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Abstract

The design of safety- and mission-critical software systems (used in, e.g., avionics, automotive,
medical devices, ...) requires the development of automated tools, such as Model Checking, for
analyzing all the possible executions and for determining if the system is correct. An existing
problem is to extend model checking algorithms to analyze efficiently “expressive” systems that,
for example, can have an infinite state space (e.g., software working on real or integer numbers)
or mix discrete-time and continuous-time (e.g., control software interacting with the physical
environment). In this habilitation thesis, we summarize some of the approaches the author con-
tributed to solving the verification problem for different families of infinite-state systems. First,
we focus on the Verification Modulo Theory (VMT) problem, that is model checking infinite-state
transition systems expressed with first-order theories. Then, we focus on the problem of verifying
hybrid systems, where a discrete-time system interacts with a continuous-time system expressed
with Ordinary Differential Equations (ODEs). In both cases, we consider the invariant and the
liveness model checking problems.

We first describe the symbolic algorithm IC3-IA that solves the VMT problem using abstrac-
tion to cope with the infinite-state space challenge. The algorithm is general enough to work for
a wide set of first-order theories and addresses the challenge of exploring efficiently a space of
exponentially large abstract transition systems (i.e., a Counter-Example Guided Abstraction Re-
finement loop). We also extend such invariant verification algorithm to prove liveness properties
via a liveness-to-safety reduction.

Then, we investigate the use of abstraction as a tool to obtain a purely discrete transition
system to over-approximate a hybrid system expressed with non-linear ODEs (i.e., a reduction
to a VMT problem). We first show how to efficiently model check qualitative abstractions (i.e.,
abstractions defined by the signs of a set of polynomials), tackling the exponential state-space
explosion with similar ideas to IC3-1A, and then we show how to scale the computation of rela-
tional abstractions (i.e., an approximation of the continuous system’s trajectories) for non-linear
dynamical systems exploiting the variables dependencies in the ODEs.

Keywords
Model Checking, Satisfiability Modulo Theories, Verification Modulo Theory, Infinite-State
Systems, Hybrid Systems, Abstraction, CEGAR
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Chapter 1

Introduction

1.1 Context and Motivations

Modern software systems are at the core of safety- and mission-critical applications in dif-
ferent domains (e.g., avionics, automotive, medical devices, ...). Designing such systems re-
quires automated tools for checking that they are correct and secure. Model Checking [112]
algorithms automatically analyze all the possible executions of a system to determine if it
satisfies a specification expressing the intended system’s behavior.

One of the main challenges in model checking, and formal methods in general, is to an-
alyze “complex” systems. In general, the model checking problem becomes more complex
and even undecidable when dealing with more expressive systems. For example, embedded
software requires to efficiently reason on large bit vectors and floating-point numbers, and
verifying high-level models (e.g., from model-based design [121, 54]) often requires to reason
on Integer and Real numbers. To make things worse, when the software interacts with the
physical environment, the underlying system becomes hybrid and the discrete time software
interacts with processes evolving in continuous time (e.g., timed automata [4], hybrid au-
tomata [8]). This last scenario is typical for control systems where the physical environment
is modeled with differential equations. In this thesis, we focus on model checking invariant
and liveness properties (e.g., obtained from Linear Temporal Logic (LTL) [6] specifications)
for two expressive classes of infinite state systems: (i) transition systems represented with
first-order theories, and (ii) hybrid systems mixing discrete and continuous dynamics.

Verification Modulo Theories. We will first focus on the verification problems for transition
systems expressed with first-order theories, called Verification Modulo Theories (VMT) [J7] by
analogy with the Satisfiability Modulo Theory (SMT(7")) problem. First-order theories pro-
vide a generic framework to express different systems. For example, the theory of Bit-Vectors
(BV) can express embedded C programs (i.e., programs with bit-vector operations but without
dynamic memory and recursion), the theory of Difference Logic (DL) can express timed au-
tomata, and the theory of Linear Real Arithmetic (LRA) can express Linear Hybrid Automata
(i.e., automata with piece-wise constant dynamics). In practice, the use of theories allows
us to express, symbolically, a transition system capturing the semantic of different classes
of systems, including programs and other systems’ models (e.g., timed automata). Develop-
ing efficient verification algorithms for such symbolic transition systems allows us to model
check, within a single framework, a wide family of target systems. What makes the devel-
opment of such verification algorithms possible is the continuous improvement in efficient
Satisfiability Modulo Theory (SMT) [136] solvers, which decide the satisfiability problem of
formulas expressed using first-order theories, and further solve other automated reasoning
problems (e.g., computing interpolants).
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Verification of Non-Linear Hybrid Systems. We will then focus on the model checking prob-
lem for hybrid systems, where a discrete software monitors and controls the physical environ-
ment that evolves continuously in time. Hybrid systems often express the continuous dynamic
of the systems with a system of Ordinary Differential Equations (ODEs), which defines how
the derivative of each state variable changes over time in function of the other quantities (i.e.,
state variables, input variables, time elapsed, ...). While the verification problems for hybrid
systems is undecidable even for relatively simple dynamics (e.g., see [16, 15]), what is difficult
even when designing incomplete verification algorithms is to cope with non-linear continu-
ous dynamics where the equations in the system of ODEs are polynomials or transcendental
functions. In this thesis, we mainly consider the problem of proving properties for hybrid
systems, also in the presence of non-linear dynamics.

1.2 Challenges and Contributions

In this section we present the challenges in solving the VMT and the hybrid systems verifica-
tion problems and the main contributions of this thesis.

1.2.1 Verification Modulo Theories (VMT)

VMT can be seen as the extension of the verification problem for symbolic finite state transition
systems expressed with propositional logic to infinite state transition systems (i.e., extend
the model checking algorithms from transition system expressed with propositional logic to
transition system expressed with first-order theories). The state of the art in model checking
symbolic finite state transition systems, mostly explored in the hardware verification domain,
are SAT-based algorithms (e.g., BMC [12], IC3 [55], interpolation-based model checking [25],
k-induction [17], ...) that repeatedly query a SAT solver. One of the hopes to tackle the VMT
problem was to modify the existing, efficient, SAT-based model checking algorithms using,
instead, an SMT solver. The idea is appealing since, after all, SMT solvers already extends
SAT solvers to cope with first-order theories.

However, extending the algorithms from the propositional to the first-order logic settings
is challenging, mainly because the systems have an infinite number of states. In fact, to be
effective, several verification algorithms require the assumption that the system is finite state
and, for this reason, a naive instantiation of the algorithms swapping a SAT for an SMT solver
would not be effective. For example, to prove an invariant property k-induction [17] checks
the non-existence of “simple paths” longer than a positive constant k (i.e., paths that do not
contain loops); such check may not succeed when the states are infinite since the number
of simple-paths in the system can also be infinite. 1C3 also has similar assumptions and
would be ineffective in finding an inductive invariant (e.g., see [64]). Similarly, SAT-based
algorithms for proving liveness properties (e.g., L2S [20], k-1iveness [65]) assume omega
paths (i.e., infinite paths) to be represented as lasso-shaped paths (i.e., paths composed of a
finite prefix and a loop) and such assumption does not hold anymore when the system has
an infinite number of states [30].

An obvious and common approach to deal with an infinite number of states is abstrac-
tion [3, 5], where an infinite set of states is abstracted with a finite number of states. Key
to model checking using abstractions is the Counter-Example Guided Abstraction Refinement
(CEGAR) loop [24] that allows a verification algorithm to automatically and gradually find
a precise enough abstraction to prove a property, using spurious counterexamples at every
iteration to guide the abstraction refinement. While such framework has been successfully
applied to different systems, in particular software (e.g., see [18, 21]), the CEGAR loop is often
computationally prohibitive, in particular when using Predicate Abstraction [9] and when

2



CHAPTER 1. INTRODUCTION 3

the system under analysis does not have a control flow structure, as in the case of symbolic
transition systems. The first research question we answer in this thesis is:

How can we effectively use abstractions to model check invariant and liveness properties of
infinte-state symbolic transition systems?

Contributions [C12, )5, C17,)7]. The main contribution to tackle the VMT problem for in-
variant properties is IC31a [C12, J5]. IC31a adapts the IC3 [55] model checking algorithm
to work on transition systems expressed with first-order theories using abstraction. From
a high-level point of view, IC3IA performs a standard CEGAR loop verifying different predi-
cate abstractions of the system. However, IC31A does not explicitly compute the abstract,
finite state transition system at each CEGAR iteration, avoiding the main bottleneck of pred-
icate abstraction computation. Instead, IC31A checks the relative induction among set of
abstract states, the main operation of IC3, with a single satisfiability check (using Implicit
Abstraction [44]). While such approach is conceptually “simple”, it provides the following
advantages.

1. Itis theory agnostic: IC31A does not require a novel algorithm for each new theory (differ-
ently from [67]). Instead, the only requirements are the decidability of the satisfiability
problem for a theory and the existence of an interpolation procedure for the abstraction
refinement.

2. It is incremental: the algorithm does not restart from scratch after every refinement,
but instead retains the reachable state’s approximations computed so far (i.e., the IC3
frames).

3. It is efficient: the algorithm scales in verifying abstraction with a high number of pred-
icates (e.g., in the order of hundreds).

The second contribution is a verification algorithm for liveness properties [C17]. The al-
gorithm implements a liveness to safety reduction [20] for infinite state systems. The idea of
the liveness to safety reduction is to cast a liveness verification problem as an invariant verifi-
cation problem adding additional states to the transition system to recognize loops. However,
such reduction ignores non lasso-shaped paths, so it cannot prove that a liveness property
holds for an infinite-state system. We solve such problem applying the liveness to safety re-
duction to a finite state abstraction of the system, similarly in spirit to [30]. Clearly, finding
an abstract lasso shaped path does not mean the system does not satisfy a liveness prop-
erty. In practice, when the algorithm finds an abstract lasso shaped counterexample, it has
to prove that all its concretizations are finite (i.e., they terminate [76]). The termination proof
provides a well-founded relation that “rules out” such concrete paths. The algorithm works in
a CEGAR fashion: it refines both the abstraction predicates and a well-founded relation. Such
algorithm is built on top of 1C31a and share with it several advantages (e.g., incrementality).
Both the algorithms have been implemented in the nuXmv [C11] model checker.

The bottom half of Figure 1.1 shows the verification flow for the VMT problem: (i) the IC31A
algorithm takes as input the infinite state transition system expressed with theories S and
an invariant property Ps and decide if S | Ps (the algorithm may also not terminate as the
problem is undecidable). (ii) the L2S-IA algorithm takes as input a transition system S and a
liveness property, here expressed as FG —f, and decide if S |5 FG —f.

1.2.2 Verification of Hybrid Systems with Discrete Abstractions

We focus on the problem of proving if a property, in particular an invariant or a LTL spec-
ification, holds for a hybrid system. What is challenging about analyzing hybrid systems,

3
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in particular for non-linear dynamics, is that a system of differential equations usually does
not have an explicit solution (i.e., a function that computes the state the system reaches af-
ter some amount of time elapses). An existing approach to tackle such problem consists of
reducing the hybrid system model checking problem to the model checking problem of a dis-
crete system (e.g., [10, 15, 62, 43]). The core of such reduction is the computation of a discrete
abstraction of a hybrid system that is then amenable to model checking. For some dynam-
ics (e.g., timed automata, piece-wise constant hybrid automata, o-minimal hybrid automata)
one can compute abstractions (e.g.,see [15]) that preserve both invariant and LTL properties.
Instead, for more “complex” dynamics such discretizations usually produce an abstraction
that over-approximates the system behavior (e.g., [62, 102, C10]). What is interesting is that
the discrete abstract system can be analyzed using efficient VMT algorithms.

In this thesis, we tackle the following problems related to the computation and verifica-
tion of discrete abstractions of a hybrid system: (A) efficient verification of semi-algebraic
abstractions [43, 102] for non-linear systems; (B) computation of relational abstractions [62]
for non-linear systems; and (C) verifying LTL properties using a discretizations of a hybrid
systems. In details:

(A) A semi-algebraic abstraction [102] is a qualitative abstraction [43] that partitions the
state space according to the sign of a list of polynomials, similarly to a predicate abstrac-
tion. The abstraction has a finite number of states that can be computed for a system of
differential equations defined with polynomials (i.e., the right-hand side of each equation
is a polynomial) and can then be easily model checked (e.g., via an explicit-state reacha-
bility analysis). However, computing the abstraction is challenging since the number of
abstract states is, in the worst case, exponential in the number of polynomials.

(B) A relational abstraction [62] represents all the possible trajectories of a dynamical sys-
tem with a relation, which sometimes is expressed using first-order theories. If a state
s reaches a state s’ in the dynamical system then the pair (s,s’) is included in the rela-
tion. We can use such relation in a discrete transition system to over-approximate the
continuous dynamic. Computing a useful relational abstraction is hard, in particular
for a non-linear system. First, we cannot use the properties of linear systems, like the
existence of a closed form solution of the ODEs (e.g., see [71]). Instead, Taylor model
based flow-pipe construction [89] can compute a relational abstraction for a non-linear
system on a bounded domain. However, there is a tradeoff between the precision of the
abstraction and the scalability of such computation.

(C) Reducing a liveness model checking problem to an invariant model checking problem is
convenient, since it allows us to reuse the existing and efficient invariant model check-
ing algorithms. However, we need additional care when applying such paradigm to the
verification of continuous time and hybrid systems. We focus on the k-1iveness verifi-
cation algorithm [65]. In a nutshell, k-1iveness tries to prove that FG —f, for a set of
states f, by proving that the number of times the system visits a state in =f is bounded.
If that’s the case, then the system visits f infinitely often. We can use k-1liveness to
prove a liveness property for hybrid systems: we first obtain a discrete transition sys-
tems S abstracting H, and then we use k-1iveness to prove that S | FG —f. However,
k-liveness fails as soon as H contains Zeno paths, infinite paths such that the total
time elapsed in the path does not diverge. A Zeno path represents an unrealistic path
where the system executes an infinite number of discrete transitions in a finite amount of
time and that should not be considered in the system’s semantic. A naive application of
k-liveness would not be able to prove S = FG = f, always finding a Zeno path satisfying
—f. We tackle the problem of avoiding such paths when proving liveness properties.

4
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To summarize, the research questions we explore in this thesis are:

How can we discretize non-linear dynamics to reduce the verification problem for a hybrid
system to the verification problem of a discrete one?

How can we use a discretization to verify liveness properties?

Contributions [C13, J6, C25]. In [C25], we tackle the problem of verifying a semi-algebraic
abstractions for a non-linear dynamical system avoiding the explicit enumeration of the ab-
stract states (challenge (A)). We apply the same idea of implicit abstraction [44] we also used
in the IC31A algorithm, following the intuition that a semi-algebraic abstraction is very similar
to a predicate abstraction. What differs in the computation of the semi-algebraic abstraction
is that it uses a decision procedure for checking differential invariants [60], instead of the sys-
tem’s continuous non-linear dynamics (which we cannot compute easily for an unbounded
time horizon). Our solution encodes symbolically the abstract transition relation using a for-
mula that has linear, instead of exponential, size in the number of abstraction polynomials.
The approach carries the same advantages of implicit abstraction since it avoids the up-front
exponential blowup of the abstraction computation. We implemented the symbolic encod-
ing in the Sabbath tool, using the nuXmv model checker as verification backend (in practice,
we use the model checking algorithm for transition systems expressed with Non-linear Real
Arithmetic formulas [105] that is based on the IC3IA algorithm).

In [J6], we tackle the relational abstraction computation problem for non-linear systems
via Taylor model based flow-pipe construction [89]. We tackle the challenge of computing
a precise abstraction while limiting the number of subdivisions of the state space (challenge
(B)). In our solution, we compute the relational abstraction compositionally, partitioning the
non-linear system of ODEs according to the dependencies of the variables in the system. This
algorithm has been implemented using FLOW' [74] for the Taylor model computation and
nuXmv as verification backend.

Finally, in [C13] we provide the K-Zeno algorithm for proving LTL properties for hybrid
systems using the k-liveness algorithm. In [C13], we remove the Zeno paths applying
the k-liveness algorithm (challenge (C)) to the system composed with a monitor automa-
ton that forces the repeated occurrences of the condition f to be separated by a “sufficient”
amount of time. While such amount is a positive constant for timed automata, in general it is
a parameter that depends on the automaton’s continuous dynamics, guards, and invariants.
We provide an automaton construction that determines such bound and that is complete
(i.e., if the liveness property holds and the backend invariant verification algorithm always
terminates) for a subclass of hybrid automata . We implemented K-Zeno, together with other
discretization algorithms for piece-wise constant and linear systems, in the HyCOMP [C15]
model checker.

The top half of Figure 1.1 shows the verification flow using discretization for hybrid au-
tomata:

« The discretization blocks (enclosed in the purple dashed block shown at the top-left of
the figure) applies a different discretization to the hybrid automaton H depending on
H’s dynamics. The result of the discretization is an infinite state transition system S.

« To prove the hybrid automaton H satisfies the invariant property Py we prove that
S | Ps for an invariant property Ps (e.g., with 1C31A, shown in the bottom-left part
of Figure 1.1). While we obtain the property Ps from Py depending on the specific
abstraction, we don’t show this graphically in Figure 1.1 to reduce the clutter.

1Sabbath is available online https://github.com/cosynus-1ix/sabbath.
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« To prove that H = FG —f the K-Zeno algorithm computes an additional monitor au-
tomaton Zg using the hybrid systems H (top-right part of Figure 1.1). Zg is also a discrete
symbolic transition system. Then, we use the k-1iveness algorithm (bottom-right part
of Figure 1.1) to prove that Sy X Zg = FG —fp, where fz is the acceptance condition of
the automaton Zg that is true if f holds after “enough time” elapsed from the previous
occurrence of f. If such check succeed, we conclude that H = FG —f.

1.3 Scope of the Thesis and Thesis Structure

This thesis presents coherently contributions to the model checking problem of infinite-state
transition systems [C12, )5, C17,J7] and hybrid systems [C13, J6, C25], and does not provide
novel contributions. Also, the thesis presents in depth a subset of the works performed after
the Ph.D. degree that can be presented uniformly. 2 The thesis provides a high-level overview
(in Chapter 5) of the other major contributions to the following research topics:

1. Analysis of Switched Kirchhoff Networks [C16, C18, C19];

2. Verification [C23, J8] and specification synthesis [C20, C21] of event-driven programs;
and

3. Learning abstractions in goal-conditioned Hierarchical Reinforcement Learning [C27,
C28).

Also, the thesis does not present other publications [C3, C1, J1, J4, C14, C24, C26]. In the
interest of brevity, we do not include theorems (which usually show the soundness of the
algorithms), their proofs, experimental evaluations, and the details of the tools’ implemen-
tation (e.g., nuXmv [C11] and HyCOMP [C15]). We refer to the corresponding publications
for such information.

Experience in students’ advising. Several of my research contributions have been obtained
advising, in different capacities, Ph.D. and undergraduate students. In chronological order, |
advised the following students:

« Qiang Wang: | co-advised Qiang (Ph.D. candidate from EPFL, graduated in 2017) with
Alessandro Cimatti (Fondazione Bruno Kessler) during a summer internship in 2014.
We published a paper on model checking BIP models [C14].

+ Rhys Braginton Pettee Olsen: | co-advised Rhys (Undergraduate student at the Univer-
sity of Colorado Boulder, graduated in 2018) with Sriram Sankaranarayanan (Univer-
sity of Colorado Boulder) while Rhys worked as research assistant in 2016 and 2017. We
published a paper on mining API specifications from a large corpus of programs [C20].

+ Mirko Sessa: | co-advised Mirko (Ph.D. candidate at the University of Trento, gradu-
ated in 2019) with Alessandro Cimatti (Fondazione Bruno Kessler) from 2015 to 2019.
With Mirko, we worked on the problem Formal Analysis of Switched Kirchhoff Net-
works [C16, C18, C19].

« Shawn Meier: | am co-advising Shawn (Ph.D. candidate at the University of Colorado
Boulder, plan to graduate in 2024) with Bor-Yuh Evan Chang (University of Colorado
Boulder). Shawn is working on the formalization, verification, and synthesis for event-
driven programs [C21, C23, J8].

2The author’s Ph.D. thesis [T 1] included the following publications: verification of distributed hybrid systems [C2, C5,
C4, C6, J2], discretization of hybrid systems [C8, C7, J3, C10], and parameter synthesis for infinite-state systems [C9].

6



CHAPTER 1. INTRODUCTION 7

« Mehdi Zadem: | am co-advising Mehdi (Ph.D. candidate at the Institut Polytechnique
de Paris, plan to graduate in 2024) with Sao Mai Nguyen (ENSTA Paris). Mehdi is work-
ing on abstractions in Hierarchical Reinforcement Learning [C27, C28].

Structure of the Thesis. The thesis has the following structure and can be read following
the graph in the figure below:

« Chapter 2 introduces the common notation used in the thesis, defines the VMT problem
and the Hybrid Automata verification problem.

« Chapter 3 first presents IC31A (Section 3.1) and then the L2S-IA (Section 3.2) algorithm
for proving liveness properties for infinite-state transition systems.

 Chapter 4 presents Implicit Semi-Algebraic Abstraction (Section 4.1), Compositional
Relational (Section 4.2), and finally the K-Zeno algorithm (Section 4.3).

« Chapter 5 summarizes the other main research areas | contributed to: Formal Anal-
ysis of Switched Kirchhoff Networks (Section 5.1), Event-Driven Program Verification
and Synthesis (Section 5.2), and Abstractions in Hierarchical Reinforcement Learning
(Section 5.3).

/ L ------ \
E Chapter 3 i E Chapter 4 i E Chapter 5 i
i Section 3.1 i—;—) Section 4.1 E i Section 5.1 E
i Sectii’n 3.2 i i Section 4.2 i i Section 5.2 i
Trroenmeenoee I E Section 4.3 i E Section 5.3 i

All the chapters depend (solid arrow) on the preliminaries (Chapter 2). Inside each chap-
ter, Section 3.2 (Liveness-to-Safety reduction via Implicit Abstraction) depends on Section 3.1
(IC31A). Across chapters, Section 4.1 (Implicit Semi-Algebraic Abstraction) depends on Sec-
tion 3.1 that defines implicit abstraction.
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Figure 1.1: Thesis contributions and organization.The lower half of the image shows the Verifica-
tion Modulo Theories (VMT) algorithms. The blue, dashed box encloses the contributions of this thesis
for VMT: given a transition system S (represented with first order theories), the IC3-IA solves the in-
variant verification problem (i.e., S |= Ps), and the L2S-IA algorithm solves the liveness verification
problem (i.e., S = FG —f). The upper half of the image shows the verification algorithms for hybrid
systems and the contributions of this thesis in the red dashed box. The smaller purple dashed box
contains the discretization techniques encoding a hybrid automata as a discrete system (i.e., a transi-
tion system S). The thesis describes two abstraction techniques for non-linear hybrid systems. While
the discrete abstractions can be used to prove invariant and liveness properties, the K-Zeno algorithm
takes care of ignoring Zeno paths that prevent the algorithm’s termination. Boxes without a reference
(e.g., the k-1iveness algorithm) are not a contribution of this thesis.



Chapter 2

Background on Safety and LTL
Verification

We briefly introduce the invariant and liveness verification problems for discrete symbolic
transition systems expressed with theories and for both dynamical and hybrid systems.

2.1 Satisfiability Modulo Theories

In the following, we use standard notation from first-order logic (e.g., see [36]). We assume to
be given a signature ¥ of function and predicate symbols. A 0-ary function symbol is called a
constant. A X-term is a first-order term built out of function symbols and variables. If t;, ..., t,
are X-terms and p is a predicate symbol, then p(ty,...,t,) is a Z-atom. A E-formula ¢ is built
in the usual way out of the universal and existential quantifiers, Boolean connectives, and
>-atoms. When X is implicit, we omit it and just talk about terms, atoms, and formulas.
A literal is either an atom or its negation. We call a formula quantifier-free if it does not
contain quantifiers, and ground if it does not contain free variables. A clause is a disjunction
of literals. A formula is said to be in conjunctive normal form (CNF) if it is a conjunction of
clauses. For every non-CNF formula ¢, an equisatisfiable CNF formula i can be generated in
polynomial time [2]. We assume the usual first-order notions of interpretation, satisfiability,
validity, logical consequence, and theory. We write I' |= ¢ to denote that the formula ¢ is a
logical consequence of the (possibly infinite) set of formulas I'. A first-order theory, 7, is a set
of first-order sentences. A structure A is a model of a theory 7™ if A satisfies every sentence
in 7. A formula is satisfiable in 7 if it is satisfiable in a model of 7.

Moreover, following the terminology of the SAT and SMT communities, we refer to pred-
icates of arity zero as propositional variables, and to uninterpreted constants as theory vari-
ables. Finally, if a formula ¢ is satisfiable, we call a model of ¢ any assignment p to (possibly
a subset of) the variables of ¢ and interpretation of symbols (M, 1) which make the formula
true, and we denote this with p |= ¢. If 1 is a model and x is a variable, we write pu[x] for the
value of x in p.

Given a first-order theory 7, an SMT solver for 7, SMT(7) [136], is a procedure that
is able to decide the satisfiability of Boolean combinations of (quantifier-free) propositional
atoms and theory atoms in 7 .Examples of useful theories are the equality and uninterpreted
functions (EUF), difference logic (DL) and linear arithmetic, either over the rationals (LRA) or
the integers (LIA), the theories of non-linear real arithmetic (NRA), the theory of bit vectors
(BV), and their combinations. The main contributions of Chapter 3 are agnostic of the under-
lying theory 7~ ', while Chapter 4 relies on the NRA and LRA theories.

"We require the satisfiability problems for 7~ to be decidable and to be able to compute Craig interpolants.
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10 2.2. VERIFICATION OF SYMBOLIC TRANSITION SYSTEMS

SMT-solvers often construct models in the case a formula is satisfiable and proofs if it is
unsatisfiable. Proofs are used to generate additional information, such as unsatisfiable cores
and interpolants. Given two formulas ¢ and ¢, with Ay = L, the Craig Interpolant (from now
on interpolant) of ¢ A is aformulalsuchthat=¢ — I,y Al | L, and every uninterpreted
symbol of I occurs both in ¢ and ¢. Intuitively, the interpolant is an over-approximation of ¢
“guided” by . We refer the interested reader to [110] for more details.

2.2 Verification of Symbolic Transition Systems

2.2.1 Symbolic Transition Systems

We represent a discrete-time, infinite-state system with first-order formulas over a back-
ground theory 7~ with signature X. Given a set of variables X, we write X’ := {x’ | x € X}
for the set of variables copying each variable x with a freshly renamed variable x’, and we
write ¢(X) if the E-formula ¢ only contains free variables from the set X, and abuse the
notation writing ¢(X1, ..., X,) if ¢ contains free variables from (J; X;.

Definition 1 (Symbolic Transition System) Given a set of state variables X, a %-formula
I(X) representing a set of initial states, and a E-formula T (X, X") is representing a transition
relation, S := (X,I,T) is a symbolic transition system.

A state s of a transition system S is an interpretation (M, y) to the symbols in the signa-
ture ¥ and the variables X, where M and y are respectively the domain and the assignment
of the interpretation. The satisfaction relation s |= ¢ for a X-formula is defined as usual. We
denote with Sx all the states of the transition system S. We write s” for the state s where the
assignments to the variables x € X from s are substituted with assignments to the variables
x" € X' (i.e, for all x € X, ps[x] = puy [x']). A finite path (of length k) of S is a finite sequence
T = Sp, S, - - -, Sk Of states with the same domain and interpretation of the symbols in X (e.g.,
foraterm ¢ € 3, g [t] = pg;[t], for any index i, j) such that sy |= I, and for all i, 0 < i < k,
si»S;,; = T. Observe that the interpretation of the symbols in the signature X is rigid, mean-
ing that the interpretation to uninterpreted functions and predicates does not change across
the states in a path (while the assignments to the variables X can change). We write 7 = S
if 7 is a path of the transition system S. A state s is reachable in S if and only if there exists a
path of S ending in s, and we write Ss for the set of all the reachable states of S.

Example 1 ([J7]) S=({c,d},c =0Ad =0,c" = c+d Ad" = d+1) is an infinite-state transition
system, where {c,d} are integer variables. The initial state sy of the system has an assignment
Us, where pi5,[c] = 0 and pg [d] = 0. At every transition, the system S increases d by one and
increases ¢ by d. The path w := sg,s1,5, wheresy EFc=0Ad=0,s1 Fc=0Ad =1, and
so Ec=1Ad =2, isapath of the system S.

An infinite path ¢ := s, s1,... of a transition system S is such that all the states have the
same domain and interpretation of symbols in X, sy = I and forall i > 0s;_1,s] F T.

Example 2 ([J7]) Consider the transition system S = ({c,d},c = 0Ad = 0,(c’ = 0Ad =
0)V(c" =c+dAd =d+1)). The path that keeps incrementing the value of the c and d variables
is an infinite path (i.e., the path with the assignments {c = 0,d = 0}, {c = 0,d = 1},{c = 1,d =
2},{c = 3,d = 3},...). The path where c and d never change value (i.e., {c = 0,d = 0}, {c =
0,d =0}, {c =0,d =0},...)is also an infinite path of S.

Given two transition systems S; = (X1, [;,T1) and S, := (X3, I, T,), their synchronous
product is S; X Sy := (X; UXy,I1 AL, Ty A Tp,). In the following, we assume to represent the
transition systems over a theory 7~ with a signature %, so we leave X implicit in the notation.

10



CHAPTER 2. BACKGROUND ON SAFETY AND LTL VERIFICATION 11

2.2.2 Verification Problems

We are interested in the invariant and liveness verification problems for a symbolic transition
system S.

Definition 2 (Invariant Model Checking Problem) Theinvariant verification problem for
a transition system S and a o-formula P(X) is to decide if all the reachable states of S satisfy P
(i.e., for all reachable states s € Ss of S, s = P). In such case, we say that the transition system
S satisfies the safety property P (S |= P).

The Z-formula P(X) specifies an invariant property of S, a set of “safe” states. The invari-
ant verification problem is the dual of the reachability problem, which asks if there exists a
reachable state s such that s [~ P (observe that the logical negation =P represents a set of
“unsafe” states).

In this thesis, we will tackle the liveness model checking problem. We briefly recall the
Linear Time Temporal Logic (LTL) model checking problem [6] and that such problem can be
solved via a reduction to a liveness model checking problem. We use the standard syntax of
LTL but where the atomic propositions in the formulas are >-formulas. A >-formula is a LTL
formula, and a Boolean combination of LTL formulas is a LTL formula. If Y5 and i, are LTL
formulas, then X ¢; and ¢; U ¢, are LTL formulas obtained applying the temporal operators
next and until, respectively. We derive the other temporal operators finally and globally as
usual (i.e, Fy := TU ¢, Gy = —F —¢). Given an infinite path o := sy, s, ..., we write ¢’ for
the suffix of o starting at state s;. We define when an infinite path o satisfies a LTL formula
¥, written ¢ |= ¢, by induction:

o Giffol0] ¢ o~ iff (0] Y, o F Y A Y iff o[0] F ys and o[0] = ¢
cEX i iffc’ Eyr, o Yy Uy iff for some j > 0,67 | ¢ and for all i < j, o' | ¢.

Moreover, we assume that the interpretation of all the symbols in the signature X in all the
states in the path o is rigid, meaning that the interpretation of function symbols and predi-
cates in o is the same in the path (while the value assigned to a variable x € X can change
across states in o). A transition system S satisfies a LTL property ¢ (S [ ) if all the infinite
paths of S satisfy . The LTL model checking problem consists of checking S = ¢.

Example 3 ([J7]) Consider the LTL formula FG ¢ < d and the path c = {c = 0,d = 0}, {c =
0,d = 1}* that repeats {c = 0,d = 1} infinitely often. The path satisfies the formula FG ¢ < d
because it assigns initially both ¢ and d to 0, and then ¢ to 0 and d to 1 forever.

Remark 1 We use the symbol |= with different denotations. If ¢ and { are formulas, ¢ =
denotes that  is a logical consequence of . If (M, ) is an interpretation, (M, yis) = ¢ denotes
that (M, ps) is amodel of . IfS is a transition system andy an invariant property, S |=  denotes
that  is an invariant of S. If instead / is a LTL formula and o an infinite-path of the transition
system S, we use o |=  to denote that the path o satisfies the LTL formulay and S |= ¢ to denote
that all the infinite paths of S satisfy /. Different usages of = will be clear from the context.

Definition 3 (Liveness Model Checking Problem) Given a transition system S and a LTL
formula FG —f, with f(X) a E-formula, the liveness model checking problem decides if S |=
FG —f.

We adopt the automata-based approach [7] to LTL verification that reduces the LTL model
checking problem to a liveness model checking problem. The reduction builds a transition
system S_; and a fairness condition f. (a X-formula) such that:

S E¢ifandonly if S X S_y | FG =f-y.

Thus, in the rest of the thesis we focus on the liveness model checking problem S = FG —f.

11



12 2.3. VERIFICATION OF HYBRID AND DYNAMICAL SYSTEMS

Remark 2 Here, we assume the next temporal operator (X) to be used only on LTL formulas
and not terms of a 2-formula (e.g., the formula G ((X x) = x) uses the next operator on the term
X to expresses that the variable x never changes it’s initial value). There exists works (e.g., [130])
handling such extensions with a VMT-based approach.

2.3 Verification of Hybrid and Dynamical Systems

We first introduce dynamical and hybrid systems and then the invariant and liveness model
checking problems.

In the following, we will refer to the set of formulas that are a Boolean combination of
polynomial constraints only containing real-valued variables from a set X as ©p,, (X).

Definition 4 (Dynamical Systems) A dynamical system D is a tuple:
D = (X, Init, Inv, Flow),

where X is a finite set of real-valued variables, X = {x | x € X} is the set of first derivatives of
the variables X, Init and Inv are formulas from ©p,,(X), and Flow is a formula in ® po, (X U X).

A state s of the dynamical system D is an interpretation (M, y5) assigning a value to each
variable in X. When working with dynamical systems we will assume, without loss of gen-
erality, that the set of variables X is {xy,...,x,}, so we can refer to a variable with an index
from 1 to n and use a vector notation when more convenient. That’s it, sometimes we will
work with the vector notation X := [x,.. .,xn]T instead of the set X. Given a vector o,
we write g; for the i-th element of the vector (e.g., [x1, xz]g is x). Also, given an assignment
Jt to the real-valued variables X we write i := [p[x1],...,[x.]]? for the vector of values
assigned to the variables X. The dynamical system D reaches a state s’ if there exists a state
s, a differentiable function ¢ : R™! — R" and a non-negative time t > 0 such that:

1. sis initial (i.e., s | Init); and
2. ¢(fis,, 0) = fis, and @ (s, ) = fig; and
3. forall0 <d < t:
5= (M, Uyex i — 0(i, )1) and s5 = Inv, and
o 5, (M, Uyex Xi (%q)) (Hss, 6)i) E Flow(X, X), with %q) the first derivative with
respect to time of ¢.

In the above definition, the system dynamic Flow(X, X) is intentionally left very general
(e.g., Flow may express a polynomial differential algebraic equation). In practice, we often
restrict Flow(X, X) to a specific subclass to obtain a more amenable verification problem. In
this thesis, we will consider the following dynamics:

1. Piecewise-Constant (PWC) dynamics (in Section 4.3): Flow is a conjunction of formulas
in Linear Real Arithmetic (LRA) of the form: X .y x (& - v) > 0, where each coefficient

a, € Q.

2. Polynomials dynamics (in Sections 4.1 and 4.2): Flow expresses a system of Ordinary
Differential Equations (ODEs) of the form ;( = ]?()_()'), where ;( is the vector of first-
order derivatives of the variables X, f()?) is a vector of polynomials using the variables
X (i.e., each polynomial ﬁ describes the right-hand side of the differential equation for
the variable x;, x; = ﬁ()?))

12



CHAPTER 2. BACKGROUND ON SAFETY AND LTL VERIFICATION 13

Remark 3 In order to ease the presentation we restricted the Flow condition to polynomials
with variables from X (i.e., ©po,(X)). We observe that some of the techniques we propose in
Chapter 4 can handle more expressive dynamical systems. For example, the above definition does
not include in the vector field parameters (which are supported in the algorithm of Section 4.1),
inputs variables, and disturbances (which are supported in Section 4.2). Moreover, the vector
field is polynomial, while the algorithm from Section 4.2 considers continuous dynamics with
transcendental functions.

Definition 5 (Hybrid Automata) A hybrid automata [8, 113] is a finite automaton extended
with a set of continuous variables X defined as:

H = (Q,R X, Init, Inv, Jump, Flow),

where Q is a finite set of states, X is a finite set of real-valued variables, Init : Q — ©p,y,(X),
Inv: Q — Opoyy(X), Jump C Q X Opoiy(X,X’) X Q" is a transition relation, and Flow : Q —
Opoty (X, X) is a flow condition imposing a relation among the derivatives X and the continuous
variables X.

A state (q;, s;) transitions to a state (qi+1, Si+1) if either:

« Discrete step: s; = Inv(q;), sis1 | Inv(qit1), (gi, @, gi+1) € Jump and s;, si11 = ¢; or

« Time elapse: q; = qi+1, si | Inv(qi), sit1 E Inv(qi), s; reaches s;iq in the dynamical
system (X, Ayex X = s, [x], Inv(g;), Flow(q:)).

A finite path 7 := (qo, S0), - - -, (qk, k) of H is a sequence of states such that sy = Init(go) and
(gi, si) transitions to (qi+1, Si+1) for i < k. We define an infinite path o analogously, but for an
infinite sequence of states. Let J; be the time elapsed during the time elapse transition from
(gi, si) to (gi+1, Si+1). The total time t; elapsed in total at the state (g;,s;) on a path =z is 0 if
i =0, t;_q if the transition from (q;, s;) to (gi+1, si+1) Was a discrete step, and t; = tj_1 + §;—;
if the transition (gj,s;) to (git+1, Si+1) was a continuous step. An infinite path o is zeno if the
sequence of times t,, t1, ... does not diverge.

We define the invariant model checking problem for a hybrid systems H and an invariant
property P (written as H |= P) similarly to Definition 2. In practice, the invariant model
checking problem asks to prove that all the finite paths of the hybrid system H never reaches
a state outside P(X) (here, we also assume that we can express automata locations Q in the
invariant formula P, which is feasible encoding the set Q with a set of Boolean variables). We
define the liveness verification problem analogously to Definition 3, and say that H | FG —f
if all the infinite paths o of H are such that ¢ = FG —f.
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Chapter 3

Verification Modulo Theories

This chapter presents the work from the following papers: [C12, J5, C17, J7].

There is a well established set of algorithms for model checking symbolic transition sys-
tems with a finite number of states that are commonly used to verify hardware and high-level
system models. Among such model checking algorithms, the ones that use a SAT solver to
reason symbolically on the transition system (e.g., Bounded Model Checking (BMC) [12], K-
induction [17], K-liveness [65], liveness to safety (L2S) [20], interpolation-based model check-
ing [25], IC3 [55], ...) demonstrated to scale to verify properties on complex systems. Such
algorithms are appealing since they search for an inductive invariant sufficient to prove a
property, instead of eagerly computing the set of reachable states like the algorithms based
on Binary Decision Diagrams. Extending the SAT-based model checking algorithms to verify
infinite-state transition systems expressed with theories poses several challenges. The main
operation the above algorithms perform is to query a SAT solver checking the satisfiability
of a propositional logic formula repeatedly (and in some cases computing other facts, such
as Craig interpolants). Since the SMT problem subsumes the SAT problem, a naive idea to
extend SAT-based algorithms to model check infinite-state systems is to just replace the SAT
solver with a SMT solver. However, such strategy does not work well when we have an in-
finite number of states since (i) when proving an invariant property such algorithms end up
enumerating an infinite amount of states (i.e., they do not converge); and (ii) when proving
liveness properties such algorithms fail since they assume the system has only lasso-shaped
paths (i.e., a path formed by a prefix followed by a “loop”, where one state in the path is
visited infinitely often), while paths in an infinite-state system may not have a “loop”. In this
Chapter, we answer the following question:

How can we effectively use SMT-based model checking algorithms to model check
infinite-state transition systems?

We first focus on the problem of extending the IC3 algorithm to prove invariant proper-
ties on infinite-state systems (Section 3.1) and then on problem of model checking problems
liveness properties (Section 3.2). All the algorithm we present in this Chapter have been im-
plemented in the nuXmv [C11] symbolic model checker.

3.1 IC3-lA: Extending IC3 with Implicit Predicate Abstraction

In this Section, we first provide a high-level overview of the IC3 model checking algorithm,
focusing on the challenges to extend it to the theory case, then we recall the CEGAR loop for
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16 3.1. IC3-1A: EXTENDING IC3 WITH IMPLICIT PREDICATE ABSTRACTION

predicate abstraction, and finally we present IC3IA.

3.1.1 SAT-based IC3.

The 1C3 algorithm [55], or Property Directed Reachability (PDR) algorithm [57], tries to in-
crementally build an inductive invariant to prove S |= P. An inductive invariant is a formula
¥ such that: (i) ¥ |= P; and (ii) I | ¢; and (iii) ¥ AT | ¢ that is a sufficient certificate to
conclude that S |= P.Observe that the set of reachable states Ss of S is the strongest inductive
invariant (i.e., for any inductive invariant ¥ we have Ss = ).

IC3 maintains a finite sequence of frames %y, 71, . .., i called trace, where each frame
¥ is an over-approximation of the set of states S reaches after i steps.! Moreover, the trace
satisfies the following properties:

Fo =1, (3.1)

Fi E Fiz1, for0 <i <k, (3.2)

F AT = F,y, for0 <i <k, (3.3)
FiEP, for0<i<k. (3.4)

An important aspect in the mechanics of the 1C3 algorithm is that each frame ¥ is repre-
sented with a set of clauses and not an arbitrary Boolean formula. We recall that a clause ¢
is a disjunction of literals (i.e., a Boolean atom or its negation) Iy V --- V [, and that we can
write c as a set {I,...,1,}.

Initially, IC3 checks if I = P and then initializes the frame F, = I. Observe how the
current trace, only containing %, satisfies the trace properties. At each major iteration, the
algorithm tries to extend the current trace with a new frame that initially is true (e.g., at
step 1, 1 = T). Suppose we have a trace Fy, . .., Fx—1 satisfying the trace properties and IC3
extends the trace with the new frame ¥ = T. The new trace including 7 satisfies the trace
properties and ¥ [ P. Thus, there is at least a state s; = F and si = P.

IC3 performs a blocking phase to either prove that s; cannot be reached after k steps, or
that there is a path from the initial states I reaching si. The blocking phase first check if
the previous frame, Fi_1, can block the pair (sk, k) (also called proof obligation), checking
if =sp AFret AT | ﬂs]’c. In practice, if such check succeeds we have that, when taking a
transition from a state in —sp A Fi_1, we always reach a state in —sg, hence proving that s is
not reachable in k steps. Such condition is called relative induction:

Rellnd(F,T,c) == ¢cAF AT A=C, (3.5)

stating that the clause c is inductive relative to the frame ¥ If the formula RelInd(Fy+1, T, —sk)
is unsatisfiable, then the IC3 inferred that s; cannot be reached in k steps. Thus, IC3 refines
Fx as Fr A —si (note that —sy is a clause). At this point, IC3 checks again if i |= P, eventually
performing the same blocking phase. Instead, when RelInd (41, T, —si) fails in blocking s,
then there is a state sg_; in Fx_; that can reach s in F. The blocking phase recursively tries
to block (sg—1,k — 1) with the frame F_,. In practice, such recursive check will eventually
terminate, either succeeding in proving that F [~ si (i.e., “blocking” sg), or finding a path
starting in %, reaching s (i.e., a counterexample path showing S |£ P).

IC3 executes the propagation phase after it proves that ¥ = P. In the propagation phase,
IC3 check if a clause ¢ € ¥ is relative inductive (i.e., RelInd(F;, T, ¢)). If that is the case, then
c can be added (propagated) to the following frame ¥, strengthening it. The propagation

TIn this section, we use the term trace to refer to the sequence of frames in the IC3 algorithm, and not to refer to a trace
of a transition system.
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CHAPTER 3. VERIFICATION MODULO THEORIES 17

processes all the frames in order, starting from the frame #,. The propagation phase allows
IC3 to detect a fixed point in the algorithm when Fr_; = F%. Using the trace properties it’s
not difficult to see that F;_; is an inductive invariant when F._; = % (i.e., [ F Fr_1, Fr-1 F P,
and Fr—1 AT | Fi-1).

The above description abstracts several optimizations that are key for IC3 performance
and, in particular, the generalization of the inductive clauses. After the algorithm finds that
the clause c is relative inductive to ¥ in the blocking phase, i.e., RelInd (¥, T, c) is unsatisfi-
able, it tries to generalize the clause ¢ to a weaker clause g (i.e., a clause g such that ¢ = g),
which potentially blocks more states. The generalization procedures for IC3 are described

n [57, 100].

Challenges in Extending IC3 to SMT. The above high-level description of the IC3 algorithm
is agnostic of the underlying type of system (e.g., finite- or infinite-state) and the fact that
formulas are purely propositional or X—formulas. The extension to the SMT case presents
some challenges, as explained in [64, 67]. In the finite-state case, when the Rellnd check fails
in the blocking phase for a proof obligation (s, k), one get a state si_; from the previous
frame ¥, from a satisfying assignment y to the formula —sg A Fx AT A s; . In fact, one
can get s;_; from the assignment y just considering the assignment to the “current” variables
(i.e., ignoring the “primed” variables). Note that, given the structure of the frames, s;_; must
be a cube (i.e., a conjunction of literals). In the SMT settings, one can get a “trivial” cube sx_,
from the model p, assigning to each variable of the transition system a single value. Such
cube sg_; will have the effect to eliminate a single state from #;_; when the state space is
infinite.
There are two main orthogonal solutions to extend IC3 to the theory case:

1. Obtain a “larger” cube s;_; that represents a set (instead of one) of predecessors of sg.
We can compute generalization computing the pre-image of s; using quantifier elimi-
nation [64]. In practice, since quantifier elimination is expensive, one can use an under-
approximate version of quantifier elimination to obtain a subset of all the predecessor
states (e.g., see model-based quantifier elimination [50, 151]);

2. Extend the generalization step in the blocking phase [64] to obtain a “larger” blocking
clause. We can compute such generalization using theory specific interpolation (e.g.,
see the use of Farka’s Lemma in [67]).

A disadvantages of the above solutions is that both quantifier elimination and generalization
steps are theory dependent, requiring to develop an ad-hoc technique for every theory of
interest.

3.1.2 CEGAR and Implicit-Predicate Abstraction

An approach for verifying infinite-state systems is Predicate Abstraction [9]. In abstract model
checking [5], we analyze an abstract transition system S, expressed with the variables X
(note that S is finite-state if all the variables X have a finite domain) that we obtain with an
abstraction function a : Sx — S, a surjective function mapping each state of the transition
system S into states of S. A concretization functiony : Sg — 25+ concretizes an abstract state
s to a set of concrete states, i.e., y(7 = {s € Sx | a(s) =s}. We represent the abstraction
function a with a formula H, (X, X) such that 5,5 F Ha(X, X) iff a(s) = 5. The abstract
transition system a(S) := (X,1,T), also written as S, and the abstract invariant property are
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18 3.1. IC3-1A: EXTENDING IC3 WITH IMPLICIT PREDICATE ABSTRACTION

defined as:
T =3X.(I(X) A He(X, X)), (3.6)
T :=3X, X' .(T(X,X") A Hy(X, X) A Ho (X, X)), (3.7)
P :=3X.P(X) A Ho(X, X). (3.8)

The abstraction function guarantees that if S | P, then S | P. Hence, the goal of abstract
model checking is to construct a verification problem S | P that is “easier” to solve than
S | P. Commonly, such condition is ensured by considering finite-state abstractions.

A widely used finite-state abstraction is Predicate Abstraction [9], where we assume a
finite set of predicates P := {py,...,pm} with each p € P using only variables from X, and
a finite set of Boolean variables X = {xp | p € P} (we will write Xp for X when having a
predicate abstraction). We represent the abstraction function ap as: 2

Ho(X, Xp) = /\ p(X) & x,. (3.9)
peP

Intuitively, the predicate abstraction Hp groups together states that have the same valuation
to all the predicates in P.

The main challenges in abstract model checking using predicate abstraction are 1. com-
puting the abstraction, which involves an exponential number of states; and 2. finding a
sufficient set of predicates to prove the property (when the invariant property holds). The
CEGAR framework [24] tackles the former problem, while Implicit Predicate Abstraction [44]
tackles the latter one.

Counter-Example Guided Abstraction Refinement (CEGAR). Given an invariant verification
problem S = P, we don’t know the verification result and, in case S | P, if there exists a
finite set of predicates P such that SEP. In practice, the verification algorithms implement
the Counter-Example Guided Abstraction Refinement (CEGAR) framework [24] shown in Fig-
ure 3.1 that iteratively: 3 (i) ) computes the abstract system and property S and P; (ii) model
check the abstract system S I: P), either proving that S |= P or producing an abstract coun-
terexample 7 (i.e., a path in S such that 7 K= P) (iii) check if there is a concretization of the
abstract counterexample 7 that corresponds to a path in S, concluding that S [~ P; (iv) in
case T is spurious, the algorithm refines the abstraction that, in the context of predicate ab-
straction, means finding new predicates P’ that rule out 7 in the new abstract system (i.e.,
7T = apup (S)). The CEGAR loop then restarts with the new set of predicates P U P’.The simu-
lation and refinement steps when using predicate abstraction are usually based on Bounded
Model Checking (BMC) [12]. The concrete system S simulates a spurious counterexample 7
if the following BMC encoding is satisfiable:

1(X°) A /\ T(X, X" A /\ (He (X', XE) A 7(XD)), (3.10)
0<i<k 0<i<k
where X! := {x' | x € X} is a set of copies of the set of variables X indexed with i € N

(and similarly for X). The formula is a BMC problem encoding all the paths of S of length
k that visit the same sequence of abstract states from 7. If Equation (3.10) is satisfiable,
then an interpretation of the variables X represents a concrete counterexample witnessing

2Abusing the notation, here we identify the abstraction function with the set of predicates P.
3We instantiate CEGAR to predicate abstraction even if CEGAR works with generic abstraction functions a.
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CHAPTER 3. VERIFICATION MODULO THEORIES 19

the violation of the invariant property P. Otherwise, the counterexample 7 is spurious and
the abstraction must be refined. A popular algorithm [27] uses interpolation to find new
predicates P’ that will rule out 7 in the new abstract system using P U P’". The procedure
computes a sequence of interpolants that is, intuitively, a Craig interpolant between every
pair of transitions in the encoding of Equation (3.10). Then, the new predicates P’ are all the
predicates contained in the sequence interpolants.

S, P, P Abstract S, P - Model Check Yes SEp
S = ap(S) g S = P?
'y ~
P :=PUP No, counterexample T
Refine .
Yes Simulate No
Find P’ such that Is 7 spurious? —> SEP
7 W apup(S) P '

Figure 3.1: CEGAR. Counter-Example Abstraction Refinement loop.

Implicit Predicate Abstraction. One of the challenges when instantiating the CEGAR frame-
work with predicate abstraction is the intrinsic complexity in computing the abstract system
S. In fact, computing §requires to eliminate the quantifier from the Equation (3.6). While
such computation is not expensive for some abstraction (e.g., Cartesian Abstraction [22]),
they have exponential complexity in the number of predicates in the case of predicate ab-
straction. Despite several algorithm tried to address such problem (e.g., [33]), computing
the predicate abstraction fundamentally consists of enumerating the truth assignments to
the Boolean predicates, which are exponential in the number of predicates. Furthermore,
such computation has to be done for all the formulas in Equation (3.6) at every iteration of
the CEGAR loop, becoming more expensive as the abstraction becomes more precise. Such
computation bottleneck hinders the practical use of CEGAR to verify infinite-state symbolic
transition systems and will reappear when proving invariant property for dynamical system
later in Section 4.1.

Implicit Predicate Abstraction (1A) [44] uses the intuition that an abstraction « induces an
equivalence relation ~ among states such that:

s1 ~ s iff a(sy) = a(sy).

We can express such equivalence relation when the abstraction « is a predicate abstraction
with predicates P as:

EQ:(X,X) = /\p(X) o p(X). (3.11)

peP

The Equation (3.11) relates two sets of concrete states and is such that a(s1) = a(sz) iff
X, X E EQp(X,X). Instead of computing the abstraction eagerly, we encode the abstract
transition in the symbolic encoding of a path:

Pathl = N\ (T(X X)) A EQ(X. X)) AT(X . x5). (3.12)

1<i<k
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The formula PathI’; is satisfiable iff there exists an uninitialized path of length k in the abstract
transition system S. *

3.1.3 The IC31A algorithm

The 1C31A algorithm tackles the challenges described above restricting IC3 to reason on the
abstract system S so that all the IC3 frames are clauses with literals from the abstract variables
Xp, and then use implicit abstraction for checking relative inductiveness (Equation (3.5)) to
avoid the explicit computation of the abstract transition relation T. We encode the abstract
relative induction AbsRelInd as follows:

AbsRelInd(F,T,¢,P) :=F (Xp) A c(Xp) A Hp(X, Xp) A Hp (X, XI;)/\
EQe(X,X) AT(X,X) A EQe(X,X") A =c(XL). (3.13)

AbsRelInd(F, T, ¢, P) is unsatisfiable iff RelInd(F, T, ¢) is unsatisfiable (see [J5] for a proof).

The IC31a algorithm further implements a CEGAR loop to automatically check if an abstract
counterexample 7 is spurious and, in that case, refine the set of predicates P. > Observe that,
the frames IC3 computes in a CEGAR iteration can be reused in the subsequent iterations when
considering the refined set of predicates P U P’. In fact, the invariant on the IC3 frames from
Equations (3.1), (3.2), (3.3), and (3.4) will also hold with the new abstract transition computed
with the predicates P U P’ (intuitively, the new abstract transition implies the old one).

The I1C31A algorithm is sound (i.e., when the algorithm is correct when terminating, con-
cluding either that S |= P or S |£ P) and the refinement guarantees progress [J5]. Similarly
to what happens with other CEGAR algorithms based on predicate abstraction, there is no
guarantee IC31A will terminate in case S |= P. In fact, even when a sufficient set of predicates
P exists, the algorithm may perform an infinite number of CEGAR loops (e.g., see [32]). In
practice, the algorithm terminates for finite domains (e.g., the Bit-Vector theory), and may
terminate adapting ad-hoc refinement strategies for particular classes of systems (e.g., for
timed automata [68] the refinement may add as predicates clock constraints describing the
region graph).

Understanding IC31A (Example from [J5]). To give an intuition of the IC31A behavior, we
show its main steps when proving the property P := (d < 3) V =(c¢ < d) for the transition
system S = ({c,d},c = 0Ad =0, =c+dAd =d+1). We report the full example
as presented in [J5]. We describe the first three iterations of the IC31A main loop, showing
all the important steps of the algorithm, like the blocking phase using the abstract relative
induction check and the refinement.

IC31A proves that the property holds performing 8 iterations of the IC31a main loop, refin-
ing 4 times the abstraction and ending with a total of 9 predicates. The initial set of predicates,
taken from the initial formula and the property, is Py := {(c =0),(d =0),(d < 3),(c < d)}
and the initial status of the frames is Fy = x.—¢ A X4=0.

(I) First iteration. In the first iteration the algorithm checks that Fo A Hp(X, Xp) A =P is
unsatisfiable, adding the empty frame 7.

(Il) Second iteration. IC3IA finds a pair (cg, 1) where ¢y = Xe=p—Xg=0 N —Xg<3 A Xe<d
and such that ¢g A Hp(X,Xp) E F1 A =P. Then, IC3IA tries to block (cy, 1) in the

4We'll see in Section 4.1 that we can construct a symbolic transition system encoding directly §using 1A
5The architecture is similar to the one in Figure 3.1, with the abstraction and model checking phases merged together.
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CHAPTER 3. VERIFICATION MODULO THEORIES 21

frame Fy: co is blocked by %y, since AbsRellnd(Fo, T, co,Py) is unsatisfiable. In fact,
AbsRelInd(Fy, T, ¢y, Py) is the formula:

AbsRelInd(Fo, T, co, Po) = xc=0 A xg=0A [Fo(Xp)]
Xe=0 N\ 7Xg=0 N\ 7Xd<3 N Xe<d A [co(Xp)]
Xg=0 < (d =0) Axe=g © (c =0)A [Hp (X, Xp)]
Xdg<3 < (d < 3) Axecg © (c < d)A
Xy e (d'=0) Axl_y & (¢ = 0)A [Hp (X', X3)]
Xjo & (d <3)AX_, o (¢ <d)A
(d=0) o (d=0)A(c=0) & (C=0)A [EQp(X,X)]
d<3) o ([d<3)A(c<d) o (T<dA
(=c+d)A(d=d+1)A [T(X,X)]

(d=0) o (d=0)A(=0) o (=0)A
(@ <3) o (d<HAC<d) o (¢ <d)n [EQRX,X)]
(g A X A _'x;lss A xésd)' [—eo(XE)]

Since AbsRelInd(Fo, T, co, Py) = L, IC31A tries to generalize ¢, to block more states in the
frame 77. One possible generalization is —x;<3, since AbsRellnd(Fo, T, —x4<3,Py) F L.
IC31A adds the negation of the generalized cube, x;<3, to ;. Now the frame #; does
not intersect the bad states =P, and thus IC31a adds the frame ¥, and proceeds to the
propagation phase (in this case there are no clauses in a frame that can be propagated
to the successive frame).

(II1) Third iteration. IC3IA finds a chain of pairs: (—x.=g A =Xg=9 A “Xg<3 A Xc<d, 2), (Xc=0 A
“Xg=0 AXg<3 AXe<d, 1) and (Xe=o AXg=0 AX4<3 AXc<g4, 0) by finding a satisfiable assignment
to —xc=o A "Xg=9 A " X4<3 A Xe<qg A Hp(X, Xp) |E 52 A =P, and then recursively calling the
blocking function. The last pair is at depth 0, hence 1C3i1A found an abstract counterex-
ample. The counterexample path cannot be simulated on the concrete system, due to
the transition from the second to the third state of the path. In the third state we have
that the abstract path requires that =(d < 3), but in the concrete system d must be
lower or equal than 2 after two steps. The refinmement finds (d < 2) as new predicate;
now the abstraction is determined by the set of predicates P; := Py U {(d < 2)}.

After the refinement, IC31A checks if there exists another cube that violates P at frame
F2. The search still finds the pairs: (—x.=g A “Xg=9 A 7X4<3 A Xc<g, 2) and (xc=g A Xg=¢ A
Xi<3 A Xe<d N Xg<a, 1). (Xe=0 A 7Xg=0 N Xg<3 A Xe<q N —X4<2, 1) is blocked by %y, and
thus IC31A adds xj<2 to F7; then (—xc=9 A =Xg=9 A 7 X4<3 A Xc<g, 2) is blocked by ¥, thus
IC31A adds x4<3 to . At this point 7 satisfies the property and IC31A adds the frame
¥3, peforming the propagation phase (it still does not propagate any clause).

(IV) Final result. The final set of predicates found by IC31ais {(¢ = 0), (d = 0), (d < 3), (¢ <
d),(d <2),(d <1),(1 <c¢),(3 <c)} and the final inductive invariant is:

(m(c=0)vd<2)A((d<1) V(1<) A((c=0)Va(d <1)A
(m(c=0)V(c<d)AN((d<2)VA<e)OA((d<2)V(B <)) A((d<3)Va(ec<d).

21



22 3.2. L2S-IA: LIVENESS-TO-SAFETY REDUCTIONS VIA IMPLICIT ABSTRACTION

3.2 L2S-IA: Liveness-to-Safety Reductions via Implicit Abstraction

Several liveness verification algorithms work under the assumptions that all the infinite paths
of a system are lasso-shaped. An infinite path is lasso shaped if it can be divided in a finite
length prefix and a loop repeating infinitely often. While such assumption holds for finite-
state systems, it is not the case for infinite-state systems. Here, we focus on the Liveness-
to-Safety (L2S) [20] reduction algorithm for liveness verification. In the L2S algorithm, a
finite-state transition system S |= FG —f if and only if the transition system S| 55 is such that
Si2s | —loop, where the transition system Sy o5 := {X| s, I12s, Tios} is:

Xias =X UX U {seen, triggered, loop}, (3.14)
Iios =1 A —seen A —triggered A —loop, (3.15)
Tizs =T A [\ ¥=%A (3.16)

xeX
(seen’ o (seen \Y /\ x = f)) A (3.17)
x€X
(triggered’ < (triggered V (f A seen’))) A (3.18)
(loop' - (triggered’ A /\ x' = f’)) ) (3.19)
x€X

The intuition of the above encoding is to:

1. non-deterministically guess the start of the loop of a lasso path, setting the variable
seen to true and “storing” the current value of the state variables to X; and

2. setting the triggered variable to true when the fairness f holds in a state inside the loop;
and

3. setting the loop variable to true when seeing a repetition of the loop (i.e., when A,cx x =X
after the loop start).

What is appealing about the L2S reduction is that the encoding transforms a fairness ver-
ification problem to an invariant verification problem (e.g., checking if Si»s = —loop), and
allows us to use any SAT-based verification algorithm. However, the L2S reduction cannot
prove that S = —loop when S is an infinite-state system, since S_,s = —loop does not imply
S = FG —f.

Example 4 ([J7]) To see the limitation of L2S, consider the infinite-state transition system
S = {ed},c 2 0,(¢" =c+dAd =d+1)), with c and d integers, and the verification
problem S = FG ¢ < d. We have that S | FG ¢ < d: independently from the non-deterministic
initial value of d, d will eventually be positive and hence, eventually, ¢ will be greater than d.
However, the transition system S has only infinite paths that are not lasso-shaped, and that are
not “considered” in the S ,s transition system (i.e., in the transition system S| s the variable for
seeing a loop will never be true). Thus, in this example we have that S;,s = FG —f and write

S I FG ~f.

In [C17] we show that the L2S reduction is useful when applied to the predicate abstrac-
tion of an infinite-state transition system S. Clearly, the abstract system S is finite state, so
Sias F FG —f implies S = FG —f, hence S = FG —f. We address two challenges:
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« encode an implicit abstraction of the L2S reduction. The encoding allows us to enumer-
ate, incrementally, abstract lasso-shaped paths 7 satisfying f; and

« refine the abstraction when an abstract lasso-shaped path 7 satisfying fcannot be
concretized to an infinite, concrete path satisfying f.

While the first challenge is similar to IC31a, consider the following example for understanding
the second issue.

Example 5 ([J7]) Consider the transition systemS = ({c,d},c = 0Ad > 0, (¢’ = c+1Ad’ = d)),
with ¢ and d integers, the verification problem S |= FG ¢ > d, and the set of predicates P := {c <
d,0 < d,c =0}. WhileS |= FG ¢ > d, the predicate abstraction of S with P admits an abstract
lasso-shaped counterexample with a loop on the abstract state ¢ < d,0 < d,—(c = 0). However,
such abstract counterexample can be unrolled i times (e.g., starting fromc = 0,d = i+ 1),
similarly to what we shown in Equation (3.10). In practice, all the finite prefixes of the above
counterexample are all feasible. This means that there are no new predicates that can rule out
the abstract counterexample from the L2S abstraction.

In [C17] we solve the two above problems applying the L2S reduction to find abstract
lasso-shaped paths (in the following called S,12s) and then we extend such encoding to block
spurious abstract counterexample with disjunctively well-founded transition invariants [61]
(called Sg12s)).The Syi2s encoding Seras = (Xavas, latas, Tut2s) is:

Xal2s =X U {seen, triggered, loop} U {c, | p € P}, (3.20)
Iyios =1 A —seen A —triggered A —loop, (3.21)
Tolos =T A /\ cp & c;, A|seen’ < |seenV /\p(X) o cp||A (3.22)
peP peP
(triggered <« (triggered V (f A seen’))) A (3.23)
loop < | triggered’ A /\p(X’) ool (3.24)
peP

We have that S, 75 = —loop iff there exist an abstract lasso-shaped path visiting f infinitely
often.

We next introduce well-founded relations. If S is a transition system, let Ss be its set
of reachable states and Q be the state space of S (so, Ss € Q). A relation p € QX Q is a
transition invariant if it contains the transitive closure of the transition relation T restricted to
the reachable states (i.e., T* N (R X R) C p [61]). A binary relation p C Q X Q is well-founded
if every non-empty subset U € Q has a minimal element w.r.t. p (i.e., there existsam € U
such that there are no u € U where (m,u) € p). A relation is disjunctively well-founded if
it is a finite union of well-founded relations. In the following, let W (X, X) be the symbolic
representation of a disjunctively well-founded relation expressed over the variables X and X.

The alL2S| encoding Salzs, = <XaLZSlsIaLZSl,TaLZSi> extends the S,12s encoding to add
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well-founded relations as follows:

Xatas, = Xat2s U {x0,X | x € X} U {r,s, w}, (3.25)

Igras, = IgLas A /\ Xo=XATrA-sAw, (3.26)
xeX

TaLZSl == lIgL2s A /\ x6 =Xxp A (W/ < (W A (f - r))) A Tmem A Tehecks (3-27)
xeX

Trmem = ((s - s)A /\7 = E) % (seen A=sAS AfA /\7 = x), (3.28)

xeX xeX
Tk =7 © (r A ((s' A= \/ W()_(’,X'))). (3.29)

We have that if Sy155, F —~(loopA—w) then S |= FG =f. In the above encoding, we strengthen
the safety property of L2S to not consider a violation when the abstract lasso-shaped path
satisfy the transition invariant W. In practice, the transition invariant W ensures that the
lasso-shaped path is not a concrete path.

Refining the abstraction. The algorithm discovers the predicates P of the abstraction and
the transition invariant W using a CEGAR loop. At the beginning of the algorithm, the ab-
straction predicates are P := () and the transition invariants is W := L. The algorithm checks
if Sals, E —(loop A =w). If that’s the case, then S |= FG —f, otherwise, the algorithm found
an abstract, lasso-shaped path 7 that can be divided in a prefix 7yef and a loop Tjep. The al-
gorithm tries to simulate the abstract path using BMC, encoding a (non-lasso) concrete path
of S starting with the abstract prefix 7,ref followed by a fixed number of unrollings of the ab-
stract loop E]OOP. If the encoding becomes unsatisfiable, then the algorithm use interpolation
to find new predicates for the abstraction. If the encoding is satisfiable, then the algorithm
strengthen the encoding and tries to find a concrete lasso-shaped path (i.e., a loop). If the en-
coding is still satisfiable, then there is a concrete lasso-shaped path proving that S [£ FG —f.
Otherwise, when the algorithm fails finding a concrete lasso-shaped path (e.g., as shown in
Example 4), we try to prove that there are no infinite paths that can concretize 7 synthesizing
a set of ranking functions. This last concretization uses the following heuristic:

« We enumerate the encoding of a simple lasso program [76] (i.e., a conjunction of pred-
icates from the concretization of 7 and the transition relation T without disjunctions).

« Synthesize a ranking function proving the lasso-path terminates, as shown in [76].

« Use the found ranking function as a disjunctive transition invariant, adding it to W,
hence blocking the simple lasso program.

Example 6 ([J7]) Consider the transition system S = ({c,d},c = 0Ad > 0,¢’ = c+ 1A
d = d, T), the LTL property FG ¢ > d, and the initial set of predicates P := {¢ < d,c =
0,0 < d}. The algorithm will first find an abstract lasso-shaped counter-example with prefix
{xc<ds Xc=0, Xo<q} and a self loop on the abstract state {x.<g4, =X.=0, Xo<d }- The algorithm cannot
determine that such abstract counter-example is spurious using bounded model checking, since
there is no corresponding lasso-shaped path in S. Instead, the algorithm synthesizes a ranking
function d — ¢, with lower bound —1 < d — c, proving the the abstract loop terminates. The
algorithm uses the ranking function to encode a well-founded relation.

Here, we provided an intuition of the refinement process and we refer to [C17] for more
details.
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3.3 Related Works

The verification of both invariants and liveness properties for infinite state systems is a wide
area of research. Here, we focus on the close verification algorithms for symbolic transition
systems expressed with theories, while we ignore a large literature on software verification
using SMT (e.g., lazy abstraction [21, 34]).

Lifting SAT-based Model Checking to SMT. There exist several invariant model checking al-
gorithms for transition systems represented symbolically with propositional logic. In particu-
lar, SAT-based algorithms (Bounded Model Checking (BMC) [12], k-induction [17], k-1ive-
ness [65] , interpolation-based model checking [25], and IC3 [55]) proved to scale well in
practice and are the state of the art for hardware verification.All the above algorithms have
been extended, in some way, to prove invariants (and other properties) for infinite state sys-
tems represented with theories, using SMT instead of SAT. We first discuss k-induction and
interpolation-based model checking, and then discuss more in depth the SMT extensions of
IC3.

k-induction has been extended to the SMT settings in [26, 59, 85, 88] to alleviate the
problem of strengthening the induction hypothesis, which may not be sufficient for prov-
ing the inductive step (at any induction depth k) if the system has an infinite number of
states. A possible solution to strengthen the inductive hypothesis is to infer an invariant
(e.g., via quantifier elimination after a failed proof attempt [26] or with some template-based
methods [59]). IC31A differs from the above k-induction algorithms in several ways. A first
difference is that IC3IA tries to prove a property in the abstract (and not concrete) transition
system (similarly to IC31A, k-induction could use implicit abstraction, as shown in [44]).
Then, IC3IA tries to find a strengthening for the inductive hypothesis incrementally (i.e., a
strengthening to prove relative induction), which is usually an easier task to solve. Further-
more, the performance of k-induction largely depend on the maximum bound k to explore,
due to the BMC-like encoding of all the possible paths at length k.

Interpolation based model checking [25, 45, 63, 137] computes an approximation of the
reachable states and lifts naturally from the propositional to the first-order logic modulo
theory settings. A challenge in interpolation-based model checking is that the size of the
interpolants is usually big and the approach is not incremental, differently from IC3 (although
some recent works show some promise in using interpolations [143] also for approximating
transition relations [144]).

Concrete Extensions of IC3. Several works (e.g., [64, 67, 78, 80, 83, 86, 94]) lifts IC3 to rea-
son on the underlying theories (we will refer to these sets of works as concrete instantiations
of IC3). In particular, several works follow the framework of Generalized Property Directed
Reachability (GPDR) [67], that requires a theory specific generalization (e.g., via an under-
approximated quantifier elimination, e.g., see [151]) and a theory specific interpolation. There
exists several specialization of GPDR, for example to deal with arithmetic [64, 67, 86], arrays
and arithmetic [95], bit-vectors[78, 131], and algebraic data types [147]. An advantage of
IC31A w.r.t. GPDR is to be, in principle, theory agnostic and not requiring an ad-hoc general-
ization procedure. However, IC31A is still limited in some cases, for example when the algo-
rithm needs to find an inductive invariant with quantifiers (e.g., as in the case of arrays) or
to scale to theories (e.g., NRA) where the satisfiability checking and computing an interpolant
may be expensive. Some of these limitations have been addressed with ad-hoc abstraction
refinement algorithms (e.g., see [148] for arrays and [105] for non-linear real arithmetic).
Moreover, GPDR also solves Constrained Horn Clauses (CHC), a problem that subsumes the
invariant verification problem for symbolic transition systems (which corresponds to solving
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linear CHC). Here, we do not compare with other existing algorithms that solve CHC (e.g.,
[58]). An experimental comparison is available from a CHC-COMP competition report [133].

Extending IC3 via Abstraction. The standard predicate abstraction [9] and CEGAR [24] loop
can be used to verify infinite-state symbolic transition systems, although incurring in the
up-front exponential cost of computing the abstraction. IC3I1A uses implicit abstraction [44],
which was originally applied to k-induction, to avoid such bottleneck. Some approaches [80,
124] follows a similar schema as IC31a. The CTIGAR algorithm [80] is similar to 1C3iA, but
it performs both the simulation and refinement eagerly after each generalization of a coun-
terexample to induction and after each relative induction check. Instead, IC31A performs
such steps lazily, only after finding a possible counterexample. The work in [124] extends IC3
with an ad-hoc abstraction for bit-vectors that is determined by the syntax of the underlying
system, and not by the bit-vector width.

SMT-based Model Checking Algorithms for LTL verification A prominent approach to prove
liveness properties using SAT-based algorithms are liveness to safety reductions [65, 20, 56].
An interesting result is that the liveness to safety reduction of [20] is sound for some classes
of infinite state systems [30] (i.e., push-down systems, (w-)regular model checking, and timed
automata). Our extension targets also infinite-state systems where such property does not
hold. We borrow the L2S reduction for the finite-state predicate abstraction of the system,
and then we augment the reduction with well-founded relation to remove abstract loops that
do not contain a concrete infinite path violating the property. The k-1iveness algorithm is
sound for infinite-state systems (and, in our work we also use it to to find well-founded re-
lations, see the discussion in [C17]), however is limited for infinite-state systems (see our
discussion in [J7]). It would be interesting to apply similar ideas to L2S-IA to the FAIR al-
gorithm [56]. Close to our approach, the idea of refining a predicate abstraction with well-
founded relation has been explored in [29]. However, in that approach the refinement adds
a monitor and a fairness property, and then uses standard (and explicit) predicate abstrac-
tion. A related idea to enumerate easy finite counterexamples first, and then refuting infinite
executions only if needed is presented in [92]. Transition predicate abstraction [38] has also
been used to prove liveness properties for infinite-state systems.
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Chapter 4

Verification of Hybrid Systems with
Discrete Abstractions

This chapter presents the work from the following papers: [C13, J6, C25].

In this Chapter we describe how we can reduce both the invariant and liveness verification
problems for hybrid systems to the verification of a discrete, infinite-state, transition system.
First, in Section 4.1 we focus on the problem of verifying invariants for non-linear dynamical
systems using a semi-algebraic abstraction [102], tackling the problem of its exponential up-
front computation. Then, in Section 4.2 we provide an algorithm to efficiently compute a
relational abstraction for a non-linear system compositionally, using Taylor model flow-pipe
construction and a decomposition of the system of differential equations. Finally, Section 4.3
solves the problem of verifying liveness properties (and in practice, LTL properties) for hybrid
systems in the presence of Zeno paths. In summary, this Chapter addresses the following
research questions:

How can we discretize non-linear dynamics to reduce the verification problem for a
hybrid system to the verification problem of a discrete one?

How can we use a discretization to verify liveness properties?

4.1 Implicit Semi-Algebraic Abstraction

In this Section, we focus on the invariant verification problem for polynomial dynamical
systems using semi-algebraic abstractions [102]. Consider the verification problem (taken
from [C25]) for the dynamical system ¥ = —2y,7 = x?, the set of initial states I(X) :=
X—y- % > 0 Ax+2 > 0,and invariant property P(X) := (x+2)?+y? -1 > 0 shown
in Figure 4.1a. We can compute a semi-algebraic abstraction for such verification problem
fixing a set of polynomials A = {x —y — %,x +y+ %,x + 2}. The abstraction partitions the
infinite-state space of the dynamical system in a set of discrete regions, one for each possible
combination of signs (i.e., <,>,=) and polynomials in A. For example, the concretization of
the abstract state (D in Figure 4.1b is the state where x+2 > 0Ax—y—3 < 0Ax+y+3 <O.

Given a set of polynomials A := {ay,...,an}, we write the set of abstract states as:
34 = {{(al,wal), ooy (ams>4g,)} | foreach a € A and »<,€ {>, <,:}} )

27



28 4.1. IMPLICIT SEMI-ALGEBRAIC ABSTRACTION

The set 3” is exponential in the number of polynomials A. The abstraction further defines
that an abstract state s; € 3* can transition to another abstract state s, € A (see the black
arrows connecting abstract states in Figure 4.1b) if there exists a concrete state v; € sy that can
reach a state v, € s, without visiting another abstract state. After the finite-state abstraction
is built, we can verify if any initial abstract state can reach any bad abstract state with a
traversal of the abstract transition system. In Figure 4.1b, we see that all the abstract initial
states (i.e., states from (1) to (©) cannot reach any of the abstract bad states (which we did
not drawn in the picture for clarity). In [C25], we observe that the semi-algebraic abstraction
is, in the end, a predicate abstraction. The main research question we answer is how we can
apply the efficient techniques from symbolic model checking, such as computing a predicate
abstraction [33] and the 1C31a model checking algorithm via implicit predicate abstraction
from Section 3.1 instead of explicitly enumerating the the exponential number of abstract
states.

More concretely, we can write a transition relation Ty (X, X', Z) expressing if there is a
transition between any pair abstract states (s;,s;) in 3% x 3% as:

L(X.X.2) = \/ (sl(X)/\sz(X')/\—'LZZ (Z)), (4.1)

s fs Vs
(s1,52)€34

where, with a slight abuse of notation, given an abstract state s, we write s(X) for its con-

cretization on the variables X (i.e., if s = {(a1,5>4,),..., (am, >, )}, it’s concretization s(X)
is /\ (gpa)es @(X) < 0), and LZZS Favs, (Z) is a formula in Non-Linear Real Arithmetic that is

satisfiable only if all the trajectories of the system f starting in s1(Z) stays in s;(Z) when
restricted to the s;(Z) V s2(Z) domain, cannot reach states in s;(2) (i.e., s1(Z) is a differ-
ential invariant when the state space is restricted to the domain s;(Z) U s2(Z)). The set
Z = {zy | x € X} copies and renames the state variables X. The formula LZZ sV, (Z2) has

been used in [60] to prove and synthesize differential invariants and, for now, we omit its pre-
cise definition. The bottleneck preventing us from using the transition relation Ty (X, X, Z)
is that even expressing such formula requires to enumerate an exponential number of states.
In the following, we show that the transition relation T4 (X, X’, Z) can be expressed with a
formula that is linear in the number of predicates A and that, furthermore, we can use to
model check the abstraction of the dynamical system with IC3IA.

4.1.1 Checking Differential Invariants for Semi-Algebraic Sets

Definition 6 (leferentlal Invariant) A formula 0(X) is a differential invariant [117] for the

dynamical systemX f(X) if for all Xy € R" such that Xy |E 0(X) and for allt > 0, p(X, t) E
0(X).

A sufficient condition to prove that an invariant property holds for a dynamical system is
finding a formula 8(X) such that:

Inv(X) AI(X) E 0, (4.2)
0 is a differential invariant, (4.3)
0(X) E P(X). (4.4)

Intuitively, 6(X) contains the initial states, is contained in the set if “safe” states, and is
invariant under the continuous dynamic of the the system (i.e., once in 0, the system will

TFor clarity, here we do not include additional constraints in the transition relation, such as the neighborhood relation.
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(a) Verification problem and the system’s vector field. (b) Semi-Algebraic abstraction and differential invariant.

Figure 4.1: Example from [C25]. Safety verification problem and reachable states of the abstraction
for the non-linear dynamical system x = —2y, = x?, invariant (x+2)?+y?—1 > 0 (the red circle shows
the complement of the invariant, (x +2)?+y? -1 < 0), and initial set of states x —y — % >0Ax+2>0
(green region). Figure (a) shows the verification problem and the system’s vector field. Figure (b)
shows the reachable abstract states and the transitions of the algebraic abstraction (numbered circles
and arrows) computed using an explicit-state algorithm [102] and the differential invariant (green
and gray regions) obtained from the set of polynomials A = {x —y — 3,x + y + 3,x + 2} (blue lines),
computed using Implicit Abstraction. Abstract states represent different combinations of signs for the
abstraction’s polynomials. Examples of abstract statesare D x+2 > 0 Ax—y — % <OAXx+y+ % <0,
®x+2>0/\x—y—%:0/\x+y+% <0,and @) x +2 >0/\x—y—%:0/\x+y+%:0.

only visit states inside 0). The above proof rule has been widely used to prove invariants for
dynamical systems (e.g., see differential dynamic logic [117, 60]).
The LZZ encoding [60] reduces the problem of checking if 8 is a differential invariant for

the dynamical system X f(X) when restricted to the domain 5 to checking the validity of
the formula:
Lzz, - ofn (X) =0(X) An(X) A In~ (X)) — In G(X))/\ (4.5)
((=0(X) A n(X) A ln_* (X)) = =In_z,(X)),

where Inz (X) encodes the inward set of (X), and In N/(X) encodes the inverse inward set.

FoIIowmg the explanation from [146], the inward and inverse inward sets are defined as:
uE I"f,w(X) iff {x = p[X] | 3e > 0.Vt € (0,¢).0(x,t) E¥(X)}, (4.6)
uE In_~]//(X) iff {x = p[X] | 3e >0Vt e (0,¢6).0(X,—t) Ey(X)}. (4.7)

Intuitively, In (X) represents the subset of states in ¢/(X) that stays in /(X) after an in-
finitesimal amount of time (i.e., “immediately in the future”), while In_ )I//(X) is the subset
of states in /(X) that evolved in /(X) for an infinitesimal amount of time in the past. Note
that, the interior of a semi-algebraic set /(X) is always contained in the (reverse) inward set,
so the interesting points of /(X) are the one on the boundary.

The Formula (4.5) is valid if for all the states s: (i) if s is in 8(X), then s must not immedi-
ately leave 0(X); and (ii) if s is in =0(X), then s must have been in =6(X).
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30 4.1. IMPLICIT SEMI-ALGEBRAIC ABSTRACTION

When all the sets are semi-algebraic we can write the inward sets as a Boolean combina-
tion of polynomial equalities and inequalities [60] (i.e., a formula in NRA). The inward set for
a predicate a(X) < 0, where a is a polynomial is:

Ing o (X) :a<ov(a—ox\a<3)(X)<o)v(a—ox\a<”(X) 0/\a§?<0)v... (4.8)

where a}) k-th Lie derivative of the polynomial a(X) with respect to the ODEsf(l e., aj(p) = a,

and fori >0 a;) = Qa}l 1)f) Intuitively, In (X) is true for all the states that either are

X f,a<0
not on the border (i.e., a < 0), or are on the border but their vector field “points inward” in
the set. However, checking if the vector field points inward in the set is not straightforward.

We can check that the vector field points inward on the border (i.e.,a =0 A a](;) (X) < 0), but

there may be a state such that a = ona (X) = 0. Such “vanishing gradient” problem [106] is

known, and requires to check all the Lie derivatives until one is not equal to zero to determine
if the trajectory will leave a(X) < 0 or not. Given a vector field fand a polynomial a, there
exists an upper bound on the number of consecutive Lie derivatives that can evaluate to 0 for
any state in R". Given such upper bound, computable via Grobner bases, the formula (4.8)
has a finite number of disjuncts. We can define the inward set Inﬁ _o(X) for an equality

asa(X) =0A a(l) (X) =0..., and the inward set In~9(X) for a formula 0(X) just applying

In* o(X) tothe predlcatesaMOmtheformulaH We can define In_ Q(X) similarly using —f

mstead off. We refer to [60] for a proof that the formula 4.5 is valid only if 6 is a differential
invariant, and to [146] for proofs of the result that are not restricted to semi-algebraic sets.

4.1.2 Linear Semi-Algebraic Abstraction

In the following, we show how we can write a formula that is equisatisfiable to Ty (X, X', Z)
(Equation (4.1)), but that is linear in size in the number of of polynomials in A. We first notice
that the LZZ encoding is always applied to check if a single abstract state s; is a differential
invariant. By applying simple Boolean identities and using the property that the inward set
operator distributes over Boolean connectives (see [146]) we have that:

177 (Z) = ((51(2) A (51(2) V(D) Al (X)) = Iz (XA (49)
(51(2) A (51(2) V 2(Z2) A In_z . (X)) = =in_z (X))
= (=51(2) V ~Inz (2) V Ing (Z)A (4.10)

(s1(2) v ﬂSz(Z) Valn_g (Z))-
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Now we can distribute the disjuncts of the formula =L ZZ v, (Z) inthe formula Ty (X, X', Z)
as follows:

Tu(X, X, Z) =3Z. ) s\)/e3A (1) A sy (X') A=LZZ, 5 (Z)) (4.11)
s Z‘( v) A (sl<x>Asz(x'>A<Eils<lz(>ZA)/Ans;( Z()zzlw (ng)))v) @12

$1,82)€3
=\ ERIELEIS) en

$1,82)€3
[ y)
(E)EZ.(InsExpl];(X, X', Z)v OutExle;(X, X', 7)). (4.15)

We are ready to show that there exists a formula InsSyme;(X, X', Z) that has a linear size
in the number of polynomials A and that is equivalent to the formula InsExplf(X, X', Z) (and
a formula OutSymb];(X,X’, Z) equivalent to OutExpl];(X,X’, Z)). We expand the definition
of the formula InsExle;(X, X', Z) with respect to the predicates in s; and s,. Recall that each

concretization of an abstract state is a conjunction of predicates obtained from the set of
polynomials A. In the following, if s = {(a1,><,), ..., (@m,><q,,)}, we write @ >« 0 € s to
enumerate the predicates in s. Thus, we write InsExle;(X, X', 7) as:?

InsExle;(X,X’,Z) = \/ ( /\ a(X) <0 A /\ a(X’) »< OA (4.16)

51,52€34 \ a>0€sy ar<0€s;

/\ a(Z) < 0 A A Inz , o(Z)A

a<0€Esy a<0€Esy

\/ =ing (D]

ar<0€sy

We can express the formula InsExle;(X, X', Z) as a conjunction of the predicates determining

the concretization of the abstract states s;(X) and s2(X’), instead of explicitly enumerating
the all the possible abstract states pairs:

InsSymbx(X,X',Z) = J\ (a(X) <0 = a(Z) »a 0)/\ (4.17)
ach <e{> <=}
(a(x/) =0 = Inz, (Z))
ach <e{> <=}
\/ (a(X) < 0 A (ﬂlnﬁaMO(Z))).
ach<e{> <=}
The formula of the linear encoding InsSymb]g(X, X', Z) is equivalent to the formula InsExplf(X,

X’,Z) . To see this, observe that any satisfying assignment p (to either InsSymbf(X, X',Z) or
InsExpl~(X, X', 7)) assigns a truth value to all the predicates a(X) = 0, a(X’) > 0, for all a €

2We use De Morgan rules to rewrite the formula = A goages, In 7 va0(Z) s Vgpages, ™ nJ;aMO(Z).
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32 4.2. COMPOSITIONAL RELATIONAL ABSTRACTION

A,e {>,<,=}. Given pu [ InsExle;(X,X’, Z), it’s easy to see that u | InsSyme;(X,X’, Z)
just showing that if y satisfies a unique disjunct in InsExle;(X, X', Z), then p satisfies

InsSyme;»(X, X', Z). The other direction is similar but uses the simple observation that, when-
ever 1 E a(X) > 0, for any »<#><, i £ a(X) > 0 (i.e., u satisfies only “one sign” for each
polynomial a € A). We will skip the proof of the equivalence of the two formulas and the
linear version of the formula OutExpl]:(X, X', Z), which follows a similar construction as the

one above, and refer to [0] for the details.

4.1.3 Implicit Semi-Algebraic Abstraction

In practice, we can express the Boolean abstract transition (as in predicate abstraction, see
Section 3.1). Let’s define the set of predicates P := {a >0 | a € A,>€ {<,>,=}} and the set
of Boolean variables Xp := {xp | x € X}. Given InsSymbf(X, X', Z) and OutSymb];(X, X', 7),

we can write Ty (X, X’, Z) avoiding the explicit enumeration of all the abstract states. The
abstract transition relation is:

TSymbP(XP;XIE») = 3AX, X', Z | Ha (X, Xp) A HA(X’,X[E»)/\ (4.18)
(InsSyme;(X,X’, Z)V OutSymb]g(X,X’, Z2))].

While fs}-,;bp(X]p, X)) represents the Boolean transition relation of the semi-algebraic ab-
straction, it requires to eliminate the existential quantifiers in X, X’, and Z. In practice, we
can directly encode the abstract transition relation with implicit predicate abstraction. Let
define the following transition relation:

Timpip(X, X', Z) = InsSymb f()_(, X', Z) V OutSymb f()_(, X', 7).

Then, we can use such transition relation to encode the abstract relative induction check in
IC31A:

AbsRelInd (T, TImpLP; ¢, P) :=F (Xp) A c(Xp) A Hp(X, Xp) A HP(X’, XIE)/\
EQe(X,X) A Timpip(X, X ) A EQe(X, X') A =e(X3).  (4.19)

The above reduction allows us to use implicit predicate abstraction, in general, and also the
IC31A algorithm from the previous Chapter.

4.2 Compositional Relational Abstraction

A relational abstraction [62] R(X, X’) over-approximates the flow condition of a dynamical
system: D = (X, Init, Inv, Flow), as follows:

for all t > 0 and states s, if s can reach s” in t time in D then s, s’ E R. (4.20)

A relational abstraction R is such that if a state s can reach a state s’ in the dynamical system,
then s, s’ = R (i.e., the formula R expresses a relation between two reachable states s, s”).

We can use the relational abstraction R to prove that the dynamical system D satisfies
the property P(X) (and more in general to prove liveness properties too, as shown in [39]).
We abstract the dynamical system D with a relational abstraction R(X, X”") and construct a
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discrete transition system S := (X, Init, R) where the transition relation is R. 3 Observing that
the relation R contains all the possible pairs of reachable states of D, it’s easy to see that:

if S| EPthen D [ P.

Thus, with relational abstraction we reduce the verification problem of a dynamical system
to the verification problem of a discrete, infinite-state system.

Remark 4 The relational abstraction approach to verify invariants extends trivially from dy-
namical systems to hybrid systems. Given a hybrid automaton H we can obtain a transition
system S encoding the automaton’s locations, invariants, and discrete transitions. Furthermore,
S will have in each location q a “special” time elapse transition labeled with the relational ab-
straction Ry computed for the flow condition Flow(q) of the location q.

In the following, we will compute a time-aware relational abstraction R(X, X’,t) for the
dynamical system D:

for all t > 0 and states s, if s can reach s” in t time in D thens,s’,t E R(X, X', t). (4.21)

The abstraction R is similar to the one from Equation (4.20), but the relation further captures
the time t took to reach a state s’ from s’.

While there exist techniques to compute relational abstractions for linear dynamics (e.g.,
[62, 71, C10]), they cannot be directly applied to non-linear dynamical systems. In fact, the
previous techniques compute a relational abstraction for a linear dynamical system of the

form f := AX+Db exploiting either the eigenstructure of the matrix A [62, C10], or the explicit
solution of the differential equation [71] that is rarely available for non-linear dynamics. A
second challenge to compute a useful relational abstraction to verify a property arise from the
limitation of the existing VMT algorithms that, at the time of writing of [J6], worked only for
linear arithmetic theories (the verification algorithm [105] for transition systems expressed
in the NRA theory we used in [C25] was still not available). For such reason, a technical
requirement is to compute a linear (but possibly piecewise) relational abstraction.

In [J6], we tackle the computation problem of a relational abstraction for a dynamical
system with non-linear dynamics (and furthermore controlled with a time-triggered control
systems where a controller runs periodically every A time). The main idea of our work is to
use Taylor model-based integration [89] over a bounded interval [0, A] to compute a Taylor
Model (a, 7) approximating the solution ¢ of the flow condition Flow from 0 to A. In practice,
such Taylor model is already a relational abstraction: a is a polynomial containing variables
from X that computes an approximation of ¢ bounded by the interval 7. However, scaling the
computation of such relational abstraction is difficult. First, the the Taylor model integration
is not precise when considering a large domain of the state space. Second, the Taylor model
integration is expensive when considering a large state space (i.e., a high number of state
variables).

We tackle the precision challenge partitioning the state space in intervals and computing
a relational abstraction for each one of them. Since computing a precise abstractions via a
uniform subdivisions of the state space is expensive, requiring a high number of subdivisions,
we propose an adaptive subdivision algorithm that partitions the state space non-uniformly,
while bounding the precision of the abstraction. We tackle the scalability issue decomposing
the system of non-linear ODEs in sub-components (i.e., subsystems of ODEs using a subset of
the variables) using the data-dependency relation among state variables, and then computing
a relational abstraction for each sub-component in a compositional way (i.e., compute the

3We mainly compute R from Flow and over-approximate both Inv and Init conservatively.
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abstraction for a component reusing the abstraction of the dependent sub-components). The
advantage of the decomposition is that the relational abstraction computation for a sub-
component is less expensive, since the sub-component ODEs involve less variables.

In the rest of this Section, we present the computation of time-aware relational abstrac-
tion R for a non-linear dynamical system D := (X, Init, Inv, Flow) using Taylor models and
the adaptive subdivision, and then the compositional computation of the relational abstrac-
tion. Here, we simplify our presentation with respect to [J6] to a system D with polynomial

dynamic, so the Flow condition expresses a system of ODEs X = ]?()_()) where ]? is a vector

of polynomials. In [J6] we compute a relational abstraction for a non-linear system of ODEs
that can include transcendental functions, control inputs, and time-varying disturbances.

4.2.1 Computing Relational Abstractions for Non-Linear Dynamics

A Taylor Model (TM) is a pair (a, ) where a(X) is a polynomial (or a vector of polynomials)
over some variables X and a donlain MCR", arld Zis an interval with the same dimension
of X (an interval is a vector [a, b] where @ and b are vectors in R" such that for all i < n,
a; < l;,-). Given a smooth function f(¥) we can compute a TM (a, 1) such that, for all X € M,
f(¥) € a(x) + Z. Given a non-linear ODE X = f()?), the flowmap ¢ can be approximated
with a TM (a(X, t), ) for a bounded time interval [0,A] and an initial condition M using
Taylor model integration [89]. We will compute the TM (a, Z) for the time interval [0, A],
where A is the sampling time of the controller and an initial set of states M. That’s it, the
time-aware relational abstraction we compute is valid in the interval [0, A] since, after this
time, we assume an instantaneous execution of the controller. Thus, the Taylor model (a, 1)
we compute is such that:

forall x € M, forallt € [0,A], p(x,t) € a+ 1.

In practice, we can write the Taylor model as a formula R(X, X’, t) in NRA:

A (a(X, B - < x; < a(X,t); + El-).
i<n

For conciseness, we will write the above formula as X € a(X,t) + 1.

Example 7 ([J6]) Consider the following system of non-linear ODEs describing a vehicle dy-
namic:

x :=0vsin(0), (4.22)
y :=vcos(9),
0 = — U(t)vz + U+ dyp,

6 :=-3 (9 - eref) + dg(t),

where 0., u are two control inputs, and dy ), dy), dg(r) are bounded disturbances with the
following intervals: d, € [0.009,0.01], d, € [-0.45,0.45] (we ignore dy in this example). Con-
sidering only the velocity v, the TM integration applied to the above ODEs with initial condition
v(0) € [10,15] and A = 0.02 would compute the TM:

a=0"+0.45¢ + tu + 0.176t> — 0.0095t0% — 0.042t%0 + 0.063¢>

—0.0095t%0u + 0.0033t%0% + 0.019t3u — 0.0067t30 + 0.0025t*.
T =[-0.0025,0.00238].
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Since the polynomial a can be non-linear in the state variables X, and we want to obtain
a linear relational abstraction, we will further compute a linear truncation (aL].,ILj) of the
TM (a, I). The truncation is such that (az,, I1;) is an over-approximation of (a, 1) and all
the variables X appear in ar; with degree 1, while t can appear with a higher degree. Such
truncation will guarantee that the final relational abstraction R(X, X’, t) is expressed in LRA
after substituting the time variable t with the fixed sampling time A.

The above abstraction, while sound, will not be very precise, both because of the size of
the initial interval and the linear truncation. Instead, we compute a piece-wise relational
abstraction partitioning the state space and then computing a relational for each partition.
At the high-level, the algorithm:

« Partitions the space of state and input variables RXl in intervals: My, .. M.

« Foreachinterval j,computesaTM (a;(X, t), Z;) and then its linear truncation (ar; (X, t),
I).

« Obtains a relational abstraction using the intervals and linear truncations as:

k
RXXL1) = [\ (X e My) — (x' € ar, (X, 1) +ILj), (4.23)

J

where, for conciseness, we write X € M, to express that the value of the variables X
are included in the interval M;.

We evaluate the precision of the abstraction (ar, (X, t), Z1;) with the width width(1},) of
the interval 71, (the width of an interval [, l;] is max(l;—ﬁ)). The precision depends on the size

and number of intervals My, . . ., M partitioning the space RIX|. A uniform subdivision of the
state space usually requires a large number of small intervals to obtain a precise abstraction
(i.e., one with a low width), further requiring to compute several TMs and resulting in a large
formula. To cope with such issue, in [J6] we propose an algorithm that recursively partitions
the state space R, starting with a single interval M, computing the TM and the linear
truncation (ar,(X,t), I1;) for M;, and evaluating the width width(J;,) < wmax, for a fixed
precision Wpax- lfwidth(ILj) < Wmax the algorithm uses (aL]. (X, t),ILj) as abstraction for M;.
Otherwise, the algorithm splits M; uniformly, obtaining a set of new intervals M;,,..., M},
and then applies the same computation to each one of the new intervals.

Finally, to obtain a time-aware relational abstraction expressed in LRA, we substitute the
time t in Equation (4.23) with A.

4.2.2 Computing the Abstraction Compositionally

Instead of computing a relational abstraction in one shot for the ODEs, we decompose an
ODEs according to the “data dependencies” among the variables [104]. For example, the
differential equation of the variable 6 from the system of ODEs from Example 7 only depends
on the 6 variable and the control input 6., so we can compute a relational abstraction Ry
that ignores, as an example, the state variable x. A more complex decomposition is the one
for the variable x itself, which depends both on v and 6.

Formally, we get all the decompositions for a system of ODEs extracting the strongly
connected components (SCCs) of the dependency graph for the ODEs (see Figure 4.2a). The
dependency graph is a directed graph where nodes are state or input variables and there
is an edge from a variable to another if the source variable is used in the right-hand side
of the ODE of the destination variable. When the differential equation for a SCC (e.g., x)
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R9(070/70ref7 t) RU(U,U/,U,t)

Oint  Vint

Ry(x,2',0,v, 0.5, u,t)

Vint

Ry (y7 y/7 87 Ua eref, U, t)

(a) Dependency graph. Nodes are input and state  (b) Compositional Relational Abstraction. We create a rela-

variables and there is an edge (a,b) if variable b is  tional abstraction for each SCCs in the dependency graph (i.e.,

used in the right-hand side of @ in the ODEs. Dotted Ry, Ry, Ry, Ry).Since x (and similarly y) depends on 6 and v, we com-

squares lines represent SCCs for state variables. pute Ry from x’s ODE replacing 6 and v with the TM computed to
obtain Ry and Ry (i.e., X := vjnt sin(Oint) with vine € a(ov,u,t) + 1,
and Oyt € a(0, Opef, t) + L.

Figure 4.2: Dependency graph and compositional relational abstraction for the ODEs (4.22).

depends on other components (e.g., 6, v), we use the relational abstraction (in practice, the
TM) computed for x to compute the relational abstraction Ry. First, consider a new differential
equation (in practice, a differential inclusion) for the component (e.g., x) where we replace
the dependent variables (e.g., 0,0) with an interface variable (0int, vint). Such interface variable
is constrained by the TM computed in the abstraction of the corresponding component. For
example, if a(0, Oref, t) + Iy was the TM computed in the relational abstraction Ry, we have
that Oin¢ € a(0, Orer, t) + Zy. With such replacement, we compute the relational abstraction
R, compositionally (i.e., using the relational abstraction of the other components) via Taylor
Model integration. Observe that the new composition only involves the interface variables
(and the constant time inputs).

In practice, a relational abstraction for a variable is a piece-wise function (see Equa-
tion (4.23)). This results in the computation of a new TM for the cartesian product of all
the intervals (i.e., the M;-s in Equation (4.23)). Such cartesian product leads to an explosion
in the number of relations to compute. In [J6], we propose two optimizations to mitigate
such explosion. First, we compute a specific relational abstraction to use in the composition
that is precise enough on the interface variables, while ignoring the remaining ones. Such
optimization potentially allow us to use a coarser partitioning and hence limits the explosion
in the number of intervals. Second, due to the decomposition some non-linear ODEs become
linear. For example, the differential equation X := i sin(6fint) is linear in x, so we can use the
explicit solution x(t) := x(0) +/0t v(s)cos(0(s))ds to compute a TM for x. In this case, we can
use the optimized computation of the time-aware relational abstraction for linear systems.

4.3 K-Zeno: Extending k-1liveness for Verifying Hybrid Systems

The k-1liveness algorithm [65] reduces the liveness verification problem of S = FG —f to a
sequence of invariant verification problems. The main observation of the k-liveness algo-
rithm is that, if the number of times S visits f in all the possible executions is bounded by a
natural number K, then S = FG —f. In fact, when such bound exists any infinite path o of S
has a finite prefix where f holds in some state at most K times, but after such prefix f cannot
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be visited anymore (i.e., ' |E G —=f for some i € N). Formally, we have that:
if 3K € N such that S | #(f) < K, then S E FG —f, (4.24)

where #( f) counts the maximum number of times f was true in all the paths. The k-1iveness
algorithm reduces the verification problem to a sequence of invariant verification problems
checking the above condition for a fixed value of K (e.g., S F #(f) < 0,S E #(f) < 1,...),
stopping when there exists K € N such that S = #(f) < K. While k-1liveness can use any
invariant verification algorithm to check an invariant problem, a practical advantage of the
approach when using the 1C3 model checking algorithm is that the sequence of invariant
verification problems can be solved incrementally. In practice, one can reuse the frames of
the IC3 algorithm computed checking S |= #(f) < i when verifying S |= #(f) < i+1 (observe
that S is the same in all the invariant problems). When the system has a finite number of
states, we have that the other direction of the implication in Equation (4.24) holds (i.e., if
S | FG —f, then there exists K € N such that S |= #(f) < K), so the algorithm will terminate
if S |E FG —f. Observe that k-1iveness will not terminate if S = FG —f (in practice, we can
run BMC and k-1liveness in lock-step to ensure termination).

Here, we want to apply the k-1iveness algorithm to prove liveness properties on hybrid
systems. In the following, we assume the hybrid automaton H has a the transition system
encoding Sy guaranteeing that:

H E FG —f iff Sy | FG —f, (4.25)

where f is a quantifier free formula in the real valued variables X of H and in a special
variable loc identifying the current location (e.g., loc = [ evaluates to true in a state (o, so)
if the automaton is in location [j) . We will also assume that the same variable loc exists in
the encoding Sy. Note that such encoding Sy is an over-approximation of H, as the ones
we computed in the previous sections. We further assume the existence of a variable time
that keep track of the total time elapsed in the automaton execution (i.e., time is a clock
that is never reset). Thus, we can apply k-1iveness to prove Sy |= FG —f. Checking liveness
properties for continuous systems requires to exclude Zeno paths: an infinite path of a hybrid
automaton is non-Zeno if the time elapsed in the path diverges. While several techniques
assume all infinite paths are non-Zeno, such condition is difficult to impose (especially when
starting from a system including different components). Instead, we can directly ignore Zeno
paths in the model checking problem. *

k-liveness cannot be applied successfully when the underlying hybrid automaton has
Zeno paths. To see this issue, consider the timed automaton of Figure 4.3a. While the automa-
ton satisfies the property FG —loc # I, it has a non-Zeno path alternating the locations [,
and [; where time cannot diverge (i.e., due to the invariant x < 1, time cannot be greater than
1). Applying k-1iveness on the encoding of this timed automaton (i.e., Sy | FG =loc # I,)
would fail, since for each choice of K € N we have that S |~ #(f) < K.

In [C13] we provide a solution for the problem with the K-Zeno algorithm. K-Zeno intro-
duces a monitor automaton Zg(f, time), shown in Figure 4.3b, that is composed with Sy and
changes the fairness condition to reach the accepting state of the monitor ; so that:

Sy |: FG —|f IﬁCSH X Zg IZ FG —l(ZB.IOC = l1), (4.26)

where (Zp.loc = I;) holds in all the states of the products where the location of the monitor
Zp is l;. The monitor Zg only accepts paths where the occurrences of the fairness condition f
are separated by at least B time. In Zp, the discrete variable #; saves the first time f was true.

4Technically, we should consider a state reachable only if it is on a non-Zeno paths.
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to = time th = time A X = X
(a) Timed automaton satisfying (b) Monitor Zg(f, time) (c) Monitor Zg(f, time, X)

FG =loc # I,
Figure 4.3: K-Zeno monitors and simple timed automata

Then, two conditions must hold to reach [;: (i) f must hold; and (ii) time > to+B. k-1iveness
would succeed in proving SyxZp | FG =Zp.loc = I; with B=1and K = 1. Note that a similar
monitor to Zp is used in Uppaal to remove Zeno paths. The monitor Zg, however, does not
help for hybrid systems and for parametric timed and hybrid systems (i.e., a parameter is a
variable that is assigned in the initial state and never changed afterwards). K-Zeno introduces
the more generic monitor automaton Zg(f, time, X) shown in Figure 4.3c where the bound
B(Xp) is not a constant, but an expression that depends on the “history” variables Xj. In such
case, the monitor accepts a path if it visits the instances of the fairness signal f that are distant
more than f(Xj) time infinitely often. In [C13], we show that there exists an expression
for B(Xp) that guarantees the relative completeness of K-Zeno for Parametric Rectangular
Hybrid Automata (PRHA) that are initialized and have bounded non-determinism. For such
subclass of systems, the K-Zeno algorithm is both sound and relative complete in proving
liveness properties (i.e., the algorithm is complete assuming every invariant verification check
terminates).

4.4 Related Works

The verification algorithms for dynamical and hybrid systems can be categorized in set-based
reachability analysis, abstraction-based verification, and logic-based verification [51, 113,
123]. All these families of techniques have strengths and weaknesses and are complementary,
being able to solve specific problems for particular classes of hybrid systems. We will discuss
the closest related works for the contributions of this Chapter.

Abstraction-based verification. Several works propose to abstract the state space of a hy-
brid system. For example, the invariant verification of piece-wise hybrid systems [40, 145]
can be reduced to the VMT problem in LRA. In those simple settings, the IC31A algorithm is
competitive in proving invariant properties for piece-wise hybrid systems [C22]. Other ab-
straction techniques have been applied to linear [40] and non-linear [10] dynamics where,
in particular, hybridization [48] is a popular technique to partition the state space of a non-
linear hybrid system.

The implicit semi-algebraic abstraction of Section 4.1 is a qualitative abstraction [43, 46]
and focuses on the unbounded time invariant verification problem for polynomial dynamical
systems. The approach is also relevant as sub-procedure for proving invariant for hybrid pro-
grams [42] with Keymaera X [93] or for hybrid CPS with the HHL Prover [97] (and the evalu-
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ation in [C25] considers verification problems from the automated theorem proving domain).
The previous computations of qualitative abstractions (e.g., [43, 66, 91] did not compute the
exact abstraction for a dynamical system, but an approximation, possibly loosing precision.
The semi-algebraic abstraction has been computed explicitly in [102, 101] and implemented
in the Pegasus [129] tool. In [C25], we show that the explicit abstraction computation of-
ten does not scale, while implicit semi-algebraic abstraction does. In [102], the authors also
proposes an optimization called DWCL that recursively finds inductive invariants among the
abstraction predicates before computing the abstraction. Intuitively, such approach reduces
the abstract state space (i.e., ruling out the complement of the invariant predicate). DWCL is
somehow an orthogonal approach to the implicit semi-algebraic abstraction.

Relational abstractions [39, 62, 71, 69, C10, 96] abstracts the dynamical system’s trajec-
tories with a discrete transition relation, reducing the verification problem if the continuous
system to a verification problem on a discrete system. While relational abstraction is a gen-
eral concept, practical approaches mainly focused on abstracting linear systems, either via
template-based methods [62], reachability analysis [39, 71], or exploiting the eigenvalues
and eigenvector of the dynamical system [69, C10]. In Section 4.2 we propose an approach
that use (time bounded) reachability analysis to compute relational abstractions, as [71], but
via Taylor model computation and for non-linear dynamical systems (including transcen-
dental functions and time-varying disturbances). In some way, we can see semi-algebraic
abstraction as a relational abstraction: in fact, the transition relation Ty (X, X’, Z) (and also
it’s implicit abstraction version) can be seen as a relational abstraction over-approximating
all the continuous trajectories from X to X’. Since relational abstractions can be easily com-
posed (e.g., just intersecting the relations [C10]), the two abstraction techniques could be
composed together to obtain a more precise abstraction.

A common problem in abstract verification is finding a precise enough abstraction to prove
the property of interest. Counter Example Guided Abstraction Refinement (CEGAR) has also
been applied to hybrid systems [23, 31, 108, 103, 120] for automatically refining an abstrac-
tion. Simulation and refinement are an open problem both for relational abstraction and the
semi-algebraic abstraction. While we can improve the precision of relational abstraction [J6],
finding new polynomials to refine the semi-algebraic abstraction is more challenging.

Set-based reachability analysis. Set-based reachability analysis is one of the prominent ap-
proaches for the bounded time verification of dynamical and hybrid systems, dealing with
linear and non-linear dynamics (see [135] for a recent survey). Usually, set-based reachabil-
ity analysis are not adequate for proving invariant properties, since finding a fixed-point is
difficult and requires some widening operator. We use set-based reachability analysis [74] to
compute relational abstractions. Similarly to our settings, other works use reachability anal-
ysis as a primitive in algorithms that prove properties. For example, [109] uses reachability
analysis for building a barrier certificate, and [128] uses reachability analysis in a proof rule
to prove a stability property.

HySAT [41] and dReal [75] implements ad-hoc decision procedures for differential equa-
tions in Satisfiability Modulo Theory (SMT) solvers using interval arithmetic (and reachability
analysis for dynamical systems) as underlying theory solvers. The approach is very expres-
sive and successful in finding violations (e.g., via BMC). In the same spirit of the first research
problem presented in this thesis, an open question is to extend the efficient SAT-based algo-
rithms to use such SMT solvers effectively.

Logic-based verification Several approaches uses constraints to find certificates proving a
property of interest for hybrid systems. A prominent approach is this category is to find
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certificates of safety using template-based methods. A well known approach are barrier cer-
tificates [35, 77, 141]. A difference between semi-algebraic abstraction and barrier certificate
is that, usually, barrier certificates are a single polynomial and are found via numerical op-
timization solvers (which require a further validation check [C26] that may fail). Finding
a single polynomial as certificate may be difficult, especially when dealing with hybrid sys-
tems. A basic result for finding certificates for dynamical systems that characterize positive
invariant sets [13] is the Nagumo theorem [1], which works for closed sets. The LZZ algo-
rithm [60] that we use when encoding the semi-algebraic abstraction is a general invariant
synthesis procedure that can use an arbitrary semi-algebraic set as template (i.e., a formula
in the NRA theory). However, finding an invariant from a template usually does not scale,
requiring to eliminate several quantifiers from the formula. Instead, we use LZZ as a deci-
sion procedure (i.e., we do not have parameters to find in our case), removing the need of
quantifier elimination. Other approaches find invariants of the dynamical system, for exam-
ple first integrals [19] or Darboux Polynomials [82]. Such invariants can be used directly as
polynomials of the abstraction to prune the state space as done in the DWCL algorithm.

Zeno Paths in Temporal Logic Verification. There exist several approaches for verifying
temporal logic specifications for timed and hybrid systems (e.g., [114,90, 73,52, 118, 134]). In
the context of hybrid systems, several techniques focus on falsification (e.g., [52, 49]), while
the K-Zeno algorithm focuses on unbounded time verification. Moreover, K-Zeno verifies LTL
properties evaluated at a discrete time in the hybrid trace, differently from logic capturing
intervals (e.g., Signal Temporal Logic [28], Metric Interval Temporal Logic [37]) or the contin-
uous evaluation of predicates such as HRELTL [90]. In some settings, K-Zeno can be applied
to such logics after and additional reduction (e.g., see [122]). Removing Zeno paths from the
verification results is a known problem for timed automata that can be solved with a simple
monitor automaton forcing the divergence of time (e.g., see [14]). However, such monitor is
not sufficient for hybrid systems and timed systems with parameters. K-Zeno constructs a
monitor that is sufficient to remove Zeno path for some subclasses of hybrid automata.
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Chapter 5

Other Research Activities

In this Section, we briefly summarize the other main research activities carried out after the
award of the Ph.D. degree in 2014.

5.1 Formal Analysis of Switched Kirchhoff Networks [C16, C18, C19]

Cyber-Physical Systems (CPSs) are often designed using acausal modeling, which is promi-
nent when designing electric, hydraulic, mechanical systems, and their combination, and is
the paradigm used in design languages such as Modelica. In acausal modeling, a network of
components are connected together through terminals in a node. In practice, each terminal
represents two physical quantities called effort and flow (e.g., for the electric domain the ef-
fort is the potential while the flow is the current). Then, the physical