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Abstract

This manuscript presents certain aspects of high-frequency wave propagation in randomly perturbed
media. First, a particular attention is given to the role played by long-range correlations of the medium
fluctuations. This property find applications in various areas of physics, engineering, and medical
imaging for instance. The interactions between random fluctuations with long-range dependencies and
oscillatory behaviors result in intriguing effects, leading to multiscale phenomena. Such multiscale
properties contrast with scenarios involving random fluctuations with short-range correlations or
mixing properties, where the stochastic effects are observed on a well-defined scale. These multiscale
phenomena are investigated within the context of a stochastically forced nonlinear oscillator, the
Schrédinger equation, the wave equation, and the radiative transfer equation. These properties are
also investigated numerically, using a time-splitting scheme for the Schrodinger equation, and the
design of a Monte-Carlo method in the context of radiative transfer.

Secondly, this manuscript describes the role played by boundaries or interfaces in the propagation
domain. Radiative transfer models are discussed for propagation media with boundaries: a half-space,
a slab, and a rectangle are considered. Each of these scenarios exhibits interference phenomena that
affect the energy propagation at specific locations, and for which the geometry of the propagation
media plays a critical role. The role played by rough boundaries and interfaces is discussed under
two scenarios. First, a waveguide model inspired by underwater acoustics is considered, in which
waves evolve along a randomly perturbed ocean surface and uneven bottom topography. Second, the
standard problem of transmission and reflection at an interface is revisited. This time a wave impinges
upon a random interface, and generalized Snell’s laws for reflection and transmission are derived.

Finally, an aspect of mathematical biology is discussed, focusing on the stochastic and deterministic
modeling of secondary metastatic emission. The relation between these two approaches allow the risk
evaluation of a metastatic disease, even when unobservable at the time of cancer diagnosis.



Résumé

Ce manuscrit présente certains aspects de propagation d’ondes hautes fréquences dans des milieux
aléatoires. Dans un premier temps, une attention particuliere est accordée au roéle joué par les cor-
rélations a longue portée des fluctuations du milieu de propagation. Cette propriété trouve des
applications dans divers domaines en physique, ingénierie et en imagerie médicale par exemple. Les
interactions entre des fluctuations aléatoires ayant des dépendances a longue portée et des comporte-
ments oscillatoires produisent des effets surprenants, conduisant a des phénomenes multi-échelles. Ces
propriétés multi-échelles contrastent avec les comportements effectifs observés pour des fluctuations
aléatoires avec des propriétés de mélange ou de corrélations a courte portée. Dans ce dernier cas les
effets stochastiques sont observés sur une échelle bien définie. Ces phénomeénes multi-échelles sont
étudiés dans le contexte d’'un oscillateur non linéaire avec un terme source aléatoire, de I’équation
de Schrédinger, de ’équation des ondes et de I’équation de transfert radiatif. Ces propriétés sont
étudiées numériquement a 'aide un schéma time-splitting pour I’équation de Schrédinger et la mise
en place d’'une méthode de Monte-Carlo appropriée pour le transfert radiatif.

Dans un deuxiéme temps, ce manuscrit décrit le role joué par les frontieres, ou interfaces, du
domaine de la propagation. Les modeles de transfert radiatif sont abordés pour des milieux de propa-
gation avec des frontieres : un demi-espace, une couche et un rectangle. Chacun de ces cas présente des
phénomenes d’interférence qui affectent la propagation de I’énergie a des endroits spécifiques, et pour
lesquels la géométrie du milieu de propagation joue un rdle essentiel. Le role joué par des frontiéres,
ou interfaces, rugueuses est présenté dans deux contextes différents. Tout d’abord, nous présentons
un modele de guide d’ondes inspiré de I'acoustique sous-marine, dans lequel les ondes évoluent le long
de la surface de l'océan et d’un fond marin irrégulier. Ensuite, nous revisitons le probleme classique
de transmission et réflexion d’une onde incidente par une interface aléatoire. Des généralisations des
lois de Snell-Descarte pour la réflection et la transmission sont proposées.

Enfin, un aspect de mathbio, concernant la modélisation stochastique et déterministe de I’émission
secondaire de métastases, est présenté. La relation entre ces deux approches permet d’évaluer le risque
métastatique, méme lorsque celles-ci ne sont pas observables au moment du diagnostic du cancer.



Acknowledgments

First and foremost, I would like to express my gratitude to the referees of my habilitation thesis,
Liliana Borcea, Tomasz Komorowski, and George Papanicolaou. It is a great honor that they took
the time to evaluate my work, and I am especially thankful to Liliana for participating in the defense
committee in person.

I am equally honored to have Sonia Fliss, Antoine Gloria, Rémi Rhodes, and Eric Savin on
the defense committee. Special thanks go to Rémi for accepting the role of local mentor for the
habilitation process and handling the associated administrative duties. I also thank Guillaume Bal
for his administrative report recognizing the eligibility of my habilitation application.

I sincerely thanks Josselin Garnier, not only for being part of the defense committee but also for
having been a very nice Ph.D. advisor. I am also deeply grateful to Lenya Ryzhik for hiring me as a
postdoc at Stanford, where I spent two unforgettable years in California. I realize how lucky I was to
begin my research career under such excellent conditions with wonderful advisors, both in terms of
their human and scientific qualities.

I extend my gratitude to all my collaborators for the stimulating discussions and exciting projects
we are working on. Thanks also to my colleagues at 12M, LMA, and the Qarma team for the en-
joyable moments during coffee breaks, lunches, scientific-social events, informal or teaching-related
discussions,... and even doing some maths sometimes. Special thanks to Caroline Bauzet, for pro-
viding me materials to go through all the administrative processes of the habilitation more easily, as
well as Joelle Pieret, at the habilitation office, for her administrative flexibility, which allowed me to
defend this habilitation on time.

Finally, a special thanks to my wife and kids for their support and our nice everyday life moments.



Contents

Abstract 1
Résumé 2
Acknowledgments 3
List of publications 6
Introduction 7
1 Random perturbations with long-range correlations and nonlinear oscillators 16
1.1 Random fluctuations with long-range correlations . . . . . . . ... .. ... ... ... 17
1.2 A non-central limit theorem . . . . . . . . ... L oL o 19
1.3 A randomly perturbed nonlinear oscillator . . . . . . . ... ... .. ... ... ..., 20
1.3.1 Diffusive limit for a quadratic Hamiltonian . . . . . . . . ... ... ... ... 20

1.3.2 Diffusive limit for the general Hamiltonian with one non-degenerate critical point 21

1.4 Perspectives . . . . . . . . e e 24

2 Random Schrédinger equation with long-range correlations 26
2.1 The random potential . . . . . . . ... L 27
2.2 Phase modulation . . . . ... Lo 28
2.3 The Wigner transform . . . . . . . . ... L e 29
2.4 Lossof coherence . . . . . . . . . . L 31
2.5 Radiative transfer regime . . . . . .. .. L L o 32
2.6 Asymptotic preserving time-splitting schemes . . . . . .. ... ... 33
2.6.1 The phase modulation . . . . . ... .. .o L 34

2.6.2 Lossofcoherence . . . . . . . . . . 35

2.6.3 Radiative transfer regime . . . . . . . . .. ... L 35

2.7 Perspectives . . . . . . . e e e e 36

3 Wave propagation in random media with long-range correlations 37
3.1 Random waveguides . . . . . . . . . L e e e 39
3.2 Paraxial approximation and fractional It6-Schrédinger equation . . . . . . . . . . . .. 42
3.2.1 Paraxial scaling regime . . . . . .. ... L L 43

3.2.2 Main result and properties . . . . . .. ..o Lo 44

3.2.3 Stochastic integral and fractional It6-Schrédinger equation . . . . . . . . . .. 45

3.3 Effective fractional paraxial wave equation . . . . . . . . . . ... ... ... ... ... 47
3.3.1 The random fluctuations . . . . . . . . . ... .. 47

3.3.2 Scaling regime . . . . ... e 48

333 Mainresults. . . . . . ... 49

3.4 Perspectives . . . . . .o e 52



4 Radiative transfer with nonintegrable singular scattering kernels 54
4.1 Regularizing effects . . . . . . . .. 56
4.2 Diffusion imit . . . . . . . . . . e 57
4.3 A Monte-Carlo methods for radiative transfer with singular kernels in 2D propagation

media . . ..o L e 58
4.3.1 The ACR method . . .. .. .. .. . ... . 59
4.3.2 The AS method . . . . . . . . .. 60
4.3.3 Numerical INustrations . . . . . . . .. ... . L o 61
4.4 A Monte-Carlo method for 3D radiative transfer equations with multifractional singular
kernels . . . . . L 64
4.4.1 Approximation and probabilistic representation . . . . . .. ... ... 65
4.4.2 The Monte-Carlo method . . . . . . .. ... ... .. ... ... . ... . 67
4.4.3 Numerical illustrations . . . . . . . .. ... L L 68
4.5 Perspectives . . . . . . Lo e e e 73

5 Boundary effects and weak localization in radiative transfer 75

5.1 Boundary effects for a half-space . . . . . . .. ... ... ... L. 76
5.1.1 The method of images . . . . . . . . . . ... 76
5.1.2 Radiative transfer model and boundary effects . . . . .. ... ... ... .. 78

5.2 Weak localization phenomena foraslab . . . . ... .. .. ... ... 0. 79
5.2.1 The method of images . . . . . . . . . . .. L L 80
5.2.2  The self- and cross-Wigner transforms . . . . . . ... ... . 0L 81
5.2.3 Boundary effects and weak localization phenomena . . . . . . . ... ... ... 81

5.3 Thecaseof arectangle . . . . . . . . . .. L 83

5.4 Perspectives . . . . . . Lo 86

6 Wave scattering by rough surfaces 88

6.1 A Pekeris waveguide model with a rough surface and bottom topography . . . .. .. 88
6.1.1 Waveguide model . . . . . . . ... Lo 89
6.1.2 The conformal mapping . . . . . . .. ... L 91
6.1.3 Mainresult . . . . . . L e 92

6.2 Reflection and transmission problems of high-frequency waves through a randomly
perturbed interface: generalized Snell’slaws . . . . . . ... ... ... ... ... ... 94
6.2.1 The physical model . . . . . . . ... L 95
6.2.2 Refection and transmission for an unperturbed interface . . . . . . . .. .. .. 97
6.2.3 Random specular components for lo ~ 719 (y=1/2) . . . . ... ... 99
6.2.4 Effective specular components for I < rg (v >1/2) ... ... ... ... ... 100
6.2.5 Incoherent wave fluctuations and generalized Snell’s laws for [, < r¢ (y > 1/2) 101
6.2.6 Gaussian statistics of the speckle patterns for I, < rg (y>1/2) . .. ... ... 105

6.3 Perspectives . . . . . . . e 106

7 Digressions in mathematical biology: Stochastic and deterministic models for the
secondary metastatic emission process 107
7.1 A simple probabilistic framework for metastatic risk . . . . . ... ... 108
7.2  Mathematical formalism and results . . . . . . ... ... L L 108

7.2.1 Size-structured model . . . . . ... L 108
7.2.2  Probabilistic framework for secondary metastatic emission . . . . . . . ... .. 110
7.3 Numerical illustrations . . . . . . . . . . .. 111
7.4 Perspectives . . . . . . L L 112



List of publications

[1] C. GoMEz, Time-reversal superresolution in random waveguides, STAM Multiscale Model. Simul.,
7 (2009), pp. 1348-1386

[2] C. GoMmEZ, Wave propagation in shallow-water acoustic random waveguides, Commun. Math. Sci.,
9 (2011), pp. 81-125

[3] C. GOMEZ, Radiative transport limit for the random Schroddinger equation with long-range cor-
relations, J. Math. Pures Appl., 98 (2012), pp. 295-327

[4] C. GoMEzZ, Wave decoherence for the random Schroédinger equation with long-range correlations,

Commun. Math. Phys., 320 (2013), pp 37-71

[5] C. GOMEZ, Loss of resolution for the time reversal of wave in underwater acoustic random chan-
nels, Math. Mod. Meth. App. Sci., 23 (2013), pp. 2065-2110

[6] C. GOMEZ AND O. PINAUD, Asymptotics of a time-splitting scheme for the random Schriodinger
equation with long-range correlations, Math. Model. Numer. Anal., 48 (2014), pp. 411-431

[7] C. GOMEZ, Wave propagation in underwater acoustic waveguides with rough boundaries, Commun.
Math. Sci., 13 (2015), pp. 2005-2052

[8] C. GoMmEZ, O. PINAUD, AND L. RYZHIK, Hypoelliptic estimates in radiative transfer, Commun.
Part. Diff. Eq., 41 (2015), pp. 150-184

[9] C. GoMmEzZ, O. PiNAUD, AND L. RyZHIK, Radiative transfer with long-range interactions: regu-
larity and asymptotics, STAM Multiscale Model. Simul., 15 (2017), pp. 1048-1072

[10] C. GoMmEzZ AND O. PINAUD, Fractional white-noise limit and paraxial approximation for waves
in random media, Arch. Rat. Mech. Anal., 226 (2017), pp. 1061-1138

[11] C. GoMmEzZ AND N. HARTUNG, Stochastic and deterministic models for the metastatic emission

process: formalisms and crosslinks, Cancer Systems Biology : Methods and Protocols, Springer
2018

[12] C. GoMEz AND K. S@LNA, Wave propagation in random waveguide with long-range correlations,
Commun. Math. Sci., 16 (2018), pp. 1557-1596

[13] C. GoMEz AND O. PINAUD, Monte Carlo methods for radiative transfer with singular kernels,
STAM J. Sci. Comput., 40 (2018), pp. A1714-A1741

[14] C. GoMEZ, G.IYER, H. LE, AND A. NoVIKOV, An oscillator driven by algebraically decorrelating
noise, Commun. Math. Phys., 402 (2023), pp. 231-284

[15] C. GoMEzZ AND O. PINAUD, A Monte Carlo method for 3D radiative transfer equations with
multifractional singular kernels, J. Comput. Phys., 489 (2023), 112279

[16] A. MEssaoupi, R. COTTEREAU AND C. GOMEZ, Boundary effects in radiative transfer of
acoustic waves in a randomly fluctuating half-space, STAM Multiscale Model. Simul., 21 (2023), pp.
1299-1321

[17] C. GOMEZ, An effective fractional paraxial wave equation for wave-fronts in randomly layered
media with long-range correlations, SIAM Multiscale Model. Simul., 21 (2023), pp. 1410-1456

[18] A. MEssaoupl, R. COTTEREAU AND C. GOMEZ, Weak localization in radiative transfer of
acoustic waves in a randomly-fluctuating slab, submitted (hal-04174463).

[19] C. GoMEZ AND K. S@LNA, Reflection and transmission problems for high-frequency waves at a
randomly perturbed interface: generalized Snell’s laws, submitted (hal-04317227).



Introduction

The present manuscript gathers all my scientific contributions dating back to my Ph.D. defense. The
main topic revolves around the propagation of high-frequency waves in randomly perturbed media un-
der various angles encompassing theoretical and numerical aspects. These researches cover scalar wave
propagation, governs by the standard wave equation, as well as the random Schrédinger equation.
Although the Schrédinger equation is known as the fundamental equation of quantum mechanics,
describing the motion of wave functions at the atomic level, it can also be derived from the standard
wave equation to elucidate wave-front propagation for high-frequency collimated waves at the macro-
scopic level. This latter approximation, known as paraxial (or parabolic) approximation, is widely
used in practice as it strongly simplifies the description of physical phenomena at the macroscopic
scale, along with the corresponding numerical simulations. In practical aspects the fine scales of vari-
ation occurring within the propagation media cannot be described exactly. These fluctuations can
have various origins: impurities within the propagation medium, salinity or temperature variations,
or even geometric perturbations of the medium itself for instance. Therefore, it is natural to treat
some propagation media as inherently random. For a given situation, the fluctuations occurring in
the propagation medium are deterministic, but they can be considered as a realization of a random
process. This manuscript specifically focuses on weak scattering type regimes. Roughly speaking, for
high-frequency waves, this regime corresponds to propagation media characterized by fast fluctuations
occurring at the same rate as the wave frequency, while having low amplitudes. Despite the relatively
small amplitudes of these fluctuations, the high-frequency waves and fast variations of the propagation
media lead to strong interactions, resulting to significant cumulative stochastic effects on the prop-
agating waves. The microscopic description provided by the wave equation at the wavelength scale
(which is small for high-frequency waves), or by the Schrédinger equation, is in many cases too rich or
too complex to be effectively exploited theoretically or numerically at large macroscopic scales. The
derivation of macroscopic models from the microscopic dynamics aims to capture effective features or
behaviors that prove useful for applications or theoretical studies on macroscopic scales. By mean of
considerations on characteristic scales of the problem at hand, interesting macroscopic models that
highlight the main characteristics can be identified. These models offer an effective statistical descrip-
tion of the effects on the propagating waves and can serve as the foundation for imaging techniques
among other applications. Importantly, these derived macroscopic models do not depend on specific
(unknown in practice) realizations of the medium fluctuations, but rather on their statistical proper-
ties through power spectral densities. Various models of power spectra can be found in the physical
literature. Well known examples include the Kolmogorov power spectrum for standard atmospheric
turbulence, the Pierson-Neuman or Pierson-Moscvitz spectra for the modeling of the swell in under-
water acoustics, Gegenbauer scattering kernel in neutronics, and Henyey-Greenstein scattering kernel
for imaging through biological tissues, among others.

It is worth mentioning that both the wave equation and the Schrédinger equation can be related
to radiative transfer models that describe scattering properties and energy propagation through ran-
dom media at the macroscopic scale. The concept of radiative transfer is one of the main aspect
of this manuscript. The origin of this theory trace back to 1871, when the physicist John William
Strutt (lord Rayleigh) conducted pioneering researches on the scattering of light by the atmosphere,
shedding light on the explanation for the color of the sky. The theory of radiative transfer as a well-
defined mathematical framework took shape in the early 20th century mainly due to the efforts of



Eugen von Lommel (1887), Orest Khvolson (1890), and Arthur Schuster (1905). A. Schuster plays a
pivotal role in this theory when, in 1905, he formulated a radiative transfer problem to elucidate the
origins of absorption and emission lines observed in stellar spectra [185]. In the 1930s, Subrahmanyan
Chandrasekhar made remarkable contributions to the field of radiative transfer by developing a more
comprehensive version of the radiative transfer equation that could be applied to a wide range of
astrophysical problems [48]. Chandrasekhar’s equation incorporates the intricate interplay of scatter-
ing, absorption, and emission of radiation within stellar atmospheres. Consequently, radiative transfer
theory experienced a surge in prominence among the astrophysics community during the first half of
the 20th century. Today, radiative transfer models find applications in many other areas such as
neutronics, optics, geophysics, weather forecasting, and even the illumination of scenes in animated
movies. Despite the stochastic nature of wave propagation problems, the associated radiative transfer
models are deterministic, exhibiting therefore a property called self-averaging. When looking a the
wave energy, this property results from highly-oscillating random phases that average out, leading to
deterministic quantities. Rigorous derivations of the radiative transfer equation from the Schrédinger
equation can be found in [18,66,92] and for the wave equation in [45,180].

A significant part of the results in this manuscript is based on approximation-diffusion theorems
for random ordinary differential equations or partial differential equations. Stochastic diffusion pro-
cesses, defined as solutions to stochastic (partial) differential equations, can serve as a macroscopic
model to describe effective wave scattering properties. The first results related to approximation-
diffusion date back to 1966 with the pioneer works of Rafail Khasminskii [128,129]. These asymptotic
results were further extended to the general context of random fluctuations with mixing properties
by George C. Papanicolaou and Werner Kohler in 1974 [171]. Additionally, martingale techniques
were employed in this context by George C. Papanicolaou, Daniel W. Stroock and S. R. S Varad-
han [173], as martingales and diffusion processes exhibit close connections [197]. This approach has
found a wide range of applications in the field of wave scattering as discussed in [70]. The main
applications of these models are to devised imaging and inverse problem techniques involving waves
in complex media [35-38,80,88]. For instance, imaging functionals characterizing object localizations
buried in strongly scattering propagation media can be designed by incorporating explicit quantities
from macroscopic models accounting for wave scattering. Imaging methodologies have also been pro-
posed by leveraging radiative transfer models [20,21]. The use of macroscopic models to design these
imaging functionals results in efficient inversion methodologies as they accurately represent scattering
phenomena responsible for the degradation of the recorded signals at sensors.

There is an extensive literature describing physical systems perturbed through white-noises, Markov
processes, or processes with mixing properties. These choices are related to the notion of memory-
less perturbations, and under proper assumptions give rise to diffusion phenomena. Despite earlier
findings, the notion of long-range dependence, as a distinct phenomena, started gaining recognition
in the early 1960’s thanks to a series of paper by Benoit Mandelbrot and James Wallis [146, 147].
These works were spurred by empirical observations from Harold E. Hurst [118,119] in the 1950’s
regarding the water flow in the Nile river. Random fluctuations with long-range dependencies exhibit
memory properties and can lead to anomalous diffusion phenomena as well as interesting macro-
scopic phenomena in physical systems such as for the Schrédinger equation [13,15,51,106], the heat
equation [131], turbulent transport [67,132-135], or the wave equation [153,154,191]. This notion
of long-range correlations plays also a central role in this manuscript, from Chap. 1 to 4, through
the study of nonlinear oscillators, the Schrodinger equation, the wave equation, or radiative trans-
fer models. It unveils interesting properties when studied at various propagation scales, and even
whithin numerical schemes for the random Schrédinger equation. Analyzing the asymptotic behavior
of random ordinary differential equations or partial differential equations involving long-range corre-
lations presents inherent technical challenges. The standard martingale approach, typically applied
for mixing random fluctuations, may not be suitable for situations involving long-range correlations.
In such cases one often resorts to the rough path theory [74,152] or a moment technique [15,67] as
an alternative approach. Monte-Carlo methods for radiative transfer models, related to randomly
perturbed propagation media with long-range correlations, are also presented. The fundamental idea
behind this method is to express the solution of the radiative transfer equation as an expectation of
an appropriate Markov process, whose infinitesimal generator corresponds to the scattering properties
(scattering kernel) of this equation. In the context of long-range correlations, the scattering properties
exhibit a singular behavior giving rise to technical challenges. Although energy is scattered in every



directions, the singularity allocates an infinite weight on infinitely small changes of directions of the
underlying Markov process [96], rendering the standard notion of mean-free path/time invalid.

Scattering of waves by rough surfaces is a fundamental phenomenon with profound implications
across various fields of physics and engineering. Problems related to the role played by boundaries
or interfaces are discussed in Chap. 5 and 6. The understanding of these phenomena is of signif-
icant importance across a wide spectrum of disciplines including optics, solid state physics, remote
sensing, radar technology, environmental monitoring, communications, and non-destructive testing
among others [29,57,120,169]. The interplay between waves and rough surfaces results in complex
phenomena of reflection, transmission, and diffraction, that necessitates the generalization of the
standard Snell’s laws of refraction and transmission. The influence of random boundaries has also
been studied in various physical contexts. For instance, in fluid flows within a medium with random
boundaries [30], water wave propagation with a free surface or a random depth [63,81], and also in
wave propagation in underwater acoustics with a perturbed sea surface [61,137]. While not randomly
perturbed, boundaries can also lead to technical difficulties in radiative transfer and interesting inter-
ference effects, such as intensity enhancement at boundaries and weak localization effects as described
in [47,76], for instance. The derivation of radiative transfer models usually takes place in the full
physical space R? [12,45,180], and some adjustments are required to deal with propagation media
involving boundaries. In particular, the main tool to derive radiative transfer equations is the Wigner
transform, which is not directly well-suited to address the presence of boundaries. This is a reason
why such situations have been less studied in the literature [2,22,150,161,181]. For instance, in the
case of a half-space, the standard radiative transfer equation is equipped with boundary conditions
corresponding to a geometric optic type reflection of the energy. This condition is valid for both
Dirichlet and Neumann boundary conditions. To account for interference effects at boundaries, the
Wigner transform needs to be considered carefully.

One aspect of mathematical biology is also discussed (Chap. 7) while not being entirely discon-
nected from the ideas discussed for wave propagation. Mathematical models are valuable tools to gain
insights into complex biological processes, such as population dynamics, disease dissemination, eco-
logical interactions, and cellular behavior. These models enable quantitative analyses and predictions
for biological systems, thus yielding a deeper understanding of these intricate phenomena. Metastasis
are responsible for most cancer-related deaths and constitutes a pivotal point in course of the cancer
disease [209]. However, knowing that metastases smaller than approximately 107 cells remain unde-
tectable by medical imaging and other diagnostic tools, the clinical absence of visible metastases may
not accurately represent a patient’s true metastatic status. Consequently, the estimation of metastatic
risk in cancer patients without observable metastases holds significant clinical importance [170]. In
this context, probabilistic techniques have the potential to derive risk scores from clinical data. For
instance, probabilistic representation and Monte-Carlo methods can serve as valuable tools to handle
complex PDE models, such as the Iwata model for metastatic emission [122]. After model inference
from clinical data, the Monte-Carlo approach can be used in assessing forecast uncertainty and for
diagnosis purposes.

The remaining of this section is dedicated to providing a chapter by chapter overview of the
contents of this manuscript, along with the corresponding main results.

Chapter 1

The notion of random fluctuations exhibiting long-range correlations plays a central role in this
manuscript (from Chap. 1 to 4). A stationary process v is said to have long-range correlations or
dependencies if its two-point correlation function

R(t) :=E[V(t+ s)V(s)],
for (t,s) € R x R, decays slowly enough at infinity,

R(1) Fo

~ 0
[t|—oo |t

v € (0,1],

to not be integrable:

/ﬂﬂﬂﬁ:m
0



This is in contrast with the notion of short-range correlations for which the correlation function is
integrable at infinity. As outlined in this manuscript, the mere distinction between long-range and
short-range correlations can result in drastically different behaviors in noisy physical systems. Some
examples of stochastic processes or random fields are provided in this chapter, and one of them
provides a construction that will be used in the following chapters.

The remaining of this chapter describes the long-time behavior of a stochastically forced nonlinear
oscillator with 1 degree of freedom

E(t) + f(z(t)) = V(1) t>0.

Here f: R — R is a given smooth function, and V is a stochastic process with long-range correlations
representing the noise. This situation provides a simple framework highlighting the interactions
between random fluctuations with long-range correlations and oscillatory behaviors. The parameter
€ < 1 represents the amplitude of these random fluctuations. It turns out that the noise itself has a
nontrivial behavior over a time scale of order

1 : Y

More precisely, the process defined by

t/el/y’
ve(t) = 5/ V(s)ds t>0,
0

converges in law, in the space of continuous functions, to a fractional Brownian motion with Hurst
index $ depending on the decay rate of the correlation function «. This result is known as non-central
limit theorem [152,202,203]. A one dimensional standard fractional Brownian motion Wy with Hurst
index $), on a probability space (2, 7,P), is a centered Gaussian process with covariance function

E[Wa (1) Wy (5)] = 5(°° + 57 — |t — 5/,

for any t,s > 0. The case ) = 1/2 corresponds to a standard Brownian motion.

The non-central limit theorem is in contrast with the standard invariance principle, which relies
on the standard central limit theorem for processes with short-range correlations or mixing properties
[139,152]. For the latter the appropriate time scale to observe nontrivial stochastic effects is 1/g2.
Long-range correlations provide nontrivial stochastic effects that become apparent at shorter time
scale compared to situations involving short-range correlations or mixing properties:

61% < 5% for  $He(1/2,1).

A more general non-central limit theorem is discussed in this chapter. One can naturally wonder how
such statistical behavior affects the one of the nonlinear oscillator. It turns out that the energy of
the system exhibits nontrivial diffusive effects only at time scales of order 1/&2 despite fluctuations
with long-range correlations, and not at shorter time scales. This scale aligns with the one at which
diffusive effects become apparent when considering fluctuations with short-range correlations or mixing
properties within the oscillator system. As a result, even though the random perturbations exhibit
a degenerate behavior at the time scale 1/£2, the oscillatory behavior of the system prevents the
emergence of pathological behaviors. In the limit € — 0, the energy of the system can be described
through a standard diffusion process similar (though not identical) to the one of the classical result [71]
for a white-noise perturbation. More precisely, considering a smooth Hamiltonian

y2 x
H(w,y)=§+/0 f(s)ds  x,y€R,

with exactly one non-degenerate critical point at (0,0), which is also the global minimum, and V' be
a stationary Gaussian noise with long-range correlations, we observe the following convergence in law
in C(0, 00),

H(X®) = X.

e—0
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Here, X¢(t) = (z(t/e?),i(t/e?))T and X is a diffusion process driven by a standard Brownian motion
(and not a fractional Brownian motion), with infinitesimal generator similar to the one of the standard
Freidlin and Wentzell theory with white-noise perturbations of the oscillator [71-73].

This chapter covers the results obtained in [14] of the publication list on page 6, and was conducted
during Hai Le’s Ph.D. program under the supervision of A. Novikov at Penn State University.

Chapter 2

The first situation we present to describe the influence of long-range correlations on a wave propagation
problem concerns the Schréodinger equation with a time-dependent random potential. More precisely,
we consider the wave function ¢ which satisfies

1
i0r + §qub —-V(t,x)p=0 t>0, xecR%

where V' exhibits long-range correlations w.r.t. the time variable. The long-time behavior of ¢ is
studied under the weak scattering regime that consists of small random fluctuations, of order /e,
with ¢ < 1, as well as the time and space scaling

t X
¢€(t,X) = ¢(ga g)
The parameter s > 0 represents how long and how far the wave function propagates. Under this
scaling the Schrodinger equation now reads

2s

= € _ LoXNy =
i€*Oude + - Bt = VEV (5,25 )6 = 0. 1)

To observe non-trivial cumulative stochastic effects on the wave function ¢, in the limit ¢ — 0, an
appropriate choice of s needs to be made. Considering short-range correlations or mixing properties
for the potential V' leads to the unique choice s = 1 [15]. In case of long-range correlations the
situation is much richer. Equipped with appropriate initial conditions, the latter scaled Schrodinger
equation exhibits effective multiscale effects w.r.t. the propagation parameter s. In [15] the authors
show that for an appropriate choice of s = sq, corresponding to the non-central limit theorem scaling,
the wave function exhibits a random phase modulation driven by a unique fractional Brownian motion
for all the wavevectors supported by the wave function.

This chapter describes how the wave function is affected when it propagates over longer scales,
that is when s > sg. Over such scalings the wave function experiences a highly oscillating random
phase modulation that is expected to break the wave function coherence. In this context the main tool
to analyze this loss of coherence is based on a properly scaled Wigner transform of the wave function.
This Wigner transform relates to the Fourier transform of the correlation function of the wave function
at two nearby points. The resulting diffusive behaviors w.r.t. the momentum variable (the Fourier
variable of the Wigner transform) quantifies the effective loss of coherence of the wave function. Three
different regimes can be exhibited as the propagation parameter s increases. As already mentioned,
for s > sg, the wave function produces fast phase modulations that affects significantly the structure
of the wave function. One can show that for some s = s; > sg a loss of coherence of the wave field
can be quantified through a stochastic fractional heat equation (SFHE) for the Wigner transform. At
this stage the Wigner transform analyses the correlations of points that are far apart from each other.
In other words, the loss of coherent impacts the large structures of the wave function in a first place.
While the SFHE describes how the Wigner transform is impacted, its energy is conserved. Then,
as the propagation scale increases s > si, the finer structures of the wave function are increasingly
affected. This time, the random behavior of the SFHE averages out, homogenization phenomena take
place, and the resulting equation governing the loss of coherence is a deterministic fractional heat
equation. Once s = 1 is reached, the loss of coherence is described by a semi-classical limit and a
radiative transfer equation. At this scale, the loss of coherence mechanisms are identical whether the
random fluctuations exhibit long-range correlations or shot-range correlations.

At the numerical point of view, a time-splitting scheme for the scaled Schrédinger equation (1)
can be considered. This numerical scheme provides a discretized solution in time (the spatial variable
being handle through a Fourier transformation), which is able to capture, in the statistical sense,
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all the mentioned asymptotic regimes. Surprisingly, in addition to all these regimes, the long-range
correlations allow a time stepsize independent of £ for most of the configurations.
This chapter covers the results obtained in [3,4, 6] of the publication list on page 6.

Chapter 3

The analysis of the impact of random fluctuations with long-range correlations is extended in this
chapter to the scalar wave equation for 2D and 3D propagation media. In this context the random
fluctuations of the propagation media translate through random fluctuations of the wave-speed profile.
This chapter presents some results that extend the ones obtained for 1D propagation media [84,85,154].

Three scenarios are considered in this chapter. The first situation concerns wave propagation
in a planar waveguide, which constitutes an intermediate situation between 1D propagation media
and propagation in a full space. The type of waveguide considered in this chapter supports a discrete
number of modes, which simplifies in some sense the mathematical analysis. The regime under consid-
eration corresponds to the one of a non-central limit theorem and a result similar to [153] is obtained.
In this situations the effective stochastic effects lead to phase modulations for each of the propagating
modes, but without any coupling between the modes. However, as for the Schrédinger equation, these
modulations are driven by the same fractional Brownian motion. This latter characteristic is in con-
trast to what is observed in [70, Chap. 20] under medium fluctuations with short-range correlations,
where the phase modulations are driven by correlated Brownian motions.

The second scenario considers again a regime similar to the non-central limit theorem but for the
wave equation over the full ambient space R3. More precisely, two asymptotic regimes are simultane-
ously investigated under the same high-frequency limit: the paraxial approximation, where the wave is
collimated and propagates along a privileged direction of propagation, and the fractional white-noise
limit. It results that the frequency content of the asymptotic pulse front can be described through
the fractional It6-Schrédinger equation

d¥,(z,x) = iAx\I/w(z,x) + ik, ¥, (2,x)dWs(2,x) = 0,
w

where w is a given frequency, z corresponds to the variable of the main propagation axis, and Wiy
to a fractional random field w.r.t. z. The variable x represents the transverse section w.r.t. the
main propagation axis. The stochastic integral corresponds here to the fractional equivalent of the
It6-Stratonovich integral. Under short-range correlations a similar result has been obtained in [83]
involving a standard Brownian random field and Ito-Stratonovich integral.

The last scenario corresponds this time to a regime similar to a central limit theorem, but involving
a randomly layered propagation medium with long-range correlations. This scenario extends the result
of [84,85] for 1D propagation media. In this situation, we observe first a random travel time for the
pulse characterized by a fractional Brownian motion that appears to have a standard deviation larger
than the pulse width. This is in contrast with the standard O’Doherty-Anstey theory for random
propagation media with short-range correlations for which both the standard deviation of the random
travel time and the pulse width are of the same order [70, Chapter 8]. This unstable behavior of
the travel time under long-range correlations may have a dramatic effect for applications in inverse
problems based on travel time estimations, and a deeper understanding of the propagating waves is
required. Second, in the present context, the pulse deformation can be characterized by a deterministic
paraxial wave equation of the form

C
Oap — 5°Ax¢ —apDFp =0 € (0,1),

where the z-variable corresponds again to the main propagation axis, the x-variable to the transverse
section, t to the time variable, ¢y to the background wave speed, and ag > 0 is a constant. Here, th +
stands for the Weyl fractional derivative with respect to time, and whose order depends explicitly on
the power decay rate v € (0,1) of the correlation function of the medium fluctuations. In the Fourier
domain, this equation can be recast as a Schrodinger equation of the form

v 1 v v
1209 + S A + ol =0,
0
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where aq is a constant with positive imaginary part. This equation provides a frequency-dependent
power-law attenuation of the form

lw*  with  A=1+~€(1,2].

Such power law attenuations can be observed in various contexts such as geophysics, laser beam
propagation through the atmosphere, or medical imaging for instance. Values for A ranging from 2
to 3 are typical of attenuations in biological tissues [117].

This chapter covers the results obtained in [10,12,17] of the publication list on page 6

Chapter 4

Radiative transfer models have been used for more than a century to describe the propagation of
the energy density through random media. When the momentum variable is restricted over the unit
sphere S~1, the radiative transfer equation can be written as
O+ K- Vo — / B(p — K) () — u®)o(dp)  (t,x,K) € (0,00) x RY x §9-1,
Sdfl

where o(dp) stands for the surface measure on S%~!, and ® for the scattering kernel. Under fluctu-
ations with long-range correlations this model can be derived from the Schrédinger equation under
a semi-classical limit [66]. For the full wave equation such a rigorous derivation has been obtained
in [45] for short-range correlations, but it remains an open problem for long-range correlations. Radia-
tive transfer models can be though considered in this situation by just considering scattering kernels
with appropriate shapes. The scattering kernel being directly related to the power spectral density
of the medium fluctuations, under long-range correlations the associated scattering kernel presents
a nonintegrable singularity ®(r) oc 7~ (¢~ with o € (0,2). Despite this singularity the radiative
transfer equation remains well-defined.

The first part of this chapter consists in presenting qualitative properties of the radiative transfer
equation with a nonintegrable singular kernel. We present regularizing effects of such equation through
the hypoellipticity property of the transport operator, which implies in particular that the solutions
are infinitely differentiable in all variables. This property is obtained through hypoelliptic estimates
for a kinetic equation of the form

u+k-Veu=(—Ag-1)°h  (t,x,k) € R x R x §*1,

where d > 2, >0, S¥~! denotes the unit sphere of R? and Aga—1 the Laplace-Beltrami operator on
S4-1. Assuming some fractional Sobolev regularity in the momentum variable k € S%~!, we obtain
estimates for fractional derivatives of u w.r.t the (¢,x)-variables whose order depends on § and the
assumed regularity. The smoothness of u is then obtained using a bootstrap argument. The diffusion
limit is proved using probabilistic techniques as in the case of a regular scattering operator. The
diffusion coefficient is therefore non-zero and finite.

The second part of this chapter is devoted to Monte-Carlo methods for radiative transfer equations
with non-integrable singular scattering kernels. As opposed to the case where the scattering cross
section is integrable and leads to a non-zero mean free time, the cross section is no longer integrable in
the long-range situation and yields a vanishing mean free time. This gives rise to numerical difficulties
as standard Monte-Carlo methods based on a naive regularization, by just introducing a cutoff around
the singularity, exhibit large jump intensities and an increased computational cost to reach a proper
accuracy. A particular care is then required when constructing the stochastic processes used in the
Monte-Carlo methods. We propose a method inspired by the finance literature, and introduced by
Asmussen-Rosinski [9] and Cohen-Rosiriski [53]. This method is based on a small jumps - large jumps
decomposition allowing us to treat the small jumps efficiently and reduce the computational burden.

This chapter covers the results obtained in [8,9,13,15] of the publication list on page 6.

Chapter 5

This chapter concerns as well some aspects of radiative transfer arising from acoustic wave propa-
gation, but from a different perspective as the one discussed in the previous chapter. Rather than
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investigating the effects produced by a singular scattering kernel, we discuss the role played by bound-
aries of the propagation medium. We present three scenarios: a half-space, a slab, and a rectangle.
This chapter covers the results in [16,18] of the publication list on page 6, which are parts of Adel Mes-
saoudi’s Ph.D thesis conducted under the supervision of Régis Cottereau (Laboratory of Mechanics
and Acoustics in Marseille) and myself.

For each scenarios two distinct aspects are discussed. While the standard derivations of radiative
transfer models from the wave equation usually take place in the full physical space R? [12,45,180],
some adjustments are required to deal with medium involving boundaries. In particular, the main tool
to derive radiative transfer equations is the Wigner transform. This tool is not directly well-suited to
address the presence of boundaries. In this chapter, for each scenario, the wave propagation problem
is extended to the full space thanks to the method of images together with a proper periodization
of the medium parameters and the source. Such an extension allows the use of the standard Wigner
transform and enable a standard asymptotic analysis [12,180].

The other aspect discussed in this chapter concerns interference effects resulting front reverbera-
tions at the boundaries. In a first time, we discuss the case of the half-space where boundary effects
can be observed within one wavelength along the boundary. This results in a doubling of the intensity
for Neumann boundary conditions, and a canceling of intensity for Dirichlet boundary conditions.
In a second time, the situation of a slab is discussed. As for the half-space, interference effects are
obtained within one wavelength of the two slab boundaries. However, additional interference effects
are observed within one wavelength along two parallel plans w.r.t to the boundaries, and passing
through the source location and one symmetric point. These extra effects are referred to as weak
localization phenomena in the sens of [47,76]. These effects result in intensity enhancement or can-
celing (depending on the boundary conditions) of the coherent energy only, not the one carried by
the coda (the multiply scattered signal). The underlying idea of weak localization is the following.
When coherent waves propagate through a medium delimited by boundaries, they follow different
paths and bounce on these boundaries. However, some of these paths are the reciprocal versions of
others, meaning that the waves can traverse a similar path in opposite directions. This symmetry
between paths results in constructive interference effects within the considered structure. Finally, the
case of a rectangle is discussed where radiative transfer models are related to non destructive testing
applications [47,76]. As for the slab, both types of interference effects can be observed within one
wavelength of the boundaries, and along lines parallel to the rectangle boundaries passing through
the source location and three symmetric points. These lines are fixed over time. In this context,
additional interference effects can be observed. Constructive interferences affecting the whole energy
(coherent and coda) can be observed along lines passing through the corners, and interference ef-
fects, affecting only the coherent part of the energy, appear along oblique lines passing through the
source location and eleven symmetric points inside the rectangle. In both cases, these lines support
interference effects only once over time.

Chapter 6

This chapter discusses two distinct scenarios. First, we discuss the situation where the waves propagate
along a waveguide with rough-boundaries, and second, the case where waves impinge upon a rough
surface. In both scenarios, the waves interact with the interface in different manners, leading to
distinct mathematical approaches.

In underwater acoustic the role of ocean swell or variations of the seabed topography can have a
significant impact on acoustic signals. Wave propagation in waveguides with rough boundaries has
been studied for a long time due to its wide range of applications, but mainly motivated by submarine
detection and telecommunication [126,138]. In this context, a pressure field can be decomposed over
three kinds of mode: the propagating modes, which travel over long distances along the waveguide;
the radiating modes, able to propagate deeply into the ocean bottom; and the evanescent modes,
which decay exponentially w.r.t to the propagation distance along the waveguide. We describe in the
first part of this chapter the effects produced by a randomly perturbed free surface and an uneven
bottom topography on the propagating modes. Using an asymptotic analysis based on a separation
of scales technique and an approximation-diffusion theorem, an asymptotic form of the distribution
for the forward mode amplitudes can be obtained. This distribution allows to characterize effective
attenuations on the propagating-mode amplitudes induced by the surface and bottom fluctuations.
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It appears that both the surface and bottom fluctuations affect the propagating-mode amplitudes
mainly in similar manners. However, this attenuation is stronger for the highest propagating modes,
with losses into the ocean bottom, due to a strong coupling with the radiating modes.

The second scenario discussed in this chapter corresponds to the standard problem of reflexion
and transmission of a high-frequency pulse at a rapidly oscillating rough interface with general mixing
properties. Under the paraxial (parabolic) scaling, the specular and speckle (diffusive) components
of the reflected and transmitted signals are precisely characterized. The specular components corre-
spond to the reflected and transmitted components resulting from the standard laws of reflexion and
transmission for a flat (unperturbed) interface, and producing what we refer to as specular cones. The
speckles correspond to incoherent (random) wave fluctuations resulting from diffraction and mainly
observed away from the specular cones. A critically scaled interface is considered, in the sense that
the amplitudes of the interface fluctuations and the central wavelength are of the same order. In
this context, if the correlation length of the interface fluctuations and the beam width are of the
same order, random specular components are observed, but no speckle component. The reflected and
transmitted fields are confined to the specular cones. The situation with a correlation length smaller
than the beam width leads to homogenization effects providing deterministic specular components
similar to the case of a flat interface, but with effective initial conditions accounting for the scatter-
ing effects. However, in this situation, there are also relatively broad cones (containing the specular
cones) where the wavefields form speckle patterns. The width of these cones is characterized by the
ratio \/l., where A is the central wavelength and [. the correlation length of the interface fluctuations.
The two-point correlation functions for these speckle patterns are presented and exhibit self-averaging
properties. Furthermore, we present a central limit theorem type result for the speckle patterns, show-
ing that they can be modeled as Gaussian random fields. These descriptions allow the derivation of
generalized Snell’s laws of refraction and transmission depending on an effective scattering operator
at the interface.

This chapter covers the results obtained in [7,19] of the publication list on page 6.

Chapter 7

This chapter presents an aspect of mathematical biology related to metastatic spreading. This work
has been conducted in collaboration with Niklas Hartung during his Ph.D. program, at the Institut
of Mathematics of Marseille, under the supervision of Guillemette Chapuisat and Florence Hubert
(see [11] in the publication list on page 6).

Although the detection of metastases radically influences the prognosis and treatment decisions
for cancer patients, the presence of clinically undetectable micrometastases hampers the consistent
classification of the disease as localized or metastatic. This chapter discusses mathematical mod-
eling efforts that could help to estimate the metastatic risk in such a scenario. We focus on two
approaches both accounting for secondary metastatic emissions, that is the ability for metastases to
emit some metastases themselves. The first one relies on a deterministic framework to describe the
micrometastatic state using a size-structured density function in a partial differential equation model.
The second approach is based on a stochastic framework to describe metastatic emission events oc-
curring at random times formalized through a cascade of Poisson processes. We highlight an inherent
crosslink between the stochastic and deterministic frameworks and discuss its implication for assessing
metastatic risk post-surgery.

The remaining of the manuscript consists in providing more detail presentations of the results
outlined in this introduction.
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Chapter

Random perturbations with long-range
correlations and nonlinear oscillators

It is well known that a properly scaled stochastic process with long-range correlations (or dependen-
cies) converges to a fractional Brownian motion (fBm), whose Hurst index is determined by the rate
at which the correlation function decays [152,202,203]. This result is known as non-central limit
theorem. When the Hurst parameter is not 1/2, the normalized limit of the noise has memory prop-
erties and is a non-Markovian process. An interesting example to illustrate how oscillatory behaviors
effectively erase memory effects of random fluctuations is a stochastically forced nonlinear oscillator
with 1 degree of freedom:

E(t) + fz(t) =eV(t), zo€R, o=y €R. (1.1)

Here, f: R — R is a given smooth function, and V is a stochastic process with long-range correlations
as defined precisely below. Our interest is here to study the asymptotic long-time behavior of x. This
chapter is based on the results obtained in [14] of the publication list on page 6.

Although the rescaled noise converges to a fBm, a process that exhibits memory properties, the
oscillatory behavior of the system has the ability to affect the memory properties of the random
fluctuations, resulting in an effective diffusive behavior with no memory. The aim of this chapter is
to provide a precise description of how the oscillatory behavior is able to erase all the memory of
the random fluctuations. A similar question was investigated in [133] for a passive tracer advected
by a periodic shear flow. In this case, it appears that there exists a parameter regime where the
time-rescaled dynamics is Markovian, and the memory effect of the noise is erased. However, there
is also a regime (namely the very long-time behavior when the Hurst index of the driving noise is
larger than 1/2) where the memory effect persists. In contrast, for the oscillator (1.1), the memory
effect never persists, and the effective long-time statistical behavior is always Markovian. The main
reason is that the oscillatory nature of the deterministic dynamics counterbalances the slowly decaying
correlations, and kills the memory effects. To study (1.1) we cannot use directly the limit theorem
for additive functionals of fBm’s used by [133]. Instead, we recast (1.1) as a fast-slow system and use
an approximation-diffusion framework.

To recast (1.1) as a stochastically perturbed Hamiltonian system, we first introduce the Hamilto-
nian

H(z,y) := %y2 + /01‘ f(s)ds, (1.2)
so that, setting X (t) := (z(¢),y(t))T = (x(t),z(t))", we have
X(t)=VIH(X() +eV(t)es,  X(0)= (;§> e R?, (1.3)

with 5
0
1. Y -
V- = (ax) , and ey = (1> .
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Here, the Hamiltonian H is assumed to have exactly one non-degenerate critical point. To study the
long-time behavior of this system, we consider the time rescaled process
Xo(t) == X (t/e?),
satisfying
. 1 1 t

Xe(t) = E—QVLH(XE(t)) +-V (€2> e, Xi=X(0)= (zg) € R2 (1.4)
In the absence of noise (meaning that V' = 0), the process X¢ travels very fast along the level sets of
the Hamiltonian. When V' is a white-noise, the asymptotic behavior of X*¢ is described through the
averaging principle of Freidlin and Wentzell [71-73] by a diffusion process across these level sets. To
capture this limiting behavior, the fast motion is filtered out by projecting X onto the Reeb graph of
the Hamiltonian. This has the effect of identifying all closed trajectories of the Hamiltonian system,
where the fast motions take place, into single points. In this context it is convenient to describe
X¢ through action-angle coordinates. The angular coordinate of X¢ evolves very fast providing no
meaningful limit as € — 0. On the other hand, the action coordinate of X¢ exhibits a non-trivial limit
as € — 0, which results from the interaction between the noise and the averaged angular coordinate.
To study this behavior, the Hamiltonian itself is used as a proxy for the action coordinate and the
convergence is obtained for (H(X¢))..

This chapter is organized as follows. Some examples of stochastic processes with long-range
correlations are provided in Sect. 1.1. One them is used in several chapters of this manuscript. Sect.
1.2 describes how long-range dependencies are related to memory effects through fBm’s and a non-
central limit theorem. Finally, Sect. 1.3 describes how the memory properties of the noise are erased by
the oscillatory behavior of the Hamiltonian system. The case of the quadratic Hamiltonian (f(x) = x)
is presented as it provides explicit formulations and a simple understanding of the phenomena. For
general Hamiltonian (1.2), action-angle coordinates are introduced as well as their corresponding
approximation-diffusion theorem. From this result, the asymptotic diffusive behavior of (H(X¢)). is
derived.

1.1 Random fluctuations with long-range correlations

A stationary random process V' is said to have long-correlations if its two-point correlation function
R(t) :=E[V(t+ )V ()] (t,t) eRxR

decays slowly enough at infinity, for instance

Ry

~ — ith 1 1.
R(t) o T wit v € (0,1], (1.5)

to not be integrable, in the sense that

/OO |R(#)] dt = co.
0

There exists several basic examples of continuous-time processes with long-range correlations that
can be found in the literature (see [84,154] for instance). Two simple examples are the following: the
fractional white-noise model corresponding to

V(t) =Wg(t) — Wy(t+ o),

and the fractional Ornstein-Uhlenbeck model for which

1 z
V() = Wa(t) — - / -0/ (y)dy.

le J_oo

In these two examples, Wy, is a fBm with Hurst index $ € (1/2,1), and the asymptotic behavior at
infinity of their correlation functions is given by (1.5) with

y=2-26, and Ry=9H(2H- 1)
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More sophisticated models can also be found in [154]. These two Gaussian models are convenient for
an analysis based on moment techniques [15,66,99] or the rough-path theory [152,154]. When studying
the asymptotic behaviors of certain randomly perturbed physical systems arising from the Schrodinger
equation or the wave equation for instance, it is not always clear how these two approaches can be
effectively applied. While the application of the moment technique may rely on purely technical as-
pects, the rough-path approach has to face the inherent infinite-dimensional nature of the functional
spaces to which the solutions belong. Additionally the absence of a Hilbert-Schmidt structure in
the PDE’s further complicates the process of reducing the original problem to a finite-dimensional
one. This latter aspect needs further investigations. Even for the simple oscillator presented in this
chapter, a nonlinear Hamiltonian gives rise to an oscillatory behavior that needs to be expended
over the infinite basis of Fourier modes. The resulting structure of the system involves a nonlinear
relationship between the noise V' with a degenerate term. This nonlinear relationship brings techni-
cal difficulties to apply both the moment technique or the rough-path approach. To address these
technical difficulties, a specific definition of the random fluctuations is considered, exhibiting long-
range correlations, but allowing the use of the perturbed-test-functio