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Chapter 1

General Introduction

I was recruited in Toulouse in September 2016, and I joined the TRACES team that specializes in
worst-case execution time (WCET) analysis, and is responsible for the development and support of
the OTAWA WCET analyser.

Since my arrival, I have been working on the topic of timing predictability for real-time systems
with a focus on issues related to parallelism. This encompasses a wide panel of activities ranging from
the static analysis of GPU software, to the modelling of caches behavior in highly optimized appli-
cations, the automatic generation of timing-predictable code, the interference-aware static scheduling
of applications on multi-core processors, and the architectural design of predictable core acceleration
mechanisms. This manuscript presents the main contributions I have been involved in, either as prin-
cipal researcher or as a PhD thesis director, related to timing predictability in multi-core architectures.

1.1 Context

Real-time systems are computer systems whose correct operation depends on the respect of timing
constraints. Classical examples include the control system of a plane, the security systems of an
automatic subway or more recently the decision and control systems of an autonomous vehicle. In
order to guarantee the respect of their timing constraints, the most critical real-time systems undergo
static WCET analysis: each task composing the system is analyzed in order to derive a safe upper
bound of its execution time on the hardware target. Then, the schedulability of the system is assessed
by composing the bounds of each task using a schedulability criterion or a worst-case response-time
analysis. Alternatively, the timing constraints can be checked as a static schedule is constructed.
Obtaining safe and tight bounds requires a precise model of the temporal behavior of the hardware
target. As the hardware gets more complex, the models and analyses must be adapted to provide a
compromise between complexity of analysis and precision of the results. Parallelism has been pro-
gressively introduced in microprocessors as a way to increase their performance, starting with pipeline
architectures in the 1980’s. Since the 2000’s, multi-core processors have been introduced as a way to
overcome power dissipation, memory latency and instruction level parallelism bottlenecks, and have
since become ubiquitous. The adoption of these architectural paradigms in processors used to im-
plement real-time systems has been driven mainly by cost reduction and performance requirements.
However, they incurred new and complex challenges to the timing predictability of real-time systems.
The underlying theoretical problem that we explore in this manuscript can be summarised as follows:
two (or more) logical entities being processed in parallel by separate hardware components contend
for the access to a shared, sequential, non-pipelined, multi-cycles resource, and this contention jeop-
ardizes the timing predictability of the overall system. This problem was investigated at two different
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8 CHAPTER 1. GENERAL INTRODUCTION

abstraction levels.

1.2 Contributions and plan

1.2.1 Design of predictable and efficient pipeline architectures

Following this introduction, Chapter 2 deals with the first instance of the problem, which is related
to instruction level parallelism inside processor cores: two instructions being processed in separate
pipeline stages can contend for a component such as a memory bus or a functional unit. Depending
on the context, this contention can lead to a so-called timing anomaly: a situation in which it be-
comes hard to track the timing behavior of the analyzed (software+hardware) system. Most current
Commercial Off The Shelf (COTS) hardware systems are considered vulnerable to timing anomalies.
These anomalies make the static WCET analysis harder for single-core architectures, and preclude
the use of efficient interference analysis methods in multi-core architectures. We tackled the prob-
lem by following the philosophy initiated by Hahn et al. in [40]: designing core pipelines in which
the instructions are guaranteed to progress in a monotonous fashion. In Layman’s terms, monotonic
progress means that an instruction cannot be stalled anywhere in the pipeline by another instruction
that appears later in the program order (and thus enters the pipeline later). This property guarantees
the absence of timing anomalies, and is easier to prove formally than directly proving the freedom
from timing anomalies. Hahn et al. have demonstrated this approach on a simple five-stage in-order
pipeline: the pipeline was first modified to make the progress of instructions monotonous, then its be-
havior was modelled using a formal framework based on first-order logic, and finally using this model
the monotonic behavior of the pipeline was formally proven. We applied this approach to a more
complex core that features two acceleration mechanisms that were not handled in the work of Hahn
et al.: speculative execution (branch predictors and return address stack) and store buffers. Simply
turning off these mechanisms, as suggested by Hahn et al. is not acceptable in terms of performance,
so the objective was to enable them in a way that enforces a monotonic progress while not degrading
the core performance. We extended the formal framework in order to model the core, and provided
original proofs for the monotonicity of the core with its acceleration mechanisms. These proofs were
first conducted by hand, and have since been validated using the Coq proof assistant.

1.2.2 Multi-core timing analysis with the multi-phase model

Chapter 3 deals with the second instance of the problem, related to task level parallelism in multi-core
architectures: two tasks being processed in parallel on separate cores can contend for a shared resource
such as a memory bus or a memory controller. When this happens, one of the tasks accesses the re-
source, while the other is stalled. This phenomenon is referred to as timing interference. Depending on
the architecture and the application, the effect of interference can significantly reduce the performance
of the system. Additionally, for real-time systems, a worst-case response time analysis must be per-
formed to ensure that the real-time constraints will always be met. This analysis must conservatively
account for the effects of interference. Now, the abstraction gap between the interference analysis
(that happens at task system level) and the source of the interference (memory instructions) incurs a
significant over-estimation of the effects of interference, that may hinder the results of the Worst-Case
Response Time (WCRT) analysis. We tackled this problem by proposing a finer grained abstraction:
the execution of each task is represented by a sequence of temporal phases, called a multi-phase profile,
that bounds the timing windows in which memory accesses can occur, thus providing more precise
information for the interference analysis. This abstraction allows to significantly reduce the overesti-
mation of the interference effects by sticking more closely to the actual memory access profiles, and
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possibly to reduce the measured interference level by constructing and enforcing schedules in which
the phases that perform the most accesses are not scheduled in parallel. In the past 7 years, we built
a complete framework around the multi-phase model, composed of three major elements: a formal
representation of the multi-phase model along with formal criteria for its correct implementation, an
analysis method to obtain multi-phase representations for task systems, and scheduling heuristics that
target the multi-phase model. This framework is described in details in the manuscript. As stated
above, efficient interference analysis requires the absence of timing anomalies in the hardware. This
is also true for the multi-phase method that we propose, so the two solutions that we present in the
manuscript complement each other.

1.2.3 Conclusion

Finally, Chapter 4 summarizes the results presented in the manuscript, as well as the other research
activities I conducted, and presents my research project.

1.3 Regarding this manuscript
Regarding the organization of the manuscript:

• each chapter starts by a quick introduction and state-of-the art that aim at defining the problem
at hand and at introducing the terms and notions that will be used throughout the chapter,

• most of the proofs were omitted for readability. They are all available in the original publications
that introduced the corresponding theorems.
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Chapter 2

Designing provably predictable and
efficient pipeline architectures

2.1 Introduction

The ever-growing performance requirements of embedded real-time systems lead to implement them on
multi-core platforms. These platforms include several cores (which may feature out-of-order execution,
dynamic branch prediction, speculative execution, private L1 caches) that share resources such as
L2 and L3 cache memories, or the memory bus. However, their complexity challenges the analysis
of execution and response times, which is required to schedule tasks in such a way that they all
meet their deadlines (real-time constraints). The difficulty comes from the fact that tasks running
simultaneously on different cores compete to access shared resources, which engenders delays that
must be taken into account within the timing analysis. To cope with the explosion of the number of
possible execution scenarii where co-running tasks generate interleaved accesses to shared resources,
it is now commonly admitted that a compositional approach [39] that decouples the analyses of intra-
and inter-core behaviors, i.e. execution time in isolation on the one hand, and delays induced by task
interference on the other hand, is desirable. Estimating delays due to interference means, for example,
upper bounding the demands of tasks to shared resources so as to estimate the amount of delay a
co-running task can suffer. These delays can then be added to the local worst-case execution time
that is evaluated assuming the task is running in isolation.

However, when execution cores are complex, this approach might not be valid. This is due to
so-called timing anomalies [65]: a local worst case situation (e.g. a cache miss) does not necessarily
lead to the global worst case (that is the worst-case execution time of the task under analysis), or
a local delay (e.g. to due a cache miss) of a certain duration may result in a larger increase of the
WCET. Timing anomalies are caused by the concurrent sharing of sequential resources by multiple
components of a core, and can lead to instruction reordering within the pipeline. The consequence of
the risk of timing anomalies is that any additional delay due to task interference should be precisely
identified: the instruction impacted by the delay should be known. This does not fit compositional
approaches that, instead of considering every possible interleaving of tasks accessing a shared resource
(which is intractable due to the huge number of possibilities), have a global view of the amount of
conflicts and of the total resulting delay. To summarize, timing anomalies are a serious obstacle to the
implementation of compositional approaches and question the feasibility of accurate timing analysis
for multicore-based real-time systems.

To overcome these difficulties, the strictly in-order (SIC) core [40] approach proposes (i) structural
modifications that suppress the risk of timing anomalies in an in-order processor design and (ii) a

11
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modelling framework to formally prove the good timing properties of the modified design. The key
idea in this approach is to impose a strict execution order in which the progression of any instruction
in the pipeline depends only on how the previous instructions in the code have already progressed.
In-order pipelines that enforce this property and do not implement speculative execution are proven
to be free of timing anomalies and timing compositional: considering only the local worst cases leads
to a safe WCET, and delays due to multi-core interference can be statically bounded and safely added
to the WCET of the interfering tasks. This allows trading off between the precision and efficiency
of the WCET analysis while keeping its outcome sound. The SIC core is about 7% slower than the
original core.

In this chapter we present the solutions that we developed in order to leverage this approach and
its formal framework to a more complex core with a higher baseline performance than the one used
in [40]: the open source RISC-V Ariane [78] core, which implements the RISC-V instruction set and
features some advanced mechanisms such as dynamic branch predictors and multiple functional units
that allow instruction parallelism. We call our modified core the Mostly IN-Order Timing predictAble
pRocessor: MINOTAuR.

The key contributions are the following:

• we provide a formal model of the MINOTAuR core obtained by applying some restrictions from
the SIC on the Ariane core, while keeping features such as branch prediction. We prove its
timing predictability and we evaluate its performance on an FPGA: the loss is less than 2%
compared to Ariane.

• we introduce a design extension for caches and return address stacks to support timing pre-
dictable speculative execution.

• we introduce a generic gating mechanism to prevent concurrency between the data cache and
the store buffer for accesses to the memory bus, and apply it to MINOTAuR.

In this introduction we start by presenting the state of the art regarding timing predictable pro-
cessors, and then briefly describe the original Ariane processor as well as the Ariane+ core that served
as a starting point and a baseline for our work.

2.1.1 Related work

2.1.1.1 Timing predictability

A processor is said timing predictable when there are no timing anomalies and it is timing composi-
tional [40].

A timing anomaly occurs when a shorter latency for one instruction in a sequence (e.g. a cache
hit instead of a cache miss for a load instruction) counter-intuitively makes the execution time of the
sequence longer, or when a longer latency for one instruction leads to an even longer increase for the
total execution time of the sequence [75, 52, 11]. This makes the timing analysis more complex since all
the possible situations have to be considered. Several authors have investigated this, putting forward
several definitions and means to detect whether a processor is prone to such timing anomalies [4, 47,
28, 30, 65, 12]. It turns out that most of off-the-shelves cores, even the simplest ones, may suffer from
timing anomalies. This motivates the design of timing-anomalies-free processors (see Section 2.1.1.2).

Timing compositionality simplifies the timing analysis of a multi-core system [43]. It avoids a
very complex fully-integrated system analysis in favor of a combination of analyses of individual
components. An approach to sound and precise compositional timing analysis for multicore systems
is proposed in [39].
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2.1.1.2 Timing predictable processor architectures

Several ways have been considered to favor timing predictability in hardware platforms [58, 5, 59].
The Kalray MPPA-256 processor [25] has been designed with timing predictability in mind. In

addition to its VLIW architecture (initially motivated by energy considerations), architectural features
are supposed to fit the capabilities of WCET analysis: LRU-replacement caches, in-order execution,
prevention of pipeline hazards, and absence of branch prediction.

PTARM [50] is an implementation of a precision-timed (PRET) machine [51]. It employs a repeat-
able thread-interleaved pipeline. Timing predictability is achieved at the cost of degraded performance
for individual threads, while the instruction throughput is maintained over the set of active threads.

Patmos [69] features a statically-scheduled (VLIW) dual-issue pipeline and specific timing analysable
caches, such as the method and stack caches. It has been used to build a real-time-aware multicore
system in the T-CREST project [70]. Although it has been designed to be timing predictable, this
has not been formally proven to the best of our knowledge.

In [40, 41], Hahn and Reineke introduce SIC, a strictly in-order core, and show that it is free
of timing anomalies and timing compositional. Their formal framework used to prove these two
properties is summarized in Section 2.1.1.3. SIC is a simple 5-stage in-order pipelined processor in
which the instruction fetch is gated in order to guarantee that an instruction can never be delayed by
a younger instruction.

2.1.1.3 A formal framework to prove timing predictability

A framework to express the concrete semantics of a processor pipeline is proposed in [42]. It relies
on the concept of progress of an instruction within the pipeline, defined as the pipeline stage the
instruction resides in and the number of cycles remaining to complete the stage. If S is the set of
pipeline stages, the progress of an instruction belongs to P := S × N0. A pipeline state can then be
described by the subset C ⊆ I → P, where I is the sequence of executed instructions. With a partial
order ⊏S on S, it is possible to define an order ⊑P on P:

Definition 1: Progress order

∀(sa, na), (sb, nb) ∈ P, (sa, na) ⊑P (sb, nb) :⇔ sa ⊏S sb ∨ (sa = sb ∧ na ≥ nb)

Considering the execution of a given sequence of instructions I, pipeline state cb has at least the
progress of ca if every instruction in I has a better (or same) progress in cb than in ca :

Definition 2: Pipeline state order

ca ⊑ cb :⇔ ∀i ∈ I . ca(i) ⊑P cb(i)

where c(i) denotes the progress of instruction i in state c.
The behaviour of the pipeline is specified by the function cycle : C → C that relates a pipeline

state to its successor.
In [40], this framework is used to model the behaviour of the SIC pipeline. The progress of

an instruction i after one clock cycle is specified as a function of the current pipeline state c: the
instruction may remain in its current stage or advance to the next stage (s = c.nstg(i)) when it is
ready to (c.ready(i)) and if that stage is clear of any previous instruction (c.free(s))

Based on this model, the authors prove the following major property for the SIC processor.



14 CHAPTER 2. DESIGNING PREDICTABLE AND EFFICIENT ARCHITECTURES

Property 1: Update Enable

Let ca and cb be two pipeline states, i ∈ I be an instruction with equal progress in ca and cb

(ca(i) = cb(i)), and all instructions j < i have progressed more in cb than ca (ca(j) ⊑P cb(j)).
If i advances to the next pipeline stage in ca, it advances in cb as well:{

ca.ready(i)⇒ cb.ready(i)
ca.free(ca.nstg(i))⇒ cb.free(cb.nstg(i))

Several lemmas and theorems follow from this sole property and are thus valid for any processor
that meets the property. We reformulate them below to reflect that. Proofs can be found in [40].

Lemma 1: Progress Dependence

When Property 1 holds, the progress of an instruction i only depends on the progress of previous
instructions (and never on the progress of subsequent instructions):

∀ca, cb ∈ C : [∀i : (∀j ≤ i : ca(j) = cb(j))⇒ cycle(ca)(i) = cycle(cb)(i)]

Lemma 2: Positive Progress

When Property 1 holds, the successor of a pipeline state c has more progress than c:

∀c ∈ C : c ⊏ cycle(c)

where ∀ca, cb ∈ C, ca ⊏ cb ⇔ ca ⊑ cb ∧ ¬(cb ⊑ ca)

This formulation is a generalization of Lemma 2 in [40] to any in-order pipeline that enforces
Property 1. The proof arguments of [40] hold in this more general context.

Theorem 1: Monotonicity

The cycle behavior of a processor that satisfies Property 1 is monotonic:

∀ca, cb ∈ C : ca ⊑ cb ⇒ cycle(ca) ⊑ cycle(cb)

Theorem 2

Let i ∈ I be an arbitrary instruction, and pipeline states ca, cb ∈ C be such that ca ⊑ cb. Then:

f(ca, i) ≥ f(cb, i)

where f(c, i) is the finish time of instruction i starting from pipeline state c recursively defined as:

f(c, i) :=
{

0 : c(i) = (post, 0)
1 + f(cycle(c), i) : otherwise

with post being a fictive pipeline stage that contains all the instructions that have left the pipeline.
Following these theorems, the authors of [40] demonstrate that the SIC processor is free of timing

anomalies with respect to uncertain cache behaviour, and timing-compositional with respect to un-
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certain cache behaviour and uncertain latency to the main memory. Uncertainties are reflected in the
processor model by:

• ichit(i) (resp. dchit(i)): true if instruction i results in an instruction (resp. data) cache hit

• memlatf/d: memory latency in case of an instruction (resp. data) cache miss for instruction i

Theorem 3: Anomaly freedom with respect to cache uncertainty

Let two valuations of dchit (or ichit) be given that differ for an arbitrary instruction i ∈ I.
The valuation that predicts a cache miss, i.e. the local worst case, will lead to a finishing time
at least as high as the valuation that predicts a cache hit, i.e. the local best case.

Theorem 4: Compositionality with respect to latency prolongation

Let two valuations of memlatd (or memlatf ) be given that differ by p cycles for an arbitrary
instruction i ∈ I, e.g. due to shared bus blocking. The valuation that predicts a longer latency
leads to a finishing time at most p cycles higher than the valuation that predicts the shorter
latency.

The proof does not depend on the processor (provided it fulfills Property 1) and is given in [40].

Theorem 5: Compositionality with respect to cache uncertainty

Let two valuations of dchit (or ichit) be given that differ for an arbitrary instruction i ∈ I. The
valuation that predicts a cache miss will lead to a finishing time at most p cycles higher than
the valuation that predicts a cache hit. For the SIC processor, p is twice the memory latency
for a data cache miss with a write-through policy and five times the memory latency for an
instruction cache miss.

The proof given in [40] is specific to the SIC processor.

2.1.2 Hardware state buffering mechanisms

In Section 2.2.3 we present hardware mechanisms to save the state of the Return Address Stack and
of the instruction cache during speculative execution. These mechanisms rely on backup copies that
are later committed or discarded when the corresponding branch instruction is resolved. Similar
mechanisms were suggested in [44] but, to the best of our knowledge, they were not implemented.
InvisiSpec [77] is an alternative mechanism that stores speculative loads in a buffer, but is suited for
data caches in out-of-order processors, committing the loaded values step by step after each load. Our
solution targets instruction caches instead, and protects the age of the cache blocks as well as their
contents. Moreover, in our solution, commits occur only when speculative branches are resolved.

2.1.3 A baseline RISC-V core

Our baseline core is a slightly modified version of the Ariane core [78], a 6-stage in-order RISC-V
processor.
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Figure 2.1: Model of the Ariane+ core pipeline.

2.1.3.1 The original Ariane architecture

The structure of the Ariane core is depicted in Figure 2.1. The address of the next instruction to be
fetched is computed in the first stage (PC). The instruction fetch (IF) stage hosts a branch predictor
composed of a branch history table (BHT), a branch target buffer (BTB), a return address stack
(RAS), and a static predictor (forward branches are predicted not taken, backward branches are
predicted taken) which is used if the counter in the BHT has never been updated. The BHT and the
BTB are updated each time a branch is resolved by the branch unit (i.e. when it reaches the end of
the execution stage). Fetched instructions enter a 4-slot instruction queue (fqueue) which they exit in
the instruction decode (ID) stage.

An 8-slot scoreboard holds all decoded instructions until they are committed. The issue stage (IS)
inserts instructions into the scoreboard and dispatches them to the appropriate functional unit (FU).

The execution stage consists of a load-store unit (LSU), an ALU, a multiplier/divider and a CSR
unit (that executes the instructions that access Control/Status Registers). The last three units are
seen as a single functional unit by the issue stage: the Fixed Latency Unit (FLU)1. The ALU executes
instructions in one cycle. Conditional branches are handled by a branch unit that uses the ALU to
perform comparisons. The multiplier/divider is composed of a 2-stage multiplier and a non-pipelined,
variable latency (2 to 64 cycles) divider.

The LSU is in front of a load unit (LU) and a store unit (SU). All memory instructions spend at
least one cycle in the queue (mqueue which can hold at most 2 instructions) of the LSU before being
dispatched to the LU or the SU. The LU sends a request to the data cache as soon as it receives a
valid instruction. When an instruction hits in the data cache, its request is served in the current cycle,
and the lu stage is available for a new instruction in the next cycle. In case of a miss however, the

1Even though the divider has a variable latency.
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request is forwarded to the memory. When the data comes back from the memory, the instruction is
allowed to leave the lu stage, but the stage is unavailable to a new instruction for an additional cycle.
The SU keeps instructions in a 4-slot store buffer, that we describe in more details in Section 2.3.
Additionally, atomic operations are kept in a separate buffer (AMO) of size one.

This design allows executing multiple instructions in parallel with the following restrictions:

• they do not depend on each other,

• their functional units do not share the same bus to write their results to the scoreboard, which
prevents conflicts by design. The LU and SU share a bus, and the rest of the FUs share another
bus,

• the SU cannot accept any instruction as long as the AMO buffer is not empty.

An instruction is allowed to enter the IS stage only if it is guaranteed that its FU will be available in
the next cycle.

When an instruction has completed its execution, it remains in the scoreboard until it is the
oldest instruction there. It is then processed by the commit stage (CO): results are written back to
the register file, accesses to the CSR register file are performed, and entries in the store buffer are
allowed to be written to the memory. Until they are committed, the results of completed instructions
are forwarded to the functional units if needed. In case of a Write-after-Write hazard between two
instructions, the youngest instruction (the one that enters the pipeline last) is stalled before entering
the is stage until the oldest has been committed (and has exited the co stage).

The baseline version of Ariane that we use implements the RV32IMAC instruction set [72]. It does
not rename registers, has no MMU, no FPU, and has a single commit port.

Releasing constraints on the functional units bus: Ariane+ As mentioned earlier in this
section, the functional units composing the FLU do not have the same latency. To avoid collisions on
their shared bus (to write their results to the scoreboard), the scoreboard prevents instructions from
entering the is stage if they may spend more than one cycle in it (because their functional unit is
currently in use) or whenever there is a risk that they request the bus at the same time as a pending
instruction in the FLU units. This causes a slight decrease in performance.

We reduced the performance impact of this design by allowing instructions to enter the is stage
as long as the scoreboard is not full. In order to prevent collisions, we added a new write port to the
scoreboard as well as a new bus dedicated to the ALU and the CSR, thus allowing the ALU or the
CSR and the MUL/DIV units to write their results in parallel if needed. This mechanism guarantees
that instructions leaving their functional unit cannot be delayed by younger instructions. In the case
of Write-after-Write hazards between two instructions, the youngest instruction is now delayed inside
the is stage until the oldest is committed. In the remainder of the chapter, we call Ariane+ the version
of the core that includes these modifications.

2.1.3.2 Memory bus conflicts in the Ariane+ core

A source of timing anomalies for in-order cores is when an instruction (e.g. a load or a store) that
needs to access the memory bus is delayed by a subsequent instruction (typically when the code of
this instruction is fetched from the memory) [43]. We refer to this phenomenon as an inversion.

We illustrate how inversions can lead to timing anomalies in Figure 2.2. This figure displays the
execution timing of a simple sequence composed of 7 instructions in the pipeline of Ariane+. We added
a retire (RE) stage in order to show that the instructions are retired in order. Instructions 1 and 4
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Figure 2.2: Example of a timing anomaly on the Ariane+ core.

are memory loads, instruction 7 is a division. The rest of the instructions (2, 3, 5 and 6) are integer
additions. We assume that instruction 7 leads to a cache miss in the FE stage and that instruction 4
leads to a cache miss in the lu stage.

At the top of Figure 2.2, we display the execution of the sequence if instruction 1 leads to a
hit in the data cache (in the lu stage). Instruction 4 leads to a miss in the data cache at cycle
6. Then, instruction 7 must wait for instruction 4 to free the bus before it can enter the if stage
(because instruction 7 leads to a miss in the instruction cache). As a consequence, the sequence ends
by instruction 7 being retired at cycle 34.

At the bottom of Figure 2.2, we display the execution timing of the sequence if instruction 1 leads
to a miss in the data cache (in the lu stage). This miss blocks the fetch of instruction 7. When
instruction 1 leaves the lu stage, instruction 4 cannot enter it because of the 1-cycle stall mentioned
in section 2.1.3.1, so instruction 7 enters the if stage and produces a miss in the instruction cache.
This miss postpones the execution of instruction 4 in the lu stage: this is an inversion. This situation
allows instruction 7 to enter the pipeline at date 11, and to later execute in parallel with the miss
produced by instruction 4.

This example shows a timing anomaly in the Ariane+ (also present in the original Ariane) core:
a data cache miss for instruction 1 leads to an execution time of 32 cycles for the sequence, while a
cache hit for the same instruction leads to an execution time of 34 cycles. Note that an inversion does
not necessarily generate a timing anomaly in practice, but the fact that inversions happen makes it
difficult to prove the absence of timing anomalies.

We added a new hardware counter (CSR) to the Ariane+ processor to count for inversions and
used the methodology described in Section 2.4.2.1. Over 52 TACLe benchmarks, 20 had inversions
during their execution on the FPGA. This reveals that Ariane+ is subject to timing anomalies and
motivates our work to make it timing predictable.

2.1.4 Chapter organization

In the remainder of the chapter, we start (in Section 2.2) by introducing the MINOTAuR core, a
modified version of Ariane+ that enables timing predictability while allowing speculative execution.
In the same section, we also present hardware mechanisms for LRU caches and RAS that allow their
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use in MINOTAuR without breaking its predictability. We then study the effect of store buffers on
the predictability of cores in Section 2.3. Finally, we present experimental results that measure the
performance loss due to the gating mechanisms we introduced in MINOTAuR in Section 2.4.

2.2 Managing speculative execution in a predictable core

The MINOTAuR predictable processor is obtained from the Ariane+ core by applying some restrictions
to the pipeline. As stated earlier, the key idea to enforce timing predictability is to ensure that no
instruction can be delayed by subsequent instructions. In Ariane+, this amounts to suppressing
inversions on the memory bus. To do so, we modified the if stage so that it blocks instruction fetches
when they are not already in the instruction cache and there is a pending memory instruction in the
pipeline. Additionally, speculative execution is also blocked at the if stage, unless the instruction
is already in the instruction cache. This way, the instruction cache cannot send a request on the
memory bus speculatively or when a memory instruction is already in the pipeline: we can guarantee
the absence of inversions on the bus while tolerating a certain level of speculative execution. Another
source of timing anomalies on the memory bus, store buffers, is discussed in lengths in Section 2.3.

This section is organized as follows: we start by providing the formal model of MINOTAuR in
Section 2.2.1, and then prove its timing predictability in Section 2.2.2. Since these proofs rely on
a simplifying hypothesis that limits its applicability, in Section 2.2.3 we explore new designs for the
instruction cache and the RAS of the core that allow us to relax these hypotheses.

2.2.1 Formal model of MINOTAuR

2.2.1.1 Non-speculative components of the pipeline

Each instruction i ∈ I is characterized by its category opc(i) ∈ {alu, branch, store, load, atomic, mul,
div, csr} and by predicates that reflect the outcome of the cache analysis: ichit(i) (resp. dchit(i)) is
true if the cache analysis has determined that instruction i resides in the instruction cache (resp. the
data accessed by instruction i resides in the data cache).

The complete formal model of the MINOTAuR core is shown in Figure 2.3. This model specifies
the pipeline structure2 and the cycle function with the help of the following auxiliary predicates and
functions that are defined for a given pipeline state c ∈ C:

• c.isnext(i, s): true if instruction i is the oldest in stage s

• c.nstg(i): next pipeline stage for instruction i. It depends on its current stage and sometimes
on its category.

• c.cnt(i): number of cycles that instruction i still has to spend in the stage it currently resides
in.

• c.nlat(i): latency of instruction i in its next pipeline stage. Only memory instructions and
divisions have a non-zero latency in their functional unit. The latency of an instruction fetch is
determined by the latency to the main memory in case of a cache miss.

• c.pending(i, op): true if an instruction of category op and older than i has not been completely
processed in a given stage defined by lstg(op). lstg(op) maps each category of instruction op to
the last stage before committing such an instruction. Stores and atomic instructions are pending

2The pre (resp. post) stage hosts instructions that have not yet entered (resp. have left) the pipeline.
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until they have been sent to the memory (in stage st). Instructions accessing hardware counters
(csr) are pending until they are committed. All other instructions are pending until they have
been processed by their functional units.

• c.ready(i): true if instruction i is ready to advance to the next pipeline stage. For most of
the pipeline stages, an instruction is ready when it has been completely processed by the stage
and when it is the oldest one in the stage (this condition is required for stages that host several
instructions). In addition, there are restrictions to advance from pc to if (no pending branch, and
if the instruction misses in the cache, no pending memory instruction), from is to the functional
units (multiplications and divisions are stalled if there is a pending division currently in the
division unit, and instructions are stalled if a dependency exists with a previous instruction
– modelled by the depRaW (i, j) (resp. depWaW (i, j)) predicate – that has not completed its
execution (resp. exited the co) stage yet), and from lsu to lu or su (loads are stalled by
pending stores, and loads and stores are stalled by pending atomic instructions).

• c.slot(s): for any pipeline stage s that inserts instructions in a queue/buffer, true when the
queue/buffer will have a free slot in the next clock cycle. This is determined by counting the
number of instructions that reside between the entering and leaving pipeline stages and by
checking whether an instruction that is already in the queue will leave it and release a slot. The
size of the fqueue (resp. mqueue, iqueue, squeue) is denoted fq_size (resp. mq_size, iq_size,
sq_size) in the model.

• c.free(s): true if stage s can accept a new instruction in the next clock cycle. Some of the
stages always accept instructions, either because they can host several of them or because they
keep instructions for a single cycle. Other stages insert instructions in a queue, and it must
be guaranteed that this queue has a free slot. Finally, for other stages, one checks whether the
instruction they currently host will be able to advance to its next stage. For the lu stage, the
1-cycle stall after a miss is also modelled.

The MINOTAuR core features several instructions queues that improve its throughput. We model
them by considering that an instruction that resides in a queue stays in a given pipeline stage when
it is not currently processed. For example, fetched instructions are inserted in the fqueue in stage if
and remain there until they enter the id stage. The scoreboard is represented by the iqueue which
instructions enter in is and leave in stage co. Similarly, memory instructions enter the mqueue in stage
lsu and leave it when they advance to the lu/su unit. The store buffer is modeled as an instruction
queue, squeue, and a fictive store stage (st) that represents the actual sending of write requests to
the memory. All this means that we allow several instructions to reside in the same stage, even if only
the youngest one is effectively processed by the stage. We keep track of the number of instructions
in each stage using set cardinals (#). Pipeline stages that can host several instructions (one being
effectively processed and the other being only hosted) are shown in light red in Figure 2.1.
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S := {pre, pc, if, id, is, alu, mul1, mul2, div, lsu, lu, su, csr, co, st, post}
pre ⊏S pc ⊏S if ⊏S id ⊏S is ⊏S {alu, mul1, lsu, csr, div} ⊏S {mul2, lu, su} ⊏S co ⊏S st ⊏S post

cycle(c)(i) :=
{

(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.isnext(s, i) := c.stg(i) = s ∧ ∀j < i . c.stg(j) ⊐S s

c.ncnt(i) :=
{

c.cnt(i)− 1 : c.cnt(i) > 0
0 : otherwise

c.pending(i, op) := ∃j < i . opc(j) = op ∧ c(j) ⊏P (lstg(op), 0)
c.nlat(i) :=


memlatf (i) : c.nstg(i) = if ∧ ¬ichit(i)
memlatd(i) : (c.nstg(i) = lu ∧ ¬dchit(i))

∨c.nstg(i) = st
exlat(i) : c.nstg(i) = div
0 : otherwise

c.nstg(i) :=
{

post : c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i)
c.nstg′(i) : otherwise

c.nstg′(i) :=



pc : c.stg(i) = pre
if : c.stg(i) = pc
id : c.stg(i) = if
is : c.stg(i) = id
lsu : c.stg(i) = is ∧ opc(i) ∈ {load, store, atomic}
lu : c.stg(i) = lsu ∧ opc(i) = load
su : c.stg(i) = lsu ∧ opc(i) ∈ {store, atomic}
mul1 : c.stg(i) = is ∧ opc(i) = mul
mul2 : c.stg(i) = mul1
div : c.stg(i) = is ∧ opc(i) = div
csr : c.stg(i) = is ∧ opc(i) = csr
alu : c.stg(i) = is ∧ opc(i) /∈ {load, store, atomic, mul, div, csr}
co : c.stg(i) ∈ {alu, mul2, div, csr, lu, su}
st : c.stg(i) = co ∧ opc(i) ∈ {store, atomic}
post : (c.stg(i) = co ∧ opc(i) /∈ {store, atomic}) ∨ (c.stg(i) = st)

lstg(op) :=



lu : op = load
st : op = store
st : op = atomic
mul2 : op = mul
div : op = div
co : op = csr
alu : op = branch
alu : op = alu

c.ready(i) := (c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))
∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))
∧(c.stg(i) = pc⇒ (ichit(i)

∨(¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))
∧ (c.stg(i) = is⇒ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ ∀j < i . ((depWaW (i, j)⇒ c.stg(j) ⊐S co)
∧ (depRaW (i, j)⇒ ((opc(j) = csr ∧ c.stg(j) ⊐S co) ∨ (c.stg(j) ⊒S co))))

∧ (c.stg(i) = lsu⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))
∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {alu, mul1, csr, mul2, co, post}
∨ (s ∈ {if, is, lsu, su} ∧ c.slot(s))
∨ (s ∈ {pc, id, div, st} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))
∨ (s = lu ∧ ((¬∃j . c.stg(j) = lu) ∨ (∃j . c.stg(j) = lu ∧ c.ready(j) ∧ c.free(c.nstg(j)) ∧ dchit(j))))
∨(∃i.c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))

c.slot(if) := ((#{j|c.stg(j) = if} < fq_size) ∨ c.free(id)) ∧ ∀j.c.stg(j) = if⇒ c.cnt(j) = 0
c.slot(is) := #{j|is ⊑S c.stg(j) ⊑S co} < iq_size ∨ (∃j′ . c.isnext(co, j′) ∧ c.ready(j′) ∧ (opc(j′) ∈ {store, atomic} ⇒ c.free(st)))
c.slot(su) := #{j|opc(j) = store ∧ lsu ⊏S c.stg(j) ⊏S post} < sq_size ∨ ∃j′ . c(j′) = (st, 0))
c.slot(lsu) := #{j|c.stg(j) = lsu} < mq_size

∨ (∃j′ . c.isnext(lsu, j′) ∧ ((opc(j′) = load ∧ c.free(lu)) ∨ (opc(j′) ∈ {store, atomic} ∧ c.free(su))))

Figure 2.3: Model of the MINOTAuR core.
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2.2.1.2 Timing predictable speculative execution

As pointed out in Section 2.1.3, MINOTAuR features a branch predictor that is the support for spec-
ulative execution. We say that an instruction is speculated if the pipeline contains an older, still
unresolved branch. We say that the instruction is misspeculated if the unresolved branch has been
mispredicted, i.e. if the instruction belongs to the wrong path. In order to deal with mispredictions,
we introduce a new predicate, pwrong(i) that works in the same way as ichit(i) and dchit(i). The
predicate pwrong(i) is true whenever instruction i is misspeculated. Using this predicate, any mis-
speculated instruction that has already entered the pipeline is directly flushed to the post stage (i.e.
exits the pipeline without being executed or committed) as soon as the branch has been resolved.
In the ready function, an instruction i is allowed to enter the if stage even speculatively as long as
ichit(i) is true. On the contrary, if the instruction is going to cause a miss in the instruction cache, it
is stalled in the pc stage as long as a branch or a memory (load, store, atomic) instruction is pending.
The portions of the model that relate to these aspects of speculative execution are highlighted in blue
in Figure 2.3.

Allowing some instructions to enter the pipeline speculatively does not affect the timing pre-
dictability of the core as long as these speculated instructions do not modify the state of the hardware
(except for the pipeline contents). In that regard, the RAS incurs a difficulty: it is updated in the
early stages of the pipeline, before knowing if the corresponding function call itself is executed as part
of a mispredicted branch. Moreover, the effect of speculated instructions on the instruction cache
contents and inner state (e.g. blocks ages) must be considered. As MINOTAuR lets instructions enter
the if stage speculatively only when they result in a hit in the instruction cache, its contents are not
modified during speculative execution. However, if the cache features an aging mechanism (e.g. an
LRU cache), its state may be modified by a hit during the speculation.

In the next section, we prove the timing predictability of the MINOTAuR core, assuming two
important restrictions: (i) that the RAS is disabled, and (ii) that the effect of cache hits on the
instruction cache state is transparent to usual cache analysis [53] i.e. cache hits do not affect the cache
state in a way that is not modeled by the analysis (e.g. direct-mapped or random caches such as the
ones implemented in Ariane). We then describe and evaluate general mechanisms that can be added
to any RAS or cache in order to lift these restrictions.

As the design and effects of the store buffers can be quite complex, we dedicate Section 2.3
of this manuscript to the modelling and modification of store buffers regardless of the presence of
speculation. Note however that in the model of Figure 2.3 we already included the gating mechanism
for the store buffer that we present in detail in Section 2.3, so that the model is complete and the
timing predictability of the core can be proven. Additionally, as speculated store instructions cannot
perform their write to memory (in stage st, i.e. after stage co) before the corresponding branch
instruction is resolved, we do not need to consider the effect of speculated stores in these proofs.

2.2.2 Timing anomaly freedom of MINOTAuR

We list here a series of theorems used to prove the timing predictability of MINOTAuR. The proofs
for these theorems were published in the IEEE Transactions on Computers journal [34].

The first theorem states that caches cannot be modified by speculated instructions.
Let c ∈ C be a pipeline state and i ∈ I be an instruction. The state of the instruction or data
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cache might be modified by i if and only if the following predicate is true:

c.cmod(i) := (c.stg(i) = if ∧ ¬ichit(i)) ∨ (c.stg(i) = lu ∧ ¬dchit(i))

Theorem 6: Absence of cache state modification during speculation

∀i ∈ I, ∀c ∈ C, c.pending(i, branch)⇒ ¬cycle(c).cmod(i)

It results from this theorem and its proof that (i) no request to the memory can be initiated by
a speculated instruction and thus no memory request started speculatively is pending at the time
when the corresponding branch is resolved, (ii) speculated instructions are not subject to multi-core
interference and (iii) uncertain outcomes of the cache analyses can be treated as part of the non-
speculative execution.

The next theorem states that MINOTAuR follows the Update enable property.

Theorem 7: Update enable in MINOTAuR

The MINOTAuR core satisfies Property 1.

Using Theorem 7, we have that the MINOTAuR core satisfies Property 1, and using Theorem 6
that we do not have to consider the hypothetical case of non-determinism in the caches or memory
latencies for speculated instructions.

Next, we prove that allowing speculation as specified in the model does not introduce timing
anomalies in the core. To do this, we consider an instruction sequence I1 := i1, i2, ..., ibr, ibr+1, ..., in in
which ibr is the only branch instruction, and we make the assumption that the prediction on this branch
can be either correct or incorrect. I1 itself represents the execution when the prediction is correct.
A second sequence I2 := i1, i2, ..., ibr, m1, m2, ..., mk, ibr+1, ..., in contains misspeculated instructions
(mx) that may enter the pipeline if the prediction is wrong. We denote cbr the state of the pipeline
when ibr enters the if stage. It is important to remark that all instructions i ≤ ibr are identical in
both sequences, and that the same is true for instructions i ≥ ibr+1.

Let cw be the state of the pipeline just when ibr has been resolved (cw(ibr) = (alu, 0)) if it has been
mispredicted (i.e. the local worst case). Without loss of generality, we assume that cw is obtained by
applying the cycle function l > 0 times on cbr while following the I2 sequence. Additionally, let cb be
the state of the pipeline just when ibr has been resolved (cb(ibr) = (alu, 0)) if it has been predicted
correctly (i.e. the best local case). Since all instructions j < ibr are the same in I1 and I2 and
the pipeline implements the progress dependence property, cb is also obtained by applying the cycle
function l times on cbr, but this time following the I1 sequence. Since both sequences are identical up
to ibr, these two states correspond to the same number of applications of cycle since the beginning of
the execution. By considering cw and cb, we can prove progress properties without having to consider
the speculated instructions: we compare cw and cb only on the instructions that they have in common
i.e. the instructions of I1.

Theorem 8: Progress at the end of speculation

Pipeline state cw has less progress on I1 than cb : cw ⊑ cb. More precisely:

∀j ∈ I1,

{
j ≤ ibr ⇒ cw(j) = cb(j)
j > ibr ⇒ cw(j) ⊑P cb(j)
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Theorem 6 guarantees that caches are not modified during speculation, and we know that by
design the dynamic branch prediction mechanisms are only updated when branches are resolved, with
the information of the correct branch. This means that any modification of these components that
could impact the execution of subsequent instructions (e.g. cache content modification) cannot happen
during speculation. Using Theorem 8, we can thus safely apply function f of Theorem 2 to cb and cw

and conclude on the absence of timing anomalies in MINOTAuR.
We now adapt and prove Theorem 5 for MINOTAuR.

Theorem 9: Compositionality of MINOTAuR w.r.t. cache uncertainty

Let two valuations of dchit (or ichit) be given that differ for an arbitrary instruction i ∈ I. The
valuation that predicts a cache miss will lead to a finishing time at most p cycles higher than
the valuation that predicts a cache hit.

We finally proceed with the last theorem that bounds the timing penalty for a branch misprediction
in MINOTAuR.

Theorem 10: Bound of the timing penalty resulting from a branch misprediction

If a predicted branch takes p cycles to be resolved, then the penalty for a misprediction of the
branch is at most p cycles.

2.2.3 Releasing the constraints on the RAS and caches

In Section 2.2.1.2, we made the assumption that the RAS was disabled and that the caches did
not implement aging mechanisms. We now present hardware mechanisms that allow lifting these
restrictions while keeping MINOTAuR timing predictable.

2.2.3.1 Speculation-aware cache state backups

A cache hit may modify the state of caches implementing an aging-based replacement policy (such
as LRU). This is problematic as MINOTAuR does not stall speculated instructions that hit in the
instruction cache. As a result, a misspeculated instruction could modify the age of blocks in the
instruction cache. Then, when the corresponding branch is resolved and the core starts executing on
the correct path, the blocks ages would be different from what they were before the speculation began.
This can have an impact on the selection of the next evicted blocks, and ultimately on the timing of
the instruction sequence. Consequently, our proofs no longer hold in this context.

To solve this issue, we designed a hardware mechanism that makes a backup copy of the ages of
the cache blocks each time a branch prediction is made. When a branch is resolved, the backup is
restored if the prediction was incorrect. Otherwise, the current state of the cache is committed and
the backup invalidated. In order to support nested branches, the backup mechanism is implemented
using a circular buffer of copies. We illustrate the behavior of the backup mechanism in Figure 2.4. In
this example, we consider the cache state backup mechanism evolution while a sequence of instructions
is executed. We assume a 2-way set associative cache featuring an aging-based replacement policy.
Since cache misses are blocked during speculative execution, the backup mechanism only needs to
save the ages of the blocks (and not their contents). The circular buffer implementing the backup
mechanism in this example can hold up to 3 copies of the cache state. In Figure 2.4 (a), the core
is currently executing an instruction speculatively. The backup mechanism keeps a safe copy of the
ages of the blocks when the speculation started. This copy is identified using a “backup” pointer.
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Figure 2.4: Cache state backup mechanism.

All modifications to the ages done speculatively are accounted for in another copy designated by the
“current” pointer. In the example, four blocks have their age modified in the current copy, compared
to when the speculation started. If a new branch instruction is executed before the previous one
has been resolved, the contents of the current copy is duplicated to another copy, and the “current”
pointer is incremented to point to that new copy (Figure 2.4 (b)). Now, when the first branch is
resolved, if the prediction was correct, the “backup” pointer is incremented to the next copy in the
buffer (Figure 2.4 (c)). If however the prediction was incorrect, the “backup” pointer does not move,
an the “current” pointer is set to the copy pointed by the “backup” pointer.

When the buffer that holds the copies is full (as the result of too many nested branches), new branch
instructions are blocked before they can enter the if stage to prevent any unsaved modification to
the cache state. When a pending branch is resolved, the buffer recovers at least one slot, and branch
instructions are allowed to enter the if stage again.

The backup mechanism is designed to work with any cache that implements an aging-based re-
placement policy (e.g. pseudo-LRU, Most Recently Used). We implemented and tested it on a LRU
cache, because this policy is particularly fitted for static WCET analysis. The results of our evaluation
are given in Section 2.4.

2.2.3.2 RAS backup mechanism

A return address stack (RAS) is a branch prediction mechanism used to predict the return address at
the end of a function call: when a return instruction (e.g. jr ra in RISC-V) is executed at the end
of a function, the RAS predicts the address of the next instruction to execute. In a simple RAS, as
found in the Ariane processor, the address of the next instruction is pushed onto the stack when a
function call (e.g. jal, jalr in RISC-V) enters the fetch stage. The return address is popped from
the RAS when a return instruction is fetched, and the next PC is set to this address.

Problems can come from the speculative execution of branches. Recall that the RAS is updated
when function call or return instructions enter the first stages of the pipeline. If these instructions are
misspeculated (i.e. they should not be executed), the RAS gets updated with incorrect information.
The first problematic situation happens when a return instruction is misspeculated: in this case, the
return address at the top of the RAS is popped. When the corresponding branch is resolved this
popped entry is not restored on the stack: the RAS has lost information. When the correct branch
is executed and the return instruction enters the frontend, the top of the stack does not contain
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Figure 2.5: RAS state backup mechanism: function call.
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Figure 2.6: RAS state backup mechanism: return from function.

the corresponding return address. The second problematic situation happens when a function call
is misspeculated. In this case, the corresponding return address is pushed to the stack. When the
speculation ends and the correct branch starts executing, this entry remains in the stack: the RAS
contains a return address that corresponds to no function call.

To avoid these situations, we implement a backup mechanism similar to the one we described
for the LRU caches, but with additional subtleties. Function calls and returns are implemented as
branch instructions and may be speculated in the case of indirect calls (e.g. function pointers). In
both the cache and the RAS backups, the “current” pointer is incremented each time a prediction
is made, including when function calls and function returns are fetched. However, when an indirect
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function call is made, the contents of the RAS are updated when the corresponding branch instruction
is fetched. If an incorrect prediction is made for the branch target, the branch instruction is not
fetched again when the control is set to the correct address, and the RAS is not updated at this point.
As a consequence, our backup mechanism updates the RAS with the return address of a function call
before the “current” pointer is incremented, and the RAS is copied to a new backup slot. This way
the return address is present in two backup copies. Whether the prediction is correct or not, the RAS
is in the correct state when the corresponding return instruction enters the pipeline. One important
point here is that regardless of the target of the branch for a function call, the return address is the
same, so we can safely push it on the RAS. This is illustrated in Figure 2.5. To remain coherent, our
backup mechanism handles return instructions in the same way. When a return instruction enters
the pipeline, the top element from the “current” copy of the RAS is popped. Then, since the return
instruction is a branch, the “current” pointer is incremented and the contents of the RAS are copied.
This is illustrated in Figure 2.6.

Now that we have proven the timing predictability of MINOTAuR, including during speculative
execution, and that we have proposed hardware designs that enable the predictable use of RAS and
LRU caches in the core, we are going to take a closer look at a component that we have eluded so far,
and at its effect on timing predictability: the store buffer.

2.3 Managing store buffers in a predictable core

In a processor pipeline, a store buffer [10] allows store instructions to leave the memory stage and be
committed while the write request has not been sent to the memory yet. This way, the write latency
is hidden. However, since store buffers are connected to the memory bus in order to emit their write
requests, they share this sequential resource with the instruction and data caches, and thus may create
inversions that lead to timing anomalies. Since the problem between the instruction cache and all
memory instructions (loads and stores) has been tackled in the previous chapter, we now focus on
the concurrency between load and store instructions and their effect on the timing predictability of
pipelines. In order to keep our work generic, we encompass both in-order pipelines and pipelines in
which the load and store instructions are processed by separate, parallel functional units.

This section is organized as follows. In Section 2.3.1, we provide background information about
store buffers, and the two pipeline settings that we are going to study. Then, in Section 2.3.2,
we provide examples showing how store buffers break the progress monotonicity of pipelines, thus
making them vulnerable to timing anomalies (or at least making it harder to prove their absence). In
Section 2.3.3, we provide a gating mechanism that restores progress monotonicity in the presence of
store buffers. Finally, in Section 2.3.4, we present the subtleties of the implementation of store buffers
in MINOTAuR and make a formal link between the proposed gating mechanism and the model of the
core provided in Figure 2.3 of the last section.

2.3.1 Generalities about store buffers

2.3.1.1 In-order pipelines

In a simple scalar in-order pipeline such as the textbook 5-stage pipeline considered in [46], all memory
accesses (loads and stores) are processed in the same memory stage. Without a store buffer, a store
to a memory block that does not reside in the data cache must stay in the memory stage for at least
the latency of the access to the memory, stalling all subsequent instructions. This is illustrated in
Figure 2.7(a): instruction i0 is a store that accesses the memory bus and stalls the pipeline until the
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Figure 2.7: In-order pipeline

write to the memory is completed. Although this stall is usually necessary for loads (since the loaded
data is likely to be used by the following instructions), stores can often be delayed safely.

A store buffer keeps track of the stores that have been executed in the pipeline but have not yet
been sent to the memory. As a consequence, a store instruction to an uncached block does not wait
in the memory stage until the block has been loaded or the data has been written to the memory: the
address and data to be written are pushed to the store buffer, and the instruction goes to the next
stage in the next clock cycle, allowing the flow of instructions to progress in the pipeline. The store
buffer then sends the pending writes to memory whenever it gets access to the memory bus. This is
illustrated in Figure 2.7(b): store instruction i0 is not stalled in the MEM stage. Instead the write
(s0) is enqueued in the store buffer, and i0 progresses to the WB stage. In the example, instruction
i1 enters the MEM stage and performs a load, thus requesting the memory bus. When the load is
completed, i1 advances to the WB stage and i2 enters the MEM stage. If i2 does not request the bus,
the store buffer is able to send s0 to the memory.

2.3.1.2 Out-of-order loads and stores

In more complex architectures, load and store instructions to different memory blocks may be executed
out of order by using separate instruction queues for loads and stores, or a reorder buffer in the
load/store unit (LSU). In this setup, a store buffer allows store instructions to advance in the pipeline
even though an older load instruction may be using the memory bus. In order to avoid breaking
memory dependencies, addresses of loads are checked against those of the stores in the store buffer.
Figure 2.8 depicts an example of such a design, in which we represent separately the load unit (LU)
and the store unit (SU). In order to remain as general as possible, we only depict the portion of the
pipeline related to memory accesses. This portion may be inserted in a much longer pipeline and/or
in parallel with other functional units. In Figure 2.8(a), instruction i0 just advanced to stage Sn after
enqueuing its store s0 in the store buffer in the last cycle. Instruction i1 (a load) just entered the LU
stage and started using the bus, while instruction i2 (another store) just entered stage Sp. The state
of the pipeline in the next cycle is depicted in Figure 2.8(b): instruction i0 advances past the Sn stage,
while i1 is still accessing the memory. i2 is allowed to progress to the SU stage. In the following cycle,
i2 will enqueue its store in the store buffer. If i1 still has not finished its access to the memory, i2 will
advance to stage Sn.

A consequence of this design is the possibility for a load to be delayed or not before accessing
the bus, depending on the state of the store buffer. As we will see in Section 2.3.2, this feature is
a problem for timing predictability. Additionally, depending on the design, a store instruction may
be blocked in the LSU because the store buffer is full while a subsequent load may be allowed to use
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Figure 2.8: Out-of-order memory accesses

the memory bus, thus delaying the advance of the store instruction. This can also be problematic for
timing predictability.

2.3.2 Store buffers effect on monotonicity

In this section, we provide formal models to characterize the effect of store buffers on the two archi-
tectural designs discussed in Section 2.3.1. In order to keep our results general, we do not provide
the complete cycle function for a specific pipeline. Instead we focus on the portion of pipeline that is
related to the store buffer, and make no particular assumption about the topology of the rest of the
pipeline.

In order to model the occupancy of the memory bus (either by the store buffer or by the memo-
ry/load unit) in each execution cycle, we introduce the busTaken predicate. Given a pipeline state ca

and an instruction i such that opc(i) = load, ca.busTaken(i) is true if and only if i is using the memory
bus in the current cycle. Note that for our proofs, we do not need a formula to compute the value of
busTaken.

2.3.2.1 Simple in-order pipeline

We define the cycle function for the simplified 5-stage pipeline in Figure 2.9. As pointed out earlier,
we only focus on the EX, MEM and WB stages. The previous stages are modeled by an abstract
stage called pre that initially holds all instructions. The retired instructions go to an abstract stage
called post after the WB stage. An instruction advances to the next stage when (1) it is ready to
advance, and (2) the next stage is guaranteed to be free in the next cycle. The ready(i) function first
guarantees that instruction i has been processed in its current stage (cnt(i) = 0). Then, depending
on the current stage of i, it checks:

• if i is in pre, that i is the oldest instruction in pre (instructions enter the pipeline in program
order);

• if i is in MEM, that if i is a store, the store buffer is not full. This is done using the c.sbFull()
predicate that evaluates to false iff the store buffer is currently not full, or if it is full but will
no longer be in the next cycle.



30 CHAPTER 2. DESIGNING PREDICTABLE AND EFFICIENT ARCHITECTURES

S := {pre, EX , MEM , WB, post}

pre ⊏S EX ⊏S MEM ⊏S WB ⊏S post

cycle(c)(i) :=
{

(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.ncnt(i) :=


c.cnt(i)− 1: c.cnt(i) > 0

∧ opc(i) = load ⇒ (c.stg(i) ̸= MEM ∨ c.busTaken(i) ∨ dchit(i))
c.cnt(i) : opc(i) = load ∧ c.stg(i) = MEM ∧ ¬c.busTaken(i) ∧ ¬dchit(i)
0 : otherwise

c.nlat(i) :=
{

memlatd(i) : c.nstg(i) = MEM ∧ ¬dchit(i)
0 : otherwise

c.nstg(i) :=


EX : c.stg(i) = pre
MEM : c.stg(i) = EX
WB : c.stg(i) = MEM
post : c.stg(i) = WB

c.ready(i) := c.cnt(i) = 0
∧ (c.stg(i) = pre ⇒ ∀j < i, c.stg(j) ⊐S pre)
∧ (c.stg(i) = MEM ⇒ (opc(i) = store ⇒ ¬c.sbFull()))

c.free(s) := s = post
∨ (¬∃j . c.stg(j) = s)
∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))

Figure 2.9: cycle() function for the simplified in-order 5-stage pipeline
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Figure 2.10: Monotonicity counterexample

The computation of the counter of remaining processing cycles c.cnt(i) is performed as follows:
for any instruction other than a load (and for a load in any stage other than MEM), the counter is
decremented if it is positive, and a null counter remains equal to zero. For a load instruction inside the
MEM stage, its counter is only decremented if the instruction performs a hit in the cache (dchit(i))
or uses the bus in the current cycle (c.busTaken(i) is true).
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Theorem 11

Store buffers jeopardize the monotonicity of in-order scalar pipelines.

Proof. We need to exhibit a counterexample where monotonicity is broken, that is to say a sequence
of instructions i1, ..., in and two pipeline states ca and cb such that ca ⊑ cb and cycle(ca) ̸⊑ cycle(cb).
We start with the states c′

a and c′
b in Figure 2.10. In this figure, i2 is a load instruction that requires

the bus to access the memory. We assume that in c′
b the s1 store has been initiated in the previous

cycle and will use the bus at least for the next two cycles. As a result, c′
b.busTaken(i2) is false and

cycle(c′
b).cnt(i2) = c′

b.cnt(i2) = memlatd(i2). Conversely, we assume that s0 will be completed at the
end of the current cycle in c′

a. In the next cycle, s0 will get out of the store buffer, and i2 and s1
will compete for the bus. Let us assume that i2 gets the bus (i.e. cycle(c′

a).busTaken(i2)). Now, if
we rename ca = cycle(c′

a) and cb = cycle(c′
b), we have ca ⊑ cb. From a less formal perspective that

considers the stores inside the store buffer, ca has made less progress than cb, as s1 has already started
in cb and not in ca. Now, since s1 is assumed to last for at least another cycle, cb.busTaken(i2) is false,
and the counter for i2 will remain unchanged in cycle(cb). On the other hand, ca.busTaken(i2) is true,
so the counter for i2 will decrease in cycle(ca). As a consequence, cycle(ca) ̸⊑ cycle(cb).

2.3.2.2 Separate Store and Load Units

We provide the definition of the cycle() function in Figure 2.11. The main difference with the functions
of the previous section concerns the topology of the pipeline that now includes separate SU and LU
stages. In order to simplify the model, we consider only load and store instructions in this portion of
the pipeline (we assume that other kinds of instructions are being directed to other parallel portions
of the pipeline that include their corresponding functional units).

As before, the pre and post stages can model entire portions of the pipeline that are located
respectively before and after the considered pipeline portion.

Theorem 12

Store buffers jeopardize the monotonicity of pipelines with separate store and load units.

Proof. The example of monotonicity violation is just a variation of the one we presented in Sec-
tion 2.3.2.1, adapted to this particular topology. We consider states c′

a and c′
b as in Figure 2.12. i1 is a

load instruction that resides in stage LU. In state c′
a, there are two stores s0 and s1 residing in the store

buffer. s0 is currently being performed and will finish at the end of the cycle. We thus assume that the
bus can be granted to the load unit in the next cycle. As a result, cycle(c′

a).busTaken(i1) is true. On
the other hand, we assume a state c′

b in which the store buffer only holds s1. We also assume that s1 is
currently being performed, and will use the bus for at least the next cycle. As a result, c′

b.busTaken(i1)
is false, and will remain false for at least the next cycle. Consequently, cycle(c′

b).busTaken(i1) = false.
If once again we rename ca = cycle(c′

a) and cb = cycle(c′
b), we have ca ⊑ cb and since ca.busTaken(i1),

cycle(ca).cnt(i1) = ca.cnt(i1)− 1, while cycle(cb).cnt(i1) remains unchanged. Finally, we have ca ⊑ cb

and cycle(ca) ̸⊑ cycle(cb), so monotonicity is broken.

2.3.3 Enabling timing-predictability with store buffers

In order to enforce timing predictability in the presence of store buffers, we propose to add a new
gating mechanism that blocks load instructions in the stage before the one that actually performs the
load (i.e. before MEM or LU in our examples) as long as the store buffer is not empty or there is a
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S := {pre, Sp, SU, LU, post}

pre ⊏S Sp ⊏S {SU, LU} ⊏S post

cycle(c)(i) :=
{

(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.ncnt(i) :=


c.cnt(i)− 1: c.cnt(i) > 0

∧ opc(i) = load ⇒ (c.stg(i) ̸= LU ∨ c.busTaken(i) ∨ dchit(i))
c.cnt(i) : opc(i) = load ∧ c.stg(i) = LU ∧ ¬c.busTaken(i) ∧ ¬dchit(i)
0 : otherwise

c.nlat(i) :=
{

memlatd(i) : c.nstg(i) = LU ∧ ¬dchit(i)
0 : otherwise

c.nstg(i) :=


Sp : c.stg(i) = pre ∧ opc(i) ∈ {load, store}
SU : c.stg(i) = Sp ∧ opc(i) = store
LU : c.stg(i) = Sp ∧ opc(i) = load
post : c.stg(i) ∈ {SU , LU}

c.ready(i) := c.cnt(i) = 0
∧ (c.stg(i) = pre ⇒ ∀j < i, c.stg(j) ⊐S pre)
∧ (c.stg(i) = SU ⇒ ¬c.sbFull())

c.free(s) := s = post
∨ (¬∃j . c.stg(j) = s)
∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))

Figure 2.11: cycle() function for the separate store and load units

store instruction in MEM or SU. The intuition behind this is to guarantee that the instructions acquire
the bus following the program order, so that an access corresponding to an older instruction is always
performed before an access corresponding to a younger instruction. In the models of Figures 2.9
and 2.11, this modification amounts to:

• adding a c.sbEmpty() predicate that is equal to 1 iff the store buffer and the SU (or MEM) stage
are empty in state c;

• adding the following line to the ready function using a conjunction: (c.stg(i) = Sp ⇒ (opc(i) =
load ∧ c.sbEmpty())) (in which Sp is replaced by EX in the model of Figure 2.9).
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Figure 2.12: Monotonicity counterexample on a pipeline with separate store and load units

Theorem 13: Monotonicity is restored by the proposed gating mechanism in the
in-order pipeline

Replacing the ready function of the pipeline model of Figure 2.9 by the following function
restores the monotonicity in this pipeline:
c.ready(i) := c.cnt(i) = 0

∧ (c.stg(i) = pre ⇒ ∀j < i, c.stg(j) ⊐S pre)
∧ (c.stg(i) = MEM ⇒ (opc(i) = store ⇒ ¬c.sbFull()))
∧ (c.stg(i) = EX ⇒ (opc(i) = load ∧ c.sbEmpty()))

Theorem 14: Monotonicity is restored by the proposed gating mechanism in the
pipeline with separate store and load units

Replacing the ready function of the pipeline model of Figure 2.11 by the following function
restores the monotonicity in this pipeline:
c.ready(i) := c.cnt(i) = 0

∧ (c.stg(i) = pre ⇒ ∀j < i, c.stg(j) ⊐S pre)
∧ (c.stg(i) = SU ⇒ ¬c.sbFull())
∧ (c.stg(i) = Sp ⇒ (opc(i) = load ∧ c.sbEmpty()))

Both theorems have been proven using the Coq proof assistant. The Coq proofs are available online,
and the main elements of the proofs are presented in a paper that we published in RTNS’23 [35].

2.3.4 Implementation in MINOTAuR

We implemented our proposed mechanism in the MINOTAuR RISC-V core [33] to evaluate its impact
on performance. As we saw earlier, in MINOTAuR, the load/store unit is pipelined: in its second
stage, stores are handled by the store unit, and loads by the load unit. The memory hierarchy of
MINOTAuR is depicted in Figure 2.13, that can be seen as a more detailed zoom on the memory
section of the complete MINOTAuR pipeline depicted in Figure 2.1.

This architecture is a superset of the model described in Figure 2.11. The data cache acts as
an intermediary between the core and the memory bus. The mechanism used to send and remove
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Figure 2.13: Memory components in the MINOTAuR core

commands from the store buffer, which is abstracted in the model, is described in the remainder of
this section.

2.3.4.1 The store buffer

The store buffer is split into two queues. Store commands are inserted into the first one (the “specu-
lative queue”) by the SU, and remain there until the corresponding instruction is committed. When
an instruction is committed, the corresponding command is moved to the second queue (the “commit
queue”), and remains there until it can be sent to the memory hierarchy.

In the RV32 ISA, a write can be performed on 8, 16 or 32 bits. Hence, the buffer retains the exact
physical address and the size of the write operation. When a request is issued to the data cache, the
data and the address are realigned to a 64-bit block. Once the request has been acknowledged, the
command is removed from the buffer.

Before issuing a fetch request, the LU checks if there is a write pending to the same 64-bit block
in the store buffer. In this case, the load will be put on hold in the LSU until the write has been
submitted and acknowledged by the cache.

2.3.4.2 The data cache

In MINOTAuR, the data cache is write-through (data are written in the cache and the main memory
at the same time), and does not allocate entries on writes (if a line to be written is not cached, it
is not loaded). The data cache does not immediately forward requests from the store buffer to the
bus, but stores them in a write buffer. Its purpose is to reduce the amount of requests performed on
the bus by merging pending writes to the same memory block. As part of our gating mechanism, we
make sure that the LU stalls if there is a store pending in this buffer, as well as in the store buffer.
For the sake of simplicity, we do not describe its exact operation, but it does not affect the validity of
our proofs, nor the monotonicity of the pipeline.

The cache memory receives requests from the load unit, and can answer in a single cycle if the
line is already cached. It can also read from the write buffer: if the LU requests a line awaiting to be
written, the cache will combine the dirty bytes in the buffer and the line in the memory.

2.3.4.3 Modeling the gating mechanism for MINOTAuR

The formal model that we provided in Figure 2.3 already includes the gating mechanism that we
described in Theorem 14. Looking at the formula of Theorem 14, we are only interested in the
terms that concern su and Sp. The (c.stg(i) = SU ⇒ ¬c.sbFull()) term is covered by the (s ∈
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{if, is, lsu, su} ∧ c.slot(s)) term in the definition of the c.free(s) function in the model of Fig-
ure 2.3, since the definition of slot(su) models the store buffer occupation. Now, the (c.stg(i) =
Sp ⇒ (opc(i) = load ∧ c.sbEmpty())) term is covered the c.stg(i) = lsu ⇒ (...) ∨ (opc(i) =
load∧ (¬c.pending(i, store)∧¬c.pending(i, atomic))) term in the definition of the c.ready(i) function
of Figure 2.3. Indeed, ¬c.pending(i, store) states that no store operation resides between the lsu and
the st stages, which means that the store buffer is empty.

We thus safely conclude that the complete model of MINOTAuR that we proposed in the previous
section includes the proposed gating mechanisms to ensure the monotonicity of progress in the presence
of a store buffer. This is in fact a reason why we managed to prove the monotonicity in Section 2.2.2.

In the next section, we present the experiments we conducted in order to evaluate the performance
cost of our modifications of the Ariane core in order to turn it into a provably timing predictable core.

2.4 Evaluation

2.4.1 Organization of the evaluation section

In this section we report all the experimental results we obtained regarding MINOTAuR and the
various mechanisms that we implemented in order to achieve performance while ensuring timing
predictability. The first experiments (Section 2.4.2) were conducted on Ariane+ and on our first
version of MINOTAuR that was directly derived from it. These results show that unlike what was
reported by Hahn et al. in [40], entirely removing the speculative execution mechanisms in Ariane+ has
a strong negative impact on performance, and thus validates our efforts to combine predictability and
speculative execution to maintain a higher level of performance. We also measured the implementation
cost and performance impact of the back-up mechanisms of Section 2.2.3 on MINOTAuR. Finally, we
measured the performance impact of the gating mechanisms that we introduced in Section 2.3.3
regarding the store buffer (Section 2.4.3).

2.4.2 Evaluation of MINOTAuR and of the back-up mechanisms

2.4.2.1 Methodology

All our extensions have been implemented in the SystemVerilog model of the Ariane+ core and our pro-
cessors have been synthesized with Xilinx Vivado 2021.13, targeting a Xilinx Zynq XC7Z020-1CLG400
on a Digilent Zybo Z7-20 board, with the PerformanceOptimized directive set4. The memory has a
latency of 11 cycles.

We have used the kernel and sequential sets of programs of the TACLe benchmark suite5 [38]
as well as CoreMark6 as benchmarks, all compiled with gcc 10.2.07 and optimization flag -O2 (-O3
for CoreMark).

The results are displayed in Table 2.1. We report the arithmetic mean of the overheads. Since
the number of cycles taken to execute the benchmarks varies from a few hundreds to a few hundred
millions, we also computed a global overhead (corresponding to the overhead between the total cycles
of the various processor variants) and the difference between the geometric means of the number of
cycles in the variants over the TACLe benchmarks. The overheads displayed in the first three rows of

3https://www.xilinx.com/products/design-tools/vivado.html
4Except for 16 backups/RAS-16, which would not fit on our FPGA with this configuration
5We had to exclude mpeg2 which did not compile, and susan which failed to execute, both due to memory exhaustion

on Ariane+, and MINOTAuR.
6www.coremark.org
7https://github.com/riscv-collab/riscv-gnu-toolchain/tree/ed53ae7

https://www.xilinx.com/products/design-tools/vivado.html
www.coremark.org
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/ed53ae7
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the table (marked with ∗) are computed w.r.t. Ariane+, while the rest of the rows (marked with †),
which correspond to variants of the back-up mechanism implemented on top of MINOTAuR, display
overheads w.r.t. MINOTAuR.

The source code for all cores and experiments presented in this chapter is available in [32].

2.4.2.2 Results

We started by applying the gating mechanism of Hahn et al. [40] to the Ariane+ core. This mechanism
is more stringent than the one we described in Figure 2.3, as it completely precludes speculative
execution. Our objective was to measure the cost of this method on a more complex processor than
the SIC.

As expected, we did no longer observe any inversion. Compared to the baseline Ariane core (cf.
row Ariane+ + SIC in Table 2.1), the overhead in execution cycles amounts to 38.96% on average (with
a geometric mean of 37.73%), and the global overhead reaches 45.68%. These results are significantly
higher than the 6-7% loss reported in [40]. We believe that this may be related to the fact that
Ariane+ is much more advanced than the 5-stage in-order pipeline upon which the SIC processor was
designed. In particular, Ariane+ includes dynamic branch predictors (Hennessy and Patterson [46]
report a 30% performance gain using such predictors) and several queues that allow some instruction
parallelism. For example, the scoreboard (modelled by the iqueue) makes it possible, to some extent,
to execute several instructions in parallel in different functional units.

The results for MINOTAuR are also displayed in Table 2.1. Again, we did not observe any
inversion, which was expected due to the gating mechanism that we have implemented. Since we
carefully selected the restrictions that were absolutely required to prove timing predictability and
relaxed the other ones, the performance loss compared to the Ariane+ core is noticeably low: 1.81%
on average, with a global overhead of 0.69% and a difference between the geometric means of 1.65%
only. By relaxing the limitations on speculative execution, we thus claimed back more than 35% of
the performance on average (compared to Ariane+ + SIC), while keeping the core provably timing
predictable. Small benchmarks tend to have higher overheads than large ones. We believe this is
due to the warming of the caches and the initial filling of the pipeline: the temporal impact of cache
misses and of an empty pipeline is proportionally higher when the application consists of only a few
hundred instructions. The cost of timing predictability in terms of performance in MINOTAuR is
thus negligible. We even remark that some benchmarks run faster on MINOTAuR than on Ariane+:
by preventing speculative fetches of instructions from the main memory, we prevent the pollution of
the instruction cache during speculative executions that will eventually be discarded, thus reducing
the number of instruction cache blocks that need to be re-fetched after a wrongly speculated branch.

Let us now focus on the results of the second part of Table 2.1. We first evaluated the efficiency
of our backup mechanisms. To do so, we equipped MINOTAuR with a LRU instruction cache instead
of its orginal random one, and set the size of the RAS to 16 (thus allowing fast returns for up to 16
nested function calls), and varied the size of the RAS and LRU backups. All the performance results
of the core variants are compared to the baseline MINOTAuR that is still equipped with a random
instruction cache and no RAS.

We first see that using 2-slot buffers for the backup mechanism yields slightly worse results (0.39%
overhead on average) than the baseline MINOTAuR that has no RAS and random caches. This is
due to the fact that the LRU instruction cache backup mechanism blocks all instructions (including
the ones resulting in a hit) as soon as there are at least 2 pending branch instructions in the pipeline,
while the random cache of the baseline MINOTAuR does not. The versions in which the number of
backup slots is 4 or more all perform better than the baseline MINOTAuR. The versions with 8-slot
and 16-slot backup perform equivalently.
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Table 2.1: Resource usage, CoreMark score and average overhead for Ariane+ and multiple MINO-
TAuR variants.

Core LUTs Max freq. CoreMark Total cycles Arith. Geo. Global Deviation
mean mean overhead

Ariane+ 17,106 34.93 MHz 110.36 599,217,366
Ariane+ + SIC ∗ 14,754 32.11 MHz 72.03 872,935,255 38.96% 37.73% 45.68% 0.196
MINOTAuR ∗ 17,176 32.97 MHz 110.58 603,373,808 1.81% 1.65% 0.69% 0.059

2 backups/RAS-16† 21,782 30.40 MHz 108.78 607,374,373 0.39% 0.37% 0.66% 0.021
4 backups/RAS-16† 23,952 30.46 MHz 110.90 591,280,403 -1.28% -1.29% -2.00% 0.014
8 backups/RAS-16† 26,550 29.36 MHz 110.90 590,971,752 -1.32% -1.33% -2.06% 0.014
16 backups/RAS-2† 19,439 33.83 MHz 110.89 591,998,705 -1.22% -1.33% -1.89% 0.014
16 backups/RAS-4† 22,012 31.62 MHz 110.90 590,988,103 -1.31% -1.23% -2.05% 0.014
16 backups/RAS-8† 26,175 31.46 MHz 110.90 590,971,431 -1.36% -1.32% -2.06% 0.015
16 backups/RAS-16† – – 110.90 590,971,205 -1.32% -1.37% -2.06% 0.014

∗ the Arith. mean, Geo. mean, Global overhead and Deviation are computed w.r.t. Ariane+

† the Arith. mean, Geo. mean, Global overhead and Deviation are computed w.r.t. MINOTAuR

Then, we evaluated the impact of the RAS size on the performance of the core. Enabling the RAS
with a size of more than 2 yields better results than having no RAS, at the expense of resources on
the FPGA. The only model we tested that had worse performance than the baseline MINOTAuR was
the 2-slots buffers for backups and 16 entries in the RAS. Since all other variants we tested perform
better, including those with a smaller stack, we can conclude that the RAS is not the cause of this
result.

Overall, the average gains induced by the RAS and LRU caches are around 2% which is not a
significant improvement. However the use of an LRU cache instead of a random one has a huge
impact on the precision of the static analyses and in turn on the precision of the WCET. In the
light of these results, it seems that a reasonable trade-off between performance, predictability, LUT
consumption and maximum achievable frequency is the version with 16 levels of backup and a RAS of
size 2, which yields a 13% increase in the LUT usage, but also a lower number of execution cycles than
the baseline MINOTAuR. We display the maximum achieved frequency for each design in the table,
as an indication. However, the frequencies do not seem correlated to the complexity of the designs.
This indicates that the observed reductions in maximum frequency are not due to a lengthening
of the critical path, but rather to the small size of our FPGA that prevents mapping and routing
optimizations by the synthesis compiler. Finally, based on these benchmarks, it seems that the cost of
the RAS (in terms of LUT usage) is difficult to justify. This is due to the fact that TACLe benchmarks
do not contain enough nested function calls to gain much advantage from it.

2.4.3 Evaluating the cost of the store buffer gating mechanism

We now compare the performance of the MINOTAuR core with and without the gating mechanism
described in Section 2.3.3, to assess the cost of timing predictability regarding the store buffer. Ad-
ditionally, we also implemented a more aggressive version of our gating mechanism in which load
instructions are stalled directly in the LU stage. We believe that this mechanism also enforces the
monotonicity of the pipeline, but have not proved it yet8.

8We focused instead on the general model and proofs that we presented, whereas the gating at the LU stage relies on
implementation details that belong to MINOTAuR, which would have made the proofs too specific.
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Table 2.2: LUT usage, CoreMark score and performance on the TACLe benchmarks

Gating mechanism

Disabled Enabled Gating at LU

LUTs 17,145 17,153 17,155
CoreMark score 110.44 108.67 110.20
Total cycles 603,439,496 606,237,172 605,359,342
Total cycles at -O0 1,202,647,474 1,225,049,748 1,216,564,217

2.4.3.1 Experimental setup

The modifications were made to the SystemVerilog description of MINOTAuR, synthesized with Xilinx
Vivado 2021.1 for a Xilinx Zynq XC7Z020-1CLG400 on a Digilent Zybo Z7-20 board, with a frequency
of 25 MHz, and a memory latency of 11 cycles. All the results presented in this section correspond to
actual measurements performed on the FPGA, running either CoreMark or the TACLe9 [38] bench-
mark suite compiled with gcc 10.2.0, respectively at optimization level -O3 and -O2. We also ran
the TACLe benchmarks at optimization level -O0, to prevent gcc from improving the memory usage
patterns, and thus potentially hiding part of the cost of our changes.

We report various measurements for our cores: their LUT (Look-Up Table) usage, their CoreMark
score, the number of cycles taken by the 50 programs from the TACLe benchmark suite, the arithmetic
and geometric means of the overheads in MINOTAuR induced by our gating mechanism, as well as
the total cycles overhead.

Table 2.3: Overheads for the gating mechanism on TACLe

Gating at LSU Gating at LU

At -O2 At -O0 At -O2 At -O0

Arithmetic mean 2.07% 2.89% 1.53% 0.88%
Geometric mean 2.00% 2,85% 1.49% 0.85%
Global overhead 0.46% 1.86% 0.32% 1.16%
Minimum -4.61% -2.78% 0.00% 0.00%
Maximum 17.74% 10.07% 12.40% 14.47%

2.4.3.2 Results

Table 2.2 shows that our gating mechanism does not significantly increase the resource usage of the
core: 8 LUTs are added to the 17,145 LUTs of the original design.

On average, our gating mechanism results in a loss of performance of 2.07% on the TACLe bench-
marks, as reported in Table 2.3. On individual benchmarks, the performance loss is inconsistent: some
benchmarks, such as bitonic, are not significantly affected by our gating mechanism, but programs
with different memory access patterns (i.e. md5, sha) are more impacted by this change. A few bench-
marks, such as h264_dec, are instead significantly faster. We also see that performing the gating in
the LU stage yields slightly better average results than performing it in the LSU stage (around 0.5%
improvement).

9Once again, mpeg2 and susan were excluded because they failed to compile (resp. execute) due to memory exhaustion.
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At optimization level -O0, our mechanism has a higher cost (3% instead of 2% in average, and
2% instead of 0.5% overall), but its impact remains low, even though memory access patterns are not
optimized.

2.5 Conclusion
This chapter presented issues caused by instruction level parallelism regarding the timing predictability
of processor pipelines. These issues appear when two or more instructions concurrently request a
shared sequential resource and may lead to timing anomalies, thus preventing safe and scalable static
WCET analyses. We presented our work on the MINOTAuR core, a timing predictable version
of the Ariane RISC-V core. This work was mainly inspired by the work of Hahn et al. on the
SIC processor [40]. However, we showed that on a more complex core such as Ariane, precluding
the speculative execution altogether has a huge impact on performance, and thus that speculation
should be tolerated when it does not break the predictability of the core. We proposed a series of
generic modifications to obtain a core that is provably timing predictable while maintaining a level
of performance close to the baseline core, and used Ariane as a basis for demonstration. The first
modification regards concurrent accesses to the memory bus between the instruction and data caches.
We made that modification different from what existed in the state-of-the-art, in order to tolerate
speculative execution, and proved that under some restrictive hypotheses, the modified core was
timing predictable. We then proposed some back-up mechanisms to make our solution compatible to
any core using a cache with an aging mechanism and a RAS, thus lifting the restrictive hypotheses.
Finally, we took interest in store buffers and the contentions they can generate with load instructions
in the data cache. Once again we proposed a generic gating mechanism to preclude concurrent accesses
that could impair the timing predictability of the pipeline, and then used MINOTAuR to measure its
impact on performance.

Regarding the contents of this chapter:

• the work was originally part of the master 2 internship of Alban Gruin (2021), and then of his
ongoing PhD thesis work (2021-). The thesis is directed by Pascal Sainrat and myself and advised
by Christine Rochange as well, and is funded by a grant from the ministère de l’enseignement
supérieur et de la recherche. The master 2 internship was funded by Labex Cimi.

• the results were published in RTSS’21 [33], IEEE Transactions on Computers [34] and RTNS’23 [35].
The RTSS’21 paper was awarded an outstanding paper award.

• a validation method for the model of cores, based on automatically-generated simulators, has
been developed and presented in a paper published in the WCET’23 workshop [36].

• all the proofs have been written in Coq by Alban Gruin. The proofs of Section 2.3.3 have been
published in the RTNS’23 paper. The Coq version of the proofs of Section 2.2.2 were performed
recently, and a paper is currently being written to publish them.

• our results with MINOTAuR have led to the submission and acceptance of the ANR PRC
ProTiPP project (2023-2026) led by Christine Rochange, that regards processor models and proof
automation, and of the ANR ASTRID PRINTEMPS project (2024-2027) led by Pascal Sainrat,
with industrial partners at Thales Research and Technology, regarding the implementation of a
predictable and secure multi-core processor based on the MINOTAuR core.
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Chapter 3

Multi-core timing analysis with the
multi-phase model

3.1 Introduction

The growing adoption of multi-core processors in industrial real-time systems [67, 68] raises the chal-
lenge of providing safe and tight Worst-Case Execution Time (WCET) bounds for tasks running in
parallel on separate cores. Indeed, in multi-core architectures, the cores execute their processes/threads
independently from one another, but they share some hardware components such as caches, buses and
memories. Contentions may happen in these shared components: when a task requires to access a
component which is already in use by another task running on another core, it has to wait until the
component is free again. This phenomenon incurs execution delays which depend on the context of the
task execution (which other tasks are running in parallel, and are they accessing the shared resources
?). In traditional single-core WCET analysis [1, 9], each task is analysed in isolation i.e. as if no other
task was running in parallel. Then a schedulability or Worst-Case Response Time (WCRT) analysis
is performed using a model in which each task is represented by its WCET, in order to guarantee
that each individual task meets its deadline or that the system as a whole meets an end-to-end timing
constraint. A direct consequence of the delays incurred by inter-core contentions is that traditional
WCETs no longer represent a safe upper-bound on the execution time of the tasks when they are run
on multi-core processors. It becomes necessary to model tasks using at least their WCET in isolation
and their worst-case number of accesses to shared components, and to perform an additional analy-
sis to safely upper bound the interference effect of the potential contentions. However, this classical
model, which maps one task to one temporal phase was not designed with multi-core interference
analysis in mind, and may not be the best-suited to analyse tasks running in parallel.

More recent models represent each task as a sequence of phases, each characterized by a WCET
and a number of accesses, either as an attempt to increase the precision of the interference analysis [64,
3], or in order to build schedules in which there is no interference [27, 66]. This multi-phase abstraction
maps temporal phases to actual sections of code that are separated by synchronizations.

In the remainder of the chapter, we focus on memory accesses as the sole source for interference
in the system. We assume a multi-core target with shared memory and a sequential First-Come-
First-Served memory bus, in which each core is equipped with a private L1 data cache and a private
scratchpad to hold the instructions of the tasks it executes. However, the abstractions that we describe
naturally support any other kind of interference source, and generalize to other architectures (e.g. L1
instruction cache): the only thing that changes is the analyses that must be performed on the code
in order to obtain the abstract models of the tasks. In particular, we consider non-preemptive static
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(or fixed-priority time-triggered) scheduling, but limited preemptions could be supported by adapting
classic cache-related preemption delay (CRPD) computation techniques.

3.1.1 Related Works

The real-time systems community has been working on the problem of multi-core interference for
nearly two decades now. A comprehensive survey on the topic has been published in [54]. In this
section we position our work within the state-of-the-art, and focus on two existing analysis frameworks
for which our results can be particularly useful.

Reduction of Interference Through Predictable Execution: The model we present here can
be seen as a generalization of the PRedictable Execution Model (PREM) [63] for multi-core architec-
tures, or as a relaxation of the constraints of the Acquisition-Execution-Restitution (AER) [27, 66]
execution model. The original idea of PREM was to avoid interference between memory accesses and
asynchronous I/O traffic on a bus by carefully scheduling and enforcing the execution of tasks so that
it does not occur in parallel with I/O interrupts or DMA transfers. The Time Interest Points (TIPs)
framework that we present in Section 3.4 leverages this idea to the problem of multi-core interference
analysis: the primary objective is to generate timing and memory access profiles of real-time tasks in
order to statically schedule them on multi-core processors in a way that carefully accounts for, and
possibly reduces the interference between them. The AER execution model aims at suppressing all
interference by construction. The idea is to separate the execution of each task into three consecu-
tive parts: the acquisition (A) of code and data for the task, the execution (E) of the task, and the
restitution (R) of the outputs of the task to the shared memory. This separation is ensured either
by the programmer or by the compiler [61]. Then the tasks are statically scheduled in a way that
ensures that the A and R parts of the different tasks never occur in parallel. The TIPs framework
implements the same idea, but the granularity at which it works (single memory accesses) is much
finer, and it does not require to compile the task as three separate parts. This has multiple advantages
such as the possibility to analyse and deploy legacy code with only small, automatic modifications (for
synchronizations), and the limitation of the memory overhead due to static reservation in the AER
model. Another difference is that TIPs allow the construction of programs in which some amount of
interference can be tolerated (and statically quantified for compositionable processors [39]).

WCRT Analysis Frameworks: In [20] the authors present a WCRT analysis framework for spo-
radic task systems scheduled on multi-core processors using a preemptive fixed priority algorithm
(and static partitioning of tasks on the cores). The authors consider that each possible execution
trace of each task in the system is available for analysis, and from this set provide precise formulas
to quantify the effect of interference between tasks on the shared elements of the target processor
(memories, busses, processor time). This work extends classical WCRT analyses [49] by introducing
new interference terms to cover the particularities of multi-core processors, and by making it possible
to precisely account for the execution context of the tasks (i.e. which other tasks are running on the
same core, or in parallel). These terms are computed by extracting worst-case information for any
time interval of any given size on the execution traces of tasks. In [20] the authors discuss the empir-
ical complexity of obtaining and manipulating the entirety of the execution traces for a task system
corresponding to an industrial application. Their conclusion is that traces are a desirable abstraction
of the tasks execution behavior since they can be easily manipulated and they express precisely the
relation between the task and the shared resources. In particular they emphasize the fact that the
worst case behavior of a task depends on its execution context, and that traces allow to exploit this.
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They conclude that although working on all execution traces is unfeasible for arbitrary applications,
it is possible to feed the framework with a set of abstract traces which overestimate the worst case
behaviors of the tasks. However nothing is said on how to obtain such an abstraction, nor on the
potential costs of the various abstraction methods that could be used.

In [64] the authors provide a method close to real-time calculus [73] in order to compute the WCRT
of a task system on a multi-core processor. Each task is represented as a sequence of time intervals,
and for each time interval, a bound on the worst case number of memory accesses performed by the
task is assumed to be known. Using this information, memory access arrival curves are derived and
then combined to upper-bound the interference effect in time. A method is briefly sketched to derive
the time intervals, which assumes precise knowledge on the tasks behavior (in particular local best and
worst case execution times), but nothing is said on how this knowledge can be acquired in practice,
nor on the abstraction cost of building the time intervals this way.

3.1.2 Chapter organization

The remainder of the chapter is organized as follows: in Section 3.2 we start with simple examples
to introduce in an intuitive fashion the main concepts that will be used throughout the chapter.
Then in Section 3.3, we provide a formal framework to describe the multi-phase model as well as
criteria that guarantee the correctness of a multi-phase implementation with regards to the interference
analysis. Section 3.4 then describes the Time Interest Points framework, which we designed in order to
obtain multi-phase representations of tasks from their binary code. We then present static scheduling
techniques for the multi-phase model in Section 3.5, and conclude the chapter.

3.2 Introductory examples
In this section we provide a quick and intuitive introduction to the multi-phase model, first by showing
how it can be beneficial to the precision of the interference analysis, and then by illustrating the main
technical concepts of the chapter (phases, abstract execution traces and synchronizations) using a
simple example.

3.2.1 Interference analysis and the multi-phase model

We start with the example of Figure 3.1. In this figure we represent a blue (resp. a green) task
scheduled on core C2 (resp. C1). In Figure 3.1a, we display the static reservation of the cores for the
two tasks, before performing an interference analysis. On top, both tasks are represented as a single
phase, characterized by a WCET and a worst-case number of accesses. At the bottom, the same tasks
are represented in the multi-phase model: the execution of the blue task is seen as a sequence of 5
phases that perform respectively 8, 0, 4, 0 and 3 accesses. The green task is composed of 4 consecutive
phases that perform 4, 0, 4 and 0 accesses.

During the interference analysis, the objective is to upper-bound the number of contentions that
each task can be subjected to, and to multiply this number by a timing penalty bound. The results
are displayed in Figure 3.1b. On top, the analysis is performed at the granularity of each task: out of
the 15 accesses of the blue task, at most 8 can be interfered by accesses from the green task, resulting
in an additional time reservation shown in red. In the same fashion, in the worst case, the 8 accesses
of the green task can be interfered by 8 of the 15 accesses of the blue task. This results in the blue
task finishing its worst-case execution at date t1. On the other hand, at the bottom, the interference
analysis is performed at the granularity of the phases: since the first phase of the blue task is scheduled
to execute with no other phase in parallel, its 8 accesses are guaranteed to happen without interference.
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The same is true for the 4 accesses of the first green phase, as it is scheduled in parallel with a blue
phase that performs no access. The third green and blue phases both perform 4 accesses and are
scheduled partially in parallel, so we account for 4 contentions for each. The remainder of the phases
are guaranteed to run free from interference. In the end, by using a finer-grain representation of the
profile of accesses in time, the worst-case number of contentions is reduced to 4 for each task. This
results in a reduced worst-case end time for the green and blue tasks.

15 accs

8 accs

8 accs 4 accs 3 accs

4 accs 4 accs

C1

C2

C1

C2

t0

(a) Before interference analysis

15 accs

8 accs

8 accs 4 accs 3 accs

4 accs 4 accs

8

8

4

4

C1

C2

C1

C2

t1t1
’t0

(b) After interference analysis

Figure 3.1: Single- vs Multi-phase representation of two tasks before and after interference analysis

3.2.2 Traces, phases and synchronizations

Before we describe the formal model of the multi-phase representation and of the abstract execution
traces that are used to correctly account for memory accesses in time, we briefly introduce these el-
ements and their mutual relationship using the example of Figures 3.2 and 3.3. In the right part of
Figure 3.2, we display the disassembled ARM assembly code of a short program. The colored instruc-
tions correspond to memory loads and stores that have been characterized as potentially resulting in
a cache miss, and thus that may generate or be delayed by contentions in the memory subsystem.
Note that in this particular example, the colored instructions were arbitrarily selected for illustration
purposes. The left part of the figure displays 3 abstract execution traces. Each node (colored cir-
cle) represents the corresponding colored memory instruction in the code, and each arrow represents
the worst-case execution duration between its source and destination nodes. The first three accesses
(blue, purple and green) are performed in all traces at dates 0, 157 and 257 in the worst case. Indeed
the control flow of the program always includes the corresponding instructions. Then, the first trace
accounts for the red access at date 463 in the worst case, while the second trace accounts for the
execution of the yellow access at date 618 and the last trace reaches the end of the program with
no additional access. Each path in the control flow of the program (and thus each actual execution
trace) is thus covered by an abstract trace. For each trace, we depict the actual timing of one possible
execution. Each memory access is marked by a cross at the date at which it happens, and a dashed
line links the cross to its corresponding node.

Without additional information from the model, one must consider that each memory access can
be performed at any time before its worst-case date. As an example, we depict the time windows for
which the red (resp. yellow) access must be accounted for as a red (resp. yellow) striped rectangle. If
we look at the multi-phase representation at the bottom of the figure, it means that for each phase,
all accesses whose worst-case date is after the start of the phase must be accounted for in this phase.
For the first phase on the left, the four accesses of the top trace have an execution date superior or
equal to the start date of the phase, so all four accesses must be accounted for in this phase. The
same is true for the middle trace. The bottom trace only performs three accesses, which must also
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0x8244: str fp, [sp, #-4]!
0x8248: add fp, sp, #0
0x824c: sub sp, sp, #12
0x8250: str r0, [fp, #-8]
0x8254: ldr r3, [fp, #-8]
0x8258: cmp r3, #9
0x825c: bgt 0x8270

0x8260: ldr r3, [fp, #-8]
0x8264: add r3, r3, #1
0x8268: str r3, [fp, #-8]
0x826c: b 0x8288

0x8270: ldr r3, [fp, #-8]
0x8274: cmp r3, #10
0x8278: ble 0x8288
0x827c: ldr r3, [fp, #-8]
0x8280: sub r3, r3, #1
0x8284: str r3, [fp, #-8]

0x8288: ldr r3, [fp, #-8]
0x828c: mov r0, r3
0x8290: add sp, fp, #0
0x8294: ldr fp, [sp], #4
0x8298: bx lr

exit

exit

exit

0 157 257 463 618 924

0x8244 0x8250 0x8254 0x8268

0x8284

4 3 0

Figure 3.2: Abstract execution traces, corresponding concrete executions, and multi-phase represen-
tation

be accounted for in the first phase. Now, since at most one trace is executed at a time, we account
for the maximum number of accesses by a single trace: 4. The worst-case execution date of the blue
access is 0, so there is no possibility that it happens in the second phase. However, according to the
model all other accesses can happen in the second phase, so we account for 3 accesses in the phase.

This incapacity to lower bound the execution date of a memory access leads to an over-estimation
of the number of accesses in the phases, as some accesses are accounted for in multiple phases. In
our example, the sum of the accesses in the three phases amounts to 7, while if we used the single-
phase model, we would only have accounted 4 accesses in the worst case for the whole task execution.
In order to reduce this imprecision, one could compute the best-case execution time (BCET) of the
memory accesses. We choose to use another solution, mainly for two reasons:

• BCET analysis adds imprecision to the model. In particular, it is likely that the BCET of a
particular access is less than the WCET of one or more of its predecessors, leading us to still
account for two or more accesses during the intersection of their respective [BCET, WCET] time
windows.

• Once the system is scheduled and the interference analysis is performed, it is crucial to enforce
that each access can only occur in the time window in which it was accounted for during the
analysis (see Section 3.3.4 for more details). BCET analysis does not offer this level of control
with a satisfactory timing granularity.

We instead rely on time synchronizations. Some nodes in the abstract execution traces are selected
to be synchronized: the corresponding instructions are not allowed to execute before a particular date
that is determined statically. When a node is synchronized inside a phase, its accesses are thus guar-
anteed not to occur in the previous phases. This property transitively extends to the successors of the
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exit

exit

exit

0 157 257 463 618 924

0x8244 0x8250 0x8254 0x8268

0x8284

1 3 0

0x8244: str fp, [sp, #-4]!
0x8248: add fp, sp, #0
0x824c: sub sp, sp, #12
0x8250: str r0, [fp, #-8]
0x8254: ldr r3, [fp, #-8]
0x8258: cmp r3, #9
0x825c: bgt 0x8270

0x8260: ldr r3, [fp, #-8]
0x8264: add r3, r3, #1
0x8268: str r3, [fp, #-8]
0x826c: b 0x8288

0x8270: ldr r3, [fp, #-8]
0x8274: cmp r3, #10
0x8278: ble 0x8288
0x827c: ldr r3, [fp, #-8]
0x8280: sub r3, r3, #1
0x8284: str r3, [fp, #-8]

0x8288: ldr r3, [fp, #-8]
0x828c: mov r0, r3
0x8290: add sp, fp, #0
0x8294: ldr fp, [sp], #4
0x8298: bx lr

Figure 3.3: Abstract execution traces, corresponding concrete executions, and multi-phase represen-
tation, when a synchronization is added

node. An example is shown in Figure 3.3. The purple instruction at 0x8250 has been selected for syn-
chronization at its worst-case date (depicted with dark purple). As a consequence, the corresponding
access can only be initiated at date 157 in any trace. It follows that this and all subsequent accesses
cannot occur in the first phase: we only need to account for the blue access in this phase, and the
overestimation is reduced task-wise. Compared to Figure 3.2, the actual access corresponding to the
purple node is now postponed at date 157 on each trace, and the spans of the red and yellow nodes
now start at date 157 instead of 0.

3.3 The multi-phase model

3.3.1 Task models

We model a system of real-time tasks τ i (i ≥ 0). Each task is represented in two separate ways, as
depicted in Figure 3.4:

• a "time-centric" representation called multi-phase. In this abstraction, the task is modelled
by a sequence of time slots, called phases, which covers its WCET. We call this sequence of
phases a profile. Each phase is associated to an upper bound on the number of memory accesses
that the task can perform during the corresponding time slot. This representation is used to
statically compute the schedule and perform the interference analysis of the system (in a timing-
compositional approach). The mapping between tasks and multi-phase profiles is not bijective:
multiple profiles can be found that represent the same task.

• a "code-centric" representation. In this abstraction, a task is represented by all its possible
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Notation Definition

τ i task i
ϕi

k phase k in the representation of τ i

ϕi
k.d start date of ϕi

k without interference
ϕi

k.dur worst-case duration of ϕi
k without interference

ϕi
k.m maximum number of memory accesses performed within ϕi

k

ti
j execution trace j of task τ i

ηi
j,k node k in trace ti

j

ηi
j,k.it instruction represented by ηi

j,k

ηi
j,k.d worst-case execution date of ηi

j,k without interference
ηi

j,k.m maximum number of memory accesses performed by ηi
j,k

ηi
j,k.sync True if the node is synchronized, i.e. cannot be executed before its ηi

j,k.d

slast(ηi
j,k) last synchronized node before ηi

j,k in trace ti
j

ti
j |ϕi

k

restriction of trace ti
j to ϕi

k, i.e. the set of nodes in ti
j that may execute during ϕi

k

execution traces (i.e. all the possible sequences of instructions executed from the start of the task
to its end). Since this set may be too large to analyze in practice, we consider memory-centric
traces: only instructions which may perform memory accesses1 are represented in the traces,
and the rest of the instructions is abstracted by computing local WCETs. This representation
is an intermediate step to go from the binary code of a task to its multi-phase representation,
and back: it allows the number of memory accesses in each phase to be bounded correctly, and
to insert synchronization code at the correct locations in the binary to enforce the scheduling
choices.

We denote Pi = {ϕi
l|0 ≤ k < Φi} the ordered set of phases (i.e. the multi-phase profile) representing

the execution of task τ i, with Φi the number of phases. Each ϕi
l is defined by:

• ϕi
l.d: its start date.

• ϕi
l.dur: its worst-case duration in isolation (without interference).

• ϕi
l.m: the worst-case number of memory accesses that may be performed within [ϕi

l.d, ϕi
l.d +

ϕi
l.dur[.

The date of ϕi
0, which is also the start date of task τ i without interference, is set when the static

schedule of the system is built. Then, for each ϕi
l (l > 0) the start date is defined by:

ϕi
l.d = ϕi

0.d +
∑

0≤q<l

ϕi
q.dur = ϕi

l−1.d + ϕi
l−1.dur (3.1)

In order to compute the worst-case number of memory accesses performed during a given phase
(i.e. ϕi

l.m), the code portions of τ i that may be executed during ϕi
l must be identified and analyzed.

To do so, we introduce Ti = {ti
j |0 ≤ j < T i} the set of execution traces of τ i, where T i is the number

of traces. Each trace corresponds to a possible execution of τ i (corresponding to a particular set of
1In modern processors, the actual accesses may not be performed as soon as the corresponding instruction is executed

e.g. if a store buffer delays store operations. However it is possible to statically bound the time window during which the
access can be performed. For clarity reasons, we consider in this manuscript only the date when the instruction initiates
the access in the pipeline, but the model can be easily extended to work with an interval of potential access dates.
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t

2 possible
profiles for 

 span  span

Figure 3.4: Three traces and two profiles for task τ i. Red and green rectangles show the potential
span of nodes ηi

2,3 and ηi
1,7 respectively.

inputs) and is a sequence of nodes ηi
j,k representing instructions with 0 ≤ k < N i

j the node’s index in
its sequence. ηi

j,0 is the entry point of task τ i and each node is defined by:

• ηi
j,k.it : the instruction represented by ηi

j,k. Here, an instruction is not just understood as an
element of the core ISA (e.g. the ADD instruction), but as a particular instruction in the binary
code of the task. Thus, nodes from different traces may reference the same instruction in the
code.

• ηi
j,k.m ∈ N : the worst-case number of memory accesses performed by ηi

j,k.it.

• ηi
j,k.d : the worst-case execution date of ηi

j,k.it in trace ti
j .

3.3.2 Synchronized nodes

As pointed out in Section 3.1.1, working on the complete set of execution traces of all tasks composing
the system is not realistic. As a consequence, we formulate our correctness criteria using memory-
centric abstract traces: the nodes composing the traces that we consider only represent the instructions
that may perform memory accesses. The rest of the instructions is abstracted by computing local
WCETs between consecutive memory accesses and accounting for these durations in the worst-case
execution date of the nodes (ηi

j,k.d)2. As a result, in this model each node is guaranteed not to execute
after its worst-case date, but is a priori able to execute anytime before this date. In order to account
safely for the accesses in the phases, we thus would have to account for the accesses performed by
a node in all phases that start before the worst-case date of this node. This would lead to huge
over-approximations. In order to limit this approximation, some selected nodes must be synchronized:
synchronization code is inserted in the program to ensure that the synchronized nodes cannot be
executed before their worst-case date. The synchronization code can be added by the programmer

2Our criteria are also valid for simple tasks for which obtaining and manipulating the exact timed execution traces is
possible.
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directly in the source code of the tasks, by the compiler as part of a low-level compilation pass, or
during an automatic code re-engineering process to adapt legacy code to the multi-phase model. We
attract the reader’s attention to two particular aspects of the model described in Section 3.3.1: (i) the
execution date for nodes that reference the same instruction in different traces and (ii) the modelling
of instructions inside loops which may appear multiple times in the same trace at different dates. Both
these aspects have to do with the way synchronizations are implemented in the tasks. When complex
synchronization mechanisms are used (e.g. that are aware of the current execution trace or of the
iteration count in the current loop), the same memory instruction in the code may be modelled as two
(or more) nodes with different dates, which perfectly fits the model. If, however, the synchronization
mechanism is unaware of the context, the worst-case execution date of nodes that reference the same
instruction on separate traces must be the same. Since the model uses worst-case dates, the date chosen
for all these nodes must be the maximum date amongst them. Additionally, without a context-aware
mechanism, synchronizations inside loops become impossible to implement, so the model naturally
fits this case. We voluntarily keep the model as general as possible and make no assumption on
the implementation of the synchronization mechanisms in order to formulate correctness criteria that
apply in all circumstances.

To keep track of the synchronized nodes, we add the boolean attribute ηi
j,k.sync that is true if the

node is synchronized and false otherwise.
Using these synchronizations, the accesses performed by any node must only be accounted for in

the phases that: (1) finish after the last synchronization prior to the node AND (2) start before the
worst-case date of the node.

This is illustrated in Figure 3.4, which depicts 3 execution traces (ti
0, ti

1 and ti
2) and 2 possible

profiles for a task τ i. Synchronized nodes are depicted in black in the traces. The red (resp. green)
rectangle shows the time window in which the accesses of node ηi

2,3 (resp. ηi
1,7) must be accounted

for. In the first profile, the accesses of ηi
1,7 must be considered in phases ϕi

2 and ϕi
3, whereas in the

second profile, they would only be considered in ϕi
2.

It is important to note that since ηi
j,k.d is a worst-case date, if node ηi

j,k is synchronized, then its
execution date is exactly3 ηi

j,k.d. We denote slast(ηi
j,k) the last synchronized node before ηi

j,k in trace
ti
j . By convention, we set slast(ηi

j,k) = ηi
j,k when ηi

j,k.sync.
To account for the tasks schedule, for all tasks τ i, the entry node (on any trace ti

j) is synchronized
and its worst-case execution date is set to the start of the first phase of the profile:

Property 2

∀i, j : ηi
j,0.sync ∧ ηi

j,0.d = ϕi
0.d

The worst-case date of any other node ηi
j,k with k > 0 is defined according to the date of the last

synchronized node on its trace:

Property 3: Worst-case execution date of node in isolation

ηi
j,k.d = ηi

j,s.d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it)

where wcet(ηi
j,t.it, ηi

j,t+1.it) is the WCET between instructions ηi
j,t.it and ηi

j,t+1.it, and ηi
j,s is

slast(ηi
j,k) if ¬ηi

j,k.sync and slast(ηi
j,k−1) otherwise.

3With a precision of a few cycles depending on the implementation of the synchronization mechanism.
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A node ηi
j,k can only be executed in the interval [slast(ηi

j,k).d, ηi
j,k.d]. As we saw in the example of

Figure 3.4, this interval may overlap with several phases of the task profile.

Definition 3: Restriction of trace ti
j to phase ϕi

l

We denote ti
j |ϕi

l

the set of nodes in trace ti
j that may be executed within [ϕi

l.d, ϕi
l.d + ϕi

l.dur[,

called the restriction of trace ti
j to phase ϕi

l:

ti
j |ϕi

l

= {ηi
j,k|(ηi

j,k.d ≥ ϕi
l.d) ∧ (slast(ηi

j,k).d < ϕi
l.d + ϕi

l.dur)}

The notion of restriction of a trace to a phase is illustrated in Figure 3.5 on 3 traces over phase
ϕi

1.

t

Figure 3.5: Restrictions of traces ti
0, ti

1 and ti
2 to phase ϕi

1.

3.3.3 Maximum number of accesses in a phase

The number of accesses that may be performed during a phase for an individual trace is equal to
the sum of the accesses of the nodes from this trace that may be executed in the phase. During
the execution of a task, only one trace executes (which one depends on the execution context): as a
consequence, the worst-case number of accesses performed during a phase is equal to the maximum
number of accesses that may be performed by any execution trace during that phase.
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Property 4: Number of accesses in a phase

The worst-case number of accesses that may be performed during phase ϕi
l, denoted ϕi

l.m, is
equal to the maximum of accesses per trace during phase ϕi

l:

ϕi
l.m = max

0≤j<T i
(

∑
ηi

j,k
∈ti

j|ϕi
l

ηi
j,k.m)

Correctness criterion 1

The formula of Property 4 provides a conservative estimation of the number of memory accesses
that can occur during the phases of a multi-phase profile.

Since nodes may span over multiple phases, the number of accesses counted task-wise may be
overestimated, even when some nodes are synchronized. However, nodes from a trace which span over
multiple phases may be "covered" by other nodes from another trace performing more accesses on a
given phase. For example, in Figure 3.5, if we consider that each node performs 1 access, trace ti

2 is
the local worst trace on ϕi

3 with 4 nodes performing accesses and trace ti
1 is the local worst trace on

ϕi
2 with 3 nodes performing accesses. On phase ϕi

1, traces ti
0 and ti

1 both have 3 nodes performing
accesses. In such circumstances, although node ηi

0,4 spans over ϕi
3, ϕi

2 and ϕi
1, it does not contribute

to any over-approximation.
We quantify the task-wise over-approximation of memory accesses compared to the 1-phase model,

by computing the difference between the sum of accesses accounted for in each phase, and the worst
trace-wise number of accesses.

Property 5: Over-approximation of memory accesses

The memory access over-approximation in a multi-phase profile of a task τ i compared to its
1-phase representation is equal to:

∆ = (
∑

0≤l<Φi

ϕi
l.m)− max

0≤j<T i
(

∑
0≤k<N i

j

ηi
j,k.m)

3.3.4 Multi-phase model and interference analysis

Notation Definition

ϕi
l.p timing penalty added to ϕi

l due to potential interference
ϕi

l.d
# post-analysis start date of ϕi

l

ηi
j,k.d# worst-case date of node ηi

j,k in the presence of interference

In this section, we consider a task system for which an analysis has provided a multi-phase model
as well as a selection of synchronized nodes for each task. We assume that this task system is scheduled
statically (the ϕi

0.d for each τ i are selected and the start dates of the other phases are computed using
Equation 3.1), and that an interference analysis (such as e.g. [26]) is applied to compute and account for
the effect of potential interference between the tasks phases, assuming the timing-compositionality of
the target processor [39]. In practice, each phase that potentially suffers from interference is extended
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using a time penalty, and the next phases are postponed accordingly. This extension may violate
assumptions that were made on the correspondence between phases and traces: in particular the
restrictions of traces to phases that were computed prior to the interference analysis may no longer
be correct, resulting in the possibility that some contentions between cores may happen in phases in
which they were not accounted for.

3.3.4.1 Interference analysis hazards w.r.t. the multi-phase model

t0
i

𝜙0 : 4
i 𝜙1 : 5

i

𝜙0 : 4
i 𝜙1 : 5

i

𝜙1 : 6
j𝜙0 : 8

j 4 5

4 5C0

C1

t

t

XX X X X X

t0
i

X X X
𝜙0 : 4

i 𝜙1 : 5
i4 5

t

(a)

(b)

(c)

Figure 3.6: An example of incoherence that can appear between the multi-phase model and the actual
execution of the code it represents.

We introduce the problem with the example of Figure 3.6. We assume that the analysis of a task
τ i results in the multi-phase model of (a): a first phase with 4 accesses in the worst case, followed by a
second phase performing 5 accesses in the worst case. For the sake of simplicity, we also assume that
this task only has one abstract execution trace ti

0, also displayed in (a). The first access of each phase
is synchronized to its worst-case date. Now, in (b), we assume that task τ i is scheduled on core C0, in
parallel with task τ j on core C1. After performing an interference analysis, timing penalties (depicted
in red) are added to each phase to account for the potential worst-case contentions. In (c), we display
again the abstract execution trace ti

0, in front of the interference-aware multi-phase representation of
τ i obtained in (b). We also display an actual execution trace of τ i, in which the actual dates of the
accesses are marked by crosses. We notice that three accesses from the second phase are actually
performed at dates that now correspond to the extended first phase. However, these accesses are
unaccounted for in the first phase, which jeopardizes the soundness of the analysis w.r.t. the actual
execution.

In order to solve the problem, one option could be to update the count of the accesses in the
interference-aware version of the multi-phase representation of each task, and to perform another
interference analysis on the updated phases. This procedure should then be repeated until a fixed
point is reached. This solution considerably complexifies the analysis, makes the resulting multi-phase
profiles closer to their single-phase counterparts by extending the first phase at the expense of the
others, and may add over-approximation to the access count, as the synchronizations may no longer
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correspond to the profiles shapes. We instead chose to apply a simpler solution: postponing the
execution date of synchronized nodes to the interference-aware worst-case start date of the phase they
belong to.

(a)

(b)

(c)

t

Figure 3.7: A trace and its corresponding phases representation : (a) in isolation, (b) after the
interference analysis, red rectangles are the timing penalty added for each phase, (c) after a correction
on nodes dates.

We illustrate this solution in the following example. Figure 3.7 displays trace ti
2 and the profile

from Figure 3.5, at three stages of the analysis:

• (a) depicts the trace and phases before the interference analysis. We have:
ti
2|ϕi

0

= {ηi
2,0, ηi

2,1} ; ti
2|ϕi

1

= {ηi
2,2, ηi

2,3} ; ti
2|ϕi

2

= {ηi
2,4, ηi

2,5} ; ti
2|ϕi

3

= {ηi
2,6, ηi

2,7, ηi
2,8, ηi

2,9}

• (b) shows the same trace and profile after the interference analysis (assuming other tasks in the
system): the effect of interference is materialized by timing penalties on the phases (the red
rectangles after each phase). ti

2|ϕi
1

, ti
2|ϕi

2

and ti
2|ϕi

3

are different than in (a):

ti
2|ϕi

0

={ηi
2,0, ηi

2,1}; ti
2|ϕi

1

= {ηi
2,2, ηi

2,3, ηi
2,4, ηi

2,5}; ti
2|ϕi

2

= {ηi
2,5, ηi

2,6, ηi
2,7, ηi

2,8}; ti
2|ϕi

3

= {ηi
2,8, ηi

2,9}

As a consequence, the worst-case amount of accesses that can happen during phases ϕi
1 and ϕi

2
is higher than what was assumed and therefore their interference penalty and those of the tasks
scheduled in parallel are no longer conservative.

• (c) represents our solution to respect the model’s assumptions of (a): the synchronized date of
ηi

2,4 (resp. ηi
2,6) is set to the new starting date of ϕi

2 (resp. ϕi
3), which is the unique phase in

which it was accounted for in (a). With this slight modification, the restrictions of ti
2 to each

phase are identical to the ones in (a) and the ϕi
l.m that was computed in isolation for each phase

remains correct.
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3.3.4.2 Enforcing the model’s assumptions and the analysis results

Since the duration and start dates of phases can be changed as a result of the interference analysis,
new attributes are added to the formal model of the phases:

• ϕi
l.p ≥ 0 is the timing penalty added to ϕi

l due to potential interference. It is a conservative
bound computed during the interference analysis.

• ϕi
l.d

# is the post-analysis date of ϕi
l, i.e. its start date taking into account the potential inter-

ference in the system.

After the interference analysis, the start date of some tasks may be postponed due to interference
that delays previous tasks. ϕi

0.d# is thus fixed by applying the interference analysis results to the
initial schedule. The start dates of all other phases ϕi

l describing the execution of τ i are computed as:

ϕi
l.d

# = ϕi
0.d# +

∑
0≤q<l

(ϕi
q.dur + ϕi

q.p) = ϕi
l−1.d# + ϕi

l−1.dur + ϕi
l−1.p (3.2)

Correctness criterion 2

The synchronization dates in the final implementation of tasks must at least be equal to the start
date of the corresponding phase: for each synchronization node ηi

j,k ∈ ti
j |ϕi

n

, the synchronization

date is set to at least ϕi
n.d#. This way it is guaranteed that nodes after ηi

j,k cannot execute and
thus produce accesses before the start of ϕi

n.

It seems straightforward that, by construction, a task set implemented using this rule is guaranteed
to fulfill the assumptions made during the interference analysis: during the execution of the system,
memory accesses will only occur at times that were accounted for during the analysis, and thus the
amount of contentions cannot be larger in practice than what was accounted for. However, although
this implementation rule directly guarantees that accesses are not performed before the phases in
which they are accounted for, it may be harder to convince oneself that they cannot occur later than
the end of these phases. Consequently, and given the potentially critical nature of the tasks modelled
in the multi-phase representation, we provide in the remainder of the section a formal proof of the
correctness of this implementation scheme w.r.t. the result of the interference analysis. Once again,
this is completely agnostic of the analysis method, as long as it correctly provides a conservative bound
on the interference level.

We denote ηi
j,k.d# the post-analysis worst-case date of node ηi

j,k. The post-analysis dates of nodes
are upper bounds on the worst-case execution dates of nodes in the presence of interference. We start
by characterizing those bounds in our formal model (Properties 6, 7 and 8), and then use them to
prove the correctness of the implementation of a multi-phase model of tasks.

First, the post-analysis execution date of the entry point of each task τ i is the post analysis start
date of its first phase ϕi

0.

Property 6

For any task τ i: ∀j < T i, ηi
j,0.d# = ϕi

0.d#

Second, correctness criterion 2 has the following consequences for the post-analysis execution date
of any synchronized node ηi

j,k (except the entry point) of any task τ i:
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• if the phase ϕi
n in which the node was supposed to be executed is postponed due to interference

penalties on previous phases, the node cannot be executed before the post-analysis start date of
ϕi

n.

• if previous synchronized nodes see their execution dates postponed, the synchronization date
of ηi

j,k must be postponed accordingly, and thus computed from the post-analysis date of the
previous synchronized node ηi

j,s. In this case, we must consider the interference that can take
place between ηi

j,s and ηi
j,k. If there exists one or more phases that span entirely between the

two nodes, their penalties are added to the post-analysis date of ηi
j,k (which is conservative).

Moreover, by convention we count in the post-analysis date of ηi
j,k the entire amount of penalty

of the phase to which it belongs (which is also conservative since it accounts for the interference
that can occur on each access in the phase prior to the synchronization node, and on each access
that may occur until the next synchronization node).

Property 7

For any synchronized node ηi
j,k of any trace ti

j of task τ i:
(k > 0 ∧ ηi

j,k.sync ∧ ηi
j,k ∈ ti

j |ϕi
n

∧ ηi
j,s = slast(ηi

j,k−1) ∧ ηi
j,s ∈ ti

j |ϕi
m

)

⇒ ηi
j,k.d# = max(ϕi

n.d#, ηi
j,s.d# +

∑
s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it) +
∑

m<b≤n

ϕi
b.p)

Correctness criterion 3

The synchronization dates in the final implementation of tasks must not be set to a value higher
than the date computed in Property 7.

Finally, for any non-synchronized node, its post-analysis date accounts for the possible postponing
of the previous synchronized node ηi

j,s. Note that the potential interference occurring between them
has been accounted for entirely in the post-analysis date of the previous synchronized node.

Property 8

For any non-synchronized node ηi
j,k of any trace ti

j of task τ i:
(¬ηi

j,k.sync ∧ ηi
j,s = slast(ηi

j,k))⇒ ηi
j,k.d# = ηi

j,s.d# +
∑

s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it)

3.3.4.3 Model correctness

We are now going to state the general correctness theorem: any task system that respects the 3 correct-
ness criteria is correct w.r.t. the results of the interference analysis i.e. cannot generate interference
that was not accounted for during the analysis.

The proof of this theorem relies on a lemma that states that the difference between the start
date of a synchronized node ηi

j,k before and after the interference analysis is bounded by the difference
between the start date of the phase ϕi

l in which it is executed, before and after the interference analysis,
added to the maximum effect of interference that can occur in ϕi

l. Next, we provide the lemma and
the general theorem. The proofs are available in [56].
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Lemma 3

∀ηi
j,k: (ηi

j,k.sync ∧ ηi
j,k ∈ ti

j |ϕi
l

)⇒ ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

# − ϕi
l.d + ϕi

l.p

We now express the correctness property:

Theorem 15: Correctness of the multi-phase model w.r.t. its implementation

For any task system that respects correctness criteria 1, 2 and 3, for any ηi
j,k of any task τ i, if

ηi
j,k spans over a phase ϕi

l after the interference analysis, then ηi
j,k was necessarily accounted in

the restriction of trace ti
j to ϕi

l before the analysis:
∀0 ≤ j < T i,∀0 ≤ k < N i

j ,∀0 ≤ l < Φi :
[slast(ηi

j,k).d#, ηi
j,k.d#] ∩ [ϕi

l.d
#, ϕi

l.d
# + ϕi

l.dur + ϕi
l.p[ ̸= ∅ ⇒ ηi

j,k ∈ ti
j |ϕi

l

We just stated that the correctness criteria that we enumerated in this section guarantee that
the implementation of a task system described in the multi-phase model is correct w.r.t. a chosen
interference-aware static schedule. These criteria are very simple, which makes them easy to verify
and offers a lot of room for optimizations in the analysis of tasks, both in order to derive a profile for
tasks and to select the synchronization nodes.

In the next section, we describe the Time Interest Points framework that allows the derivation of
multi-phase representations of tasks.

3.4 The Time Interest Points framework
In this section we first provide an overview of the TIPs static analysis framework, and then focus on
each of the separate transformations that compose it.

Notation Definition

φi
k intermediate phase k for task τ i

φi
k.d start date of φi

k

φi
k.dur worst-case duration of φi

k

φi
k.end end date of φi

k

φi
k.m map of traces to the maximum number of memory accesses they perform within ϕi

k

[] empty sequence
seq :: e concatenation of element e at the end of sequence seq
0 constant function that maps 0 to any trace
0[ti

j 7−→ v] function that maps value v to ti
j and 0 to any other trace

3.4.1 Overview of the Method and Models

The TIPs static analysis framework processes a real-time task system by a sequence of analyzes and
transformations, which are detailed in the next sections:

• in a first step (Section 3.4.2), each task is analyzed in isolation. Starting from the disassembled
binary of a task, a Control Flow Graph (CFG) is constructed. The CFG is analyzed in order
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to extract TIPs, that is to say instructions that can produce or suffer from contentions. In our
current implementations, we focus on instructions that may generate traffic on the memory bus
due to a data cache miss, but the method could be easily extended to misses from instruction
caches. Dealing with other potential sources of interference such as shared L2 caches or effects
from cache coherence protocols will be addressed in future work.

• once the TIPs have been obtained, the CFG is transformed into a TIPsGraph (Section 3.4.2 as
well): a simplified control flow graph where the nodes correspond to the TIPs of the task, and
the edges represent the possible control flow between the TIPs, in an abstract version. Nodes
are labelled with the number of memory accesses made by the corresponding TIP, and edges are
labelled with the worst case execution time of any execution path linking the source TIP to the
destination TIP of the edge. This representation is TIP-centered, and simplifies the CFG while
allowing the following analyses and transformations to remain conservative.

• the TIPsGraph is then used to enumerate abstract execution traces using a working list algo-
rithm (Section 3.4.3). The enumerated traces exhibit the occurrence of the TIPs in all possible
executions of the task. For each trace, the TIPs execution dates are worst-case approximations.

• the traces for each task are then transformed into a sequence of phases (Section 3.4.4): each
phase has a duration and a worst case number of memory accesses, and the sequence of phases
represents an over-approximation of the number of memory accesses that can be performed by
the task in the corresponding time windows.

• in the TIPs framework, the tasks of the system are then subjected to static scheduling, using their
representation as sequences of phases (Section 3.5). During this step, an interference analysis
is performed, which assumes that the processor architecture is time-compositionable [39], and
its results are included in the schedule. Once an acceptable schedule (i.e. which respects all
real-time constraints) has been found for the whole tasks system, synchronizations must be
(automatically) inserted in the binary code of the tasks to enforce the schedule.

In the remainder of this section we provide more details and a formal representation for each of the
aforementioned steps and models.

3.4.2 Extracting a TIPsGraph from a CFG

The analysis of each task τ i in isolation starts by working on the CFG CFGτ i = {N , E} of τ i, where
N is the set of nodes called Basic Blocks (BBs) of the graph, and E is the set of edges e ∈ N × N
that represent the control flow of the application. In this model BBs are sequences of instructions
i0, i1, ..., in ∈ I with a single entry point and a single exit point. Using MUST and MAY cache
analyses [53], TIPs are pinpointed from the rest of the instructions. As stated before, a TIP is an
instruction that may create or suffer from interference. Remember that we focus on data cache misses
as the sole source of interference in the system: a typical target would be a multi-core architecture in
which each core has a private L1 data cache, a private scratchpad holding the code to execute and all
cores share a first-come first-served memory bus. In this context TIPs are the memory instructions
that cannot be statically determined to always result in a hit (called in short Always Hit - AH) in the
L1 data cache of the core that executes them. The objective of the first step of the analysis is to build
for each task τ i a TIPsGraph TGτ i = {T , ET G} where T ⊆ I × N is the set of TIPs of the task and
ET G ⊆ T × T × N is the set of edges representing the control flow between TIPs. Each TIP tip ∈ T
is composed of an instruction tip.it and of the worst case number of memory accesses tip.m that this
instruction may perform. Each edge e ∈ ET G is composed of a couple of TIPs (e.src, e.dst), as well
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as a conservative approximation of the worst case execution time (e.w) of the code portions between
e.src.it and e.dst.it.

Property 9

∀e ∈ ET G, e = (tipj , tipk, e.w), ∀p ∈ PATHS(tipj , tipk), e.w ≥WCET (p)

where PATHS(tipj , tipk) is the set of possible execution paths between instructions tipj .it and
tipk.it, and WCET (p) is a conservative approximation of the WCET of the code portion composed
of the instructions of p, which can be computed using a static analysis tool.

To ensure that a TIPsGraph covers the possible executions of the whole task it represents, we add
two fictive nodes itentry and itexit that represent the entry and exit points of the task. Both itentry.m
and itexit.m are equal to 0. Fig. 3.8a shows a TIPsGraph along with the CFG from which it was
extracted. The TIPsGraph starts with node itentry and ends with node itexit. The rest of the nodes
composing the TIPsGraph is extracted from the CFG: in this example we assume that four memory
instructions may access the bus (the cache analysis did not result in AH for these). Each of them is
represented in the TIPsGraph, as well as the possible control flow between them. Each edge records
such a possible transition, and is labelled with the WCET of the portions of code that are executed
between the TIP instructions.

In order to correctly handle loops, a TIP ithead, with ithead.m = 0 is also created to represent
the loop header BB, if and only if there exists at least a TIP tip inside the loop with tip.m > 0.
When there is no TIP inside the loop, the loop gets abstracted in the TIPsGraph, like illustrated in
Fig. 3.8b: the control flow of the loop is no longer detailed in the TIPsGraph, but the edge representing
the transition between the last TIP before the loop and the first TIP after the loop accounts for the
worst case loop duration.

3.4.3 Enumeration of Timed Execution Traces

The next step of the analysis is to enumerate execution traces from the TIPsGraph. The result of the
enumeration of the TIPsGraph TGτ i is the set of abstract execution traces Ti, that we introduced in
Section 3.3.1. In the description of our algorithm for building traces by enumeration of the paths of
a TIPsGraph, we denote by ti

j :: ηi
j,k the extension of trace ti

j with node ηi
j,k.

A basic enumeration algorithm is described in Algorithm 1. It is a working list algorithm that
performs a depth-first traversal of the TIPsGraph of a task τ i. The working list WL contains triplets
composed of a trace currently under construction, a TIPsGraph edge and a stack containing informa-
tion regarding the current iteration of loops that are being traversed. The algorithm iteratively builds
the set Ti of the enumerated traces. Initially, WL and Ti are empty. The execution date of the first
node of each trace, corresponding to itentry, is arbitrarily set to 0. This way the dates of the other
nodes in the traces are relative to the start date of the task. At each step of the process, the algorithm
gets a trace under construction from WL, along with an edge from the TIPsGraph whose source node
is the current last node of the trace, and the corresponding loop iteration context. From this, the
trace is extended with the destination instruction of the edge. Then, for each possible successor edge
e of the new last node of the trace, a copy of the current trace is created and pushed on WL with e
and the current state of the context. One trace is completed and thus added to the Ti set when the
node itexit has been reached.

The tricky cases concern loop headers (L.16 to L.33): in order for the algorithm to finish, it
is mandatory for the number of iterations of each loop of the task to be bounded (which is a basic
requirement for WCET computation). When the trace enumeration reaches an edge whose destination
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Figure 3.8: Example of CFGs and their corresponding TIPsGraphs
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Algorithm 1 Basic trace enumeration
1: Ti ← ∅
2: j ← 0
3: WL = []
4: for all e ∈ ET G s.t. e.src == istart do ▷ Initialize one or more traces
5: ηi

j,0.it = istart.it

6: ηi
j,0.m = istart.m

7: ηi
j,0.d = 0

8: ti
j ← [ηi

j,0]
9: push(WL, (ti

j , e, []))
10: j ← j + 1
11: end for
12: while WL ̸= [] do
13: (ti

k, e, context)← pop(WL)
14: ηi

k,cur ← last(ti
k)

15: ▷ Dealing with loops
16: iteration← pop(context)
17: if is_loop_head(e.dst) then
18: if is_return_edge(e) then
19: if iteration = max_bound(loop(e)) then
20: continue ▷ Not a valid trace: dump it
21: else
22: push(context, iteration + 1) ▷ Advance iteration counter
23: end if
24: else
25: push(context, 0) ▷ Entering a new loop
26: end if
27: else
28: if is_loop_exit(e) then
29: if iteration < min_bound(loop(e)) then
30: continue ▷ Not a valid trace: dump it
31: end if
32: end if
33: end if
34: ▷ Adding a new element to the trace
35: ηi

k,cur+1.it = e.dst.it

36: ηi
k,cur+1.m = e.dst.m

37: ηi
k,cur+1.d = ηi

k,cur.d + e.w

38: ti
k ← ti

k :: ηi
k,cur+1

39: if e.dst = iend then
40: Ti ← Ti ∪ {ti

k}
41: else
42: for all en ∈ ET G s.t. en.src == e.dst do
43: ti

j ← copy(ti
k, j)

44: push(WL, (ti
j , en, context))

45: j ← j + 1
46: end for
47: end if
48: end while
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Figure 3.9: Examples of enumerated traces from the TIPsGraphs of Fig. 3.8

node corresponds to a loop header (L.18), the algorithm checks (L.19) whether the edge in question
is a return edge from inside the loop (marking the end of an iteration of the loop), or not (meaning
the enumeration is entering the loop for the first iteration). If the enumeration just enters the loop, a
new loop iteration context is created by pushing 0 (corresponding to the first iteration of the loop) on
the context stack (L.25). The algorithm uses a stack so it can handle nested loops. If on the other
hand, the current edge is a return edge, the algorithm checks if the current iteration corresponds to
a valid execution: it must not exceed the maximum iteration bound for the loop. If the execution
is invalid, the current trace is simply discarded (L.20), and the algorithm pops a new element from
WL. In order to work, the algorithm must also be able to pop an element from the context stack
when exiting a loop. This is done by detecting that the current edge exits from the loop (L.28), and
by checking that the minimum iteration bound has been reached in the current stack (L.29). This
minimum iteration bound is set to 0 by default, but the more precise it is, the better the outcome of
the analysis.

Figure 3.9 displays 5 traces enumerated from the TIPsGraphs of Fig. 3.8. The last trace (at the
bottom), labelled (t1

0) is the only trace that can be enumerated from the TIPsGraph of Fig. 3.8b. The
first element of the trace, itentry, corresponds to the start of the execution of the task at date 0. The
next elements are the execution of it1.it at date 5, the execution of it4.it at date 693 and finally the
end of the task at date 707. Traces (t0

0) to (t0
3) are a subset of all possible enumerated traces from the

TIPsGraph of Fig.3.8a. In order to enumerate them, we assumed that the number of loop iterations
varied at least between 0 iteration (trace (t0

0)) and 2 iterations (trace (t0
2)). Trace (t0

0) corresponds
to the execution of the task when the loop is not executed. Traces (t0

1) and (t0
2) correspond to the

execution of the task when the left branch of the loop is taken respectively once and twice before
exiting the loop. Trace (t0

3) corresponds to the execution of the task when the right branch of the loop
is taken once before exiting.
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Once the traces of a task have been enumerated, the next step consists in generating its multi-phase
profile.

3.4.4 Temporal phases

In this section, we present how a multi-phase profile is obtained for a task τ i in the TIPs framework.
The objective of the algorithms described in this section is to provide a profile for each task in
isolation, prior to the scheduling phase. As a result, and until a scheduling pass is performed, each
profile arbitrarily starts at date 0 (i.e. ϕi

0.d = 0, ∀i).
The shape of the sequence of phases describing each task may impact the scheduling and interfer-

ence analysis phase. A trade-off must be found between:

• the number of phases for each task. Scheduling elements (tasks, or phases) on a multi-core target
is a NP-hard problem, so increasing the number of phases to schedule can increase the time it
takes to build a schedule, potentially to a point where it is no longer feasible in practice.

• the length of the phases. During the interference analysis, any two phases from different tasks
scheduled on overlapping time intervals on different cores are considered in interference. By
definition, smaller phases occupy a core for less time than larger phases, and thus should be less
exposed to interference from other cores. We wish to be able to tune the length of the phases in
order to quantify its impact on the interference analysis.

• the worst case number of memory accesses in each phase. The length of the phases and the
number and position of the synchronizations used to enforce them have an impact on the number
of memory accesses attributed to each phase. This number must be conservative for each phase,
so a memory access from a single instruction can be counted in multiple phases if the execution
date of the instruction cannot be proven to happen in the time interval of only one phase. As
discussed in Section 3.3 this can increase the over-estimation of memory accesses, or offer room
to reduce the number of synchronizations to insert in the tasks.

• the number of necessary synchronizations to guarantee that the code corresponding to the phases
does not start before the start date of the corresponding phase. One simple way to ensure that
the code is correctly synchronized is to add one synchronization for the start of each phase on
each trace. However, since each synchronization corresponds to additional code for the task,
their number must remain limited. Optimizations can be used to reduce this number by e.g.
removing the synchronizations that have no impact on the over-estimation of accesses.

In the remainder of this section, we provide algorithms that enable the extraction of valid multi-
phase representations for tasks. These are baseline algorithms that do not perform any optimization
with regard to the aforementioned trade-offs. In the description of the algorithms we use the empty
sequence ([]) and concatenation of an element e at the right-end of a sequence seq (seq :: e).

Before obtaining task-level profiles such as the ones presented in Section 3.3, our algorithms create
trace-wise intermediate phases that are then intersected and/or fused together. These intermediate
phases have the same attributes as the final phases, but also record from which traces the accesses
originate. This information allows to reduce the access over-estimation when phases are fused together.
In order to avoid confusion between the final task-level phases and intermediate phases, we denote
intermediate phases with the φi

l notation and keep the ϕi
m notation for the phases in the final profile.

We add the φi
l.end attribute to denote the end of φi

l (φi
l.end = φi

l.d+φi
l.dur). For intermediate phases,

φi
l.m is a map from the traces ti

j of τ i to the number of memory accesses that they initiate during φi
l.
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Definition 4: Union operator on memory access maps

We define the union operator ∪+ on two memory access maps φi
l.m and φi

n.m:

∀ti
j , (φi

l.m ∪+ φi
n.m)(ti

j) = φi
l.m(ti

j) + φi
n.m(ti

j)

Our algorithms rely on the Intersect operator that is described in Definition 5. This operator
computes the intersection of two intermediate phases: if the phases correspond to non-overlapping
time intervals, the return value is empty. Otherwise, the operator returns an intermediate phase
whose time interval is the intersection of the time intervals of the two input phases, and its worst case
number of memory accesses map is the trace-wise union of the maps of the input phases.

Definition 5: Intersection function

Let φi
l, φi

n, Intersect(φi
l, φi

n) =

∅ if φi
l.d ≥ φi

n.end ∨ φi
n.d ≥ φi

l.end

(φi
l.d, φi

l.dur, φi
l.m ∪+ φi

n.m) if φi
l.d ≥ φi

n.d ∧ φi
n.end ≥ φi

l.end

(φi
l.d, φi

n.end− φi
l.d, φi

l.m ∪+ φi
l.m) if φi

l.d ≥ φi
n.d ∧ φi

l.end ≥ φi
n.end

(φi
n.d, φi

l.end− φi
n.d, φi

l.m ∪+ φi
n.m) if φi

l.d < φi
n.d ∧ φi

l.end ≤ φi
n.end

(φi
n.d, φi

n.dur, φi
l.m ∪+ φi

n.m) if φi
l.d < φi

n.d ∧ φi
l.end > φi

n.end

Our algorithms also use the Trace_to_phases procedure described in Algorithm 2. This procedure
transforms a trace ti

j of a task τ i into a sequence of phases in the following manner: for each node ηi
j,k

in the trace, it creates two intermediate phases: φi
l that starts at the start date of the node, spans the

worst case duration of the accesses of this node and has φi
l.m(ti

j) = ηi
j,k.m (marking that on this time

interval trace ti
j makes at most ηi

j,k.m accesses), and φi
l+1 that starts just after and spans until the

date of the next node in the trace (i.e. ηi
j,k+1) and has φi

l+1.m = 0 (i.e. the constant function that
maps all traces to 0). In case ηi

j,k is the last node in trace ti
j , φi

l+1 spans until dmax, which is a value
provided as a parameter to the procedure. The value of dmax should be the maximum of the dates of
the last nodes of all traces of τ i (i.e. the WCET of τ i in the absence of interference).

The top-level procedure is described in Algorithm 3: starting with the first trace ti
0 from the

set of traces of τ i, it transforms it into a set of intermediate phases (Inter_phases) using procedure
Trace_to_phases. Then each other trace ti

j ∈ Ti is in turn transformed into a sequence of phases, and
Inter_phases is updated with the intersection of these phases and the current phases of Inter_phases.

When this is done, a procedure reduces the number of phases using a minimum size δ, by :

• preserving all phases φi
j with φi

j .m = 0 and φi
j .dur ≥ δ,

• for all other phases, fusing consecutive phases until the result of the fusion has a length of at
least δ or there is no more available phase to fuse. When fusing phases, the information about
the worst case number of memory accesses is combined trace-wise instead of blindly summed in
order to limit over-approximations, using the ∪+ operator of Definition 4.

Finally, each intermediate phase φi
j is converted to its equivalent ϕi

k in the final task-level profile,
by re-ordering them by increasing start date and setting ϕi

k.m to the maximum trace-wise number of
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Algorithm 2 Trace_to_phases procedure
Require: ti

j ∈ Ti; access_time, dmax ∈ N
Ensure: Inter_phases

1: Inter_phases = []
2: l← 0
3: for all ηi

j,k ∈ ti
j , k ̸= N i

j − 1 do
4: φi

l.d← ηi
j,k.d ▷ φi

l accounts for the accesses
5: φi

l.dur ← ηi
j,k.m× access_time

6: φi
l.m← 0[ti

j 7−→ ηi
j,k.m] ▷ φi

l.m(ti
j) = ηi

j,k.m and 0 everywhere else
7: φi

l+1.d← φi
l.end ▷ φi

l+1 spans until the next access in the trace
8: φi

l+1.dur ← ηi
j,k+1.d− φi

l.end

9: φi
l.m← 0

10: Inter_phases← Inter_phases :: φi
l :: φi

l+1
11: l← l + 2
12: end for
13: φi

l.d← ηi
j,N i

j−1.d ▷ Last node in the trace
14: φi

l.dur ← ηi
j,N i

j−1.m× access_time

15: φi
l.m← 0[ti

j 7−→ ηi
j,N i

j−1.m]
16: φi

l+1.d← φi
l.end ▷ Final, empty phase to span until dmax

17: φi
l+1.dur ← dmax − φi

l.end
18: φi

l+1.m← 0
19: Inter_phases← Inter_phases :: φi

l :: φi
l+1

20: return Inter_phases

Algorithm 3 Creation of a multi-phase profile for task τ i

Require: Ti, δ ∈ N, dmax ∈ N
Ensure: Pi

1: Inter_phases = Trace_to_phases(ti
0, dmax)

2: for all ti
j ∈ Ti, ti

j ̸= ti
0 do

3: Inter_phases← Intersect(Phasesτ , T race_to_phases(ti
j , dmax))

4: end for
5: Inter_phases← Fusion(Phasesτ , δ)
6: Pi ← Convert_to_profile(Inter_phases)
7: return Pi
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Figure 3.10: Examples of memory access profiles obtained from the traces of Fig. 3.9

accesses occurring in the phase: maxl(φi
j .m(ti

l)), the rest of the attributes being directly copied from
φi

j to ϕi
k.

We illustrate this algorithm in the examples of Figure 3.10. Intermediate phase sequences P0 and
P1 are extracted respectively from traces t0

0 and t0
1 of Figure 3.9 using Algorithm 2. The result of their

intersection is provided as P0∩1. In this sequence, the first access is displayed in gray to show that
this phase corresponds to either one access from trace t0

0 or one access from trace t0
1. The sequence

labelled Inter_phases is obtained by iterating the intersection of the traces t0
0, t0

1, t0
2 and t0

3. Different
colors mean that accesses from different traces may occur. Finally the profile P0 is obtained by fusing
together the smaller phases and preserving larger phases that are guaranteed not to perform any
memory access.

This concludes our presentation of the TIPs framework. Now that we have presented a static
analysis method to derive multi-phase profiles for tasks, we provide in the next section several algo-
rithms that statically build schedules for multi-phase task systems, and try to take advantage of this
representation to reduce the worst-case effect of interference.

3.5 Static scheduling of multi-phase tasks

This section discusses several approaches to benefit from the multi-phase representation when schedul-
ing tasks on multi-core platforms. Our main objective is to minimize the makespan of the task system
in the presence of interference.

3.5.1 Problem Definition

The following static scheduling problem is targeted: given a set of homogeneous cores4 connected to
a shared memory through a FCFS bus and a system composed of data-dependent tasks specified as a
directed acyclic graph (DAG), schedule the tasks on the cores in order to minimize the interference-
aware makespan of the system. This problem instance considers non-preemptive tasks only, and tasks
are not partitioned to the cores prior to the scheduling phase.

4The proposed heuristics also apply to heterogeneous cores but experiments have not been conducted in this setting.
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Notation Definition

G DAG defining task dependencies
E set of edges (dependency relations) of G
preds(τ i) set of predecessors of τ i

succs(τ i) set of successors of τ i

C set of cores composing the architecture
Ck core with index k
S schedule
S(Ck) schedule of core Ck

S(Ck).end end date of schedule of core Ck

ϕi
Φi .d

# end date of τ i in the presence of interference
ϕi

j .γ number of potential contentions suffered by ϕi
j

ϕi
j .γk number of potential contentions suffered by ϕi

j from Ck

ωi
k True if τ i is mapped to Ck

ρi
j True if τ i and τ j are mapped to the same core

χi,j_k,l True if the intervals covered by ϕi
j and ϕk

l overlap
θi,j_k,l True if ϕi

j starts before the end of ϕk
l

Formally, let C = {Ck|0 ≤ k < Nc} be a multi-core architecture composed of Nc cores. Dependen-
cies between the tasks of T are specified using a DAG G = (T, E) in which vertices are the tasks of
T and each edge ei,j ∈ E between τ i and τ j indicates that τ i must be completed before τ j can start.
Moreover, preds(τ i) = {τk|ek,i ∈ E} denotes the set of predecessors of τ i and succs(τ i) = {τk|ei,k ∈ E}
the set of successors of τ i.

Our objective is to build a schedule S of the tasks of T on the cores composing C.
For each core Ck, the following attributes in S are defined:

• S(Ck): the schedule of Ck, which is a sequence of phases, ordered by their starting date.

• S(Ck).end: the end date of the last phase scheduled on Ck.

The makespan of the task system in schedule S is makespan(S) = maxCk∈C(S(Ck).end).

3.5.2 ILP Formulation

We now provide an ILP formulation of the problem. In this formulation we use bold font to denote
the variables of the ILP system, ILP.1 is the objective function and the other equations numbered
ILP.X are the constraints.

We first introduce variable mksp denoting the makespan of the task system. It appears in the
objective function that minimizes the makespan:

minimize mksp (ILP.1)

We use ϕi
Φi.d

# to denote the end date of τ i, which is the end date of its last phase:

∀τ i, ϕi
Φi.d

# = ϕi
Φi−1.d# + ϕi

Φi−1.dur + ϕi
Φi−1.p (ILP.2)

The makespan of the system is greater than the end date of all tasks:

∀τ i, mksp ≥ ϕi
Φi.d

# (ILP.3)
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Moreover, each task τ i starts after date 0 and after the end of all its predecessors:

∀τ i, ϕi
0.d# ≥ 0 (ILP.4)

∀τk ∈ preds(τ i), ϕi
0.d# ≥ ϕk

Φk.d# (ILP.5)

Following the definition of the start date of a phase in Equation 3.2, we can express the date of
each subsequent phase as:

∀τ i, ∀0 < j ≤ Φi, ϕi
j.d# = ϕi

j−1.d# + ϕi
j−1.dur + ϕi

j−1.p (ILP.6)

We use boolean variable ωi
k to express the mapping of task τ i: ωi

k = 1 if and only if τ i is mapped
on Ck. Each task is mapped to a unique core so we add the constraints:

∀τ i :
∑

0≤k<Nc

ωi
k = 1 (ILP.7)

We also introduce variable ρi
j that is equal to 1 if and only if τ i and τ j are mapped to the same

core:
∀τ i, τ j , ρi

j =
∑

0≤k<Nc

ωi
k ∧ ωj

k

Because of the conjunction ∧, the above equation is not linear. Therefore, we have to use a new
variable Ωi,j

k = ωi
k ∧ ωj

k and add the following equations:

∀τ i, τ j , 0 ≤ k < Nc,

Ωi,j
k ≤ ωi

k (ILP.8)

Ωi,j
k ≤ ωj

k (ILP.9)

Ωi,j
k + 1 ≥ ωi

k + ωj
k (ILP.10)

Therefore, the equation becomes:
ρi

j =
∑

0≤k<Nc

Ωi,j
k (ILP.11)

In the following, any other conjunction will be converted to a linear form in the same way. For
clarity reasons, we do not provide the details for the other linearizations of conjunctions.

Two phases may contend with each other if they are scheduled on different cores and their execution
intervals overlap. We introduce the boolean variable χi,j_k,l that is true if the intervals covered by
ϕi

j and ϕk
l overlap:

χi,j_k,l ⇔ ¬((ϕk
l+1.d# ≤ ϕi

j.d#) ∨ (ϕi
j+1.d# ≤ ϕk

l .d#))
χi,j_k,l ⇔ (ϕi

j.d# < ϕk
l+1.d#) ∧ (ϕk

l .d# < ϕi
j+1.d#)

The overlapping is illustrated by Figure 3.11. Phase ϕk
0 overlaps with ϕi

2 but not with ϕj
0 so

χk,0_i,2 = χi,2_k,0 = 1 and χk,0_j,0 = χj,0_k,0 = 0.
We need to decompose the equivalence relation into several constraints in the ILP system. That

is why we define θi,j_k,l as:
θi,j_k,l ⇔ ϕi

j.d# < ϕk
l+1.d#



68 CHAPTER 3. MULTI-CORE TIMING ANALYSIS WITH THE MULTI-PHASE MODEL

t

𝜙0
k

𝜙0
i 𝜙1

i

𝜙1
k

𝜙0
j 𝜙1

j

C0

C1 𝜙2
i

𝜙0.d
#k 𝜙1.d

#k𝜙2.d
#i 𝜙3.d

#i 𝜙0.d
#j

𝞆i,2_k,0= 𝞆k,0_i,2= 1 𝞆j,0_k,0= 𝞆k,0_j,0= 0

Figure 3.11: 3 tasks scheduled on 2 cores

so that the equivalence becomes:

χi,j_k,l ⇔ θi,j_k,l ∧ θk,l_i,j (ILP.12)

θi,j_k,l is defined using the big-M notation and a cancellation variable βi,j_k,l:

∀τ i, τ j , 0 ≤ j < Φi, 0 ≤ i < Φk,

1 + ϕi
j.d# ≤ ϕk

l+1.d# + M(1− θi,j_k,l) (ILP.13)

ϕi
j.d# ≥ ϕk

l+1.d# −M(1− βi,j_k,l) (ILP.14)

βi,j_k,l + θi,j_k,l = 1 (ILP.15)

The overlapping of 2 phases is forbidden if their tasks (resp. τ i and τk) are scheduled on the same
core (ρi

k = 1). Therefore:
χi,j_k,l ≤ 1− ρi

k (ILP.16)

In order to compute the time penalty of ϕi
j , we multiply the number of contentions it may encounter

(ϕi
j.γ) by the cost of one penalty denoted penalty_cost, so we have:

∀τ i, 0 ≤ j < Φi, ϕi
j.p = ϕi

j.γ × penalty_cost (ILP.17)

ϕi
j.γ is the sum of the contentions that may be caused by tasks on all the cores:

∀τ i, 0 ≤ j < Φi, ϕi
j.γ =

∑
0≤k<Nc

ϕi
j.γk (ILP.18)

with ϕi
j.γk the number of contentions that ϕi

j may experience from tasks scheduled on core k. As we
consider a shared memory bus following a FIFO policy, ϕi

j.γk is bounded by ϕi
j .m:

∀τ i, 0 ≤ j < Φi, 0 ≤ k < Nc, ϕi
j.γk = min(ϕi

j .m,
∑

τ l∈T

∑
0≤q<Φl

ϕl
q.m× (χi,j_l,q ∧ ωl

k)) (3.3)

The term (χi,j_l,q ∧ωl
k) states that ϕi

j receives contentions from ϕl
q if and only if ϕl

q is mapped to
core k and overlaps with ϕi

j .
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Finally, to linearize the minimum operator, we use the following equations with αi
j,k ∈ {0, 1}

guaranteeing that one of the proposed values is taken:

∀τ i, τ j , 0 ≤ j < Φi, 0 ≤ k < Nc,

ϕi
j.γk ≤ ϕi

j .m (ILP.19)

ϕi
j.γk ≤

∑
τ l∈T

∑
0≤q<Φl

ϕi
j .m× (χi,j_l,q ∧ ωl

k) (ILP.20)

ϕi
j.γk ≥ (

∑
τ l∈T

∑
0≤q<Φl

ϕi
j .m× (χi,j_l,q ∧ ωl

k))−M ×αi
j,k (ILP.21)

ϕi
j.γk ≥ ϕi

j .m−M(1−αi
j,k) (ILP.22)

3.5.3 Heuristics

Computing the penalties directly in the optimization problem is inherently non-linear. As a conse-
quence, we observe in practice that the ILP resolution time does not scale when the number of tasks or
phases grows. In order to tackle large systems that cannot be handled by ILP, we designed heuristics.
We present three of them in this section.

In the following algorithms, we use the computeContentions(S) function to compute the values of
the ϕi

j .d# by applying the formulas from ILP.17 and Equation 3.3 on each phase ϕi
j of S5.

3.5.3.1 Greedy policies

The first scheduling policies that we present are two variants of list scheduling: the algorithm selects
a task from a list of ready tasks, schedules it following the policy, updates the list of ready tasks, and
iterates until all tasks have been scheduled.

As Soon As Possible scheduling (ASAP) The ASAP policy takes the current partial schedule
(initially empty) and builds as many schedules as there are cores in C by selecting a task and scheduling
it as soon as possible on each of the cores, without preemption and while respecting task dependencies.
Once the ASAP date is determined for a core, all the phases of the task are scheduled according to
Equation 3.1. It then selects the partial schedule that has the lowest makespan and moves on to the
next task. The interference analysis is performed only once all the tasks of the system have been
scheduled. Consequently, this is the simplest and the fastest algorithm of all the presented heuristics.

Starting Date Enumeration (SDE) The ASAP strategy is not always the best choice to minimize
the makespan in the presence of interference. For instance, Figure 3.12 shows 3 different ways to
schedule a new task (the purple one) on core C1. At the top, when scheduling the task as soon as
possible, the phase with 10 accesses overlaps with 2 other phases in parallel and creates in the worst
case 13 (8+5) contentions on core C0 (depicted in orange). In the schedule below, we postponed the
task start date to the end of the phase with 8 accesses so the 10-accesses phase may only create 5
contentions, and this choice yields a reduction of the makespan. In the last schedule at the bottom,

5In our experiments, we use an efficient Python implementation of this function
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Figure 3.12: 3 different placements for a new task: the numbers within phases indicate their worst-case
number of accesses and the orange rectangles are the additional penalty due to possible interference.

the task is postponed even more, to the next starting date of a phase in parallel. This results in
no interference at all, yielding the smallest makespan. Following that idea, we developed the SDE
heuristic that attempts to schedule the current task at several dates on each of the cores and performs
an interference analysis for each possibility before selecting the one that minimizes the makespan.

Algorithm 4 describes SDE. It takes as inputs the current task to schedule, τ i, and the current
partial schedule S, on which an interference analysis has been performed. The enumeration of the
possible start dates for τ i is limited to the interval JminDate, maxDateK in which minDate is the
earliest possible start date of τ i due to precedence constraints, and maxDate is the current makespan
of the partial schedule. For each core Ck (line: 4), function parallelDates extracts the start and end
dates of phases scheduled on the other cores that fall within the JminDate, maxDateK interval. Then,
τ i is iteratively scheduled at each of these dates on Ck in S (line: 7), and only the result yielding the
smallest makespan (after interference analysis) is kept (line: 9). In the end, τ i is scheduled on the core
and at the date that yields the best makespan.

SDE considers candidate dates only for the start of the first phase of the task. The method could
be extended to consider these dates as possible start dates for each of the phases, but the algorithmic
complexity would increase accordingly, making the method impractical.

3.5.3.2 Iterative Priority Scheduling Heuristic (IPH)

The IPH, detailed in Algorithm 5, is an adaptation of the main algorithm of [45]. This algorithm has
already been successfully adapted to the AER model in [55], but our task model is more generic and
some assumptions made in [55] are not applicable here. As a consequence Algorithms 5 and 6 were
adapted from [45] to handle the multi-phase model.
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Algorithm 4 SDE
Require: τ i ; S

1: minDate = maxτh∈preds(τ i)(ϕh
Φh .d#)

2: maxDate = makespan(S)
3: bestMakespan, bestSched = +∞, S
4: for Ck in C do
5: dates = parallelDates(S, Ck, minDate, maxDate, τ i)
6: for d in dates do
7: S′ = scheduleTask(S, Ck, τ i, d)
8: computeContentions(S′)
9: if makespan(S′) < bestMakespan then

10: bestMakespan = makespan(S′)
11: bestSched = S′

12: end if
13: end for
14: end for
15: return bestSched

The principle of this algorithm is to iteratively test different combinations of task priorities, called
priority vectors, while converging to the best makespan, given by the objective variable Obj until no
progress is made. In the initialization, we build the initial best schedule Sbest using our ASAP greedy
heuristic. Then, Sbest is used to build the initial target interval for the makespan JLB, UBK (line 1)
and Obj is chosen as the median value of this target interval. The initial values of the bounds do
not have a huge impact on the quality of the result because the interval is re-adjusted throughout the
iterations, but setting them close to a viable objective can save a few initial iterations. In order to
speed up the computations, we implemented and when necessary, adapted, the following optimizations
that were present in the original algorithm of [45]:

1. Using a symmetric instance of the scheduling problem because scheduling backwards may open
scheduling options. That is why we distinguish the two graphs Gforward and Gbackwards (line 5)
and the priority vectors on both directions (line 34).

2. Implementing the algorithm in parallel so that several priority vectors are tested at the same
time by separate threads.

3. Using a hash set to store the priority vectors that have already been tried to avoid repetitions
(line: 6).

4. Modifying the priority vector using information about conflicting tasks that prevent each other
to be scheduled before Obj (line: 33).

Optimizations 1 and 2 were directly implemented in our heuristic. We adapted optimization 3 to
exploit the fact that two different priority vectors may produce the same scheduling order because
of tasks dependencies. For example, if we consider tasks A, B and C with B and C successors of A,
then assigning priorities 3, 2, 1 to respectively A, B and C yields the same scheduling order (A then
B then C) as when assigning priorities 2, 3, 1 because task A must be executed before B and C has a
lower priority than B. Therefore, instead of saving the priority vectors in the hash set, our algorithm
computes and saves an equivalence class of the priority vectors given the dependencies of the system
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Algorithm 5 IPH
Require: G = (T, E),C

1: UB, LB,Sbest = init(G,C)
2: Obj = (LB + UB)/2
3: failCount = 0
4: Gforward = G
5: Gbackward = reverse(G)
6: prioHashSet = {}
7: init_prio = [UB − ϕi

0.d#]∀τ i∈T

8: sQueue = [(Gforward, Obj, init_prio)]
9: while (LB < UB) ∧ (sQueue ̸= []) do

10: (Gc, Obj, prio) = sQueue.pop()
11: hash = Hash(eq_class(prio, Gc))
12: if hash ∈ prioHashSet then
13: continue
14: end if
15: prioHashSet.add(hash)
16: S = findSchedule(Gc,C, Obj, prio)
17: if makespan(S) < makespan(Sbest) then
18: Sbest = S
19: if UB > makespan(S) then
20: UB, LB = update(UB, LB,S)
21: end if
22: Objnew = UB − 100
23: priority = [Obj − ϕi

0.d#]∀τ i∈T

24: else
25: failCount + +
26: if failCount ≥ log2(|T |) then
27: LB = LB + (UB − LB)/4
28: failCount = 0
29: end if
30: Objnew = ⌈min(UB, 1.1×Obj)⌉
31: end if
32: prio1 = [Obj − prio[i]]∀τ i∈T

33: prio2 = modPrio(prio,S)
34: Gc1, Gc2 = switchOrder(Gc, Gbackward, Gforward)
35: sQueue.push({Gc1, Objnew, prio1})
36: sQueue.push({Gc2, Objnew, prio2})
37: end while
38: return Sbest

(i.e. the scheduling order of the tasks) (line: 11). We also adapted optimization 4 so that, when
there are no conflicting tasks, the algorithm relies on the amount of contentions to modify the priority
vector. However, relying on contentions in a more systematic way did not yield any improvement of
the results.

At each iteration, the algorithm calls function findSchedule (described in Algorithm 6 that we
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detail later) to build a schedule S from scratch using a task system Gc, a vector prio that gives
priorities to the tasks, and an objective Obj for the makespan of the schedule (line: 16). Once S is
built, the algorithm compares its makespan with the makespan of the best schedule found so far: Sbest.
If it is inferior, schedule S is saved as the new Sbest, the UB and LB are updated (line: 20) in order
to lower the makespan objective in the next iteration, and changes are made to the task priorities to
reflect the order of the starting dates of tasks in S (lines: 19-23). If the new schedule is longer than
the best so far however, Obj is increased in order to give some more slack to the algorithm in the
next iteration, and LB is increased as well if the algorithm has failed enough times (lines: 25-30). The
algorithm then iterates, until either LB reaches UB or it runs out of new priority vectors to test.

There are several constants impacting the computation cost of the algorithm that are defined in
an empirical way:

• Line 22: Objnew, the next objective is set to UB − 100. The value must not be too ambitious
to allow findSchedule to find suitable schedules and the convergence towards the best priority
vectors. As the minimum contention duration that we applied in our tests is 50 cycles, the
number of contentions to avoid in order to improve the makespan is reasonable and 100 is also
an order of magnitude below the duration of the tasks we scheduled who had a WCET superior
to 1000 cycles (and sometimes superior to 20000 cycles).

• Line 26: log2(|T |) bounds the number of consecutive attempts of findSchedule without finding
a better schedule than Sbest before increasing LB. This bound must be high enough to let
findSchedule reach Obj but is also responsible for stopping the search when it is not possible.
The number of tasks in the system impacts the size of the solution space. Our experiments are
composed of systems ranging from 4 to 329 tasks so the log2 allows enough attempts for small
systems while limiting them for the largest systems.

• Line 30: whenever a failure occurs, the objective is increased by at least 10% of its value (bounded
by the current UB). This value has been kept from the original algorithm in [45].

One important point here is that the heuristic does not test all possible combinations of task
priorities: at each iteration the current priority vector is modified, and the resulting vector is used
in the next iteration if it has not already been used in a prior iteration. The way the algorithm
modifies the priority vector does not guarantee that all priority combinations will be explored. In fact
the objective of the heuristic is precisely to converge to a solution without having to explore all the
combinations.

Algorithm 6 describes the findSchedule function. This function iteratively creates a schedule S of
the tasks of Gc on C, using tasks priorities prios and an objective value Obj for the makespan of S. A
set of tasks ready to be scheduled (i.e. whose predecessors have already been scheduled) is maintained,
and at each iteration, the ready task with the highest priority is selected for scheduling (line: 4). The
selected task τ i is scheduled following a given policy (in our experiments we used ASAP) and an
interference analysis is performed on the resulting partial schedule S′ (line: 6). Note that the priority
vector does not define the mapping of the tasks so the scheduling policy is responsible for choosing the
cores where tasks are scheduled. If makespan(S′) is smaller than objective Obj, the algorithm updates
the set of ready tasks and iterates with the next ready task (line: 18). If, however, the partial schedule
spans more than Obj cycles, the algorithm is allowed to de-schedule some tasks that are put back in
the set of ready tasks in order to make room for τ i before Obj (line: 9). The de-scheduled tasks are
the tasks that start after the end of the last predecessor of τ i and before Obj −WCET (τ i), as well
as all their (already scheduled) successors. Tasks that start after this date and are not successors of
de-scheduled tasks are not put back in the ready set, but are directly rescheduled following the ASAP
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Algorithm 6 findSchedule

Require: Gc, C, Obj, prios
1: readyTasks = initRT (Gc)
2: budget = α× |T | ▷ α is tuned according to the size of the task system
3: while (readyTasks ̸= ∅) ∧ (budget > 0) do
4: τ i = getNext(readyTasks, prios)
5: d = maxτh∈preds(τ i)(ϕh

Φh .d#)
6: S′ = scheduleASAP (S,C, τ i, d)
7: computeContentions(S′)
8: if makespan(S′) > Obj then
9: resched, desched, Stemp = unsched(S, d, Obj, τ i)

10: readyTasks = readyTasks ∪ desched
11: for τ j in resched do
12: Stemp = scheduleASAP (Stemp,C, τ j , d)
13: budget = budget− 1 ▷ τ j is scheduled again
14: end for
15: S′ = scheduleASAP (Stemp,C, τ i, d)
16: computeContentions(S′)
17: end if
18: updateRT (readyTasks, τ i)
19: budget = budget− 1 ▷ accounting for τ i

20: end while
21: while readyTasks ̸= ∅ do
22: τ i = getNext(readyTasks, prios)
23: d = maxτh∈preds(τ i)(ϕh

Φh .d#)
24: S′ = scheduleASAP (S′,C, τ i, d)
25: updateRT (readyTasks, τ i)
26: end while
27: computeContentions(S′)
28: return S′

policy, in respect of their potential dependencies, in order to benefit from the free intervals in the
schedule left empty by the de-scheduled tasks (lines: 11-14). Task τ i is then scheduled (again, using
ASAP in our experiments) (line: 15). Even if objective Obj is still unmet, the algorithm then goes
on to the next task to schedule, hoping that further de-schedulings in the next iterations will allow to
meet the objective. The de-scheduling of tasks significantly affects the execution time of the algorithm
compared to a greedy solution, and can create an infinite loop under certain circumstances. In order
to prevent it, an exploration budget (defined in line: 2) guarantees that the main scheduling loop does
not iterate more than a fixed number of times, even though some tasks remain to be scheduled. If
the number of iterations reaches the budget, the algorithm exits the loop and falls back to a greedy
strategy (line: 21) for the tasks that remain to be scheduled. Tuning the budget value thus allows to
trade execution time for precision.

We define a constant α (line 2) that sets the number of rescheduling operations allowed to reach
the objective. We set α = 3 for task systems with less than 26 tasks so that up to 78 tasks can be
rescheduled and α = 1.2 for the others which allows 394 rescheduling operations for the largest task
system.
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3.5.3.3 Merging Optimization

In certain situations, the multi-phase model may incur an overestimation of the number of contentions
during the interference analysis. In the example depicted in Figure 3.13 (left), the yellow phase may
contend with the three phases in parallel. As a result, the interference analysis counts 3 contentions
coming from the yellow phase for each of these phases, resulting in 9 contentions in total. In practice
this is impossible, as the yellow phase only performs 3 accesses in total. In order to reduce this
pessimism, we developed a phase merging algorithm that can be applied on a partial or complete
schedule. This optimization detects local situations in which merging together multiple phases of a
task can reduce the overestimation of the number of contentions during the interference analysis.

In practice, the optimization looks for phases ϕi
j (called saturated phases in the following) that

create more than (|C| − 1) × ϕi
j .m contentions to phases in parallel during the interference analysis.

This formula was chosen as another trade-off between speed and precision. Once a saturated phase
is discovered, the algorithm looks for phases scheduled in parallel and assesses whether or not it
would be beneficial to merge them together. Indeed, the local benefits of merging phases (w.r.t. a
given saturated phase) can be outweighed by the effects of the merge on adjacent tasks. This can be
illustrated using Figure 3.13 :

• In the left part of the figure, the maximum number of contentions each phase may suffer is :

– min(5, x + 3) for the green phase.
– min(6, 3) = 3 for the purple phase.
– min(4, 3) = 3 for the red phase.
– min(x, 5) for the grey phase.
– min(3, (5 + 6 + 4)) = 3 for the yellow phase.

So if the phases are not merged, the interference analysis counts 9 + min(x, 5) + min(5, x + 3)
contentions in total for the two cores.

• In the right part, when the phases are merged, this number is :

– min(15, x + 3) for the blue phase.
– min(x, 15) for the grey phase.
– min(3, 15) = 3 for the yellow phase.

So the interference analysis counts min(15, x + 3) + min(x, 15) + 3 contentions in total.

5 6 4

3

15

3

3 3 3 3

9 contentions 3 contentions

Figure 3.13: An example of local overestimation of contentions.
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Therefore, if the value of x is strictly greater than 6, the merge is not globally beneficial.
Algorithm 7 describes the merging optimization. As for the SDE algorithm, computing the con-

tentions several times is necessary to identify the saturated phases and to assess whether or not a merge
is profitable. The algorithm retrieves the list of all scheduled phases and iterates over it until a satu-
rated phase ϕi

j is found. When a phase is saturated, the algorithm enters the inner while loop (line 6)
to try some merges. The merges are attempted using candidates, the list of phases in parallel of ϕi

j ,
that is retrieved by function getPhasesWithin (line 8). Then, function getMergeablePhases searches
for two phases of candidates that are in the same task, consecutive and have not been studied before
(otherwise they are present in alreadyAttempted). If no such phases have been found, the inner while
is exited with a break (line 11). Otherwise, the phases are added to the alreadyAttempted list and a
new schedule S′ is created with the two phases ϕk

l and ϕk
l+1 merged using function mergePhases that

also recomputes the contentions. If the makespan of S′ is better than S then the merge is confirmed
at line 16.

The ASAP-based greedy heuristic described in Section 3.5.3.1 does not compute the contentions
in the system before the schedule is produced. As a result, the scheduling decisions are not impacted
by potential merges, so it is only useful to apply the merging optimization once the schedule has
been entirely constructed. On the other hand, the SDE algorithm is interference-aware, so calling
the merging optimization at each scheduling step can influence its decisions. In the remainder of the
document, whenever the merging optimization is used, it is used after the schedule is produced with
the ASAP policy, and during its construction with the SDE policy. We do not display the results of
the optimization with IPH because it does not improve the trade-off between the computation speed
and its efficiency to reduce the makespan of the schedule.

Algorithm 7 mergeOptimization

Require: τ i ; S; start; end
1: phases = getPhasesIn(S, start, end)
2: idx = 0
3: while idx < size(phases) do
4: ϕi

j = phases[idx]
5: alreadyAttempted = []
6: while isSaturated(S, ϕi

j) do
7: end = ϕi

j .d# + ϕi
j .dur + ϕi

j .p

8: candidates = getPhasesWithin(S, ϕi
j .d#, end)

9: ϕk
l , ϕk

l+1 = getMergeablePhases(candidates, alreadyAttempted)
10: if ϕk

l == null then ▷ no phases left that can be merged together in candidates
11: break
12: end if
13: alreadyAttempted.push((ϕk

l , ϕk
l+1))

14: S′ = mergePhases(S, ϕk
l , ϕk

l+1)
15: if makespan(S′) < makespan(S) then
16: S = S′

17: end if
18: end while
19: idx = idx + 1
20: end while
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3.6 Experimental Evaluation

In this section, we present a comparative study of the heuristics and an evaluation of the multi-phase
model. Our evaluations use both synthetic tasks and task systems from real case studies.

3.6.1 Tests Metrics

The two metrics that we considered in the experiments are the makespan of the schedule in the presence
of interference and the total number of contentions that may appear in the schedule according to the
interference analysis.

For each metric m, the notion of gain is defined as the comparison of the value of m in a given
schedule to the value of m in a baseline schedule (the single-phase variant of the schedule):

gain = (m_value_baseline−m_value_schedule)/m_value_baseline.

Moreover, a test is considered to be positive if gain ≥ 0 for the corresponding task system,
scheduling policy and metric m. In other terms, a positive test means that the multi-phase instance
of the problem yields improved results compared to its single-phase counterpart.

3.6.2 Comparative Study Using the ILP Formulation

The optimization problem is inherently nonlinear due to the interference computation. Consequently,
the ILP solver (Gurobi 9.5.1 [37]) encountered scalability issues. Thus, this section only presents the
results for experiments with 4 to 6 tasks composed of 4 to 6 phases each, and whose solving time
was inferior to 6 hours (a timeout was set in the experiments). The experiments include tasks with
an average access rate of 25, 50 or 75 accesses per 10,000 cycles, without access over-approximation
(the number of accesses in the single phase variant of a task is equal to the sum of accesses of the
phases in the multi-phase variant), and with either no empty phases, or with 20% of the phases empty.
In our experiments, we assume that the duration of accesses in isolation is 50 cycles. However, the
memory latency of an access in the presence of interference can be several times the cost of an access
in isolation due to indirect effects, as we saw in Chapter 2. The experiments were thus conducted
with a penalty duration of 50 or 150 cycles, which correspond respectively to an optimistic and a more
realistic architectural assumptions. Setting the penalty duration to 50 is indeed the most optimistic
assumption for the target architecture, and usually is an unfavorable assumption for our experiments.

3.6.2.1 ILP results

The distribution of the gain values obtained by the multi-phase variants compared to their single-phase
counterparts, scheduled with ILP is represented in Figure 3.14. The extreme values are not represented
for readability reasons: the gain varies from -66.49% to 69.38% and the average value is 9.42%. In
other terms, we can expect to reduce the system worst-case makespan by around 9% on average by
switching from single to multi-phase representation. Moreover, in 96.19% of the tests the results of
the multi-phase ILP were positive, i.e. at least as good as the single-phase ILP. As these results have
been obtained with only small instances of the problem, they do not allow to draw general conclusions.
However, it is worth noting that the gap between the two models tends to increase with the number
of cores since the experiments with 2 cores have an average gain of 8.88% while it is 10.85% for the
tests with 4 cores. This is coherent with the fact that the effect of potential contentions increases with
the number of cores.
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Figure 3.14: Makespan gain of multi-phase ILP vs single-phase ILP in %

Table 3.1: Makespan gain results compared to ILP with multi-phase or single-phase

Gain vs ILP multi Gain vs ILP single
Cores Heuristic Share of Average Share of average

positive (%) gain (%) positive (%) gain (%)

2 IPH 7.31 -3.71 90.51 5.17
SDE 2.70 -5.69 73.77 3.20
+merge 6.34 -5.05 77.47 3.83
ASAP 2.15 -7.77 63.77 1.11
+merge 5.15 -6.76 70.50 2.12

4 IPH 1.29 -5.02 88.06 5.82
SDE 1.37 -5.77 81.29 5.07
+merge 3.06 -5.43 83.87 5.42
ASAP 0.56 -9.35 64.84 1.50
+merge 1.69 -8.42 70.40 2.42

3.6.2.2 Comparison of ILP and heuristics for multi-phase profiles

Table 3.1 shows the average gain and the proportion of results where each heuristic result was at
least as good as the ILP solving the multi-phase or single-phase problem. All the heuristics are on
average less than 10% worse than the optimal multi-phase result and IPH is only at 3.71% on 2 cores
and 5% on 4 cores. When the merging optimization was used, ASAP and SDE were even able to
beat the multi-phase ILP (in respectively 2.5% and 3.3% of the tests) because of the new profiles
generated by the optimization. A version of the ILP with possible merges would considerably increase
its complexity and solving time so it is not proposed. Moreover, the heuristics applied on multi-phase
profiles are at least as good as the optimal solution for the equivalent 1-phase profiles in at least 63%
of the experiments (up to 90.51% for IPH with 2 cores). Finally, IPH finds the optimal multi-phase
schedule in 7.31% and 1.29% of these (simple) experiments respectively on 2 and 4 cores.
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Figure 3.15: Share of positive results in terms of contentions according to the access over-
approximation for 2 interference penalty values compared to single-phase IPH.

3.6.3 Comparative Study on Larger Systems

In this section we study the influence of the parameters on the gain of the multi-phase model and
compare the heuristics on larger task systems. They are composed of either 20 or 25 tasks, with 15
or 20 phases on average. Moreover, several over-approximation values from 0 to 30% of additional
accesses are tested. The other parameters are the same as in the previous section.

Figure 3.15 shows the share of experiments with a positive gain in terms of reduction of the
worst-case number of contentions. It shows that SDE is the best heuristic to reduce the number
of contentions, which is expected as it is the only one that makes decisions based on interference-
aware (partial) schedules. In terms of makespan reduction, Figure 3.16 shows that IPH dominates
the other heuristics. This confirms the results of [71]: tolerating a certain level of contentions in the
system is more efficient, on average, than systematically postponing the start date of tasks to avoid
interference, when it comes to reducing the makespan. However, when the penalty for a contention
increases from 50 to 150 cycles, SDE improves, achieving results closer to IPH: as the penalty for each
contention increases, postponing the execution of tasks to reduce the number of contentions becomes
more profitable.
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Figure 3.16: Share of positive results in terms of makespan according to the access over-approximation
for 2 interference penalty values compared to single-phase IPH.

We started our experiments using ASAP as the baseline for single-phase as it was very fast. During
the course of the experiments, we realized that IPH, although designed with multi-phase in mind, was
also very efficient to schedule single-phase task systems, and outperformed ASAP in most cases. We
thus decided to compare our multi-phase results with their single-phase counterparts scheduled with
ASAP and IPH. The average makespan gain is represented by Figures 3.17 and 3.18 respectively
against single-phase ASAP and IPH. The same observations as with the share of positive results can
be made: SDE is the least efficient heuristic when the penalty is 50 cycles but its gain improves as
the penalty increases. With a 150 cycles penalty, the gain of the multi-phase model reaches 15.86%
using IPH against single-phase ASAP, while the maximum is 7.47% against single-phase IPH.

In a nutshell, IPH is the most adapted to reduce the makespan of the task systems while SDE
is the most efficient to reduce contentions. The reason for this is that SDE tends to take short-term
decisions that mainly reduce the worst-case number of contentions. However, it is sometimes better
to accept more contentions locally to reduce the makespan of the entire system. When the effects
of contentions are more important (i.e. a higher number of cores or a greater interference penalty),
avoiding contentions is more correlated to reducing the makespan of the schedule so SDE becomes
more efficient to reduce the makespan.
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Figure 3.17: Average makespan gain vs ASAP single-phase according to the access over-approximation.
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Figure 3.18: Average makespan gain vs IPH single-phase according to the access over-approximation.

Figure 3.19 shows the makespan gain of our three heuristics against IPH single-phase while varying
the amount of empty phases (i.e. with no access). All heuristics perform significantly better when
20% of the tasks execution time is spent in empty phases, regardless of the value of the penalty, or of
the level of over-approximation of accesses. When the penalty is set to 150 cycles, the difference in
gain for SDE nearly doubles for 0% and 5% overestimation (and more than doubles for 15%). This
demonstrates the crucial aspect of empty phases to improve the makespan of the scheduled systems.

Table 3.2 gives the average computation time of the heuristics according to the number of tasks in
the system and the average number of phases. As expected, ASAP is the fastest of our 3 heuristics.
Then SDE is faster than IPH for the systems composing our benchmark. However, when the workload
increases the computation time increases comparatively more for SDE than for IPH. It is expected
that SDE will be slower than IPH for very large systems.

3.6.4 Case Studies

In this section, we apply the heuristics on Rosace [62], a multi-periodic flight controller, and Pa-
pabench [60] that is derived from an open-source UAV control application. The environmental simu-
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Figure 3.19: Average makespan gain vs IPH single-phase according to the presence of empty phases.

Table 3.2: Average computation time for the different heuristics

Tasks Phases per task Average computation time (s)
(#) (#) ASAP SDE IPH

20 15 < 1 55 334
20 < 1 112 499

25 15 < 1 88 596
20 < 1 172 911

all tests < 1 105 574

lation tasks of Rosace are not considered, as they are not embedded code and their WCET is several
orders of magnitude larger than that of the other tasks.

The tasks have been compiled for ARM targets. We consider a multicore architecture in which
each core has a private L1 LRU data cache and an instruction scratchpad. The memory latency was
set to 50 cycles for non-cached accesses. The tasks were analyzed with OTAWA [9] to extract their
CFG and perform a cache analysis. Then, the multi-phase profiles of the tasks were computed using
the Time Interest Points (TIPs) method described in Section 3.4.

Some of the original tasks of Papabench were split to reduce the complexity of the analysis. Then,
as the systems are multi-periodic applications, the task system was converted into a DAG of single-
period tasks over one hyperperiod following the methodology of [19] but without using release dates
for the jobs (i.e. with a synchronous release). The resulting DAG is composed of 77 tasks for Rosace
and 329 tasks for Papabench. Statistics about the profiles are provided by Table 3.3 (empty dur
is the proportion of execution time guaranteed without access). As expected, as δ diminishes, the

Table 3.3: Statistics of Rosace and Papabench profiles.

Rosace Papabench
δ sync phases ov-app empty dur sync phases ov-app empty dur

(#) (#) (%) (%) (#) (#) (%) (%)

1000 384 294 0.00 0.00 5 622 2 755 4.01 9.54
500 561 531 0.00 17.96 12 937 4 788 4.73 22.87
200 1 020 1 110 1.22 28.55 24 891 9 009 7.45 35.65
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Table 3.4: Results of heuristics to schedule Papabench tasks with TIPs profile.

penalty = 50 cycles penalty = 150 cycles
nb gain gain gain gain
cores δ makespan (%) contentions

(%)
makespan (%) cont. (%)

vs ASAP vs IPH vs ASAP vs ASAP vs IPH vs ASAP

ASAP 2 1000 7.17 -0.64 8.32 9.15 3.37 17.58
500 8.31 0.58 18.37 10.90 5.23 25.72
200 9.07 1.41 24.71 11.93 6.33 28.96

3 1000 4.81 1.18 14.18 6.13 1.60 7.32
500 6.37 2.88 22.35 7.94 3.49 17.75
200 6.96 3.41 23.68 9.00 4.61 13.18

4 1000 4.66 1.25 19.85 5.13 1.41 13.96
500 6.24 2.88 25.62 7.97 4.36 18.16
200 6.84 3.51 27.43 9.01 5.44 19.61

SDE 2 1000 -2.36 -10.98 47.13 9.94 4.21 57.06
+ merge 500 0.96 -7.38 54.73 13.61 8.11 64.70

200 0.75 -7.61 40.59 12.85 7.31 62.83
3 1000 -5.05 -9.06 30.50 7.44 2.98 59.58

500 -1.39 -5.26 37.88 12.03 7.79 64.45
200 -1.02 -4.86 38.46 9.88 5.53 68.35

4 1000 -4.72 -8.48 36.38 7.18 3.53 65.11
500 -1.61 -5.25 40.04 11.15 7.66 65.61
200 -0.57 -4.17 38.90 9.83 6.28 67.17

IPH 2 1000 12.86 5.52 14.25 13.02 7.49 25.28
500 14.18 6.95 25.85 16.31 10.99 35.08
200 14.97 7.81 31.29 16.12 10.79 38.56

3 1000 8.88 5.56 30.97 10.96 6.67 38.59
500 9.98 7.36 39.56 14.91 10.80 37.37
200 9.59 6.18 35.28 14.51 10.38 49.37

4 1000 7.80 4.28 42.53 11.62 8.15 42.51
500 9.42 6.26 44.13 13.83 10.44 47.20
200 9.63 6.65 45.61 14.52 11.16 47.74

number of phases increases, reaching up to 14.4 phase per task on average for Rosace (resp. 27.38
for Papabench). The number of synchronizations required to implement these profiles remains under
2 per phase on average for Rosace, and reaches 3 per phase in the worst case for Papabench. The
over-approximation also increases but remains low (less than 2% for Rosace and 8% for Papabench),
while the percentage of time spent in empty phases increases fast, and reaches up to 28% for Rosace
(resp. 35% for Papabench).

Then IPH, SDE and ASAP were used to schedule the DAGs on 2, 3 or 4 cores and we applied
interference analyses on the schedules with a penalty of 50 and 150 cycles.

The results presented in Tables 3.4 and 3.5 show that the gain tends to increase when the phases
are smaller (i.e. when δ is lower). Following our previous observations, this can be the result of the
increased proportion of time spent in empty phases, and of a better distribution of accesses among
phases. The multi-phase model globally yields better results than the 1-phase model, with a makespan
gain up to 16.31% for Papabench (IPH on 2 cores with δ = 500 cycles and a penalty of 150 cycles) and
24.00% for Rosace (SDE on 4 cores with δ = 200 cycles and a penalty of 150 cycles). For Papabench,
IPH always performs the best improvements, ranging from 7% to 16% compared to the 1-phase ASAP
and between 4% and 11% compared to the 1-phase IPH. When the penalty is 50 cycles, SDE is the
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Table 3.5: Results of heuristics to schedule Rosace tasks with TIPs profile.

penalty = 50 cycles penalty = 150 cycles
nb gain gain gain gain
cores δ makespan (%) contentions

(%)
makespan (%) cont. (%)

vs ASAP vs IPH vs ASAP vs ASAP vs IPH vs ASAP

ASAP 2 1000 2.42 0.76 9.03 2.31 1.28 3.80
500 3.26 1.10 13.82 5.86 4.87 11.83
200 4.90 2.77 22.35 9.15 8.19 18.93

3 1000 4.71 -0.04 2.42 5.01 2.83 3.98
500 6.96 2.32 9.79 6.48 4.33 7.12
200 8.71 4.16 14.28 8.65 6.56 9.88

4 1000 11.18 3.17 5.94 13.23 0.83 9.70
500 13.65 5.86 11.59 14.89 2.73 13.22
200 15.78 8.18 17.15 16.80 4.92 16.76

SDE 2 1000 0.90 -1.32 15.82 10.75 9.81 39.66
+ merge 500 3.78 1.63 31.20 13.28 12.36 55.20

200 2.85 0.67 37.11 17.04 16.17 50.69
3 1000 1.11 -3.82 10.79 9.39 7.31 51.99

500 5.17 0.44 23.82 12.34 10.32 44.12
200 7.64 3.03 26.23 17.55 15.65 44.12

4 1000 7.37 -0.99 14.58 20.36 8.98 55.80
500 13.87 6.09 20.88 20.54 9.19 35.48
200 15.54 7.92 26.31 24.00 13.14 40.11

IPH 2 1000 4.26 2.12 7.10 4.87 3.87 10.21
500 5.70 3.59 14.32 9.20 8.24 21.86
200 7.22 5.14 21.48 11.79 10.86 25.28

3 1000 6.64 1.98 3.71 5.19 3.01 34.67
500 9.05 4.52 10.54 8.95 6.86 24.95
200 10.64 6.18 17.09 11.32 9.28 27.49

4 1000 14.68 6.98 0.27 15.56 3.50 23.46
500 17.35 9.90 7.27 17.82 6.08 45.18
200 19.04 11.73 9.90 19.69 8.21 48.58

worst heuristic and its makespan is often higher than if the tasks are represented with the single-phase
model (i.e. gain < 0). However, with a 150 cycles penalty per contention, SDE is more efficient
than ASAP with a gain ranging from nearly 7% to 13% for the makespan. For Rosace, SDE is more
efficient, as the gain is always positive and often close to ASAP with 50 cycles of penalty, and it is
even the best heuristic when the penalty is 150 cycles.

The two tables also display the gain in terms of contentions. For Papabench (resp. Rosace), this
gain ranges from 6.92% to 64.36% (resp. 2.42% to 55.80%) compared to 1-phase ASAP scheduling.
This means that on top of reducing the makespan of the computed schedules, our heuristics, coupled
with the multi-phase model, are able to significantly improve the timing predictability of the scheduled
applications because there is less variability in the number of contentions that may occur in the system
(i.e. the maximum interference scenario is closer to the average case scenario). SDE is the best heuristic
to reduce contentions, even when it obtains negative makespan gains, which is coherent with what we
observed with the synthetic systems.

With δ = 1000 on 2 cores, the time required to schedule Papabench (resp. Rosace) with ASAP
was 1 minute (resp. less than 1 second) while it took nearly 8 hours when applying SDE (resp. 43
seconds) and 6 hours (resp. 3 minutes) to run IPH with up to 31 threads (resp. 19) computing a
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schedule at a time. However, as IPH is an iterative heuristic, it is able to find the best result or at
least a satisfying result within the early iterations. For Papabench the schedule was found in less than
3 hours.

3.7 Conclusion
This chapter presented the multi-phase task model as a solution to tighten the worst-case estimation
of interference effects in multi-core architectures. We started by introducing a formal model of the
multi-phase representation of tasks, and presented a set of properties that guarantee the correctness of
such a representation w.r.t. the corresponding task execution. In particular we showed that in order
to maintain coherence between the multi-phase model and the actual execution of the task, once the
interference analysis has been performed, synchronizations must be included in the tasks code and
the synchronization dates must correspond to the schedule dates computed during the interference
analysis. Otherwise, it may happen that some memory accesses are performed in time windows
corresponding to phases for which they were not accounted for, thus invalidating the results of the
interference analysis.

In order to obtain multi-phase representations of tasks, we then described the Time Interest Points
framework, which consists in a series of models and analyses that take as input the binary code of
the tasks and outputs their multi-phase representation. Since the performed analyses are complex,
the framework abstracts the CFG of the tasks in a simplified structure called a TIPsGraph that only
expresses the control flow between instructions that may perform memory accesses, and thus generate
or suffer from interference. From the TIPsGraph of a task, our algorithms then enumerate its abstract
execution traces and generate intermediate phases according to the behavior of the enumerated traces.
Finally, the intermediate phases are mixed together to obtain the profile of the task.

The last part of the chapter was dedicated to the presentation of scheduling algorithms for the
multi-phase model, and to their evaluation. We started by presenting an ILP formulation of the
problem. Since the ILP was too complex to solve reasonably large problems in acceptable time, we
also presented three heuristics. The fastest one is based on ASAP scheduling and does not base its
decisions on the amount of generated interference. A more subtle heuristic (SDE) verifies if postponing
the start date of a task may improve the schedule by reducing the amount of interference. In practice,
it is very efficient to reduce the overall amount of worst-case interference, but this reduction only is
beneficial to the makespan of the system if the time penalty for each interference is large enough to
compensate the postponing of the start date of the tasks. Finally, the third heuristic we presented
was inspired by the work of [45] and [55]. This algorithm iteratively reduces the makespan of the
system by automatically switching the order in which the tasks are considered for scheduling, and by
applying a series of local optimizations. This heuristic is very efficient to reduce the makespan of the
scheduled task systems. Moreover, it is able to generate efficient schedules after only a few iterations,
which makes it suited for larger systems. Our evaluation also shows that on average, on small systems
scheduled with the ILP, the expected gain of switching from single to multi-phase was around 9%.
On our two more realistic applications, switching to multi-phase yields gains of over 10%. This study
validates the approach and the model, and paves the way for future improvements.

Regarding the contents of this chapter:

• these results led to the submission and acceptance of the ANR JCJC MeSCAliNe project (2022-
2026) that regards the predictable implementation of neural-networks in real-time systems for
autonomous vehicles, with me as project leader.

• these results allowed us to contribute to the submission and acceptance of the CAOTIC ANR
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project (2023-2026) led by Claire Maïza and Lionel Rieg, that regards interference in parallel
architectures (multi-cores, many-cores and GPUs). As part of this project, I am currently
collaborating on other aspects of the multi-phase model with Isabelle Puaut (IRISA, Rennes)
and Hugues Cassé. This collaboration is centered around the PhD thesis of Hector Chabot
(started October 2023), directed by Isabelle and co-advised by Hugues and myself.

• the TIPs framework was developed collaboratively with Hugues Cassé. A first version of the
framework was presented in the WCET workshop in 2018 [13]. The current version of the
framework was presented in the ARCS conference in 2021 [14]. The work presented in this
manuscript regarding the TIPs framework was adapted from this last publication.

• the work regarding the multi-phase model, including the correctness criteria, the scheduling
algorithms and the evaluation, were part of the PhD thesis of Rémi Meunier. This thesis was
directed by Thierry Monteil and myself. As a CIFRE thesis it was partially funded by Randstad
digital and ANRT, and was also partially funded by the JCJC ANR MeSCAliNe project. Rémi
successfully defended his thesis on November 30th, 2023.

• the results regarding the correctness criteria were published in ECRTS 2022 [57].

• the results regarding the scheduling algorithms and the evaluation were submitted to the Real-
Time Systems journal, and are currently under review.

• as part of the CAOTIC project, I am also co-directing the PhD thesis of Louison Jeanmougin
(started October 2023), together with Christine Rochange and Houssam-Eddine Zahaf (LS2N,
Nantes). This thesis targets interference in GPUs, and one of its aspects is to investigate how
the multi-phase model can be extended to handle the specificities of GPU kernels. Preliminary
results related to this thesis were obtained during the Master 2 internship of Louison (2023) and
have been published in the WCET workshop in 2023 [48].



Chapter 4

Conclusion and research project

4.1 Conclusion

This manuscript presents the main research results I have been involved in regarding parallelism issues
in the timing predictability of real-time systems, since I arrived in Toulouse in 2016. These results
focus on two aspects:

• dealing with parallelism issues at the instruction level to avoid timing anomalies and guarantee
the timing-compositional behavior of CPU cores while maintaining a high level of performance.
This aspect led to the design of the MINOTAuR core.

• dealing with parallelism issues at the task system level to tighten the estimation of interference
effects, while assuming the CPU is composed of timing-compositional cores. This aspect was
addressed by introducing the multi-phase model, providing correctness criteria for its implemen-
tation, developing the TIPs framework to construct multi-phase representation of tasks, and
designing static scheduling algorithms.

This work was for me the occasion to conduct original research and to co-direct my first PhD
students following my own directions. These directions are diversified and complementary, ranging
from architecture design to multi-core static scheduling and static analysis of binary code, and were
tackled using formal models and methods at the core of the solutions. In the end, the presented results
constitute a holistic effort to make the static analysis of real-time systems possible, safe and precise
for multi-core targets.

4.1.1 Other research directions

Since I arrived in Toulouse, I was involved in other research directions that I did not present in the
manuscript. I will now briefly describe them.

Static timing analysis for GPUs: The rapid adoption of machine learning techniques for au-
tonomous embedded systems such as unmanned air and ground vehicles pushes towards the use of
GPUs in real-time embedded systems. This raises many issues, since all the problems described and
tackled in this manuscript exist in GPUs, but GPUs also add problems of their own. The Single
Instruction Multiple Threads (SIMT) execution paradigm introduces a phenomenon called thread di-
vergence that has a strong impact on the timing behavior of the execution of GPU kernels. In [48],
we showed that it was possible to deal with it by creating warp-level CFGs that model the effects of
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thread divergence inside said warps, while remaining compatible with the traditional static WCET
analysis methods. Since then, Louison Jeanmougin has been working (as part of his PhD thesis (2023
- ), co-directed with Christine Rochange and Houssam-Eddine Zahaf) on a way to safely and precisely
combine the execution profiles of the various warps executing a kernel on the same GPU. In this work,
the profiles are described using the multi-phase model to represent alternating periods of execution
on the GPU and of waiting for the result of long latency operations.

GPU-specific interference: As part of the JCJC ANR MeSCAliNe project, Noïc Crouzet has been
working on the design of a predictable GPU architecture, since his Master 2 internship (2023) and
the start of his ongoing PhD thesis (2023 - ), co-directed with Christine Rochange. Starting from an
open-source GPU design based on an extension of the RISC-V ISA, we encountered a serious threat
to timing predictability. GPUs handle warps by implementing multiple hardware queues to store the
decoded instructions of each warp separately. At each cycle, a warp scheduler is responsible to elect
a warp that can issue and execute an instruction. For timing analysis purposes, it is desirable that
the warp scheduler policy be predictable and known. In the literature, the warp schedulers in Nvidia
GPUs have been described as implementing the Greedy then Oldest or Greedy then Round Robin
predictable policies, depending on the generation of the GPU family. However, our preliminary work
shows that the actual issuing policy of the GPU can be made unpredictable depending on how the
instructions are fetched: indeed, in the fetch stage another scheduler chooses for which warp the next
instruction is going to be fetched. Depending on these choices, the contents of the instruction queues
may vary, and can reduce the options for the warp scheduler at the issue stage, rendering its actual
choices unpredictable.

Efficient and certifiable neural network inference implementation: In the 2020-2024 period,
I have been collaborating in an ANITI1 chair entitled: Towards the certification of ML-based systems.
I was involved in the co-advisement of the PhD thesis of Iryna de Albuquerque Silva (2021 - ), directed
by Claire Pagetti from ONERA and co-advised with Adrien Gauffriau from Airbus. In her thesis, Iryna
has developed a compilation framework called ACETONE that takes as input a representation of a
trained neural network and produces a C implementation of the inference function for this network,
with properties that allow its certification (e.g. traceable code, no compiler optimizations, no dynamic
memory allocation, etc.). The framework was first presented in ECRTS 2022 [22]. It was then extended
to properly handle convolution layers, and published in the Real-Time Systems journal [23]. More
recent work have tackled the optimized yet predictable implementation of convolution layers, based on
high-performance computing (HPC) algorithms [21]. I have been contributing mainly to the timing
predictability aspects of this work.

4.2 Research project
The results presented in this manuscript lay the bases for future research directions that I present in
this section.

4.2.1 Extensions of the MINOTAuR core

The MINOTAuR core will be extended in several directions with multiple objectives in mind: (1)
pursuing the construction of an efficient and predictable core by including more complex acceleration
mechanisms, (2) extending the support for more instructions of the RISC-V ISA, and enabling key

1ANITI is one of the French 3IA Artificial Intelligence Interdisciplinary Institutes.
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mechanisms for OS support, in order to use MINOTAuR as an experimental platform for other research
(including research of the Real-Time systems community) and (3) building a multi-core framework in
order to experiment with architectural design ideas (e.g. interconnects, arbitration cores) and with
analysis solutions (e.g. multi-phase).

First, I will investigate how to enable the Memory Management Unit (MMU) so it does not generate
timing anomalies. I do not foresee any major difference compared to what we have already done in
the core, so this step should be quick and relatively easy. However, it is crucial in order to make the
core Linux-ready, which I believe will be beneficial to the Real-Time research community. This work
could be the topic of a Master 1 or 2 internship this year.

Second, the MINOTAuR core will be extended to a predictable superscalar design with out-of-order
execution. The main challenge is that the definition of monotonicity that is at the heart of our proofs
of absence of timing anomalies was designed with in-order execution in mind and is too restrictive to
be used for out-of-order execution. In essence, out-of-order execution can create situations in which
monotonicity is broken for a short period of time and in a limited portion of the pipeline. However,
by reordering instructions in the commit stage, and with a clever design of the issue and execution
stages, it is possible to guarantee that monotonicity is restored once the instructions leave the pipeline.
We thus need to relax the definition of monotonicity to a version that complies with the specifics of
out-of-order execution, and then to find general design guidelines that make a core provably timing
predictable. This will be tackled as part of the remainder of the PhD thesis of Alban Gruin.

In parallel, a predictable multi-core platform based on MINOTAuR will be designed. The first
aspect of this work will be to extend the supported list of instructions to include multi-core synchro-
nization support. The challenge will be to explore efficient designs that do not generate interference
or for which the contentions can be safely bounded. A second aspect will tackle the implementa-
tion of predictable memory access protocols enforced by the bus and memory controllers. A starting
point will be to look at existing work regarding ARM MPAM protocol [79] and the quality of service
configurations of the Xilinx UltraScale+ system-on-chip [29] and to try to adapt these protocols to
directly target predictability while maintaining sufficient performance levels. The last aspect regards
the design of a core dedicated to the orchestration of memory copies between the shared memory
and the local private memories of the cores. This last item is the topic of a CIFRE PhD thesis in
collaboration with Continental (we are currently looking for candidates).

Finally, the MINOTAuR core will be modelled in OTAWA. Building on the acquired experience
and a good knowledge of the core, it should be reasonably simple to model its timing properties with
a high precision in an OTAWA model, which is usually an issue for commercial processors. Doing so
will provide a new experimental platform, in which it will be possible to conduct measurements on the
synthesized version of the core and analyses with OTAWA on the same core. Moreover, building an
OTAWA model for MINOTAuR, opens the possibility to derive multi-phase representations of tasks
for this target, once the MINOTAuR-based multi-core architecture is built. This work could constitute
the topic of a Master 1 or 2 internship in the close future.

4.2.2 Proof automation

The formal proofs of monotonicity enumerate many sub-cases, and it is easy to forget or get one wrong
when performing the proof by hand. For the same reason, reading these proofs to convince oneself of
the monotonicity of a core is also a difficult task. To avoid these shortcomings, we started using the
Coq proof assistant to make sure that no sub-case was missing. However, writing a new Coq model
and proof for each new core or each variant of a core is also time-consuming. On the other hand, in
the first-order logic model, the pipeline is depicted as an acyclic graph whose nodes have a limited
set of properties. For a family of processors (e.g. in-order pipelines), the shape of the graph and the
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actual properties of the nodes may vary, but the set of properties remains the same. As the proofs rely
on these shapes and properties in a mechanical way, I wish to explore how to automatically generate a
Coq model from the first-order logic model of a core, and to investigate to what extent the proof itself
can be automatically generated. In the meantime, the B method will also be employed to prove the
monotonicity of a particular pipeline design as a refined property of the monotonicity of more abstract
pipeline models. Both solutions (Coq and Event-B) will be explored as part of the ANR ProTiPP
project, in collaboration with colleagues from the ACADIE team at IRIT (Mamoun Filali, Jean-Paul
Bodeveix).

4.2.3 Extensions of the multi-phase model

The first aspect of this research direction concerns the improvement of the TIPs framework, by com-
bining its methodology with the one of StAMP [24], developed in Rennes. Each method has its own
advantages and drawbacks. The TIPs approach offers more precision and control, by working on
the explicit execution traces and by placing synchronizations at the necessary locations in the code.
However, enumerating the traces may be intractable for complex applications, and adding too many
synchronizations in the code may be unfeasible for embedded targets with limited memory. On the
other hand, the StAMP approach relies on the Implicit Path Enumeration Technique, and thus can
handle complex software with many possible execution traces, and synchronizes the code only on very
specific locations, that are statically guaranteed to be on any execution path. This greatly limits the
number of required synchronizations, but also dramatically reduces the options in terms of multi-phase
profile design. One aspect of the PhD thesis of Hector Chabot is to investigate how to combine the
best of these two worlds in order to limit the drawbacks of each method while enjoying their benefits.
One key aspect lies in the limited use of Best-Case Execution Time (BCET) to improve the precision
of the profiles while keeping the number of required synchronizations low. On top of designing new
static analysis methods to derive this information, this approach requires to redefine the correctness
criteria (and the underlying method to correctly count the number of accesses per phase) that we
described in this document, in order to make them fit the specifics of the new model. Indeed, the
swap from synchronizations to BCET information in order to lower-bound the execution dates of the
memory accesses imposes the design of a new interference analysis method, since without synchro-
nizations, adding a penalty to a phase in the model has no concrete effect on the corresponding code.
It could thus happen that the assumptions made in the interference analysis no longer correspond to
the actual code of the task. The interference analysis must be extended to take this into account.

Another promising aspect would be to exploit the multi-phase model in online (limited) preemptive
scheduling algorithms. Indeed, phase boundaries make great candidates for preemption points, and
cache effects can be computed at the granularity of phases, by adapting classical CRPD methods [2].
All synchronizations would be handled by a (global or core-local) scheduler or dispatcher that would
be responsible for orchestrating the release of phases. The main challenges lie in the definition of
efficient online scheduling algorithms adapted to the multi-phase model and in the implementation of
the scheduling/dispatching code whose accesses to the shared memory and buses must remain limited
and statically bounded. Such a solution also opens opportunities to place synchronizations inside
(nested) loops, which corresponds to a current limitation of the TIPs and StAMP methods. Lifting
this limitation will allow the representation of loop iterations (or groups of iterations) as separate
consecutive phases in software that is dominated by loops, such as embedded neural networks.
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4.2.4 Static timing analysis for GPUs

Regarding GPUs, I wish to pursue and build on the preliminary research results we have obtained.
This requires pursuing two complementary objectives: (1) building a static WCET analysis framework
for GPU kernels, on the same model as for CPUs, and (2) designing predictable GPU pipelines that
allow simplifying hypotheses in the analysis framework. The analysis framework must include a
micro-architectural model of the GPU pipeline in order to derive a multi-phase representation of the
worst-case execution of a single warp in isolation. Each phase must account for the potential number
of accesses made to each memory of the GPU separately in order to compute precise interference
on each memory subsystem (global/local and shared), and on whether it corresponds to a phase of
active work with instructions being issued for the warp, or a phase of waiting for a long latency
operation. Being able to derive such a representation is the first objective of this research direction.
The second objective is to derive a conservative yet precise formula to combine the representations of
warps belonging to the same thread block. A first step will be to assume that all warps in the same
block have the same worst-case multi-phase profile. This formula can then be complemented by adding
or subtracting interference terms that account for the cache effects of each warp on the execution of
the others, as well as contentions in the memory subsystems. The PhD thesis of Louison Jeanmougin,
as part of the CAOTIC ANR project, will be the occasion to start working on this direction, which
will be pursued in the long term.

This analytical approach can be seen as the GPU equivalent of the compositional approach in
CPUs, and in the same fashion, it requires the GPU pipeline to operate in a time-predictable fashion.
This requires the design of efficient and predictable components for the GPU pipelines: the same
problems that exist for CPUs (e.g. parallelism between instruction and data caches) are present in
GPUs, in addition to original ones (e.g. a single fetch unit shared by all warps). These GPU-specific
issues must be identified, and for each of them a solution must be found, may it be a modification of
the design, of the assumptions made in the analysis, or a combination of both. This will be the topic
of the PhD thesis of Noïc Crouzet, as part of the MeSCAliNe ANR project, and will also be pursued
in the middle to long term.

4.2.5 Predictable, parallel implementation of neural network inference

The last research direction I intend to pursue is related to the parallel implementation of neural
networks. Currently, the inference function of neural networks follows HPC algorithms that try to
optimize the placement of the tensors in the various caches of the memory hierarchy, in order to
maximize the reusability of loaded blocks. As it happens, these algorithms are designed to be highly
predictable (at least in their single-core versions), and in fact it is this predictability that is being
exploited in order to increase the performance of the inference function. However, the commonly used
implementations [76, 74] rely on unpredictable mechanisms such as dynamic memory allocation that
preclude their use in a time-critical context. The work that has been started with ACETONE must
be pursued to demonstrate that it is feasible and desirable to reconcile performance and predictability
for neural network inference in embedded systems. The next steps in this effort are related to (1)
the predictable parallel implementation of neural network layers, in particular by adapting highly
optimized general matrix multiplication (GEMM) algorithms, (2) the extension of the list of supported
layer families and network architectures in ACETONE and (3) the extension of ACETONE to GPU
targets. The first item is an extension of our latest work on predictable optimized GEMM functions
for single-core targets. The main difficulties in switching to multi-core lie in the multiple interference
sources: contentions on the buses/memory controllers, such as the ones studied in this manuscript, and
cache block invalidation in shared L2 or L3 caches. These events must be bounded by a combination of
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a precise knowledge of the architecture and algorithm parameters to tackle the blocks invalidation issue,
and of the usage of a practical abstraction such as the multi-phase model to tackle the interference on
the buses. This research will start in the second semester of 2024 with a M2 internship and will be
pursued along with the two other items in a CIFRE PhD thesis (starting 2025) as part of the ANITI
chair I collaborate in.
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Enfin j’interviens en M2 sur des thématiques en lien avec le temps-
réel (langages synchrones, analyse statique et géneration d’exécutables
embarqués temps-réel). Au début de ma carrière, j’ai également enseigné
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Participation à des projets de recherche

2024 - ANR ASTRID Printemps :
Ce projet est réalisé en collaboration avec des ingénieurs de recherche
de Thales TRT. L’objectif est de développer une plateforme multi-coeurs
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chercheurs de l’équipe TRACES et de l’équipe ACADIE de l’IRIT.
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Dans ce projet, l’objectif est de réfléchir sur les différents modèles exis-
tants pour représenter un processeur (depuis le langage de spécification
du processeur comme VHDL, jusqu’à des langages très spécifiques per-
mettant d’exprimer certaines propriétés temporelles), et de fournir des
outils et des méthodes permettant d’accroitre la confiance que l’on peut
avoir dans le fait qu’un modèle donné représente effectivement le com-
portement d’un processeur donné.

2019 - 2021 Labex CIMI AVATAr (Responsable) :
Ce projet rassemblait 4 enseignants-chercheurs permanents de mon
équipe pour une durée de 2 ans, afin d’investiguer le comportement tem-
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modèle d’analyse de pire- temps d’exécution.
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Encadrement de thèses

2020 - 2023 Rémi Meunier. Soutenue le 30/11/2023. Thèse CIFRE (Randstat digi-
tal)
Co-encadrée à 50% avec Thierry Monteil
Rapporteurs : Angeliki Kritikakou (IRISA) et Emmanuel Grolleau (EN-
SMA)
Titre : Prédiction du temps d’exécution d’applications dans des archi-
tectures multi-cœurs.
Résumé : Cette thèse explore la thématique du modèle multi-phases
de tâches pour réduire la surestimation des interférences entre tâches
s’exécutant en parallèle sur des architectures multi-coeurs. Trois axes
principaux sont abordés : (1) la formalisation des critères de correc-
tion du modèle multi-phases, (2) l’obtention et l’amélioration des profils
multi-phases, par le biais d’algorithmes génétiques et d’heuristiques ad-
hoc, et (3) l’ordonnancement statique des profils multiphases.

2023 - Louison Jeanmougin. Thèse financée par projet ANR (CAOTIC)
Co-encadrée à 33% avec Christine Rochange et Houssam-Eddine Zahaf
(LS2N)
Titre : Analyse de Pire-Temps d’Exécution sur Architecture GPU
Résumé : Le calcul de WCET pour des applications exécutées sur des
processeurs monocoeurs est une discipline mature. Cependant, les tech-
niques existantes ne peuvent être utilisées directement dans le contexte
des GPUs : afin de gérer des milliers de threads actifs en parallèle,
les GPUs adoptent un modèle d’exécution très différent et sensiblement
plus complexe que celui des CPUs. Le premier objectif de cette thèse
est de fournir une solution analytique à une instance du problème dans
laquelle un certain nombre d’hypothèses simplificatrices seront faites (un
seul bloc, warps symétriques, architecture simplifiée, etc.) : l’objectif est
d’obtenir une formule (ou un ensemble de formules) aussi simple que pos-
sible permettant de caractériser les effets temporels liés à la concurrence
entre warps d’un bloc. Par la suite, cette formule sera complexifiée en
relaxant les hypothèses simplificatrices, étape par étape, pour prendre
en compte notamment les différentes sources d’interférence matérielle
entre threads et entre warps concurrents. Ces sources d’interférences et
leurs effets sur le temps d’exécution pourront être caractérisés dans un
premier temps par le biais de mesures.
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Résumé : Les systèmes embarqués temps réels critiques sont om-
niprésents dans l’industrie du domaine du transport. Avec l’évolution de
la technologie, de nouvelles utilisations ont vu le jour : des algorithmes
de détection visuelle ou de traitement de signaux sont maintenant réal-
isables grâce à l’utilisation d’architectures parallèles. Cependant, dans
l’objectif de garantir les contraintes des produits et pour satisfaire les au-
torités de certification, ces technologies ne sont réellement utilisables que
si l’on est capable de comprendre suffisamment ces architectures pour
en fournir une modélisation permettant de calculer une borne WCET
pour ces applications. Une étude d’un design de GPU simple et open
source représente un point de départ solide pour mettre au point des
techniques d’analyse statiques applicables aux architectures parallèles.
Le GPU Vortex est issu d’un projet de recherche académique reconnu,
il est suffisamment simple pour servir de point de départ aux recherches
tout en implémentant les fonctionnalités de base attendues d’un GPU.
L’objectif initial de la thèse est d’arriver à un modèle complet permet-
tant de calculer statiquement un pire-temps d’exécution pour un kernel
donné exécuté sur cette cible. Ce calcul se basera sur une abstraction des
mécanismes d’exécution du GPU Vortex. Par la suite, des modifications
pourront être apportées au design du GPU afin de le rendre plus pré-
dictible (réduire le fossé entre l’abstraction et l’exécution réelle) et plus
performant (ajouter des mécanismes plus avancés, tout en conservant la
prédictibilité).

2023 - Hector Chabot. Thèse financée par projet ANR (CAOTIC)
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imum d’accès à des ressources partagées. Cependant, les accès aux
ressources partagées ne sont pas réparties uniformément au long de
l’exécution des tâches. L’objectif de cette thèse est d’améliorerla ca-
pacité des analyses de logiciel à estimer et réduire les interférences dans
les architectures multi-coeurs en cassant la représentation monolithique
de l’exécution des phases et en la remplaçant par le modèle multi-phases.
Un des défis sera d’identifier la granularité optimale des phases en fonc-
tion du comportement et du code de chaque tâche.
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Co-encadrée à 33% avec Claire Pagetti (ONERA) et Adrien Gauffriau
(Airbus)
Titre : Environnement de programmation certifié pour les applications
de machine learning.
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Résumé : L’apprentissage automatique gagne une considération impor-
tante dans le domaine des systèmes critiques, y compris en aéronautique.
Cependant, comme ces applications n’atteignent pas les niveaux de con-
fiance de sécurité classiques et ne sont pas mises en œuvre avec un proces-
sus de développement accepté, de nombreuses activités de recherche et
d’ingénierie doivent être menées avant de les intégrer dans les avions. La
question de savoir comment implémenter en toute sécurité et de manière
fiable un réseau neuronal sur un matériel adéquat est d’une importance
vitale. En effet, les exigences de certification, en particulier celles de
la DO 178C, imposent de fortes garanties sur la qualité du code et at-
tendent du concepteur qu’il calcule le WCET. Le but de la thèse est
d’explorer ces problématiques.

2021 - Alban Gruin. Thèse sur bourse ministérielle
Co-encadrée à 50% avec Pascal Sainrat
Titre : Cœur de calcul RISC-V efficace, déterministe et composable.
Résumé : Cette thèse explore la conception d’architectures matérielles
prédictibles efficaces et complexes, en partant du coeur RISC-V MINO-
TAuR et en introduisant petit à petit des mécanismes d’accélération de
plus en plus aggressifs (store buffer, superscalarité, stations de réserva-
tion, etc.). En s’appuyant sur la notion de monotonicité du progrès des
instructions, les différentes variantes du pipeline sont prouvées imper-
méables aux anomalies temporelles.

Encadrement de stages de Master

2023 Louison Jeanmougin, M2 : "Construction de CFGs au niveau warp pour
analyse WCET des GPU", co-encadré avec Christine Rochange et Pascal
Sotin

2023 Noïc Crouzet, M2 : "Design et synthèse de GPU open source pour la
prédictibilité temporelle", co-encadré avec Christine Rochange

2022 Louison Jeanmougin, M1 : "Bibliothèque de modification de code ARM
désassemblé"

2022 Célestin Grenier, 5e année ingénieur ISAE : "Implémentation du jeu
d’instruction Kalray dans OTAWA"

2021 Michael Adalbert, M2 : "Modélisation du comportement temporel d’un
GPU nvidia", co-encadré avec Christine Rochange

2021 Alban Gruin, M2 : "Modification d’un processeur Risc-V pour le rendre
prédictible temporellement", co-encadré avec Christine Rochange

2020 Emmanuel Caussé, M2 : "Extraction de TIPs pour analyse statique
d’applications critiques embarquées"

2020 Alexis Cornard, M2 : "Modélisation du jeu d’instruction des GPUs
Nvidia Pascal en simnml", co-encadré avec Hugues Cassé

2020 Anthony Barrusseaud, M2 : "Apprentissage automatique de reconnais-
sance de feux de circulation ferroviaire et génération du code d’inférence
embarqué correspondant en C", co-encadré avec Hugues Cassé
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Participation à des Jurys de thèse

2023 Nicolas Bellec, "Security enhancement in embedded hard real-time sys-
tems", (IRISA - Univ. Rennes 1)
Examinateur

Présentations invitées

2023 Journée commune GDR SOC2 – IRT saint Exupery : Scientific
day on embedded high performance computing, Toulouse
Timing predictability of GPUs: challenges and advances

2021 Université d’été École Temps Réel (ETR), Poitiers
Analyse statique de pire-temps d’exécution

Responsabilités collectives

2024 - Élu CNU – Section 27
2024 - Élu de la Commission Formation et Vie Étudiante (CFVU) et

du Conseil Académique (CAc) de l’université Toulouse 3
2024 Workshop Chair du workshop WCET
2024 Membre du comité de programme de la conférence RTNS 2024
2023 Membre du comité local d’organisation de la conférence HiPEAC

2023
2023 Organisateur du workshop CAPITAL
2023 - Membre du comité de programme de la conférence ECRTS
2022 Session chair au workshop WCET
2022 - Membre du comité d’organisation du workshop CAPITAL
2022 - Membre du comité de programme du track "Work in Progress" de

la conférence EMSOFT
2022 - Membre de l’équipe d’animation de l’axe "Calcul embarqué haute

performance" du GDR SOC2
2022 - Co-responsable du domaine d’actions stratégiques "Aéronautique Es-

pace Transports" de l’IRIT
2020 - Membre du comité de programme de la conférence ARCS
2020 - 2023 Élu de la Commission Recherche et du Conseil Académique de

l’université Toulouse 3
2018 - Élu du collège scientifique section 27 (et du GAEC B depuis 2022)
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