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Résumé
***

Ce manuscrit résume mes travaux de recherche depuis ma thèse de doctorat (voir la liste des publi-
cations dans la bibliographie).
Ma recherche principale porte sur les systèmes dynamiques continus. Un objet combinatoire très
important, appelé graphe de Lyapunov, étiqueté avec des invariants topologiques et dynamiques est
utilisé pour prouver divers résultats de classification. Les graphes de Lyapunov ont été introduits
pour la première fois par Franks et se sont révélés être un excellent moyen de conserver les infor-
mations dynamiques et topologiques du flot et de son espace de phase. Tout d’abord, nous nous
intéressons à une classe particulière de graphes de Lyapunov, ceux qui sont liés aux flots de Morse.
Dans ce cas, l’ensemble invariant isolé correspond à des singularités non dégénérées. Nous avons
également considéré une autre classe spéciale de graphes de Lyapunov, à savoir ceux qui peuvent être
liés à des flots de Morse-Smale non singuliers sur des variétés (avec ou sans bord), qui sont appelés
graphes de Lyapunov de type Smale. Dans ce cas, les ensembles invariants isolés correspondent à
des orbites fermées. Nous avons prouvé un résultat de continuation pour les graphes de Lyapunov
dans les deux cas. Le nombre minimal de singularités non dégénérées qui peuvent être réalisées sur
une variété quelconque avec bord non vide est déterminé uniquement en termes d’informations ho-
mologiques abstraites du bord. Un algorithme qui calcule un nombre minimal d’orbites périodiques
qui peuvent être réalisées sur une varété est décrit en termes d’informations homologiques abstraites
du bord. L’interaction entre la théorie des systèmes dynamiques topologique et la théorie des flux
de réseaux a été explorée pour pour obtenir des résultats combinatoires pour la continuation et la
morsification des graphes de Lyapunov. Cette interaction s’est avérée très fructueuse et a donné
lieu à de nouvelles techniques. Les matrices de connexion et l’analyse des séquences spectrales d’un
complexe de Morse filtrés sont utilisés pour étudier les résultats de continuation globale pour les
flots sur les surfaces.
Nous considérons également des systèmes dynamiques discontinus, mais afin de présenter un docu-
ment concis et cohérent, j’ai choisi de mentionner ces travaux dans l’annexe. Dans ce cas, nous nous
intéressons à l’étude des équations différentielles dépendant de façon non régulière sur le temps
d’intégration. Dans cette partie on s’intéresse à la existence de solutions périodiques de telles équa-
tions.
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Abstract
***

This manuscript summarizes my research since my doctoral thesis (see the publication list in the
Bibliography).
My main research considers continuous dynamical systems. A very important combinatorial object
called a Lyapunov graph labelled with topological and dynamical invariants is used to prove various
classification results. Lyapunov graphs were first introduced by Franks and have proven to be an
excellent bookkeeping device of dynamical and topological information of a flow and its phase space.
First, we focus in a special class of Lyapunov graphs, those which are related to Morse flows. In
this case an isolating invariant set corresponds to nondegenerate singularities. Then we consider
another special class of Lyapunov graphs, namely those that can be related to nonsingular Morse-
Smale flows on manifolds (with or without boundary), which are called Lyapunov graphs of Smale
type. In this case, an isolating invariant set corresponds to closed orbits. Continuation results for
Lyapunov graphs are proven in both cases. The minimal number of nondegenerate singularities
that can be realized on some manifold with non-empty boundary is determined solely in terms
of abstract homological boundary information. An algorithm which computes a minimal number
of periodic orbits that can be realized on a manifold is described in terms of abstract homological
boundary information. The interplay between topological dynamical systems theory and network
flow theory was explored to obtain combinatorial results for the continuation and morsification of
Lyapunov graphs. This interaction has proven to be very fruitful, giving rise to novel techniques.
Connection matrix theory and a spectral sequence analysis of a filtered Morse chain complex are
used to study global continuation results for flows on surfaces.
We also consider discontinuous dynamical systems, but in order to present a concise and coherent
document, I have chosen to mention these works in the Appendix. In this case, we are interested
in studying differential equations depending nonsmoothly on the integration time. This part of the
work deals with the existence of periodic solutions to such equations.
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How it started
***

"It always seems impossible until it is done." Nelson Mandela

As with every Brazilian, everything started with a soccer ball . This ball was not like the ball used
by “King Pelé” in the glory days of winning three of the five stars that made my beloved Brazil shine
in the four corners of the globe!1 It was a slightly deflated ball, as in Figure 1.

Figure 1: Slightly deflated ball.

Prof. Ketty de Rezende, assisted by Prof. Oziride Manzoli, enthusiastically showed me the beauty of
Morse theory, which can be seen as the investigation of the relationship between functions defined
on a manifold and the shape of the manifold itself. She emphasized that the main characteristic of
Morse theory is that the information on the topology of the manifold is derived from the information
about the critical points of real functions defined on the manifold.
We started our discussion using the slightly deflated ball above. In fact, this ball is a well known
deformed version of the 2-sphereS2, and if we consider a Morse function f : S2 → R on it, we know
that for each scalar value a ∈ R, the level set f−1(a) = {x ∈ S2 | f(x) = a} may have multiple
connected components. More details about this theory will be given later but, for now, recall that a
smooth function f : S2 → R is a Morse function if all of its critical points are nondegenerate, in
the sense of having a nondegenerate Hessian matrix of second partial derivatives. For each critical
point p, theMorse index of p is defined as the number of negative eigenvalues of f ’s Hessian at p.
One of the main ideas of Morse theory is to associate the topological changes of the sublevel sets, as
a varies, with the critical points of f , i.e., the sublevel sets of aMorse function change precisely when

1Forgive me, experts, but I couldn’t resist making this tribute to him.
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16 How it started

passing through a critical value. Moreover, this change is completely characterized topologically by
the index of the critical point. The gradient of f is a vector field ∇f : S2 → TS2 consisting of
vectors in the direction of the steepest ascent of f , and is formally dual to the differential df , where
TS2 is the tangent space of S2. The singularities of ∇f coincide with the critical points of f , and
hence are isolated and finite. Hence, the gradient of a Morse function induces a vector field that
describes the direction in which the function increases. Away from the critical points, the gradient
induces a smooth flow ϕ on the manifold. The negative gradient, −∇f , indicates the orientability
of the flow.
By choosing, as the Morse function, the height function f , for example, we can then define aMorse
graph G as in Figure 2. This graph is obtained by continuously identifying every connected com-
ponent in a level set to a single point. In other words, G is the image of a continuous surjective map
π : S2 → G, where π(x) = π(y) if, and only if, x and y come from the same connected component
of a level set of f . TheMorse graph is the quotient space S2/ ∼ endowed with the quotient topology.
The orientation of its edges are induced by that of the flow ϕ. Its vertices correspond to the critical
level sets f−1(ci), where ci is a critical point of f .
The intersection of edges at the vertices reflects the change in topology of the level set f−1(t) as t
passes through the critical value ci. For example, if ci is a minimum or a maximum of f , a component
is created or destroyed thereat; consequently, an edge is created or terminated at the corresponding
vertex, which has degree2 one. If ci is a saddle point of index 1 and two components of f−1(t) merge
at t = ci as t increases, the corresponding vertex of the Morse graph has degree 3 and looks like the
letter Y ; the same occurs if a component of f−1(ci) splits into two. In this case, the Morse graph
looks like an inverted letter Y , i.e., “ Y”. Figure 2 illustrates the effect of applying the height function
to the points in the 2-sphere on the left-hand-side of the figure. The real line depicted in the middle
of the figure shows the range of f with respect to this domain. Here, f has six singularities: two
minima c1 and c2 (both of index 0), two saddles c3 and c4 (both of index 1) and two maxima c5 and
c6 (both of index 2). For all i = 1, . . . , 6, we have f(ci) = i.
If x is between 1 and 2, the regular level f−1(x) is homeomorphic to the circle S1. The same occurs
for x between 3 and 4, and for x between 5 and 6. For x in ]2, 3[ f−1(x) consists of two copies of S1.
The same for x in ]4, 5[. We choose to enrich the information contained in a Morse graph by adding
the following labels to the vertices and edges of the graph:

• hj = 1 for any vertex associated with a critical point of index j;

• β0, . . . , βn−1 for any edgewhose points correspond to a regular level, which represent the Betti
numbers of the level set. Note that by Poincaré duality βj = βn−1−j for all j = 0, . . . , n− 1.

Observe that, since in dimension two we have only β0 = β1 = 1, which represents the number
of connected components, we choose not to add this information to the graph in this particular
case. But, in higher dimension each edge is labelled with a vector of βj’s, j = 1, . . . , n − 2. The
label hj = 1 represents the rank of the Conley homology index, that will be described later. The
information of the gradient flow of the Morse function is not stored in the graph.
At this point I also learned that what was interesting to observe was that, if we start with the Morse
graph G, we could easily reconstruct the deformed sphere S2 by gluing handles as in Figure 3. To
effect this reconstruction, we start at the vertices with zero outdegree, that is, vertices that have
no outgoing edges therefrom. In our example, these would be the bottommost vertices of Figure 2.
Starting from these vertices, as we traverse the graph in the direction opposite to the orientation of
the edges, we attach a handle with an index given by the label on the vertex. Recall that in dimension
2 a handle of index 0 or 2 is a disc and a handle of index 1 is a rectangle.

2The degree of a vertex of a graph is the number of edges that are incident to the vertex.
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Further on the Conley theory was presented as a generalization of the Morse theory: instead of
considering a Morse function, we would take a Lyapunov function, the nondegenerate critical
points would be replaced by isolated invariant sets and in the same way as before we could define
a Lyapunov graph. I didn’t know it at the time, but the main object of my research was presented:
a Lyapunov graph. Objects in this class, introduced by Franks, carry dynamical and topological
information of the flow and of the manifold and that can be enriched with dynamical and topological
invariants in order to provide more knowledge about the n-manifold M . Studying a continuous
flow on a closed manifold M with respect to a Lyapunov function f : M → R becomes similar
to studying a gradient flow associated with a Morse function. A theorem of Conley guarantees the
existence of a Lyapunov function f : M → R of continuous flows ϕt : M → M having a finite
number of recurrent components.
Motivated by this similarity we refer to continuous flows admitting a Lyapunov function f as
gradient-like flows, since f decreases along the orbits of the flow outside the chain recurrent
set3 R and it is constant on each connected component ofR.
As in the Morse case, we define an equivalence relation on M by x ∼f y if x and y belong to
the same connected component of a level set of the Lyapunov function f . We call the quotient
M/ ∼f a Lyapunov graph. Its vertices are the equivalence classes associated with the connected
components of the chain recurrent setR, hence vertices can be labelled with dynamical invariants.
An edge point is the equivalence class of a regular level set, and points on the same edge correspond
to homeomorphic level sets, hence edges can be labelled with topological invariants of the associated
level set. The graph is oriented with the orientation inherited from the flow. More precisely, edges
are labelled with the Betti numbers of the associated level set (as in the Morse case), while vertices
are labelled in a more technical way, based on the Conley theory, which I briefly summarize some
techniques now. More details will be given later.
Given R a component of the chain recurrent set, if f is a Lyapunov function associated with a
flow and c = f(R) then, for ε sufficiently small, the component of f−1[c − ε, c + ε] containing
R is an isolating block for R. By taking N− = f−1(c − ε) the outgoing boundary of the flow,
(N, N−) = (f−1[c − ε, c + ε], f−1(c − ε)) is an index pair4 for R. The relative homology of
(N, N−) is an invariant of R (it does not depend on the index pair chosen). We label the vertices of
a Lyapunov graph with the non-zero ranks of the homology groups Hj(N, N−).
Using again a deformation of the soccer ball, Figure 4 shows the result of this procedure. In this
example, all points of the equator of S2 are singularities of −∇f and it has the following neigh-
borhood N = f−1([1.5, 2.5]), which is a cylinder. The exit boundary of the flow N− = f−1(1.5) ∪
f−1(2.5) consists of two circles S1. The homology H∗(N, N−) coincides with the the homology
H∗(N/N−). Since the quotient space N/N− is here a pinched torus, we have

h0 = rankH0(N/N−) = 0, h1 = rankH1(N/N−) = 1, h2 = rankH2(N/N−) = 1.

and we set the label h1 = 1, h2 = 1. Remark that the ranks of these homology groups generalize
the concept of Morse index because, if R is a Morse singularity of Morse index j, then for any index
pair (N, N−) of R we have rank Hj(N, N) = 1 and rank Hk(N, N) = 0 for all k ̸= j.

3A point x ∈ M is chain recurrent if given ε > 0 there exists an ε-chain from x to itself, i.e., there exists points
x = x1, x2, . . . , , xn−1, xn = x and t(i) ≥ 1 such that d(ϕt(i)(xi), xi+1) < ε ∀ 1 ≤ i < n. A set of such points will be
denoted byR and is called a chain recurrent set.

4A pair of compact spaces (N, N−) is an index pair for R if:
• cl(N −N−) is an isolating neighborhood for R;
• N− is positively invariant in N , i.e., if x ∈ N− and ϕ[0,T ](x) ⊂ N then ϕ[0,T ](x) ⊂ N−;
• N− is an exit set for the flow, i.e., if x ∈ N and ϕ[0,∞)(x) ̸⊂ N then there exists T > 0 such that ϕ[0,T ](x) ⊂ N
and ϕT (x) ∈ N−.
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Figure 4: Gradient flow and Lyapunov graph on S2.

The discussion continued with a lot of other examples and information about problems of this kind
and what type of questions could arise. Again, by using the soccer ball above (Figure 1), we put two
flows on it as ilustrated in Figure 5. These two flows are non equivalent, nevertheless we’d end up
with the same Lyapunov graph as we can see in the middle picture of Figure 5. Hence, an interesting
question was how to keep the dynamic information in the graph so as to distinguish these two cases.

Figure 5: Non equivalent flows realizing the same graph.

I have to tell you that I’ve never seen a soccer ball in such an interesting way before!
But even before embarking on dynamic detection, we wondered what kind of conditions should
be imposed on any abstract Lyapunov graph so that it could be realized by a flow on a manifold,
while retaining the information initially given. By “abstract”, we mean a graph without reference
to a manifold. Paralleling what happens in the case where the graph is associated with a manifold,
we define an abstract Lyapunov graph (without reference to a manifold) as a graph which has
its vertices labelled with (n + 1) nonnegative integers (h0, . . . hn) and its edges labelled with n
nonnegative integers (1, β1, . . . , βn−2, 1) such that βj = βn−j .
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Of course, our main goal was to know what abstract Lyapunov graphs can be realized by a flow on
some manifold, but this question of realization was of course too ambitious at this moment, so we
decided to address it in a sequence of steps.
Since the behavior of a graph coming from a Morse flow was easiest to understand, we asked our-
selves when an abstract Lyapunov graph could be transformed to an abstract Lyapunov graph of
Morse type. We could then try to produce isolating blocks in order to construct a manifold which
could be represented by this initial graph.
By analyzing a long exact sequence of a pair (N, N−) containing an isolated invariant set, we got
a collection of inequalities, called Poincaré–Hopf inequalities, in order to ensure that given an
isolating neighborhood containing a set with possibly complicated dynamical behavior, this neigh-
borhood could be replaced by a neighborhood related to a Morse flow, i.e., where the singularities
of the flow are nondegenerate.
We then began to tackle the problem of continuation of graphs and a rigorous algorithm was
created. Each step of the algorithm imposed a series of restrictions described by linear equations.
Thus, a linear system of equations was obtained whose solution was the number of different types
of vertices that are needed to substitute in the continuation while keeping all the data on the incident
edges unaltered.
Everything was great! The solutions to this system would represent the number of possibilities
that an abstract Lyapunov graph could be continued to an abstract Lyapunov graph of Morse type.
But. . . since there is always a “ BUT ” we couldn’t be sure that this system had a positive integer
solution. Weeks of intensive work went by, and unfortunately we couldn’t figure out how to show
the existence of a positive integer solution. . .
Ketty and Iwere already starting to discuss the possibility of leaving this problem aside and tackling a
new one when, to take mymind off things, I went to see the master’s defense in applied mathematics
of one of my friends. Among the many things I heard that day, and that I had no idea what they
meant, I saw concrete applications of network flow theory. It was magical! My friend presented
lots of small linear systems, which under certain conditions had at least one positive integer solution.
I realized then that this theory could solve my problem. At the end of the presentation I went to
discuss with her advisor. I don’t think he understood what I told him, and I am sure that I wasn’t
taken seriously. . . I really had the impression that he thought that topological dynamical systems
had nothing to do with network flow theory and that he was wasting his time. . .At the end of this
conversation, he gave me a book reference of about five hundred pages, and he reassured me that
everything I needed to know about network flow theory was in this book. I was very excited to have
found a “very small light at the end of the tunnel”, but at the same time very worried about how to
learn this theory.
Coming back to Unicamp a week after, I described to Ketty what had happened. I also showed her
a very small example that I tried to develop by reading the book cited above. I also added that I had
no idea how to generalize this example. After some reflection, she said: "I know someone who can
help us."
It was the beginning of my scientific story and also the start of a long collaboration with Prof.
Margarida P. Mello. Of course, at the very beginning, things were not so easy. Even though we were
both fluent in Portuguese, sometimes we had the impression that we weren’t speaking the same
language! But Margarida is a very open minded person and with a lot of work and patience, we
established a very nice cooperation. This interaction proved to be very fruitful and gave rise to new
techniques.
Thanks to the techniques of network flow theory, we were able to solve our linear system (4.1)-
(4.6) and establish conditions under which at least one positive integer solution was guaranteed. It
turns out that these feasibility conditions were precisely the Poincaré—Hopf inequalities obtained
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previously (3.1)-(3.6) involving the input data. In terms of graphs, we proved that every abstract
Lyapunov graph that satisfies the Poincaré–Hopf inequalities at each vertex can be continued to
an abstract Lyapunov graph of Morse type. Several other papers were published by combining
techniques from both homological Conley index and network flow theories.
At the end of my PhD I had the opportunity to discuss with Prof. John Franks at the Northwestern
University and also with Prof. Peter Zvengrowski at the University of Calgary. I also had the oppor-
tunity to present my work in their respective departments. Presenting my research work to Franks
was a real challenge: a "pope" of dynamical systems and the one who defined the main object of
my research. I also discussed with several members and students during the period I visited their
universities.
During my first post-doctoral position at Unicamp, I got to know Prof. Gioia Vago and Prof. Alain
Jacquemard. We also established a long scientific collaboration. The works carried out with Gioia
had a greater topological emphasis. The works with Alain deal with discontinuous dynamical
systems. Thanks to these collaborations, I was able to apply for a post-doctoral position at the In-
stitut deMathématiques de Bourgogne (IMB). I was granted a fellowship fromMinistère de la Recherche
Français under supervision of Prof. Christian Bonatti. At the same time, I was appointed to a per-
manent position at Unicamp, following a public competition. Since the Head of the Department as
well as the whole mathematics department realized the importance of such a postdoctoral position
in France, they accepted to delay my commencement at Unicamp for one year, so that I could stay in
France. With this postdoctoral position I was able to enlarge my scientific knowledge and network
of international collaboration.
Coming back to Brazil, I resumed my position at Unicamp, with the usual activities thereof: teach-
ing, research and administrative activities as well. In particular, I was officially co-advisor of Prof.
Mariana da Silveira, Prof. Rogerio Casagrande and Prof. Hernan Montufar, and I worked informally
with several of Ketty’s Ph.D. students. I was part of a very dynamic research group at Unicamp. But
as Helen Keller would say: “Life is either a daring adventure or nothing at all.” In 2007, for personnal
reasons, I decided to leave Brazil definitely. So I resigned from my position at Unicamp and moved
to Germany in the same year.
Without professional contacts, I undertook a real marathon of job search. In fifteen years, I have
had ten different jobs, in three different countries, with different research focuses and with a heavy
teaching load. For example, I worked in a Bioinformatics Department of the Institute of Functional
Genomics at Regensburg University, in a Financial Mathematics group at the University of Salzburg,
at the High School for the Gifted at Neckargemünd, in engineering schools or even in priority-
education in middle, high schools in the Paris region, etc. . . I had to struggle to keep on doing scien-
tific research, during evening, week-ends and holydays.
Why I am telling you this now? I am telling you this so that you can understand how happy I am
to be able to come back to the scientific world and to have the opportunity of writing the very first
pages of my “French Habilitation”(Habilitation à diriger des recherches (HDR)).
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An inspirational walk into the past
***

"Mathematicians do not study objects, but relations between objects. Thus, they are free to replace
some objects by others so long as the relations remain unchanged. Content to them is irrelevant: they
are interested in form only." Henri Poincaré

Being in France and interested in the interplay between topology and dynamics, it is imperative
to mention the great French mathematician Henri Poincaré, known as the founder of the field of
Algebraic Topology. His innovative and deep contributions to Topology and Dynamics also make

him the founder of the field of Dynamical Systems. The famous Poincaré–Hopf
Theorem is a beautiful icon of the interplay between topology and dynamics.
This theorem states that under reasonable conditions the sum of the indices of a
vector field equals the Euler characteristic of the manifold. Poincaré established
a more combinatorial definition of homology via a simplicial decomposition of a
manifold M , which was made possible by Whitehead’s theorem that guarantees
that every smooth manifold has a privileged class of triangulations. Thanks to

Whitehead’s theorem, every smooth manifold has a unique piecewise linear com-
patible manifold structure. This structure makes it possible to calculate the ho-
mology of a manifold using polyhedral homology. This algebrization as a chain
complex is absolutely brilliant. This algebra developed into what is now know as
the homology groups of a manifold and permitted the establishment of a homo-
topical invariant of M . In this sense it captures "holes" that remain in M under
deformation.

In the early 1920s, inspired by Poincaré, [Morse, 1925] related the topology of a
closed manifold M of dimension n to its dynamical data by a collection of inequal-
ities. Morse undertook this work by studying differentiable functions and their
critical points. He took interests in how level sets change as one passes critical
levels. To study M , instead of taking a triangulation of M he used a real valued
function f : M → R. Using the critical points of f , one can construct the homol-
ogy of a chain complex (Morse complex) that will turn out not to depend on f , but
only on M . This invariant is called Morse homology and from it one can recover

the Euler characteristic. These Morse inequalities constitute a classical result which establishes
relations between the number of nondegenerate critical points ci of Morse index i of a smooth real
valued function f : M → R and the Betti numbers of M , γi(M). The function f : M → R is called
a Morse function and its gradient determines a smooth flow which we refer to as a Morse flow. In
this sense, the inequalities can be viewed as relations between the number ci of singularities of index
i of the Morse flow and the Betti numbers of the phase space M .
The Morse inequalities provide a relationship between the number of critical points of a Morse func-
tion f on a smooth n-dimensional manifold M (without boundary and having a finite number of
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critical points) and the homology groups of the manifold, providing a powerful tool for understand-
ing the topology.
The homology group Hλ(M) is defined as the quotient group of λ-cycles mod λ-boundaries1 and
is finitely generated. Intuitively, it measures the number of λ-dimensional holes in M . A non-zero
element in Hλ(M) represents a λ-dimensional cycle that cannot be expressed as the boundary of a
(λ + 1)-dimensional chain, and thus corresponds to a λ-dimensional hole in M . Homology groups
are abelian groups, but not free abelian groups in general. Like all finitely-generated abelian groups,
each homology group is isomorphic to a product of cyclic groups

Hλ(M) ≃ Zγλ(M) ⊕
⊕

i

(Z/diZ)

for some integers γλ and 1 ≤ d1 ≤ d2 ≤ . . . ≤ dm, where each integer di is a divisor of its successor
di+1. The rank γλ of the free component of Hλ(M) is called the λ-th Betti number of M . The
components (Z, diZ) are called torsion subgroups, denoted by Tor(Hλ(M)). One denotes by tλ

the minimal number of generators of Tor(Hλ(M)), which is called the torsion rank of Hλ(M).
The Morse inequalities relate then the number cλ of critical points of f with Morse index λ to these
ranks, and have the form:

γλ + tλ + tλ−1 ≤ cλ, λ = 0 . . . n;
λ∑

i=0
(−1)λ−iγi ≤

λ∑
i=0

(−1)λ−ici, λ = 0 . . . n.

For λ = n the last Morse inequality is always an equality, so that
n∑

i=0
(−1)ici = χ(M),

where χ(M) is the Euler characteristic of M .
The Morse inequalities also hold for Morse functions of a triple (M, N−, N+), on replace the groups
Hλ(M) by the relative homology groups Hλ(M, N−).
According to the Morse inequalities, a manifold having “large” homology groups does not admit a
Morse function with a small number of critical points.

In the early 70’s, [Conley, 1978], Conley generalized these results to a theory with a
more topological flavor and independent of the differentiable nature of the flow. In
[Conley, 1978] the existence of a Lyapunov function associated to a flow on amanifold
is proved. With respect to this function the flow maintains an underlying gradient-
like behavior. However, in this setting, the dynamics is much richer and singularities
can be exchanged for richer invariant sets (isolated invariant sets) for which the index
introduced by Conley can be computed.

Conley in [Conley, 1978] proves that the following generalized Morse inequalities are valid,
where γi is the i-th Betti number of M and hi is the dimension of the i-th Conley homology in-
dex (see Section 2.3 for details about the Conley index theory).

1Let X be a finite simplicial complex and let Xλ denote the set of oriented λ-dimensional simplices in X . A λ-chain
over X is a function α : Xλ → Z, such that α(−σ) = −α(σ). The set of all λ-chains form an abelian group, called
the λ-th chain group Cλ(X). A λ-cycle is a λ-chain α such that ∂λα = 0, where ∂λ : Cλ(X) → Cλ−1(X) is the
λ-th boundary homomorphism. A λ-boundary is a λ-chain α such that α = ∂λ+1β for some (λ + 1)-chain β. The
λ-th cycle group is the group of λ-dimensional cycles in M , which are formal linear combinations of λ-dimensional
simplices in M with integer coefficients. The λ-th boundary group is the subgroup of the λ-th cycle group consisting
of the λ-dimensional chains that are boundaries of (λ + 1)-dimensional chains.
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γn − γn−1 +− . . .± γ2 ± γ1 ± γ0 = hn − hn−1 +− . . .± h2 ± h1 ± h0 (n)
γn−1 − γn−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hn−1 − hn−2 +− . . .± h2 ± h1 ± h0 (n− 1)

...
...

γj − γj−1 +− . . .± γ2 ± γ1 ± γ0 ≤ hj − hj−1 +− . . .± h2 ± h1 ± h0 (j)
γj−1 − γj−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hj−1 − hj−2 +− . . .± h2 ± h1 ± h0 (j− 1)

...
...

γ2 − γ1 + γ0 ≤ h2 − h1 + h0 (2)
γ1 − γ0 ≤ h1 − h0 (1)

γ0 ≤ h0 (0)

(1.1)

This collection of inequalities is presented in [Morse, 1925] where one should read hi = ci as the
number of critical points of index i.



26 CHAPTER 1. AN INSPIRATIONAL WALK INTO THE PAST



2

C
ha

pt
er

Morse-Conley index theory and Lyapunov
graphs

***

"Mathematics are the result of mysterious powers which no one understands, and which the unconscious
recognition of beauty must play an important part. Out of an infinity of designs a mathematician
chooses one pattern for beauty’s sake and pulls it down to earth." Marston Morse

2.1 Morse theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Handle theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Conley theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Lyapunov graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

In this chapter we will have a closer look at a number of fundamental notions about Morse-Conley
theory, handle theory and Lyapunov graphs necessary to understand next chapters. Some new
notions concerning my research will also be mentioned. In what follows we consider the following
notation:

• M is an oriented manifold of dimension n, with or without boundary;

• ϕt : M → M is a continuous flow on M ;

• N is ann-dimensional compact connected oriented submanifoldN ⊂M with bounda-
ry ∂N = N+ ∪N−, where N+ and N− represents the entering and exit boundary with
respect to the flow ϕt.

2.1 Morse theory

Intuitively speaking, Morse theory will allow us to:

• decompose a (smooth) manifold M into elementary pieces (isolating blocks);

• conversely, take these elementary pieces and use them to construct manifolds.

• construct an invariant of the manifold called Morse homology.

The importance of a smooth manifold is that we can talk about smooth functions and not just home-
omorphisms. We want to use functions to slice our manifold along level sets. For this purpose, one

27
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should consider functions having only isolated critical points. A critical point of a differentiable
function f is a point at which the derivative is zero.

Let f : Rn → R be a smooth function. A critical point p of f is said to be nondegenerate or of
Morse type if the Hessian

Hp(f) =
(

∂2f

∂xi∂xj

(p)
)

, for i = 1, . . . , n, j = 1, . . . , n.

is nondegenerate (i.e., has non-zero determinant).

A function f : M → R is said to be aMorse function if all its critical points are nondegenerate. The
Morse index of a critical point p is defined as the number of negative eigenvalues of the Hessian
matrix of f at p.

Example: Let T 2 be a 2-dimensional torus. Let us stand T 2 vertically and let f : T 2 → R be the
height function, that is for p = (x, y, z) ∈ T 2 one has f(p) = z, as described in the left side of
Figure 2.1. In this case f is a Morse function. Nevertheless, by lying T 2 flat as on the right side of
Figure 2.1, the height function f is not Morse.

circle of maxima

Rf

c2

c1

c3

c4

−1/2

−1

1/2

1
R

f

f is Morse f is not Morse
Figure 2.1: Morse and non Morse function on T 2.

Let us consider the left side of Figure 2.1 and extract what this function tells us about the topology
of the manifold M . There are again four critical points: a minimum c1, a maximum c4, and two
saddle points c2, c3. Equation (2.1) illustrates the sublevel sets:
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f−1((−∞, z]) =



T 2 if z ≥ 1

T 2 minus a
disc at the top if 1/2 < z < 1

a cylinder
with its
boundaries
pinched
together

if z = 1/2

a cylinder if −1/2 < z <
1/2

a disc pinched
at the bound-
ary

if z = −1/2

a disc if −1 < z <
−1/2

bl• {c1} if z = −1

∅ if z < −1

(2.1)

The Morse Lemma states that all functions can be expressed in a standard form by just a simple
change of coordinates. In fact, this lemma asserts that near a nondegenerate critical point of f , the
function f can be approximated locally by a quadratic form whose behavior is determined by the
eigenvalues of the Hessian matrix.
Note that the topology changes as we pass through a critical point (and conversely, how it doesn’t
change when you don’t!). The function f provides a "movie" for the surface of interest by cutting it
up in level sets f−1(z). The movie effectively decomposes the surface into a collection of elementary
pieces (surfaces with boundary). Over each piece the height function has at most one critical point.
The relationship between the handle that is added and the critical point is through the “index” of
the critical point, determined by its quadratic form. We’ll explain the handle theory in more detail
in the next section. The critical points on the torus T 2 looks (more or less) locally like:

• fc1(x, y) = x2 + y2 at the critical point corresponding to −1.

• fc2(x, y) = x2 − y2 at the critical point corresponding to −1/2

• fc3(x, y) = y2 − x2 at the critical point corresponding to 1/2

• fc4(x, y) = −x2 − y2 at the critical point corresponding to 1.

For these local forms, the origin is their only critical point and their Hessians are:

H0(fc1) =
(

2 0
0 2

)
, H0(fc2) =

(
2 0
0 −2

)
,
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H0(fc3) =
(
−2 0
0 2

)
, H0(fc4) =

(
−2 0
0 −2

)
They correspond to a minimum, two saddles, and a maximum, respectively.
From the Morse Lemma, one obtains that a nondegenerate critical point is isolated and that a Morse
function defined on a compact manifold admits only finitely many critical points.
Suppose that M is a closed Riemannian manifold equipped with a Riemannian metric g and that
f : M → R is a smooth function. The gradient vector field ∇f : M → TM is defined as the
unique vector field satisfying the identity g(∇f, •) = df(•). The map ϕ associated to the vector
field−∇f is called the negative gradient flow associated to f , and the map ϕt solves the ordinary
differential equation:

d

dt
ϕt(p) = −∇f(ϕt(p)).

In other words,∇f is the dual of the differential df with respect to the riemannian structure.
This map is smooth because the solution of an ordinary differential equation with smooth coeffi-
cients is smooth. The points q such that ϕt(p) = q, for some t ∈ R, are called the flowline associated
to p; they are the points you can reach by pushing p forwards or backwards in time in the t variable.
A basic result of Morse theory states that as you push a point p along its flowline, you end up in a
critical point.
A result of Morse theory establishes that almost all functions are Morse functions.
What is important to keep in mind is that given a Morse function f : M → R, the negative gradient
flow ϕ associated to the gradient vector field, −∇f , has important properties, such as:

• the singularities of ϕ are exactly the critical points of f ;

• the Morse function f decreases along nonsingular orbits of ϕ;

• ϕ does not admit periodic orbits except for singularities.

• the Morse index of a critical point p coincides with the dimension of the unstable manifold of
p with respect to the negative gradient flow of a Morse function.

2.2 Handle theory

We present a Morse theoretic approach, used in [Bertolim et al., 2003a], for analyzing the changes
to a manifold as handles are attached. This topological handle theory approach is necessary for the
description of the continuation algorithm presented in Section 4.1.1.
By definition, an n-dimensional handle of index ℓ is a product of disks centered at the origin
Dℓ×Dn−ℓ. The core is Dℓ× 0 and the cocore is 0×Dn−ℓ. We define a flow on the handle by con-
sidering a nondegenerate index ℓ singularity at the origin and identifying the core and cocore with
its unstable and stable manifold respectively. The attaching region of the handle is Sℓ−1 ×Dn−ℓ

and corresponds to the part of the boundary of the handle through which the flow exits. Similarly,
the belt region Dℓ × Sn−ℓ−1 corresponds to the part of the boundary of the handle through which
the flow enters. Figure 2.2 illustrates handles in dimension 3.
Morse-Smale flows on a smooth n-dimensional manifold M were considered together with handle
decompositions associated with a Lyapunov function in [Cruz and de Rezende, 1999]. Thus, after the
attachment to a collar of a closed (n− 1)-manifold N− of an n-handle H of index j, corresponding



2.2. HANDLE THEORY 31

D1D1

D2D2

D0 ×D3 D3 ×D0

Figure 2.2: Handles in dimension n = 3 containing singularities of indices 0, 1, 2 and 3 from left to
right.

to a nondegenerate singularity of Morse index j, one can consider the effect on the Betti numbers
of the newly formed boundary N+ = ∂(H ∪N− × I).
In other words, attaching an n-handle of index j, for j = 1 . . . n− 1, to a collar of N− can produce
one of the following effects if

(H1) the j-th Betti number of the boundary N+ is the corresponding number of N− increased by 1
(or by 2, if n = 2j + 1), and the handle will be said of type j-d (d standing for disconnecting);

(H2) the (j−1)-th Betti number of the boundaryN+ is the corresponding number ofN− decreased
by 1 (or by 2, if n = 2j + 1), and the handle will be said of type (j − 1)-c (c standing for
connecting);

(H3) if n = 4k and j = 2k all the Betti numbers of N+ are the same as those of N−, and the handle
will be said of type β-i (i standing for invariant).

In [Bertolim et al., 2007] we generalize results in [Cruz and de Rezende, 1999] by completely describ-
ing the effect that attaching a handle has on the Betti numbers of the boundary, when the homology
coefficients are chosen among the most standard ones, that is, Z,Q, R or Z/pZ, with p prime. Since
such a description is technical, we state it in a simpler way and refer to [Bertolim et al., 2007] for
the detailed version.

Theorem 1. LetN be an n-dimensional manifold with compact orientable boundary ∂N = N+⊔N−,
endowed with a Morse flow entering through the regular level set N+, exiting through the regular level
set N− and containing a unique singularity of index j inside N . Let the homology coefficients be chosen
in Z, Q, R or Z/pZ, with p prime. Then the Betti numbers of N+ and N− are the same except for both
βj and βn−1−j or both βj−1 and βn−j , for which the behavior is classified.

Roughly speaking, up to few exceptions, attaching a handle of index j can either increase by 1 the
j-th Betti number and its dual (i.e., βj(N+) = βj(N−) + 1 and βn−1−j(N+) = βn−1−j(N−) + 1) or
can decrease by 1 the (j − 1)-st Betti number of N+ and its dual. The most significant exception is
given in the case n = 4i by j = 2i for which there is also the possibility for all the Betti numbers to
stay unchanged.
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Our generalization implies that all the results and machinery using Conley Index Theory and con-
tinuation of Lyapunov graphs developed before this generalisation in [Bertolim et al., 2003a, 2005b,
2006b,a] are still true, independently of the homology coefficients, provided that they be chosen in
Z, Q, R or Z/pZ, with p prime.

2.3 Conley theory

The dynamical behavior of continuous flows ϕt : M →M on their chain recurrent setR can be very
rich. Nevertheless, studying a continuous flow on a closed manifold M with respect to a Lyapunov
function f : M → R becomes similar to studying a gradient flow (for which the chain recurrent
components are singletons) associated with a Morse function as described in Section 2.1.
A point x ∈M is called chain recurrent if for every ε > 0 there is an ε-chain from x to itself, i.e.,
there exists points x = x1, x2, . . . , xn−1, xn = x and reals ti ≥ 1 such that

d(ϕt(i)(xi), xi+1) < ε ∀ 1 ≤ i < n.

Figure 2.3 illustrates an ε-chain.

x1

ϕt1(x1)

x2

ϕt2(x2)

x3

ϕt3(x3)

ϕtn−1(xn−1)

Figure 2.3: ε-Chain.

The set R of chain recurrent points is called the chain recurrent set of ϕt. We work under the
hypothesis thatR is the finite union of such components.
A set S ⊂ M is an invariant set of a flow ϕt if ϕt(S) = S for all t ∈ R. The set R, of the flow
ϕt, is an example of an invariant set. A compact set N ⊂ M is an isolating neighborhood if
inv(N, ϕ) = {x ∈ N : ϕt(x) ⊂ N, ∀ t ∈ R} ⊂ int N .
Given a smooth flow ϕt : M → M , a Conley theorem asserts that there exists a smooth function
f : M → R associated to this flow with the property that it decreases along orbits outside the chain
recurrent set R, that is, if x ̸∈ R then f(ϕt(x)) < f(ϕs(x)) given that t > s and is constant on
connected components ofR. This function is defined as a Lyapunov function. We refer to ϕt as a
gradient-like flow with respect to f because of the properties above.
The homotopy Conley index is the homotopy type of a space defined from a topological pair deter-
mined by the flow, which is called index pair. A pair of compact spaces (N, N−) is an index pair
for S if:

• cl(N −N−) is an isolating neighborhood for S;

• N− is positively invariant in N , i.e., if x ∈ N− and ϕ[0,T ](x) ⊂ N then ϕ[0,T ](x) ⊂ N−;
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• N− is an exit set for the flow, i.e., if x ∈ N and ϕ[0,∞)(x) ̸⊂ N then there exists T > 0 such
that ϕ[0,T ](x) ⊂ N and ϕT (x) ∈ N−.

N

N−

S
N

N−

S N

N−

S

Not possible Not possiblePossible

Figure 2.4 illustrates examples of an index pair for an attracting singularity (a sink), a saddle singu-
larity, a repelling singularity (a source), an attracting periodic orbit, and a repelling periodic orbit.

N− N− N−

N−
N−

Figure 2.4: Examples of an index pair.

A special index pair which we call isolating block can be determined via the Lyapunov function.
A compact set N is an isolating block if N− = {x ∈ N : ϕ[0,t)(x) ̸⊂ N, ∀t > 0} is closed and
inv(N, ϕ) ⊂ int N . In other words, the flow exits N− immediately in the positive flow direction.
For example, let S be a saddle singularity as in Figure 2.5. The left side of Figure 2.5 depicts an index
pair and on the right side an isolating block for S.

N−

Figure 2.5: On the left, an index pair. On the right, an isolating block.

An invariant setS is called an isolated invariant set if it is amaximal invariant set in some isolating
neighborhood N , that is, S = inv(N, ϕ). For example, consider a saddle point S at the origin of the
plane as in the left side of Figure 2.6. The square N = [−1, 1]× [−1, 1] is an isolating neighborhood
for S and S is an isolated invariant set. Observe that there exist sets which are invariant under the
flow but are not isolated. For example, consider the flow on R2 associated to ẋ1 = x2, ẋ2 = −x1 as
in the right side of Figure 2.6. The origin (0, 0) is a rest point and S = {(0, 0)} is an invariant set,
however, S is not isolated.
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N

S
S

N

Figure 2.6: On the left side S is an isolated invariant set and on the right side not.

If f is a Lyapunov function associated with a flow and c = f(R) then, for ε sufficiently small,
the component of f−1[c − ε, c + ε] containing R is an isolating block for R. Take (N, N−) =
(f−1[c − ε, c + ε], f−1(c − ε)) as an index pair for R. The homotopy Conley index is defined as
the homotopy type of N/N− and it is denoted byH(R).

Now, if N− is a neighborhood deformation retract in N , then the homology of the index space
N/N− agrees with the homology of the pair (N, N−). The j-th homology of N/N− is the j-th
Conley homology index and is denoted by CHj(R). We denote the dimension of CHj(R) by
hj = dim CHj(R) (see [Conley, 1978] for further details). In Figure 2.7 we can find two examples
of the computation of the homotopy Conley index. In both cases we have a wedge of 1-spheres.
Hence, h1 = 2.

N−

N−

Figure 2.7: Examples of the computation of the homotopy Conley index.

2.4 Lyapunov graphs

The qualitative description of the dynamical behavior of a continuous flow is generally divided in
two parts (see [Franks, 1979, 1982]):
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• the “gradient-like” behavior, which is reflected in the existence of a Lyapunov function,

• and the “chain recurrent” behavior.

In order to study a class of dynamical systems it is important to understand how these two aspects
of the dynamical behavior interact. On the one hand, by taking a closer look one should look for
topological-dynamical invariants for the chain recurrent dynamics. On the other hand, understan-
ding global connections and their behavior under continuation is a goal in this type of investigation.

Labelled Lyapunov graphs are combinatorial objects introduced by Franks in
[Franks, 1985] in order to enlighten the interactions between the local and global
features of a same dynamical system. In particular, the choice of the labels of a
Lyapunov graph depends on the nature of the interaction we want to study. As for
the graph itself, let us define an equivalence relation on M by x ∼f y if x and y

belong to the same connected component of a level set of the Lyapunov function f . We call the
quotient M/ ∼f a Lyapunov graph. Its vertices are the equivalence classes associated with the
connected components1 of the chain recurrent setR, hence, vertices can be labelled with dynamical
invariants. An edge point is the equivalence class of a regular level set, and points on the same
edge correspond to homeomorphic level sets, hence edges can be labelled with topological invari-
ants of the associated level set. The graph is oriented with the orientation inherited from the flow.
Figure 2.8 illustrates the procedure of obtention of a Lyapunov graph.

Figure 2.8: A Lyapunov graph.

f−1(c)
critical
value c

f

R

L = M/ ∼f

f−1(r) regular
value r

Of course, one can take the opposite point of view by defining a Lyapunov graph in an abstract
way. An abstract Lyapunov graph of dimension n is a finite connected oriented graph, without
oriented cycles, with labelled vertices and edges. Each vertex can be labelled with a chain recurrent
flow on a compact space of dimension n or with some dynamical invariants of such a flow. Each
edge can be labelled with topological invariants of a closed manifold of dimension (n− 1).
Note that studying the interactions between the properties recorded in a Lyapunov graph and its
labels means knowing when an abstract Lyapunov graph can be realized by a flow on a manifold. In

1Note that, in the case of a discrete-time dynamics, we cannot associate the vertices with the connected components,
but only with the equivalence classes of the chain recurrent setR.
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general, some restrictions appear. For instance, the topology of the underlying manifold constrains
the topology of any associated Lyapunov graph. In [Cruz and de Rezende, 1998] it is shown that the
cycle rank2 κ of a Lyapunov graph is a lower bound of the Cornea genus3 g(M) of the manifold
M , which is always less than or equal to the first Betti number of M , κ ≤ g(M) ≤ γ1(M). This
generalizes a theorem of Franks [Franks, 1985] which asserts that if M is simply connected then
κ = 0 (i.e., the Lyapunov graph is a tree).
In our work, Lyapunov graphs keep track of some local and global homological information of the
flow and the phase space M , where M is an oriented manifold of dimension n, with or without
boundary. More precisely, edges are labelled by the Betti numbers of the associated level set, while
vertices are labelled in a more technical way based on the Conley index theory, as described in
Section 2.3. Recall that each vertex of the graph represents a component R of the chain recurrent
set R of the flow ϕt and that we work under the hypothesis that R is the finite union of such
components. A vertex of a Lyapunov graph can therefore be labelled with the dimensions of the
Conley homology indices of the component of the chain recurrent set associated with the vertex.
As a consequence, an abstract Lyapunov graph has its vertices labelled with (n + 1) nonnegative
integers (h0, . . . hn) and its edges labelled with n nonnegative integers (1, β1, . . . , βn−2, 1) such that
βj = βn−j .
Of course, our main goal was to know what abstract Lyapunov graphs can be realized by a flow on
some manifold. We answered this natural question and other related ones through various steps.
Some of them, will be described in the next chapters.
Using the three possible topological effects described in Section 2.1, we determined in [Bertolim
et al., 2003a] necessary and sufficient conditions for abstract Lyapunov graph morsification. These
conditions will form a collection of inequalities called the Poincaré–Hopf inequalities which we
discuss in the next section.
Observe that the three handle effects described above, (H1)-(H3), can be viewed in terms of graphs
in the following way. A handle containing a singularity of index ℓ corresponds to a vertex on the
graph L labeled with hℓ = 1, containing one incoming edge L+ and one outgoing edge L−, which
can produce the three possible algebraic effects:

(G1) a vertex hℓ = 1 onL is called ℓ-disconnecting, in short, ℓ-d, if the βℓ(L+) label on the incoming
edge L+ is the corresponding number of the outgoing edge L− increased by 1 (or by 2, if
n = 2j + 1).

(G2) a vertex hℓ = 1 on L is called (ℓ− 1)-connecting, in short, (ℓ− 1)-c, if the βℓ−1(L+) label on
the incoming edge L+ is the corresponding number of the outgoing edge L− decreased by 1
(or by 2, if n = 2j + 1).

(G3) In the case n = 2i = 0 mod 4, a vertex on L labeled with hi = 1 is called β-invariant, in
short, β-i, if all βℓ(L+) label, ℓ = 1, . . . , n− 1, on the incoming edge L+ are the same as those
of the outgoing edge L−.

See the corresponding graphs in Figure 2.9.
Using these three algebraic effects we define an abstract Lyapunov graph of Morse type as an
abstract Lyapunov graph that satisfies the following:

1. every vertex is labelled with hj = 1 for some j = 0, . . . , n and the cycle number of each vertex
equal to zero.

2The cycle rank of a graph is the maximum number of edges that can be removed without disconnecting the graph.
3This genus of a closed orientable manifold is the maximal number of mutually disjoint, smooth, compact, connected,

two-sided codimension one submanifolds that do not disconnect the smooth closed manifold M . See [Cornea, 1989].
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βℓ−1(L+) = β − 1

βℓ−1(L−) = β

hi = 1hℓ = 1

β-i(ℓ− 1)-cℓ-d

hℓ = 1

βℓ(L+) = β + 1

βℓ(L−) = β

Figure 2.9: The three possible algebraic effects.

2. the number of incoming edges, e+, and the number of outgoing edges, e−, of a vertex labelled
with hj = 1, must satisfy:

(a) j ̸= 0, 1, n− 1, n then e+ = 1 and e− = 1;
(b) if j = 1 then e+ = 1 and e− = 1 or e− = 2; if j = n− 1 then e− = 1 and e+ = 1 or

e+ = 2;
(c) if j = 0 then e− = 0 and e+ = 1; if j = n then e+ = 0 and e− = 1.

3. every vertex labelled with hℓ = 1 must be of type ℓ-d or (ℓ − 1)-c. Furthermore if
n = 2i ≡ 0 mod 4 and hi = 1 then v may be labelled with β-i.

Figure 2.10 illustrates the local conditions of an abstract Lyapunov graph of Morse type.
We describe now a special class of Lyapunov graphs, namely those that can be related to nonsingu-
lar Morse-Smale flows on manifolds (with or without boundary). In this case the isolating invariant
sets corresponds to the closed orbits. Therefore, given a nonsingular Morse-Smale flow on an iso-
lating neighborhood N , one can associate with it a Lyapunov graph in the same way as described
previously, which will be called a Lyapunov graph of Smale type. A result of Franks in [Franks,
1982] shows that one can think of a hyperbolic periodic orbit of index k, Ak, as a suitable joining of
two hyperbolic singularities p and q of adjacent indices k and k+1 respectively, in such a way that a
neighborhood of Ak can be built by a suitable attachment of handles of adjacent indices k and k + 1
respectively. Hence, following Frank’s idea, we define an abstract Lyapunov graph of Smale
type as an abstract Lyapunov graph of Morse type such that each vertex labelled with a hyperbolic
singularity of index k can be joined with a vertex labelled with a hyperbolic singularity of adjacent
index k + 1. This means that the collection of labels (h0, . . . , hn) on the vertices of the Lyapunov
graph can be decomposed in an union (∑n

j=0 hj)/2 of disjoint couples of the form Aℓ = (hℓ, hℓ+1)
with ℓ ∈ {0, . . . , n}. Results concerning this type of graph will be addressed in Section 5.2 and can
be found in [Bertolim et al., 2023a].
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hn = 1

h0 = 1

h1 = 1
0-c

h1 = 1
1-d

hn−1 = 1
(n− 2)-c

hn−1 = 1
(n− 1)-d

hj = 1
(j − 1)-c

hj = 1
j-d

j = 2, . . . , n− 2

Figure 2.10: Local conditions of an abstract Lyapunov graph of Morse type.
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Poincaré–Hopf Inequalities
***

"Mathematical discoveries, small or great, are never born of spontaneous generation. They always pre-
suppose a soil seeded with preliminary knowledge and well prepared by labour, both conscious and
subconscious." Henri Poincaré

3.1 PHI for isolating blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 PHI with κ for Isolating Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 PHI for Closed Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 PHI for nonsingular Morse-Smale flows . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Poincaré–Hopf inequalities for periodic orbits . . . . . . . . . . . . . . . . . . . . . 46
3.6 Componentwise Poincaré–Hopf inequalities . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Generalized Poincaré–Hopf inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 50

In this chapter, we present seven versions of a collection of inequalities called the Poincaré–Hopf
inequalities (shortly PHI). These inequalities generalize the classical Morse inequalities described
in Chapter 1. The first version was developed in [Bertolim et al., 2003a] for continuous flows on
isolating blocks in order to ensure that given an isolating neighborhood containing a singularitywith
possibly complicated dynamical behavior, this neighborhood can be replaced by a neighborhood
related to a Morse flow, i.e., where the singularities of the flow are nondegenerate. The second
version, developed in [Bertolim et al., 2005b], is also a version for isolating blocks, but it includes
a connectivity parameter κ which will play the role of the genus, g(M), as defined in the previous
chapter which we now refer to as the Cornea genus. The third version, developed in [Bertolim et al.,
2005a], is a particular case of the first version by considering closed manifolds instead of isolating
blocks. The fourth one is an adaptation of the first version for nonsingular Morse-Smale flows on
isolating blocks. The fifth version provides two inequalities, referred to as Poincaré–Hopf inequa-
lities for periodic orbits, which impose constraints on the dynamics of periodic orbits without refe-
rence to the Betti numbers of the manifold M . The sixth one, called componentwise Poincaré–Hopf
inequalities, was created to ensure a componentwise Lyapunov graph morsification. The last one
is a generalization of the Poincaré–Hopf inequalities to a finite-dimensional noncompact isolating
block N .
We use the following notation (for definitions see Sections 2.3, 2.4):

• S ⊂M is an isolated invariant set of a flow ϕt.

• N ⊂M is an isolating block for S.

• R is a chain recurrent set of the flow ϕt, which we impose to be a finite union of isolated
invariant sets Ri.

39
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• f is a Lyapunov function.

• f−1[c− ε, c + ε] that contains R is an isolating neighborhood for R.

• (N, N−) = (f−1[c− ε, c + ε], f−1(c− ε)) as an index pair for R.

• h∗ is the rank of the homology Conley index.

• κ is a connectivity parameter playing the role of the Cornea genus.

The six first versions of these inequalities hold for flows whose inverse flow satisfies the following
duality condition on the homology Conley indices. Given a flow ϕt and an isolated invariant set
S ∈ Nn, it will be assumed that the inverse flow ϕ−t has an isolated invariant set S ′ with the
property that

hi(S) = dim CHi(S) = dim CHn−i(S ′) = hn−i(S ′).
In other words, we assume that the Conley duality condition1 on the indices holds. That is,
the isolated invariant sets S and S ′ with index pairs (N, N−) and (N, N+) have the property that
rank Hj(N, N−) = hj and rank Hj(N, N+) = hj = hn−j .

3.1 PHI for isolating blocks

In this section, we consider the connectivity parameter κ = 0.
Let N be any compact manifold of dimension n such that ∂N = ∂N+ ∪ ∂N−, with ∂N+ and ∂N−

non-empty where ∂N+(∂N−) is the disjoint union of e+(e−) components of ∂N , and denote it by
∂N± = ⋃e±

i=1 N±
i . Also, consider the sum of the Betti numbers, βj(N±

i ), of these components, i.e.,
B±

j = ∑e±

i=1 βj(N±
i ) where j = 1, . . . , ⌊n−1

2 ⌋.
The Poincaré–Hopf inequalities for an isolated invariant set S in an isolating block N with entering
set for the flow N+ and exiting set for the flow N−, are obtained by analysis of long exact sequences
of (N, N+) and (N, N−). This analysis can be found in [Bertolim et al., 2003a] in a more detailed
exposition.
Note that (N, N−) is an index pair for S and (N, N+) is an index pair for the isolated invariant set
of the reverse flow, S ′.
Consider the long exact sequences for the pairs (N, N−) and (N, N+), denoted by LES− and LES+,
respectively:

0→ Hn(N−) in−→ Hn(N) pn−→ Hn(N, N−) ∂n−→ Hn−1(N−)→
in−1−−→ Hn−1(N) pn−1−−−→ Hn−1(N, N−) ∂n−1−−−→ Hn−1(N−)→ · · ·

· · · ∂2−→ H1(N−) i1−→ H1(N) p1−→ H1(N, N−)→
∂1−→ H0(N−) i0−→ H0(N) p0−→ H0(N, N−)→ 0

0→ Hn(N+) i′
n−→ Hn(N) p′

n−→ Hn(N, N+) ∂′
n−→ Hn−1(N+)→

i′
n−1−−→ Hn−1(N)

p′
n−1−−−→ Hn−1(N, N+)

∂′
n−1−−−→ · · ·

· · · ∂′
2−→ H1(N+) i′

1−→ H1(N) p′
1−→ H1(N, N+)→

∂′
1−→ H0(N+) i′

0−→ H0(N) p′
0−→ H0(N, N+)→ 0

1Remark that Morse–Smale flows, as well as Smale flows, satisfy this duality condition.
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Since we are assuming the Conley duality condition on the indices, the isolated invariant sets S and
S ′ have the property that rank Hj(N, N−) = hj and rank Hj(N, N+) = hj = hn−j . Observe that
rank H0(N−) = e−, rank H0(N+) = e+ and rank (Hj(N±)) = B±

j .
By simultaneously analyzing the following pairs of maps

{[(pi, ∂′
i) , (p′

i, ∂i)] , . . . [(p2, ∂′
2) , (p′

2, ∂2)]}

and analyzing p1 and p′
1 we obtain the Poincaré–Hopf inequalities, (3.1)–(3.6), in all its generality:

hj ≥
j−1∑
k=1

(−1)k+j(B+
k −B−

k ) +
j−1∑
k=0

(−1)k+j(hn−k − hk)

+(−1)j+1(e− − e+), j = 2, . . . ,
⌊n

2

⌋
(3.1)

hn−j ≥
j−1∑
k=1

(−1)k+j+1(B+
k −B−

k ) +
j−1∑
k=0

(−1)k+j+1(hn−k − hk)

+(−1)j(e− − e+), j = 2, . . . ,
⌊n

2

⌋
(3.2)

h1 ≥ h0 − 1 + e− (3.3)

hn−1 ≥ hn − 1 + e+ (3.4)

n = 2i + 1, i ≥ 1
{

i−1∑
k=1

(−1)k(B+
k −B−

k )+(−1)i

(
B+

i −B−
i

2

)
−

n∑
k=0

(−1)khk−(e−−e+)=0 (3.5)

 n = 2i, i odd, i ≥ 3
{

hi−
i−1∑
k=1

(−1)k(B+
k −B−

k )−
i−1∑
k=0

(−1)k(hn−k−hk)+(e−−e+)≡0 mod2 (3.6)

Using the effects (H1), (H2) and (H3) described in Section 2.2, the Poincaré–Hopf inequalities were
used in [Bertolim et al., 2003a] in order to ensure that, given an isolating neighborhood containing
a singularity with possibly complicated dynamical behavior, this neighborhood can be replaced by
a neighborhood related to a Morse flow, i.e., where the singularities of the flow are nondegenerate.
More precisely, in [Bertolim et al., 2003a], we prove the following result:
Theorem 2. Suppose that N is an isolating neighborhood with boundary consisting of (e+ + e−) con-
nected components, endowed with a continuous flow entering N through e+ boundary components N+

k ,
k = 1, . . . , e+ and exiting through the remaining e− boundary components N−

k , k = 1, . . . , e−, con-
taining a singularity with dimensions of the Conley homology indices equal to (h0, . . . , hn). For all j =
1, . . . , ⌊n−1

2 ⌋, if βj(N), represents the j-th Betti number of N , we denote B+
j −B−

j = ∑e+

k=1 βj(N+
k )−

βj(N−
k ). If the following abstract homological data

{
e+, e−,

(
B+

j −B−
j

)⌊ n−1
2 ⌋

j=1
, (hj)n

j=0

}
satisfies

the Poincaré-Hopf inequalities (3.1)–(3.6) then N can be replaced by a neighborhood endowed with a
Morse flow entering N through e+ boundary components N+

k , k = 1, . . . , e+ and exiting through the
remaining e− boundary components N−

k , k = 1, . . . , e−, where for all j = 0 . . . n we have hj = 1, j
representing the dimension of the unstable manifold of this isolated singularity.

These inequalities were also used to obtain results concerning the continuation of abstract Lyapunov
graphs. This will be discussed in the next chapter.

3.2 PHI with κ for Isolating Blocks

Let us continue to try to understand how global and local topological aspects of the dynamical
behavior interact. Note that studying these interactions means knowing how a flow imposes topo-
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logical contraints on its phase space manifold. In general, some restrictions appear. For example,
the Cornea genus of a smooth closed manifold M , g(M) is always less than or equal to the first Betti
number of M , g(M) ≤ γ1(M). This generalizes a theorem of Franks [Franks, 1985] which asserts
that if M is simply connected then κ = 02.

Morse–Conley inequalities (1.1) imply that γ1(M) − γ0(M) ≤ h1 − h0. It follows that g(M) ≤
γ1(M) ≤ h1 − h0 + γ0(M). Therefore, one has a weaker version of the Morse inequalities with the
Cornea genus: h1 ≥ h0 − 1 + g(M). We wish to analyse these inequalities for different manifolds
and Cornea genera. In order to do this more freely, without reference to a specific manifold, we
introduced a parameter κ which will play the role of the Cornea genus.

As discussed in the previous section, in [Bertolim et al., 2003a] we consider the Poincaré–Hopf
inequalities (3.1)–(3.6), in the case κ = 0 for an isolated invariant set Λ with isolating block N , with
entering set for the flow N+ and exiting set for the flow N−, under the hypothesis that the flow
satisfies the Conley index duality condition on components of the chain recurrent set.

In [Bertolim et al., 2003b], these inequalitieswere treated by considering the presence of a connectivi-
ty parameter κ as described above for an isolating block N . Thus, the Poincaré–Hopf inequalities
for isolating blocks with this parameter κwill be the same collection as before except for inequalities
(3.3)–(3.4) which are replaced with:

h1≥ h0 − 1 + e− + κ, (3.7)

hn−1≥ hn − 1 + e+ + κ.

 (3.8)

3.3 PHI for Closed Manifolds

In [Bertolim et al., 2005a], we consider a particular case of the Poincaré–Hopf inequalities for iso-
lating blocks (3.1)–(3.6). The novelty in these inequalities is that they provide constraints on the
dynamics without involving the topology of the manifold M , in other words without reference to
the Betti numbers ofM . These inequalities, (3.9)–(3.11), called Poincaré–Hopf inequalities for closed
manifolds, form a set of upper bounds on the number of singularities of index j in terms of the al-
ternating sum of singularities of index k < j and their duals of index (n− k). As mentioned in the
previous section, the parameter κ will play the role of the Cornea genus.




n=2i + 1

{
−hi≤(hi+2−hi−1)−(hi+3−hi−2) +− . . .± (h2i − h1)± (h2i+1−h0)≤hi+1

n=2i
{
−hi≤(hi+1−hi−1)−(hi+2−hi−2) +− . . .± (h2i−2−h2)± (h2i−h0)≤hi



−hj≤(hn−(j−1)−hj−1)−(hn−(j−2)−hj−2) +− . . .± (hn−1−h1)± (hn−h0)≤hn−j
...

−h2 ≤ (hn−1 − h1)− (hn − h0) ≤ hn−2 (2){
h1 ≥ h0 − 1 + κ
hn−1 ≥ hn − 1 + κ

(1)

(3.9)

2In terms of graphs, κ = 0 means that the Lyapunov graph is a tree.
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In the case n = 2i + 1 we have
2i+1∑
j=0

(−1)jhj = 0 (3.10)

and in the case n = 2i ≡ 2 mod 4 we have the additional contraint that

hi −
i−1∑
j=0

(−1)j(h2i−j − hj) be even. (3.11)

Surprisingly, it turns out that, whenever these inequalities are satisfied for a pre-assigned dynamical
data (h0, . . . , hn), it can be shown that there exists a collection of Betti numbers that satisfy the
Morse inequalities, (1.1), with this same data. Conversely, if the Morse inequalities are satisfied
for (h0, . . . , hn) and (γ0, . . . , γn) then (h0, . . . , hn) satisfies the Poincaré–Hopf inequalities. This is
stated in Theorem 3.
A nonnegative integral vector (γ0, γ1, . . . , γn−1, γn) satisfying γn−k = γk, for k = 0, . . . , n, γ0 =
γn = 1 (and in some cases it will be required that γn/2 be even if n is even), is called a Betti number
vector.

Theorem 3. A set of nonnegative numbers (h0, h1, . . . , hn) satisfies the Poincaré–Hopf inequalities in
(3.9) if and only if it satisfies the Morse inequalities (1.1) for some Betti number vector
(γ0, γ1, . . . , γn−1, γn).

This result is notmerely a change of inequalities. One should note that theMorse inequalities involve
(h0, . . . , hn) and (γ0, . . . , γn) whereas the Poincaré–Hopf inequalities only involve (h0, . . . , hn).
This theorem has many applications, in particular, it can be used to obtain partial answers to the
question of realizability of abstract Lyapunov graphsL(h0,. . . , hn) as flows on closedmanifolds. Note
that, abstract Lyapunov graphs carry dynamical data and local topological invariants of level sets
but no global topological information of the manifold on which it can be realized. Hence, one cannot
verify the Morse inequalities for abstract Lyapunov graphs, however, we can verify the Poincaré–
Hopf inequalities. For more details see [Bertolim et al., 2003a] and [Bertolim et al., 2005b].
In some sense the Poincaré–Hopf inequalities pre-process admissible data, that is, if (h0, . . . , hn)
does not satisfy the Poincaré–Hopf inequalities, there is no closed n-manifold which admits
(h0, . . . , hn) as its dynamical data. This follows from Theorem 3 and from the classical results of
Morse [Morse, 1925].
The Poincaré–Hopf inequalities can also be used to prove the existence of critical points of index
k from a priori knowledge of the existence of critical points of lower index and their duals. That
is, these inequalities can also be used to give bounds on the numbers hj with respect to alternating
sums of hs with s < j and their duals hn−s. In the case of Morse flows these inequalities provide
bounds on the number of singularities cj of Morse index j with respect to alternating sums of cs

with s < j and their duals cn−s.
Afterwards, in [Bertolim et al., 2005b] we give a topological interpretation of the Poincaré–Hopf in-
equalities by associating with any vertex label (h0, h1, . . . , hn) a collection of Betti numbers vectors
(γ0, γ1, . . . , γn−1, γn).
In fact, we compute algorithmically all the possible Betti numbers satisfying the Morse inequalities
for any given pre-assigned index data (h0, h1, . . . , hn). This collection of abstract Betti numbers vec-
tors constitutes a polytope which we called Morse polytope and which is completely characterized
in [Bertolim et al., 2005b]. The parameter κ played an important role in determining the Morse
polytope, that is the convex hull of all the Betti numbers (γ0, γ1, . . . , γn−1, γn) that satisfy the Morse
inequalities for a given dynamical-topological data (h0, h1, . . . , hn, κ) that satisfy the Poincaré–Hopf
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inequalities for closed manifolds. Among other interesting geometrical properties, as κ increases the
Morse polytopes become smaller, the polytope associated with a higher value of κ being contained
in the polytope associated with a lower value.
In [Bertolim, 2012a] a new proof of the equivalence result presented in [Bertolim et al., 2005b] is
provided by using elementary techniques, where related results and further applications of these
inequalities were explored.

3.4 PHI for nonsingular Morse-Smale flows

Morse-Smale flows3 on smooth compact manifolds are roughly those flows which exhibit only two
types of recurrent behavior: periodic closed orbits and rest points which are of hyperbolic type4.
Let us emphasize here that the flow Φ is nonsingular Morse-Smale, that is, all of its recurrent sets
are closed periodic orbits and lie in the interior of M . In the sequel, we shall simply call them periodic
orbits because all the flows we shall consider are nonsingular Morse-Smale.
For odd n, let us denote by N any n-dimensional compact connected oriented manifold with bound-
ary ∂N consisting of (e+ + e−) connected components, endowed with a nonsingular Morse-Smale
flow Φ transversally entering N through e+ boundary components N+

i , i = 1, . . . e+, and transver-
sally exiting through the remaining e− boundary components N−

i , i = 1, . . . e−.
Recall that in [Franks, 1982] Franks proved that a hyperbolic periodic orbit of index j, can be viewed
as the joining of two hyperbolic singularities p and q of adjacent indices j and j + 1 respectively.
Given a nondegenerate singularity of index j, one can associate with it the dimensions of the Conley
homology indices, hj = 1 and hk = 0 for all k ̸= j. Let Aj = (hj, hj+1) be the number of periodic
orbits of index j, where hj be the number of singularities of index j.
The Poincaré–Hopf inequalities for nonsingular Morse-Smale flows on isolating blocks are an adap-
tation of the Poincaré–Hopf inequalities above described. They differ only in inequalities (3.3)
and (3.4). These adaptation should be done in order to ensure the continuation of an abstract Lya-
punov graph LN to an abstract Lyapunov graph of Smale type, in which any vertex v is labeled by
Aj = 1 if it corresponds to a periodic orbit of index j as defined in Section 2.4.
The difference in inequalities (3.3) and (3.4) comes from the fact that in the case of the Poincaré–Hopf
inequalities one treats h0 by imposing, as necessary and sufficient condition, that h1 ≥ h0 + e−− 1,
i.e., inequality (3.3). This inequality adjusts the problem of connectivity, that is, it ensures that the
continued graph – as well as the corresponding isolating neighborhood – are connected. By this
inequality we guarantee the possibility of having h0 + e− − 1 singularities of index 1 of type 0-c,
hc

1, which means connecting. Hence,

hc
1 ≥ h0 + e− − 1. (3.12)

It is important to observe that the singularities h1 of type 0-c are responsible for connecting the
outgoing boundary components. For example, if we have three outgoing boundary components,
representing by h0 = 3 we need two h1 of type 0-c for producing a connected neighborhood. In
order to better understand, consider the example in three-dimension presented in Figure 3.1. In
this example we have a vertex vk which is labeled by h0 = 1 and h1 = 1. Since these data satisfy
inequality (3.3), we can replace the vertex as in the right side of Figure 3.1: by two vertices vk1 and

3A smooth flow ϕt on M is called Morse-Smale if the chain recurrent set R of ϕt consists of a finite number of
hyperbolic closed orbits and hyperbolic rest points, and the unstable manifold of any closed orbit or rest point has
transversal intersection with the stable manifold of any closed orbit or rest point.

4A subset of a manifold is said to have hyperbolic structure with respect to a map f , when its tangent bundle may
be split into two invariant subbundles, one of which is contracting, and the other expanding with respect to f .
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vk2 respectively labeled with h0 = 1 and h1 = 1. It is important to note that the left and the right
side of Figure 3.1 have the same number of incoming and outgoing edges and moreover they are
both connected.

β1 = 0

h0 = 1, h1 = 1vk

β1 = 0

β1 = 0

h1 = 1vk2

vk1 h0 = 1β1 = 0

Figure 3.1: Connectivity of the outgoing edges.

In the case of the Poincaré–Hopf inequalities for nonsingular Morse-Smale flows, inequality (3.3)
should bemodified, because the presence of h0 ̸= 0 implies the existence of periodic orbits of index 0.
Each one is obtained by joining a singularity of index 0 with a singularity of index 1 of type 1-d,
hd

1 (observe that all singularities h1 of type 0-c, hc
1, were already used for solving the connectivity

problem as explained above). Hence, we have that

hd
1 ≥ h0. (3.13)

For this reason, since h1 = hc
1 + hd

1 inequalities (3.12) and (3.13) imply that we have the following
inequality replacing (3.3)

h1 ≥ 2h0 − 1 + e− (3.14)
Each of the remaining singularities of index 1 is to be coupled with a singularity of index 2, thus
creating a periodic orbit of index 1. Therefore, the left side of inequalities (3.1) remains the same for
all j ̸= 1.
Observe that the graph presented in Figure 3.1 cannot be replaced by a connected graph containing a
periodic orbit of index 0: if it were the case we would use h1 = 1 and h0 = 1 to have a vertex labeled
with A0 = 1, with one incoming edge and no outgoing edges, and we would be in the situation
of the right side of Figure 3.2, that is, a non connected graph. It is also important to observe that
inequality (3.14) is not satisfied.

β1 = 0

h0 = 1, h1 = 1

β1 = 0

β1 = 0

A0 = 1β1 = 0

Figure 3.2: Impossibility of continuation to a connected graph containing a periodic orbit of index 0.

Figure 3.3 gives an example in dimension three where inequality (3.14) is satisfied and hence we can
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replace the initial vertex to a connected one containing only periodic orbits. It is important to note
that the left and the right side of Figure 3.3 have the same number of incoming and outgoing edges
and moreover they are both connected.

β1 = 0

h0 = 1, h1 = 2, h2 = 1

β1 = 0

β1 = 0

A1 = 1

A0 = 1β1 = 0

Figure 3.3: Continuation to a connected graph containing only periodic orbits.

Analogously, the necessary and sufficient condition when one treats hn is hn−1 ≥ hn + e+ − 1, i.e.,
inequality (3.4), which assures the existence of hn + e+ − 1 singularities of type (n − 1)-d, which
means disconnecting. Hence,

hd
n−1 ≥ hn + e+ − 1. (3.15)

In the case of the Poincaré–Hopf inequalities for nonsingular Morse-Smale flows, the presence of
hn ̸= 0 implies the existence of periodic orbits of index n − 1. Each one is obtained by joining a
singularity of index n with a singularity of index n− 1 of type (n− 1)-c, hc

n−1. Hence, we have that

hc
n−1 ≥ hn. (3.16)

For this reason, since hn−1 = hc
n−1 + hd

n−1 inequalities (3.15) and (3.16) imply that we have the
following inequality replacing (3.4)

hn−1 ≥ 2hn − 1 + e+ (3.17)

Each of the remaining singularities of index n− 1 is to be coupled with a singularity of index n− 2,
thus creating a periodic orbit of index n− 2. Therefore, the left side of inequalities (3.1) remains the
same for all j ̸= n− 1.
These inequalities were also used to compute, in terms of a given homological information, a number
pmin such that any nonsingular Morse-Smale flow ϕ on anymanifoldM satisfying the given abstract
homological data must have at least pmin closed periodic orbits. This will be discussed in Section 5.2.

3.5 Poincaré–Hopf inequalities for periodic orbits

As discussed in Section 3.3, in [Bertolim et al., 2005b] a collection of inequalities called Poincaré–
Hopf inequalities for closed manifolds were presented, providing constraints on the dynamics with-
out involving the topology of the manifold M . In the same paper, it was proved that a pre-assigned
dynamical data (h0, . . . , hn) satisfies the Poincaré–Hopf inequalities if and only if one of the corres-
ponding Betti numbers vector (γ0, γ1, . . . , γn−1, γn) satisfies the Morse inequalities.
In [Asimov, 1975], Asimov showed the existence of nonsingular Morse-Smale flows5 on essen-
tially arbitrary (smooth, connected and compact) manifolds. In [Smale, 1983], Smale investigates

5By a nonsingular Morse-Smale flow on Mn we mean a flow ϕt satisfying the following conditions:
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the interplay between the periodic structure of a nonsingular Morse-Smale flow, i.e., the number
of closed orbits of each index, and the topology of the manifold on which the flow occurs. Franks
in [Franks, 1979] strengthens the necessary conditions presented in Smale [Smale, 1983] to obtain
conditions which are both necessary and sufficient. More precisely, Franks in [Franks, 1979] proves
the following: Let M be a manifold endowed with a nonsingular Morse-Smale flow and let Ak be
the number of closed orbits having orientable unstable manifolds of dimension k + 1. It is shown
that if dim M = n, γk = dim Hk(M ;Q), then

Ak ≥ γk − γk−1 + · · · ± γ0, for all k (3.18)
A1 ≥ A0 − 1 and An−2 ≥ An−1 − 1 (3.19)

 if Ak−1 = Ak+1 = 0 and γk − γk−1 + · · · ± γ0 ≤ 0, then Ak = 0 (3.20)

This result gives the necessary conditions for abstract data to be realized as a nonsingular Morse-
Smale flow on a manifold. Inequality (3.18) is essentially the Morse inequalities of Smale [Smale,
1983], the only difference being that Franks [Franks, 1979] considers Ak the number of closed orbits
of index k having orientable unstable manifolds while Smale [Smale, 1983] considers Ak all orbits
of index k. Franks also proved in the same paper, [Franks, 1979], that if M is a simply connected
compact manifold, dim M ≥ 5, the Euler characteristic of M vanishes and H∗(M ;Z) is torsion free,
then to any set of nonnegative integersAk satisfying (3.18)−(3.20) there corresponds a nonsingular
Morse-Smale flow with Ak closed orbits having orientable unstable manifolds of dimension k + 1
and no closed orbits having nonorientable unstable manifolds.

Equations (3.18), (3.19) and (3.20) will be calledMorse-Smale inequalities in this work.

In order to get results involving periodic orbits similar to the results presented in [Bertolim et al.,
2005b] for singularities, in [Bertolim, 2012b] we introduced two inequalities providing constraints
on the dynamics for periodic orbits without involving the topology of the manifold M . One refers
to these inequalities, (3.21), as the Poincaré–Hopf inequalities for periodic orbits.

A1 ≥ A0 − 1 and An−2 ≥ An−1 − 1. (3.21)

It turns out that, whenever these inequalities (3.21) are satisfied for a pre-assigned dynamical data
(A0, . . . , An−1), it can be shown that there exists a collection of Betti numbers that satisfy the
Morse-Smale inequalities, (3.18), (3.19) and (3.20), with this same data. Conversely, if the Morse-
Smale inequalities are satisfied for (A0, . . . , An−1) and (γ0, . . . , γn) then (A0, . . . , An−1) satisfies
the Poincaré–Hopf inequalities for periodic orbits. This is stated in Theorem 4.

Theorem 4. A set of nonnegative numbers (A0, A1, . . . , An−1), satisfies the Poincaré–Hopf inequali-
ties for periodic orbits (3.21) if and only if it satisfies the Morse-Smale inequalities (3.18), (3.19) and (3.20)
for some Betti number vector6 (γ0, γ1, . . . , γn−1, γn).

(i) the chain-recurrent setR of ϕt consists of finitely many hyperbolic closed orbits;

(ii) for each pair of closed orbits of ϕt, the intersection of their stable and unstable manifolds is transversal.

6A Betti number vector in dimension n is a list of nonnegative integers (γ0, γ1, . . . , γn−1, γn) that satisfy Poincaré
duality (γn−k = γk for all k), and the connectivity, or boundary, conditions γ0 = γn = 1. Furthermore, if n = 2i, i odd,
we have the additional condition that γi be even.
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It is important to observe that once again this result is not purely a change of inequalities. TheMorse-
Smale inequalities involve (A0, . . . , An−1) and (γ0, . . . , γn) whereas the Poincaré–Hopf inequalities
for periodic orbits only involve (A0, . . . , An−1).
Here are some applications of these results. Theorem 4 together with results of Franks [Franks, 1979]
imply that if (A0, . . . , An−1) does not satisfy the Poincaré–Hopf inequalities for periodic orbits,
there is no closed n-manifold which admits (A0, . . . , An−1) as its dynamical data. In this sense the
Poincaré–Hopf inequalities for periodic orbits filter admissible data.
One can also use Theorem 4 to obtain partial answers to the realizability question of abstract Lya-
punov graphs. Since an abstract Lyapunov graph carries dynamical data and local topological in-
variants of level sets, but no global topological information of the manifold on which they can be
realized, the Morse-Smale inequalities cannot be verified. However the Poincaré–Hopf inequalities
for periodic orbits can be easily verified for Lyapunov graphs.
By considering a closed manifold endowed with a nonsingular Morse-Smale flow, it was also shown
in this same paper, [Bertolim, 2012b], that a particular case of the Poincaré–Hopf inequalities for
nonsingular Morse-Smale flows on isolating blocks (discussed in Section 3.4), are the inequali-
ties (3.22)-(3.26). One refers to these inequalities (3.22)-(3.26) as the Poincaré–Hopf inequalities
for nonsingular Morse-Smale flows on closed manifolds, where hj represents the number of
singularities of index j.

−hj ≤
j−1∑
k=0

(−1)k+j+1(hn−k − hk)≤hn−j, j = 2, . . . ,

⌊
n

2

⌋
(3.22)

h1 ≥ 2h0 − 1 (3.23)

hn−1 ≥ 2hn − 1 (3.24)

n = 2i + 1
{

n∑
k=0

(−1)khk = 0 (3.25)

 n = 2i, i odd, i ≥ 3
{

hi −
i−1∑
k=0

(−1)k(hn−k − hk) ≡ 0 mod 2 (3.26)

These inequalities (3.22)-(3.26) play important role in the proof of Theorem 4.
We must highlight that the results of [Bertolim, 2012b] differ from results in [Bertolim et al., 2005b]
dynamically since periodic orbits are considered instead of singularities. Although we borrow
from [Bertolim et al., 2005b] some techniques, the results in [Bertolim, 2012b] are proven by means
of more specific techniques for periodic orbits while the equivalent results in [Bertolim et al., 2005b]
make use of elaborate techniques from network flow theory.

3.6 Componentwise Poincaré–Hopf inequalities

In [Bertolim et al., 2003a] a morsification algorithm, which will be described in Section 4.1.1, was
translated into a system of linear equations whose feasibility was equivalent to that of a set of ine-
qualities involving the input data, given by the Poincaré–Hopf inequalities described in Section 3.1.
In fact, much work has been done in this direction combinatorially, for example in [Bertolim et al.,
2003a, 2005a,b]. The novelty in the tools employed therein was the use of network flow theory. This
application of network flow theory to morsification problems turned out to be a powerful tool in
providing constructive proofs, and recipes for the generation of all possible nonnegative integral
solutions associated with this linear system of equations. A gateway was open so that one could
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now ask questions in both realms allowing for the exploration of many topological problems that
may be modeled as a network flow theoretical question. This marked a turning point in this type
of investigation which we explore in this work. In an approach evocative of the one employed in
[Bertolim et al., 2003a] and that will be described in Section 4.1.1, an algorithm which describes the
componentwise morsification was presented in [Bertolim et al., 2023b]. This algorithm determines a
system of linear equations. The equivalence between the existence of nonnegative integral solutions
to this system of linear equations and the feasibility of a new system of linear inequalities, the
componentwise Poincaré–Hopf inequalities, involving the topological-dynamical input data
set, is established.

Let N be an n-dimensional compact connected oriented manifold with boundary ∂N = N+ ∪
N− consisting of (e+ + e−) connected boundary components, n ≥ 3, n odd. N is endowed
with a flow ϕ which has S as its maximal isolated invariant set with Conley homology indices
(h0, h1, . . . , hn−1, hn). Moreover, ϕ enters transversally through e+ boundary components N+

k , k =
1, . . . e+, and exits transversally through the remaining e− boundary components N−

k , k = 1, . . . e−.
βj,k corresponds to the j-th Betti number of the component k. The componentwise Poincaré–
Hopf inequalities are the following:

If ℓ is odd

0 ≤ −(e− − 1) +
(ℓ−1)/2∑

j=1
(h2j−1 + hn−2j) + hℓ

−
(ℓ−1)/2∑

j=1

 e+∑
k=1

β+
2j−1,k +

e−∑
k=1

β−
2j,k

 ≤ e+∑
k=1

β+
ℓk, for 1 ≤ ℓ < i

(3.27)

0 ≤ −(e− − 1) +
(n−ℓ)/2∑

j=1
(h2j−1 + hn−2j)−

(n−ℓ)/2−1∑
j=1

 e+∑
k=1

β+
2j−1,k +

e−∑
k=1

β−
2j,k


−

e+∑
k=1

β+
n−ℓ−1,k ≤

e−∑
k=1

β−
n−ℓ,k, for i + 1 < ℓ ≤ n− 1

(3.28)

If ℓ is even

0 ≤ −(e+ − 1) +
ℓ/2∑
j=1

(h2j + hn−2j+1)

−
ℓ/2−1∑
j=1

 e−∑
k=1

β−
2j−1,k +

e+∑
k=1

β+
2j,k

− e−∑
k=1

β−
ℓ−1,k ≤

e+∑
k=1

β+
ℓk, for 1 ≤ ℓ < i

(3.29)

0 ≤ −(e+ − 1) +
(n−ℓ−1)/2∑

j=1
(h2j + hn−2j+1) + hℓ

−
(n−ℓ−1)/2∑

j=1

 e−∑
k=1

β−
2j−1,k +

e+∑
k=1

β+
2j,k

 ≤ e−∑
k=1

β−
n−ℓ,k, for i + 1 < ℓ ≤ n− 1

(3.30)
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If i is odd
e+∑

k=1
β+

ik

2 = −(e− − 1) +
(i−1)/2∑

j=1
(h2j−1 + hn−2j) + hi

−
(i−1)/2∑

j=1

 e+∑
k=1

β+
2j−1,k +

e−∑
k=1

β−
2j,k

 ,

(3.31)

e−∑
k=1

β−
ik

2 = −(e+ − 1) +
(i−1)/2∑

j=1
(h2j + hn−2j+1) + hi+1

−
(i−1)/2∑

j=1

 e−∑
k=1

β−
2j−1,k +

e+∑
k=1

β+
2j,k

 ,

(3.32)

If i is even
e+∑

k=1
β+

ik

2 = −(e+ − 1) +
i/2∑
j=1

(h2j + hn−2j+1)

−
i/2−1∑
j=1

 e−∑
k=1

β−
2j−1,k +

e+∑
k=1

β+
2j,k

− e−∑
k=1

β−
i−1,k,

(3.33)

e−∑
k=1

β−
ik

2 = −(e− − 1) +
i/2∑
j=1

(h2j−1 + hn−2j)

−
i/2−1∑
j=1

 e+∑
k=1

β+
2j−1,k +

e−∑
k=1

β−
2j,k

− e+∑
k=1

β+
i,k

(3.34)

When n = 3, the componentwise Poincaré–Hopf inequalities reduce to the following equations:

h1 − (e− − 1)−
e+∑

k=1

β+
1k

2 = 0, (3.35)

h2 − (e+ − 1)−
e−∑

k=1

β−
1k

2 = 0, (3.36)

which are in fact satisfied by the graphs in Figures 4.13 and 4.14.

3.7 Generalized Poincaré–Hopf inequalities

Our research continued motivated by the possibility of generalizing the Poincaré–Hopf inequalities
to a finite-dimensional noncompact manifold N , which was not previously defined in this setting.
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We sought the relationship of the homology of the flow and its inverse flow in a noncompact set-
ting in order to prove a generalized version of the Poincaré-Hopf inequalities. We investigated the
relationship of the homology of the flow and its inverse flow in a noncompact setting and the follow-
ing duality result was proved: Ȟp(N∗, (N+)∗) ≃ Hn−p(N, N−) for an n-manifold N with bound-
ary ∂N = N+ ⊔ N− a disjoint union, where N , N+ and N− need not be compact, N+ and N−

are chosen arbitrarily in ∂N , N∗ represents the Alexandroff one-point compactification of N and
Ȟ∗(·) represents the Ĉech cohomology. Observe that the duality results described above imply that
hj(N, N+) = rank Hj(N, N+) = rank Hn−j(N∗, (N−)∗) = h∗

n−j(N∗, (N−)∗). Using this duality
result, we prove in [Bertolim et al., 2011a] a generalized version of the Poincaré–Hopf inequalities.
More precisely, we prove the following result:

Theorem 5. Let N be a connected n-manifold possibly noncompact endowed with a flow satisfying
Ȟp(N∗, (N+)∗) ≃ Hn−p(N, N−) and with boundary ∂N = N+ ⊔ N−, the disjoint union of closed
spaces N+ and N− chosen arbitrarily in ∂N . Let hj = rank Hj(N, N−), h∗

j = rank Hj(N∗, (N−)∗)
and rank(Hj(N±)) = B±

j . The Poincaré–Hopf inequalities for n = 2i and n = 2i + 1 are:

n
=

2i



{
−(B+

n−1 −B−
n−1) + (B+

n−2 −B−
n−2)− . . .± . . .± (B+

0 −B−
0 ) =

n∑
j=0

(−1)j+1(h∗
j − hj)

{
h∗

1 ≥ −(B+
n−1 −B−

n−1)− (hn − h∗
0)

hn−1 ≥ −[−(B+
n−1 −B−

n−1)− (hn − h∗
0)]

...
h∗

j ≥ (−1)j(B+
n−1 −B−

n−1)± (B+
n−2 −B−

n−2)±− . . .± (B+
n−j −B−

n−j)
−(hn−(j−1) − h∗

j−1 + (hn−(j−2) − h∗
j−2) +− . . .± (hn−1 − h∗

1)± (hn − h∗
0)

hn−j ≥ −
[
(−1)j(B+

n−1 −B−
n−1)± (B+

n−2 −B−
n−2)±− . . .± (B+

n−j −B−
n−j)

−(hn−(j−1) − h∗
j−1) + (hn−(j−2) − h∗

j−2) +− . . .± (hn−1 − h∗
1)± (hn − h∗

0)
]

...

hj ≥ −(B+
j−1 −B−

j−1) + (B+
j−2 −B−

j−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )
−(h∗

n−(j−1) − hj−1) + (h∗
n−(j−2) − hj−2) +− . . .± (h∗

n−1 − h1)± (h∗
n − h0)

h∗
n−j ≥−

[
−(B+

j−1−B−
j−1)+(B+

j−2−B−
j−2)+− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

−(h∗
n−(j−1) − hj−1) + (h∗

n−(j−2) − hj−2) +− . . .± (h∗
n−1 − h1)± (h∗

n − h0)
]

...{
h1 ≥ −(B+

0 −B−
0 )− (h∗

n − h0)
h∗

n−1 ≥ −[−(B+
0 −B−

0 )− (h∗
n − h0)]

(3.37)
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n
=

2i
+

1


{
−(B+

n−1 −B−
n−1) + (B+

n−2 −B−
n−2)− . . .± . . .± (B+

0 −B−
0 ) =

2i+1∑
j=0

(−1)j+1(hj + h∗
j ))

{
h∗

1 ≥ −(B+
n−1 −B−

n−1)− (hn − h∗
0)

hn−1 ≥ −[−(B+
n−1 −B−

n−1)− (hn − h∗
0)]

...
h∗

j ≥ −(B+
n−1 −B−

n−1) + (B+
n−2 −B−

n−2) +− . . .± (B+
n−j −B−

n−j)
−(hn−(j−1) − h∗

j−1) + (hn−(j−2) − h∗
j−2) +− . . .± (hn−1 − h∗

1))± (hn − h∗
0)

hn−j ≥ −
[
−(B+

n−1 −B−
n−1) + (B+

n−2 −B−
n−2) +− . . .± (B+

n−j −B−
n−j)

−(hn−(j−1) − h∗
j−1) + (hn−(j−2) − h∗

j−2) +− . . .± (hn−1 − h∗
1)± (hn − h∗

0)
]

...

hj ≥ −(B+
j−1 −B−

j−1) + (B+
j−2 −B−

j−2) +− . . .± (B+
2 −B−

2 )± (B+
1 −B−

1 )± (B+
0 −B−

0 )
−(h∗

n−(j−1) − hj−1) + (h∗
n−(j−2) − hj−2) +− . . .± (h∗

n−1 − h1)± (h∗
n − h0)

h∗
n−j ≥−

[
−(B+

j−1−B−
j−1)+(B+

j−2−B−
j−2)+− . . .± (B+

2 −B−
2 )± (B+

1 −B−
1 )± (B+

0 −B−
0 )

−(h∗
n−(j−1) − hj−1) + (h∗

n−(j−2) − hj−2) +− . . .± (h∗
n−1 − h1)± (h∗

n − h0)
]

...{
h1 ≥ −(B+

0 −B−
0 )− (h∗

n − h0)
h∗

n−1 ≥ −[−(B+
0 −B−

0 )− (h∗
n − h0)]

(3.38)
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Lyapunov graphs continuation
***

"Knowledge is indivisible. When people grow wise in one direction, they are sure to make it easier for
themselves to grow wise in other directions as well. On the other hand, when they split up knowledge,
concentrate on their own field, and scorn and ignore other fields, they grow less wise — even in their own
field." Isaac Asimov
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4.4 Componentwise Morsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

It is well known that the interaction among different areas very often produces interesting results. In
our case, the use of network flow theory techniques to obtain topological dynamical system results
for Lyapunov graphs, have demonstrated to be very fruitful. This is what will be described in the
next sections.

4.1 Lyapunov graphs morsification

First, let us say that an important property of the Conley index is that it is invariant under continua-
tion. A parameterized family of flows on M is a collection of flows {ϕλ

t : λ ∈ I} indexed by
I = [0, 1] such that Φt(x, λ) = (ϕλ

t x, λ) is a smooth flow on M × I . We say that S0, an invariant
set for ϕ0

t , and S1, an invariant set for ϕ1
t , are related by continuation if there exists an isolated

invariant set S ⊂ M × I for Φt such that S0 = S ∩ {(x, 0)} and S1 = S ∩ {(x, 1)}. If N is
an isolating neighborhood for ϕλ

t for all λ ∈ I , let S = Inv(N × I) in Φt. Then S defines a
continuation from S ∩ {(x, 0)} to S ∩ {(x, 1)}. That means the index pair (N, N−) is the same but
the dynamics within N changes significantly. For example, consider the following one parameter
family of differential equations: ẋ = x(1− x2)− λ, where λ is the parameter. The critical points of
this equation is given by the zero set of the functionf(x, λ) = x(1− x2)− λ, which is represented
in Figure 4.1. Each horizontal line corresponds to the phase space of the equation. The fixed points
of these equations are isolated invariant sets. An interval in Figure 4.1 is marked which is in fact an
isolating neighborhood for the maximal invariant set Sλ = Inv(N, ϕλ) contained in its interior, for
each corresponding parameter λ. Therefore, S0, Sλ1 , Sλ2 , are related by continuation.
Inspired byConley’s idea of continuation of an isolated invariant set to a simpler one, Reineck proved
a continuation result showing that any isolated invariant set on a manifold can be continued to an

53
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0

λ1

λ2

λ = 0
S0

S1

S2

I

λ

S

N

Figure 4.1: Continuation property – 1-parameter family of flows on R.

isolated invariant set of a gradient flow ([Reineck, 1991, 1992]). One inquires whether (N, N+, N−)
which has numerical Conley homology indices equal to (h0, h1, . . . , hn−1, hn) admits a gradient-like
flow φt having precisely hj nondegenerate singularities of Morse index j, for j = 0, . . . n, such that
N+ and N− are precisely its entering and exiting sets. As discussed in the previous sections, these
gradient flows possessing only nondegenerate singularities are calledMorse flows. The process of
passing from φ to ϕ is called a morsification of φ. This is precisely what Figure 4.2 depicts. The
picture on its left side represents an isolated invariant set S, labelled with h1 = 3 in (N, N+, N−)
and endowed with the flow ϕ, whereas the pictures on the right side represent Morse flows ϕ′ and
ϕ having precisely 3 nondegenerate singularities of Morse index 1 in (N, N+, N−).

h1 = 3

h1 = 1
h1 = 1
h1 = 1

h1 = 1
h1 = 1
h1 = 1

ϕ
′ = mo

rsific
ation

of φ

ϕ = morsification of φ

Figure 4.2: Morsification of a degenerate singularity of φ with numerical Conley index h1 = 3.

Since our main question – what abstract Lyapunov graphs L are realizable – is general, we asked
how exactly this continuation result could be interpreted in the Lyapunov graphs setting. First we
investigate under what conditions L can be continued to an abstract Lyapunov graph of Morse type.
We should mention that in [Bertolim et al., 2003a, 2005a, 2003b], we treated the continuation results
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of abstract Lyapunov graphs to Lyapunov graphs of Morse type. Since the writing of those articles,
the expression continuation to a graph of Morse type has evolved to a pithier terminology,
Lyapunov graph morsification. See [Ledesma et al., 2023]. However, the expression Lyapunov
graph continuation is still of significance and remains in use whenever the end result is not a
graph of Morse type.
Since each vertex should represent a component of the chain recurrent set which we assumed to be
an isolated invariant set inside the isolating block, it is natural to treat first the local morsification
question. The morsification of L should be done at each vertex v. This consists in replacing v by
an abstract graph of Morse type Lv respecting the labels of the incident edges of v and keeping the
dimensions of the homological indices of v in the sum of the homological indices of the vertices of
Lv as in Figure 4.3. In [Bertolim et al., 2003a], we prove that:

Theorem 6. Every abstract Lyapunov graph that satisfies the Poincaré–Hopf inequalities (for isolating
blocks) at each vertex can be morsified to an abstract Lyapunov graph of Morse type.

Moreover, all the possible morsifications of a vertex to a Lyapunov graph of Morse type can be
computed algorithmically.
As a consequence, an abstract Lyapunov graph which does not admit a morsification cannot be
realized by any flow on any manifold. In [Bertolim et al., 2005a] and [Bertolim et al., 2005b] we
obtain global conditions for the morsification of abstract Lyapunov graphs.
Figure 4.3 presents an example of an abstract Lyapunov morsification in dimension 7.

•h1 = 2, h2 = 2, h3 = 1, h6 = 1

β1 = 1
β2 = 0
β3 = 2

β1 = 0
β2 = 1
β3 = 2

β1 = 2
β2 = 1
β2 = 2

β1 = 2
β2 = 2
β3 = 4

β1 = 1
β2 = 2
β3 = 4

•

•

•

•

•

•

0-c h1 = 1

0-c h1 = 1

2-d h2 = 1

2-d h2 = 1

3-d h3 = 1

4-d h6 = 1

β1 = 3 β2 = 2 β3 = 6

β1 = 3 β2 = 3 β3 = 6

β1 = 3 β2 = 4 β3 = 6

β1 = 3 β2 = 4 β2 = 8

β1 = 1
β2 = 0
β3 = 2

β1 = 0
β2 = 1
β3 = 2

β1 = 2
β2 = 1
β3 = 2

β1 = 2
β2 = 2
β3 = 4

β1 = 1
β2 = 2
β3 = 4

Figure 4.3: A morsification of an abstract Lyapunov.

In [Bertolim et al., 2005b] we also characterize Lyapunov graphs with cycle number κ and we extend
the continuation results of [Bertolim et al., 2003a] and the main result of [Bertolim et al., 2005a].
Moreover, we show amore general version of the Poincaré–Hopf inequalities and their relation with
the Morse inequalities. We also prove that the first Betti number must be greater than or equal to κ.
This work gives a partial answer to the realization problem for Lyapunov graphs on n-manifolds.
The homological techniques used in [Bertolim et al., 2003a,b, 2005a,b] generalize the techniques
used in [Cruz and de Rezende, 1999] where Morse-Smale Lyapunov graphs were considered. In
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particular, we borrow from it the classification of singularities of index k (into connecting, dis-
connecting or invariant), based on the homological effect of the singularity on the host manifold’s
level sets, as discussed in Section 2.4. However, several new techniques were introduced in these
works. In [Bertolim et al., 2003a] we introduced the Poincaré–Hopf inequalities for isolating blocks
as necessary and sufficient conditions for the morsification. The novelty in the proofs is the use of
singularities of index k of type k-disconnecting and (k − 1)-connecting as unknowns of a linear
system. Such a linear system is generated by the morsification algorithm which we will discuss in
Section 4.1.1. This linear system can be interpreted as a network flow problem. All the solutions
to this problem are obtained by means of a particular solution and elementary circulations in the
network. From these solutions, we establish a method for constructing the Betti numbers satisfying
the generalized Morse inequalities and the relation γ1 ≥ κ where κ is related to the Cornea genus.

4.1.1 Morsification algorithm

The goal of this algorithm is to give the conditions for an abstract Lyapunov semigraph to be mor-
sified. This was introduced in [Bertolim et al., 2003a]. Let Lv be a Lyapunov semigraph consis-
ting of a vertex v labelled with a singularity whose numerical Conley homology indices are given
by (h0, h1, h2, . . . , hn−1, hn) and incoming edges labelled with {(β+

0 , . . . , β+
n−1)i}e+

i=1 and outgoing
edges labelled with {(β−

0 , . . . , β−
n−1)i}e−

i=1, where i denotes the edge. Let B+
j = ∑e+

i=1(β+
j )i and

B−
j = ∑e−

i=1(β−
j )i. We first consider a Lyapunov semigraph morsification algorithm for a saddle

type vertex v, that is h0 = hn = 0, n ≥ 2 and hj , 0 < j < n nonnegative integers. See Figure 4.4.
Observe that B−

0 = e− and B+
0 = e+.

(0, h1, h2, . . . , hn−1, 0)

(β−
0 , . . . , β−

n−1)e−(β−
0 , . . . , β−

n−1)1

(β+
0 , . . . , β+

n−1)e+(β+
0 , . . . , β+

n−1)1

. . .

. . .

Figure 4.4: Vertex to be morsified.

Using the algebraic effects developed in Section 2.4, the Lyapunov semigraphmorsification algo-
rithm has four basic steps, which are summarized below. For details see [Bertolim et al., 2003a].

Step 1: adjustment of the incident edges which will defines G+ and G−. This is done by choosing
hc

1 = e− − 1 and hd
n−1 = e+ − 1. This is possible by inequality (3.3). By choosing this number of

vertices labelled with 1-singularities, G− is formed with e− outgoing edges and one incoming edge.
Singularities of type 0-c do not alter the βj with 0 < j < n − 1. This type of singularity decreases
β0 and by duality βn−1. Hence, the incoming edge of G− has B−

0 = B−
n−1 = 1 and B−

j = ∑e−

i=1(β−
j )i

with j ∈ {1, . . . , n − 2}. Similarly, the graph G+ is formed by choosing e+ − 1 vertices labelled
with hn−1 = 1 of type n− 1-d. Figure 4.5 illustrates G−.
Step 2: insertion of cycles according to the parameter κ. An elementary cycle is a pair of (hc

1, hd
n−1)

with one edge labelled with (1, 0, . . . , 0, 1) and the other edge labelled with (1, β1, . . . , βn−2, 1).
Attach to G−, κ elementary cycles where (1, β1, . . . , βn−2, 1) = (1, B−

1 , . . . , B−
n−2, 1). Of course
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{1, B−
1 , . . . , B−

n−2, 1}

0-c h1 = 1

0-c h1 = 1

...

G−

Figure 4.5: Outgoing edges morsified.

this attachment can also be done to G+. It is clear that once κ cycles are inserted the number of
vertices labelled with h1 = 1 of type 0-c is greater or equal to κ. Similarly, the number of vertices
labelled with hn−1 = 1 of type n− 1-d is greater or equal to κ. Hence all together we have inserted
hc

1 = κ+e−−1 vertices labelledwith h1 = 1 of type 0-c. Similarly, we have insertedhd
n−1 = κ+e+−1

vertices labelled with hn−1 = 1 of type (n− 1)-d. Figure 4.6 illustrates the insertion of cycles.

•

•
...

•

•

•

•

0-c h1 = 1

0-c h1 = 1

G−

(1, B−
1 , . . . , B−

n−2, 1)

(n− 1)-d hn−1

0-c h1

...

(n− 1)-d hn−1

0-c h1

Figure 4.6: Morsification with cycles inserted.

Step 1 and step 2 produces equations (4.1) and (4.2).

Step 3: the linear morsification without middle dimensions which defines G− ∪
i−1⋃
j=1

L−
j and G+ ∪

i−1⋃
j=1

L+
j . This is done by inserting hd

1 vertices h1 = 1 of type 1-d to G− and hc
n−1 vertices hn−1 = 1
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of type (n − 2)-c. Since the insertion of any other type of vertex will not alter the first and the
(n− 2)-th Betti number it is necessary that

B−
1 + hd

1 − hc
2 = B+

1 − hd
n−2 + hc

n−1.

Figure 4.7 illustrates this procedure.

G− ∪ L−
1

··
·

··
·

··
·

•

•

•

•

(1, B−
1 , . . . , B−

n−2, 1)
1-d h1 = 1

1-d h1 = 1

1-c h2 = 1

1-c h2 = 1

(1, B1, B−
2 , . . . , B−

n−3, Bn−2, 1)

G+ ∪ L+
1

··
·

··
·

··
·

•

•

•

•

(1, B1, B+
2 , . . . , B+

n−3, Bn−2, 1)
(n− 2)-d hn−2 = 1

(n− 2)-d hn−2 = 1

(n− 2)-c hn−1 = 1

(n− 2)-c hn−1 = 1

Figure 4.7: Linear morsification: L− and L+.

This step will be repeated until
⌊

n−2
2

⌋
, which will produce the equations (4.5) in the linear system.

Step 4: middle dimension morsification where we should consider n odd, n = 0 mod 4, n = 2
mod 4.
For n = 2i + 1: insert hd

i vertices hi = 1 of type i-d to the incoming edge of G− ∪
i−1⋃
j=1

L−
j and hc

i+1

vertices hi+1 = 1 of type i-c to the outgoing edge of G+ ∪
i−1⋃
j=1

L+
j . It is necessary that

B−
i + 2hd

i = B+
i + 2hc

i+1.

This produces equation (4.6).
Since, the labels on the outgoing edge of one of the graphs now coincides entirely with the labels
on the incoming edge of the other graph, they can be joined to form a connected graph.
For n = 2i, there are two cases to consider:
Case 1: n = 0 mod 4. Observe that in this case the variation of the middle dimensional Betti
number B−

i−1 and its dual B−
i will vary by 0 if the vertex is of β-i type or by 1 otherwise. Insert

hd
i−1 vertices hi−1 = 1 of type (i− 1)-d to the incoming edge of G− ∪

i−2⋃
j=1

L−
j and insert hc

i+1 vertices

hi+1 = 1 of type i-c to the outgoing edge of G+ ∪
i−2⋃
j=1

L+
j . This explains equation (4.4).

Case 2: n = 2 mod 4. The adjustments in this case are identical to the previous case except for
the fact that there are no vertices of type β-i.
Hence, at the end of steps 1 to step 4, the following linear hcd

κ -systemmust be solved for {hc
1, hd

1, . . . ,
hc

2i, hd
2i}, in order for the algorithm to work. We are looking for nonnegative integer solutions to

this system.
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hc
1 = e− − 1 + κ, (4.1)

hd
n−1 = e+ − 1 + κ, (4.2)

hj = hc
j + hd

j , j = 1, . . . , n− 1 and j ̸=
⌊

n

2

⌋
, (4.3)

h⌊ n
2 ⌋ = hc

⌊ n
2 ⌋ + hd

⌊ n
2 ⌋ + β, with β = 0 if n ̸≡ 0 mod 4, (4.4)

hd
j − hc

j+1 − hc
n−j + hd

n−j−1 = B+
j −B−

j , j = 1, . . . ,

⌊
n− 2

2

⌋
, (4.5)

 hd
i − hc

i+1 = B+
i −B−

i

2 , if n = 2i + 1. (4.6)

In these works, the general case was treated by including h0 and hn. This was done by adjusting the
edges incident to the vertex v before applying algorithm described above. In this case, we start by
constructing G+

0 with hn = 1 and hn−1 vertices labelled with hn−1 of type (n− 1)-d which has one
outgoing edge which connects to v labelled (1, 0, . . . , 0, 1). We also construct G−

0 with h0 = 1 and
h0 vertices labelled with h0 of type 0-c which has one incoming edge which connects to v labelled
(1, 0, . . . , 0, 1). By joining G+

0 to an edge positively incident to v and G−
0 to an edge negatively

incident to v we get a Lyapunov semigraph consisting of a vertex v labelled with a singularity whose
numerical Conley homology indices are given by {h0 = 0, h1−(h0−1), h2, . . . , hn−1−(hn−1), hn =
0}, which has e+ + 1 positively incident edges to v and e− + 1 negatively incident edges to v. We
can then apply the algorithm described above.
We also proved in [Bertolim et al., 2003a] that :

Theorem7. The hcd
κ -system (4.1)−(4.6) has nonnegative integral solutions if and only if the Poincaré–

Hopf inequalities developed in Section 3.2, for isolating blocks are satisfied. Moreover, the set of all
solutions to the hcd

κ -system may be obtained as sums of the complementary solution and multiples of
the elementary circulations of the network.

4.1.2 How network flow theory was used

In this section I present the ideas on how the network flow theory was used to prove our results.
In order to facilitate the comprehension, I decided to restrict our considerations to the dimension
n = 7, h0 = hn = 0 and κ = 0. In this case the linear system (4.1)-(4.6) can be written as follows:

hc
1 = e− − 1, (4.7)

hd
6 = e+ − 1, (4.8)

hj = hc
j + hd

j , j = 1, . . . , 6 (4.9)
hd

j − hc
j+1 − hc

7−j + hd
6−j = B+

j −B−
j , j = 1, 2 (4.10)

 hd
3 − hc

4 = B+
3 −B−

3
2 . (4.11)

and our aim is to find a nonnegative integral solution thereto.
The augmented matrix obtained by appending right-hand-side of the system to its coefficient matrix
is
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hc
1 hd

1 hc
2 hd

2 hc
3 hd

3 hc
4 hd

4 hc
5 hd

5 hc
6 hd

6

1 0 0 0 0 0 0 0 0 0 0 0 (e− − 1)
1 1 0 0 0 0 0 0 0 0 0 0 h1
0 0 1 1 0 0 0 0 0 0 0 0 h2
0 0 0 0 1 1 0 0 0 0 0 0 h3
0 0 0 0 0 0 1 1 0 0 0 0 h4
0 0 0 0 0 0 0 0 1 1 1 0 h5
0 0 0 0 0 0 0 0 0 0 1 1 h6
0 0 0 0 0 0 0 0 0 0 0 1 e+ − 1
0 −1 1 0 0 0 0 0 0 −1 1 0 −(B+

1 −B−
1 )

0 0 0 1 −1 0 0 1 −1 0 0 0 B+
2 −B−

2

0 0 0 0 0 −1 1 0 0 0 0 0 −(B+
3 −B−

3 )
2


By a suitable change of sign of half of the equations with right-hand-side hj (namely, the equations
with even j), one can easily assert that the coefficient matrix is totally unimodular1:

hc
1 hd

1 hc
2 hd

2 hc
3 hd

3 hc
4 hd

4 hc
5 hd

5 hc
6 hd

6

−1 0 0 0 0 0 0 0 0 0 0 0 −(e− − 1)
1 1 0 0 0 0 0 0 0 0 0 0 h1
0 0 −1 −1 0 0 0 0 0 0 0 0 −h2
0 0 0 0 1 1 0 0 0 0 0 0 h3
0 0 0 0 0 0 −1 −1 0 0 0 0 −h4
0 0 0 0 0 0 0 0 1 1 1 0 h5
0 0 0 0 0 0 0 0 0 0 −1 −1 −h6
0 0 0 0 0 0 0 0 0 0 0 1 e+ − 1
0 −1 1 0 0 0 0 0 0 −1 1 0 −(B+

1 −B−
1 )

0 0 0 1 −1 0 0 1 −1 0 0 0 B+
2 −B−

2

0 0 0 0 0 −1 1 0 0 0 0 0 −(B+
3 −B−

3 )
2



(4.12)

As remarked in [Bertolim et al., 2003a], the system may be interpreted as a network flow problem.
The corresponding network is shown in Figure 4.8, where B+

0 = e+ − 1, B−
0 = e− − 1, B1 =

(B+
1 − B−

1 ), B2 = (B+
2 − B−

2 ) and B3 = (B+
3 −B−

3 )
2 . The green arrow in Figure 4.8 is associated

with the green coefficients in (4.12). The hcd variables are interpreted as flows along the arcs of the
network and associated with each node there is a flow balance equation that may be read as “flow
into a node− flow out of a node = node constant". In the planar embedding adopted in this picture,
the zig-zag shape of the directed graph component of the network resembles the lateral structure of
a clotheshorse. Arcs corresponding to flow variables (hc

1, hd
1, hc

2, hd
2, . . . , hc

6, hd
6), in this order, form

an Eulerian nonoriented path covering the whole directed graph.
This network contains a chain of 2 cycles of length four and the arc sequence associated with
(hc

1, hd
1, hc

6, hd
6) forms a nonoriented path that is adjacent to the first cycle. In the general odd case,

when n = 2i + 1, the network has i cycles of length four, the arcs in the j-th cycle are associated
1These matrices were considered by Poincaré [Poincaré, 1900], as early as 1900. A unimodular matrix M is a square

integermatrix having determinant+1 or−1. A totally unimodularmatrix is amatrix forwhich every square nonsingular
submatrix is unimodular. Equivalently, every square submatrix has determinant 0,+1 or −1. A totally unimodular
matrix need not be square itself. From the definition, it follows that any submatrix of a totally unimodular matrix is
itself totally unimodular (TU). Furthermore, it follows that any TU matrix has only 0, +1 or −1 entries. The converse
is not true, i.e., a matrix with only 0, +1 or −1 entries is not necessarily totally unimodular. A matrix is TU if and only
if its transpose is TU.
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hd
3

Figure 4.8: Network in dimension 7.

with variables hd
j+1, hc

6−j , hd
6−j and hc

j+1, and the orientation of the first two arcs in the cycle is
opposite to the orientation of the last two, with respect to an arbitrary orientation thereof.
The trick to establishing the conditions under which the network flow problem admits solutions, in
the general case, is to split the network flow problem into independent subproblems. This splitting
occurs at the nodes with degree four. Figure 4.9 shows the decomposition for the problem depicted
in Figure 4.8, whereA = −(h1−h6+(e+−1)−(e−−1)),B = −(B+

1 −B−
1 )−A,C = −(B−h2+h5),

D = (B+
2 − B−

2 ) − C and E = −(B+
3 −B−

3 )
2 . In the case n = 2i + 1 = 7, there will be three

independent subproblems, in the general case, there will be i.

−(e−−1)

h1

e+ − 1

−h6

A = −(h1 − h6 + (e+ − 1)− (e− − 1))
B = −(B+

1 −B−
1 )−A

A
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hd
6

hd
1

hc
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hd
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2
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hd
4
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4

hd
3

D

−h4

h3

E

D = (B+
2 −B−

2 )− C

E = −(B+
3 −B−

3 )
2

Figure 4.9: Splitting the problem in three.

Algebraically, the original linear system in the 2(n−1) variables of the hcd vector, where n = 2i+1,
is split into i independent (and smaller) linear systems. Any solution of the original system can be
split into solutions of the individual smaller systems, and, conversely, any set of solutions, one for
each smaller system, can be composed to form a solution of the larger original system (see [Bertolim
et al., 2003a] for a detailed proof of this result). The leftmost network in Figure 4.9 corresponds
to a determinate system and has a unique solution. The subsequent subnetworks correspond to
indeterminate linear systems, and the all have the same cycle structure. The existence of nonnegative
solutions is equivalent to the feasibility of a set of inequalities. This follows from the fact that the
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the general solution to a linear system is the sum of a particular solution and a solution to the
homogeneous version of the system, that is, with the right-hand-side replaced with the zero vector.
This is illustrated in Figure 4.10 for the subnetwork in the middle of Figure 4.9.
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Figure 4.10: General solution of subnetwork in Figure 4.9.

A necessary and sufficient condition for the indeterminate system corresponding to the network
flow problem in Figure 4.10 to have a solution is that −h2 + B + C + h5 = 0. This is automatically
satisfied by the definition of C . Nonnegative solutions exist if and only if there exists a value of k
for which the corresponding general solution shown in the figure is nonnegative. This is embodied
in the inequalities (4.13)-(4.16) below.

k ≥ 0, (4.13)
h2 ≥ k, (4.14)
k ≥ B, (4.15)

h5 + B ≥ k. (4.16)

Applying the Fourier-Motzkin method described in [Bachem and Grötschel, 1982] to the previous
system, we may eliminate k to obtain the following set of inequalities.

h2 ≥ B, (4.17)
h5 ≥ B. (4.18)

By replacing the expression for B = −(B+
1 −B−

1 )−A = −(B+
1 −B−

1 )− [−(h1− h6 + (e+− 1)−
(e− − 1))] in (4.17)-(4.18), we finally arrive at the following inequalities.


h2 ≥ −(B+

1 −B−
1 )− (h6 − h1) + (e+ − e−),

h5 ≥ −
[
− (B+

1 −B−
1 )− (h6 − h1) + (e+ − e−)

]
.

These inequalities are part of the Poincaré–Hopf inequalities presented in Section 3.1. Other are
obtained in the same fashion.

The number of continuations, i.e., the number of nonnegative integral flows, has been calculated in
[Bertolim et al., 2003a] for κ = 0. It represents the number of admissible multiples of elementary
circulations of the network. Since the values of hc

1, hd
1, hc

6 and hd
6 are uniquely determined, this is

the number of nonnegative integral flows of the smaller network obtained after the elimination of
these four variables. Thus, the total number of continuations is just the number of possible values
of κ (1 + min{h1 − (h0 − 1), h6 − (h7 − 1)}) times the number of continuations for κ = 0.
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4.2 Ordered continuation

In this section we present ordered morsifications of an abstract Lyapunov semigraph L and define
the Ogasa number for ordered continuations of L. We can ask ourselves why this kind of result is
relevant. As discussed in the previous sections, abstract Lyapunov semigraphs ofMorse typeLM can
be viewed as a handle decomposition (h, hcd, β), where h represents the distribution of the indices
of the handles, and hcd the distribution of the types, i.e., connecting or disconnecting. Since the
morsification results presented in [Bertolim et al., 2003a] imply that the continuation of an abstract
Lyapunov graph is not unique, one natural question in this direction is: are all graphs, generated by
the continuation procedure, realizable? If so, on what manifolds? These question were answered in
[Bertolim et al., 2006a] by building Morse flows on n-dimensional isolating blocks, together with a
special and restricted class of gluing maps of handles, and in [Cruz et al., 2005] for closed manifolds.
This will be discussed in Section 6, but for now just keep in mind that an important step in the
construction presented in [Bertolim et al., 2006a] was a handle type decomposition theorem which,
together with a special class of gluing maps, insures that this construction not only preserves the
given ranks of the homology Conley indices, but it is also optimal in the sense that no other Morse
flow can preserve this index with fewer singularities. Another important fact is that, for some
abstract Lyapunov graphs, we cannot fix an ordering without producing negative labels on their
edges. Since the edges are labeled with the Betti numbers of level sets, this does not make sense in
realizability questions. Hence, the need to define ordered continuations.
Let us consider the following example. Suppose that we have an abstract Lyapunov semigraph in
dimension n = 5 containing one vertex v labeled with h = (0, 2, 1, 0, 1, 0), v has two outgoing
edges, e− = 2, and two incoming edges, e+ = 2, as illustrated by the left side of Figure 4.11. Let
B±

j = ∑e±

i=1 βj where j = 1, . . . , ⌊n−1
2 ⌋. Note that since (β0, β1, β2, β3, β4) satisfy the Poincaré du-

ality and since β0 and β4 represent the number of boundary components, we have put only (β1, β2)
in Figure 4.11. Using the continuation results presented in [Bertolim et al., 2003a], we can have two
continuations illustrated by the middle and right side of Figure 4.11. Observe that the continua-
tion represented by the middle graph of Figure 4.11 has an edge labeled with an negative number,
B1 = −1. This continuation is not admissible in our procedure of ordered continuation, since only
nonnegative labels on the edges will be allowed.
An invariant associated with handle decompositions of a smooth connected compact n-manifold
with boundary Mn was introduced in [Ogasa, 2005]. The author considers a way of measuring the
simplicity of a Morse flow by computing, for each regular level, the sum of its Betti numbers, and
then taking the maximum of the obtained values. Given an Mn, its Ogasa invariant is then the
minimum, over all Morse flows, of these maxima. In other words, a Morse flow realizing the Ogasa
invariant of Mn is one for which the maximum of the sums of the Betti numbers of each
regular level is the smallest possible. This invariant was also studied in [Bertolim et al., 2011b].

Definition 8. (Ogasa invariant, [Ogasa, 2005]) Let (M, f) be the pair consisting of a smooth connected
compact n-manifold with boundary and and a Morse function f defined on M . Let R denote the ring of
the homology coefficients, which can be chosen among Z

pZ (p prime), Z, Q or R. For any ordered handle
decompositionH of M , with total numbers ηH of handles, let

νH(M ; R) = max
l=1,...,ηH

(
n−1∑
i=0

βi(Nl; R)
)

where βi(Nl; R) denotes the i-th Betti number of the (n− 1)-dimensional manifold Nl = ∂Ml, which
is the boundary of the manifold obtained after attaching the first l handles ofH. TheOgasa invariant
of the manifold M (relative to R) is the number defined by:

ν(M ; R) = min
H

νH(M ; R)
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Figure 4.11: The leftmost figure represents an abstract Lyapunov semigraph L while the middle and
rightmost figures represent respectively an unfeasible and a feasible morsification of L.

where the minimum is taken over all of the ordered handle decompositions of M .

Given that the realization of ordered continuations of a Lyapunov graph L on M can be viewed as
an ordered handle decomposition of M , we study a similar invariant for ordered continuations of
L. We denote an ordered continuation of L by L(h, hcd, β) where hcd is an ordered list of the types,
i.e., ℓ-d and ℓ-c vertices in L.
We now proceed to define the Ogasa number for ordered continuations of an abstract Lyapunov
semigraph L. Let I be the semi-subgraph of an ordered continuation L(h, hcd, β) of L obtained
by deleting from L(h, hcd, β) all the hc

1 vertices together with their outgoing edges and all the hd
n−1

vertices together with their incoming edges that do not belong to cycles in the continued semigraph.
The continuation algorithm in [Bertolim et al., 2003a] assures that for each ordered continuation, I
is unique and has exactly one semi-edge2 (dangling edge) of the form (∞, v) and exactly one semi-
edge of the form (v,∞), which we denote by e+

I and e−
I respectively. Without loss of generality,

the ordered continuation L(h, hcd, β) of L can be represented by I . Denote by B+
j the j-th Betti

number on e+
I and by B−

j the j-th Betti number on e−
I .

Now, for each ordered continuation of L, define the sum∑n−1
j=0 Bj(e) for each edge e in I .

Definition 9. Given an ordered continuation for L, let

Bmax(I) = max
e∈I

n−1∑
j=0

Bj(e).

Let IL be the set of all ordered continuations I ⊂ L(h, hcd, β) of L. The Ogasa number of L is

min
I∈IL

Bmax(I).
2Given a finite set V we define a directed semi-graph G′ = (V ′, E′) as a pair of sets V ′ = V ∪{∞}, E′ ⊂ V ′×V ′. As

usual, we call the elements of V ′ vertices and since we regard the elements ofE′ as ordered pairs, these are called directed
edges. Furthermore, the edges of the form (∞, v) and (v,∞) are called semi-edges (or dangling edges as in [de Rezende,
1987]).
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Our main result in [Bertolim et al., 2013] gives lower and upper bounds for the Ogasa number.

Theorem 10. Given B+ = ∑n−1
j=0 B+

j , B− = ∑n−1
j=0 B−

j and (h, hcd, β) satisfying the Poincaré–Hopf
inequalities,

max
{
B+, B−

}
≤ min

I∈IL
Bmax(I) ≤ 2 + max

{
B+, B−

}
.

The Ogasa number for ordered continuations of Lyapunov graphs may, in some cases, coincide with
the Ogasa invariant for ordered handle decompositions.

In order to strengthen the connection between the Ogasa invariant for ordered handle decomposi-
tions of a manifold M and the Ogasa number of ordered continuations of a Lyapunov graph L, it is
important to study ordered continuations under restrictions on the number of consecutive d-type
labels that must appear in the continuation. Intervals I containing at least r consecutive d-type
labels are denoted by Ir.

Corollary 4.2.0.1. Let (h, hcd, β) be a solution of the Poincaré–Hopf inequalities, with at least r (≥ 1)
consecutive d-type elements. Then

max
{
B+, B−

}
≤ min

Ir∈IL
Bmax(Ir) ≤ 2r + max

{
B+, B−

}
.

In the example illustrated in Figure 4.11, Bmax = ∑n−1
j=0 Bj = 6, and since the middle continuation

can not be considered, the minimal of Bmax over all continuations is 6. Hence, the Ogasa number
for this graph is 6.

4.3 Lyapunov graph continuation to graphs of Smale type

As discussed in Section 2.4, inspired by a result in [Franks, 1982] which shows that one can think of
a hyperbolic periodic orbit of index k, Ak, as a suitable joining of two hyperbolic singularities p and
q of adjacent indices k and k + 1 respectively, we define an abstract Lyapunov graph of Smale
type as an abstract Lyapunov graph of Morse type such that each vertex labelled with a hyperbolic
singularity of index k can be joined with a vertex labelled with a hyperbolic singularity of adjacent
index k + 1. This means that the collection of labels (h0, . . . , hn) on the vertices of the Lyapunov
graph can be decomposed in an union (∑n

j=0 hj)/2 of disjoint couples of the form Aℓ = (hℓ, hℓ+1),
with ℓ ∈ {0, . . . , n}.

Motivated by the ideas developed in [Bertolim et al., 2003a], in [Bertolim et al., 2023a] the problem
of continuation of an abstract Lyapunov graph to an abstract Lyapunov graph of Smale type was
considered. The Poincaré–Hopf inequalities for nonsingular Morse-Smale flows described in 3.4
were introduced. They give necessary and sufficient conditions for the continuation of an abstract
Lyapunov graph to an abstract Lyapunov graph of Smale type to occur. More precisely, we prove
that:

Theorem 11. A (generalized) vertex of a Lyapunov graph associated with the homological{
n, e+, e−, (−1)j{B+

j −B−
j }

n−1
2

j=1

}
can be continued to a Lyapunov graph of Smale type if and only if a

set of explicit inequalities (Poincaré–Hopf inequalities (3.1), (3.2), (3.5), (3.14) and (3.17) + coupling
inequalities(4.19)-(4.21)) are satisfied by such data.



66 CHAPTER 4. LYAPUNOV GRAPHS CONTINUATION

The Coupling inequalities are the following:

(−1)k
k∑

j=0
(−1)jhj ≥ 0, k = 1, . . . ,

⌊
n− 1

2

⌋
, (4.19)

(−1)k
k∑

j=0
(−1)jhn−j ≥ 0, k = 1, . . . ,

⌊
n− 1

2

⌋
, (4.20)

n∑
j=0

(−1)jhj = 0. (4.21)

Coming back to the prior example in dimension 7 developed in Section 4.1 and given in Figure 4.3,
we remark that the homological data given initially in this example satisfies the Poincaré–Hopf
inequalities (3.1), (3.2), (3.5), (3.14) and (3.17), but doesn’t satisfy the coupling inequalities (4.19)-
(4.21). In order to be able to continue the abstract Lyapunov graph on the left side of Figure 4.3
to an abstract Lyapunov graph of Smale type, one should increase h2 and h5 by 1. Figure 4.12
illustrates a continuation of an abstract Lyapunov graph to an abstract Lyapunov graph of Smale type
in dimension 7, where each orbit of index j combinatorially corresponds to a couple of consecutive
singularities (hj, hj+1). We have two couples (h1, h2), one couple (h2, h3) and one couple (h5, h6).
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h5 = 1 , h6 = 1
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Figure 4.12: A continuation of an abstract Lyapunov graph to an abstract Lyapunov graph of Smale
type.

4.4 Componentwise Morsification

In Section 4.1, one easily verifies that the morsification algorithm takes into account exclusively the
differences

B+
j −B−

j =
e+∑

k=1
βj(N+

k )−
e−∑

k=1
βj(N−

k ),

for all j = 1, . . . , (n − 1)/2. This means that, for any choice of βj(N+
k ), on the incoming edges,

as well as βj(N−
k ), on the outgoing edges, that respect the above differences will produce the exact

same solutions given by the network flow. See Figures 4.13 and 4.14.
In fact, Lyapunov graph morsifications treated in [Bertolim et al., 2003a, 2005a, 2003b] depend only
on the global Betti number information of the labels on the incoming and outgoing edges, more
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specifically on the differences B+
j − B−

j . Hence, this is the reason we are not able to distinguish
in terms of the morsified data between the two situations depicted in Figures 4.13 and 4.14. The
morsifications of both graphs are identical although the individual Betti numbers on the incident
edges are not.

•h1 = 2, h2 = 2

β1 = 2

β1 = 2β1 = 2

•

•

•

•

2-d h2 = 1

1-d h1 = 1

1-c h2 = 1

1-d h1 = 1

β1 = 4

β1 = 2

β1 = 4

β1 = 2

β1 = 2β1 = 2

Figure 4.13: An abstract Lyapunov graph satisfying the classical Poincaré–Hopf inequalities on the
left and its morsification on the right.
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1-c h2 = 1

1-d h1 = 1

β1 = 4

β1 = 2

β1 = 4
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β1 = 4β1 = 0

Figure 4.14: An abstract Lyapunov graph satisfying the classical Poincaré–Hopf inequalities on the
left and its morsification on the right.

The componentwise morsification developed in [Bertolim et al., 2023b] distinguishes the examples
in Figures 4.13 and 4.14. By retaining the Betti number information on each incident edge at each
step of the morsification algorithm, one keeps track of the variations of the Betti numbers compo-
nentwise. This was done by means of a componentwise morsification algorithm which is similar to
the algorithm developed in Section 4.1.1. Nevertheless, one should care about the morsification for
each edge and the ground level which we want to attain. We choose to provide elucidating exam-
ples rather than explicate the componentwise morsification algorithm that due to the high number
of variables involved can be a bit cumbersome. Details on this algorithm can be found in [Bertolim
et al., 2023b]. But what is important to mention here is that in the same way as in the morsification
developed in Section 4.1, the componentwise morsification algorithm produces a new linear system
and in order to find nonnegative solutions to this system, we use the network flow theory once
again.
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With the aim of keeping a finer control on the changes in Betti numbers during the morsification,
a new collection of inequalities, the Poincaré–Hopf inequalities for componentwise morsifi-
cation (in short, componentwise Poincaré–Hopf inequalities) as discussed in Section 3.6 was
introduced. They give necessary and sufficient conditions for the componentwise morsification of
Lyapunov graphs.
It can be verified that both examples in Figures 4.13 and 4.14 satisfy the componentwise Poincaré–
Hopf inequalities and thus have componentwise morsifications as illustrated in Figures 4.15 and
4.16. For n = 3, these inequalities reduce to the two equations (3.35) and (3.36). It is easy to see in
Figures 4.15 and 4.16 that the componentwise morsifications are different, i.e., the level sets in the
morsification are not the same, although the number of singularities of type c and d are identical.
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Figure 4.15: An abstract Lyapunov graph satisfying the componentwise Poincaré–Hopf inequalities
and its componentwise morsification.
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β+
11 = 0 β12 = 2

β11 = 0 β12 = 0

β−
11 = 2 β−

12 = 0

β+
12 = 4β+

11 = 0

Figure 4.16: An abstract Lyapunov graph satisfying the componentwise Poincaré–Hopf inequalities
and its componentwise morsification.

We prove in [Bertolim et al., 2023b] the following main results.

Theorem 12. The topological-dynamical data that satisfies the componentwise Poincaré–Hopf inequa-
lities (3.29)–(3.34) also satisfies the classical Poincaré–Hopf inequalities (3.1)–(3.5). In other words, every
abstract Lyapunov graph which satisfies the componentwise Poincaré–Hopf inequalities also satisfies
the classical Poincaré–Hopf inequalities.
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Theorem 13. A Lyapunov semigraph Lv with the homological data{
n, hℓ, e+, e−, β+

jk, β−
jk, k = 1, . . . , e±, j = 1, . . . , ⌊(n− 1)/2⌋, ℓ = 1, . . . , n− 1

}
can be componentwise morsified if and only if the componentwise Poincaré–Hopf inequalities are satis-
fied by such data.

Topologically speaking, this means that, in case of realization, the isolating block associated with
this semigraph may contain a level which is an (n− 1)-sphere.
Of course, if each vertex of an abstract Lyapunov graph satisfies the componentwise Poincaré–Hopf
inequalities, Theorem 13 can be generalized in the following way.

Theorem 14. Every abstract Lyapunov graph L that satisfies the componentwise Poincaré–Hopf ine-
qualities at each vertex can be componentwise morsified.

By no means is componentwise morsification unique. It is precisely the network flow circulations
that will exhibit all possibilities.
In order to better understand the morsification algorithm, what it entails and what it produces, con-
sider the following example in dimension 5. For didactic purposes, let Lv be a Lyapunov semigraph
consisting of a vertex labelled with a singularity whose numerical Conley homology indices are
given by h0 = 0, h1 = 4, h2 = 4, h3 = 4, h4 = 4, h5 = 0 and its incident edges. Each incoming and
outgoing edge is labeled with Betti numbers (β±

0k, β±
1k, β±

2k, β±
3k, β±

4k)e±
k=1, as depicted in Figure 4.17,

in which we assign concrete values to these numbers. Note that since (β±
0k, β±

1k, β±
2k, β±

3k, β±
4k)e±

k=1
satisfy the Poincaré duality and since ∑e±

k=1 β±
0 and ∑e±

k=1 β±
4 represent the number of boundary

components, we need only represent (β±
1k, β±

2k)e±
k=1 in Figure 4.17.

In dimension 5, the componentwise Poincaré–Hopf inequalities, described in Section 3.6, are the
following:

h1 ≥ e− − 1 (4.22)
e+∑

k=1
β+

1k ≥ h1 − (e− − 1) (4.23)

e−∑
k=1

β−
2k

2 = h3 −
e+∑

k=1
β+

1k + h1 − (e− − 1) (4.24)

h4 ≥ e+ − 1 (4.25)
e−∑

k=1
β−

1k ≥ h4 − (e+ − 1) (4.26)

e+∑
k=1

β+
2k

2 = h2 −
e−∑

k=1
β−

1k + h4 − (e+ − 1). (4.27)

It is easy to verify that the abstract Lyapunov graph in Figure 4.17 satisfies the inequalities (4.22)–
(4.27).
Figure 4.18 depicts the network-flow that models the system of equations produced by the com-
ponentwise morsification algorithm for the Lyapunov semigraph in Figure 4.17. Notice that it is
composed of two disjoint and independent sub-networks. The equations from the linear system
produced by the algorithm can be obtained from the network. The labels on the arcs represent the
variables (interpreted as flows along the arcs) associated therewith. Each node represents an equa-
tion, the label on each node is the constant that appears in the corresponding equation. Flow going
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•h1 = 4, h2 = 4, h3 = 4, h4 = 4

β−
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β−
23 = 2

β−
12 = 2

β−
22 = 2

β−
11 = 3

β−
21 = 0

β+
12 = 2

β+
22 = 2

β+
11 = 2

β+
21 = 0

Figure 4.17: A Lyapunov semigraph to be morsified.
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Figure 4.18: Network modeling the system of equations obtained by applying the morsification
algorithm to the Lyapunov semigraph in Figure 4.17.
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into (resp., out of) a node is the sum of flows along arcs whose arrows point into (resp., out of)
the node. The difference of these quantities must equal the constant associated with the node. For
instance, the equation associated with node h1 is h1 = hc

1 + hd
11 + hd

12.

Figures 4.19 and 4.20 give two (out of a total of 18 possible) componentwise morsifications of the
Lyapunov semigraph in Figure 4.17.

The morsification given in Figure 4.19 of the Lyapunov semigraph in Figure 4.17 is depicted in red,
in Figure 4.21, as flows on the network presented in Figure 4.18.
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Figure 4.19: A Lyapunov graph componentwise morsification of the semigraph in Figure 4.17.

The morsification described in Figure 4.20 differs from the one in Figure 4.19 in only four elements.
These are the flows depicted in blue in Figure 4.21. The change from the red to the blue/red solution
is effected by means of passing a circulation along the cycle containing arcs hc

41, hc
42, hc

22, hc
21.

Concerning linear graphs (corresponding to e− = e+ = 1), if the homological data satisfies the com-
ponentwise Poincaré–Hopf inequalities we proved in [Bertolim et al., 2023b] that the morsification
is unique. Figure 4.22 furnishes an example of a linear abstract Lyapunov graph. It corresponds to
the following homological data: h1 = 3, h2 = 4, h3 = 1, β−

11 = 2, β−
21 = 2, β+

11 = 3, β+
21 = 4. On the

right of this figure we present the only morsification available to this linear graph.
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Figure 4.20: Another Lyapunov graph componentwise morsification of the semigraph in Figure 4.17.
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Asmentioned before, it is important to observe that thus far, componentwise morsification produces
a level where βjk = 0, for all j = 1, . . . , n− 2, k = 1, . . . , e±. In the event of realization, this can be
interpreted as a level containing at least one even-dimensional sphere.
The underlying idea of this work is to describe under which conditions an abstract Lyapunov graph
can be componentwise morsified as in Figure 4.19 or Figure 4.20. These conditions form a new
collection of inequalities, the componentwise Poincaré–Hopf inequalities, described in Section 3.6,
which are shown to be necessary and sufficient for the componentwise morsification to occur.
The proofs in [Bertolim et al., 2023b] were done for zero Betti number ground level set because the
exposition is clearer and more didactic with this simplification. But in the same work the proofs
were presented in the general case, i.e., the restriction that the Betti numbers of the ground level set
are all zero is removed and ground level sets with arbitrary Betti numbers are considered.
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Figure 4.21: Flows corresponding to the morsifications in Figure 4.19 (red) and Figure 4.20 (blue and
red).
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Figure 4.22: Linear abstract Lyapunov graph componentwise morsification.



5

C
ha

pt
er

Minimal number of singularities and periodic
orbits

***

"Nothing takes place in the world whose meaning is not that of some maximum or minimum."
Leonhard Euler.
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In this chapter we use the following notation:

• N is a compact manifold of dimension n such that ∂N = ∂N+ ∪ ∂N−,

• ∂N+ and ∂N− non-empty,

• ∂N+(∂N−) is the disjoint union of e+(e−) components of ∂N , i.e., ∂N± = ⋃⋃⋃e±

i=1 N±
i ,

• B±
j = ∑∑∑e±

i=1 βj(N±
i ) where j = 1, . . . , ⌊n−1

2 ⌋ is the sum of the Betti numbers, βj(N±
i ),

of these components.

5.1 Minimal number of singularities for Morse flows

In [Bertolim et al., 2006b] we introduce a notion of minimal Morse flows on compact manifolds.
Classically, a Morse flow on a compact manifold M with total number of singularities h is minimal
if there exists no other flow realizable on M with fewer singularities than h. In [Reineck, 1991]
techniques are developed to continue a gradient flow to one with the minimal number of critical
points. However, the approach is quite distinct from ours and our results are of a different nature.
Consider that one has abstract information on an isolating block N , the number of entering N+

and exiting N− boundaries of N are given by positive integers e+, e− and integers corresponding
to the differences (of the j-th Betti numbers) B+

j − B−
j of N+ and N−. A minimum number

of singularities hmin can be determined depending only on e+, e− and the differences B+
j − B−

j

where j = 1, . . . , ⌊n−1
2 ⌋. This minimum number of singularities hmin has a topological-dynamical

meaning. Given any compact manifold N with e+ + e− boundary components, e± components
N±

i , i = 1, . . . , e± labelled with {βj(N±
i ); j = 1, . . . , ⌊n−1

2 ⌋}, there exists no Morse flow realizable
on N entering through the (N+

i )’s and exiting through the (N−
i )’s with fewer singularities than

hmin. Hence, in this sense, a flow realizing hmin is a minimal flow on some compact manifold N
respecting the given homological restrictions on the entering and exiting boundaries for the flow.
Of course, there may be many such compact manifolds realizing this minimal flow. On the other

75
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hand, there are many compact manifolds with the same boundary specification given above which
possess minimal Morse flows with total number of singularities greater than hmin.
The simple example in Figure 5.1, on compact 2-manifolds illustrates this point, i.e., given one en-
tering boundary component and two exiting boundary components, (in this case these components
must be circles) hmin = 1 hence h1 = 1. However, there are other minimal Morse flows on other
compact 2-manifold with the same homological boundary specification which possess a greater
number of singularities than hmin. Of course, in dimension two, the number of boundary compo-
nents, e+ +e− and the genus g completely determines hmin, i.e., the number of singularities of index
one, h1, by the formula 2 − 2g − (e+ + e−) = h1. If we define topological complexity in terms
of the genus, note that hmin is realized on the manifold of lowest complexity. However, in higher
dimensions we can also measure topological complexity in terms of the presence of dual pairs and
hence a similar phenomena is observed.

Figure 5.1: Minimal Morse flows and topological complexity.

The main result in [Bertolim et al., 2006b], Theorem 15, asserts that a minimum number of singu-
larities hmin can be determined depending only on e+, e− and the differences (of Betti numbers)
B+

j −B−
j .

Theorem 15. Consider some abstract homological information, namely, positive integers e+ and e−

and integers (B+
j −B−

j )n−1
j=0 such that B+

j −B−
j = B+

n−j−1 −B−
n−j−1. Then

1. there exists a number hmin which is the lower bound on the number of singularities of any Morse
flow realizable on any compact manifold with e+ entering boundaries and e− exiting boundaries
with Betti numbers satisfying the given differences B+

j −B−
j .

2. this number hmin can be computed by a simple formula and it depends only on e+, e− and on the
differences B+

j −B−
j ;

3. the set H = {(h1, . . . , hn−1) : ∑n−1
i=1 hi = hmin : Poincaré–Hopf inequalities are satisfied } is

completely determined and each element inH determines a set
Hcd(h1, . . . , hn−1) = {(hc

1, hd
1, . . . , hc

n−1, hd
n−1) : the hcd-system1 is satisfied } which is a sin-

gleton.

4. the range of the Euler characteristics, χmin(M, ∂M) of the compact manifolds M realizing the
minimal Morse flows is obtained.

5. given Hcd(h1, . . . , hn) the corresponding family of Lyapunov semigraphs of Morse type is com-
pletely determined; all graphs are explicitly described and possess lowest topological complexity.

1This system was defined in Section 4.1
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Example in dimension 5

In the case that n = 2i + 1, we use the following formula for computing hmin.

hmin = e− + e+ − 2 +
i−1∑
j=1
|B+

j −B−
j |+

∣∣∣∣∣B
+
i −B−

i

2

∣∣∣∣∣
Consider the following homological boundary information in dimension 5:

{e+ = 2, e− = 3, B+
1 −B−

1 = −2, B+
2 −B−

2 = −2}

We have in this case hmin = 6. As for the distribution of the six singularities we have h =
(h1, h2, h3, h4) satisfying the Poincaré–Hopf inequalities and realizing hmin are

{(2, 0, 1, 3), (2, 1, 1, 2), (2, 2, 1, 1)}

Concerning their types of singularities, which are uniquely determined by h, we have

Hcd((2, 0, 1, 3)) = {(hc
1 = 2, hd

1 = 0, hc
2 = 0, hd

2 = 0, hc
3 = 1, hd

3 = 0, hc
4 = 2, hd

4 = 1)}
Hcd((2, 1, 1, 2)) = {(hc

1 = 2, hd
1 = 0, hc

2 = 1, hd
2 = 0, hc

3 = 1, hd
3 = 0, hc

4 = 1, hd
4 = 1)}

Hcd((2, 2, 1, 1)) = {(hc
1 = 2, hd

1 = 0, hc
2 = 2, hd

2 = 0, hc
3 = 1, hd

3 = 0, hc
4 = 0, hd

4 = 1)}

as we can obtain either from applying the algorithm of [Bertolim et al., 2003a].

Now we fix the labels of the edges satisfying our initial data, for instance as in the example of
Figure 5.2.

β1 = 1
β2 = 2

β1 = 2
β2 = 0

β1 = 2
β2 = 2

β1 = 1
β2 = 2

β2 = 0
β1 = 2

Figure 5.2: Labels respecting {e+ = 2, e− = 3, B+
1 −B−

1 = −2, B+
2 −B−

2 = −2}

We have three abstract Lyapunov semigraphs, one for each h realizing hmin (Figure 5.3). Hence, we
have three abstract Lyapunov semigraphs of Morse type (Figure 5.4) corresponding to each graph of
Figure 5.3. Observe that we can obtain one abstract Lyapunov semigraph ofMorse type from another
one by replacing singularities of type 3-c with singularities of type 1-c, both having the algebraic
effect of decreasing β1. Furthermore, note that in these Lyapunov linear semigraphs for each j, βj is
strictly decreasing or increasing as one walks on the graph following the opposite orientation of the
directed edges. We can easily see that this implies that these Lyapunov linear semigraphs possess
neither dual pairs nor null pairs. Hence these semigraphs possess the lowest topological complexity.
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β1 = 2
β2 = 0

β1 = 2
β2 = 2
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β2 = 2

β2 = 0
β1 = 2

Figure 5.3: The three abstract Lyapunov semigraphs realizing hmin.
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Figure 5.4: The three abstract Lyapunov semigraphs of Morse type corresponding to each graph of
Figure 5.3.
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5.2 Minimal number of periodic orbits

Asmentioned in the previous section, in [Bertolim et al., 2006b] we give a complete description of the
“simplest” Lyapunov graphs that can be associated with any given initial homological data. This was
done by computing the minimal number of nondegenerate singularities that can be realized on some
manifold with non-empty boundary in terms only of abstract homological boundary information.
In the setting of nonsingular Morse-Smale flows on compact n-dimensional manifolds, a natural
question is to understand how the topology of the manifold M forces the number and indices of the
hyperbolic closed periodic orbits of any possible nonsingular Morse-Smale flow over M . Of course
it is not reasonable to try to answer precisely this question in its entire generality. However, it is
possible to answer the same question in a wider context and still get some interesting dynamical
information, which is optimal in the new more relaxed setting.
In [Bertolim et al., 2023a] we got similar results to those in [Bertolim et al., 2006b], i.e., a constructive
algorithm which computes a minimal number of periodic orbits that can be realized on M in terms
only of abstract homological boundary information. As a consequence, this algorithm produces a
minimal number of periodic orbits such that an abstract Lyapunov graph can be continued to an
abstract Lyapunov graph of Smale type (definition can be found in Section 2.4 and the description
about the continuation results in this case can be found in Section 4.3).
Our main result consists of an algorithm for computing a lower bound pmin of the number of peri-
odic orbits of any nonsingular Morse-Smale flow on any manifold with boundary satisfying some
homological boundary conditions. Such a lower bound pmin can be computed in terms of the Betti
numbers of the boundary components, regardless of the topology of the underlying manifold, and
there exists a manifold and a nonsingular Morse-Smale flow for which this lower bound is optimal.
However, despite the analogy of the statement, some relevant differences appears both in the tech-
niques and in the nature of the result, especially in large dimension and for large initial homological
information.
We work with some partial abstract homological information, without any reference to a specific
manifold or flow, which we refer to abstract homological data. This information consists of

• an odd integer n, n ≥ 3;

• two positive integers e+ and e−;

• n− 1
2 integers, denoted by the expressions B+

j −B−
j , for j = 1, . . .

n− 1
2 .

For any odd n, let us denote by M any n-dimensional compact connected oriented manifold with
boundary ∂M consisting of (e+ + e−) connected components, endowed with a nonsingular Morse-
Smale flow Φ transversally entering M through e+ boundary components N+

i , i = 1, . . . e+, and
transversally exiting through the remaining e− boundary components N−

i , i = 1, . . . e−. For all
j = 1, . . .

n− 1
2 , if βj(N) represents the j-th Betti number of N , then we denote by B+

j − B−
j the

sum:

B+
j −B−

j =
e+∑

k=1
βj(N+

k )−
e−∑

k=1
βj(N−

k )

Within this notation, we say that a manifold M and a nonsingular Morse-Smale flow Φ on M as in
our context satisfy the abstract homological data{

n, e+, e−, {B+
j −B−

j }
n−1

2
j=1

}
.
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Let us emphasize here that the flow Φ is nonsingular Morse-Smale, that is, all of its recurrent sets
are closed periodic orbits and lie in the interior of M . We shall simply call them periodic orbits
because all the flows we shall consider are nonsingular Morse-Smale.
We proved the following theorem.

Theorem 16. Let us be given the following abstract homological data
{

n, e+, e−, {B+
j −B−

j }
n−1

2
j=1

}
satisfying (n odd and) e+ − e− +∑n−1

2
j=1 (−1)j(B+

j −B−
j ) = 0.

Then the following conclusions hold true.

1. One provides an explicit algorithm computing a number pmin associated with the given homo-
logical data, such that any nonsingular Morse-Smale flow on any manifold satisfying these given
abstract homological data must have at least pmin closed periodic orbits.

2. There exists a manifold M and a nonsingular Morse-Smale flow Φ with exactly pmin periodic
orbits satisfying the given abstract homological data.

Let’s emphasize some points of this theorem:

• The assumption e+ − e− + ∑n−1
2

j=1 (−1)j(B+
j − B−

j ) = 0 means that the Euler characteristic
of any manifold admitting a nonsingular Morse-Smale flow is necessarily zero. It is known
that this is required for having nonsingular Morse-Smale flows. Hence this assumption on
the abstract homological data is natural because of their interpretation in case of realization.
This condition is also crucial in one of the main ingredients of the proof : the use of attaching
handles vs. attaching round handles. On the one hand, inMorse theory, where each singularity
of index j corresponds to a handle of index j, we know the effect of attaching one handle of
index j of the Betti numbers of the boundary. This tells us that the list h = (h0, . . . , hn) of the
number of singularities hj of index j compatible with the initial homological data are of the
form h = hmin + hconsecutive + hdual (see [Bertolim et al., 2006a]), where

hmin is one of the labels associated with hmin and the boundary conditions;
hconsecutive is a vector corresponding to a collection of couples (hj, hj+1) with adjacent
indices (necessarily of types (j-d, j-c));

hdual is a vector corresponding to a collection of couples (hj, hn−j)with dual indices (either
of types ((j − 1)-c, (n− j)-d) or of types (j-d, (n− j − 1)-c).

On the other hand, in nonsingular Morse-Smale theory ([Asimov, 1975]), where each orbit of
index j corresponds to a round handle of index j, replacing it by two handles of indices j and
j + 1 (see [Franks, 1979]) implies that among all compatible vectors h as above, there must be
some h′ of the form h′ = h′

consecutive. Therefore, the assumption on the Euler characteristic,
ensures that each vector hmin can be completed with some hconsecutive+hdual in order to obtain
a vector h′ of the form h′ = h′

consecutive which is also compatible with the given homological
data.

• Item 1 of the theorem says that some loose information on the homology of any compatible
underlying manifold M together with the knowledge of the entry and exit boundary of the
underlying flow Φ allow us to guarantee the existence of a lower bound for the number of the
periodic orbits of Φ. However, if we wish to work with a restricted class of manifolds admit-
ting nonsingular Morse-Smale flows, such a bound may not be sharp. Consider for instance
the data

{
n = 3, e+ = e− = 1, B+

1 −B−
1 = 0

}
. For these fixed data one has pmin = 0. The
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manifoldM = T2×I endowedwith the trivial flowΦM enteringT2×{1} and exitingT2×{0}
is an example of manifold and flow satisfying the homological data for which the computed
pmin coincides with its minimal number of periodic orbits, denoted by Amin(M, ∂). If we con-
sider M ′ obtained by attaching a round handle to M as in Figure 5.5 below, we can see that
the boundary of M ′ is also made of two copies of T2. The homological data restriction implies

Figure 5.5: Exit and entry boundary of the nontrivial manifold M ′

that the nonsingular Morse-Smale flows we shall consider must enter through one torus com-
ponent and exit through the other. The computation of the Conley index of the manifold and
the way we constructed it show that Amin(M ′, ∂) = 1 which is strictly greater than pmin. The
situation here is analogous to the one discussed in the previous section (see[Bertolim et al.,
2006b]) where the minimal number of singularities of Morse flows on manifolds satisfying
some abstract homological data is discussed. In our present context we can also consider that
the manifolds and flows for which pmin is sharp (that is, Amin(M, ∂) = pmin) are in some sense
the "simplest", topologically speaking, among those admitting nonsingular Morse-Smale flows
and satisfying the given abstract homological information.

• Let us also highlight the fact that the abstract homological information only deals with the
difference of the Betti numbers of the entry and exit boundary. For instance, in dimension 3,
the couple (N+, N−) = (S2 ⊔ S2,S2 ⊔ S2), the couple (N+, N−) = (S2 ⊔ T2,S2 ⊔ T2) and the
couple (N+, N−) = (S2 ⊔ T2#T2,T2 ⊔ T2) all correspond to the same abstract homological
data

{
n = 3, e+ = e− = 2, B+

1 −B−
1 = 0

}
• The description of the algorithm of Item 2 is very technical. I present some guidelines. The
conditions ensuring the existence of a solution starting from the abstract data are expressed
in terms of a semi-algebraic system with integer coefficients. We are looking for positive
solutions to this system whose sum is minimal. We are therefore dealing with an optimization
problem. The initial pairing problem is hence reformulated as a minimum cost flow (MCF)
problem. Then the interpretation of the specific MCF problem as a transportation problem
yields the wanted algorithm.

• Item 2 is constructive and explicit once we have run its algorithm. In fact, as a result, such an
algorithm gives not only the value of pmin but also a list of abstract round handlesR1, . . . Rpmin

,
of given index and type, associated with pmin. The type contains the information of the effect
of the corresponding round handle on the Betti number of the boundary. Using the realiza-
tions described in [Bertolim et al., 2007] one can easily conclude: for any Rk given by the algo-
rithm, let (Uk, ϕk) be the isolating neighborhood of the corresponding index and type built as
in [Bertolim et al., 2007]. A connected sum along the boundary of these Uk, k = 1, . . . pmin is
a manifold M endowed with a nonsingular Morse-Smale flow Φ (conjugate to ϕk on each Uk)
such that (M, Φ) satisfies the given homological data. By construction, Φ has pmin periodic
orbits.

It is important to observe that, especially in large dimension and when the difference of the Betti
numbers is also large and arbitrarily distributed, we cannot expect to compute the number pmin by
any naive strategy. Let us take for instance the homological data{

n = 17, e+ = 7, e− = 6, B+
1 −B−

1 = 3, B+
2 −B−

2 = −1, B+
3 −B−

3 = −2,
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B+
4 −B−

4 = −7, B+
5 −B−

5 = −6, B+
6 −B−

6 = 8, B+
7 −B−

7 = −4,
B+

8 −B−
8

2 = −10
}

Our algorithm gives us (among other information) the solution

• pmin = 32;

• the sequence h′ = [h′
1, . . . , h′

16] = [5, 5, 1, 1, 2, 2, 0, 0, 10, 10, 0, 6, 6, 2, 8, 6],
which can be translated into the sequence

[R1, . . . , R15] = [5, 0, 1, 0, 2, 0, 0, 0, 10, 0, 0, 6, 0, 2, 6]

where Rj would correspond to the number of round handles (or equivalently, periodic orbits)
of index j;

• h′ has been obtained by completing hmin = [5, 0, 0, 0, 1, 2, 0, 0, 10, 10, 0, 6, 6, 2, 4, 6] by
hconsecutive + hdual =[0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0] + [0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0]

If one try to complete hmin in any other naive way (by adding couples of handles of consecutive
indices from left to right, or from right to left, or by adding couples of handles of dual indices from
the extremities of hmin ) gives strict upper bounds of pmin and makes one understand that a more
sophisticated and complex strategy is unavoidable.

This is a main difference with the Morse setting described in the previous section. There, the value
hmin can be computed by hand directly from the homological data. Moreover, all the possible se-
quences of the indices of the Morse singularities associated with hmin can be listed explicitly. Here,
in contrast, the computation of pmin is intrinsically more laborious and our algorithm gives us just
one way of realizing it as a sequence of round handles.

Let us underline that a Python program associated with this algorithm is freely available on the page
https://github.com/MargaridaMello/OddMinimumPairingProblem/

As a counterpart of the complexity of the algorithm discussed above, we discover that, in contrast
with the Morse setting, here the indices of the appearing periodic orbits cannot be always foreseen.
For instance, for the homological data{

n = 15, e+ = 1, e− = 1, B+
1 −B−

1 = B+
6 −B−

6 = 1, B+
j −B−

j = 0, ∀j = 1 . . . 7, j ̸= 1, 6
}

we have (hmin = 2 and) pmin = 3. The algorithm outputs an abstract realization of pmin with an
orbit of index 3, an orbit of index 5 and an orbit of index 12 appearing from the combinatorics of the
algorithm. The index 5 orbit is of course related to the fact that the 6-th (and the 8-th) Betti number
vary; the index 12 orbit is related to the variation of the 1st (and 13-th) Betti number of the boundary.
The index 3 orbit is somehow hidden in the data even though the difference B+

j − B−
j of the Betti

numbers of indices 2, 3 and 4, as well as 10, 11 and 12, are zero). For the sake of completeness, let us
mention that there are three other solutions (each with three orbits of indices respectively (1, 3, 5),
(5, 10, 12) and (8, 10, 12) for which the analogous observations hold. Note that in this case only
three of the four possible hmin can be completed to a h′

min combinatorially realizing pmin = 3 and
one can be completed in two different ways2.

2hmin such that h1 = 1, h6 = 1 yields the (1, 3, 5) triple; hmin such that h6 = 1, h13 = 1 yield the (3, 5, 12) and
the (5, 10, 12) triples; hmin such that h8 = 1, h13 = 1 yields the (8, 10, 12) triple and hmin such that h1 = 1, h8 = 1
cannot be completed in order to realize pmin = 3.

https://github.com/MargaridaMello/OddMinimumPairingProblem/
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Numerical examples

A computer code was built to construct and solve the odd dimensional minimum pairing problem.
It was written in Python 3.7.6 and accepts as inputs the parameter i (the instance to be solved is of
dimension n = 2i + 1) and, optionally, the data (B−

0 ,B+
0 ,B1, . . . ,Bi), where Bj = B+

j − B−
j , for

j = 1, . . . , ⌊(n − 2)/2⌋, and, since n is considered odd, Bj = (B+
j − B−

j )/2 for j = (n − 1)/2,
B+

0 = e+−1 and B−
0 = e−−1. If the latter is not supplied, random values are assigned to these con-

stants, satisfying B+
0 −B−

0 +∑(n−1)/2
j=1 (−1)jBj = 0. The optimal value and various bounds are calcu-

lated, as well as a solution. The output is supplied as formatted latex code and a sample is provided
below. This program is freely available on the page https://github.com/MargaridaMello/
OddMinimumPairingProblem/. The relevant file is ValueAndSolutionTN.py. Once this code is
executed, we may generate and solve a problem of dimension n = 5 by entering the command
ValueSolutionMinPairingProblem(2) at the console window. Alternatively, if we want to
solve the specific instance with n = 5 and (B−

0 ,B+
0 ,B1,B2) = (6, 6, 5, 5), the command would

be ValueSolutionMinPairingProblem(2, [6,6,5,5]).

i = 2 n = 5

(B−
0 ,B+

0 ,B) = (6, 6, 5, 5)

In this case we obtain the following answer :

g0 g1 g2 θ
f0

1 1 5 6
f1 5 5
f2
δ 6 5

Optimal value . . . . . . . . . . 1

Column lower bound . . . . . 0
Row lower bound . . . . . . . . 0
First upper bound . . . . . . . . 6
Second upper bound . . . . . . 7

jcd 1c 6 2d 5 3d 5 4d 6
r
d 2 1
s 1 6 4 6

hcd hc
1 6 hd

2 6 hc
3 1 hd

3 5 hd
4 6

h h1 6 h2 6 h3 6 h4 6

If we are only interested in the minimal number of periodic orbits, we just need to read the last line
labelled by “h". In our example, it is the line

h h16 h26 h36 h46 .

From it, we obtain the following information :

• the minimal3 number of periodic orbits, pmin, is just the sum of the elements of the line “h"
divided by 2. Here pmin = 6 + 6 + 6 + 6

2 = 12.

• the indices of the periodic orbits associated to this line, since each orbit of index j combi-
natorially corresponds to a couple of consecutive (hj, hj+1). Here, the line “h" is uniquely

3in the sense of Theorem 16.

https://github.com/MargaridaMello/OddMinimumPairingProblem/
https://github.com/MargaridaMello/OddMinimumPairingProblem/
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partitioned into 6 couples (h1, h2) and 6 couples (h3, h4), so that six of the twelve periodic
orbits are of index 1 and the other six are of index 3.

If we are interested in realizing these abstract data by attaching round handles, we need further
information about the compatible types “c" and “d" of such round handles (see [Bertolim et al.,
2007]). Here, we obtain this information by the penultimate line :

hcd hc
16 hd

26 hc
31 hd

35 hd
46 ,

that is, a realization can be obtained by attaching to a suitable boundary six round handles of index 1
and type (c, d), one round handle of index 3 and type (c, d) and five round handles of index 3 and
type (d, d) according to the pattern given in [Bertolim et al., 2007].
The other information created by the algorithm is useful whenever one wishes to follow step by
step the algorithm presented in [Bertolim et al., 2023a].

Coming back to the example in dimension 17 developed in the introduction, after entering
ValueSolutionMinPairingProblem(8,[5,6,3,-1,-2,-7,-6,8,-4,-10]) the output is:

i = 8 n = 17

g0 g1 g2 g3 g4 g5 g6 g7 g8 θ
f0

1 4 1 1 2 2 1 3 3 5
f1 2 1 1 1 2 2 3 3
f2 1 1 1 2 2 1
f3

1 1 1 2

f4
1 1 6 1 1 1 7

f5
2 1 1 1

f6
2 2 1 1

f7
3 2 2 1 1

f8
3 3 2 2 1 1 6 4 10

δ 6 2 6 8 4

Optimal value . . . . . . . . . . . . . . . 6

Column lower bound . . . . . . . . . . 0
Row lower bound . . . . . . . . . . . . . . 0
First upper bound . . . . . . . . . . . . . 33
Second upper bound . . . . . . . . . . 30

jcd 1c 5 5c 1 6d 2 9c 10 10c4 10d6 12c 6 13c 6 14c 2 15c 1 15d3 16d6
r 2 4
d 2 1 4 1
s 1 5 3 1 5 2 10 10 13 6 15 2 16 6

hcd hc
15 hd

2 5 hc
31 hd

4 1 hc
5 2 hd

6 2 hc
9 10 hc

10 4 hd
106 hc

126 hc
13 6 hc

14 2 hc
155 hd

153 hd
166

h h15 h2 5 h31 h4 1 h5 2 h6 2 h9 10 h1010 h126 h136 h14 2 h15 8 h166

Hence, for this data pmin = 32.
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Isolating blocks as realization of Lyapunov
graphs

***

"Conley’s view of the importance of isolating blocks did not stem from the mathematical elegance of the
theory alone, but also from his profound belief that isolating blocks are fundamental to an understan-
ding of natural phenomena. . .
Simply put, he believed that isolating blocks were the only dynamical objects that could be detected in
nature and their properties reflected the important properties of natural systems." R. McGehee

6.1 Isolating block for Morse flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Isolating blocks for periodic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Realizability of Lyapunov graphs in low dimension n ≤ 3 was considered in [de Rezende, 1987,
1993] and [De Rezende and Franzosa, 1993]. In [Bertolim et al., 2006b], [Bertolim et al., 2006a],
[Bertolim et al., 2007] we answer the local and global realizability questions in any dimension by
using topological techniques and handle theory one builds models by gluing handles containing
Morse singularities and round handles containing periodic orbits.

6.1 Isolating block for Morse flows

An n-dimensional elementary isolating block (N, N+, N−) can be constructed by considering an
(n−1)-dimensional manifold N− and its collar N−× [0, 1] with attached handle hk = Dk×Dn−k,
which contains an index k nondegenerate singularity. Different attachments may produce non-
homeomorphic isolating neighbourhoods with non-homeomorphic boundaries. Any such neigh-
bourhood can be schematically represented by a Lyapunov semigraph with outgoing edge(s) cor-
responding to the connected components of N− × [0, 1], a vertex corresponding to the singularity,
while the incoming edge(s) would correspond to the connected components ofN+×[0, 1], N+ being
the new boundary created by the attachment of hk to N− × {1}.
For example, it is well known that in dimension 2 a handle of index 0, 1 and 2 is a disk D0×D2, D1×
D1 and D2 ×D0 respectively. In this case, two dimensional isolating blocks for Morse singularities
are as in Figure 6.1. If the singularity is a sink, i.e., h0 = 1 then N is a disk with N+ = S1 and if
the singularity is a source, i.e., h2 = 1 then N is a disk with N− = S1. If the singularity is a saddle,
i.e., h1 = 1 then in the orientable case, N is a disk with two disjoint subdisks removed from its
interior and in the nonorientable case, N is a Mobius band with a subdisk removed from its interior.
The Lyapunov semigraphs containing Morse singularities and their realization as 2-dimensional
isolating blocks are depicted in Figure 6.1.

85
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h0 = 1

h2 = 1

h1 = 1

h1 = 1

h1 = 1

Figure 6.1: Isolating blocks and Lyapunov semigraphs for Morse singularities on surfaces.

As discussed in the previous chapter, by using the Poincaré–Hopf inequalities, we show in [Bertolim
et al., 2006b] that a minimal number of nondegenerate singularities can be computed in terms of
given abstract homological data. Moreover, this minimal number can be realized by a flow on some
manifold with boundary, satisfying the abstract homological information. Suchmanifolds are shown
to have the lowest topological complexity among all manifolds satisfying the given homological data.
We describe all the possible indices and types (connecting or disconnecting) of singularities realizing
this minimal number.
Then, in [Bertolim et al., 2006a] we study the algebraic structure of the dynamical data recorded a
priori in an abstract Lyapunov graph. We establish a general decomposition theorem for handles
which is also a consequence of the previous results. We present a constructive general procedure to
build Morse flows on n-dimensional isolating blocks respecting the given dynamical and homologi-
cal boundary data recorded in the abstract Lyapunov graphs. Thanks to the decomposition theorem
for handles, these isolating blocks can be obtained by using a special class of classical handles glu-
ings. Moreover, the corresponding flow not only preserves the given ranks of the homology Conley
indices, but it is also optimal in the sense that no other Morse flow can preserve this index with
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β1 = 1
β2 = 0

h1 = 3, h2 = 2, h3 = 3, h4 = 2

β1 = 0
β2 = 2

β1 = 0
β2 = 2

β1 = 1
β2 = 4

β2 = 10
β1 = 2

Figure 6.2: A vertex

fewer singularities. The main result in [Bertolim et al., 2006a] is:

Theorem 17 (Decomposition theorem). Let v be a vertex of a Lyapunov graph. Let h denote its label,
with the convention that the j-th coordinate corresponds to the value of hj . Then h is compatible with
the boundary conditions1 if and only if it can be decomposed as

h = hmin + hconsecutive + hdual + hinvariant, where

hmin is one of the labels associated with hmin and the boundary conditions;

hconsecutive is a vector corresponding to a collection of couples (hj, hj+1) with adjacent indices (ne-
cessarily of types (j-disconnecting, j-connecting));

hdual is a vector corresponding to a collection of couples (hj, hn−j) with dual indices (either of types
((j−1)-connecting, (n−j)-disconnecting) or of types (j-disconnecting, (n−j−1)-connecting);

hinvariant is a vector which may be non-zero only in dimension n = 4k, corresponding to a collection
of middle dimension h2k’s of type β-invariant.

We remark that the decomposition of Theorem 17 is in general not unique. Consider the following
example in dimension n = 5 (see Figure 6.2, where it is understood that for every edge we have
β0 = β4 = 1 and β3 = β1). In this case e+ = 2, e− = 3, (B+

1 − B−
1 ) = (1 + 2) − (0 + 0 + 1) = 2,

(B+
2 −B−

2 ) = (0 + 10)− (2 + 2 + 4) = 2 and h = (3, 2, 3, 2).

For this data we have hmin = 6 and three vectors realizing it:


h

(0)
min = (2, 1, 2, 1) corresponding to {hc

1 = 2, hd
2 = 1, hd

3 = 2, hd
4 = 1};

h
(1)
min = (3, 1, 1, 1) corresponding to {hc

1 = 2, hd
1 = 1, hd

2 = 1, hd
3 = 1, hd

4 = 1};
h

(2)
min = (4, 1, 0, 1) corresponding to {hc

1 = 2, hd
1 = 2, hd

2 = 1, hd
4 = 1}.

The semigraph of Morse type shown in Figure 6.3 represents one of the possible morsifications of
the vertex we are studying. By considering only this special morsification it is easy to verify that

1h is compatible with the boundary conditions if h satisfies the Poincaré-Hopf inequalities.



88 CHAPTER 6. ISOLATING BLOCKS AS REALIZATION OF LYAPUNOV GRAPHS

•

•

•

•

•

•

•

•

•

•

β1 = 0, β2 = 4
0-c h1 = 1

0-c h1 = 1

1-d h1 = 1

2-d h2 = 1

2-d h2 = 1

2-c h3 = 1

3-d h3 = 1

3-d h3 = 1

3-c h4 = 1

4-d h4 = 1

β1 = 1 β2 = 8

β1 = 2 β2 = 8

β1 = 2 β2 = 10

β1 = 2 β2 = 12

β1 = 2 β2 = 10

β1 = 3 β2 = 10

β1 = 4 β2 = 10

β1 = 3 β2 = 10

β1 = 1
β2 = 4

β1 = 0
β2 = 2

β1 = 0
β2 = 2

β1 = 2
β2 = 10

β1 = 1
β2 = 0

h
(0)
min

hconsec

hdual

Figure 6.3: A possible morsification of the vertex of Figure 6.2

the label h admits at least the three following decompositions:

h = (3, 2, 3, 2) =
(0−c, 0−c, 2−d, 3−d, 3−d, 4−d)︷ ︸︸ ︷

(2, 1, 2, 1)︸ ︷︷ ︸
h

(0)
min

+
(1−d, 3−c)︷ ︸︸ ︷

(1, 0, 0, 1) +
(2−d, 2−c)︷ ︸︸ ︷

(0, 1, 1, 0)︸ ︷︷ ︸
hdual

=
(0−c, 0−c, 2−d, 3−d, 3−d, 4−d)︷ ︸︸ ︷

(2, 1, 2, 1)︸ ︷︷ ︸
h

(0)
min

+
(2−d, 2−c)︷ ︸︸ ︷

(0, 1, 1, 0)︸ ︷︷ ︸
hconsecutive

+
(1−d, 3−c)︷ ︸︸ ︷

(1, 0, 0, 1)︸ ︷︷ ︸
hdual

=
(0−c, 0−c, 1−d, 2−d, 3−d, 4−d)︷ ︸︸ ︷

(3, 1, 1, 1)︸ ︷︷ ︸
h

(1)
min

+
(2−d, 2−c)︷ ︸︸ ︷

(0, 1, 1, 0) +
(3−d, 3−c)︷ ︸︸ ︷

(0, 0, 1, 1)︸ ︷︷ ︸
hconsecutive
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In addition to the structural explanation of labels compatible with the abstract homological data
of the edge, the interest of the writing highlighted in Theorem 17 is to be able to constructively
guarantee the realizability of abstracts Lyapunov graphs by means of classical elementary gluings
whose detailed description can be found in [Bertolim et al., 2006b]. I summarize them below.
Notation: Let hq be an n-dimensional handle of index q, Mi the n-dimensional manifold obtained
after step i andNi its modified boundary. Recall that an n-dimensional handle of index k is a product
of disks centered at the origin Dk×Dn−k. The core is Dk×0 and the cocore is 0×Dn−k. We define a
flow on the handle by considering a non-degenerate index k singularity at the origin and identifying
the core and cocore with its unstable and stable manifold respectively. The attaching region of the
handle is Sk−1 ×Dn−k and corresponds to the part of the boundary of the handle through which
the flow exits. Similarly, the belt region Dk×Sn−k−1 corresponds to the part of the boundary of the
handle through which the flow enters.

• Trivial gluing: Let us start from M0 and N0. A trivial gluing is a way of attaching a handle
of index q to a disc Dn = Dq ×Dn−q in order to create a q-handlebody in such way that the
effect of the trivial gluing on the Betti numbers of the boundary is that only the q-th Betti
number βq and its dual βn−q−1 have changed by being increased by 1. For this reason, the
trivial gluing of hq is of type q-d.

• Null gluing: Let us start from M0 and N0. A null gluing concerns two handles of consecutive
indices, say, q and q + 1 in such way that the effect of the null gluing on the Betti numbers of
the boundary is globally null. This is done in two steps : after the first step, only the q-th Betti
number βq and its dual βn−q−1 have changed by being increased by 1 (trivial gluing of hq of
type q-d). After the second step the gluing of hq+1 decreases by 1 the same Betti numbers βq

and βn−q−1 (gluing of hq+1 of type q-c). The net effect after both gluings is zero.

• Dual gluing: can only be performed by using two handles of complementary indices q and
(n− q) in such way that the effect of the dual gluing on the Betti numbers of the boundary is
globally null. The first step consists in gluing a q-handle hq toM0 via a trivial gluing. After the
first step, only the q-th Betti numbers βq and its dual βn−q−1 have changed by being increased
by 1. The second step is to attach the (n− q)-handle hn−q by identifying its attaching region
Sn−q−1 ×Dq to the belt region of hq. After the second step the gluing of hn−q decreases by 1
the same Betti numbers βq and βn−q−1 (gluing of hn−q of type (n− q − 1)-c).

• Invariant gluing: when the ambient dimension n is of the form n = 4k and the index of
the singularity is the middle dimension 2k, starting from M0 and N0, there is the possibility
of gluing the corresponding handle in an invariant way, that is, in such a way that the Betti
numbers of the boundary after such a gluing are the same as those of the boundary before the
gluing. For this reason, all gluings of a single handle h2k like these are of type β-i. Examples
of invariant gluings can be found in the construction of the projective spaces CP2k, HP2k

and OP2k. For details, see [Bertolim et al., 2006b].

These elementary gluings allowed us to prove the Decomposition Theorem by realizing step by step
the isolating block. Each group of handles appearing in the decomposition theorem (Theorem 17)
is treated separately in [Bertolim et al., 2006b]. For example, Figure 6.4 illustrates an isolating block
of a consecutive pair of handles.

6.2 Isolating blocks for periodic orbits

In order to realize Morse–Smale isolating blocks for periodic orbits, one must make use of round
handles. The space Rn

k = S1 ×Dk ×Dn−k−1 or R for short is called an n-round handle of index k.



90 CHAPTER 6. ISOLATING BLOCKS AS REALIZATION OF LYAPUNOV GRAPHS

∼=

Sj

Sn−j−1
0

hj

hj+1

Figure 6.4: Isolating block of a consecutive pair of handles.

Its boundary ∂R is made up of two parts, the attaching region which is ∂AR = S1×Sk−1×Dn−k−1

and the belt region which is ∂BR = S1 ×Dk × Sn−k−2 which intersect in ∂A∩BR = ∂BR ∩ ∂AR =
S1 × Sk−1 × Sn−k−2. Figure 6.5 illustrates round handles in dimension 3.

Figure 6.5: A round handleR for repelling periodic orbit, saddle periodic orbit and attracting periodic
orbit respectively.

Round handles were introduced in [Asimov, 1975] and it was proved that flow manifolds admit
round handle decompositions. In [Franks, 1985], Franks constructed isolating blocks for nonsin-
gular Morse-Smale flows on S3. In [Cruz and de Rezende, 1999] Lyapunov graphs were gener-
alized to represent flows on n-manifolds using Conley homology indices. Furthermore, in [Cruz
and de Rezende, 1999] a classification is obtained describing the possible homological effects on the
boundary of a manifold after attaching handles and round handles and this information is coded
in Lyapunov semigraphs. However, isolating blocks realizing these Lyapunov semigraphs had not
been constructed in that work.
In [Bertolim et al., 2007] we prove that some Lyapunov graphs associated with periodic orbits are
realizable by constructing isolating blocks for periodic orbits of Morse-Smale flows. We analyze
the effects on the Betti numbers of a manifold after a round handle operation is performed and a
variety of situations are considered. Sincewe are concerned in showing the existence of some blocks,
we keep the complexity of the manifolds in consideration under control by considering essentially
manifolds with free homology groups, in particular we consider connected sums of tori manifolds.
In [Bertolim et al., 2007] we prove the following theorem:

Theorem 18. Given an abstract Lyapunov semigraph L labelled with a periodic orbit it can be realized
as a Morse-Smale flow on an isolating neighborhood which respects the homological information on L.

Based on Asimov’s result [Asimov, 1975] which asserts roughly that two consecutive singularities p
of index k + 1 and q of index k with W u(p)∩W s(q) = ∅ can be replaced by a round handle of index
k, it is shown in [Cruz and de Rezende, 1999] that a Lyapunov semigraph with a vertex labelled
with a periodic orbit of index k is derived from a Lyapunov semigraph consisting of two vertices
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labelled with singularities of consecutive indices. Later this notion of derivation was generalized in
[Bertolim et al., 2003a] as graph continuation and now called graph morsification.
Combining the possible connectivity types of two consecutive singularities (leaving the β-invariant
case aside), i.e., a singularity of index k with connectivity type (k − 1)-c or k-d and a singularity of
index k + 1 with connectivity type k-c or k + 1-d produces the following table:

singularity q of index k
singularity p of index k + 1 type k-d type (k− 1)-c
type (k + 1)-d (k + 1)-d; k-d (k + 1)-d; (k − 1)-c
type k-c k-c; k-d k-c; (k − 1)-c

We consider in [Bertolim et al., 2007] periodic orbits classified by their connectivity types and denote
them as indicated in the following table:

periodic orbit connectivity type
Rk-disconnecting (k + 1)-d; k-d

Rk-disconnecting/connecting (k + 1)-d; (k − 1)-c
Rk-invariant k-c; k-d

Rk-connecting k-c; (k − 1)-c

Given an n-dimensional manifold Nn and Nn−1 a component of its boundary ∂N , we have that
the gluing of R to N is performed by identifying ∂AR to a correspondent diffeomorphic image of
S1×Sk−1×Dn−k−1 inNn−1 and we refer to this operation as adding an n-round handle of index
k to N . It is essentially defined by the embedding φ : S1 × Sk−1 ×Dn−k−1 ↪→ N− which defines
where the attaching region of R, ∂AR, will be attached to N . This surgery changes the manifold N
and its boundary component N−.
In this work we are interested in describing the changes that occur to the collar of N− once the
handle has been attached in some special situations, namely when certain controlled changes in the
homology of N− is required (as coded in the Lyapunov semigraph). For this purpose it is enough to
consider N = N−× [0, 1] and do the handle operation in one of the components of its boundary. For
this purpose, we defined three types of embedding : trivial embedding, small handle embedding and
essential embedding that were used in the construction of the isolating blocks. Since the description
of these embedding are technical, I prefer to omit them. Details can be found in [Bertolim et al.,
2007].
Since we want to consider the realization of isolating blocks for periodic orbits, we analyze the
possible effects on the Betti numbers of N+ once a round handle R of index k is attached to N−.
The non trivial homology groups of the various regions of the round handlewere used in our analysis
together with a Mayer-Vietoris sequence to compute the homology making it possible to build the
following four realizations of Lyapunov semigraphs for periodic orbits:

• Disconnecting case: in this case we will use the trivial embedding to construct an isolating
block with the effect described in the Lyapunov semigraph in Figure 6.6. See Figure 6.7 for a
three-dimensional disconnecting isolating block.

βk + 1, βk+1 + 1

βk, βk+1

Rk continues to

βk + 1, βk+1 + 1

βk, βk+1

hk = 1 k-d

hk+1 = 1 (k + 1)-d
βk + 1, βk+1

Figure 6.6: k-d and (k + 1)-d, or k and (k + 1)-disconnecting.
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R1

β1 = 2

β1 = 4 β1 = 0

Figure 6.7: Disconnecting isolating block N− = T 2
1 and N+ = T 2

1 ♯ T 2
2 ⊔ S2.

• Invariant case - N− = Sk × Sn−k−1: in this case we will use the small handle embedding to
construct an isolating block with the invariant effect described in the Lyapunov semigraph in
Figure 6.8. See Figure 6.9 for a three-dimensional invariant isolating block.

βk

βk

Rk continues to

βk

βk

hk = 1 k-d

hk+1 = 1 k-c
βk + 1

Figure 6.8: Invariant effect.

R1
β1 = 4

β1 = 4

Figure 6.9: Invariant isolating block N− = N+ = ♯2T 2 = T 2
1 ♯ T 2.

• Invariant case in the middle dimension: the analysis is slightly more delicate in the middle
dimension and we illustrate it with the case Sk−1 × Sk.

S1
v × Sk−1

v

Sk−1

{p}

{p} ×Dk−1
v

S1
v × Sk−1

v ×Dk−1
v

Sk

Figure 6.10: Middle-dimensional Case: Sk × Sk−1.



6.2. ISOLATING BLOCKS FOR PERIODIC ORBITS 93

• Connecting-Disconnecting case - N− = Sn−k × Sk−1: in this case the essential embed-
ding will be used to construct an isolating block with the effect described in the Lyapunov
semigraph in Figure 6.11.

βk−1 − 1, βk+1 + 1

βk−1, βk+1

Rk continues to

βk−1 − 1, βk+1 + 1

βk−1, βk+1

hk = 1 (k − 1)-c
hk+1 = 1 (k + 1)-d

βk−1 − 1, βk+1

Figure 6.11: (k − 1)-c and (k + 1)-d, or (k − 1)-connecting and (k + 1)-disconnecting.

• Connecting case: in this case the essential embedding is used to construct an isolating block
with the effect described in the Lyapunov semigraph in Figure 6.12. See Figure 6.13 for a
three-dimensional connected isolating block.

βk−1 − 1, βk − 1

βk−1, βk

Rk continues to

βk−1 − 1, βk − 1

βk−1, βk

hk = 1 (k − 1)-c
hk+1 = 1 k-c

βk−1 − 1, βk

Figure 6.12: (k − 1)-c and k-c, or (k − 1)-connecting and k-connecting.

R1

β1 = 4 β1 = 6

β1 = 8

Figure 6.13: Connecting isolating block N− = ♯2T 2 ⊔ ♯3T 2 and N+ = ♯4T 2.
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"Poetry and code - and mathematics - make us read differently from other forms of writing. Written
poetry makes the silent reader read three kinds of pattern at once; code moves the reader from a static to
an active, interactive and looped domain; while algebraic topology allows us to read qualitative forms
and their transformations." Stephanie Strickland

In the last chapter we considered isolating blocks. In a certain sense isolating blocks (N, N+, N−)
are cobordisms between the codimension one closed manifolds which are entering and exiting
boundaries, N+ and N− respectively, of a flow defined on N . We can also view them as building
blocks of a closed manifold. As we saw in Chapter 1, Morse considered slicing a manifold at regu-
lar and critical level sets and studied their topological relation up to homotopy. Passing through a
critical level of a Morse function was equivalent to adding a handle. Conley generalized this idea in
his definition of Morse decompositions which are closely related to isolating blocks, see Figure 7.1.
So, locally, isolating blocks are extremely important in the understanding of the dynamics.

M1
M2

M3M4

M5 M6

M8

M7

M9

M10

M11

M13

M12

M14

M2

M3

M4

M5

M1

Figure 7.1: Morse Decompositions.

In this chapter, one would like to consider a global view of the dynamics. As mentioned in Chap-
ter 1, Conley’s Fundamental Theorem of Dynamical Systems asserts that any continuous flow has a
gradient-like behaviour. With this in mind, this chapter aims to explain how these blocks are con-
nected by their stable and unstable manifolds. In this sense we want explore how topological and
algebraic invariants are related to these global connections in the dynamics.
Our inspiration is a paradigm established by Smale and Franks.

Dynamics
(isolating blocks)

Differential
Topology
←−−−−−−−→ Chain complex

description)

Algebraic
Topology
←−−−−−→ Homology

95
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Here, one uses two main tools: firstly, Differential Topology to describe the behaviour of stable and
unstable manifold in terms of a chain complex. Secondly, by using Algebraic Topology, once one
has a chain complex the natural thing to do is compute its homology as we showed in Chapter1
that Poincaré did when he had a simplicial complex. Other authors such as A. Floer, E. Witten and
D. Salomon adopted this paradigm and worked with a Morse chain complex. Also, the complex is
generated by the critical points of a Morse function and the differential of the complex is determined
by the intersection numbers of the unstable manifolds. An important theorem proved and used in
their subsequentwork is that theMorse homology of this chain complex is isomorphic to the singular
homology of the manifold phase space of a Morse gradient flow defined on it.
Consider a gradient flow ϕ of a Morse function f : M → R on a closed Riemannian manifold
M . Let D(M) be a Morse decomposition of M . Given nondegenerate singularities x and y of
indices k and k − 1, respectively, the set of connecting orbits is finite. By orienting the unstable
and stable manifolds, we define the intersection number n(x, y) to be the number of connecting
orbits counted with orientation, i.e., n(x, y) =

∑
u∈Mx

y

nu, where nu is the characteristic sign.

x

z

z′

y

TxW
u(x)

2

1

u1

u2

v1
v2

+1

+1

−1

−1

• n(x, y) = nv1 + nv2 = 0

• n(y, z) = nu2 = −1

• n(y, z′) = nu1 = 1.

Let C be the Morse complex associated to f and M . C is the free module generated over Z by the
critical points of f graded by the Morse index, Ck = Z⟨Critk(f)⟩, that is

Ck(f) :=
⊕

x∈Critk(f)
Z⟨x⟩, k ∈ Z.

The connection matrix ∆ : C → C associated with D(M) is defined to be the differential of the
graded Morse chain complex C = Z⟨critf⟩, i.e., it is determined by the maps ∆k(x) : Ck(f) −→
Ck−1(f) via

∆k⟨x⟩ :=
∑

y∈Critk−1(f)
n(x, y)⟨y⟩.

We will write the boundary operator ∂ and its matrix ∆ interchangeably.
Consider the following example of a Morse Chain Complex on S2.

∆(S2) =


z′ z y x

z′ 0 0 1 0
z 0 0 −1 0
y 0 0 0 0
x 0 0 0 0



x

z

z′

y u1

u2

v1
v2

+1
−1

+1
−1
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Our idea in [Bertolim et al., 2016a, 2017] is to take this idea a step further. Instead of computing
the homology once, one proceeds to compute a sequence of homology complexes as defined by a
spectral sequence.
The dynamics given in each Morse isolating block can be connected to a Morse chain complex as
shown above. Intuitively, one can look at a spectral sequences as a book made up of pages Er

and each page r there is a chain complex Er, dr with a differential dris of bi-degree (−r, r − 1).
So for example on E2, all differentials have bi-degree (−2, 1) which means the arrow connects
modules in position (p, q) to modules −2 to the left in a horizontal direction and 1 in a positive
vertical direction, i.e., to a module in position(p − 2, q + 1). The turning of the pages corresponds
to computing the homology of the previous page, H∗(Er) ≈ Er+1. In this sense one produces a
sequence of homologies.
So now let us define a spectral sequence.
A spectral sequence E = {Er}r≥0 is a sequence of chain complexes {Er, dr}, r ≥ 0, such that

• Er
p,q is bigraded and is the set of p + q-chains.

• dr is a differential of bidegree (−r, r − 1), i.e., it is a collection of homomorphisms dr :
Er

p,q → Er
p−r,q+r−1 for all p and q such that dr ◦ dr = 0.

• For all r ≥ 0 there exists an isomorphism H(Er) ≈ Er+1 where

Hp,q(Er) =
Kerdr : Er

p,q → Er
p−r,q+r−1

Imdr : Er
p+r,q−r+1 → Er

p,q

(homology module)
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Now we want to understand what each module Er
p,q means in terms of the dynamics.

A filtration F = {Fp} on a chain complex C is a sequence of subcomplexes FpC , p ∈ Z, such that
FpC ⊂ Fp+1C , for each p. In this work, one considers a specific filtration in aMorse complex induced
by the flow ϕf . Given a finest Morse decomposition {M(p) | p ∈ P = {1, . . . , m}, m = #Crit(f)}
such that there are distinct critical values cp with f−1(cp) ⊃M(p), we can define a filtration on M
by

{Fp−1}m
p=1 = {f−1(−∞, cp + ϵ)}m

p=1.

Since for each p ∈ P there is only one singularity in Fp \ Fp−1 the filtration F is called a finest
filtration. The filtration F is convergent, i.e., ∩pFpC = 0 and ∪FpC = C . We define the filtration
length with respect to a filtration F of the orbit Ohkhk−1 that connects hk to hk−1 as being the
natural number r whenever hk ∈ FpC and hk−1 ∈ Fp−rC . The number r is also called the gap
between the singularities hk to hk−1.

The algebraic formulas for the modules are

Er
p,q =

Zr
p,q

Zr−1
p−1,q+1 + ∂Zr−1

p+r−1,q−r+2

Zr
p,q = {c ∈ FpCp+q : ∂c ∈ Fp−rCp+q−1}

Zr−1
p−1,q+1 = {c ∈ Fp−1Cp+q : ∂c ∈ Fp−rCp+q−1}

∂Zr−1
p+r−1,q−r+2 = ∂{c ∈ Fp+r−1Cp+q+1 : ∂c ∈ FpCp+q}

Er
p,q = {hp+q, hp+q, hp+q}

{hp+q, hp+q}

Fp+r−1

Fp

Fp−1

Fp−r

...

...

h(p+q)+1

hp+q

hp+q

hp+q

hp+q

h(p+q)−1

h(p+q)−1

∂

∂

h(p+q)−1

In order to understand these formulas, let us be inspired by Poincaré once again in his search for i-
cycles, which are not the boundary of some i+1-chain which is the main idea behind the homology
computation. In theMorse chain complex,Ci are the i-chains generated by the index i critical points.
Once again we wish to find i-cycles, which are not the boundary of some i + 1-chain. When one
computes the modules of the spectral sequence, the filtration plays an extremely important role. Er

p,q

will be generated by index p + q critical points in filtration Fp which are i-cycles whose boundary
are critical points of index p+q−1 with the additional property that it is in a filtration level of gap r,
Fp−r. In a certain sense, as one computes the spectral sequence, longer connections are determined.

Note that one quotients out cycles which are boundaries of p + q + 1-chains in Fp+r, as well as,
p + q-cycles which have p + q − 1-chains as boundaries which are not in Fp−r, i.e are not long
enough.

Whenever the filtration considered is the finest filtration F , since each Morse set is a singularity of
index k, the only q such that Er

p,q is non-zero is q = k−p. Hence, we omit reference to q, i.e., Er
p is in

fact Er
p,k−p. The algebraic formulas above for the modules became: Er

p =
Zr

p

Zr−1
p−1 + ∂Zr−1

p+r−1
, where

Zr
p = {c ∈ FpCp : ∂c ∈ Fp−rCp}. Each hk column of the connection matrix ∆ represents the

connections of an elementary chain hk of Ck to an elementary chain hk−1 of Ck−1. The Z-module
Zr−1

p,k−p = {c ∈ FpCk : ∂c ∈ Fp−rCk−1} is generated by k-chains contained in Fp with boundaries
in Fp−r. In the matrix ∆, this corresponds to all hk columns to the left of the (p + 1)st column, or
linear combinations thereof, such that their boundaries (non-zero entries) are above the (p−r+1)st
row. Zr−1

p−1,k−(p−1) = {c ∈ Fp−1Ck : ∂c ∈ Fp−rCk−1} corresponds to all hk columns to the left of the
pth column in the matrix ∆, or linear combinations thereof, such that their boundaries are above
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the (p − r + 1)st row and ∂Zr−1
p+r−1,(k+1)−(p+r−1) = ∂{c ∈ Fp+r−1Ck+1 : ∂c ∈ FpCk} is the set of

all the boundaries of elements in Zr−1
p+r−1,(k+1)−(p+r−1), corresponds to all hk columns to the left of

the (p + 1)st column (or, equivalently, all hk rows above the (p + 1)st row) in the matrix ∆ that are
boundaries of hk+1 columns to the left of the (p+r)th column. The index-k singularity in Fp\Fp−1
corresponds to the k-chain associated to the (p + 1)st column of ∆.

An example of a finest filtration is given below.
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Filtration in M

• If h
(p+1)
k ∈ FpC \ Fp−1C .

• Simplifying notation:
Er

p = Er
p,k−p.
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...

...
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hp+2
k

hp
k

hp+1
k
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k−1

Fp
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We say that two singularities of consecutive Morse index of a smooth flow ϕ on a manifold can be
dynamically cancelled if there exists a neighborhood U of these singularities that also contains
the orbits connecting them and a new flow ϕ′ that coincides with ϕ outside of U and is a tubular
flow inside U .

A particular case of interest occurs whenever the entry ±1 in the connection matrix is a primary
pivot or change-of-basis pivot. The differentials dr

p : Er
p → Er

p−r associated to primary pivots are
isomorphisms and the ones associated to change of basis pivots always correspond to zero maps.
The non-zero differentials are isomorphisms and this implies algebraic cancellations in the spec-
tral sequence, i.e., Er

p = Er
p−r = 0. These algebraic cancellations also correspond to dynamical

cancellation of consecutive index singularities hk and hk−1 in ϕ, i.e., this corresponds dynamically
to the death of the singularities and its connecting orbits and the birth of a new connection.

Let us exemplify dynamical cancellations by using Smale’s Cancellation Theorems. In the two-
dimensional case this is done in the following way: suppose that there is a unique orbit between hk

and hk−1 and let U be a neighborhood containing them. The orbit connecting these singularities is
the transversal intersection of their unstable and stable manifolds, W u(hk)∩W s(hk−1). By Smale’s
First Cancellation Theorem, one may cancel hk and hk−1 resulting in a flow which coincides with
the initial flow outside U and has no critical points in U .

For higher dimensions (≥ 6) first, we adopt the loose terminology that a critical point hj
k connects
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with a critical point hi
k−1 if themoduli spaceMhi

k−1
hj

k

is non-empty. In fact, evenwhen the intersection
number between two singularities on an n-dimensional manifold, n > 2, is equal to ±1, there
may be several connecting orbits between them. Smale’s Second Cancellation Theorem guarantees
that whenever the intersection number between two critical points x and y is ±1, the flow can be
modified locally so that the connection between x and y is a unique flow line.
Hence, if hj

k and hj−r
k−1 are two consecutive critical points of a Morse-Smale function f such that

n(hj
k, hj−r

k−1, ϕf ) = ±1, then by Smale’s Second Cancellation Theorem the flow can be modified
locally so that the connection between them is a unique flow line and by using Smale’s First Cancel-
lation Theorem these critical points can be cancelled, i.e. there is a gradient flow ϕ′ which coincides
with ϕ outside a neighborhood of U of {hj

k, hj−r
k−1} ∪ O(u), whereMhj−r

k−1
hj

k

= {u}. See Figure 7.2.

ϕ −→ ϕ′

Figure 7.2: Birth and death of connections.

Our main contribution was the following global cancellation result “Smale’s Cancellation Theorem
via spectral sequences”:

Theorem 19. Let (C, ∆) be the Morse chain complex associated to a Morse function f . Let (Er, dr)
be the associated spectral sequence for the finest filtration F = {FpC} defined by f . The algebraic
cancellation of themodulesEr of the spectral sequence are in one-to-one correspondence with dynamical
cancellations of critical points of f . Moreover, the order of cancellation occurs as gap r increases.

This theorem shows us that every time we detect differentials dr of the sequence in Er which are
isomorphisms, on the next page those modules in those same positions, zero out. This is natural
since the kernel of an isomorphism is zero and hence the homology is zero. Our theorem provides a
dynamical counterpart to this algebraic phenomena. It corresponds to a connection of an unstable
manifold of two consecutive index critical points, one of index p to an index p − 1 which cancels
due to its intersection number being±1. So algebraic cancellations and dynamical cancellations are
closely related. See Figures 7.3 and 7.4 which illustrates this correspondence.
Our motivation throughout this work was to obtain as much algebraic information from the most
simple topological setting for a flow, namely, a Morse flow on an orientable surface and its connec-
tions. One hopes in the future that given a more complicated dynamical setting such as a smooth
flow on a 2-dimensional manifold, or on higher dimensional manifolds, these algebraic invariants
will also provide other dynamical information on the nature of the connections as well as bifurca-
tion behaviour, see Franzosa et al. [2014]. This is the central stimulus in studying spectral sequences
for Morse chain complexes with coarser filtration since this provides the finest filtration for a more
general flows. See Figure 7.5. In Figure 7.6, the Lyapunov graph on the left represents a more general
flow with the finest filtration and the Lyapunov graph on the right represents a Morse flow with a
coarser filtration.



101

h1
0

h2
0

h3
0

h4
1

h5
1

h6
1

h7
1

h8
2

h9
2

h10
2

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

E0 :

E1 :

[h1
0] [h2

0] [h3
0] [h4

1] [h5
1] [h6

1]

E1
0

E1
1 E1

2 E1
3 E1

4 E1
5

[h7
1]

E1
6

[h8
2]

E1
7

[h9
2]

E1
8

[h10
2 ]

E1
9

d1 d1

Figure 7.3: Correspondence between algebraic cancellations and dynamical cancellations.
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Perspectives
***

"The important thing is not to stop questioning. Curiosity has its own reason for existing."
Albert Einstein

In the Section 5.2 we described our result developed in [Bertolim et al., 2023a]. In this work we have
considered only the odd dimensional case. The proof of our results opens way to the consideration of
the even dimensional setting. Even though the guidelines for finding an algorithm are comparable,
the combinatorics in the even dimensional setting is richer because of the existence of “invariant”
handles1 and must be treated independently. Moreover, handles of invariant type are difficult to re-
alize in the nonsingular Morse-Smale context, so that the realization of the general abstract solution
by a nonsingular Morse-Smale model remains an open question. For the same reason, our results
in [Bertolim et al., 2023b], described in Section 4.4 treated only the odd dimensional case and the
even case remains an open question. In fact, an important step to solve these open questions is to
construct a β-invariant isolating block following the ideas of [Bertolim et al., 2007].
We also intend to generalize the Poincaré-Hopf inequalities by removing the Conley duality condi-
tion in order to apply them in a more general context.
Since I am now in an Engineering School, another direction that I intend to explore is Lyapunov
graph applications. In fact, Lyapunov graphs can be seen as enriched Reeb graphs. Reeb graphs
were introduced in [Reeb, 1946] and have been used in a range of applications in computer graphics
and visualization, see for example the survey [Biasotti et al., 2008] and references therein. They also
are an important tool in the field of Computational Topology for shape analysis, see for example
[Edelsbrunner and Harer, 2010]. Applications also appear in medical imaging and some other areas
of science and engineering, see for example [Pepe et al., 2012], [Mestiri, 2012], [Herlem et al., 2013]
and [Khoury et al., 2012]. Therefore the use of some of our results transcribed to lower dimension
can be useful for applications and may originate new techniques.
There are many unexplored paths one can undertake in this area of research. To consider other dy-
namical settings and explore the beautiful algebraic connections between topological and dynamical
invariants is an arduous yet fascinating endeavour of an isolating block.

1Handles whose attaching produces no effect on the Betti numbers of the boundary.
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Appendix
***

"We ourselves are co-called non-linear dynamical systems... I don’t feel quite so pathetic when I inter-
rupt a project to check on some obscure web site or newsgroup or derive an iota of cheer by getting rid
of pocketful of change." John Allen Paulos

As I mentioned previously, in order to present a coherent document, I have chosen to present the
publications [Bertolim and Jacquemard, 2014, Bertolim et al., 2016b] in this appendix.
Indeed, with Alain Jacquemard and Gioia Vago in [Bertolim and Jacquemard, 2014, Bertolim et al.,
2016b] we considered discontinuous dynamical systems. In this case we are interested in study-
ing differential equations depending nonsmoothly on the integration time. We deal with the exis-
tence of periodic solutions to such equations and our goal is to give effective methods and algorithms
which explain the behavior of such nonsmooth dynamical systems.
In [Bertolim and Jacquemard, 2014] we discuss differential equations depending nonsmoothly on
the integration time of the form

y(n) = sgn
(
σ(t)

)
+ F (t)

where n ∈ N, n > 0, and F , σ are piecewise-C∞ periodic functions. This work deals with the study
of the periodic solutions to piecewise-C∞ differential equations. Up to normalization, the periodic
solutions to our order n equations are expressed in a very direct way in terms of the n-primitive
of F vanishing at 0, the function σ and the Euler polynomial of degree n, En, which is a degree n
polynomial defined by:

En(t) =
n∑

k=0

1
2k

 k∑
j=0

(−1)j

(
k
j

)
(t + j)n

.

Note that the interest of this formulation in terms of Euler polynomials is two-fold. On the one hand,
although Euler polynomials are well known and extensively studied by several mathematicians, it
is the very first time that they appear in nonsmooth dynamical systems theory. On the other hand,
they allow us to write explicitly our solutions without any numerical approximation due to the
presence of infinite series. In this sense, this approach is conceptually different from the classical
one using Fourier series theory.
In [Bertolim et al., 2016b] it is shown that Bernoulli polynomials can be used to construct solutions
to some other interesting classes of ordinary differential equations. These equations are beyond the
theory of piecewise-smooth differential equations and have to be treated in Distribution Theory,
since their expressions involve Dirac combs. Here, too, we wish to emphasize that all the periodic
solutions to the equations we deal with are expressed in terms of finite exact formulae. In these
formulae, a family of switched Bernoulli polynomials appear. They are defined in a simple way
from the Bernoulli polynomials themselves. The intrinsic nature of all the solutions is thus as well
understood as the Bernoulli polynomials are.
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One remark that even though the problems solved in [Bertolim and Jacquemard, 2014] and those
solved in [Bertolim et al., 2016b] are different and independent, they also share a common point,
namely, the central role played by the two remarkable families of Appell polynomials (the Bernoulli
ones and the Euler ones, respectively). I conclude then this part of my research with the following
questions:

• Are these two families exceptional among the Appell polynomials because of their symme-
tries?

• Or are there other families of natural discontinuous differential equations with direct applica-
tions whose periodic solutions can be expressed in terms of other remarkable bases of Appell
polynomials?
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