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Résumé

Cette thèse étudie la détection et la localisation des défauts dans les assemblages de

guides d’ondes, en explorant l’interaction entre les ondes se propageant dans des assemblages de

guides d’ondes droits contenant des jonctions coudées et des défauts. A cet effet, la méthode

Wave Finite Element (WFE) est utilisée. Des expériences numériques valident la robustesse

et la précision de la méthode WFE à partir de comparaisons avec des solutions analytiques et

éléments finis, en se concentrant particulièrement sur les courbes de dispersion et les réponses

forcées. En élargissant l’étude aux assemblages comportant des éléments de couplage, tels que

des joints et des défauts, l’étude met en évidence l’efficacité de la méthode WFE dans des

scénarios impliquant de tels assemblages.

Une nouvelle stratégie utilisant un formalisme en matrices de diffusion est proposée pour

la localisation des défauts, qui met l’accent sur les structures contenant des jonctions coudées.

L’approche repose sur le calcul du temps de vol de paquets d’ondes transmis ou réfléchis au

niveau d’un élément de couplage. La stratégie est validée par des simulations numériques,

démontrant la précision de la localisation des défauts pour divers scénarios, notamment des

poutres 2D en contraintes planes et des tuyaux avec une jonction coudée et un défaut.

Les structures élasto-acoustiques sont également traitées. Une stratégie de réduction

basée sur la méthode de Craig-Brampton avec des vecteurs d’enrichissement est proposée pour

améliorer le coût de calcul de la modélisation des éléments de couplage. L’analyse des coefficients

de transmission et de réflexion en puissance des ondes dans des structures présentant des défauts
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et des jonctions met en évidence la pertinence du mode de torsion dans les contrôles non

destructifs par ondes guidées dans ce type de système.

Ces travaux de recherche contribuent non seulement à la compréhension de la propagation

des ondes dans les assemblages de guides d’ondes, mais proposent également des stratégies

pratiques pour une détection et une localisation précise des défauts, avec des applications

potentielles dans divers contextes d’ingénierie.e

Mots clés: méthode Wave Finite Element, propagation d’onde, jonctions coudées,

détection de défauts, temps de vol



Abstract

This thesis investigates defect detection and localization within waveguide assemblies,

exploring the interaction between waves in straight waveguides with curved joints and defects.

For this purpose, the Wave Finite Element (WFE) method is used. Numerical experiments

validate the robustness and accuracy of the WFE method through comparisons with analytical

and Finite Element solutions, particularly focusing on dispersion curves and forced responses.

Extending the investigation to assemblies with coupling elements, such as joints and defects,

the study highlights the efficiency of the WFE method in scenarios involving waveguides.

A novel strategy is proposed within the scattering matrix formalism for defect localization,

with a specific emphasis on structures containing curved joints. The approach relies on computing

the time of flight of narrow wavepackets transmitted or reflected at a coupling element. The

strategy is validated through numerical simulations, showcasing precision in defect localization

for diverse scenarios, including 2D plane-stress beams and pipes, with a curved joint and a

defect.

Elasto-acoustic structures are also treated. A reduction strategy based on Craig-Brampton

reduction with enrichment vectors is proposed for computational efficiency to model coupling

elements. Analysis of power transmission and reflection of waves in structures with defects and

joints highlights the significance of the torsional mode in guided wave-based non-destructive

testing in this type of system.

This research work contributes not only to the understanding of wave propagation
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in waveguide assemblies but also offers practical strategies for accurate defect detection and

localization, with potential applications in diverse engineering contexts.

Keywords: Wave finite element method, wave propagation, curved joints, defect detec-

tion, time of flight
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Résumé long (in French)

Introduction

Les pipelines sont essentiels pour transporter les biens de production dans l’industrie

énergétique, jouant un rôle vital dans le système économique mondial. Ils relient les points

d’extraction, les raffineries, les usines et les résidences. Selon Wang et al. [1], il y avait 201,9

×103 km de pipelines en service à la fin de l’année 2020, y compris ceux pour le gaz naturel, le

pétrole brut et le produit pétrolier, ce qui entraîne d’importants défis en matière de gestion et

de surveillance.

La maintenance et la surveillance de ce vaste réseau de pipelines impliquent différentes

techniques et procédures. Kraidi et al. [2] ont identifié plusieurs facteurs de risque, tels que

l’inspection et la maintenance inadéquates ainsi que la corrosion, qui ont un impact direct

sur les pipelines. Les contrôle non destructifs (CND) tels que la diffraction des rayons X, la

contrainte magnétique et les techniques d’ondes guidées sont couramment utilisés pour atténuer

ces risques. Plus spécifiquement, les tests par ondes guidées reposent sur la propagation des

ondes dans le milieu, et sont largement utilisés pour détecter et surveiller les fissures et la

corrosion. Récemment, des algorithmes d’IA ont été introduits pour améliorer la détection des

défauts et gérer les risques de manière plus efficace [3, 4].

Lorsqu’il s’agit de pipelines étendus, le test par ondes guidées est la méthode préférée

pour la détection de défauts. Cette approche implique de générer des ondes guidées et de mesurer

leur réflexion pour identifier la présence, le type et l’emplacement des défauts. Cependant,

1
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l’interprétation du signal réfléchi peut être considérablement modifiée par les jonctions coudées qui

relient les guides d’ondes, en raison des phénomènes de diffusion. De plus, la nature multimodale

et dispersée de ces ondes ajoute de la complexité au processus. Néanmoins, le cas d’un défaut

après une jonction est encore plus complexe et mérite une meilleure compréhension [5].

Dans ce sens, l’étude de la propagation des ondes et de son interaction avec les défauts

est essentielle pour interpréter les signaux collectés. Ainsi, le développement d’outils numériques

appropriés décrivant avec précision ce phénomène est vital. Les méthodes classiques, telles que

la méthode des éléments finis (EF), peuvent entraîner des coûts de calcul élevés, en particulier

pour des structures longues. Pour surmonter ces limitations, des méthodes basées sur les ondes

ont été utilisées, par exemple, la méthode des éléments finis à ondes (WFE) et la méthode

semi-analytique des éléments finis (SAFE).

Cette thèse applique la méthode WFE pour modéliser la propagation des ondes et la

diffusion des ondes dans des structures composées de guides d’ondes liés par des éléments de

couplage. Dans ce cadre, les jonctions coudées et les défauts sont modélisés via EF, ce qui

permet le calcul des coefficients de transmission et de réflexion. La première partie développe une

stratégie pour localiser un défaut après une jonction en se basant sur les matrices de diffusion.

Dans la deuxième partie, un modèle de réduction des éléments de couplage élasto-acoustique

dans le cadre de la méthode WFE est présenté, permettant une réduction du temps de calcul

dans le calcul des matrices de diffusion.

Organisation du manuscrit

Le chapitre 1 présente les concepts impliqués dans la technique de CND pour la localisation

des défauts. Une introduction de base à la propagation des ondes dans des milieux infinis et finis

est brièvement présentée. Ensuite, l’interaction des ondes guidées avec les défauts/jonctions

coudées est décrite sur la base de la littérature publiée. Ces études mettent en évidence

l’importance des simulations et des expériences pour améliorer les techniques d’ondes guidées.

Le chapitre 2 présente la méthode WFE. Les stratégies impliquées dans le calcul des
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courbes de dispersion et des formes d’ondes sont présentées. De plus, les réponses forcées en

fréquence et en domaine temporel sont décrites. Ensuite, le calcul des vitesses de groupe dans

le cadre de la méthode WFE est présenté. Des exemples sont ensuite proposés pour valider

l’approche. Les éléments de couplage sont introduits pour décrire les éléments non périodiques

entre les guides d’ondes et sont modélisés à l’aide de matrices de diffusion. Cela est fait en

combinant la réduction de Craig-Bampton (CB) basée sur EF et les approches WFE. Enfin, un

exemple de deux guides d’ondes droits connectés via un élément de couplage est montré.

Dans le chapitre 3, une approche numérique basée sur la méthode WFE est proposée

pour localiser les défauts dans des guides d’ondes élastiques droits connectés par une jonction

élastique courbe. Cette stratégie prend en compte les phénomènes de conversion de mode d’onde

et les temps de vol lorsque un paquet d’ondes est transmis à travers la jonction et réfléchi par le

défaut. Le temps de vol est calculé en utilisant le formalisme des matrices de diffusion. Des

expériences numériques sont menées impliquant des guides d’ondes droits connectés par une

jonction coudée et un défaut, où le point de mesure est placé avant la jonction. L’approche est

appliquée à des poutres en plane-stress 2D et à des tuyaux 3D, afin de mettre en évidence la

précision et la robustesse de l’approche proposée.

Le chapitre 4 présente la modélisation des systèmes élasto-acoustiques impliquant des

guides d’ondes droits et des jonctions coudées. Les guides d’ondes droits sont modélisés via la

méthode WFE, ce qui permet d’accéder aux courbes de dispersion, aux formes d’ondes et aux

vitesses de groupe. Les éléments de couplage élasto-acoustiques sont introduits dans ce cadre.

Comme cela implique un grand nombre de degrés de liberté, le calcul de leur matrice de rigidité

dynamique condensée est obtenu via une réduction de CB avec une technique d’enrichissement

de base. Des expériences numériques sont fournies. Les courbes de dispersion et les vitesses de

groupe sont discutées, et une comparaison entre les résultats WFE et EF dans les domaines

fréquentiel et temporel est fournie. Enfin, les coefficients de réflexion et de transmission pour

les jonctions coudées et les défauts sont comparés à ceux des tuyaux sans fluides internes.
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Enfin, dans le chapitre 5, les principaux résultats et contributions de ce travail sont

résumés. Les perspectives futures et les travaux ultérieurs sont également discutés.

Chapitre 1: Ondes guidées et contrôle non destructif

Contexte

Le contrôle non destructif (CND) est crucial pour maintenir et surveiller l’intégrité des

structures. Cela inclut différentes techniques pour évaluer les systèmes ou composants souhaités,

dans le but principal de surveiller sans causer d’altérations ou de dommages. Ces techniques

peuvent reposer sur les principes de la propagation du son, des champs électromagnétiques

et des radiations nucléaires, par exemple. Elles sont des outils importants pour assurer leur

sécurité et fiabilité à long terme en identifiant les risques potentiels sans causer de dommages à

la structure. Parmi elles, on trouve le test par ondes guidées [6].

Le test par ondes guidées est couramment utilisé pour les structures longues telles que

les pipelines et les voies ferrées. Il repose sur la capacité des ondes guidées à se propager

sur de longues distances et peut être utilisé pour surveiller des parties du système qui ne

sont normalement pas accessibles à d’autres types de techniques. En général, cela implique

la génération d’ondes guidées qui se propagent le long de la structure et des signaux réfléchis

(également appelés échos) produits par une source de diffusion et enregistrés à un ou plusieurs

points de mesure [5, 7].

Les sources de diffusion d’ondes sont couramment associées à un défaut dans des guides

d’ondes homogènes. Cependant, les jonctions coudées et autres éléments de couplage liant deux

guides d’ondes peuvent également diffuser des ondes guidées. Le signal réfléchi dépend fortement

des interactions des ondes avec eux [8, 9]. Un défi consiste à interpréter les signaux émis par des

structures complexes composées d’une jonction et d’un défaut [10, 11]. La modélisation de ces

systèmes est nécessaire pour une compréhension plus approfondie des phénomènes de diffusion

et de la localisation des défauts.
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Ce chapitre introduit le concept d’ondes guidées pour les inspections. L’équation d’onde

est présentée pour modéliser les ondes volumiques et guidées. L’exemple des tuyaux est discuté.

Les résultats de la littérature sur l’interaction des ondes et des défauts/jonctions sont également

discutés. Enfin, quelques méthodes numériques pour simuler la propagation des ondes dans les

guides d’ondes sont brièvement présentées.

Conclusions

De nombreux articles ont abordé l’utilisation des ondes guidées pour détecter les défauts

dans les guides d’ondes, montrant qu’elles sont pertinentes pour le CND. L’approche implique

d’analyser à la fois les signaux sources et réfléchis. Pour les pipelines simples et droits, le

processus de localisation d’un défaut est simple et est réalisé en décomposant le signal temporel

en termes de modes de propagation. Cependant, un élément de couplage de forme arbitraire

(comme une jonction coudée) peut compliquer l’analyse car une conversion de mode se produit

pendant la transmission et la réflexion, ce qui entraîne un signal réfléchi potentiellement dégradé

difficile à interpréter. Par conséquent, pour améliorer les méthodes existantes, il est essentiel

d’étudier numériquement l’interaction entre les ondes guidées et les jonction courbées, c’est-à-dire

les ondes transmises et réfléchies. Pour cette tâche, la méthode WFE semble appropriée car

elle permet le calcul des modes d’ondes dans un guide d’ondes. De plus, à la connaissance de

l’auteur, l’impact des jonction courbées dans les pipelines remplis de fluide n’a pas été exploré

en profondeur dans la littérature et mérite une enquête plus approfondie.

Chapitre 2: La méthode Wave Finite Element (WFE)

Contexte

La méthode WFE est une procédure numérique basée sur les conditions périodiques de

Floquet-Bloch et la méthode des éléments finis pour décrire la réponse dynamique des structures

périodiques, c’est-à-dire des structures composées de la répétition d’une cellule unitaire appelée

"sous-structure". La méthode WFE examine la propagation des ondes et la réponse forcée des

structures simples et complexes. À l’origine, elle a été développée pour analyser la propagation
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des ondes dans des structures périodiques 1D. Ses fondements proviennent des travaux de Orris

et Petyt [12, 13], Mead [14–18], entre autres. Plus tard, le formalisme de la méthode WFE a

ensuite été amélioré à travers différents travaux [19–24].

L’idée principale de la méthode WFE est de calculer les courbes de dispersion et la

réponse forcée pour des systèmes longs en utilisant le modèle EF d’une sous-structure. Par

conséquent, cela permet de réduire le temps de calcul. La relation entre le déplacement et

la force de deux sous-structures consécutives est établie en utilisant une méthode de matrice

de transfert, où la matrice de transfert est désignée par S. Cela permet le calcul des modes

d’ondes de voyage, c’est-à-dire les formes de mode et les nombres d’onde. En conséquence, le

déplacement et les forces d’une structure périodique peuvent être développés en termes des

modes d’ondes. Les problèmes numériques concernant la méthode ont été abordés de différentes

manières dans la littérature. Par exemple, la méthode WFE considère un problème aux valeurs

propres associé à la matrice de transfert, qui est sujet à un mauvais conditionnement car il

implique des vecteurs propres avec des petites et grandes composantes. Pour surmonter cela,

Zhong et Williams [25] ont proposé un schéma alternatif au problème aux valeurs propres basé

sur la transformation S + S−1. De plus, certaines applications nécessitent des modèles EF de

grande taille, ce qui conduit à des calculs fastidieux. Dans ces cas, certaines stratégies ont été

proposées en utilisant des stratégies de réduction d’ordre modal, des procédures de condensation

et la réduction de la base d’ondes propagatives [26–28].

En termes d’application, la méthode a été largement utilisée pour étudier différents

types de structures, par exemple, des structures de type poutre [28–30], des plaques [19, 31],

des tuyaux avec ou sans fluides [32–34], des matériaux piézoélectriques [35, 36], des structures

avec symétrie cyclique [37], des structures rotatives [38, 39], des structures hélicoïdales [40].

Lorsqu’on considère une périodicité 2D, la propagation des ondes a également été explorée via

la méthode WFE dans [20, 41, 42]. Bien que la méthode ne soit applicable qu’aux structures

périodiques, différentes structures peuvent être assemblées au moyen d’éléments de couplage.

Cela permet la description de la propagation des ondes dans des tuyaux ou des structures de
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type poutre composées de guides d’ondes droits et de jonction courbés [28, 29, 43].

Le reste du chapitre est organisé comme suit. Dans la section 2.2, la formulation de la

méthode WFE est détaillée, montrant comment les modes d’ondes peuvent être calculés à l’aide

de la matrice de transfert d’une sous-structure. La section 2.3 se concentre sur le calcul de la

réponse forcée. Le calcul de la réponse dans le domaine temporel de la structure périodique

via la transformée de Fourier est discuté dans la section 2.4. Dans la section 2.5, le calcul des

vitesses de groupe et d’énergie est expliqué. Dans la section 2.6, quelques exemples numériques

sont proposés pour illustrer la pertinence de l’approche. L’étude des structures périodiques avec

des éléments de couplage est abordée dans la section 2.7.

Conclusions

Dans ce chapitre, la méthode WFE a été introduite. Elle permet l’analyse des courbes de

dispersion et des réponses forcées pour les structures périodiques. Deux structures spécifiques

ont été discutées, à savoir une poutre de Timoshenko et une poutre a contraintes planes 2D. En

ce qui concerne la poutre de Timoshenko, les courbes de dispersion et les fonctions de réponse

ont été obtenues et comparées aux solutions analytiques. Le deuxième exemple a fourni une

comparaison entre les méthodes EF et WFE. Il a été démontré que la méthode WFE peut être

utilisée pour calculer la réponse transitoire des structures périodiques et les vitesses de groupe

pour les ondes guidées. De plus, la méthode WFE peut être utilisée pour modéliser des guides

d’ondes connectés via des éléments de couplage tels qu’une jonction coudée. La modélisation

des éléments de couplage repose sur la modélisation EF et la méthode CB. La méthode WFE

permet le calcul des ondes diffusées (transmises et réfléchies) au niveau des éléments de couplage.

En ce qui concerne les économies de temps de calcul, la méthode WFE est une alternative

efficace à la méthode EF, en particulier lorsqu’il s’agit de structures longues.
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Chapitre 3: Localisation de défauts dans un guide d’ondes avec
des jonctions coudées

Contexte

Une approche numérique est proposée pour localiser les défauts dans des guides d’ondes

élastiques connectés à des jonctions élastiques courbées. Des ensembles 2D impliquant des

guides d’ondes droits avec une jonction coudée et un défaut sont spécifiquement traités, où la

jonction est placé entre le point de mesure (signaux de sortie) et le défaut. Une telle analyse

nécessite d’évaluer les phénomènes de conversion d’ondes et les temps de vol des paquets d’ondes

lorsqu’ils sont transmis à travers la jonction et réfléchis par le défaut. Une stratégie WFE

originale est proposée où les temps de vol, pour les paquets d’ondes transmises ou réfléchies, sont

définis à partir des dérivées de fréquence des arguments des matrices de diffusion de la jonction

et du défaut. La procédure de localisation d’un défaut découle des expressions des temps de

vol. L’approche proposée permet l’identification des types d’ondes qui sont transmises à travers

la jonction et réfléchies par le défaut. Des expériences numériques sont menées, mettant en

évidence la pertinence, en termes de précision et de robustesse, de l’approche proposée.

L’idée clé de ce chapitre est que les temps de vol pour les paquets d’ondes voyageant

dans un élément de couplage (jonction, défaut), en transmission ou en réflexion, peuvent être

déterminés à partir des dérivées de fréquence des arguments de sa matrice de diffusion. Les

temps de propagation dans les guides d’ondes découlent de l’analyse des vitesses de groupe.

En ce sens, une expression théorique du temps mis par les paquets d’ondes incidents pour se

propager et être transmis/réfléchis par une jonction/défaut peut être proposée. La position du

défaut peut être déterminée en comparant ces temps de vol théoriques avec les temps de vol

expérimentaux (mesures). L’approche proposée fournit également un aperçu physique des types

d’ondes qui sont transmises à travers la jonction et réfléchies par le défaut (trajectoires). Les

contributions de cette partie peuvent être résumées comme suit :

• Expression des temps de vol pour les paquets d’ondes voyageant dans des éléments de



9

couplage (jonction, défaut) à partir des dérivées de fréquence des arguments de leurs

matrices de diffusion.

• Identification des types d’ondes qui sont transmises/réfléchies par une jonction/défaut

(trajectoires).

• Fourniture d’une procédure pour localiser un défaut pour différentes trajectoires possibles.

Le reste du chapitre est organisé comme suit. Dans la section 3.2, le modèle EF d’un

ensemble de guide d’ondes, comprenant un défaut et une jonction coudée, est présenté. Les

problèmes associés à la localisation des défauts sont discutés. Dans la section 3.4, des expressions

théoriques des temps de vol en transmission et en réflexion, pour un élément de couplage, sont

données. De plus, la procédure pour estimer la position d’un défaut à partir des temps de vol

mesurés et théoriques/estimés est détaillée. Dans la section 3.6, des expériences numériques sont

menées, portant sur des ensembles de guides d’ondes avec des jonctions courbés de différents

angles de courbure et des défauts représentant des trous circulaires de différents rayons.

Conclusions

Ce chapitre propose une approche WFE pour localiser les défauts dans des ensembles de

guides d’ondes avec des jonction courbées. Cette stratégie utilise la matrice de diffusion issue de

la méthode WFE pour évaluer les paquets d’ondes transmis et réfléchis à travers la jonction,

et pour localiser un défaut. Des ensembles en 2D comprenant des guides d’ondes élastiques

droits, une jonction élastique coudée et un défaut ont été traités. L’approche proposée fournit

des expressions théoriques des temps de vol en transmission ou en réflexion pour les paquets

d’ondes se déplaçant dans les éléments de couplage (jonction, défaut). De plus, elle fournit des

renseignements sur la nature des ondes qui sont transmises à travers la jonction et réfléchies par

le défaut (trajectoires). La position du défaut peut être déterminée en comparant les expressions

théoriques des temps de vol avec celles enregistrées dans un ensemble de guides d’ondes. Des

expériences numériques sur des poutres en 2D en état plan de contrainte et des tuyaux en 3D ont

été réalisées pour démontrer l’exactitude et la robustesse de l’approche proposée pour localiser
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un défaut à partir de l’analyse de différents paquets d’ondes réfléchis (plusieurs types d’ondes).

L’approche proposée est destinée à être générale et pourrait être utilisée pour localiser des

défauts simples ou multiples dans des réseaux de guides d’ondes, y compris plusieurs jonctions

coudées.

Chapitre 4: Guides d’ondes élasto-acoustiques

Contexte

Les pipelines remplis de fluide sont utilisés dans diverses industries, notamment le gaz, le

pétrole, la distribution d’eau et le génie civil. Par conséquent, l’entretien et la surveillance des

pipelines sont cruciaux pour garantir leur intégrité et prévenir les pertes financières. Dans de

vastes réseaux de pipelines, le CND à l’aide d’ondes guidées émerge comme une technique utile

à cet égard. La compréhension de la propagation des ondes dans les pipelines remplis de fluide

est notamment importante lorsque des ondes guidées sont utilisées. En particulier, l’interaction

des ondes élasto-acoustiques avec les défauts et les jonctions est importante pour améliorer les

techniques de CND.

La localisation des défauts dans les pipelines remplis de fluide a été étudiée de différentes

manières. Aristégui et al. [44] ont étudié la propagation des ondes dans les tuyaux avec des

fluides internes et externes. Ils ont obtenu un bon accord entre les expériences et les courbes de

dispersion calculées par une approche FE. Plus récemment, Vogelaar et Golombok [45] ont étudié

expérimentalement la détection de dommages en utilisant le mode de torsion avec différents

fluides internes et externes. Ils ont montré que différents fluides internes et externes atténuent

le mode de torsion, réduisant ainsi la portée d’inspection de la technique. Cependant, ils ont

affirmé que le mode de torsion est adapté à la détection des défauts de tuyauterie. Étant donné

que, en général, le mode de torsion fondamental T(0, 1) n’est pas dispersif, il est facile à générer

à l’aide de transducteurs, et l’énergie est confinée au tuyau et ne se propage pas. [46–49].

Il est possible de déterminer les courbes de dispersion des ondes propagées dans les tuyaux

axisymétriques remplis de fluide, comme discuté par Fuller et Fahy [50] et Sato et Ogiso [51].
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Cependant, pour les tuyaux complexes, les solutions analytiques ne sont pas évidentes. Ensuite,

les méthodes numériques deviennent un outil essentiel. Néanmoins, pour les structures longues,

la méthode des éléments finis devient un défi computationnel numériquement parlant car elle

implique de nombreux éléments, ce qui entraîne un grand nombre de degrés de liberté. Pour

résoudre ce problème, la méthode WFE est une alternative précieuse.

Mencik et Ichchou [32] ont appliqué la méthode WFE aux tuyaux remplis de fluide pour

calculer les courbes de dispersion. Bhuddi et al. [34] ont étudié la propagation des ondes dans

des tuyaux axisymétriques remplis de fluide entourés d’un fluide en utilisant la méthode WFE

combinée à une couche parfaitement adaptée (PML). Kingan et al. [52] ont analysé la réponse

d’un système orthotrope. Manconi et al. [53] ont appliqué la méthode pour analyser des tuyaux

précontraints stratifiés remplis de fluide. Maess et al. [54, 55] ont développé une stratégie pour

calculer les vitesses d’énergie et de groupe dans le cadre de la méthode WFE. Dans leurs travaux,

ils ont analysé des tuyaux droits et ondulés contenant un fluide.

Jusqu’à présent, les études se sont concentrées sur l’analyse de la propagation des ondes

dans des systèmes droits, négligeant le phénomène de conversion de mode en présence d’éléments

de couplage tels que les jonctions courbées et les défauts. Il est donc important d’incorporer la

modélisation de tels éléments de couplage dans la méthode WFE, car cela n’a pas encore été

fait dans la littérature du point de vue de la conversion de mode.

Dans le cadre de la méthode WFE, les éléments de couplage sont généralement modélisés

via des modèles FE qui peuvent contenir un grand nombre de degrés de liberté puisque des

structures remplies de fluide sont considérées. Cela peut entraîner des coûts de calcul élevés,

même avec la méthode WFE. Ainsi, une modélisation non réduite de l’élément de couplage peut

être considérée comme naïve, et une stratégie de réduction de modèle est nécessaire.

En ce qui concerne la réduction de modèle impliquant des tuyaux remplis de fluide et des

modèles FE, Maess et Gaul [56] ont adopté une synthèse de modes de composants en utilisant la

méthode CB et un solveur de sous-espace itératif pour générer une approximation du problème
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à basse fréquence. Plus tard, Herrmann et al. [57] ont fourni une approche FE pour simuler

des pipelines en utilisant la sous-structuration dynamique et une réduction d’interface. Pour

cette tâche, ils ont appliqué la méthode CB à des problèmes vibro-acoustiques et ont utilisé une

réduction d’interface basée sur des vecteurs de Ritz.

En outre, une réduction basée sur la projection modale peut être envisagée, où les parties

acoustique et élastique sont découplées. Cependant, pour assurer la convergence, il est nécessaire

de fournir des corrections en utilisant des vecteurs d’enrichissement [58]. Tournour et Atalla [59]

ont démontré que la base modale découplée donne une mauvaise convergence car les modes

haute fréquence d’un sous-système peuvent être couplés aux modes basse fréquence de l’autre.

Pour résoudre ce problème, ils ont proposé des corrections pseudo-statiques dans les deux

sous-systèmes. Tran et al. [60] ont utilisé des systèmes découplés enrichis ultérieurement par des

termes de correction statique. Cette approche sera utilisée dans ce manuscrit pour modéliser les

éléments de couplage dans le cadre de la méthode WFE.

Cette section est organisée comme suit. Dans la section 4.2, la méthode WFE pour

les guides d’ondes élasto-acoustiques est présentée. Quelques simulations sont effectuées pour

calculer les courbes de dispersion et les vitesses de groupe des modes élasto-acoustiques, et une

comparaison entre la réponse de force émise par les méthodes FE et WFE est fournie. Ensuite,

dans la section 4.3, une réduction CB pour les éléments de couplage combinée à une technique

d’enrichissement est présentée dans le cadre de la méthode WFE. Des résultats numériques sont

fournis concernant la réduction CB, les coefficients de transmission et de réflexion. Enfin, une

application numérique de l’approche proposée pour localiser un défaut dans des tuyaux remplis

de fluide avec une jonction coudée est analysée.

Chapitre 5: Conclusions

Ce chapitre a analysé la propagation des ondes dans des tuyaux remplis de fluide avec des

jonctions et des défauts. Les modes de propagation dans les tuyaux ont été obtenus avec succès

en utilisant la méthode WFE. Pour le cas des tuyaux droits remplis de fluide, une comparaison
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entre les méthodes FE et WFE a été fournie, où une réduction considérable du temps de calcul

a été observée. Cela démontre la précision et l’efficacité de la méthode WFE par rapport à la

méthode FE classique. De plus, dans le cadre de la méthode WFE, une stratégie de réduction a

été proposée pour calculer efficacement les matrices de rigidité dynamique réduits des éléments

de couplage. Une jonction courbe reliant deux guides d’ondes a été analysée, et une comparaison

entre les résultats WFE et FE dans les domaines temporel et fréquentiel a été fournie. Dans

l’ensemble, la stratégie permet une réduction de 65% avec une erreur de 0,5% pour calculer la

réponse vibroacoustique.

Enfin, les coefficients de diffusion ont été calculés pour les défauts et les jonctions coudées.

Pour les défauts, il n’y avait pas de différence significative entre les cas rempli de fluide et vide.

Cependant, des différences dans la transmission et la réflexion produites en raison de la présence

de fluide ont été observées pour les jonctions. Le cas d’un défaut après la jonction a été exploré

et le concept de temps de vol dans la transmission à travers la jonction s’est avéré précis et

pertinent pour estimer la localisation du défaut.

Chapitre 5: Conclusions et perspectives

Dans cette thèse, nous avons étudié certains aspects de la détection et de la localisation

de défauts dans des assemblages composés de guides d’ondes droits, de jonctions coudées et de

défauts. En particulier, ce travail a fourni des informations sur l’interaction des ondes guidées

au niveau des défauts et des jonctions coudées. Ces phénomènes ont été simulés numériquement

à l’aide de la méthode WFE.

Dans le chapitre 2, les fondements de la méthode WFE ont été rappelés. La méthode WFE

a été utilisée pour modéliser des structures périodiques, c’est-à-dire des structures composées

d’un assemblage de sous-structures. Cela a permis le calcul des modes d’ondes et de la réponse

forcée dans les domaines temporel et fréquentiel. Dans ce cadre, il est possible de simuler

des guides d’ondes liés à des éléments de couplage, tels que des jonctions et des défauts, qui

peuvent être modélisés à l’aide de la méthode FE et de la réduction CB. De plus, des expériences
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numériques ont été menées pour montrer la robustesse et l’exactitude de la méthode WFE. Des

comparaisons entre les solutions WFE et la théorie analytique pour les courbes de dispersion

et la réponse forcée dans le domaine fréquentiel ont été fournies ; également, une comparaison

entre les solutions WFE et FE pour évaluer les réponses forcées dans les domaines temporel et

fréquentiel a été proposée. Enfin, une étude de deux guides d’ondes connectés avec un élément

de couplage a été présentée et le concept de matrices de diffusion a été exploré. Le WFE s’est

avéré pertinent et efficace pour fournir des solutions précises pour la propagation des ondes

dans des guides d’ondes droits avec/sans éléments de couplage.

Dans le cadre du formalisme des matrices de diffusion, une stratégie de localisation d’un

défaut dans des structures contenant une jonction coudée a été proposée dans le chapitre 3.

Cette stratégie est basée sur le calcul du temps de vol qu’un paquet d’ondes étroit met à être

transmis ou réfléchi au niveau d’un élément de couplage. Il a été prouvé que le temps de vol peut

être calculé en considérant les dérivées par rapport à la fréquence des arguments des matrices

de diffusion de la jonction et du défaut. De plus, un aperçu physique des ondes transmises et

réfléchies au niveau d’un élément de couplage a été fourni. Des simulations numériques ont été

réalisées pour vérifier l’approche proposée. Tout d’abord, le cas d’une poutre en 2D en contrainte

planes a été discuté en considérant des guides d’ondes avec un défaut et des guides d’ondes avec

une jonction coudée et un défaut. Il a été démontré que la prise en compte du temps de vol

dans la transmission et la réflexion à travers la jonction est pertinente pour localiser le défaut

avec précision. En plus de se concentrer sur les jonctions coudées, cette approche vise à être

généralisée aux cas d’éléments de couplage complexes.

Enfin, dans le chapitre 4, le cas de structures élasto-acoustiques a été considéré. La

méthode WFE utilisait une formulation symétrique du problème élasto-acoustique dans laquelle

le vecteur de déplacement est considéré pour la partie élastique et le potentiel de vitesse est

considérée pour la partie acoustique. Cela a permis le calcul des modes de propagation des ondes,

de leurs courbes de dispersion et de leurs vitesses de groupe. En ce qui concerne les éléments de

couplage, une stratégie basée sur la réduction CB avec des bases de vecteurs d’enrichissement a
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été proposée. La stratégie de réduction a été testée pour garantir sa validité et sa robustesse.

Avec cette stratégie de réduction, la transmission de puissance et la réflexion des ondes pour

différents défauts et jonctions ont été analysées. Il a été montré que le mode de torsion constitue

une bonne option pour réaliser le CND. En ce qui concerne la détection des défauts, la stratégie

de localisation d’un défaut après une jonction a été appliquée, en considérant différents angles

de courbure pour la jonction. Il a été montré que le temps de vol est sensible à la présence de

fluide. Dans ce cas, il est recommandé de prendre en compte le temps de vol de la jonction

élasto-acoustique pour détecter le défaut avec précision.

Perspectives:

Certains sujets pourraient être envisagés pour des perspectives futures et un développe-

ment ultérieur :

• Une question importante à résoudre est de savoir si la gravité d’un défaut placé après

une jonction peut être estimée. Lorsqu’il n’y a qu’un défaut présent, sa sévérité peut

être évaluée. Cependant, les phénomènes de conversion des modes d’onde se produisant

dans une jonction peuvent masquer des informations importantes à cet effet, telles que

l’amplitude de l’onde réfléchie causée par le défaut;

• Examiner et proposer une stratégie pour localiser un défaut lorsque plusieurs jonctions

coudées sont présents dans le système. Cela semble être un défi car plusieurs conversions

de mode peuvent se produire, rendant l’interprétation des signaux difficile. À notre

connaissance, cela n’a pas été exploré dans la littérature;

• Étudier l’interaction entre les ondes propagatives et les non-linéarités locales dans des

structures périodiques infinies. À cet égard, Duhamel et Mencik [61] ont développé une

méthode pour les structures périodiques infinies contenant des non-linéarités locales dans

le domaine temporel. Cependant, il semble que l’approche proposée n’ait pas été appliquée

au CND ;
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• Proposer une stratégie pour réduire la base d’enrichissement CB pour un élément de

couplage élasto-acoustique en fonction de la sélection des vecteurs gauches ŨE et ŨA lors de

la décomposition SVD, voir Sec. 4.3.1 et 4.4.1. Incorporer également la réduction des bases

d’onde proposée par Droz et al. [27]. Ces deux stratégies semblent ensemble optimiser les

coûts de calcul dans le cadre du WFE ;

• Analyser la propagation des ondes et la détection des défauts dans les tuyaux remplis de

fluide, avec un écoulement moyen. Cela semble être significatif car cela est couramment

rencontré dans les situations industrielles. Il convient de souligner que, dans le cadre du

WFE, la prise en compte de la vitesse de l’écoulement entraîne une matrice S qui n’est

plus symplectique ;

• Étudier l’optimisation topologique des éléments de couplage et/ou des sous-structures

pour manipuler la propagation des ondes : bandes d’arrêt, coefficients de diffusion, entre

autres propriétés ;



Introduction

Pipelines are essential for transporting production goods in the energy industry, playing

a vital role in the global economic system. They connect extraction points, refineries, factories,

and residences. According to Wang et al. [1], there were 201.9× 103 km of pipelines in service by

the end of 2020, including those for natural gas, crude oil, and product oil, leading to significant

challenges in managing and monitoring them.

Maintaining and monitoring this vast pipeline system involves various techniques and

procedures. Kraidi et al. [2] identified several risk factors, such as improper inspection &

maintenance and corrosion, that directly impact pipelines. Non-destructive testing (NDT) like

X-ray diffraction, magnetic strain, and guided wave techniques are commonly used to mitigate

these risks. Specifically, guided wave tests rely on wave propagation in the media, and it is

extensively used to detect and monitor cracks and corrosion. Recently, AI algorithms have been

introduced to enhance defect detection and manage risks more effectively. [3, 4].

When working with extended pipelines, guided wave testing is the preferred method for

defect detection. This approach involves generating guided waves and measuring their reflection

to identify defects’ presence, type, and location. However, the interpretation of the reflected

signal can be drastically modified by curved joints that connect waveguides, due to scattering

phenomena. Additionally, these waves’ multi-modal and dispersive nature adds complexity to

the process. Notwithstanding, the case of a defect after a joint is even more complex and still

deserves a better understanding [5].

17
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In this sense, studying wave propagation and its interaction with defects is essential for

interpreting collected signals. Thus, developing appropriate numerical tools that accurately

describe this phenomenon is vital. Classical methods, such as the Finite Element (FE) method,

can result in high computation costs, especially for long structures. To overcome these limitations,

wave-based methods have been used, for example, the Wave Finite Element (WFE) and Semi-

Analytical Finite Element (SAFE) methods.

This thesis applies the WFE method to model wave propagation and wave scattering

in structures composed of waveguides linked by coupling elements. In this framework, curved

joints and defects are modeled via FE, allowing the computation of transmission and reflection

coefficients. The first part develops a strategy to localize a defect after a joint based on the

scattering matrices. In the second part, a reduction model of elasto-acoustic coupling elements

in the WFE framework is presented, enabling a time reduction in the computation of scattering

matrices.

Organization of the manuscript

Chapter 1 presents concepts involved in the NDT technique for defect localization. A

basic introduction to wave propagation in infinite and finite media is shortly presented. Next,

the interaction of guided waves with defects/curved joints is briefly described based on the

published literature. Those studies highlight the importance of simulations and experiments for

improving guided wave techniques.

Chapter 2 presents the WFE method. The strategies involved in the computation of

dispersion curves and wave shapes are presented. Also, the forced frequency and time domain

responses are described. Next, the computation of group velocities in the WFE framework

is presented. Examples are then proposed to validate the approach. Coupling elements are

introduced to describe non-periodic elements between waveguides and are modeled using

scattering matrices. This is done by combining the FE-based Craig-Bampton (CB) reduction

and the WFE approaches. Finally, an example of two straight waveguides connected via a
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coupling element is shown.

In Chapter 3, a numerical approach based on the WFE method is proposed to localize

defects in straight elastic waveguides connected by a curved elastic joint. This strategy considers

the wave mode conversion phenomena and times of flights when a wave packet is transmitted

through the joint and reflected by the defect. The time of flight is computed using the scattering

matrix formalism. Numerical experiments are carried out involving straight waveguides connected

by a curved joint and a defect, where the measurement point is placed before the joint. The

approach is applied to 2D plane-stress beams and 3D pipes, which highlights the accuracy and

robustness of the proposed approach.

Chapter 4 presents the modeling of elasto-acoustic systems involving straight waveguides

and curved joints. Straight waveguides are modeled via the WFE method, which allows access

to the dispersion curves, wave shapes, and group velocities. Elasto-acoustic coupling elements

are introduced in this framework. As it involves a large number of degrees of freedom, the

computation of their condensed dynamic stiffness matrix is obtained via a CB reduction with a

basis enrichment technique. Numerical experiments are provided. The dispersion curves and

group velocities are discussed, and a comparison between the WFE and the FE results in the

frequency and time domains is provided. Finally, reflection and transmission coefficients for

curved joints and defects are compared to those of pipes without internal fluids.

Finally, in Chapter 5, the main results and contributions of this work are summarized.

Future perspectives and follow-up works are also discussed.





Chapter 1

Guided waves and non-destructive

testing

1.1 Overview

Non-destructive testing (NDT) is crucial in maintaining and monitoring the integrity of

structures. This includes different techniques to evaluate the desired systems or components,

with the primary objective of monitoring without causing any alterations or harm. These

techniques can rely on the principles of sound propagation, electromagnetic fields, and nuclear

radiation, for example. They are important tools to ensure their long-term safety and reliability

by identifying potential risks without causing any damage to the structure. Among them is

guided wave testing. [6]

Guided wave testing is commonly used for long structures such as pipelines and railway

tracks. It is based on the ability of guided waves to propagate over long distances, and it can be

used to monitor parts of the system that are not normally accessible by other types of techniques.

In general, this involves the generation of guided waves that propagate along the structure and

reflected signals (also known as echoes) produced by a scattering source and recorded at one or

21
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more measuring points [5, 7].

Wave scattering sources are commonly associated with a defect in homogeneous waveg-

uides. However, curved joints and other coupling elements linking two waveguides can also

scatter guided waves. The reflected signal strongly depends on the wave’s interactions with

them [8, 9]. One challenge is interpreting signals issued from complex structures composed of a

joint and a defect [10, 11]. Modeling these systems is necessary for a deeper understanding of

scattering phenomena and defect localization.

This chapter introduces the concept of guided waves for inspections. The wave equation

is presented to model bulk and guided waves. The example of pipes is discussed. Results from

the literature about the interaction of waves and defects/joints are also discussed. Finally, some

numerical methods are briefly presented to simulate wave propagation in waveguides.

1.2 Wave propagation

Wave propagation in elastic infinite media can be modeled using the classical theory of

elasticity for continuum media undergoing small deformations. The Navier governing equations

can be used for this task. [62, 63]

Let us consider a linear, isotropic, and infinite solid medium with density ρ. Also, let us

denote the Young modulus by E and the Poisson ratio by ν. The displacement u(x, ω) in this

solid is modeled through the elastodynamic equation in the frequency domain:

−ρ ω2u(x, ω) = E

(1 + ν)(1− 2ν)∇(∇ · u(x, ω)) + E

2(1 + ν)∇
2u(x, ω), (1.1)

where ω represents the angular frequency, which is related to the frequency f by the relation

ω = 2πf . The above equation is known as the wave equation and can be solved using the

Helmholtz decomposition theorem. The displacement u(x, ω) can be expanded in function of a

scalar potential ϕ and a vector potential Ψ as follows
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u(x, ω) = ∇ϕ +∇×Ψ, (1.2)

with ∇ ·Ψ = 0. Inserting Eq. (1.2) into Eq. (1.1) leads to two independent equations for ϕ and

Ψ

−ω2ϕ = cP∇2ϕ and − ω2Ψ = cS∇2Ψ, (1.3)

where

cP =

√√√√ E(1− ν)
(1 + ν)(1− 2ν)ρ and cS =

√
E

2ρ(1 + ν) . (1.4)

In Eq. (1.3), two different propagating waves (also known as bulk waves) can be obtained

using the Helmholtz decomposition and are classified as compressional wave (P), which is

associated with the scalar potential and shearing wave (S) which is related to the vector

potential. Their propagation velocities only depend on the material parameters of the medium

and are given by Eq. (1.4). For compressional waves, the material particles move in the same

direction of the wave propagation, and for shear waves, the particle moves perpendicularly to

the direction of the wave propagation.

The compressional and shearing waves are the only two possible propagating waves in

infinite and unbounded medium. They do not interact with each other and are non-dispersive,

meaning that their wave velocities do not depend on the frequency. However, different waves,

called guided waves, appear in the presence of boundaries in finite or semi-finite media. They

are present and used in non-destructive evaluation and are introduced hereafter.
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1.3 Guided waves

Here, various aspects of wave propagation are discussed. Concisely, the phase velocity

denotes the velocity at which an individual wave (monochromatic) travels, while the group

velocity denotes the speed of propagation for a wavepacket; and, essentially, a wavepacket can

be understood as the combination of monochromatic waves [62].

Guided waves result from wave interference phenomena induced by the system’s bound-

aries. Plates, beams, and pipes are examples of finite structures in which guided waves can be

produced and propagated. Bulk waves have a constant phase velocity and are non-dispersive.

Whereas in guided waves, the phase velocity is generally a function of the frequency, and the

group velocity is not equal to the phase velocity and is generally dispersive. Moreover, guided

waves can travel long distances without experiencing significant energy loss [64].

Guided wave analysis starts by considering Eq. (1.1) with the imposed boundary condi-

tions. The equations are formulated in the frequency domain, resulting in dispersion curves for

each wave mode and/or family of modes — i.e., the relation between the wavenumber (βj) and

the frequency. It is important to note that the number of propagating modes is unlimited and

increases indefinitely with higher frequencies. Furthermore, the dispersion curves can be used to

express the group and energy velocities [62]. The phase velocity (cpj) and the group velocity

(cgj) for a mode j can be computed as follows:

cpj = ω

ℜ{βj}
and cgj = ∂ω

∂ℜ{βj}
, (1.5)

with ℜ{βj} represents the real part of βj. The knowledge of the wavenumber and wave modes

as a function of frequency is primordial in wave propagation analysis.

The dispersion relations can be obtained analytically for simple structures like pipes. For

more complex structures, numerical methods are required, such as the SAFE method [65–67],

the WFE method [14, 21, 68], and the SE method [69]. The simulation of guided waves in the
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time domain is usually done via the FE method [70, 71].

For example, the dispersion curves for pipes are well-known and can be found analytically,

see [72, 73]. The solution is based on Eq. (1.1) using cylindrical coordinates and free-surface

conditions. As a result, different wave modes can be found and categorized. It is customary to

classify them into three distinct families: flexural modes F(m, n), longitudinal modes L(0, n), and

torsional modes T(0, n). Here, the variable m denotes the circumferential order of a mode, while n

represents the group order. For axisymmetric modes, the circumferential order m = 0 [6, 74, 75].

In Fig. 1.1, the group velocities of various modes are plotted against frequency for a

steel pipe with an internal radius of 50 mm and a wall thickness of 2.5 mm. The longitudinal

modes are shown in red, the torsional modes in green, and the flexural modes in blue, pink,

and orange. The torsional mode T(0, 1) is non-dispersive and axisymmetric. The L(0, n) mode

is generally dispersive, axisymmetric, and experiences low attenuation. Also, the L(0, 2) mode

becomes non-dispersive at high frequencies. F(m, n) modes are non-axisymmetric, dispersive,

and present cut-off frequencies, i.e., where modes become propagating. At high frequencies, the

group velocity of F(m, 1) converges to the group velocity of L(0, 1), F(m, 2) towards T(0, 1), and

F(m, 3) towards L(0, 2). The phase velocity for the torsional mode T(0, 1) is expressed as:

cT(0,1) =
√

E

2(1 + ν) ·
1
ρ

. (1.6)

Some observations about the mode T(0, 1) can be made: it is a non-dispersive mode;

its phase and group speed are equal; its propagation speed is the same as that found for the

shearing wave speed in Eq. (1.4).

It is known that the internal radius and the wall thickness mainly determine the dispersion

curves for pipes. The inner radius plays a significant role in the dispersion curves of flexural

modes, and the thickness wall in the longitudinal modes [76]. In terms of mode generation,

axisymmetric modes can be purely excited using a uniform excitation over the circumference of

the pipe using a ring of transducers. The flexural modes can be generated using excitations
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that are normal to the pipe surface [6].

Figure 1.1: Group velocity as the function of frequency for a steel pipe with an internal radius

of 50 mm and wall thickness of 2.5 mm. Longitudinal modes are plotted in red, the torsional

mode in green, and the flexural modes in blue, pink, and orange.

Fig. 1.2 shows the shapes of some wave modes around 40 kHz, where the colors and

modes correspond to Fig. 1.1. The longitudinal modes, L(0, 1) and L(0, 2), can be seen in

Figs. 1.2(a) and (b), respectively. The torsional mode, T(0, 1) in Fig. 1.2(c). Finally, the flexural

modes, F(1, 1), F(1, 2), and F(1, 3), are shown in Figs. 1.2(a), (b), and (c), respectively.
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Figure 1.2: Wave modes for a steel pipe with an internal radius of 50 mm and wall thickness

of 2.5 mm at 40 kHz: (a) L(0, 1), (b) L(0, 2), (c) T(0, 1), (d) F(1, 1), (e) F(1, 2), and (f) F(1, 3).

Colors are in accordance with Fig. 1.1.

1.4 Non-destructive testing using guided waves

Regarding wave propagation, two different techniques can be highlighted [6]: ultrasonic

testing and guided wave testing, see Fig. 1.3. During ultrasonic testing, as seen in Fig. 1.3(a), a

transducer covers a specific volume along the structure. Then, to examine the whole structure,

the transducer is supposed to move along it. This method has a strong penetrating capacity

and may be used to determine the thickness of the studied section as well as the size and form

of defects. However, it suffers from drawbacks, such as the need for surface preparation, the

complexity of the signal for non-homogeneous structures, and the fact that it only covers a
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small area. [9]

Figure 1.3: Comparison between (a) ultrasonic and (b) guided wave inspections. Adapted

from [6].

The guided wave technique involves the generation of a guided wave, which is then

converted into reflected and/or transmitted signals measured at one or more points along the

structure. It is of interest in situations where access to the interior of a long structure is limited.

By analyzing the characteristics of the guided wave and the collected data, technicians can

determine the presence, location, and extent of damages or deteriorations within the structure,

enabling them to take proactive measures to prevent them and ensure the ongoing safety and

reliability of the system.

As seen in Fig. 1.3(b), this technique may cover the whole thickness for long-range

inspections and it is widely used for lengthy pipelines and railway rails and can cover the

thickness for long-range inspections. Besides its ability to detect internal and external defects,

the interpretation of data is complex in the presence of multiple defects and curved joints, for

example.
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Fig. 1.4 illustrates a real-world engineering application of guided waves in NDT. In

Fig. 1.4(a)1, an example of a pipeline where the accelerators and sensors are placed on the

structure is shown. Figs. 1.4(b)1 and (c)2, show trained technicians performing NDT on pipelines.

Figure 1.4: Examples of real engineering application of guided waves in NDT : (a) example of

a pipeline and the accelerators and detector, (b) and (c) technicians performing the NDT in

pipelines.

To optimize signal collection, it is necessary to design the accelerators and sensors

specifically for each situation. Figs. 1.5(a), (b), and (c) show three different systems developed

by "Guided Ultrasonic Ltd" 3 used in the inspection of large-diameter pipes, sub-sea pipes, and

rail inspections, respectively.

1Available on https://www.mistrasgroup.com/how-we-help/field-inspections/advanced-ndt/

automated-ultrasonic-testing/guided-wave-testing/ Accessed 18 April 2023
2Available on : https://en.wikipedia.org/wiki/Guided_wave_testing Accessed 18 April 2023
3Available on https://www.guided-ultrasonics.com/ Accessed 20 April 2023

https://www.mistrasgroup.com/how-we-help/field-inspections/advanced-ndt/automated-ultrasonic-testing/guided-wave-testing/
https://www.mistrasgroup.com/how-we-help/field-inspections/advanced-ndt/automated-ultrasonic-testing/guided-wave-testing/
https://en.wikipedia.org/wiki/Guided_wave_testing
 https://www.guided-ultrasonics.com/
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Figure 1.5: Examples of commercial detectors/sources by “Guided Ultrasonics Ltd.” used for:

(a) inspection of large diameter pipe, (b) subsea inspections, and (c) rail inspections

Signal processing plays a crucial role in identifying propagating modes and the time

they take to travel a certain distance. Different signal processing techniques, such as Fourier

transforms, wavelet transforms, and digital filtering, are used to pos-treated wave signals and

identify the different wave modes. It provides information about the structure properties and

types of defects. Signal processing is also used to distinguish the noise from the actual signal,

which is essential for accurately detecting defects. Overall, signal processing is critical in the

NDT process. [77–79]

1.5 Interaction of waves with defects and curved joints

The inspection and monitoring of structures using guided waves was developed around

1970. Since then, the method has been studied and applied to detect defects and mode conversion

issued from different defects and curved joints when certain modes are used. [63, 80–83]

In [84, 85], it is shown that a thickness variation of the waveguide directly impacts

wave conversion in transmission and reflection. It was observed that when the thickness

varies symmetrically, there is mode conversion within the same wave family of modes. On the

other hand, non-symmetric thickness variations result in the conversion of waves belonging to

different families. Additionally, several recent studies involving NDT in plates corroborate those
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results [86–88].

In terms of defect detection, Lowe et al. [89] found that mode conversion from waves

of type L(0, 2) to F(1, 3) can be used to identify axisymmetric and non-axisymmetric defects.

Bai et al. [90] and Cawley et al. [91] found that the variation of the reflection coefficients

of a circumferential crack is dependent on the axial extension of the defect for the modes

L(0, 2) and F(1, 3). Also, Demma et al. [92] conducted a numerical and experimental study

on the interaction between defects and the torsional mode T(0, 1) from 10 kHz up to 300 kHz.

They demonstrated that axisymmetric defects interact with axisymmetric modes. However,

non-axisymmetric defects, such as cracks, lead to mode conversion from mode T(0, 1) to mode

F(1, 3) at low frequencies and from T(0, 1) to F(1, 2) at high frequencies. Liu et al. [93],

experimentally observed mode conversion from T(0, 1) to F(n, m) when two different defects are

present (longitudinal and circumferential). Ratassepp et al. [94] showed that the magnitude

of the reflection coefficients for the mode T(0, 1) increases with the crack length. Additionally,

more recent studies have confirmed and extended the understanding of the interaction of guided

waves and defects [95–98].

As mentioned before, the presence of a curved joint yields mode conversion, meaning that

an incident wave may change from one type to another as it passes through or is reflected by

the joint. For example, a longitudinal wave may be converted into a torsional wave or vice versa.

The wave propagation through a curved joint is influenced by different parameters, such as the

radius of the joint, its length, and the central frequency of the incoming wave [7]. Demma et

al. [99] investigated the transmission and reflection of mode L(0, 2) through a 90-degree curved

joint for various radii. They reported that larger curved joint radii, compared to the diameter

of the pipe, lead to high transmission rates of the incoming waves. Conversely, mode conversion

to other modes is observed for small curved joint radii. Finally, intermediate curved joint radii

values produce a time delay in the measured signal. Verma et al. [100] conducted a study on the

impact of curved joints on wave propagation using the FE method and experimental techniques.

They investigated the transmission and reflection of mode L(0, 2) using different curved joint
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angles and radii and demonstrated that the time of flight through it should be considered. They

found that the bend can result in a maximum energy loss of 20% during transmission.

Other works have studied the influence of curved joints to localize defects. In [101],

the importance of the time of flight is highlighted to localize a defect in a curved joint. Qi

et al. [102] used the fundamental torsional mode to analyze the transmission and reflection

coefficients in the presence of a damaged 90-degree elbow. Sanderson et al. [103] showed that

defect localization can be prone to inaccurate results due to distortion issues for the receiving

signals due to curved joints. In [104], the torsional mode is used to localize the circumferential

defect beyond an elbow. In addition, the effect of two curved joints on the defect localization

was explored in [105] when different joint configurations are present.

Regarding fluid-filled pipes, the wave propagation phenomena and the localization of

a defect were analyzed in different works. Duan numerically analyzed the wave propagation

in the time and frequency domains using a perfectly matched layer (PML) [106]. Using the

SAFE method combined with a PML, Duan and Kirby [107] simulated the wave propagation

in buried and immersed multilayered pipes. Aristégui et al. [44] conducted experiments to

compute dispersion curves for pipes immersed in water. They also compared the results with

the theoretical prediction. In terms of defect detection, Gallezot et al. combined the PML and

the SAFE methods to study the scattering of waves by defects in pipes immersed in infinite

medium [108]. Vogelaar and Golombok [45] experimentally studied the damage defection using

the torsional mode in fluid-filled pipes with different inner and outer fluids. They showed that

identical inner and outer fluids produce an attenuation of 0.1 dB/m, and this value is doubled

when inner and outer fluids are different. However, they stated that the torsional mode remains

suitable for detecting pipe defects. Different studies regarding buried/immersed pipes have

also been published, analyzing the dispersion curves of pipes and wave propagation in different

media. In general, the fundamental torsional mode T(0, 1) is preferred in NDT applications

since it is not dispersive, it is easy to generate using transducers, and the energy is confined in

the pipe [46–49].
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1.6 Numerical methods

When working with guided wave techniques, it is crucial to understand the principles of

wave propagation. This involves calculating and examining wave modes and their dispersion

curves. In this sense, numerical simulations have helped the understanding of wave propagation

modes. [109]

Various methods have been employed to calculate dispersion curves for different waveguide

configurations. Among them, we can emphasize the analytical solutions, the FE, the SAFE, and

the WFE methods. Concerning analytical approaches, the focus is to solve the partial differential

equation related to wave propagation and the imposed boundary conditions to compute the

desired variables. The analytical approach is highly accurate but cannot be applied to assess

wave propagation in structures with complex geometries. [63, 66, 110]

The FE method is a better solution compared to the analytical approach when dealing

with complex geometries. It is well-established, tested, and applied to wave propagation

phenomena. It has also been used to simulate waveguide scattering problems in time-domain.

However, spatial and time discretization should be wisely chosen to model ultrasonic-guided

waves and may lead to huge computation efforts. One way to reduce the computation costs is

to use reduced models. Besides that, the FE method also allows the treatment of multiphysics

and non-linear problems. [111]

Alternatives to the FE method are the wave-based methods, like the SAFE and the WFE

methods, where wave functions approximate the desired mechanical variables [112]. The SAFE

and WFE methods are briefly explained hereafter using a simple example.

1.6.1 SAFE method

Let us consider an infinite and homogeneous straight waveguide of thickness h and an

FE discretization along its thickness, as shown in Fig. 1.6(a).
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Figure 1.6: (a) Waveguide model for SAFE method (b) Waveguide model for WFE method,

where the periodic length of a unit cell is denoted by d. Figure adapted from Ref. [113].

The SAFE method is used to model the wave propagation in the perpendicular direction

of the cross-section, i.e., the x-direction. Also, the displacement field is assumed to be space

harmonic in the wave propagation direction:

u(x, y, t) =

ux(y)

uy(y)

 e−i(βx−ωt), (1.7)

where t represent the time, and i =
√
−1. Then, considering Eqs. (1.1) and (1.7), and

approximating the displacement for each element u(e) by means of shape functions P(y) as

ue = P(y)qe, it is possible to obtain an eigenvalue problem [113]:

[
β2K1 + βK2 + K1 − ω2M

]
q = 0, (1.8)

where q is the global nodal displacement vector; K1,2,3 and M are stiffness and mass matrices

(for details about these matrices, see [114]). The solution of the eigenvalue problem in Eq. (1.8)

leads to the dispersion relations of the wave modes — i.e., the variation of β as a function of ω.

This leads to both complex and real wavenumbers.

This method can compute the dispersion curves/wave modes for various cases such as

rails [115], plates [66], and pipes [116, 117]. It is generally used for wave propagation in one

direction in systems where the cross-section remains constant. For example, the SAFE method
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can be applied to helicoidal structures. In this case, a curvilinear coordinate system must be

considered to describe the wave propagation in a certain direction. [108, 118]

1.6.2 WFE method

Unlike the SAFE method, the WFE method is based on the periodicity of the waveguide,

where one unit cell is considered. Following the previous example, a unit cell (also called

substructure) of length d can be decomposed into left, internal, and right degrees-of-freedom

(DoFs), denoted by L, I, R, respectively, see Fig. 1.6(b). The dynamical equation of this unit cell

is then given by:

Dq = F, (1.9)

where q and F are the vectors of nodal displacement and nodal forces related to the DoFs of the

unit cell. Also, D = −ω2M + iωC + K is the dynamic stiffness matrix with M, C, K the mass,

damping, and stiffness matrices, respectively. These matrices are obtained via FE algorithms.

Using the action-reaction rule and the displacement continuity at the shared interface (k)

between two consecutive cells #k and # k − 1, the following relation can be established:

q(k+1)
R

F(k+1)
R

 =

 q(k+1)
L

−F(k+1)
L

 = S

 q(k)
L

−F(k)
L

 , (1.10)

where S is so-called transfer matrix. The eigenvalues of S are related to the wavenumber such

as µj = e−iβjd, where j is a mode, and the eigenvectors are related to the wavemodes. In this

way, the relation between the frequency and the wavenumber can be found. This method will

be further explored in Chapter 2.

Originally developed for straight waveguides, the SAFE and WFE methods were for-

mulated to calculate wave numbers and wave shapes. Nevertheless, these techniques can be

combined with the FE method to characterize wave interactions and account for arbitrarily

shaped coupling elements, like defects or curved joints. For instance, it can be used to determine
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the transmission and reflection coefficients of waves through these coupling elements.

Regarding computational efficiency, wave-based methods represent a good alternative to

the FE method for the following reasons:

1. Dispersion curves and wavemodes can be easily computed;

2. Scattering coefficients, involving the conversion of modes in the presence of perturbed

waveguide sections, can be found;

3. Small computational time is required, especially for long waveguides.

Compared to the SAFE method, the WFE approach can deal with complex cells and

not only straight unit cells. However, it should be noted that the WFE method might become

cumbersome when handling a large number of DoFs within the unit cell.

1.7 Conclusions

Numerous articles have addressed the use of guided waves to detect defects in waveguides,

showing that they are relevant for the NDT. The approach involves analyzing both the source

and reflected signals. For simple and straight pipelines, the process to localize a defect is

straightforward and it is achieved by decomposing the time signal in terms of propagating modes.

However, an arbitrary-shaped coupling element (such as a curved joint) can complicate the

analysis as mode conversion occurs during transmission and reflection, leading to a potentially

degraded reflected signal that is challenging to interpret. Therefore, to improve existing methods,

it is essential to numerically investigate the interaction between guided waves and curved joints,

i.e., transmitted and reflected waves. For this task, the WFE method seems to be appropriate

since it allows the computation of wave modes in a waveguide. Moreover, to the author’s

knowledge, the impact of curved joints in fluid-filled pipelines has not been thoroughly explored

in the literature and deserves further investigation.



Chapter 2

The Wave Finite Element (WFE)

method

2.1 Overview

The WFE method is a numerical procedure based on Floquet-Bloch periodic conditions

and the FE method to describe the dynamic response of periodic structures, i.e., structures

made up of the repetition of a unit cell called “substructure”. The WFE method investigates

wave propagation and forced response of simple and complex structures. Originally, it was

developed to analyze wave propagation in 1D periodic structures. Its foundations originate from

the works of Orris and Petyt [12, 13], Mead [14–18], among others. Later, the formalism of the

WFE method has been enhanced through different works [19–24].

The main idea of the WFE method is to compute the dispersion curves and forced

response for long systems using the FE model of a substructure. As a consequence, it allows

the reduction of the computational time. The relation between the displacement and force of

two consecutive substructures is established using a transfer matrix method, where the transfer

matrix is denoted by S. It allows the computation of the traveling wave modes, i.e., mode

37
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shapes and wavenumbers. As a consequence, the displacement and forces of a periodic structure

can be expanded in terms of the wave modes. The numerical issues concerning the method have

been addressed in various ways in the literature. For example, the WFE method considers an

associated eigenproblem related to the transfer matrix, which is prone to ill-conditioning since it

involves eigenvectors with small and large components. To overcome this, Zhong and Williams

[25] proposed an alternative scheme to the eigenproblem based on S + S−1 transformation. Also,

some applications require large-size FE models, leading to cumbersome computations. In these

cases, some strategies have been proposed using modal order reduction strategies, condensation

procedures, and reduction of propagating wave basis [26–28].

In terms of application, the method has been broadly used to study various types of

structures, for example, beam-like structures [28–30], plates [19, 31], pipes with and without

fluids [32–34], piezoelectric materials [35, 36], structures with cyclic symmetry [37], rotating

structures [38, 39], helicoidal structures [40]. When considering 2D periodicity, wave propagation

was also explored via the WFE method in [20, 41, 42]. Although the method is only applicable

to periodic structures, different structures can be assembled by means of coupling elements.

This enables the description of wave propagation in pipes or beam-like structures composed of

straight waveguides and curved joints [28, 29, 43].

The rest of the chapter is organized as follows. In Sec. 2.2, the formulation of the WFE

method is detailed, showing how the wave modes can be computed using the transfer matrix of a

substructure. Sec. 2.3 focuses on the forced response computation. The computation of the time

domain response of periodic structure via Fourier transform is discussed in Sec. 2.4. In Sec. 2.5,

the group and energy velocities computation is explained. In Sec. 2.6, some numerical examples

are proposed to illustrate the relevance of the approach. The study of periodic structures with

coupling elements is addressed in Sec. 2.7.
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2.2 Wave mode computation

Let us consider a linear periodic elastic structure composed of N identical substructures

of length d along a certain direction, as shown in Fig. 2.1(a). The left and right boundaries are

supposed to share the same FE meshes and number of DoFs, as in Fig. 2.1(b). In the WFE

framework, only one substructure is considered.

Figure 2.1: (a) Schematic of linear periodic elastic structure (periodic mesh); (b) Substructure

mesh.

The DoFs of a substructure can be decomposed into left, right, and internal, denoted

by L, R, and I, respectively. The left and right sides contain the same number n of DoFs. The

stiffness, mass, and damping matrices of the substructure can be obtained using any commercial

FE or Matlab codes and are denoted by K, M, and C, respectively. In the frequency domain,

the dynamical equilibrium equation of the substructure can be written as (see Sec. 1.6.2):

Dq = F, (2.1)
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where q and F are the displacement and force vectors, and D is the dynamical stiffness matrix

(DSM), which is given by:

D = −ω2M + iωC + K. (2.2)

The DoFs can be reorganized in terms of left and right boundary and internal DoFs as

follows: 
DLL DLI DLR

DIL DII DIR

DRL DRI DRR




qL

qI

qR

 =


FL

FI

FR

 . (2.3)

The classical WFE method assumes that no external loads are applied to the interior

DoFs (FI = 0), i.e., they are only applied to the left and right boundaries. Then, the following

condensed equilibrium equation can be expressed as:

D∗
LL D∗

LR

D∗
RL D∗

RR


qL

qR

 =

FL

FR

 =⇒ D⋆qB = FB, (2.4)

where D∗ = DBB −DBID−1
II DIB, with B the set of DoFs on the left (L) and right (R). Also, qL

and qR (resp. FL and FR) are the displacement (resp. force) vectors of size n× 1. The matrices

D∗
LL, D∗

LR, D∗
RL, and D∗

RR are square matrices of size n× n, with D∗
LL = (D∗

LL)T , D∗
RR = (D∗

RR)T ,

and D∗
LR = (D∗

RL)T .

Let us consider two consecutive substructures #k− 1 and #k, see Fig. 2.2. The following

equilibrium conditions should be satisfied at the interface (k):

q(k)
L − q(k)

R = 0 and F(k)
L + F(k)

R = 0. (2.5)
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Figure 2.2: Schematics of substructures.

When Eqs. (2.4) and (2.5) are considered, it is possible to express the displacement and

force of the right and the left boundaries of the substructure #k [119]. So, the transfer matrix

equation is given by:

u(k+1)
R = Su(k)

R or u(k+1)
L = Su(k)

L , (2.6)

where u(k)
R and u(k)

L are 2n× 1 vectors comprising displacement and forces on the boundaries

left and right of the substructure #k (see Fig. 2.2), and are expressed by:

u(k)
R =

q(k)
R

F(k)
R

 and u(k)
L =

 q(k)
L

−F(k)
L

 . (2.7)

In Eq. (2.6), S is the transfer matrix (size 2n× 2n) and it is expressed as [21]:

S =

 −D∗−1
LR D∗

LL −D∗−1
LR

D∗
RL −D∗

RRD∗−1
LR D∗

LL −D∗
RRD∗−1

LR

 . (2.8)

It is well known that S is symplectic [19, 21], i.e.,

ST JS = J where J =

 0 I

−I 0

 . (2.9)

and that its eigensolutions represent waves. The related eigenvalue problem to be solved can be

written as:
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Sϕj = µjϕj with ϕj =
[
ϕT

qj ϕT
Fj

]T
, (2.10)

with ϕj being the right eigenvectors of S, and µj the corresponding eigenvalues. The eigenvectors

represent the wave shapes and can be divided into two contributions ϕj = [ϕT
qj ϕT

Fj]T, where

ϕqj and ϕFj are vectors of displacement and force components, respectively. The symplectic

property of S provides paired eigenvalues (µj, µ⋆
j = 1/µj), with |µj| < 1, and their related

eigenvectors ϕj and ϕ⋆
j . Finally, the eigensolutions can be categorized into a set of n right-going

waves {µj, ϕj}j=1,...,n and n left-going waves {µ⋆
j , ϕ⋆

j}j=1,...,n. Also, Bloch’s theorem states that

the eigenvalues µj can be expressed as µj = e−iβjd, where βj denotes the wavenumber of a mode

j.

The displacement and force vectors at an interface (k) can be expanded in terms of wave

modes [23, 28]:

u(k)
L = ΦQ(k) + Φ⋆Q⋆(k) and u(k)

R = ΦQ(k) + Φ⋆Q⋆(k) (2.11)

where

Φ =

Φq

ΦF

 and Φ⋆ =

Φ⋆
q

Φ⋆
F

 , (2.12)

and Φq, Φ⋆
q, ΦF and Φ⋆

F are n × n full rank matrices defined by Φq = [ϕq1 · · ·ϕqn], Φ⋆
q =

[ϕ⋆
q1 · · ·ϕ⋆

qn], ΦF = [ϕF1 · · ·ϕFn] and Φ⋆
F = [ϕ⋆

F1 · · ·ϕ⋆
Fn]. Also, Q(k) and Q⋆(k) are wave amplitude

vectors, see Fig. 2.2. It can be shown that Q(k) = µk−1Q and Q⋆(k) = µN+1−kQ⋆ where

Q = Q(1) and Q⋆ = Q⋆ (N+1) represent wave amplitude vectors at the left and right ends of the

structure(respectively), see Fig. 2.1; with µ = diag{µj}n
j=1 being a diagonal matrix composed

of eigenvalues µj for the right-going waves.

The wave amplitudes can be obtained by considering boundary conditions, which is
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addressed in Sec. 2.3. The WFE method may lead to high computational costs when dealing

with substructures with a huge number of DoFs. This becomes particularly evident during

the condensation of the internal DoFs, where the inversion of the matrix DII is required. The

construction of the symplectic transfer matrix S also involves the inversion of DLR, which can

also yield numerical errors. The direct computation of the eigenproblem in Eq. (2.10) is prone

to numerical errors, since the matrix of eigenvectors contains small and large components from

the displacement and force parts. To avoid it, the WFE eigenproblem can be computed using

different strategies described hereafter. [25, 120]

2.2.1 (N,L) transformation

As indicated by Zhong and Williams [25], the direct computation of the eigenproblem

described by Eq. (2.10) is prone to numerical errors, since it involves eigenvectors with small

and large components. To solve it, they have proposed an equivalent approach. The idea is

to decompose the matrix S into two distinct matrices L and N, where S = NL−1, and then

proceed with an intermediary step to solve the original eigenproblem. Indeed, it can be proven

that:

Nwj = µjLwj, (2.13)

where

N =

 I 0

−D∗
LL −D∗

LR

 , L =

 0 I

D∗
RL D∗

RR,

 and wj =

 ϕqj

µjϕqj

 . (2.14)

The waveshapes are derived from ϕj = Lwj , which represents the right-going wave modes.

This problem is well-conditioned as the eigenvector wj only consists of displacement components.

However, due to numerical dispersion in computing the wave modes, the eigenvalues for the

right-going wave modes µ⋆
j and the left-going wave modes µj may not strictly follow the relation

µ⋆
j = 1/µj. This can result in an ill-conditioned matrix system when computing the forced

response of the system. As described by Mencik [22], to overcome this issue, one strategy is
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to consider symmetric substructures with respect to their mid-plane. In doing so, a relation

between the left- and right-going modes can be proposed by employing a symmetry matrix

transformation:

ϕ⋆
qj = Rϕqj and ϕ⋆

Fj = −RϕFj, (2.15)

where R is the symmetry matrix transformation, that represents a diagonal matrix with ±1 as

components, such that R2 = In.

As discussed by Fan et al. [35, 36], the eigenproblem in Eq. (2.13) can still be prone to

numerical issues. It happens because significant differences in magnitude occur between matrices

D∗
LR and I, leading to large conditioning numbers. To solve this issue, they have introduced the

parameter σ = ||D∗
RR||2/n2. Then, a final approach using the modified matrices Lm and Nm can

be written as:

Nm(wm)j = µjLm(wm)j, (2.16)

where

Nm =

 σI 0

−D∗
LL −D∗

LR

 , Lm =

 0 σI

D∗
RL D∗

RR

 and (wm)j =

 σϕqj

µjϕqj

 . (2.17)

The computation of the waveshapes can be easily achieved with this approach, and the

wavenumbers are the same as those computed with the eigenproblem described in Eq. (2.13).

2.2.2 (S + S−1) transformation

For non-symmetric substructures, the eigenvalues of S may not follow strictly the relation

µ⋆
j = 1/µj, and the symmetry matrix transformation (R) cannot be applied to ensure the

symplectic nature of the wave modes. An alternative procedure has been proposed to solve this

issue. It consists in using the (S + S−1) transformation that leads to the following eigenproblem:
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((
N′JL′ T + L′JN′ T)− λjL

′JL′ T) zj = 0, (2.18)

for the eigenvalues λj = µj + 1/µj and the eigenvectors zj [25, 119]. Here, we define:

N′ =

 D∗
RL 0

−(D∗
LL + D∗

RR) −I

 and L′ =

 0 I

D∗
LR 0

 . (2.19)

Thus,

N′JL′ T + L′JN′ T =

 (D⋆
RL −D⋆

LR) (D⋆
LL + D⋆

RR)

−(D⋆
LL + D⋆

RR) (D⋆
RL −D⋆

LR)

 , (2.20)

and

L′JL′ T = N′JN′ T =

 0 −D⋆
RL

D⋆
LR 0

 . (2.21)

The eigenvalues related to the wave mode µj can be found analytically by solving the

quadratic equation µ2
j − λjµj + 1 = 0, whose solutions are:

µj = 1
2
(
λj ±

√
λ2

j − 1
)

. (2.22)

The eigenvectors of S follow as:

ϕj =

 I 0

D∗
RR I

w′

j with w′

j = J(L′ T − µ⋆
jN

′ T)zj (2.23)

and

ϕ⋆
j =

 I 0

D∗
RR I

w⋆′

j , with w⋆′

j = J(L′ T − µjN
′ T)zj. (2.24)

With this approach, the wave modes {µj, ϕj}j=1,...,n and {µ⋆
j , ϕ⋆

j}j=1,...,n can be accurately

computed.
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2.2.3 Tracking criteria

For certain applications, it is interesting to track a given wave mode along a frequency

band. To track a wave mode between two consecutive discrete frequencies a modal assurance

criterion (MAC) can be adopted [121, 122]. The objective of this criterion is to provide a means

to measure the level of correlation between two different modes.

The main goal is to identify a certain mode ϕs at two consecutive frequencies ω and

ω + ∆ω, where ∆ω is sufficiently small to capture slight shape variations that may happen

between these frequencies. Two criteria have been adopted for this purpose: the Euclidean and

the symplectic criteria. Let us consider two wave modes ϕr, and ϕs, the Euclidean criterion

gives:

∣∣∣ϕH
r (ω)ϕr(ω + ∆ω)

∣∣∣
∥ϕr(ω)∥ ∥ϕr(ω + ∆ω)∥ = max

s


∣∣∣ϕH

r (ω)ϕs(ω + ∆ω)
∣∣∣

∥ϕr(ω)∥ ∥ϕs(ω + ∆ω)∥

 , (2.25)

and the symplectic criterion, where the orthogonality relation of modes is given by ϕ⋆T
r Jϕs = 0,

for µs ̸= 1/µr (as discussed by Zhong and Williams [25]). This results in:

∣∣∣∣∣ ϕ⋆T
r (ω)
∥ϕ⋆

r(ω)∥J
ϕr(ω + ∆ω)
∥ϕr(ω + ∆ω)∥

∣∣∣∣∣ = max
s

{∣∣∣∣∣ ϕ⋆T
r (ω)
∥ϕ⋆

r(ω)∥J
ϕs(ω + ∆ω)
∥ϕs(ω + ∆ω)∥

∣∣∣∣∣
}

. (2.26)

The above criteria mean that the maximum correlation between modes at each frequency

happens when s = r. The Euclidean norm does not employ mode orthogonality [119]. However,

the criterion remains useful for interpreting solutions and dispersion curves.

2.3 Forced response

The WFE method allows the computation of the forced response of periodic structures.

Considering a finite periodic structure composed of N substructures. As a result of Eq. (2.11),

the displacement and forces vectors at an interface (k) can be written as follows:
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q(k)
L = q(k)

R = Φqµ
k−1Q + Φ⋆

qµ
N+1−kQ⋆ k = 1, . . . , N + 1, (2.27)

and

−F(k)
L = F(k)

R = ΦFµ
k−1Q + Φ⋆

Fµ
N+1−kQ⋆ k = 1, . . . , N + 1. (2.28)

Figure 2.3: Schematics of the wave amplitudes along a periodic structure. As an example of

boundary conditions, a force vector is applied at the left end and a displacement vector at the

right end.

The amplitude vectors Q and Q⋆ are determined from the boundary conditions. As a

simple example, let us consider a force vector F0 on the left side and a displacement vector

on the right q0 side of the structure as in Fig.(2.3). It is possible to express the boundary

conditions in terms of wave modes as follows:−F0 = ΦFQ + Φ⋆
Fµ

NQ⋆

q0 = Φqµ
NQ + Φ⋆

qQ⋆
(2.29)

The above equation is then organized in a linear system to find the wave amplitude

vectors Q and Q⋆:  ΦF Φ⋆
Fµ

N

Φqµ
N Φ⋆

q


Q

Q⋆

 =

−F0

q0

 . (2.30)

The solution of the linear system in Eq. (2.30) involves the inversion of a matrix that is

partitioned into displacement and force components, which may again lead to ill-conditioning [22].
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To overcome this, it is possible to precondition this matrix equation by multiplying the first line

by Φ−1
F , and the second line by Φ⋆−1

q The following well-conditioning linear system to be solved

is given by [23]:

 I Φ−1
F Φ⋆

Fµ
N

Φ⋆−1
q Φqµ

N I


Q

Q⋆

 =

−Φ−1
F F0

Φ⋆−1
q q0

 , (2.31)

Solving Eq (2.31) yields Q and Q⋆; then, the displacements/forces along the structure

can be retrieved via Eqs. (2.27) and (2.28). It should be pointed out that the procedure can be

applied to different boundary conditions, for example, using surface impedances [23].

2.4 Time response

Originally, the WFE method analyses guided waves in structures in the frequency domain,

and then the structure behavior at different frequencies. To describe the behavior of the structure

in the time domain, it is necessary to convert the harmonic responses into the time domain.

This can be done via the Inverse Discrete Fourier Transform (IDFT).

In the case of discrete frequencies, the conversion from the frequency domain to the time

domain is achieved via IDFT using the scheme proposed by Marzani [117]. The computation of

the time response depends on the applied force and the time range. The following procedure

can be considered:

1. The sampling frequency fs is chosen according to the Nyquist–Shannon sampling theorem;

2. The time span is built as t = [0, dt, 2dt, · · · , T − dt], with dt = 1/fs. Here, T is chosen

to capture the slowest propagating wave. In this sense, the time span is composed of

N = T × fs points;

3. The force is expressed in the time domain F (t), and its spectrum F (ω) is obtained via

DFT using the fft function provided by MATLAB;
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4. The frequency span is then built as f = [0, fc, 2fc, · · · , fs], with fc = fs/(N − 1).

5. The frequency response is obtained using the WFE method for the first NF values, where:

NF =

(N + 2)/2 if N is even

(N + 1)/2 if N is odd

6. The displacement is stored for the analyzed frequencies. The complex conjugate of each

c-th element of stored displacement is filed in a N − c + 2 vector, where:

c =

(2, 3, · · · , NF − 2, NF − 1) if N is even

(2, 3, · · · , NF − 1, NF ) if N is odd

7. The IDFT is performed, and the time response is found. This can be obtained using

MATLAB’s ifft function.

This method provides the displacement at the monitored point as a function of time.

This will be extensively used to compute the traveling wave packets along different structures,

for example, to simulate the reflected signal at the sensor point issued from a defect or a joint.

The propagation of the wave packets along the structure depends on the group velocity and the

nature of the mode. This can be addressed in two different ways in the WFE framework as

explained hereafter.

2.5 Group velocity

For NDT applications, it is important to determine the velocity at which a wavepacket

travels along the structure. It is used to determine the time of flight for reflected/transmitted

wavepackets issued from a defect and/or a curved joint. The velocity at which a wavepacket

propagates is known as the group velocity and can be found with the WFE method.

The computation of the group velocity can be achieved in different ways, i.e., by con-

sidering (i) the dispersion curves or (ii) an energy balance. In the first approach, the group

velocity cgj for a given wave j is obtained as [62]:
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cgj = ∂ω

∂ℜ{βj}
, (2.32)

where βj is the related wave number. The first method is purely determined by the derivative

of the frequency in function of the real part of the wavenumber. So, the group velocity can be

found if the dispersion curve is known.

The second approach involves computing the energy velocity of each mode. When dealing

with low-damped structures, the energy and group velocities are equal. Given this condition,

the group and energy velocities for a certain mode j are given by [123, 124]:

cgj ≈ ce
j = Pj

Tj + Uj

, (2.33)

where Pj is the energy flow, Tj is the averaged kinetic energy, and Uj is the averaged potential

energy contribution of the j-th mode through the cross-section. In terms of displacement and

forces, they can be computed as [68]:

Pj(ω) = iω

4

 q(k)
Lj

−F(k)
Lj


H

J

 q(k)
Lj

−F(k)
Lj

 , (2.34)

Tj(ω) = ω2

4d

 q(k)
Lj

q(k+1)
Lj


H

MBB

 q(k)
Lj

q(k+1)
Lj

 , (2.35)

and

Uj(ω) = 1
4d

 q(k)
Lj

q(k+1)
Lj


H

KBB

 q(k)
Lj

q(k+1)
Lj

 , (2.36)

where KBB, and MBB are the stiffness and mass matrices associated with the boundary DoFs.

Here, the contribution of each wave mode j for the displacement and force at an interface (k)
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are computed as:

q(k)
Lj = ϕqjµ

k−1
j Qj + ϕ⋆

qjµ
N+1−k
j Q⋆

j and − F(k)
Lj = ϕFjµ

k−1
j Qj + ϕ⋆

Fjµ
N+1−k
j Q⋆

j . (2.37)

It is worth mentioning that the second approach only works when no internal DoFs are

present in the substructure. [68]

2.6 Numerical results and discussion

Two different structures are analyzed, i.e., a Timoshenko’s beam and the 2D plane-stress

beam. In the first case, the analytical solution of the dynamical equation is available. Then, a

comparison with the WFE method for dispersion curves and forced response is done. In the

second case, the comparison is made between the FE and WFE methods in the frequency and

time domains.

2.6.1 Timoshenko beam

The Timoshenko model for beams is well established and an analytical solution can be

found for dispersion curves and forced response [125]. To compare the WFE approach with the

analytical solution, a FE discretization is considered to obtain the mass and stiffness matrices of

the beam structure. Friedman and Kosmatka [126] developed a two-node Timoshenko FE beam

using a cubic shape function for the transverse displacement and a quadratic shape function for

the rotation. This formulation leads to a closed form for the elementary stiffness Ke and mass

Me matrices for a substructure of length d:

Ke = EI

(1 + γ)d3



12 6L −12 6d

(4 + γ)d2 −6d (2− γ)d2

12 −6d

symm. (4 + γ)d2


(2.38)

and
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Me = Me1 + Me2 (2.39)

where each one is given by:

Me1 = ρSd

210(1 + γ)2



m1 m2 m3 m4

m5 −m4 m6

m1 −m2

symm. m5


(2.40)

and

Me2 = ρI

30(1 + γ)2d



36 m7 −36 m7

m8 −m7 m9

36 −m7

symm. m8


(2.41)

where

m1 = (70γ2 + 147γ + 78), m2 = 0.25d(35γ2 + 77γ + 44),

m3 = (35γ2 + 63γ + 27), m4 = −0.25d(35γ2 + 63γ + 26),

m5 = 0.25d2(7γ2 + 14γ + 8), m6 = −0.25d2(7γ2 + 14γ + 6),

m7 = −d(15γ − 3), m8 = d2(10γ2 + 5γ + 4),

m9 = d2(5γ2 − 5γ − 1), γ = (12EI)/(kGSd2).

Fig. 2.4(a) shows the FE mesh for the Timoshenko beam where the following physical

and geometrical parameters are used: Young’s modulus E = 210 GPa, density ρ = 7800 kg/m3,

Poisson’s ratio ν = 0.3. The damping is supposed to be mass proportional, i.e., C = ηM, with

η = 0.01 s−1. Here, I = (1/12)10−8 m4 and S = 10−6 m2 are the second moment of area and

the cross-section area, respectively. The shear correction factor is k = 0.89, and the beam

length is L = 0.10 m. Within the WFE framework, a substructure without internal DoFs and
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length d = 1× 10−4 m with matrices Me and Ke is considered (see Fig. 2.4(b)). A shear force

Fs = 1 N is applied at x = 0, and the beam is clamped at x = L. The response obtained via the

WFE method is assessed from 0 Hz to 100 kHz, and compared with the theoretical solutions

concerning the dispersion curves and the frequency responses.

Figure 2.4: (a) FE mesh for the Timoshenko beam. A force is applied at x = 0, and the system

is clamped at x = L. (b) Mesh of a substructure of length d, with displacement w and rotation

θ DoFs.

The dispersion curves are presented in Fig. 2.5(a), where the continuous lines represent

the WFE solutions and the dashed lines show the theoretical results [125]. The red line represents

the flexural mode, while the purple line represents the shearing mode. The cut-off frequency

occurs at 16.5kHz, where the mode becomes purely propagating. Fig. 2.5(b) compares the group

velocities computed using the WFE method and the theoretical approach across the frequency

range.
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Figure 2.5: Comparison of the (a) dispersion curves and (b) group velocity curves as a function

of frequency between the theoretical approach and the WFE method for the Timoshenko beam.

The WFE method and the theoretical approach are used to compute the transverse

displacement at x = 0, as illustrated in Fig. 2.6(a). Fig. 2.6(b) depicts the relative error between

the two approaches. The relative error at the observation point is expressed in percentage and

computed by summing the differences between the reference and the WFE solution for each

frequency and after summing over sub-frequency bands as follows:

Rel. Error (%) = 100×
∑

Sub-frequency band ∥qRef. − qWFE∥∑
Sub-frequency band ∥qRef.∥

, (2.42)

where q refers to the measured displacement, and the subscrips Ref. and WFE denote the reference

and WFE results.

The relative error is less than 1% for the whole analyzed frequency band. Moreover, one

can observe an increase in the error values around the resonance peaks. It is due to a slight shift

generated by the WFE method around the resonance peaks. Also, the relative error increases

with the frequency – i.e., low frequencies have lower errors when compared to higher frequencies.

Overall, both methods yield similar results, indicating that the WFE approach is consistent
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with the theoretical one.

Figure 2.6: (a) Comparison between the magnitude of the vertical displacement obtained using

the theoretical and WFE method for the Timoshenko beam. (b) Relative error between the

approaches, see Eq. (2.42).

2.6.2 2D plane-stress beam

The WFE method is applied to a 2D structure, and results are compared to the FE

method. Let us consider a straight, uniform, linear beam of length L = 2 m, as in Fig. (2.7).

The system is modeled as a 2D structure under plane stress conditions (in-plane motion). A

force F0x = 1 kN is applied to one node on the left boundary, and the right boundary is clamped

(i.e. q0 = 0 ). The related material properties are: Young’s modulus E = 210 GPa, density

ρ = 7800 kg/m3, Poisson’s ratio ν = 0.3. Also, a Rayleigh damping model is considered — i.e.,

C = aM + bK, with coefficients a = 10−3 s−1 and b = 10−8 s. The geometric parameters of

the substructure are: thickness e = 1 mm, length d = 2.5 mm, and height h = 0.1 m. In this

case, the FE mesh of the substructure is built from 1× 40 four-node plane stress rectangular

elements with two DoFs per node. In this way, the substructure does not contain internal DoFs.

Consequently, the condensation procedure involved in Eq. (2.4) is not required.
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Figure 2.7: Schematics of a 2D plane-stress beam and the FE mesh of the substructure. The

beam is subject to a force on the left side and a clampled boundary condition on the right side.

Following the WFE procedure, the dispersion curves can be plotted, i.e., wavenumbers

βj over a frequency band [0, 60] kHz. This can be done by solving the eigenproblem using the

methods (N,L) method or (S + S−1) transformation, see Sec. 2.2.1 and Sec. 2.2.2. Here, n = 82

DoFs along the height on the left/right boundaries are used. This means computing n = 82

right/left-going waves. Fig. 2.8(a) shows the dispersion curves for a few right-going waves

associated with "low-order” modes. The real (propagating) and imaginary (evanescent) parts

of the wavenumber are plotted in continuous and dashed lines, respectively. Classical waves

can be observed, i.e., flexural (red), longitudinal (yellow), and shearing (light green) modes;

higher-order modes are also plotted in other colors. As expected, the flexural and longitudinal

modes do not contain evanescent parts, i.e., only propagating ones. Moreover, the shearing

mode behavior can be also predicted, where a cut-off frequency is observed around 15 kHz.

For high-order modes, the behavior of the dispersion curve is complex, with multiple cut-off

frequencies. Those high-order modes contribute to the dynamic response of the waveguide at

high frequencies since they become propagating.
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Figure 2.8: (a) Dispersion curves (real part and imaginary parts of the wavenumbers βj are

plotted in continuous and dashed lines, respectively) and (b) group velocities, (i) using Eq. (2.33)

and (ii) using Eq. (2.32), for the flexural (red), longitudinal (yellow), shearing (light green), and

higher-order (green, pink and purple, respectively) modes.

The group velocities can be computed in two ways: (i) using Eq. (2.33) and (ii) using

Eq. (2.32). The results are shown in Fig. 2.8(b). One can see that both approaches produce

the same results. This is due to low damping. However, as explained by Langley [123], for the

general case of a damped system, this equality can no longer hold. Hence, the energy propagates

with a velocity that is not the group velocity.

Figs. 2.9(a) and (b) show four different wave shapes (ϕqj) at 40 kHz and at 50 kHz,

respectively. The colors of the plotted wave shapes correspond to those highlighted as in Fig. 2.8;

the non-deformed substructure is plotted in black lines. It is worth mentioning that the shape

of each mode can vary along the frequency, illustrating the difficulty of tracking a specific mode

over frequencies when a frequency step is not chosen carefully.
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Figure 2.9: Spatial representation of different wave mode shapes for the 2D beam at (a) 40 kHz

and (b) 50 kHz for flexural (red), longitudinal (yellow), shearing (green), and a high-order (blue)

modes.

The frequency response of the 2D plane stress beam is shown in Fig. 2.10(a), where

the displacement qx is taken at the excitation point. The FE solution is also computed as a

reference for comparison purposes. The relative errors between the two solutions are displayed

in Fig. 2.10(b), which shows good accuracy, with a relative error below 10−4 %. In terms of

computational time, the FE solution takes around 94 s, while the WFE solution only takes

17 s for the wave mode computation and the forced response. This represents a time reduction

of 82%. This interesting property of the WFE method has been extensively reported in the

literature in various systems other than beam-like structures, see for example [23, 27, 28]. The
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computational time difference is more evident for long structures such as pipes and thin-walled

structures. This is explained by the fact that the FE method operates with large matrices, while

the WFE method only uses the FE model of a substructure.

Figure 2.10: (a) Comparison between the magnitude of the vertical displacement obtained

with the FE and WFE methods for the 2D plane stress beam. (b) Relative error between the

approaches computed by means of Eq. (2.42).

For the validation of the proposed approach in the time domain, a time-dependent

force F (t) is applied. This force represents a Gaussian pulse centered at 25 kHz as shown in

Fig. 2.11(a), whose frequency spectrum is shown in Fig. 2.11(b). The frequency response is

measured at the point where the force is applied, as seen in Fig. 2.7. As discussed in Sec. 2.4,

it is possible to obtain the displacement in function of time using the DFT. This means (i)

choosing the sampling frequency and building the time span; (ii) computing the DFT of the

force F (t) to obtain F (ω); (iii) computing the forced frequency response at one or more points;

and (iv) performing the IDFT.
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Figure 2.11: (a) Pulse excitation in the time domain and (b) absolute value of the Fourier

transform.

The numerical simulation uses a sampling frequency fs = 800 kHz and T = 25 ms, which

is sufficient to respect the Nyquist–Shannon sampling requirement. This leads to a time step

of dt = 1.25 µs. Comparison with a FE time-domain simulation is proposed, in which the

Newmark method with parameters β = 0.25 and γ = 0.5 is used [111]. It appears that the FE

solution converges when the time step is ∆t = 0.1 µs. A priori, there is no reason to expect the

same time step when using the Newmark method and the Fourier transformation, since different

approaches are used. The comparison between these methods is displayed in Figs. 2.12(a) and

(b), where the normalized longitudinal and transversal displacements (denoted by qx and qy,

respectively) at the excitation point is shown.

Again, the small time step required for the convergence of the solution in the time domain

and the number of degrees of freedom involved (around 65600 DoFs in this case) make the FE

method slower than the WFE method combined with the Fourier transform to obtain the same

time response. The FE method takes 57.12 minutes and the WFE method takes 9.56 minutes.

This represents a reduction of 83.2 % for the computational time. So, the WFE approach

seems appropriate in terms of time saving and accuracy to compute the time response in long
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waveguides.

Figure 2.12: Comparison between FE and WFE solutions for measured displacements as a

function of time for a 2D plane stress beam when a Gaussian pulse centered at 25 kHz is applied:

(a) longitudinal displacement (qx) and (b) vertical displacement (qy) at the excitation point.

2.7 Coupling elements

The WFE method aims to describe the wave propagation in 1D periodic structures.

In this framework, two different structures/waveguides can be coupled by means of coupling

elements. This can be achieved by combining the WFE method for modeling the waveguides

and the FE approach for the coupling element. For instance, Fig. 2.13 shows two waveguides

connected by a coupling element (in this case, a curved joint).
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Figure 2.13: Schematic of two waveguides 1 and 2 connected by a coupling element. Waveguide

1 is subjected to a force at the left boundary, and waveguide 2 is clamped at the right boundary.

Here, (Q1, Q⋆
1) and (Q2, Q⋆

2) denote wave amplitude vectors for waveguides 1 and 2, respectively.

Within the WFE framework, the modeling of the structure is achieved by considering

wave base modes for waveguides 1 and 2, and coupling conditions. The coupling elements are

not necessarily periodic structures and can represent curved joints or defects. The procedure is

based on the computation of the so-called scattering matrices for describing transmitted and

reflected waves.

2.7.1 Scattering matrix

For the sake of simplicity, let us consider two waveguides 1 and 2 with the same cross-

section and material properties. Waveguides 1 and 2 are composed of N1 and N2 substructures,

respectively. The dynamic equilibrium equation of the coupling element expressed at the

interfaces with waveguides 1 and 2, denoted by Γ1 and Γ2, is given by:

Dc⋆

qΓ1

qΓ2

 =

FΓ1

FΓ2

 , (2.43)

where Dc⋆ is the condensed DSM of the coupling element, and qΓ1 and qΓ2 (resp. FΓ1 and FΓ2)
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are the displacement (resp. force) vectors on Γ1 and Γ2. These vectors can be accessed via wave

expansions (see Eqs. (2.27 and (2.28)),i.e.:

qΓ1 = L1
(
Φqµ

N1Q1 + Φ⋆
qQ⋆

1

)
and FΓ1 = L1

(
ΦFµ

N1Q1 + Φ⋆
FQ⋆

1

)
, (2.44)

and

qΓ2 = L2
(
ΦqQ2 + Φ⋆

qµ
N2Q⋆

2

)
and FΓ2 = −L2

(
ΦqQ2 + Φ⋆

qµ
N2Q⋆

2

)
, (2.45)

where Q1 and Q⋆
1 are wave amplitude vectors for waveguide 1, and Q2 and Q⋆

2 are wave

amplitude vectors for waveguide 2, as shown in Fig. 2.13. L1 and L2 are direction cosine

matrices introduced to project waveguide’s local coordinate systems 1 and 2 onto a global one.

Inserting Eqs (2.44) and (2.45) into Eq. (2.43) leads to:

Dc⋆

L1Φq 0

0 −L2Φ⋆
q


µN1Q1

µN2Q⋆
2

+ Dc⋆

L1Φ⋆
q 0

0 L2Φq


Q⋆

1

Q2

 =

−

L1ΦF 0

0 −L2Φ⋆
F


µN1Q1

µN2Q⋆
2

−
L1ΦF 0

0 −L2Φ⋆
F


Q⋆

1

Q2

 . (2.46)

This yields: Dc∗

L1Φ⋆
q 0

0 L2Φq

+

L1Φ⋆
F 0

0 −L2ΦF



Q⋆

1

Q2

 =

−

Dc∗

L1Φq 0

0 L2Φ⋆
q

+

L1ΦF 0

0 −L2Φ⋆
F



µN1Q1

µN2Q⋆
2

 . (2.47)
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In Eq. (2.47), the relation between incoming wave amplitude vectors
[(

µN1Q1
)T (

µN2Q⋆
2

)T
]T

and outcoming wave amplitude vectors
[
Q⋆T

1 QT
2

]T
at the coupling element is given by [127]:

Q⋆
1

Q2

 = C

µN1Q1

µN2Q⋆
2

 =

C11 C12

C21 C22


µN1Q1

µN2Q⋆
2

 , (2.48)

where

C = −

Dc∗

L1Φ⋆
q 0

0 L2Φq

+

L1Φ⋆
F 0

0 −L2ΦF




−1

×

Dc∗

L1Φq 0

0 L2Φ⋆
q

+

L1ΦF 0

0 −L2Φ⋆
F


 . (2.49)

In Eqs. (2.49) and (2.48), C is the so-called scattering matrix. Its components represent

wave transmission and reflection coefficients between the two waveguides. The wave amplitudes

Q⋆
1 and Q2 represent the reflected waves at the interface of the coupling element; µN1Q1 and

µN2Q⋆
2 are the wave amplitudes of the incident waves at the interface of the coupling element.

The scattering matrix only depends on the properties of the coupling elements and the wave

modes of the waveguides, see Eq. (2.48). The determination of the wave amplitudes depends on

the boundary conditions at the other waveguide end.

The computation of the condensed DSM of the coupling element Dc⋆ involves the

condensation of the internal DoFs, with the calculation of (Dc
II)

−1 at each discrete frequencies,

see Eq. (2.4). Depending on the number of internal DoFs, the computation of the condensed DSM

can introduce numerical error and can be computationally cumbersome [28, 128]. This numerical

step can be sped up using the Craig-Bampton (CB) reduction method, which involves considering

static modes and a reduced number of fixed-interface modes of the coupling element [129]. The

method to compute the condensed DSM is described hereafter.
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2.7.2 CB method

Consider the FE model of a coupling element as shown in Fig. 2.14. Here, the FE mesh

of the left and right boundaries of the coupling element are supposed to be compatible with the

FE meshes of the connected waveguides. The dynamic equilibrium equation of the coupling

element is written as:

−ω2

Mc
II Mc

IB

Mc
BI Mc

BB

+ iω

Cc
II Cc

IB

Cc
BI Cc

BB

+

Kc
II Kc

IB

Kc
BI Kc

BB



qc

I

qc
B

 =

Fc
I

Fc
B

 (2.50)

where Fc and qc denote force and displacement vectors; Mc, Cc, and Kc denote the mass,

damping, and stiffness matrices, respectively. The damping matrix Cc is supposed to be

proportional to the mass and stiffness matrices (Rayleigh type): Cc = aMc + bKc, with a and b

real positive constants. In the same way as in Eq. (2.3), the DoFs can be grouped into internal

(I) and boundary (B), with (B) the set of DoFs on the left (L) and right (R) boundaries. Also,

let us denote as nB and nI the numbers of boundary and internal DoFs, respectively.

Figure 2.14: FE mesh of 2D coupling element. The left and right boundary nodes are highlighted

in red, while interior nodes are highlighted in blue.
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Within the framework of the CB method [28, 129], the displacement vector qc
I is approx-

imated as follows:

qc
I ≈ q̃c

I = Xstqc
B + X̃elα̃ (2.51)

where α̃ denotes a vector of generalized coordinates, and Xst represents the matrix of static

modes of size nI × nB, and it is defined as:

Xst = − (Kc
II)

−1 Kc
IB, (2.52)

In Eq. (2.51), X̃el denotes the matrix of fixed-interface modes defined as X̃el =

[(Xel)1 · · · (Xel)mI ], where (Xel)j are the eigenvectors obtained from the following eigenprob-

lem:

Kc
II(Xel)j = ω2

j Mc
II(Xel)j, (2.53)

where ωj is the eigenfrequency associated to a fixed-interface mode (Xel)j. The modes are

supposed to be normalized with respect to the mass matrix, i.e., (Xel)T
k Mc

II(Xel)l = δkl, with

δkl the Kronecker delta. The reduction is based on the choice of the number of fixed interface

modes whose eigenfrequencies are below a certain threshold. The number of retained modes

is denoted by mI, with mI < nI. From a computational point of view, mI can be determined

through a convergence analysis of the WFE solution over the frequency band of interest. Then,

Eq. (2.55) can be written as:

qc
I

qc
B

 ≈
q̃c

I

qc
B

 =

X̃el Xst

0 I


 α̃

qc
B

 = TCB

 α̃

qc
B

 . (2.54)

where TCB is the CB transformation matrix. Eq. (2.54) together with Eq. (2.50) lead to the

reduced DSM of the coupling element:
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D̃c = TT
CBDcTCB =

 D̃c
el−el D̃c

el−st(
D̃c

el−st

)T
Dc

st−st

 , (2.55)

where

D̃c
el−el = X̃T

elDc
IIX̃el (2.56)

D̃c
el−st = X̃T

elDc
IIX̃st + X̃T

elDc
IB (2.57)

Dc
st−st = X̃T

stDc
IIX̃st + X̃T

elDc
IB + Dc

IBX̃T
st + Dc

BB (2.58)

Finally, the condensed DSM of the coupling element is:

Dc⋆ ≈ D̃c⋆ = D̃c
st−st − D̃c

st−el

(
D̃c

el−el

)−1
D̃c

el−st. (2.59)

The computation of
(
D̃c

el−el

)−1
is less cumbersome due to its reduced size and because

it is diagonal. This can be proven using Eqs. (2.50), (2.53), and (2.56):

(Xel)T
k Dc

II(Xel)j = (Xel)T
k

[
(−ω2 + iaω)Mc

II + (1 + ibω)Kc
II

]
X̃el

= (−ω2 + iaω)(Xel)T
k Mc

II(Xel)j + (1 + ibω)(Xel)T
k Kc

II(Xel)j

= δkj

[
(−ω2 + iaω) + ω2

j (1 + ibω)
]

. (2.60)

This proof only holds when the damping is proportional to the mass and stiffness. For a

general damping model, it is not possible to ensure that D̃c
el−el remains diagonal.

2.7.3 Forced response

The determination of the wave amplitude vectors depends on the system’s boundary

conditions. For example, let us consider two straight waveguides connected by a coupling
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element, see Fig. 2.13. Apart from coupling conditions, the boundary conditions of the assembly

are written as:

F0 = −L1
(
ΦFQ1 + ΦFµ

N1Q⋆
1

)
(2.61)

q0 = L2
(
Φqµ

N2Q2 + Φ⋆
qQ⋆

2

)
. (2.62)

Also, coupling conditions between the two waveguides are formulated by Eq. (2.48).

Then, the following matrix system of size 4n× 4n is found [29]:



I CFµ
N1 0 0

−C11µ
N1 I 0 −C12µ

N2

−C21µ
N1 0 I −C22µ

N2

0 0 Cqµ
N2 I





Q1

Q⋆
1

Q2

Q⋆
2


=



− (ΦF)−1 F0

0

0(
Φ⋆

q

)−1
q0


, (2.63)

where CF = (ΦF)−1 (Φ⋆
F) and Cq =

(
Φ⋆

q

)−1
(Φq). Eq. (2.63) has to be solved for several discrete

frequencies since the wave shapes and wavenumbers are frequency-dependent. The computation

of the wave amplitude vectors allows the description of the forces and displacements along the

structure, see Eqs. (2.27) and (2.28).

2.7.4 Numerical example

A simple system involving two waveguides and a coupling element, as shown in Fig. 2.15,

is analyzed over the frequency band [0, 50] kHz. The waveguides are modeled in the same

way, see Sec. 2.6.2. The coupling element represents a square of size dc × h = 0.1 m × 0.1 m

with a hole of size Rh = 0.02 m. The related mesh is obtained via DistMesh [130] where 3202

three-node plane stress triangular elements are considered, and 41 nodes are used on the left

and right boundaries. Waveguide 1 has a length l1 = 0.5 m, and it is excited at its first node
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by a vector force F0. The displacement is assessed at the same point. Also, waveguide 2 has a

length l2 = 0.5 m, and its right side is clamped.

Figure 2.15: Schematics of two waveguides coupled by a coupling element representing a square

with a hole. The system is subjected to a vector force at the left boundary and it is clamped on

the right boundary.

The WFE model of this system can be performed in the frequency domain as follows:

(i) Computing wave modes {µj, ϕj}j=1,...,n and {µ⋆
j , ϕ⋆

j}j=1,...,n using the (N,L) or (S + S−1)

methods, see Secs. 2.2.1 and 2.2.2;

(ii) Computing the scattering matrix of the coupling elements C, see Sec. 2.7.1;

(iii) Solving a linear matrix equation to obtain the wave amplitude vectors, see Sec. 2.7.3;

(iv) Assessing the displacements and forces via wave expansion, see Eqs. (2.27) and (2.28).
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To express the scattering matrix, the condensation of the DSM of the coupling element

is applied. For this purpose, the CB method with different numbers of fixed-interface modes is

used. Results for the WFE and FE methods are shown in Fig. 2.16. The FE method is used as

a reference.

Figure 2.16: Measured displacement obtained with the FE (black curve), and WFE (colored

curves) methods when (a) 5, (b) 20, and (c) 300 fixed-interface modes are retained in the

Craig-Bampton reduction; (d) shows the relative error between the FE and WFE results for

each case.
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Three different cases are analyzed with 5, 20, and 300 fixed interface modes in the CB

reduction. For each case, the maximum eigenfrequency of the retained fixed-interface modes and

the computational time are displayed in Table 2.1. It is possible to see that the computational

time related to the WFE method with the CB reduction for the coupling element does not

change considerably for the three cases. However, it appears to be significantly small compared

to the FE simulation. When 300 retained modes are considered, the errors made to compute

the response are below 1% over the frequency range; see Fig. 2.16(d). In Table 2.1, it is shown

that half of the computational time is spent to calculate Eqs. (2.59), (2.63), and (2.49). The

study of the relative error when a certain number of fixed-interface modes is retained is well

reported in the literature, for instance [28]. Although not done here, reducing the wave basis is

an interesting topic since the size of the linear system and the scattering matrix problem can be

drastically reduced.

Table 2.1: Elapsed times for FE method and WFE method + CB reduction. The number of

retained fixed-interface modes analyzed is 5, 20, and 300. For comparison purposes, the time

associated with the computation of the wave modes {µj, ϕj}j=1,...,n and {µ⋆
j , ϕ⋆

j}j=1,...,n is also

shown. fmax is the maximum frequency of the frequency band.

Method
Number of fixed-interface

modes retained

Maximum

eigenfrequency (kHz)
Time (s)

FE — — 226.7

WFE + CB 5 28.6 ( 0.57fmax) 29.9

WFE + CB 20 70.7 (1.41fmax) 31.3

WFE + CB 300 302.7 (6.05fmax) 32.5

Computation of {µj, ϕj}j=1,...,n and {µ⋆
j , ϕ⋆

j}j=1,...,n 15.9

The scattering matrices can be accessed via the WFE method, i.e., the transmission

and reflections coefficients between waveguides. Fig. 2.17 shows the absolute value of some
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components of the scattering matrix of the coupling element. The transmission coefficients of

waveguide 1 to waveguide 2 are plotted in dashed lines, while the reflected coefficients from

waveguide 1 to itself are plotted in continuous lines (color convention is similar to Fig. 2.8). For

example, Fig. 2.17(a) shows the reflection and transmission coefficient for the flexural wave.

Fig. 2.17(b-d) show the absolute values of the reflection and transmission coefficients for the

longitudinal, shearing, and high order mode (H.O.).

Figure 2.17: Absolute value of the transmission coefficients (dashed line) from waveguide 1 to

waveguide 2, and reflection coefficients (continuous line) from waveguide 1 to itself.
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In Fig. 2.17, peaks can be observed along the frequency; some are related to cut-off

frequencies of some modes, and others are associated with resonances of the coupling element.

Scattering phenomena are complex and depend on the energy exchange between modes and

on how guided waves interact with the coupling element. It should be pointed out that the

values of the reflection and transmission coefficients could exceed one. It happens because the

computation of the scattering matrix is based on the wave shapes and wave amplitudes, and

then the scattering matrix depends on the normalization of the wave modes [127].

2.8 Conclusions

In this chapter, the WFE method was introduced. It enables the analysis of the dispersion

curves and forced responses for periodic structures. Two specific structures were discussed,

i.e., a Timoshenko’s beam and a 2D plane-stress beam. Considering Timoshenko’s beam,

the dispersion curves and the response functions were obtained and compared with analytical

solutions. The second example provided a comparison between the FE and the WFE methods. It

was demonstrated that the WFE method can be employed for computing the transient response

of periodic structures and the group velocities for guided waves. Also, the WFE method can be

used to model waveguides connected via coupling elements like a curved joint. The modeling of

coupling elements relies on FE modeling and the CB method. The WFE method enables the

computation of scattered waves (transmitted and reflected) at coupling elements. Regarding

computational time savings, the WFE method is an efficient alternative to the FE method,

especially when long structures are dealt with.





Chapter 3

Defect localization in waveguide

assemblies with curved joints

This chapter is an extraction of the papers: [30, 131].

3.1 Overview

A numerical approach is proposed to localize defects in elastic waveguides connected

to curved elastic joints. 2D assemblies involving straight waveguides with a curved joint and

a defect are specifically dealt with, where the joint is placed between the measurement point

(output signals) and the defect. Such an analysis requires assessing wave conversion phenomena

and times of flight for wave packets when they are transmitted through the joint and reflected

by the defect. An original WFE strategy is proposed where the times of flight, for transmitted

or reflected wave packets, are defined from the frequency derivatives of the arguments of the

scattering matrices of the joint and the defect. The procedure to localize a defect follows from

75
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the expressions of the times of flight. The proposed approach enables the identification of the

types of waves that are transmitted through the joint and reflected by the defect. Numerical

experiments are carried out which highlight the relevance, in terms of accuracy and robustness,

of the proposed approach.

The key idea behind the present chapter is that the times of flight for wave packets

traveling in a coupling element (joint, defect), in transmission or reflection, can be determined

from the frequency derivatives of the arguments of its scattering matrix. The propagation

times in waveguides follow from the analysis of the group velocities. In this sense, a theoretical

expression of the time that incident wave packets takes to propagate and be transmitted/reflected

by a joint/defect can be proposed. The position of the defect can be determined by comparing

these theoretical times of flight with the experimental ones (measurements). The proposed

approach also provides a physical insight into the types of waves that are transmitted through

the joint and reflected by the defect (pathways). The contributions of this part can be summed

up as follows:

• Expressing the times of flight for wave packets traveling in coupling elements (joint, defect)

from the frequency derivatives of the arguments of their scattering matrices.

• Identifying the types of waves that are transmitted/reflected by a joint/defect (pathways).

• Providing a procedure to localize a defect for different possible pathways.

The rest of the chapter is organized as follows. In Sec. 3.2, the FE model of a waveguide

assembly, including a defect and a curved joint, is presented. The related issues about defect

localization are discussed. In Sec. 3.4, theoretical expressions of the times of flight in transmission

and reflection, for a coupling element, are given. Also, the procedure for estimating the position

of a defect from measured and theoretical/estimated times of flight is detailed. In Sec. 3.6,

numerical experiments are carried out, which concern waveguide assemblies with curved joints

of different angles of curvature, and defects representing circular holes of different radii.
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3.2 Problem description

The problem addressed here concerns the dynamic analysis of straight elastic waveguides

connected via curved elastic joints and containing defects. A waveguide assembly involving three

waveguides, a curved joint, and a defect is shown in Fig. 3.1. For simplicity and without loss of

generality, the assumption is made that the waveguides have similar cross-sections and material

properties. Those waveguides are usually modeled with periodic FE meshes, i.e., FE meshes

that are built from assembling identical substructures (similar between the waveguides) along

some straight directions. On the other hand, the curved joint and the defect can be modeled

using arbitrary FE meshes where the term “defect" is understood as a part of a waveguide –

namely, a coupling element – with a defect.

Figure 3.1: Schematic of a waveguide assembly with a curved joint and a defect. Input (I) and

output (O) signals are recorded as functions of time (the red cross represents the measurement

point).

The propagation of waves in periodic waveguides – i.e., structures described with periodic

FE meshes – is well mastered nowadays. The question arises as to how to localize a defect in

such waveguide assemblies considering one input wave packet transmitted through a joint and

reflected by a defect, which gives rise to several output wave packets (several types of waves)

measured at several times. Typical wave packets, for different types of waves, are shown in
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Fig. 3.1. Here, considering a curved elastic joint makes the present topic much more complicated

compared to the usual pulse-echo procedure for straight waveguides with one defect. The

underlying issue concerns the description of the wave conversion phenomena inside the joint

and the lack of procedure to quantify the time a certain wave packet takes to get transmitted

through it. This makes the defect localization hard to figure out. [99]

Prior to any wave propagation analysis (next section) and defect localization procedure,

the FE modeling of the waveguide substructures, the joint, and the defect are detailed. First,

let us denote by M, C and K the mass, damping, and stiffness matrices (respectively) of a

substructure expressed in its local reference frame and which are assumed to be symmetric.

The FE mesh of a substructure is shown in Fig. 3.1. In the frequency domain, the dynamic

equilibrium equation of this substructure is expressed by:

Dq = F, (3.1)

where q and F are the vectors of nodal displacements and nodal forces of the substructure,

respectively, and D is the related dynamic stiffness matrix (DSM), similar for all the substructures,

expressed by:

D = −ω2M + iωC + K, (3.2)

where ω is the angular frequency, and i is the imaginary unit. Considering Rayleigh damping,

the matrix C can be expressed as:

C = aM + bK, (3.3)

where a and b are two real positive constants. Also, let us denote by D∗ the condensed DSM of

the substructure, i.e., the DSM condensed on the interface degrees of freedom (DoFs) with the

other substructures:

D∗ = DBB −DBI (DII)−1 DIB, (3.4)

where subscripts B and I refer to the boundary/interface DoFs and the internal DoFs – i.e.,

those which do not belong to the interfaces with the other substructures –, respectively.
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As for the curved joint and the defect, the dynamic equilibrium equations are written as:

Ddqd = Fd , Djqj = Fj, (3.5)

where superscripts d and j denote the defect and the joint, respectively. Here, the DSMs of the

defect and the joint are given by:

Dd = −ω2Md + iωCd + Kd , Dj = −ω2Mj + iωCj + Kj. (3.6)

The related condensed DSMs – namely Dd∗ and Dj∗ – can be expressed in the same way as

Eq. (3.4). It is worth emphasizing that the computation of these condensed DSMs, including

that of the substructures, is not computationally prohibitive and can be easily achieved via CB

method, see Sec. 2.7.2.

3.3 Scattering matrices for coupling elements

A waveguide assembly involving three waveguides 1, 2 and 3 (N1, N2 and N3 substruc-

tures), a curved joint and a defect, is shown in Fig. 3.2. Within the WFE framework, scattering

matrices of the joint and the defect — namely, Cj and Cd — are expressed by [21, 128]:

Cj = −

Dj∗

L1Φ⋆
q 0

0 L2Φq

+

L1Φ⋆
F 0

0 −L2ΦF




−1

(3.7)

×

Dj∗

L1Φq 0

0 L2Φ⋆
q

+

L1ΦF 0

0 −L2Φ⋆
F


 .

and

Cd = −

Dd∗

L2Φ⋆
q 0

0 L3Φq

+

L2Φ⋆
F 0

0 −L3ΦF




−1

(3.8)

×

Dd∗

L2Φq 0

0 L3Φ⋆
q

+

L2ΦF 0

0 −L3Φ⋆
F


 .
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where L1, L2 and L3 are direction cosine matrices which are introduced here to project the local

coordinate systems of waveguides 1, 2 and 3 onto a global one, see in Sec. 2.7.

Figure 3.2: Schematic of a waveguide assembly with three waveguides 1, 2 and 3, a curved joint

and a defect. (Q1, Q⋆
1), (Q2, Q⋆

2) and (Q3, Q⋆
3) are wave amplitude vectors.

By considering the scattering matrices, the wave amplitude vectors for the outgoing and

incoming/incident waves at the boundaries of the joint/defect can be related as follows:

Q⋆
1

Q2

 = Cj

µN1Q1

µN2Q⋆
2

 =

Cj
11 Cj

12

Cj
21 Cj

22


µN1Q1

µN2Q⋆
2

 (3.9)

and

Q⋆
2

Q3

 = Cd

µN2Q2

µN3Q⋆
3

 =

Cd
22 Cd

23

Cd
32 Cd

33


µN2Q2

µN3Q⋆
3

 , (3.10)

where Q⋆
1 and Q2 (resp. Q⋆

2 and Q3) are the wave amplitude vectors for the outgoing waves at

the boundaries of the joint (resp. defect), see Fig. 3.2; also, µN1Q1 and µN2Q⋆
2 (resp. µN2Q2

and µN3Q⋆
3) are the wave amplitude vectors for the incoming waves at the same boundaries.
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3.4 Times of flight

3.4.1 Group velocities in waveguides

As discussed in Sec. 2.5 and recalled here, the group velocities for waves traveling along a

certain waveguide can be calculated in two different ways, i.e., by considering (i) the dispersion

curves (frequency variations of wave numbers) or (ii) the transmission matrix of a substructure.

Concerning the first approach (i), the group velocity cgj for a given wave j is obtained as [62]:

cgj = ∂ω

∂ℜ{βj}
, (3.11)

where βj is the related wave number, computed by means of the WFE method. The procedure

then involves computing a numerical derivative (Eq. (3.11)), which implies considering a small

frequency step. On the other hand, the second way (ii) involves considering the scattering

matrix Cs of a substructure. The scattering matrix Cs follows from the strategy explained in

Sec. 3.3. By considering the conventions defined earlier, one has:

µN+1−kQ⋆

µkQ

 = Cs

 µk−1Q

µN−kQ⋆

 =

0 µ

µ 0


 µk−1Q

µN−kQ⋆

 . (3.12)

In this case, since the waveguide is purely periodic with identical substructures, the

scattering matrix Cs only contains transmission coefficients which are stored in the off-diagonal

block terms µ (diagonal matrix of wave parameters µj = e−iβjd). By computing the arguments

of the diagonal components of the transmission matrix µ, this yields:

arg(µj) = arg(e−iβjd) = −ℜ{βj}d. (3.13)

As a result, the group velocities can be alternatively defined as:
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cgj = −d
∂ω

∂ arg(µj)
. (3.14)

The present strategy can be extended to the analysis of a waveguide with N ′ substructures, of

length l = N ′d. In this case, the group velocities would be given by:

cgj = −l
∂ω

∂ arg (Tjj)
. (3.15)

where Tjj = µN ′
j are the transmission coefficients.

3.4.2 Times of flight in transmission

From Eq. (3.15), the time of flight τjj taken by a wave j to get across a straight coupling

element of length l made up of N ′ substructures, connecting two waveguides 1 and 2, can be

defined as follows:

τjj = l

cgj

= −∂ arg (Tjj)
∂ω

. (3.16)

In this case, the coupling element and the waveguides are supposed to share the same

characteristics – i.e., the same substructures – which means that the coupling element does not

give rise to wave reflection and wave conversion. Following the same idea, the time of flight that

would spend a given wave j to get across a coupling element of arbitrary shape – which could

be a curved joint or a defect – from waveguide 1 to waveguide 2 may be assessed in a general

way as follows:

τ 1−2
ij = −∂ arg (C21ij)

∂ω
, (3.17)

where C21 is the transmission matrix between waveguides 1 and 2, while subscripts i and j are

used to describe the general case of a coupling element which gives rise to wave conversion
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between waveguide 1 and waveguide 2, i.e., the time taken by a given wave j to be converted into

a wave i. It should be remarked that a coupling element of arbitrary shape (e.g., a curved joint)

has no associated length, and in this case, the notion of group velocity is somewhat dubious.

Thus, the notion of time of flight proposed here appears to be more appropriate.

3.4.3 Times of flight in reflection

The proposed approach also intends to assess the time of flight taken by a wave j to

be reflected by a coupling element. Again, note that a coupling element is likely to induce

wave conversion, e.g., a given wave j in waveguide 1 is supposed to give one or several reflected

waves i (i = j or i ̸= j) in the same waveguide. In this sense, different wave pathways can be

distinguished (i.e., j ← j or i← j). In this case, the time of flight (reflection in waveguide 1)

may be defined as:

τ 1−1
ij = −∂ arg (C11ij)

∂ω
, (3.18)

where C11ij is the reflection matrix for the waves in waveguide 1.

Remark 1. From the practical point of view, Eq. (3.18) requires the wave shape vectors

ϕj and ϕ⋆
j to be post-processed. Indeed, even though these vectors are normalized properly

[23], their orientation in the complex plane is not defined a priori. Indeed, the multiplication

of any of these vectors by any complex number of unit modulus would yield a “valid” vector,

but of a different orientation. In other words, for a given frequency, the orientations of ϕj

and ϕ⋆
j in the complex plane can be different and arbitrary. Also, the relative orientation

between ϕj and ϕ⋆
j is likely to change as the frequency does. Considering the transmission

and reflection coefficients, this means that their arguments are not necessarily defined in the

same way at each frequency. This issue can be solved by fixing the orientation of the wave

shape vectors between two consecutive frequencies f and f + ∆f , which can be done by setting

the argument of (ϕj)H
f (ϕj)f+∆f to zero (H being the conjugate transpose). Also, by imposing
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symmetry conditions between the right-going and left-going wave shape vectors ϕj and ϕ⋆
j [23],

their relative orientations can be set to zero too.

Remark 2. In some cases, the times of flight in reflection or transmission (Eqs (3.18)-

(3.17)) between two waves j and i can be difficult to comprehend physically, considering irregular

behavior of the functions C11ij(ω) and C12ij(ω) around some frequency ω. This might happen

at local resonances of the coupling element [127]. In this case, it is advised to analyze other

types of waves, i.e., those with components C11ij and C12ij which are less impacted by the local

resonances of the coupling element (see Sec. 3.6.1.2).

3.4.4 Discussion

In the present work, it is proposed to assess the times of flight for waves transmitted

through, or reflected by, a coupling element – that could be of arbitrary nature (e.g., joint,

defect) – from the frequency derivatives of the arguments of its scattering matrix, see Eqs. (3.17)

and (3.18). The procedure can be generalized to any wave packet having a narrow envelope

Ê(ω − ω0) centered around some angular frequency ω0. A proof of this statement is given

hereafter.

Figure 3.3: Schematic of two waveguides 1 and 2 connected with an arbitrary coupling element

(curved joint or defect). Q1q and Q⋆
1p are wave amplitudes for two waves q and p in waveguide 1.

Let us consider two waveguides 1 and 2 which are connected with a coupling element as
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shown in Fig. 3.3. Without loss of generality, let us assume that the scattering matrix of this

coupling element is null except for one component (p, q) that could be a reflection coefficient

(wave q to wave p in waveguide 1), i.e.,

C =

C11 C21

C12 C22

 , (3.19)

where C21 = 0, C12 = 0, C22 = 0, and:

C11ij =


0 for (i, j) ̸= (p, q),

c(ω) eiθ(ω) for (i, j) = (p, q).
(3.20)

Here, the amplitude c(ω) and phase θ(ω) of the non-zero reflection coefficient C11pq depend on

the frequency. Then, let us consider in the frequency domain a traveling wave packet q of narrow

envelope Ê(ω − ω0) that could represent a Gaussian, and whose inverse Fourier transform is

denoted by E(t). The related displacement vector in waveguide 1, at the interface with the

coupling element, may be approximated as:

q(ω) ≈ ϕqq(ω0)Q1q
(ω), (3.21)

where Q1q
= µN1Q1q is the amplitude of the incident wave q at the interface between waveguide

1 and the coupling element:

Q1q
(ω) = Ê(ω − ω0). (3.22)

Then, the amplitude of the reflected wave packet in the waveguide 1 is given by:

Q⋆
1p(ω) = Ê(ω − ω0) c(ω) eiθ(ω). (3.23)

Let us linearize θ(ω) around ω0, i.e.:

θ(ω) ≈ θ(ω0) + (ω − ω0)
∂θ(ω)

∂ω

∣∣∣∣
ω0

. (3.24)
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Introducing Eq.(3.24) into Eq.(3.23) leads to:

Q⋆
1p(ω) = Ê(ω − ω0)c(ω0)ei[θ(ω0)−ω0

∂θ(ω)
∂ω

|ω0 ]eiω
∂θ(ω)

∂ω
|ω0 , (3.25)

where assumption is made that c(ω) ≈ c(ω0). Finally, considering the inverse Fourier transform

of the reflected wave packet, this yields ϕ⋆
qp(ω0)F−1[Q⋆

1p(ω)] where:

F−1
[
Q⋆

1p(ω)
]

= E

(
t + ∂θ(ω)

∂ω

∣∣∣∣
ω0

)
c(ω0)ei[θ(ω0)−ω0

∂θ(ω)
∂ω

|ω0 ]. (3.26)

Eq. (3.26) shows that the reflected wave packet occurs in waveguide 1 with a delay of

−∂θ(ω)/∂ω|ω0 (time of flight), as expected. The procedure for determining the times of

flight in transmission can be proven in a similar way.

3.5 Defect localization

The localization of a defect in a waveguide assembly can be achieved as follows. Let us

consider the following test cases (see Fig. 3.4), i.e., (a) two waveguides with a defect, and (b)

three waveguides with a curved joint and a defect. In both cases, the assumption is made that

the scattering matrices of the defect and the joint are known.

Figure 3.4: Waveguide assemblies: (a) two waveguides with a defect; (b) three waveguides with

a curved joint and a defect. The red cross highlights the measurement point.
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In case (a), a traveling wave packet j is generated in waveguide 1 and sent towards the

defect. Then, a reflected wave packet i is measured in waveguide 1. The distance between the

measurement point and the defect is l1, see Fig. 3.4(a). Let us denote by cgj and cgi the group

velocities of the wave packets j and i, respectively. Then, the delay between the excitation time

(wave packet j) and the measurement time (wave packet i) is given by:

τij = l1
cgj

+ τ d
ij + l1

cgi

, (3.27)

where τ d
ij is the time of flight in reflection for the defect, see Eq. (3.18). From the knowledge of

τij, the localization of the defect can therefore be estimated as:

l1 = (τij − τ d
ij)
(

1
cgj

+ 1
cgi

)−1

. (3.28)

In case (b), a traveling wave packet l is generated in waveguide 1, transmitted through the joint

in waveguide 2 (wave packet k), reflected by the defect in waveguide 2 (wave packet j), and

transmitted through the joint in waveguide 1 back to the measurement point (wave packet i).

In this case, the delay between the excitation time (wave packet l) and the measurement time

(wave packet i) is given by:

τijkl = l1
cgl

+ τ j
kl + l2

cgk

+ τ d
jk + l2

cgj

+ τ j
ij + l1

cgi

, (3.29)

where τ j
kl and τ j

ij are the times of flight in transmission taken by wave packets l and j (respectively)

to get across the joint, see Eq. (3.17). Also, τ d
jk is the time of flight in reflection for the defect,

see Eq. (3.18). In this case, the sought position is l2 which is the distance between the joint and

the defect, see Figs. 3.4(b). From Eq. (3.29), this distance can be estimated as follows:

l2 =
(

τijkl −
l1
cgl

− τ j
kl − τ d

jk − τ j
ij −

l1
cgi

)(
1

cgk

+ 1
cgj

)−1

. (3.30)

Here, the challenge is to identify reflected and transmitted wavepackets correctly (wave

packets j, k, i) to be able to compute l2 (the localization of the defect) using the scattering

matrix of the joint. The procedure is detailed as follows:
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1. A Gaussian wavepacket is sent, and the reflected signal is recorded for a certain type of

waves;

2. An analysis of the scattering matrix of the curved joint is done at the central frequency of

the Gaussian wavepacket;

3. The waves associated with higher transmission coefficients of the scattering matrix of the

joint are considered in the analysis;

4. The times of flight in reflection and transmission for the joint are calculated by Eqs. (3.17)

and (3.18);

5. Values of l2 are found by Eq. (3.30), and different pathways give indications of the defect

localization.

3.6 Numerical results

3.6.1 2D plane-stress beam

Numerical experiments are carried out considering waveguide assemblies as shown in

Fig. 3.4, where the influence of a curved joint on the localization of a defect is analyzed. 2D

thin structures (thickness e = 0.001 m) undergoing in-plane motion are considered. The FE

meshes of a waveguide substructure, the defect, and the joint are shown in Fig. 3.5. The related

material properties are: Young’s modulus E = 210 GPa, density ρ = 7800 kg/m3, Poisson’s

ratio ν = 0.3 and damping coefficients a = 10−3 s−1 and b = 10−8 s (C = aM + bK). Also, the

geometrical properties are: dimensions of the substructures (waveguides) d× h = 0.0025 m ×0.1

m, height of the joint h = 0.1 m and internal radius of the joint Rint = 0.1 m. Here, a defect

representing a square coupling element of size dd × h = 0.1 m ×0.1 m, including a hole of size

Rh = 0.02 m is considered.

In the present case, all the waveguides are supposed to share the same material properties,
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height, and thickness, and are modeled using identical substructures. The FE mesh of a

substructure is built from 1× 40 four-node plane stress rectangular elements with two DoFs per

node, as shown in Fig. 3.5. As such, the substructures used to model the waveguides do not

contain internal DoFs. The joint is meshed using 40× 40 (circumferential and radial directions)

four-node plane stress elements. These FE meshes and related FE models can be generated

straightforwardly in MATLAB. Also, the FE mesh of the defect (square with hole) can be

generated in MATLAB, e.g., via the mesh generator DistMesh [130] where 3202 three-node

plane stress triangular elements are considered, including 40 elements on each boundary (see

Fig. 3.5). The scattering matrices of the defect and the joint involve computing their condensed

DSMs, as explained in Sec. 2.7.2. The CB method is used to speed up this numerical task. This

requires computing the static modes of each component (defect, joint) and a reduced number of

fixed interface modes, say 400 fixed interface modes for both the defect and the joint, which

is supposed to be high enough to accurately represent their dynamical behavior within the

frequency band analyzed.

Figure 3.5: FE meshes of (a) a waveguide substructure, (b) the defect, and (c) the curved joint.

Following the WFE method (see Chapter 2), the dispersion curves for the waves traveling

in the waveguides can be computed, e.g., over a frequency band of [0 , 40] kHz as shown in

Fig. 3.6(a). This involves assessing the wave numbers βj from the eigenvalues µj of the transfer

matrix S of a substructure (see Sec. 2.2.2), and plotting the variations of the wave numbers
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against frequency. In the present case, each substructure is modeled by means of 40 elements

along their height, which means n = 82 DoFs on the left/right boundary and, therefore, n = 82

right/left-going waves. Here, only a few wave numbers are displayed, i.e., those associated with

some “low-order” right-going waves. In particular, the wave numbers for the flexural (blue),

longitudinal (red), and shearing (orange) waves, and for three higher-order waves (green, pink,

and purple) are displayed. Also, the group velocities for these waves can be computed by means

of Eq. (3.14) and displayed as shown in Fig. 3.6(b). At low frequency – i.e., up to 15 kHz –,

the wave behavior of the waveguides is quite classical and may be described in terms of the

classical flexural (propagating and evanescent) and longitudinal waves. Results show that, at

higher frequencies, other types of waves propagate (shearing, high-order) and contribute to the

dynamic response of the waveguides. At this stage, the dynamics of the waveguides start being

characterized by complex behavior like wave conversion at coupling conditions (defect, joint).

Figure 3.6: (a) Dispersion curves (real part and imaginary parts of the wave numbers βj are

plotted in continuous and dashed lines, respectively) and (b) group velocities for the flexural

(blue), longitudinal (red), shearing (orange), and higher-order (green, pink and purple waves).

The next subsections address the time response of the waveguide assemblies and the

localization of the defect. The kinds of systems analyzed are shown in Fig. 3.4 and involve
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waveguide assemblies with two or three waveguides. Waveguide 1 is excited at some position,

and the reflected time signals issued from the defect/joint are recorded at a measurement point

representing some node along waveguide 1 at a distance l1 from the defect or the joint. Here,

the first and last waveguides are supposed to be semi-infinite, which means a one-way wave

propagation (i.e., before the excitation point in waveguide 1 and after the defect in waveguide 2

or 3).

The WFE modeling of the waveguide assemblies can be easily performed in the frequency

domain. This means: (i) computing waves in waveguides (wave parameters, wave shape vectors),

see Chap. 2; (ii) computing the scattering matrices of the defect and the joint, see Sec. 3.3;

(iii) solving a wave-based matrix equation to determine the wave amplitude vectors and the

displacement vectors (see [23] for details). Infinite boundary conditions can be easily taken into

account by setting the wave amplitudes for the waves scattered at infinity to zero. Here, the

relevant lengths are: l1 = 10 m which represents the distance between the measurement point

and the defect (Fig. 3.4(a)) or between the measurement point and the joint (Fig. 3.4(b)), and

l2 = 5 m which represents the distance between the joint and the defect (Fig. 3.4(b)).

The input time signal considered in the next subsections is supposed to represent a given

wave packet (flexural, or shearing waves) described by a Gaussian pulse centered at 25 kHz

as shown in Fig 2.11. The related Fourier transform can be obtained via the fft function of

MATLAB and the procedure described in [117] and Sec. 2.4. The frequency problem is then

solved with the WFE method by considering an input right-going flexural (or shearing) wave

packet in waveguide 1, and assessing the measured displacement which results from the multiple

scattered waves issued from the defect and the joint. The time response can finally be rebuilt

from the inverse Fourier transform (ifft function of MATLAB) of the frequency response.

3.6.1.1 Defect localization in a waveguide assembly without joint

Consider the assembly displayed in Fig. 3.4(a), which concerns two aligned waveguides

(same properties) with a defect. The distance between the measurement point and the defect
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is l1 = 10 m. The motivation behind the present subsection is to obtain an estimate of this

distance (which in practice is unknown) from the analysis of the times of flight proposed

in Sec. 3.4. Then, an input flexural wave packet (central frequency of 25 kHz) is sent and

recorded at the measurement point as shown in Fig. 3.7(a). The measured signals represent the

longitudinal displacement at some node located at l1 = 10 m in waveguide 1. The reflected time

signal is shown in Fig. 3.7(b) and can be decomposed into flexural, longitudinal, and shearing

wave packets (see Figs. 3.7(c-e)). It should be pointed out that the amplitude of the reflected

longitudinal wave packet appears to be small compared to the other ones, which means a small

conversion effect with flexural waves. From the experimental point of view, the identification of

these different reflected wave packets might be done using sensors at several points along the

height of waveguide 1, at the abscissa of the measurement point. The measured time of flight,

between the input incident wave packet and each reflected one, can be defined as the time delay

between the tips of the wave packets as shown in Fig. 3.7 (see red crosses).

On the other hand, the estimated/theoretical time of flight τij for each reflected wave

packet (flexural, longitudinal, and shearing) is expressed by Eq. (3.27). Here, the group velocities

are determined from Fig. 3.6(b) at 25kHz (see also Eq. (3.14)). In Fig. 3.8, the estimated times

of flight for the reflected wave packets shown in Fig. 3.7 are plotted as functions of frequency

(see continuous curves). These curves show non-smooth behavior – i.e., with localized sudden

variations (peaks) after 15 kHz – which reveal mode conversion phenomena between waves (see

comments about Fig. 3.6). Also, the measured/experimental times of flight issued from Fig. 3.7

are highlighted by yellow spots in Fig. 3.7, as well as the central frequency of the wave packets

(25 kHz, white dashed line). For each type of wave, results show that the estimated time of

flight perfectly matches the measured one, as expected, see Figs. 3.8(b-d).
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Figure 3.7: Time signals at measurement point for a waveguide assembly without joint: (a)

input signal (flexural waves), (b) total reflected signal, (c) reflected flexural wave packet, (d)

reflected longitudinal wave packet and (e) reflected shearing wave packet. Red crosses highlight

tips (highest magnitudes) of reflected wave packets.
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Figure 3.8: Frequency-time map of the reflected signals for a waveguide assembly without joint.

Measured times of flight are highlighted by yellow spots. Estimated times of flight represent the

crossing points between the curves and the white dashed line: (a) total signal, (b) flexural wave

packet (blue), (c) longitudinal wave packet (red) and (d) shearing wave packet (orange).

Note that the curves in Fig. 3.8 can be drawn provided the position of the defect l1 is

known a priori. To address this issue, a fitting procedure can be considered, e.g., by adjusting

the length l1 in order to make these curves coincide with the yellow spots. In this sense, a
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raw estimate of the location of the defect can be made, and the types of waves arising from

the defect can be identified. Another possibility is to plot the times of flight τij as functions

of the length l1, for different types of reflected waves, and to seek the common value l1 where

the curves τij(l1) meet the measured value of the times of flight, see Sec. 3.6.1.2. In fact, this

can be seen as a linear regression problem, and in the case of a single defect, it can be solved

easily. However, in the case of a joint between the observation point and the defect, the linear

regression is not straightforward, since the transmitted waves through the joint is unknown a

priori.

Tab. 3.1 reports the estimated defect positions obtained from Eq. (3.28) by considering the

measured times of flight τij (Fig. 3.7) for different reflected wave packets (flexural, longitudinal,

shearing). For each wave packet, the estimated value accurately predicts the localization of the

defect (i.e., l1 = 10 m) with a relative error smaller than 1%. This also highlights the robustness

of the proposed approach, in the sense that the results appear to be roughly similar regardless

of the type of wave packet analyzed.

Table 3.1: Estimated position of the defect obtained from Eq. (3.28) and relative error (reference

is l1 = 10 m).

ij τij (ms) cgj (m/s) cgi (m/s) l1 (m) Relative error (%)

(1) flexural ← flexural 9.67 3178 3178 10.06 0.6

(2) longitudinal ← flexural 12.53 3178 1644 9.96 0.4

(3) shearing ← flexural 9.24 3178 3688 10.09 0.9

Following Eq. (3.28), it is possible to plot the times of flight τij as a function of l1 for

different pathways, as shown in Fig. 3.9. Here, the horizontal black lines represent the measured

times of flight, and the oblique lines in blue, red, and orange colors represent τij for the pathways

associated with the wave packets shown in Fig. (3.7). These oblique lines intersect the horizontal

lines around l1 = 10 m. It is a way to illustrate the relevance of the proposed approach.
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Figure 3.9: Times of flight τij as functions of l1, for different pathways (blue, red and orange

curves are pathways associated with the wave packets shown in Fig. 3.7); measured times of

flight are highlighted by horizontal dashed lines.

Aside from defect localization, a sensitivity analysis of the measured time response to

the geometrical properties of the defect can be conducted. This could help the selection of the

best input signals to detect certain types of defects. For instance, the variation of the output

signal amplitude to the input flexural pulse’s central frequency and the radius of the holeRh

(defect) radius can be analyzed as shown in Fig. 3.10. Fig. 3.10(a) concerns the amplitude of

the reflected flexural wave packet, which shows a monotonic increase with respect to Rh before

15 kHz, and an oscillating behavior at higher frequencies. Fig. 3.10(b) concerns the amplitude

of the reflected shearing wave packet, which also shows an oscillating behavior after 15 kHz, i.e.,

after the cut-off frequency of the shearing wave (below, the magnitude of the reflected signal is

null). Given their small amplitudes, reflected signals for longitudinal waves are not investigated

here. Those results make it feasible to identify the radius of the defect (Rh) for some known

excitation frequency and output signal amplitude or to identify the types of waves that are
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mostly sensitive to detect a hole with a given radius Rh.

Figure 3.10: Amplitudes of the (a) reflected flexural wave packet and (b) reflected shearing

wave packet as functions of the central frequency (input flexural pulse) and the radius of the

hole Rh (defect).

3.6.1.2 Defect localization in a waveguide assembly with a joint

Consider now a waveguide assembly with a defect and a curved joint, as shown in

Fig. 3.4(b). In this case, the sought defect position is l2 = 5 m, which represents the distance

between the joint and the defect. Here, any input wave packet will likely give rise to many

transmitted/reflected wave packets of different natures due to wave conversion phenomena

inside the joint and the defect. Following the WFE method, the input (flexural wave packet)

and output time signals can be assessed as shown in Fig. 3.11. The total reflected signal is

shown in Fig. 3.11(b) as well as the contributions issued from the flexural, longitudinal and

shearing waves, see Figs. 3.11(c-e). It can be observed that, for a given type of wave, several

reflected wave packets occur which result from wave conversion phenomena (transmission and

reflection at coupling elements), as mentioned earlier. Hence, it is expected that a curved joint

can strongly affect the detection and localization of a defect because of the occurrence of many

reflected and transmitted signals which can be difficult to comprehend.
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Figure 3.11: Time signals at measurement point for a waveguide assembly with a joint: (a)

input signal (flexural waves), (b) total reflected signal, (c) reflected flexural wave packet, (d)

reflected longitudinal wave packet and (e) reflected shearing wave packet. Red crosses highlight

tips (highest magnitudes) of reflected wave packets.
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A closer look at Fig. 3.11 reveals, for each type of wave, three reflected wave packets.

The first/fastest one represents the reflected waves issued from the joint; the second packet –

which is of main interest here and of highest magnitude – represents the reflected waves from

the defect (i.e., transmitted though the joint towards the measurement point); the third packet

represents the reflected waves from the defect that result from extra reflections with the joint.

In this case, the time of flight (for each packet) can be defined as the time delay between the

tip of the input pulse and the tip of the second reflected signal (see red crosses in Fig. 3.11).

Again, the estimated/theoretical times of flight τijkl can be assessed, see Eq. (3.29).

The related frequency-time maps are shown in Fig. 3.12. There are, in theory, many waves of

different natures propagating in each waveguide (due to conversion phenomena), but only a few

of them truly happen physically. The analysis of the frequency-time maps in Fig. 3.12 can help

identify these “wave pathways” by comparing, for each possible pathway, the theoretical time of

flight τijkl with the measured one. For instance, in Fig. 3.12, three continuous curves are drawn

which appear to be good candidates to accurately estimate the measured times of flight, and

which are associated with the following wave pathways: (i← j ← k ← l) = (f← f← f← f),

(l ← f ← f ← f) and (s ← s ← s ← f) (f: flexural, l: longitudinal, s: shearing). In other

words, while providing accurate results, the proposed approach is also able to provide physical

insight into the pathways taken by a certain wave packet in different parts of a waveguide

assembly. This appears to be the main contribution of the present work. In Figs. 3.12(b-d),

the measured time of flight represents the second yellow spot, i.e., the one with the highest

magnitude. Other yellow spots highlight first-wave reflection from the joint and extra wave

reflection from the defect. The related times of flight can be predicted using the same procedure

as before, as shown in Fig. 3.12. In this case, the predicted times of flight represent the crossing

points between the colored dashed lines and the white dashed line in Fig. 3.12(b-d). Again, the

proposed approach correctly agrees with the measurements, i.e., the crossing points between

these colored and white dashed lines match the first and third yellow spots.
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Figure 3.12: Frequency-time map of the reflected signal for a waveguide assembly with a joint.

Measured times of flight are highlighted by yellow spots. Estimated times of flight represent the

crossing points between the continuous curves and the white dashed line: (a) total signal, (b)

flexural wave packet (blue), (c) longitudinal wave packet (red) and (d) shearing wave packet

(orange). The first reflections from the joint and extra reflections from the defect are represented

by dashed lines.
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The following strategy can be considered to obtain a raw estimate of the position of the

defect l2 in Eq. (3.29). This consists in plotting the times of flight τijkl, for different pathways,

as functions of l2 via Eq. (3.29) and seeking those pathways that give the same result l2 as

shown in Fig. 3.13. Here, the horizontal black dashed lines represent the measured times of

flight; also, the oblique lines in blue, red and orange colors represent τijkl(l2) for the pathways

associated with the wave packets shown in Fig. 3.11, and intersect the horizontal lines at about

the same abscissa l2 = 5 m. Other pathways (gray oblique lines) lead to wrong estimates of l2,

meaning that they do not occur physically.

Figure 3.13: Times of flight τijkl as functions of l2, for different pathways (blue, red and orange

curves are pathways associated to the wave packets shown in Fig. 3.11); measured times of flight

are highlighted by horizontal dashed lines.
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An accurate estimate of the position of the defect (length l2 = 5 m) follows from Eq. (3.30).

The idea is to show that this position can be determined regardless of the pathways taken by the

waves in the assembly. The estimated positions of the defect issued from the analysis of three

different pathways are reported in Tab. 3.2. Also, to highlight the robustness of the numerical

strategy, three additional pathways are analyzed which concern results for an input shearing

(instead of flexural) wave packet. As expected, for each case, the position of the defect l2 can be

accurately predicted with a relative error smaller than 3%. To better investigate the influence

of the times of flight in transmission τ j
kl and τ j

ij through the joint upon the localization of the

defect, and therefore the relevance of the proposed approach based on Eq. (3.17), results issued

from Eq. (3.30) without considering the time of flight in transmission through the joint (τ j
kl

and τ j
ij) are also reported (length l⋆

2). In that case, the estimated positions appear to be less

accurate (relative error about 9%).

To further highlight the robustness of the proposed approach, the predicted positions

of the defect issued from analyzing extra reflected wave packets from the defect (third output

signals, instead of the second ones) are determined, see Tab. 3.3. Again, the position of the

defect l2 can be accurately predicted (relative error less than 2%), regardless of the wave pathway

which is analyzed.

Table 3.2: Estimated position of the defect obtained from Eq. (3.30) and relative error (reference

is l2 = 5 m).

ijkl τijkl (ms) l⋆
2 (m) l2 (m) Relative error (%)

(1) s← s← s← f 12.35 5.40 5.05 1.0

(2) f← f← f← f 13.05 5.43 5.10 2.0

(3) l← f← f← f 15.82 5.20 4.85 3.0
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Table 3.3: Estimated position of the defect issued from analyzing extra reflected wave packets,

and relative error (reference is l2 = 5 m).

ijklmn τijklmn (ms) l⋆
2 (m) l2 (m) Relative error (%)

f← f← s← s← f← f 15.89 5.35 5.06 1.2

l← f← f← f← f← f 18.72 5.25 4.97 0.6

s← s← f← s← s← s 15.43 5.32 5.06 1.2

Let us remark that, in Fig. 3.12, some estimated times of flight τijkl may be difficult to

comprehend for some particular frequencies. This particularly concerns the sharp peaks of the

continuous curves which can overlap the white dashed lines at these frequencies, e.g., at 27.3

kHz for the orange curve. As explained in Sec. 3.4 (see Remark 2), this behavior results from

the resonant behavior of the coupling elements (joint, defect) which affects the assessment of

the times of flight. As a second issue, times of flight for waves close to their cut-off frequencies

are difficult to quantify due to the singular behavior of the group velocities at these frequencies.

Input wave packets at these frequencies are likely to lead to complex reflected time signals which

are difficult to analyze as shown in Fig. 3.14 at 16.1 kHz (black) at the cut-off frequency of the

shearing wave, and 27.3 kHz (blue) at an internal resonance of the joint. At these frequencies,

the measured signals are widely spread in time, which as such make these excitation frequencies

not suitable to localize the defect. It should be emphasized that this issue is not linked to

numerical modeling, but results from physical phenomena. It is therefore advised to consider

different values of excitation frequencies. Again, the proposed wave-based approach could be

advantageously considered to quickly select these excitation frequencies in a pre-processing step.

In Fig. 3.15, the sensitivity of the amplitudes of the flexural, longitudinal and shearing

reflected signals to angles of curvature of the joint varying from 30◦ to 90◦, and excitation

frequencies varying from 20 kHz to 25 kHz, is analyzed. Results show that, for a given angle,

the amplitudes of the reflected signals can be optimized by properly selecting the excitation
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Figure 3.14: Measured time signals for an input flexural wave packet at 16.1 kHz (black) and

27.3 kHz (blue): (a) reflected flexural wave packet, (b) reflected longitudinal wave packet and

(c) reflected shearing wave packet.

frequency. In fact, the variations of the wave amplitudes against frequency, for a given angle,

are not necessarily monotonic (as it would be the case for the extreme case 90◦) as they can be

more complex. Here, the WFE method appears to be an interesting numerical tool to carry out

such an optimization analysis (see for instance [29]).

A validation of the WFE approach for detecting and localizing a defect in a waveguide

assembly with joint (see Fig. 3.4(b)) is finally proposed through comparisons with the FE

method, i.e., via time simulations issued from a full FE model of the system. In this case,

infinite conditions before waveguide 1 and after waveguide 3 are described by considering two

extra 25 m-long waveguides which are supposed to be long enough to prevent wave reflections

at ends within the time band analyzed. This, as such, yields a FE model of large size. Within
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the FE framework, an input force vector F(t) = ℜ{ϕFj(ω)} × f(t)(1 + δ(t)) representing an

input flexural wave packet j at 25 kHz is considered at the abscissa of the measurement point.

Here, ϕFj represents the force component for the flexural wave shape vector (size n× 1), f(t) is

a Gaussian and δ(t) is a uniform random variable defined on [−1, 1]× 10−3 to simulate noise,

and therefore, to add uncertainties in the excitation signal.

Figure 3.15: Amplitudes of the (a) reflected flexural wave packet, (b) reflected longitudinal

wave packet and (c) reflected shearing wave packet as functions of the central frequency (input

flexural pulse) and the angle of curvature of the joint. Red cross highlights values initially

considered to obtain Fig. 3.11
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Regarding the full FE model, the time response is computed with the Newmark method

with a time step of ∆t = 5× 10−7 s. The normalized input wave packet is shown in Fig. 3.16(a)

in the same way as Fig. 2.11(a). Reflected time signals are shown in Fig. 3.16(a) which concern

(i) waves reflected by the joint and (ii) waves reflected by the defect and transmitted through

the joint back to the measurement point. These reflected signals are highlighted in dark color

in Figs. 3.16(b) and 3.16(c). For comparison purposes, the WFE results about the previously

identified reflected signals are also shown; see Fig. 3.11. Regarding Figs. 3.16(b) and 3.16(c), it

appears that the reflected signals issued from FE simulations can be roughly retrieved from

superposing the flexural and shearing wave packets issued from the WFE method. In other

words, the reflected time signals issued from the WFE method match the FE solution. Small

differences between the two signals appear, since in the WFE signal the contribution of the

flexural and shearing modes are plotted separately. Also, the other modes are not considered and

the superposition of signals (from different modes) at the observing point is ignored. The tips

of the reflected pulses (highest magnitudes), for the flexural and shearing wave packets, can be

clearly identified via the FE response and correspond to those obtained with the WFE method.

This highlights the accuracy of the proposed approach for computing the time responses of

waveguide assemblies and, therefore, predicting the reflected wave signals from the defect and

the related times of flight. This also highlights the robustness of the approach, i.e., it is able to

describe systems subject to small uncertainties (excitation conditions in the present case). It

should be emphasized, again, that the advantages of the WFE method over the FE method are:

(i) the computation of the dynamic response of waveguide assemblies using wave-based matrix

equations of small size; (ii) a straightforward identification of the waves which are reflected by

the defect and transmitted through the joint.
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Figure 3.16: Incident and reflected time signals for a waveguide assembly with a joint (total

signal (a), reflected signals from the joint (b) and reflected signals from the defect (c)): (black)

FE solution; (blue) WFE solution for the reflected flexural wave packet; (yellow) WFE solution

for the reflected shearing wave packet.
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3.6.2 Pipeline with an elastic foundation

The analysis of long pipelines using wave propagation methods is of great interest due to

the characteristics of the waves encountered. The occurrence of multiple defects and curved

joints in networks of pipes can be challenging during an inspection. These coupling elements

generate to mode conversion during transmission and reflection, resulting in complex measured

signals, thus hindering the effectiveness of the inspection. Consequently, understanding and

studying wave mode conversions caused by these coupling elements become crucial to proceed

with the inspection process.

Figure 3.17: Schematic of a pipe described from identical substructures on an elastic foundation

(periodic mesh).

To localize a defect, a time response analysis based on the study of the times of flight, for

reflected or transmitted wave packets, can be used [132]. For straight pipes, assessing the times

of flight follows directly from the analysis of the group velocities. However, as reported earlier,

assessing the group velocities for waves transmitted or reflected through arbitrary coupling

elements, like defects or curved joints, is more dubious, see Sec. 3.4.

Let us consider a pipeline lying on an elastic foundation, as shown in Fig. 3.17. The pipe

substructure is modeled using ”S4R” 4-node rectangular elements (ABAQUS) with 6 DoFs per

node. Each element represents a quadrilateral finite-membrane-strain element with reduced

integration to avoid shear and membrane locking. The pipe substructure is meshed with 32
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elements around the circumference and 1 element along its length. Finally, the elastic foundation

is modeled via periodic supports of stiffness Ks = 108N (vertical direction) at the bottom nodes

of the structure.

The dispersion curves of the traveling waves in the pipes can be obtained with the

WFE method (see Sec. 2) as shown in Fig. 3.18. Here, those associated with “low-order”

right-going waves are displayed over the frequency band [0, 50] kHz. Fig. 3.18(a) shows the

real and imaginary parts of βjd (βj and d being the wavenumbers and the substructure length,

respectively), and Fig. 3.18(b) shows the related group velocities. The dispersion curves issued

from the WFE method appear fairly different from those in pipes, see Fig. 1.1. This is explained

by the fact that an elastic foundation is added. Note that the double roots related to the flexural

modes, as observed by Wang et al. [133], are no longer present due to a spring foundation.

Indeed, the pipe symmetry is broken, and an orientation is established. Here, the fundamental

torsional wave mode T(0, 1), which is non-dispersive, is highlighted together with low-order

dispersive non-axisymmetric flexural wave modes F(1, 2), F(1, 3) and F(2, 2), and low-order

longitudinal wave modes (see blue, yellow and purple curves). As explained earlier, wave mode

conversion among these waves is supposed to occur inside the coupling elements (transmission,

reflection).

Remark 3. The problem of double-roots modes observed in axisymmetric structures was

noticed by Zhong and Williams [25]. However the authors only treated the case of single-root

modes (observed in beams and plates structures) in the WFE framework. It is worth mentioning

that the computation of dispersion curves and forced responses can be obtained normally for

both cases. More recently, Wang et al. [133] adapted the WFE method to deal with double-

root problems. However, for axisymmetric structures, the computation of the reflection and

transmission coefficients for axisymmetric structures via scattering matrices, as described in

Sec. 2.7, is yet not well defined and remains a problem of insterest.
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Figure 3.18: (a) Real and imaginary parts of βjd and (b) group velocities cgj: (green line)

torsional mode T(0, 1), (orange line) flexural mode F(1, 2); (black line) flexural mode F(1, 3);

(red line) flexural mode F(2, 2); (blue, yellow and purple lines) longitudinal modes.

Let us consider a pipeline composed of waveguides of length l1 = 10 m and l2 = 10 m

connected by a curved joint of curvature angle 90o, see Fig. 3.19(a). The joint, the defect,

and the pipes share the following material properties: Young’s modulus E = 210 GPa, density

ρ = 7800 kg/m3, Poisson’s ratio ν = 0.3 , and a Rayleigh damping model is considered — i.e.,

C = aM + bK, with coefficients a = 10−3 s−1 and b = 10−8 s. The source and observation

points are the same and located at l1 = 10 m in waveguide 1 away from the joint. Also, the

waveguides before the source point and after the defect are supposed to be semi-infinite.

The joint and the defect are discretized using four-node rectangular elements with 6

DoFs per node. The schematics and FE mesh of the joint are shown in Fig. 3.19(b). It uses 32

elements around the circumference and 40 elements around the curvature. The length of the

coupling element representing a defect is dd = 7.5 mm, and it contains a crack of length ld = 2.5

mm, see Fig. 3.19(c). The circumferential extent of the defect is θd = 22.5o. Here, the radius of

curvature of the joint is Rj = 0.1 m.
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Figure 3.19: (a) Schematic of a pipe described from identical substructures on an elastic

foundation; mesh for (b) joint and (c) coupling element with a defect; (d) representation of the

angular extent of the defect θd.

The time response of the pipe assembly is investigated, with an input excitation/measurement

point in pipe 1; see Fig. 2.17. The distance between the joint and the defect is l2 = 10 m,

representing the length of pipe 2. An input Gaussian pulse centered at 30 kHz representing a

right-going wave packet “T(0, 1)” is considered as shown in Fig. 3.20. The problem is solved in

the frequency domain with the WFE method, and the time response is obtained via an inverse

Fourier transform of the frequency response, see Sec. 2 for the methodology.
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Figure 3.20: (a) Pulse excitation in the time domain and (b) absolute value of the related

Fourier transform.

Fig. 3.21 shows the normalized circumferential displacement at the measurement point

as a function of time, specifically showing the contribution of the "T(0, 1)" mode in terms of

displacement. The incident and reflected wave packets are of "T(0, 1)" type. The contribution

of the wave packet of type "T(0, 1)" can be extracted by decomposing the signal into different

contributions and selecting the desired wave type, as described in [99, 134]. Here, five wave

packets of T(0, 1)-type are observed. These result from reflection at the joint (wave packet (1))

and reflection at the defect via transmission through the joint (wave packets (2), (3), (4) and

(5)). As reported earlier, wave packets (2)-(5) are associated with different pathways and wave

conversions inside the joint and the defect. This illustrates the difficulty of localizing a defect

after a joint, i.e., given the occurrence of different wave pathways for a given input/output wave

type. It should be recalled that these pathways, for an input wave packet, are to be understood

as the different possible wave packets that are transmitted through the joint in pipe 2, reflected

via the defect in the same pipe, and transmitted via the joint back to the measurement point.
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Figure 3.21: Reflected wave packets T(0, 1) at the measurement point: (1) wave packet reflected

by the joint; (2)-(5) wavepackets issued from the defect. Dark crosses highlight the tips of the

wave packets.

Following the procedure described in Sec. 3.5, an analysis of the components of the

scattering matrices of the joint and the defect can help identify these different pathways. For

instance, the transmission coefficients for the incident wave T(0, 1) through the joint are shown

in Fig. 3.22(a). Here, the waves transmitted in pipe 2 — i.e., those with the highest transmission

coefficient at 30 kHz — are highlighted by colored curves. For instance, the red curve represents

the transmission coefficient from wave T(0, 1) to wave F(2, 2), and the green curve represents the

transmission coefficient from wave T(0, 1) to wave T(0, 1). Also, several possible pathways can

be postulated by analyzing the reflection coefficients at the defect. Some of these are physical,

others are not.

The localization of the defect l2 = 10 m depends on the strategy to determine the wave

pathways. The idea is that for a certain measured time of flight τijkl, different choices for

pathways can give the same estimate of l2. Fig. 3.22(b) shows the variation of τijkl against
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the length l2 for different pathways, see Eq. (3.30). Also, the measured times of flight, for the

reflected wave packets, are shown via horizontal dashed lines in Fig. 3.22(b). It can be seen that

the intersection of oblique and horizontal lines at l2 = 10 m can be obtained for three pathways,

indicated with black circles. Other pathways may give wrong results — i.e., the purple curve in

Fig. 3.22(b) — which means that they do not physically happen.

Figure 3.22: (a) Transmission coefficients for the incident wave T(0, 1) through the joint; highest

coefficients at 30 kHz are highlighted by colored curves. (b) Times of flight τijkl as functions

of the length l2, for different pathways; measured times of flight are plotted using horizontal

dashed lines.

Accurate estimates of the position of the defect l2 can be obtained from Eq. (3.30), i.e.,

from the measured times of flight τijkl and several identified pathways (2), (3) and (5). Results

are shown in Tab. 3.1, where “H.O.” means high-order wave modes. In this case, the position of

the defect can be identified with an error smaller than 1%.
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Table 3.4: Estimated position of the defect from Eq. (3.30), and relative error (reference is

l2 = 10 m).

ijkl τijkl (ms) l2 (m) Relative error (%)

(2) T(0, 1)← T(0, 1)← T(0, 1)← T(0, 1) 15.34 10.09 0.9

(3) T(0, 1)← H.O.← H.O.← T(0, 1) 16.05 9.99 0.1

(5) T(0, 1)← F(2, 2)← F(2, 2)← T(0, 1) 18.20 10.08 0.8

To further investigate the relevance of the proposed approach, a frequency-time map

of the measured reflected signals can be considered as shown in Fig. 3.23. Here, the yellow

spots highlight the measured reflected signals. The black curves represent the theoretical times

of flight for different pathways (2), (3), and (5), see Eq. (3.29). Otherwise, in Fig. 3.23, the

white horizontal curve at 30 kHz represents the excitation frequency. This procedure allows

a verification of the pathways identified via Fig. 3.22(b). For these pathways indeed, one can

check that the intersection points between the black curves and the white ones match with the

center of the yellow spots, i.e., with the tips of the reflected signals shown in Fig. 3.21.

Fig. 3.23 provides additional information about the reflected times of flight. For instance,

the black curves contain sharp horizontal peaks at some particular frequencies. This phenomenon

can strongly affect the detection of reflected wave packets — e.g., the one corresponding to

certain pathways — which is explained by the difficulty of determining the crossing points

between these curves and the white one positioned at these frequencies. Such behavior occurs

at the resonance frequencies of the coupling elements (joint, defect) or at the cut-off frequencies

of the waves where the group velocities exhibit a singular behavior. Input wave packets at

these frequencies are likely to induce reflected signals that are spread in time, making these

excitation frequencies not suitable to localize the defect, as illustrated in Fig. 3.14. It must

be emphasized that this problem is not related to numerical modeling, but is due to physical

phenomena, as explained in Sec. 3.6.1.2. Therefore, it is recommended to consider different
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excitation frequencies. The proposed WFE approach can be advantageously used to quickly

select these excitation frequencies in the pre-processing step.

Figure 3.23: Frequency-time map of the reflected waves issued from the defect. Measured times

of flight are highlighted by yellow spots. Estimated times of flight represent the crossing points

between the black curves and the white dashed line.

3.7 Conclusions

This chapter proposed a WFE approach to localize defects in waveguide assemblies

with curved joints. This strategy uses the scattering matrix issued from the WFE method to

assess transmitted and reflected wavepackets through the joint, and to localize a defect. 2D

assemblies involving straight elastic waveguides, a curved elastic joint and a defect have been

dealt with. The proposed approach provides theoretical expressions of the times of flight in

transmission or reflection for wave packets traveling in coupling elements (joint, defect). Also,

it provides physical insights into the nature of the waves which are transmitted through the
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joint and reflected by the defect (pathways). The position of the defect can be determined by

comparing the theoretical expressions of the times of flight with those recorded in a waveguide

assembly. Numerical experiments for 2D plane-stress beams and 3D pipes have been carried out

to demonstrate the accuracy and robustness of the proposed approach to localize a defect from

the analysis of different reflected wave packets (several types of waves). The proposed approach

is intended to be general and could be used to localize single or multiple defects in networks of

waveguides, including several curved joints.





Chapter 4

Elasto-acoustic waveguides

4.1 Overview

Fluid-filled pipes find application across various industries, including gas, oil, water

distribution, and civil engineering. Consequently, upkeep and monitoring of pipelines are crucial

to safeguard their integrity and prevent financial losses. In extensive pipeline networks, NDT

using guided waves emerges as a useful technique for it. The understanding of wave propagation

in fluid-filled pipes is primarily important when guided waves are used. Especially the interaction

of elasto-acoustic waves with defects and joints is important to improve NDT techniques.

The localization of defects for fluid-filled pipes was studied in different ways. Aristégui

et al. [44] investigated the wave propagation in pipes with internal and external fluids. They

obtained a good agreement between experiments and dispersion curves calculated by a FE

approach. More recently, Vogelaar and Golombok [45] experimentally investigated damage

detection using the torsional mode with different internal and external fluids. They showed that

different inner and outer fluids attenuate the torsional mode, hence reducing the inspection range

of the technique. However, they stated that the torsional mode is suitable for detecting pipe

defects. Since, in general, the fundamental torsional mode T(0, 1) is not dispersive, it is easy to

119
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generate using transducers, and the energy is confined to the pipe and does not radiate. [46–49].

It is possible to determine the dispersion curves of propagating waves in fluid-filled

axisymmetric pipes, as discussed by Fuller and Fahy [50] and Sato and Ogiso [51]. However, for

complex pipes, analytical solutions are not straightforward. Then, numerical methods become

an essential tool. Nevertheless, for long structures, the FE method becomes computationally

challenging since it involves many elements, resulting in a large number of DoFs. To tackle this

problem, the WFE method is a valuable alternative.

Mencik and Ichchou [32] applied the WFE method to fluid-filled pipes to compute

dispersion curves. Bhuddi et al. [34] studied the wave propagation in axisymmetric fluid-filled

pipes surrounded by a fluid using the WFE method combined with a perfectly matched layer

(PML). Kingan et al. [52] analyzed the response of an orthotropic system. Manconi et al. [53]

applied the method to analyze laminated pre-stressed fluid-filled pipes. Maess et al. [54, 55]

developed a strategy to compute the energy and group velocities in the WFE framework. In

their works, they analyzed straight and corrugated pipes containing a fluid.

So far, the studies focused on analyzing wave propagation in straight systems overlooking

the phenomenon of mode conversion in the presence of coupling elements like curved joints and

defects. Thus, it is important to incorporate the modeling of such coupling elements within the

WFE method, since it has not been done yet in the literature from the point of view of mode

conversion.

Within the WFE method, coupling elements are usually modeled via FE models that

can contain a large number of DoFs since fluid-filled structures are considered. This can lead to

high computational costs, even with the WFE method. Thus, an unreduced modeling of the

coupling element can be considered naive, and a reduced modeling strategy is necessary.

In terms of model reduction involving fluid-filled pipes and FE models, Maess and

Gaul [56] adopted a component mode synthesis using the CB method and an iterative subspace

solver to generate an approximation to the low-frequency problem. Later, Herrmann et al. [57]
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provided an FE approach to simulate pipelines using dynamic substructuring and interface

reduction. For this task, they applied the CB method to vibroacoustic problems and used an

interface reduction based on Ritz vectors.

Also, a reduction based on modal projection can be considered where the acoustic and

elastic parts are decoupled. However, to ensure convergence, it is necessary to provide corrections

using enrichment vectors [58]. Tournour and Atalla [59] demonstrated that the decoupled modal

basis results in poor convergence since high-frequency modes of one subsystem can be coupled

to low-frequency modes of the other. To solve this issue, they proposed pseudo-static corrections

in both subsystems. Tran et al. [60] used decoupled systems that are later enriched by static

correction terms. This approach will be used in this manuscript to model coupling elements in

the WFE framework.

This section is organized as follows. In Sec. 4.2, the WFE method for elasto-acoustic

waveguides is presented. Some simulations are carried out to compute the dispersion curves and

the group velocities of the elasto-acoustic modes, and a comparison between the force response

issued from the FE and WFE methods is provided. Next, in Sec. 4.3, a CB reduction for coupling

elements combined with an enrichment technique is presented in the WFE framework. Numerical

results are provided regarding the CB reduction, transmission and reflection coefficients. Finally,

a numerical application of the proposed approach to localize a defect in fluid-filled pipes with a

curved joint is analyzed.

4.2 WFE modeling

Fluid-filled pipes are examples of periodic systems that can be seen as an assembly of

elasto-acoustic substructures. In this sense, the WFE method can be applied to investigate

wave propagation along these systems. In this framework, a substructure is modeled via FE, see

Fig. 4.1. Here, the left and right boundaries of the substructure are meshed in the same way.

Let us denote by nE and nA the number of DoFs for the elastic and acoustic parts on the left or
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right boundaries and by nE
I and nA

I the related numbers of internal DoFs.

Figure 4.1: FE mesh of an elasto-acoustic waveguide and FE mesh of a substructure of length d.

The elastic part is plotted in gray, and the acoustic part is plotted in blue.

The FE model of the elasto-acoustic substructure can be formulated using the following

system of equations involving displacement vector U and pressure vector p [135]:

−ω2

 ME 0

ρAGT MA

+ iω

CE 0

0 CA

+

KE −G

0 KA




︸ ︷︷ ︸
D

U

p

 =

FE

FA

 , (4.1)

where ρA is the density of the acoustic part, and D denotes the DSM of the substructure. Here, FE

and FA are the elastic and acoustic force vectors with size (2nE + nE
I) and (2nA + nA

I), respectively.

Also, the elastic displacement vector U and the pressure vector p are of size (2nE + nE
I) and

(2nA + nA
I), respectively. In Eq. (4.1), ME, CE and KE are (2nE + nE

I)× (2nE + nE
I) mass, damping

and stiffness matrices for the elastic part, and MA, CA and KA are (2nA + nA
I)× (2nA + nA

I) mass,

damping and stiffness matrices for the acoustic part. Also, G represents the elasto-acoustic

coupling matrix of size (2nE + nE
I)× (2nA + nA

I). Eq. (4.1) is known as the (U, p)-formulation

for elastic-acoustic problems.
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Note that the (U, p)-formulation is not well suited for the WFE framework. This is

explained by the fact that the DSM is not symmetric, consequently, the corresponding transfer

matrix S of the substructure is not symplectic. To solve this issue, the (U, Ψ) symmetric

formulation can be proposed, where Ψ is the vector of velocity potential [32]:

Ψ = − p
iωρA

, (4.2)

Then, inserting Eq. (4.2) into Eq. (4.1) leads to:

D

U

Ψ

 =

 FE

FA/(iω)

 , (4.3)

where D is the symmetric DSM of size (2n + nI), with n = nE + nA and n = nE
I + nA

I, expressed

as:

D = −ω2M + iωG + K, (4.4)

where

M =

ME 0

0 −ρAMA

 , K =

KE 0

0 −ρAKA

 and G =

 CE ρAG

ρAGT −ρACA

 . (4.5)

Following the WFE procedure, Eq. (4.4) can reorganized with respect to boundary and

internal DoFs. The consideration of FI = 0, leads to the following equation for the substructure:

DBB DBI

DIB DII


qB

qI

 =

FB

0

 , (4.6)
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where

qB =

UB

ΨB

 , qI =

UI

ΨI

 and FB =

 FE
B

FA
B/(iω)

 . (4.7)

Here, subscript B denotes the boundary DoFs encompassing the left (L) and right (R)

boundaries of the substructure. Then Eq. (4.6) leads to:

D∗
LL D∗

LR

D∗
RL D∗

RR


qL

qR

 =

FL

FR

 , (4.8)

where the condensed DSM of the substructure is given by D∗ = DBB − DBID−1
II DIB; qL and qR

(resp. FL and FR) are displacement (resp. force) vectors of size n×1. Also, D∗
LL,D∗

LR,D∗
RL and D∗

RR

are square n× n matrices such that D∗
LL = (D∗

LL)T , D∗
LR = (D∗

RL)T and D∗
RR = (D∗

RR)T . Considering

Eq. (4.8), the following transfer relation between the displacement, pressure and force vectors,

at the right and left boundaries, can be written as:

qR

FR

 = S

 qL

−FL

 , (4.9)

where S is the transfer matrix of the substructure (size 2n× 2n), given by [21]:

S =

 −D∗−1
LR D∗

LL −D∗−1
LR

D∗
RL − D∗

RRD∗−1
LR D∗

LL −D∗
RRD∗−1

LR

 . (4.10)

Following Bloch’s theorem, the eigensolutions of S refer to the wave properties of a

waveguide made up of these substructures. The eigenvalues of S, denoted by µj, refer to the

wave parameters with the property that µj = e−iβjd (βj being the wave numbers) for a given

wave j. Also, the eigenvectors of S, denoted by ϕj , represent the wave shape vectors, as discussed

in Chap. 2. For fluid-filled pipes, ϕj includes displacement and velocity potential parts,i.e.,

ϕj = [ (ϕE
qj)T (ϕA

qj)T (ϕE
Fj)T (ϕA

Fj)T ]T . (4.11)
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Each wave shape ϕj represents a 2n× 1 vector, given in Eq (4.11), which includes elastic

and acoustic parts: ϕE
qj is the displacement vector of size (nE × 1), ϕA

qj is the velocity potential

vector of size (nA× 1), ϕE
Fj is the elastic force vector of size (nE× 1), and ϕA

Fj is the acoustic force

vector of size (nA × 1). The related eigenproblem can be computed with the (N, L) or (S + S−1)

methods, see Secs. 2.2.1 and 2.2.2.

4.2.1 Forced response

The forced response of the elasto-acoustc system can also be predicted with the WFE

method. As developed in Sec. 2.3, the vectors q and F at an interface (k) can be decomposed

in terms of waves:

q(k)
L = q(k)

R = Φqµ
k−1Q + Φ⋆

qµ
N+1−kQ⋆ k = 1, . . . , N + 1, (4.12)

−F(k)
L = F(k)

R = ΦFµ
k−1Q + Φ⋆

Fµ
N+1−kQ⋆ k = 1, . . . , N + 1. (4.13)

In Eq. (4.12), Q and Q⋆ are wave amplitude vectors, see Fig. 4.1. Here, Φq =

[(ΦE
q)T (ΦA

q)T ]T , ΦF = [(ΦE
F)T (ΦA

F)T ]T , Φ⋆
q = [(Φ⋆E

q )T (Φ⋆A
q )T ]T , and Φ⋆

F = [(Φ⋆E
F )T (Φ⋆A

F )T ]T .

The determination of the wave amplitudes is found by considering the boundary conditions of

the system.

Assume, for instance, that the elastic part is subject to a force at its left boundary and

clamped at its right boundary; and that the acoustic part is subject to rigid wall condition, at

the left and right boundaries. In this case, the boundary conditions lead to:

−FE
0 = ΦE

FQ + Φ⋆E
F µNQ⋆ and 0 = ΦE

qµ
NQ + Φ⋆E

q Q⋆, (4.14)

0 = ΦA
FQ + Φ⋆A

F µNQ⋆ and 0 = ΦA
Fµ

NQ + Φ⋆A
F Q⋆, (4.15)

where ΦE
q = [ϕE

q1 · · ·ϕE
qn], Φ⋆E

q = [ϕ⋆E
q1 · · ·ϕ⋆E

qn], ΦE,A
F = [ϕE,A

F1 · · ·ϕ
E,A
Fn ] and Φ⋆E,A

F = [ϕ⋆E,A
F1 · · ·ϕ

⋆E,A
Fn ];
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also, µ = diag{µj}n
j=1 is the diagonal matrix of eigenvalues µj for the right-going waves. In

order to find the wave amplitude vectors Q and Q⋆. Eqs. (4.14) and (4.15) can be reorganized

as [34]:

ΦE
F

ΦA
F


︸ ︷︷ ︸

A1

Q +

Φ⋆E
F

Φ⋆A
F


︸ ︷︷ ︸

A⋆
1

µNQ⋆ =

−FE
0

0

 (4.16)

and

ΦE
q

ΦA
F


︸ ︷︷ ︸

A2

µNQ +

Φ⋆E
q

Φ⋆A
F


︸ ︷︷ ︸

A⋆
2

Q⋆ =

0

0

 . (4.17)

Eqs. (4.16) and (4.17) lead to the following matrix system:

 A1 A⋆
1 µN

A2 µN A⋆
2


Q

Q⋆

 =

−FE
0

0

 . (4.18)

The matrix in Eq. (4.18) may be ill-conditioned, see Sec. 2.3. This issue is solved using a

pre-conditioner,i.e., by multiplying the matrix equation by blkdiag
(
A−1

1 , A⋆−1
2

)
. This yields:

 I (A1)−1 A⋆
1 µN

(A⋆
2)

−1 A2 µN I


Q

Q⋆

 =

− (A1)−1 FE
0

0

 . (4.19)

Solving the Eq. (4.18) yields the wave amplitude vectors Q and Q⋆. Finally, the

displacement/pressure can be retrieved from Eqs. (4.12) and (4.13) (see Chap. 2 for further

details).
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4.2.2 Group velocity

In fluid-filled pipes, the computation of the group velocities can be achieved via Eq. (2.32)

when the dispersion curves are known, see Sec. 2.5. In the present framework, the approach

based on the energy should be modified in order to take into account both elastic and acoustic

parts. By adapting Eqs. (2.34), (2.35) and (2.36), the group velocity for a certain mode j can

be expressed as [54]:

cgj = Pj

Tj + Uj

=
P E

j + P A
j

T E
j + UE

j + T A
j + UA

j

, (4.20)

where Pj is the energy flow of the j-th mode through the cross-section, with P E
j and P A

j the elastic

and acoustic energy flow contributions; also, Tj is the kinetic energy, and Uj is the potential

energy. In Eq. (4.20), the energy flow, the kinetic and potential energies are decomposed into

elastic and acoustic contributions, which are calculated as follows [55]:

P E
j = −iω

4

 U(k)
Lj

−FE (k)
Lj


H

J

 U(k)
Lj

−FE (k)
Lj

 and P A
j = −i

4ωρA

 p(k)
Lj

−FA (k)
L


H

J

 p(k)
Lj

−FA (k)
L

 , (4.21)

T E
j = ω2

4d

 U(k)
Lj

U(k+1)
Lj


H

ME
BB

 U(k)
Lj

U(k+1)
Lj

 and T A
j = 1

4dρAω2

 p(k)
Lj

p(k+1)
Lj


H

KA
BB

 p(k)
Lj

p(k+1)
Lj

 , (4.22)

and

UE
j = 1

4d

 U(k)
Lj

U(k+1)
Lj


H

KE
BB

 U(k)
Lj

U(k+1)
Lj

 and UA = 1
4dρA

 pL

p(k+1)
Lj


H

MA
BB

 pL

p(k+1)
Lj

 . (4.23)

In Eqs. (4.21), (4.22), and (4.23), the displacement, pressure, and forces are computed

considering the contribution of each mode j. The approach using Eq. (2.32) involving the
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numerical derivative of the frequency with respect to the wavenumber can lead to numerical

errors around the cut-off frequencies. This is explained because the curve is not differentiable at

these points. Instead, the approach based on energy can be used without substantial errors.

4.2.3 Numerical results

The dispersion curves and the vibroacoustic response for an 0.5 m long fluid-filled pipe are

computed. The elastic part has a density of ρE = 7800 kg/m3, a Young’s modulus of E = 210 GPa,

and a Poisson’s ratio of ν = 0.3. The acoustic part has a density of ρA = 1000 kg/m3 and a

speed of sound of 1500 m/s. In terms of geometry, the pipe has a thickness of 0.005 m and

an external radius of 0.05 m. The considered substructure has a length of d = 0.002 m. So,

the whole waveguide contains N = 250 identical substructures. The damping is modeled using

the Rayleigh damping model for acoustic and elastic parts: CE = 10−3ME + 10−8ME, and

CA = 10−3MA + 10−8MA.

The substructure is discretized as follows: the elastic part is meshed with linear hexahedral

elements with eight nodes and three DoFs per node (representing displacements in the x, y, z-

directions), and the acoustic part is meshed with linear prismatic elements with six nodes and

one DoFs per node (representing the pressure). Each substructure is discretized by means of

n = 271 DoFs on each right/left boundary and no internal DoFs. Also, the elastic and acoustic

parts account for nE = 144 DoFs and nA = 127 DoFs, respectively.

Following the WFE method, the wave modes of the elasto-acoustic modes are obtained

using the S + S−1 strategy (as in Sec. 2.2.2). The number of left/right-going waves is n = 271,

representing elasto-acoustic modes. Fig. 4.2(a) shows the dispersion curves for some modes

over [100− 40× 103] Hz — i.e., the frequency evolution of the real and imaginary part of βjd.

Fig. 4.2(b) shows the group velocities for these modes.

Moreover, in Fig. 4.2, some modes of each family are highlighted and labeled as follows:

FS(n, m) in green, SF(n, m) in pink, red, and orange, and T(0, m) in blue, where n and m stand
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for the circumferential mode order and the sequence of modes in the circumferential family,

respectively (as similarly discussed for empty pipes in Sec 1.3). Those labels were introduced by

Duan and Kirby [107] to consider the energy transfer between the elastic and the acoustic parts

as a function of frequency.

Figure 4.2: (a) Dispersion curves (real and imaginary parts of βjd are plotted in continuous

and dashed lines, respectively) and (b) group velocities for modes: T(0, 1) (in blue), SF(0, 1)

(in magenta), SF(0, 2) (in red), SF(0, 3) (in orange), and FS(0, 1) (in green). Other modes are

plotted in gray lines.

Figs. 4.3(a) and (b) show power ratios for elastic and acoustic parts for some modes as a

function of the frequency: in the family mode FS(n, m), the energy is confined in the acoustic

part at low frequencies, and at high frequencies, energy is transferred from the acoustic part to

the elastic part. Concerning the family mode SF(n, m), the energy is confined in the elastic part

at low frequencies, and at high frequencies, energy is transferred from the elastic to the acoustic

part. Finally, the torsional family mode T(0, m) remains similar to those encountered in empty

pipes. In this case, the energy remains confined in the elastic part for the whole frequency range

since no coupling between elastic and acoustic parts is observed.
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Figure 4.3: Ratios (a) P E/(P E + P A) and (b) P A/(P E + P A) for the modes: T(0, 1) in blue,

SF(0, 1) in magenta, SF(0, 2) in red, SF(0, 3) in orange, and FS(0, 1) in green.

Fig. 4.4 shows some wave shapes obtained via WFE method at 20 kHz, i.e., the modes

(a) T(0, 1), (b) SF(0, 1), (c) and (d) flexurals. The pressure, as well as the displacements, are

normalized with respect to their maximum. The z-displacement in (direction of propagation)

is plotted in grayscale, and the x, y-displacements are plotted using red arrows. For the mode

T(0, 1), it is possible to observe that the pressure is null, and that the displacements are tangent

to the propagation direction of the wave throughout the circumference of the pipe. For the

mode SF(0, 1), symmetrical and radial fluid compression by the elastic part is observed. Finally,

the flexural modes can be associated with the classical flexural modes in empty pipes and

are double-root modes, i.e., two modes with the same dispersion curves are found, but their

orientations in the space differ. In Figs. 4.4(c) and (d), one side of the pipe is compressed,

and the opposite side is expanded. Those dispersion curves and wave mode shapes highlight

the system complexity compared to previous examples for elastic structures without fluids

(Timoshenko beam, 2D-stress beam, and pipe). Here, the coupling between the fluid and the

elastic parts plays an important role and the exchange of energy from one part to another can

vary along the frequency.
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Figure 4.4: Wave shapes at 20 kHz for modes: (a) T(0, 1), (b) SF(0, 1), (c) and (d) flexural. The

pressure is plotted using colored scale, the in-plane displacement (x and y directions) is plotted

using red arrows, and the out-plane displacement (z-direction) is plotted in grayscale.

For validation proposes, a numerical comparison between the elastic displacement |Uz| at

one point obtained with FE and WFE methods is shown in Fig. 4.5(a). Here, a force F0z = 1 kN

is applied at eight points equally spaced around the circumference of the pipe. The forced

response is obtained via Eq. (4.19) from 100 to 10kHz with a frequency step of 25Hz. The error

between the FE and WFE approaches is computed using Eq. (2.42) using sub-frequency bands

of 200 Hz. The error along the frequency band is shown in Fig. 4.5(b): it remains smaller than

0.1% except around the first anti-resonance peak (around 4 kHz), where it reaches approximately

0.3%.

Fig. 4.6(a) shows the acoustic pressure 20 log(|p|/pref) with pref = 10−6 Pa at the center

of the pipe along the frequency band obtained with the FE and WFE methods. Fig. 4.6(b)
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shows the relative error between the two approaches. Overall, the error remains inferior to 0.1%,

except around 0.8 kHz where it reaches an error of 1.4%.

Tab. 4.1 shows the elapsed times spent to simulate the vibro-acoustic response of the

fluid filled pipe with the FE and WFE methods. The FE simulation accounts for 68021 DoFs in

total (including pressure and displacements). Regarding the elapsed times, it takes 2469 s to

compute the frequency response using the FE method and 269 s with the WFE method. In

the WFE method, 249 s are used to compute the wave basis, and 20 s to compute Eq. (4.18).

There is a reduction of approximately 89 % in terms of computational time when using the

WFE method. For the FE and WFE methods, the mesh and matrix assembly processes are not

taken into account.

Figure 4.5: (a) Comparison between the displacement obtained via FE method, in black

continuous line, and WFE method, in blue dot lines, for the fluid-filled pipe case. (b) Relative

error between the two solutions.
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Figure 4.6: (a) Comparison between the acoustic pressure obtained via FE method, in black

continuous line, and WFE method, in blue dot lines, for the fluid-filled pipe case. (b) Relative

error between the two solutions.

Table 4.1: Elapsed times for FE and WFE methods for a straight fluid-filled pipe.

Method Time (s)

FE 2469.5

WFE
Computation of {µj, ϕj}j=1,...,n and {µ⋆

j , ϕ⋆
j}j=1,...,n 268.5

288.6
Computation of Eq. (4.18) 19.9

4.3 Elasto-acoustic coupling element

Within the WFE framework, a scattering matrix can be used to assess transmission and

reflection coefficients of waves at coupling elements in fluid-filled pipes (joints and/or defects).

Let us consider a coupling element connecting two waveguides, as shown in Fig. 4.7. The FE

mesh of the substructure of the waveguide and the FE mesh of the joint can be easily generated

using FE software or Matlab.
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Figure 4.7: Two fluid-filled pipes connected by a curved joint.

In this case, the DSM of the coupling element, denoted by Dc, is written as:

Dc = −ω2Mc + iωGc + Kc, (4.24)

where Mc,Gc,Kc are the mass, coupling, and stiffness matrices issued from the (U, Ψ)-

formulation, see Eq. (4.4). In the WFE formalism, the scattering matrix can be obtained

in the same way as in Sec. 2.7.1. The strategy is briefly recalled here. Let us consider a system

composed of two waveguides with N1 and N2 substructures connected to an arbitrary joint, as

shown in Fig. 4.7. The scattering matrix for the joint is given by:

Cc = −

Dc∗

L1Φ⋆
q 0

0 L2Φq

+

L1Φ⋆
F 0

0 −L2ΦF




−1

(4.25)

×

Dc∗

L1Φq 0

0 L2Φ⋆
q

+

L1ΦF 0

0 −L2Φ⋆
F


 .

In this way, the wave amplitude vectors for the incoming and outgoing waves at the

boundaries of the joint can be related as follows:
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Q⋆
1

Q2

 = Cc

µN1Q1

µN2Q⋆
2

 =

Cc
11 Cc

12

Cc
21 Cc

22


µN1Q1

µN2Q⋆
2

 , (4.26)

where Q⋆
1 and Q2 are the wave amplitude vectors for the outgoing waves at the boundaries of

the joint; also, µN1Q1 and µN2Q⋆
2 are the wave amplitude vectors for the incoming waves at the

same boundaries.

Using Eq. (4.26), it is possible to investigate the vibroacoustic response of the system

following the same procedure as described in Sec. 2.7.3 with the desired boundary conditions.

However, the scattering matrix involves the condensed DSM of the coupling element, which

means calculating (Dc
II)−1, where I stands for the internal DoFs of the joint. In the present case,

the coupling element usually involves many internal DoFs including pressure and displacement

components, which can strongly affect the computation of the condensed DSM. To solve this

issue, a reduction method can be applied to diminish the computational costs. The CB reduction,

as discussed in Sec. 2.7.2, can be adapted with basis enrichment to account for the fluid-structure

interaction.

4.3.1 CB reduction

Let us consider the acoustic and the elastic parts of the coupling element. The elastic

displacement and the velocity potential vectors are denoted by Uc and Ψc, respectively. Let us

denote the number of the elastic and acoustic boundary DoFs by nE
B and nA

B, and the number

of internal DoFs for the elastic and acoustic parts by nE
I and nA

I, respectively. Using the CB

method, the internal DoFs for the elastic part Uc
I and the potential velocity Ψc

I can be expressed

in terms of static modes and fixed-interface modes:

Uc
I ≈ Ũc

I = XE
stUc

B + X̃E
elα̃E and Ψc

I ≈ Ψ̃c
I = XA

stΨc
B + X̃A

elα̃A, (4.27)
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where α̃E and α̃A are vectors of generalized coordinates for the elastic and acoustic parts. Here,

XE
st is the matrix of static modes of the elastic part of size (nE

I × nE
B) given by:

XE
st = −

[(
KE

II

)c]−1 (
KE

IB

)c
, (4.28)

also, XA
st is the matrix of static modes of the acoustic part of size (nA

I × nA
B):

XA
st = −

[(
KA

II

)c]−1 (
KA

IB

)c
. (4.29)

Here, the matrices of fixed-interface modes for the elastic and acoustic parts are denoted

by X̃E
el = [(XE

el)1 · · · (XE
el)mI ] and X̃A

el = [(XA
el)1 · · · (XA

el)mI ], where (XE
el)j and (XA

el)j are the

eigenvectors related to the following eigenproblems:

(
KE

II

)c (
XE

el

)
j

= (ωE)2
j

(
ME

II

)c (
XE

el

)
j

and
(
KA

II

)c (
XA

el

)
j

= (ωA)2
j

(
MA

II

)c (
XA

el

)
j
, (4.30)

where (ωE,A)j are the eigenfrequencies for the mode
(
XE,A

el

)
j
. Note that (ωE)j and (ωA)j can be

different. The reduction is based on the number of retained fixed-interface modes related to

Eqs. (4.30) — i.e., the retained fixed-interface modes are those whose eigenfrequencies are

below a certain threshold. The number of retained modes are different for the fluid and the

acoustic parts and are denoted by mE
I and mA

I, respectively, with mE
I ≪ nE

I and mA
I ≪ nA

I. Then,

Eqs. (4.27) can be written as:



Uc
I

Uc
B

Ψc
I

Ψc
B


≈



Ũc
I

Uc
B

Ψ̃c
I

Ψc
B


=

TE
CB 0

0 TA
CB


︸ ︷︷ ︸

TCB



α̃E

Uc
B

α̃A

Ψc
B


, (4.31)
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where TE
CB and TA

CB are the CB tranformation matrices of sizes (nE
I + nE

B) × (mE
I + nE

B) and

(nA
I + nA

B)× (mA
I + nA

B), respectively, given by:

TE
CB =

X̃E
el XE

st

0 I

 and TA
CB =

X̃A
el XA

st

0 I

 . (4.32)

Eqs. (4.24) and (4.31), lead to the reduced DSM of the coupling element D̃c :

D̃c ≈ TT
CBDcTCB =

 D̃c
el−el D̃c

el−st(
D̃c

el−st

)T
Dc

st−st

 . (4.33)

The condensed DSM of the coupling element Dc⋆ is a square matrix of size (mE
I +mA

I +2n)

expressed as:

Dc⋆ ≈ D̃c
st−st − D̃c

st−el

(
D̃c

el−el

)−1
D̃c

el−st. (4.34)

In this case, Eq. (4.34) can be computed as explained in Sec. 2.7.2. The issue with this

approach is that it does not consider the coupling between the acoustic and the elastic parts,

since the fixed interface and static modes are calculated separately — i.e., the action of the

acoustic part on the elastic part and vice versa is not taken into account. To solve this issue,

the CB basis can be enriched to include coupling terms.

Static response vectors can be used to enrich the CB basis [60], the idea is to use a

reduced number of fixed-interface modes together with static correction terms to account for the

coupling between the elastic and acoustic parts. The quasi-static contribution of the acoustic

part over the elastic and vice-versa can be found by neglecting the inertia terms in Eq. (4.5):

UI = −iωρA (KE
II)

−1 GII ΨI

ΨI = iω (KA
II)

−1 GT
II UI

(4.35)
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In Eq. (4.35), the correction due to the approximation of the internal DoFs using a

reduced set of fixed-interface modes is written as:

UI ≈ −iωρA (KE
II)

−1 GII X̃A
elα̃A

ΨI ≈ iω (KA
II)

−1 GT
II X̃E

elα̃E

(4.36)

In this case, the vectors UI and ΨI are spanned by the column spaces of (KE
II)

−1 GII X̃A
el

and (KA
II)

−1 GT
II X̃E

el. Then the following matrices of Ritz vectors can be used to enrich the CB

bases:

∆TE
cor = (KE

II)
−1 GIIX̃A

el

∆TA
cor = (KA

II)
−1 GT

IIX̃E
el

(4.37)

From the numerical point of view, these vectors need to go through an orthogonalization

process to regularize the reduced bases. It can be achieved using the singular value decomposition

(SVD):

∆TE
cor = UEΣE

(
VE
)T

and ∆TA
cor = UAΣA

(
VA
)T

, (4.38)

where ΣE (resp. ΣA) is the matrix of singular values of ∆TE
cor (resp. ∆TA

cor). Also, UE (resp.

UA) and VE (resp. UA) are respectively the matrices of left and right vectors of ∆TE
cor (resp.

∆TA
cor).

The idea is to select a reduced set of left singular vectors to be later used in the projection

matrices. Indeed, let us denote by m̃E and m̃A the numbers of the retained left vectors of UE

and UA associated with the highest singular values. The matrices of enrichment vectors are

written as: ŨE = [(UE)1 · · · (UE)m̃E ] and ŨA = [(UA)1 · · · (UA)m̃A ]. Then, Eq. (4.31) leads to:
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Uc
I ≈ Ũc

I = X̃E
elα̃E + ŨEβ̃E + XE

stUc
B (4.39)

Ψc
I ≈ Ψ̃c

I = X̃A
elα̃A + ŨAβ̃A + XA

stΨc
B (4.40)

where α̃E,A and β̃E,A are vectors of generalized coordinates related to the elastic and acoustic

parts. The new projection matrix ΓCB updated from Eq. (4.32) becomes:



Uc
I

Uc
B

Ψc
I

Ψc
B


≈



Ũc
I

Uc
B

Ψ̃c
I

Ψc
B


=

ΓE
CB 0

0 ΓA
CB


︸ ︷︷ ︸

ΓCB



α̃E

β̃E

Uc
B

α̃A

β̃A

Ψc
B


, (4.41)

with ΓCB the updated transformation matrix, ΓE
CB and ΓA

CB the new projection matrices for the

elastic and acoustic parts, given by:

ΓE
CB =

X̃E
el ŨE XE

st

0 0 I

 and ΓA
CB =

X̃A
el ŨA XA

st

0 0 I

 . (4.42)

Here, ΓE
CB has a size of (nE

I + nE
B) × (mE

I + m̃E + 2nE
B) and ΓA

CB has a size of (nA
I + nA

B) ×

(mA
I + m̃A + 2nA

B). This strategy aims to minimize the computational costs in scenarios where a

coupling element (defect and/or joint) has a significant number of internal DoFs. The reduced

DSM of the coupling element is found as:

D̃c ≈ ΓT
CBDcΓCB =

 D̃c
el−el D̃c

el−st(
D̃c

el−st

)T
Dc

st−st

 . (4.43)

In this case, the condensed DSM of the coupling element Dc⋆ is a square matrix of size

(mE
I + m̃E + mA

I + m̃A + 2nB). The CB reduction approach in Eq. (4.31), in which transformation
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matrices are separately constructed for the elastic and acoustic parts, is inadequate to guarantee

accuracy. Consequently, enhancing the approach by enriching the CB basis with static correction

vectors is recommended. This process enables fast convergence with a small number of fixed

interface modes. It is due to the small computation costs of condensing the reduced DSM D̃c,

as opposed to condensing Dc. The proposed strategy can be summarized as follows:

1. Obtain the DSM of the coupling element Dc in the global coordinate system;

2. Compute the static modes for the elastic and acoustic parts XE
st and XA

st, as in Eqs. (4.28)

and (4.29);

3. Compute the fixed-interface modes for the elastic and acoustic parts X̃E,A
el , as in Eq. (4.30),

and select those whose eigenfrequencies are below a certain value;

4. Compute enrichment vectors ∆TE
cor and ∆TA

cor using Eq. (4.37), and then perform an

SVD procedure to build orthogonal enrichment vectors ŨE and ŨA;

5. Build the projection matrix ΓCB and compute D̃c = ΓT
CBDcΓCB ;

4.3.2 Power scattering coefficients

Using the reduction strategy related to the coupling element, it is possible to calculate

transmission and reflection coefficients quickly and accurately. One way to analyze the reflection

and transmission of waves at a coupling element is of computing the scattering matrix as in

Eq. (4.25). This can be done quickly using the proposed reduction for the coupling element.

It is also possible to compute scattering coefficients considering energy flows at the coupling

element. For this task, let us consider two waveguides with a coupling element (joint or defect),

as shown in Fig. 4.7. In this sense, the power reflection coefficient Rpr when an incident mode p

is converted in a certain reflected mode r is computed as follows [124, 127]:

Rpr = (Pr)ref

(Pp)inc
= (P E

r + P A
r )ref(

P E
p + P A

p

)
inc

, (4.44)
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where P E and P A are computed via Eq. (4.21) for incident and reflected waves. Similarly, the

power transmission coefficient when an incident mode p, from waveguide 1, is converted into a

transmitted mode t in waveguide 2 is given by:

Tpt = (Pt)trans

(Pp)inc
= (P E

t + P A
t )trans(

P E
p + P A

p

)
inc

. (4.45)

It is worth mentioning that the power transmission and reflection coefficients can vary

with the frequency since the wave shapes are frequency-dependent. Also, this approach does

not depend on how the vectors of wave shapes are normalized.

4.4 Numerical results

4.4.1 Reduced modeling of the coupling element

An example of two waveguides of length l1 = l2 = 0.5 m connected with a curved joint is

investigated. The waveguides have the same characteristics as in Sec. 4.2.3. Both waveguides

contain N = 250 identical substructures. The joint has a radius of Rj = 0.2 m, an angle of π/2,

and shares the same internal and external diameters as the waveguides, see Fig. 4.7.

Fig. 4.8 shows a comparison between the forced response issued from the WFE and the

FE methods along the frequency. Here, the comparison is provided from fmin = 100 Hz to

fmax = 10 kHz with a frequency step of 25 Hz. In Fig. 4.8(a), the WFE solution is obtained

without reducing the D⋆
j and it is plotted in blue dashed lines. While Fig. 4.8(b) shows the

result using the reduction strategy to compute D̃⋆
j for the joint proposed in Sec. 4.3.1.

In terms of CB reduction, mE = 250 and mA = 200 fixed-interface modes are retained

for the elastic and acoustic parts, respectively. The highest eigenfrequency associated with the

fixed-interface modes for the elastic and acoustic parts are f E
max = 43.2 kHz and f A

max = 57.8 kHz,

respectively. In this case, f E
max > 4fmax and f A

max > 5fmax which are sufficient to capture an



142 4.4 Numerical results

accurate response. Also, the number of enrichment vectors are m̃E = 150 and m̃A = 200. Fig. 4.9

shows the error between the FE and WFE (with and without reduction) solutions computed by

means of Eq. (2.42) in steps of 200 Hz. The maximum error bounds 0.25% when no reduction is

used and 1 % using the proposed reduction.

Tab. 4.2 shows the computational times related to: FE method, WFE method without

reduction, and WFE method with reduction. The FE model has 141191 DoFs in total, en-

compassing pressure and displacements DoFs. The related computational time is 8.711×103 s

(approx. 2h and 25 min). The WFE solution without reduction requires 6.904×103 s (approx.

1h and 55 min), in which 95 % of the time is employed to the computation of D⋆
j. This represents

a reduction of 20.75 % compared to the FE solution. With the reduction, this yields in 68.95 %

of time saving compared to the FE model. In this case, the computation of D̃⋆
j represents

approximately 84 % of the total elapsed time.

Fig. 4.10 shows a good agreement of the time response between FE and WFE methods

calculated from 0 ms to 20 ms. The force is a Gaussian pulse centered at 5 kHz. Also, the

reduction strategy to compute D̃⋆
j with ms = 250, ms = 200, m̃s = 150 and m̃a = 200 is

employed. The FE result is found using the Newmark method uing average constant acceleration

(β = 0.25 and γ = 0.5), and with time step of ∆t = 1 µs. Meanwhile, the WFE result is found

via FFT with a sampling frequency of fs = 400 kHz and T = 300 ms (see Sec. 2.4), sufficient to

respect the Nyquist–Shannon sampling theorem. Also, the considered FFT parameters lead to a

time step of dt = 2.5 µs. Again, there is no reason to use the same time step for both methods

since different approaches are employed (see Sec. 2.4).
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Figure 4.8: Comparison between the displacement obtained uses the FE method (black continuous

line), and the WFE method for fluid-filled networks: (a) without reduction and (b) with reduction

for the joint.

Figure 4.9: Relative error between the FE method and the WFE method for fluid-filled pipes

networks: without reduction (blue) and with reduction (red).



144 4.4 Numerical results

Table 4.2: Elapsed times to compute the solutions using the FE method, the full WFE, and the

WFE method with CB reduction for the joint.

Method Time (s) Reduction (%)

FE 8.711×103 —

WFE
D⋆

j 6.55×103

6.904×103 20.75
Computation of {µj, ϕj}j=1,...,n and

{µ⋆
j , ϕ⋆

j}j=1,...,n

265.10

WFE +

reduction

D̃⋆
j 2.27×103

2.704×103 68.95
Computation of {µj, ϕj}j=1,...,n and

{µ⋆
j , ϕ⋆

j}j=1,...,n

265.10

Figure 4.10: FE and WFE time response (displacement) for fluid-filled networks connected with

a joint when a force given by a Gaussian pulse centered at 5 kHz is applied.
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4.4.2 Influence of the size of the enrichment basis

It is possible to analyze the influence of the numbers of enrichment vectors in ŨE and ŨA

used when the number of fixed-interface modes for the elastic part is mE = 250 and acoustic

part is mA = 200. Fig. 4.11 depicts the error as a function of the frequency for different values

of m̃E and m̃A. It is possible to observe that different combinations of these values can lead to

the same errors ,see for example, the cases (m̃E, m̃A) = (150, 150) and (200, 150). In these cases,

the maximum error is around 6.67 %. The number of enrichment vectors of ŨA plays a more

important role, given that increasing the number of enrichment vectors m̃E does not change the

error drastically. Tab. 4.3 summarizes the total elapsed times and the maximum error related

to different choices of m̃E and m̃A. Overall, the reduction in computational time is around 65%

for all cases.

Figure 4.11: Relative error between the FE method and the WFE method with CB reduction

for the joint when considering different m̃E of m̃A.
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Table 4.3: Total elapsed time for different values of m̃E and m̃A. The reduction of the computa-

tional time and the maximum error compared to the FE method are also displayed. The errors

as a function of the frequency can be seen in Fig. 4.11.

m̃E m̃A Total elapsed time (s) Reduction (%) max. error (%)

150 150 2.470×103 71.65 6.67

150 200 2.704×103 68.96 1.13

200 150 2.631×103 69.80 6.67

200 200 2.858×103 67.19 1.07

150 250 3.049×103 65.00 0.49

200 250 3.193×103 63.35 0.42

4.4.3 Defect localization

To compare the influence of the fluid on the scattering coefficients, some numerical

examples are carried out considering empty and fluid-filled pipes.

The joint is modeled using the same physical parameters as the elastic and acoustic parts

of the waveguides, see Sec. 4.4.1. It has a radius of Rj = 0.2 m, an angle of θj = 90o, and it

shares the same internal and external diameters as the waveguides, see Fig. 4.12(b). The FE

mesh of the joint and waveguides employs linear hexahedral elements with eight nodes and three

degrees of freedom (DoFs) per node (representing displacements in the x, y, z-directions) for

the elastic part, and linear prism elements with six nodes and one DOF per node (representing

pressure) for the acoustic part.

An axisymmetric defect is introduced in waveguide 2 as shown in Fig. 4.12(a). It is

modeled as a local decrease in the Young modulus Ed = (1−γ)E, where E is the Young modulus

of the waveguide. Here, γ = 0.7 resulting Ed = 63 GPa. The coupling element representing a

defect does not contain internal DoFs and has a length of 0.002 m.



4. Elasto-acoustic waveguides 147

Figure 4.12: Schematics of the coupling elements: (a) defect and (b) joint.

.

Let us consider the case of two waveguides connected by a defect. Fig. 4.13(a) shows

the transmission and reflection coefficients at the defect for an incident T(0, 1) mode. It is

possible to observe large transmission and small reflection coefficients. The reflection (resp.

transmission) coefficient slightly increases (resp. decreases) along the frequency. The same

behavior is observed for an incident SF(0, 1) mode to itself, as seen in Fig. 4.13(b). For the case

SF(0, 1)→ SF(0, 1), a peak in the transmission coefficient is observed around 15 kHz. This peak

is related to the energy transferring to another mode. In both cases, a reflected signal can still

be observed in the time domain, as shown later in this manuscript.

Consider now two waveguides connected by a curved joint as shown in Fig. 4.13(b).

Fig. 4.14 shows the (a) transmission and (b) reflection for empty (in black line) and fluid-filled

pipes (in blue line). In Fig. 4.14(a), it is interesting to note a large discrepancy between the two

systems. For the fluid-filled pipes, a maximum transmission is reached around 10 kHz and no

transmission is observed around 14 kHz. In this frequency range, the transmission coefficient of

the torsional mode for empty pipes varies between 0.4 and 0.6. In Fig. 4.14(b), reflected peaks

occur around 4 kHz in both cases. After this peak, the reflection coefficients tend to 0. In this

case, both systems exhibit similar behavior.
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Figure 4.13: Power scattering coefficients for the defect: (a) T(0, 1)→ T(0, 1) and (b) SF(0, 1)→

SF(0, 1). Transmission and reflection coefficients are plotted in continuous and dashed lines,

respectively.

Figure 4.14: Power scattering coefficients for the joint: (a) transmission and (b) reflection

T(0, 1)→ T(0, 1). Fluid-filled pipe in blue lines, and empty pipe in black lines.
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Fig. 4.14 shows the power (a) transmission and (b) reflection coefficients for the incident

mode T(0, 1). High energy transfer between the mode T(0, 1) and a flexural mode is observed

from 10 kHz to 20 kHz. Also, there is no significant energy transfer from the incident mode into

the modes FS(0, 1), SF(0, 1) and SF(0, 2). In terms of reflection, no significant energy transfer is

observed.

Figure 4.15: Power coefficients for the joint: (a) transmission and (b) reflection from T(0, 1) to

flexural modes (in gray) and to T(0, 1) (in blue) for fluid-filled pipes.

Fig. 4.16 shows the (a) transmission and (b) reflection power coefficients for the incident

mode SF(0, 1). Mode conversion in transmission is observed from the incident mode to SF(0, 1),

FS(0, 1) and flexural modes, showed in gray continuous lines. High transmission from the

incident mode to itself is observed from 5 kHz to 10 kHz. A power reflection coefficient for

SF(0, 1) to SF(0, 1) is seen at low frequencies but decreases to 0 at 10 kHz. Also, low reflection

coefficients are found at high frequencies for the analyzed modes.

Finally, the influence of the radius of the joint is analyzed. Figs. 4.17(a) and (b) depict

the transmission and reflection coefficients for different joints with radius Rj = 0.2 m, 0.4 m,

0.5 m, and 0.6 m in the case of fluid-filled pipes. It is possible to see that large radii provide
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high transmission coefficients for the T(0, 1) mode through the joint between 3 kHz and 13 kHz.

However, the minimum of the transmission coefficient still occurs around 14 kHz. The energy is

mainly transmitted to a flexural mode in this range. In terms of reflection coefficients, peaks are

observed below 5kHz. The larger the radius, the greater the T(0, 1) mode transmission. This

trend is also observed for empty pipes.

Figure 4.16: Power coefficients for the joint: (a) transmission and (b) reflection from SF(0, 1) to

other modes.

In general, it appears that the T(0, 1) mode seems suitable for identifying defects in the

elastic part. This is because the energy associated with this mode remains confined within the

elastic part over the entire frequency band. Concerning the mode SF(0, 1), its energy remains

confined to the elastic part up to approximately 15 kHz and, after, the energy is mostly confined

in the acoustic part (see Fig. 4.3). This indicates that the mode SF(0, 1) is unsuitable for defect

detection at high frequencies, as defects in the elastic part of the waveguide have minimal impact

on reflection/transmission coefficients for this mode.
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Figure 4.17: Power coefficients using different radii for the joint: (a) transmission and (b)

reflection from T(0, 1) to itself.

To be able to localize a defect, it is necessary to compute the time of flight in transmission

through the joint. Here, the time of flight that a mode T(0, 1) takes to be transmitted and

reflected through a joint can be computed via Eqs. (3.17) and (3.18). Fig. 4.18(a) and (b)

show the time of flight in transmission τ 1−2
jj and reflection τ 1−1

jj through a curved joint of radius

Rj = 0.2 m and angle of curvature θj = 90o. Here, the times of flight related to the empty and

fluid-filled pipes are plotted in black and blue lines, respectively.

Different sharp peaks can be observed in Fig 4.18. Those peaks are related to cut-off

frequencies for certain propagating modes of to internal resonances of the joint, as already

discussed in Sec. 3.6.1.2. Aside from those sharp peaks, it is possible to observe that the mode

T(0, 1) can be transmitted and reflected at different frequencies compared to empty pipes. Also,

the times of flight related to this mode in transmission and reflection are not constant along the

frequency.
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Figure 4.18: Time of flight in: (a) transmission and (b) reflection for the joint considering

the mode T(0, 1). Results for fluid-filled and empty pipes are plotted in blue and black lines,

respectively.

The localization of a defect in fluid-filled pipelines is now studied. Consider the pipe

assembly with a curved joint and a defect, as shown in Fig. 3.4(b) — i.e. three waveguides with

a curved joint and a defect. Here, the defect is supposed to be axisymmetric; also, the joint has

a radius Rj = 0.2 m and angle of curvature of θj = 90o. The scattering matrix is computed

with the WFE method.

The distance between the measurement point and the joint is l1 = 10 m, and the sought

position of the defect is l2 = 10 m, which represents the distance between the joint and the

defect. Fig. 4.19 depicts the normalized circumferential displacement at the measurement point

as a function of time, specifically showing the contribution of T(0, 1) in terms of displacement of

the elastic. Both incident and reflected wave packets are of T(0, 1) type. This can be achieved

by decomposing the signal into different contributions and selecting the desired wave type,

as described in [134]. In Fig. 4.19, the wavepacket (1) corresponds to the input signal, the

wavepacket (2) is related to the joint reflection, and the wavepacket (3) is related to the defect

reflection. In this case, the mode T(0, 1) undergoes low reflection at the joint and it is almost
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totally transmitted through it without undergoing different mode conversions.

Figure 4.19: Tangential displacement at the measurement point: (1) input wavepacket; (2)

reflected wavepacket at the joint, and (3) reflected wavepacket issued from the defect. The dark

cross highlights the tip of the wave packets. The incident pulse is a Gaussian "T(0, 1)" at 10 kHz.

The distance of l2 can be found via Eq. (3.30). For this task, let us consider the measured

time τijkl and the time-of-flight in transmission τ 1−2
jj as plotted in Fig. 4.18(a). Here the

considered pathway is (i← j ← k ← l) = (T(0, 1)← T(0, 1)← T(0, 1)← T(0, 1)). To highlight

the importance of the approach, three different cases are provided as shown in Tab. 4.4.

Table 4.4: Estimated position of the defect from Eq. (3.30), and relative error (reference is

l2 = 10 m).

Case τijkl (ms) l2 (m) Relative error (%)

Disregarding τ 1−2
jj 21.08 10.49 4.9

Considering τ 1−2
jj for the empty joint 21.08 10.15 1.5

Considering τ 1−2
jj for the elasto-acoustic joint 21.08 10.01 0.1

In this case, the position of the defect l2 can be accurately predicted with a relative error
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smaller than 0.1 % when considering the presence of the fluid. By disregarding the time of flight

in transmission through the joint, this yields a relative error of 4.9 %. Finally, different values

of τ 1−2
jj for empty and fluid-filled pipes lead to different values of l2. It is important to note that

the proposed approach is supposed to be applied to an arbitrarily shaped coupling element in

which the concept of group velocity is not defined.

To analyze the impact of joint curvature on defect detection, three additional cases are

examined: θd = 30o, 45o, and 60o. The computation of the time of flight and l2 from the procedure

proposed earlier. The results for these cases are organized in Table 4.5. Notably, accurate defect

localization is achieved by considering the time of flight in transmission through the joint. The

results show that l2 can be determined with an error below 0.3% when incorporating the time

of flight in transmission for elasto-acoustic joints. Conversely, neglecting the time of flight in

transmission results in an error of approximately 5%, while considering the time of flight for

empty pipes yields an error of 1.6%. These results highlight the importance of time of flight

increases with joint length. Indeed, the wavepackets require a longer time to be transmitted

though the long joints.
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Table 4.5: Estimated position of the defect from Eq. (3.30), and relative error (reference is

l2 = 10 m).

θd Case τijkl (ms) l2 (m) Relative error (%)

30o

Disregarding τ 1−2
jj

20.88

10.17 1.7

Considering τ 1−2
jj for the empty joint 9.98 0.2

Considering τ 1−2
jj for the elasto-acoustic joint 10.01 0.1

45o

Disregarding τ 1−2
jj

20.94

10.27 2.7

Considering τ 1−2
jj for the empty joint 10.12 1.2

Considering τ 1−2
jj for the elasto-acoustic joint 10.01 0.1

60o

Disregarding τ 1−2
jj

21.01

10.38 3.8

Considering τ 1−2
jj for the empty joint 10.16 1.6

Considering τ 1−2
jj for the elasto-acoustic joint 10.03 0.3

90o

Disregarding τ 1−2
jj

21.08

10.49 4.9

Considering τ 1−2
jj for the empty joint 10.15 1.5

Considering τ 1−2
jj for the elasto-acoustic joint 10.01 0.1

4.5 Conclusions

This chapter analyzed the wave propagation in fluid-filled pipes with joints and defects.

The propagating modes in the pipes were successfully retrieved using the WFE method. For

the case of straight fluid-filled pipes, the comparison between the FE and WFE methods was

provided, where a considerable reduction of computational time was observed. This demonstrates

the accuracy and efficiency of the WFE method compared to the classical FE method. Also, in

the WFE framework, a reduction strategy was proposed to compute reduced DSM of coupling

elements efficiently. A curved joint linking two waveguides was analyzed, and a comparison

between the WFE and the FE results in time and frequency domains was provided. Overall,
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the strategy enables a reduction of 65% with an error of 0.5% to compute the vibroacoustic

response.

Finally, the scattering coefficients were computed for defects and curved joints. There

was no significant difference between the fluid-filled and empty cases for defects. However,

differences in transmission and reflection produced due to the presence of the fluid were observed

for the joints. The case of a defect after the joint was explored and the concept of time of

flight in transmission through the joint was proven accurate and relevant to estimate the defect

localization.
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Conclusions and perspectives

In this thesis, we investigated some aspects of defect detection and localization in

assemblies composed of straight waveguides, curved joints and defects. Especially, the present

work provided insights into the interaction of guided waves at defects and curved joints. These

phenomena were numerically simulated using the WFE method.

In Chapter 2, the foundations of the WFE method were recalled. The WFE method was

used to model periodic structures, i.e., structures composed of an assembly of substructures.

This enabled the computation of the wave modes and forced response in the time and frequency

domains. In this framework, it is possible to simulate waveguides linked with coupling elements,

such as joints and defects, which can be modeled using the FE method and the CB reduction.

Also, numerical experiments were carried out to show the robustness and accuracy of the

WFE method. Comparisons between the WFE solutions and the analytical theory for the

dispersion curves and forced response in the frequency domain were provided; also, a comparison

between the WFE and FE solutions for assessing the forced responses in the frequency and

time domains was proposed. Finally, a study of two waveguides connected with a coupling

element was presented and the concept of scattering matrices was explored. The WFE was

proven relevant and efficient in providing accurate solutions for wave propagation in straight

157
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waveguides with/without coupling elements.

Within the scattering matrix formalism, a strategy to localize a defect in structures

containing a curved joint was proposed in Chapter 3. This strategy is based on the computation

of the time of flight that a narrow wavepacket takes to be transmitted or reflected at a coupling

element. It was proven that the time of flight can be computed by considering the frequency

derivatives of the arguments of the scattering matrices of the joint and the defect. Also, a

physical insight into the transmitted and reflected waves at a coupling element was provided.

Numerical simulations were carried out to verify the proposed approach. First, the case of a 2D

plane-stress beam was discussed, considering waveguides with a defect and waveguides with a

curved joint and a defect. It was shown that considering the time of flight in transmission and

reflection through the joint is relevant to localizing the defect accurately. Besides focusing on

curved joints, this approach intends to be generalized to complex coupling elements cases.

Finally, in Chapter 4, the case of elasto-acoustic structures was considered. The WFE

method used a symmetrical formulation of the elasto-acoustic problem in which the displacement

vector is considered for the elastic part and the potential velocity is considered for the acoustic

part. This enabled the computation of wave propagation modes, dispersion curves, and group

velocities. A strategy based on the CB reduction with enrichment vector bases was proposed

regarding coupling elements. The reduction strategy was tested to ensure its validity and

robustness. With this reduction strategy, the power transmission and reflection of waves for

different defects and joints were analyzed. It was shown that the torsional mode constitutes a

good option to perform NDT. Regarding defect detection, the strategy to localize a defect after

a joint was applied, considering different curvature angles for the joint. It was shown that the

time of flight is sensitive to the presence of the fluid. In this case, it is recommended to consider

the time of flight of the elasto-acoustic joint to detect the defect accurately.
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Future work:

Certain topics could be considered for future perspectives and further development:

• An important question to be answered is whether the severity of a defect placed after a joint

can be estimated. When only a defect is present, the severity can be assessed. However,

wave mode conversion phenomena occurring in a joint can hide important information for

this purpose, such as the reflected wave amplitude caused by the defect;

• Investigate and propose a strategy to localize a defect when multiple curved joints are

present in the system. It appears to be challenging since multiple mode conversion may

occur, making the interpretation of signals difficult. To the author’s knowledge, it has not

been exploited in the literature;

• Study the interaction between propagating waves and local non-linearities in infinite

periodic structures. Regarding this, Duhamel and Mencik [61] developed a method for

infinite periodic structures containing local non-linearities in the time domain. However,

it appears that the proposed approach was not applied to NDT;

• Propose a strategy to reduce the CB-enrichment basis for an elasto-acoustic coupling

element based on the selection of left vectors ŨE and ŨA when considering the SVD decom-

position, see Sec. 4.3.1 and 4.4.1. Also, incorporate the reduction of wave bases proposed

by Droz et al. [27]. These two strategies together seem to optimize the computational

costs in the WFE framework;

• Analysis of wave propagation and defect detection in fluid-filled pipes, with mean flow. It

appears to be significant since this is commonly encountered in industry situations. It

should be highlighted that, in the WFE framework, the consideration of the flow speed

results in a matrix S that is not symplectic anymore;

• Study topological optimization for coupling elements and/or substructures to manipulate

wave propagation: stopbands, scattering coefficients, among other properties;
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Diego SALAM CLARO 
 

Approches numériques basées sur les ondes pour le contrôle non destructif des 
assemblages composés de guides d’ondes élastiques rectilignes connectés pas 

des jonctions coudées 
 

Résumé :  

Cette thèse étudie la détection et la localisation des défauts dans les assemblages de guides d'ondes, en 
explorant l'interaction entre les ondes se propageant dans des assemblages de guides d'ondes droits 
contenant des jonctions coudées et des défauts. A cet effet, la méthode Wave Finite Element (WFE) est 
utilisée. Des expériences numériques valident la robustesse et la précision de la méthode WFE à partir de 
comparaisons avec des solutions analytiques et éléments finis, en se concentrant particulièrement sur les 
courbes de dispersion et les réponses forcées. En élargissant l'étude aux assemblages comportant des 
éléments de couplage, tels que des joints et des défauts, l'étude met en évidence l'efficacité de la méthode 
WFE dans des scénarios impliquant de tels assemblages. Une nouvelle stratégie utilisant un formalisme en 
matrices de diffusion est proposée pour la localisation des défauts, qui met l'accent sur les structures contenant 
des jonctions coudées. L'approche repose sur le calcul du temps de vol de paquets d'ondes transmis ou 
réfléchis au niveau d'un élément de couplage. La stratégie est validée par des simulations numériques, 
démontrant la précision de la localisation des défauts pour divers scénarios, notamment des poutres 2D en 
contraintes planes et des tuyaux avec une jonction coudée et un défaut. Les structures élasto-acoustiques 
sont également traitées. Une stratégie de réduction basée sur la méthode de Craig-Brampton avec des 
vecteurs d'enrichissement est proposée pour améliorer le coût de calcul de la modélisation des éléments de 
couplage. L'analyse des coefficients de transmission et de réflexion en puissance des ondes dans des 
structures présentant des défauts et des jonctions met en évidence la pertinence du mode de torsion dans les 
contrôles non destructifs par ondes guidées dans ce type de système. Ces travaux de recherche contribuent 
non seulement à la compréhension de la propagation des ondes dans les assemblages de guides d'ondes, 
mais proposent également des stratégies pratiques pour une détection et une localisation précise des défauts, 
avec des applications potentielles dans divers contextes d'ingénierie.et  

Mots clés: méthode Wave Finite Element, propagation d'onde, jonctions coudées, détection de défauts, temps 
de vol 

Wave-based numerical approaches for non-destructive testing of structural 
assemblies involving straight waveguides and curved joints 

 

Summary :  

This thesis investigates defect detection and localization in waveguide assemblies, exploring the interaction 
between waves in straight waveguides with curved joints and defects. For this purpose, the Wave Finite 
Element (WFE) method is used. Numerical experiments validate the robustness and accuracy of the WFE 
method through comparisons with analytical and Finite Element solutions, particularly focusing on dispersion 
curves and forced responses. By extending the investigation to assemblies with coupling elements, such as 
joints and defects, the study highlights the efficiency of the WFE method in scenarios involving waveguides. A 
novel strategy is proposed within the scattering matrix formalism for defect localization, with a specific 
emphasis on structures containing curved joints. The approach relies on computing the time of flight of narrow 
wavepackets transmitted or reflected at a coupling element. The strategy is validated through numerical 
simulations, showcasing precision in defect localization for diverse scenarios, including 2D plane-stress beams 
and pipes, with a curved joint and a defect. Elasto-acoustic structures are also treated. A reduction strategy 
based on Craig-Brampton reduction with enrichment vectors is proposed for computational efficiency to model 
coupling elements. Analysis of power transmission and reflection of waves in structures with defects and joints 
highlights the significance of the torsional mode in guided wave-based non-destructive testing in this type of 
system. This research work contributes not only to the understanding of wave propagation in waveguide 
assemblies but also offers practical strategies for accurate defect detection and localization, with potential 
applications in diverse engineering contexts. 

Keywords : Wave finite element method, wave propagation, curved joints, defect detection, time of flight 
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