then after applying transformation functions we get (x+ noise)−1, and
the additive noises can create overshooting of the largest (or undershooting of
the smallest) possible values in the distribution. A similar concern applies to
other non-linear transformations like log(x+ noise) or tan(x+ noise). We need
a carefully tailored distribution of noise to address this problem.

137

Moreover, if the transformation is discontinuous, e.g., the logarithm is dis-
continuous at 0+ (on the real number line, the value immediately to the right of
0), then the application of a classic noise mechanism is likely to cause a higher
loss of information than usual or lead to a suboptimal solution. So, if a classic
noise mechanism is applied before the transformation, it is likely to result in an
extreme loss of utility because noisy points might fall close to the discontinu-
ities of the transformation function. Otherwise, if the classic noise mechanism
is applied after the transformation, it is known that it adds more noise than is
needed for the fixed privacy budget.

So, unlike the previous chapters, instead of deciding the amount and posi-
tion of required noise, here we try to achieve privacy preservation and utility
maximization by tailoring the shape of the noise distribution itself. We use
constraint optimization to find the privatization function that is optimal for
providing privacy to our sensitive features. Once the privatization function is
obtained by running a constraint optimization solver, the different parties can
locally privatize their sensitive features and collaboratively compute the averag-
ing on privatized features. We show that TNM outperforms traditional privacy
solutions on both synthetic and actual datasets, resulting in a reduced loss value
between true and predicted values.

Outline: Next in Section 5.2, we describe the preliminaries of concepts
related to the tailored noise mechanism. In Section 5.3, we briefly review the
literature available in the related field. In Section 5.4, we go into further detail
in modeling the constraint optimization problem through different steps, like
domain discretization, defining the objective function, and the constraints. Then
in Section 5.5, we describe the datasets, experimental setup, and evaluation
criteria. In Section 5.6, we present the result with our interpretation, followed
by a result summary. Finally, in Section 5.7, we conclude with a discussion of
our limitations and possible future directions.

5.2 Preliminaries
In this segment, we will provide a concise problem statement in Section 5.2.1
and explain our approach to resolving the aforementioned problem in Section
5.2.2. In Section 5.2.3, we will provide some mathematical notations and their
technical explanations that will be useful in understanding the content of the
following sections.

5.2.1 Problem statement
Our problem is based on a distributed multi-party computation setting. These
distributed parties intend to collaboratively compute the aggregation of some
sensitive information. For that purpose, they privatize their sensitive features
locally before publishing them to the central curator. Once they receive such
privatized features, they compute a statistical model fitting those data. For
privatization, we need to add noise, and unfortunately, classic additive noise

138

mechanisms, e.g., the Laplace mechanism 2.7.4.1 or the Gaussian mechanism
2.7.4.2, can sometimes have undesirable properties, such as providing subopti-
mal utility by using unnecessarily high noise [9].

We can explain with a similar example introduced in Section 5.1. We know
that the reciprocal function x−1 has a singularity at 0. Now, if the i-th party
has xi sensitive information, where 0 ≤ i ≤ n, then after the publication of x̃i =
(xi + noise) by adding Gaussian noise, the parties want to compute together
the aggregate

∑n
i=0(x̃i)

−1, ∀i. Then there is the risk that for some i, x̃i gets
close to 0, and hence x̃−1

i becomes arbitrarily large, as does
∑
i(x̃i)

−1.
Now, designing appropriate features for fitting an accurate statistical model

is crucial. So, once the privatized versions of corresponding sensitive attributes
are published, features can be computed from them. New features can also be
computed from other existing features. The transformation functions (or feature
functions) applied to attributes or features to compute new features can contain
singularities and gradients of high magnitude. We refer to sensitive features and
sensitive attributes interchangeably. Some examples of such feature functions
or transformations are the identity function, reciprocals, logarithms, tangents,
etc.

5.2.2 Proposed solution
In this work, to avoid the fundamental disadvantages of classical additive noise
mechanisms, we decided to choose our tailored noise distribution. This is
achieved by a few steps as described below:

• In the tailored noise mechanism (TNM), to alleviate the problem of ob-
taining an outlier feature due to the transformation of a privatized feature
in an interval where the transformation has gradients of high magnitudes
or singularities, we apply discretization strategies. The target is to select
informative intervals of transformation only.

• TNM produces discrete probability distributions for privatization of fea-
tures, inspired by the discrete Gaussian mechanism [24]. The discretiza-
tion is applied to both the domains of sensitive features and the domains
of privatized features alike. Besides, we work with bounded domains for
the privatized features, in a similar way to the bounded domains of the
corresponding sensitive features.

• We design a constraint optimization problem (CP), solving which provides
a privatization function with utility-maximizing noise parameters. Ideally,
a central curator can run a solver to find the conditional probability mass
functions or the optimized privatization functions and then publish them
to all the distributed parties participating in the study. We denote the
spaces of the sensitive features and the privatized features by χ and χ̃,
respectively, such that χ ⊆ χ̃.

The goals of the constraint problem can be broken down into the following:

139

– The objective function should minimize the variance of the tailored
noise.

– The objective function should minimize the bias of the tailored noise.
– The constraints should abide by the differential privacy requirements.
– The constraints should minimize the absolute difference between the

privatized features and corresponding sensitive features.

5.2.3 Notations
In our distributed setting, the n participating parties publish their data-tuple,
consisting of a sensitive feature vector of m features in the space χ and the
corresponding scalar target value. Our statistical model maps the feature vector
to the scalar target value.

We want to approximate the true parameters of the statistical model h∗,
parameterized by θ∗. We consider l models, indexed by k ∈ [l] (where l ≥ 1 is
an integer).

For some model k, we will have a function gk : X → θ̂, which will provide us
with the closest approximation of θ∗, and we call those estimated parameters θ̂.
We define that these functions can be written in the form,

gk (fk,1(X), fk,2(X), . . . , fk,qk(X)) , (5.1)

where the fk,s are functions computing U-statistic s in model k from matrix
X, qk is the number of U-statistics in model k, and gk are functions computing
parameters from U-statistics in model k. The gk varies depending on the fitting
method of the model or privatization method. In particular, let L be an objec-
tive function. Then, we want to find a model that minimizes L(θ∗, θ̂), such that
it minimizes the sum of the squared differences between the elements of the true
parameters θ∗ and the corresponding elements of the estimated parameters θ̂.

To summarize, the central curator solves a convex program for computing
the privatization functions, represented by conditional probabilities Prk,j(x̃ | x),
∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j , i.e., the probability that some party draws
for its j-th feature a noisy value x̃ if the real value was x. These CPFs are
published to the parties. The parties agree to locally privatize the mk sensitive
features used for fitting model k, using this conditional probability distribution.

Next, the parties share the privatized features with the central curator, who
then computes the matrix X composed of features and target values over n
distributed parties. Afterward, the central curator fits a statistical model ĥ,
mapping a feature vector to a target value using functions g and f . All the
notations are represented in a clear and concise way in Table 5.1.

5.3 Related work
A lot of the general body of work that has inspired and influenced us has already
been discussed in earlier chapters. In this section, we will briefly summarize the
most relevant literature we have studied and found inspiration from.

140

Symbol Meaning
n Number of parties
m′ Number of raw attributes
m Number of features, such that m ≥ m′

X Data matrix containing both features and the target values
x, x1, x2 Values of a sensitive feature
x̃ Value of a privatized (noisy) feature
χ Discretized feature domain of sensitive feature, χ ⊆ Rm
χ̃ Discretized feature domain of privatized (noisy) feature
θ∗ True (optimal) parameters of a statistical model
θ̂ Estimated parameters of a statistical model
mk Number of sensitive features in k-th model, indexed by j
l Number of models for parameter estimation, indexed by k
T Set of privatized features, such that T ⊆ χ̃k,j
qk Number of U-statistics in model k, qk ∈ N
gk Function computing parameters from U-statistics in model k,

gk : Rqk → Rm+1

fk,s Function computing U-statistic s ∈ [qk] in model k from
matrix X, fk,s : Rn×(m+1) → R

rj Number of features computed from attribute j, indexed by t
L Objective function
Lvariancek Variance component of objective function in model k
Lbiask Bias component of objective function in model k
ϵk Privacy budget for every sensitive feature of model k
ρvariancek Scaling factor for variance in model k
ρbiask Scaling factor for bias in model k
Prmax

k,j (x̃) The highest value in {Prk,j(x̃ | x) : x ∈ χk,j , x̃ ∈ χ̃k,j}
bk,j,x Bias term for model k, sensitive feature j, and x ∈ χk,j

Table 5.1: Notations used in privatization of sensitive features using tailored
noise mechanism.

The two major pillars of our work are based on the papers [64] and [29, 30].
Both of these works focus on privacy-preserving mechanisms driven by utility
maximization. They solve convex programs to achieve the aforementioned goal.
[29] applies additional constraints to [64] and is characterized by count data.
Additionally, [68], deals with count data under a very similar family of prob-
lems. Similarly, [62] and [113] deal with similar problems but involve central
differential privacy and local differential privacy, respectively.

Moreover, we have already discussed our inspiration from [24] in Section
5.2.2 and will delve into it further in the upcoming Section 5.4.1. This work
discusses the discretized Gaussian mechanism applied within the differential
privacy framework. In [91], the authors worked on ϵ-differential privacy using
the Laplace mechanism. They discussed the issues they faced due to the least
significant bits, where our discretization strategy can avoid dependence on the

141

least significant bits by discretizing the features into bins and rounding their
representative values to a higher significant bit.

The staircase discretization mechanism [61] splits the range of continuous
data into discrete intervals or bins with varying widths according to the desired
level of privacy protection and the sensitivity of the data. Wider intervals are
usually used in areas where the data is less sensitive or where adding more noise
won’t substantially degrade its utility. By providing more flexibility than equal
width and equal frequency discretization, this choice of dynamically adjusted
interval widths aims to balance the trade-off between privacy protection and
data utility. This allows for more nuanced privacy-preserving transformations
of the data by taking the sensitivity of the data into consideration to achieve
optimal privacy-preserving transformations.

Unfortunately, despite all the advantages of the staircase discretization mech-
anism over traditional discretization methods, in our current local differential
privacy setting, the mechanism may face challenges. The staircase discretiza-
tion mechanism relies on central coordination to determine appropriate inter-
val widths based on the sensitivity of the data. Besides, data distributions of
different data contributors may have varying sensitivity. The risk of privacy
breaches may increase and compromise the overall effectiveness of the privacy
mechanism, if individual data contributors struggle to coordinate discretization
parameters, and compare sensitivities. This can inadvertently lead to failure to
ensure consistent and appropriate discretization across all contributors, and set
appropriate noise levels to reach optimal privacy.

5.4 Modeling our approach
In this section, we aim to derive a Constrained Optimization Problem. The
purpose of the proposed tailored noise mechanism is to compute the conditional
probability for the noisy distribution of data, privatizing the sensitive values of
the attributes.

The goal of this optimization problem will be:

1. The sampled data according to this probability distribution of the privati-
zation function should provide an (ϵ, 0)-differential privacy guarantee (see
Section 5.4.3.1).

2. The variance of the privatization function should be minimized (see Sec-
tion 5.4.2.1).

3. The biasedness of the privatization function should be minimized (see
Sections 5.4.2.2 and 5.4.3.2).

4. The optimization problem must satisfy the basic, implicit mathematical
conditions of standard probability theory (see Section 5.4.3.3).

We remark that the constraint optimization program should also guarantee
that:

142

• The noisy points don’t fall on the discontinuities of the feature and target
variable transformations.

• The optimum noise is used as the privacy budget requires, to maximize
the utility while preserving the privacy guarantee.

If we consider multiple regression models covering the cases of adding the
differential privacy noise before and after the transformation, we can solve the
constraints for these regression models so that the model with the best tradeoff
between utility and data privacy can be chosen. The notations for different
privatization models are defined in Table 5.2.

Symbol Meaning
dp Application of privatization function to achieve differential

privacy
tns Application of transformation function to compute features

from attributes
◦ Function composition, where F1 ◦ F2 means applying

F2 first, and then F1

Table 5.2: Notations used in representing the of application of modules.

• Model tns ◦ dp: The tailored mechanism where the differential privacy
noise is applied to the attribute before they are transformed into features.

• Model dp◦tns: The tailored mechanism where attributes are transformed
into features before the differential privacy noise is applied to them.

In the following sections, we will discuss how we formalize the constraint
optimization problem to achieve the goals discussed above through our tailored
noise mechanism approach. First, in Section 5.4.1, we describe the discretization
strategies for sensitive and noisy feature domains. Then, in Section 5.4.2, we
define the objective function with the intention of minimization of loss and max-
imization of utility. Then, in Section 5.4.3, we define the different constraints
that also satisfy the requirements we listed above.

5.4.1 Domain discretization
The noisy distribution is discrete because the local differential privacy require-
ment is defined as a constraint program. Also, the noisy distribution is multi-
dimensional as we have several sensitive statistics for one data instance: the
features and the target variable.

We will use a very commonly practiced data mining method to discretize
our data domain, called binning. We will perform discretization of both the
domains of sensitive features as well as the noisy, privatized features. At the
core of discretization is a strategy to divide the continuous domain of a feature

143

variable into bins and pick a representative value from each of the bins. All
the values of the feature that fall within a bin get mapped to the representative
value of that corresponding bin. There are many binning methods in practice,
and we will use two of the traditional strategies as mentioned in [134].

5.4.1.1 Equal width discretization

In equal width discretization (commonly called as equal-width binning method),
given the number of intervals (or as commonly known as bins) as n, the total
interval of the domain of the variable is divided into n bins of equal width.
At the intersection of the bins, a threshold is placed. So, if the maximum
and minimum value of the variable domain is ymax and ymin, then the interval
(ymax − ymin) is divided into n bins of w width each, as follows,

w =
(ymax − ymin)

n
. (5.2)

The maximum and minimum values of the variable domain i.e., ymax and
ymin are also referred to as the highest and the lowest threshold respectively.

This method is also called equal-distance discretization as the intervals are
created at equal distances from each other. Deciding the number of bins, which
computes the width of individual bins, is an important task. As the bins get
narrower, the frequency of the data points in individual bins changes, and that
may over-emphasize the noise present in the data. On the other hand, if we
make the bins wider, a lot of details or patterns in the data may be overlooked.
Now, the representative value of each bin is the middle value of every bin. As a
result of creating equally-sized bins, the representative values are positioned at
equal distances from each other as well.

We can also use equal-width binning for discretizing the transformed fea-
tures. For that purpose, we need to first map the original feature to its transfor-
mation scale (say, by taking the inverse or natural logarithm), and then compute
the bin intervals, and their representative values following the same process as
we have already discussed. Once the transformed feature values are mapped to
the representative values at the transformed scale, we can inversely transform
them back (by taking the inverse or exponent) to the original feature scale. This
results in more appropriately placed bins and their corresponding representative
values, according to the magnitude of the gradients of the transformed features.

5.4.1.2 Equal frequency discretization

Another discretization strategy, named equal frequency discretization places the
threshold after an equal frequency of data points, hence every bin holds an equal
number of occurrences. Now, the representative value of bins can be chosen by
various methods like choosing the mean or median or mode of every bin. For
our purpose, we have placed the representative value at the middle, i.e., at an
equal distance from both intervals on either side.

144

If random sampling is used on a dataset for experimenting, then depending
on the sampled dataset, the bins and their thresholds may vary. This can also
influence the representative value of the bins, hence affecting the final result of
discretization.

The discrete domain of one category of the noisy distribution is called the
discrete noisy domain. Discretized domains have the drawback that the noisy
data is not as smooth as working with continuous domains, resulting in some
loss of utility.

5.4.2 Defining the objective function
Our goal is to minimize the loss by mathematically minimizing the loss function
L. In our approach to solving the current problem in the form of a constraint
problem, we will interchangeably use the term "objective function" instead.
Optimizing the objective function will, in turn, achieve optimization (in our
case, minimization) of the loss.

In our approach, the objective function consists of two components, and our
goal will be to minimize the total objective function for model k, i.e., Lk. So,
our goal is to minimize the following,

Lk = Lvark + Lbiask , for all k ∈ [l], (5.3)

where, Lvark is the variance minimization component of the objective func-
tion, and Lbiask is the bias minimization component of the objective function.

Now, as we have defined, each of these l models has its loss, and the final
loss will be the aggregation of all of them as below,

L =
∑
k∈[l]

Lk. (5.4)

Next, we define the aforementioned two components of the objective function
for variance and bias minimization, respectively.

5.4.2.1 Variance minimization

For each of the models indexed by k above, there is a variance minimization
component. In model tns ◦ dp, the objective function contains the variance of
both the attributes and the transformed features. The variance minimization
component can be written as,

Lvark =
∑

j∈[mk],t∈[rj],x∈χk,j ,x̃∈χ̃k,j

ρvark,j,t Pr
k,j

(x̃ | x)
(
f ′k,j,t(x̃)− f ′k,j,t(x)

)2
, (5.5)

where the scaling term can be defined as,

145

ρvark,j,t = 10−2 min

1,
1

maxx∈χk,j ,x̃∈χ̃k,j

(
f ′k,j,t(x̃)− f ′k,j,t(x)

)2
 . (5.6)

This calculates the variance minimization by summing up the scaled con-
ditional probability for all the sensitive feature j ∈ [mk] in model k, for all
features t ∈ [rj] derived from attribute j, multiplied by the individual squared
difference of the function f ′ value when applied to the sensitive feature value
and the privatized noisy feature value. We add 10−2 in the scaling term ρvark,j,t

to keep the proposed values of the constraint variable Prk,j(x̃ | x) within the
interval length of 1 during the optimization process.

5.4.2.2 Bias minimization

The biasedness of the privatization function can be minimized by minimizing
the absolute difference between the sensitive feature and the mean of the pri-
vatization function. For each of the models indexed by k above, there is a bias
minimization component, represented by the constraint variable bk,j,x. We can
define it as follows,

Lbiask =
∑

j∈[mk],x∈χk,j

ρbiask,j b
2
k,j,x, (5.7)

where the scaling term can be defined as,

ρbiask,j = 10−2 1

maxx̃∈χ̃k,j
x̃2
. (5.8)

Similarly, like variance minimization 5.4.2.1, we also add 10−2 to the scaling
term here, so that bias minimization has a lower impact on the overall opti-
mization as compared to variance minimization.

5.4.3 Defining the constraints
Now, as we have already defined the objective function in Section 5.4.2, here we
define the constraints. We have three types of constraints: (1) constraints for
the satisfaction of differential privacy requirements, (2) constraints for bias min-
imization, and (3) implicit constraints for compliance with probability theory
fundamentals. We define each of them in further detail next.

5.4.3.1 Differential privacy constraints

From our assumption, we design k models, and if we have mk sensitive features
in the k-th model, then the total privacy budget ϵ will be evenly divided for each
sensitive feature. So, the privacy budget for each of the mk sensitive features
is:

146

ϵk =
ϵ

mk
. (5.9)

We assume we have two adjacent values x1 and x2 for sensitive feature x,
such that we add noise locally to the values under the notion of local differential
privacy to prevent revealing sensitive information. From the definition of ϵ-
differential privacy, such that ϵ ≥ 0, we can write,

∀k ∈ [l], j ∈ [mk], x1, x2 ∈ χk,j , T ⊆ χ̃k,j :∑
x̃∈T

Pr
k,j

(x̃ | x1) ≤ eϵk
∑
x̃∈T

Pr
k,j

(x̃ | x2). (5.10)

As the number of subsets T ⊆ χ̂k,j is exponential in | χ̃k,j |, we reformulate
Eq. (5.10) as,

∀k ∈ [l], j ∈ [mk], x1, x2 ∈ χk,j , x̃ ∈ χ̃k,j :
Pr
k,j

(x̃ | x1) ≤ eϵk Pr
k,j

(x̃ | x2). (5.11)

We can further reformulate Eq. (5.11) to reduce the number of constraints
even more,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j :

Pr
k,j

(x̃ | x) ≤ eϵk
max

Pr
k,j

(x̃), (5.12)

max

Pr
k,j

(x̃) ≤ eϵk Pr
k,j

(x̃ | x), (5.13)

where Prmax
k,j (x̃) is the highest valued among the constraint variables in

{Prk,j(x̃ | x) : x ∈ χk,j , x̃ ∈ χ̃k,j}.
We will scale the constraints Eq. (5.12) and (5.13), to avoid the coefficients

of the constraint variables from reaching very high numerical values, such that,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j :
1

eϵk
Pr
k,j

(x̃ | x) ≤
max

Pr
k,j

(x̃), (5.14)

1

eϵk

max

Pr
k,j

(x̃) ≤ Pr
k,j

(x̃ | x). (5.15)

Finally, we bring the constraints Eq. (5.14) and (5.15) into normal form by
moving the terms with constraint variables to the left of the inequality sign,

147

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j :
1

eϵk
Pr
k,j

(x̃ | x)−
max

Pr
k,j

(x̃) ≤ 0, (5.16)

1

eϵk

max

Pr
k,j

(x̃)− Pr
k,j

(x̃ | x) ≤ 0. (5.17)

Eq. (5.32) and (5.33) are the first two linear inequality constraints in their
normal form, which preserves ϵ-differential privacy.

5.4.3.2 Bias minimization constraints

Classical approaches to differential privacy apply zero-mean additive noise. In
our approach, this is infeasible. However, we can require a more relaxed property
of bias minimization. We achieve this by using the aforementioned constraint
variable representing bias bk,j,x, and the ultimate goal will be to find an optimum
solution for the whole problem that also minimizes the bias variable. We define
this as follows,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j :
∑
x̃∈χ̃k,j

x̃Pr
k,j

(x̃ | x) ≤ x+ bk,j,x. (5.18)

We can scale the constraint Eq. (5.18) by the maximum value of |x̃|,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j :
1

maxx̃∈χ̃k,j
|x̃|

 ∑
x̃∈χ̃k,j

x̃Pr
k,j

(x̃ | x)

 ≤ x+ bk,j,x
maxx̃∈χ̃k,j

|x̃|
.

(5.19)
Finally, we bring the constraints Eq. (5.19) into normal form by moving the

terms with constraint variables to the left of the inequality sign,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j :
1

maxx̃∈χ̃k,j
|x̃|

 ∑
x̃∈χ̃k,j

x̃Pr
k,j

(x̃ | x)− bk,j,x

≤ x

maxx̃∈χ̃k,j
|x̃|
.(5.20)

Eq. (5.20) is a linear inequality constraint in its normal form, aiming at
minimizing bias.

5.4.3.3 Implicit constraints

We know that the probabilities of a probability mass function (PMF) must
always sum up to 1. So, we define the implicit constraint for probabilities of a
PMF as,

148

∀k ∈ [l], j ∈ [mk], x ∈ χk,j :
∑
x̃∈χ̃k,j

Pr
k,j

(x̃ | x) = 1. (5.21)

Eq. (5.21) is a linear equality constraint in its normal form.
Additionally, we also know that each of the probabilities of a probability

mass function (PMF) is (1) greater or equal to 0, and (2) less or equal to 1.
Now, the first fact always holds if Eq. (5.21) is true. So, we define the implicit
constraint for individual probabilities of a PMF as,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j : Pr
k,j

(x̃ | x) ≥ 0. (5.22)

We bring the constraint Eq. (5.22) into normal form by moving the terms
with constraint variables to the left of the inequality (less or equal) sign,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j : −Pr
k,j

(x̃ | x) ≤ 0. (5.23)

Eq. (5.23) is a linear inequality constraint in its normal form.
We have introduced a constraint variable Prmax

k,j (x̃), and that, by definition,
must be greater or equal to individual probabilities in {Prk,j(x̃ | x) : x ∈
χk,j , x̃ ∈ χ̃k,j}. So, we define another implicit constraint for that,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j : Pr
k,j

(x̃ | x) ≤
max

Pr
k,j

(x̃). (5.24)

We bring the constraint Eq. (5.24) into normal form by moving the terms
with constraint variables to the left of the inequality (less or equal) sign,

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j : Pr
k,j

(x̃ | x)−
max

Pr
k,j

(x̃) ≤ 0. (5.25)

Eq. (5.25) is a linear inequality constraint in its normal form.
According to probability theory, the constraint variable Prmax

k,j (x̃) must al-
ways be less or equal to 1. So, we define another implicit constraint for that,

∀k ∈ [l], j ∈ [mk], x̃ ∈ χ̃k,j :
max

Pr
k,j

(x̃) ≤ 1. (5.26)

Eq. (5.26) is a linear inequality constraint in its normal form.
So, we can summarize the final constraint program in 5.4.3.3.

149

∀k ∈ [l], j ∈ [mk], x ∈ χk,j , x̃ ∈ χ̃k,j , t ∈ [rj], :

minimize : L =
∑
k

Lvark + Lbiask , (5.27)

Variance minimization objective

Lvark =
∑
j,t,x,x̃

ρvark,j,t Pr
k,j

(x̃ | x)
(
f ′k,j,t(x̃)− f ′k,j,t(x)

)2
, (5.28)

ρvark,j,t = 10−2min(1,
1

maxx,x̃
(
f ′k,j,t(x̃)− f ′k,j,t(x)

)2), (5.29)

Bias minimization objective

Lbiask =
∑
j,x

ρbiask,j b
2
k,j,x, (5.30)

ρbiask,j = 10−2 1

maxx̃x̃2
, (5.31)

subject to :
Differential privacy constraints
1

eϵk
Pr
k,j

(x̃ | x)−
max

Pr
k,j

(x̃) ≤ 0, (5.32)

1

eϵk

max

Pr
k,j

(x̃)− Pr
k,j

(x̃ | x) ≤ 0, (5.33)

Bias minimization constraint

1

maxx̃|x̃|

(∑
x̃

x̃Pr
k,j

(x̃ | x)− bk,j,x

)
≤ x

maxx̃|x̃|
, (5.34)

Implicit probability constraints∑
x̃

Pr
k,j

(x̃ | x) = 1, (5.35)

− Pr
k,j

(x̃ | x) ≤ 0, (5.36)

Pr
k,j

(x̃ | x)−
max

Pr
k,j

(x̃) ≤ 0, (5.37)

max

Pr
k,j

(x̃) ≤ 1. (5.38)

150

5.5 Implementation and experiments
In this section, we describe our implementation of the tailored noise mecha-
nism and the corresponding constraint optimization problem outlined in Sec-
tion 5.4.3.3. First, we describe the datasets on which we trained our model in
Section 5.5.1, then we give brief implementation information in Section 5.5.2.
Finally, we provide a detailed description of our experimental setup in Section
5.5.3.

5.5.1 Dataset description
Here, we describe the different synthetic datasets, ds0, ds1a, ds1b, ds2a, ds2b,
ds3a, ds3b, and an augmented version of the small real dataset called misra1d,
for which we run experiments. We specifically selected datasets with non-linear
and non-differentiable features, as well as datasets involving probabilities and
log-likelihood.

• ds0: In this dataset, the target is defined by yi = θ0 + θ1ai + ηregi for
every i ∈ [n].

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = 1.

Our goal is to compute the estimated regression parameters θ̂0 and θ̂1
which predict our target function ypri = θ̂0 + θ̂1ai.

• ds1a: In this dataset, the target is defined by yi = θ0 + θ1 log(ai) + ηregi

for every i ∈ [n].

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = 1.

Our goal is to compute the estimated regression parameters θ̂0 and θ̂1
which predict our target function ypri = θ̂0 + θ̂1 log(ai).

• ds1b: In this dataset, the target is defined by yi = θ0+θ1ai+θ2 log(ai)+
ηregi for every i ∈ [n].

151

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = θ2 = 1.

Our goal is to compute the estimated regression parameters θ̂0, θ̂1, and θ̂2
which predict our target function ypri = θ̂0 + θ̂1ai + θ̂2 log(ai).

• ds2a: In this dataset, the target is defined by yi = θ0 + θ1
1
ai

+ ηregi for
every i ∈ [n].

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = 1.

Our goal is to compute the estimated regression parameters θ̂0 and θ̂1
which predict our target function ypri = θ̂0 + θ̂1

1
ai

.

• ds2b: In this dataset, the target is defined by yi = θ0+ θ1ai+ θ2
1
ai

+ ηregi

for every i ∈ [n].

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = θ2 = 1.

Our goal is to compute the estimated regression parameters θ̂0, θ̂1, and θ̂2
which predict our target function ypri = θ̂0 + θ̂1ai + θ̂2

1
ai

.

• ds3a: In this dataset, the target is defined by yi = θ0 + θ1 tan(ai) + ηregi

for every i ∈ [n].

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

152

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = 1.

Our goal is to compute the estimated regression parameters θ̂0 and θ̂1
which predict our target function ypri = θ̂0 + θ̂1 tan(ai).

• ds3b: In this dataset, the target is defined by yi = θ0+θ1ai+θ2 tan(ai)+
ηregi for every i ∈ [n].

– Here ai is an attribute whose value is independently drawn from a
uniform distribution U(ϵ∗, 1).

– Here, ϵ∗ is the shortest distance for the value of any attribute allowed
to reach from a non-continuity or point of singularity at the time of
transformation into features. Ideally, this value is set to ϵ∗ = 10−2.

– The regression noise ηregi is independently drawn from N (0, 1). We
assume the true regression parameters, θ0 = θ1 = θ2 = 1.

Our goal is to compute the estimated regression parameters θ̂0, θ̂1, and θ̂2
which predict our target function ypri = θ̂0 + θ̂1ai + θ̂2 tan(ai).

• misra1d: In this dataset, the target is defined by

yi =
θµ1 θ

µ
2 ai

1 + θµ2 ai
+ ηregi , for every i ∈ [n]. (5.39)

– Here, attribute ai = 103 × a′i, and a′i is independently drawn from a
uniform distribution U(0, 1).

– Regression parameters are valued at θ̂µ1 = 4.37×102 and θ̂µ2 = 3.02×
10−4.

To convert Eq. (5.39) into linear regression settings, we assume the fol-
lowing approximation,

ypri =
θ̂µ1 θ̂

µ
2 ai

1 + θ̂µ2 ai

= θ̂µ1

(
1− 1

1 + θ̂µ2 ai

)

≈ θ̂µ1

1−
∑
j∈[2]

αj
1 + cjai

= θ̂0 +

θ̂1
1 + c1ai

+
θ̂2

1 + c2ai
.

Our goal is to compute the estimated regression parameters θ̂0, θ̂1, and θ̂2
which predict our target function

ypri = θ̂0 +
θ̂1

1 + c1ai
+

θ̂2
1 + c2ai

. (5.40)

153

– Here, c1 = θ̂µ2 + θ̂σ2 and c2 = θ̂µ2 + 1.1× θ̂σ2 .

– The sample standard deviation of θ̂µ2 is θ̂σ2 = 2.93× 10−6.

– The regression noise ηregi = 6.85 × 10−2ηreg
′

i and ηreg
′

i is indepen-
dently drawn from N (0, 1). We assume the true regression parame-
ters, θ0 = θ1 = θ2 = 1.

– The values of parameters θ̂µ1 , θ̂µ2 , θ̂σ2 , and the coefficient of ηregi are
taken from the official website.

– Also, the coefficient 103 in the expression of ai is approximately the
order of magnitude of the largest difference between the two target
values in the original dataset.

5.5.2 Implementation in CVXOPT
We utilized the cvxopt package discussed in Section 2.9 as a tool to specify the
constraint variables, construct the constraints, and the objective function. We
also used CVXOPT’s default constraint solver.

In Section 5.4.3.3, the constraint optimization program has a quadratic ob-
jective function and linear constraints, which are scaled to avoid numerical ir-
regularities. CVXOPT’s default constraint solver is based on Cholesky decom-
position as it is efficient in our implementation. The CVXOPT solver based
on the LDL decomposition is better suited for unscalable convex programs with
convex constraints and/or a convex objective function.

5.5.3 Experimental setup
Next, we will briefly discuss the regression setup in the experiments 5.5.3.1,
privacy guarantees associated with TNM 5.5.3.2, hyperparameter setup of the
experiments 5.5.3.3, and experimental method variation setup accommodating
all the datasets 5.5.3.4.

5.5.3.1 Regression setup

We created a multivariate linear regression model with k+1 regression parame-
ters and a scalar target value for our experiments. We expressed the relationship
between one target value and its features as follows:

For each i where i ∈ [n]:

yi = θ0 + θ1xi,1 + ...+ θkxi,k + ξi. (5.41)

Here,

• xi,1, xi,2, . . . , xi,k are (sensitive) features,

• θ0, θ1, . . . , θk ∈ R are regression parameters,

• ξi is regression noise that is an independent observation of N (0, σ2),

• σ is the standard deviation of the regression noise.

154

https://www.itl.nist.gov/div898/strd/nls/data/LINKS/v-misra1d.shtml

5.5.3.2 Privacy guarantees

• Tailored noise mechanism (TNM). For TNM, we assume that the
lowest and greatest values of each sensitive feature are known. Equal
distance discretization 5.4.1.1 allows us to keep each agent’s sensitive fea-
tures hidden. The central curator can execute equal distance discretiza-
tion without knowing any of the sensitive features. A word of caution:
for equal frequency discretization, the central curator would need to be
aware of each sensitive feature. Furthermore, based on the differential
privacy constraints of TNM (Eq. 5.32), local privatization of sensitive
characteristics is ϵ-differentially private. Each agent, therefore, needs to
initially discretize its sensitive feature using the same discretization ap-
proach as the central curator before privatizing it. We contend that the
privacy assurances of TNM based on equal distance discretization and of
Laplace are comparatively equivalent under our same assumptions. How-
ever, the discretization in TNM causes a loss of utility due to the amount
of information loss.

• Classical mechanism (Laplace). For classical differential privacy, we
consider the Laplace mechanism 2.7.4.1. Furthermore, we presume that
the minimum and maximum values of each sensitive feature are known.
This allows us to compute the l1 sensitivity of Laplace with a guarantee
of ϵ-differential privacy.

• General assumptions:

– We split the total privacy budget among sensitive features evenly, as
advised in [43].

– Although a target value yi (Eq. 5.41) is a linear combination of sen-
sitive features, the exact values of the regression parameters and the
regression noise are unknown, therefore the sensitive feature values
cannot be derived. Hence, they are non-sensitive [111].

Finally, based on the mechanism of supervised learning and least square
model fitting [130], we compute the θ̂ parameter estimates as follows:

θ̂ =

(
1

n
XTX + λIm+1

)−1
1

n
XT y, (5.42)

where λ is the regularization parameter.

5.5.3.3 Hyperparameter setup

For our experiment, there are a few hyperparameters to consider. Keeping
reproducibility in mind, we have kept them constant throughout all of our ex-
perimental results.

155

• Experiment repetition number and number of agents. We fixed
the experiment repetition number to 27, and for each repetition, we re-
privatized our dataset. In all of our experiments, our number of agents
was fixed at 104.

• Tolerance level and max iteration of constraint solver. The thresh-
old of a tolerance level for primal infeasibility, dual infeasibility, and gap
for our constraint solver was set to 10−7. We set the max iteration to 128.

• Domain discretization. We set our discretization strategy for our pri-
mary experiments 5.6.1 to be of equal distance (width), which has 20 bins
for both sensitive and noisy (privatized) feature values. For secondary ex-
periments 5.6.2, we vary our discretization strategy between equal distance
(width) and equal frequency. We also vary the number of bins (between
20 and 41) for domain discretization of sensitive and privatized features.

• CI significance. We set the significance level of our confidence interval
to 0.05.

• Privacy budget. Finally, we iterate over a list of ϵ values {2−1, 20, 21/2, 21,
23/2, 22, 25/2, 23, 27/2, 24, 25, 26} for evaluating our privacy budget.

5.5.3.4 Experimental method variation setup

All datasets in Section 5.5.1 were defined by keeping in mind one of the following
experiment setups.

• Setup 1. In this case, the dataset was constructed in a way that one
feature is computed from one attribute. Datasets {ds1a, ds2a, ds3a,
misra1d} are examples of such settings.

• Setup 2. In this case, the dataset was constructed in a way that two or
more features are computed from one attribute. Datasets {ds1b, ds2b,
ds3b} are examples of such settings.

In both experiments, we compare four models: baseline (non-privatized
features), classic DP (Laplace-privatized features), tns ◦ dp (where attributes
are privatized first, and then the privatized attributes are transformed into
features), and dp ◦ tns (where attributes are transformed into features first,
and then the features are privatized).

In the next section, we will see the results of our experiments, but before
that, let us take a look at the evaluation criteria.

Evaluation criteria. We picked mean squared error (MSE) as our as-
sessment criterion because we are doing a least square fit for all permutations
of our model. We divide the MSE between actual and predicted target values
by the standard deviation of true target values σ(y)2, as described by [67]. We

156

use 10-fold cross-validation. The regularization parameter is set to 103.

Hardware settings. All of the experiments we are going to present were
performed on a Macbook Pro (M2 Max) machine with a 38-core GPU and 16-
core neural engine resulting in 64GB of unified memory. The maximum runtime
for a particular dataset was approximately 24 minutes.

5.6 Results
In this section, we will present our findings from the primary and secondary
experiments and their interpretations in Sections 5.6.1, 5.6.2, followed by a
result summary in Section 5.6.3.

5.6.1 Primary result interpretation
In this section, the results are interpreted for experiments where for all datasets,
discretization strategy was ‘equal width’, and the number of discretization bins,
for both sensitive and privatized feature domains, were kept constant 5.5.3.3.

Figure 5.1: Experiment 1 on ds0

157

Interpretation:

Fig. 5.1 shows that the overall performance of TNM is much better than the
classical DP (Laplace) mechanism. TNM reaches the same performance as the
baseline model with a lower value of ϵ compared to Laplace. For both TNM
and Laplace, the performance of dp ◦ tns and tns ◦ dp are very similar.

Figure 5.2: Experiment 1 on ds1a

Interpretation:

Fig. 5.2 shows that the overall performance of TNM is much better than the
classical DP (Laplace) mechanism. TNM reaches the same performance as the
baseline model with a lower value of ϵ compared to Laplace. The performance
between two types of TNM models (dp ◦ tns and tns ◦ dp) is more or less
similar, and the curves converge to each other for higher ϵ. For Laplace, tns
◦ dp performs better for lower ϵ values, whereas dp ◦ tns performs slightly
better for higher ϵ values.

158

Figure 5.3: Experiment 2 on ds1b

Interpretation:

Fig. 5.3 again shows that the overall performance of TNM is much better than
the classical DP (Laplace) mechanism for most of the values of ϵ. TNM reaches
the same performance as the baseline model with a lower value of ϵ compared
to Laplace. The performance of model tns ◦ dp is far better than model dp
◦ tns, for both Laplace and TNM, with TNM model tns ◦ dp outperforming
the rest for lower values of ϵ.

159

Figure 5.4: Experiment 1 on ds2a

Interpretation:

Fig. 5.4 shows that for Laplace, dp ◦ tns outperforms tns ◦ dp because of
a higher probability of privatized characteristics ending up in an interval close
to the singularity when the transformation is reciprocal. Similarly, dp ◦ tns
performs better than tns ◦ dp in TNM for some lower values of ϵ.

160

Figure 5.5: Experiment 2 on ds2b

Interpretation:

Fig. 5.5 shows very similar trends in curves as Fig. 5.4. It shows that for
Laplace, dp ◦ tns outperforms tns ◦ dp because of a higher probability of
privatized characteristics ending up in an interval close to the singularity when
the transformation is reciprocal. However, similarly to Fig. 5.3, here also we see
a big improvement in performance for TNM model tns ◦ dp for high ϵ values.

161

Figure 5.6: Experiment 1 on ds3a

Interpretation:

Fig. 5.6 shows that upon using a tangent transformation, it is highly likely
that singularity will be reached quickly. For Laplace, dp ◦ tns outperforms
tns ◦ dp. For TNM, performances are more or less similar, with tns ◦ dp
outperforming dp ◦ tns by a small margin for lower values of ϵ.

162

Figure 5.7: Experiment 2 on ds3b

Interpretation:

Continuing on the trends of results we have been getting for experiment setup
2, Fig. 5.7 shows that for Laplace, in most of the privacy budgets, tns ◦ dp
performs better than dp ◦ tns. For TNM, tns ◦ dp is outperforming dp ◦
tns by a lot for lower values of ϵ.

163

Figure 5.8: Experiment 1 on misra1d

Interpretation:

In Fig. 5.8, TNM outperforms Laplace solely for model tns ◦ dp due to the
splitting of the budget for privacy in the other model dp ◦ tns and the changes
in the target function in Eq. (5.40) that results in being reasonably distant from
their singularities. In Laplace, model tns ◦ dp outperforms model dp ◦ tns
for higher ϵ values but underperforms with smaller ϵ values. The model tns ◦
dp outperforms model dp ◦ tns in TNM because the privacy budget is not
split in model tns ◦ dp.

5.6.2 Secondary result interpretation
In this section, we present the result interpretations for our secondary experi-
ments where we vary the discretization strategy between ‘equal width’ and ‘equal
frequency’. The number of discretization bins, for both sensitive and privatized
feature domains were also varied to represent fine and coarse discretization.

164

Figure 5.9: Experiment for comparison between ‘equal distance’ and ‘equal
frequency’ discretization strategies on ds1a

165

Figure 5.10: Experiment for comparison between ‘equal distance’ and ‘equal
frequency’ discretization strategies on ds2a

166

Figure 5.11: Experiment for comparison between ‘equal distance’ and ‘equal
frequency’ discretization strategies on ds3a

Interpretation:

In Fig. 5.9, 5.10, 5.11, we see a general tendency, that a equal frequency
discretization strategy mostly results in a better model, in terms of utility, over
a equal distance strategy, for both dp ◦ tns and tns ◦ dp models. However,
we see that in experiments for ds2a and ds3a (Fig. 5.10, 5.11), a gradual in-
crease in privacy budget (higher values of ϵ), reflects towards loss in utility for
a tns ◦ dp model. This is because, even with an equal frequency strategy, the
discretization is not precise enough to handle high-magnitude gradients (since
both reciprocal and tangential transformations reach singularity rather rapidly).
We also observed similar, comparable results for datasets ds1b, ds2b and ds3b.

167

Figure 5.12: Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal frequency) strategies on the domains of sensitive features for ds1b

168

Figure 5.13: Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal frequency) strategies on the domains of sensitive features for ds2b

169

Figure 5.14: Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal frequency) strategies on the domains of sensitive features for ds3b

Interpretation:

In Fig. 5.12, 5.13, 5.14, we see a general tendency that a fine discretization
(equal frequency) strategy mostly results in a better model in terms of utility,
over a coarse discretization strategy, for the sensitive feature domains, for both
dp ◦ tns and tns ◦ dp models. Given that, we would want to emphasize that
40 bins with an equal frequency discretization approach are insufficient to see a
steady change (increase in utility) with a higher privacy budget (higher values
of ϵ).

170

Figure 5.15: Experiment for comparison between ‘fine’ and ‘coarse’ discretiza-
tion (equal distance) strategies on the domains of privatized features for
misra1d

Interpretation:

In Fig. 5.15, we see that a fine discretization (equal distance) strategy does not
result in any significant utility improvement, over a coarse discretization strat-
egy, for the privatized feature domains, for any given privacy budget. We also
ran experiments for fine vs coarse for equal frequency discretization strategy
for sensitive feature domains instead of privatized features and observed similar
results.

5.6.3 Result summary
Throughout our empirical studies, which included the examination of synthetic
datasets as well as the augmentation of an authentic dataset with synthetic
techniques, we continuously detected a notable tendency. Our investigations
have demonstrated that our empirical findings provide insight into an impor-
tant component of model performance. We see that using the tailored noise

171

mechanism (TNM) consistently results in a reduction in the mean squared error
(MSE) between the true and predicted target values. This reduction is especially
noticeable when compared to the performance of the Laplace mechanism.

This is true when the TNM is used to fit a linear regression model using
the method of regularized least squares, as stated in Eq. (5.42), and when
this model uses U-statistics as a foundational framework. This observation
is significant since it holds across numerous feature functions, including the
logarithmic, reciprocal, and tangent functions.

On the other hand, we also see that in some cases because of the nature of
transformations applied, a risk of getting an outlier feature becomes higher. For
example, in the case of the linear regression model applied to the ds2a dataset,
we found that model dp ◦ tns (in which attributes are transformed into features
before the introduction of differential privacy noise) outperformed model tns ◦
dp (in which differential privacy noise is first introduced to attributes before the
transformation into features). This phenomenon can be linked to the relatively
quick approach of the reciprocal transformation within ds2a dataset toward a
singularity, which increases the likelihood of the presence of an outlier feature.

Finally, a general trend we have seen is that utility generally stagnates upon
a higher privacy budget. One explanation for this behavior could be the fact that
the regularization diagonal matrix in Eq. (5.42) becomes numerically inefficient
for an inverse operation during the optimization process.

5.7 Future Scope and conclusion
The current scope of work has challenges and boundaries that led to the presence
of some limitations in our work. These limitations also lead us to some concrete
ideas for future directions.

• We explained that our technique is best suited for discrete privatization
functions. To broaden the coverage, the inclusion of continuous privati-
zation functions would be a place to start. This may lead us to explore
the shape of the noise distribution to optimize the privatization functions.
This involves investigating privatization functions parameterized by the
shape of noise, not the estimation of conditional probabilities.

• The current formulation of the TNM is constrained to two regression mod-
els: a regression model where the differential privacy noise is added to the
sensitive attributes before performing transformations and a regression
model where the noise is added to the features after the transformation.
In an ideal situation, users should be able to declare regression models
themselves. It is possible, but designing the corresponding constraints
and the objective function is non-trivial.

• In our current implementation, domain interpolation is not supported, but
it might improve performance upon coarser discretization.

172

To conclude, we can say that in this article, we have presented the tailored
noise mechanism (TNM) for privatizing features through the resolution of a con-
straint optimization problem. The TNM is designed to minimize the bias and
variance of noise used for the privatization of the features. We also aim to de-
velop a utility-maximization technique for the privatization of features emerging
from the transformation of sensitive attributes, particularly when these trans-
formations exhibit large gradients or singularities. This requirement is achieved
using TNM by selecting only informative intervals for the transformation of
sensitive attributes into features.

173

Chapter 6

Future work

We have articulated the research problem and conducted a comprehensive in-
vestigation within the scope of this dissertation. We explored a number of
directions before focusing on a few that helped us solve the current challenge.
We are aware that there are gaps or unresolved concerns in the current literature
that can be addressed by future research. Further investigation is necessary, as
it has the potential to have an impact on several layers of society, as well as
academia and industry.

In this chapter, we outline some of the potential research directions for the
future.

6.1 Improve inference
Improving inference is essential for developing more powerful and versatile privacy-
preserving systems. So far in this dissertation, we have mostly focused on the
language and explored the direction of inference in a few situations. We hope
that in future work, we can have improved inference techniques that perform
better in reasoning about these privacy requirements.

Once we have all the privacy requirements specified, we can explore how we
can generate more complex, constraint problems automatically, and solve them.
Also, we can research more advanced optimization techniques to find ways to
satisfy all requirements, even if we don’t get a convex constraint problem.

6.2 Language extension: Specifying dynamic be-
havior

In our privacy specification language, we have covered most of the static situa-
tions. In the future, we may introduce some auxiliary predicates for specifying
a dynamic system for information exchange in a privacy-preserving manner.

174

In the case of a dynamic system, we can specify actions and the correspond-
ing effects on the variables (and on the question of who has access to observe
which information about the variables). In dynamic problems, for every time
step, we can incrementally iterate over the two steps, as discussed in 3.3.2:

• Solving the constraint optimization problem

• Executing the algorithm with the obtained solutions and parameters

A deeper plunge can be taken into designing predicates for the portrayal
of such dynamic behavior and extending the language. Next, we very briefly
discuss a few of them:

Observe Parties can observe random variables during the processing of data.
Whenever someone observes a random variable, either at the point when it gets
a value or later when its value is disclosed, the observer comes to know the
value. We formalize such observations with the predicate observe(Obs, RV),
representing that the person Obs observes the random variable RV. For instance,
observe(Obs, gender(P))← treats(P, Obs), staffRole(Obs, "doctor").
represents that any doctor Obs, who treats a patient P, observes and, therefore,
learns the patient’s gender gender(P). If some RV is personal to an entity, i.e.,
they satisfy the personal_rv clause 4.4.3, then by default the party has access
to the same, hence they implicitly satisfy the observe clause.

Reveal Information can also be revealed (as one of the actions) with a special
predicate reveal. In that case, the value of a random variable can be revealed
to a certain party by someone who knows the secret. This is a special case of
the observe clause.

Forget In contrast to reveal, some legislation, like the GDPR, provides the
right to ask for their personal information to be forgotten. In our language,
one can represent this with the clause forget(Obs, RV), representing that the
random variable RV belonging to the person Obs is to be forgotten. For example,
if a former patient asks for complete withdrawal of their data from participation
in any (or all) medical studies, the medical center will need to forget all their
personal information. We cannot formally verify that a pipeline fulfills a forget
predicate because some random variables can always be stored in physical media
outside the pipeline, like human memory.

These are a few examples of predicates that can be included in the declarative
language. More exploration in this direction will lead to addressing diverse
situations of information exchange and alteration.

6.3 Pufferfish and other privacy frameworks
We assume that the ML algorithms being applied to the dataset here can indeed
draw some conclusions about the data entries, and privacy must be specified and

175

ensured. It is to be noted here that we have thoroughly used differential privacy
standards and their privacy parameters to represent, measure, and guarantee
privacy in our proposed frameworks. Other privacy mechanisms can be consid-
ered that can deal with other aspects of dealing with sensitive information, like
Rényi-differential privacy [92].

As a variation of the vanilla differential privacy, the pufferfish privacy [116]
metric guarantees epsilon differential privacy for internally correlated data.
Sometimes, multiple data entries in the dataset belong to every participant.
Pufferfish deals with the internal correlation of individual participant’s data in
a dataset. In such cases, individuals have full agency to participate or withdraw
from a study, and every datapoint associated with that individual is assigned
the same. In such cases, the close neighborhood of the data reveals information
about the current data under consideration, and hence the correlation might
give away some sensitive information. Similarly, our proposed specification and
optimization mechanism can be extended to other privacy frameworks in future
projects.

6.4 Fairness
Where privacy mostly concerns individuals, there is also fairness property that
concerns groups or communities. For example, a correlation between two factors
(human races and their average annual income) in a study might show a partic-
ular community in a negative light. Fairness allows observing and accepting the
existence of such correlations while at the same time avoiding making biased
decisions based on such correlations. This can be caused by a biased represen-
tation present in the dataset. Fairness ensures not coming to conclusions due
to the correlations with variables, based on which we shouldn’t discriminate.
Fairness promotes making impartial decisions without showing any favoritism
to one person or group at the expense of another.

To explain the fairness criteria in privacy and machine learning, let us con-
sider the following example. The German job portal Xing ranks more qualified
female candidates lower than less qualified male candidates [85]. Similarly, peo-
ple with very similar qualifications are ranked far apart. This position bias
affects individuals with higher qualifications, like education score and employa-
bility, but lower ranks, unfairly. So, the fairness criterion must ensure that no
social or ethnic group receives an unfair outcome from any machine learning al-
gorithm. For our current project, fairness could not fit into the scope. But later,
we can extend the privacy specification and privacy-parameter optimization into
fairness-specification and fairness-parameter optimization.

6.5 Data provenance
Another module worth investigating is how processes control the disclosure (or
non-disclosure) of certain sensitive information during an information flow. To

176

achieve that, we may study data provenance [1] or a derivative of it as a con-
necting component. This will hopefully enable us to keep track of data from its
origin and the changes it goes through over time and action. Here, the question
to ask is, “Can a given disclosure possibly reveal a sensitive variable, V ?”. Only
if any information is disclosed that depends on data V , provenance can help to
quickly eliminate many cases where the disclosed information is not a function
of V and hence cannot reveal V .

We have already mentioned that, as a side-product of our inference, we
understand how, by revealing a noisy query response, the privacy of underlying
sensitive information can be compromised. However, further in-depth study
should be able to step-wise debug and calculate the privacy implications of
every action and their effects on the data. This will increase the visibility of
how privacy is impacted by the transformation and disclosure of data from the
source to the destination. In short, the data flow can be monitored through an
operational system with a more in-depth understanding of individual changes
and their traces.

6.6 Applications
In many real-world scenarios appearing in various application domains, our
specification language and the optimization framework can prove to be very
useful. For example, the association of an individual user’s internet search
history and recommendation of advertising without compromising the user’s
identity, securing the privacy of cloud-stored sensitive data [95] like patients’
vital statistics, medical history, summaries, and predictions made by medical
experts, can be such fields where this language can be very productive. Our
approach can also be useful in the field of DNA analysis, where we search for
DNA markers without revealing the DNA itself.

Anonymizing users while analyzing social network data, voters’ histories
from ballots, financial analysis of an organization or group, and other data
mining tasks [132] can be represented by such a language. It may bridge some
gaps in representation in the secure data collection process through a survey or
questionnaire. These are a few examples where a lot of work has been done,
and a lot of work is still needed to reach automated, optimized, interpretable,
transparent, and privacy-preserving solutions.

6.7 Related challenges
This work also leaves us with questions like: 1) How can we deal with more
complex, non-linear models like a multi-layer neural network? 2) How can we
address the issue of having highly non-linear functions applied to continuous
noisy data and simple additive noise causing over/undershooting problems? 3)
How can we deal with problems that have non-convex constraints? It will be
worth pursuing further investigation to find answers to these questions.

177

Chapter 7

Discussion and conclusion

In this thesis, we have presented a few solutions for designing privacy-preserving,
utility-maximizing, interpretable, and verifiable AI systems. We will have a brief
discussion of our work in Section 7.1, followed by a more detailed summary of
the individual contributions in Section 7.2.

7.1 Discussion
Generally, isolated tasks are studied in terms of their privacy properties. They
try to answer questions like: (a) Is the algorithm private? or (b) Is the model
publication private? Many research areas, like distributed machine learning,
federated learning, central and local differential privacy, and secure multi-party
computation, emphasize answering these questions.

Our goal is not to build a system applicable to every possible scenario, but
rather to analyze the privacy of a range of compound systems together. The
framework should enable researchers to analyze privacy through the compo-
nents, characterize their privacy levels, and detect privacy leaks. The language
should help in unambiguously specifying privacy requirements, and the infer-
ence will aid in optimizing the privacy parameters while automating the entire
process.

Such a language should build more privacy-friendly, efficient, and artificially
intelligent (AI) systems and make them more human-interpretable. Currently,
emerging privacy-friendly AI algorithms can be brought closer to industry ap-
plications through such a framework. This can bring more social relevance to
privacy concerns. Such a generic framework can model information flow pro-
cesses and assess privacy concerns in distributed, multi-centric settings.

The language does not only describe the information flow but also ad-
dresses the privacy requirements through these iterative computational steps.
We mainly used differential privacy as the standard for privacy guarantees, but
the framework can adopt other existing privacy-preserving algorithms as well.
Reasoning about the privacy of the compound processes can be carried out

178

within our framework.
Such analysis will explore missing building blocks in privacy-preserving in-

formation processing pipelines. Developing those blocks and bridging the gap
could be another target. Algorithms can be developed to perform the veri-
fication of privacy claims of the information process and explain the privacy
properties of the process in non-expert terms. In various real-world application
domains, such a framework can prove to be very useful and can provide verified
privacy guarantees.

7.2 Summary
Our novel approach is to specify the privacy requirements and the description
of a data pipeline first, and then to create a constraint optimization problem
that yields a privacy-preserving solution.

Specification
We have designed a declarative language in Chapter 4 that captures the multi-
leveled nature of the privacy of a system through specifications. The collected
data has multiple layers of privacy requirements for different observers. Some
data is public information, some is private to different extents to different par-
ties, and some of it can be the participant’s secret. Such an explicit representa-
tion of the privacy guarantees facilitates answering user queries about exactly
to what extent sensitive data is protected.

The logical Bayesian network-based language represents such privacy clauses
in clearly stated, interpretable predicates. This achieves transparency among
the parties involved in a study. In the specification of privacy requirements with
our language, the user can define sensitive variables and, for each observed vari-
able, some privacy requirements. The user can decide the privacy budget and
privacy mechanism, and all the associated variables for a privacy requirement,
share the privacy budget.

Inference and constraint problem
Apart from the specification goal, we also performed some inference, and that is
primarily represented by a constraint optimization approach. From the different
situations described in Chapters 3, 4, and 5, we can say that privacy specifica-
tions can be converted into constraint problems, where the privacy requirements
are treated as constraints and the objective function can be optimized efficiently.
Now, we have encountered that inference can be very diverse, and we have ad-
dressed a couple of them in this thesis. Also, this approach can help us answer
questions regarding the privacy-preservation guarantees of the system and rea-
son about them.

Combination of constraint problems
The proposed approaches are general concepts and can be molded into different
situations depending on the problem and the required solution. Apart from

179

deciding the sensitive variables, fixing the privacy budget, and choosing the
privacy mechanisms, the user can also design multiple approaches using different
privacy mechanisms and different computation details.

The superior approach providing the optimum result will be chosen. The
optimal solution to the constraint problem can be noise variance or the right
place to position those noises in the data pipeline, or some other parameters, like
the nature of noise distribution, for situations where more complex non-linear
functions are applied to user features. The solution may give us combined
privacy parameters for multiple privacy preservation strategies or optimized
parameters for the superior one, given the choice.

In our approach, during the design and development phases, the developer
can focus on the requirements and not on the implementation choices. The op-
timal choice will be found automatically by solving the constraint optimization
problem.

Tailored noise
In the project of shaping the tailored noise mechanism, we have discussed the
unbiased averaging of privatized sensitive features in a distributed setting. In
this work, we have discussed how to optimize utility for privatized features
computed by applying transformation functions to sensitive attributes. Such
transformations can be highly non-linear and, hence, can have high-magnitude
gradients or possess points of singularity.

Real world examples
We understand that the concepts discussed in this dissertation are often not very
trivial and may pose difficulty in understanding just from their description. So,
we introduced one or more examples directly inspired by real-world problems
to illustrate the concepts without going too deep into the domain jargon. We
were mostly interested in the optimization of utility and privacy parameters in
medical system-based applications.

We presented a few examples showing that, in several cases, the translation
of privacy requirements to constraint optimization problems is reasonably easy
and often yields constraint optimization problems that can be solved efficiently.
Of course, this doesn’t constitute proof that such a methodology will deliver
good results in all cases. An interesting line of future work is to explore more
different situations and analyze whether the obtained constraint optimization
problems remain tractable and scale well with the problem complexity.

180

Bibliography

[1] Data provenence.

[2] General data protection regulation (gdpr).

[3] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, Deep learning with differential privacy, in
Proceedings of the 2016 ACM SIGSAC conference on computer and com-
munications security, 2016, pp. 308–318.

[4] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and A. Pazii,
Metric-based local differential privacy for statistical applications, CoRR,
abs/1805.01456 (2018).

[5] M. Andersen, J. Dahl, and L. Vandenberghe, Cvxopt: Convex op-
timization, Astrophysics Source Code Library, (2020), pp. ascl–2008.

[6] S. Asoodeh, J. Liao, F. P. Calmon, O. Kosut, and L. Sankar,
Three variants of differential privacy: Lossless conversion and applica-
tions, CoRR, abs/2008.06529 (2020).

[7] B. Balle, G. Barthe, and M. Gaboardi, Privacy amplification by
subsampling: Tight analyses via couplings and divergences, Advances in
neural information processing systems, 31 (2018).

[8] B. Balle, G. Barthe, M. Gaboardi, J. Hsu, and T. Sato, Hy-
pothesis testing interpretations and renyi differential privacy, CoRR,
abs/1905.09982 (2019).

[9] B. Balle and Y. Wang, Improving the gaussian mechanism for dif-
ferential privacy: Analytical calibration and optimal denoising, CoRR,
abs/1805.06530 (2018).

[10] D. Barth-Jones, The’re-identification’of governor william weld’s medical
information: a critical re-examination of health data identification risks
and privacy protections, then and now, Then and Now (July 2012), (2012).

[11] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin, Prob-
abilistic Relational Reasoning for Differential Privacy, ACM Transactions
on Programming Languages and Systems (TOPLAS), 35 (2013).

181

[12] R. Bassily, A. Smith, and A. Thakurta, Private empirical risk min-
imization: Efficient algorithms and tight error bounds, in 2014 IEEE
55th annual symposium on foundations of computer science, IEEE, 2014,
pp. 464–473.

[13] T. Bayes, Lii. an essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in
a letter to john canton, amfr s, Philosophical transactions of the Royal
Society of London, (1763), pp. 370–418.

[14] M. Becker, A. Malkis, and L. Bussard, S4P: A Generic Language
for Specifying Privacy Preferences and Policies, Tech. Rep. MSR-TR-
2010-32, April 2010.

[15] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization,
vol. 6, Athena scientific Belmont, MA, 1997.

[16] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[17] J. K. Blitzstein and J. Hwang, Introduction to probability, Crc Press,
2019.

[18] A. Blum, K. Ligett, and A. Roth, A learning theory approach to
non-interactive database privacy, CoRR, abs/1109.2229 (2011).

[19] D. Bogdanov, P. Laud, and J. Randmets, Domain-Polymorphic Lan-
guage for Privacy-Preserving Applications, in Proceedings of the First
ACM Workshop on Language Support for Privacy-Enhancing Technolo-
gies, PETShop ’13, Association for Computing Machinery, 2013.

[20] D. Boneh and V. Shoup, A graduate course in applied cryptography,
Draft 0.5, (2020).

[21] L. Bottou, Large-scale machine learning with stochastic gradient de-
scent, in Proceedings of COMPSTAT’2010, Physica-Verlag HD, 2010,
pp. 177–186.

[22] T. D. Breaux, H. Hibshi, and A. Rao, Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy
requirements, Requirements Engineering, 19 (2014), pp. 281–307.

[23] M. Bun, J. Ullman, and S. Vadhan, Fingerprinting codes and the
price of approximate differential privacy, in Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, 2014, pp. 1–10.

[24] C. L. Canonne, G. Kamath, and T. Steinke, The discrete gaussian
for differential privacy, in Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ran-
zato, R. Hadsell, M.-F. Balcan, and H.-T. Lin, eds., 2020.

182

[25] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, Differentially
private empirical risk minimization., Journal of Machine Learning Re-
search, 12 (2011).

[26] Y. Chauvin and D. E. Rumelhart, Backpropagation: Theory, Archi-
tectures, and Applications, Routledge, February 1995.

[27] T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system,
Proceedings of the 22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining, (2016), pp. 785–794.

[28] K. L. Chung, On a Stochastic Approximation Method, The Annals of
Mathematical Statistics, 25 (1954), pp. 463 – 483.

[29] G. Cormode, T. Kulkarni, and D. Srivastava, Constrained differ-
ential privacy for count data, CoRR, abs/1710.00608 (2017).

[30] G. Cormode, T. Kulkarni, and D. Srivastava, Constrained private
mechanisms for count data, IEEE Trans. Knowl. Data Eng., 33 (2021),
pp. 415–430.

[31] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn., 20
(1995), p. 273–297.

[32] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure multiparty
computation, Cambridge University Press, 2015.

[33] S. K. Das, Deductive Databases and Logic Programming, Addison-Wesley
Longman, 1992.

[34] Y. N. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli,
and Y. Bengio, Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization, CoRR, abs/1406.2572 (2014).

[35] P. S. de Laplace, Mémoire sur les approximations des formules qui sont
fonctions de très-grands nombres et sur leur application aux probabilités,
Imprimerie de Baudouin, 1810.

[36] A. De Moivre, The doctrine of chances: or, A method of calculating
the probabilities of events in play, vol. 200, Chelsea Publishing Company,
Incorporated, 1756.

[37] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for
machine learning, Cambridge University Press, 2020.

[38] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E.
Meester, A Modern Introduction to Probability and Statistics: Under-
standing why and how, vol. 488, Springer, 2005.

183

[39] L. Deng, The MNIST database of handwritten digit images for machine
learning research [best of the web], IEEE Signal Processing Magazine, 29
(2012), pp. 141–142.

[40] I. Dinur and K. Nissim, Revealing information while preserving privacy,
in Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 2003, pp. 202–210.

[41] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods
for online learning and stochastic optimization, J. Mach. Learn. Res., 12
(2011), p. 2121–2159.

[42] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, Local Privacy
and Statistical Minimax Rates, in 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, 2013, pp. 429–438.

[43] C. Dwork, Differential privacy: A survey of results, in International
conference on theory and applications of models of computation, Springer,
2008, pp. 1–19.

[44] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor, Our data, ourselves: Privacy via distributed noise genera-
tion, in Advances in Cryptology-EUROCRYPT 2006: 24th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings 25,
Springer, 2006, pp. 486–503.

[45] C. Dwork, F. McSherry, K. Nissim, and A. Smith, Calibrating noise
to sensitivity in private data analysis, in Theory of Cryptography: Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, Springer, 2006, pp. 265–284.

[46] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, Differential
privacy under continual observation, in Proceedings of the forty-second
ACM symposium on Theory of computing, 2010, pp. 715–724.

[47] C. Dwork and K. Nissim, Privacy-preserving datamining on vertically
partitioned databases, in Advances in Cryptology–CRYPTO 2004: 24th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 2004. Proceedings 24, Springer, 2004, pp. 528–544.

[48] C. Dwork and A. Roth, The algorithmic foundations of differential
privacy, vol. 9, Hanover, MA, USA, aug 2014, Now Publishers Inc.,
p. 211–407.

[49] C. Dwork, G. N. Rothblum, and S. Vadhan, Boosting and differ-
ential privacy, in 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, IEEE, 2010, pp. 51–60.

184

[50] C. Dwork and A. Smith, Differential privacy for statistics: What we
know and what we want to learn, Journal of Privacy and Confidentiality,
1 (2009), pp. 135–154.

[51] U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, and
K. Talwar, Amplification by Shuffling: From Local to Central Differential
Privacy via Anonymity, in SODA, 2019.

[52] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based
algorithm for discovering clusters in large spatial databases with noise, in
kdd, vol. 96, 1996, pp. 226–231.

[53] V. Fabian, On Asymptotic Normality in Stochastic Approximation, The
Annals of Mathematical Statistics, 39 (1968), pp. 1327 – 1332.

[54] D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon, Logi-
cal Bayesian Networks and Their Relation to Other Probabilistic Logical
Models, in Inductive Logic Programming, S. Kramer and B. Pfahringer,
eds., Berlin, Heidelberg, 2005, Springer Berlin Heidelberg, pp. 121–135.

[55] D. Fierens, J. Ramon, M. Bruynooghe, and H. Blockeel, Learn-
ing directed probabilistic logical models: ordering-search versus structure-
search, Annals of Mathematics and Artificial Intelligence, 54 (2008).

[56] Y. Freund and R. E. Schapire, A decision-theoretic generalization of
on-line learning and an application to boosting, Journal of computer and
system sciences, 55 (1997), pp. 119–139.

[57] J. H. Friedman, Greedy function approximation: A gradient boosting
machine, in Annals of statistics, JSTOR, 2001, pp. 1189–1232.

[58] B. E. Fristedt and L. F. Gray, A modern approach to probability
theory, Springer Science & Business Media, 2013.

[59] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. Pierce,
Linear Dependent Types for Differential Privacy, in 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, ACM, 2013.

[60] C. F. Gauss, Theoria motus corporum coelestium in sectionibus conicis
solem ambientium, vol. 7, FA Perthes, 1877.

[61] Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, The staircase mech-
anism in differential privacy, IEEE Journal of Selected Topics in Signal
Processing, 9 (2015), pp. 1176–1184.

[62] Q. Geng and P. Viswanath, The optimal noise-adding mechanism in
differential privacy, IEEE Trans. Inf. Theory, 62 (2016), pp. 925–951.

185

[63] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, Learning
probabilistic relational models, Relational data mining, (2001), pp. 307–
335.

[64] A. Ghosh, T. Roughgarden, and M. Sundararajan, Universally
utility-maximizing privacy mechanisms, SIAM J. Comput., 41 (2012),
pp. 1673–1693.

[65] M. Goddard, The EU General Data Protection Regulation (GDPR): Eu-
ropean regulation that has a global impact, International Journal of Market
Research, 59 (2017), pp. 703–705.

[66] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT
Press, 2016.

[67] H. V. Gupta and H. Kling, On typical range, sensitivity, and normal-
ization of mean squared error and nash-sutcliffe efficiency type metrics,
Water Resources Research, 47 (2011).

[68] M. Gupte and M. Sundararajan, Universally optimal privacy mech-
anisms for minimax agents, in Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA,
J. Paredaens and D. V. Gucht, eds., ACM, 2010, pp. 135–146.

[69] B. Hansen, Probability and Statistics for Economists, Princeton Univer-
sity Press, 2022.

[70] W. Hardle and E. Mammen, Comparing nonparametric versus para-
metric regression fits, The Annals of Statistics, (1993), pp. 1926–1947.

[71] M. Hardt and K. Talwar, On the geometry of differential privacy,
CoRR, abs/0907.3754 (2009).

[72] T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statis-
tical Learning, vol. 1, Springer New York, 2001.

[73] M. Henze, J. Hiller, S. Schmerling, J. H. Ziegeldorf, and
K. Wehrle, CPPL: Compact Privacy Policy Language, in Proceedings of
the 2016 ACM on Workshop on Privacy in the Electronic Society, WPES
’16, New York, NY, USA, 2016, Association for Computing Machinery,
p. 99–110.

[74] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural
computation, 9 (1997), pp. 1735–1780.

[75] W. Hoeffding, A Class of Statistics with Asymptotically Normal Dis-
tribution, The Annals of Mathematical Statistics, 19 (1948), pp. 293 –
325.

186

[76] J. Iyilade and J. Vassileva, P2U: A privacy policy specification lan-
guage for secondary data sharing and usage, in 2014 IEEE Security and
Privacy Workshops, IEEE, 2014, pp. 18–22.

[77] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduc-
tion to Statistical Learning, vol. 112, Springer New York, 2013.

[78] I. T. Jolliffe, Principal component analysis: a beginner’s guide—i. in-
troduction and application, Weather, 45 (1990), pp. 375–382.

[79] P. Kairouz, S. Oh, and P. Viswanath, The composition theorem for
differential privacy, in Proceedings of the 32nd International Conference
on Machine Learning, Lille, France, 2015.

[80] O. Kallenberg, Foundations of modern probability, vol. 2, Springer,
1997.

[81] D. P. Kingma and J. Ba, Adam: A method for stochastic optimiza-
tion, in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
Y. Bengio and Y. LeCun, eds., 2015.

[82] R. Kohavi et al., A study of cross-validation and bootstrap for accuracy
estimation and model selection, in Ijcai, vol. 14, Montreal, Canada, 1995,
pp. 1137–1145.

[83] B. Kreuter and a. shelat, Lessons Learned with PCF: Scaling Secure
Computation, in Proceedings of the First ACM Workshop on Language
Support for Privacy-Enhancing Technologies, PETShop ’13, New York,
NY, USA, 2013, Association for Computing Machinery, p. 7–10.

[84] A. Krizhevsky and G. Hinton, Learning multiple layers of features
from tiny images, tech. rep., Citeseer, 2009.

[85] P. Lahoti, G. Weikum, and K. P. Gummadi, iFair: Learning Individ-
ually Fair Data Representations for Algorithmic Decision Making, CoRR,
abs/1806.01059 (2018).

[86] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, Object Recog-
nition with Gradient-Based Learning, Springer-Verlag, 1999.

[87] J. Liu, L. Xiong, and J. Luo, A privacy framework: indistinguishable
privacy, in Proceedings of the Joint EDBT/ICDT 2013 Workshops, 2013,
pp. 131–136.

[88] C. Mckay, Probability and statistics, Scientific e-Resources, 2019.

[89] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien,
I. Mironov, N. Papernot, and P. Kairouz, A general approach to
adding differential privacy to iterative training procedures, arXiv preprint
arXiv:1812.06210, (2018).

187

[90] F. D. McSherry, Privacy Integrated Queries: An Extensible Platform
for Privacy-Preserving Data Analysis, in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’09, Association for Computing Machinery, 2009.

[91] I. Mironov, On significance of the least significant bits for differential
privacy, in Proceedings of the ACM Conference on Computer and Com-
munications Security, CCS’12, T. Yu, G. Danezis, and V. D. Gligor, eds.,
ACM, 2012, pp. 650–661.

[92] I. Mironov, Renyi Differential Privacy, CoRR, abs/1702.07476 (2017).

[93] S. Muggleton and L. de Raedt, Inductive logic programming: Theory
and methods, The Journal of Logic Programming, 19-20 (1994), pp. 629–
679. Special Issue: Ten Years of Logic Programming.

[94] K. P. Murphy, Probabilistic Machine Learning: An introduction, MIT
Press, 2022.

[95] M. Naehrig, K. Lauter, and V. Vaikuntanathan, Can Homomor-
phic Encryption Be Practical?, in Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop, CCSW ’11, Chicago, Illinois,
USA, 2011, Association for Computing Machinery.

[96] A. Narayanan and V. Shmatikov, How to break anonymity of the
netflix prize dataset, 2007.

[97] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu,
L. Wang, N. Somani, M. Zhang, N. Sharma, A. Shan, and
D. Song, Duet: An Expressive Higher-order Language and Linear Type
System for Statically Enforcing Differential Privacy, Proc. ACM Program.
Lang., 3 (2019), pp. 172:1–172:30.

[98] S. Oh and P. Viswanath, The composition theorem for differential pri-
vacy, CoRR, abs/1311.0776 (2013).

[99] L. Oneto, S. Ridella, and D. Anguita, Tikhonov, ivanov and moro-
zov regularization for support vector machine learning, Machine Learning,
103 (2016), pp. 103–136.

[100] P. Paillier, Public-key cryptosystems based on composite degree resid-
uosity classes, in Advances in Cryptology—EUROCRYPT’99, Springer,
1999, pp. 223–238.

[101] R. Pardo and D. Le Métayer, Analysis of Privacy Policies to En-
hance Informed Consent, in Data and Applications Security and Privacy
XXXIII, S. N. Foley, ed., Springer International Publishing, 2019.

[102] A. J. Paverd, A. Martin, and I. Brown, Modelling and automati-
cally analysing privacy properties for honest-but-curious adversaries, Tech.
Rep., (2014).

188

[103] S.-D. Poisson, Recherches sur la probabilité des jugements en matière
criminelle et en matière civile: précédées des règles générales du calcul
des probabilités, Bachelier, 1837.

[104] J. Ramon and M. Basu, Interpretable privacy with optimizable utility,
in ECML PKDD 2020 Workshops: Workshops of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases (ECML
PKDD 2020): SoGood 2020, PDFL 2020, MLCS 2020, NFMCP 2020,
DINA 2020, EDML 2020, XKDD 2020 and INRA 2020, Ghent, Belgium,
September 14–18, 2020, Proceedings, Springer, 2020, pp. 492–500.

[105] A. Rényi, On measures of entropy and information, in Proceedings of the
fourth Berkeley symposium on mathematical statistics and probability,
volume 1: contributions to the theory of statistics, vol. 4, University of
California Press, 1961, pp. 547–562.

[106] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Communications of the
ACM, 21 (1978), pp. 120–126.

[107] H. Robbins and S. Monro, A Stochastic Approximation Method, The
Annals of Mathematical Statistics, 22 (1951), pp. 400 – 407.

[108] S. Ruder, An overview of gradient descent optimization algorithms, arXiv
preprint arXiv:1609.04747, (2016).

[109] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, Imagenet large scale visual recognition challenge, Inter-
national Journal of Computer Vision, 115 (2015), pp. 211–252.

[110] C. Sabater, A. Bellet, and J. Ramon, An accurate, scalable and
verifiable protocol for federated differentially private averaging, Machine
Learning, 111 (2022).

[111] Y. Sei and A. Ohsuga, Private true data mining: Differential pri-
vacy featuring errors to manage internet-of-things data, IEEE Access, 10
(2022), pp. 8738–8757.

[112] J. Shoenfield, Mathematical Logic, Taylor & Francis, 2001.

[113] R. Shokri, Privacy games: Optimal user-centric data obfuscation, Proc.
Priv. Enhancing Technol., 2015 (2015), pp. 299–315.

[114] R. Shokri and V. Shmatikov, Privacy-preserving deep learning, in Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and commu-
nications security, 2015, pp. 1310–1321.

[115] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, Membership
inference attacks against machine learning models, in 2017 IEEE sympo-
sium on security and privacy (SP), IEEE, 2017, pp. 3–18.

189

[116] S. Song, Y. Wang, and K. Chaudhuri, Pufferfish Privacy Mecha-
nisms for Correlated Data, in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, Chicago, Illinois, USA,
2017, Association for Computing Machinery.

[117] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov,
and M. Vechev, Zkay: Specifying and Enforcing Data Privacy in Smart
Contracts, in Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’19, New York, NY, USA, 2019,
Association for Computing Machinery, p. 1759–1776.

[118] T. Steinke and J. Ullman, Between pure and approximate differential
privacy, arXiv preprint arXiv:1501.06095, (2015).

[119] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-
tion, MIT press, 2018.

[120] J. Tanton, Encyclopedia of mathematics, Facts On File, Inc, 2005.

[121] T. Tieleman and G. Hinton, Lecture 6.5 - RMSprop: Divide the gra-
dient by a running average of its recent magnitude, Coursera: Neural
Networks for Machine Learning, 4 (2012), pp. 26–31.

[122] M. C. Tschantz, D. K. Kaynar, and A. Datta, Formal Verifica-
tion of Differential Privacy for Interactive Systems, CoRR, abs/1101.2819
(2011).

[123] V. Vapnik, Principles of risk minimization for learning theory, in Ad-
vances in Neural Information Processing Systems, J. Moody, S. Hanson,
and R. Lippmann, eds., vol. 4, Morgan-Kaufmann, 1991.

[124] W. Wang, L. Ying, and J. Zhang, On the relation between identifia-
bility, differential privacy, and mutual-information privacy, IEEE Trans-
actions on Information Theory, 62 (2016), pp. 5018–5029.

[125] L. Wasserman, All of statistics: a concise course in statistical inference,
vol. 26, Springer, 2004.

[126] P. J. Werbos, Beyond Regression: New Tools for Prediction and Anal-
ysis in the Behavioral Sciences, PhD thesis, Harvard University, 1988.

[127] D. Witten, G. M. James, T. Hastie, and R. Tibshirani, An Intro-
duction to Statistical Learning, Springer, 2013.

[128] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton,
Bolt-on differential privacy for scalable stochastic gradient descent-based
analytics, in Proceedings of the 2017 ACM International Conference on
Management of Data, 2017, pp. 1307–1322.

190

[129] L. Xu, Modular Reasoning about Differential Privacy in a Probabilistic
Process Calculus, in Trustworthy Global Computing, C. Palamidessi and
M. D. Ryan, eds., Springer Berlin Heidelberg, 2013.

[130] X. Yan and X. Su, Linear Regression Analysis: Theory and Computing,
World Scientific, 2009.

[131] J. Yang, K. Yessenov, and A. Solar-Lezama, A Language for Auto-
matically Enforcing Privacy Policies, SIGPLAN Not., 47 (2012), p. 85–96.

[132] Z. Yang, S. Zhong, and R. N. Wright, Privacy-preserving classifica-
tion of customer data without loss of accuracy, in Proceedings of the 2005
SIAM International Conference on Data Mining, SIAM, 2005, pp. 92–102.

[133] Z. Zhang, B. I. P. Rubinstein, and C. Dimitrakakis, On the differ-
ential privacy of bayesian inference, in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI-16), 2016, pp. 2365–2371.

[134] A. Zheng and A. Casari, Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists, O’Reilly Media, Inc., 2018.

[135] H. Zhong and K. Bu, Privacy-utility trade-off, 2022.

[136] X. Zhu, Semi-supervised learning with graphs, Carnegie Mellon Univer-
sity, 2005.

191

	Introduction
	Objectives
	Desired properties
	Privacy
	Utility
	Interpretability
	Transparency
	Verifiability
	Automation

	Contribution
	Thesis outline

	Background
	Statistics
	Random variable
	Mean
	Expectation
	Variance
	Standard deviation
	Statistical sampling
	U-statistics

	Probability theory
	Law of large numbers
	Addition law of probability
	Probability functions and distributions
	Cumulative distribution function (CDF)
	Probability density function (PDF)
	Probability mass function (PMF)
	Joint probability distribution
	Prior probability distribution
	Conditional probability distribution
	Marginal probability distribution
	Likelihood

	Bayes' theorem
	Common probability distributions
	Definition: Laplace distribution
	Definition: Gaussian distribution
	Definition: Binomial distribution
	Definition: Uniform distribution

	Basics of machine learning
	Parametric vs non-parametric learning algorithms
	Predictability versus interpretability

	Different types of learning algorithms
	Model selection and assessment
	Input, action, outcome, and hypothesis spaces
	Basics of optimization
	Critical points
	Optimization
	Constraint optimization

	Dividing the dataset
	Cross-validation and re-sampling algorithms

	Training and fitting the model
	Bias variance trade-off
	Regularization

	Different types of loss

	Common machine learning algorithms
	Prediction
	Classification
	Dimensionality reduction
	Ensemble learning
	Clustering
	Traditional deep neural networks
	Feedforward neural networks
	Convolutional neural network (CNN)
	Recurrent neural network (RNN)
	Long-short term memory (LSTM)

	Applications of machine learning
	Natural language processing (NLP)
	Speech
	Virtual agents and robotics
	Computer vision
	Recommendation systems
	Fraud detection
	Task automation

	Adverse effects and malicious uses of ML
	Discrimination and bias
	Automation and job security
	Unaccountability and personal ethics
	Privacy attacks

	Data privacy
	Sensitivity
	Differential privacy
	Encryption for privacy
	Adding noise for privacy
	Laplacian noise mechanism
	Gaussian noise mechanism

	Classical differential privacy concepts
	Central differential privacy
	Local differential privacy
	Other variants of differential privacy concepts
	Approximate differential privacy.
	Hypothesis test differential privacy.

	Differential privacy composition rules
	Classical differential privacy composition
	Rényi differential privacy composition rule

	Logic
	Logic preliminaries
	Logical Bayesian network
	Definition: Random variable declaration
	Definition: Conditional dependency clause
	Definition: Logical CPD
	Definition: Logical Bayesian network
	Definition: Dependency statement
	Definition: Semantics of an LBN
	Definition: Predicate dependency graph of an LBN
	Running example of LBN

	Constraint program solvers and CVXOPT

	Interpretable privacy with optimizable utility
	Introduction
	Existing approaches
	Privacy constraint optimization
	Problem specification
	Optimizing differential privacy noise as a function of the desired output
	A simple case with normal random variables

	Shaping differential privacy noise
	Combining building blocks

	Example scenario: distributed medical centers
	Problem statement
	Privacy requirements
	Inferring on our example

	Discussion and conclusions

	AI using declarative privacy constraints
	Introduction
	Related work
	Specification works
	Verification works

	Preliminaries
	Logic preliminaries
	logical Bayesian network

	Language
	Random variable declaration
	Dependency declaration
	Privacy specification
	Summarization of declarations

	Inference
	Design overview of the constraint problem
	Transformation: specifications to constraints
	Privatization of observed variables
	Privacy constraints from DP guarantees

	Defining the constraint problem
	Forming the final constraint optimization problem
	Inference on our running example

	Discussion and conclusion

	Tailored noise mechanism
	Introduction
	Preliminaries
	Problem statement
	Proposed solution
	Notations

	Related work
	Modeling our approach
	Domain discretization
	Equal width discretization
	Equal frequency discretization

	Defining the objective function
	Variance minimization
	Bias minimization

	Defining the constraints
	Differential privacy constraints
	Bias minimization constraints
	Implicit constraints

	Implementation and experiments
	Dataset description
	Implementation in CVXOPT
	Experimental setup
	Regression setup
	Privacy guarantees
	Hyperparameter setup
	Experimental method variation setup

	Results
	Primary result interpretation
	Secondary result interpretation
	Result summary

	Future Scope and conclusion

	Future work
	Improve inference
	Language extension: Specifying dynamic behavior
	Pufferfish and other privacy frameworks
	Fairness
	Data provenance
	Applications
	Related challenges

	Discussion and conclusion
	Discussion
	Summary

