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Introduction

This manuscript presents a summary of my research work since my thesis. My
research is at the interface between mathematics and biology. More precisely, a large
part of my studies are based on probabilistic models, called individual-based mod-
els (or agent-based models), that describe varying size populations at an individual
level. These models can be mathematically described by continuous-time Markov
chains or using Poisson point measures. Generally, at a given time, we can com-
pute the next event time (reproduction or death of an individual) by associating
two exponential random variables with each individual, whose parameters are the
reproduction and death rates of this individual. These rates may depend on any
characteristics of the individual (genotype, phenotype, position, species...) and also
on the composition of the overall population. The next event then corresponds to the
one associated with the smallest outcome among all exponential random variables;
and so on, resampling independent random variables for each event.

From a biological point of view these models are particularly interesting since
they allow to include a large variety of interactions. For my part, I am particularly
interested in understanding the dynamics of these processes in the case of explicit
spatial structures, cooperative interactions, and mating preference mechanisms.

To get quantitative results I generally use scaling changes in space and/or time
(large populations, rare mutations, long time scales, etc.), based on various biolog-
ical assumptions. For example, under large population assumptions, the processes
generally converge towards deterministic limits, represented by ordinary differen-
tial equations or partial differential equations. The study of these limits also brings
interesting and new mathematical challenges.

I am thus using both stochastic and deterministic tools with the aim of un-
derstanding which evolutionary forces and natural mechanisms can generate and
maintain diversity in populations, focusing mainly on the impact of spatial struc-
tures, cooperative behaviors, and mating mechanisms.

The first chapter of this manuscript deals with structured populations, including
eventually cooperative mechanisms. The main aim of this part is to understand the
impact of a spatial structure on the emergence of diversity in populations, or even the
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10 Introduction

impact on their survival in the case of cooperative individuals. Indeed, cooperators,
that release common good in the environment that benefit the entire population,
are vulnerable to cheating. Evolutionary forces could then doom the population to
extinction. However, nature abounds with examples of cooperative species. Solving
this paradox is an interesting challenge. In this chapter, I will present some answers
related to the following works:

• Hélène Leman, Sylvie Méléard, and Sepideh Mirrahimi. Influence of a spatial structure
on the long time behavior of a competitive Lotka-Volterra type system. Discrete and
Continuous Dynamical Systems-B, 20(2):469-493, 2014.

• Hélène Leman. Convergence of an infinite dimensional stochastic process to a spatially
structured trait substitution sequence. Stochastics and Partial Differential Equations:
Analysis and Computations, 4:791-826, 2016.

• Elsa Abs, Hélène Leman, and Régis Ferrière. A multi-scale eco-evolutionary model of
cooperation reveals how microbial adaptation influences soil decomposition. Commu-
nications biology, 3(1):520, 2020.

• Sylvain Billiard, Hélène Leman, Thomas Rey, and Viet Chi Tran. Continuous lim-
its of large plant-pollinator random networks and some applications. arXiv preprint
arXiv:2201.05219, 2022.

Chapter 2 is devoted to my works related to mating preference mechanisms. The main
goal here is to understand the influence of the mating preferences on the evolutionary forces
and on the diversity of the populations. This chapter focus on the following works:

• Camille Coron, Manon Costa, Hélène Leman, and Charline Smadi. A stochastic model
for speciation by mating preferences. Journal of mathematical biology, 76:1421-1463,
2018.

• Hélène Leman. A stochastic model for reproductive isolation under asymmetrical mat-
ing preferences. Bulletin of mathematical biology, 80(9):2502-2525, 2018.

• Charline Smadi, Hélène Leman, and Violaine Llaurens. Looking for the right mate
in diploid species: How does genetic dominance affect the spatial differentiation of a
sexual trait? Journal of Theoretical Biology, 447:154-170, 2018.

• Camille Coron, Manon Costa, Fabien Laroche, Hélène Leman, and Charline Smadi.
Emergence of homogamy in a two-loci stochastic population model. ALEA, 18:469-
508, 2021.

• Camille Coron, Manon Costa, Hélène Leman, Violaine Llaurens, and Charline Smadi.
Origin and persistence of polymorphism in loci targeted by disassortative preference:
a general model. Journal of Mathematical Biology, 86(1):4, 2023.

In Chapter 3, I present slightly different stochastic models based on continuous state
branching processes. These are solution to stochastic differential equations and they rep-
resent the dynamics of the size of a population subject to the fluctuations of an external
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random environment. In particular, I present conditions for extinction and formulas for the
extinction time. The chapter is based on the following articles:

• Hélène Leman and Juan Carlos Pardo. Extinction and coming down from infinity of
continuous-state branching processes with competition in a lévy environment. Journal
of Applied Probability, 58(1):128-139, 2021.

• Hélène Leman and Juan Carlos Pardo. Extinction time of logistic branching processes
in a Brownian environment. ALEA: Latin American Journal of Probability and Math-
ematical Statistics, 18:1859-1890, 2021

Finally, Chapter 4 is devoted to the study of tumor cell populations under treatment.
In particular, I present characterizations of the distributions of neutral mutations found in
those populations, that mutate frequently. This chapter corresponds to an opening chapter
on works that I have started more recently. The following article will be presented in this
chapter:

• Céline Bonnet and Hélène Leman. Site frequency spectrum of a rescued population
under rare resistant mutations. arXiv preprint arXiv:2303.04069, 2023.

Finally, the following articles are not discussed to keep the manuscript coherent.

• Mireille Bossy, Nicolas Champagnat, Hélène Leman, Sylvain Maire, Laurent Vio-
leau, and Mariette Yvinec. Monte carlo methods for linear and non-linear Poisson-
Boltzmann equation. ESAIM: Proceedings and Surveys, 48:420-446, 2015.

• Diane Coursier, David Coulette, Hélène Leman, Emmanuel Grenier, and Gabriel Ichim.
Live-cell imaging and mathematical analysis of the "community effect" in apoptosis.
Apoptosis, 28(3-4):326-334, 2023.





1Spatially structured population and

cooperative behavior: promoting

diversity

1.1 Introduction

Studying and understanding the selective mechanisms behind species diversity is a major
challenge in evolutionary biology. The theory of evolution, proposed by Darwin [32], explains
the emergence of new species from previous species mainly according to three principles:
the heritability of individual traits, the variability of certain traits as a result of mutations or
sexual reproduction, and finally the selection of individuals that are best able to reproduce
in their environment. Diversity can therefore emerge when different traits, or even different
species, can be simultaneously selected and thus coexist.

The spatial aspect of the environment plays a crucial role in the appearance and main-
tenance of species diversity. In particular, it has long been recognized that a heterogeneous
environment facilitates the coexistence of species [89, 36]. Although complex by nature, it
therefore seems essential to develop spatial models to understand in detail its effects on spe-
ciation phenomena, which correspond to the appearance of several species from a single one
[47].

This first chapter focuses mainly on my work about spatially structured populations that
may be subject to some form of cooperation. My aim is to understand how these spatial
structures drive diversity within populations and species and, in particular, how they affect
the evolution of the cooperative behaviors.

1.2 Spatially structured population

Let us start by introducing the first microscopic spatial model I worked on during my thesis.
Since the results presented in this section are also included in my thesis, I will briefly outline
them and refer readers to my thesis or to the two related articles [84, 82] for more details. This
model describes the evolution of a spatially structured population and was first described
by Champagnat and Méléard in [23].

13



14 CHAPTER 1. DIVERSITY, SPACE AND COOPERATION

The dynamics of the model follow a diffusive birth-and-death process, where the birth,
death and movement of each individual i depend both on its position Xi

t, valued in a
bounded, convex open set X ⊂ Rd, and on its phenotypic trait Ui

t, valued in a compact
set U ⊂ Rq, at time t ≥ 0. We represent the total population at any time t ≥ 0 by the
following finite measure on the space X × U

νK
t =

1
K

Nt

∑
i=1

δ(Xi
t ,U

i
t)
∈ MF(X × U ), (1.2.1)

where δy is the Dirac measure in y, Nt is the number of individuals alive at time t, the
space MF(X × U ) is the set of finite measures on X × U and K is a scaling parameter. This
parameter K quantifies the resources available in a habitat and measures the strength of
competition between individuals; in other words, it represents the carrying capacity of the
environment. We will be interested in taking K → +∞ in the following under particular
assumptions.
The phenotypic trait of an individual is fixed throughout its life, unlike its position. Each
individual i of phenotypic trait Ui

t = u moves on X according to the following stochastic
differential equation

dXi
t =

√
2mu Id · dBt − n(Xi

t)dlt, (1.2.2)

where B is a Rd-Brownian motion, lt is the local time at the X boundary and n is the outgoing
normal of the X bounded space. This corresponds to a pure diffusion reflected normally at
the boundary of X . The diffusion coefficient of each individual, mu, may depend on its
phenotypic trait.
Each individual with characteristics (x, u) reproduces at rate b(x, u). The offspring is created
at the position x of its parent at the time of birth. The trait of the new individual is identical
to that of its parent with probability 1 − qK, and changes according to a kernel k(x, u, ·) with
probability qK. The parameter qK thus normalizes the probability of mutation. We will be
interested in rare mutations, i.e. qK → 0.
Finally, each individual dies at a rate

d(x, u) +
1
K

Nt

∑
i=1

c(u, Xi
t, Ui

t),

which takes into account a natural death rate d and a competition death rate through the
kernel c.

In [23], the authors studied the behavior of the process in a limit of large population, i.e.
when K becomes large. Since K scales for the carrying capacity of the environment or equiv-
alently for the amount of resources, the larger K is, the smaller the strength of competition
between two individuals, c/K, is. Under such scaling and when K tends to ∞, it can thus
be shown that the dynamics of the stochastic process converges to the one of a deterministic
process, at least for finite period of time. In the case of our interest, K tends to ∞ and qK

tends to 0 simultaneously. The limiting deterministic process corresponds to the solution to
∂tξt(x, u) = mu∆xξt(x, u) +

(
b(x, u)− d(x, u)−

∫
X

c(u, y, v)ξt(dy, dv)
)

ξt(x, u),

∂nξt(x, u) = 0, sur [0, T]× ∂X × U .
(1.2.3)
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In other words, the solution of this partial differential equation models the averaged behavior
of the process under the assumptions of large population (K → ∞) and rare mutations
(qK → 0).

We studied this PDE in the case of a monomorphic population (i.e. U restricted to {u})
and the case of a dimorphic population (i.e. U restricted to {u, v}) in [84]. In particular, we
were interested in the existence of stationary solutions, convergence to these solutions, and
the criteria of coexistence and exclusion of a type in the dimorphic case.

1.2.1 Trait substitution sequence

In [84, 82], we were then interested in the process in the context of adaptive dynamics. The
theory of adaptive dynamics was developed to take into account the fact that the adaptive
landscapes of an ecosystem evolve as the individuals in this ecosystem evolve. When a mu-
tant trait appears and becomes permanently established in an environment, the probability
of survival and invasion of other traits is modified. If the ability of a mutant individual to
establish itself in a given adaptive landscape can be quantified, this quantity is called the
fitness of invasion of the trait into this landscape. A mutation is considered as advantageous
in a particular landscape if its invasion fitness is positive, otherwise, it is considered as dele-
terious.

The theory of adaptive dynamics takes these phenomena into account under assumptions
of large populations, and rare and small mutations, so that demographic and evolutionary
time scales are separated. The population resulting from a mutant individual reaches de-
mographic equilibrium before the occurrence of any new mutation. In this setting, Metz et
al. [96] introduced the Trait Substitution Sequence process, which details successive fixations of
advantageous mutations in a population using a process of jumps. This was then extensively
studied from a mathematical point of view, see [19, 21, 30]. among others.

Here, we presented the case of spatially structured population and extended these results
to this infinite-dimensional case. More precisely, under well chosen assumptions, which al-
low to maintain a monomorphic population at all times, we proved the following result of
convergence on the measure (νK

t )t∈[0,T] that represents the spatially structured population.

Theorem 1.2.1. Assume that

log(K) ≪ 1
KqK

≪ eKV , for all V > 0, when K → ∞. (1.2.4)

For all T > 0, the rescaled measure
(

νK
t

KqK

)
t∈[0,T]

converges to a Markov process (Λt)t≥[0,T]

when K → +∞. For all t, Λt belongs to the space {ξ̄uδu, u ∈ U} ⊂ MF(X × U ), where ξ̄u corre-
sponds to the unique stationary distribution solution to (1.2.3) when considering that U is restricted to
{u}. The jump process (Λt)t≥0 jumps from equilibrium ξ̄uδu to equilibrium ξ̄vδv at the infinitesimal
rate ∫

X
b(x, u)ϕvu(x)k(x, u, v)ξ̄u(dx)dv,
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where ϕvu(x) corresponds to the probability that the offspring of an individual of trait v, which
appeared at position x in a landscape made up entirely of u individuals, replaces this resident u-
population (explicit formulation can be found in [82]).

The convergence holds in the sense of convergence of the infinite-dimensional distributions.

Assumption (1.2.4), introduced by Champagnat [19], guarantees that the demographic
time scale and the evolutionary time scale are separate.

This theorem indicates that the limit process is a process of jumps through the set of
equilibrium states associated with each trait. When a favorable mutant appears and invades,
the demographic dynamics of the invasion phase are rapid. The limiting process thus jumps
instantaneously to the equilibrium state characterized by the trait of this mutant.

Ideas of proof. The proof relies on the study of three phases in the population dynamics
trajectories (mutant survival or extinction, mean-field phase, and resident extinction), as
those detailed by Champagnat in [19].

The second phase (mean-field phase) consists in studying the process in large population
in the case where resident and mutant are both present. In other words, it relies on the
fine study of the deterministic differential equation (1.2.3) in the case of a monomorphic
population (i.e. U = {u}) and the case of a dimorphic population (i.e. U = {u, v}). These
results were presented in [84].

The first and third phases imply a fine study of the stochastic process. They first consist
in verifying that the dynamics of the resident population remains close to a stationary state
throughout the duration of the invasion (for the first phase) or the extinction (for the third
phase) of the mutant. This is based in particular on results of large deviations. Secondly, it
consists in studying the dynamics of the mutant itself, by approximating it with the dynamics
of a branching Brownian motion living on a compact space. These results are exhibited
in [82].

1.2.2 Diversity

Theorem 1.2.1 includes a strong assumption that drastically reduces the phenotypic diversity
that could be obtained. Deleting this assumption, we conjecture that we could obtain a result
similar to the one of Champagnat and Méléard in [24], i.e. the convergence towards some
jump process representing a population of a finite number of traits. The main difficulty lies
in the study of the resulting system of PDE that need to be investigated.

Simulations of the process described in the previous section under general assumptions
(i.e. that do not satisfy those of Theorem 1.2.1) can, in some cases, produce a wide range of
phenotypic traits. In the simulations shown in Figure 1.1, we have also added an assump-
tion of small mutation amplitude. These simulations echo those of the seminal paper of
Dieckmann-Doebeli [34], who obtained a very similar diversity pattern imitating speciation
phenomena. It is essential to study this type of patterns to understand precisely the mecha-
nism at work in natural diversity. I also refer the reader to chapter 3 of my thesis for further
details.
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Figure 1.1 – (a) Traits of individuals along time. The initial population is monomorphic with trait v =

0.5. The population remains monomorphic for a time, then a succession of evolutionary branchings is
observed, leading to polymorphism, i.e. the coexistence of several populations with different traits. (b)
Density of the population on the space X × U at the final time t = 15000.

In [20], Champagnat and Henry develop a method that can be applied to study the
influence of the parameters on the final diversity obtained under these assumptions of the
adaptive dynamics theory.

1.3 Cooperative behaviors

In chapter 3 of my thesis, which corresponds to an opening chapter (not published), I looked
at an extension of the previous model by considering a population representing a community
of plants and pollinators with mutualistic-type interactions between species. This opened up
my interest in the study of structured models incorporating positive interactions (mutualistic
or cooperative). This is the subject of the next two sections, linked to two papers [1, 12]
written in collaboration with Elsa Abs and Régis Férrière for the first and Sylvain Billiard,
Thomas Rey and Chi Tran for the second.

1.3.1 Soil bacteria and common good

Soil micro-organisms play a crucial role in the terrestrial carbon cycle, decomposing soil
organic matter and gradually transforming it into humus. This decomposition is actually a
by-product of the metabolic activity of micro-organisms. They produce extracellular enzymes
(exoenzymes) that convert complex compounds into smaller ones, that they need to assim-
ilate for their growth and maintenance. By doing so, they face a "public good dilemma".
Indeed, enzymes and their products are released outside the cell, making them accessible
to all micro-organisms present locally. Micro-organisms that invest less energy in enzyme
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production, known as "cheaters", can therefore take advantage of this external production.
From an evolutionary point of view, we therefore expect cheaters to eventually invade the
environment and enzyme production to decline accordingly, gradually leading to a vortex of
extinction if final cheaters no longer produce enough enzymes to survive.

However, the microbial world provides numerous examples of communities based on
the production of common goods that survive [51, 105, 81]. Therefore, conditions must ex-
ist that favor the evolution of exoenzyme production. Numerous studies have shown, for
example, the importance of space and its heterogeneity [108, 3]. This understanding of the
evolutionary stability of diffusive public goods in general, and in the case of degradative
enzyme production in particular, remains incomplete. One limitation of previous models is
their focus on two-way competition between two strains, typically a producing strain and a
non-producing or "pure cheater" strain.

In this section, we set out to build a spatial model based on this enzyme production
mechanism in order to gain a detailed understanding of how producers can resist invasion
by strains that invest only slightly less into the common good. In other words, we adopt
some assumptions of adaptive dynamics theory, assuming that mutations are rare and of
small amplitude.

Non-spatial models. To this aim, we first developed a non-spatial individual-based
model described by Figure 1.2(a), where processes act locally at the level of individual enti-
ties. Then, we derived a simplified hybrid stochastic-deterministic model by using appropri-

(a) (b)

Figure 1.2 – Microbe-enzyme driven decomposition of soil organic matter: agents and processes. (a),
Five-compartment model, with soil organic carbon (SOC, C), dissolved organic carbon (DOC, D),
microbial cells (M), enzymes (Z) and SOC-enzyme complexes (X). (b), Four-compartment model,
without the SOC-enzyme complexes (X). Plain arrows indicate carbon fluxes among compartments
and in and out of the system. Dotted arrows indicate the exoenzyme concentration dependence of the
decomposition rate.

ate scaling based on relevant biological assumptions, namely



1.3. COOPERATIVE BEHAVIORS 19

1. dissociation and decomposition of the SOC-enzyme complexes (X) are much faster
than its formation;

2. a microbial cell (M) is of the order of 107 to 1010 times larger (in units of carbon mass)
than one enzyme, one substrate (SOC) molecule, or one product (DOC) molecule; and
in a given volume, the number of cells is between 10−5 and 10−10 times smaller than
the number of molecules of SOC, DOC or enzyme;

3. Finally, the growth of individual cells (M) is driven by events (resource uptake) that
occur on the same timescale as the events affecting SOC, DOC, and enzymes.

All these assumptions and simplifications lead to a model described by Figure 1.2(b). In this
model, the number of bacteria cells remains finite, and only the death events of bacteria cells
remain stochastic at rate dM. Between deaths, the amount Si of biomass stored within cell i
is governed by

dSi(t)
dt

= (1 − φ)γMVmax
d(t)

Km + d(t)
ωM, (1.3.1)

where all parameters are positive and d(t) denotes the biomass of DOC molecules at time
t. Once Si reaches the threshold ωM, the cell divides and both mother and daughter cells’
reserve is set back to 0. Finally for a given number of cells, M, the change in enzyme (z(t)),
SOC (c(t)) and DOC (d(t)) are governed by

ċ(t) = IC − lCc(t)− θz(t)c(t)

ḋ(t) = ID − lDd(t) + θz(t)c(t) + (1 − l)dZz(t)− Vmax
d(t)

Km + d(t)
ωM M

ż(t) = φγZVmax
d(t)

Km + d(t)
ωM M − dZz(t),

(1.3.2)

Notice in particular that the parameter φ models the trade-off between the investment in
exoenzyme production and the one in cell growth.

A more recent publication [8] could lead us to further refine the microscopic model
by detailing the consumption/seeking/enzyme-production stages of bacteria in order to
rigorously derive the Mikaelis-Menten functions used in (1.3.1) and (1.3.2) to describe the
consumption of DOC by the micro-organisms, which was not done in the publication [1]
described in this section.

Studying numerically this non-spatial model, we observe that any initial level of
microbial cooperation will be gradually eroded by the process of mutation-selection, driving
the population towards a trait value at which extinction occurs. In finite populations, mutant
success or failure becomes probabilistic. Due to random genetic drift, cheater phenotypes
may fail to invade, and cooperator mutants may occasionally go to fixation. Long-term
adaptive dynamics driven by rare mutation and selection in finite populations have been
studied in a general framework by Champagnat and Lambert in [21]. They showed that the
evolutionary trait dynamics can be described mathematically as a diffusion process whereby
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a Brownian motion (white noise) is added to a trend driven by the deterministic selection
gradient. Adapting to our case, it means that our non-spatial population is doomed to
extinction even if fluctuations may change the speed of it.

Spatial model. We then extended the model to a spatial lattice. The model is then de-
scribed from an algorithm point of view. The space is represented as a square regular lattice
of microsites. In each microsite, the previous non-spatial model is running and the microsites
are coupled through the diffusion of DOC and the dispersal of newborn cells. The diffusion
of DOC corresponds to a discretization on the lattice of the following diffusion equation

d
dt

d(x, t) = σdiff∆d(x, t).

The dispersal of bacteria cells occurs at birth with probability pdisp. If one or more of the ad-
jacent microsites is empty, the dispersing cell moves to one of them with equal probability. If
all neighboring microsites are occupied, there is a probability popen that a micro-disturbance
of the soil strikes and opens one of the microsite by killing the local cell population therein,
which then becomes occupied by the dispersing cell; otherwise, it stays in the microsite of its
mother cell. These micro-disturbances model environmental stochasticity as done in [56, 87].
Moreover, with dispersal tied to micro-disturbances, resident and mutant strains do not mix
within microsites. This is essential for the evolutionary stability of exoenzyme production. If
resident and mutant strains were mixing within the microsites, any slightly cheating mutant
would always invade and spread across the lattice, as for the non-spatial model.

We performed simulations of the process on pairwise resident-mutant competing strains.
Precisely, our initial condition consists in a resident strain at equilibrium in each microsite
except for 5% of the microsites at the center of the grid where there is a mutant strain
characterized by a slightly different value of the parameter φ. We let the process evolve
during a time Tmax = 106 and recorded the final mutant population size. We then computed
the fitness of invasion corresponding to the average long-term growth (see Figure 1.3 for
more details.). Repeating these simulations for different competing resident-mutant pairs
and different values of the diffusion parameter σdiff, we were able to conclude that

⋄ spatial segregation of strains at microscale can promote the persistence of exoenzyme
producers against invasion by cheaters (negative selection against cheating); and favor
invasion by even stronger exoenzyme producers (positive selection for cooperation),

⋄ and soil diffusivity is a key factor of the evolutionary stability of microbial decom-
position. In particular, a low level of resource diffusion helps producers to sustain
themselves.

Ideas of proof. Proofs only concern the simplifications of the microscopic model de-
scribed previously in points 1 and 2. For point 1, the proof consisted in simplifying the
complete 5-compartment individual-based model into a 4-compartment model where the
SOC-enzyme complexes (X) no longer appear. Indeed under the limits described in this
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Figure 1.3 – Patterns of selection on exoenzyme production for different soil diffusion rates. Each
graph shows the mutant invasion fitness across pairwise resident-mutant competing strains. Invasion
fitness is measured as the product of the mutant survival probability and the average long-term growth
rate of mutant populations. More precisely, the survival probability is estimated as the fraction of
simulations with a non-extinct mutant population at Tmax. The long-term growth is calculated as the
average of (1/Tmax) log final mutant population size

initial mutant population size among the 20 runs for each pairwise competition test.
Tmax = 106. Red bars show invasion fitness of the cheater strain taken as mutant (with the lower φ

value in the competing pair); blue bars show invasion fitness of the cooperator strain taken as mutant
(with the higher φ value in the competing pair). Positive invasion fitness of cheater mutants (red bars)
indicate selection against exoenzyme production. Positive invasion fitness of cooperator mutants (blue
bars) indicate selection in favor of exoenzyme production. All constant parameters are set using values
found in literature (see table 1 in [1] for more details). Mutant initial population size is set to 5% of
the abundance of the resident population in the central microsites. We tested values of σdiff between
10−8 and 10−4 and report results for σdiff between 10−7 and 5× 10−5 as variation of σdiff outside this
range had no effect.

point, the species X is valued at 0 at almost all times. The main difficulty arises from the
unbounded nature of some rates, and thus classical theorems do not apply directly. We had
to precisely prove the tightness and identify the limit to conclude.

The limit described in point 2 fall within the assumptions of the theorems developed by
Crudu et al. [31] and therefore a straightforward adaptation of these results was sufficient.
Indeed, it corresponds to prove the convergence of a 4-compartments model to a piecewise
deterministic Markov process (PDMP) where births and deaths of micro-organisms are still
stochastic whereas the dynamics of SOC, DOC and enzymes are deterministic ones.
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1.3.2 Mutualist species

This section is devoted to another type of mutualism corresponding to positive interactions
between plant and pollinator communities.

In this section, we present scaling limits of a model representing a community of plants
and pollinators issued from [12]. Each plant (resp. pollinator) species is characterized by a
trait x ∈ [0, 1] (resp. y ∈ [0, 1]). This trait represents for example the degree of generalism
of the species: a species is said to be generalist if it interacts with a large number of other
species otherwise it said to be specialist.

Assuming a community of n plants and m pollinators species, we denote by PK,i
t and AK,j

t
the size of the plant and pollinator species i and j at time t. The total plant and pollinator
populations at time t can thus be represented by the following point measures:

PK,n,m
t (dx) =

1
nK

n

∑
i=1

PK,i
t δxi (dx), AK,n,m

t (dy) =
1

mK

m

∑
j=1

AK,j
t δyj(dy). (1.3.3)

As in Section 1.2, K > 0 is a scaling parameter called the carrying capacity. It is a measure
of the size of the system and it controls the abundance of the whole community that can be
sustained by the environment.

The interactions between plants and pollinators are characterized by an exchange of
resources [60]. For all (i, j) ∈ {1, .., n} × {1, .., m}, we define Gn,m

ij as a Bernouilli random

variable with parameter ϕ(xi, yj), where ϕ is a continuous function on [0, 1]2 and such that
(Gn,m

ij )i,j are independent. Individuals of the plant species i can interact with individuals
of the pollinator species j if Gn,m

ij = 1. In other words, the adjacency matrix Gn,m models
the ability for individuals to interact. Examples of (non-random) adjacency matrices and
pollination network are drawn in Figure 1.4, and more detailed examples can be found in
the article linked with this section [12].

(a)

(b)

Figure 1.4 – (a): Nested (left) or modular (right) bipartite networks, from Fontaine et al. [41]. (b)
Pollination network for diurnal and nocturnal insect species, from Knop et al. [71].
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If species i and j interact, we denote by cn,m
ij the weight of the interaction. cn,m

ij is a
random variable with bounded variance and such that there exists a continuous function
cn,m satisfying

E
[
cn,m

ij |(xi, yj)(i,j)

]
= cn,m(xi, yj).

It describes the intensity and frequency of the relation. From the point of view of the plant,
cn,m

ij can be interpreted as a measure of the pollination services received from the pollinators.
From the point of view of the pollinators, cn,m

ij measures the quantity and quality of nutrients
collected from the plants.

The quantity of resources R gained by plants or pollinators is then modeled through
a "mass-action model". At time t, a single individual of the plant species i interacting with
pollinator species j is supposed to gain a quantity of resources proportional to the abundance
of pollinators AK,j

t /K weighted by the interaction efficiency cn,m
ij , such that the total resource

gained by a plant individual of species i through the pollination interactions is

RA,K,i
t :=

m

∑
j=1

Gn,m
ij cn,m

ij
AK,j

t
K

.

Similarly, for a given pollinator of the species j, the resources gained from the interaction
with the plants species is

RP,K,j
t =

n

∑
i=1

Gn,m
ij cn,m

ij
PK,i

t
K

.

Finally, the dynamics of the plant and pollinator populations is described as in Section 1.2
at the scale of the individual by an individual based model. We denote bP(R) and bA(R) the
individual birth rate of plant and pollinator species, respectively. Each of them depends on
the quantity of resources exchanged, i.e. RP or RA. Similarly, we denote dP(R) and dA(R)
the individual death rates.

The plants and pollinators dynamics are also assumed to be affected by logistic competi-
tion among plants and among pollinators (within and between species competition). Hence,
a plant with trait x ∈ [0, 1] suffers an additional death rate term due to competition which is

k ⋆ PK,n,m
t (x) :=

∫
[0,1]

k(x, x′)dPK,n,m
t (dx′) =

1
nK

n

∑
i=1

k(x, xi)PK,i
t ,

where k(x, x′) is a continuous function and quantifies the competition pressure exerted by
another plant of trait x′. Similarly, a pollinator with trait y′ ∈ [0, 1] suffers an additional
death rate due to competition with pollinators of trait y corresponding to h ⋆ AK,n,m

t (y), with
h(y, y′) a continuous function.

Large number of individuals. Following the work of Fournier and Méléard [44], it is
possible to describe the previous model using Poisson point Measures. Under suitable as-
sumptions (boundedness of the rates and converge of the initial condition) and when the
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species abundances tend to infinity (K → ∞), the stochastic dynamics is well approximated
by the following continuous dynamical system, during any finite period of time,

∀1 ≤ i ≤ n,
dP̃i

t
dt

=

(
(bP − dP)

( m

∑
j=1

Gn,m
ij cn,m

ij Ãj
t
)
− 1

n

n

∑
ℓ=1

k(xi, xℓ)P̃ℓ
t

)
P̃i

t

∀1 ≤ j ≤ m,
dÃj

t
dt

=

(
(bA − dA)

( n

∑
i=1

Gn,m
ij cn,m

ij P̃i
t
)
− 1

m

m

∑
ℓ=1

h(yj, yℓ)Ãℓ
t

)
Ãj

t.

(1.3.4)

More precisely, the following proposition can be proved.

Proposition 1.3.1. We consider a sequence (PK,n,m, AK,n,m)K∈N of processes as in Definition 1.3.3,
such that the initial conditions have a bounded third moment and converge almost surely. Then, for
all T ≥ 0,

lim
K→∞

sup
t≤T

sup
i,j

{∣∣∣∣∣PK,i
t
K

− P̃i
t

∣∣∣∣∣ ,

∣∣∣∣∣AK,j
t
K

− Ãj
t

∣∣∣∣∣
}

= 0, a.s., (1.3.5)

where (P̃1
t , . . . , P̃n

t , Ã1
t , . . . Ãm

t )t≥0 is the unique solution of the system (1.3.4).

Equation (1.3.4) is similar to a classical Lotka-Volterra system applied to mutualistic
interactions with competition. The functions bP, bA, dP, dA can take any form. As a conse-
quence, this system of equations can capture a large variety of ecological situations. In par-
ticular, many ODE models published in the ecological literature are special cases of it (see
[118, 11, 88]).

Proposition 1.3.1 corresponds to a law of large number and gives some average behavior
of the process when there are a lot of individuals in the system. Similarly, a central limit
theorem can be established in order to quantify the speed at which the convergence (1.3.5)
holds, and to describe the fluctuations around the limit when K is large but not infinite (see
Proposition 2.3 in [12]).

Large number of species. We then considered that the numbers of plant and pollinator
species in the network tend to infinity. In other words, our aim was to obtain the equations
describing the evolution of the population when n, m → +∞.

To this aim, we considered that the traits of plants and pollinators were chosen according
to i.i.d. random variables, i.e. (xi)i∈{1,..,n} and (yj)j∈{1,..,m} are the ordered sequences of i.i.d.
random variables. Moreover, we assumed that there exists a function c : [0, 1]2 7→ R to
which the sequences of functions ncn,m(., .) and mcn,m(., .) converge uniformly, in L∞([0, 1]2).
The idea in this assumption is that the function c(., .) is a “harvesting function” underlying
the matrix (cn,m

ij )i∈[[1,n]],j∈[[1,m]].
Notice also that this assumption implies that n and m grow to infinity with a similar

speed, i.e. there exists a sequence (αn)n≥1 such that

m = αnn and lim
n→∞

αn = 1. (1.3.6)

Under these assumptions, we proved the tightness of the process.
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Proposition 1.3.2. If there exist deterministic continuous bounded densities p̄0 and ā0 such that the
following weak convergences hold:

lim
n→+∞

1
n

n

∑
i=1

P̃i
0δxi

w
= p̄0(x)dx, lim

m→+∞

1
m

m

∑
j=1

Ãj
0δyj

w
= ā0(y)dy a.s. (1.3.7)

For any T ≥ 0, and for n, m → +∞, the sequence of measure-valued processes(
P̃n,m

t (dx), Ãn,m
t (dy)

)
t≥0

:=
( 1

n

n

∑
i=1

P̃i
t δxi ,

1
m

m

∑
j=1

Ãj
tδyj

)
t≥0

, n, m ≥ 1

are tight in C([0, T],MF([0, 1])2), where M2
F([0, 1]) is endowed with its weak topology.

Moreover, any limiting values admit densities with respect to the Lebesgue measure on [0, 1].

We finally conjectured that there is only one limiting value which corresponds to the
unique deterministic solution to, for any f ∈ C([0, 1], R),∫ 1

0
f (x)dP̄t(x) =

∫ 1

0
f (x) p̄0(x)dx

+
∫ t

0

∫ 1

0
f (x)

[
gP
( ∫ 1

0
c(x, y)ϕ(x, y)ās(y)dy

)
− k ⋆ p̄s(x)

]
p̄s(x)dx ds,∫ 1

0
f (y)dĀt(y) =

∫ 1

0
f (y)ā0(y)dy

+
∫ t

0

∫ 1

0
f (y)

[
gA
( ∫ 1

0
c(x, y)ϕ(x, y) p̄s(x)dx

)
− h ⋆ ās(y)

]
ās(y)dy ds,

(1.3.8)
where k ⋆ ν denotes in this case the convolution on two functions.

This remains as a conjecture for the moment since the identification of the limit is not
proven.

Equation (1.3.8) is analogous to the ODE system given in Equation (1.3.4). However,
here species are not considered as discrete but continuously distributed along a continuous
trait. The connections are modeled by ϕ. This function ϕ : [0, 1]2 7→ [0, 1] is a graphon (see
[92]): it can be understood (in this case) as a graph on node sets [0, 1] for the plants and
[0, 1] for the pollinators, where ϕ(x, y) describes the density of connections between plants
x and pollinator y. The term cϕ reflects both the topology (ϕ) and the intensity (c) of plant-
pollinator interactions throughout the community depending on the traits values x and y
involved.

Example of a nested graph of interactions. We gave results on the limiting dynamics
for the following particular forms of parameters, which are similar to those found in [59] or
[88]:

gP(R) := bP(R)− dP(R) =
αPR

βP + γPR
− (dP + δPR),

gA(R) := bA(R)− dA(R) =
αAR

βA + γAR
− dA,

where all parameters are assumed to be positive and such that gP and gA are positive at
least at one point (see graphical representations of gP and gA in Figure 1.5). The growth rate



26 CHAPTER 1. DIVERSITY, SPACE AND COOPERATION

gP reflects an interaction trade-off for the plant, indeed it is supposed that there is a cost for
interacting with pollinators due to nectar production, leaves consumption, etc. On contrary,
it is assumed that pollinators always increase their benefits when interacting with plants.

Figure 1.5 – Graphical representation of gA and gP

We also assumed that the competition kernels k and h are constant functions, i.e. all
species compete with each other with the same intensity, representing for example species
that live on the same location, or that hatch and live at the same time of the year in the case
of annual species.

We first discussed the case of the ODE (1.3.4) with n = m = 1. Mainly, depending on
the parameter values, there are two possibilities which can be summarized in the two phase
planes of Figure 1.6. It can be proven that either there is only the null equilibrium and all
trajectories converge to it, or there is a attractive and a repulsive positive equilibrium in
addition to the null equilibrium.

Our last results concerned the behavior of the kinetic equations (1.3.8).
We stated results for the particular case where for all x0, y0 ∈ [0, 1], y 7→ ψ(x0, y) and

x 7→ ψ(x, y0) are increasing and continuous functions. From a biological point of view, this
representing a community with nested interactions as those presented in Figure 1.4(a,left).
Under these assumptions, we proved the following result.

Proposition 1.3.3. System (1.3.8) does not admit non-null stationary state with densities w.r.t
Lebesgue measure.
Moreover, any non-null stationary state in L1([0, 1]2) is a couple of measures (P̄∞, Ā∞) such that

∃ā0,p̄1 ∈ R∗
+, p̄2 ∈ R+, x̄1, x̄2, ȳ0 ∈ [0, 1],

{
P̄∞ = p̄1δx̄1 + p̄2δx̄2

Ā∞ = ā0δȳ0

with


gP
(

ā0ψ(x̄1, ȳ0)
)
= gP

(
ā0ψ(x̄2, ȳ0)

)
= k( p̄1 + p̄2)

gA
(

p̄1ψ(x̄1, ȳ0) + p̄2ψ(x̄2, ȳ0)
)
= hā0.

(1.3.9)
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Figure 1.6 – Phase plan and nullclines of the system of ODE (1.3.4): nullclines for the pollinator
dynamics in blue; nullclines for the plant dynamics in cyan. Right: dA = 2 and dP = 1, the system
has 3 stationary states: the null equilibrium, 1 stable positive equilibrium and 1 unstable positive
equilibrium. Left: dA = 3 and dP = 1.2, the unique equilibrium of the system is the null equilibrium.
The other parameters are set to αA = 25, αP = 9, βA = βP = γA = γP = 1 and δP = 3.

All these stationary states are unstable, except the state
P̄∞ =

maxR+ gP

k
δx0

Ā∞ =
arg maxR+ gP

ψ(x0, 1)
δ1

(1.3.10)

if x0, solution to gA
(

max
R+ gP

k ψ(x0, 1)
)

ψ(x0, 1) = h · arg maxR+ gP, exists and is unique.

Finally, assuming that, for all initial conditions with positive densities w.r.t Lebesgue measure, the
quantities

∫ 1
0 ψ(x, .) p̄t(x)dx,

∫ 1
0 p̄t(x)dx,

∫ 1
0 ψ(., y)āt(y)dy and

∫ 1
0 āt(y)dy converge when t grows

to infinity, then the trajectory converges to equilibrium (1.3.10).

This result shows that when the plant-pollinator network is nested and the competi-
tion among plants and among pollinators is constant, then the plant-pollinator community
collapses to a single plant-pollinator species pair.

The proof of Proposition 1.3.3 is not restricted to the specified forms of gP and gA, but
only to their shapes (successions of increases and decreases). In any case, System (1.3.8) has
no stationary state with densities, all stationary states will be composed of Dirac measures.
The maximal number of Dirac measures corresponds to the number of maximums of func-
tions gP and gA. For example, the number of pollinator species and plant species is reduced
to 1 when considering all type of growths given in Figure 2 of [59].

1.4 Perspectives

Understanding mechanisms underlying the evolution of a population is a major issue to
explain better the natural diversity. Spatial aspects are assumed to play a key role in this
dynamics and particularly in the evolution of the cooperative behaviors. Moreover, these
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mechanisms give interesting challenges from a mathematical point of view. For these reasons,
I am still particularly interested in continuing these studies.

1.4.1 Adaptive dynamics and limiting processes

In ongoing projects with Amaury Lambert, Hélène Morlon, Josué Tchouanti-Fotso and Thuy
Vo, we are developing individual-based models with fixed population sizes describing the
genetic evolution of populations subject to environmental changes. Using appropriate scal-
ing, we are trying to prove that trait dynamics are likely to converge towards stochastic
diffusion processes, under long time scales and small mutations assumptions. Indeed, at
the macro-evolutionary scale, i.e. on geological time scales studies, the evolution of traits
is traditionally modeled by a diffusion, as a Brownian motion or an Ornstein-Uhlenbeck
process [78, 54]. Given the extensive use of these comparative phylogenetic approaches by
evolutionary biologists, it seems important to interpret and justify them in terms of micro-
evolutionary mechanisms (mutation, dispersal, adaptation, genetic divergence, introgression,
genetic drift). Using adaptive dynamics approach, Champagnat and Lambert [21] gave a first
answer using rare and small mutations assumptions in a model with a discrete population
(so relaxing the large population assumption).

We are therefore seeking to develop this type of approach in two different contexts: (1)
in the context of a changing environment and, at the same time, connecting the genetic
structure of the population, and (2) for populations living on explicit spatial structures.

1.4.2 Cooperative behavior

As presented in Section 1.3.1, the cooperative behaviors, especially these related to a "public
good", are subject to a paradox. In a well mixed environment, the evolutionary forces doom
populations to extinction, since they tend to select less and less cooperative individuals until
the extinction of the species. Solving this paradox using a simple model, incorporating very
few mechanisms, remains a fairly unexplored question, which is of particular interest to me.

For example, in collaboration with Vincent Calvez and Frédéric Chardard, we are work-
ing on a deterministic spatial model to study this puzzle. The dynamics of the population
includes diffusion movements and frequent mutations of a trait that models the investment
of individuals in cooperation. This model generates a propagating wave with a pulse shape
across space. Indeed cooperators invade the empty space, while "cheaters" flood their do-
mains and cause the extinction. We thus aim at studying and quantifying the speed of this
propagating wave.

In a second project with Céline Bonnet, Aline Marguet and Charline Smadi, we are study-
ing the possibility of a pleiotropy effect between cooperation and dormancy. To this aim, we
are considering a model where cooperators have the ability to enter into dormancy to avoid
extinction when facing the arrival of "cheaters". This type of mechanism ensures the sur-
vival of cooperators through an oscillating dynamics under specific parameters. Our main
objective is thus to identify precisely conditions for survival or extinction.



2Mating preferences and diversity

2.1 Introduction

In addition to the mechanism of natural selection, described by Darwin in [32], and inher-
ent to most evolutionary models, there exists also the mechanism of sexual selection, also
described by Darwin in [32] but less studied then. This corresponds to the selection of the
individuals best able to find a sexual partner. Indeed, some traits are selected by virtue of
the advantage they confer in gaining access to sexual partners [18], since for instance that
there is a phase of recognition of sexual partners before mating. Animals have developed
complex recognition systems involving visual, olfactory, auditory and chemical signals, as
well as highly elaborate behavioral sequences [113, 94, 109]. We speak of assortative mating
preference or homogamy when individuals mate preferentially with those who have a certain
degree of morphological and/or genetic similarity, and of disassortative mating preference or
heterogamy in the opposite case. In all cases, these preferences and interactions evolve also
under the influence of natural selection and can lead to reproductive isolation and eventual
speciation. The mechanisms of natural selection and sexual selection sometimes come into
conflict, with selection pressures favoring different aspects of individuals. Identifying the
role of sexual selection itself as trigger of the evolution is a major issue [47] .

In this chapter, we develop stochastic and deterministic models around three main ques-
tions related to sexual selection:

⋄ Which conditions can lead to the emergence of assortative mating preference?

⋄ What is the impact of assortative mating preference on the speciation of spatially struc-
tured species?

⋄ Can we quantify the effect of disassortative mating preference on the appearance and
persistence of polymorphism?

These questions echo also the problematic raised in the previous chapter in several as-
pects: diversity, speciation, impact of the spatial structure...

The models of this chapter are constructed as individual-based models [44], as those
presented in the previous chapter. They are studied assuming large population and rare
mutations assumptions, mimicking assumptions of adaptive dynamics theory presented at
the beginning of Section 1.2.1.

29



30 CHAPTER 2. MATING PREFERENCES AND DIVERSITY

Individuals are characterized at least by their phenotype and eventually by their geno-
type (see Section 2.2) or by their spatial position in a finite number of possible positions
(see Section 2.3). The characteristics of the individuals will thus belong to some finite set
G := {i1, i2, .., ik} of size k. The state of the population is characterized at each time t by a
vector in Nk giving the respective numbers of individuals carrying each of these character-
istics. The dynamics of the total population is thus modeled by a multi-type birth-and-death
process

(NK(t), t ≥ 0) := (NK
i1 (t), NK

i2 (t), ..., NK
ik (t), t ≥ 0)

with values in Nk, integrating competition, Mendelian reproduction, assortative mating and
(eventually) migration events. The parameter K > 0 is a scaling parameter. It quantifies the
environment’s carrying capacity, which is a measure of the maximal population size that the
environment can sustain for a long time. As indicated previously, we will be interested in an
assumption of large population, which corresponds to studying the behavior of the system
for large K, eventually infinite.

The loss by death is similar in all models considered in this chapter, as we consider only
natural death and death by competition. Competition takes place only between individuals
from the same patch. To state it, we thus introduce the relation i ∼ j for i, j ∈ G, meaning
that i and j are two characteristics referring to the same patch. For models without spatial
structure, all characteristics refer to the same patch and all individuals are in competition
with each other. Finally, when the population is in state n = (ni1 , ni2 , ..., nik ) ∈ Nk, the rate at
which the population loses an individual of characteristic i ∈ G by death, is equal to

di(n) = ni

(
d +

c
K ∑

j∼i,j∈G
nj

)
. (2.1.1)

The parameters d ∈ R+ and c > 0 respectively model the natural and the competition death
rates of individuals.

When there are several patches in the model, we define some migrations between
patches. When an event of migration occurs, it results in the transfer of an individual from
one characteristic i ∈ G to another, more details will be given in Section 2.3. From a general
point of view, when the population is in state n, we can define the migration rate at which
an individual of characteristic i ∈ G migrates and thus acquires characteristic j ∈ G as

mi,j(n). (2.1.2)

This migration rate may depend on the characteristics. Indeed, it may include for instance
the position of the individual, the mating preferences of the individual or the composition
of the population. In particular, in [29, 83], we have been interested in situations where
individuals carrying a phenotype at low frequency within patch have a greater migration
rate. This models migration promoted by the local lack of suitable mates.
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Finally, reproduction also occurs only between individuals living in the same patch.
When the population is in state n, the rate bi(n) at which an individual of characteristic
i ∈ G appears in the population is given by

bi(n) := ∑
j∼i,j∈G

β j

(
∑
ℓ∼i

pi
j,ℓ

nℓ

∑ j̃∼i n j̃

)
nj. (2.1.3)

The parameter β j > 0 represents the rate at which any individual of characteristic j ∈ G
(called first parent or choosing parent) mates, the second parent (also called the chosen
parent) being chosen uniformly at random in the local population, i.e. among all individuals
that belong to the same patch, hence the term nℓ

∑ j̃∼i n j̃
. A mating where the first parent is of

characteristic j and the second one is of characteristic ℓ actually produces an offspring of
characteristic i with probability pi

j,ℓ. This probability includes the sexual preferences of the
first parent and the Mendelian rules of reproduction.

From a mathematical point of view, this model can be written using Poisson point mea-
sures as done in [44].

Similarly to results given in chapter 1, we can study the process in a limit of large pop-
ulation (i.e. K → ∞). Then the population dynamics is well approximated by a dynamical
system. More precisely, the rescaled process

(ZK(t), t ≥ 0) :=

(
NK

i1
(t)

K
,

NK
i2
(t)

K
, ...,

NK
ik
(t)

K
, t ≥ 0

)
,

is close to the solution of the dynamical system

żi = bi(z)− (d + c ∑
j∼i

zj)zi − ∑
j∈G

mij(z) + ∑
j∈G

mji(z), i ∈ G, (2.1.4)

where z = ∑j∈G zj is the total size of the population. According to [26], this dynamical system
has a unique solution starting from any point of Rk

+. Hence, if we denote by

(z(z
0)(t), t ≥ 0) = (zi1(t), ..., zik (t), t ≥ 0)

this unique solution starting from z(0) = z0 ∈ Rk
+, we have the following result, which

derives from Theorem 2.1 p 456 in [39].

Lemma 2.1.1. Let T ∈ R∗
+. Assume that the sequence (ZK(0), K ≥ 1) converges in probability

(resp. a.s.) to some deterministic vector z0 ∈ Rk
+ when K goes to infinity. Then

lim
K→∞

sup
s≤T

||ZK(s)− z(z
0)(s)||∞ = 0 in probability (resp a.s.), (2.1.5)

where || · ||∞ denotes the L∞-Norm in Rk.

The fine study of the limiting system (2.1.4) is essential to precisely understand the bio-
logical behavior of the population, and to analyze this behavior with respect to the different
parameters. In this chapter, I present both results consisting in the precise study of deter-
ministic limits, as well as results on more stochastic aspects, involving the invasion phases of
certain mutant subpopulations arriving in a stationary resident population as it is the case
in the next section.
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2.2 Emergence of assortative mating

This section is taken from the article [27] written in collaboration with Camille Coron,
Manon Costa, Fabien Laroche et Charline Smadi.

We determine sufficient conditions to guarantee the emergence of assortative mating
preference. Indeed, if a group of individuals starts to reproduce preferentially with a small
part of the population, its reproductive success is likely to be reduced in comparison with in-
dividuals which continue to choose their partners indifferently. Our goal was thus to quantify
precisely the costs and benefits required for individuals with preferential mating to obtain a
selective advantage.

To this aim, we developed an individual-based model representing a haploid population
that reproduce sexually, living all on the same patch. Individuals are characterized by their
alleles at two loci located on different chromosomes. The first locus, where allele A or allele a
can reside, codes for the phenotype of the individual. The second locus codes for the sexual
preference: two alleles, p and P, can reside on it. If an individual carries the allele p, it
is assumed to have no preference. It therefore mates indifferently with individuals of both
phenotypes a and A, and when a reproductive event affects it, it selects its partner uniformly
at random among all living individuals. In contrast, when an individual carries the P allele,
it is assumed to present preferential mating with individuals carrying the same allele at the
first locus as its own phenotype.

In this model, individuals are thus characterized by their genotypes included in the set
G := {AP, Ap, aP, ap}. To answer our specific question, all individuals are assumed to carry
allele p initially and thus show no mating preference, except one individual that carries
allele P. This is considered as the result of a mutation of allele p to allele P.

No spatial structure is considered in the model, so that the migration rates (2.1.2) are
all equal to 0, and that individuals are all in competition with each other, i.e. the death rate
(2.1.1) is

di(n) = ni

(
d +

c
K

n
)

, ∀i ∈ G, (2.2.1)

with n = ∑j∈G nj.
Two parameters β1 ≥ 0 and β2 ∈ [0, 1] respectively model the benefit and cost of the

mating preference in the following way. Let set b a positive parameter, with b > d. All
individuals are assumed to reproduce at rate b(1 + β1), i.e. to become the first parent for the
mating, the second parent is then chosen at random, as explained in the introduction. The
mating actually produces a descendant with probability:

• 1/(1 + β1) when the first parent carries allele p,

• 1 if the first parent carries allele P and both parents carry the same allele at locus 1,

• (1 − β2)/(1 + β1) if the first parent carries allele P and the two parents carry different
alleles at locus 1.
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Notice that, with this choice of parameters, an individual that carries allele p actually repro-
duces at rate b, whatever the genotype of the second parent is, and thus do not show mating
preference. The assumption b > d ensures that a population of such individuals can survive
and is not subject to rapid extinction. Individuals with trait P reproduce more often (at rate
b(1+ β1)) when surrounded by individuals with the same phenotype (A or a), and less often
(at rate b(1 − β2)) when surrounded by individuals with the opposite trait. The genome of
the descendant is then chosen according to Mendelian rules, considering that the two loci
are not on the same chromosome.

Finally, when the population is in state n, the rate bi(n) at which an individual with
genotype i ∈ G is born, is defined by

bAP(n) = b
[

nAP +
1
n

(
β1nAP

(
nAP +

nAp

2

)
−β2

(
nAP

(
naP +

nap

4

)
+ nAp

naP
4

))
+

∆aP
2n

]
bAp(n) = b

[
nAp +

1
n

(
β1nAp

nAP
2

− β2

(
nAp

naP
4

+ nAP
nap

4

))
− ∆aP

2n

]
(2.2.2)

baP(n) = b
[

naP +
1
n

(
β1naP

(
naP +

nap

2

)
−β2

(
naP

(
nAP +

nAp

4

)
+ nap

nAP
4

))
− ∆aP

2n

]
bap(n) = b

[
nap +

1
n

(
β1nap

naP
2

− β2

(
nap

nAP
4

+ naP
nAp

4

))
+

∆aP
2n

]
,

where
∆aP := naPnAp − nAPnap.

As indicated previously, we assume that at time 0, the population is composed of
individuals that carry allele p, i.e. show no mating preference, and of 1 individual of
genotype αP, with α = A or a. The total size of the initial population is assumed to be close
to K(b − d)/c, that means that it is close to its equilibrium state. Indeed any neighborhood
of such an equilibrium is reached within a finite time as soon as the initial population size is
of order K. We thus could relax this assumption and only assume that the p-population size
is of order K and NK

Ap(0) > NK
ap(0). This would however require more complex notations.

In the context described previously, we expressed conditions under which the mutant
individuals with allele P survive and invade the resident population, until the extinction of
the initial allele p. These conditions can be simply expressed using the parameters β1, β2 and
the initial proportions of individuals carrying alleles A and a, i.e.

ρA := lim
K→∞

NK
Ap(0)

NK
p (0)

and ρa := 1 − ρA = lim
K→∞

NK
ap(0)

NK
p (0)

. (2.2.3)

The mutant individual has a positive probability to survive and invade the resident popula-
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tion if and only if

β1 > β2 or ρA(1 − ρA) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)
. (2.2.4)

Notice that this condition gives two sufficient conditions. The first one imposes that the
trade-off between the advantage for assortative mating (β1) and the loss for disassortative
reproduction (β2) has to be favorable enough. The second condition requires a low level of
initial allelic diversity at locus 1 (alleles A and a). In particular, even if the advantage for
assortative mating is very low, very asymmetrical initial conditions (ρA close to 0 or 1) will
ensure the invasion of the mutation with positive probability.

The condition (2.2.4) is obtained from the study of a branching process which is proved
to be supercritical if and only if the matrix

J :=
b
4

(
2β1ρA − (2 + β2)ρa (2 − β2)ρa

(2 − β2)ρA 2β1ρa − (2 + β2)ρA

)
(2.2.5)

has a positive eigenvalue. We denote by λ the maximum eigenvalue of (2.2.5), which is thus
positive when (2.2.4) holds. Let also denote by (qA, qa) the smallest solution to the system of
equations

uA(sA, sa) := b(1 − sA) + (J11 + b)(s2
A − sA) + J12(sAsa − sA) = 0 (2.2.6)

ua(sA, sa) := b(1 − sa) + (J22 + b)(s2
a − sa) + J21(sAsa − sa) = 0.

qα will correspond to the extinction probability of the offspring of the mutant individual, it
is equal to 1 as soon as (2.2.4) does not hold. Finally, to state our main result, let us introduce
the following set of interest, for any µ > 0

Sµ :=
[

b(1 + β1)− d
c

− µ,
b(1 + β1)− d

c
+ µ

]
× {0} × {0} × {0}, (2.2.7)

and let us define a stopping time that gives the time at which ZK reaches this set,

TK
Sµ

:= inf{t ≥ 0, ZK(t) ∈ Sµ}. (2.2.8)

as well as a stopping time which gives the time of extinction of the P-mutant population,

TP,K
0 := inf

{
t > 0, NK

P (t) = 0
}

, (2.2.9)

We now state the main result

Theorem 2.2.1. Assume that λ ̸= 0, and(
ZK

Ap(0), ZK
ap(0)

)
→

K→∞

(
ρA

b − d
c

, (1 − ρA)
b − d

c

)
in probability

with ρA > 1/2 and that for some α ∈ {A, a}(
NK

αP(0), NK
ᾱP(0)

)
= (1, 0), with ᾱ ∈ {A, a} \ {α}.
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Then there exists a Bernoulli random variable B with parameter 1 − qα such that for any 0 < µ <

(b(1 + β1)− d)/c:

lim
K→∞

TK
Sµ

∧ TP,K
0

ln K
, 1{TK

Sµ
<TP,K

0 }

 = B ×
(

1
λ
+

2
bβ1

, 1
)

, in probability. (2.2.10)

Moreover,

1{TP,K
0 <TK

Sµ
}

∣∣∣∣∣
∣∣∣∣∣NK(TP,K

0 )

K
− (0, ρA, 0, 1 − ρA)

b − d
c

∣∣∣∣∣
∣∣∣∣∣
1

−→
K→∞

0 in probability, (2.2.11)

where ∥ · ∥1 stands for the L1−norm.

Notice that if condition (2.2.4) does not hold, qα = 1, and the convergence in (2.2.10) is
an almost sure convergence to (0, 0) meaning that the mutant population dies out in a time
smaller than ln K. In this case, the allelic proportions in the resident population do not vary.

Our result also ensures that when the mutant population invades (whatever allele a or
A the first mutant carries), then the final population is monomorphic, and all individuals
carry the allele a or A which was in the majority in the resident p−population. Only the
mutant invasion probability depends on the allele carried by the first P individual.

We were not able to obtain an explicit formula in general for the extinction probability
qα of the assortative mating mutation, solutions of (2.2.6), except in the particular case when
there are only A- or a-individuals in the population before the arrival of the mutant (ρA ∈
{0, 1}), see Proposition 2.3 in [27] for an exact formula. Then simulations show complex
dependencies with respect to parameters.

Ideas of proof The proof of Theorem 2.2.1 relies on the study of three phases in the
population dynamics trajectories (mutant survival or extinction, mean-field phase, and resi-
dent allele extinction). Although classical and used in several proofs preceding ours [19, 24],
these three steps are more complex to study in our case because of the composition of the
initial population which has the particularity of relying on a non-hyperbolic state. Indeed,
the initial state corresponds to a p-population of size of order K and a P-population of size
negligible with respect to K. Applying the deterministic approximation explained in the in-
troduction of this chapter (see Lemma 2.1.5), we see that, for finite time, the dynamics of the
initial population is well approximated by the dynamical system{

żAp = zAp(b − d − c(zAp + zap))

żap = zap(b − d − c(zAp + zap)).

This system admits an infinity of equilibria:

• (zAp, zap) = (0, 0), which is unstable

• (zAp, zap) = (ρ(b − d)/c, (1 − ρ)(b − d)/c) for all ρ ∈ [0, 1], which are non hyperbolic.
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The initial state of the resident population is thus more variable than the ones of similar
studies that rely on stable hyperbolic state. However, the equation giving the dynamics of
the total population size z = zAp + zap is ż = z(b − d − cz), and admits a globally stable
equilibrium (b − d)/c.

Let us now briefly outline the three steps of the proof and the difficulties inherent in
them.

Step 1: mutant invasion. The first step of the proof consists in studying the phase of
invasion or extinction of the mutant population, which corresponds to a phase where the
mutant population is negligible with respect to the carrying capacity K. To this aim, we set
the following stopping time which gives the first time when the rescaled P-mutant popula-
tion size reaches any threshold (from below or above):

TP,K
ε := inf

{
t > 0, NK

P (t) = ⌊εK⌋
}

, (2.2.12)

where ⌊x⌋ is the integer part of x. We prove that, as long as the mutant population stays
sufficiently small, i.e. before TP,K

0 ∧ TP,K
ε , the resident population is not affected by it and

stays close to its initial state characterized by its initial proportions (2.2.3) and its initial size,
close to b−d

c .
Precisely, this relies on the study of the stopping time

UK
ε := inf

{
t ≥ 0,

∣∣∣∣∣NK
Ap(t)

NK
p (t)

−
NK

Ap(0)

NK
p (0)

∣∣∣∣∣ > ε

}
, (2.2.13)

which is the first time when the genetic proportions in the p-population deviate considerably
from their starting values. Using martingales techniques, we prove that the proportions in
the resident population do not vary substantially before the mutant population goes extinct
or invades.

Then we prove that the total size of p-population is only slightly modified during this
invasion (or extinction) phase, by focusing on the stopping time

RK
ε := inf

{
t ≥ 0,

∣∣∣∣∣NK
p (t)
K

− b − d
c

∣∣∣∣∣ > ε

}
. (2.2.14)

which gives the first time that the total size of the p-population deviates from its equilib-
rium state. This part of the proof relies on couplings between the process that gives the
p-population total size and some birth-and-death processes, in the vein of [19].

The mutant population can then be compared with a branching process during the first
times of the invasion, considering that the size and proportions of the resident population are
fixed. In other words, by considering that (NK

Ap, NK
ap) = (KρA

b−d
c , K(1− ρA)

b−d
c ), NK = K b−d

c
and by neglecting the second order terms in NK

AP and NK
aP, the dynamics of the mutant

population can be approximated by the one of N̄ = (N̄A, N̄a) a bi-type branching process
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with the following transition rates:

(N̄A, N̄a) → (N̄A + 1, N̄a) at rate β̄AAN̄A + β̄aAN̄a

(N̄A, N̄a) → (N̄A, N̄a + 1) at rate β̄AaN̄A + β̄aaN̄a

(N̄A, N̄a) → (N̄A − 1, N̄a) at rate bN̄A

(N̄A, N̄a) → (N̄A, N̄a − 1) at rate bN̄a,

(2.2.15)

where for α ∈ {A, a}, ᾱ ∈ {A, a} \ {α},

β̄αα :=
b
2

(
1 + (β1 + 1)ρα −

β2

2
ρᾱ

)
, β̄αᾱ :=

b
2

(
1 − β2

2

)
ρᾱ. (2.2.16)

The extinction probabilities of the process N̄ are given by

qα := P(∃t < ∞, N̄(t) = 0|N̄(0) = eα), (2.2.17)

α ∈ {A, a}, eA = (1, 0) and ea = (0, 1), meaning that the process starts with only one
individual of type A or a. According to classical results of branching process theory (see
[4]), these extinction probabilities correspond to the smallest solution to the system (2.2.6).
Moreover, the branching process N̄ is supercritical (i.e. qA and qa are not equal to one) if
and only if its mean matrix has a positive eigenvalue. A short computation shows that this
matrix corresponds to matrix J defined in (2.2.5).

Step 2: mean-field phase. If the mutant population invades and its size reaches order
K, the population dynamics is proved to enter a second phase during which it is well ap-
proximated by the dynamical system (2.1.4), as explained in the introduction of this chapter
(see Lemma 2.1.5). An important question however is the initial condition of the limiting
dynamical system.

We have seen that when (2.2.4) is satisfied, then the mutant population dynamics is close
to that of the supercritical bi-type branching process N̄ defined in (2.2.15). For such a process
we are able to control the long time proportion of the different types of individuals. More
precisely, Kesten-Stigum theorem (see [49] for instance) ensures the following property, if λ

is positive:
(N̄A(t), N̄a(t))
N̄A(t) + N̄a(t)

→
t→∞

(πA, πa) almost surely

on the event of survival of N̄, where π is the positive left eigenvalue of J associated to λ such
that πA + πa = 1.

In our proof, we show that, with a probability close to one for large K, if the mutant
population reaches the size εK, we may choose a time when the proportion of type A indi-
viduals in the P-population belongs to [πA − δ, πA + δ], with δ > 0 small. In particular, the
proportion πA of individuals carrying allele A among the P-individuals is larger than 1/2
as soon as it is the case for the initial p-population.

We then study the limiting dynamical system (2.1.4) to prove that for an initial condition
z0 such that zAp(0) > zap(0) and zAP(0) > zaP(0), and if

β1 > β2 or
(zAP(0) + zaP(0))(zAp(0) + zap(0))

z(0)2 <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)
. (2.2.18)
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Then the solution z(z
0) of the system (2.1.4) converges as t → ∞ toward(

(1 + β1)b − d
c

, 0, 0, 0
)

.

Hence, the stochastic process follows a similar dynamics.

Step 3: extinction of the resident population. After the deterministic phase, the process
is close to the state ((b(β1 + 1)− d)/c, 0, 0, 0). When the sizes of populations aP, Ap and ap
become too small (of order smaller than K before rescaling), the mean field approximation
stops being a good approximation, and we will again compare the dynamics of the small
population sizes with those of branching processes (now subcritical). The birth and death
rates of these branching processes provide the time to extinction of these small populations.

Conclusion. Combining all these steps, we are able to describe the invasion/extinction
dynamics of the mutant population and prove Theorem 2.2.1.

2.3 Speciation and assortative mating

In this second section, some elements are given to answer the second question set out in the
introduction, namely, what is the impact of assortative mating preference on the speciation of
spatially structured species? Indeed, more and more evidence shows that mating preference
is a mechanism that may lead to a reproductive isolation event [76, 15]. Initially, the role of
’magic’ or ’multiple effect’ traits, which associate both adaptation to an ecological niche and
a mate preference, was studied deeply. It was shown that such traits may lead to speciation,
using direct experimental evidence [95] or theoretical works [77, 121]. Then, studies focused
on the particular role of mating preference during a speciation event [47], highlighting that
(i) it may impede reproductive isolation [110, 111, 112], or, (ii) it may promote reproductive
isolation. This promoting role may be secondary or primary. For example, the initial diver-
gence in traits may be the result of natural selection in order to decrease hybridization and
then be subjected to mating preference [102], producing speciation by reinforcement [50].
Our studies illustrate the direct and promoting role of assortative mating using theoretical
studies and numerical simulations.

This section corresponds to the three articles [29, 83, 114] written in collaboration with
Camille Coron, Manon Costa, Violaine Llaurens and Charline Smadi. The first two articles are
explained briefly as they had already been detailed in a chapter of my thesis in a preliminary
version. The first two articles are based on the modeling of a haploid population spatially
structured on patches, and the third one is an extension of this model to a diploid population.

2.3.1 Haploid population

The population is divided into several patches. As in the two articles [29, 83], we focus the
presentation on the case of two patches. The individuals are thus characterized by their
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position (1 or 2 depending on the patch in which they are). Moreover, they are haploid and
characterized by a diallelic locus (a or A). The set of characteristics is thus

G := {(α, i), α ∈ {a, A}, i ∈ {1, 2}}.

We assume frequency-dependent migration rate from one patch to another in such a way
that individuals are more prone to move if they do not find a suitable mate. This hypothesis
is relevant for all organisms with active mate searching [104, 120, 65]. The locus codes for the
strength of the mating preference and simultaneously, the speed of migration, that depends
on parameters mα such that the total migration rate of α-individuals from patch 1 to patch 2
finally is

mα

(
nᾱ,1

nα,1 + nᾱ,1

)
nα,1, with ᾱ ∈ {A, a} \ α. (2.3.1)

Note that the migration rate does not depend on the other deme composition. Figure 2.1
illustrates the migration rates in the two patches case.

Figure 2.1 – Migration rates of A and a individuals in the two patches case.

Following the ideas given in the introduction, such that after encountering, two individ-
uals that carry the same allele α have a probability βα-times larger to mate and give birth
to a viable offspring than two mating individuals with different traits, the total birth rate of
α-individuals in patch i is

bnα,i
βαnα,i + nᾱ,i

nα,i + nᾱ,i
. (2.3.2)

Hence formula (2.3.2) models an assortative mating by phenotypic matching or recognition
alleles [13, 64]. In this model, preference thus modifies the rate of mating and not only the
distribution of genotypes, unlike what is usually assumed in classical generational models
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where all individuals reproduce simultaneously at discrete times [97, 76, 70, 46, 17, 110]. The
present model can be compared with these classical ones by computing the probabilities that
an individual of trait α in the patch i gives birth after encountering an individual of the same
trait (resp. of the opposite trait) conditionally on the fact that this individual gives birth at
time t, and we find

βαNK
α,i

βαNK
α,i + NK

ᾱ,i

(
resp.

NK
ᾱ,i

βαNK
α,i + NK

ᾱ,i

)
.

These probabilities are similar to the ones presented in [110], or in [48] for instance.

In this section, we assume that:

βA > 1, βa > 1, b > d > 0, c > 0, mA ≥ 0, ma ≥ 0.

Finally, in a large population approximation (see Lemma 2.1.5), the limiting dynamical
system is

d
dt

zA,1(t) = zA,1

[
b

βAzA,1 + za,1

zA,1 + za,1
− d − c(zA,1 + za,1)− mA

za,1

zA,1 + za,1

]
+ mA

zA,2za,2

zA,2 + za,2

d
dt

za,1(t) = za,1

[
b

βaza,1 + zA,1

zA,1 + za,1
− d − c(zA,1 + za,1)− ma

zA,1

zA,1 + za,1

]
+ ma

zA,2za,2

zA,2 + za,2

d
dt

zA,2(t) = zA,2

[
b

βAzA,2 + za,2

zA,2 + za,2
− d − c(zA,2 + za,2)− mA

za,2

zA,2 + za,2

]
+ mA

zA,1za,1

zA,1 + za,1

d
dt

za,2(t) = za,2

[
b

βaza,2 + zA,2

zA,2 + za,2
− d − c(zA,2 + za,2)− ma

zA,2

zA,2 + za,2

]
+ ma

zA,1za,1

zA,1 + za,1
.

(2.3.3)
A direct computation implies that the following four points are stable equilibria of the sys-
tem:

• equilibria with fixation of an allele (where only an allele is maintained in both patches)

(ζA, 0, ζA, 0), (0, ζa, 0, ζa), (2.3.4)

• equilibria with maintenance of each allele in a different patch

(ζA, 0, 0, ζa), (0, ζa, ζA, 0), (2.3.5)

with ζα := bβα−d
c , α ∈ {A, a}. These four equilibria describe states of reproductive isolation:

once reaching one of these equilibria, migration rates equal zero and individuals do not mi-
grate anymore. More specifically, observe that equilibria (2.3.5) are of particular interest to
our problematic. Indeed, once reaching one of these equilibria, even if a small basal migration
(i.e. constant migration) is added, the mating preferences and the frequency-dependent mi-
gration terms will prevent the populations of both demes to mix again, leading to migration-
selection balance [67] but where selection is due to sexual selection and not to natural selection.
Precisely, if an A-individual travels because of basal migration from patch 1 to patch 2, which
is filled with a-individuals, its probability to reproduce will be significantly reduced in patch



2.3. SPECIATION AND ASSORTATIVE MATING 41

2 and its migration rate to come back will be so high that it is quite unlikely that its offspring
establish in patch 2. This reasoning, however, fails with equilibria (2.3.4).

We prove that all trajectories (except those starting from a set with empty interior) con-
verge to one of these four equilibria as soon as the values of the migration rates are not too
large. Numerics seem to show however that it is true for all parameters. We also detail the
set of initial states that lead to each of these equilibria, i.e. we detail the basin of attraction
of each equilibrium. The proofs in the symmetrical and asymmetrical cases are significantly
different from each other and will be discussed in a more thorough manner in the next two
subsections 2.3.1.1 and 2.3.1.2.

Let us denote by DA,a
mA ,ma the set of initial conditions associated to a trajectory that

converges to (ζA, 0, 0, ζa). We define similarly all the sets Dα,α′
mA ,ma for α, α′ ∈ {A, a}. When

mA = ma = 0, these sets can be written as

DA,a
0,0 =

{
z ∈ RE , (βA − 1)zA,1 > (βa − 1)za,1 and (βA − 1)zA,2 < (βa − 1)za,2

}
,

with similar expressions for the three other sets. Hence, without migration, the equilibrium
reached depends on the initial number of individuals of each type and of the mating pref-
erence strengths. The basins of attraction Dα,α′

mA ,ma are continuously deformed with respect to
mA and ma. By studying numerically these basins (see Figure 2.2 for some examples), we can
conclude that, if βA > βa, large migration parameters tends to diminish the selective advan-
tage of A-individuals by mixing the populations of both patches, except for the symmetrical
case.

We are able to give an exact formulation of these basins, only in the symmetrical case. In
this case, they never depend on mA = ma and can be written

DA,a
mA ,mA

= DA,a = {z ∈ RG , zA,1 > za,1 and zA,2 < za,2},

with similar formulations for the three other sets. In other words, in each patch, the
convergence will lead to state with a unique allele that corresponds to the one whom
proportion at initial state was the highest.

Finally, the main result of this section gives the time before reproductive isolation occurs
in the stochastic model. It describes the random time TK

BA,a,ε
that is the first time when the

population process NK reaches the set

BA,a,ε := [(ζA − ε)K, (ζA + ε)K]× {0} × {0} × [(ζa − ε)K, (ζa + ε)K],

with ε > 0 and when K is large and starting from DA,a
mA ,ma . It corresponds to the random time

before (1) all a-individuals in patch 1 and all A-individuals in patch 2 get extinct, and (2)
the population size in patch 1 is approximately KζA and the one in patch 2 is approximately
Kζa.

Theorem 2.3.1. There exists m0 > 0 such that the following holds for all mA ≤ m0 and ma ≤ m0.
Let ε0 > 0 and assume also that ZK(0) = NK(0)/K converges in probability to a deterministic vector
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(a) zA,2(0) = 4,
za,2(0) = 5

(b) zA,2(0) = 4,
za,2(0) = 10

(c) zA,2(0) = 4,
za,2(0) = 15

(d) zA,2(0) = 8,
za,2(0) = 5

(e) zA,2(0) = 8,
za,2(0) = 10

(f) zA,2(0) = 8,
za,2(0) = 15

(g) Representation of
the initial conditions

in the patch 2

Figure 2.2 – (a-f): Projections of sets Dα,α′
5,5 on the planes characterized by the values of

(zA,2(0), za,2(0)) given in captions. On each plane, the four sets from white to dark grey corresponds
to initial conditions with convergence to (ζA, 0, ζA, 0), (ζA, 0, 0, ζa), (0, ζa, ζA, 0) and (0, ζa, 0, ζa)

respectively. The black line is the solution of (βA − 1)zA,1 − (βa − 1)za,1 = 0. (g): The black diamond
points correspond to the initial conditions in patch 2 taken to obtain plots (a) to (f).

z0 ∈ DA,a
mA ,ma such that (z0

a,1, z0
A,2) ̸= (0, 0). Then there exist C0 > 0, M > 0, and V > 0 depending

only on (M, ε0) such that, for any ε ≤ ε0,

lim
K→∞

P

(∣∣∣∣∣T
K
BA,a,ε

log K
− 1

ω(A, a)

∣∣∣∣∣ ≤ C0ε, NK
(

TK
BA,a,ε

+ t
)
∈ BA,a,Mε; ∀t ≤ eVK

)
= 1, (2.3.6)

where for all α, α′ ∈ {A, a},

ω(α, α′) =
1
2

[
b(βα − 1 + βα′ − 1) + mα + mα′

−
√(

b(βα − βα′) + (mα′ − mα)
)2

+ 4mαmα′

]
. (2.3.7)

Similar results hold for the three other equilibria of (2.3.4) and (2.3.5).

Theorem 2.3.1 gives the first-order approximation of the time before reproductive isola-
tion occurs. The latter is proportional to log(K), which is short compared to K, the order of
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magnitude of the population size. Comparatively, the time scale needed for random genetic
drift to cause the end of gene flow between two populations is of order K in many models (as
for example in Wright-Fisher model, see chapter 7 in [55]). Theorem 2.3.1 ensures also that
once the equilibrium is reached, the population sizes of both patches stay around Kζα during
at least a long time of order eKV . The assumption on initial condition ((z0

a,1, z0
A,2) ̸= (0, 0))

is only needed to obtain the lower bound on the time TK
BA,a,ε

given in (2.3.6). Otherwise, this
time would be faster.

Finally, ω(α, α) = b(βα − 1), thus the time before reaching one of equilibria (2.3.4) does
not depend on migration parameters unlike the time before reaching one of equilibria (2.3.5).

We discuss more specifically this theorem and its proofs in the two cases (symmetrical
and asymmetrical) in the two following subsections. The proofs related to the behavior of
the dynamical systems are substantially different.

2.3.1.1 Symmetrical case

The symmetrical case corresponds to the case where

βA = βa =: β and mA = ma =: m.

In this particular case, we are able to give more precise results concerning the behavior of
the dynamical system (2.3.3).

When β > 1, there exists exactly 13 non-null equilibria of the system, but only the ones
of (2.3.4) and (2.3.5) are hyperbolic attractive points. As described previously, almost all
trajectories converge to one of these 4 points. Moreover for initial state not too large, we
proved that this convergence occurs exponentially fast.

When β = 1, the dynamics is entirely different since there exists an infinite numbers
of non-hyperbolic equilibria corresponding to a set of two segments and that contains the
equilibria (2.3.4) and (2.3.5).

Finally, the proofs used here are sufficiently robust to take generalizations of the model
to study:

• ecological differences between the two patches, i.e. the parameters b, d, c depend on
the patch;

• more general migration rates m that depend on the size of the populations such that,
for i ∈ {1, 2}, the migration from i to the other patch is symmetrical with respect to
nA,i and na,i (i.e. m(nA,i, na,i) = m(na,i, nA,i)) and m(nA,i, na,i)

nA,i+na,i
nA,ina,i

is bounded;

• a general number N ∈ N of patches.

In all of these generalizations, theorems similar to Theorem 2.3.1 can be written and the
assortative mating influences the time needed to reach speciation in the same way.
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Ideas of proof. As in the previous section, the proof relies on the study of different
phases, implying different size scales of the population. Here, there are two phases of
interest: a first phase of mean field dynamics and then a stochastic phase when some of the
populations are microscopic.

Phase 1. Study of (2.3.3). Initially, the dynamics of the 4 populations is close to the one
of the dynamical system (2.3.3), as recalled in Lemma 2.1.5. Thus a precise study of the
trajectories of the system is needed, all results obtained are explained in the main text. The
proof of these results relies on an argument of containment, i.e. we prove that all trajectories
reach a set{

z ∈ RG , (zA,1 + za,1, zA,2 + za,2) ∈ [zmin, zmax]
}

, with zmin > 0, zmax > 0,

in finite time, by using classical arguments on dynamical systems with a logistic term. Then
the proof is completed by specifying Lyapounov functions of the form

V(z) = ln
(

zA,1 + za,1

zA,1 − za,1

)
+ ln

(
za,2 + zA,2

za,2 − zA,2

)
and adapting arguments of [79].

Phase 2. Microscopic populations. Once the dynamical system is not a good approx-
imation anymore, i.e. when some populations reach a threshold εK. We adapt reasoning
from [19] and use coupling arguments, i.e. the populations with a small size are compared
with a subcritical branching process that is doomed to get extinct after a time proportional
to log(K). The exact constant is determined using classical tools of branching processes [4].

2.3.1.2 Asymmetrical case

The study of the asymmetrical case (βA ̸= βa) is advantageous to precisely understand
the impact of all parameters. In particular, we are interested in exploring the influence of
migration rates and mating preference parameters on the process, using simulations and
theoretical analysis.

Time before differentiation. According to Theorem 2.3.1 and starting from z0 ∈ DA,a
mA ,ma ,

the stochastic process reaches a state of differentiation (A-individuals in patch 1 and a-
individuals in patch 2) after a time of magnitude log(K)ω(A, a)−1. Direct functional studies
ensure that the constant of interest, ω(A, a)−1, is a decreasing function with respect to βA

and to βa whatever the other parameters are (see Fig. 2.3, left). Hence, the stronger the sexual
preference is, the faster the reproductive isolation is.

Then, if we consider that there exist γA, γa and m such that the migration rates are

mA := γAm and ma := γam,
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Figure 2.3 – Graphs of the constants in front of the times before reproductive isolation, ω(A, a)−1

(blue line), ω(A, A)−1 (red dashed line), ω(a, a)−1 (red dashed-dotted line), with respect to βA (left)
and to m (right). The demographic parameters are βa = 1.5, b = 2, d = 1, c = 0.1, γA = 1,
γa = βa − 1 = 0.5 and m = 2 on the left and βA = 2 on the right.

we can show that ω(A, a)−1 is a non-increasing function with respect to m (see Fig. 2.3,
right). With these observations, our first conclusion is that a large migration rate seems to
strengthen the assortative mating.

Now, considering mA and ma separately and assuming βA > βa, we show that ω(A, a)−1

is a decreasing (resp. increasing) function with respect to mA (resp. ma). The increase with
respect to mA highlights again the similarity of the migration and sexual preference effects.
However, the decrease with respect to ma is more surprising and highlights that the mi-
gration has not the same exact effect as the sexual preference but it implies more involved
behavior. This is confirmed by the study of the basins of attraction (see Figure 2.1) and by
the study of the minimal number of individuals needed for invasion. More precisely, we
computed the minimal number of A-individuals such that they can survive (or even invade)
in an environment of two patches filled with ζa a-individuals initially. This minimal number
decreases when βA increases. Moreover, if βA and m are sufficiently large, the A-population
replaces the resident a-population in both patches. This suggests again that individuals with
a higher mating preference have a selective advantage.

Then comparing these minimal numbers for different values of m, we again conclude
that the migration has a more intricate behavior, in the sense that it may favor the allele with
the weakest mating preference in some cases.

Ideas of proof. The proof again relies on two phases of interest: a first phase of mean field
dynamics and a stochastic phase when some of the populations are microscopic. However,
the study of the dynamics of the system (2.3.3) is entirely different from the symmetrical
case. Indeed, Lyapounov functions were not found in this case. We thus started with the
study of the system without migration, then used a perturbation method to make mA and
ma grow up and deduce results for some positive migration parameters. This method relies
on the Implicit function Theorem, the fine study of the stable and unstable manifolds of all
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the equilibria of the system without migration, and the continuity with respect to mA and
ma of the flow of (2.3.3).

2.3.2 Diploid population

Finally, we present an extension of the model to a diploid population. Precisely, we focus
on the symmetrical case and consider a population of diploid individuals characterized by
a single phenotype controlled by their genotype at one bi-allelic locus (A and a). The set of
characteristics of this model is thus

G = {(AA, 1), (Aa, 1), (aa, 1), (AA, 2), (Aa, 2), (aa, 2)}.

To study the effect of dominance on population differentiation, we compare two opposite
scenarios: complete co-dominance and complete dominance. Dominance observed in natu-
ral populations can differ from these extreme cases, however by studying the limits of the
dominance continuum we expected to cover the possible population dynamics.

In the complete dominance scenario, individuals with genotypes AA and Aa have the
same phenotype, A, whereas individuals with genotype aa have the phenotype a. In the
co-dominance scenario, heterozygotes express an intermediate phenotype between the two
homozygotes and we thus consider two possibilities. (1) Preference expressed towards het-
erozygotes will be intermediate between assortative and disassortative mating (COD 1) (β for
pairs (AA, AA), (aa, aa) and (Aa, Aa), (β + 1)/2 for pairs (AA, Aa) and (aa, Aa), and 1 for
pairs (AA, aa)) and migration rate varies accordingly because the decision to leave the patch
depends on the lack of preferred partners in the patch. (2) Heterozygotes express no prefer-
ence towards any partners (COD2), the preference parameter is thus β for pairs (AA, AA)

and (aa, aa), and 1 for all other pairs. Because of this lack of preference, heterozygotes have
no reason to discriminate against the individuals in their patch and thus do not migrate.

We introduce parameters pβ(g, g′) that model the preference between two individuals
with genotypes g and g′ ∈ {AA, Aa, aa}. In other words, when an g-individual reproduces
as first parent (choosing one) with a second parent of genotype g′, the probability that
they actually mate and produce an offspring is proportional to pβ(g, g′). These preferences
differ according to the model considered (see Table 2.1) and always belong to [1, β]. These
parameters also influence the migration rates which are the product of these parameters
with the proportion of unpreferred mates in the patch and with the total migration rate m.

(COD1) (COD2) (DOM)
pβ(AA, AA) β β β

pβ(AA, Aa) (β + 1)/2 1 β

pβ(Aa, Aa) β 1 β

pβ(aa, Aa) (β + 1)/2 1 1
pβ(aa, aa) β β β

pβ(AA, aa) 1 1 1

Table 2.1 – Preference functions assuming dominance hypothesis (COD1), (COD2) and (DOM).
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Using numerical simulations and theoretical analysis, we identify two main conclusions.
The first one concerns the stability of the states where a type remains in the first patch

and the other type remains in the second patch, corresponding to the modeling of differen-
tiated populations. Contrary to the haploid case, these states are not stable as soon as the
total migration rate m is too high. This result holds in all cases (co-dominant and dominant),
but it is more substantial in co-dominant cases. This may be explained by the fact that the
migration of heterozygotes has a major impact on the population behavior.

The second main point of interest concerns the existence of polymorphic equilibria. This
persistence of polymorphisms within populations exists in co-dominant and dominant mod-
els but conclusions on this existence are slightly different. In the case of co-dominant models,
polymorphic equilibria exist only for model (COD2). We conjecture that this polymorphism
can emerge and be maintained through a trade-off between growth and migration, since mi-
gration persists in the limit. This limiting states are not possible in the other co-dominance
case (model COD1), where heterozygotes can migrate and are half as preferred by homozy-
gotes. Heterozygote behavior is thus a key parameter in the dynamics of population differ-
entiation in mating traits.

Polymorphic equilibria can also emerge in the dominant case. However, the populations
are almost phenotypically monomorphic in both patches. Indeed, heterozygotes express
the preferred phenotype and therefore do not suffer from mate rejection in the patch
where there are maintained, moreover they migrate at very low rate. This highlights how
dominance may modulate spatial segregation and the emergence of well-separated species.

Finally, we conclude that the differences observed between haploid and diploid models
highlights the need to consider the effect of ploidy in spatially-structured models of trait
evolution. Indeed the presence of intermediate phenotypes can interfere in the differentiation
process.

2.4 Diversity and disassortative mating

In this section, we study mechanisms favoring the emergence and the persistence of polymor-
phism in loci targeted by disassortative mating preference. It corresponds to the article [28]
written in collaboration with Camille Coron, Manon Costa, Violaine Llaurens and Charline
Smadi. Our aim here is once again to give conditions for the emergence of diversity, however
we focus on the possibility to observe such diversity on a same location and we are interested
in disassortative mating for this part.

To this aim, we get back to haploid population, with all individuals living in a same
patch and characterized by their allele at a single locus A. The set of characteristics is thus
reduced to the k possible alleles

G = {1, 2, .., k}.

Using the notation given in Equation (2.1.3), we have that pi
j,ℓ = 0 as soon as i ̸∈ {j, ℓ}, and

i ∼ j for all i, j ∈ G since there is a unique location for all individuals. In order to simplify
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the study of the model, we introduce the parameter

b := inf
{
{βi pi

i,j + β j pi
j,i}i ̸=j∈{1,..,k}, {βi pi

i,i}
}

,

called birth rate. We assume that b > 0, implying that it is impossible of having strict genetic
incompatibilities between some pair of alleles. Adaptation can be however done to consider
b = 0. For (i, j) ∈ {1, ..., k}2, we also introduce

sij :=
βi pi

ij + β j pi
ji

b
− 1, if i ̸= j and sii :=

βi pi
ii

b
− 1,

For each i, j ∈ {1, .., k} the parameter sij may be interpreted as the selective advantage of a
pair of parents with genotypes i and j respectively. By construction sij = sji is positive or null.
Note that the condition sij = 0 does not correspond to a strict reproductive incompatibility
of the pair (i, j) but to case where the pair (i, j) has the minimal birth rate in the population.
Under large population assumption, the limiting dynamical system (2.1.4) can be rewritten
as

żi(t) = zi(t)

(
b

k

∑
j=1

(1 + sij)
zj(t)
z(t)

− d − cz(t)

)
. (2.4.1)

We assume that b ≥ d > 0 to ensure that any monomorphic population is able to maintain
itself. Our analysis could be extended to avoid this assumption. However results and
numerical simulations are more intricate.

We first give general results on this model concerning the possibility to obtain and main-
tain a large number of alleles. These conditions are based on the selective advantage of each
pair of genotypes, i.e. on the following matrix M of selective advantages:

M :=


s11 s12 s13 ... s1k

s12 s22 s23 ... s2k

... ... ... ... ...
s1k s2k ... sk−1,k skk

 . (2.4.2)

We say that a vector is positive (> 0) if all its coordinates are positive and we state the
following proposition.

Proposition 2.4.1. Assume that det(M) ̸= 0 and

M−11 > 0, where 1 =

1
...
1

 . (2.4.3)

The System (2.4.1) admits a unique positive equilibrium

Z∗ :=
1
c

(
b +

b
1T M−11

− d
)

M−11

1T M−11
(2.4.4)

where 1T is the transpose of vector 1.
Furthermore, this equilibrium is globally asymptotically stable if and only if the matrix M has exactly
1 positive eigenvalue and k − 1 negative eigenvalues.
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Note that the condition depends only on the disassortative advantage parameters sij,
that represent the reproductive success of the different allelic pairs (this is true since b > d).
Using this proposition, we investigate particular cases to derive more specific conditions.

• For k = 2, two alleles A1 and A2 can be maintained in a population if and only
if s11 − s12 and s22 − s12 are both negative, i.e. when disassortative matings produce
more offspring than both assortative ones (result well documented, see [69]).

• For k = 3 and with strict disassortative advantage (sii = 0), the three alleles are main-
tained as soon as

s12 < s13 + s23 , s13 < s12 + s23 , s23 < s12 + s13. (2.4.5)

The three alleles are thus maintained when none of the parental pairs has a greater
advantage than the sum of the advantages of the two other possible pairs of parental
alleles. This condition was also identified as a necessary condition in the seminal paper
of Lewontin [90] (here we prove also the sufficiency) and it is true for instance when
s12 = s13 = s23 = s > 0.

• In the case of k symmetrical alleles (disassortative crosses are all characterized by the
same advantage, and similarly for the assortative crosses), i.e. sii = ρ and sij = s if
i ̸= j, all alleles are maintained as soon as s > ρ.

Finally, this proposition highlights that the conditions for the persistence of a given level
of allelic polymorphism at locus A depend on the relative reproductive advantages of
disassortative vs. assortative crosses, but also on the relative reproductive success of the
different disassortative pairs.

Introduction of a new allele. Proposition 2.4.1 also allows us to investigate the condi-
tions for the emergence of a new arising allele, called mutant, in a resident population at
equilibrium formed with pre-existing alleles. We thus consider a population with k alleles
whose disassortative advantage matrix is denoted by M as previously. We assume that M
satisfies the conditions of Proposition 2.4.1 (Equation (2.4.3)), i.e. the k alleles are maintained,
as long as no mutation appears.

The mutant is characterized by new disassortative advantages ST =

(sk+1,1, sk+1,2, ..., sk+1,k) and σ = sk+1,k+1. We prove that the mutant invades if and
only if

ST M−11 > 1. (2.4.6)

In this case, all alleles are maintained (mutant and resident alleles) as soon as the equilibrium
with these k + 1 alleles exists, i.e. if and only if

M̄−11 > 0 with M̄ =

(
M S
ST σ

)
.

In the general case, we do not know the long time behavior of the population when the
equilibrium with all k + 1 alleles does not exist. The dynamics can be quite involved; using
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simulations, we can observe the loss of one or even several resident alleles after the intro-
duction of the mutant one. The case k = 2 and s11 = s22 = s33 = 0 can however be entirely
detailed:

• Either condition (2.4.5) holds, and the three alleles will always coexist, whatever the
order of appearance of the different alleles.

• or for a given pair i, j ∈ {1, 2, 3}, sij ≥ sik + skj. Then an analysis of the dynamical sys-
tem shows that this condition prevents the increase of polymorphism. More precisely
alleles i and j will be maintained, while allele k becomes extinct, regardless of whether
the indices i, j and k represent the mutant or the residents.

Link with genetic distance. In natural populations, the disassortative advantage is prob-
ably linked to genetic differences between pairs of alleles ([117]). We thus consider an exten-
sion of the general model by specifying the link between the selective advantage of the
disassortative mating pairs with their genetic distance. To this aim, the genetic structure is
modeled as the set of possible alleles {0, 1}L, where L is the number of sites where mutations
can occur in the locus A (Figure 2.4(a)). Then the selective advantage of the disassortative
cross between two alleles x = (x1, ..., xL) ∈ {0, 1}L and y = (y1, ..., yL) ∈ {0, 1}L is defined by

sxy =

(
L

∑
i=1

1xi ̸=yi

)α

, (2.4.7)

with α > 0. α thus modulates the relationship between this selective advantage and the
genetic distance, corresponding to the number of different alleles (see Figure 2.4(b)).

Locus A

site

L=9

Allele 1
point

mutation
Allele 2

Allele 3

large
mutation

...

Allele x

(a) (b)

Figure 2.4 – Mutation sizes and their effects on the disassortative advantage. (a): The locus A contains
L sites where mutations can occur. We model either point mutations, whereby one mutation leads to
a change at a single site or other mutation kernels, where a mutation event can simultaneously affect
several sites within the locus A. (b): relationship between the number of differing sites between both
parents and the disassortative advantage. The parameter α determines the shape of the relation.

We investigate this model and find very different behavior depending on the value of α,
i.e. for α < 1 and for α > 1.
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For α < 1, we prove that any resident population with two alleles A1 and A2 can be
invaded by any new mutant A3 at distance 1 of either A1 or A2 (i.e. in the case of point
mutations) and will lead to a population with 3 alleles. Moreover, the population with all
possible alleles maintained exists and is (globally) stable. We have no theoretical proof that
the successive introduction of point mutations may lead to a population with all possible
alleles. However, simulations seem to support this conjecture (see Figure 2.5). We thus
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Figure 2.5 – Evolution of the number of alleles maintained in the population, assuming point muta-
tions and convex shape of the function determining the fitness of allelic pairs (α ≤ 1). From an initial
population with two alleles, we numerically introduce successive mutations and track their invasion
success through time. (a) shows the distribution of alleles in the population through time. Each color
corresponds to a given allele and the height of the bar is the number of individuals carrying each
allele within the population at a each time. (b) gives the number of alleles maintained at equilibrium
after each mutation until the total number of alleles is reached. Each line corresponds to a different
numerical simulation (n = 6). Here L = 6 and α = 0.6 such that there are 26 = 64 possible alleles.

conclude that when α < 1, the specific shape of (2.4.7) may thus stabilize the polymorphism,
by preventing large variations in disassortative advantages among co-existing alleles.

For α ≥ 1, the dynamics of invasion is very different. Firstly, the population with all
possible alleles maintained exists but is unstable.

Then in the case of 3 alleles, when introducing a new mutant A3 at distance 1 of one of
the two resident alleles A1 or A2 only two alleles will remain. These correspond to the most
different alleles, regardless of whether there are the mutant or the resident alleles. Hence,
introducing successive point mutations, the population will remain composed of two alleles
with a larger and larger genetic distance. The evolution ends when the most differentiate
alleles are present, i.e. alleles (0, .., 0) and (1, ..., 1). Moreover, such a population cannot be
invaded by any new allele whatever the genetic distance of the mutant allele.

However, a modification of the the mutation kernel changes drastically the conclusion.
We develop a specific example showing that, with a mutation kernel allowing large muta-
tions (i.e. more than one site at a time), coexistence of more than two alleles can be observed
in the case where α ≥ 1 and L = 3. Simulations were also performed to explore other pa-
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rameters and seem to confirm this conclusion. This study highlights the importance of the
mutation kernel when studying evolutionary processes.

Ideas of proofs. The proof of the main result, Proposition 2.4.1 relies on two steps. We
first specify the positive equilibrium when it exists and then prove an equivalence between
its local stability and the condition on the eigenvalues of M, by studying the Jacobian of the
system and by using tools of linear and bilinear algebra. We finally prove the global stability
by specifying a Lyapounov function of the form

V(z) :=
k

∑
ℓ=1

(
zℓ
z
−

z∗ℓ
z∗

ln
( zℓ

z

))
= 1 −

k

∑
ℓ=1

z∗ℓ
z∗

ln
( zℓ

z

)
, (2.4.8)

where z∗ is the positive equilibrium given in (2.4.3), and using again bilinear algebra to prove
the negativeness of its derivative. When k = 3, the computations are easier and everything
can be specified using this same Lyapounov function.

To find the condition of invasion of a new mutant allele (2.4.6), we simply compute the
Jacobian matrix of the dynamical system of dimension k + 1 around the point (z∗, 0). To
prove that this condition is equivalent to the stability of the equilibrium with k + 1 alleles
as soon as it exists, we use again tools of linear and bilinear algebra, as Cramer’s rule, the
Eigenvalue Interlacing Theorem and the Schur complement.

2.5 Perspectives

Understanding the relations between sexual preferences, and more generally sexual repro-
duction, and the emergence and preservation of diversity remain a central question in evolu-
tionary biology. The framework developed in this chapter is particularly adapted to explore
how the different evolutionary forces (natural selection, sexual selection..) interact and to
quantify their effects.

I am continuing to investigate these questions and related ones in collaboration with
Camille Coron, Manon Costa, Violaine Llaurens and Charline Smadi. For example, we are
actually interested in understanding and quantifying how family structures, emerging in
some species with sexual reproduction, affect species diversity in general.



3Extinction times of continuous state

branching processes with competition

in random environment

3.1 Introduction and model

In this chapter, I present different type of population dynamics models based on continuous
state branching processes (CSBP). These models are continuous time Markov processes with
càdlàg (right continuous with left limits) paths and values in [0, ∞). They were introduced
by Jirina [63] and studied by many authors since then. They represent the dynamics of a
large population in the sense that they are proved to be scaling limits in time and space of
Galton-Watson processes (see Lamperti [75]). In this sense, the value represents some density
of the population. However, despite being in a large population limit, the dynamics of such
a population remain stochastic.

Numerous generalizations have been developed around this model. In this chapter, we
are particularly interested in the addition of a term representing competition between indi-
viduals of the population, as well as a term representing an exogenous random environment
acting on the population.

CSBP with competition have been considered by several authors. In [74], Lambert in-
troduced and studied the so-called logistic branching process, where the competition has a
quadratic form. More general competition mechanisms were considered since then (see for
example [6, 103]).

CSBP in random environment have also been intensively studied since they were intro-
duced by Smith and Wilkinson [116] (see for instance [2, 9]).

More recently, both types of generalizations have been combined and CSBP with
competition in a random environment have become the focus of interest. In particular, Pardo
and Palau [101] introduced them as strong solutions of stochastic differential equations
(SDE). And Bansaye et al. [7] proved that they also arise as the scaling limit of discrete
population models in random environment.

More precisely, continuous state branching processes (CSBP) with competition in random
environment can be defined as the unique strong solution (up to explosion) of the following

53



54 CHAPTER 3. CSBP WITH COMPETITION IN RANDOM ENVIRONMENT

SDE

Zt = Z0 +
∫ t

0
bZsds −

∫ t

0
g(Zs)ds +

∫ t

0

√
2γ2ZsdB(b)

s +
∫ t

0
Zs−dS(e)

s

+
∫ t

0

∫
[1,∞)

∫ Zs−

0
zN(b)(ds, dz, du) +

∫ t

0

∫
(0,1)

∫ Zs−

0
zÑ(b)(ds, dz, du). (3.1.1)

g is a function on [0, ∞) with g(0) = 0. B(b) is a standard Brownian motion. N(b) is a
Poisson random measure defined on R3

+ independent from B(b) and with intensity measure
dsµ(dz)du. µ is a measure concentrated on (0, ∞) satisfying∫

(0,∞)
(1 ∧ z2)µ(dz) < ∞. (3.1.2)

Ñ(b) is the compensated measure associated to N(b). S(e) is a Lévy process with no negative
jumps smaller than −1 which is independent of B(b) and N(b). Precisely, S(e) can be written
as follows

S(e)
t = σB(e)

t +
∫ t

0

∫
(−1,1)c

(ez − 1)N(e)(ds, dz) +
∫ t

0

∫
(−1,1)

(ez − 1)Ñ(e)(ds, dz), (3.1.3)

where σ ≥ 0, B(e) = (B(e)
t , t ≥ 0) is a standard Brownian motion and N(e) denotes a Poisson

random measure, independent of B(e), taking values on R+ × R with intensity dsπ(dz)
satisfying ∫

R\{0}
(1 ∧ z2)π(dz) < ∞, (3.1.4)

and Ñ(e) denotes the compensated version of N(e).
The existence and uniqueness of the SDE (3.1.1) were established for example by Palau

and Pardo in [101]. We studied the solution to (3.1.1) up to explosion, which means that ∞
and 0 are thus considered here as absorbing boundaries.

When g = 0 and S(e) ≡ 0, the solution corresponds to the CSBP (see for example [45]
or [73] for a review on the subject). It represents the dynamics of a large number of individ-
uals without interactions and it is generally referred to as the branching mechanism, when
dealing with CSBP with interactions. The law of this CSBP is fully characterized by the triplet
(b, γ, µ) or by the function

ψ(λ) = −bλ + γ2λ2 +
∫
(0,∞)

(
e−λu − 1 + λu1{u<1}

)
µ(du). (3.1.5)

This function is connected to the Laplace transform of the CSBP, which we denote by (Yt, t ≥
0), as

E[eλYt |Y0 = x] = e−xut(λ) for all (x, t, λ) ∈ R3
+,

with u the unique solution to the differential equation

∂tut(λ) + ψ(ut(λ)) = 0, u0(λ) = λ.
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The term including function g represents competition between individuals. We assume
that g is positive and increasing. In section 3.3, I will focus on the case where g(x) = cx2

representing a quadratic competition.

Finally, the Lévy process S(e) models the external environment. Note that the envi-
ronment can have both positive and negative effects on the dynamics of the population.
Moreover, each event affects a randomly selected proportion of individuals in the same way.
In Section 3.3, I will focus on the case where S(e) is a Brownian motion.

In the two following sections, I present results on the extinction time and long-time
behavior of CSBP with competition in random environment. They correspond to the work
in [85, 86] written in collaboration with Juan Carlos Pardo.

3.2 Lévy environment

In this section, I give results on time extinction and coming down from infinity for general
terms g and S(e) under the following assumptions.

Assumption 3.2.1. The measure µ satisfies the integral condition∫
(0,∞)

(z ∧ z2)µ(dz) < ∞.

The function g ∈ C1 is non-negative, non-decreasing and it is not the null function. Moreover, we
assume that ∫ ∞ 1

g(z)
dz < ∞. (3.2.1)

These are technical assumptions. However, the assumption on µ allows us to compen-
sate large jumps and to compute the term −ψ′(0+) = b +

∫ ∞
1 zµ(dz) that represents the

Malthusian parameter of the exponential growth. Assumptions on g confirm that it truly
represents a competition, which increases with the size of the population, and in particular
(3.2.1) ensures that it cannot be a linear term.

In order to state the main result of this section, let us recall the definition of a strong Feller
process. We denote the sets of bounded measurable and bounded continuous functions on
[0, ∞) by Bb([0, ∞)) and Cb([0, ∞)), respectively. A process is a Cb-Feller, if its semigroup
(Pt, t ≥ 0) satisfies the following points

i) for any f ∈ Cb([0, ∞)), Pt f ∈ Cb([0, ∞)), for t ≥ 0; and

ii) for any f ∈ Cb([0, ∞)) and x ≥ 0, Pt f (x) → f (x), as t goes to 0.

If in addition, for any f ∈ Bb([0, ∞)), Pt f ∈ Cb([0, ∞)), for t ≥ 0, the process is said to be
strong Feller (see Kallenberg [66] for example).



56 CHAPTER 3. CSBP WITH COMPETITION IN RANDOM ENVIRONMENT

Following ideas of He et al. [57] and Le [80], we give sufficient condition such that the
process, solution to (3.1.1), becomes extinct and comes down from infinity. More precisely, the
result is the following one.

Theorem 3.2.2. Assume that Assumptions 3.2.1 hold and that Grey’s condition holds, i.e.∫ ∞ dλ

ψ(λ)
< ∞, (3.2.2)

then
sup
x>0

Ex[T0] < ∞, (3.2.3)

Moreover the process Z comes down from infinity, in the sense that ∞ is a continuous entrance point,
i.e.

lim
M→∞

lim
x→∞

Px(TM < t) = 1 for all t > 0,

where TM = inf{t ≥ 0 : Zt ≤ M} (assuming that inf{∅} = ∞). Finally, the process is strong Feller
and it can be extended into a Cb-Feller process on [0, ∞], i.e. its semigroup satisfies also conditions (i)
and (ii) above for any function f ∈ Cb([0, ∞)) with a limit at ∞.

In other words, the condition on the competition parameter (3.2.1) is so strong that the
process becomes extinct regardless the long time behavior of the environment. (3.2.3) was
also obtained by Le [80] for fixed environments using similar conditions for the competition
mechanism g.

Grey’s condition (3.2.2) is equivalent to the extinction of the CSBP associated to the
branching mechanism (without competition nor environment) with positive probability. It is
thus natural to find it in this setting.

Notice that a linear term could be added in the definition of S(e) in (3.1.3). All results
would be identical since from a mathematical point of view, this is equivalent to a change in
the value of b.

Similarly, we may relax the assumptions on g by only assuming that there exist θ ≥ 0
such that the map x 7→ (θ − b)x + g(x) is non-negative and non-decreasing. The same
calculations could be then performed by modifying the values of b and g and recovering
the current setting. Indeed, the condition (3.2.1) for the new function g then follows from
Lemma 2.3 in Le and Pardoux [122].

Ideas of proof We first proved coupling results, namely the solution to (3.1.1) can be
stochastically dominated by a process satisfying a similar SDE but without competition and
starting eventually from a higher level. Using these couplings and the results in He et al.
[57], we deduced that the process, solution to (3.1.1), gets extinct with positive probability.

Adding few computations on
∣∣∣Pt f (y)− Pt f (x)

∣∣∣, we proved the Feller properties.
Our second step was to show that there exists M > 0 such that

sup
x≥0

Ex
[
TM
]
= sup

x≥M
Ex
[
TM
]
< ∞.
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To this aim, we applied Îto formula to the process Z and the function

G(z) =
∫ z dw

g(w)
.

In addition with the coupling arguments and the fact that such process starting from M
has a positive probability to get extinct, Equation (3.2.3) was proved. The remaining prop-
erties, namely ∞ is an entrance point and the semigroup can be extended into a Cb-Feller
process on [0, ∞], were directly deduced from it.

3.3 Logistic competition in a Brownian environment

This section is devoted to the case where

g(z) = cz2 and S(e) = σB(e). (3.3.1)

These assumptions enable us to obtain much more detailed results than in the previous sec-
tion concerning the long-time behavior and extinction time of the solution to (3.1.1). These
results are mainly based on a Lamperti transformation, similar to that obtained by Lam-
bert [74] in the case of the logistic Feller process and by Ma et al. [93] in the case of a CSBP
with competition. In our case, this transformation links, by using a time change, the solu-
tion (3.1.1) to a Feller diffusion which is perturbed by a Lévy process. This Lévy process
corresponds to the branching mechanism. If it is a subordinator, then the process obtained
through the Lamperti transformation turns out to be a CB-process with immigration for
which many results are known.

On the basis of these remarks, notice that the results obtained will differ depending on
whether the branching mechanism is associated with a subordinator or not. The results are
therefore summarized and presented according to these two cases.

3.3.1 Case associated with a subordinator

In this section, we are interested in characterizing the long time behavior of the process
under the particular case of a branching mechanism associated with the Laplace transform
of a subordinator, i.e.

ψ(z) = −δz −
∫
(0,∞)

(1 − e−zu)µ(du), (3.3.2)

where ∫
(0,∞)

(1 ∧ u)µ(du) < ∞ and δ := b −
∫
(0,1)

uµ(du) ≥ 0.

We also introduce, the function

ω(x) = cx +
σ2x2

2
,

where we recall that σ > 0 is the variance of the Brownian environment and c ≥ 0 is the
competitive parameter. Notice that the case without competition (i.e. c = 0) can also be
considered and results on this case are also provided.
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Our first result gives a necessary and sufficient condition under which the process Z is
conservative, i.e. that Z does not explode at finite time a.s.

Theorem 3.3.1. The process Z, with branching mechanism given by (3.3.2), is conservative if and
only if

I :=
∫ 1

0

1
ω(z)

exp
{∫ 1

z

ψ(u)
ω(u)

du
}

dz = ∞.

In this setting, we also have the following identity for the total population size of the
process Z up to time Ta = inf{t ≥ 0 : Zt ≤ a}, the first hitting time of Z at a.

Proposition 3.3.2. For every λ > 0 and x ≥ a ≥ 0, we have

Ex

[
exp

{
−λ

∫ Ta

0
Zsds

}]
=

fλ(x)
fλ(a)

,

with

fλ(x) :=
∫ ∞

0

dz
ω(z)

exp
{
−xz +

∫ z

ℓ

λ − ψ(u)
ω(u)

du
}

, x ≥ 0,

where ℓ is an arbitrary constant larger than 0.

Two very different long-time behaviors emerge for the process depending on the value
of σ with respect to δ, i.e. comparing the fluctuations due to the environment (σ) with the
growth of the branching mechanism (δ). The results are summarized below. The following
theorem establishes conditions such that 0 is polar for Z, i.e. such that Px(T0 < ∞) = 0 for
all x > 0. Moreover, it gives conditions for the recurrence or transience of the process that
we defined using the following definition (see for instance Chapter X of [106] or Definition 1

in [35]).

Definition 3.3.3. Assume that 0 is polar, the process Z is said to be recurrent if there exists x > 0
such that

Px

(
lim inf

t→∞
|Zt − x| = 0

)
= 1.

On the other hand, the process is said to be transient if

Px

(
lim
t→∞

Zt = ∞
)
= 1, for every x > 0.

Observe that if the property of recurrence is satisfied for a particular x > 0, it is also true
for all x > 0.

Theorem 3.3.4. Assume that σ > 0.
(1) If σ2 > 2δ, then Z converges to 0 with positive probability, i.e

Px

(
lim
t→∞

Zt = 0
)
> 0, for x > 0.

If we also assume that I = ∞, then the process converges to 0 a.s.
(2) If 2δ ≥ σ2 and c > 0. Then the point 0 is polar, i.e. Px(T0 < ∞) = 0 for all x > 0.
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(2a) Moreover if ∫ 1

0

dz
z

exp
{
−
∫ 1

z

∫ ∞

0

(1 − e−us)

ω(u)
µ(ds)du

}
= ∞ (3.3.3)

Z is recurrent. Additionally,

(2a.i) if 2δ > σ2 then the process Z is positive recurrent and its invariant distribution ρ has a
finite expected value if and only if∫ ∞

1
log(u)µ(du) < ∞. (3.3.4)

(2a.ii) if 2δ = σ2 and (3.3.4) holds, we are able to exhibit two exclusive (but not exhaustive)
conditions (∂) and (ð) under which Z is either positive recurrent, or null-recurrent and
convergent to 0 in probability, respectively.

(2b) Finally, if (3.3.3) is not satisfied, then Z explodes at finite time a.s. Hence, it is transient.

It is important to note that (3.3.3) is satisfied as soon as (3.3.4) holds.
The log-moment condition (3.3.4) is necessary and sufficient for the generalized

Ornstein-Uhlenbeck process R to possess an invariant distribution [107]. This condition thus
emerges through the Lamperti transformation.

In the cases where an invariant measure exists, it corresponds to the size-biased distri-

bution of ν, i.e. ρ(dz) =
(∫

(0,∞) s−1ν(ds)
)−1

z−1ν(dz), where ν is defined by the following
lemma.

Lemma 3.3.5. Assume that σ2, c > 0 and that the branching mechanism ψ, given by (3.3.2), satisfies
the log-moment condition (3.3.4). Then∫

(0,∞)
e−λzν(dz) = exp

(∫ λ

0

ψ(u)
ω(u)

du
)

, λ ≥ 0,

defines a unique probability measure ν on (0, ∞) which is infinitely divisible. In addition, it is self-
decomposable whenever

∫ ∞
0 µ(dz) ≤ δ.

Finally, I choose not to exhibit precisely the critical case where σ2 = 2δ. Indeed, the
conditions (∂) and (ð) are cumbersome and unfortunately not exhaustive. However, readers
can refer to the article [86] for further details.

Before turning to the opposite case, where the branching mechanism is not associated
with a subordinator, I detail a brief example where the branching mechanism is such that
ψ(z) = −cαzα, for z ≥ 0, with α ∈ (0, 1) and cα > 0. It corresponds to the negative of a
stable subordinator. Straightforward computations lead to I is finite or infinite depending
on whether c = 0 or c > 0. In other words, if there is presence of competition the associated
process Z is conservative and moreover the process becomes extinct a.s., since σ2 is always
positive (δ = 0 in this case). If there is no competition, the process Z explodes with positive
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probability. This result is consistent with the ones of [100] where the rate of explosion was
determined explicitly.

Finally, we also point out that the previous results are consistent with the behaviors
found in Proposition 2.1 in [40] where ψ(z) = −bz.

3.3.2 Second case

Finally, we consider the case where the process X is not a subordinator and that it satis-
fies (3.3.4). Here, we present very different results than the ones of the previous section as
we give a formula of the Laplace transform of the extinction time, in the case where there is
extinction a.s.. However, conditions for extinction are not discussed here and have not been
determined at the time of writing the paper associated with this section.

Precisely, we assume the following.

Assumption 3.3.6. The branching mechanism ψ satisfies that there exists ϑ ≥ 0 such that ψ(z) > 0
for any z ≥ ϑ and it satisfies the condition (3.3.4).

Our main result in this section provides a complete characterization of the Laplace trans-
form of the stopping times

Ta = inf{t ≥ 0 : Zt ≤ a}, for a ≥ 0,

as long as T0 is finite a.s. and that c > 0.
To this aim, we introduce the functions

m(λ) :=
∫ λ

0

ψ(u)
ω(u)

du and I(λ) :=
∫ λ

0
em(u)du, for λ ≥ 0, (3.3.5)

From Assumptions 3.3.6, m is increasing on (ϑ, ∞) implying that I(·) is a bijection from R+

into itself. We denote its inverse by φ and a simple computation provides

φ′(z) = exp(−m ◦ φ(z)). (3.3.6)

The formulation of the Laplace transform of Ta will be written using the non-negative solu-
tion yλ that vanishes at ∞ to the following Ricatti equation

y′(z) = y(z)2 − λ

(
φ′(z)√
ω(φ(z))

)
, with λ > 0. (3.3.7)

Using ideas similar to Lemma 2.1 in [74], we deduce the following Lemma on this equation.

Lemma 3.3.7. For any λ > 0, there exists a unique non-negative solution yλ to the equation (3.3.7)
such that it vanishes at ∞. Moreover, yλ is positive on (0, ∞), and for any z sufficiently small or large,

yλ(z) ≤
√

λφ′(z)√
ω(φ(z))

. As a consequence, yλ is integrable at 0, and it decreases initially and ultimately.

The main result thus gives the Laplace transform of Ta.
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Theorem 3.3.8. Assume that c > 0 and that Assumption 3.3.6 holds. Then the function

hλ(x) := 1 + λ
∫ ∞

0

e−xz−m(z)

ω(z)
e−
∫ I(z)

0 yλ(v)dv
∫ z

0
em(u)+2

∫ I(u)
0 yλ(v)dvdudz (3.3.8)

is well defined and positive for any x > 0 and λ > 0 and it is a non-increasing C2-function on (0, ∞).
Furthermore, if Px(T0 < ∞) = 1, for any x > 0 then hλ is also well-defined at 0 with

hλ(0) = exp
{∫ ∞

0
yλ(v)dv

}
< ∞,

and, for any x ≥ a ≥ 0,

Ex

[
e−λTa

]
=

hλ(x)
hλ(a)

, (3.3.9)

and, for x > 0,

Ex[T0] =
∫ ∞

0
du em(u)

∫ ∞

u

e−m(z)

ω(z)
(1 − e−zx)dz. (3.3.10)

Notice that we can combine the previous results with Theorem 3.2.2 in case of a logistic
branching process satisfying assumptions 3.2.1 and 3.3.6 and Grey’s condition (3.2.2). In this
case, the process can be extended into a Feller process on [0, ∞] and we are able to compute
the expectation of the extinction time.

E∞

[
e−λTa

]
=

1
hλ(a)

and E∞[T0] =
∫ ∞

0
du em(u)

∫ ∞

u

e−m(z)

ω(z)
dz.

Ideas of proof. As explained in the main text, the proofs rely on a Lamperti transforma-
tion that links the process Z with the following process R, via a change of time,

dRt = 1{Rr−>0:r≤t}dXt − 1{Rr−>0:r≤t}cRtdt + 1{Rr−>0:r≤t}σ
√

RtdWt, (3.3.11)

with R0 = x, X a spectrally positive Lévy process with characteristics (−b, γ, µ) and W a
standard Brownian motion independent of X.

When X is a subordinator, R is then a Feller diffusion with immigration. We were thus
able to use the results of Duhalde et al. [35] and link the long time behavior of R with the
one of Z. We then focused on the case of recurrence with (3.3.4) satisfied. In order to find the
possible invariant measure, we searched for measures ρ satisfying∫ ∞

0
U f (z)ρ(dz) = 0,

for any f in the domain of U the infinitesimal generator of Z. Focusing on functions f (z) =
e−λz and following ideas of [74], we deduce that the Laplace transform of zρ(dz) should be

proportional to exp
( ∫ λ

0
ψ(u)
ω(u)dd

)
. We then exhibited conditions under which such measure

is finite, which gave us when the process is positive recurrent or not.
The second case was also proved by adapting proofs of Lambert [74].
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3.3.3 General competition for branching diffusion in a Brownian environment

Finally, notice that in the case of a branching diffusion in a Brownian environment, i.e.
when the branching mechanism is associated with a Brownian motion with drift, we may
study the process by using classical results of diffusion process. With this in mind, we gave
necessary and sufficient conditions for the a.s. extinction of the process and we provided a
new formulation for the Laplace transform of Ta. I refer readers to the manuscript [86] for
more detailed information.

3.4 Recent results and Perspectives

Notice that the above picture is not complete, and that some cases have been left unsolved
due to a lack of success in controlling them. More recently, Foucart and Vidmar [43] provided
some duality results and their techniques are sufficient to complete the picture and charac-
terize the long time behavior of the CSBP with logistic competition in a random environment
in almost all cases.

Now that the picture is complete for this case, an interesting extension would be to
add an explicit spatial structure to the model, echoing the work of the previous chapters.
For example, starting from a study similar to [40, 58], we could extend our model to a
patch environment where migration is very rapid between patches. We could then compare
extinction conditions in this patchy environment with the non-spatial model. As explained
in the previous chapter, studying the impact of explicit spatial structures on the evolutionary
process of a population is of particular interest, as environment and space are key factors
explaining species diversity.



4Genetic composition of tumor cell

populations

4.1 Introduction

More recently, I came across the study of tumor cell diversity, around a major issue: How
can tumor cell diversity be used to facilitate and improve oncology treatments? The first goal
is thus to develop a detailed understanding of the mechanisms at work in a tumor, of the
interactions between the different cell types and their environment that includes treatment.

In many medical studies, tumors are now considered as a complex ecosystem, with
different types of tumor cells interacting with each other and with their environment. A
detailed understanding of this ecosystem and its development seems essential for optimizing
therapies, with the following objectives:

⋄ better identify the early phases of tumors,

⋄ limiting doses and frequencies of drugs in case of established tumors,

⋄ avoid relapses, by limiting as far as possible the appearance of cells resistant to known
drugs.

With these objectives in mind, I developed stochastic processes that model dynamics of
tumor cell populations. These cells are generally subject to relatively frequent mutations,
since they are deficient in the capacity to repair DNA damages. One of the main goals is
thus to identify and study the genetic composition of these populations.

This chapter corresponds to an opening chapter. In the next section, I give a first example
of study where cells are submitted to a treatment and eventually escape the extinction due
to a rescue event induced by the emergence of a resistant mutation. Finally, in section 4.3, I
detail various perspectives corresponding to current or future projects in this fast-growing
and important field.

63



64 CHAPTER 4. GENETIC COMPOSITION OF TUMOR CELL POPULATIONS

4.2 Rescued population

In this section, we aim at studying the impact of resistance acquisition on the distribution of
neutral mutations in a cell population under therapeutic pressure. This section is based on
the preprint [14] written in collaboration with Céline Bonnet.

More precisely, we study a population with a large initial size and composed of cancer
cells sensitive to a specific treatment, i.e. its dynamics follows the one of sub-critical birth and
death process whose size decreases exponentially fast. While the treatment is administered,
these cells can become resistant to it through the acquisition of a mutation, producing a
second population whose dynamics follows a supercritical process even under the treatment.
The overall population thus may avoid extinction. Such dynamics are commonly called
rescue dynamics and are the subject of many works using multitype branching processes as
[5, 38, 61, 68, 72, 42, 99], among others. Studying these dynamics is particularly important
in the context of oncology. Indeed treatments, as chemotherapy, exert significant selection
pressures on cells and can thus favor the emergence of resistant cells, as justified by some
works of Ollier et al. [98].

More precisely, the model of this section corresponds to a bi-type branching process
indexed by a scaling parameter N and representing a population of sensitive (type 0) and
resistant (type 1) cells to a given treatment. At any time t ≥ 0, the number of sensitive cells
is denoted ZN

0 (t) and the one of resistant cells is denoted ZN
1 (t). Initially, the cells all carry

type 0, associated with a negative growth rate. The initial state of the process is thus

(ZN
0 (0), ZN

1 (0)) = (N, 0).

Mutations towards type 1 are assumed to be rare, and lead to the survival of cells under
the treatment, i.e. type 1 is associated with a positive growth rate, and thus models the
acquisition of a resistance.

Cells are also subject to frequent neutral mutations that are accumulated by inheritance at
each division. A neutral mutation corresponds to a mutation that has no impact on the birth
and death rates of the cell.

Precisely, the process follows the following dynamics:

• Each sensitive cell divides at rate b0 and dies at rate d0. We denote by λ0 := d0 − b0 > 0
the absolute value of the growth rate of sensitive cells.

• Each resistant cell divides at rate b1 and dies at rate d1. Its growth rate is positive and
is denoted by λ1 := b1 − d1 > 0.

• At each division, the cell is replaced by two daughter cells:

⋄ Each daughter cell inherits the neutral mutations of their mother in addition to
an independent random number of new neutral mutations Nω such that

E[Nω ] = ω/2 ≥ 0.
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⋄ Each of the two daughter cells may become resistant with probability γ/Nα,
with 0 < α ≤ 1, independently from one another. The parameter α models the
rarity of the occurrence of resistances. Depending on its value the expected
number of rescue events, which is of order N1−α, is finite or infinite.

Notice that, considering all the dynamics, the exact growth rate of sensitive cells is
−(λ0 + 2b0γ/Nα), which is negative.

We aim at describing the distribution of neutral mutations in the resistant cell population
in a limit of large initial sensitive population (i.e. N → ∞), rare advantageous mutations
(i.e. γ/Nα → 0), and at a large time, precisely after the characteristic time of extinction of
sensitive cells, i.e. at

tN := t log(N), with t > 0.

To characterize this distribution, we study the site frequency spectrum (SFS) which counts, for
all i ∈ N∗ and t ≥ 0, the number of neutral mutations carried by exactly i resistant cells at
time t. This sequence is denoted by (Si(t))i∈N,t≥0 (see Figure 4.1 for an example). Precisely,

Figure 4.1 – Example of progeny starting from one sensitive cell and including neutral mutations.
Solid lines correspond to sensitive genealogy, dashed lines to resistant one, cross to dead cells and
framed numbers to neutral mutations appeared at each division. In this example, the SFS associated
with the resistant cells is thus S1(t) = 3, S3(t) = 1, S7(t) = 2 and for all i /∈ {1, 3, 7}, Si(t) = 0.

we give asymptotically-equivalent expressions of the expected SFS for finite i ∈ N and also
for i proportional to eλ1tN , i.e. proportional to the size of the resistant population at time tN .
In both cases, SN

i (t) is computed by separating the quantity into two different contributions,
similarly to what has been done in [33, 119]. These contributions are linked to the resistant
cells issued from a resistant mutation event, i.e. these are resistant cells whose mother cell is
a sensitive one. These specific resistant cells are called ancestral resistant cells in the following.
Finally, SN

i (t) is the sum of
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(1) SN
i (t) that counts neutral mutations that appeared in a resistant cell and

(2) SN
i (t) that counts neutral mutations that appeared in a sensitive cell, and which are

transmitted to resistant cells as a hitch-hiking effect ([115]).

Number of mutations shared by a small number of cells. Firstly, the expected SFS
is computed for fixed i, i.e. it describes the number of mutations shared by a small number
of resistant cells at time tN .

Theorem 4.2.1. For all i ∈ N, t ≥ 0,

E
[
SN

i
(
tN
)]

∼
N→∞

I(i)
2b0γω

λ1 + λ0
Nλ1t+1−α, with I(i) :=

∫ 1

0

1 − y
1 − d1y/b1

yi−1dy. (4.2.1)

As a corollary of the proof of this theorem, we deduce also

E
[
SN

i (tN)
]

∼
N→+∞

E
[
SN

i (tN)
]

. (4.2.2)

This is consistent with the intuition since mutations appeared in sensitive cells are expected
to be shared by a large amount of cells and therefore not to appear in the computation of the
term (4.2.1). The equivalence relation (4.2.2) is illustrated in Figure 4.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i

0

250

500

750 Empirical expected SNi (tN)

Theoretical approximation

Empirical expected S
N
i (tN)

(a) i ∈ [1, 20].

21 31 41 51 61 71 81 91 101 111 121
i

0

2

4
Empirical expected SNi (tN)

Theoretical approximation

Empirical expected S
N
i (tN)

(b) i ∈ [21, 121].

Figure 4.2 – Empirical and theoretical expectation of SN
i (tN) and SN

i (tN) for small value of i, i.e
i ∈ [1, 20] in (a) and i ∈ [21, 121] in (b). The orange bullets and the red bars correspond to the
empirical expectation over 50 000 realizations, respectively, of SN

i (tN) and SN
i (tN). The blue crosses

correspond to the theoretical approximation given by Theorem 4.2.1. N = 500.

Approximation (4.2.1) can be seen as the contribution of each ancestral resistant cell multi-
plied by the total number of such cells appeared before tN , which is a quantity that we were
able to compute in [14]. Precisely,

E
[
SN

i
(
tN
)]

∼
N→∞

2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

ωλ0

λ1 + λ0
I(i)Nλ1t︸ ︷︷ ︸

contribution of a cell

. (4.2.3)

This decomposition highlights the impact of the dynamics of the sensitive cells on the ex-
pected SFS. In [52] and [22], an equivalent of the expected SFS was obtained for a birth-
and-death process starting with one resistant cell. Notice that, since the resistance events all
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appear in a negligible time relatively to the time of interest tN , one may think that the con-
tribution of an ancestral resistant cell would correspond to the one of a resistant cell living
alone at time 0, i.e. ωI(i)Nλ1t. However, notice that the growth rate of the resistant popula-
tion modifies the constant parameter. Indeed the population growth is exponentially rapid,
then starting the process a small amount of time after has already an impact. We thus con-
clude that the rescue dynamics has a significant effect on the SFS, although the order size of
the approximation (Nλ1t+1−α) and its shape with respect to i are not directly impacted. The
fraction λ0

λ1+λ0
can be interpreted as a loss coefficient due to the rescued dynamics. When λ0

is large with respect to λ1, the process ZN
0 is extinct quickly and mutations appear almost

instantaneously, such that there is almost no loss (λ0/(λ0 + λ1) ≃ 1). When λ1 is large with
respect to λ0, any delay in the emergence of the ancestral resistant cell will have a huge impact
and the loss will be large (λ0/(λ0 + λ1) ≃ 0).

Mutations shared by a large number of cells. As tN increases with N, the order size
of the total population at tN is eλ1tN conditioned to the rescue. Hence, to study mutations that
affect a large number of resistant cells, we compute the SFS for some i depending on N as
i ∼ Nλ1t. More precisely, the next result gives Sx(t) the number of mutations carried by a
number of resistant cells larger than x eλ1t at time t.

Theorem 4.2.2. Let t ≥ 0, x ∈ (0, ∞], and set Sx(t) := ∑i≥xeλ1tN Si(t). Then

E
[
SN

x (tN)
]

∼
N→∞

b0γωλ1

(
K(x) + L(x)

)
N1−α.

where

K(x) :=
2

λ0 + λ1

∫ ∞

0
(e−(λ1+λ0)s − 1) eλ1 se−x λ1

b1
eλ1s

ds,

L(x) :=
1
b1

∫ +∞

0
(1 + 2b0s) e−λ0se−x λ1

b1
eλ1s

ds.

Contrary to Theorem 4.2.1, E[SN
x (tN)] and E[SN

x (tN)] both contribute to the
asymptotically-equivalent expression of E[SN

x (tN)]. Their contributions are represented re-
spectively by functions K and L.

For x > 0, the theoretical approximation of E[SN
x (tN)] when N is large is

N1−αb0γωλ1 L(x) =
2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

∫ ∞

0

ω

2
(1 + 2b0s)︸ ︷︷ ︸

∆1

λ1

b1
e−x λ1

b1
eλ1s

︸ ︷︷ ︸
∆2

λ0e−λ0s︸ ︷︷ ︸
∆3

ds.

This approximation can thus be seen as the expected number of ancestral resistant cells
multiplied by the contribution of one ancestral resistant cell. The proof of Theorem 4.2.2 also
allows us to give a natural interpretation of each of the underlined terms (see Figure 4.3 for a
scheme). ∆3 corresponds to the limiting density of time of occurrence of an ancestral resistant
cell. ∆2 can be seen as an approximation of the probability that a cell, appeared at time s, has
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more than xeλ1tN offspring at time tN . Indeed,

P
(

Z̃(tN − s) > xeλ1tN |Z̃(0) = 1
)

−→
N→∞

∆2,

with Z̃ a birth-and-death process with parameters b1 and d1. Finally, the factor ∆1 = ω
2 (1 +

2b0s) represents the mean number of mutations carried by a cell appeared at time s, which
is proportional to the number of times a sensitive cell divides before becoming resistant at
time s. Indeed, ω/2 is the mean number of mutations that a cell gets after one division.
(1 + 2b0s) corresponds to the mean number of divisions found in the ancestral lineage of an
ancestral resistant cell that appeared at time s. The factor 2 in front of b0 has already been met
in previous works on branching processes (see [10]).

Figure 4.3 – Schemes of the computations of the number of mutations shared by a large number
of cells. (Left) Scheme for the computation of E[SN

x (tN)]. (Right) Scheme for the computation of
E[SN

x (tN)].

The approximation of E[SN
x (tN)] can also be decomposed into several contributions to

simply understand the result obtained. As previously, this approximation can be seen as the
expected number of ancestral resistant cells multiplied by the contribution of one ancestral
resistant cell, as

b0γωλ1K(x)N1−α =
2b0γ

λ0
N1−α︸ ︷︷ ︸

number of
ancestral

resistant cells

∫ ∞

0

(∫ u

0
ωb1eλ1(u−s)λ0e−λ0sds

)
︸ ︷︷ ︸

Ω1

λ1

b1
e−x λ1

b1
eλ1u

︸ ︷︷ ︸
∆2

du.

The integral term Ω1 represents the number of mutations, from resistant divisions, that
appeared at time u (see Figure 4.3 for a scheme). Indeed, the time of emergence of an
ancestral resistant cell has, in the limit, an exponential distribution of parameter λ0. Then
ω represents the mean number of mutations due to one division, b1 du represents the
probability that a resistant cell divides in a interval [u, u + du] and eλ1(u−s) represents the
number of progeny at time u of an ancestral resistant cell appeared at time s. The factor ∆2 is
the same as the one discussed above.
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Finally, we gave partial results on the number of mutations carried by exactly iN resistant
cells, with iN ∼ eλ1tN when N → ∞. We were able to derive the approximation of E[SN

iN
(tN)],

which corresponds to b0γωλ1 K′(x)N1−λ1t−α, but not the one of E[SN
iN
(tN)]. Indeed, we are

not able to control the influence of the kinship events between ancestral resistant cells to obtain
this quantity. Simulations seem to show that both contributions are of the same size order
(see Figure 4.4) and that we need both computations to conclude on the value of E[SiN (tN)].
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iN
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0.06 Empirical expected SNiN(tN)

Empirical expected SNiN(tN)

Empirical expected S
N
iN

(tN)

Figure 4.4 – Empirical expectation of SN
iN
(tN), SN

iN
(tN) and SN

iN
(tN) for large values of iN , i.e iN ∈

[200, 700]. The orange bullets, the pink and green lines correspond to the empirical expectation over
50 000 realizations, respectively, of SN

iN
(tN), SN

iN
(tN), and SN

iN
(tN). N = 500

Ideas of proofs. As explained previously, the quantities were computed by dividing into
two contributions: SN

i (t), the number of neutral mutations that appeared in resistant cells,
and SN

i (t), the ones that appeared in sensitive cells. Moreover, each of both contributions
were considered as the sum of

(1) the part provided by the progenies (of the initial sensitive cells) that include exactly
one ancestral resistant cell,

(2) and the part provided by the progenies that carry two or more ancestral resistant cells.

With this in mind, we studied first the law of the emergence time of an ancestral resistant
cell conditioned on belonging to a progeny that includes exactly one ancestral resistant cell.
Precisely, such time was proved to be an exponential time whose parameter converges to λ0

when N → ∞. This allowed us to compute the first parts (1) described above.
Secondly, we computed the expected number of multiple ancestral resistant cells in a

progeny, which helped us to conclude that the second parts (2) described above are negligible
when N → ∞ with respect to the first ones (1) in every situation of our interest.
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4.3 Perspectives

4.3.1 Convergence in law of the SFS

The results presented above have the disadvantage of being based on the expectation of
the Site Frequency Spectrum. However, in biological experiments, we rarely have access to
information on the expectation that will require a large number of replicates. Instead, the
experiments correspond to a single realization of the process. It would therefore be interest-
ing to obtain more precise information. For example, in a recent preprint [53], the authors
give almost sure convergences of the number of mutations shared by a small number of
cells, within the framework of an exponentially growing population starting with one cell.
Similarly, with Céline Bonnet, we are currently working on extending our results to obtain
stronger convergences of the number of mutations shared by a large number of cells in the
context of rescue dynamics. A significant difference in behavior is already expected for mu-
tation rates of order 1/Nα with α < 1 and those of order 1/N. In the first case, we will
observe averaging due to the large number of mutations, which will bring us back to the
work presented previously, whereas the second case is much more challenging, since the
number of mutations will be finite a.s.

Other extensions are also under consideration in order to take into account more realistic
models, by studying more complex population dynamics with interactions between cells for
example, or by considering that more than one mutation is required before the acquisition
of resistance (see the preprint [91] for example).

4.3.2 Genetic composition of an exponentially growing population

As part of his thesis, Vianney Brouard focused on precisely describing the genetic composi-
tion of an exponentially growing population subject to rare mutations. Precisely, the mutation
probabilities are modeled as negative powers of a parameter n whereas the typical popula-
tion sizes of interest are positive powers of n. Such models or similar ones are commonly
used to model the expansion of tumors and the appearance of resistance [37, 25]. Vianney
Brouard was able to describe the first-order asymptotics of the size of each subpopulation
[16] at any time, in the case of neutral or deleterious mutations.

In an ongoing project with Vianney Brouard, we are extending these results for selective
mutations. This is of particular interest in this context, as one can imagine that resistance
or more aggressive cells can appear spontaneously. However, it remains challenging as the
mathematical techniques and tools needed are different from the previous works of this
subject.

In the longer term, we could also study this model under a changing environment, mod-
eling for example the administration of various treatments during certain periods. This is
particularly appropriate in the context of oncology, where current research is focusing on the
effects of alternating treatments [62].
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Stochastic models of evolving populations: diversity, spatial
structures, cooperative behaviors and mating preferences

Ce manuscrit présente un résumé de mes travaux de recherche qui se situent à
l’interface entre les mathématiques et la biologie. Plus précisément, la majeure partie de
mes travaux repose sur des modèles probabilistes qui décrivent, à un niveau individuel,
la dynamique de populations soumises à différentes forces évolutives. Il est alors pos-
sible d’étudier différentes renormalisations de ces processus - mimant des hypothèses
biologiques de grandes populations, de temps long, de mutations rares,... - afin d’obtenir
des convergences vers des limites macroscopiques, qu’elles soient déterministes ou
stochastiques. Ces limites sont également analysées pour obtenir des résultats quantifiés
sur les comportements des populations modélisées.

En utilisant à la fois des outils stochastiques et déterministes, mon objectif est ainsi de
comprendre les forces évolutives et les mécanismes naturels contribuant à l’émergence et
au maintien de la diversité au sein des populations. Le premier chapitre se concentre sur
l’impact des structures spatiales et des comportements coopératifs. Le deuxième chapitre
explore le rôle de la reproduction sexuée, notamment autour de la question des liens en-
tre préférences sexuelles et spéciation d’espèces. Le troisième chapitre présente des résul-
tats sur les temps d’extinction d’un modèle macroscopique stochastique de dynamique
de populations soumises à un environnement externe. Enfin, le quatrième chapitre se
penche sur l’étude de populations de cellules tumorales soumises à des mutations neu-
tres fréquentes, en particulier, en présentant des caractérisations des distributions de ces
mutations pour des populations soumises à un traitement.


	Contents
	List of Figures
	Introduction
	Diversity, space and cooperation
	Introduction
	Spatially structured population
	Trait substitution sequence
	Diversity

	Cooperative behaviors
	Soil bacteria and common good
	Mutualist species

	Perspectives
	Adaptive dynamics and limiting processes
	Cooperative behavior


	Mating preferences and diversity
	Introduction
	Emergence of assortative mating
	Speciation and assortative mating
	Haploid population
	Diploid population

	Diversity and disassortative mating
	Perspectives

	CSBP with competition in random environment
	Introduction and model
	Lévy environment
	Logistic competition in a Brownian environment
	Case associated with a subordinator
	Second case
	General competition for branching diffusion in a Brownian environment

	Recent results and Perspectives

	Genetic composition of tumor cell populations
	Introduction
	Rescued population
	Perspectives
	Convergence in law of the SFS
	Genetic composition of an exponentially growing population


	Bibliography

