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Abstract

Abstract

Abstract

The Domain Name System is a cornerstone of the modern Internet, providing information on
millions of domain names by answering billions of requests per day. It is often simplified as
just a system mapping human-readable names to machine IP addresses, but it fills multiple other
roles and many systems use its architecture, availability, and resilience as a foundation for their
design. The DNS is a hierarchical and distributed system, storing technical information on do-
main names, like their IP address allowing other devices on the network to contact them, or the
name of the server in charge of their mail boxes. However, the DNS protocol was designed in
the early 1980s, when the Internet was just a small set of interconnected universities and gov-
ernment agencies. Therefore, hundreds of protocol extensions were added to its specifications
to better address the needs and paradigms of the growing and changing Internet. Thanks to its
unique properties, many different systems rely on the domain name architecture and the DNS
infrastructure, like mail delivery and security, load balancing, intrusion detection systems and
service discovery. Malicious actors also leverage the DNS architecture to increase their reach,
impact, or hide their identity, like spam campaigns, Denial of Service attacks, malware deliv-
ery or botnets control. Querying the DNS is often the first step of a connection between two
devices on the Internet, so observing this traffic can reveal ongoing spam campaigns, software
updates distributions, misconfigurations, the rise of the Internet of Things or cyberwars between
countries. However, studying the DNS is a challenging task, considering the massive volume of
queries and its distributed architecture. Nevertheless, observing even a sample of the DNS traf-
fic can still provide crucial insights into how the modern Internet is organized and how different
entities and systems use it.

In this thesis, we explore the DNS as a way to establish trust between entities on the Internet
and as a source of information providing valuable insights on the Internet usages and diversity.
We dive into the domain name registration process and challenge the assumption that the data
stored in multiple domain name registration databases are always coherent. This hypothesis
made by previous works turned out to be true for the majority of domains, but we raise concerns
on some inconsistencies that still remain. We designed a naming scheme for constrained devices
that leverages the DNS capabilities, allowing for efficient encoding of properties and location.
This design also provides ways to discover devices based on these properties without adding
load to the end devices. Finally, we study the security configuration and DNS traffic patterns
of domains distributing spam. We propose a detection algorithm leveraging the differences
between benign domains and spam domains to classify spam domains even before the start of a
spam campaign, allowing defenders to take protective measures quickly and prevent attacks.
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Abstract

Résumé

Le Domain Name system est une pierre angulaire de l’Internet moderne, fournissant des in-
formations techniques sur des millions de domaines en répondant à des milliards de requêtes
chaque jour. Il est souvent réduit à sa fonction de table associant une adresse IP à chaque nom
de domaine, mais le DNS a de nombreux autres rôles et un grand nombre de systèmes se basent
sur son architecture et sa stabilité. Le DNS est un système hiérarchique distribué, associant des
informations techniques à des noms de domaines, comme leur adresse IP sur le réseau permet-
tant de les contacter, ou le nom du serveur en charge de la gestion de leurs mails. Cependant, le
DNS a été créé au début des années 80, quand Internet n’était qu’un petit ensemble d’universités
et agences gouvernementales interconnectées. Des centaines d’additions et extensions ont été
ajoutées au protocole pour l’adapter aux besoins grandissants et changeants de l’Internet. Grâce
à sa facilité d’utilisation, son adoption massive et son architecture résiliente, de nombreux sys-
tèmes s’appuient sur les noms de domaines et le DNS, comme les protocoles d’envoi et de
réception de mails, les équilibreurs de charge, des systèmes de détection d’intrusion ou de dé-
couverte de services. Des systèmes mal intentionnés utilisent aussi l’architecture DNS pour
augmenter leur efficacité ou cacher leur identité, comme l’envoi de pourriels, des attaques de
déni de service, de la distribution de virus ou le contrôle de botnets. La majorité des connex-
ions entre deux terminaux sur Internet commence par des requêtes DNS. Observer ces requêtes
permet donc d’observer en direct de nombreux événements, comme des campagnes d’envoi
de pourriels, le déploiement de mises à jour, des problèmes de configuration, la montée de
l’Internet des Objets ou des cyber-conflits entre des états. Cependant, étudier le DNS est une
tâche complèxe, étant donné l’important volume de trafic qu’il représente, et son architecture
distribuée. Toutefois, même en se limitant à des échantillons du trafic réel, ce trafic permet de
mieux comprendre comment l’Internet est organisé, et comment différents acteurs l’utilisent.

Dans ce travail de thèse, nous avons étudié le DNS dans son rôle d’établissement de liens
de confiance entre terminaux et en tant que source d’information permettant de mieux com-
prendre la diversité et l’usage actuel d’Internet. Nous avons tout d’abord étudié le processus
d’enregistrement de noms de domaines, en remettant en question une hypothèse, faites par
plusieurs articles scientifiques et travaux techniques, que les multiples sources d’information sur
les noms de domaines étaient toujours cohérentes entre elles. Nous avons apporté des preuves
confirmant cette cohérence dans la majorité des cas, rassurant ainsi les travaux collectant ces
données pour un grand nombre de domaines. Nous avons cependant souligné que certains types
d’entrées étaient plus souvent erronés, et que les travaux se basant sur leur contenu doivent
avoir une vigilance particulière vis à vis de leur cohérence. Nous avons créé un schéma de
nommage pour des terminaux à capacités limitées, permettant d’encoder efficacement les pro-
priétés et localisation du terminal. Ce système utilise l’infrastructure DNS et exploite le format
des noms de domaines pour permettre des requêtes rapides et efficaces, n’impliquant pas de
charge supplémentaire pour les terminaux découverts. Enfin, nous avons étudié les entrées
DNS de configurations de sécurité et le trafic DNS des domaines envoyant des pourriels. Nous
avons construit un outil de détection utilisant des différences de configuration entre domaines
bénins et domaines malveillants pour détecter les domaines malveillants avant qu’ils n’envoient
le moindre mail, permettant de prendre des mesures défensives rapides et d’empêcher certaines
attaques.
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Introduction

Introduction

0.1 Context
The majority of the modern Internet still uses protocols initially designed in the early 1970s,
when the Internet was called ARPANET and only connected a few dozen devices across US
research institutes. In this early network, just like in today’s Internet, devices have to know
their destination’s Internet Protocol (IP) addresses to send them data. But those addresses were
only designed to allow computers to communicate; rather than made to be easily remembered by
humans. As a consequence, network administrators of each node in the ARPANET maintained
a host file, associating meaningful human-readable names with machine-readable addresses. At
the time, the low number of devices connected to the network allowed a team at the Network
Information Center (NIC), under the supervision of Elizabeth Feinler, to manually process the
declarations of all new devices and provide a unique host file that could be downloaded on each
device [5]. However,with the growth and evolution of the network over the years, the limits of a
local, centralized, manually -maintained host file arose. This led computer scientists to design a
distributed system that could translate domain names to network addresses, the Domain Name
System (DNS) [6, 7].

The DNS is a distributed hierarchical naming system, associating domain names with var-
ious information. Its main usage is associating domain names to network IP addresses, but
it can provide many other kinds of information, among which mail servers, aliases and secu-
rity parameters. In their most basic form, domain names are a list of text labels, separated by
dots [6, 7]. Adding a new label at the beginning of a domain name creates a subdomain, under
the authority of the initial domain, for example, the www.wikipedia.org subdomain is man-
aged by the wikipedia.org domain, itself managed by the org Top Level Domain (TLD).
Based on this syntax, the DNS is built as a tree data structure where each node has authority on
the nodes under it, called its zone. The root of this tree defines the set of Top Level Domains
(.net, .org, .fr, . . . ) and delegates the management of these zones to Registries, that can be
companies (like .airbus), organizations (like .org) or countries (like .fr). Those Registries
are in charge of adding and removing domains inside their zone and delegating the management
of subdomains to the entities that register them, for example, the Registry in charge of the .fr
TLD delegated the wikipedia.fr zone to the Wikimedia France foundation.

Registering a new domain name is a process involving multiple entities. We will take the
example of a user willing to register the domain example.fr to illustrate the different steps.
First, the user (called the Registrant) contacts a Registrar and checks if it is accredited to sell
the example.fr domain. When the transaction is complete, the Registrar contacts the Registry
in charge of the .fr Top Level Domain (TLD) (here, the French Association for Cooperative
Internet Naming, AFNIC). The Registry adds this new domain to its zone and updates the dif-
ferent DNS entries for this domain, effectively delegating the management of the example.fr
zone to the Registrant. From this point, the domain becomes active, and users that query the
DNS for example.fr will receive the information linked to this domain. Moreover, the Regis-
trar and Registry also add registration information in two other places: the Whois and RDAP
databases [8, 9]. Since the deployment of the European General Data Protection Regulation
(GDPR) [10], Registrant personal information may not be provided when the domain is regis-
tered by an individual.

1
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The main mechanism that allows the DNS to be distributed is the delegation of author-
ity, with the entity managing a zone delegating parts it to other entities. At the infrastruc-
ture level, this delegation is represented as pointers to other servers. To find the IP address of
www.wikipedia.fr, a user first asks the root of the DNS. The servers that are authoritative for
the root zone answer that they delegated the .fr zone to AFNIC, and provide the name and IP
address of AFNIC’s authoritative server. The client then recursively queries AFNIC’s server,
asking for www.wikipedia.fr. This server that is authoritative for the .fr zone answers that
they delegated the wikipedia.fr zone to Wikimedia France, and provides the address of their
authoritative server. Finally, the user queries the server authoritative for wikipedia.fr, asking
for the IP of www.wikipedia.fr, and gets the final answer from this server. This chain of
delegation of authority allows the domains information to be spread across multiple servers.

This decentralized architecture comes with additional costs. In order to get an information
about www.wikipedia.fr, a client has to send at least 3 queries, following delegations to 3
different servers, making this system vulnerable to lossy or slow networks. To circumvent
this limitation, the Internet Engineering Task Force (IETF), the structure in charge of writing
the RFCs defining the different internet protocols, defined a new kind of entity in the DNS
infrastructure, the recursive resolvers. Instead of each user having to manually follow all the
intermediate delegations from the root to the target domain, they can send their query to a
recursive resolver. The resolver will follow the chain of delegation of authority until it reaches
the server authoritative for the target domain, and will only return the final answer to the client.
This reduces the load on end-users that may have a limited network connection. Additionally,
the resolver may cache results in the delegation chain. For example, next time a user asks for
a domain under the .fr zone, the resolver will already know the address of its authoritative
server, and will avoid unnecessary queries to the root servers, thus greatly reducing the number
of queries needed and the total time needed to give an answer to the user. Moreover, as multiple
users can use the same resolver (e.g. Internet Service Providers can provide default resolvers to
their clients), the information gathered to answer one query can be sent to another user asking
for the same domain, allowing the resolver to answer a DNS query without having to send any
additional requests to authoritative servers.

Between the early 1980s, when the DNS protocol was designed, and today, the Internet
evolved rapidly and assumptions that were reasonable at the time no longer hold. The basic
versions of DNS has no privacy or security mechanisms: the queries and answers are sent un-
encrypted and unsigned on the network [6]. This allows malicious actors to see, intercept, and
modify both queries and answers: they could learn who queried what domain and are able to im-
personate any server, as the users have no way to hide their queries or authenticate the answers.
As a consequence, the DNS specifications were later extended to tackle these new network
paradigms. To make sure that the answer to a query was not forged by intermediate actors, the
IETF defined the Domain Name System Security Extensions (DNSSEC) [11, 12], a way for
authoritative servers to sign their answers using public key cryptography and certificate chains
to authenticate themselves. To avoid eavesdropper on the network, the IETF designed alternate
ways to send queries to a resolver or an authoritative server, adding a layer of cryptography to
hide the query and the answers from potentially malicious users. These new protocols are called
DNS over TLS (DoT) [13], DNS over HTTPS (DoH) [14] and DNS over QUIC (DoQ) [15],
depending on which encryption layer and protocol is used. Those extensions to the DNS proto-
col are not mandatory, to preserve backward compatibility, but they allow users, resolvers and
authoritative servers to improve the integrity, authenticity and privacy of their communications.

Many different systems rely on the domain name architecture and the DNS infrastructure
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for different purposes. One of them is the mail delivery system. When sending a mail to a target
address, the sender must first know the IP address of the mail server in charge of the target
domain. This information is stored inside the DNS, and authoritative servers provide the name
of the mail server for this domain. As a consequence, the delivery of mails depends on the
ability of the DNS system to point users to the right mail server. Following on email delivery,
when a user receives an email, they may not be certain that the From field of the mail contains
the real source of the mail: anyone could have contacted their mail server and forged the sender
field as the Simple Mail Transport Protocol (SMTP) [16] provides no way to verify the origin
of the email. However, additional protocols using the DNS were defined to allow the receiver
to check the identity of the sender, like the Sender Policy Framework (SPF) [17], Domain
Keys Identified Mail (DKIM) [18] and Domain -based Message Authentication, Reporting and
Conformance (DMARC) [19]. All of these three protocols improve the security of mail systems
by allowing the receiving mail server to verify the sender information. This is done by querying
the DNS for security details of the alleged sender, like a list of authorised senders or public keys
used by the domain to sign all its mails and verify that the origin of the mail is indeed the one
claimed in the From field of the mail.

The DNS system, as a crucial part of the Internet infrastructure, is often directly the target
of cyberattacks, or used as a way to support and deploy malicious activities. Because it is a
cornerstone of the Internet, attacks on the DNS can have huge consequences for users, ranging
from slow navigation if the servers are the target of Denial of Service (DoS) attacks to complete
unavailability of most services if servers are taken down, or spread of malware if servers are
compromised. The different security and privacy protocols described previously were designed
in response to the increasing number of attacks on the DNS infrastructure and were built to
address the limitations of the early implementations. However, as the complexity and global
usage of the protocol grows, so does the attack surface and the room for human errors and
misconfigurations.

Overall, the DNS is a target of choice for research as it can provide crucial insights on
multiple aspects of the Internet. Some studies focus on the technical implementations and
performances of the system. Others use the DNS as a way to study the Internet and the protocols
associated. However, many research works on the DNS need, at some point, to analyze its
content and the traffic between clients and servers. The two main challenges when studying
the DNS are the volume of traffic that it represents, and its decentralized structure. At the
time of writing, there are almost 400 million unique second-level domains [20], under 1589
different TLDs [21]. Each of the 13 servers authoritative for the root of the DNS architecture
receive around 2.5 billion requests per day, for a total query count of more than 30 billion
requests per day at the root of DNS [22]. This volume of queries, distributed over thousands of
servers all around the world is impossible to fully monitor (let alone process or analyze). As
a consequence, studying the DNS is done through indirect means, or sampled data. One way
to get a glimpse at the DNS traffic is to monitor parts of the network and log observed queries
and answers, and is called Passive DNS as we only listen for queries and answers sent by other
entities, without interfering with the process or sending anything. For example, this can be done
at the boundaries of a company or university network, or at the entrance of recursive resolvers
or authoritative servers. These points of measurements provide an almost real-time sample
of the DNS traffic, allowing us to observe real events and behaviors like spam campaigns,
malware distribution or device misconfiguration, but the data is incomplete and biased (the
Internet behavior of a university campus is not representative of the global traffic) and can
represent a non-negligible volume of data to store, process and analyze. Another way to study
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the content of the DNS is to actively scan and probe servers, sending them requests to see
how they behave and the kind of data they host. Some authoritative servers even provide open
access to their full zone, listing all domains under their authority. These scans and zonefiles
are easier to run and analyze, but they do not give information on the actual traffic received by
the different servers, they only give information on the content of the servers. Therefore, we
used both approaches in order to have a comprehensive understanding of the DNS traffic and
the content of the authoritative servers.

For most users, domain names are a way to be visible and present on the Internet, to ad-
vertise a brand, a company or an event, or to contact and communicate with people. This is
especially the case for companies whose presence is mainly on the Internet, like social net-
works, search engines, cloud and mail providers, blogs and video sharing platforms. For those
services, their domain name is their name and identity, it is the way they are known and reached
by users. Today, the DNS protocol is a cornerstone of the Internet and resolves billions of do-
main names per day. As the protocol evolved during the years, it ended up doing much more
than just mapping human-readable names to IP addresses. At the time of writing, the DNS is
defined by multiple Requests for Comments (RFC) and categorized into 26 different standards,
13 proposed security standards, 13 informational documents and 5 Best Current Practices. All
these documents and the previous versions they outdated define the technical inner-workings of
the protocol. They describe how all the parties involved in its distributed architecture should
work together to provide a fast, resilient, secure and trustworthy system.

To sum up, the Domain Name System is a central piece for the modern Internet and multiple
other protocols and systems rely on its structure and availability to support parts of their design,
ranging from service discovery to mail security and malicious botnet deployment. Studying
the DNS raises many challenges, like the volume of data to analyze, the complex interaction
of multiple protocols and systems and the difference between the theoretical protocol and the
actual usage of this system. However, it provides unique insights into the behavior of entities
on the Internet, the deployment of technologies and protocols and can be used to detect and
prevent malicious behaviors.

0.2 Motivations and Contributions
The DNS can be a massive source of information, both for the clients that use it as a distributed
database, and for the researchers that use it a tool to study the modern Internet. In this thesis,
we explore the DNS as a way to establish trust between entities on the Internet and as a source
of information providing valuable insights into the Internet usages and diversity. We explored
those aspects and made the following three main contributions:

• We dived into the domain name registration process and challenged the assumptions that
the data stored in the DNS, Whois and RDAP databases are always coherent. We gath-
ered millions of DNS, Whois and RDAP entries and compared them to check if their
content could be trusted, or if the many systems and research works that rely on this as-
sumption should take extra care when handling this kind of data. We found that while
the majority of the data is coherent between those different sources, some fields can be
prone to errors, misconfigurations and mismatches. As a consequence, entities that rely
on large-scale analysis over millions of domains can use those different data sources in-
terchangeably and expect a low mismatch rate, but entities that need to trust the data of
individual domains should take extra care and cross-check the different data sources as
they can be incoherent and some fields are more prone to errors.
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• We explored how devices in constrained environments, like IoT devices, can use the DNS
and domain names to provide complex and efficient discovery systems. We designed a
way to name devices that encodes its properties, like the kind of data it provides, or its
geographical location, and described how this name can be stored in the DNS in a way
that allows easy discovery. With this naming system, users could query the DNS for
complex requests, like finding all sensors of a given type in a given area, and get results
without putting additional load on the constrained end-devices.

• We studied how domains that are sources of spam mails are configured on the DNS .
By analysing their SPF configuration, a protocol improving the security of mail delivery
and source verification, we detected that benign domains and spam domains often have
different configurations. These security configurations are stored in the DNS, so they
can be actively gathered, or observed in real traffic. We built a spam detection system
based on these differences between spam and benign domains, leveraging the fact that the
DNS entries can be gathered and analyzed before the start of a spam campaign from this
domain, allowing to take defensive measures before any victim is targeted.

This manuscript is structured as follows. In Chapter 1, we will describe the DNS infrastruc-
ture, its technical design and practical implementations, as well as other systems supported by
the DNS. We will present how previous research used the DNS as a tool to observe the Internet.
In the following Chapters, we will detail the three main contributions of this work. Each part
will have its related background, previous works and conclusion. Then, we will conclude this
work and present perspectives for future research on this topic.

5





1
The Domain Name System

The Domain Name System (DNS) is at the core of the modern In-
ternet, and many protocols and systems rely on its properties to
support their own architectures. In order to study how the DNS
can be used as a source of trust and information, we first need to
understand the basic concepts of this system, how it is deployed
and how it is used by many different actors. In this chapter, we
will provide the basic information about the DNS and its architec-
ture needed to understand the following chapters that will focus
on specific use cases and situations. The structure of this chapter
is as follows. First we describe the generic concepts of the DNS,
what it is built for. Then we focus on how these concepts are imple-
mented and describe the resulting system architecture. We follow
with a few case studies of systems supported by the DNS, like IP
resolution and parts of the mail system. The next section describes
how malicious actors directly attacked the DNS or used it to sup-
port their malicious activities, and how the community improved
the protocol to face those threats. Finally, we focus on the differ-
ent techniques used to observe, monitor and study the DNS and its
multiple usages.
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1.1. Generic Concepts

1.1 Generic Concepts
The Domain Name System is a set of multiple interconnected components that interact together
to associate information with domain names. Its behavior, protocol and architecture are de-
fined in Request For Comment (RFC), technical documents that define standards and protocols
that can be used on the Internet. The RFC publication is managed by the Internet Engineering
Task Force (IETF), but each document can be authored by individuals or groups of engineers,
computer scientists and researchers. The protocol, architecture and mechanisms of the DNS
are defined in multiple RFC documents, like RFC 1034 [6] and RFC 1035 [7]. These docu-
ments define the DNS as a hierarchical and distributed database mapping domain names to
information.

1.1.1 Database

The main role of the DNS is to map domain names to pieces of information. A domain name
is technically defined as a set of labels (containing letters, numbers and hyphens), separated by
dots, and is used to identify a resource on the Internet, like servers, networks or services [6]. For
example, www.wikipedia.fr is a domain name made of three labels, and describes the server
hosting the web page of the French Wikipedia.

When queried for a given domain name, the DNS provides technical information about this
domain in the form of Resource Records (RR). Each record is one entry in the DNS database.
There are multiple types of records, depending on the kind of information they hold, and clients
can query the DNS for specific record types.

At the time of writing, there are around 50 different types of records, defined over multiple
RFCs, each holding a different kind of data. Some of the possible types are:

A : the IPv4 address of the domain name

AAAA : the IPv6 address of the domain name

MX : the name of the servers managing the mails for this domain

TXT : a text field for any information or configuration

DNSKEY and NSEC3 : holding cryptographic keys and signatures

For example, if a client wants to visit www.wikipedia.fr, their computer will not be able
to directly connect to the server hosting this website, because it needs its IP address. As a
consequence, their computer must first query the DNS for the A record of www.wikipedia.fr,
getting the IPv4 address of the server, and then their browser will open a Transmission Con-
trol Protocol (TCP) connection to this IP and download the website pages with the HyperText
Transfer Protocol (HTTP).

1.1.2 Hierarchical

As described previously, domain names are made of several labels, separated by dots. The DNS
defines hierarchical relations between domains, based on their labels: if a domain is a suffix
of another, they are called parent and subdomain, and the parent domain is placed higher in
the DNS hierarchy. For example, www.wikipedia.fr is a subdomain of wikipedia.fr, itself
being a subdomain of fr. The top of this hierarchy is called the root domain and is represented
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with the empty string. Domains directly under the root, like com, org and fr are called Top
Level Domains (TLD), and domains under these TLDs, like a.com, b.org and c.fr are called
Second Level Domains. Figure 1.1 represents the resulting tree architecture.

<root>

TLDcom org fr

1.a.fr 2.a.fr

a.frb.fr

Figure 1.1: Tree structure of the DNS

In the DNS structure, the entity owning a domain has authority over all its subdomains,
meaning that it can add, delete or modify any resource records for this domain and all its subdo-
mains. As a consequence, in the structure described in Figure 1.1, the administrators of the fr
TLD have authority over a.fr and b.fr but not over a.org as it is not in the subtree covered
by fr.

The entity that has authority over a domain and its subdomains (called a zone) can then
delegate this authority to different actors. The root of the DNS is managed by the Internet
Assigned Numbers Authority (IANA) but it delegates the authority over the different TLDs to
countries, associations and companies. For example, IANA delegated the authority over the fr
zone to the AFNIC association [23]. Then, AFNIC delegated the authority over wikipedia.fr
to the French Wikimedia foundation.

In order to register a new domain, a user must contact the entity that has authority over the
zone (more specifically, one of their accredited sellers) so it adds a new delegation to the user
for this domain. Once this is done, the user has full authority over their zone and can freely add
the different resource records for their domain or subdomains.

We describe the registration process and the different entities involved in greater details in
Chapter 2 where we focus on how registration information is stored on different databases and
can provide crucial insights on the properties of a domain.

1.1.3 Distributed

The Domain Name System is distributed over many different servers all around the world. Each
zone can be hosted by multiple servers, called replicas, synchronized to provide the same data.
The presence of replicas allow to better distribute the load on multiple servers, avoid single
points-of-failure and reduce the latency for users by deploying a replica of the server closer to
them.

The authority delegation process also allows the presence of multiple servers answering
DNS queries. The entity in charge of a zone can create an NS resource record for a domain,
pointing to the name server that has authority over this domain. For example, the servers au-
thoritative for the fr zone provide the following resource record:

wikipedia.fr. IN NS ns-5-a.gandi.net
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This entry tells the user that queries to the wikipedia.fr zone should be sent to a different
server, named ns-5-a.gandi.net. As a consequence, the content of the DNS database is not
stored in a single server, it is replicated over multiple servers and each zone can delegate the
management of sub-zones, redirecting the clients to a different server.

1.2 Architecture
The distributed system described in the previous section involves many different actors and
servers in close interaction to provide the resource records queried by the user. The two
main types of servers in the DNS architecture are called Authoritative servers and Recursive
resolvers [6].

Authoritative servers are the endpoints holding the resource records for a zone. They are the
servers that provide authoritative answers to requests. Each authoritative server has authority
over one or several zones (a domain and all its subdomains) and is in charge of providing all the
resource records for domains in this zone. As described in the previous section, an authoritative
server can delegate its authority over part of their zone to a different authoritative server by
adding an NS record for the delegated domain pointing to a different name server. A server
that has authority over a zone can freely add, remove or modify any record in this zone. To
better balance the query load over a zone, there can be multiple authoritative servers for the
same zone. This can be done with three main methods: IP anycast, load balancing proxy, and
multiple NS entries. With IP anycast, all the replicas of the authoritative server share one unique
IP address, and queries to this IP are routed to the replica that is the closest to the user in the
network, effectively balancing the load over several servers and reducing the ping for the users
as the target server is closer to them. User queries can also be sent to a load balancing proxy
that will choose one replica of the authoritative server based on the load of each replica and
will forward the query. The third main way to replicate the authoritative servers over multiple
locations is through the use of multiple NS entries: when delegating a zone, the parent zone may
provide multiple NS entries for the same subdomain, the user should then randomly choose one
of them as their target, and can fall back to the other servers if the one they chose is not working
properly or query all replicas in parallel to maximize the chances of getting a fast answer [7].

The main drawback of the delegation chain is that in order to resolve a domain clients
have to follow multiple redirections, each time sending new packets and waiting for answers,
leading to very long resolution times in lossy or slow networks. For example, to resolve
www.wikipedia.fr, a user first sends a query to the root servers and receives the NS entry for
the fr zone, they query the fr authoritative server and receive the NS entry for the wikipedia.fr
zone, and finally they query the wikipedia.fr authoritative server and get the desired answer.
This process is represented in Figure 1.2 and involves the exchange of at least 6 packets over
the network.

A different kind of server was defined to avoid this load on the clients: Recursive resolvers.
When queried by a client, these servers will follow the delegation chain until they receive the
answer from the authoritative and will only send back the final answer. This method increases
the global number of packets exchanged, but reduces the number of packets sent or received by
the client. As a consequence, if recursive resolvers have a high-quality network connection to
the authoritative servers, the impact of a lossy network on the client side will be greatly reduced.
This architecture is described in Figure 1.3. In order to reduce the total number of packets
exchanged, each resource record has an attribute called Time To Live (TTL), representing the
amount of time (in seconds) during which this entry can be considered as valid and should not
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www.wikipedia.fr A ?
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2
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Figure 1.2: Iterative resolution of a domain

be queried again. For example, if the www.wikipedia.fr A entry provided by wikipedia.fr
has a TTL of 5 minutes, the client and the resolver should cache the entry, and for the following
5 minutes, all queries to this entry should be answered from the cache, instead of sending
new queries to authoritative servers. NS entries also have a TTL value and can be cached. As
a consequence, instead of following the whole delegation chain from the root to the queried
domain, resolvers and clients can directly use the cached NS entry to ask the relevant server.
Internet Service Providers (ISP), companies and networks typically provide a recursive resolver
to their users, therefore greatly reducing the total number of queries, as resource records from
one user can be cached and used to answer queries from another user.

Recursive
Resolver

User

<root>

fr

wikipedia.fr

www.wikip
edia.fr

 A ?

www.wikipedia.fr A ?

www.wikipedia.fr A ?

www.wikipedia.fr A

wikipedia.fr NS
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3
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5

6

www.wikipedia.fr A ?

www.wikipedia.fr A
1

8

7

Authoritative servers

Figure 1.3: Resolution of a domain with a recursive resolver

Recursive resolvers can be closed if they are accessible only from inside a given network,
like a company, a university or an ISP, and only answer queries from their users, or open if they
are accessible by anyone on the Internet, and will resolve all queries.

1.3 Example uses of the DNS
In this section we will describe a few classic cases where the DNS is supporting widely used
protocols, to highlight its importance in the Internet. First, we will describe its role in IP res-
olution for several protocols widely used on the Internet. We will then focus on its role in the
mail delivery process and how mail servers can use it to increase the security of their systems.

1.3.1 IP Resolution

All protocols in use on the Internet require the devices to know the IP address of their target
to send them messages and exchange information. The IP protocol is the basis of all modern
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protocols, like web browsing with HyperText Transfer Protocol (HTTP(S)) [24], mail delivery
with Simple Mail Transfer Protocol (SMTP(S)) [16], remote administration with Secure Shell
Protocol (SSH) [25] and file transfers with File Transfer Protocol (FTP) [26]. However, using
IP addresses to connect to such services can be tedious as IP addresses are hard to remember
and may change over time. As a consequence, most tools for these protocols allow the user to
provide a domain name as a target and will use the DNS to get the corresponding IP address to
use for the rest of the protocol.

For example, when web browsing, users must provide the URL they want to visit. These
strings must have the following format: <scheme>://<host>/<path>, with <scheme> typi-
cally being http or https for web browsing. When a user wants to visit the home page of the
French Wikipedia, they may provide the following URL:
https://www.wikipedia.fr/index.html, asking their browser to use the HTTPS protocol
to connect to www.wikipedia.fr and get the index.html web page. Their browser will then
extract the domain www.wikipedia.fr from the URL, query the DNS for the A record of this
domain and use the resulting IP to establish a TCP connection to the server and send their HTTP
packet, asking for the resources stored at <path>.

Every time an Internet protocol accepts domain names instead of IP addresses, it will first
use the DNS to get the corresponding IP and then use this IP for the rest of the protocol. This has
several advantages. First, it allows users to connect to a service without having to remember the
complex IP addresses, and instead use human-readable domain names that can be more closely
linked to the name of the service they are using (e.g. to visit the Wikipedia page, it is easier
to remember wikipedia.fr than its IPv4 address). Another advantage is that it allows the
IP addresses of servers to change (e.g. when migrating the server to a different host) without
the users having to learn the new address: the administrators can just modify the A entry of
the domain and all users will automatically use the new IP after the expiration of the old value
stored in their cache. It also allows administrators to duplicate their servers to multiple IPs by
adding multiple A records for their domain [7], in which case the users should randomly pick
one IP to use, and may fall back to the other IPs if the one they selected was not working,
effectively balancing the load over the different replicas and providing fallback servers in case
of server maintenance or cyberattacks.

1.3.2 Mail Delivery and Security

When writing a mail message, a user must provide a list of destinations in the form of mail
addresses. Mail addresses have the following format: <local>@<domain>, representing the
mailbox called <local>, hosted by the <domain> [27]. As a consequence, when delivering the
mail, the sender must first determine which server manages the mailboxes of the target domain.
Thus, they first query the DNS for the MX entry of the domain, receiving the name of the mail
server. They then send a second query to the DNS, asking for the A or AAAA entry of this mail
server, allowing them to open a TCP connection with this server and transmit the mail using the
SMTP protocol. The MX entry allows domains to host their mail servers at a different location
than their web servers and easily externalize the hosting of this service.

In the basic version of the SMTP protocol, the sender can write any value in the From
field of the mail. This can be useful for managing multiple aliases or mailing lists, however it
also allows anyone to impersonate the sender of a mail. Multiple protocols were designed to
avoid this vulnerability, like the Sender Policy Framework (SPF) [17], Domain Keys Identified
Mail (DKIM) [18] and Domain-based Message Authentication, Reporting and Conformance
(DMARC) [19]. With those protocols, the receiver can verify if the sender really is the one
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described in the From field of the mail. If the From field of the mail is a@ex.fr, the receiver can
query the DNS and get the TXT entry of the ex.fr domain. This resource record can contain
any free-form text, but in the case of the SPF, DKIM and DMARC protocols, it holds a list
of servers allowed to send mails from this domain, public keys that are used by the sending
servers to cryptographically authenticate their mails, and a description of what to do if one of
these previous checks are not valid. The receiver can parse this configuration, run the different
checks on the sender (its source IP and mail signatures), and determine if they trust the source
of this email.

We will go into more details on the SPF protocol in Chapter 4 where we will detect spam-
mers using their SPF configuration.

1.4 Abuses
Its central position in the Internet makes the DNS a target of choice for malicious users. Some
attacks specifically target the DNS to disrupt its availability [28, 29] or corrupt its data [30–32]
to impact all the users of the protocols described previously. Other malicious actors use the
DNS as a way to deploy their attacks or hide their architectures to make it more difficult to take
down [33, 34]. In this section we will see three examples of DNS abuses.

1.4.1 DNS Security and Privacy

In its basic version, the DNS protocol uses clear-text queries and answers sent with the User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP). Therefore, any entity ob-
serving the packets, like the administrators of the wired or Wi-Fi network, can learn what do-
mains are visited by each client and can intercept and modify the queries and answers, allowing
them to impersonate websites, redirect mail to their servers and much more [30]. For example,
if a user is browsing a website, they first need to resolve the domain name to get its IP address.
If a malicious actor intercepts the answer and modifies the IP address to point to a server they
manage, the user will connect to the attacker server, without knowing that they are sending
packets to the wrong server. The attacker can then deploy a fake login page on this website
and get the user credentials or steal authentication tokens. The different steps of this attack are
described in Figure 1.4. This attack can be especially dangerous as the URL displayed in the
user browser will still be legitimate.

Alice

Mallory

DNS

Web

wikipedia.fr A?

Legitimate
wikipedia.fr

1.1.1.1

1.1.1.1

Web

Fake
wikipedia.fr

2.2.2.2

2.2.2.2
1

2

3
HTTP

Figure 1.4: DNS answer forging attack

This total absence of security and privacy for the DNS comes from the fact that the base
protocol was defined in the very early stages of the Internet, where the threat of cyberattacks was
almost inexistant. Then, as more and more systems used the DNS, modifying the protocol to add
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encryption and digital signatures would introduce breaking changes that were not acceptable by
the community. As a consequence, protocol extensions were added to defend against this kind
of attacks, but they are optional and not deployed everywhere.

In order to avoid the modification of DNS answers, the DNSSEC protocol extension [12]
was defined. This protocol defines several new resource records that allow the managers of
a DNS zone to cryptographically sign their records, allowing all users and resolvers to check
the integrity of the answers and validate the whole delegation chain, from the root to the final
resource record. DNSSEC is already deployed at the root level and by several TLDs [35].
However, it does not provide defense against packet sniffing and requires zone administrators
to manage the creation, storage, rollover and retirement of cryptographic keys and can be a
source of human errors and a target of different types of attacks.

To prevent actors from reading DNS queries and answers on the network, new ways to con-
nect to recursive resolvers and authoritative servers were designed. Instead of sending clear-text
UDP packets to servers, users can add a layer of encryption to hide the query and answer from
eavesdropping actors. Three main encryption possibilities are formalized by RFC documents:
DNS over HTTPS (DoH) [14], DNS over TLS (DoT) [13] and DNS over QUIC (DoQ) [15].
These protocols encapsulate DNS queries and answers respectively in HTTPS, TLS and QUIC
connections, using the encryption layer of these protocols to provide the confidentiality of the
communication. These encryption layers are mainly used between users and recursive resolvers,
but they are also partially deployed between recursive resolvers and authoritative servers.

We are currently studying the costs and effects of the encryption between resolvers and
authoritative servers, but this project is not mature enough to be added to this manuscript.

1.4.2 DDoS Amplification

The main concept behind Denial of Service (DoS) attacks is to overload a target by sending it a
high amount of packets and queries [29]. The goal is to exhaust all the target resources (number
of connections, bandwidth, memory, CPU time,. . . ) to a point where it hinders the queries from
legitimate users, or, in the worst cases, completely takes down the target. The main difficulty
for DoS attackers is to have enough computing power and bandwidth to send all these queries
to overload the target. As a consequence, most DoS attacks are now sent from multiple attack
sources, hence the name Distributed DoS (DDoS). One way for attackers to augment their DoS
capabilities is to find an amplifying service that will multiply the size of the attack, without
consuming too much bandwidth on the attacker side [36]. DNS can be used as an amplification
system by forging the source IP of the query packets. The attackers can send DNS queries from
spoofed IP addresses, and as a consequence, the answer to this query will be sent to the spoofed
IP. However, DNS queries are typically small UDP packets, and DNS answers can be several
orders of magnitude bigger as they contain all the queried records. Therefore, an attacker can
obtain a high volume traffic by sending only a few forged DNS packets. The basic structure of
this attack is described in Figure 1.5. Another advantage of this amplification process is that
from the target point of view, the attack comes from the recursive resolver or authoritative server
sending them the unsolicited answers, and blocking them could also prevent legitimate users in
the targeted network from querying these servers.

A lot of efforts are deployed to avoid this kind of attacks and most servers limit the total
answer size or switch to the TCP protocol to send the answer. Contrary to UDP, TCP requires
both parties to set up a connection before sending any data. Therefore, the amplification server
will try to open a TCP connection with the target to send them the DNS answer, but the target
will not accept said connection as it did not send any query to the DNS server. Many additional
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Figure 1.5: DDoS amplification with DNS

amplification defenses are deployed on networks to detect such attacks and reduce their harm,
but DNS remains a target for DDoS attackers looking for amplification servers [36].

1.4.3 Botnet Command and Control

Some types of cyberattacks, like DDoS and worms, can involve thousands of different devices
on the Internet working together in an automated way, called a botnet. Once they take control
of those devices, the main difficulty for attackers is to bring back the data gathered by each
device in the botnet and send them commands to execute, especially when the botnet is made
of devices infected by a self-propagating virus. Therefore, these infected devices need a way to
communicate with a central control point, called Command and Control (C&C) server, to send
back data and receive commands. However, if the virus contains the hard-coded IP address of
the C&C, security experts can quickly identify the server and take it down, effectively taking
down the whole botnet. Even if infected devices instead use domain names to contact the
C&C, allowing the attacker to move the C&C to different IPs if one server is taken down,
authorities can also take down domains, effectively removing them from the DNS or redirecting
their traffic to security analysts to study the botnet behavior. The main counter-measure to
this defense mechanism is to generate a high number of domains with a Domain Generation
Algorithm (DGA) and embark this algorithm on the infected devices [33]. This way, infected
hosts typically use the DGA with the local timestamp to determine which domain to contact
for the next communication and use the DNS to resolve this ephemeral domain to the C&C
server (or one of its proxies). As a consequence, the domain contacted by infected devices will
change over time, making it challenging for authorities to take down each domain. This method
is called Fast-Flux domains, and is mainly used to hide botnets from security systems [34].

Most botnet administrators use the DNS to build resilient networks and hide their architec-
ture and C&C servers from security experts. To take down botnets and C&C, security experts
can try to take down the C&C server, take down its IP address or the domain names used by
infected devices to contact it. However, this can be a difficult task as recent botnets set up a
complex domain name architecture, with ever-changing redirections and resource records with
small TTLs. The main defense mechanism used today is to get a sample of the virus and reverse-
engineer its DGA to predict which domains will be used in the future and take them down before
they are used by the botnet. This being said, this method still requires a lot of manual analysis
of compiled viruses and is an important topic of research on security [34, 37, 38].

1.5 Observing the DNS
In order to measure how the DNS is used and abused, we need to get reliable sources of in-
formation on this system. However, the distributed nature of the DNS architecture makes it
challenging to observe or monitor its traffic, as it is spread all over the networks and no single
point of measurement can be determined. Each server in the DNS architecture only observes a
sample of the total real traffic, therefore, this traffic may not be representative of the worldwide
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DNS usage. As a consequence, most works on the DNS rely on partial sources of information
and infer global behaviors from the observed samples. The main ways to learn about the DNS
content and behavior of the users can be Passive DNS and Active DNS.

1.5.1 Passive DNS

Passive DNS is a method of observing real DNS traffic in the wild, without sending queries
or taking an active part in the protocol. The main sources of Passive DNS data are recursive
resolvers: they receive queries from users and then recursively query authoritative servers to
get the answer and send it back to the user. Some works directly contact recursive resolvers
administrators and negotiate access to part of their logs and data, most of the time in the form
of traffic captures between the resolver and authoritative servers. This traffic has the advantage
of not containing the IP address of the user sending the query, thus greatly limiting the amount
of personal data processed during the studies. However, traffic from a single recursive resolver
is often heavily biased as it is a single point of observation. For example, measuring traffic
from an open public resolver will not capture the traffic from home networks, mainly managed
by DNS provided by the different Internet Service Providers (ISP). Moreover, the DNS traffic
from a university campus recursive resolver in Europe is inherently different from the traffic
observed at a company internal DNS resolvers from China. As a consequence, some platforms
like Farsight Security [39] and SIE Europe [40] provide access to an aggregation of multiple
traffic sources to reduce this bias and create a feed of DNS messages more representative of the
real global traffic. Recursive resolver administrators can send these companies a live duplicated
feed of their traffic. The platform then aggregates all the feeds received from their different
collaborators and provides access to the resulting aggregated feed where the initial origin of
each DNS query can not be traced back. Researchers and experts can then use this feed to
observe a live sample of DNS traffic coming from multiple observation points [2, 38, 41].

The Passive DNS aggregation step works as follows. First, each measuring node in compa-
nies, universities or open resolvers send a mirror of their raw traffic to the aggregation platform.
Then, the first time a domain is observed by the platform, it inserts it in a buffer and announces
this insertion. The next time this domain is observed, the aggregator silently increments the
domain counter in its buffer. After a fixed amount of time, or when the buffer is full, the ag-
gregator removes the domain from its buffer and announces the domain counter (called count)
and the timestamps of first and last observations of the domain in the buffer (time_first and
time_last respectively). This aggregation of node traffic into the output feed is illustrated in
Figure 1.6.
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Figure 1.6: Aggregation of node feeds by the Passive DNS platform
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This aggregation method greatly reduces the number of packets and total size to analyze:
instead of having to receive, store and process thousands of DNS messages, the output feed
only sends one message when a domain is first observed, and one message when it leaves the
buffer, thus producing a feed that is easier to process. However, due to this aggregation step,
we lose some fine-grained information, like the source node of the queries, or the exact time
distribution of the queries between time_first and time_last, reducing the precision of time
traffic analysis or query volume evaluations. That being said, Passive DNS is a very useful way
to observe real DNS traffic, without any interference from the observer, and allows researchers
to observe unexpected behaviors in the wild and react quickly when some events are observed
in the live-feed. We use this method in Chapter 4, where we monitor Passive DNS traffic to
gather security configurations of newly registered domains and detect spam domains.

1.5.2 Active DNS

Active DNS is a set of measurements where the researchers or the experts directly send queries
to DNS servers. The queries can be addressed to resolvers, authoritative servers or any other
entity on the DNS architecture and the sender can then study the answers from these servers.
This allows the sender to precisely choose the query to send and ask for specific domains, with
specific query parameters, instead of only observing queries sent by other users on the network.

This method is mainly used when the target of the study is a specific server or set of domains
because the sender can quickly scan for specific records for the domains of interest, without
having to wait for the data to appear in the live feed of Passive DNS. For example, if the study
needs the MX records of a set of domains, it is more efficient to actively send MX queries to their
authoritative servers. Some zones also provide direct access to the full list of resource records
they hold, called zone file, through different mechanisms like the Centralized Zone Data Service
(CZDS) [42] and the AXFR zone transfer [43]. This is the case for the .com, .org, .net, .ch,
.li Top Level Domains: they provide direct access to the list of all their NS entries, effectively
listing all domains hosted under their TLD. This allows experts to efficiently dive into the
content of a zone, instead of having to manually query every single domain to get its content.
However, not all zones provide such access methods and active enumeration of domains is often
the only way to gather data on specific domains.

The main drawback of Active DNS is that it only brings information on the content of the
DNS resource records but gives no insights on how or how often these records are queried.
However, active scans can be way faster than passive observation of traffic to gather specific
data. For example, querying all ~400M domain names for their A record can be done in around
a week of active scans, allowing for large-scale analysis that would be impossible with Passive
DNS [44].

We use Active DNS scans in Chapter 2 to gather NS entries for a specific set of domains
to compare the resulting values to other sources of domain name information. We also use
zone transfers in Chapter 4 to download zone files regularly and detect the apparition of newly
registered domains and focus our attention on those new domains that are more likely to become
spam domains.

1.5.3 Ethics

As presented in Section 1.5.1, Passive DNS feeds are aggregated from traffic between recursive
resolvers and authoritative servers, therefore, the IP address of the user at the origin of the query
is not visible in those feeds. Moreover, Passive DNS aggregators do not publish the locations
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of their nodes and the aggregation process removes all information about which node observed
a given query. Therefore, it is likely impossible to trace back the origin of a given query. In
the case of active DNS scans and zone file collection we only query for publicly available data
served by recursive resolvers, authoritative servers and their managing entities.

Some previous works highlighted the potential presence of personal data in domain names,
originating from misconfigurations or cyberattacks. For example, some DNS queries should
only be resolved by local resolvers inside the network, like the .local TLD reserved for link-
local names and service discovery, but queries to domains ending in .local can still be ob-
served in Passive DNS feeds due to misconfigurations of devices or resolvers. However, the
work conducted in this thesis only used valid registered domains, and automatically discarded
queries to invalid domains, effectively discarding such invalid queries. Moreover, this work
focuses on large-scale analysis of millions of domains at a time, using publicly available data,
and we never focus on queries to one single domain or the individuals behind it.

When running active DNS scans, we strictly follow the rate limits required by the targets,
to avoid overwhelming servers with our enumerations and data collection [44]. Moreover, all
the scans were conducted from IPs in the university network, and a website is hosted on those
servers, describing who we are, what kind of experiments we are running and why servers could
observe scans originating from these sources. We provide a way for any entity targeted by our
scans to contact us and be excluded from our scan targets. For example, this could be used by
small authoritative servers getting overloaded by our scans and that would like us to reduce our
scan speed or completely avoid their servers.

1.6 Conclusion
The Domain Name System is a hierarchical distributed database, mapping multiple pieces of
information to domain names. It is used by most protocols that make the modern Internet
to build more efficient and resilient architectures. The DNS architecture is distributed over
multiple authoritative servers and recursive resolvers to provide resource records to users when
queried for domains. However, malicious actors also rely on the DNS to hide their activities and
propagate their attacks, or directly attack the DNS to take down this crucial piece of the Internet
or infect it with malicious content. The DNS is the target of many research studies: new ways
to use it, how performant it is, how attackers abuse it or how it can be defended against these
attacks. Using publicly available data and passive observations of the traffic, we study several
different aspects of the DNS and its place in the modern Internet.
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2
WHOIS Right? An Analysis of WHOIS and

RDAP Consistency

Public registration information on domain names, such as the ac-
credited registrar, the domain name expiration date, or the abuse
contact is crucial for many security tasks, from automated abuse
notifications to botnet or phishing detection and classification
systems. Various domain registration data is usually accessible
through the WHOIS or RDAP protocols—a priori they provide the
same data but use distinct formats and communication protocols.
While WHOIS aims to provide human-readable data, RDAP uses
a machine-readable format. Therefore, deciding which protocol to
use is generally considered a straightforward technical choice, de-
pending on the use case and the required automation and security
level. In this paper, we examine the core assumption that WHOIS
and RDAP offer the same data and that users can query them inter-
changeably. By collecting, processing, and comparing 164 million
entries for a sample of 55 million domain names, we reveal that
while the data obtained through WHOIS and RDAP is generally
consistent, 7.6% of the observed domains still present inconsistent
data on critical fields like nameservers, IANA ID, or creation date.
Such inconsistency should be carefully considered by the security
actors that rely on the accuracy of these fields.
This chapter is based on a work with Olivier Hureau, Maciej Kor-
czynski and Andrzej Duda and is not published yet.
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Chapter 2. WHOIS Right? An Analysis of WHOIS and RDAP Consistency

2.1 Introduction
Malicious activities such as phishing scams, botnet operations, or malware distribution often
involve the use of domain names. To investigate these activities and mitigate their impact, it
is crucial to have access to specific information about domain registration. Essential informa-
tion for investigating malicious activities related to domain names encompasses details such
as the domain creation date, the registrant name, the sponsoring registrar, the domain status,
the expiration date, email addresses designated for reporting domain name abuse, and other
relevant data. However, in compliance with the European General Data Protection Regulation
(GDPR) [10] and the Temporary Specification of the Internet Corporation for Assigned Names
and Numbers (ICANN) for generic Top-Level Domain (gTLD) registration data [45], personal
information pertaining to registrants is typically obscured or hidden.

Different entities involved in the domain registration process typically provide registration
information through two protocols: WHOIS [8] and RDAP (Registration Data Access Proto-
col) [46]. Despite the historical reasons for the co-existence of two protocols, each having
its own specific format, and theoretically providing access to the same data, numerous stud-
ies [47–50] raised valid concern about the effectiveness and drawbacks of both protocols.

While both protocols were designed to provide registration information, there are no formal
requirements mandating consistent results across different data sources. In practice, the regis-
tration data may vary between TLD registries, and registrars, as well as between the responses
obtained from WHOIS and RDAP. This variability introduces an element of unpredictability
with respect to the consistency and accuracy of the provided information. Furthermore, studies
that use registration data tend to favor one protocol over the other without providing explicit
justification, and they base their preference on factors such as data retrieval speed, parsing ca-
pabilities, the presence of WHOIS and RDAP records for each domain, and other convenience-
related considerations. Hence, an important issue emerges: to what degree do both protocols
offer consistent information? Addressing this question requires a thorough and comprehensive
analysis of how the data provided by the WHOIS and RDAP protocols align with each other.

To our knowledge, no previous research examined the assumption that information pro-
vided by WHOIS and RDAP is consistent. Nevertheless, many articles put forth classification
algorithms, conducted studies on the domain behavior, or initiated abuse and vulnerability noti-
fication campaigns relying on data obtained through these protocols. In doing so, they implicitly
depend on the accuracy and consistency of the information provided by WHOIS and RDAP.

Our paper makes the following contributions:

• We provide an overview of the disparities between WHOIS and RDAP, shedding light on
the rationale behind the coexistence of multiple servers and protocols for accessing reg-
istration data. Delving into the historical and technical aspects, we highlight the intricate
choices that have led to the current state of uncertainty surrounding the assurance of data
consistency.

• We undertake a comprehensive data collection encompassing WHOIS and RDAP records
for more than 55 million domains. Our focus is on parsing the fields commonly used
in security and privacy studies. We will contribute all the collected registration data to
the research community. We perform a thorough analysis of the parsed fields evaluating
their consistency and deliberating over potential factors contributing to content variations.
By doing so, we aim to raise awareness within the community about the importance
of exercising caution with trust in registration data as 7.6% of the observed domains
presented inconsistencies in fields used by security and privacy studies.

22



2.2. Background

• We conduct a comprehensive analysis of the nameservers field, cross-referencing the
gathered data with the results obtained from active DNS measurements. Our aim is to
determine which data source, whether WHOIS or RDAP, is more likely to provide accu-
rate and trustful information.

2.2 Background
We begin by providing background information on the administration of domain names and the
collaborative processes within the DNS ecosystem. Delving into the history of WHOIS and
RDAP, we explore the reasons for their coexistence. Furthermore, we explain how to access
registration data through both protocols, providing a clear outline of their respective proce-
dures. Lastly, we elaborate on diverse approaches and challenges related to parsing WHOIS
and RDAP.

2.2.1 The Ecosystem of Domain Management and Registration

The administration of a domain name entails the collaboration of multiple actors who collec-
tively ensure the provision of all the necessary technical and administrative records vital for its
operational use. At the top of the Domain Name System (DNS), the Internet Assigned Num-
bers Authority (IANA) manages the root nameservers and delegates the management of each
top-level domain (TLD) to different registries. Country-code top-level domains (ccTLDs) such
as .uk and .fr are managed by country-specific organizations (registries) like Nominet (for
.uk) or AFNIC (for .fr). In contrast, generic top-level domains (gTLDs) such as .com and
.business can be managed by any organization that meets the necessary requirements [51]
and obtains authorization from the Internet Corporation for Assigned Names and Numbers
(ICANN), like VeriSign Inc. (for .com) or Identity Digital (for .business). Registries are
responsible for managing their top-level domain zones and have the authority to create new
domains under their TLD. Each registry delegates the task of registering new domains to reg-
istrars, responsible for selling domains to users, referred to as registrants. When contacted by
users, registrars collect and centralize user information, and communicate with the registry. In
the interaction between registrars and registries, a variety of protocols may be used with the
Extensible Provisioning Protocol (EPP) [52] commonly used for seamless communication. The
registry then generates the required records such as DNS ones and administrative details to cre-
ate the domain. For gTLDs under the ICANN agreement [51] and the majority of ccTLDs,
both the registry and the registrar make the registration information available to the public. This
information is typically accessible through the WHOIS and/or RDAP protocols.

2.2.2 Why Two Different Systems?

The existing WHOIS protocol as defined in RFC 3912 [8] published in 2004 formalized a prac-
tice in use since 1982 [53]. RFC 3912 established the guidelines on how a server could offer the
information about various Internet entities, including users, servers, domains, and IP addresses
with a straightforward query/response protocol. However, it recognized that the WHOIS proto-
col had certain deficiencies in terms of crucial design goals like internationalization and robust
security, typically expected of IETF protocols. RFC 3912 explicitly stated that it did not address
these shortcomings and only required the content to be presented in a human-readable format.
The decision to retain the original design flaws in the WHOIS protocol can be attributed to
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historical reasons. The original WHOIS system in use since the early 80s was already imple-
mented on numerous servers. To maintain backward compatibility and prevent disruption to
existing systems and practices, the IETF chose to accept the original design flaws rather than
mandating widespread changes. This approach aimed to mitigate the risk of a new protocol
facing low adoption rates, similar to what occurred with the SPF DNS record [17].

After several years, the IETF initiated efforts to design a new protocol aimed at provid-
ing domain registration information while addressing the limitations of WHOIS. This endeavor
culminated in 2015 in the publication of RFC 7482 [54] that specified RDAP. RFC 7482 [54],
along with subsequent extensions [9, 46, 55–57], specifies the protocol emphasizing the provi-
sion of machine-readable data in the JSON format. It defines data types, keys, and encoding to
ensure structured information. Despite the introduction of RDAP, the WHOIS protocol has not
been replaced, and both protocols continue to coexist, offering comparable data.

2.2.3 Data Access and Availability

RFC 3912 [8] and RFC 8521 [58] define the WHOIS and RDAP data access protocols, respec-
tively. The RDAP protocol operates over HTTP(s) using the REST paradigm and returns data
in JSON format, while a WHOIS user needs to connect to a server over TCP on port 43 and
receive a plain text response.

The registration data may be incomplete, and some registries may only offer minimal in-
formation, in this case, they are called “thin”, in opposition to “thick” registries that directly
provide the full registration data. This difference in the completeness of registration data re-
mains valid for both WHOIS and RDAP. For instance, the .com registry provides minimal
information and does not include the registrant organization data. To obtain complete informa-
tion (with respect to GDPR), the user of both protocols may need to follow referrals to one or
several servers (see Figure 2.2): they first need to locate the registry server ( 1 ), then submit
a query to the registry to obtain the registration information ( 2 ), and optionally, retrieve more
detailed data from the registrar ( 3 ).

For WHOIS queries, users can rely on command line tools provided by their system to
bundle most steps and referrals, like the Debian whois package. On the contrary, there is no
widely deployed command line tool to query RDAP databases.

The user needs to follow the steps below to retrieve registration information of google.com
using RDAP:

1 The user begins by retrieving the bootstrap configuration file from IANA,1 as specified in
RFC 9224. From this file, they obtain the URI of the .com RDAP server.

2 The user appends the string domain/google.com to the server URI obtained in step 1 ,
and forms the query to retrieve the registry RDAP answer at https://rdap.verisign.
com/com/v1/domain/google.com

• (an illustration of the result can be found in Figure 2.1).

3 The returned JSON object contains a referral to the registrar server (in this example,
MarkMonitor, Inc). The user can access this information at https://rdap.markmonitor.
com/rdap/domain/google.com.

1https://data.iana.org/rdap/dns.json
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{
"objectClassName": "domain",
"ldhName": "GOOGLE.COM",
"links": [{

"value": "https://rdap.verisign.com/com/v1/domain/GOOGLE.COM",
"rel": "self",
"href": "https://rdap.verisign.com/com/v1/domain/GOOGLE.COM",
"type": "application/rdap+json"

},{
"value": "https://rdap.markmonitor.com/rdap/domain/GOOGLE.COM",
"rel": "related",
"href": "https://rdap.markmonitor.com/rdap/domain/GOOGLE.COM",
"type": "application/rdap+json"}],

"entities": [{
"objectClassName": "entity",
"handle": "292",
"roles": ["registrar"],
"publicIds": [{"type": "IANA Registrar ID","identifier": "292"}],
"vcardArray": [

"vcard", [
["version",{},"text","4.0"],
["fn",{},"text","MarkMonitor Inc."]]],

"entities": [{
"objectClassName": "entity",
"roles": ["abuse"],
"vcardArray": ["vcard",[

["version",{},"text","4.0"],
["fn",{},"text",""],
["tel",{"type": "voice"},"uri","tel:+1.2086851750"],
["email",{},"text","abusecomplaints@markmonitor.com"]]]}]}],

"events": [
{"eventAction": "registration", "eventDate": "1997-09-15T04:00:00Z"},
{"eventAction": "expiration", "eventDate": "2028-09-14T04:00:00Z"},
{"eventAction": "last changed", "eventDate": "2019-09-09T15:39:04Z"},
{"eventAction": "last update of RDAP database",

"eventDate": "2023-05-26T13:57:10Z"}],
"nameservers": [

{"objectClassName": "nameserver","ldhName": "NS1.GOOGLE.COM"},
{"objectClassName": "nameserver","ldhName": "NS2.GOOGLE.COM"},
{"objectClassName": "nameserver","ldhName": "NS3.GOOGLE.COM"},
{"objectClassName": "nameserver","ldhName": "NS4.GOOGLE.COM"}],

}

Figure 2.1: Part of the Registry RDAP entry of google.com collected at VeriSign server
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Figure 2.2: Referral system to obtain complete registration data

For WHOIS, RFC 3912 [8] does not provide a bootstrap file for step 1 . Instead, users
can query the IANA WHOIS server at whois.iana.org to retrieve TLD-related information.
The response includes the details about the TLD registry, in particular, the domain name of the
WHOIS server for that zone. As an example, let us examine the procedure involved in retrieving
the registration information for the domain google.com using the WHOIS protocol:

1 The user proceeds by querying the IANA WHOIS server for the .com TLD and locates
the record whois: whois.verisign-grs.com. This information directs them to the
VeriSign server.

2 Next, the user queries this server that provides registry WHOIS information for the do-
main google.com (the result is presented in Figure 2.3).

3 Within this record, there is a referral to the registrar server
WHOIS Server: whois.markmonitor.com. The user can retrieve the most detailed
registration data by querying this registrar WHOIS server.

Nevertheless, users may encounter problems when following this approach:

• Certain WHOIS servers may require specific query flags. For example, the WHOIS server
for the .de TLD expects the flags “-T dn,ace”.

• The IANA database may not always be up to date, resulting in inaccurate information
about certain TLDs. For example, it does not provide a WHOIS server for the .cm TLD.

• In some cases, the TLD registry may not handle the registration information for domain
names associated with public suffixes. For instance, the registry server whois.nic.uk for
the .uk TLD does not manage the .ac.uk TLD, managed instead by whois.nic.ac.uk.

For these reasons, the Debian whois package2 adopts a different approach. It uses a dedi-
cated database that specifies servers responsible for the public suffixes and the corresponding

2https://tracker.debian.org/pkg/whois
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Domain Name: GOOGLE.COM
Registry Domain ID: 2138514_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.markmonitor.com
Registrar URL: http://www.markmonitor.com
Updated Date: 2019-09-09T15:39:04Z
Creation Date: 1997-09-15T04:00:00Z
Registry Expiry Date: 2028-09-14T04:00:00Z
Registrar: MarkMonitor Inc.
Registrar IANA ID: 292
Registrar Abuse Contact Email: abusecomplaints@markmonitor.com
Registrar Abuse Contact Phone: +1.2086851750
Domain Status: clientDeleteProhibited
Domain Status: clientTransferProhibited
Domain Status: clientUpdateProhibited
Domain Status: serverDeleteProhibited
Domain Status: serverTransferProhibited
Domain Status: serverUpdateProhibited
Name Server: NS1.GOOGLE.COM
Name Server: NS2.GOOGLE.COM
Name Server: NS3.GOOGLE.COM
Name Server: NS4.GOOGLE.COM
DNSSEC: unsigned

Figure 2.3: Registry WHOIS entry of google.com collected at VeriSign server
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Table 2.1: Number of active TLDs providing RDAP and WHOIS servers

RDAP WHOIS

Source Boostrap IANA GitHub

ccTLD (309) 27 (9%) 222 (72%) 231 (75%)

gTLD (1152) 1152 (100%) 999 (86%) 1147 (99%)

flags to be used. The source code for this package is accessible in a collaborative GitHub repos-
itory.3 While the repository allows anyone to propose modifications, it has been mainly main-
tained by Marco d’Itri since 1999. This repository serves as a valuable alternative to the IANA
WHOIS server, acting as a reliable starting point for retrieving WHOIS information (referred to
as the git TLD list in Figure 2.2, step 1 ).

We have retrieved the information from the RDAP bootstrap file, the GitHub repository
of the whois package, and queried the server whois.iana.org for all active gTLD and ccTLD
listed on the IANA website. Table 2.1 shows that the GitHub repository provides 148 additional
WHOIS servers compared to the IANA list. For instance, it includes a WHOIS server for
the .cm TLD, not available on whois.iana.org. The table also highlights the proportion of
active gTLDs and ccTLDs that offer WHOIS and RDAP services. It is important to highlight
that ccTLDs provide relatively less access to registration data than gTLDs. In particular, the
adoption of the RDAP protocol among ccTLDs is significantly low, accounting for only 9%. We
can attribute the disparity between ccTLDs and gTLDs to the agreement established between
gTLDs and ICANN [51]. As per this agreement, registries have to offer access to registration
data through the RDAP protocol. However, it does not require gTLDs to maintain WHOIS
servers, and it does not apply to ccTLDs. Contrarily, the deployment of RDAP by ccTLD
registries is influenced by various factors such as voluntary adoption, local regulations, and
technical considerations.

2.2.4 Parsing Registration Data

One of the primary motivations behind the design of RDAP is to address the inherent limitations
of the WHOIS system, in particular, its vague and loosely defined “human-readable” format for
data. By incorporating the JSON-structured response format and well-defined data element
features, among others, RDAP provides a more standardized, machine-readable approach to ac-
cessing registration data. This enhancement significantly improves the efficiency and reliability
of parsing and extracting information from RDAP responses when compared to the traditional
WHOIS system.

WHOIS data has been presented in various formats, undergone frequent changes, and may
even be expressed in the local language of the registrar or TLD registry (e.g., the Bolivian
ccTLD .bo WHOIS records are written in Spanish). The absence of normalization or implicit
conventions raises a significant challenge when parsing WHOIS records, as highlighted in the
studies that use WHOIS data [47, 49, 50, 59–61].

We can categorize traditional algorithms for parsing WHOIS data into two distinct ap-

3https://github.com/rfc1036/whois
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Figure 2.4: The stages of domain selection with the number of domains at each step

proaches: templates and rules. The template-based approaches, such as Net::Whois4 (Perl),
whoisrb5 (Ruby), and PHPWhois6 (PHP), offer regular expression templates specifically tai-
lored to each registry or registrar. When using this approach, the user obtains WHOIS data
from the registry, parses it using the relevant template for the TLD and registry, extracts any
potential referral link to a registrar WHOIS server, and then retrieves and parses the registrar
WHOIS data using the corresponding template. This approach is effective when the templates
are available and regularly maintained. However, it becomes challenging when no template is
available for a specific entity or if the format undergoes changes. Therefore, its success heav-
ily relies on the quantity and quality of the templates, necessitating manual updates for each
template.

Rule-based approaches such as python-whois7 use a collection of predefined rules, regular
expressions, and Natural Language Processing techniques to identify prevalent formats found
in WHOIS records such as Key: Value, and extract as many fields as feasible. This approach
is versatile and can be applied to any registrar without the need for dedicated templates. It may
also accommodate format changes over time. However, it is generally less efficient compared
to the use of custom-made templates [61].

Previous work explored existing parsers to train machine-learning algorithms based on Nat-
ural Language Processing or used techniques like Conditional Random Field [62] to automat-
ically deduce the data structure and enhance the accuracy of field extraction. This approach
demonstrated improved capabilities in extracting various fields from data.

While the template-based and rule-based approaches offer some potential for obtaining reg-
istration data through WHOIS, they require regular maintenance and may be less efficient than
RDAP. The introduction of RDAP offers a promising alternative for enhanced parsing efficiency
and accuracy.

2.3 Methodology
In this section, we outline our methodology for collecting and parsing WHOIS and RDAP
records. Considering the significant volume of data, we have meticulously designed our scheme
to efficiently collect and parse registration data for a large number of domains within a reason-
able time frame. All this is achieved while ensuring that WHOIS and RDAP servers experience
minimal strain. We begin by explaining the process of domain selection, as illustrated in Fig-
ure 2.4, followed by a comprehensive description of the WHOIS and RDAP parsing process.
Lastly, we provide an overview of how we have identified and analyzed discrepancies among
the records.

4https://metacpan.org/pod/Net::Whois
5https://whoisrb.org/
6https://github.com/SimpleUpdates/phpwhois
7https://pypi.org/project/python-whois/
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2.3.1 Domain Data Collection and Filtering

Compilation of registered domain names.

First, we gathered an extensive list of domains by consolidating multiple data sources:

• gTLD zone files obtained from ICANN Centralized Zone Data Service (CZDS)8,

• ccTLD zone files accessible via AXFR zone transfers (.se, .nu, .li, .ch),

• Passive DNS feed from SIE Europe9,

• Domain blacklists including SpamHaus10, APWG11, OpenPhish12, URLHaus13, Threat-
Fox14, and SURBL15,

• Google Certificate Transparency Logs16, which we continuously monitored to identify
newly issued Transport Layer Security (TLS) certificates and extract the corresponding
domain names.

All the collected domains are aggregated and deduplicated, resulting in a list of 493 million
unique domain names. To guarantee the inclusion of only registered domains, we performed an
active DNS scan on each domain, querying for A resource records using zdns [44], and exclude
those for which the response is NXDOMAIN (non-existent domain).

Filtering domains with valid WHOIS and RDAP servers.

To study the inconsistencies between WHOIS and RDAP records, we carefully filtered out
domains that lacked a recognized WHOIS or RDAP server. This filtering process involved
cross-referencing the official IANA list [23] and the GitHub repository, as detailed in Section
2.2.3. After this filtering step, our dataset comprised 200 million domain names.

Scanning all 200M domains would be a time-consuming process spanning several months,
along with significant storage challenges. To address this, we opted to work with a representa-
tive subset of domains. This subset was randomly chosen from the pool of 200 million domains,
with a sample size of 55 million domains carefully determined to facilitate the collection and
parsing of WHOIS and RDAP records within a one-month time frame.

2.3.2 Gathering and Parsing Resgistration Data

Data collection.

After identifying WHOIS and RDAP servers for the sampled domain names, we proceeded with
the collection of the corresponding records. We gathered the registration data of the selected

8https://czds.icann.org
9http://sie-europe.net

10https://www.spamhaus.org
11https://apwg.org
12https://openphish.com
13https://urlhaus.abuse.ch
14https://threatfox.abuse.ch
15https://surbl.org
16https://certstream.calidog.io
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domains between December 6th and December 31st, 2022. During the collection process, we
parsed each record to determine if it belonged to a “thin” registry that delegated a part of the
data to a referral server, and follow the eventual referral. This step was iteratively repeated to
ensure we obtained all versions of the registration data, following all referrals. At the end, we
successfully collected a total of 164 million unique records, covering information from over 55
million distinct domains.

To ensure accurate comparisons, we collected WHOIS and RDAP records of each domain
within a narrow time window, typically under 1 minute. This prevents the comparison of records
collected at different times and reduces discrepancies resulting from domain updates during the
scanning process. Moreover, some registrars impose query limits on IP addresses and enforce
timeouts or blacklist IP addresses that exceed these limits. To ensure compliance and prevent
any disruptions, we adjusted our data collection speed accordingly.

After the collection process, we carefully examined the gathered WHOIS and RDAP records.
Any malformed responses (like invalid HTTP packets or JSON objects for RDAP) or timeouts
were discarded, while valid responses underwent parsing for further analysis.

Table 2.2: Fields extracted from WHOIS and RDAP records

Field Data type
Missing rate

Domain inconsistency Used by
Records Domains

Nameservers Text 3.2% 6.6% 573,790 (1%) [63–65]

IANA ID Integer 5.9% 13.7% 106,813 (0.2%) [63, 66–68]

Creation date Date 0.8% 2.2% 3,138,024 (5.7%) [59, 66–68]

Expiration date Date 1.0% 2.7% 2,424,951 (4.4%) [47, 67]

Emails Email 7.9% 14.8% 18,958,821 (34.5%) [49, 50, 59,
60, 63, 67–
69]

Parsing WHOIS.

Parsing WHOIS data and extracting all pertinent fields presents a challenge, as detailed in Sec-
tion 2.2. Consequently, this study focuses on specific fields used in previous research (see Table
2.2), using custom templates designed to accurately parse various formats. We developed 242
custom templates comprising regular expressions that outline the extraction process for selected
fields from WHOIS records across numerous registrars. The templates are designed to handle
multiple languages and formats, maximizing the comparability of records.

Parsing RDAP.

Contrasted with WHOIS, parsing RDAP records is typically more straightforward, primarily
due to the JSON format. Nevertheless, despite the data format being defined in RFC 9083 [46],
there might be ambiguity regarding the correct placement of information within the data struc-
ture. Consequently, different registries and registrars may have varying interpretations of where
specific information should be located.
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We gathered the designated fields from all locations allowed by the RFC. We considered
malformed fields, those containing incorrect data types, or located in the wrong place within
the data structure as missing. For instance, there are two primary representations of domain
names in RDAP: as a string object (e.g., ns.example.com) or as an array of labels (e.g., [ns,
example, com]). However, according to RFC 9083 [46], when listing domain nameservers,
they must be in the string format. Therefore, if we encountered a nameserver in the array format
instead of the expected string format, we considered it as missing. This decision was based on
the assumption that most automated systems would adhere to the RFC and disregard the field
due to its invalid type.

Field selection.

To compare different data sources, it is important to note that not all registration data records
share the same set of fields. As a result, we selected a limited number of fields, which have been
commonly used in previous security studies and are consistently present in both WHOIS and
RDAP records, whether at the registry or registrar levels. Table 2.2 presents the selected fields,
along with the type of data they hold and the articles that have used them. For this research, we
have chosen the following fields:

• Nameservers: this field indicates the name servers that have the authority over a partic-
ular domain.

• IANA ID and Registrar: the sponsoring registrar responsible for managing the domain
is captured in the Registrar text field. Additionally, the IANA ID is an integer field
that typically represents the unique identifier assigned by IANA [70] to each ICANN-
accredited registrar (if applicable).

• Creation date and Expiration date: these fields denote the date of the initial regis-
tration for the domain and the subsequent expiration date. Once the registration expires,
the domain becomes available for purchase again unless the owner renews it.

• Emails: This field contains a range of contact email addresses that can be used, for
instance, for reporting domain-related abuse.

We deliberately omitted selecting fields associated with a registrant, despite their use in
several studies, due to their absence in many registries. Furthermore, the implementation of
the European General Data Protection Regulation (GDPR) resulted in the removal or redaction
of the field content by most servers. The impact of GDPR on the content of these fields falls
outside the scope of this paper and has already been analyzed in prior research [49].

When a field is absent from a record, or the content could not be parsed, the data is marked
as missing. Table 2.2 shows the proportion of records missing each field. The record missing
rate indicates the proportion of records with missing data, whereas the domain missing rate
represents the percentage of domains that have at least one record with missing data. This
considers that each domain has multiple records (i.e., WHOIS and RDAP, including records
collected by following referrals).

The missing rates for all fields, except for the IANA ID and Emails fields, are relatively low.
This result was expected since the IANA ID solely pertains to domains under generic TLDs
and ICANN-accredited registrars. Furthermore, each field presented its own set of parsing
challenges, particularly in the case of WHOIS records, but also for RDAP. In RDAP, certain
records, such as email contact addresses, can be located in different parts of the JSON structure
as defined by RFC 7483 [55].
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2.3.3 Analyzing Data Consistency

After collecting, parsing, and cleaning the registration data for all studied domains, we analyzed
the consistency among various WHOIS and RDAP records.

For a given domain, if we were able to collect registration data from multiple sources and
if these records have common fields, we evaluated the consistency of the data. If the formatted
data in same fields is identical, we considered them to be matching fields. On the other hand,
if there is a discrepancy between the data, it results in a mismatch. We consider two types of
mismatches: the first one involves two records from the same protocol, such as the registry
WHOIS not aligning with the registrar WHOIS. The second type involves two records from
different protocols, for instance, the registrar WHOIS not corresponding to the registrar RDAP.

2.3.4 Ethical Consideration

We adhered to the best practices recommended by the measurement community to ensure re-
liable results with minimal disruption to the servers [71, 72]. When gathering various data
sources, including WHOIS, RDAP, and DNS records, we meticulously adhered to server rate
limits [44]. Additionally, upon visiting the scanner’s source IP address, users are presented with
a webpage that provides information about our identity, work, and instructions for adding a
scanned server to our opt-out lists, allowing them to cease receiving requests from us. Through-
out the study, we did not receive any opt-out requests via email.

The raw data we collected may include information about registrants. However, after the
implementation of GDPR, most registrars provide options for their customers to choose which
fields are visible or automatically redact personal information. In practice, most fields that could
potentially contain personal data were redacted by default.

2.4 Results
In this section, we present the analysis of inconsistencies and explore the root causes of the
disparities observed in specific fields. Table 2.2 provides a breakdown, field by field, indicating
the count of records where the field was missing, the number of domains in which at least one
mismatch was identified, or if the field was entirely absent from the records. Excluding the
emails field, which raises its unique challenges discussed in Section 2.4.3, we observed that
7.6% of all examined domains exhibited at least one inconsistency in the remaining fields.

2.4.1 Nameservers

The typical method to obtain a list of authoritative nameservers for a given domain involves
sending recursive queries within the DNS tree, starting from the root zone and progressing
toward the registry nameserver, which then provides the relevant information [68]. However,
in certain prior studies that had a primary focus on detecting malicious domains [63–65], the
nameserver information used in the analysis was obtained from WHOIS.

The primary purpose of the nameserver fields was either to cluster domains with iden-
tical nameservers [63, 64] or to conduct further analysis on the nameserver itself. For in-
stance, investigations could involve verifying whether the nameserver is self-hosted, such as
ns.example.com being authoritative for example.com, determining if it is managed by well-
kown DNS service operators, or identifying if the apex domain of the nameserver is newly
registered [65].
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In the subsequent part of this section, we begin by examining the various types of name-
server mismatches and their frequency. Then, we use DNS as a reference point to ascertain the
accuracy of the data sources involved in cases of mismatches.

Table 2.3: Number of records and domains with mismatching nameservers

Case Records Domains

All 1,044,268 576,204

Inclusion 314,633 (30.1%) 224,833 (39.1%)

Intersection 48,693 (4.6%) 23,934 (4.1%)

Disjoint 680,942 (65.2%) 343,994 (60.0%)

Mismatch Types.

We identified a total of 1,044,268 mismatches between two registration records of the same
domain, encompassing 576,204 unique domain names. This accounts for approximately 1% of
the overall collected domains; hence 99% of the measured domains did not have mismatching
nameservers records.

When the nameservers of two records (referred to as A and B) are found to be inconsistent,
three potential scenarios may arise:

Inclusion. A ⊂ B or A ⊃ B: one set is a subset of the other one.

Intersection. No inclusion but A∩B ̸= /0: A and B do not match but they have at least one server
in common.

Disjoint. A∩B = /0: A and B have no nameserver in common.

Table 2.3 presents the number of mismatches detected in each scenario. As described in
Section 2.3.3, a given domain may have multiple records for each protocol, as each registration
record may contain a referral field. As a result, each domain can exhibit multiple types of
mismatches. For example, the nameservers extracted from the registrar’s WHOIS record could
be included in the list of nameservers found in the registrar’s RDAP record, and additionally,
the nameservers listed in the registry’s WHOIS record could entirely differ from the servers in
the registry’s RDAP record. In such cases, a domain would be counted in both the inclusion and
disjoint categories. Consequently, the values in the Domains column may exceed 100%.

When using DNS to fetch a domain’s resource records, if the client (e.g., a recursive re-
solver) has multiple nameservers to choose from, it can use any of them interchangeably or
query all and process the first received answer [7]. This means that the inclusion and intersec-
tion cases may be less worrisome, as both records share at least one nameserver, potentially
indicating that all nameservers serve the same data. Conversely, the disjoint case, in which
both records have no servers in common, is concerning as it raises suspicion that the name-
servers may not serve the same data or be authoritative for the domain name. This situation
concerns 65% of the studied mismatches and 60% of the domains with mismatching records.
The mismatch often involves records from different protocols. We have observed that 67.6%
of the nameserver mismatches were between a WHOIS record and an RDAP record, whereas
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17% were between two RDAP records (registry RDAP and registrar RDAP) and 15.4% were
between two WHOIS records of the same domain.

In summary, while affecting only 1% of domains, nameserver mismatches, especially the
67.6% involving disparities between WHOIS and RDAP, raise concerns. In 60% of such cases,
both sources lack any common nameservers, making the choice between WHOIS and RDAP
for gathering nameserver information non-neutral and yielding incompatible results.

Who is Right?

To successfully collect any DNS record for a domain it is essential to have an NS record in the
parent zone file, specifying the authoritative nameserver for the domain. To gather the name-
server information, we actively queried the DNS infrastructure and performed a comparison
with the nameservers listed in the WHOIS and RDAP records.

Methodology. To find the example.com nameservers, the client (e.g., a recursive resolver)
first sends an NS query to the DNS root servers and receives the name of the servers that have
authority over the .com zone. The client then sends another NS query to one of these servers and
receives the NS record of example.com. This last answer comes from the registry in charge of
the .com zone. The client can then either return the result because it retrieved the NS record of
example.com from the authoritative nameservers of the parent (nameserver of .com) or perform
additional NS queries to the nameservers received at the previous step and get the nameservers
configured by the administrator of the domain. RFC 1034 [6] states that the nameservers re-
turned by the registry and the nameservers configured by the administrator must be identical,
but previous study [73] revealed that around 10% of the domains in the .com, .org and .net
zones had differences between the nameservers provided by the parent registry servers and the
nameservers provided by the child domain servers. If a domain is active, it must have an NS
record at the registry level, as it is a part of the resolution chain. On the contrary, some domain
owners do not put NS records in the child nameservers. To maximize the number of collected
domains, we queried the NS resource records for each domain at the registry level.

Scans. To determine the consistency between registration data sources and DNS data, we used
zdns [44] to retrieve the NS resource records of each domain where a mismatch was detected.
Additionally, we collected their WHOIS and RDAP records for a second time, specifically be-
tween January 24th and January 27th, 2023. This ensured that all three data sources (DNS,
WHOIS, and RDAP) were collected simultaneously, eliminating cases where domain configu-
rations were altered during our scans.

While some domains had expired between our initial scan and this supplementary analysis,
approximately 90% of the domains remained active and produced a NOERROR DNS response
with non-empty results during the scan.

Results. The second data collection unveiled 365,521 distinct domains exhibiting nameserver
mismatches.

After the collection of the new registration data and the NS records from the authoritative
DNS servers, the resulting data falls into two categories: the mismatch can be between two
records from the same protocol (two WHOIS records or two RDAP records), or between two
records of different protocols.
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Figure 2.5: Nameserver mismatch rate per registrar

WHOIS-RDAP mismatches. In 74.9% of the identified mismatch cases, the disparity exists
between a record gathered through WHOIS and a record collected through RDAP. As previously
described, the nameservers obtained from DNS may constitute a subset, superset, or have a non-
empty intersection with each record. Upon examining all possible scenarios, we found that in
99.5% of cases, the DNS record corresponded to either the WHOIS or RDAP record. The
remaining 0.5% involved intermediate situations where the DNS result only partially matched
one of the records. Due to the limited number of domains affected by this situation, we opted
for concentrating our analysis on cases where the DNS matched one of the records.

In 78.5% of cases, the DNS data corresponded to the nameservers provided by the RDAP
record. This underscores the fact that, although nameservers obtained from DNS typically align
with data from RDAP, there are still 21% of mismatch instances where the DNS results match
the WHOIS record. Interestingly, Figure 2.5 highlights that a few registrars exhibit a notably
high mismatch rate compared to others. We observed that only four registrars have a mismatch
rate exceeding 25%, while the largest registrars, representing the majority of domains, maintain
a very low mismatch rate.

Registry-Registrar mismatches. The remaining 25.1% of cases represent the situations in
which the mismatch is between two records from the same protocol but collected from different
servers. In this case, the collector queried the registry server, got a referral to another server, and
recursively called it, gathering an additional record. If two records are inconsistent, we checked
if the nameservers provided by the DNS matched the records collected at the registry server or
at the referral servers. In 99.2% of the cases, the DNS data matched the registry record, and in
the remaining 0.8% of the cases, it did not match either records. The DNS data matched the
registrar record in only 0.008% of the cases.

As described in Section 2.4.1, we decided to collect the NS records at the DNS authoritative
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nameservers of the registry. Consequently, we expected the record provided by the registry to
be consistent with the DNS data from the same registry. Hence, the mismatches between two
records from the same protocol almost always come from invalid data from the referral server.

The main takeaway is that when both sets of nameservers have no common elements, and
the discrepancy lies between an RDAP and a WHOIS record, the RDAP record is accurate and
aligns with the NS records from DNS in 78% of the cases.

2.4.2 IANA ID, Creation and Expiration Dates

When it comes to obtaining the IANA ID, creation date or registrar name of a domain, research
primarily relies on the WHOIS and RDAP protocols. Unlike nameservers, which can also
be retrieved from DNS, there is no third-party service that offers direct access to this data.
Consequently, when two sources diverge in these fields, there is no simple method to determine
which record contains the accurate information.

In this section, we outline the types of mismatches identified in IANA ID, creation and
expiration dates, and highlight a few cases where we can ascertain the correct record.

Creation and Expiration Dates.

The creation date represents the domain’s initial registration instant, providing insight into its
age. In domain-related research, the domain age is a pivotal factor as older domains, active
for multiple years, are generally deemed more trustworthy than newly registered ones. The
extensive analyses of the domain registration behavior [65, 66] have shown that malicious do-
mains tend to have shorter lifespans and are used in attacks shortly after registration. Other
studies [64, 68] have used the creation date to detect bulk registrations of malicious domains.

The domain age is also frequently combined with other parameters to distinguish between
benign and malicious domains [59, 67]. While some approaches [66] attempt to estimate the
domain activity period by monitoring its appearance and disappearance in publicly accessible
zone files, this method is contingent on zone file accessibility and the availability of historical
data for the domain. Consequently, most studies depend on WHOIS or RDAP to acquire the
creation date.

The expiration date also provides insights into the domain behavior and can shed light on
various scenarios. For instance, if a domain is removed from its zone file before its expiration
date, it may suggest actions taken by the registrar or seizure by authorities [66]. Addition-
ally, parking and drop-catching entities use the expiration date to identify when a domain will
become available for re-registration [60].

Both creation and expiration dates are usually found in the majority of WHOIS and RDAP
records. However, in the case of WHOIS, they may be listed under various names, such as
Creation Date, Registration Date, Created at, Valid until, and more.

After filtering out dates that were not possible to parse and dates lower or equal to the UNIX
Epoch (which may indicate a default value or a configuration error), we observed that 5.7% (for
creation dates) and 4.4% (for expiration dates) of the domains exhibited inconsistencies across
their records. Figure 2.6 illustrates the distribution of time differences between these records.

We can observe that in 84% of the cases for creation dates and 78% of the cases for expi-
ration dates, the differences are less than 2 days. These discrepancies have minimal impact on
the analyses relying on creation dates to gauge the domain age [65] or on the speed of domain
re-registration after expiration [66].
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Figure 2.6: Cumulative distribution of creation and expiration date mismatches

Figure 2.7: Creation date mismatch rate per registrar
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Previous studies [47] highlighted common misunderstanding of the different expiration
steps before the deletion of a domain and pointed out that these steps can account for a mis-
match of up to 30 days, as a confusion could be made between the expiration date, the deletion
date and how the grace and redemption periods should be accounted for, but the collected data
shows no specific mismatch proportion at 30 days. However, our analysis points out that sev-
eral records present an expiration date difference of exactly one year, which corresponds to the
minimal duration of a registration, so the difference could come from the fact that the renewal
of the domain was taken into account in one of the records and not in the other. Then, 98%
of expiration date mismatches are either under 2 days or exactly 1 year, leaving only a few
domains with unexplained expiration date mismatches.

Approximately 16% of the creation date mismatches extend beyond 2 days. In contrast to
expiration date mismatches, creation date mismatches are more evenly distributed. One possible
explanation for these discrepancies is that different entities may have distinct definitions of the
Creation Date. While RFC 9083 [46] clearly defines keywords to describe creation events in
RDAP, such as registration, reregistration, reinstantiation, and transfer, WHOIS
lacks such precision. Consequently, the Creation Date recorded in the WHOIS record may
not correspond to the same events in the domain life cycle as the registration event in the
RDAP record.

The Creation Date mismatch rate for each registrar, as shown in Figure 2.7, highlights
that while many registrars have over 10% of their domains with creation date mismatches, a
few registrars exhibit nearly 100% of their domains with mismatched creation dates. This ob-
servation supports our hypothesis that some of these mismatches may result from registrar mis-
interpretations, custom registration processes or systematic configuration errors. For example,
the vast majority of domains presenting a Creation Date mismatch of 30 or 31 days are under
the .com TLD and share the same registrar, FastDomain Inc. For these domains, the registrar
record Creation Date is always one month earlier that the one in the registry record. After
investigation, we found that this registrar allows their customers to cancel their domain order
up to 30 days after payment, while the ICANN Agreement [51] only imposes a 5-day refund
window. Consequently, we can hypothesize that the creation of the registry record was delayed
until the end of the 30-days period, while the registrar record was created when the customer
first ordered the domain.

Table 2.4: Number of records and domains with mismatching emails

Case Records Domains

All 50.1M 19.0M

Inclusion 37.1M (74%) 15.1M (79.8%)

Intersection 0.59M (1.2%) 0.56M (2.9%)

Disjoint 12.4M (24.8%) 4.9M (26%)

IANA ID and Registrars.

ICANN-accredited registrars play a crucial role in domain registration and management. The
IANA ID associated with each registrar is a unique identifier, often found in WHOIS and RDAP
records, helping to trace domain ownership and authority.
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The content of the Registrar field in WHOIS and RDAP may differ from the name listed
in the IANA registry. For example, 2.4% of domains with IANA ID 146 (GoDaddy.com, LLC)
have different Registrar entries, including GoDaddy LLC, GoDaddy.com, Inc., GODADDY or
Go Daddy, LLC. Therefore, parsing the Registrar field to identify registrars can be challeng-
ing, and users often rely on the IANA ID for accuracy. However, in certain ccTLDs, registrars
receive local accreditation, and the corresponding IANA IDs are not assigned or displayed in
the public WHOIS and RDAP. In these cases, extracting registrar information relies solely on
the Registrar field.

Our analysis uncovered that a mere 0.2% of domain names had records with inconsistent
IANA ID. The analysis of IANA IDs reveals that the majority of mismatches occur between
specific pairs of IDs. Approximately 91% of these detected mismatches involve a record with
IANA ID 1556 (Chengdu West Dimension Digital Technology Co., Ltd.) and another
record with IANA ID 1915 (West263 International Limited). Additionally, 4% of the
mismatches involve IANA ID 3951 (Webempresa Europa, S.L.) and ID 5555555, which is
an invalid ID. This pattern may suggest misconfiguration issues by particular entities, resulting
in consistent mismatches across all the domains they manage.

In the second case, we confirmed the issue by registering a domain name with the registrar
Webempresa Europa, S.L. and examining its records. While the registry WHOIS record
correctly indicated the valid IANA ID 3951, the registrar WHOIS record contained an IANA
ID field with the value 5555555, which does not correspond to any valid registrar number. The
registrar’s WHOIS record also displayed place-holder values for various fields, including the
abuse contact phone number and the reseller name. We verified that all domains registered with
this registrar had inconsistent records. We reported the issue to the registrar, and over several
months, we noticed that all the domains they managed were updated with correct registration
data, resolving the inconsistencies. We suspect that the mismatches between ID 1556 and ID
1915 share the same origin. However, we were unable to test this hypothesis, as both registrars
exclusively serve users in China and Hong Kong.

2.4.3 Email Addresses

Various types of email addresses are included in registration data, serving different purposes.
These addresses are associated with the registry, registrar, or registrant, as well as for techni-
cal, administrative, and abuse-related functions. RFC 9083 [46] provides specific keywords
in RDAP for describing the role of each email address, such as administrative, abuse,
billing, or technical. This allows for easy identification of the address role, a capability
that WHOIS lacks.

For these reasons, we chose to collect all addresses in each record without distinguishing
their roles. We then compared the records based on the sets of addresses they contain. Mis-
matches can occur due to protocol-specific contact addresses; for instance, the technical contact
email for RDAP records may differ from that in WHOIS records if a registrar delegates techni-
cal administration to a third party. However, we anticipate that some addresses will be common
across multiple records for the same domain, such as the abuse contact email for reporting
domain-related abuse.

To analyze email mismatches, we applied the techniques described in Section 2.4.1. Ini-
tially, email addresses were parsed and duplicates were removed. Subsequently, we compared
the various possible inclusion and intersection cases. The results of this analysis are presented
in Table 2.4.

We identified 50 million mismatches on 19 million unique domains, encompassing 34.5%
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of the domains in this study. Among them, 74% of mismatches and 79.8% of domains featured
one set of email addresses included in the other. About 75.2% of mismatches were either
inclusions or intersections, potentially arising from shared addresses (e.g., abuse or registrant
emails) while the addition of server or protocol-specific addresses by different entities (e.g.,
contact addresses for WHOIS or RDAP servers) may result in differences. However, nearly 5
million domains (8.8% of all analyzed domains) had a pair of records with no common email
addresses.

The disjoint cases may be attributed to the GDPR implementation. Previous research [49]
explored the impact of GDPR on the availability of personal information fields before and after
its enactment. Following the GDPR implementation, many registrars and registries replaced the
registrants’ personal details like the name, the phone number, and the email address in WHOIS
and RDAP records with entries such as ‘REDACTED FOR PRIVACY’, effectively concealing
this information. However, some entities introduced proxy email addresses to safeguard the
registrants’ actual addresses. These proxy servers mediate communication between proxy ad-
dresses and registrant emails. For example, in an RDAP record under the registrant role, one
might encounter the address b4ebaf9bfeba@withheld forprivacy.com. While this con-
ceals the registrants’ personal data from the public, a valid contact address remains accessible.
Protecting user privacy by redacting or using proxy email addresses can create discrepancies
between WHOIS and RDAP records, as the registrant’s address, which should be consistent in
all records, may be redacted or hidden behind proxies.

Email mismatches can also occur when registrars or registries use distinct addresses for
WHOIS and RDAP, even though both email addresses are administered by the same organiza-
tion, such as abuse.whois@registrar.com and abuse.rdap@registrar.com.

To address these discrepancies, we conducted a new analysis by extracting and compar-
ing only the domain names from email addresses, discarding the local parts. This approach
considered email addresses within the same domain as consistent. The results are presented
in Table 2.5. We found that this approach resolved 18.6% of the mismatches and reduced the
rate of disjoint email addresses from 24.8% to 9.7%. This suggests that in many cases where
email addresses appeared disjoint, they actually originated from records with different email
addresses hosted under the same domain.

Table 2.5: Number of records and domains with email domain mismatches after removing the
local part of the address, retaining only the base domain name

Case Records Domains

All 50.1M 19M

Equality 9.3M (18.6%) 4.0M (21.4%)

Inclusion 35.7M (71.3%) 14.5M (76.7%)

Intersection 0.24M (0.5%) 0.23M (1.2%)

Disjoint 4.8M (9.7%) 2M (10.6%)

In conclusion, this analysis underscores the need for caution when gathering email ad-
dresses, especially for notification campaigns [50]. The choice of data source significantly
affects the collected email addresses for 34.5% of domains. Additionally, in 10% of cases
where email records mismatch, the domains hosting these addresses are unrelated, suggesting
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that email servers may be managed by different entities, potentially leading to varying effec-
tiveness in notification campaigns.

2.5 Related Work
Table 2.2 provides an overview of prior research that used WHOIS and RDAP data for domain
name registration information. Nevertheless, the accuracy of the collected data has not been
thoroughly investigated. Some earlier studies [47,63,64,68] relied on WHOIS data prior to the
introduction of RDAP. However, as discussed in Section 2.2, inconsistencies are also present in
WHOIS data obtained from servers managed by registries and registrars.

Challenges in processing WHOIS records have been identified, particularly concerning the
reliability of extracted data such as AS numbers for IP WHOIS [74] and domain status [47]. In
a previous in-depth analysis of the .com zone [61], the authors developed a machine-learning
algorithm to address the multiple formats used in WHOIS records, demonstrating the difficulties
in consistently parsing relevant fields.

The performance analysis of WHOIS and RDAP [48] focused on the speed but lacked the
examination of data consistency across different servers and protocols.

In our work, we observed that 7.6% of the scanned domains exhibited mismatching records,
raising concerns about the reliability of security metrics relying on such data. Notably, metrics
that use the Creation Date field [67] or the bulk registration status [66] may be impacted,
especially for registrars with high mismatch rates as presented in Figure 2.7. Obtaining accurate
creation dates for domains under these registrars may require alternative data sources.

The Emails field exhibited the highest mismatch rates, even with a conservative parsing
approach. Previous studies on notification campaigns [50, 69] reported difficulties in extracting
valid email addresses from WHOIS records, with email bounce rates exceeding 50%. These
findings raise concerns about the effectiveness of notification campaigns due to the challenges
associated with obtaining consistent and valid abuse emails from different entities.

2.6 Conclusions
Registration data plays a crucial role in the development of detection systems and gaining in-
sights into the domain name behavior and entity management. However, obtaining this infor-
mation may require interacting with various servers (either registries or registrars) and proto-
cols (either WHOIS or RDAP). Our extensive analysis of 164 million records from 55 million
domains unveiled that the data obtained through WHOIS and RDAP is generally consistent.
Nonetheless, 7.6% of the analyzed domains displayed discrepancies in one or more of the fol-
lowing fields: IANA ID, creation and expiration dates, or nameservers. In cases related to the
nameserver field, we used active DNS measurements to determine the accurate record. When
disparities involved RDAP and WHOIS records, our findings showed that RDAP records were
correct in 78% of instances where mismatches occurred.

The principal insight underscores the importance of studies reliant on dependable regis-
tration data to diversify their data sources by collecting it from various servers and protocols.
Although larger registrars generally display lower mismatch rates, this observation does not
inherently guarantee the accuracy of the data. Smaller registrars present a wide range of out-
comes, with some demonstrating minimal discrepancies, while others exhibit higher rates. The
potential risk exists for malicious actors to exploit registrars with inconsistent data, allowing
them to evade detection systems that rely on the availability and reliability of registration data.
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An analysis of the extent of malicious domains managed by such inconsistent registrars could
offer valuable insights into evasion strategies.

To facilitate future research, we will provide the collected records (both raw and parsed) and
the associated data analysis as resources linked to this publication.
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3
Semantic Identifiers and DNS Names for IoT

In this chapter, we propose a scheme for representing semantic
metadata of IoT devices in compact identifiers and DNS names to
enable simple discovery and search with standard DNS servers.
Our scheme defines a binary identifier as a sequence of bits: a
Context to use and several bits of fields corresponding to semantic
properties specific to the context. The bit string is then encoded
as base32 characters and registered in DNS. Furthermore, we use
the compact semantic DNS names to offer support for search and
discovery. We propose to take advantage of the DNS system as the
basic functionality for querying and discovery of semantic proper-
ties related to IoT devices. We have defined three specific Contexts
for hierarchical semantic properties as well as logical and geo-
graphical locations. For this last part, we have developed two pro-
totypes for managing geo-identifiers in LoRa networks, one based
on Node and the Redis in-memory database, the other one based
on the CoreDNS server.
This chapter is based on a work published with Michele Amoretti,
Fabrizio Restori, Maciej Korczynski and Andrzej Duda [1]
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3.1 Introduction
Many IoT applications require the knowledge about the various properties of IoT devices that
provide some data about the physical world and can act upon the environment. The properties
may for instance include the information on:

• type and unit of data, (e.g., temperature in °C),

• resolution, frequency of data (e.g., 512×512 pixels every hour),

• possible actions performed by the device (e.g., switch on),

• raised alarms (e.g., overheating),

• geographic location of the device (e.g., (+28.61,−80.61) WGS84/GPS coordinates),

• logical location of the device (e.g., Room 235 on Floor 14).

Several initiatives aimed at expressing and structuring this kind of IoT and M2M metadata:
Sensor Markup Language ( SenML) [75], OMA SpecWorks, and oneM2M Base ontology [76].
The World Wide Web Consortium (W3C) schemes for the semantic Web such as RDF,1 OWL,2

SPARQL3 also allow understanding and discovery of IoT data. For expressing specific IoT
semantics, W3C proposed a Semantic Sensor Network (SSN) ontology4 that allows the de-
scription of sensors and their characteristics addressing the issue of interoperability of metadata
annotations.

The Web of Things initiative of W3C5 aims at unifying IoT with digital twins for sensors,
actuators, and information services exposed to applications as local objects with properties, ac-
tions, and events. W3C Thing Description (TD)6 expressed in JSON-LD7 covers the behavior,
interaction affordances, data schema, security configuration, and protocol bindings.

Thing Description allows for attaching rich semantic metadata to IoT devices, however, this
format is oriented towards processing by non-constrained applications running for example in
the Cloud or in the Edge to become the base for sophisticated discovery and search services
offered on Web servers for IoT users and applications. However, we can notice that discovery
and search based on semantic metadata also happens in constrained IoT environments where an
IoT device needs to discover other devices and choose the right one for further communication
or collaboration. In this case, semantic metadata of IoT devices need to be encoded in a highly
compact way to reduce the overhead in usually bandwidth limited networks.

In this work, we propose a scheme for representing semantic metadata of IoT devices in
compact identifiers or names to enable simple discovery and search with standard DNS servers.
The idea of the scheme is inspired by the Static Context Header Compression (SCHC)8 ap-
proach to IP header compression.

1http://www.w3.org/RDF
2http://www.w3.org/TR/owl-ref
3http://www.w3.org/TR/sparql11-query/
4https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
5https://www.w3.org/WoT
6https://www.w3.org/TR/wot-thing-description
7https://www.w3.org/TR/json-ld
8https://tools.ietf.org/html/rfc8724
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In SCHC, two devices that exchange IP packets compress headers based on pre-established
contexts. Instead of a full header, a device inserts the information about the context to use and
some short information required to reconstruct the header. In this way, a 40 byte IPv6 header can
be compressed down to just a few bytes. Our scheme defines a binary identifier as a sequence
of bits composed of a Context to use and several fields corresponding to semantic properties
specific to the Context. The bit string is then encoded as base32 characters and registered in
DNS . Thus, the DNS name encodes in a compact form the semantic metadata of an IoT device.

We define several Contexts of identifiers expressing different semantic metadata to fit the
most popular device characteristics (other can also be defined):

1. hierarchical semantic properties,

2. logical location of the device,

3. geographic location of the device.

The first one corresponds to the structured representation of the attributes of Thing Description
and two others cover the geographical information about an IoT device. We instantiate the
scheme for encoding geographic location in case of LoRa networks and show how to construct
a 64 bit geo-identifier of LoRa devices.

Furthermore, we use the compact semantic DNS names to offer support for search and dis-
covery. In constrained environments, providing full-fledged database search functionality may
be difficult. Instead, we propose to take advantage of the DNS system as the basic functional-
ity for querying and discovering the semantic properties related to IoT devices. Our encoding
scheme of semantic metadata structures the DNS names similarly to IP prefixes: a longer pre-
fix represents more specific information and shortening a prefix corresponds to more general
information, thus allowing for some range or extended topic queries. For instance, if the name
represents a geographical location, a longer name represents a smaller area and a shorter name
corresponds to a larger zone that encompasses the smaller area designated by the longer name.
Finally, we describe two prototypes supporting DNS queries on geo-identifiers.

Querying DNS based on semantic names can bring interesting features to many IoT appli-
cations: finding devices corresponding to a given property, placement on a map of all sensors
belonging to a given application, sending commands to the devices in a chosen region, or gath-
ering data from chosen devices based on their geographical location.

This work makes the following contributions:

1. we define a scheme based on Contexts for compact encoding of different types of meta-
data in DNS names,

2. we take advantage of geohashes to instantiate the scheme for encoding geographic loca-
tion,

3. we propose a means for simple and minimal discovery of IoT devices and searching for
their characteristics based on standard DNS functions,

4. we explore an idea of using DNS to store and publish IoT data,

5. we validate the proposed schemes with preliminary prototypes supporting DNS queries
on geo-identifiers.
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3.2 Related Work
We briefly review previous work related to expressing semantic properties of IoT devices and
compact encoding of geographical location.

3.2.1 Semantic Properties of IoT Devices

As mentioned in the introduction, several initiatives considered the problem of expressing meta-
data of IoT devices and M2M communications: Sensor Markup Language (SenML) [75], IPSO
Alliance Framework [77], and oneM2M Base ontology [76]. Kovacs et al. proposed a system ar-
chitecture for achieving worldwide semantic interoperability with oneM2M [78]. The Semantic
Sensor Network (SSN) ontology allows the description of sensors and their characteristics [79].

An important initiative of W3C aimed at creating the semantic Web of Things [80] to en-
able unambiguous exchange of IoT data with shared meaning. Previous work [81] discussed
solutions that extend the Web of Things architecture to achieve a higher level of semantic inter-
operability for the Internet of Things. Nevertheless, many proposed approaches do not address
the constraints of IoT devices that do not match the size and the form of semantic descriptions
usually developed in the traditional W3C setting. For instance, previous studies [81] reported
performance results coming from a testbed composed of two computers connected to an 802.11
network. Previous work on this topic led to the DINAS scheme [82], based on Bloom filters for
creating compact names from node descriptions and a service discovery protocol for short-range
IoT networks running RPL. Other work emphasizes the importance of DNS for IoT [83].

3.2.2 WGS84 aka GPS

WGS84 is a common format for encoding geographical coordinates used in GPS, composed of
two numbers in degrees of the form ddd.ddddddd, where d stands for a degree digit. Degrees
are expressed as numbers between −180 and +180 for longitude, and a number between −90
and +90 for latitude (locations to the west and to the south are negative), e.g., (+28.61,−80.61)
corresponds to the location of the Cape Canaveral Space Center.

Expressing a given geographical location is always done with a given precision, and when
decoding a position, all methods return the center of the square representing all possible posi-
tions. For example, if we decode (28◦N,80◦W), we know the position is in the square between
(28◦N,80◦W) and (29◦N,81◦W), and we will return (28.5◦N,80.5◦W) to minimize the error.

Table 3.1 represents the longitudinal resolution at the equator and at a latitude of 45◦N/S
with an increasing number of decimal figures and the corresponding number of bits to represent
them. The idea is to relate the size of a region to the number of bits used for representing a
given geographical coordinate and thus relate the size of a region to the size of an identifier. We
can observe that 8 decimal figures encoded on 26 bits are sufficient to represent the location at
the precision of around 1 m.

3.2.3 Geoprefixes, Geohashes, Plus Codes

Previous work [84], defined the notion of a geoprefix for IPv6 networks: the location of each
device is encoded in its IPv6 multicast address and an application can send a packet to all
devices corresponding to a given prefix representing a geographic area (a geocast).

[85] proposed geohash, an encoding of WGS84 coordinates based on Morton codes [86]
that computes a 1-dimensional value from the 2-dimensional GPS coordinates by interleaving
the binary representations of the coordinates and then encoding the result as ASCII characters.
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Table 3.1: Longitudinal decimal degree precision

# of figures # of bits Equator 45◦N/S

3 9 111.3200 km 78.710 km

4 12 11.1320 km 7.871 km

5 16 1.1132 km 787.100 m

6 19 111.3200 m 78.710 m

7 22 11.1320 m 7.871 m

8 26 1.1132 m 787.100 mm

Table 3.2: Combining latitude and longitude encoded in a unique binary value

Longitude 0111

Latitude 1011

Result 01101111

In this method, to encode a given location, we proceed by a dichotomy. Starting with the
full interval ([−180;+180] for longitude, [−90;+90] for latitude), we split the interval in two
([−90;0] and [0;+90] for latitude), then, if the location is in the higher half, we add bit 1 to
the encoding of the coordinate, or else, we add bit 0, and we repeat the operation with the new
interval, building the encoding bit by bit, until we reach the desired precision. When decoding,
we start with the first bit, and reduce the area according to the value of each bit. Once the last
bit is reached, the decoded location is at the center of the remaining interval (for example, for
latitude, if we have only one bit with value 1, we would decode that the latitude is +45, the
middle of the upper [0;+90] interval). With this method, each additional bit halves the size of
the interval and doubles the precision.

Once both latitude and longitude are represented this way, their binary codes are intermin-
gled to produce a unique value: odd bits represent latitude and even bits represent longitude
as presented in Table 3.2. For example, the resulting encoding of latitude 1011 and longitude
0111 is 0110 1111.

Geohash-36,9 originally developed for compression of world coordinate data, divides the
area into 36 squares and generates a full character from a set of 36 predefined characters de-
scribing which sub-square contains the position.

Google Maps uses Plus Codes [87, 88] made up of a sequence of digits chosen from a set
of 20. The digits in the code alternate between latitude and longitude. The first four digits
describe a one degree latitude by one degree longitude area, aligned on degrees. A Plus Code is
10 characters long with a plus sign before the last two:

1. The first four characters are the area code describing a region of roughly 100 × 100
kilometers.

9https://en.wikipedia.org/wiki/Geohash-36
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Table 3.3: Longitudinal decimal degree precision and the size of a geohash

length lat
bits

lng
bits

lat error lng error error

1 2 3 ± 23° ± 23° ± 2500 km

2 5 5 ± 2.8° ± 5.6° ± 630 km

3 7 8 ± 0.70° ± 0.70° ± 78 km

4 10 10 ± 0.087° ± 0.18° ± 20 km

5 12 13 ± 0.022° ± 0.022° ± 2.4 km

6 15 15 ± 0.0027° ± 0.0055° ± 610 m

7 17 18 ± 0.00068° ± 0.00068° ± 76 m

8 20 20 ± 0.000085° ± 0.00017° ± 19 m

9 22 23

10 25 25 ± 59 cm

11 27 28

12 30 30 ± 1.84 cm

2. The last six characters are the local code, describing the neighborhood and the building,
an area of roughly 14 × 14 meters.

As an example, let us consider the Parliament Buildings in Nairobi, Kenya located at the
6GCRPR6C+24 plus code: 6GCR is the area from 2S 36E to 1S 37E. PR6C+24 is a 14-meter wide
by 14-meter high area within 6GCR. The + character is used after eight digits, to break the code
up into two parts and to distinguish codes from postal codes.

3.3 Compact Encoding of IoT Metadata
The main objective of this work is to design a scheme for encoding semantic properties in
DNS names so that IoT devices could discover relevant nodes using with DNS name resolution.
Figure 3.1 gives an example of how it can be done in the context of LoRa devices. Note that
DNSSEC guarantees the information integrity.

We propose to assign self-certifying names to IoT devices: the name derives from a public
key to enable secure establishing of the identity of a device without relying on an external PKI
infrastructure. The self-certifying name is constructed as a hash of public key Kp similarly to
Bitcoin addresses:

A = ripemd160(sha256(Kp))

then A is encoded with base32 (20 characters) giving the DNS name N. base32 encoding
represents a binary string with 0-9 digits and some lower case letters (excluding characters hard
to distinguish like i, l, o). We cannot use base58check like in Bitcoin because DNS names do
not distinguish between upper case and lower case and base58check contains those different
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Figure 3.1: General scheme for identifiers and names.

Context Level 1 Level 2 Level 3 Level 4

5 bits 5 bits 5 bits 5 bits 5 bits 5 bits

…

Encoded semantic properties

Figure 3.2: Structure of a binary semantic identifier (fields of 5 bits or a multiple of 5 bits).

versions. The nice feature of this scheme is that devices can check whether a public key from
the TLSA DNS record corresponds to the name and if authentication is enforced (signature with
the private key Ks) to be sure a device communicates with the right peer.

Then, we can derive an 8 byte EUI64 identifier from A with SHA-3(A). EUI64 identifiers
are required in some networks like LoRa—we can obtain the LoRa DevEUI identifier derived
from Kp and then use it to construct an IPv6 address. In the following sections we will show
that the DevEUI of a LoRa device can represent its geographical location.

In addition to the self-certifying name, we will define other names (DNS aliases) that repre-
sent device properties encoded in a compact way. Moreover, we want the encoding scheme to
take advantage of some discovery functionalities of DNS by requiring that a name is structured
as an IP prefix—smaller prefix means a more general query.

3.3.1 Encoding Hierarchical Semantic Properties

Figure 3.2 presents the structure of an identifier. To decode an identifier, we first read the
Context encoded in the first 5 bits, this tells us how to decode each property encoded in the rest
of the identifier (called Level 1, Level 2, etc.).
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Figure 3.3: Semantic attributes encoded as a quadtree.

The first type of Context we will describe is where each property is encoded by a semantic
tree with leaves corresponding to the different possible values of the property. Each property
may use a different tree, the Context defines which tree to use for each field in the identifier. In
this situation, the value of each property is encoded as the binary code generated when traversing
the tree from the root to the value. Figure 3.3 presents an example of a semantic tree of degree
n = 22 = 4 (where each branch of the encoding uses two bits) where non-terminal nodes are
represented with a circle and property values are represented with squares. The position in the
tree determines the code of a value, for instance, the value at leaf 12 has the code of 1110
corresponding to the traversal of the 11 branch and then, the 10 one, landing on 12. For each
property, we first get its tree and the property length from the Context. Then, we traverse the
tree based on the encoded binary value. If we land on a leaf (a value), means that the device’s
property is this value (for example, if the property is Unit of the returned reading, a value may
be kilograms). If we land on a non-terminal node, it is a way to describe all devices whose
property has a value in the subtree (for example, if the property is Country of the device, the
first depth level of the tree may be the continents, so stopping at the first level represents all
countries in this continent). For simplicity, in this example tree, all properties are encoded with
a multiple of 2 bits, but in our design, we use 5 bits to encode each branch in a tree. This way,
each 25 = 32 possible step can be encoded as a base32 letter, so each property value is encoded
with a multiple of 5 bits. This choice avoids problems of dealing with padding if the size of the
binary identifier is not a multiple of 5 bits.

Once the values of the different properties are encoded in base32, the resulting string can be
used as a name for the device, allowing all users that know the name of the device to determine
its properties.

3.3.2 Encoding Logical Location

In many use cases, an IoT application may benefit from metadata about localization in a log-
ical form. For instance, when defining group communication for the Constrained Application
Protocol (CoAP), RFC 7390 [89] considered a building control application that wants to send
packets to a group of nodes represented by the following name:

all.off376.floor1.bldg6.example.com.
Logically, the group corresponds to "all nodes in office 376, floor 1, building 6". Such hierar-
chical groups of fully qualified domain naming (and scoping) provide a logical description of
places that may complement other precise geographical information that we will consider in the
next section.
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Context geohash, geoprefix, or Plus Code

5 bits 59 bits

Figure 3.4: Structure of a geo-identifier on 64 bits.

We can observe that there is an inclusion relationship between elements of the description:
office 376 is on the floor 1, inside building 6. A specific Context can represent this inclu-
sion relationship. Assuming that we have up to 32 buildings, 32 floors per building, and 1024
rooms per floor, to encode the location of Room 376 on Floor 1 in Building 6, we define the
binary identifier composed of the following fields (base32 encoding in parentheses):

• 00010 (2) - Context-2

• 00110 (6) - Building 6

• 00001 (1) - Floor 11

• 01011 (c) 11000 (s) - Room 376

In this example Context-2 defines the first two properties to be the building and the floor,
encoded on 5 bits each, and the third property to be the room number, encoded on 10 bits, as
in Figure 3.2. The binary identifier 00010 00110 00001 01011 11000 results in the 261cs
identifier.

3.4 Encoding Geographic Location
Many IoT applications require precise information on the geographical location of IoT devices—
when a sensor provides some measurement data, one of the most important additional informa-
tion is the localization of the data source, usually stored as metadata. We can use GPS for
localization, however, adding GPS to an IoT device increases its cost and energy consumption,
which may make their cost prohibitive for many large scale IoT applications.

We take the example of LoRa networks to consider the problem of representing geograph-
ical locations in identifiers and DNS names. We propose a scheme to define the geo-identifier
of a LoRaWAN device in a way that encodes its geographical location. Figure 3.4 presents its
structure with two fields: 5 bits for the Context and 59 bits for encoding geographical coordi-
nates of different forms. The Context gives the information about the type of encoding used in
the remaining 59 bits.

LoRaWAN defines DevEUI, a unique 64 bit identifier in the IEEE EUI-64 [90] configured on
a device. In the activation process of the device, it obtains a DevAddr, a 32 bit identifier in the
current network allocated by the Network Server. In the situation where the device location is
known at registration time, we propose to use a geo-identifier as DevEUI, store it as a DNS name,
and provide a lookup service based DNS service discovery that returns names corresponding to
a geographical region. With this setup, knowing the name of the device gives us information
about its location, and querying devices based on their names allows to query them based on
their location.

53



Chapter 3. Semantic Identifiers and DNS Names for IoT

Table 3.4: Practical example of a geohash

geohash Latitude Longitude

dr5r7p4rx6kz 40.689167 -74.044444

dr5r7p4 40.69 -74.04

dr5r111 40.61 -74.13

With 59 bits for encoding the latitude and the longitude, a geoprefix or a geohash will result
in a resolution of a few cm. Table 3.3 presents the size of the base32 encoded geohash, the
number of bits representing longitude and latitude, and the precision of the decoded value.

Geohashes offer interesting features: i) similar geohashes represent nearby positions and ii)
a longer geohash represents a smaller area and shortening it reduces the precision of both its
coordinates to represent a larger region.

Table 3.4 presents a practical example of the prefix property of a geohash. In this table, the
second geohash is a prefix of the first one, so the area described by the first hash is more precise
and is inside the area described by the second hash. The second and the third geohashes have a
common prefix, so they are in the same region (easily computable with the common prefix) but
do not overlap.

Plus Codes can be shortened relative to a reference location, reducing the number of digits
to use to reach a given precision. In our schema, the reference point could be defined in the
Context, allowing high geographical precision because similarly to geohashes and geoprefixes
they represent areas and the size of the area depends on the code length.

We can store a string version of the geohash or Plus Code in DNS as the names of an IoT
device and enable some geographical/proximity searches using the geohash.org site or Google
Maps (for Plus Codes).

The only constraint of using geo-identifiers for DevEUI is the fact that DevEUI does not
have the EUI-64 format anymore, which may be an obstacle for some applications. On the
other hand, we gain the possibility of linking the device location with its identifier.

3.5 Device Discovery with DNS Queries
In constrained environments, providing full-fledged database search functionality may be dif-
ficult. Instead, we propose to take advantage of the DNS system as the basic functionality for
querying and discovering the semantic properties related to IoT devices. In this section, we
discuss how to query the DNS system to discover the properties of IoT devices or find devices
with given properties.

3.5.1 DNS Service Discovery

DNS-Based Service Discovery (DNS-SD) [91] is a functionality of DNS to discover services in
a network. Information about a given service is stored in the DNS database as an SRV record of
the form:

<Instance>.<Service>.<Domain> IN SRV <data>
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and gives the target host and the preassigned port at which the service instance can be reached.
The TXT record for the same name may give additional information about this instance in a
structured form using key/value pairs.

A DNS client can discover the list of available instances of a given service type using a
query for a DNS PTR record with a name of the form <Service>.<Domain> which returns a
set of zero or more PTR records giving the <Instance> names of the services that match the
queried <Service>. Each PTR record is structured as such:

<Service>.<Dom> IN PTR <Instance>.<Service>.<Dom>

The <Instance> portion of the PTR data is a user-friendly name consisting of UTF-8 char-
acters, so rich -text service names and subdomains are allowed and encouraged, for instance:

LoRa temp sensor.Room 7._iot._udp.example.com.

The <Service> portion of the query consists of a pair of DNS labels, following the conven-
tion already established for SRV records, for instance, the PTR entry for name _http._tcp.local.:

_http._tcp.local. PTR web-page._http._tcp.local.

advertises a “web-page” accessible over HTTP/TCP.
We propose to use this mechanism for querying DNS to find devices relevant to properties

or locations expressed in as our semantic names. For example, if Context 3 describes that the
rest of the identifier is a geohash, the following query:

_3dr5r7p4r._iot._udp.iot.org IN PTR

would look for IoT devices near the Statue of Liberty, as the 3dr5r7p4r sub-domain can be
decoded as:

• Context 3 (the first base32 character 3)

• Geoprefix dr5r7p4r, that translate to the location of the Statue of Liberty

3.5.2 Structuring Queries as Subdomains

The DNS system stores resource records in a hierarchical tree in which servers can delegate
the management of subdomains. For example, the authoritative DNS server of example.fr
can delegate the management of data.example.fr and all its entries and subdomains to an-
other DNS Server. In a similar way, we can delegate the management of a given geographical
region to a specific server whose region is included in the encompassing region of the delegat-
ing domain. For instance, if we want to delegate the management of the New York area to a
city-managed DNS server, we could define a “New York area” subdomain and delegate it.

The in-addr.arpa domain uses this kind of method to delegate the management of an
IPv4 address to the owner: when making a reverse DNS query on 1.2.3.4, the user queries
4.3.2.1.in-addr.arpa, the in-addr.arpa server delegated the 1.in-addr.arpa subdo-
main to the managers of 1.0.0.0/8, who in turn delegated the management of 2.1.in-addr.arpa
to the managers of 1.2.0.0/16 and so on.

We can use a similar method to split semantic names into multiple subdomains to easily
delegate some properties or locations to other servers. Here is an example for geo-identifiers:
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instead of having to encode all possible geo-identifiers under the _iot ._udp.iot.org do-
main, we create the dr._iot._udp.iot.org subdomain and let it handle all areas with the
dr geoprefix (encompassing the east coast of the USA). The server in charge of the dr prefix
(east coast) can then delegate the dr5r area (encompassing New -York) to another server (a city
managed server for example) by delegating the 5r.dr._iot._udp.iot.org zone to the city
managers. Then, the administrator of this server can choose to handle the 7p.5r.dr subdomain
itself, as it represents an area of 600 meters around the Statue of Liberty.

As a result, instead of querying dr5r7p._iot._udp.iot.org, we can query
7p.5r.dr._iot._udp.iot .org and let each subdomain administrator choose if they want
to delegate some sub-areas to other servers.

There are several ways to split a given semantic name into multiple subdomains so the
user has to know the number of characters in a given subdomain to use it in a query. The
number of bytes in each subdomain also influences the kind of queries a user can do. For
example, setting 2 characters per subdomain, like in 34.12._iot._udp.iot.org, makes it
impossible to query directly for devices with the 123 prefix, so the user has to either query
the whole prefix 12._iot ._udp.iot.org and then filter the relevant results, or query all
3[0-f].12._iot._udp.iot.org domains (16 queries). Thus, we need to choose the subdo-
main size carefully We propose three schemes for splitting geo-identifiers: a static subdomain
length, a dynamic subdomain length, and multiple subdomain lengths.

Static subdomain length. We set size S for all subdomains. In this way, the user can split
the geo-identifier in several groups of size S (rounded up or down, depending on the preference
of a query on the encompassing zone and then filtering, or making multiple sub-queries) without
any additional knowledge. The drawback is the lack of flexibility and the arbitrary choice of S
that may be suitable for a given area but not for another one.

Dynamic subdomain length. Each domain has a TXT record that gives the size of the
subdomains related to a given area. For example, 12._iot._udp.iot.org IN TXT "len=3"
informs the user that under the 12 subdomain, each subdomain has length 3, so one can query
345.12._iot._udp.iot.org. This scheme supports the right subdomain length for each re-
gion: in a dense area where we need multiple precise subdomain delegations, we can set a small
length to obtain precise subdivision and in sparse areas where we do not need small subdivisions
(seas, fields), we can use a larger length. The scheme supports multiple subdomain lengths in
the same query as in 6.345.12._iot._udp.iot.org as each subdomain can set its size. The
drawback is the need to recursively query different subdomains for their TXT records to know
the length of each field before splitting the query the right way.

Multiple subdomain lengths. There are multiple ways to get to a given subdomain, so mul-
tiple ways of splitting the geo-identifier are possible and valid. For example, both
345.12._iot._udp.iot.org and 5.34.12._iot._udp.iot.org are valid and point to the
same area. In this way, the users do not have to query for TXT records and can split their queries
as they want. However, it may be hard to encode all ways of splitting the geo-identifier into
subdomains in a resource record.

We can simplify this method with CNAME records, the same way the in-addr.arpa do-
main handles the delegation of subnetworks with arbitrary size10 by defining multiple CNAME
records. For example, if two different servers need to handle the prefixes 12a and 12b but
the 12._iot._udp .iot.org domain only defines subdomains of length 2, we can insert the
following records:

10https://tools.ietf.org/html/rfc2317
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a NS server.handling.a.12.area
a0 CNAME 0.a.12._iot._udp.iot.org
a1 CNAME 1.a.12._iot._udp.iot.org
a2 CNAME 2.a.12._iot._udp.iot.org
...
af CNAME f.a.12._iot._udp.iot.org

We can apply the same approach to all 16 bX.12 records. Once the CNAME records are cre-
ated, a user querying a2.12._iot._udp.iot.org will be redirected to
2.a.12._iot._udp.iot.org, so they will try to resolve the a.12 part and will receive an
NS entry pointing to the server in charge of the 12a area. Therefore, with these records, the
user does not have to know how the delegation in the 12 area works, the query does not change
from their point of view, but with CNAME and NS records, we can transparently delegate parts of
the subdomain. Moreover, this method allows for easy modification of the server authoritative
for a.12 because changing the NS entry is easy and the CNAME records remain the same. The
method may generate many CNAME entries, but they are simple to generate automatically and do
not need to change often.

Splitting into different subdomains can also apply to different contexts like for logical lo-
calizations. In this particular case, we can easily encode the properties in different subdomains
because they are naturally ordered (a room on a given floor in a given building). For example,
if the Context for Logical Localization is 2, the position of a device in Building 1 on Floor 5 in
Room 56 is as follows (with base32 geohash in the parenthesis):

• Context-2: 2 - (2)

• Building: 1 - (1)

• Floor: 5 - (5)

• Room: 56 - (1s)

So, to get the sensors in this room, we send the following query:

1s.5.1.2._iot._udp.iot.org IN PTR

3.5.3 Use of AXFR for the Result Set

Another way of obtaining the result set from a DNS server is to use the DNS Zone Transfer
Protocol (AXFR) [92] that returns all records in a zone. When a client sends an AXFR query
message to an authoritative server, it answers with all resource records stored in the zone. Not
all servers answer an AXFR query, as it requires good bandwidth, but we can take advantage
of this feature to return the results of a query on subdomains describing a geographical area
small enough so that the number of devices is reasonable. This feature can be used to return the
results of a query on subdomains describing a property or a geographical area of the interest.
For instance, to get all devices and the corresponding data stored in the zone in 123456, the
user can use the following command:

dig AXFR 56.34.12._iot._udp.iot.fr
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Figure 3.5: Prototype for LoRa geo-identifiers based on DNS-SD.

3.6 Prototype Implementation of Semantic Discovery
We have implemented two prototypes for geo-identifiers of LoRa devices. Their extension
to consider other types of semantic names is undergoing. The prototypes for geo-identifiers
are available to the public to encourage reproducibility. We show below some examples of
their utilization with commands using the dig tool. These prototypes only consider geohashes
encoded in the domain name without the use of the Context described in Section 3.3.

The first prototype11 which takes advantage of the Node-based dns2 module [93] and the
Redis in-memory database,12 allowed us to quickly deploy and test the concepts based on hard-
coded data. Its general architecture is described in Figure 3.5.

The second prototype13 uses the CoreDNS DNS server14. CoreDNS is highly flexible thanks
to plugins that perform different functions: DNS, Kubernetes service discovery, Prometheus
metrics, rewriting queries, and many more. We modified the file plugin that enables serving
zone data from an RFC 1035-style master file.

In our prototypes, Applications or Network Servers that want to discover the location of
LoRa devices can query a DNS server to find the devices matching some criteria based on their
location. In other types of networks, devices themselves can directly query a DNS server.

In a LoRa network with geo-identifiers, when registering a device, the Network or Join
Server registers several records in the DNS database. First, an SRV record giving the domain
and ports where the Network Server managing a given device can be queried. Then, PTR records
that allows finding the device based on its geo-identifier or name:

<name>._iot._udp.<Domain> IN SRV <port> <domain>
_<geo-i>._iot._udp.<Domain> IN PTR <name>

<name> being the semantic name like described in Section 3.3. This name of the given
domain is unique and describes the properties of the device. <geo-i>] is the geo-identifier of
the device encoded in multiple subdomains as described in Section 3.5.2. When an application

11https://github.com/dsg-unipr/geo-dns
12https://redis.io
13https://github.com/fabrizior/coredns
14https://coredns.io
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needs to find all devices in a given area, it can query DNS for all devices in the matching
subdomain by sending a query like:

_<geo-i>._iot._udp.<Domain> IN PTR,

where <geo-i>] can be split into multiple subdomains if needed.
The DNS server answers with the list of all PTR records in the queried subdomain, and

therefore, in the represented area. Each PTR record gives the semantic name of a device in
the area. Once the application knows the name of the devices in the area, it can query the DNS
server for an SRV record with the different semantic name and get the Network Server managing
the devices.

We have implemented this method in our prototypes and both of them can be queried with
the dig tool15 Upon receiving a PTR query for a specific <Service>, the server returns all
instances of that service type in the subdomain:

# dig @127.0.0.1 -p 53 _dr._iot._udp -t PTR
;; QUESTION SECTION:
;_dr._iot._udp. IN PTR

;; ANSWER SECTION:
_dr._iot._udp. 100 IN PTR humidity.dr12._iot._udp.
_dr._iot._udp. 100 IN PTR temperature.dr34._iot._udp.
_dr._iot._udp. 100 IN PTR temperature.dr56._iot._udp.

Then, once the application has obtained the semantic name of the device (for example,
temperature.dr56), it can query the server for an SRV record with this name, which will
contain the domain and ports at which access the device. It can also ask for TXT records to get
additional data about the device. For example, still using dig:

# dig @127.0.0.1 -p 53 temperature.dr56._iot._udp -t ALL
;; QUESTION SECTION:
;temperature.dr56._iot._udp. IN ALL

;; ANSWER SECTION:
temperature.dr56._iot._udp. 100 IN SRV 10 20 8080 dr56.unipr.it.
temperature.dr56._iot._udp. 100 IN TXT "temperature=14, unit=C"

Finally, when an A query for the <Domain> managing a device is received, the server returns
the IP address of the Network Server the LoRa device is associated with.

For example:

# dig @127.0.0.1 -p 53 dr56.unipr.it -t A
;; QUESTION SECTION:
;dr56.unipr.it. IN A
;; ANSWER SECTION:
dr56.unipr.it. 100 IN A 160.78.28.203

15The address 127.0.0.1 used in the following examples should be replaced with the actual IP address of the
DNS server.
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3.7 DNS as a Source of IoT Data
In the previous sections, we have presented the schemes for encoding device properties in do-
main names to discover devices by querying the DNS infrastructure. Once the user discovers
some relevant devices, they still needs to contact them with different protocols to obtain data
or set up data delivery process with the COAP Observe option for instance. We can also take
advantage of the DNS infrastructure as a public store for IoT data in a similar way to the Cloud.
Many IoT applications store data in the Cloud for further processing and access by clients.

The idea of DNS as a source of IoT data is to use a TXT record associated with a name
of an IoT device to store its data so that a large number of users can access the data in DNS
instead of getting them directly from the device. As a TXT record linked to a domain is usually
already filled with human-readable data related to the domain, we can add dynamically created
records. Once the IoT data is stored in the TXT record, users will benefit from the DNS caching
infrastructure efficient dissemination: recursive resolvers will cache its content and keep the
data until the time-to-live (ttl) of the record expires. Then, the recursive resolvers will query
the authoritative server to get the new record and the updated data from the device. With this
method, the end users do not need to know what kind of protocol should be used to contact the
device, as data is stored in a standard TXT record and no direct contact between the user and the
device is required.

3.7.1 Encoding Data in TXT Records

RFC 695016 describes under what conditions an application can use DNS to store data and pro-
vides several recommendations and warnings indicated by other RFCs. RFC 146417 formalized
the <key>=<value> format for storing data in TXT records, so in the case of the example of a
temperature sensor, the DNS entry could be <domain> IN <ttl> TXT "temperature=14".

Not all types of data should be placed in DNS: records with a large size can be used by
attackers as an amplifier to generate a lot of traffic [36] (this is why .com records are limited to
1460 bytes). Therefore, this solution may not be suitable for all kinds of sensors. For example,
a device taking periodic 512×512 pictures would generate data that should not be put on DNS,
instead, the user will have to find a way to contact the device or its Network Server to get the
data from a suitable source.

3.7.2 Updating Data in TXT Records

To keep data in the DNS record updated, there should be a process or an entity that gets the data
from the device and updates the corresponding TXT record. For non-constrained devices, an
IoT device could update its own record, but for most constrained devices, this kind of operation
may be too costly, so another entity should update the data. For LoRa networks, all data from
the devices go through the Network Server. As this server is not constrained, it can update the
TXT record on behalf of the device using, for example, secure Dynamic DNS Update protocol
extension [31] and a standard Unix nsupdate command to insert the new values in the zone file
of the authoritative DNS server.

Because the data is not updated in real time, it is important to choose a suitable ttl value for
the TXT record, so that when cached by recursive resolvers or proxies, the entry is marked as out

16https://tools.ietf.org/html/rfc6950
17https://tools.ietf.org/html/rfc1464
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of date when new values are available. The ttl value must take into account the frequency at
which the Network Server retrieves the new data from the device and updates the corresponding
DNS record. For example, if the Network Server retrieves the temperature data and dynamically
updates TXT records every hour, then the ttl value should also be set to one hour so that the
information stored in caches of local DNS resolvers, which request the data on behalf of local
clients, gets updated.

We can also use the Incremental Transfer mechanism (IXFR)18 designed to transfer only a
modified part of a zone, for example, the updated TXT records with the changed temperature.
Each time the zone is dynamically updated by, for example, the Network Server, the serial
number of its zone is increased. Therefore, after the initial AXFR transfer, the client should keep
record of the Start of Authority (SOA) serial number of the transferred zone. Next, the client can
send an IXFR request with the registered version number so that the authoritative name server
responds only with the deleted and added resource records since the version known by the IXFR
client up to the current version of the zone stored by the authoritative server. For example, to
get new data related to the 123456 location, the client can use the following command:

dig @server IXFR=[old-ser] 56.34.12._iot._udp.iot.fr

3.8 Conclusion
In this work, we have proposed a scheme for representing semantic metadata of IoT devices in
compact identifiers and DNS names to enable simple discovery and search with standard DNS
servers. Our scheme defines a binary identifier as a sequence of bits composed of a Context and
several bits of fields encoding semantic properties specific to the Context. The bit string is then
encoded as a character string, stored in DNS. In this way, we may take advantage of the DNS
system as the basic functionality for querying and discovery of semantic properties related to
IoT devices.

We have defined specific Contexts for hierarchical properties as well as logical and ge-
ographic locations. For this last part, we have developed two prototypes that manage geo-
identifiers in LoRa networks to show that the proposed scheme can take advantage of the stan-
dard DNS infrastructure.

18https://tools.ietf.org/html/rfc1995
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4
Early Detection of Spam Domains with

Passive DNS and SPF

Spam domains are sources of unsolicited mails and one of the pri-
mary vehicles for fraud and malicious activities such as phishing
campaigns or malware distribution. Spam domain detection is a
race: as soon as the spam mails are sent, taking down the domain
or blacklisting it is of relative use, as spammers have to register a
new domain for their next campaign. To prevent malicious actors
from sending mails, we need to detect them as fast as possible and,
ideally, even before the campaign is launched.
In this work, using near-real-time passive DNS data from Farsight
Security, we monitor the DNS traffic of newly registered domains
and the contents of their TXT records, in particular, the configu-
ration of the Sender Policy Framework, an anti-spoofing protocol
for domain names and the first line of defense against devastating
Business Email Compromise scams. Because spammers and be-
nign domains have different SPF rules and different traffic profiles,
we build a new method to detect spam domains using features col-
lected from passive DNS traffic.
Using the SPF configuration and the traffic to the TXT records of
a domain, we accurately detect a significant proportion of spam
domains with a low false positives rate demonstrating its potential
in real-world deployments. Our classification scheme can detect
spam domains before they send any mail, using only a single DNS
query and later on, it can refine its classification by monitoring
more traffic to the domain name.
This chapter is based on a work published with Maciej Korczynski
and Andrzej Duda [2].
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Chapter 4. Early Detection of Spam Domains with Passive DNS and SPF

4.1 Introduction

For years, malicious mails have been representing a significant technical, economic, and social
threat. Besides increasing communication costs and clogging up mailboxes, malicious mails
may cause considerable harm by luring a user into following links to phishing or malware
distribution sites.

Typically, malicious actors run campaigns with instant generation of a large number of
mails. Hence, their detection is a race: if we want to prevent their malicious activity, we need
to detect spam domain names as soon as possible, blacklist and block them (at the registration
level). Once the campaign is over, domain blacklisting is less effective because the recipients
have already received mails.

Early detection of spam domains that generate malicious mails is challenging. One of the
approaches is to leverage the Domain Name System (DNS) that maps domain names to re-
source records that contain data like IP addresses. We can use DNS traffic and domain name
characteristics to compute features for training and running machine learning detection algo-
rithms, even if malicious actors may try to hide their traces and activities, and avoid domain
takedown [34, 94]. The main difference between various algorithms is the set of features used
to train and run classifiers. The features mainly belong to four categories: i) lexical: domain
names, randomness of characters, or similarity to brand names [33, 95–100], ii) domain and IP
address popularity : reputation systems based on diversity, origin of queries, or past malicious
activity [33, 65, 100–104]), iii) DNS traffic: number of queries, their intensity, burst detection,
or behavior changes [96, 102]), and iv) WHOIS: domain registration patterns [33, 65, 105].

In this work, we propose a scheme for early detection of spam domains, even before they
send a single mail to a victim. It is based on the domain SPF (Sender Policy Framework) rules
and traffic to the TXT records containing them.

SPF rules are means for detecting forged sender addresses, they form the first line of de-
fense in the case of, for instance, Business Email Compromise scams that represented over $1.8
billion USD of losses in 2020 [106]. As malicious actors generally use newly registered do-
mains for sending mails, they also configure the SPF rules for their domains to increase their
reputation and thus avoid proactive detection. We have discovered that the content of the SPF
rules and traffic to the TXT records containing them are different for malicious and benign do-
mains. We have used these features to design a domain classifier algorithm that can quickly
detect spam domains based on passive DNS traffic monitoring [39]. With low false positive rate
and high true positive rate, our scheme can improve existing real-time systems for detecting and
proactively blocking spam domains using passive DNS data.

The rest of this work is organized as follows. Section 4.2 provides background on SPF and
spam campaigns. Section 4.3 presents the proposed scheme. Sections 4.4 and 4.5 introduce
the classification algorithms and present their results. We discuss other related approaches in
Section 4.6 and Section 4.7 concludes this work.

4.2 Background

In this section, we describe the SPF protocol and the mail delivery process, highlighting the
steps during which we gather features to detect malicious activity.
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Figure 4.1: Sending mails with SPF verification.

4.2.1 Sender Policy Framework (SPF)

The Sender Policy Framework (SPF) [107] is a protocol used to prevent domain (mail) spoofing.
Figure 4.1 presents the procedure for sending mails and SPF verification. Alice (sender) sends
a benign mail to Bob (receiver), and Mallory (attacker) wants to send a mail that impersonates
Alice to Bob. Mallory and Alice use their respective servers (mallory.com and alice.com) to
send mails.

An effective anti-spoofing mechanism needs to differentiate the Mallory message from the
benign Alice mail. The current first lines of defense to protect users from spoofed mails include
SPF [107], DKIM [108], and DMARC [109].

SPF is a set of text-form rules in TXT DNS resource records specifying a list of servers
allowed to send mails on behalf of a specific domain. During mail delivery over the SMTP
protocol, the recipient server authenticates the sender Mail Transfer Agent (MTA) by compar-
ing the given MAIL FROM (or HELO) identity and the sender IP address with the content of the
published SPF record.

In our example, the Mail Delivery Agent (MDA) on the Bob’s server queries the DNS
for a TXT record of the sending domain (alice.com). This record contains the SPF rule of
alice.com and specifies which IP addresses can send mails on behalf of this domain. The mail
from Alice comes from a whitelisted server, so it gets delivered. The mail from Mallory’s server
was not whitelisted, so the (spoofed) mail is rejected.

A valid SPF version 1 record string must begin with v=spf1 followed by other SPF entries
with the following structure: <qualifier><mechanism>[:<target>].

The mail sender is matched with the <mechanism>:<target> part; when matching, the
output is determined by the <qualifier>. Four types of <qualifier> are possible: PASS
(+) (the default mechanism), NEUTRAL (~), SOFTFAIL (?), FAIL (-).

The most common SFP mechanisms are the following:

ip4, ip6 – the sender IP address matches the predefined IP address or the subnetwork prefix,

a, mx – the domain has an A (or MX) record that resolves to the sender IP address,

ptr – a verified reverse DNS query on the sender IP address matches the sending domain (not
recommended by RFC 7208 [107] since April 2014),

exists – the domain has an A record,

include – use the rules of another domain,
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all – the default mechanism that always matches.

To illustrate the operation of SPF rules, let us consider the following configuration for
example.com domain: v=spf1 a ip4:192.0.2.0/24 -allwhere the A record (example.com
A 198.51.100.1) is stored in DNS. The SPF rule states that only a host with the IP address
of 198.51.100.1 (the a mechanism) or machines in the 192.0.2.0/24 subnetwork (the ip4
mechanism) are permitted senders, all others are forbidden (the -all mechanism).

4.2.2 Life Cycle of a Spam Campaign

Most spam campaigns follow the same life cycle presented below.

Domain registration.

As most mail hosting companies deploy tools to prevent their users from sending spam, ma-
licious actors need to register their own domains to send spam. To run multiple campaigns,
spammers usually register domains in bulk [110]. Once the domains are registered, spammers
configure zone files and fill the corresponding resource records in the DNS .

Configuration of anti-spoofing mechanisms.

To use SPF, DMARC, or DKIM, each domain must have a TXT resource record describing
which hosts can send a mail on their behalf and deploying keys to authenticate the sender. Even
if DMARC is still not widely used, many benign domains deploy SPF [111–113]. Thus, a
mail from a domain without SPF configuration is likely to be flagged as spam (especially when
combined with other indicators of malicious intent). To appear as benign as possible, spammers
fill in at least the SPF rule in the TXT record. Our scheme extracts most of the features for
detecting spam at this step because the SPF records of spam domains are generally different
from the configurations of benign domains and even if a given domain has not yet sent a single
mail, we can access its SPF rules and detect suspicious configurations. The SPF rules can be
actively fetched by sending a TXT query to the domain (e.g., newly registered), but to avoid
active scanning, we have chosen to use passive DNS to analyze TXT requests. In every detected
spam campaign, we observe at least one TXT query that may originate from a spammer testing
its infrastructure.
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Figure 4.2: Density of DNS TXT traffic to a spam domain (promotechmail.online)

Spam campaign.

When a mail server receives a mail, it tries to resolve the TXT record of the sending domain to
get its SPF rule and checks for possible sender forgery. During a spam campaign, spammers
send mails to many servers across the world. At the beginning of a campaign, the (validating)
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mail servers will all try to retrieve the TXT DNS record of the sender domain almost at the same
time. Therefore, we expect to observe a surge in queries for TXT records. Figure 4.2 presents
traffic density (corresponding to the number of DNS queries over time, defined precisely later)
to a spam domain detected during our study. The burst in the number of queries during a time
window of less than 24 h, then traffic dropping and never rising again is the typical profile of
spammers.

Detection, blacklisting, and cleanup.

When spam mails reach the targets, security experts and spam detection algorithms parsing the
mail content and its headers flag the sending domain as a spamming source and may report it to
domain blacklists like SpamHaus [114] or SURBL [115]. When a domain appears on a black-
list, mail servers will likely drop mails from it. Future spam campaigns from this domain will
be unsuccessful, so it becomes useless for spammers. Hosting services may also suspend the
sending server whereas domain registrars may take down the spam domain as it often violates
their terms of service and is considered as DNS abuse [98, 116]. However, once the domain
is blacklisted (or taken down), spammers may just acquire another one and repeat the previous
steps.

When looking for spammers, timing is the key: the sooner we detect a spamming domain,
the fewer mails it can send, and if an algorithm only detects a spam mail upon reception, it
means that the campaign has started and reached some of the targets. This observation was the
motivation for our scheme for early detection of spamming domains even before the start of a
spam campaign.

4.3 Scheme for Early Detection of Spam
In this section, we present the proposed scheme. It takes advantage of passive DNS data to
obtain the SPF rules for a given domain and the frequency of the queries to retrieve them.

4.3.1 Data Source: Passive DNS

Passive DNS consists of monitoring DNS traffic by sensors usually deployed above recursive
resolvers to monitor queries between a local resolver and authoritative name servers [117].
Locally observed queries are aggregated into feeds available for analyses. In this work, we
have used the near-real-time Farsight SIE Passive DNS channel 207 [39] to obtain DNS traffic
data for the TXT records and SPF rules for each domain. We extract the following fields: the
queried domain, the record type, the answer from the authoritative server, a time window, and
the number of times a given query was observed during the time window.

To be effective, the scheme must analyze unencrypted DNS traffic. Therefore, it is not
suitable when using the DNS over TLS (DoT) [118] or DNS over HTTPS (DoH) [119] standards
that encrypt user DNS queries to prevent eavesdropping of domain names. To monitor such
traffic, the scheme would have to be implemented, e.g., in public recursive resolvers providing
DoT or DoH services.

4.3.2 Features Based on SPF Rules

The SPF configuration for a given domain is stored in the TXT record of the domain. Since
most mail hosting services provide a default SPF records for their customers, many domains
share the same SPF rules. Nevertheless, some domains use custom SPF rules that whitelist
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specific servers. We have focused on the similarities of domains: two domains that use the
same custom SPF rules and whitelist the same IP addresses are likely to be managed by the
same entity. Therefore, if one domain starts sending spam, it is reasonable to consider that the
domains sharing the same SPF rules are likely to be (future) spammers.

We have analyzed the SPF configuration of spam and benign domains to see if they differ
(we later discuss ground truth data in Section 4.4.1). Figure 4.3 shows that benign and spam
domains do not necessarily use the same rules. For example, benign domains more frequently
use the +include mechanism while spammers +ptr.

We presume that legitimate domains, hosted by major mail hosting providers, are more
likely to have default configurations with the +include mechanism to indicate that a particular
third party (e.g., a mail server of the provider) is authorized to send mails on behalf of all
domains (e.g., in a shared hosting environment).

Spam domains may use custom mail servers instead, thus they are more likely to whitelist
the IP addresses of their servers with, for instance, the +ip4 mechanism. We suspect that in
some cases spammers may not want to reveal the IP addresses of hosts sending spam. There-
fore, they may use the +all mechanism (that accepts mails from all hosts) relatively more than
legitimate domains whose administrators are concerned about rejecting spam mails from unau-
thorized hosts. Finally, the +ptr mechanism is marked as “do not use” since April 2014 by
RFC 7208 [107]. Major hosting providers seem to follow this recommendation, but individ-
ual spammers may not have changed their practices and continue to use this outdated but still
supported mechanism.
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Figure 4.3: Usage proportion of SPF rules for benign and spamming domains

For each domain, we compute the number of occurrences of each mechanism in its rule
to generate the set of SPF features. Because not all possible combinations of qualifiers and
mechanisms are actually used, we have selected the sets of qualifiers and mechanisms that
appear in more than 0.1% of domains to avoid overfitting, which leaves the ones presented in
Figure 4.3.

4.3.3 Graph Analysis of SPF Rules

Some SPF rules point to an IP address or a subnetwork prefix (like ip4 and ip6) and some
point to domain names (like include and sometimes a and mx). We build the relationship
graph between domains and IP ranges as shown in Figure 4.4. For example, the edge between
node A (a.org) and node B (b.com) reflects the fact that node B has an SPF rule that points
to node A. The edge between b.com and 192.0.2.1 represents the fact that this IP address is
used in the +ip4 rule in the b.com SPF configuration.
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a.org b.com 1.1.1.1

c.xyzd.se

b.com IN TXT “include:a.org +ip4:1.1.1.1”

c.xyz IN TXT “+a:d.se +ip4:1.1.1.1”

include ip4

ip4a

Figure 4.4: Example of a relationship graph derived from SPF rules

This graph is built and updated in near real time: nodes and edges are added when domains
with SPF data appear in the passive DNS feed, and spam domains (marked in red in Figure 4.4)
are added or deleted from blacklists (SpamHaus and SURBL in our scheme). Thus, over time,
the graph becomes more complete, providing more precise relationships and features for domain
classification.

We have analyzed different structures in the graph built from our dataset and detected dis-
tinctive patterns. Figure 4.5 shows three examples of the observed structure types to illustrate
some typical SPF configuration relationship graphs for spam domains. Red nodes represent
spamming domains and white nodes correspond to the targets of their SPF rules. Figure 4.5a
shows the pattern in which multiple spam domains share the same configuration: they have
a rule targeting the same IPv6 network (these domains are likely to be managed by the same
entity). Figure 4.5b presents spam domains that have an include mechanism that points to the
same domain and exactly three other custom targets that no other domain uses (this is the case
when domains are hosted by a hosting provider that provides an SPF configuration for inclusion
by its clients). Finally, many spam domains have rules like in Figure 4.5c in which a domain
has a single target (a custom IP address) that no other domain uses.

(a) Ball shape (b) Tree shape (c) One-to-One

Figure 4.5: SPF relation graph for spam domains

The study of these structures can highlight potential spam domains. In our dataset, we found
structures like in Figure 4.5a or Figure 4.5b in which dozens of domains used the same rule and
the majority of them appeared on spam blacklists. As such, it is reasonable to assume that the
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remaining domains are likely to have not yet been detected or are not yet active spam domains.
To detect the structures indicating spam domains, we have defined two unique features de-

scribing the properties of domains in the relationship graph.

Toxicity.

We define the toxicity of a node as the proportion of its neighbors that are flagged as spam in
the graph, or 1 if the domain itself is flagged as spam. With this metric, SPF targets used by
known spammers get a high value of toxicity. To detect the domains that use rules with high
toxicity targets, we compute the Max Neighbor Toxicity: the maximum toxicity amongst all the
targets of a domain.

This way, if a domain has a target mainly used by spammers, its Max Neighbor Toxicity is
high.

Neighbor Degree.

For each node, we look at the degrees of its neighbors: is it connected to highly used domains
and IP addresses? Or is it using custom targets that no other domain uses? We expect spamming
domains to more likely use custom targets that no other domains use (with a small degree in
the graph) like in Figure 4.5c, compared to benign domains that would use the default config-
urations of the hosting service and share the same targets as many other domains (with a high
degree in the graph).
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Figure 4.6: Cumulative distributions of Max Neighbor Toxicity and Max Neighbor Degree for
spamming and benign domains.

Figure 4.6 shows that the expected differences of Max Neighbor Toxicity and Max Neighbor
Degree between spammers and benign domains match our hypothesis: spammers are more
likely to use targets shared by some other spammers and are more likely to use custom targets
with low degrees in the graph.

4.3.4 Time Analysis of Traffic to DNS TXT Records

When a domain starts a spam campaign, we expect multiple servers to query DNS for the TXT
record of the sender domain to check its SPF configuration. Therefore, we can observe an
unusual number of queries related to the (newly registered) domain. The passive DNS feed we
use contains aggregated queries over a given time window: when a DNS query is detected by
a sensor, it is inserted in an aggregation buffer with the insertion timestamp. The subsequent
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identical queries only increase a counter in the buffer. When the buffer is full, the oldest inserted
queries are flushed out, yielding an aggregated message with the query, the answer from the
authoritative server, and three extra fields: time_first, time_last, and count meaning that
the query was seen count times during the time window from time_first to time_last.

From these aggregated messages, we compute the traffic density by dividing the number of
queries (in the count field) by the window duration, and then, dividing this value by the time
between the end of the window and the end of the previous window to take into account the
time windows in which there is no traffic. The resulting formula is the following:

density(i) =
count

time_last−time_first
× 1

message_end(i)−message_end(i−1)

Comparing the time windows of multiple domains in passive DNS data is a complex task:
each window has a different size and we have no information on how the queries are spread
inside it.

time0 1 2 3 4 5 6
10
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5 3

5 7
flush 0 flush 1 flush 2

Domain A
Domain B

Figure 4.7: Computation of traffic density from Passive DNS messages

The query density of multiple domains can only be compared if they are computed the
same way, over the same time period. If a period starts or ends in the middle of a domain
time window, we need to make an assumption about how the queries are spread inside the
time window, to determine how many queries are inside the time period. However, we do not
have such information so to avoid unnecessary assumptions, a period can only start and end
at a timestamp that it is not included in any time window. We call those usable timestamps
flushes. Then, the query density of a domain between two flushes is computed by measuring
the time during which the domain was active, the total time between the flushes and the number
of queries. For example, in Figure 4.7, between flush 0 and 1, Domain A has a count (total
number of queries) of 12 and an active_time (total time covered by time windows) of 3, and
Domain B has a count of 5, and an active_time of 1. If f lush(i) is the timestamp of the i-th
flush, we define the density at time i as:

density(i) =
count

active_time
× 1

f lush(i+1)− f lush(i)
.

The first fraction represents the density of requests in the aggregated time window. The
second fraction normalizes this value by the size of the flush window so that all domains have a
comparable density, as the flushes are not evenly spread. Therefore, density(0) for domain A is
12/3×1/3 = 4/3 and 5/1×1/3 = 5/3 for domain B .
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Max Variation.

To detect large variations in density, we compute the Max Variation feature defined as the max-
imum density variation during 24 h. Domains with a slowly increasing traffic have a low Max
Variation and those with a spike in the number of TXT queries, a high Max Variation. We com-
pute two versions of this feature: i) the Global Max Variation, using the same time steps to
compare all domains and ii) the Local Max Variation in which a custom time step is computed
for each domain.

For the Max Global Variation, the flushes are computed using the time windows of all the
studied domains at the same time (the numbered flushes in Figure 4.7), meaning that a times-
tamp is a flush only if no domain has a window opened at this time. This results in fewer flushes
but the traffic density between different domains can be compared (as they all use the same time
steps). The Max Local Variation of a domain is computed using only the time windows of this
domain to compute the flushes (numbered flushes plus domain flushes in Figure 4.7). The Max
Local Variation uses more time steps so the density is more precise, but these time steps are dif-
ferent for each domain and have a tendency to reduce the detection of sudden bursts following
a long inactivity window.
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Figure 4.8: Cumulative distribution of Max Variation (log scale x-axis)

Figure 4.8 presents the cumulative distribution of the two features. As expected, we observe
that spam domains have a relatively higher Max Global Variation when all domains share the
same time steps.

However, when we look at the Max Local Variation, we observe that benign domains tend
to have a higher variation. The distributions are different because this feature is close to the
average density variation: domains with a lot of traffic variation and small windows will have
a higher Local Variation, whereas spam domains with almost no traffic except for a few spikes
will have a lower Local Variation due to long periods of inactivity before a spike.

4.4 Classifiers

In this section, we present the classifiers used for the detection of spam based on the proposed
features.
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4.4.1 Ground Truth

We have taken the precaution of carefully selecting the domains in our ground truth. We
recorded four months (between May and August 2021) of passive DNS traffic to TXT records
from Farsight Security [39]. Because most spam domains are newly registered and discarded as
soon as they are blacklisted, we only considered newly registered domains. From the ICANN
Central Zone Data Service (CZDS) [42], we have built a list of new domains by computing the
difference between consecutive versions of each generic Top Level Domain (gTLD) zone files.

Table 4.1 shows the number of queries and unique domains at each data collection and
analysis stage. The first step captures DNS TXT queries to newly registered domain names
observed in the passive DNS feed. The next step retains only the TXT queries that contain valid
SPF data. Then, we build ground truth with the approach described in Section 4.4.1.

Table 4.1: Number of queries and unique domains in the dataset at different stages

Stage Queries Unique domains Spam domains

1. Traffic to new domains 399M 14M 0.8%

2. SPF traffic 36M 1.4M 1.5%

3. Ground truth 26M 40,224 5.9%

Using SURBL [115] and SpamHaus [114] spam blacklists, we have identified all domains
(in near-real time) in our database flagged by one of these sources. Spam blacklists are not
perfect and sometimes they may flag benign domains as spam. Therefore, to obtain reliable
ground truth, we added an extra layer of verification: a domain is labeled as

• benign if it has not been blacklisted and has been active during the entire period of the
study (and has a valid A and NS records), or

• malicious if it was blacklisted by SURLB or SpamHaus and was taken down.

With these criteria, our ground truth dataset contained 37,832 non-spam and 2,392 spam
domains.

4.4.2 Classifier

For spam detection, it is crucial to keep the True Negative1 Rate (TPR) as high as possible to
avoid flagging benign domains as spam, because wrongly classifying a benign domain as spam
can have serious repercussions, like domain takedown or blacklisting. Once a True Negative
Rate of at least 99% is achieved, we maximize the True Positive2 Rate (TPR) to detect as many
spam domains as possible.

The performance of each classifier is measured with three metrics:

1True Negative: non-spam domain correctly classified as such
2True Positive: spam domain correctly classified as malicious
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F1-score: 2T P
2T P+FP+FN , with T P,FP and FN being respectively the number of True Positives,

False Positives, False Negatives

True Positive Rate (TPR): T P
T P+FN : proportion of spam domains accurately flagged as spam.

True Negative Rate (TNR): T N
T N+FP : proportion of benign domains accurately flagged as be-

nign.

To calculate performance metrics, we use the k-fold technique: the whole ground truth
dataset is split in 5 equal parts called folds. We select one fold for testing the model performance
and train the model using the k−1 remaining folds. We repeat this process for each fold (each
fold is evaluated against the remaining k−1). Once the model for each fold is built, the global
efficiency of the model is the average efficiency of the five iterations.

We explored multiple classifiers and parameters with Weka [120], then implemented two of
them with the scikit-learn [121] Python library, for better benchmarking. Two classifiers
that performed the best are:

C4.5 or J48: a decision tree able to describe non-linear relations between features. It highlights
complex conditional relations between features.

Random Forest: a set of multiple decision trees with a voting system to combine their results.
Its drawback is low explainability.

Table 4.2: Features used by the classifiers

Category Feature Outcome

SPF Rules

Number of. . .

+all, +mx, +ptr, -all Malicious

+a, +include, +redirect, ~all Benign

+ip4, +ip6, ?all Mixed3

SPF Graph
Max Neighbor Degree Benign

Max Neighbor Toxicity Malicious

Time Analysis
Max Global Variation Malicious

Max Local Variation Benign

We use the k-fold cross-validation technique with k set to 5, as described in Section 4.4.2.
The number of spam domains in our ground truth dataset represents less than 10% of all

domains. The decision tree algorithms are not suitable for classification problems with a skewed

3Depends on how many times the rule is present in the configuration
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class distribution. Therefore, we have used a standard class weight algorithm for processing
imbalanced data [122] implemented in the scikit-learn Python library [121].

Table 4.2 summarizes the features used by the classifiers and whether they indicate mali-
ciousness or benignness of the domain.

4.5 Classification Results
We evaluate the efficiency of the classifiers with two sets of features: i) the static set without
the time analysis features (Max Variation) and ii) the static + dynamic set that includes both
static and the time analysis features. We have distinguished between the sets because even if
the efficiency is lower without the time analysis features, we can get the static features (SPF
configuration and graph properties) from a single TXT query to the target domain allowing for a
rapid detection of most spam domains. Then, we can refine the classification by adding the time
based features that are more robust against evasion techniques but require more time to detect
spam domains.

4.5.1 Performance Evaluation

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

classifier

DecisionTree

RandomForest

feature_type

static

static + dynamic

Figure 4.9: ROC curve for different classifiers on two sets of features

Figure 4.9 compares the Receiver Operating Characteristic (ROC) curves of each classifier
for two sets of features (to see better the differences in performance, we zoom into high values
of TPR). When training the classifiers, we change the weight of the spam class to change the
reward of accurately finding a spam domain. If the spam class weight is low, the classifier will
be less likely to risk getting a false positive. On the contrary, if the spam class weight is high,
the classifier gets higher reward if it accurately flags a spam domain. Therefore, the classifier
will “take more risks”, reducing its TNR to increase TPR. If we require the False Positive Rate
(benign domains flagged as spam) under 1%, the Random Forest is the best algorithm reaching
a True Positive Rate of 74% using only the static set and 85% once we add the time analysis
features.

Table 4.3 shows the results of the Random Forest classifier using static and dynamic fea-
tures (SPF Rules, SPF Graph and Time Analysis features). It corresponds to the model from
Figure 4.9 with a TPR of 0.717 and FPR of 0.006. The second and third columns (Spam and
Benign) represent how commercial blacklists (SpamHaus and SURBL) classified the domains
(ground truth data), whereas the second and third row represent how our system classified the
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Table 4.3: Classification results for the Random Forest classifier on the ground truth dataset.

Our method

Blacklists
Spam Benign Total

Spam TP = 1 716 FP = 210 1 926

Benign FN = 676 TN = 37 622 38 298

Total 2 392 37 832 40 224

TPR TNR F1-score

71.7% 99.4% 79.5%

same domains. The second part of the table represents common metrics used to rate classi-
fiers. For example, in the table we can note that 676 domains were classified as Benign by
our classifier, but they appear in the commercial blacklists—this represents the number of False
Negatives (FN). The second part of the table shows the metrics used to evaluate our classifier
(TPR, TNR, and F1-score) as described in Section 4.4.2.

Figure 4.10 illustrates how long we need to monitor a domain so that the classifiers reach
their best efficiency. Over time, we observe traffic to each domain and the time analysis features
get more precise (until one week), which improves classification. Both classifiers reach almost
the best detection performance (computed as the F1-score) after observing a domain for one
day.
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Figure 4.10: F1-score of classifiers after the first appearance of each domain

4.5.2 Detection Time

The static results (labeled as 0H in Figure 4.10) show the efficiency of the scheme when a single
TXT request is observed. In this case, the classifier has no time properties of the traffic and only
uses the static features (SPF Rules and SPF Graph). We can replace passive detection of SPF
Rules with active DNS scans (assuming we have a list of newly registered domain names, which
is generally the case for legacy and new gTLDs but not for the vast majority of ccTLD [116,
123]): by actively querying the TXT records of new domains and classifying them based on their
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SPF configuration and formed relationships. Then, over time, as we passively observe traffic
to the domain records, the performance of the classifier improves achieving very good results
after 30 minutes (F1-score of 0.83) of monitoring (with Random Forest) in comparison with the
F1-score of 0.86 after one day.
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Figure 4.11: Time before detected spam domains appear in commercial blacklists

Using only static features, we compared the spam domain detection speed of our scheme
with two commercial blacklists (SpamHaus and SURBL). In Figure 4.11, we plotted the time
elapsed between the detection by our scheme and the appearance of domains in the blacklists
(with an hourly granularity). We limited the graph to 50 hours, but considerable number of
domains only appear in the commercial blacklists weeks after we detect them. Positive values
mean that our scheme was faster: for 70% of the detected spam domains, our scheme was faster
than the commercial blacklists. However, 26% of the domains detected by our scheme appear
in the commercial blacklists in the following hour, whereas 30% of the domains are detected
more than 24 hours in advance. The negative values represent domain names where our scheme
was slower than the commercial blacklists: 30% of the domains were already in the blacklists
when they were observed in our passive DNS feed for the first time and classified as spam.

4.5.3 Feature Importance

The importance of each feature was computed by looking at how selective the feature was
in the Random Forest classifier [121]. The importance of each feature and each category is
described in Table 4.4. It is not a surprise that the Maximum Neighbor Toxicity is by far the
most important feature: a domain whitelisting the same IP addresses and domains as a known
spamming domain is very likely to be managed by spammers. The most important SPF rule
for classification is +ptr: as we discussed in Section 4.3.2, this rule is almost never used by
benign domains (following the RFC 7208 recommendations). Lastly, the Global Max Variation
is the most important dynamic feature: massive increases in the number of queries to a domain
is a distinctive trait of spamming domains, as presented in Section 4.2.2, but this feature is only
useful after the start of the spam campaign.
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Table 4.4: Importance of each feature for the Random Forest classifier

Feature Importance

SPF Graph features 0.574515

neighbor_max_toxicity 0.463689

neighbor_max_degree 0.110826

SPF Rules features 0.232846

+ptr 0.100481

+a 0.029005

+ip4 0.028789

+mx 0.021006

+include 0.017561

?all 0.013728

~all 0.011522

Other rules < 0.01

Time Analysis features 0.192638

global_max_variation_24h 0.122167

local_max_variation_24h 0.036828

global_max_triggers_24h 0.022380

local_max_triggers_24h 0.011263
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4.6 Related Work
The four main categories of features used to detect malicious domains are the following: i) Lex-
ical: domain name, randomness of characters, or similarity to brand names [33,96,99,100,105],
ii) Domain and IP address popularity: reputation systems based on diversity, origin of queries,
or past malicious activity [33, 65, 100, 103–105], iii) DNS traffic: number of queries, inten-
sity, burst detection, behavior changes [96, 102], iv) WHOIS (domain registration data): who
registered a given domain4, when, and at which registrar [33, 65, 105]. Other methods de-
velop specific features extracted from the content of mails: size of the mail, links, or redirec-
tions [105,125]. With the selected features, machine learning algorithms classify malicious and
benign domains.

With respect to the methods that work on passive data such as Exposure [96] that need some
time to detect abnormal or malicious patterns, we focus on early detection of spam domains.
Exposure for instance, needs around a week of observation before possible detection, while we
achieve a F1-score of 79% based on a single DNS query. Our scheme can be applied at early
stages of a domain life cycle: using passive (or active) DNS, we can obtain SPF rules for newly
registered domains and classify them immediately, or wait until we detect TXT queries to that
domain and refine the classification using hard-to-evade temporal features.

Other methods generally try to detect abnormal or malicious patterns at later phases of
the domain life cycle. Schemes based on content or long period traffic analysis may reach
high efficiency but generally cannot run before or at the beginning of an attack. Schemes using
lexical and popularity features can run preemptively but may have reduced efficiency, compared
to dynamic schemes.

Our scheme may complement other approaches that aim at detecting spam during other
phases in the life cycle of spam campaigns and other algorithms that rely on a variety of different
features.

4.7 Conclusion
In this work, we have proposed a new scheme for early detection of spam domains based on
the content of domain SPF rules and traffic to the TXT records containing them. With this set
of features, our best classifier detects 85% of spam domains while keeping a False Positive
Rate under 1%. The detection results are remarkable given that the classification only uses the
content of the domain SPF rules and their relationships, and hard to evade features based on
DNS traffic. The performance of the classifiers stays high, even if they are only given the static
features that can be gathered from a single TXT query (observed passively or actively queried).

With a single request to the TXT record, we detect 75% of the spam domains, possibly before
the start of the spam campaign. Thus, our scheme brings important speed of reaction: we can
detect spammers with good performance even before any mail is sent and before a spike in
the DNS traffic. To evaluate the efficiency of the proposed approach based on passive DNS,
we did not combine the proposed features with other ones used in previous work like domain
registration patterns [33, 65, 105]. In practical deployments, the classification can be improved
by adding other features based on, e.g., the content of potentially malicious mails or the lexical
patterns of the domain names.

4not available after the introduction of the General Data Protection Regulation (GDPR) and the ICANN Tem-
porary Specification [124].
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The features used in our scheme yield promising results, so adding them to existing spam de-
tection systems will increase their performance without large computation overhead as SPF data
can easily be extracted from near-real -time passive DNS feeds already used in some schemes.
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This thesis explored many aspects of the Domain Name System: its architecture, its tra-
ditional uses, how it can support other protocols and how it can be used to detect malicious
activities. In the first chapter, after providing a general description of the DNS, we presented
how this system can be used by users and protocols, abused by malicious actors and studied
by researchers and experts. Then we described the three main contributions of this work, in
the form of published articles and works in progress. Finally, in this chapter, we recapitulate
the contributions of this thesis and discuss additional works in progress and future research
perspectives.

4.8 Contributions
In the first chapter of this work, we provided a generic introduction to DNS, its protocol and
the architecture effectively implementing this system. Through multiple real-life examples we
highlighted how this protocol is a crucial piece of the modern internet and how it is often the
first step of many other systems and algorithms by associating IP addresses to domain names.
We described how the DNS is still being abused as of today, both as a direct target of malicious
attacks and as a way to support, deploy and hide other malicious architectures. This being said,
we also described how the DNS protocol and architecture evolved over the years, with multiple
protocol extensions to update this protocol as old as the Internet and adapt it to the threats and
challenges of the modern Internet.

In the second chapter of this work, we examined the core assumption that WHOIS and
RDAP databases, holding registration information of domain names, offer the same data and
that users can query them interchangeably. By collecting, processing, and comparing 164 mil-
lion entries for a sample of 55 million domain names, we revealed that while the data obtained
through WHOIS and RDAP is generally consistent, 7.6% of the observed domains still present
inconsistent data on critical fields like nameservers, IANA ID, or creation date. This raises
concerns about the trust placed by the community on the coherence of these databases. We will
contribute to the community all the data gathered during this study, opening the way for more
in-depth analysis on specific inconsistencies.

In the third chapter, we focused on the Internet of Things and constrained devices. We
developed naming schemes to encode device properties like sensor type or geographical loca-
tion. We adapted this naming scheme to the constraints of the DNS to leverage this protocol
and provide an efficient distributed way to discover devices based on their properties. To prove
the feasibility of our design, we worked in collaboration with the University of Parma to build
two prototypes using this naming scheme to discover constrained LoRa devices. This work
highlights how the DNS can be used for service discovery, even for devices that do not use
the IP protocol like LoRa devices, and describes how it can be used to share sensor data while
leveraging the powerful decentralization and cache of the DNS architecture.

In the fourth chapter of this work, we used the DNS as a way to detect spam domains be-
fore the start of mailing campaigns. Using near-real-time passive DNS data, we monitored the
DNS traffic of newly registered domains and the contents of their TXT records, in particular,
the configuration of the Sender Policy Framework, an anti-spoofing protocol for domain names.
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Because spammers and benign domains have different SPF rules and different traffic profiles,
we built a new method to detect spam domains using features collected from passive DNS traf-
fic. Using the SPF configuration and the traffic to the TXT records of a domain, we accurately
detected a significant proportion of spam domains with a low false positives rate demonstrating
its potential in real-world deployments. Our classification scheme can detect spam domains
before they send any mail, using only a single DNS query and later on, it can refine its classifi-
cation by monitoring more traffic to the domain name.

4.9 Future Work
We are currently working with administrators of the B-Root DNS servers to study the deploy-
ment of recursive-to -authoritative DNS encryption. The encryption of these communications
are often overlooked as user privacy protection mechanisms already exist and personal data is
harder to extract from messages between resolvers and authoritative servers, while DNSSEC
can prevent packet modification and Man-in-the-Middle attacks. However, those mechanisms
are imperfect and still leave challenges that could be addressed by resolver-to -authoritative
encryption. With this work in progress, we are studying the potential costs and consequences
of this encryption for resolvers and authoritative servers, to help server administrators make
educated choices on this topic and provide solid bases for the community to dive deeper on this
topic.

Working with Passive DNS data, we observed several unexpected behaviors, like queries
to domains that should always stay inside their origin network or proofs of misconfigurations
that were revealed decades ago and that are still not fixed. A deeper analysis on this unex-
pected Passive DNS traffic could shed light on many malicious behaviors, misconfigurations
and vulnerabilities currently present on the network.

Finally, we would also like to use DNS servers as a reference point in Internet networks.
The network position of authoritative servers, and more specifically root servers, rarely change,
therefore the routes between them or other stable points on the Internet can be considered as rel-
atively stable. Studying the modifications of these routes could help detect wide-scale network
changes and attacks towards the BGP routing protocol.
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