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Chapter 1

Introduction

‘Desde entonces no me gané un centavo que no fuera con la máquina de es-
cribir, y esto me parece más meritorio de lo que podrı́a pensarse, pues los
primeros derechos de autor que me permitieron vivir de mis cuentos y novelas
me los pagaron a los cuarenta y tantos años, después de haber publicado cuatro
libros con beneficios ı́nfimos. Antes de eso mi vida estuvo siempre perturbada
por una maraña de trampas, gambetas e ilusiones para burlar los incontables
señuelos que trataban de convertirme en cualquier cosa que no fuera escritor.’
— Gabriel Garcı́a Marquez, Vivir para Contarla.

‘Since then I haven’t earned a penny other than with the typewriter, and this
seems to me more meritorious than one might think, since the first author
rights that allowed me to live from my tales and novels were paid to me when
I was in my forties, so many years after having published four books with just
tiny benefits. Before that my life was always disturbed by a tangle of traps,
tricks and illusions to circumvent the countless lures that tried to turn me into
anything other than a writer.’ — Gabriel Garcı́a Marquez, Living to tell the
tale.

In this dissertation I would like to guide the reader to the research on dialogue but more
precisely the research I have conducted during my career since my PhD thesis. Starting from
modular architectures with machine learning/deep learning and reinforcement learning to end-to-
end deep neural networks. Besides my work as research associate, I also present the work I have
supervised in the last years. I proposed four PhD thesis Conventions industrielles de formation
par la recherche (CIFRE) that Orange accepted to fund. Therefore, I could co-supervise four
PhD candidates: Timothy Garwood supervised by Claire Gardent at CNRS, Thibault Cordier
supervised by Fabrice Lefevre at the University of Avignon, Sebastien Montella supervised by
Alexis Nasr at the university of Aix-Marseille, Léo Jacqmin supervised by Benoit Favre at the
University of Aix-Marseille. During 5 years I was head of the industrial research project on
dialogue, DIalogue in NAtural Language (DIANA), which gave me the opportunity of supervising
the work of the young researcher Quentin Brabant, other experimented researchers, a developer
as well as students in internship and apprenticeship. The deliverables of DIANA project gather
open-sourced datasets and neural models as well as scientific publications.

I review briefly the state of the art and highlight the open research problems on conversational
agents in Chapter 2. Afterwards, I present my contribution to Task-Oriented Dialogues (TOD) in
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Chapter 3, both as research associate and as the industrial supervisor of CIFRE theses. I discuss
conversational QA in Chapter 4. Particularly, I present the work of two PhD candidates Thibault
Cordier and Sebastien Montella; as well as the work of the young researcher Quentin Brabant. I
present the scientific project in Chapter 6. Finally I present the conclusions in Chapter 7.
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Chapter 2

A Glance to the Research on Dialogue

‘Please, then,’ said Alice, ‘how am I to get in?’
‘There might be some sense in your knocking,’ the Footman went on without
attending to her [...]’ He was looking up into the sky all the time he was
speaking, and this Alice thought decidedly uncivil. ‘But perhaps he can’t help
it,’ she said to herself; [..] –How am I to get in?’ she repeated, aloud.
-[..] the Footman continued in the same tone, exactly as if nothing had hap-
pened. ‘How am I to get in?’ asked Alice again, in a louder tone.
‘Are you to get in at all?’ said the Footman. ‘That’s the first question, you
know.’
It was, no doubt: only Alice did not like to be told so. ‘It’s really dreadful,’
she muttered to herself, ‘the way all the creatures argue. It’s enough to drive
one crazy!’ — Lewis Carroll

The origins of dialogue systems date from 1966 when the Eliza chatterbox was presented
(Weizenbaum, 1966). Eliza was the automated psychoanalyst that let us dream about intelligent
systems able to converse as humans. However, Eliza was a simple template-based approach,
limited by its poor understanding as well as the lack of expressivity and adaptability. The research
on dialogue has come a long way since then. Several solutions have been proposed from regular
expressions and symbolic approaches (formal grammars and formal logics) (Larsson and Traum,
2000; McTear, 2002) to statistical approaches (Pieraccini et al., 1992; Williams and Young, 2007;
Young et al., 2010; Zhang et al., 2020b), which are data-driven techniques that use either machine
learning or deep learning.

The availability of big data as well as the advances in processing units made deep learning
approaches feasible and promising (Cuayáhuitl et al., 2015; Daubigney et al., 2013; Vinyals and
Le, 2015; Sordoni et al., 2015; Wen et al., 2017b; Serban et al., 2017), reviving the dream of
creating artificial agents that can easily converse to people. We have already obtained promis-
ing results. For instance, we know that machines can learn optimal strategies for simple tasks in
small domains (TOD)(Weisz et al., 2018a; Zhu et al., 2020). Moreover, we are already treating
open domain dialogues by asking questions to online encyclopaedias such as Wikipedia (con-
versational reading comprehension) (Choi et al., 2018b; Reddy et al., 2018) and we are able to
predict the best answer in chitchats (end to end neural approaches). The very recent breakthrough
ChatGPT (Ouyang et al., 2022) confidently generates apparently coherent responses for a great
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amount of domains and tasks. A variety of methods has been studied by the research community
on dialogue during the last decade. From modular architectures to end-to-end neural networks. In
this chapter I will describe some these approaches.

2.1 Why is human conversation difficult?
Who has not experienced the frustration of talking to an automatic system in a call centre. Typi-
cally, these systems struggle to understand. They are repetitive because they are unable to rectify
misunderstandings. Users then must start all over from scratch. In the worst-case users need to
call again, then they try hard to fool the system until the call is finally answered by a human. Con-
versations with automatic systems are unnatural because they do not deal correctly with misunder-
standings, they do not adapt to novel situations and they constraint humans’ great communication
skills.

Dialogue-Acts and discourse obligations: A dialogue can be seen as a sequence of turns, in
which every speaker takes a turn to speak and to contribute to the conversation. The philosopher
(Austin, 1975a) stated that speakers perform actions while conversing and named these actions
speech acts. Examples of these actions are : informing, requesting, offering, promising, answer-
ing, persuading, convincing, etc. The research community nowadays call these actions Dialogue
Acts or Communicative Acts (Bunt et al., 2010). Adjacency-pairs are pairs of dialogue-acts in
conversation. For example, after a question in a conversation, the speaker is waiting for an an-
swer. After an offer the speaker is waiting for an acceptance or a rejection. These represent
discourse obligations in human conversation.

Coreferences and Ambiguity: Moreover, humans can refer to concepts that were mentioned
previously in the conversation. Indeed, a fluent conversation avoid repetitions. For instance, if
you are talking about the president of France, you can say “Emmanuel Macron” the first time you
mentioned him, later you can choose to say “the president”. Moreover, if you want to further give
your opinion about a recent political proposition he has made, you can say “I disagree with his
retirement policy”. These are well studied linguistic phenomena that made conversation difficult.

Another aspect is the ambiguity, the same sentence can mean different things in different
contexts. “It’s cold in here” can be understood as a request to close the window inside a closed
room or it may mean “It’s cool in here” in summer. In winter instead it could mean “I can’t stand
the weather; it is too cold”.

Grounding: speakers are always checking that they are following each other. For instance,
let us suppose you are receiving instructions about where to place a box in a room. If there
are many similar boxes, and the instruction is “move the box to the right of the desk”, you will
probably ask “which one?”. Then the instructor will provide more precise information such as
“the yellow rectangular box”. This coordination or mutual agreement is known as grounding,
mutual knowledge or shared knowledge(Clark and Brennan, 1991).

Planning: The model Beliefs, Desires and Intentions (BDI) as the primary mental attitudes of
an agent was first introduced by Bratman (Bratman, 1987). The beliefs are the agent’s model
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2.2 Preliminary Approaches

of the world. Desires, in turn, represent how the agent would like the world to be in the future;
while intentions are the structured plan the agent has decided to perform. The agent interacts
with the world by performing actions and by perceiving aspects of it, including changes which
result from its own actions. Perceptions will influence the beliefs of the agent, while actions
may change aspects of the world. This model was at the origin of modern Natural Language
Understanding (NLU), in which the aim is to detect user’s intentions or intents. However, the term
intent usually means a dialogue-act with a set of concepts or a combination of them in semantic
labels.

All these inherent characteristics in natural dialogue make implementing automated systems a
very difficult task.

2.2 Preliminary Approaches

A range of approaches emerged in the history of Dialogue Systems (DSs), they were classified in
conformity with their Dialog Manager (DM) (Allen et al., 2001; Churcher, 1997). According to
this classification, ordered by increasing complexity, the simplest of these is the finite-state scripts,
also called dialogue grammars, followed by slot-filling, plan-based and agent-based models. In
a finite-state script the dialogue is represented as a script of prompts for the user. In slot-filling,
questions are asked in order to enable the system to fill the necessary slots to perform a task.
Conversely, plan-based theories claim that utterances infer acts that are part of a plan, thus, the
system tries to identify users’ underlying plan, collaborates in accomplishing that plan and re-
sponds appropriately. Agent-based models are at the highest level of complexity. They consider
planning, executing, and monitoring operations in a dynamically changing world, possibly involv-
ing multi-modality. Examples of agent-based models are: the logic-based approaches, which uses
inference engines of a higher complexity that in some cases are semi-decidable (in some cases the
system will never halt), as well as reinforcement learning approaches, which need a large number
of interactions to converge.

2.3 Task Oriented Dialogue Systems

Conversational agents have gained great interest in both academy and industry in the last decades.
Typically, available conversational agents have been designed for the task of information-seeking.
These agents act as a natural language interface to a database. First, the system tries to fill the
constrains to query a database by inquiring the user. Then it retrieves the items that fulfill users’
constraints and finally it communicates the results to the user in natural language. For instance, a
person could call the system to check train timetables, she would provide the departure and arrival
city as well as the departure date and time. Then, the system would inform her about the available
trains.

TOD main goal is to complete a task in collaboration with the user (Pieraccini et al., 1992;
Young, 2002; Rieser and Lemon, 2011; Young et al., 2013a). Examples of tasks are to search
information about a restaurant, to reserve a hotel or to buy train tickets.
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2.3.1 Definitions
As introduced in Section 2.1, dialogue-acts or communicative acts are the actions performed by
the speakers when uttering sentences (e.g. Informing, Asking, Confirming, Greeting, etc.) (Austin,
1975b). A domain is formally defined in an ontology as a list of slots with their valid values. The
most common task, the information seeking task, is usually modelled as a slot-filling data-query
problem in which the system requests constraints to the user and proposes items that fulfil those
constraints in a database. The action or intention is composed by a predicate: the dialogue-act,
and a set of arguments: the slot-value pairs. For instance, let us suppose the user has uttered
“I would like a restaurant in the center of town please”, this will be translated in the semantic
form: inform(type = restaurant, area = center). This semantic representation is usually called
flat-semantics because there is not hierarchy in the concepts of the ontology.

2.3.2 Statistical Dialogue Systems
One approach to automatic dialogue is to use Reinforcement Learning (RL) to select the system’s
action (Levin et al., 2000; Litman et al., 2000). As in a Chess game, a dialogue involves two
players, in which each of them takes turns to play. The system should decide its move by consid-
ering the environment (the other player’s moves) and the rewards is either win or lose the game.
Dialogue is then formulated as an optimisation problem, in which the environment is the user
action and the user’s feedback is the reward. The final goal of the system is then to maximise the
accumulated reward at long run (Rieser and Lemon, 2011). The optimal policy,π, is a function
that takes as argument the current state s and returns the optimal action a.

Markov decision process

Dialogue can be formalised as a Markov Decision Process (MDP), which is a tuple M = (S,A, T, γ, R)
where:

• S: A set of possible states that represent the dynamic environment.

• A: A set of possible actions.

• T : S × A× S → [0, 1] is a transition probability function. For any action a ∈ A(s) taken
in a state s ∈ S, the probability of transiting to the next state s′ is given by T (s, s′).

• γ: A discounting factor in the range of [0, 1], which controls the prediction horizon of the
algorithm.

• R: The reward function that specifies the reward gained at every state. It contains the
information that guides the agent towards the goal. R is a function of the state that is
bounded in absolute value by Rmax.

A stationary policy is a map π : S → A and the discounted infinite-horizon expected reward
for starting in state s and following policy π thereafter is given by the value function V π(s) that
satisfies the following Bellman Equation:

V π(s) = R(s) + γ
∑
s′

T (s, π(s), s′)V π(s′) (2.1)
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2.3 Task Oriented Dialogue Systems

The discounted infinite-horizon expected reward for starting in state s, taking action a and follow-
ing policy π thereafter is given by the Q-function Qπ(s, a) that satisfies the following equation:

Qπ(s, a) = R(s) + γ
∑
s′

T (s, a, s′)V π(s′) (2.2)

A policy π is optimal in M if, for all s ∈ S:

π(s) = argmax
a∈A

Qπ(s, a) (2.3)

Likewise Q∗(s, a,R) is the optimal Q-function of the optimal policy π∗ for a known reward func-
tion R.

Partially Observable Markov decision process

Dialogues can be modelled as an optimisation problem with Partially Observable Markov decision
process (POMDP)s. It simulates the inherent dynamic behaviour of human conversations while
deals with the uncertainty of spoken language (Roy et al., 2000; Williams and Young, 2007; Young
et al., 2013b).

A POMDP can be seen as a continuous-space Markov decision process (MDP) in terms of
policy optimisation where the states are the belief states, which is partially observable. POMDPs
have been proposed for spoken dialogue systems because the system is never sure about the user
beliefs because of speech recognition errors due to noisy or spoken language disfluencies and
hesitations (Roy et al., 2000; Young et al., 2013a). Since the state is uncertain, it is called the
belief state b(s). An example of a POMDP dialogue system is presented in Section 2.3.2. The
task of predicting the b(s) at a given time t is known as the task of Dialogue State Tracking (DST).
The policy learning algorithm receives as input the b(s) and returns the optimal policy π∗ and a
given time.

The belief state bt is a vector encoding a probability distribution over the different goals,
dialogue acts and concepts that are discussed in the dialogue. In the same way, the dialogue
action at is a vector encoding a probability distribution over the possible agent dialogue actions.

Hierarchical Reinforcement Learning

MDP models have been proven to be inefficient for solving complex tasks. These models have
trouble overcoming the cold start problem and/or suffer from the curse of dimensionality (Barto
and Mahadevan, 2003). This pattern was also observed with models proposed recently (Mnih
et al., 2013; Duan et al., 2016). To overcome this issue, (Parr and Russell, 1998) proposed to
specify a hierarchy of tasks and to reuse parts of the state space across many sub-tasks, which can
greatly improve both learning speed and agent performance.

The notion of temporal abstraction, in which a policy can be decomposed into sub-policies
by calling temporally extended sub-tasks was first proposed by (Sutton et al., 1999). In order to
consider hierarchical architectures with temporally extension, we have to generalise the MDP to
the semi-Markov Decision Process (SMDP) (Parr and Russell, 1998) where actions can take a
variable amount of time to complete. This creates a division between primitive actions that span
over only one action and composite actions that involve an execution of a sequence of primitive
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actions. This introduces a policy µ over options that selects option o in state s with probability
µ(s, o), o’s policy might in turn select other options until o terminates and so on. The value
function for option policies can be defined in terms of the value functions of the flat Markov
policies (Sutton et al., 1999).

(Cuayáhuitl, 2009) was the first to propose Hierarchical Reinforcement Learning (HRL) based
on the MAXQ algorithm for dialogue decomposition, making use of hierarchical abstract ma-
chines (Parr and Russell, 1998). However, the tabular approach of this algorithm prevents the
efficient approximation of the state space and the objective function. To overcome this limitation
(Budzianowski et al., 2017), uses Gaussian process, which provides uncertainty estimates which
can be used to speed up learning and achieve more robust performance. Some recent work such
as (Tang et al., 2018) aims to discover automatically sub-goals hierarchy in dialog.

Reward Functions for Dialogue Systems

Previous works on RL for learning dialogue strategies typically use reward functions that penalise
long dialogues, returning a final positive reward for task completion or user satisfaction (Levin
et al., 2000; Litman et al., 2000; Roy et al., 2000; Young et al., 2010; Rieser and Lemon, 2011).
This might be an intuitive reward function for slot-filling applications, such as train ticket or
restaurant reservation, in which usually customers know exactly what they want, and they expect
to be accurately informed by the system as fast as possible.

However, this reward function might be inappropriate in other situations or for distinct users.
For instance, a user might want more advice without caring about the duration of the call. This is
especially true in tutorial dialogues, where learners usually have to complete a task and may not
know exactly how to do it.

Architecture

The basic elements of a RL based spoken statistical dialogue system are shown in Figure 2.1.
The words recognised by the speech recognition are converted to an abstract representation (the
user dialogue acts) by the semantic parser, also known as semantic decoder or NLU. These user
dialogue acts are then processed by a belief-state tracker which maintains a dialogue state s. This
is typically a set of variables denoting the slots that the system must fill-in to complete the user’s
goal. For example, in a restaurant information system the slots might be food for the type of food
offered and area for the location, and the state s might record the current value and confidence
level of each slot. From the state, a belief state b (usually just a sub-set of the state vector) is
extracted and an action a is decided based on a dialogue policy. The set of possible actions
will include requesting new slot values, confirming already filled slot values and accessing the
application for information. Once the appropriate action is determined, it is converted to a textual
message m and then rendered by a speech synthesiser.

Deep Learning (DL) has been used to implement dialogue components such as semantic de-
coder or NLU (Rojas Barahona et al., 2016), belief tracker (Daubigney et al., 2013; Mrkšić et al.,
2017) and generator (Wen et al., 2015). Deep Reinforcement Learning is used for policy learn-
ing (or DM) (Cuayáhuitl et al., 2015), such as deep q-network (DQN) (Casanueva et al., 2017a),
the actor-critic algorithm (Su et al., 2017) and actor-critic with experience replay (ACER) (Weisz
et al., 2018a). Benchmarks comparing these algorithms across different domains and different
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2.3 Task Oriented Dialogue Systems

Figure 2.1: Basic elements of a statistical spoken dialogue system

environments have been published in (Casanueva et al., 2017a). It is worth noting that ACER has
been trained on around 1000 action spaces and not on summary actions as the others (Weisz et al.,
2018a). These algorithms are available in the open-source dialogue framework PyDial (Ultes
et al., 2017b).

2.3.3 End-to-End Task-Oriented Systems

One preliminary approach to end-to-end dialogue is pipeline-based. It replicates the classical
dialogue architecture (Figure 2.1), with the main difference that each module is a deep neural
network. One example of this approach is the seminal work of (Wen et al., 2017b). This neural
pipeline was later improved in (Wen et al., 2017a) through a latent variable model for learning the
distribution of system actions. Although, authors claimed this approach to be end-to-end, modules
are not trained jointly into a single learning unit that can be optimised by gradient-based methods
such as back-propagation. Conversely, each module is trained separately in a cascade fashion
where the outputs of one model are the inputs to the next one.
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2.4 End-to-End Dialogues
Three approaches to end-to-end dialogue system are identify: retrieval-based, generative-based
and the combination of both. These approaches are truly end to end, which means the model
learns through gradient-based optimisation. Retrieval-based approach treats dialogue as an infor-
mation retrieval problem (Lowe et al., 2015; Wu et al., 2018), in which there is a set of candidate
responses from which one is selected as system response, here dialogue is evaluated as an infor-
mation retrieval problem (in terms of precision/recall). Generative-based models (Vinyals and Le,
2015; Sordoni et al., 2015; Serban et al., 2016; Goo and Chen, 2018) on the contrary use natural
language generation to generate the system response and dialogue is evaluated as as a generation
problem (in terms of comparison with multi-references for instance, with BLEU score). Both ap-
proaches have been used for chit-chats or casual conversations. Retrieval-based models however
have been also used for task-oriented solutions(Lowe et al., 2015). The combination of both, can
use generation to paraphrase the retrieved answer. Another way is to compare generative and re-
trieved responses. The interested reader can find more details about recent end-to-end approaches
in (Ni et al., 2022).

Figure 2.2: E2E neural architecture

Yet these approaches neglect the fact that dialogue is dynamic and highly dependent on the
environment. Moreover, they do not consider the metrics usually used for evaluating dialogues
such as task completion and user satisfaction. Generative approaches usually generate fluent
answers, which are sometimes incoherent with the dialogue context. They can generate hallu-
cinations, distortions or repetitions. Retrieval-based approaches are limited to a list of candidate
responses, which needs to be created in advance, yielding answers without any context agreement.
To overcome these limitations, (Sankar and Ravi, 2019) proposes a combination of reinforcement-
learning and generative models. The successful ChatGPT is an example of generative model,
carefully trained to follow instructions that also learns to rank its responses.

10



2.5 Pre-trained Language Models

2.5 Pre-trained Language Models
With the success of Language Models, Deep Learning and Transformers (Vaswani et al., 2017),
recent solutions proposed pre-trained models with self-supervision. These models outperformed
the state-of-the-art in different Natural Language processing (NLP) tasks. They have been initially
trained on a large quantity of texts. For instance, BERT has been trained on 800M words and
2,500M words of the BooksCorpus and Wikipedia respectively. GPT-3 is a huge pre-trained
model with 175B of parameters, trained on large quantity of data.

Recently, these pre-trained models have been also trained on conversations. For example,
BlenderBot (Shuster et al., 2022) is an encoder decoder which has been trained on 1.5B of Reddit
comments. DialoGPT is just a decoder that has trained on 147M of dialogues extracted from Red-
dit. (Santra et al., 2021). ConveRT has been trained on 727M of dialogs. ChatGPT is presumably
the result of finetuning GPT3 with carefully curated instructions with reinforcement learning for
correctly rank the generated responses (i.e. learning to rank) (Ouyang et al., 2022).

The trend nowadays is to initialise deep learning models with a pre-trained one and then fine-
tune them for a specialised task. However, fine-tuning with little data will often degrade the
initialised weights. Therefore, recent optimisation for fine-tuning are : prompting (Lester et al.,
2021), prefixes (Li and Liang, 2021) and adapters (Hu et al., 2021).

Despite very promising, the great limitation is that pre-trained models are still static. If there
are changes in the language or in the World, these changes will not be reflected in the model.
Think about the BERT models pre-trained before the Covid pandemic, they do not contain any
representation for the bunch of new vocabulary that emerged during the pandemics: Covid-19,
Moderna, Pfizer, sanitary vaccination pass, test PCR, etc. It is worth noting that training these
large models is computationally costly and they require Hyper-performance Computing (HPC). A
research path is how to keep these models up to date avoiding catastrophic forgetting and reducing
the carbon impact necessary during training.

2.6 Conversational Question Answering
Research on conversational question answering has gained increasing interest (Saha et al., 2018;
Reddy et al., 2018; Choi et al., 2018b). It consists in sequences of question-answer pairs related
to a document or to a knowledge graph. Complex sequential question answering (CSQA) con-
tains open-domain conversations that treat complex linguistic phenomena such as co-references,
ellipses, incompleteness (or under specification) as well as logical, comparative and quantita-
tive reasoning (Saha et al., 2018). Two corpora containing discussions about a paragraph of a
Wikipedia document have been made public, namely question answering in context (QuAC) (Choi
et al., 2018b) and a conversational question answering challenge (CoQA) (Reddy et al., 2018). In
addition, a workshop devoted to this topic has first created in 2017, search conversational artificial
intelligence (SCAI), with the participation of academics and industrials1.

Paragraph-based Question-Answering can be seen as a problem of reading comprehension, in
which given a candidate document and a question, it finds the correct answer in the document.
These systems use attention mechanisms (Seo et al., 2017) and memory networks (Weston et al.,
2014).

1https://scai.info/
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2.7 Positioning My Contributions in the State-of-the-Art
Most of my work concerns task-oriented dialogue, which involves the different components pre-
sented in Section 2.3. I worked on NLU, DM and more recently on Natural Language Gener-
ation (NLG). I have adapted neural models for distinct dialogue components that are presented
in Chapter 3. Since the past five years, I have also explored open-domain Conversational Ques-
tion Answering (CQA) (Section 2.6) which I present in Chapter 4, with predictive and generative
(encoder-decoder) models for question rewriting, reading-comprehension and knowledge-graph
question generation. As an extension of the last approach, I have also explored graph-embeddings
(Section 4.4) and graph verbalisation with language models (Montella et al., 2023). The contri-
butions published the second half of this year or the work in progress are not included in this
document.

My work has always followed the state-of-the-art at the time of publication. For a detail com-
parison of each contribution summarised in this manuscript with the related work of its time, we
invite the curious reader to check the corresponding publications. To provide a brief positioning
of some contributions, the work on data collection, NLU, dialogue management and human eval-
uation I made for the EmoSpeech corpus was the first of its kind: a set of dialogues (12 distinct
types of dialogue) in a Serious Game and in French. Moreover, we were among the first to propose
in 2013 data-augmentation with back-translation and distributional representations for balancing
biased models (Gardent and Rojas-Barahona, 2013).

The work on inverse reinforcement learning followed on the seminal work of Ng et al. (2000).
It differed from previous work Paek and Pieraccini (2008); Chandramohan et al. (2011); El Asri
et al. (2012); Boularias et al. (2010) because of the Bayesian Inverse Reinforcement Learning
(IRL) algorithm that was applied for learning the tutor (i.e. system) reward function from experts.
Furthermore, experts were taken from twelve distinct types of conversations in a serious game that
were Human-Human (i.e. The EmoSpeech corpus) and not Machine-Machine (not from simulated
conversations).

I proposed to enrich a subset of the corpus CoQA (Reddy et al., 2019) releasing the cor-
pus CoQAR2 with up to three out-of-context question paraphrases per question in conversations
(Chapter 4, Section 4.2). Unlike previous work, these paraphrases were made by professional
English native annotators instead of using crowd-sourcing, guaranteeing fair earning and working
conditions. We compared CoQAR to CANARD (Elgohary et al., 2019) that provided only one
question rewriting per question in QuAC (Choi et al., 2018b). I experimented with RoBERTa for
answer extraction in both datasets CoQA and CoQAR with a without rewriting. Surprisingly solv-
ing the context through rewritten questions confuses RoBERTa, which is already good to solve
co-references by itself, specially in short dialogue contexts as in these datasets.

I also utilised contextual embeddings (DistilBERT (Sanh et al., 2020), TransformersXL (Dai
et al., 2019)) for estimating the reward function in long dialogues. I pointed out at that time the
limitation of BERT-like models to deal with long contexts, which, besides the notable improve-
ments of recent years, is still an open research problem. We also explored neural generation
models such as BART (Lewis et al., 2019) and T5 (Raffel et al., 2020) for contextual question
generation, question rewriting (Section 4.2) and graph verbalisation (Montella et al., 2022, 2023).
I explored together with Sebastien Montella and Johannes Heinecke structural adapters for graph
verbalisation (Montella et al., 2023) just after low rank emerged (Hu et al., 2021) as a recom-

2https://github.com/Orange-OpenSource/COQAR
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2.7 Positioning My Contributions in the State-of-the-Art

mended way to optimally fine-tune LLMs.
After the advent of Large Language Models (LLMs), I am now questioning the performance

of these models in complex tasks that required planning, such as dialogue. First, we need an eval-
uation methodology to assess the performance of LLMs in these tasks. Then we need to compare
LLMs based reasoning (Wei et al., 2022; Yao et al., 2023, 2022) with Reinforcement Learn-
ing (RL) approaches, and explore recent trends for learning complex strategies such as algorithm
distillation (Laskin et al., 2022). I talk about these research paths in Chapter 6.
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Chapter 3

Contributions to Task-Oriented Dialogues

‘José Arcadio Buendı́a pasó los largos meses de lluvia encerrado en un cuar-
tito que construyó en el fondo de la casa para que nadie perturbara sus ex-
perimentos. Habiendo abandonado por completo las obligaciones domésticas,
permaneció noches enteras en el patio vigilando el curso de los astros, y es-
tuvo a punto de contraer una insolación por tratar de establecer un método
exacto para encontrar el mediodı́a.’ — Gabriel Garcı́a Marquez, Cien años de
soledad.

‘José Arcadio Buendı́a spent the long months of the rainy season shut up in
a small room that he had built in the rear of the house so that no one would
disturb his experiments. Having completely abandoned his domestic obliga-
tions, he spent entire nights in the courtyard watching the course of the stars
and he almost contracted sunstroke from trying to establish an exact method to
ascertain noon.’ — Gabriel Garcı́a Marquez, One Hundred Years of Solitude.

As introduced in Section 2.3, task-oriented dialogue systems search to accomplish a task.
This task can be for instance, information seeking, in which the system search for items in a
database according to the constraints obtained through natural language interaction. Thus, these
constrains can be given by the user (‘I am looking for a restaurant’) or can be enquired by the
system (‘which price range?’, ‘where about?’). Once the desired items are retrieved, the system
informs the results back to the user. This kind of dialogue has rich interactions with dialogue
acts such as: informing, requesting, clarifying, rectifying. State-of-the-art systems are centred on
the information seeking task for a variety of domains: hotels, restaurants, touristic attractions,
trains, flights, taxis, etc. Unfortunately, these dialogues are very specific and have difficulties to
generalise to new domains and to more complex tasks (i.e. beyond information seeking).

I present in this Chapter my contributions to TOD dialogues (Figure 2.1). I start by presenting
my work on NLU in Section 3.1 and on Dialogue Management in Section 3.2. My contributions
to NLU concerns the definition of an annotation schema for the French corpus EmoSpeech, in
which 12 distinct dialogues were integrated in a serious game. The dialogues involved various
characters representing the system and the player and they were triggered at different levels of
the game quest. Dialogues were modelled as an information seeking task, in which the system
is always providing information to the player. The set of dialogue acts and goals are introduced
in Section 3.1, as well as the models that were trained. Data augmentation through paraphrases
via back translation, dictionaries, lexical resources and distributional semantics is also presented
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in Section 3.1.1. Moreover, the task of spoken language understanding is studied by using deep
neural models and few-shot learning through risk minimisation in Section 3.1.2. Finally, I present
the work of the PhD candidate Sebastien Montella on graph embeddings in Section 4.4.

The contributions on Dialogue management are presented in Section 3.2. I first present my
own work on inverse reinforcement learning to find the implicit reward followed by humans in the
EmoSpeech dialogue corpus. I also present a reward estimation by using deep learning. Finally, I
present the work of the PhD candidate Thibault Cordier on hierarchical imitation learning.

3.1 Language Understanding
Natural language understanding (NLU) is the task of mapping natural language sentences to se-
mantic concepts. As a component of a spoken system, it would map utterances to a semantic rep-
resentation that describes user intentions. This representation can be a combination of dialogue
acts1 (e.g., greeting, request, inform, acknowledgement, confirm, etc.) and concept-value pairs,
which are usually defined in a knowledge-base that describes the domain (e.g, Depart City=”New
York”). This section presents the semantic annotation of the French EmoSpeech corpus, the pro-
posed Machine learning models, and the ways to improve the performance of these models via
data augmentation. This section also includes the contributions to spoken language understanding,
in which the input corresponds to the output of the Automatic Speech Recognition (ASR). I show
how the N-Best hypothesis are included as inputs to a Convolutional Neural Network (CNN) that
generates the sentence representation and how the context is handle by a Long-Short Term Mem-
ory (LSTM). In addition, I introduce risk minimisation for zero-shot learning on this task. Finally,
I present the work of the PhD candidate Sebastien Montella on graph embedding. In order to user
richer representations as input to neural models, the hyperbolic space was explored for treating
temporal relations.

3.1.1 NLU in a Serious Game
Machine Learning (ML) approaches such as logistic regression classifiers and conditional random
fields were the state-of-the art back in 2011. I could collect a corpus through Wizard-of-Oz ex-
periments, define an annotation scheme and train Logistic Regression (LR) and Support Vector
Machines (SVM) multi-class classifiers for the task of NLU. These models were integrated within
distinct dialogues in a serious game. I will start by describing briefly this work that gave origin
to four publications (Rojas-Barahona et al., 2012b,c; Rojas-Barahona and Gardent, 2012; Gardent
and Rojas-Barahona, 2013).

The serious game is a multiplayer quest where the players (3 teenagers) seek to build a video
game joystick in order to free their uncle trapped in the game. To build this joystick, the players
must explore a factory and achieve 17 mandatory goals (find the plans, get the appropriate mould,
retrieve some raw material from the storing shed, etc). In addition, they can increase their score
by achieving optional goals which, when reached, provide them with extra information about the
industry (therefore increasing their knowledge). In total, the players can achieve up to 28 goals
by conducting 12 separate subdialogs in various parts of the virtual world. That is, dialogs in the
game are long dialogs involving multiple players in various settings.

1dialogue acts are the performative action underlying a utterance(Austin, 1975b)
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3.1 Language Understanding

Id VC Player Mandatory Goals Location

1 Lucas Ben Find the address of the enterprise. Unlce’s place.

2 M.Jasper Lucas The manufacturing first step Enterprise reception

3 Samir Julie Find the plans of the joystick Designing Office

4 Samir Julie Find out what to do next Designing Office

5 Melissa Lucas Manufacturing process ... Plant

6 Melissa Lucas Find the right machine Plant

7 Melissa Lucas Find out what to do next Plant

8 Operator Julie Knowing about the material space ... Material Space

9 Serge Ben Perform quality tests Laboratory Tests

10 Serge Ben Find out what to do next Laboratory Tests

11 Sophia Julie Find the electronic components. Finishing

12 Sophia Julie Finishing process Finishing

Table 3.1: Description of the subdialogs in the MP Game.

Table 3.1 summarises the characteristics of the subdialogs conducted within the game high-
lighting three distinguishing features of game dialogs. First, the dialog participants vary whereby
both the game agent and the player can change. Thus in the game, the player alternatively plays
any of the three children involved in the quest while the game agent is successively, Lucas, M.
Jasper, Samir, Melissa, an operator, Serge and Sophia. Second, game dialogs are task-driven
whereby each subdialog is related to a step in the game and each dialog turn aims to achieve a
game goal and improve the player score. Third, the context in which each subdialog takes place
varies as the player moves around the world.

NLU annotation schema for dialogue is not necessarily dictated by speech act theory alone but
might also consider more practical issues namely, how well it will support interpretation and/or
dialogue. To enhance learning, the annotation schema designed for the game combines core com-
municative acts (Bunt et al., 2010) with domain specific information. The domain specific infor-
mation specifies the goals being pursued/discussed/achieved etc. while the communicative act can
be viewed as specifying how the current information state is updated by the speaker’s utterance.

dialog: 01 dialogDirecteur-Tue Jun 14 11:04:23 2011

M.Jasper:Bonjour, je suis M.Jasper le directeur.
Hello, I am the director, Mr. Jasper. →greet

M.Jasper: Qu’est-ce que je peux faire pour vous?
What can I do for you? → ask(task(X))

Lucas:je dois sauver mon oncle
I must rescue my uncle → first step

M.Jasper: Pour faire votre manette, il vous faut des plans. Allez voir dans le bureau d’études, ils devraient y être.
To build the joystick you will need the plans. You will find them in the Designing Office. → inform(do(first step))

M.Jasper: J’aurais aimé continuer à répondre à vos questions mais je dois reprendre mon travail! Bonne Chance!
I have to go back to work! Good Luck! → quit

Figure 3.1: Excerpt from a dialogue in the EmoSpeech corpus. The corresponding user semantics
is shown highlighted on the right.

Table 3.2 gives the full list of Dialogue Acts used for annotation together with the correspond-
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Dialogue Act Label Gloss Speaker
Welcome greeting greet Welcome greeting P,S
Farewell greeting quit Farewell geeting P, S
Adress Request ask(Goal) Request to pursue Goal S
Adress Request help Request for help P
Confirm yes Confirms previous query P
Disconfirm no Disconfirms previous query P
Provide Information inform(do(Goal)) Provides information about how to achieve Goal S
Provide Information Goal Provides information about the goal Goal P
Positive Feedback ack Acknowledges understanding of preceding turn S
Propositional Question ask(do(more(X))) Asks whether other topics should be discussed S
Set Question ask(topic(X)) Asks which other topics should be discussed S
Out of Context other Out of context turn P,S
Misunderstanding reqRep Request for rephrasing S

Table 3.2: The Annotation Scheme. P and S stands for Player and System respectively.

ing dialog acts and a gloss of their meaning. As can be seen the labels used are very specific to
the game to facilitate the integration within the game (same goals as defined in the serious game)
and to bypass much of the pragmatic reasoning necessary to associate a dialog turn with a com-
municative function. For instance, in the dialog above, the turn je dois sauver mon oncle (I must
rescue my uncle) does not explicitly state that the player (i) is seeking to achieve the game goal
“rescueing one’s uncle” and (ii) is asking the game agent for the first step towards achieving that
goal.

Experimental setup

We experimented with both an SVM and an LR2 classifier using different sets of features on differ-
ent data sets with and without TF*IDF (term frequency*Inverse Document Frequency) filtering.

Whole Dialog Subdialogs

w/o Tf*Idf w/ Tf*Idf w/o Tf*Idf w/ Tf*Idf

LR 79.74 90.26 86.41 88.22

SVM 78.79 88.55 76.45 83.99

SVM (P) 78 83.55

Table 3.3: Global Results for the Logistic Regression (LR), the SVM (SVM) and the SVM Clas-
sifier with Penalisation (SVM(P))

We compared a single classifier on the whole dataset (the whole game) against 12 distinct
classifiers, one for each subdialog. In both cases the categories to be learned are restricted to
the speaker’s intent (greet,quit,inform(Goal), ack, ask(do(more(X))), ask(topic(X)), other in Table

2We used MALLET (McCallum, 2002) for the LR classifier with L1 Regularisation.

18



3.1 Language Understanding

3.2). Taking into account the game goals, the total number of categories to be learned is 27.
When learning on subdialogs, the number of categories to be learned is smaller but so is the size
of the training set. The features for the machine learning models were bag of words, in which
stop words were filtered out, utterances were deaccented and converted to lower-case. In addition,
we experimented with various context length using as features the 0 to 4 previous dialogue acts.
Subdialog identifiers were also used when training the classifier on the whole dialogue. More
details are given in (Rojas-Barahona et al., 2012a).

We also experimented using tf*idf filtering to limit the impact of frequent uninformative
words. Moreover, we experimented penalising those categories with more training instances,
since the data was highly skewed. Dialogue acts that relate to optional goals were often not fol-
lowed up by the players resulting in data sparseness.

Results

Table 3.3 shows the results for the 6 main configurations: training on the whole dialog or on sub-
dialogs, with and without tf*idf filtering and using LR, SVM or SVM with penalisation. The best
results are obtained using the LR classifier on the whole dataset with tf*idf filtering. Penalising
improved slightly the accuracy of the SVM when classifing without tf*idf filtering or when having
a reduced context (0 or 2 previous acts in Table 3.4).

Impact of the tf*idf filtering. Globally, the tf*idf filtering has a positive impact leading to
an increase in accuracy ranging from 2.81 to 11.52 points. For the SVM classifier, the tf*idf
filtering consistently lead to better results. However, for the LR classifier the filtering adversely
impacts performance on short subdialogs (6 and 7), where one unique goal is being discussed.
We conjecture that for these cases, the tf*idf filtering removed words which helped the classifier
distinguish between turns about the unique goal from other turns. SVM with penalisation yields
worse results with the tf*idf filtering than without, thus suggesting overfitting. In the next section
we present how can we exploiting synonyms to improve generalisation.

Impact of contextual features. Having a notion of context is crucial for correctly interpreting
dialog acts. As mentioned above, we use the dialog acts of the previous turns to model context.
However the further back we look into the previous turns, the more features there will be to train
on. In other words, depending on the number of previous turns considered, the data to learn from
will be more or less sparse. We experimented with 3 setups: a null context, the dialog acts of the
two previous turns and the dialog acts of the four previous acts. Table 3.4 shows the results.

Whole Dialog Subdialogs

0 2 4 0 2 4

LR 88.43 90.26 90.26 84.43 87.59 88.22

SVM 84.36 86.76 88.55 78.04 82.06 83.99

SVM(P) 79.32 83.12 83.55

Table 3.4: The impact of context on accuracy. 0,2 and 4 indicates that the context is captured by
having as features the dialog acts of 0, 2 and 4 previous turns respectively

Impact of dialog acts. The accuracy varies per dialog acts from 48% to 99%. with most of
the acts having an accuracy above 80%. Unsurprisingly, the acts with lowest accuracy are also the
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acts with fewest training data. The data is split randomly for the 30-fold evaluation with the risk
of having insufficient data for optional goals.

Estimating the User Satisfaction : We applied the evaluation framework Paradise (Walker
et al., 1997a) to assess these dialogues in (Rojas-Barahona and Gardent, 2012). We compared
a rule-based dialogue manager and a dialogue manager that picks the answer randomly from a
set of candidate responses. We found out that users prefer to talk to the second system because
conversations are more fluid and there are less repetitions and misunderstandings. However, with
the second dialogue manager some times the player got stuck in the game and needed to repeat
the dialogue with the virtual agent, impacting negatively the user satisfaction.

Data Augmentation

This work on data augmentation was published in (Gardent and Rojas-Barahona, 2013). We
explored four ways of modifying the content features used for classification: lemmatising the
training and the test data; augmenting the training data with automatically acquired paraphrases;
and substituting unknown words with synonyms or its distributional neighbours at run-time.

For Lemmatisation, we used the French version of Treetagger3 to lemmatise both the training
and the test data. Lemmas without any filtering were used to train classifiers. We then compare
performance with and without lemmatisation. As we shall see, the lemma and the POS tag pro-
vided by TreeTagger are also used to lookup synonym dictionaries and EuroWordNet when using
synonym handling at run-time.

We were among the first to exploit automatically acquired paraphrases and to use these not
only to increase the size of the training corpus but also to better balance it4. We proceed as
follows.

First, we generated paraphrases using a pivot machine translation approach where each user
utterance in the training corpus (around 3610 utterances) was translated into some target language
and back into French. Using six different languages (English, Spanish, Italian, German, Chi-
nese and Arabian), we generated around 38000 paraphrases. We used Google Translate API for
translating.

Second, we eliminate from these paraphrases, words that are likely to be incorrect lexical
translations by removing words with low normalised term frequency (< 0.001) across translations
i.e., lexical translations given by few translations and/or translation systems. We then preprocessed
the paraphrases in the same way the utterances of the initial training corpus were preprocessed i.e.,
utterances were unaccented, converted to lower-case and stop words were removed, the remaining
words were filtered with TF*IDF. After preprocessing, duplicates were removed.

Third, we added the paraphrases to the training data seeking to improve the balance between
dialog acts per dialog. The process to balance data was guided by the deviation of the category
with lowest examples compared to the standard deviation. If the deviation is lower than the stan-
dard deviation then we add paraphrases by keeping as much as possible the data balanced after
replacement. We invite the interested reader to find more details about the algorithm proposed for
balancing data in the paper (Gardent and Rojas-Barahona, 2013).

3http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
4The Emospeech data is highly skewed with some classes being populated with many utterances and others with

few.
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3.1 Language Understanding

Substituting Synonyms for Unknown Words A word is unknown, if it is a well-formed French
word5 and if it does not appear in the training corpus. When an unknown word w is detected in a
player utterance at run-time, we search for a word w′ which occurs in the training data and is either
a synonym of w or a distributional neighbour. After disambiguation, we substitute the unknown
word for the synonym.

H Lemmatisation

H-H Orig. Lemmas +EWN +DIC +RI

Orig. 65.70%± 5.62 66.04% ± 6.49 68.17%± 6.98 67.92%± 4.51 66.83%± 5.92

Parap. 70.89%± 6.45 74.31% ± 4.78* 74.60% ± 5.99* 73.07% ± 7.71* 72.63% ± 5.82*

H-C Orig. Lemmas +EWN +DIC +RI

Orig. 59.71%± 16.42 59.88%± 7.19 61.14%± 16.65 61.41%± 16.59 60.75%± 17.39

Parap. 59.82%± 15.53 59.48%± 14.02 61.70% ± 14.09* 62.01% ± 14.37* 61.16%± 14.41*

Table 3.5: Accuracy on the H-H and on the H-C corpus. The star denotes statistical significance
with the Wilcoxon test (p < 0.005) used for the HH corpus and the McNemar test (p < 0.005) for
the HC corpus.

To identify synonyms, we make use of two lexical resources namely, the French version of Eu-
roWordNet (EWN) (Vossen, 1998), which includes 92833 synonyms, hyperonyms and hyponyms
pairs, and a synonym lexicon for French (DIC) 6 which contains 38505 lemmas and 254149 syn-
onym pairs. While words are categorised into Noun, Verbs and Adjectives in EWN, DIC contains
no POS tag information.

To identify distributional neighbours, we constructed semantic word spaces for each subdialog
in the EmoSpeech corpus 7 using random indexing (RI) on the training corpus expanded with
paraphrases. Using the cosine measure as similarity metrics, we then retrieve for any unknown
word w, the word w′ which is most similar to w and which appear in the training corpus.

For lexical disambiguation, two methods are compared. We use the POS tag provided by
TreeTagger. In this case, disambiguation is syntactic only. Or we pick the synonym with highest
probability based on a trigram language model trained on the H-H corpus.

Results and Discussion

Table 3.5 summarises the results obtained in four main configurations: (i) with and without para-
phrases; (ii) with and without synonym handling; (iii) with and without lemmatisation; and (iv)
when combining lemmatisation with synonym handling. We also compare the results obtained
when evaluating using 10-fold cross validation on the training data (H-H dialogs) vs. evaluating
the performance of the system on H-C interactions.

Overall Impact The largest performance gain is obtained by a combination of the three tech-
niques namely, data expansion, synonym handling and lemmatisation (+8.9 points for the cross-

5A word is determined to be a well-formed French word if it occurs in the LEFFF dictionary, a large-scale mor-
phological and syntactic lexicon for French (Sagot, 2010)

6DICOSYN (http://elsap1.unicaen.fr/dicosyn.html).
7We also used distributional semantics from the Gigaword corpus but the results were poor probably because of

the very different text genre and domains between the the Gigaword and the game.
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validation experiment and +2.3 for the H-C evaluation).

Impact of Lexical Substitution at Run Time We found that lexical resources are only useful
when combined with lemmatisation. This is unsurprising since synonym dictionaries and Eu-
roWordNet only contain lemmas. Indeed when distributional neighbours are used, lemmatisation
has little impact (e.g., 65.11% usingdistributional neighbours without lemmatisation on the H-H
corpus without paraphrases vs. 66.41% when using lemmatisation).

Another important issue when searching for a word synonym concerns lexical disambigua-
tion: the synonym used to replace an unknown word should capture the meaning of that word
in its given context. We tried using a language model trained on the training corpus to choose
between synonym candidates (i.e., selecting the synonym yielding the highest sentence proba-
bility when substituting that synonym for the unknown word) but did not obtain a significant
improvement. In contrast, it is noticeable that synonym handling has a higher impact when using
EuroWordNet as a lexical resource. Since EuroWordNet contain categorial information while the
synonym dictionaries we used do not, this suggests that the categorial disambiguation provided
by TreeTagger helps identifying an appropriate synonym in EuroWordNet.

Finally, it is clear that the lexical resources used for this experiment are limited in coverage
and quality. We observed in particular that some words which are very frequent in the training
data (and thus which could be used to replace unknown words) do not occur in the synonym
dictionaries. For instance when using paraphrases and dictionaries (fourth row and fourth column
in Table 3.5) 50% of the unknown words were solved, 17% were illformed and 33% remained
unsolved. To compensate this deficiency, we tried combining the three lexical resources in various
ways (taking the union or combining them in a pipeline using the first resource that would yield
a synonym). However the results did not improve and even in some cases worsened due probably
to the insufficient lexical disambiguation. Interestingly, the results show that paraphrases always
improves synonym handling presumably because it increases the size of the known vocabulary
thereby increasing the possibility of finding a known synonym.

In sum, synonym handling helps most when (i) words are lemmatised and (ii) unknown words
can be at least partially (i.e., using POS tag information) disambiguated. Moreover since data
expansion increases the set of known words available as potential synonyms for unknown words,
combining synonym handling with data expansion further improves accuracy.

Impact of Lemmatisation When evaluating using cross validation on the training corpus, lem-
matisation increases accuracy by up to 3.42 points indicating that unseen word forms negatively
impact accuracy. Noticeably however, lemmatisation has no significant impact when evaluating
on the H-C corpus. This in turn suggests that the lower accuracy obtained on the H-C corpus
results not from unseen word forms but from unseen lemmas.

Impact of Paraphrases On the H-H corpus, data expansion has no significant impact when
used alone. However it yields an increase of up to 8.27 points and in fact, has a statistically signif-
icant impact, for all configurations involving lemmatisation. Thus, data expansion is best used in
combination with lemmatisation and their combination permits creating better, more balanced and
more general training data. On the H-C corpus however, the impact is negative or insignificant
suggesting that the decrease in performance on the H-C corpus is due to content words that are
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3.1 Language Understanding

new with respect to the training data i.e., content words for which neither a synonym nor a lemma
can be found in the expanded training data.

While classifiers are routinely trained on dialog data to model the dialog management pro-
cess, the impact of such basic factors as lemmatisation, automatic data expansion and synonym
handling has remained largely unexplored. The empirical evaluation described here suggests that
each of these factors can help improve performance but that the impact will vary depending on
their combination and on the evaluation mode. Combining all three techniques yields the best re-
sults. We conjecture that there are two main reasons for this. First, synonym handling is best used
in combination with POS tagging and lemmatisation because these supports partial lexical seman-
tic disambiguation. Second, data expansion permits expanding the set of known words thereby
increasing the possibility of finding a known synonym to replace an unknown word with.

3.1.2 Spoken Language Understanding and Few-Shot Learning

The following work was published in Coling 2016 (Rojas Barahona et al., 2016). At that time
the task of Spoken Language Understanding (SLU), namely semantic decoding, was seen as a
sequence tagging problem with models trained and tested on datasets with word-level annotations
(Tür et al., 2013; Mesnil et al., 2015; Yao et al., 2013; Sarikaya et al., 2011; Deoras and Sarikaya,
2013; Sarikaya et al., 2014). Nevertheless, spoken language understanding from unaligned data,
in which utterances are annotated with an abstract semantics, faces the additional challenge of not
knowing which specific words are relevant for extracting the semantics. This problem was tackled
in (Zhou and He, 2011), by using conditional random fields (CRFs) driven by finely-tuned hand-
crafted features. Other discriminative approaches that deal with unaligned data use some form of
delexicalisation or mapping of the input to known ontological concepts (Henderson et al., 2012,
2014a). The main disadvantage of delexicalisation is the difficulty in scaling it, not only to larger
and more complex dialogue domains but also to handle the many forms of language variation.

We proposed a semantic decoder that learns from unaligned data (Figure 3.2) and that exploits
rich semantic distributed word representations instead of delexicalisation. The semantic decoder
predicts the dialogue act and the set of slot-value pairs from a set of n-best hypotheses returned
by an ASR. The prediction is made in two steps. First, a deep learning architecture is used for the
joint prediction of dialogue acts and the presence or absence of slots. Second, the same architec-
ture is reused for predicting the values of the slots that were detected by the first joint-classifier.
The deep architecture combines sentence and context representations. A CNN (Collobert et al.,
2011) is used to generate the sentence representation, while a LSTM network (Hochreiter and
Schmidhuber, 1997) is used to generate the context representation. A non-linear function then
combines the top layers of these neural networks and distinct Softmax layers are used to predict
the dialogue act and slots in the first joint model. In the second model, a single Softmax predicts
the possible values for each slot.

We evaluated our models on two datasets DSTC2 (Henderson et al., 2014b) and In-car (Tsi-
akoulis et al., 2012) using accuracy, f-measure and the Item Cross Entropy (ICE) score (Thomson
et al., 2008). Our models outperform previous proposed models, without using manually designed
features and without any pre-processing of the input (e.g., stop words filtering, delexicalisation).
They do this by exploiting distributed word representations and we claim that this allows semantic
decoders to be built that can easily scale to larger and more complex dialogue domains.
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voip-922209b777-20130325 155209

System: Hello , welcome to the Cambridge restaurant system?
You can ask for restaurants by area, price range or food type.
How may I help you? →welcomemsg

User: i am looking for a moderately priced restaurant
in the north part → inform(area=north,pricerange=moderate)

System: meghna is a nice restaurant
in the north of town in the moderate price range → offer(name=meghna),

inform(pricerange=moderate,area=north)

User: is everything else → reqalts()

System: golden wok is a nice restaurant
in the north of town in the moderate price range → offer(name=golden...),

inform(pricerange=moderate, area=north)

User: can i get the phone number → request(slot=phone)

System: The phone number of golden wok is ... → offer(name=golden wok),inform(phone=01..)

User: type of food do they serve → request(slot=food)

Figure 3.2: Excerpt from a dialogue in the DSTC2 corpus. The top-best ASR hypothesis is shown
highlighted on the left, and the corresponding user semantics is shown highlighted on the right.

Deep Learning Semantic Decoder

We split the task of semantic decoding into two steps: (i) training a joint model for predicting the
dialogue act and presence or absence of slots and (ii) predicting the values for the most probable
slots detected in (i). As shown in Figure 3.3, we use the same deep learning architecture in both
steps for combining sentence and context representations to generate the final hidden unit that
feeds one or many softmax layers. In the first step, as shown in the Figure, there are distinct
softmax layers for the joint optimisation of the dialogue act and each possible slot. In the second
step there is a single softmax layer that predicts the value of each specific slot. In the following
we explain this architecture in more detail.

Figure 3.3: Combination of sentence and context representations for the joint prediction of dia-
logue acts and slots.
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3.1 Language Understanding

Sentence Representation

A CNN is used for generating the hypothesis representation, then these representations are weighted
by their confidence scores and then summed up to obtain the sentence representation (Figure 3.4).

The CNN is a variant of (Kim, 2014), in which the inputs are the word vectors in each ASR
hypothesis. Let xi be a k−dimensional word embedding for the i-th word in a hypothesis. A
hypothesis of length m is represented as: x1:m = x1

⊕
x2

⊕
...
⊕

xm where
⊕

is the concate-
nation operator. A convolutional operation is applied to a window of l words to produce a new
feature.

ci = f(w · xi:i+l−1 + b) (3.1)

where f is the hyperbolic tangent function; w ∈ Rlk is a filter applied to a window of l words and
b ∈ R is a bias term. The filter is applied to every window of words in the sentence to produce a
feature map.

c = [c1, c2, ..., cn−l+1] (3.2)

with c ∈ Rn−l+1. A max pooling operation is then applied to give the maximum value c =
max{c} as the representative feature for that filter. Multiple filters can be applied by varying the
window size to obtain several adjacent features for a given hypothesis. These features f̂j for the
hypothesis j ∈ H are then multiplied by the ASR confidence score pj8 and summed over all ASR
hypotheses to generate a representation for the sentence st (Equation 3.3), as shown in Figure 3.4.

st =
∑
j∈H

f̂j ∗ pj (3.3)

i

’m

looking

for

uh

a

moderately

priced

restaurant

ASR hypotheses Convolutional layers

N best

Sentence Representation:weighted sum of hypshypotheses representations

Figure 3.4: Sentence Representation: after applying convolution operations on the N-best list
of ASR hypotheses, the resulting hidden layers are weighted by the ASR confidence scores and
summed.

8The posterior probability of hypothesis j in the N-best list.
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Context Representation

An LSTM (Hochreiter and Schmidhuber, 1997) is used for tracking the context implied by pre-
vious dialogue system actions. The top layer of this LSTM network then provides the context
representation for decoding the current input utterance.

An LSTM is a sequence model that utilises a memory cell capable of preserving states over
long periods of time. This cell is recurrently connected to itself and it has three multiplication
units, an input gate, a forget gate and an output gate. These gating vectors are in [0,1]. The cell
makes selective decisions about what information is preserved, and when to allow access to units,
via gates that open and close.

As shown in Figure 3.2, system actions are encoded in the form of a system dialogue act plus
one or more slot-value pairs. To track the history of system actions, slots and values are treated as
words and the input xt is formed from its corresponding word vectors. The length of the context
can vary. We consider all the system actions previous to the current user utterance, or a window l
of the previous system actions. For instance, if we are currently processing the last user input in
Figure 3.2, in which L is the total number of system actions, we can consider all previous system
actions (L=4), or the last l system actions, where l < L.

Combining Sentence and Context

We study in this paper two ways of combining the sentence st and the context ht representations.
The first straightforward way is to apply a non linear function to their weighted sum:

ĥt = tanh(Ws · st +Wc · ht) (3.4)

The second way is to let the sentence representation be the last input to the LSTM network, then
ĥt = ht. For classification a softmax layer is used for each prediction. The result of the prediction
is the most probable class. The back-propagation optimisation is done by minimising the negative
log-likelihood loss function through stochastic gradient descent.

Experimental Evaluation

In this section we introduce the corpora, and describe the experiments performed and the evalua-
tion metrics used.

Corpora

Experimental evaluation used two similar datasets: DSTC2 (Henderson et al., 2014b) and In-
car (Tsiakoulis et al., 2012). Both corpora were collected using a spoken dialogue system which
provides restaurant information system for the city of Cambridge. Users can specify restaurant
suggestions by area, price-range and food type and can then query the system for additional restau-
rant specific information such as phone number, post code and address. The first dialogue corpus
was released for the dialogue state tracking challenge and we use here the semantic annotations
that were also provided 9. The trainset has 2118 dialogues and 15611 turns in total while the testset
has 1117 dialogues and 9890 turns in total.

9The DSTC2 corpus is publicly available in: http://camdial.org/˜mh521/dstc/
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3.1 Language Understanding

The second corpus contains dialogues collected under various noisy in-car conditions. In a
stationary car with the air conditioning fan on and off, in a moving car and in a car simulator (Tsi-
akoulis et al., 2012) 10. The trainset has 1508 dialogues and 10532 turns in total and the testset has
641 dialogues and 4861 turns in total. Because of the noise, the average word error rate (WER =
37%) is significantly higher than for DSTC2 (around 29%).

Experiments

Step I: Joint classification of dialogue-acts and slots: We evaluated five different model con-
figurations for the joint classification of dialogue-acts and presence or absence of slots.

• CNN: the softmax layers for the joint classification of dialogue acts and slots are connected
directly to the CNN sentence representation with no context.

• CNN+LSTM: we study the influence of context by considering the previous system actions
(Section 3.1.2, Eq. 3.4), here we study the different context length, by using a context win-
dow of 1, 4, and all the previous system actions, namely CNN+LSTM w1, CNN+LSTM w4
and CNN+LSTM w respectively.

• LSTM all: Finally, we study the impact of long distance dependencies, by using mainly
the LSTM model, with the previous system actions as input, but we inject the sentence
representation as the last LSTM input.

Step II: Classification of slot value pairs: We select the best model in step I for predicting
the presence of slots, then for each slot present we predict the value, by using again the best
architecture from the previous step.

Evaluation Metrics

We evaluate the performance of our models by using the conventional metrics for classification,
namely accuracy, precision, recall and F-measure (F1-score). In addition, we used the ICE score
to measure the overall quality of the distribution returned by the models taken into account the
hypotheses and the reference semantics (ie. ground-truth)(Thomson et al., 2008).

Results and Discussion

In this section we report the results on DSTC2 and In-car dialogue corpora.

Step I: Joint classification of dialogue-acts and slots: For this step, the classifiers must predict
jointly 14 dialogue acts and 5 slots for the DSTC2 dataset as well as 14 dialogue acts and 7 slots
for the In-car dataset. We evaluate both (i) using 10 fold cross-validation on the trainsets and (ii)
on the corpora’ testsets.

Our results on 10 fold cross-validation results on both corpora suggest that for DTSC2, the
context representation is not significantly impacting the prediction. Although, the model with
a window of 4 ,CNN+LSTM w4, improves slightly the accuracy and f1-score. On the In-car

10This corpus has been obtained in an industry funded project and therefore it is not available for public use.
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dataset, however, including the context does help to disambiguate the semantic predictions from
ill-formed hypotheses. This is expected, since this data set has a much higher error rate and hence
higher levels of confusion in the ASR output. Although there is no significant difference on the
f1-score when using the immediate previous system act (w1) or a longer context, CNN+LSTM w
gives a better accuracy and a lower ICE score on this dataset.

Table 3.6 shows the results on the test sets. Consequently, when evaluating on the DSTC2
test set, a window of 4 (w4), performs slightly better than other window sizes and better than the
simple CNN model. On the In-car testset, a context window of 4 outperforms all the other settings:
CNN+LSTM. However, on this test set using the sentence representation as the last input to the
LSTM context neural network (section 3.1.2) improves the f1-score and reduces the ICE error.

Corpus Metric CNN CNN+LSTM LSTM all

- - - w1. w4 w -

DSTC2 acc. 96.03% 95.79% 95.79% 95.69% 95.59%

P. 89.73% 88.69% 88.95% 88.38% 88.15%

R. 84.74% 85.09% 86.02% 85.96% 84.76%

F1 87.14% 86.83% 87.43% 87.12% 86.42%

ICE 0.268 0.278 0.292 0.297 0.308

In-car acc. 87.60% 82.19% 82.25% 82.14% 82.3%

P. 69.96% 79.52% 79.29% 80.25% 78.12%

R. 62.14% 71.09% 71.59% 70.9% 74.04%

F1 65.53% 74.89% 75.15% 75.02% 75.9%

ICE 1.332 1.344 1.333 1.421 1.106

Table 3.6: Evaluation of the Step I on DSTC2 and In-car testsets. We also compare two ways
of combining sentence and context representation: CNN+LSTM models (combining sentence
and context representation through a non linear function) and LSTM all model (embedding the
sentence representation into the context model).

Step II: Prediction of slot value pairs For evaluating Step II, we selected the best model ob-
tained during the 10-fold cross-validation experiments in terms of F1 score. For both corpora,
this was the CNN+LSTM w4 configuration. For DSTC2, it was the 4th-fold crossvalidation with
Acc = 90.42%, F1 = 88.69% and ICE = 0.251. For In-car, it was the 5th-fold crossvalida-
tion with Acc = 93.13%, F1 = 81.49% and ICE = 0.393. We used these models to classify
whether a given slot appears in a given hypothesis or not. Then for that slot, we train another
CNN+LSTM w4 classifier for predicting its values. In the In-car corpus the slot ”type” has only
one possible value ”restaurant”. Similarly, the slot ”task” can only be the value ”find”. For these
slots with only one value, we report values using the model of Step I, since it is enough to detect
the slot in the utterance.

Given that there is no domain specific delexicalisation, the models achieve a good level of
performance overall (Table 3.7). Note that the slot ”food” has 74 possible values in DSTC2 and
25 in In-car. Hence, this slot has much higher cardinality than all the other slots.

Overall performance A baseline for assessing overall performance is provided by the model
presented in (Henderson et al., 2012), in which the vector representation is obtained by summing
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DSTC2 In-car

Slot Acc. P. R. F1 ICE Acc. P. R. F1 ICE

Slot11 95.29% 90.89% 95.72% 93.24% 0.478 89.92% 74.73% 61.56% 67.51% 0.743

Area 91.77% 92.66% 92.83% 92.74% 0.563 72.03% 72.56% 74.28% 73.41% 1.676

Food 71.37% 73.19% 76.02% 74.58% 1.989 66.46% 64.27% 68.70% 66.41% 2.309

Price 94.62% 91.33% 94.49% 92.89% 0.729 93.96% 88.77% 92.03% 90.37% 0.632

This12 98.70% 96.79% 93.92% 95.33% 0.113 97.16% 96.14% 84.72% 90.07% 0.214

Type - - - - - 95.56% 95.09% 86.69% 90.69% 0.290

Task - - - - - 97.12% 83.24% 64.93% 72.95% 0.175

Mean 90.35% 88.97% 90.60% 89.76% 0.774 87.47% 82.11% 76.13% 78.77% 0.863

St.Dev. 0.109 0.091 0.082 0.085 0.715 0.128 0.121 0.118 0.112 0.821

Table 3.7: Evaluation of the step II: the slot-value pairs classification on DSTC2 and In-car.

up the frequency of n-grams extracted from the 10-best hypotheses, weighted by their confidence
scores. Here we compare our performance against Henderson’s model with and without context
features, namely WNGRAMS+Ctxt and WNGRAMS repectively. Henderson reported his results
on the In-car dataset. A similar model, namely SLU1, was evaluated on DSTC2 in (Williams,
2014). Both implementations consist of many binary classifiers for dialogue act and slot-value
pairs.

Corpus Model F1 ICE

DSTC2 SLU1 (Williams, 2014) 80.2% 1.943

CNN+LSTM w4 83.59% 0.758

In-car WNGRAMS (Henderson et al., 2012) 70.8% 1.76

WNGRAMS+Ctxt (Henderson et al., 2012) 74.2% 1.497

CNN+LSTM w4 73.06% 1.106

Table 3.8: Overall performance of the setting CNN+LST w4 semantic decoder.

In terms of the ICE score, the model CNN+LSTM W4 outperforms all the baselines (Ta-
ble 3.8). In terms of the F1 score, the model significantly outperforms the SLU1 and WNGRAMS
baselines. However it is slightly worse than WNGRAMS+Ctxt, which has been enhanced with
context features on In-car. Remember however, that our model uses only word-embeddings for
automatically generating sentence and context representations without having any manually de-
signed features or using explicit application specific semantic dictionaries.

Few-shot Learning through Risk Minimisation (RM)

We treat rarely seen slots by following two steps. (i) We optimise jointly in a deep neural network
the weights that feed multiple binary Softmax units. (ii) We further tune the weights learned in the
previous step by minimising the theoretical risk of the binary classifiers as proposed in (Balasub-
ramanian et al., 2011). In order to apply the second step, we rely on two assumptions: the rank of
the class marginal is assumed to be known and the class-conditional linear scores are assumed to
follow a Gaussian distribution. In (Balasubramanian et al., 2011), this approach has been proven
to converge towards the true optimal classifier risk. We conducted experiments on the dialogue
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corpus released for the third dialogue state tracking challenge, namely DSTC3 (Henderson et al.,
2014c) and we show positive results for detecting rare slots as well as zero-shot slot-value pairs.

We use the unsupervised approach proposed in (Balasubramanian et al., 2011) for risk min-
imisation (RM). We assume a binary classifier that associates a score fW0(h) to the first class 0
for the hidden unit h = (h1, · · · , hn) of dimension n:

fW0(h) =
n∑
i

wihi

where the parameter wi ∈ IR represents the weight of the feature indexed by i for class 0.
The objective of training is to minimize the classifier risk:

R(W) = Ep(h,Y )[L(Y, fW(h))] (3.5)

where Y is the true label and L(Y, fW(h)) is the loss function. The risk is derived as follows:

R(W) =
∑

y∈{0,1}

P (y)

∫ +∞

−∞
P (fW(h) = α|y)L(y, α)dα (3.6)

We use the following hinge loss:

L(y, α) = (1 + α1−y − αy)+ (3.7)

where (z)+ = max(0, z), and αy = fWy(h) is the linear score for the correct class y. Similarly,
α1−y = fW1−y(h) is the linear score for the wrong class.

Given y and α, the loss value in the integral (Equation 3.6) can be computed easily. Two
terms remain: P (y) and P (fW(h) = α|y). The former is the class marginal and is assumed to
be known. The latter is the class-conditional distribution of the linear scores, which is assumed to
be normally distributed. This implies that P (fW(h)) is distributed as a mixture of two Gaussians
(GMM):

P (fW(h)) =
∑

y∈{0,1}

P (y)N (fW(h);µy, σy)

where N (z;µ, σ) is the normal probability density function. The parameters (µ0, σ0, µ1, σ1) can
be estimated from an unlabeled corpus U using a standard Expectation-Maximization (EM) algo-
rithm for GMM training. Once these parameters are known, it is possible to compute the integral
in Eq. 3.6 and thus an estimate R̂(W) of the risk without relying on any labeled corpus. In (Bala-
subramanian et al., 2011), it has been proven that: (i) the Gaussian parameters estimated with EM
converge towards their true values, (ii) R̂(W) converges towards the true risk R(W) and (iii) the
estimated optimum converges towards the true optimal parameters, when the size of the unlabeled
corpus increases infinitely. This is still true even when the class priors P (y) are unknown.

The unsupervised algorithm is as follows:

Unsupervised tuning for the binary classifier c, where c = 1, ..., C

1: input: h the top hidden layer and the weights Wc, as trained by the deep learning decoder (Section 3.1.2).
2: output: The tuned weights Ŵc

3: repeat
4: for every index i in h do ,
5: Change the weights Wc

i = Wc
i + δ,
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3.1 Language Understanding

6: Estimate the Gaussian parameters using EM
7: Compute the risk (Eq. 3.6)13 on the unlabeled corpus U (i.e. the evaluation set).
8: Compute the gradient using finite differences
9: Update the weights accordingly ˆWc

i = Wc
i

10: end for
11: until convergence

Experiments

The supervised and unsupervised models are evaluated on DSTC3 (Henderson et al., 2014c) using
the macro F-Measure14. We compare then three distinct models, (i) independent neural models for
every binary classifier; (ii) neural models optimised jointly and (iii) further tuning of the weights
through RM.

Dataset As displayed in Table 3.9a in DSTC3 new slots were introduced relative to DSTC2. The
training set contains only a few examples of these slots while the test set contains a large number
of them. Interestingly, frequent values per slots in the trainset such as area=north, are absolutely
absent in the testset. In DSTC3 the dialogues are related to restaurants, pubs and coffee shops.
The new slots are: childrenallowed, hastv, hasinternet and near. Known slots, such as food, can
have zero-shot values as shown in Table 3.9b. The corpus contains 3246 dialogues, 25610 turns
in the trainset and 2264 dialogues, 18715 turns in the testset.

(a) Frequency of slots in DSTC3.

Slot #Train #Test

hastv 1 239

childrenallowed 2 119

near 3 74

hasinternet 4 215

area 3149 5384

food 5744 7809

(b) Some zero-shot values per slots in DSTC3.

Slot Value #Train #Test

near trinity college 0 5

food american 0 90

food chinese takeaway 0 87

area romsey 0 127

area girton 0 118

The Gaussianity Assumption As explained in Section 3.1.2, the risk minimisation tuning as-
sumes the class-conditional linear scores are distributed normally. We verified this assumption
empirically on our unlabeled corpus U (i.e. DSTC3 testset) and we found that for the slots: chil-
drenallowed, hastv and hasinternet this assumption holds. However, the distribution for near
has a negative skew. When verifying the values per slot, this assumption does not hold for area.
Therefore, we can not guarantee this method will work correctly for area values on this evaluation
set.

13A closed-form is used to compute the risk for binary classifiers. (Rojas Barahona and Cerisara, 2015)
14The macro F-score was chosen because we are evaluating the capacity of the classifiers to predict the correct

class and both classes positive and negative are equally important for our task. Moreover, being nearly zero-shot
classifiers, it would be unfair to evaluate only the capacity of predicting the positive category.
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(a) Results for learning rare slots on DSTC3 evalua-
tion set.

Deep Learning Independent Models

Slot F-Measure

childrenallowed 49.84%

hastv 49.68%

hasinternet 49.72%

near 49.90%

Deep Learning Joint Optimisation

childrenallowed 58.76%

hastv 59.16%

hasinternet 58.77%

near 56.65%

Risk Minimisation Tuning

childrenallowed 61.64%

hastv 61.35%

hasinternet 60.87%

near 58.60%

(b) Results for learning zero shot slot-value pairs on
DSTC3 evaluation set.

Deep Learning Independent Models

Slot Value F-Measure

near trinity college 49.99%

food american 49.88%

chinese take away 49.88%

area romsey 49.83%

girton 49.84%

Deep Learning Joint Optimisation

near trinity college 61.25%

food american 59.93%

chinese take away 61.02%

area romsey 51.30%

girton 55.19%

Risk Minimisation Tuning

near trinity college 62.08%

food american 62.52%

chinese take away 63.79%

area romsey 48.76%

girton 51.45%

Results

Tables 3.10a and 3.10b display the performance of the models that predict slots and values re-
spectively. The low F-Measure in the independent models shown their inability to predict pos-
itive examples. The models improve significantly the precision and F-Measure after the joint-
optimisation. Applying RM tuning results in the best F-Measure for all the rare slots (Table 3.10a)
and for the values of the slots food and near (Table 3.10b). For area, the joint optimisation im-
proves the F-Measure but the improvement is lower than for other slots. The performance is being
affected by its low cardinality (i.e. 20), the high variability of new places and the fact that frequent
values such as north and east, are completely absent in the test set. As suspected, the RM tuning
degraded the precision and F-Measure because the Gaussianity assumption does not hold for area.
However, RM will work well in larger evaluation sets because the Gaussian assumption will hold
when the unlabelled corpus tends to infinite (please refer to (Balasubramanian et al., 2011) for
the theoretical proofs).

3.2 Dialogue Manager

My work on dialogue management regards learning the reward function. First, I explored inverse
reinforcement learning to infer the reward function from human conversations on the EmoSpeech
dataset (Rojas-Barahona and Cerisara, 2014). Second, I trained a predictor of the interaction
quality to infer the reward function in the PyDial dialogue framework (Rojas-Barahona, 2020).
Last but not least, I co-supervised a PhD thesis on imitation learning to solve the problem of
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3.2 Dialogue Manager

the scarce reward signal in dialogue systems. Besides imitation learning (Cordier et al., 2020),
we also explored graph neural networks for handling policies in multi-domain and multi-task
environments (Cordier et al., 2022). Furthermore, we use both imitation and graph neural policies
for few-shot learning (Cordier et al., 2023).

3.2.1 Bayesian Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) was defined in (Ng et al., 2000) as the problem of recovering
the reward function from experts’ demonstrations. It learns an optimal reward, which leads to
a decision policy that follows as closely as possible the examples provided by experts, while
maximising the expected accumulated reward in the long run.

In (Ramachandran and Amir, 2007) we used Bayesian Inverse Reinforcement Learning (BIRL)
to infer human behaviour in the context of the Emospeech serious game (Section 3.1.1), given
evidence in the form of stored dialogues provided by experts, who played the role of several con-
versational agents in the game. We also reduce the computational complexity in large state spaces
by using the approach proposed by (Michini and How, 2012). Instead of designing in advance the
reward function to “properly instruct players”, which is a difficult and subjective task, we rather
propose to learn it from humans.

We evaluated BIRL in terms of policy loss (Michini and How, 2012) and is compared against
two baselines. The first one uses random rewards, while the second one exploits corpus-estimated
locally optimal rewards (i.e., supervised learning). The results show that the proposed approach
converges relatively quickly and consistently outperforms both baselines. This suggests that tak-
ing into account the dynamic properties of the environment leads to virtual characters that better
reproduce the behaviour of experts. Qualitatively, our models have thus learned to adequately
inform users and provide help when needed.

States, Actions and Transitions

As shown in Table 3.1, there are 12 distinct conversations in the game between 7 virtual characters
(VC) and 3 players. Each of these dialogues talks about mandatory and optional goals. The
player either asks for information about these goals or asks for help. Accordingly, the virtual
character either informs about the goals or provides help. It can also handle out of domain topics,
misunderstandings or request information (see example of dialogue in Figure 3.1).

We designed coarse-grained states containing user and system contributions to the dialogue;
either by explicitly asking about the domain specific tasks (i.e. the dialogue goals) or by producing
general dialogue acts (e.g., greeting, asking for help, acknowledgments, etc). A binary variable
that indicates whether the dialogue has finished is also included. With this state representation
we have 32 states for the shortest dialogue (the first dialogue in Table 3.1), and 432 states for the
longest dialogue (i.e., the third dialogue in Table 3.1 with 5 goals).

State variables

1. Has any of the characters ended the dialogue with a farewell action? : 1 for setting a terminal
state, 0 otherwise.
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2. The last goal either informed or requested by the system: 0 when the system has not in-
formed/requested about any goal, otherwise the goal id (e.g., from 1 to up to 5 for the
longest dialogue).

3. The last goal either asked or confirmed by the player: 0 when the user has not yet asked/-
confirmed about any goal, otherwise the id of the goal (e.g., from 1 to up to 5 for the longest
dialogue).

4. The last general dialogue act produced by the system: 0 for absence of general dialog act, 1
when providing help, and 2 when asking the player about the task to be solved (e.g., ”How
may I help you”).

5. The user has asked for help: 0 if the user has not asked for help, 1 otherwise.

Actions We are considering only the following actions in our experiments.

• quit: farewell greeting.

• inform(do(gi)): informing about how to achieve goal gi.

• inform(help): providing help

• ask(task(X)): Asking the player about the task, it corresponds to a general welcome sentence
(e.g., ”How may I help you”). Note that this action neither occurs in dialogue 1 nor in
dialogue 7.

• WAIT: the system gives the turn back to the user.

• ack: the system acknowledges understanding.

• other: the system answers to out of context turns.

Virtual characters always greet the player at the beginning; thus we do not need to learn this
behaviour.

Transition Function The transition function is not deterministic when the next state reflects
an (unpredictable) user action. This is typically the case after the WAIT system action. How-
ever, BIRL requires this transition function to be given, and we have thus estimated such non-
deterministic transition probabilities using smoothed counts from the observed corpus as follows:

P (s′|s, a) = N(s,a,s′)+α
N(s,a)+Nχα

Where N(s, a, s′) and N(s, a) are respectively the number of times the transition (s, a, s′) and
the state-action pair (s, a) have been observed in the corpus, and Nχ is the number of observed
state-action pairs. α is a smoothing constant arbitrarily set to 0.1.

The other transitions that reflect a system action are deterministic and have been defined as:

P (s′|s, a) =

{
1, if s′ = next s(s, a)
0, otherwise
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3.2 Dialogue Manager

Where next s(s, a) is a function that computes the next state given a system action a. For instance,
when the system informs about the first goal, g1, the action at = inform(do(g1)) yields the next
state s′ to have the state variable 2 set to 1.

Bayesian Inverse Reinforcement Learning

The IRL problem as defined in (Ng et al., 2000) is described as follows: given a finite state space
S, a set of actions A = {a1, a2, ...ak}, a transition probability P a

ss′ , a discount factor γ, and a
policy π, determine a set of possible reward functions R such that π is the optimal policy for the
given MDP. The IRL problem is an ill-posed problem (Abbeel and Ng, 2004), because potentially
an infinite number of rewards may be optimal. Bayesian IRL approaches model this uncertainty
by inferring the posterior distribution of the reward vector R, treating the demonstration sequences
as the evidence and relying on a prior on the reward function (Ramachandran and Amir, 2007).

The IRL agent receives a sequence of observations of the expert’s behaviour:
Oχ = {(s1, a1), (s2, a2), ..., (sk, ak)}, which means that at time step i, the virtual character χ

that mimics the expert is in state si and takes the action ai. After applying Bayes Theorem, the
posterior can be written as:

Pr(R|Oχ) =
Pr(Oχ|R)Pr(R)

Pr(Oχ)
(3.8)

We model next the reward function by a simple n-dimensional real vector, where n is the
number of different states. Then, Pr(R|Oχ) is the posterior distribution of the reward vector
given the observed state-action pairs of the expert. Pr(Oχ|R) is the likelihood of the observed
expert state-action pairs given the reward vector R. This likelihood is modelled in (Ramachandran
and Amir, 2007) with a parameter α representing the degree of confidence we have in the expert’s
ability to choose a good action as follows:

Pr(Oχ|R) =
1

Z
eα

∑
i Q

∗(si,ai,R) (3.9)

Pr(R) is the prior distribution and Pr(Oχ) is the probability of the evidence over the entire
space of reward vectors R, which is not needed in the BIRL algorithm. The original BIRL algo-
rithm, namely PolicyWalk, follows a Markov Chain Monte Carlo (MCMC) technique iterating as
follows: Given a reward vector R, it performs random walks over the neighbours of R on a grid
of length δ, finding a new proposal R̄, such that: R̄(s) = R(s)± δ. The proposal is accepted with
probability min{1, Pr(R̄|O)

Pr(R|O)
}, where the posterior is given by Eq (3.8).

The expected value of the reward given this posterior is then computed over all these samples.
Note that the normalising constants cancel out in the ratio used to accept the proposed R̄(s) and
that finding Q∗ in Eq (3.9) requires to solve the MDP at every MCMC iteration. This can be done
for example with the policy iteration (PI) algorithm (Sutton and Barto, 2018).

BIRL converges slowly when applied to large state spaces. One reason for this is that it infers
the reward of every state, although many states have little expert evidence. Second, searching over
a reward function space easily increases the number of MCMC iterations needed to approximate
the mean of the posterior. To solve these limitations, (Michini and How, 2012) proposed a
modified BIRL (MBIRL) that:

• infers only those states that are similar to the observed ones according to a kernel-based
relevance function.
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• uses simulated annealing to focus the sampled distribution around its maximum, hence re-
ducing the number of samples needed to converge. Therefore, they use a modified accep-

tance probability of
(

Pr(R̄|O)
Pr(R|O)

) 1
Ti where Ti is a decreasing cooling schedule.

Experiments

We introduce the baselines, the evaluation metrics, and the experiment setup for 12 dialogues in
the game.

Baselines We evaluate the performances of the proposed system by comparing it with two base-
lines:

• Using random rewards (RR);

• Exploiting ”locally-estimated“ rewards (LR), i.e., rewards that are trained on the corpus
with the additional assumptions that the reward prior Pr(R) is uniform, that the states
are conditionally independent given the reward P (Oχ|R) =

∏
i P (si|R) and that the state

likelihood is multinomial with parameters representing the reward P (s = k|R) = Rk, so
that the path that maximizes the cumulated reward also maximizes the likelihood. Then:

argmax
R

Pr(R|Oχ) = argmax
R

Pr(Oχ|R)

= argmax
R

∏
i

P (si|R) (3.10)

Let nk be the number of times the kth state occurs in the expert observations: nk = |{(si =
k, ai)}i∈Oχ|

Then we want to maximize the likelihood
∏

k P (s = k|R)nk under the constraint
∑

k Rk =
1, which gives the locally optimum reward:

R̂k =
nk

Nχ

with Nχ = |{(si, ai)}i∈Oχ | the number of observed state-action pairs.

Evaluation Metrics We consider two evaluation metrics: the policy loss (Michini and How,
2012) and the system training time.

• Policy loss: The policy loss is the ratio n̸=

Nχ
, where n ̸= = |{(si, ai ̸= π(si))}i∈Oχ| is the

number of expert state-action pairs that disagree with the learned policy π and Nχ =
|{(si, ai)}i∈Oχ | is the number of observed state-action pairs.

• Elapsed time: The time in milliseconds it takes to MBIRL and to the policy iteration algo-
rithms to finish.
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3.2 Dialogue Manager

Figure 3.5: Comparison of expert vs. MBIRL trajectories for dialogues 7 (top) and 2 (bottom).
(a) and (c) depict expert trajectories, while (b) and (d) show the trajectories of MBIRL optimal
policy π.

Performance: Two important issues affect performance: the size of the state-space and the lim-
ited number of expert observations. In general MBIRL outperforms both locally-optimal and
random rewards.However, with a larger state-action space such as in dialogue 3, 4 and 8, the mod-
els do not improve over the locally-optimal reward, which suggests that the number of samples
that are generated is not large enough. Moreover, for state spaces greater than 300 states, MBIRL
takes a prohibitively long running time to finish. The huge computational expense for large state
spaces is an important limitation of MBIRL since it needs to solve one RL problem per iteration.
A potential solution to this issue might be to use appropriate function approximation both for the
Q function and for modelling the reward function R, but this is left for future work.

Unsurprisingly, the MBIRL policy loss is higher for optional dialogues (such as dialogue 10
and 12) showing that the scarce number of observations significantly affects performance.

Trajectories: Figure 3.5 shows two dialogue trajectory excerpts with both the gold (or expert)
trajectory and the trajectory inferred by MBIRL. Interestingly, in most of the dialogues, both
trajectories coincide in the first state and in those states where the system has to inform about
mandatory goals just after explicitly requested by the user. This is also the case of the states
where the system properly provides help as requested by the user. On the other hand, the learned
policy usually fails to close the dialogue and it sometimes contains repetitions e.g., once it has
informed about a goal, it may inform again later on.

For more details please refer to (Rojas-Barahona and Cerisara, 2014).

3.2.2 Is the User Enjoying the Conversation?
The impact of user satisfaction in policy learning for task-oriented dialogue systems has long
been a subject of research interest (Walker et al., 1997b; Schmitt et al., 2011; Ultes et al., 2015;
Ultes, 2019). Similarly, sentiment analysis has been widely adopted to analyse massive blogs,
recommendations tweets and reviews (Rojas-Barahona, 2016; Do et al., 2019). Although senti-
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ment analysis can be used to infer user satisfaction, most of the work that incorporates sentiment
analysis in dialogue focused on the generation of empathetic responses in end-to-end chitchat di-
alogues (Lee et al., 2018; Ma et al., 2020). Moreover, most sentiment analysis solutions focus
on the analysis of out-of-context short texts (Rojas-Barahona, 2016). In this work we are inter-
ested in the study of user satisfaction for measuring the quality of the interaction in task-oriented
dialogues, in which dialogue is modelled as a POMDP (Young et al., 2013a).

First we study distinct neural networks that use distributed representations for predicting satis-
faction scores. At this stage we would like to answer the following question: does relying only on
distributed representations improve the performance of neural models? Therefore, we evaluate the
performance of hierarchical networks and state-of-the-art Transformers. Second, we evaluate the
impact of using the best trained network for computing the reward function within a POMDP dia-
logue framework (Ultes et al., 2017b). We would like to determine how realistic it is to incorporate
user satisfaction estimators that rely solely on distributional semantics in reinforcement learning
(RL) dialogue systems. This approach can be used for instance to train satisfaction predictors
from large human-human chats, in which satisfaction has been self-scored by users.

The case study is the English LEGO corpus of human-machine spoken conversations (Schmitt
et al., 2012), which has been annotated at each system turn with the Interaction Quality (IQ), rang-
ing from 1 (poor quality) to 5 (good quality). Our results suggest that distributed representations
do outperform state-of-the-art models trained on fine-tuned features. We also show that using IQ
estimators in the reward function greatly improves the task success rate for dialogues in the same
domain the networks were trained on, which in this case is the Let’s Go domain (Raux et al.,
2005).

Networks for Estimating the User Satisfaction

We study three distinct neural networks: hierarchical bi-directional Gated Recurrent Units(GRUs) (Cho
et al., 2014) with attention , Transformers for generating contextual embeddings that feed a GRU
layer and solely Transformers (Vaswani et al., 2017). We are interested in studying the impact of
context-length in transformers, because real dialogues can easily attain a context of thousands of
tokens (Table 3.11). Therefore, we explore BERT (Devlin et al., 2018), DistilBERT (Sanh et al.,
2019) and Transformers eXtra-Large (Transformers-XL) (Dai et al., 2019).

(i) Hierarchical GRUs: Figure 3.6(a) shows the network. It has a Bidirectional GRU layer (Bi-
GRU) at the lower level that returns the turn representation htk Attention is used to weight relevant
units in the turn hidden representation. Then, a GRU layer is then used to process dialogues as a
sequence of turns. The last layer is a Softmax that predicts the most probable IQ class from 0 up
to 5.

(ii) Contextual embeddings + GRU: We investigate the use of transformers as turn representa-
tions thus we propose a BERT-like transformer, which inputs are the tokens of the turn. The turn
representations then feed a GRU layer. The output of the GRU then feeds a Softmax layer for
predicting the score.

(iii) Transformer: This network is depicted in Figure 3.6(c). It consists in a transformer that
takes as input the tokens tok1, ..., tokD of the previous and current utterances. Then the output
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3.2 Dialogue Manager

(a) Hierarchical GRUs (b) Contextual embeddings+GRU (c) Transformer

Figure 3.6: The proposed neural architectures for predicting the user satisfaction. ETk in (a) is the
embedding for the kth token of the last turn (t = T ). In (b) tokT1 = [CLS] and tokTk = [SEP]
after applying the WordPiece tokenization to the last turn (t = T ). In (c) tok1, ..., tokD are the
tokens of the dialogue after applying the WordPiece tokenization, in which tok1 = [CLS] and the
token [SEP] marks turn separation. tokD−1 is the last token of the last utterance in the dialogue
and tokD = [SEP].

[CLS] of the transformer feeds a Softmax layer for predicting the score of the current utterance.
We evaluate the prediction yt at each system turn t. The back-propagation optimisation is done

by minimising the cross-entropy loss function Tieleman and Hinton (2012) through stochastic
gradient descent.

The Reward Function in a POMDP Dialogue System

Figure 3.7, shows the architecture connected to a reward estimator. In the Let’s Go bus-scheduled
information system, the slots might be origin for the bus departure place and time for the
departure time. The state s might record the current value and confidence level of each slot. From
the state, a belief state b is extracted and an action a is decided based on a dialogue policy. Once
the appropriate action is determined, it is converted to a textual message and then rendered by a
speech synthesiser.

The reward function most commonly adopted for task-oriented dialogues penalises every di-
alogue turn with −1 and sums a reward of +20 at the end of the dialogue whenever the system
provided the right information to the user or 0 otherwise (Eq. 3.11) (Gašić and Young, 2013).

RTS = T · (−1) + 1TS · 20 (3.11)

In this work the reward estimator is based on the IQ as defined in (Ultes, 2019).

RIQ = T · (−1) + (iq − 1) · 5 (3.12)

Where RIQ describes the final reward, iq is the IQ value predicted by the classifier (Section 3.2.2),
which is a number from 1 to 5, where 1 represents poor quality and 5 good quality.
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Figure 3.7: A POMDP spoken dialogue system with the interaction quality estimator.

We used PyDial (Ultes et al., 2017b), the publicly available POMDP dialogue framework
and we implemented an application programming interface (API) that returns the IQ estimation
predicted by the neural models presented above. Usually, RL systems first learn the policy on
a simulated user until an optimal performance is reached, then they are ready to be tested by
humans.

Experiments

In this section we introduce the corpus as well as describe the experiments and the evaluation
metrics.

The Dataset The LEGO corpus collects spoken dialogues between users and the Let’s Go di-
alogue system Raux et al. (2005), which provides bus schedule information to the Pittsburgh
population during off-peak times. 400 dialogues in the corpus have been manually annotated with
the IQ score Schmitt et al. (2012). Since conversations in LEGO are system-initiative they have
a lot of system interactions such as misunderstandings, confirmations and repetitions, producing
quite long dialogues (i.e. hundreds of turns).

The complexity of the corpus is presented in Table 3.11, containing long dialogues of up to
200 turns with up to 76 tokens per turn.

User Satisfaction Estimators We compared our networks with the networks presented in Ultes
(2019) for predicting the IQ with the following evaluation metrics: the unweighted average recall
(UAR), which is the arithmetic average of all class-wise recalls, as well as a linearly weighted
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N. Dialogues Dialogue length Max.turn length Max. toks p/dial.
(max/mean/median) (max/mean/median) (max/mean/median)

400 200/65/53 76/26/24 6590/1444/1089

Table 3.11: The LEGO corpus with IQ annotations. Its complexity is measured by the maximum
dialogue length (number of turns per dialogue), the maximum turn length (number of tokens per
turn) and the maximum number of tokens per dialogue.

version of Cohen’s κ and Spearman’s ρ. The experiments were conducted in a 10-fold cross-
validation, assuring that the same dialogue did not slip into different folds (i.e. dialogue-wise cross
validation). We studied the length of the dialogue context: the turn for which we are predicting
the score and the previous turns. We vary the context length and find an optimal context length of
up to 100 turns per dialogue for BiGRUs.

Table 3.12 shows that the BiGRUs network trained on word embeddings outperformed the
state-of-the-art (BiLSTM+att) networks in all performance measures, obtaining an absolute im-
provement of +1 for UAR, +9 for κ and +2 for ρ. It is worth noting that the state-of-the-art
(BiLSTM+att) networks were trained on fine-tuned turn features.

These results are encouraging and suggest that distributed representations impact positively
the performance of satisfaction estimators in hierarchical networks. We would like to study in the
next section whether these models can be used to predict task success in dialogue systems.

Predicting IQ
Model UAR κ ρ
SVM feats Ultes (2019) 44% 53% 69%
BiLSTM+att feats Ultes (2019) 54% 65% 81%
BiGRUs 55% 74% 83%
DBert+GRU 35% 57% 42%
Trans-XL(ctxt≈1K) 47% 59% 67%
Trans-XL(ctxt≈2K) 44% 58% 67%

Table 3.12: Performance of the proposed models. The BiGRUs with FastText embeddings out-
perform all the networks trained on fine-tuned turn features

.

BERT-based Transformers do not perform well for this task on this dataset when using them
to get the turn representations. This can be explained by the large number of turns dialogues have
(i.e., up to 200 turns), the large number of parameters a transformer needs and the quite short
annotated dataset (≈ 400 dialogues). We first tried (BERT+GRU) and due to its large memory
requirement, we could only learn weights of up to 7 dialogue turns per dialogue in a cluster of
32GB-GPU machines (all the other turns representations were frozen). However, with DistilBERT
we could treat up to 15 turns per dialogue while maintaining the same performance. Fortunately,
we could process larger contexts with Transformers-XL, reaching an optimal performance with
≈ 1K dialogue tokens. The results of Transformers-XL are comparable with the SVM baseline
trained on fine-tuned features, yielding a better UAR (+3) and κ (+6) as well as a slightly lower
ρ (−2). Having larger contexts ≈ 2K do not seem to impact significantly their performance.
These results suggest that in 32GB-GPU nodes the large context length (i.e. up to 6.5K tokens per
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dialogue) is affecting transformers performance as they will require a prohibited usage of GPU
memory to process the whole context.

The Impact on the Reward Function We evaluated the impact of the IQ estimators presented
in Section 3.2.2 on the reward function for the Let’s Go (LetsGo) domain by using PyDial (Ultes
et al., 2017b).

The Let’s Go dialogue system provides information about bus time-schedule according to
the constraints: origin, destination, time and route, which corresponds to LetsGo(4).
LestGo(6) also considers origin neighbourhood and destination neighbourhood. It is
important to note that the Let’s Go domain is far more complex in terms of the number of database
items than other domains available in PyDial.

The experiments run on simulated dialogues as in (Ultes, 2019; Casanueva et al., 2017b). We
implemented a template-based generator for the user and the system utterances for the Let’s Go
domain because our models rely on textual inputs (i.e. distributed representations). We compared
our models in an environment without noise because unlike (Casanueva et al., 2017b) and (Ultes,
2019) the simulator in this work runs at the surface-level and not at the semantic-level and the
noise used for User-Simulation in PyDial alters the semantic-dialogue acts regardless the surface
form. In addition, we would like to apply these methods to chatbots, thus simulating ASR noise
would not be appropriate and studying a more appropriated noise is out of the scope of this paper.

Domain Reward Task Success Rate(↑) Average Turns(↓)
LetsGo(4) RTS 99%± 1.4 6.5± 0.96

RIQ 99%± 2.1 6.3± 0.8
LetsGo(6) RTS 81%± 7.78 11± 1.09

RIQ 97%± 3.98 8.9± 1.26

Table 3.13: Task success rate of the simulated experiments for the Let’s Go domain over three
runs with distinct seeds. Each value is computed after 1000 training dialogues/100 evaluation.

We used a policy model based on the GP-SARSA algorithm (Gašić and Young, 2013), which
is a sample efficient Gaussian process approximation to the value function. We used the focus
tracker (Henderson et al., 2014b) for belief tracking. The policy decides on summary actions of
the dialogue state tracker which are based on dialogue acts (e.g., request, inform or confirm). The
task success rate was the metric used to measure the dialogue performance (Casanueva et al.,
2017b).

We observe in Table 3.13 that the reward computed with RIQ outperforms the classical RTS

reward when having more constraints, namely LetsGO (6). Moreover, dialogues rewarded by
RIQ tend to be significantly shorter. Although there is not significant distinction between RTS

and RIQ in terms of the task success for LetsGO (4), dialogues are slightly short with RIQ. We
also conducted preliminary experiments on domain transfer by evaluating RIQ on the Cambridge
Restaurants domain, obtaining a success rate of 44 ± 25.7, compared to 99 ± 1.83 for RTS . Un-
surprisingly, RTS and feature-based RIQ (Ultes, 2019) are more robust to unknown domains than
embedding-based RIQ because both task-success and quality features are domain-agnostic.

For more details, please refer to (Rojas-Barahona, 2020).
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3.2.3 Imitation Learning
This section introduces the work of the PhD candidate Thibault Cordier, who I co-supervised
together with Dr.Tanguy Urvoy and Professor Fabrice Lefevre. This work explores imitation
learning for learning the policy on single domains. It has been published in the NeurIPS workshop
Human in the loop dialogue systems (Cordier et al., 2020).

Deep RL (DRL) (Li, 2018) has achieved significant success on many complex decision-
making problems and in particular in conversational AI (Gao et al., 2018). The ability to learn
from few interactions is essential in dialogue applications because human interactions are scarce
and costly. Unfortunately, standard RL algorithms usually require a large amount of interactions
with the environment to reach good performances. One solution to speedup the learning process
is to guide the agent’s exploration like stochastic learning policies such us soft-kind (Haarnoja
et al., 2017, 2018; Gao et al., 2019). The first question we address here is: (i) can dialogue policy
learning be improved with stochastic off-policy learning methods?

Several methods search a way to exploit demonstrations to accelerate the learning with the
conviction that demonstrations are the solution to the sparse reward (Hester et al., 2017). They
can be based on Imitation Learning (IL) to learn an ”optimal” policy function or on Inverse Rein-
forcement Learning (IRL) to learn an ”optimal” reward function. Demonstrations may be useful
to guide efficiently the exploration. We consider that human expertise can be used in different
ways. The most classical one is to use demonstrations that humans have already produced. An-
other way is to use a rule-based agent, namely handcrafted, that has been designed, evaluated and
fine-tuned by humans. Indeed, (Casanueva et al., 2017c) have shown that handcrafted approaches
still perform better than policy learning approaches.

Moreover it is well known that human interactions and manually crafted rules are not only
costly but also time consuming; while simulated interactions are cheaper and easier to collect (Su
et al., 2016; Schatzmann et al., 2006). Therefore, the second issue that raised in our work is:
(ii) can we use demonstrations without supervision and only as a way to guide exploration in an
on-line learning?

Proposed Approach

The proposed approach to policy learning is based on Boltzmann sampling, and to which we
integrate demonstrations directly into the RL process in order to better guide exploration and make
relevant exploitation. RL is usually implemented as either value-based method as Q-learning
or policy-based method as actor-critic. Both are our baselines with which we will make our
contributions.

Baselines Q-learning is the combination of Double and Duelling Deep-Q-Network with Expe-
rience Replay (DQN/D3QN) (van Hasselt et al., 2015; Wang et al., 2016b). In short, DQN is
an approximation function that searches to estimate the optimal state-action value function (or
Q-value). The Double DQN architecture is an alternative method that mitigates the problem of
overoptimistic value estimation and the Duelling DQN architecture is for learning more efficiently
by decoupling value and advantage functions. On top of that, experience replay can be added for
reducing sample correlation and for improving sample efficiency.

The actor-critic baseline is the Trust Region Policy Optimisation for Actor-Critic with Ex-
perience Replay (A2C/ACER/TRACER) (Wang et al., 2017; Weisz et al., 2018b). In brief, an
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actor π tries to maximise the expected reward when in the same time a critic Q learned separately
evaluates the actor decisions.

The importance sampling truncation with bias correction is used to correct the perceived sam-
pling distribution induced by experience replay in order to reduce variance. We apply the Re-
trace algorithm (Munos et al., 2016) to recursively estimate the advantage function in safe and
efficient way with small bias and variance. Finally, we use the trust region policy optimisation
(TRPO) (Schulman et al., 2015) for adjusting the policy gradient in order to learn in a safe param-
eters region limiting the deterioration of the policy performance.

Exploration Strategy

The exploration strategy learns and plays a stochastic policy related to energy-based model. We
propose to learn an energy-based policy in the dialogue environment where the agent samples his
actions according to Boltzmann’s stochastic sampling (Haarnoja et al., 2017). We opt for using
energy-based policies of the following form:

π(at|bt) ∝ exp(−E(bt, at)) (3.13)

When using value-based method, the energy function can be represented by the Q-function
with parameter τ , the temperature, where we set E(bt, at) = − 1

τ
Qπ(bt, at). When using policy-

based method, the energy function is directly represented by the policy network and so is learned
implicitly.

A stochastic sampling can be achieved by the Boltzmann sampling. Contrary to the commonly
used strategy as ϵ-greedy where actions at are sampled from argmaxa (1− ϵ) argmaxa π(a|bt) +
ϵU(A) where U(A) is an uniform distribution over action space, the Boltzmann sampling strategy
samples actions from exp(−E(bt, at)), hence at ∼ π(at|bt).

One of its advantages is that policy learning is less influenced by the policy function changes.
Conversely, the ϵ-greedy sampling faces sudden jumps in action choices due to the argmax oper-
ator. So in theory, the Boltzmann strategy can make learning more stable than the ϵ-greedy.

Another advantage is that the temperature parameter can control the exploration-exploitation
balance. So, to counter the weakness of its exploitation, it can be interesting to define correctly
the temperature.

In practice, we decide to add random exploration in such a way that the actions are sampled
according to at ∼ (1 − ϵ)π(at|bt) + ϵU(A), namely ϵ-Boltzmann sampling, with decreasing ϵ
parameter in order to explore enough before following the stochastic policy with a fixed τ tem-
perature parameter.

Imitation Learning Strategies

During the reinforcement learning process, demonstrations can serve as an efficient way to explore
the environment. Indeed, they can lead the agent to receive rewards promptly and so can lead it
to exploit confident winning trajectories quickly. A handcrafted agent is used to simulate near-
optimal demonstrations and feed-backs. It offers good performance compared with the other deep
learning methods. Also, it has been designed, evaluated and fine-tuned by humans. Thus it is a
way to mimic human expertise and can be served as a near-optimal expert in our experimentation.
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3.2 Dialogue Manager

We propose two demonstration sampling strategies corresponding to two different ways of
using the knowledge of an expert.

A) Learning with demonstrations: Let us assume that we learn with an offline expert i.e.
demonstrations are given before learning. We propose that in β (in percent) of dialogues, the agent
plays for itself. Otherwise in 1 − β of dialogues, the expert gives to the agent one of its expert
trajectories as demonstration and the agent replays the dialogue as if it was the one who played it.
Therefore, the agent learns as if they are two datasets. The first one contains its trajectories and
the second the expert demonstrations.

B) Learning with feed-backs: Let us assume that we learn with an online expert i.e. demon-
strations are given during learning. We propose that in β (in percent) of dialogue actions, the agent
plays for itself. Otherwise in 1 − β of dialogue actions, the expert gives to the agent its expert
action as feed-back and the agent plays the dialogue action as if it was its choice.

This technique let the agent explore the environment by playing relevant actions in a given
state. In other words, it learns about its trajectories in which the expert can redirect it at any
moment to more relevant action, as DAgger does (Ross et al., 2011).

Experiments

In our experiments the Pydial framework (Ultes et al., 2017c) is used, which implements an
agenda-based user simulation (Schatzmann et al., 2007). As in (Casanueva et al., 2017c) we
tested our algorithms for policy learning on different domains and in different environments by
increasing the inputs’ noise. The domains in PyDial differ from each other by the ontology size,
impacting the state and action space dimensions.

We evaluate the learned policies according to three levels of noise with respect to the semantic
error rate (SER). This corresponds to the noise that comes from the ASR and the NLU channels.
In Pydial, this is modelled at the semantic level whereby the true user action is corrupted by noise
to generate an N-best-list with associated confidence scores.

Table 3.14 shows the compared policy models. HDC corresponds to the handcrafted policy
learning, which is a rule-based approach written by experts. DQN and ACER are the baselines
enhanced with stochastic (stoc) exploration and either behaviour cloning (BC) or feedbacks (FB).

Method name Abbrev.

Handcrafted Policy HDC

Stochastic Q-learning Stoc-DQN
Stochastic Q-learning with Demonstrations Stoc-DQN-BC
Stochastic Q-learning with Feed-backs Stoc-DQN-FB

Stochastic Actor-Critic Stoc-ACER
Stochastic Actor-Critic with Demonstrations Stoc-ACER-BC
Stochastic Actor-Critic with Feed-backs Stoc-ACER-FB

Table 3.14: Overview of proposed methods
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We performed a long training stage over 10 000 dialogues. This will evaluate the contribution
of stochastic sampling strategy during training and testing stages. Here we search to answer the
question: can we improve dialogue policy learning with stochastic off-policy learning methods
in order to compete the handcrafted agent? All methods are evaluated after training over 1 000
dialogues during which the learned policy is fixed. For the second experiments, we decide to
compute the average performance over the last five checkpoints from dialogue indices 6 000 to
10 000 with a step of 1 000 dialogues. This calculation is done in order to reduce variance induced
by RL when we estimate the performance of the models.

Results

The results are presented in Table 3.15. In most environments, methods learn very well com-
pared to the benchmarks (Casanueva et al., 2017c). Furthermore, some of them can compete with
the handcrafted agent whether it is a stochastic Q-learning approach or a stochastic actor-critic
approach. For instance, Stoc-DQN-BC outperforms handcrafted expert with 30% SER for lap-
tops and SFR. Stochastic ACER was more robust to the different environments, showing better
performance, particularly for Stoc-ACER-BC with 30% SER for laptops.

Stoc-DQN Stoc-DQN-BC Stoc-DQN-FB HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

0% SER
CR 97.48% 12.67 98.34% 13.30 98.88% 13.46 100.0% 14.00
SFR 94.18% 10.99 87.40% 9.58 95.62% 10.94 98.2% 12.40
LAP 95.08% 11.10 98.10% 11.76 98.40% 11.77 97.0% 11.70

15% SER
CR 92.22% 10.29 94.16% 11.26 95.76% 11.64 96.7% 11.00
SFR 90.64% 8.56 88.70% 8.06 89.22% 8.21 90.9% 9.00
LAP 90.34% 8.59 92.56% 9.40 91.86% 9.19 89.6% 8.70

30% SER
CR 84.32% 7.73 85.36% 8.64 85.46% 8.65 89.6% 9.30
SFR 82.48% 5.11 80.26% 5.05 80.34% 4.63 79.0% 6.00
LAP 82.24% 5.89 84.62% 6.25 83.40% 6.00 76.1% 5.30

Stoc-ACER Stoc-ACER-BC Stoc-ACER-FB HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

0% SER
CR 99.60% 14.02 99.64% 14.03 99.30% 13.87 100.0% 14.00
SFR 97.66% 12.36 96.48% 11.98 96.34% 11.98 98.2% 12.40
LAP 95.24% 11.23 95.34% 11.28 95.40% 11.24 97.0% 11.70

15% SER
CR 97.56% 12.69 95.80% 12.32 96.78% 12.59 96.7% 11.00
SFR 88.62% 9.26 87.64% 8.91 86.98% 8.67 90.9% 9.00
LAP 88.74% 8.72 88.00% 8.55 86.26% 8.24 89.6% 8.70

30% SER
CR 89.82% 10.19 89.38% 9.98 89.32% 10.04 89.6% 9.30
SFR 72.74% 4.38 78.22% 5.45 71.02% 4.37 79.0% 6.00
LAP 75.80% 4.86 78.66% 5.40 77.82% 5.23 76.1% 5.30

Table 3.15: Results of Experiment 2. Long term learning, average from 6 000 to 10 000 training
dialogues, for 1 000 testing dialogue. Each bold result represent better models than the handcrafted
agent.

These results are encouraging and suggest that stochastic sampling makes it possible to learn a
policy that performs as well as the handcrafted agent, which has been designed and fine-tuned by
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3.2 Dialogue Manager

humans, even in hard environments. Also, these results show that demonstrations can significantly
contribute to improve the performance at early learning stages.

3.2.4 Hierarchical Imitation Learning
This section also presents the work of the PhD candidate Thibault Cordier, who I co-supervised
together with Dr.Tanguy Urvoy and Professor Fabrice Lefevre. This work has been published
in Cordier et al. (2022).

We explore Graph Neural Network (GNN) for learning the policy in multi-domain and multi-
task environments, in which several domains and tasks can be evoked in the same conversation.

In practice, real applications like personal assistants or chatbots must deal with multiple tasks:
the user may first want to find a hotel (first task), then book it (second task). Moreover, the tasks
may cover several domains: the user may want to find a hotel (first task, first domain), book it
(second task, first domain), and then find a restaurant nearby (first task, second domain).

One way of handling this complexity is to rely on a domain hierarchy which decomposes the
decision-making process;another way is to switch easily from one domain to another by scaling
up the policy.

Although structured dialogue policies can adapt quickly from a domain to another Chen et al.
(2020), covering multiple domains remains a hard task because it increases the dimensions of
the state and action spaces while the reward signal remains sparse. A common technique to
circumvent this reward scarcity is to guide the learning by injecting some knowledge through a
teacher policy 15.

We study how structured policies like graph neural networks (GNN) combined with some
degree of imitation learning (Imitation Learning (IL)) can be effective to handle multi-domain
scenarios.

We provide large scale experiments in a dedicated framework (Zhu et al., 2020) in which we
analyse the performance of different types of policies, from multi-domain policy to generic policy,
with different levels of imitation learning.

Dialogue State / Action Representations

One way of standardising the slot representation into a common feature space is to use Domain
Independent Parametrisation (DIP) (Wang et al., 2015) parametrisation. We adopt DIP as state
and action representations, which are not reduced to a flat vector but to a set of sub-vectors: one
corresponding to the domain parametrisation (or domain representation), the others to the slots
parametrisation (or slot representations). For any active domain, the input to the domain represen-
tation is the concatenation of the previous domain user and system actions (see examples of the
output below, and a formal definition in Section 3.2.4), the number of entities fulfilling the user’s
constraints in the database, the booleans indicating if the dialogue is terminated and whether an
offer has been found / booked. The output corresponds to action scores such as REQMORE, OF-
FER, BOOK, GREAT, etc. Regarding the slot representation, its input is composed of the previous
slot-dependent user and system actions (see output below), the booleans indicating if a value is
known and whether the slot is needed for the find / book tasks. Its output are actions scores such

15 For deployment the teacher is expected to be a human expert, however, for experimentation purposes we used
the handcrafted policy as a proxy (Casanueva et al., 2017c).
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as INFORM, REQUEST and SELECT. The parameterisation used depends on the representation of
the deterministic states of CONVLAB which does not consider the uncertainty in the predictions
made by the natural language understanding (NLU) module.

Graph Neural Network

(a) FNN layer with DIP. (b) GNN layer with DIP.

Figure 3.8: Structure of the layers with DIP. The central box represents the weight matrix of
a layer Wl. It can be decomposed into sub-matrices Wl

i,j . The white sub-matrices represent
any sub-weight and the coloured sub-matrices represent shared sub-weights. The circles repre-
sent input and output graph nodes. The domain representations are depicted in yellow; the slot
representations in green and red.

(a) FNN. (b) HFNN. (c) HGNN. (d) UHGNN.

Figure 3.9: Policy and input data structures. Different levels of structure are presented from
classical feed-forward neural network (FNN) to graph neural network (GNN). The prefix H-
corresponds to a hierarchical policy and UH- corresponds to a unique sub-policy for all domains.
For a FNN layer, the input data is the concatenation of all DIP slot representations. For a GNN
layer, the input keeps its structure.

Prior knowledge can be integrated in our models by constraining the layer structure impos-
ing symmetries in the neural policies. Without prior knowledge, the standard structure used is
the feed-forward neural network layer (FNN) as represented in Figure 3.8a. This unconstrained
structure does not assume any symmetry in the network.
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3.2 Dialogue Manager

Assuming that sub-policies associated with the slots are the same, a better alternative is to use
the graph neural network layer (GNN) presented in Figure 3.8b. This structure assumes that the
state and action representations have a graph structure that are identically parameterised by DIP.
The GNN structure is a fully connected and directed graph, in which each node represents a sub-
policy associated with a slot and a directed edge between two sub-policies represents a message
passing. We identify two roles for sub-policies: the general node as I-NODE associated to the do-
main representation and the slot nodes denoted as S-NODE associated to the slot representations.
Both representations were introduced in Section 3.2.4. We also identify the relations: I2S for
I-NODE to S-NODE, S2I and S2S respectively.

We formally define the GNN structure as follows. Let n be the number of slots and L the
number of layers. Let be x the dialogue state, x0 = ϕ0(x), hl

0 ∀l ∈ [0, L−1] and y0 be respectively
the input, hidden and output I-NODE representations. Let the input, hidden and output S-NODES

representations be respectively ∀i ∈ [1, n], xi = ϕi(x), hl
i ∀l ∈ [0, L− 1] and yi. First, the GNN

transforms inputs:

∀i ∈ [0, n], h0
i = F 0

i (ϕi(x))

with F 0
i (h) = σ0(W0

ih+ b0
i )

(3.14)

Then, at the l-th layer, it computes the hidden nodes representations (Eq. 3.15a) by follow-
ing message sending16 (Eq. 3.15b), message aggregation (Eq. 3.15c) and representation update
(Eq. 3.15d):

∀i ∈ [0, n], hl
i = F l

i (h
l−1) (3.15a)

ml
i←j = M l

i←j(h
l−1
j ) (3.15b)

ml
i = Al

i(m
l
i←∗) (3.15c)

hl
i = U l

i (m
l
i) = σl(ml

i) (3.15d)

The message sending function M l
i←j is a linear transformation with bias. The message aggregation

function Al
i is the average pooling function. The representation update function U l

i compute the
new hidden representation with RELU activation function and dropout technique during learning
stage. Finally, the GNN concatenates (⊕ symbol) all final nodes representations and computes the
policy function with the Softmax activation function.

y = σL(
n⊕

i=0

WL
i h

L−1
i + bL

i ) (3.16)

Imitation Learning

In addition to the structured architecture, we use some level of IL to guide the agent’s exploration.
In our experiments, we used CONVLAB’s handcrafted policy as a teacher 15, but other policies
could be used as well. Behaviour cloning (BC) is a pure supervised learning method that tries to
mimic the teacher policy. Its loss function is the cross-entropy loss as in a classification problem.
Imitation Learning From Oracle Demonstrations (ILFOD) is a RL method which allows the agent

16The notation i ← j denotes a message sending from slot j to slot i. It also corresponds to the directed relation
between the slots j and i. The notation i← ∗ denotes all messages sending to slot i.
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to play oracle actions as demonstrations and to inject them in its replay buffer. The same presented
in Section 3.2.3. In our experiments, we kept half of the agent’s own actions in the buffer along
with those generated by the oracle. Imitation Learning From Oracle Supervision (ILFOS) is the
combination of supervised and reinforcement learning when the agent learns with a supervised
loss, namely the margin loss Hester et al. (2018).

Experiments on GNN and Imitation Learning

We performed an ablation study: (i) by progressively extending the baseline to our proposed
GNNs and (ii) by guiding the exploration with IL. All the experiments were restarted 10 times
with random initialisations and the results evaluated on 500 dialogues were averaged. Each learn-
ing trajectory was kept up to 10,000 dialogues with a step of 1,000 dialogues in order to analyse
the variability and stability of the methods.

Models The baseline is ACER which is a sophisticated actor-critic method (Wang et al., 2016a).
After an ablation study, we progressively added some notion of hierarchy to FNNs to approximate
the structure of GNNs. FNN is a feed-forward neural network with DIP parametrisation. Thus,
the agent actions are single-actions. FNN-REF is a FNN with the native parametrisation (no
DIP) with multiple-actions of CONVLAB17. HFNN is a hierarchical policy with domain-selection
module and based on FNNs for each domain. HGNN is a hierarchical policy with domain-
selection module and based on GNNs. UHGNN is a HGNN with a unique GNN for all domains.

Metrics: We evaluate the performance of the policies for all tasks. For the find task, we use
the precision, the recall and the F-score metrics: the inform rates. For the book task, we use
the accuracy metric namely the book rate. The dialogue is marked as successful if and only if
both inform’s recall and book rate are 1. The dialogue is considered completed if it is successful
from the user’s point of view (i.e a dialogue can be completed without being successful if the
information provided is not the one objectively expected by the simulator).

Evaluation of the Dialogue Manager We performed an ablation study based on ACER as re-
ported in Figure 3.10. First, all RL variants of ACER (Figure 3.10a) have difficulties to learn
without supervision in contrast to BC variants (Figure 3.10b). In particular, we see that hierar-
chical decision making networks (HFNN in green), graph neural network (HGNN in red) and
generic policy (UHGNN in purple) drastically improve the performance compared to FNNs.
Similarly, using IL like ILFOD (Figure 3.10c) and ILFOS (Figure 3.10d) notably improves the
performance. Therefore, learning generic GNNs allows collaborative gradient update and effi-
cient learning on multi-domain dialogues.

Conversely, we observe that hierarchical decision making with HFNNs does not systemati-
cally guarantee any improvement. These results suggest that GNNS are useful for learning dia-
logue policies on multi-domain which can be transferred during learning across domains on-the-
fly to improve performance. Finally, regarding ILFOD variants (Figure 3.10c), we can observe
that all architectures are affected by a large variability. This shows that multi-domain dialogue
management is difficult despite the use of demonstrations and that learning with reward is not
sufficient to robustly succeed.

17The native parametrisation manually groups multi-actions based on MULTIWOZ Budzianowski et al. (2018).
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3.2 Dialogue Manager

(a) Pure ACER (b) Pure BC

(c) ACER with ILfOD. (d) ACER with ILfOS.

Figure 3.10: Distribution via boxplot of the performance of the proposed approaches on CON-
VLAB, with 10 different initializations and without pre-training. The coloured area represents the
interquartile Q1-Q3 of the distribution, the middle line represents its median (Q2) and the points
are outliers.

Evaluation of the Dialogue System We evaluate the policy learning algorithms in the entire
dialogue pipeline, in particular our best DM policy ACER-ILFOS-UHGNN under a shorter
name ACGOS.

The results of our experimentation are presented in the paper (Cordier et al., 2022). We ob-
serve that the performance of our approach is closed to the handcrafted policy (the teacher) when
directly passing the dialogue acts, when using BERT NLU Devlin et al. (2018) and template-
based NLG. Moreover, the performance of our approach is better than baselines with a significant
difference. These results highlight the benefit of structured policies against standard policies.

A limitation of current policies in CONVLAB, including ours, is that the robustness to noisy
inputs is not specifically addressed as it had been done in PyDial Ultes et al. (2017b). It could be
also interesting to study the impact of incorporating real human feed-backs and demonstrations
instead of a handcrafted teacher.

The GNN structured policies combined with imitation learning avoid sparsity, while being
data efficient, stable and adaptable. They are relevant for covering multi-domain task dialogue
problems.

A continuation of this work for few-shot learning will soon be published in the findings
EACL2023, for more details please refer to (Cordier et al., 2023).
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Chapter 4

Contributions to Conversational QA and
Other Contributions

‘Estaba perdiendo la vista y el oı́do, parecı́a confundir a los interlocutores
con personas que conoció en épocas remotas de la humanidad, y contestaba
a las preguntas con un intrincado batiburrillo de idiomas.’ — Gabriel Garcı́a
Marquez, Cien años de soledad.

‘He was losing his sight and his hearing, he seemed to confuse the people
he was speaking to with others he had known in remote epochs of mankind,
and he would answer questions with a complex hodgepodge of languages.’ —
Gabriel Garcı́a Marquez, One Hundred Years of Solitude.

Conversational QA is a relatively recent area of research that groups reading comprehension,
QA and dialogue. Typically, it consists in a sequence of questions and answers related to a para-
graph or to a knowledge graph. My contribution in this field was to enrich existing datasets
with (i) information about the ellipsis and coreferences (Section 4.1) and (ii) question rewrit-
ing (Section 4.2). I also contribute to the creation of a new dataset Knowledge-base Conversa-
tions (KGConv) (Section 4.3), that we will soon made public. This work was part of the industrial
research project DIANA, of which I was the head. The work described in here was made mainly
by the young researcher Quentin Brabant under my supervision. For the work presented in (Sec-
tion 4.2), I proposed the idea of enriching the corpus CoQA with question rewriting in 2020. I
wrote with Timothy Garwood a document describing the annotations and we manually annotated
10 dialogues. Then, I was in charge of the administrative process to formalise the collaboration
with ELRA to produce the annotations, this took about a year. I also checked the annotations
and conducted experiments on conversational question answering by using RoBERTa. Regarding
this work, Gwenole Lecorve worked on question generation, while Quentin Brabant on question
rewriting. The work presented in Sections 4.1 and 4.3 were joint work with Claire Gardent as
part of the European Innovative Training Networks (ITN) project Interactive Natural Language
Technology for Explainable Artificial Intelligence (NL4XAI), that involves industrial partners as
Orange and academic institutions as the CNRS. I was representing Orange in this project.
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4.1 Detection of Ellipsis and Co-reference in conversational
corpora

This work is joint work with Quentin Brabant and Claire Gardent. It was published in (Brabant
et al., 2021). We made several contributions to the task of ellipsis and coreference detection in
conversational corpora. We created labelled data by enriching three existing datasets with annota-
tions indicating whether a turn contains an ellipsis and/or a coreference. As these annotations were
incomplete, we drew on inferential relations between incompleteness, pronominalisation, ellipsis
and coreference to both extend and complement these annotations. We then use these annotated
data to train a classifier based on DistilBERT (Sanh et al., 2020), which assigns to each question
in a conversation two labels indicating whether it contains an ellipsis and/or a coreference. We
also explore how active learning, multilabel approaches and fine-tuning can be used to train this
model.

A coreference occurs when an entity is referred via two or more expressions in the same
conversation. However, we are only interested in detecting a particular kind of coreference. We
say that a coreference happens in a turn if and only if (1) it contains an expression referring to
an entity already mentioned in a previous turn and (2) this entity cannot be identified outside of
the conversational context. The resolution of a coreference consists in replacing the referring
expression by an unambiguous reference to the entity.

In linguistics, an ellipsis is the omission of one or several words from a clause that preserves
the meaning in the context. When a turn is not understandable without its context (i.e. without the
conversation history), we call it incomplete. In this paper, we assume that any conversation turn
contains an ellipsis if and only if it is still incomplete after coreferences have been resolved. It
follows from this definition that an incomplete sentence contains either a coreference, an ellipsis,
or both.

A conversation is a sequence of alternating questions and answers that starts with a question
and ends with an answer: (q1, a1, q2, a2 . . . , qn, an). In many available conversational question
answering datasets questions are sentences produced by humans (e.g. (Choi et al., 2018a; Christ-
mann et al., 2019; Elgohary et al., 2019; Quan et al., 2019; Reddy et al., 2019)), while answers
are often given by an automated system, and often not in the form of a sentence. For this reason,
we focus on ellipsis and coreference detection in questions. Moreover, we will sometimes use the
term question to refer to turns that are not question per-say, but that are produced by a user and
not by an automated system (see Section ??, GECOR dataset).

We propose a model to predict whether any given question qi of a conversation (q1, a1, . . . , qn, an)
contains an ellipsis and/or a coreference; since any turn can normally be understood based on the
context of previous turns, our task can be seen as the classification of qi with the given context
c = (q1, a1, . . . , qi−1, ai−1). We thus formulate our task as a 2-labels classification: for a given
input question qi and an input context c, output two values (coref, ellipsis) ∈ {0, 1}2 where 1
denotes the presence of the phenomenon and 0 denotes its absence. We call instance of our task
the couple formed by a question, and its context. An instance is annotated when it is associated
with an annotation of the form (coref, ellipsis).
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4.1 Detection of Ellipsis and Co-reference in conversational corpora

4.1.1 Active learning (AL)

We use the following values for annotating the datasets: 1 for the presence of a phenomenon
(positive class), 0 for its absence (negative class). Cases where no label is assigned are denoted
by the value -1. Note that -1 does not denote a class, but only the absence of information about
the actual class. We describe how we process each dataset in order to obtain train instances for
our task.
ConvQuestions Christmann et al. (2019). Many conversations of ConvQuestions are centered
on the same entity; those conversations tend to be similar to each other, as they often have ques-
tions in common. In order to maximise the benefits of manual annotations, we created subsets of
the original data containing exactly one conversation per topic entity. This resulted in train/dev/test
sets containing respectively 905/330/335 questions in total. Based on these new sets, we created
an instance of our task for each question (except the first one) of each conversation. Some of these
conversations where manually annotated with (coref, ellipsis) values. We obtained train/dev/test
of 247/329/331 annotated instances.
GECOR Quan et al. (2019). We create instances as follows. For each conversation (q1, a1, . . . , qn, an)
in the GECOR dataset, each i ∈ {2, . . . , n}, and each variant q′i ∈ {qi(e), qi(r), qi(c)} of the ques-
tion qi: if q′i is not empty, then we create the instance ((q1, a1, . . . , ai−1), q

′
i) and annotate it with

(coref, ellipsis) values. Those values can sometimes be deduced by using the following rules:

• qi(e) contains an ellipsis;

• qi(r) contains a coreference;

• qi(c) contains no ellipsis nor coreference;

• if qi(e) = qi(r) we infer that both qi(e) and qi(r) contain an ellipsis and a coreference;

• if qi(e) is empty, we infer that qi contains no ellipsis and thus qi(r) neither;

• if qi(r) is empty, we infer that qi contains no coreference and thus qi(e) neither.

These rules are not sufficient to deduce ellipsis and coreference label values in all cases. By
default, the value -1 is assigned.
CANARD Elgohary et al. (2019). Instances were extracted similarly as from the GECOR dataset.
The two main differences are: for each created conversation, two variants (original and complete)
of the last question are used. When the complete variant is used, we assign 0 to both coref and
ellipsis; otherwise, we assign −1. An example is given in Table 4.1.

At this point many labels are missing in the instances of the task. In particular, instances
from CANARD do not contain any positive label. We addressed this issue via two approaches:
multilabel learning and label filling.

Multilabel classification can be seen as a particular case of multitask learning, since a single
model is trained on several binary classification tasks. One justification for using this approach
(instead of one model per classification) is that the parameters are shared during training which
has been shown in the literature to beneficial to all the classifiers.

The 4-labels classification task considers the following labels: coreference, ellipsis, incom-
pleteness, and pronoun detection. Formally, it means that annotations of the form (coref, ellipsis)
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Piece of conversation from CANARD:
q1 What is On the Sunday of Life?

q1(c) What is On the Sunday of Life?

a1 In 1992, Delerium released On the Sunday of Life as an edition of 1,000 copies, complete
with a deluxe gatefold sleeve.

q2 Did it do well?
q2(c) Did Porcupine Tree, On the Sunday of Life do well?

a2 On the Sunday of Life... had accumulated sales of more than 20,000 copies.

q3 Was it rereleaesd?
q3(c) Was Porcupine Tree, On the Sunday of Life rereleaesd?

Corresponding instances of the task:
Context Question Coref Ellipsis Coref Ellipsis Incomp. Pronoun

(q1, a1) q2 -1 -1 1 -1 1 1
(q1, a1) q2(c) 0 0 0 0 0 0

(q1, a1, q2, a2) q3 -1 -1 1 -1 1 1
(q1, a1, q2, a2) q3(c) 0 0 0 0 0 0

Table 4.1: Example of conversation from CANARD and the corresponding instances of the task.
Columns with gray headers show the result of label filling.
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4.1 Detection of Ellipsis and Co-reference in conversational corpora

are replaced by annotations of the form (coref, ellipsis, inc, pronoun). We used automatic pro-
noun detection to provide a 0 or 1 value to pronoun in all questions. By default, the value of inc
is set to -1, except for instances from CANARD where the value is known.

We then replace some of the −1 values by taking advantage of the logical dependencies be-
tween labels: a pronoun always indicates a coreference; incompleteness is either due to a corefer-
ence or an ellipsis; coreferences and ellipses always cause incompleteness. We therefore applied
the following rules to each instance, in order:

1. if pronoun = 1 then coref ← 1,

2. if coref = 1 or ellipsis = 1 then inc← 1,

3. if coref = 0 and ellipsis = 0 then inc← 0,

4. if inc = 0 then coref ← 0 and ellipsis← 0.

Remark that in some cases these rules are not sufficient to get rid of all unknown values. Such
cases can be found in the examples of Table 4.1.

Active learning (AL) is a human-in-the-loop method that aims at maximizing the performance
gains relatively to the number of manual annotations. It is especially interesting when few labeled
data are available and only a small fraction of unlabeled data can be manually annotated in rea-
sonable time. We apply several rounds of AL for labeling (separately) ellipses and coreferences.
Each round consists in the following steps:

1. Train and evaluate a model. We use CANARD/GECOR as a training set. All CANARD
instances that have already been manually annotated during previous rounds are included.
The evaluation is done on ConvQuestions test set.

2. Run the model on unlabeled data. The model trained in step 1 associates a prediction
(coref ∗, ellipsis∗) to each instance.

3. Select a subset of unlabeled data. We select the 50 CANARD conversations on which the
model displays the least certainty. Since one conversation is the source of several instances,
we define the certainty of a conversation as the average certainty of the corresponding in-
stances. The certainty of the model (for a given label, on a given instance) is defined as the
distance from 0.5 of the output corresponding to the predicted label value, i.e.: |coref ∗−0.5|
for coreference and |ellipsis∗ − 0.5| for ellipsis.

4. Manually label the selected subset. We label the selected conversations (either for ellipsis
or coreference). Labeled conversations are used during training in the next loop.

We stop repeating these steps when the evaluation score stops increasing.

4.1.2 Experiments
We evaluate the following model variants.

• Baseline. The baseline is a DistilBert(Sanh et al., 2019) model trained on the 4-label classi-
fication task on CANARD/ GECOR.
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• Fine tuning only. The model is fine-tuned on the 4-label classification task on the training
set of ConvQuestions.

• Baseline + AL. The model is fine-tuned on the 4-label classification task on CANARD/GECOR,
but labelled instances of CANARD are added via AL. Each round of AL adds 50 instances
that are labelled for either coreference or ellipsis. We evaluate several versions of this vari-
ant: three versions use instances that were annotated for coreference via, respectively, 1, 2,
and 3 rounds of AL. Three others versions use instances that were annotated for ellipsis via
1, 2, and 3 rounds.

• Baseline + all AL. Identical to baseline + AL, but using all annotations produced for coref-
erence and ellipsis (3 rounds for each).

• Baseline + all AL + fine tuning. Identical to Baseline + all AL., but training on CA-
NARD/GECOR is followed by a fine-tuning step on the training set of ConvQuestions.

• 2-label variants. We evaluate three of them. They are respectively identical to baseline, to
baseline + all AL, and to baseline + all AL + fine tuning, with the difference that the model
is trained on the 2-labels classification task.

We use GECOR and CANARD for training our models, while ConvQuestions is used for
evaluation and fine tuning. In this way we can better assess how well the classifier behaves on
unseen data, data that is different from the data the model was trained on. During training, labels
with -1 value are simply ignored (no error is retro-propagated). During evaluation, we measure
the recall, precision, and F-measure on ellipsis and coreference detection.

4.1.3 Results

The results are displayed in Table 4.2. Each line corresponds to a variant of the model.
Generally, the results show that coreference detection performs better than ellipsis detection.

Moreover, by looking at lines 2 to 9 in the table, we see that AL is clearly beneficial; the all
AL labels variant improves F1 scores for coreference and ellipsis detection by 10 and 13 points
compared to the baseline. The same conclusion is drawn when comparing lines 11 and 12. The
effects of training on 4 labels versus 2 are less clear: by comparing lines 2, 9, 10 to lines 11, 12, 13,
we see that 4-labels variants perform roughly as well as their 2-labels counterparts on coreference
detection. For ellipsis detection, they score significantly higher on F1 score when no fine tuning
is applied, but the scores are too low to propose a meaningful interpretation. Fine tuning increases
scores for both ellipsis and coreference detection; however the increase is way larger in the case
of ellipsis. In fact, coreference detection arguably performs reasonably well without fine-tuning,
contrary to ellipsis detection. A possible explanation is that the kinds of ellipses occurring in
one dataset can be different from those occurring in another. In contrast, coreferences cover a
narrower set of phenomena.

In addition to measuring performances, we looked at the output of the model on the test set:
we noticed that coreferences due to pronouns use are well recognized, while many false nega-
tives correspond to cases where an entity is referred to via its type or function, as in: “To which
continent does Germany belong? What size is the country?”.
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4.2 Question Rewriting

Coreference Ellipsis
P R F1 P R F1

1 fine tuning only 81 65 72 51 67 57

2 baseline 97 64 77 64 36 46
3 + AL for ellipsis (1 round) 92 63 75 71 48 56
4 + AL for ellipsis (2 rounds) 89 72 80 83 41 55
5 + AL for ellipsis (3 rounds) 85 79 82 74 48 57
6 + AL for coref. (1 round) 87 84 85 72 46 56
7 + AL for coref. (2 rounds) 92 81 86 71 39 50
8 + AL for coref. (3 rounds) 95 79 86 67 31 43
9 + all AL labels 94 81 87 84 46 59

10 + fine tuning 94 93 94 83 71 77

11 baseline, 2-labels variant 89 68 77 100 10 19
12 + all AL labels 91 86 89 88 35 50
13 + all AL labels + fine-tuning 94 93 93 84 70 76

Table 4.2: Results of the experiments. Scores are given as percentages.

4.2 Question Rewriting

As mentioned before, CQA (Reddy et al., 2019; Choi et al., 2018a; Saha et al., 2018) is a task
in which a system interacts with a user. The interaction takes the form of a conversation, where
the user always asks questions that the system answers. In this work, we focus on the case where
the system searches for answers in a passage, although settings relying on structured data (e.g.
knowledge bases) also exist (Saha et al., 2018), as the one presented in the following section (Sec-
tion 4.3). Compared to QA, the system faces an additional difficulty: each question is asked in a
conversational context that consists in previous turns. Therefore, implicit references to the con-
text may happen in the form of ellipses and coreferences, making the understanding of questions
more difficult for the system. One way to overcome this difficulty is Question Rewriting (QR),
which consists in rewriting each original (in-context) question into an out-of-context question that
is understandable by itself, i.e., that can be answered without knowing the conversational context.

We present the corpus Conversational Question Answering with Rewriting (CoQAR), which
is an annotated subset of the CQA corpus CoQA (Reddy et al., 2019). CoQAR was obtained by
asking specialised native speakers to annotate original questions with at least two and at most
three distinct out-of-context rewritings. This work was published in (Brabant et al., 2022). Our
contribution is two-fold.

Firstly, we provide CoQAR, which contains high-quality questions rewritings. The corpus is
publicly available1; moreover, its annotations were conducted in accordance to ethical concerns:
every annotator involved was properly hired.

Secondly, we assess the quality of the annotations of CoQAR through several experiments. We
train Question Rewriting (QR) models. We then rate these models’ outputs via human evaluation.
We also evaluate these models as preprocessing steps of (conversational and non-conversational)

1The COQAR dataset is publicly available at https://github.com/Orange-OpenSource/COQAR
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Number of rewritings
0 1 2 3 total

train 365 108 31,378 13,210 45,061
dev 9 0 37 7,937 7,983

Table 4.3: Number of questions depending on the number of rewritings.

QA models. To this end, we compare the performance of a stat-of-the-art QA model with and
without QR.

Our results support the claim of (Vakulenko et al., 2021) that QR models can be successfully
used in combination with existing QA models. Indeed, we found that adding QR as a preprocess-
ing step boosts the performances of QA models and allows reusing non-conversational state-of-
the-art QA systems while reducing performance degradation on CQA.

4.2.1 Annotations
We decided to hire two specialised native-speakers’ annotators. Their task was to annotate orig-
inal (in-context) questions from CoQA with at least two and at most three distinct out-of-context
rewritings. To make sure that they understand what was expected, we ourselves annotated a con-
versation and provided it as an example. An example of conversation annotated by the annotators
is provided in Table ??.

While annotators were told to preserve the meaning of the original sentences, they were also
asked to paraphrase in their rewritings. As a results, these annotations contrast with those of
CANARD, where the structure of the original question is usually preserved in the rewriting. In
total, 4.1k conversations of CoQA train set were annotated as well as all 500 conversations of the
dev set. Since the test set of CoQA is not available, no conversation was annotated from it. The
train and dev sets of CoQAR respectively contain 45k and 8k questions. Table 4.3 summarises the
number of questions that have 0,1,2 or 3 rewritings.

Overall, passages contain from 75 to 1079 words, with an average of 275. Conversation length
distribution is displayed in Figure 4.1.

On average, out-of-context rewritings are longer (8.8 words) than the original questions (5.5
words); Figure 4.2 shows the question length distribution.

Most conversations were annotated by only one annotator, but 50 conversations were anno-
tated by both. We relied on these conversations to analyse the annotations. We extracted two
rewritings per question and per annotator and, using a pair of rewritings as references and the
other as hypothesis, we computed the SacreBLEU score (Post, 2018) and the BERT-score (Zhang
et al., 2020a). SacreBLEU gives us an insight on the similarity of the surface form of rewritings,
while BERT-score gives us an insight on the semantic similarity. We obtained a SacreBLEU score
of 32.67 and a BERT-score of 90.22: this suggests that the rewritings have diverse surface form
while being close in terms of meaning.

4.2.2 Evaluation on Question Rewriting (QR)
In QR, the model receives as input an in-context question, its conversational context, and the as-
sociated passage. Its task is to generate an out-of-context rewriting of the question. We conducted

60



4.2 Question Rewriting

0 5 10 15 20 25

500

1,000

# questions

#
co

nv
er

sa
tio

ns
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Figure 4.2: Distribution of length for original questions (white) and out-of-context rewritings
(dark grey). Overlap of the distribution is light grey.

the following experiment: (1) training QR models on CoQAR and CANARD; (2) evaluating these
models, via standard metrics and human evaluation. Furthermore, we evaluate these QR models
on downstream conversational question answering as presented in the next section.

Datasets. For training and evaluation, we rely on CANARD and CoQAR. For CANARD, we
use the original train/dev/test splits. For CoQAR, we use the original dev set as test set, and split
the original train set into a train set and dev set, in such manner that CANARD and CoQAR dev
sets have the same size. For training, we also make use of a mixture of CANARD and CoQAR,
that we refer to as CoQAR+CANARD, whose train and dev sets are, respectively, the union of
both corpora’s train and dev sets. We train three variants of the QR model: one variant is trained
on CANARD, one is trained on CoQAR, and the third one is trained on a mixture of both datasets.

Test set Model
Meaning preservation Linguistic correctness
MOS (Std dev.) MOS (Std dev.)

CoQAR
Human rewriting 4.5 (0.86) 4.86 (0.45)
T5(CoQAR) 3.82 (1.42) 4.66 (0.82)
Human rewriting 4.60 (0.96) 4.7 (0.89)

CANARD T5(CANARD) 3.92 (1.34) 4.43 (1.08)
T5(CoQAR+CANARD) 3.96 (1.47) 4.76 (0.77)

Table 4.4: Results of the human evaluation of QR.
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Model: We train a QR model based on T5 on three datasets: CoQAR, CANARD, and CoQAR+CANARD.
For each dataset, we fine-tune the small 1.1 version of T52. The model is evaluated on the dev set
using METEOR.

Two Mean Opinion Score (MOS) evaluations were carried out on 8 human testers who were
asked to judge the quality of rewritten questions. We sampled 50 original questions from CoQAR
and 50 original questions from CANARD. Each original question was then paired with several
rewritings:

• one rewriting from the corpus, to which we refer as the reference;

• one or several rewritings generated by different T5 models: each source question from
CoQAR is paired with a rewriting generated by T5(CoQAR), while each source question
from CANARD is paired with one rewriting generated by T5(CANARD) and one rewriting
generated by T5(CoQAR+CANARD).

The pairs were then used in two evaluations.
In the first evaluation, rewritten questions were presented to human testers, together with the

original question and its context (preceding turns and the corresponding text passage). Testers
assessed the semantic similarity of the rewritten and original questions. In the second evaluation,
rewritten questions were presented alone to the testers for them to assess linguistic correctness.
Both semantic similarity and linguistic correctness were evaluated on the 5-points scale. In the
end, each rewritten question received one rating for semantic similarity and one for linguistic
correctness. The results are reported in Table 4.4.

We see that QR models obtain scores that are clearly below human performance in terms
of meaning preservation. We also observe that the T5 model that was trained on CoQAR and
CANARD obtains higher linguistic correctness scores than the model that was only trained on
CANARD, and this result does not seem due to chance (a Mann-Whitney U test gives a p-value of
0.026). It is plausible that, although adding data from CoQAR to the training set does not improve
meaning preservation, it improves linguistic correctness because of its greater diversity in term of
rewritings’ surface forms.

4.2.3 Evaluation on Conversational Question Answering
Typically, the inputs to a CQA neural model are: a question, its conversational context (i.e. the se-
quence of previous questions and answers), and the associated passage. The output is the answer,
either in the form of a span from the passage or in the form of valid tokens such as “yes”, “no” or
“unknown”.

A challenge for conversational question answering was also released with CoQA3. The models
are evaluated with the F1 score (Reddy et al., 2019). Transformers have been successfully used in
this task: to the time this paper was written, the best model (a RoBERTa-based model (Ju et al.,
2019)) got 90.7 of overall F1 measure, overcoming human performance 88.8.

Our goal is to indirectly assess the quality of QR by comparing the performance of a model
taking original questions and their context as inputs with a model using out-of-context rewritings
instead. In other words, we would like to know whether replacing the original question with its

2https://huggingface.co/google/t5-v1_1-small
3https://stanfordnlp.github.io/coqa/
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4.2 Question Rewriting

QR mechanism F1 EM
None (question+context) 68.13 49.63
Human rewriting 63.26 45.10
T5(CoQAR+CANARD) 63.30 44.97

Table 4.5: Results of the CQA evaluation.

conversational context by the out-of-context rewriting has a positive impact on answer extrac-
tion. First, we evaluate the impact of rewritten questions in the performance of a RoBERTa base-
line (Liu et al., 2019). Second, in order to assess the reusability of QR models trained on CoQAR,
we further evaluate a state-of-the-art non-conversational QA model trained on SQuAD (Rajpurkar
et al., 2018) by testing it with the rewritten questions.

We would like to assess the impact of QR on state-of-the art models for CQA by answering the
following question: would the models be able to extract the correct answer from the passage with-
out dealing with the conversational context? To this aim we propose three experiments in which
we train and evaluate a transformer on several variations of QR: no rewriting, human rewriting,
and model rewriting.

Datasets and Variants. We use CoQAR, with distinct rewriting.

i No rewriting: the orginal dataset, taking into account the conversational context.

ii Human rewriting: the dataset containing only the question rewritten by human annotators,
ignoring completely the conversational context.

iii QR model: instead of using human annotations we use questions that were generated auto-
matically by the T5(CoQAR+CANARD) model presented in Section 4.2.2.

Model. For the CQA experiments, we train and evaluate a RoBERTa4 transformer on CoQAR
with the distinct rewriting mechanisms described above.

Evaluation. Results are presented in Table 4.5. Surprisingly, resolving the context with human
question rewriting does not seem to help RoBERTa to better identify the answer in terms of F1
and exact match (EM) as defined in Rajpurkar et al. (2016). We obtained an F1 and EM gain
of 4.87 and 4.53 respectively of the original in-context questions over the out-of-context human
rewritings.

Unlike (Vakulenko et al., 2021), where results of the same task are reported on CANARD, the
setting relying on original questions (referred to as CANARD O) and the one relying on human-
written questions (CANARD H) respectively obtain 53.65 and 57.12 F1 scores, which correspond
to a gain of 3.47 points for human rewriting. We suspect that the self-attention mechanism of
RoBERTa solves the coreferences and ellipsis present in short in-context questions limited by
the separation token from the context and the passage. While processing a long self-contained
rewriting might be more difficult. These results confirm the good performance of RoBERTa on
the original task of CQA (Ju et al., 2019).

4https://huggingface.co/
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Interestingly, automatically rewritten questions trained on both CoQAR and CANARD ob-
tained similar performance than human rewritings, although human rewriting, got a slightly better
EM. These results are comparable with the ones reported on CANARD in (Vakulenko et al., 2021).

We also conducted experiments on the re-usability of QA systems by solving the context
through question rewriting. The results are promising, rewriting out-of-context question will let
us reuse existing QA systems. We invite the reader to look for details in the paper (Brabant et al.,
2022).

4.3 A conversational QA corpus grounded in Wikidata
After the great success of ChatGPT that spread out nonfactual generative neural models to the big
audience, guiding semantically these models to enable explainability and to reduce their typical
errors: hallucinations, distortions, omissions and repetitions(Faille et al., 2021; Narayan et al.,
2022; Nie et al., 2019) is an urgent need. We propose KGConv5, a corpus of Conversational
Question Answering (CQA) grounded on Wikidata6 to constraint the generation with a Knowledge
Graph (KG).

KGConv is composed of conversations between two participants, one that always asks ques-
tions and another one that always answers based on facts. Thus, it contains sequences of question-
answer pairs. The grounded sequences are composed of Wikidata triples of the form: (s, p, o), in
which s is the subject, p is the property and o corresponds to the object of a fact belonging to a
KG.

In total KGConv gathers 71K conversations (604K question-answer pairs in total), where each
pair relates to an underlying fact from the public KG Wikidata7. Each conversation is focused
on a given root entity. As illustrated by Table 4.6, the first question is directly about this root
entity, while the next ones explore new facts about any entity discovered during the conversation
(including the root entity itself). This corpus can be used for distinct tasks such as factual question
generation, question rewriting as well as generation of sequence of questions and answers from a
given Knowledge-graph or vice-versa.

This is ongoing work. The corpus has been released publicly and a paper presenting the
corpus will be submitted for publication soon. This dataset was also used by the PhD student
Juliette Faille supervised by Claire Gardent as part of the collaboration with Orange in the ITN
European Project NL4XAI. Particularly, it was her subject of study during her secondment at
Orange. Her work focused on studying explainability and factual question generation.

4.4 Other Contributions: Graph Embeddings
This work was made by the PhD candidate Sebastien Montella in co-supervision with Dr. Jo-
hannes Heinecke at Orange and it was published in (Montella et al., 2021). While most of di-
alogue systems store their knowledge using simple structures, namely a set of slot-value pairs,
world knowledge is usually stored in Knowledge Graphs. A KG is a collection of triples ⟨s, p, o⟩;
where s, p and o stand for the subject, predicate and object respectively. An entity denotes whether

5https://github.com/Orange-OpenSource/KGConv
6https://www.wikidata.org/
7https://www.wikidata.org/
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4.4 Other Contributions: Graph Embeddings

#1 Triple (NGC 4833, part of, Milky Way)

Q
ue

st
io

n
va

ri
an

ts original NGC 4833 is part of what astronomical object?
subject NGC 4833

rewritten NGC 4833 is part of what astronomical object?

original Where is NGC 4833 located?
subject NGC 4833

rewritten Where is NGC 4833 located?

Answer Milky Way

#2 Triple (NGC 4833, discoverer or inventor, Nicolas Louis de Lacaille)

Q
ue

st
io

n
va

ri
an

ts

original Who was behind the discovery of NGC 4833?
subject NGC 4833

rewritten Who was behind the discovery?

original What was the name of the discoverer of NGC 4833?
subject NGC 4833

rewritten Who discovered this object?

original Who found NGC 4833?
subject NGC 4833

rewritten Who found this object?

Answer Nicolas Louis de Lacaille

#3 Triple (Nicolas Louis de Lacaille, religion or worldview, Catholic Church)

Q
ue

st
io

n
va

ri
an

ts original What was his religion?
subject his

rewritten What was his religion?

original What faith did he follow?
subject he

rewritten What faith did he follow?

Answer Catholic Church

Table 4.6: Excerpt of a question-answer conversation along with the related triples. The root
entity is NGC 4833, from the theme “space object”. The rewritten corresponds to the in-context
question that has been automatically generated by a T5 model.

a subject or an object and a relation denotes a predicate that links two entities. The main contri-
butions of this work are: (i) it explores graph embeddings in the hyperbolic space instead of the
Euclidian space; (ii) it considers the time parameter; (iii) it propose a hyperbolic model aware of
time and (iv) it compares the performance of state-of-the-art models that takes into consideration
time versus models that use negative sampling.

Since KGs are sometimes incomplete, one important task of NLP is Link Prediction (LP),
which consists in predicting the missing connections between entities. This task can help for in-
stance to build knowledge graphs on the fly. Each entity and relation are map into a vector space
to learn low-dimensional embeddings such that, valid triples maximise a defined scoring function
and that fallacious triples minimise it. An approach is efficient if it can model multiple relational
patterns. Some predicates are symmetric (e.g. marriedTo), asymmetric (e.g. fatherOf ), an in-
version of another relation (e.g. fatherOf and childOf ) or a composition (e.g. grandfatherOf ).
Hierarchical relations have remained challenging to model in Euclidean space, while hyperbolic
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person 31671 327 71915 25918 184939 29352 11386 225677
country 2171 171 3475 703 5085 817 214 6116

ideology 1220 169 1677 450 3112 581 228 3921
space object 2586 116 6360 5961 0 0 50158 50158

molecular entity 17798 151 38314 23033 154511 24587 9531 188629
historical event 4695 189 7770 4972 35270 5684 2247 43201

food 2532 166 4012 2099 15050 2230 1011 18291
taxon 3190 215 5408 1902 0 0 16099 16099

with unseen properties 13651 404 24123 5558 0 0 51813 51813
whole dataset 63345 458 142691 70596 397967 63251 142687 603905

Table 4.7: For each theme, the table gives: the number of different entities and properties ap-
pearing in conversations, the number of conversations, and the number of questions for each split.
Note that in the entities and properties columns, the “total” values are not the sum of the cells
above; this is because some entities and properties appear in several themes.

geometry reveals to be a strong asset to capture hierarchical patterns. Nevertheless, the afore-
mentioned approaches represent embeddings as invariant to time. For example, the triple ⟨Donald
Trump, presidentOf, U.S.⟩ is not longer correct in 2022.

This work shows that an optimised number of negative samples enables the state-of-the-art
model ATTH (Chami et al., 2020) to reach competitive or even better performance on temporal
link prediction while being unaware of the temporal aspect. It also introduces an extension of
ATTH, namely HERCULES8.

This was the first attempt to leverage the curvature of a manifold to coerce time-aware rep-
resentation. An ablation study of distinct curvature definitions has been done to investigate the
compelling results of ATTH over time-aware models.

Problem Definition

Lets consider a valid quadruplet ⟨s, p, o, t⟩ ∈ S ⊂ E × R × E × T , with E , R and T the sets of
entities, relations and timestamps respectively and S the set of correct facts. A scoring function
f : E × R × E × T → R is defined such that f(s, p, o, t) is maximised for any quadruplet ∈
S, and minimised for corrupted quadruplet (/∈ S). Throughout the optimisation of the foregoing
constraint, representations of entities, relations and times are learned accordingly. The resulting
embeddings should then capture the multi-relational graph structure. Thus, f is measuring the
probability that an entity s is connected to an entity o by the relation p at time t.

Hyperbolic Geometry

Hyperbolic geometry belongs to non-Euclidean geometry. In contrast to Euclidean geometry
relying on Euclid’s axioms (Heath and Euclid, 1956), non-Euclidean geometry rejects the fifth

8Hyperbolic Representation with TimE and Relational CUrvatures for TemporaL KnowledgE GraphS
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axiom known as the parallel postulate. It states that given a point x and a line l1, there exists
a unique line l2 parallel to l1 passing through x. This is only possible due to a (constant) zero
curvature of the space. The curvature defines how much the geometry differs from being flat. The
higher the absolute curvature, the curvier. Euclidean space has a zero curvature hence called flat
space. When represented in an Euclidean space, straight lines become curved, termed as geodesics
(Fig. 4.3).

T c
x Bn,c

Bn,c

u

expc
x(u)

logcx(v)
v

x

O

Figure 4.3: Illustration of the exponential and logarithmic maps between the Poincaré ball Bn,c

and the tangent space T c
x Bn,c.

Hyperbolic geometry comes with a constant negative curvature. The interested reader is re-
ferred to formal definitions in (Montella et al., 2021).

From ATTH to HERCULES

Given a quadruplet, ⟨s, p, o, t⟩, we note eHs , rHp and eHo the hyperbolic embeddings of the subject,
predicate and object respectively.9 ATTH uses relation-specific embeddings, rotations, reflections
and curvatures. The curvature is defined as depending on the corresponding relation p involved.
Precisely, a relation p is attributed with an individual parametric curvature cp. The curvature cp is
defined in Eq. 4.1 as:

cp = σ(µp) (4.1)

where µp is a trainable parameter ∈ R and σ is a smooth approximation of the ReLU activation
function defined in [0,+∞]. With such approach, the geometry of the manifold is learned, thus
modified for a particular predicate. The curvature dictates how the manifold is shaped. Changing
the curvature of the manifold implies changing the positions of projected points. This means that
for distinct relations, the same entity will have different positions because of the different resulting
geometries for each relation. For example, lets consider the triples t1 := ⟨Barack Obama, visit,
France⟩ and t2 := ⟨Barack Obama, cooperate, France⟩. The Euclidean representations of entities
Barack Obama and France from both facts will be projected onto the riemannian manifold. How-
ever, the structure (i.e. curvature) of the manifold changes as a function of the relation of each fact
(i.e. ’visit’ and ’cooperate’). Therefore, the resulting hyperbolic embbeding of Barack Obama of
t1 will not be the same resulting hyperbolic embedding of Barack Obama in t2. By analogy, the
same holds for entity France.

9Since ATTH is not considering time, the parameter t is not used.
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Datasets |E| |R| |T | Training Validation Test
ICEWS14 7,128 230 365 72,128 8,941 8,963

ICEWS05-15 10,488 251 4017 368,962 46,275 46,092

Table 4.8: ICEWS14 and ICEWS05-15 Datasets Statistics

In order to learn rotations and reflections, ATTH uses 2 × 2 Givens transformations matri-
ces (Chami et al., 2020). Those transformations conserve relative distances in hyperbolic space
and can therefore directly be applied to hyperbolic embeddings (isometries). Furthermore, ATTH
utilizes an hyperbolic attention mechanism to represent complex relations that can be a mixture
of rotation and reflection. The attention scores are computed in the tangent space by projecting
the hyperbolic rotation embedding and hyperbolic reflection embedding with the logarithmic map
into the euclidian space, as shown in Figure 4.3. Then, the attention vector is mapped back to
manifold using the exponential map. We propose HERCULES, a time-aware extension of ATTH.
HERCULES redefines the curvature of the manifold as being the product of both relation and time.
The main intuition of HERCULES is that both relation and time directly adjust the geometry of
the manifold such that the positions of projected entities are relation-and-time-dependent. This
is advantageous in that no additional temporal parameters per entity are needed. Since the whole
geometry has changed for specific relation and time, all future projections onto that manifold will
be aligned to the corresponding relation and timestamp. We investigate different curvature def-
initions and time translation in our experiments (see the next Section). The scoring function of
HERCULES remains same as ATTH.

When learning hyperbolic parameters, the optimisation requires to utilise a Riemannian gra-
dient (Bonnabel, 2013). However, proven to be challenging, we instead learn all embeddings in
the Euclidean space. The embeddings can then be mapped to the manifold using the exponential
map. This allows the use of standard Euclidean optimisation strategies.

Experiments

Datasets For fair comparisons, we test our model on same benchamark datasets used in previous
works, i.e. ICEWS14 and ICEWS05-15. Both datasets were constructed by (Garcı́a-Durán et al.,
2018) using the Integrated Crisis Early Warning System (ICEWS) dataset (Boschee et al., 2018).
ICEWS provides geopolitical information with their corresponding (event) date, e.g. ⟨Barack
Obama, visits, France, 2009-03-11⟩. More specifically, ICEWS14 includes events that happened
in 2014 whereas ICEWS05-15 encompasses facts that appeared between 2005 and 2015. We give
the original datasets statistics in Table 4.8. To increase the number of samples, for each quadruplet
⟨s, p, o, t⟩ we add ⟨s, p−1, o, t⟩, where p−1 is the inverse relation of p. This is a standard data
augmentation technique usually used in LP (Balažević et al., 2019; Goel et al., 2020; Han et al.,
2020).

Evaluation Protocol & Metrics Given a (golden) test triple ⟨s, p, o, t⟩, for each entity s′ ∈ E ,
we interchange the subject s with s′ and apply the scoring function f on the resulting query ⟨s′, p,
o, t⟩. Since replacing s by all possible entity s′ may end up with a correct facts, we filter out those
valid quadruplets and give them extremely low scores to avoid correct quadruplets to be scored
higher than the tested quadruplet in final ranking (Bordes et al., 2013). We then rank the entities
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based on their scores in descending order. We store the rank of the correct entity s noted zs. Thus,
the model should maximize the returned score for the entity s such that zs = 1. The same process
is done using the object o.

To evaluate our models, we make use of the Mean Reciprocal Rank (MRR). We also provide
the Hits@1 (H@1), Hits@3 (H@3) and Hits@10 (H@10) which assess on the frequency that the
valid entity is in the top-1, top-3 and top-10 position, respectively.

Results We provide link prediction results on ICEWS14 and ICEWS05-15 for ATTH, HER-
CULES and different models from the literature. As (Han et al., 2020), we adopted a dimension
analysis to investigate behaviors and robustness of approaches. When possible, we re-run official
implementation of models. Otherwise, official or best results in literature are reported. Results
are shown in Table 4.9.

As expected, hyperbolic-based strategies (i.e. DYERNIE, ATTH and HERCULES) perform
much better at lower dimensions, outperforming most of other approaches with ten times less
dimensions. We report an average absolute gain of 11.6% points in MRR with only 10 dimensions
over the median performance of other approaches with 100 dimensions. This strengthens the
effectiveness of hyperbolic geometry to induce high-quality embeddings with few parameters.

Astonishingly, we notice that ATTH model is highly competitive despite the absence of time
parameter. ATTH exhibits new state-of-the-art or statistically equivalent performances compared
to DYERNIE and HERCULES. We remark no statistically significant differences in performances
between hyperbolic models.10 Importantly, unlike other research carried out in this area, time
information here does not lead to any notable gain. This seems to indicate that other parameters
should be considered. We examine this phenomenon in section 4.4.

On ICEWS14, for dim ∈ {20, 40, 100}, both ATTH and HERCULES outperform DYERNIE
by a large margin. We witness an improvement of 2.5% and 5% points in MRR and Hits@1
with 100-dimensional embeddings. On ICEWS05-15, ATTH and HERCULES yield comparable
achievements with the state-of-the-art. In contrast to DYERNIE, it is noteworthy that ATTH and
HERCULES utilize a single manifold while reaching top performances.

We also distinguish tempered results on Hits@10 metric for ATTH and HERCULES models.
This suggests that during optimization, ATTH and HERCULES favor ranking some entities on top
while harming the representation of others.

Time Awareness vs Negative Sampling.

First, besides time translation, we probe different curvature definitions to identify fluctuation in
performances. We analyse how time information alters the LP results by adding time as part of the
curvature (i.e. HERCULES) and as a translation. We also explore if incorporating the Euclidean
dot product of the subject and object embeddings (noted ⟨eEs , eEo ⟩) into the curvature helps to learn
a better geometry. An ablation study is given in Table 4.10.

Albeit counter-intuitive, we observe that our results corroborate with our initial finding: time
information is not the culprit of our high performances. More strikingly, a simple relational cur-
vature (i.e. ATTH) is sufficient to perform best on ICEWS14 (dim = 40). Neither the inclusion

10We performed the Mixed-Factorial Analysis of Variance (ANOVA), in which the independent variables are the
dimension and the model and the dependent variable is the metric. We consider two groups one for each dataset. We
report p-values of 0.842, 0.872, 0.926 and 0.229 for MRR, H@1, H@3 and H@10 respectively.
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Datasets ICEWS14 (filtered) ICEWS05-15 (filtered)
dim Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

ATISE✝ 18.0 3.03 23.9 48.7 15.9 4.35 19.22 41.0
TERO✝ 7.25 2.39 6.40 16.6 10.3 3.54 10.1 23.2

10 DYERNIE✳ 46.2 36.0 51.1 66.3 58.9 50.5 63.2 75.1
HERCULES 46.0 34.9 52.4 66.0 54.7 43.8 61.8 73.2

ATTH 45.6 34.2 52.0 66.4 49.9 34.4 61.6 73.6
ATISE✝ 19.1 1.28 28.2 54.7 24.5 7.67 32.3 59.2
TERO✝ 24.5 13.8 28.01 46.3 27.1 13.5 33.3 54.1

20 DYERNIE✳ 53.9 44.2 58.9 72.7 64.2 56.5 68.2 79.0
HERCULES 55.5 47.2 59.4 71.4 63.2 55.2 67.7 77.6

ATTH 55.2 46.7 59.7 71.4 63.5 55.8 67.7 77.5
ATISE✝ 38.4 23.3 47.6 67.3 35.7 19.2 44.3 69.1
TERO✝ 35.1 22.7 40.5 60.8 28.3 12.7 35.3 60.5

40 DYERNIE✳ 58.8 49.8 63.8 76.1 68.9 61.8 72.8 82.5
HERCULES 61.2 54.3 64.7 74.1 68.5 62.1 72.0 80.9

ATTH 61.7 54.5 65.4 75.4 68.5 62.0 71.9 80.6
TRANSE✳ 30.0 14.8 42.7 60.1 30.4 13.3 42.4 61.1

DISTMULT✳ 57.5 46.9 64.2 77.9 47.1 33.6 55.1 72.5
COMPLEX✳ 49.3 36.6 56.2 74.2 39.0 22.9 49.2 68.4
TTRANSE✳ 34.4 25.7 38.3 51.3 35.6 15.4 51.1 67.6

TCOMPLEX✳ 31.8 12.9 45.7 63.0 45.1 36.3 49.2 62.0
100 HYTE✳ 33.1 6.8 54.5 73.6 38.1 7.6 65.0 80.4

ATISE✝ 52.2 41.0 60.0 72.7 47.0 32.4 55.5 76.4
TERO✝ 45.4 34.0 52.2 67.0 41.1 26.3 48.9 71.7

DYERNIE✳ 66.9 59.9 71.4 79.7 73.9 67.9 77.3 85.5
HERCULES 69.4 65.0 71.4 77.9 73.5 68.6 76.1 82.9

ATTH 69.5 65.0 71.5 78.2 73.6 68.6 76.0 82.9

Table 4.9: Link prediction results on ICEWS14 and ICEWS05-15 datasets: (✝) results are obtained
using the official implementation of (Xu et al., 2020), (✳) results are taken from (Han et al.,
2020). For each dimension (i.e. dim), best results are in bold and second-to-best underlined. No
statistically significant differences in performance are observed between DYERNIE, HERCULES

and ATTH.

Relation
Curvature

Time
Curvature

Time
Translation

⟨eEs , eEo ⟩
Curvature MRR H@1 H@3 H@10

✓ ✗ ✗ ✗ 61.7 54.5 65.4 75.4
✓ ✓ ✗ ✗ 61.2 54.3 64.7 74.1
✓ ✓ ✓ ✗ 60.1 52.1 64.5 75.0
✓ ✓ ✓ ✓ 49.5 38.9 55.4 69.2

Table 4.10: Ablation study: Link prediction results on ICEWS14 using ATTH (dim = 40) with
different curvature definitions and time translation applied.
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of a time translation, similarly to TTRANSE, nor the Euclidean dot product provide interesting
outcomes.

We then probe the sensitivity of HERCULES towards temporal feature by performing LP with
incorrect timestamps. Our intuition is to inspect whether feeding invalid timestamps during eval-
uation exhibits significant variation or not compared to the reference performances, i.e. LP results
with initial (non-corrupted) testing samples. To do so, for each testing quadruplet, we replace
the (correct) time parameter with each possible timestamp from T . We therefore collect multiple
LP performances of HERCULES corresponding to each distinct timestamp. Our finding is that
despite erroneous timestamps, LP results show insignificant discrepancies with the initial HER-
CULES performance (dashed red line). This indicates that HERCULES gives little importance to
the time parameter and thus only relies on the entity and the predicate to perform knowledge graph
completion. This further highlights our finding that timestamp is not responsible for our attracting
performances.

We therefore assume that the optimisation procedure may be involved. We consequently ques-
tion the effect of negative sampling. Precisely, we train HERCULES with dim = 40 by tuning the
number of negative samples between 50 to 500. For both, ICEWS14 and ICEWS05-15, negative
sampling shows considerable gain as the number of samples increases. We record an absolute
gain of 5% points in MRR from 50 to 500 samples. We can see a rapid growth in MRR when the
number of samples is inferior to 200. Adding 50 samples is equivalent to about 2% points gain
in MRR. Then, performances reach a plateau around 300 negative samples. We conjecture that
a diversity in negative samples is enough to learn good representations. Notwithstanding that a
large number of negative samples heavily constraints the location of entities in space, the resulting
embeddings might benefit from it to be better positioned relatively to others.

We conclude that despite the present time parameter, an optimal negative sampling enables
to reach new state-of-the-art outcome. Therefore, we argue that time is not the only parameter
that should be considered when performing LP. We highlight that one should be raising awareness
when training TKG representations to identify if time is truly helping to boost performances.
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Chapter 5

Data Collection, Annotation and
Frameworks

This chapter summarises the corpora, annotations, and frameworks in which I worked on. It also
describes briefly the national and international research projects in which I have been involved.

5.1 Corpora

This section describes briefly the work I have done in data collection and annotation.

5.1.1 The French Portmedia Corpus

The French MEDIA corpus collects about 70 hours of spontaneous speech (1258 dialogues, 46k
utterances, 494.048 words and 4068 distinct words) for the task of hotel reservation and tourist
information(Bonneau-Maynard et al., 2009). Calls from 250 speakers to a simulated reservation
system (i.e. the Wizard-of-Oz) were recorded and transcribed. Dialogues are full of disfluencies,
hesitations, false starts, truncations or fillers words (e.g., euh or ben). I worked on the semantic
annotations of this corpus as I was involved in the French ANR project PORTMEDIA (Rojas-
Barahona et al., 2011; Rojas-Barahona and Quignard, 2011). 330 utterances were manually an-
notated with semantic relations (i.e. High-Level Semantics). This gold corpus gathers 653 head
segments and 1555 argument segments, from which around 20 are both arguments and heads,
such as une chambre in Figure 4. This work focuses on annotating the semantic structure, by
segmentating users’ utterances into concepts.

This ontology identifies the concepts that can have arguments, and we thus use this information
to further distinguish between head segments that can have arguments.

Besides the gold annotation, a silver annotation of the whole MEDIA dataset was also pro-
vided. It was generated automatically after a pipeline of syntactic analysis, semantic role labelling
and extraction of semantic frames. I implemented the whole pipeline as well as the annotation tool
used by the annotators. I also collaborate to the creation of a Bayesian model for inferring these
annotations (Lorenzo et al., 2013).
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5.1.2 The French Emospeech Corpus
The French Emospeech corpus was already introduced in Section 3.1.1. As described in (Rojas-
Barahona et al., 2012b), to collect Human-Game dialog data, we developed a Wizard-of-OZ
(WOZ) interface using the MITRE Dialog Toolkit Midiki (Burke et al., 2003). Midiki, is a
portable toolkit for building dialogue managers in Java. It implements the information-state model
of dialogue (Traum and Larsson, 2003) where in essence, the information state models the pro-
gression of dialog while update rules formalise the way that information state is changed as the
dialog progresses.

We first extended Midiki to support a multi-agent architecture and the configuration from a
relational database. We then used this extended Midiki (i) to develop a rule-based dialog system
for the MP game and (ii) to implement two Wizard-of-OZ interfaces for data collection: the free-
and the semi-automatic WOZ interface.

The free WOZ interface aims to simulate mixed-initiative dialogs by allowing the wizard to
chat with the player as she moves around the game while simultaneously storing all interactions in
a database. A virtual dialog manager ensures that the wizard respects the game logic, starting the
appropriate subdialogs at the appropriate place in the virtual world. In this setup, the interactions
between the wizard and the player simulate a direct Human-Human dialog in the context of the
MP game.

In contrast, the semi-automatic wizard favours system-driven dialogs by connecting the Wiz-
ard not only with the player and the game but also with the rule-based dialog manager (Figure ??).
This dialog manager supports the Wizard by automatically interpreting the player’s input and se-
lecting a possible response. As the Wizard interacts with a player, she can then either accept the
response suggested by the rule-based dialog manager (if this response is appropriate) or enter a
different response (whenever the response suggested is incorrect or inappropriate).

Figure 5.3 shows the architecture of the WOZ interface: the dialog manager (either Midiki
or a virtual DM), the MP game, the Wizard of Oz interface and an automatic speech recognition
module (ASR) 1 communicate together within the Open Agent Architecture (OAA) (Cheyer and
Martin, 2001). The WOZ interface is implemented as a web service and all interactions are logged
into a relational database.

To support data collection for different game scenarios, we also developed a Dialogue Con-
1Although the Wizard Framework supported both speech and written input, we did not record speech in our first

experiments. All data is therefore written data.

Attributes

Price General

Park

Relative

Near

Restaurant

Location Person Time

Hotel Room

Object

Thing

Figure 5.1: Excerpt of MEDIA ontology

74



5.1 Corpora

Je voudrais le prix en fait je euh une chambre pas chère
I ’d like the price well in fact I uh a room not expensive

Reserve Room

Agent

Price Price

Booked object

Figure 5.2: Excerpt of the semantic structure for a sentence in the PORTMEDIA corpus. Tradi-
tional dependency notations are used: the head segment points to the argument segment, where
segments are shown with boxes (arrows link segments, not words !). The semantic class assigned
to each head segment is shown in bold below the translated text.

Figure 5.3: General Architecture for the Wizard of OZ experiments: modules are implemented as
agents within the Open Agent Architecture.

figuration Tool that permits defining for each new game the information that is relevant for the
dialog, namely, which characters are present in the game; which goals are being pursued at each
step in the game; and which subdialogs are being conducted in which order during the game,
between which characters and to achieve which goal.

Data collection for the MP game proceeded in two steps. First, a native French speaker played
the wizard using the semi-automatic WOZ with 40 subjects. Next, three groups of students from
the Language and Communication Erasmus Mundus Master in Nancy collected dialogs using the
free WOZ. The results are shown in Table 5.4.

Dialog length varies between 78 and 142 turns with an average length of 106 turns per dialog.
Expert players completed the game in around 50 minutes in average while novice players took
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Subjects Dialogs Uttces Tokens Player U. Player Tokens Player Token Types
Semi-Aut. 40 591 4874 77854 1321 12901 1427
Free 50 658 5580 90655 2288 18712 1542
Total 90 1249 10454 168509 3609 31613 2969

Figure 5.4: Data collected

between 1 and 1.5 hour.

Figure 5.5: Wizard of OZ Graphical User Interface (GUI).It is split in three parts: the interpreta-
tion, the dialog and the generation. The wizard receives the input sentence at the left-side, she can
see the whole dialog in the centre, and she edits the generated utterance at the right side. She can
introduce also the dialog move associated to the input and output sentences.

After configuration of the WOZ tool using the Dialog Configuration Tool mentioned in the
preceding section, the free-WOZ was also used by Master students from Rennes University for
collecting dialogs in a game simulating the visit of an exhibition on Alice in Worderland. In this
way, they collected 25 dialogs using Lewis Carroll’s subrealist.

5.1.3 Annotating Posts Following Cognitive Behavioural Therapy Princi-
ples

This work was published in (Rojas-Barahona et al., 2018). The main goal of annotations based on
Cognitive Behavioural Therapy (CBT) was to develop the understanding component of a health
assistant for preventive intervention of mental health. The corpus consists of 500K written posts
that users anonymously posted on the Koko platform2. This platform was based on the peer-to-
peer therapy proposed by (Morris et al., 2015). In this set-up, a user anonymously posts their
problem (referred to this as the problem) and is prompted to consider their most negative take on
the problem (referred to this as the negative take). Subsequently, peers post responses that attempt

2https://itskoko.com/
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thinking errors

jumping to negative 
conclusions

disqualifying the positive

emotions

anxiety

shame

Problem: I agreed to go on a last-minute business trip to 
Seoul. Right now I'm overweight and feel gross. We're staying 
in a really fancy area, and I'm afraid people will think I'm fat 
and disgusting. 
Negative take: I’m afraid I will be the grossest, ugliest person 
there.

situations

work

health

Figure 5.6: An example of an annotated Koko post.

to offer a re-think and give a more positive angle on the problem. Initially, any first-time Koko
user would be given a short introductory tutorial in the art of ’re-thinking’/’re-framing’ problems
(based on CBT principles), before being able to use the platform; this however changed over
time, as the age group of the users decreased, and a different introduction, emphasizing empathy
and optimism, was used in relation to suggesting helpful responses (less CBT-based than the ’re-
thinking’). Some of the data annotated in this study was drawn from this later phase. When
first developed, this framework was shown to be more efficacious than expressive writing, an
intervention that has been shown to improve physical and emotional well-being (Morris et al.,
2015). Since then, the company has developed an app that has collected a very large number of
posts and associated responses. In this work we only focus on analysing the posts. Figure 5.6
gives an example of an annotated post.

We draw from principles of Cognitive Behavioural Therapy (CBT) to define the ontology.
CBT is derived originally from Beck’s Cognitive Therapy model theory (Beck, 1976; Beck et al.,
1979) which says that our emotions and behaviour are influenced by the way we think and by
how we make sense of the world. Thus, if the patient changes the way he or she thinks about
their problem that will in turn change the way he or she feels and behaves. A major underlying
principle of CBT is the idea of cognitive distortion, and the value in challenging this. In CBT,
patients are helped to test their assumptions and views of the world in order to check if they fit with
reality. When patients learn that their perceptions and interpretations are distorted or unhelpful,
they then work at correcting them. Within the realm of cognitive distortion, CBT identifies a
number of specific self-defeating thought processes, or thinking errors. There is a core of around
10 to 15 thinking errors, with their exact titles having some fluidity. A strong component of CBT
is teaching the client to be able to recognise and identify the thinking errors themselves, and
ultimately discard the negative thought process, and ’re-think’ their problem.

We consider the first step that a machine should be able to perform is to adequately decode
these ’thinking error’ concepts, along with identifying the key emotion(s) expressed, and situa-
tional context, within a particular presented problem. Therefore, our ontology consists of thinking
errors, emotions, and situations.

5.1.4 Conversational Question Answering with Rewriting

I lead the extension of the corpus CoQA with question rewriting as explained in Section 4.2.
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5.1.5 Conversational Question Answering in French
I proposed to extend the French corpus Calor with sequence of questions and answers. The anno-
tations were done by the University of Aix-Marseille. This is a joint work with Geraldine Damnati
and Frederic Bechet. This work has been published in (Béchet et al., 2022).

Calor-Dial is an enriched version of the Calor corpus (Marzinotto et al., 2018), collected from
French encyclopedic data in order to study Information Extraction on domain specific data. The
corpus was initially annotated in semantic Frames (Calor-Frame (Béchet et al., 2017)) and en-
riched with a first set of questions for Machine Reading Question Answering (Calor-Quest (Béchet
et al., 2019)). Calor-Dial addresses the scope of conversational Question Answering. The main
originality is that different types of questions are annotated, including more challenging configu-
rations than in classical QA corpora.

5.1.6 Conversational QA grounded in Wikidata
I contribute to the creation of the corpus KGConv and I lead the work from the Orange side, as part
of the research project DIANA. This work is in colaboration with Claire Gardent (CNRS) as part
of the partnership of the ITN-European project NL4XAI. This corpus is presented in Section 4.3.

5.2 Dialogue Frameworks
During the course of my research career, I was directly involved in the development of dialogue
frameworks. Starting from AdaRTE (Rojas-Barahona and Giorgino, 2009) during my PhD studies
to the most widespread one, PyDial (Ultes et al., 2017a). In this Section I will briefly present
PyDial.

5.2.1 PyDial
PyDial is an open-source end-to-end statistical spoken dialogue toolkit developed by the Univer-
sity of Cambridge (Ultes et al., 2017b). It provides implementations of statistical approaches for
all dialogue modules: NLU. DST, Policy, NLG. The term statistical means that: (i) the framework
preserves the confidence probability of each module, thus each module outputs are the N-Best
list of hypotheses; (ii) Deep learning models can be easily integrated in it; (iii) The framework
implements POMDP dialogue systems. Thus, reinforcement learning dialogue management is
fully supported, with the user simulator and reward estimators. Moreover, it has been extended
to support multiple domains. It offers easily extensible to other domains and or specialised mod-
ule implementations. It also offers domain-independent implementations of the dialogue modules
(see Figure 5.7). The toolkit is available for download under the Apache 2.0 license.

5.2.2 Dialport
Dialport (Lee et al., 2017) is an academic dialogue portal to collect large amounts of real user
data for spoken dialog systems (SDS). Sophisticated statistical representations in state-of-the-art
SDS, require large amounts of data, which is difficult to obtain by academic teams. With one
central portal, connected to many different systems, the task of advertising and affording user

78



5.2 Dialogue Frameworks
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Figure 5.7: Architecture of a modular Spoken Dialoug System.

access can be done in one centralised place that all systems can connect to. DialPort provides a
steady stream of data, allowing system creators to focus on developing their systems. The portal
decides what service the user wants and connects them to the appropriate system which carries
on a dialog with the user, returning control to the portal at the end. Dialport was connected to the
Cambridge restaurant information system, which helps users find a restaurant in Cambridge,UK
based on the area, the price range or the food type. The connection is done through an API! (API!)
that connects Dialport to PyDial. An assesment of DialPort is presented in (Lee et al., 2019), to
summarise, 28.8% of chatbot utterances were non-understanding recovery turns, such as “can you
please rephrase that?”. 62.85% of the times DialPort successfully recommended users and 78.40%
it correctly directed users to the appropriate system.

5.2.3 Conversational Search for General Knowledge
Converstional Search for General Knowledge (CS4GK) is a spoken conversational question an-
swering proof of concept that is able to answer questions about general knowledge from Wiki-
data3 (Rojas-Barahona et al., 2019). The dialogue component does not only orchestrate various
components but also solve coreferences and ellipsis.

The architecture of the proposed system consists of a speech-processing front-end, an under-
standing component, a context manager, a generation component, and a synthesis component. The
context manager provides contextualised mediation between the dialogue components and several
question answering back-ends, which rely on data provided by Wikidata. Interaction with a hu-
man user is achieved through a graphical user interface (GUI). Figure 5.8 depicts the components
together with their interactions.

3https://www.wikidata.org
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Figure 5.8: High-level depiction of the proposed spoken conversation question answering system. Arrows
indicate data flow and direction.
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Chapter 6

Scientific Project

After the breakthrough of ChatGPT (Ouyang et al., 2022), Large Language Models have been
widely used for distinct daily activities such as summarisation, translation, sentiment analysis,
question answering, redaction, code-generation, etc. Nevertheless, it is not clear how these mod-
els can be used to solve complex decision-making tasks, such as task-oriented dialogue. Although
promising approaches have recently emerged (Wei et al., 2022; Yao et al., 2023, 2022), utilizing
LLMs to solve complex tasks is not straightforward. In the case of task-oriented dialogue, one
important point concerns the lack of control (Section 6.1.4). Although the conversation is fluid
and pleasant is it following the necessary steps to solve the task? Are these steps validated by
experts? Are these steps correctly grounded in the World knowledge? These questions bring
us to an important issue the evaluation (Section 6.1.1). Can we estimate whether the task was
accomplished, and whether the sequence of selected actions was indeed optimal? Retrieval Aug-
mented Generation (RAG) (Mao et al., 2021; Asai et al., 2022), can be used to retrieve useful
information that can be injected to the LLM as a prompt. This is a way of grounding the LLM
in ”factual” information. However, is there a way to be sure the retrieved information is indeed
factual?(Section 6.1.3) Moreover, the effort of prompt-engineering can not be neglected. Are we
coming back to hand-crafted solutions by hand-crafting prompts? Would it be difficult to maintain
and to keep these prompts up-to-date?

This scientific project proposes first to study recent LLM-based reasoning approaches for task-
oriented dialogue, providing a rigorous evaluation in terms of task-completion and success rate.
We can also, inspired by the seminal evaluation framework Paradise (Walker et al., 1997a), think in
ways to find the correlation between task-completion and user satisfaction. For instance, unlike the
study presented in Paradise, in which at that time users were not enjoying long conversations with
repetitive systems, maybe users now really enjoy talking to LLMs. However, a strong indicator of
poor performance might be to confirm that users usually need to call again because despite having
a fluid and natural interaction, their problems were not solved at all.

Multimodality is another interesting research topic we will discuss in this proposal. Con-
cerning dialogue, emergent approaches are Visual Question Answering (VQA) and speech-aware
emotion detection. The first one can be used in TOD wherein heterogeneous sources of knowl-
edge are identified. The second, can be used to personalise dialogue according to users’ mood
detected by speech analysis.
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6.1 LLMs for Task-Oriented Dialogue
Recently synergising reasoning and acting in large language models (ReAct) (Yao et al., 2022) has
shown promising results employing few-shot prompting in a LLM with a sequence of thoughts,
actions, and observations. LLMs are indeed capable of performing complex tasks. Thoughts refer
to the internal reasoning that decompose a problem into sub-problems. For example, if the model
is asked the age of Barack Obama’s wife power of 3, the thoughts might be as follows. First, I
need to find out who Barack Obama’s wife is (by calling a question-answering API such as Google
Search). Second, I need to find the age of Barack Obama’s wife (by calling a question-answering
API). Finally, I will calculate the age power of 3 (by calling a calculator API). Examples have
shown promising results for tasks such as multi-hop question-answering, WebShop, and a textual
version of a butler in a virtual environment, ALFWorld: the butler can report on actions he has
taken to solve a given task in a kitchen (Yao et al., 2022).

We need to study the recent state-of-the art in task-decomposition utilizing LLMs(Wei et al.,
2022; Yao et al., 2023, 2022). We can also explore Algorithm Distillation (Laskin et al., 2022),
wherein the logs of cross-episodic events generated during the learning process of a RL algorithm,
are used to feed in a LLM, which as consequence can learn the optimal strategy. Since the state-
of-the-art is moving impressively fast, this proposal is open to upcoming approaches.

6.1.1 Benchmarcks and Evaluation

We will propose an evaluation framework that takes into account long-term memory, beyond
one dialogue session (Xu et al., 2022). For evaluating LLMs an evaluation framework that is
both model-agnostic and domain-independent is suitable. Therefore, we should think in ways
to detect the conversation goal together with performance indices, with or without humans in
the loop. In an initial state we can compare our previous results presented in Section 3.2.4
on hierarchical reinforcement learning for dialogue (Cordier et al., 2022, 2023) with LLMs that
follows ReAct and Algorithm Distillation by using the metrics introduced in ConvLab (Zhu et al.,
2020). Therefore, we can start this study by using the dataset MultiWoz, in which the user goal
is formally defined and provided. This corpus also includes the instructions given to annotators
during data collection. Later, we can move to complex tasks in which the user goal is not provided.
We can also study more realistic cases such as commercial or technical-support systems. We will
perform human evaluation to perceive their satisfaction with the system. As in Paradise (Walker
et al., 1997a) and in (Rojas-Barahona and Gardent, 2012), we would like to make a correlation
study between objective metrics (indices of performance that can be computed automatically) and
subjective metrics (e.g. user satisfaction). This framework can be extended to even more complex
interactions such as in multi-modal dialogue systems (Section 6.2).

6.1.2 Interpreting LLMs

After evaluating LLMs performance for task-oriented dialogue, we can use model agnostic black-
box interpretability methods (Cafagna et al., 2023) to understand how these models are able to
solve complex tasks. Where in the LLM architecture this behaviour is being produced? It is worth
noting that these methods can be applied only to Open-Source LLMs, in which we can have access
to the model (e.g., Llama (Touvron et al., 2023), Falcon (Penedo et al., 2023)). Interpretability
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6.1 LLMs for Task-Oriented Dialogue

might give us an insight of how we can correct LLMs to avoid undesirable behaviour (e.g. forget-
ting an important instruction, biases). Methods to correct LLMs are introduced in the following
Sections.

6.1.3 Retrieval Augmented Generation
One way to find grounded knowledge to feed into LLMs is through information retrieval (Mao
et al., 2021; Asai et al., 2022). Despite these techniques rank documents according to their rele-
vance, an important aspect is factuality (Thorne et al., 2018). Another aspect is that the sources
of knowledge are heterogeneous: they concern not only documents, but also images, recorded
interactions, knowledge graphs, tabular data, among others. Once we have retrieved crucial in-
formation there are several ways to inject this information into LLMs. The most adopted one
is prompt engineering, but controlling decoding might be more interesting in terms of scientific
research.

6.1.4 Controlling Decoding
There are distinct sampling mechanisms used for decoding such as greedy (T = 0 in Equa-
tion 6.2), beam search, top-k, nucleus or penalised sampling (Fan et al., 2018; Holtzman et al.,
2019; Keskar et al., 2019). An emergent method to control decoding is by adjusting sampling
weights in beam search (Ghazvininejad et al., 2017).

Let pθ be a pre-trained generative language model which has learned the distribution over
token sequences by optimising:

L = −
∑
t

log pθ(xt|x<t) (6.1)

The next token can be sampled by applying Softmax with temperature T because the final decoder
layer predicts logits o, over the vocabulary space:

pi ∝
exp (oi/T )∑
j exp (oj/T )

(6.2)

Beam search is a breadth-first search algorithm which explores the β tokens which best scores at
each level. Then, the likelihood of sampling for the next token xt+1 at step t can be augmented by
a scoring function:

score(xt+1, bt) = score(bt) + log p(xt+1) +
∑
i

αifi(xt+1) (6.3)

Where the log-likelihood predicted by the pre-trained language model is defined by log p(xt+1).
The accumulated score of the already-generated words in the current beam state bt is score(bt).
A set of feature functions that define the preferences is f(.), which can be a binary classifier that
predicts whether a sample is from the true data distribution (Grover et al., 2019). Finally, αi are
the associated weights that work like ”control knobs”. Therefore, the classifier can be used to
constrain factuality by predicting whether the token is grounded in knowledge or not. This is an
interesting path that can be further explored.

Another interesting approach is Chain of hindsight (Liu et al., 2023), in which pairs of (an-
swer, feedback) are provided as input to the model during fine-tuning. Thus, the model learns to
condition the generation on feedbacks during training.
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6.2 Multimodal task-oriented dialogues

Generative models were also trained for process multiple modalities (Antol et al., 2015; Zhu
et al., 2016; Srivastava et al., 2021), supporting image captioning and VQA. After the release of
multi-modal LLMs, the borders between domains, tasks and modalities have been vanished. One
can think in VQA applications that interact with elders, visual impaired (Chen et al., 2022) or
more broadly patients or practitioners in the medical domain. Efforts for ethical Artificial Intelli-
gence (AI) can not be diminished before putting VQA to interact with sensitive population. This
is particularly true in Europe, after the AI regulation (Hacker et al., 2023). Therefore, important
research areas concern interpretability and evaluation of multi-modal LLMs to correct model bi-
ases that might produce any harm. Generally, the datasets used for training these large models
were built without including minorities or people at risk. Therefore, these models can not respond
to their needs. A rigorous study to evaluate LLMs, involving these individuals must be carried out.
Interpretability methods (Section 6.1.2) can help us to understand biases deep inside the model
and to provide insights to correct them. This can be done in public models for image captioning
or VQA such as OFA (Wang et al., 2022).

Mulitmodality might also be highly related to RAG in both text-to-image and image-to-text
models (Yasunaga et al., 2023), wherein the information is available as images, audio or video
(Section 6.1.3). Finally, multi-modality also involves speech, in this proposal I talk about ways
to adapt task-oriented dialogues that use either RL or LLMs for policy learning and that take into
account the speech signal for emotion detection .

6.2.1 Exploiting weak speech signals in the reward function

Treating speech and text together is a research topic widely studied in Spoken Language Under-
standing (SLU). An interesting research path would be to go beyond intention recognition up to
response generation. We worked with the PhD candidates Leo Jacqmin, Lucas Druart and other
researchers in a cascade approach that integrated the ASR (i.e. Whisper)(Radford et al., 2022)
with a generative model for DST and we participate to the challenge DSTC-11 (Jacqmin et al.,
2023)1. RL can be used for learning the strategy (Section 2.3.2). However, it assumes there is a
reward function. In dialogue systems the reward signal is scarce, because it is unbearable for a
user to send a satisfaction signal at each dialogue turn. For fluidity, the reward function is asked
at the end of the conversation, which produces a scarce signal, complicating the task of policy
learning. Thus, the policy spectrum will have a large variance from very poor to very good.

We explored already two ways of solving this problem: (i)predicting the user satisfaction at
each dialogue turn by using the interaction quality as reward signal (Section 3.2.2) and (ii) using
imitation learning to guide the policy learning (Section 3.2).

One can think in improving the reward scarcity by exploiting the information in the speech
signal. Studying weak signals in the speech, such as the emotion, could be a way to improve the
reward signal. Emotion detection is important for developing conversational systems that could
adapt better to the users’ needs, improving as consequence the user satisfaction. For instance,
an early detection of distress would entail changing the dialogue strategy to quickly solve the
misunderstanding. Emotion detection involves an active research community producing datasets

1https://storage.googleapis.com/gresearch/dstc11/dstc11_20221102a.html
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6.2 Multimodal task-oriented dialogues

build from actors playing the emotion (Burkhardt et al., 2005; Schröder et al., 2007), from wiz-
ard of oz or more recently from more natural content (Zadeh et al., 2018, 2020; Dhall et al.,
2012; Scheidwasser-Clow et al., 2022). Neural methods for emotion detection have been pro-
posed in (Trigeorgis et al., 2016), since there are not many dataset for training deep models from
scratch transfer learning or distillation from other modalities have been also proposed (Pepino
et al., 2021; Albanie et al., 2018).

The main research questions behind this study will be:

• Concerning the emotion detection: we need to study domain adaptation for emotion recog-
nition to better exploit the available cross-domain datasets to dialogue.

• Combine multi-modality to produce the reward, one can think in using speech signal and
other domain agnostic metrics, such as counting the number of repetitions, counting the
number of dialogue turns, measuring the misunderstandings, detecting the sentiment from
text.

• Evaluate whether the emotion-based reward is suitable for policy learning

• Compare RL with LLM-based policies (e.g. algorithm distillation (Laskin et al., 2022),
Chain of Hindsight (Liu et al., 2023)).

85



86



Chapter 7

Conclusion

I presented in this dissertation a selected number of contributions I made to the areas of task-
oriented dialogue systems, conversational question answering and graph embeddings.

The contributions to task-oriented dialogue were in the fields of NLU, SLU and DM. Par-
ticularly, I explored classical machine learning techniques for NLU, convolutional and recurrent
neural networks to deal with noisy inputs for SLU, as well as data-augmentation techniques.
Although not mentioned in this work, I am currently supervising with Benoit Favre from the Uni-
versity of Aix-Marseille a PhD thesis on DST, recently we competed in the challenge DSTC-11
and we were awarded the first and second place (Jacqmin et al., 2023)1. Regarding the DM, I
explored Inverse Reinforcement Learning, Deep Reinforcement Learning, Imitation Learning and
Structured Policy Learning.

The contributions to conversational QA regard the annotation of existing datasets with in-
formation about ellipsis and coreferences, and with question rewriting to transform in-context
questions into out-of-context questions. The generative models released with these annotations
for the tasks of answer extraction, question generation and question rewriting; as well as the
models implemented for predicting ellipsis and coreferences were also presented. I also briefly
introduced the corpus KGConv grounded in Wikidata. Moreover, I presented our work on graph
embeddings in the hyperbolic space. Finally, I summarised the released resources such as datasets
and frameworks, in which I contributed to their creation, annotation and development.

This document consolidates my own contributions as young researcher, the work of two PhD
candidates supervised jointly with academics under the CIFRE convention. I could also collabo-
rate with academics in two ITN projects: Conversational Brains (COBRA) and NL4XAI. As head
of the project DIANA during 5 years, I could also define the main workpackages of the project and
supervise a dynamic team of researchers, developers, students in internship and apprenticeship.

I would like to focus my future research in proposing a framework to evaluate LLMs per-
formance in complex task-oriented dialogue. Moreover, I would like to explore interpretability,
retrieval augmentation and semantically control to understand LLMs internally, to support ground-
ing and to generate factual information. I would like to explore recent reasoning LLMs approach
(e.g., ReAct, algorithm distillation, etc.) to study LLMs capabilities to make long-term decisions.
It is wort noting that these research paths also cover multi-modal interactions.

1https://storage.googleapis.com/gresearch/dstc11/dstc11_20221102a.html
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embeddings. In Advances in Neural Information Processing Systems.

Andrew G Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical reinforcement
learning. Discrete event dynamic systems, 13(1-2):41–77.

Frédéric Béchet, Cindy Aloui, Delphine Charlet, Geraldine Damnati, Johannes Heinecke, Alexis
Nasr, and Frédéric Herledan. 2019. Calor-quest: generating a training corpus for machine read-
ing comprehension models from shallow semantic annotations. In MRQA: Machine Reading

89

citeseer.ist.psu.edu/allen01towards.html
citeseer.ist.psu.edu/allen01towards.html
https://doi.org/10.18653/v1/2022.naacl-main.162
https://doi.org/10.18653/v1/2022.naacl-main.162
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0674411528


for Question Answering-Workshop at EMNLP-IJCNLP 2019-2019 Conference on Empirical
Methods in Natural Language Processing.
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Marc Schröder, Laurence Devillers, Kostas Karpouzis, Jean-Claude Martin, Catherine Pelachaud,
Christian Peter, Hannes Pirker, Björn Schuller, Jianhua Tao, and Ian Wilson. 2007. What should
a generic emotion markup language be able to represent? In Affective Computing and Intelligent
Interaction: Second International Conference, ACII 2007 Lisbon, Portugal, September 12-14,
2007 Proceedings 2, pages 440–451. Springer.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust
region policy optimization. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 1889–1897, Lille,
France. PMLR.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Bidirectional
attention flow for machine comprehension. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

102

https://doi.org/10.1109/ICASSP.2011.5947649
https://doi.org/10.1109/ICASSP.2011.5947649
https://doi.org/10.3115/1614108.1614146
https://doi.org/10.3115/1614108.1614146
http://www.lrec-conf.org/proceedings/lrec2012/pdf/333_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/333_Paper.pdf
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge


BIBLIOGRAPHY

Iulian Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. 2017. A hierarchical latent variable encoder-decoder model for generating
dialogues. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using generative hierarchical neural network models. In
Thirtieth AAAI Conference on Artificial Intelligence.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022. Blenderbot 3: a deployed conversational
agent that continually learns to responsibly engage. arXiv preprint arXiv:2208.03188.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen,
and Jian-Yun Nie. 2015. A hierarchical recurrent encoder-decoder for generative context-aware
query suggestion. In Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, pages 553–562. ACM.

Yash Srivastava, Vaishnav Murali, Shiv Ram Dubey, and Snehasis Mukherjee. 2021. Visual ques-
tion answering using deep learning: A survey and performance analysis. In Computer Vision
and Image Processing: 5th International Conference, CVIP 2020, Prayagraj, India, December
4-6, 2020, Revised Selected Papers, Part II 5, pages 75–86. Springer.

Pei-Hao Su, Paweł Budzianowski, Stefan Ultes, Milica Gašić, and Steve Young. 2017. Sample-
efficient actor-critic reinforcement learning with supervised data for dialogue management. In
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages 147–157,
Saarbrücken, Germany. Association for Computational Linguistics.
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