
HAL Id: tel-04598434
https://hal.science/tel-04598434v1

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfer learning between robots with state abstraction
Samuel Beaussant

To cite this version:
Samuel Beaussant. Transfer learning between robots with state abstraction. Automatic. Université
Clermont Auvergne, 2023. English. �NNT : �. �tel-04598434�

https://hal.science/tel-04598434v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ CLERMONT AUVERGNE
ECOLE DOCTORAL DES SCIENCES POUR L’INGÉNIEUR DE

CLERMONT-FERRAND

Transfer Learning between robots with State
Abstraction

THÈSE

pour obtenir le garde de

DOCTEUR D’UNIVERSIÉ

Spécialité

Électronique et Système

présentée et soutenue publiquement par

Samuel BEAUSSANT
le 20 Septembre 2023

JURY :

Serena IVALDI Chargée de recherche, INRIA Nancy Grand-Est Examinateur
David FILLIAT Professeur, ENSTA Paris Rapporteur
Stéphane DONCIEUX Professeur, ISIR Rapporteur
Olivier STASSE Directeur de recherche, CNRS/LAAS Directeur de thèse
Benoît THUILOT Maitre de Conférences, Institut Pascal Co-encadrant de thèse
Sébastien LENGAGNE Maitre de Conférences, Institut Pascal Co-encadrant de thèse

List of Figures

1.1 German speaker trying to convey cooking instructions to a spanish speaker 15
1.2 Total amount of computation needed to train corresponding deep learning

models (log scale) [Schwartz 20]. 16

2.1 Illustration of Talos, a giant automaton made of bronze and forged by
Hephaistos to guard the shore of Crete. 23

2.2 Illustration of Pandora, a woman molded in clay by Hephaistos at Zeus
request. 23

2.3 Schematic representation of an artificial neuron. 25
2.4 Representation of a simple neural network with 2 inputs, 2 hidden layers of

4 neurons each and 2 outputs. Biases and non-linear activation functions
are usually not represented for the sake of clarity. 26

2.5 The tanh activation function and its derivative. 28
2.6 The ReLU activation function and its derivative. 29
2.7 The Leaky ReLU activation function and its derivative. 30
2.8 The sigmoid activation function and its derivative. 30
2.9 The SiLU activation function and its derivative. 31
2.10 Visual representation of a simple Markov Decision Process 33
2.11 Reinforcement learning feedback loop. 34
2.12 An example of different representations for the same data 39
2.13 Usual auto-encoder architecture. 40
2.14 Usual variational auto-encoder architecture with the reparametrization trick. 42

3.1 Illustration of a classical transfer learning setup with computer vision models 46
3.2 Samples of tasks that PaLM-E can achieve [Driess 23]. 47
3.3 Illustration of the domain randomization concept 48
3.4 Illustration of the Cross-Agent Transfer Learning philosophy 49
3.5 Illustration of the naive experiment setup 51
3.6 Learning curves when using direct transfer of the hidden layers 52
3.7 Auto-encoders training with an Euclidean distance between embeddings as

the similarity metric[Gupta 17]. 54
3.8 Robots considered for the experiments performing the proxy tasks[Gupta 17]. 55
3.9 Illustrative example of a Universe with 4 different worlds (2 robots and 2

tasks) [Devin 17]. 55
3.10 Training modules . 56
3.11 Grid of tasks and robots considered for their experiments. As shown, one

world was not seen during training and later tested on to study generaliza-
tion [Devin 17]. 57

3

3.12 Schematic representation of the UNN pipeline[Mounsif 23] and its three
different modules. The red task-specific module is at the center with the
robot-modules on each side . 58

3.13 Schematic representation of the UNN module training with and without
the Base Abstracted Modeling on a pick and place task 61

3.14 Schematic representation of some the robots used for the experiments on
the UNN method. From left to right: Generic-3 robot, Berkeley Blue,
Kuka-LWR, Leg Type 1, Leg Type 2. Image taken from [Mounsif 23] . . . 62

3.15 Schematic representation of a tennis-table setting, one of the tasks used for
the experiments on the UNN method. Image taken from [Mounsif 23] . . . 63

4.1 Schematic representation of the Latent Space UNN pipeline 66
4.2 Illustration of the state pairing procedure for two robots with different

morphologies. 67
4.3 Illustration of the bases training procedure for two robots with different

morphologies. 68
4.4 Bases fitting process . 70
4.5 Illustration of the UNN training procedure. 70
4.6 Latent space UNN learning process . 72
4.7 Considered Universe for LS-UNN experiment 73
4.8 Kinematic diagrams of the considered robots 74
4.9 Peg insertion task setting with the physical robots. 76
4.10 Considered tasks for the experiments for LS-UNN 77
4.11 Primitive reaching task. The violet reaching target can move freely inside

a reachable pre-defined working space. 78
4.12 Averaged reconstruction error (on the test set) 78
4.13 Latent space for the Braccio/Panda pair after applying PCA for dimen-

sionality reduction and visualization on a 2D space. 79
4.14 Mean and standard deviation for each latent variable. The mean and stan-

dard deviation of the latent variables are the same across robots. 79
4.15 Neural network architecture of the full UNN network 80
4.16 Neural network architecture of the full PPO agents. We suppose a task of

dimension k performed by a robot with n DoF. 80
4.17 Close-up look on the red square hole and blue peg used for the peg insertion

task. 81
4.18 Pick and place task. Training curves on considered robots 85
4.19 Ball catcher task. Training curves on considered robots 86
4.20 Peg insertion task. Training curves on considered robots 87
4.21 Peg insertion task. Over-fitting performance curves on considered robots . 88
4.22 Variations based on the Sawyer robot in MuJoCo. Joints are represented

by white rings and are shuffled to create different kinematic chains [Chen 18]. 89
4.23 Samples of environments used for the experiments on HARL. Multiple vari-

ations of these robots were designed by changing links length. 90
4.24 Top: schematic representation of the modular robot-agnostic policy. Bot-

tom: robots considered for the experiments. Image taken from [Ghadirzadeh 21] 91
4.25 Example of graph structure for a Walker-Ostrich 91
4.26 Experiments performed in [Zhang 21]: (a) sim2real visual adaptation, (b)

cross-physic transfer and (c) cross-morphology transfer. 93
4.27 Morphologies considered for the locomotion task in [Wan 20] 94

4

5.1 Schematic representation of the delay aware UNN 98
5.2 Robots considered for the experiments . 99
5.3 Transfers considered for the robots . 100
5.4 Physical experiments setup. Left robot performs the task, while the right

robot is used only to hold one end of the gutter. 101
5.5 Training curves. All the agents were trained for 400000 steps. 103
5.6 Ball trajectories with 0.3, 0.8 and 0.5 as desired ball positions. 105
5.7 RL policy (Q-Network) using a forward model to act on undelayed obser-

vations [Derman 21]. 108
5.8 RL policy acting on a environment with observation delay using information-

state I2 to derive a delayed action [Nath 21]. 109

5

List of Tables

4.1 Pick and Place task: performances on the simulated robots. Results are
reported as percentage of task success over 1000 trials. 82

4.2 Ball Catcher task: performances on the simulated robots. Results are
reported as percentage of task success over 1000 trials. 83

4.3 Peg Insertion task: performances on the simulated robots. Results are
reported as percentage of task success over 1000 trials. 84

4.4 Peg Insertion task: performances on the physical robots. Results are re-
ported as percentage of task success over 28 trials. 84

5.1 Sim2sim transfer. Performances obtained for the UNN transfer on the
simulated robots. Results are displayed with delay aware method on the
left / delay unaware method on the right. 103

5.2 Sim2real transfer. Performances obtained for the vanilla transfer and the
UNN transfer on the physical robots. Results are displayed as delay aware
method on the left / delay unaware method on the right. 106

A.1 Performance obtained for UNN agents on the Pick and Place task and
zero-shot transfers. 117

A.2 Performance obtained for UNN agents on the Peg Insertion task and zero-
shot transfers. 118

A.3 Performance obtained for UNN agents on the Ball Catcher task and zero-
shot transfers. 118

6

Acronyms

AI Artificial Intelligence

BAM Base Abstracted Modeling

CATL Cross-Agent Transfer Learning

CDMP Constant Delayed Markov Decision Process

CV Computer Vision

DA-UNN Delay Aware Universal Notice Network

DoF Degree of freedom

DTW Dynamic Time Warping

LS-UNN Latent Space Universal Notice Network

MDP Markov Decision Process

ML Machine Learning

MLP Multi-Layer Perceptron

NLP Natural Language Processing

PPO Proximal Policy Optimisation

RL Reinforcement Learning

Soft-DTW Soft Dynamic Time Warping

SOTA State-of-the-art

TL Transfer Learning

UNN Universal Notice Network

VAE Variational Auto-Encoder

7

Remerciements

This research was supported by the French Research Agency ANR through the AIM
project and by the project ANITI (ANR-19-P3IA-0004)

8

Résumé

Malgré de nombreuses améliorations concernant l’efficacité des méthodes d’apprentissage
par renforcement en robotique, l’entrainement à partir de zéro nécessite encore des millions
(voire des dizaines de millions) d’interactions avec l’environnement pour converger vers
un comportement performant. Dans le but d’atténuer ce besoin important de données,
sans pour autant perdre en performances, une possibilité prometteuse est de se tourner
vers l’apprentissage par transfert. Le but de cette thèse est d’explorer l’apprentissage par
transfert dans le contexte du RL dans le but spécifique de transférer des comportements
d’un robot à un autre, même en présence de divergences morphologiques ou d’espaces
état-action différents. En particulier, cette thèse présente un processus de réutilisation
des connaissances passées acquises par un robot (source) sur une tâche pour accélérer (ou
même éviter) le processus d’apprentissage d’un robot différent (cible) sur la même tâche.
La méthode proposé s’appuie d’abord sur une phase de pré-entraînement non supervisée
pour apprendre un espace latent robot-agnostique à partir des trajectoires collectées sur
un ensemble de robots. Ensuite, il est possible d’entrainer un modèle à l’intérieur de cet
espace pour résoudre une tâche donnée afin de produire un module de tâche réutilisable
par n’importe quel robot partageant cet espace de caractéristiques communnes.

En outre, cette thèse s’attaque au problème du transfert simulation vers réel lors
du transfert d’un comportement appris dans un simulateur, particulièrement la gestion
des retards qui est peu prise en compte dans la litterature. En effet, nous montrons
que les modèles qui ne tiennent pas compte des délais diminuent considérablement leurs
performances lorsqu’ils sont testés sur un robot physique, où le matériel et le système
sensoriel introduisent inévitablement des délais. Ainsi, l’approche développée est simple
mais efficace pour entrainer des agents de manière à ce qu’ils puissent gérer une gamme
de retards définie par l’utilisateur.

À travers plusieurs tâches robotiques et plateformes matérielles hétérogènes, à la fois en
simulation et sur des robots physiques, cette thèse montre les avantages de ces approches
en termes d’amélioration de l’efficacité d’apprentissage et de performance. Plus précisé-
ment, une généralisation instantanée est établie dans certains cas, où les performances
après le transfert sont conservées. Dans le pire des cas, les performances sont récupérées
après une courte adaptation sur le robot cible pour une fraction du coût d’entrainement
nécessaire pour apprendre une politique avec des performances similaires à partir de zéro.

9

Abstract

Despite numerous improvements regarding the effectiveness of Reinforcement Learning
(RL) methods in robotics, training from scratch still requires millions (or even tens of
millions) of interactions with the environment to converge to a high-performance behavior.
In order to alleviate this huge need for data without losing performance, one promising
avenue is Transfer Learning (TL). The aim of this thesis is to explore Transfer Learning
in the context of RL, with the specific aim of transferring behaviors from one robot to
another, even in the presence of morphological divergences or different state-action spaces.
In particular, this thesis presents a process for reusing past knowledge acquired by a robot
(source) on a task to accelerate (or even avoid) the learning process of a different robot
(target) on the same task. The proposed method first relies on an unsupervised pre-
training phase to learn a robot-agnostic latent space from trajectories collected on a set
of robots. Then, it is possible to train a model within this space to solve a given task,
in order to produce a task module that can be reused by any robot sharing this common
feature space.

In addition, this thesis tackles the problem of simulation-to-real-world transfer when
transferring a model trained in a simulator, with a focus on delay management, which is
often overlook in the current literature. Indeed, we show that models oblivious to delay
significantly drop in performance when tested on a physical robot, where the hardware
and sensory system inevitably introduce delay. The approach developed is a simple but
effective one for training agents to handle a user-defined range of delays.

Through several robotic tasks and heterogeneous hardware platforms, both in simula-
tion and on physical robots, this thesis shows the benefits of these approaches in terms of
improved learning efficiency and performance. More specifically, we report zero-shot gen-
eralization in some instances, where performance after transfer is preserved. In the worst
case, performance is recovered after a short adaptation on the target robot for a fraction
of the training cost required to learn a policy with similar performance from scratch.

10

Contents

1 Introduction 14
1.1 Initial discussion . 14
1.2 Thesis context . 16

1.2.1 Challenges . 16
1.2.2 Material and scientific background 17

1.3 Contributions . 18
1.3.1 Learning a robot-agnostic feature space 18
1.3.2 Dealing with multiple delay for sim2real transfer 18
1.3.3 Leveraging event-based camera for low-latency tracking 19
1.3.4 Diver gesture recognition . 19

1.4 Manuscript Layout . 19
1.4.1 Introduction to Machine Learning 19
1.4.2 State-of-the-art and problem statement 19
1.4.3 Transferring skills by aligning representations 20
1.4.4 Dealing with delay for simulation to reality transfers 20

1.5 Scientific publications . 20
1.5.1 International . 20
1.5.2 National . 21

2 Preliminaries: Machine Learning 22
2.1 Introduction . 22
2.2 Machine Learning . 23
2.3 Neural Networks and Deep Learning . 24

2.3.1 Artificial Neurons . 24
2.3.2 Multi Layer Perceptrons . 25
2.3.3 Activation Functions . 28
2.3.4 Dealing with overfitting . 30

2.4 Supervised Learning . 31
2.5 (Deep) Reinforcement Learning . 32

2.5.1 Motivations . 32
2.5.2 Markov Decision Process . 32
2.5.3 Solving MDPs with Reinforcement Learning 34
2.5.4 Reinforcement Learning Concepts 35
2.5.5 Proximal Policy Optimization . 37
2.5.6 Current challenges in Reinforcement Learning 38

2.6 Representation Learning . 38
2.6.1 Auto-encoders . 39
2.6.2 Variational Auto-encoders . 41

11

2.7 Conclusion . 42

3 Transfer Learning in Reinforcement Learning 43
3.1 Motivations . 43
3.2 Transfer Learning . 44

3.2.1 Definitions . 44
3.2.2 Computer Vision . 45
3.2.3 Natural Language Processing . 45
3.2.4 Simulation to real world . 47
3.2.5 Reinforcement Learning . 47

3.3 Problem statement . 48
3.3.1 Formalization . 48
3.3.2 A naive attempt . 50

3.4 Foundational Works . 52
3.4.1 Invariant Feature Space . 53
3.4.2 Modular Network Policies . 55
3.4.3 Universal Notice Network . 57

3.5 Conclusion . 62

4 Latent Space Universal Notice Network 64
4.1 Motivations . 64
4.2 Towards Zero-Shot Cross-Agent Transfer Learning via Aligned Latent-Space

Task-Solving . 65
4.2.1 Preliminaries . 65
4.2.2 Modules Training . 67

4.3 Experimental setup . 71
4.3.1 Considered robots . 72
4.3.2 Considered tasks . 72
4.3.3 Modules Training . 75

4.4 Results . 79
4.4.1 Zero-shot transfers . 82
4.4.2 UNN fine tuning . 83
4.4.3 Agent’s training . 85
4.4.4 Over-fitting . 87

4.5 Relation to prior works . 88
4.5.1 Learning a robot-agnostic policy . 88
4.5.2 Learning a correspondence mapping 92
4.5.3 Using a common feature space . 94

4.6 Conclusion . 95

5 Delay Aware Universal Notice Network 96
5.1 Motivations . 96
5.2 DA-UNN . 97

5.2.1 Constant Delayed Markov Decision Process (CDMP) 97
5.2.2 Solving a CDMDP . 97
5.2.3 Delay Aware UNN . 98

5.3 Experimental setup . 99
5.3.1 System Architecture and Robots 99
5.3.2 Task description . 100

12

5.3.3 Delay Aware UNN creation . 101
5.4 Results . 102

5.4.1 Training . 102
5.4.2 Transfer . 102
5.4.3 Discussion and perspectives . 107

5.5 Relation to prior works . 107
5.5.1 Model-based approaches . 107
5.5.2 State-augmented approaches . 108

5.6 Conclusion . 110

A Dealing with misaligned trajectories 115
A.1 Trajectory pairing . 115
A.2 Latent trajectories alignment . 115
A.3 Bases training . 116
A.4 Experiments . 117

A.4.1 Training setup . 117
A.4.2 Results . 117

A.5 Discussion and Perspectives . 118

13

Chapter 1

Introduction

1.1 Initial discussion
The industrial revolution was largely fuelled by the many technological innovations that
took place in the early 19th century. Many historians attribute this to the railway boom of
1840, made possible by the invention of the steam locomotive. What followed was a fran-
tic race for production, aimed at ever-increasing efficiency and lower costs. It was for this
purpose that Frederick Winslow Taylor developed his scientific organization of work in or-
der to propose an optimal manufacturing method [Taylor 14]. Production is broken down
into repetitive tasks performed by specialized workers. Ford then drew on this philosophy
to develop the assembly line, taking the precepts of Taylorism to the extreme. Machines
played a key role in this profound transformation of production techniques, initially pro-
viding simple mechanical assistance to alleviate the workers’ workload. Since then, a great
deal of scientific and engineering effort has gone into automating processes and tasks pre-
viously performed by humans. Naturally, mechanical and laborious tasks were the first
successes of this new scientific discipline called "Control engineering". In particular, it en-
ables the creation of fully-automated production lines, with all assembly tasks performed
by robots, therefore boosting efficiency as well as eliminating hazardous and/or repetitive
tasks for workers. However, it was not until the late 2000s [Goodfellow 16], with the rise
of Artificial Intelligence (AI), that we saw the emergence of systems with a versatility and
flexibility approaching our own. This breakthrough unlocked a wide range of applications
previously thought to be achievable only by humans, such as vision [Chai 21], natural lan-
guage processing [Otter 20], and decision-making [Grigorescu 20]. Multiple innovations
empowered workers and developers with more sophisticated tools to carry out complex
tasks more efficiently. In the current context, and in view of the lightning progresses made
in this field, it is easy to imagine that robots will play an increasingly important role in
our daily lives as they become more and more autonomous.

However, at the time of writing, training a model to perform even a relatively simple
task requires a staggering amount of experience and testing. This is mainly due to the fact
that these systems start learning without any prior knowledge of the task, the environ-
ment or their own bodies. In contrast, humans and intelligent beings, have a remarkable
capacity to adapt and learn. The main reason behind this acquisition efficiency, still be-
yond the reach of machines, is undoubtedly the transfer of knowledge, which means they
do not have to learn everything from scratch. The most fundamental and basic support
for this concept is contained in the genome, refined and transmitted from generation to
generation to endow newborns with a certain number of skills useful for their development

14

and survival. A case in point is the giraffe, which just a few hours after birth, is already
able to stand upright and run to escape predators [Langman 77]. Therefore, it seems that
these individuals are pre-programmed or initialized, not at random, like most AI models
but according to the genetic information they have inherited. Endowing machines with
similar prior knowledge to significantly speed up skill acquisition is still an open research
problem.

(a) Non-aligned knowledge representation. (b) Aligned knowledge representation.

Figure 1.1: German speaker trying to convey cooking instructions to a spanish speaker
through two different mediums: (a) using language and (b) using a demonstration.

Another, more sophisticated, form of knowledge transfer widely used in the animal
kingdom, consists in converting a signal (visual or audible, for example) into useful in-
formation for carrying out a task. This can be as simple as a visual demonstration, a
verbal explanation or instructions. In more exotic (and as yet unexplained) cases, such
as the blob (a unicellular organism), the transfer of knowledge takes place via some kind
of vein that forms between the two individuals [Vogel 16]. Nevertheless, whatever the
nature or medium of the information communicated, it is necessary for the expert (or
source agent) and the student (or target agent) to share a common representation for the
transfer to be useful [Sumers 20]. For example, explaining how to make a recipe in Ger-
man to someone who speaks only Spanish may not achieve the desired result. However, a
practical demonstration of the same instructions, either in person or on video, will provide
much more information. Indeed, given the morphological similarities that exist between
individuals of the same species, it is generally very easy to re-appropriate the behavior
demonstrated by the expert. This applies even to relative morphological differences, such
as between a child and an adult [Jones 09]. Even more impressive, it seems possible to
establish correspondences with an individual of very different morphology, so as to deduce
a strategy adapted to our own, thereby enabling us to achieve the same result as the one
demonstrated. Once again, it is not trivial to define a shared representation in robotic
domain for knowledge transfer in between AIs, particularly when morphologies differ.

In this PhD thesis, we tackle both unsolved research questions: how do we imbue
prior knowledge into the learning process for efficient training ? How can we define a
common representation space for skill transfer ? More specifically, we focus on adapting
learnt behavior from one morphology to another as it is particularly relevant to robotics.
Indeed, each manufacturer has its own design method, which inevitably leads to kine-
matic and dynamic differences in robot models. Thus, transferring a control strategy
from one type of robot to another is complex, as it involves finding a common control

15

structure, notwithstanding their distinct and unique physical structure. Nevertheless, en-
abling robots to appropriate and re-use knowledge acquired by another robot is a crucial
step towards reducing the training costs and energy footprint of robotic learning. A num-
ber of works already address this issue, but present practical limitations that motivated
the work presented in this thesis manuscript.

1.2 Thesis context

1.2.1 Challenges

A growing number of researchers are questioning and worrying about the increasing energy
requirements of State-of-the-art (SOTA) deep learning models. As previously reported in
[Schwartz 20], a paper focusing on eco-friendly deep learning (Green AI), the computation
required by SOTA is growing exponentially and doubling every few months, which amount
to a 300.000× increase in 6 years (between 2012 and 2018).

Figure 1.2: Total amount of computation needed to train corresponding deep learning
models (log scale) [Schwartz 20].

At the top of the computational resources curve in Figure 1.2, we can see several
Reinforcement Learning models specialized in board games playing (namely AlphaGo and
AlphaZero) dominating other contemporary models. From a more robotics-flavored point
of view, learning a successful gait controller requires a massive amounts of samples and
computations: respectively two billion samples and 400 million samples for a quadrupedal
robot in [Tsounis 20] and [Rudin 22] and approximately 1 billion samples for a humanoid
robot in [Radosavovic 23] (on 4 A100 GPUs). Other robotic applications such as in-hand
manipulation with a shadow-hand [Andrychowicz 20] achieves a cube re-orientation task

16

using an astonishing 6144 CPUs and 8 GPus for 50 hours. As a follow-up work, the same
robotic hand solved a rubiks cube manipulation task with even more compute power
(29440 CPUs and 64 V100 GPUs). From a more industrial robotics standpoint, a robotic
arm learned to push a puck in [Peng 18b] using 8 hours of computation with 100 cores.

The massive computations involved, not only results in a significantly substantial car-
bon footprint, but also causes detrimental effects on research inclusivity due to the associ-
ated expensive financial costs. Energy-efficiency of deep (reinforcement) learning models
is getting increasing attention from the AI community, with some authors [Schwartz 20]
advocating to use efficiency as an evaluation criterion for research alongside accuracy and
related measures. Among the considered solutions for an energy-efficient training, transfer
learning is one of the most popular in modern deep learning applications. It significantly
reduces the amount of data and compute power needed by re-using or re-purposing knowl-
edge previously acquired for another task or another model. It is widely used and higly
effective in Computer Vision and Natural Language Processing, but only started to at-
tract attention in the RL field recently. Indeed, only a couple of prior works proposed
methodologies to mitigate the data-hungriness of SOTA Reinforcement Learning algo-
rithms. Most notably, Mehdi Mounsif [Mounsif 20] proposed an efficient framework for
TL between robots with morphological differences, but the experimental results were lim-
ited to the digital world on simulated robots. This thesis follows on from this earlier work
by validating the transfer approach on multiple physical robotic arms. Additionally, we
propose an novel approach to learn a robot-agnostic feature space to support the transfer
of knowledge between robots, thereby avoiding the need for manual feature engineering.

The choice of using RL to learn controllers is motivated by the impressive advances
made in this field. It’s an easy-to-use tool, and powerful in its ability to generalize to
situations not previously encountered. Exploring this control paradigm is therefore of
scientific interest.

1.2.2 Material and scientific background

The research presented in this thesis was carried out at the Institut Pascal in Clermont-
Ferrand, within the Image, Perception Systems and Robotics (ISPR) laboratory. More
specifically, I was part of the Modeling, Autonomous and Control of Complex Systems
(MACCS) team. Two of my supervisors Sébastien Lengagne and Benoit Thuilot were
also part of this team. This research group mainly focuses on the modeling and control
of mobile and manipulative robots, robot vision and visual control. Its research applica-
tions are closely linked to robotized manufacturing. This thesis was also carried out in
collaboration with the Toulouse Systems Analysis and Architecture Laboratory (LAAS),
and more specifically the Gepetto team of which my thesis director, Olivier Stasse a se-
nior CNRS researcher, is the team leader. Olivier Stasse is also part of the Artificial and
Natural Intelligence Toulouse Institute (ANITI).

The Institut Pascal laboratory is equipped with several 6 Degree of freedom (DoF)
UR10 and 7 DoFs Franka Emika industrial robots which were used for our experiments.
For all our transfer experiments, these robots are assumed to have the same physical
capabilities even if their mechanical structures differ. Additionally, we also had access to
low-cost quality robots such as a 5 DoFs Braccio robot, used in some experiments. From
a software point-of-view, all computations were run on a consumer-grade GPU (GeForce
RTX 3080) and a 12 core AMD Ryzen 9 CPU. We leveraged the Pytorch deep learning
library for all our deep learning based experiments. The simulator used throughout this

17

thesis was Unity 3D [Juliani 18], a free physic engine. As a result, the equipment used is
within the reach of any laboratory, allowing reproducibility and re-use of our contributions.
Furthermore, this low energy-consumption setup is aligned with the Green AI philosophy
mentioned previously. We also release our source code (links available in the next section),
mostly written in Python and C#. Although other and more powerful simulators have
recently been proposed such as Isaac gym [Makoviychuk 21a], the delay between their
public release and the end of the thesis did not allow us to make the transition. This
simulator is proving more efficient at parallelizing experience gathering and training on
a massive scale, thus saving time. However, this innovation is complementary to our
contribution, as our approach reduces the amount of experience required, further reducing
training time.

1.3 Contributions

1.3.1 Learning a robot-agnostic feature space

As mentioned earlier, this PhD thesis aims to make substantial contributions to the field
of Transfer Learning in Robotics. Its main focus is directed towards transferring skills
from one robot to another, regardless of their respective physical structure. Our approach
relies heavily on the creation of a shared and aligned representation between the agents
considered. The definition of this common space is primordial for downstream trans-
fers as it relates how one task could be performed similarly by two different robots. We
make use of an unsupervised training procedure to discover the shared structure from
recorded demonstration of a basic task. This circumvents the need to manually define
the shared feature space unlike prior works. As a result, our method is more flexible
and does not require domain-specific knowledge. We demonstrate that our learned la-
tent space is highly suited for transfer by training a re-usable task module within it,
which generalizes (instantly in some cases) to unseen morphologies. Additionally, we also
show that the bias induced by the demonstrations used to craft the shared feature space
can ease the learning process. The source code for this contribution can be found at
https://github.com/sabeaussan/LS-UNN.

1.3.2 Dealing with multiple delay for sim2real transfer

Our second contribution (but first in chronological order) deals with transfer from simula-
tion to reality. More specifically, we consider the relatively frequent case where the agent
is trained on a simulator with instant execution of its actions and immediate access to the
state of the environment, but next deployed on hardware with imperfect actuators and
delayed perceptions. To overcome this obstacle, we introduce a simple training method to
deal with a broad range of delays, thereby preserving the transferability of agents trained
in simulation to robots with different morphologies and intrinsic delays. By bridging the
gap between simulation and reality, we further enable the seamless application of learned
skills in practical robotic scenarios. The source code for this contribution can be found at
https://github.com/sabeaussan/DelayAwareUNN.

18

1.3.3 Leveraging event-based camera for low-latency tracking

Other related works are still in progress at the time of writing. In particular, experiments
conducted jointly with a trainee aimed at transferring a highly dynamic ball-catching task
for which our transfer approach has been validated in simulation, to a real platform. The
additional contribution compared to DA-UNN is the use of an event-based camera instead
of an RGB frame-based camera for the low-latency acquisition of the position of the ball.

1.3.4 Diver gesture recognition

On a different note, a collaborative work with a PhD student from the University of
Toulon, Bilal Ghader, is also underway and as such not discussed in this manuscript.
The aim of this joint effort is to enable the recognition of underwater diving gestures by
training a classifier from gestures only made in the air domain. Indeed, water data are
very expensive to collect in contrast to air data, and this scarcity hinder performance
of the resulting diving gesture recognition model. Training a model with air data is
therefore appealing from a practical standpoint. However, there is significant differences
between the execution of the same gesture in the air and in the water, which prevent the
classifier trained with abundant air data to generalize well to water data. This challenge
can be addressed using a similar approach as our first contribution. More specifically, our
proposed solution relies on the creation of a shared representation space for air and water
data in order to train a domain agnostic classifier.

1.4 Manuscript Layout
This manuscript is organized as follows:

1.4.1 Introduction to Machine Learning

This dissertation begins with a brief introduction to Artificial Intelligence and Machine
Learning (ML) in chapter 2 to make our contributions easier to understand. It starts with
a description of the Multi-Layer Perceptron (MLP) architecture, widely used throughout
our work. Then discuss the nuts and bolt of this type of models, and provide the un-
derlying theoretical mechanisms of neural networks. Following this short introduction to
deep learning, we review the currently prevailing paradigms of machine learning starting
with Supervised Learning to introduce some general key concepts. Next, we move on to
Reinforcement Learning, the main ingredient in our contribution. We discuss some of
its current limitations and describe Proximal Policy Optimisation (PPO), the learning
algorithm used in this report. Finally, Representation Learning is introduced through the
Auto-Encoder framework, an essential component of our proposed transfer method.

1.4.2 State-of-the-art and problem statement

Chapter 3 centers around the main problematic of this thesis: transfer learning, delving
into its purpose within the field of machine learning and its potential benefits for Rein-
forcement Learning. Following this, it formally defines the general transfer learning prob-
lem and showcases various examples of its application across a range of ML sub-fields.
Then, we zoom in on the specific setting we are ultimately interested in: Cross-Agent

19

Transfer Learning (CATL), a branch of TL applied to Reinforcement Learning specifi-
cally for agents with different physical structure. We show through a simple experiment
that a naive TL approach based on the current paradigm widely spread in other ML fields
is inefficient, thereby requiring more sophisticated methods. Consequently, the chapter
proceeds to examine three CATL approaches and their limitations, which motivated our
research endeavor.

1.4.3 Transferring skills by aligning representations

Having clearly defined the problem and the shortcomings of some early solutions, Chapter
4 features our core contribution: a simple, yet efficient approach to learn a shared and
aligned feature space to support the transfer of knowledge between agents. By leveraging
the Universal Notice Network (UNN), a CATL framework developed by Mehdi Mounsif
during his PhD, we show through several tasks and robots that skills can be transferred
with instant generalization to other robots morphologies without having to explicitly de-
fine the shared representation unlike prior works. Our method is a two step process, first
requiring to match similar states across robots to learn a shared and abstract represen-
tation space. The next step involves learning to solve the task inside the aforementioned
space, thus removing the dependency between the task-solving strategy and the agent’s
morphology.

1.4.4 Dealing with delay for simulation to reality transfers

The last chapter of this PhD thesis addresses the issue of sim2real adaptation, which in-
volves transferring models trained in simulators to real-world environments. More specif-
ically, we highlight the impact of delays on model performance when transitioning from
simulation to physical robots, an often overlooked factor in the adaptation process. Con-
sequently, this chapter discusses a simple practical solution to train RL agents able to
robustly deal with a user-defined range of delays, making them well-suited for transfer
across robotic platforms. We demonstrate the validity of our approach by means of a dy-
namic task where delay management is critical, across two robot morphologies and three
different delays.

1.5 Scientific publications
Our first two contributions have been the subject of one or more scientific publications.
The first contribution has been submitted to a journal (Journal of Artificial Intelligence
Research) on April 17 of 2023, but is still under review. Our second contribution has been
published in two conference, International Conference on Intelligent Robots and Systems
(IROS) in 2021 and Rencontres des Jeunes Chercheurs en Intelligence Artificielle (RJCIA)
in 2022. Our work on the event-based camera and the diving gesture classifier are still
under development, and will be the subject of further publication once finalized.

1.5.1 International

Journal

• Beaussant, S., Lengagne, S., Thuilot, B., Stasse, O. (2023). Towards Zero-Shot
Cross-Agent Transfer Learning via Aligned Latent-Space Task-Solving. Journal of

20

Artificial Intelligence Research (submitted)

Conference

• Beaussant, S., Lengagne, S., Thuilot, B., Stasse, O. (2021, September). Delay
aware universal notice network: real world multi-robot transfer learning. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp.
1251-1258).

1.5.2 National

Conference

• Beaussant, S., Lengagne, S., Thuilot, B., Stasse, O. Delay Aware Universal Notice
Network: Real world multi-robot transfer learning. In 2022 Rencontres des Jeunes
Chercheurs en Intelligence Artificielle (RJCIA)

21

Chapter 2

Preliminaries: Machine Learning

The primary aim of this chapter is to present the theoretical foundations that form the
backbone of this PhD thesis. We begin with a concise and general overview of the Ma-
chine Learning field, which serves as our fundamental building block. We then describe
the family of parametric models employed in all of our experiments in the section ded-
icated to deep neural networks. Finally, we delve into the various learning paradigms
used throughout this manuscript, taking the opportunity to highlight their strengths and
weaknesses at the same time.

2.1 Introduction
Artificial Intelligence (AI) is a discipline in computer science and engineering that fo-
cuses on creating intelligent machines which can perform tasks that typically require hu-
man intelligence. This includes reasoning, perception, natural language processing, and
decision-making amongst others. This idea of endowing mindless machines with human-
like cognitive abilities has been around for a long time and even precedes the birth of
computers. Indeed, it can be traced back to at least the ancient Greece, with early con-
ceptual prototypes found in mythical figures such as Talos and Pandora (see Figure 2.1
and Figure 2.2). One particularly interesting finding from these decades of AI research,
is the fact that tasks that are easy for humans, such as perception and motor control,
are often difficult for machines. Reciprocally, difficult tasks for average humans, such as
complex mathematical calculations, are often easily solvable for computers. This para-
dox named after its author Hans Moravec in 1988 [Moravec 88], indicates that high-level
reasoning is much easier to reproduce and simulate by a computer program than human
sensorimotor skills. Hence, computer scientists struggled for many years to solve even
simple vision tasks such as face recognition but succeeded to defeat chess world cham-
pions with deep blue [Campbell 02] in 1997. Indeed, games like chess have well-defined
rules and a limited number of possible moves, making it possible to develop strategies that
can be executed efficiently by computers, even with brute force search. Identifying faces,
in contrast, involves not only recognizing facial features but also distinguishing between
different individuals, regardless of subtle variations in lighting, pose, and other factors.
As such, designing an expert system that incorporates hard-coded rules to perform a task
that can be trivially accomplished by the human mind, has proven to be a rather difficult
and inefficient approach. In fact, all these early AI algorithms assumed to be the best
direction to artificial general intelligence, such as the General Problem Solver or the A∗

algorithm [Russell 10], were missing one fundamental component: the ability to learn.

22

Figure 2.1: Illustration of Talos, a giant
automaton made of bronze and forged by
Hephaistos to guard the shore of Crete.

Figure 2.2: Illustration of Pandora, a
woman molded in clay by Hephaistos at
Zeus request.

2.2 Machine Learning
Instead of hard-coding knowledge within an AI system using manually crafted rules and
inference engines, Machine Learning (ML), a subfield of AI, adapts the concept of learn-
ing to suits computers such that they can improve their performance on tasks through
experience. This is typically achieved by training algorithms on large datasets and using
statistical techniques and models to identify patterns in the data to make predictions.
More formally, let’s consider a set of observations X = (x1, x2, ..., xn) (e.g images, sen-
sor readings, text...), the goal of a Machine Learning algorithm is to make a prediction
Ŷ = (ŷ1, ŷ2, ..., ŷn) given the data X and a model f(x; θ) such that

ŷi = f(xi; θ), i = 1, .., n (2.1)

where θ denotes the set of parameters characterizing the model f . In this context, training
f means finding the θ parameters that best approximate f ∗, the input/output mapping
we are interested in. For instance, the optimal mapping f ∗ could relate an input im-
age to its corresponding label (e.g dog or cat). Many choices of models f are available
when considering Machine Learning to solve a task. Examples of such models include
Gaussian Processes [Deisenroth 13], Linear Classifier [Cortes 95] and Gaussian Mixture
Models [Zong 18] etc... with their respective performance depending on the task set-
ting. However, in its contemporary incarnation, Machine Learning relies extensively on
a special kind of function approximator known as Artificial Neural Networks. Over the
past few decades, machine learning algorithms have proven their unreasonable effective-
ness on many complex tasks including image segmentation [Kirillov 23], text-to-image
generation [Rombach 22], protein folding prediction [Jumper 21] and Natural Language
processing [Brown 20] to name just a few. Some products implementing these ML al-
gorithms are today even regarded as potential societal threats due to their ability to
outperform humans in a growing number of professions [OpenAI 23]. Besides their per-
formance, ML data-driven approaches are appealing for their ability to autonomously

23

solve tasks and generalize beyond the data they were trained on [Neyshabur 17]. Par-
ticularly in robotics, learned controllers have unlocked a multitude of impressive results
[Tsounis 20, Akkaya 19, Jangir 20, Chebotar 19] in recent years, competing with or even
outperforming traditional robotic approaches. Once again, this echoes the Moravec Para-
dox as learning such controllers is sometimes easier than manually defining them. All
of these massive achievements make Machine Learning a very promising and compelling
research field worth exploring.

Due to the over-representation of Artificial Neural Networks in Machine Learning,
but also in our works, the upcoming section focuses on the concepts and mathemati-
cal details under-pining this type of models. Following this, we review three primary
learning paradigms composing ML: Supervised Learning, Representation Learning and
Reinforcement Learning. All of these ML fields play a significant role in our contribu-
tions. Therefore, in the following section, we take the time to thoroughly explore their
unique characteristics and areas of application.

2.3 Neural Networks and Deep Learning
Artificial (deep) Neural Networks (ANN) have been used to robustly solve a vast range
of problems due to their expressive power and ability to approximate complex, non-linear
mappings. In fact, from a theoretical perspective, ANNs can approximate any function,
a result commonly known as the universal approximation theorem [Hornik 89]. Many of
the most significant breakthroughs of AI can be attributed to the use of large ANNs,
including Alphafold [Jumper 21], AlexNet [Krizhevsky 17], Generative Adversarial Net-
works (GANs) [Goodfellow 20] and many others. This section provides the theoretical
background underlying modern neural networks architecture, beginning with the basic
structure of a single neuron cell and progressing towards the complexity of deep neural
networks.

2.3.1 Artificial Neurons

Artificial neurons are the elementary computation units of neural networks. They were
designed to mimic the behavior of biological neurons. Each neuron has several input
connections that receive signals from other neurons or external sources, and a single
output connection that transmits its own signal to other neurons or output devices. The
input signals are weighted according to the importance of each input to the neuron’s
function, and the neuron applies a non-linear activation function to the weighted sum of
its inputs to produce its output. More formally, a neuron with weights w ∈ Rd and bias
b ∈ R receives an input X ∈ Rd and computes an output a ∈ R through the following
processing steps (see Figure 2.3 for a visual representation):

z = wTx+ b =
d∑
i

wi.xi + b (2.2)

This weighted sum is then "activated" to give the final output

a = g(z) (2.3)

where g is a non-linear activation function. These special kinds of functions are of the
utmost importance in deep learning. Therefore, we briefly describe and discuss some of
the most popular ones in section 2.3.3.

24

On its own, a simple artificial neuron has very limited modeling capacities. However,
it becomes extremely powerful and flexible when duplicated and interconnected to create
stacks of layers. This arrangement of neurons takes the form of a network, which explains
its common denomination: neural network. Various types of neural networks exist, de-
pending on their architecture and connection patterns. In this thesis, we mainly focus on
the Multi-Layer Perceptron (MLP) since the majority of our research relies on it.

Figure 2.3: Schematic representation of an artificial neuron.

2.3.2 Multi Layer Perceptrons

This is the simplest ANN architecture but also the most versatile one. In a Multi-Layer
Perceptron, each neuron in a layer is connected to every neuron in adjacent layers, but
not to neurons in the same layer (see Figure 2.4). There are 3 kinds of layers:

• Input layer: it represents the input to the neural network. Strictly speaking, it does
not contain neurons, simply the data in vector format fully connected to the next
layer.

• Hidden layers: they are used to process the input data, producing intermediate
representations at each stage which will feed the next layer.

• Output layer: this is the last layer in the network. Its objective is to perform the
prediction or decision based on the final transformed representation of the data
given by the upstream hidden layers. Depending on the task, this output could be
a vector of joints command for a robot or probabilities for a classification problem
for instance.

In deep learning, ANNs are made of several hidden layers to increase their modeling
power (at least more than one). Empirically, the deeper the network is (i.e., the more
hidden layers it has), the better the performance will be [He 16, Szegedy 15]. An MLP is

25

a feedforward neural network, meaning that the information flows in one direction, from
input to output without loops or feedback connections. The successive computations and
transformations of the data are defined by the weights of the neural network. Therefore,
these parameters must be carefully adjusted so that the model performs the desired map-
ping. In practice, fitting a neural network (i.e training) is an iterative process composed
of two steps. First, we need to compute the prediction of the network given an input, this
is the forward pass. Then, given this output, we can compute the prediction error and ad-
just (i.e learn) the weights such that the error decreases over time. This process is known
as the backward pass. The following subsections provide the mathematical formalization
of both steps.

Figure 2.4: Representation of a simple neural network with 2 inputs, 2 hidden layers of
4 neurons each and 2 outputs. Biases and non-linear activation functions are usually not
represented for the sake of clarity.

Forward Pass: making a prediction

During the forward pass, the input data are successively processed by each layer of the
network until they reache the output layer. Let’s first consider a single layer l with N
neurons. The function computed by l is

a(l) = g(l)(W (l).a(l−1) + b(l)) (2.4)

where W (l) ∈ RN×D is the weight matrix of the neurons in layer l with D the number of
neurons on the previous layer, b(l) ∈ RN is the bias vector, a(l−1) ∈ RD is the activation
vector of the previous layer l − 1 and a(l) ∈ RN is the activation vector outputted by
l. Given that a neural network is often composed of multiple layers, this computation is
repeated L times, with L the number of layers. As such, the full forward pass for an MLP
can be written as

ŷ = (a(L) ◦ a(L−1) ◦ ... ◦ a(2) ◦ a(1))(x) (2.5)

Equation (2.5) states that the predicted output ŷ of the network is obtained by composing
the outputs of all the layers up to the final output layer L given x, the input vector.

26

Backward Pass: computing the gradient

Once the forward pass is completed, we can derive its error with respect to a pre-defined
objective function or loss function. It is common practice to use stochastic gradient descent
(ascent) to minimize (maximize) the optimization criterion and update the weights of the
neural network. As such, it is necessary to compute the gradient of the loss with respect to
the parameters of the ANN. This procedure is commonly known as the "backward pass"
as it involves computing the gradient starting from the output layer and propagating it
backwards through the network until reaching the first layer. Given a loss E, we can
compute the gradient of E with respect to any weight in the network using the chain rule.
Starting from the last layer L:

∂E

∂w
(L)
ij

=
∂E

∂ŷj

∂ŷj

∂z
(L)
j

∂z
(L)
j

∂w
(L)
ij

(2.6)

for weight w(L)
i,j of the last layer L. To alleviate and improve the readability of the back-

propagation equations, we define by δ(l)j the quantity iteratively computed and propagated
backward as:

δ
(l)
j =

∂E

∂z
(l)
j

(2.7)

Given this new notation, equation (2.6) can be re-written in a more compact form

∂E

∂w
(L)
ij

= δ
(L)
j .

∂z
(L)
j

∂w
(L)
ij

(2.8)

For the previous layer L − 1, the method is the same, except that we make use of some
of the computations done at the previous step represented by δ(L)j

∂E

∂w
(L−1)
ij

= δ
(L)
j .

∂z
(L)
j

∂a
(L−1)
j

∂a
(L−1)
j

∂z
(L−1)
j

∂z
(L−1)
j

∂w
(L−1)
ij

= δ
(L−1)
j .

∂z
(L−1)
j

∂w
(L−1)
ij

(2.9)

Finally we can recursively compute the gradient with respect to any weight w(l)
ij in the

network, for an arbitrary layer l with

∂E

∂w
(l)
ij

= δ
(l+1)
j .

∂z
(l+1)
j

∂a
(l)
j

∂a
(l)
j

∂z
(l)
j

∂z
(l)
j

∂w
(l)
ij

(2.10)

where δ(l+1)
j has been obtained when computing the gradient for layer l+1. Once the full

gradient has been computed, it can be used to update the neural network in the direction
that decreases the prediction error with gradient descent:

θk+1 = θk −∇θE (2.11)

where θ are the weights of the network in vector form, and k is the training iteration.

27

2.3.3 Activation Functions

The effectiveness of contemporary artificial neural networks in modeling complex rela-
tionships can be largely attributed to the use of non-linear activation functions. In fact,
if a deep neural network exclusively employs linear activation functions, it will be re-
stricted to only approximate linear mappings, irrespective of the number of stacked layers
[Minsky 69]. Therefore, in order to achieve universal approximation capabilities, it is
essential to incorporate non-linear activation functions. Besides the non-linearity pre-
requisite, activation functions should also have some extra properties to ease learning:

• Continuously differentiable to allow for gradient computation and backpropagation.

• Non-saturating to provide a robust learning signal. An activation function f is
saturating if:

lim
|v|→∞

|∇f(v)| = 0 (2.12)

The back-propagation algorithm involves multiplying gradients with the chain rule,
so small gradients would eventually shrink the gradient product towards 0. In
practice, this prevents the first layers of the neural network from learning. This
issue is commonly known as the vanishing gradient.

We introduce below the activation functions used in this work along with their derivative:

The Hyperbolic Tangent:

tanh(x) =
e2x − 1

e2x + 1
(2.13)

tanh’(x) = (1− tanh(x)2) (2.14)

The Tanh activation function was popular several decades ago, but it is now only
occasionally used in Reinforcement Learning since it saturate and may cause vanishing
gradients (see Figure 2.5). Nevertheless, Tanh remains useful as an output activation
function since it compresses its input values within the range of [−1, 1].

Figure 2.5: The tanh activation function and its derivative.

Rectified Linear Unit:

28

ReLU(x) = max(0,x) (2.15)

ReLU’(x) =
{

1 if x > 0
0 else (2.16)

The ReLU function [Fukushima 69] is almost default in modern deep learning. It
was designed to prevent the vanishing gradient issue, resulting in more stable and faster
training for deep neural networks [Glorot 11]. It is also very efficient to compute as
it involves simple operations. However, it suffers from its own specific problem: dying
neurons. This problem appears when the neuron pre-activations are always negative. As
a result, the neuron becomes essentially inactive and outputs zero for almost all inputs.
In this state, the neurons are not contributing to the prediction and therefore do not
receive any gradient to learn, remaining indefinitely inactive. In worst case scenarios, a
large portions of the neurons in the network can "die", resulting in a reduction of the
model’s capacity. Fortunately, this problem can be mitigated by appropriately initializing
the model [He 15].

Leaky ReLU:

Figure 2.6: The ReLU activation function and its derivative.

Leaky ReLU(x) = max(0.01x,x) (2.17)

Leaky ReLU’(x) =
{

1 if x > 0
0.01 else (2.18)

Alternatively, one may turn to the Leaky ReLU [Maas 13] activation function to avoid
the dying neurons problem altogether. It allows a small positive gradient to flow when its
input is negative.

Sigmoid:

σ(x) = 1
e−x+1

σ′(x) = σ(x)(1− σ(x)) (2.19)

The sigmoid activation function (often denoted σ) is very similar to the Tanh function.
As such, it suffers from the same vanishing gradient issue. Its range is [0; 1] which makes
it convenient to obtain values analogous to probabilities. For this reason, the sigmoid
function is still used as an activation function for the output layer.

29

Figure 2.7: The Leaky ReLU activation function and its derivative.

Figure 2.8: The sigmoid activation function and its derivative.

Sigmoid Linear Unit (or Swish):

SiLU(x) = x.σ(x) SiLU’(x) = x.σ′(x) + σ(x) (2.20)

The SiLU [Ramachandran 17] is based on the sigmoid activation function but does not
inherit from the same pitfalls. Indeed, the SiLU function looks like a smooth ReLU and
has been shown to outperform it in Reinforcement Learning settings [Elfwing 18]. Along
with the Leaky ReLU it is one of the main alternatives to the regular ReLU activation
function.

2.3.4 Dealing with overfitting

Given the flexibility and modeling capacity of artificial neural networks, it is very common
to run into an overfitting issue. Overfitting occurs when a neural network is too complex
and starts to fit the training data too closely, leading to poor performance on unseen data.
In a sense, it is simply memorizing the data rather than finding the statistical patterns
underlying them. There are two main ways to prevent this problem:

• Increasing the amount of data, with additional fresh data points or creating more
variations by altering the available data with random transformations (e.g random
rotations or random crops for images). This is known as data augmentation

30

Figure 2.9: The SiLU activation function and its derivative.

• The other approach consists in "crippling" the network in order to limit its modeling
capacity. This could be achieved with regularization by adding a penalty term
to the loss function in order to discourage large weights or with dropout layers
[Hinton 12, Srivastava 14] to randomly drop out some of the neurons during training,
forcing the network to learn more robust features.

In essence, overfitting is an issue occurring in machine learning, when the model is
asked to make predictions on data coming from a distribution that differs from the one
used to train the model. As such it is very frequently encountered in Transfer Learning.

2.4 Supervised Learning
Supervised Learning (SL) is one of the most common and widely used paradigms in
Machine Learning. It is powerful and flexible enough to be leveraged in a variety of
real-world applications such as digits recognition [LeCun 89], autonomous vehicle driving
[Bojarski 16] or medical diagnosis [Gupta 18]. SL involves learning from a labeled dataset,
where each input data is paired with the corresponding output or target values. Using the
associated ground-truth labels, it is possible to teach the model about the expected answer
given the presented data. This is analogous to the kind of learning students experience in
schools where the "right" solution is provided by the teacher for a given problem. Hence
the supervised learning denomination. Nevertheless, the purpose of Supervised Learning
is not to make the model memorize the right answers, but rather understand the mapping
between the input and output data. Hopefully, the trained model will then be able to
accurately predict the outputs for new, unseen but related input data.

The supervised learning process requires a labeled dataset D = {(xi, yi)}i=1:N of length
N , where xi ∈ RK designates the input data of dimension K and yi ∈ R the corresponding
label or ground-truth. The model f , expected to approximate a desired mapping f ∗, is
queried during training to predict ŷi = f(xi), its current best guess for yi. Then, the
error between the prediction and the expected output is computed using a loss function
denoted C

ei = C(ŷi, yi) (2.21)

The overall optimized loss L of the model is then computed using the entire dataset

31

following

L =
1

N

N∑
i

ei (2.22)

Finally, f is adjusted such that its error L is iteratively reduced during training (with
gradient descent for instance).

2.5 (Deep) Reinforcement Learning

2.5.1 Motivations

Let us now consider a sequential decision-making problem and suppose that we want
to learn the optimal decision strategy. As a concrete example, we can think about the
game of chess. Leveraging Supervised Learning to train a model at this complex game
requires a comprehensive dataset containing examples of probable situations with their
corresponding optimal decisions. For many interesting applications however, collecting
an "optimal behavior" dataset could be infeasible as the combinatorial size of the state-
action space would be prohibitively large (around 10111 possible states in a chess game
for instance). Furthermore, devising such a dataset requires unlimited access to an expert
in order to associate each possible state with the corresponding best action. As a con-
sequence, the model would at best reach an expert-level performance, which might still
be highly sub-optimal for very complex tasks. For all these reasons, SL is not an effi-
cient paradigm to solve sequential decision-making problems. Fortunately, Reinforcement
Learning (RL) [Sutton 18] focuses on learning a desired behavior. Unlike SL approaches,
the model does not require access to a labeled dataset of examples for the optimal ac-
tion in a given setting. Rather, the agent interacts with its environment to collect its
own experience and learns by trial-and-error. As such, it is particularly suited for tasks
that require making sequences of decisions over an arbitrarily long horizon of time. For
many robotic applications, it is a convenient tool that yields successful control strategies
without requiring an analytical model of the dynamics to be defined, an often tedious
task. Together with Reinforcement Learning, ANNs bootstrapped the Deep Reinforce-
ment Learning field, leading to groundbreaking results in robotics [Akkaya 19], animation
[Peng 18a], game-theory [Silver 18, (FAIR)† 22]. It is even considered in critical tasks
where failure is not an option such as fusion control [Degrave 22].

2.5.2 Markov Decision Process

Most of the time, sequential decision-making problems are framed as a Markov Decision
Process (MDP). This mathematical framework provides a convenient way to model the
interaction between an environment where outcomes are sometimes partly random and a
decision maker, often called an agent in the RL context. The agent can be regarded as a
bodiless entity containing the logic required to make decisions. In contrast, the concept
of environment can be blurry in some cases, but the common definition states that it
comprises everything, including the agent’s embodiment. For instance, the motors, sensors
and mechanical parts of a robot should be viewed as constituents of the environment,
rather than components of the agent. In its most general and abstract formulation, a
MDP is a discrete-time stochastic control process typically defined by a 5-tuple MDP =<
S,A, P,R, ρ0 >. A toy example is provided in Figure 2.10.

32

Figure 2.10: Visual representation of a simple Markov Decision Process. States are in
green and actions in blue. The initial state distribution ρ is depicted in red and assigns
equal probabilities to start state 1 and 3.

State space S

S is the collection of all valid states available in the environment. An observation st ∈ S
thus represents the state of the environment at time-step t. The initial state distribution
of the MDP is denoted by ρ0. Depending on the task setting, the state st is a complete
or partial description of the world. In the latter case, the MDP formulation is slightly
changed to define a Partially Observable MDP (POMDP). This special type of MDPs
is often encountered when the observations are noisy, delayed or incomplete (e.g RGB
images only provide information about what is currently viewed). The state space can
be either continuous (infinite) or discrete (finite) or a mixture of both, with an arbitrary
number of dimensions. For the rest of this manuscript, unless specified otherwise, we
assume a fully observable MDP with a continuous state space.

Action space A and policies

A is the set of all feasible actions the decision-maker can make. The specific choice of
action at in state st is implemented by the agent’s policy denoted by π. A policy can be
described as a mapping from perceived environmental states to the actions that should be
undertaken when in those states. To put it simply, it defines the agent’s behavior. The
decision-making process can be either deterministic or probabilistic. In the first case, the
stochastic policy is a probability distribution over actions a conditioned on the state s:

a ∼ π(·|s) (2.23)

In practice, stochastic policies are more suitable for large state-action spaces because they
promote exploration. Otherwise, π is deterministic:

a = π(s) (2.24)

In all of our experiments, we used stochastic policies with a continuous action space.

33

The environment dynamic P

At each time-step, the environment evolves and gives rise to a new state following its
transition probability distribution.

st+1 ∼ P (·|st, at) (2.25)

Any MDP satisfies the Markov property which means that only the present state st and
the current agent’s action at condition the future.

The reward function R

The concept of reward function is of major importance as it defines the optimal behavior.
Concretely, it is the mapping R : S×A×S 7→ R giving feedback rt to the decision-maker
after transitioning from state st to state st+1, in response to its action at. As such, it is
the learning signal that guides the agent through its learning process. Defining a reward
function that would generate the desired behavior is not a trivial task [Amodei 16]. The
main design choice is whether the reward should be sparse or dense. In the first case, the
reward signal is not very informative with a positive feedback only in a restricted part of
the space (e.g when it reaches the end goal) and negative/zero otherwise. Dense means
that the reward function is shaped to guide the agent at each state towards its goal (with
a reward inversely proportional to the distance to target for instance). In this thesis,
we decided to work with dense rewards as they often results in more stable training and
performance.

2.5.3 Solving MDPs with Reinforcement Learning

Figure 2.11: Reinforcement learning feedback loop.

In a Markov Decision Process, the goal of the agent is to find a policy that maximizes
over a horizon T its cumulative discounted reward (or return) G(τ) defined as:

G(τ) =
T∑
t=0

γtrt (2.26)

where γ ∈ [0; 1] is a hyper-parameter weighting distant rewards and τ is a trajectory, that
is a sequence of states and actions

τ = ((s0, a0), (s1, a1), (s2, a2), ...) (2.27)

34

Thus, we wish to find an optimal policy π∗ such that:

π∗ = argmax
π

Eτ∼π[G(τ)] (2.28)

where E denotes the expectation operator. Reinforcement Learning is a formidable tool
for finding the policy π∗ that maximizes the expected sum of rewards. Typically, RL is a
closed-loop process as the learning system’s actions influence its later inputs. The usual
flow of events is the following (depicted in Figure 2.11), at each time-step t and for the
duration of an episode of arbitrary length T :

1. the agent observes the current state of the environment st ∈ S

2. it draws an action at ∈ A from its policy π

3. the environment evolves using its transition probability distribution P

4. and the agent is provided with st+1 ∼ P (·|st, at) and a feedback signal rt = R(st, at, st+1)

2.5.4 Reinforcement Learning Concepts

When considering the choice of a RL algorithm, it is important to wonder what we want
to learn and how. Indeed, RL encompasses a broad taxonomy of learning algorithms, each
requiring access to different models. A common branching point is whether we should opt
for a model-free or a model-based approach. Model-based RL often involves learning or
using a model of the environment, i.e P (st+1|st, at) the transition probability distribution.
This often results in a more sample efficient training over methods that are model-free.
However, for complex environments, learning an accurate model is a very tedious task.
Model-free RL, on the other hand, requires a lot of samples to converge but results in
a better-performing policy. Additionally, another fundamental design choice is whether
we want to directly optimize the policy and/or learn value functions (defined in the fol-
lowing subsection). In practice however, most modern RL algorithms use both concepts
to maximize performance. For instance, Proximal Policy Optimization [Schulman 17],
a model-free Reinforcement Learning algorithm, guides the optimization process of the
policy using value-functions. Below, we review all the components required to implement
PPO, the algorithm used in all our experiments and described in Section 2.5.5.

Value Functions

There is no denying that "intuition" frequently plays a significant role in the decision-
making process of intelligent beings. People tend to follow their instinct when they are
faced with a decision regarding a distant and unpredictable future. This concept of "intu-
ition" could be interpreted as an estimate of "how good is likely to be the state that I will
lend in, if I make this decision". Roughly speaking, it involves weighting future outcomes
by their respective likelihood of occurrence. A similar idea can also be translated to Re-
inforcement Learning. Unsurprisingly, the notion of "goodness", in the context of RL, is
defined in terms of the expected sum of rewards the agent can get following its policy π.
As such, value functions are usually defined with respect to a specific policy. Two kinds
of value functions are available:

35

• The state-value function: Denoted by V π(s), it is the expected return when
starting in state s and following π thereafter. It is mathematically defined as

V π(s) = Eπ[Gt|St = s] = Eπ

[
T−t∑
k=0

γkrt+k|St = s

]
(2.29)

• The action-value function: Similarly, we can define the value of taking action a
in state s under a policy π. Denoted by Qπ(s, a), it is the expected return of starting
in state s, choosing action a and following π ever after. It is formally expressed as

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
T−t∑
k=0

γkrt+k|St = s, At = a

]
(2.30)

Advantage Function

The state-value function and the action-value function are both valuable tools in many
scenarios. However, in some cases, it is better to evaluate the relative superiority of an
action compared to others on average, rather than in absolute terms (as measured by Q
values). Formally, the advantage function is defined as the difference between the state-
value function and the action-value function for a given state and action. Mathematically,
it can be expressed as:

Aπ(s, a) = V π(s)−Qπ(s, a) (2.31)

This quantity is used in several reinforcement learning algorithms to update the policy of
the agent as discussed in Section 2.5.5.

Policy Gradient

As a recall, the objective of a Reinforcement Learning algorithm is to solve Equation
(2.28). Let πθ be a stochastic policy parameterized by θ and consider:

J(πθ) = Eπθ [G(τ)] (2.32)

A straightforward method to find the optimal policy π∗
θ would be to apply gradient ascent

iteratively using
θk+1 = θk + α∇θJ(πθ)|θk (2.33)

where α is the step size. The gradient of expected return J(πθ) (also interpreted as policy
performance), ∇θJ(πθ), has a special name: the policy gradient. Algorithms that use this
gradient to optimize the policy are referred to as policy gradient methods. This gradient
can be estimated in a model-based or model-free fashion. For model-free methods, it was
shown [Sutton 99] that the policy gradient ∇θJ(πθ) can be written as

∇θJ(πθ) = Eτ∼πθ

[(
T∑
t=0

∇θ log πθ(at|st)

)
G(τ)

]
(2.34)

This formula has a nice interpretation: taking a gradient step will update the probabilities
of trajectories under πθ in proportion to G(τ), the return. The above expression can be
estimated by sample mean with

ĝ =
1

|D|
∑
τ∈D

(
T∑
t=0

∇θ log πθ(at|st)

)
G(τ) (2.35)

36

where D is a buffer containing all the collected trajectories prior to policy update. This
formulation provides a closed-form expression to compute the gradient. It is the basis of
many subsequent model-free algorithms which improved its formulation to address some
of its weaknesses.

2.5.5 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [Schulman 17] is a model-free reinforcement learn-
ing algorithm that uses policy gradients to update the policy. It is designed to prevent
catastrophic performance decreases that can occur when the steps taken to update the
policy with the vanilla policy gradient are too large. The algorithm achieves this by tak-
ing extra care during policy updates, resulting in improved stability and sample efficiency.
PPO is proven to provide monotonic improvements, and it has achieved state-of-the-art
results on multiple challenging benchmarks with continuous state-action spaces. It draws
inspiration from trust-region optimization methods [Schulman 15], which enforce an ad-
ditional constraint on the optimization process to ensure that the new policy is relatively
close to the old one.

PPO only uses first-order derivatives of the objective function, avoiding the need to
compute the expensive Hessian matrix off the constraint unlike prior trust-region based
methods. This is achieved using a simple clipping function with the following objective:

L(s, a, θold, θ) = min (r(θ)Aπθold (s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aπθold (s, a)) (2.36)

with
r(θ) =

πθ(a|s)
πθold(a|s)

(2.37)

where θ refers to the parameters of the policy and clip is a mathematical operation that
restricts a value within a specific range. It takes an input value and limits it to a minimum
and maximum value, ensuring that the output remains within the defined boundaries.

clip(x, a, b) =

a, if x < a

x, if a ≤ value ≤ b

b, if x > b

PPO has the particularity of performing multiple epochs of stochastic gradient ascent
on the same training buffer before recollecting fresh on-policy data. The policy parameters
at the beginning of each epoch are thus denoted by θold. Essentially, this objective function
ensures that the policy ratio rθ(a|s) stays in the [1− ϵ, 1+ ϵ] range to provide conservative
policy updates. The hyper-parameter ϵ roughly says how far away the new policy is
allowed to go from the old one at each gradient step. In practice however, we do not have
access to the advantage function Aπθold so we need to estimate it. We use the Generalized
Advantage Estimation (GAE) algorithm [Schulman 16] to do so, as it offers an extra hyper-
parameter λ to trade-off between the bias and the variance of our advantage estimator.
Mathematically, it is defined as

Â
GAE(γ,λ)
t (s, a) =

∞∑
l=0

(γλ)l(rt+l + γV πθ(st+l+1)− V πθ(st+l)) (2.38)

where V πθ is the state-value function. As shown, this expression only requires V πθ to be
computed. In our case, this quantity is approximated by another neural network often

37

called the critic. It is trained by stochastic gradient descent to minimize

Lcritic(st) = (Vcritic(st)−Gt)
2 (2.39)

thus converging to the true expected return. We used PPO to train the models discussed in
this report since it currently achieves state-of-the-art results on multiple domain, including
robotic.

2.5.6 Current challenges in Reinforcement Learning

Despite noticeable achievements, Reinforcement Learning is still a highly active research
topic. Modern RL algorithms are struggling in several aspects of the learning process.

Exploration

One of the main challenges faced in Reinforcement Learning is the proper exploration of
the state-action space which is magnified for high-dimensional environment. In practice,
insufficient exploration potentially leads to suboptimal policies if the agent did not happen
to come across the highly valuable, but extremely unlikely states during training. This is
similar to the issue of optimizing non-convex objective functions where the optimization
process can get stuck into a local minimum. Exploration is also of primary importance
when dealing with sparse reward environment, as the outcome of a particular action may
not be visible until thousands more decisions have been made. One simple method to
improve exploration is to add noise to the network parameters [Lillicrap 16] or adding an
entropy bonus term in the reward function [Haarnoja 18, Ahmed 19]. More sophisticated
algorithms provide the agent with a reward signal that is independent of the external task,
encouraging exploration of the environment for its own sake [Eysenbach 19, Pathak 17,
Tang 17, Bellemare 16].

Reward shaping

Shaping a reward (i.e defining its analytic form) to obtain the desired behavior also is
challenging in its own right. Indeed, it is difficult to predict how the agent will end
up acting under a given reward function [Amodei 16]. Misspecified or ill-defined reward
function are a common issue for practitioners. For instance, a reward function solely
motivating a bipedal agent to cover more ground when learning to walk is likely to yield a
highly suboptimal gait, such as crawling on the ground, exhibiting erratic body movements
or dragging one of its feet. One family of solutions is to recover the reward function
given demonstrations of a near-optimal behavior (e.g motion capture data of a human
walking) [Ng 00, Ziebart 10, Finn 16] and then perform policy optimization given the
obtained reward function, a process known as Inverse RL. Another successful kind of
approaches, dubbed imitation learning, directly optimizes a policy such that it minimize
the divergence between the demonstrations and the roll-outs sampled from the policy
[Ho 16, Schaal 96, Peng 18a].

2.6 Representation Learning
In the early days of machine learning, the features upon which the classification algorithms
operated had to be hand-designed, a process called feature-engineering [Goodfellow 16].

38

At the time, the quality of the features used was paramount to the algorithms success
(see Figure 2.12 for an illustration).

Figure 2.12: An example of different representations for the same data: suppose we want
to classify two categories of data with a linear model. In the plot on the left, the data
are represented using Cartesian coordinates. The data are not linearly separable meaning
that the task is impossible. In the plot on the right, we represent the same data with
polar coordinates and the task becomes simple to solve.

With the growing interest and applicability of deep neural networks, researchers discov-
ered that it is possible to learn representations and that it often result in much better per-
formance than what could be obtained with hand-designed features [Goodfellow 16]. This
approach, in contrast to feature engineering, is called representation learning [Bengio 13].
Despite being a rather old sub-field of Machine Learning, representation learning is still a
very active and relevant topic. Its goal is to learn representations of the data that make
it easier to extract useful information when building classifiers or other predictors. Some
of its most prominent families of algorithms are the auto-encoders and Principal Compo-
nent Analysis (PCA) [Bro 14] which both provides an unsupervised procedure to extract
useful features from the data. However, PCA is limited in its modeling capacity as it
only uses a linear projection to represent the data. Nevertheless, it is still very useful as a
dimensionality-reduction tool to analyze and visualize high-dimensional datasets. We will
make use of PCA to visualize our learned feature space later in subsection 4.2.2. Instead,
in this section we focus our discussion on the auto-encoder family which can be seen
as a non-linear equivalent to PCA. In particular, we describe one of its most prominent
representative, widely used in our work, the variational auto-encoder.

2.6.1 Auto-encoders

Auto-encoders [Kramer 91] span an entire class of specific models that undergo training
to approximate an identity mapping. In other words, given an input x ∈ X, the model
must predict x̂ = x. Although, at first glance, this task may appear trivial and useless,
what makes it truly interesting is the architecture of the neural network used. Indeed,
they implement the concept of information bottleneck where the data are first compressed

39

into a lower-dimensional space, before being reconstructed. The main goal is to get rid of
the extra redundant or low entropy information that may add unnecessary complexity to
the data. As a consequence, we obtain a compact and meaningful representation of our
dataset which, hopefully, only captures its main factors of variation. More specifically, an
auto-encoder is composed of two parts, each with a predefined role (see Figure 2.13):

• an encoder fϕ, parametrized by weights ϕ, which takes an input data point x ∈ X
and maps it to a lower-dimensional representation z ∈ Z. This new space Z is often
referred to as the latent space.

z = fϕ(x) (2.40)

• and a decoder gθ, parametrized by weights θ, which ensures that the encoded infor-
mation z is sufficient to reconstruct x. This encourages the network to discover a
compressed but meaningful representation of the data.

x̂ = gθ(z) (2.41)

Figure 2.13: Usual auto-encoder architecture.

The idea that high-dimensional data can be expressed in a simpler and more compact
space is known as the manifold hypothesis [Fefferman 16]. As such, auto-encoders can be
seen as a way of learning the data manifold. The objective function used to train this
types of models simply minimizes the euclidean distance between the initial input and its
reconstructed counterpart. More formally:

L(ϕ, θ) = ||x− x̂||2 = ||x− gθ ◦ fϕ(x)||2 (2.42)

From a practical point of view, training an auto-encoder requires to find a trade-off
between complexity and accuracy. On the one hand, one should always strive to have the
smallest possible latent space to prevent the network from encoding irrelevant information
about the dataset or over-fitting by memorizing it. But on the other hand, reconstruction
accuracy should be high to ensure that the information bottleneck contains all the useful
information.

The auto-encoder framework has given birth to a broad taxonomy of diverse use cases,
from denoising input signal [Vincent 10] to anomaly detection [Zhou 17]. Beyond the
simple representation learning aspect of these models, it is also possible to add extra reg-
ularization terms to the loss function in order to give desirable properties to the generated

40

latent space. This is typically done to address some of the limitations of traditional auto-
encoders. More specifically, if we simply try to generate new data points by interpolating
between points in the latent space, or randomly sampling latent vectors, the decoded re-
sult is likely to be random and meaningless. This is due to a form of over-fitting from the
decoder, not motivated during training to give a meaning to points outside of the training
data distribution. As a result, auto-encoders cannot be used as generative models as they
lack proper regularization of their latent space.

2.6.2 Variational Auto-encoders

Among the many declinations of the auto-encoder formulation, one of the most celebrated
and widely used by practitioners is the Variational Auto-Encoder (VAE) [Kingma 14].
It enhances the regular auto-encoder framework by regularizing its latent space such
that it can be used for data generation. The main difference lies in the probabilistic
approach of the VAE in which the decoder and the encoder are both stochastic rather
than deterministic. Instead of mapping the input into a fixed latent vector, we map it
into a probability distribution. As such, the probabilistic encoder defines a conditional
distribution fϕ(z|x), which approximates p(z|x), the true data posterior that relates x to
a corresponding distribution over z. Most of the time this distribution is assumed to be
a simple conditional Gaussian:

fϕ(z|x) = N (z;µϕ(x), σϕ(x)
2I) (2.43)

As shown, both the mean µϕ and standard deviation σϕ are parametrized by ϕ. In practice,
the probabilistic encoder is made of a single neural network with two heads which outputs
the mean vector µϕ and a vector of standard deviations σϕ. Using these two quantities, it
is then possible to sample a latent vector z ∼ fϕ(z|x). In contrast, regular auto-encoders
deterministically project the processed inputs to the latent space. This probabilistic
approach is an effective procedure to train the decoder to generalizes to latent areas
rather than specific encodings as it is exposed to wider variations. Similarly, the generative
part is handled by the probabilistic decoder gθ(x|z) which remaps a given z ∈ Z to its
corresponding x ∈ X by means of a neural network with weights θ. However, since the
decoder is trained to maximize the log-likelihood of the input data, it approximates the
data generative process and is able to create unseen samples. Simply maximizing the
log-likelihood loss (i.e minimizing the reconstruction loss as previously), is not sufficient
for data generation. Indeed, this unconstrained optimization procedure will still likely
result in a scattered latent space as µϕ and σϕ are free to take any real values to help
the reconstruction. As a result, the decoder is still likely to over-fit to some areas in the
latent space, leaving in-between portions without meaningful decodings. Moreover, there
is no easy way to sample from it as it lacks structure. Solving above issues requires an
extra regularizing term to the training loss:

L(ϕ, θ) = −Ez∼fϕ(·|x)[log gθ(x|z)] + βDKL(fϕ(z|x)||N (0, I)) (2.44)

where DKL(fϕ(z|x)||N (0, I)) is the Kullback-Leibler divergence which quantifies the dis-
tance between fϕ(z|x) the approximated posterior and the prior N (0, I). More precisely,
for two continuous probability distribution p and q:

DKL(p∥q) =
∫ ∞

−∞
p(x)p(x)q(x) dx (2.45)

41

The β hyper-parameter introduced in [Higgins 17] is used to trade off between reconstruc-
tion and regularization. Minimizing this alternative loss function causes the latent space
to have some interesting and desirable properties:

• It encourages the latent space to be distributed as a target (or prior) distribution.
Knowing a priori the structure of the latent space is necessary if we want to be able
to sample new data. In our case the prior is simply p(z) ∼ N (0, I) which is easy to
sample from and tractable to compute.

• Constraining the possible values of µϕ and σϕ to be normally distributed also ensures
that the latent space is continuous (two close points in the latent space give two
similar outputs when decoded) and complete (a point sampled from the latent space
should produce an output that makes sense).

Finally, as the training objective (2.44) involves back-propagating through the stochastic
process z ∼ fϕ(·|x), it is necessary to reparametrize sampling to compute the gradient as:

z = µϕ + ϵ⊙ σϕ
ϵ ∼ N (0, I)

(2.46)

This technique is called the "reparametrization trick" and it allows for an end-to-end
training of the VAE using equation (2.44).

Figure 2.14: Usual variational auto-encoder architecture with the reparametrization trick.

2.7 Conclusion
In this chapter, we reviewed all the required components to fully understand the rest of this
report and our contributions. We started with a mathematical description of neural net-
works, a particularly powerful function approximator. In the subsequent sections we also
presented the Variational AutoEncoder, an important representation learning algorithm
for automatic features discovery. Most importantly, we introduced the Reinforcement
Learning field along with some of its shortcomings. However, we purposely left off its
arguably most prominent limitation: the notorious sample inefficiency. This topic will be
extensively discussed throughout this PhD dissertation, starting with its introduction in
the following chapter. Additionally, the next chapter will delve into the main subject,
beginning with an exploration of the motivations that justify the need for our research
endeavor.

42

Chapter 3

Transfer Learning in Reinforcement
Learning

3.1 Motivations
Ever since Deep Reinforcement Learning came to light thanks to the famous works on
Deep Q-Networks by [Mnih 13, Mnih 15], multiple general and versatile RL solvers have
been proposed to improve performance of RL agents. They demonstrated impressive
achievements on a vast range of robotic tasks such as in-hand manipulation for rubik’s
cube solving [Akkaya 19], control of quadrupedal gaits [Tsounis 20], cloth manipulation
[Jangir 20] or swing-peg-in-hole manipulation [Chebotar 19]. However, people tend to
overlook the massive cost required to train these models when they consider the im-
pressive results achieved. Indeed, despite great achievements, RL methods still suffer
from low sample efficiency, which means that a large amount of interactions with the
environment (at least in the order of millions) is needed to obtain a high-performance
policy [Da Silva 19]. For instance, training a robot hand to solve a rubik’s cube, or a
quadrupedal to navigate difficult terrain, can take several days of training on some sim-
ulators, which can amount to years in realtime. One of the main explanations behind
such a high computational cost, is the fact that most agents are trained from scratch,
without any pre-training or prior knowledge of the task/environment. As a consequence,
each time the agent is required to learn a task, it has to first discover how to articulate
its body appropriately and avoid undesirable joint configurations, before being able to
act optimally with respect to a reward function. Conversely, humans and certain animals
possess an inherent ability to utilize past experience to efficiently learn new tasks. They
can even learn from other individuals despite differences in morphology, demonstrating
the ability to comprehend the similarities and disparities between their role model and
themselves, and adapt their actions according to their own capabilities. Endowing robots
with similar prowess would result in a significantly more sample efficient learning process,
and prove useful in many situations. Practical use cases may include for instance:

• Changing an old and worn out robot on an assembly line with a new but different
one. As they ultimately achieve the same task, we can transfer the knowledge from
the old to the new robot to speed up the replacement process.

• Learn and prototype a task on an unreliable but cheap robot before transferring
it to an industrial-grade but more expensive robot. This way we prevent potential
hazard due to the inherent unpredictability of RL training on the target robot.

43

The primary aim of this chapter is to introduce Transfer Learning (TL), a general frame-
work for leveraging past knowledge. Additionally, it formalizes the problem of Cross-Agent
Transfer Learning (CATL), a specific sub-field of TL which focuses on experience sharing
between agents with differing morphologies. We will examine previous efforts on CATL,
which served as a basis for our own proposed method discussed in the next chapter.

3.2 Transfer Learning
To address the issue of sample inefficiency and high computational cost in RL, we di-
rect our focus to Transfer Learning (TL). The central idea behind TL is to make use of
knowledge gained from one task to improve performance on another related task. As on
numerous other occasions, this concept first emerged in psychology before appearing in
Machine Learning. Indeed, the theory of generalization, proposed by psychologist Charles
Judd as early as 1908 [Judd 08], states that transfer from task A to task B is possible if
by achieving task A the learner discovers common or general features which generalize,
in part or completely, to task B. In essence, it consists in discovering the shared struc-
ture to a number of related but distinct situations. For instance, learning tennis involves
principles and skills that are closely related to table-tennis or squash. Hence, an athlete
going from one to another is likely to learn more efficiently than an athlete starting from
scratch. It is important to note that transfer does not necessarily lead to a positive impact
on learning and can even be detrimental. For instance, learning a language that has a
specific grammatical structure can lead to biases and habits that a learner must overcome
in order to acquire a new language with a fundamentally different structure, a problem
known as linguistic interference [Lennon 08].

3.2.1 Definitions

In the ML context, the learner is represented by a model. Several prior works [Zhuang 20,
Pan 10] proposed a general and formal description of TL. The concepts of domain and
task must be defined in the first place:

Definition 1: (Domain) A domain D is composed of two components: a feature space X
and a marginal probability distribution P (X) such that X = {x1, x2, ..., xn} ∈ X . Hence,
D = {X , P (X)}.

The joint space of a robot could be regarded as X , with X a particular joint configu-
ration.

Definition 2: (Task) Given a domainD, a task T can be defined by a tuple T = {Y , f(·)},
where Y is the label space and f(·) is the decision function, expected to be learned from
the training data contained in D. From a RL standpoint, Y represents the optimal actions
we want the policy f(·) to predict.

Finally, we can formalize the concept of Transfer Learning using both definitions:

Definition 3: (Transfer Learning) Given a source domain DS and learning task TS,
a target domain DT and learning task TT , transfer learning focuses on improving the
learning of the target decision function fT (·) in DT using the knowledge in DS and TS,
even if DS ̸= DT .

44

An ideal scenario for many ML algorithm, is to have access to a large annotated training
set belonging to the same domain D as the test set. This would increase the odd of
generalization to unseen data once deployed. However, for many interesting real world
applications, this situation is rarely encountered. Collecting and manually labeling a suf-
ficient amount of data for a task of interest, can be prohibitively expensive. As a result,
it is almost the default procedure to use a deep neural network pre-trained on a large,
diverse and reliable data-set. This allows the model to learn useful and reusable fea-
tures. Subsequently, this pre-trained model can be used as a starting point for a new
model, fine-tuned on a smaller, more specific collected data-set. In addition to improving
sample-efficiency, Transfer Learning also reduces the burden of data collection and anno-
tation for supervised learning tasks. Depending on the type of transfer, we can expect
two outcomes if the transfer is successful:

• Zero-shot generalization: the pre-trained model instantly generalizes to the new
domain/task without additional training required.

• Few-shot generalization: the pre-trained model generalizes over the new task/domain
after some fine-tuning, i.e additional training with new data points.

For our particular setting, above definitions will be adapted in the section 3.3 dedicated
to Cross-Agent Transfer Learning . To better contextualize our line of work and how
it compares to modern TL approaches, the next subsections present some of the most
widely used applications of TL in Machine Learning, including Computer Vision (CV)
and Natural Language Processing (NLP).

3.2.2 Computer Vision

Transfer learning initially gained popularity and wide spread adoption for Computer Vi-
sion tasks. In practice, the model used for transfer is pre-trained on a large scale clas-
sification task on the imageNet data-set. With over 10 million images spanning 1000
classes, a model trained on this data-set can learn to extract a broad range of features
from images, which means that the learned representation is likely to generalize to other
domains [Donahue 14, Sharif Razavian 14]. Assuming that the model is a deep neural
network, the first layers (called the feature extractor in this case), learn to hierarchically
decompose an image into edges, shapes and contours. As these features are quite gen-
eral, the feature extractor can be efficiently re-purposed for other tasks such as detection
[Redmon 16, Girshick 15] and image segmentation [Kirillov 23, He 17]. After transfer of
the feature extractor, all that remains to be done, is to fine-tune the final layers of the
network, significantly speeding up learning of the downstream task. This simple process
is illustrated in Figure 3.1.

3.2.3 Natural Language Processing

The same approach is also increasingly seen in Natural Language Processing with Bidirec-
tional Encoder Representations from Transformers [Devlin 18] (BERT) frequently acting
as a pre-trained model. This process is similar to the one used in Computer Vision, but
the data-set utilized for pre-training is a massive text corpora. This allows the model
to capture important information about language syntax, semantics, and context. Once

45

Figure 3.1: Illustration of a classical transfer learning setup with computer vision models.
One model was trained on imageNet, a very large image database and acquired general
feature detection capabilities. As such, the model extractor can be re-purposed and
transferred to another model for a different application (medical for instance).

again, the feature extractor in BERT can be repurposed for more specific tasks, such as
aspect-based sentiment analysis [Hoang 19] and question-answering [Devlin 18], with only
the task-specific final layers requiring adjustment. A concurrent but similar approach, the
Generative Pre-trained Transformer (GPT) [Brown 20], also relies on unsupervised pre-
training on large corpus of text before fine-tuning on task-specific data-sets. As fine-tuning
these large models on task-specific data-sets can be quite expensive, [Hu 22] proposed to
instead train from scratch a significantly smaller model that contains ∆W , the low-rank
adjusted weights of the large model. The most widely-used pre-training method in NLP
involves an unlabeled dataset with a simple training objective of predicting the next word
based on the given context [Devlin 18]. Despite its apparent simplicity, this pre-training
method results in a powerful and robust knowledge representation. For instance, PaLM-E
[Driess 23], an embodied large language model (562 billions parameters) is able to per-
form long-horizon planning tasks given visual and language inputs such as "bring me
the chips", on 2 different robots using the same model (see Figure 3.2). Additionally,
its sophisticated embedding space enables zero-shot generalization to new tasks and ap-
propriate response to unseen directives. As usual, this model was pre-trained on a large
corpus of text [Chowdhery 22] before being fine-tuned on real world data.

46

Figure 3.2: Samples of tasks that PaLM-E can achieve [Driess 23].

3.2.4 Simulation to real world

For most robotic applications, we are ultimately interested in deploying the agent on a
real system. However, the exploration required by RL agents which raises safety concerns
and the massive amount of training samples needed, make learning directly on the phys-
ical robot extremely hard. As such, training usually happens in a simulator to benefit
from the availability of virtually unlimited data and to avoid potential physical dam-
ages. Unfortunately, reinforcement learning agents have a strong tendency to overfit to
their environment. In practice, this implies that even small changes in the transition
dynamic can lead to catastrophic decrease in performance. Even high-end simulators
[Todorov 12, Makoviychuk 21b] are not able to fully replicate the richness of the real
world, leading to discrepancies when transferring models from simulation to real world,
known as the sim2real gap. As such, transfer from simulation (source domain) to reality
(target domain) can also be regarded as a Transfer Learning problem. To mitigate the
harmful effect of sim2real transfers on models performance, [Akkaya 19, Peng 18c] ran-
domize a number of physical and dynamic parameters to expose the agent to a wide variety
of possible environments (see Figure 3.3 for an illustration). In practice, the agent can
adapt to a distribution of environments, hopefully encompassing the real one. Subsequent
work [Chebotar 19] estimates the best mean and variance for the distributions of physical
parameters from real world experience rather than manual tuning, in an expectation-
maximization fashion. Mutual Alignment Transfer Learning [Wulfmeier 17] guides and
accelerates the training of an agent on an actual robot by adding a reward term such that
it visits states similar to its better performing virtual counterpart.

3.2.5 Reinforcement Learning

In both CV and NLP, transfer learning is straightforward to implement and often results in
state-of-the-art results. However, finding a practical and general approach for pre-training
and transfer learning in the context of RL policies, is still an open research problem. The
RL community has yet to find and adopt a foundation model [Bommasani 21] which will
provide an efficient starting point for downstream applications. One major challenge is the
fact that contrary to neural networks in CV, there is no spontaneous knowledge segmen-

47

Figure 3.3: Illustration of the domain randomization concept. The physical domain is a
possible sample from the distribution induced by parameters randomization [Weng 19].

tation when learning a task with a policy network. As a consequence, the unconstrained
back-propagation procedure may result in an entangled knowledge representation. In this
setting, it is difficult to determine which part of the network is relative to the task or
to the agent, making a partial or total transfer of the policy network hazardous if done
naively and with very low chances of success. We empirically demonstrate this point in
Section 3.3.2. Moreover, control policies frequently leverage feed-forward neural networks
where the input and/or output dimensions depend on the number of degrees of freedom
(DoF) of an agent. As such, the first and the last layers cannot be directly transferred to
an agent with a slightly different control dimensionality. Analogous to CV, it would be
interesting to be able to pre-train a model on a given domain (i.e data-set for CV or agent
for RL) such that it performs well or can be efficiently fine-tuned on another domain for
the same task. As a practical example, we can think of a model pre-trained on Imagenet
and then fine-tuned on a classification task for tumour detection [Saikat Islam 22], or in
the context of RL, a model pre-trained on a 6 DoF UR10 robot and then transferred to
a 7 DoF Panda robot for the same manipulation task.

3.3 Problem statement

In this section, we define and contextualize our problem by adapting the general defi-
nitions of Transfer Learning given in Section 3.2 to suit our specific setting.

3.3.1 Formalization

To formalize the CATL problem, we employ the formalization used in [Kim 20]. We define
a domain as a MDP without a reward function R. Thus, it forms a 4 tuple written as
D =< S,A, P, ρ0 >. In other words, a domain fully describes the agent embodiment

48

Figure 3.4: Illustration of the Cross-Agent Transfer Learning philosophy: 3 robots with
different morphologies are performing the same task on an assembly line. The policy used
to learn and run the pick and place task is robot-agnostic (i.e the same across robots).

and its dynamic, as well as the environment, but does not imply any particular behavior.
The task reward Rr,T is the only component specifying how the robot should behave.
Although our study is focused on robots, we believe that our problem formulation and
the associated solution are sufficiently general to be applied to any kind of agents. As
such, in this work we refer to domain, agent and robot equivalently. A task on the other
hand, specifies the desired agent’s behavior and can be represented by the appropriate
reward function R. Following the formalization proposed by [Devin 17], we define a world
w as:

Definition 1: Given a domain Dr =< Sr, Ar, Pr, ρ0,r > (i.e a robot r) and a task T , a
world wr,T , is a modular MDP combining a domain and a task such that:

wr,T = Dr

⋃
T =< Sr, Ar, Pr, ρ0,r, Rr,T > (3.1)

Note that Rr,T depends on r because we may use robot-specific terms in the reward
function to penalize large joint movements for instance.

Definition 2: A Universe U is the set of all possible worlds, or more formally, if we denote
by T the set of all the tasks considered and R the set of all the domains considered:

U = {wri,Tj}
j=1:|T|
i=1:|R| (3.2)

where | · | denotes the cardinality of a given set.

We define the cross-agent transfer problem that we are tackling as follows, slightly adapted
from [Zhu 20]:

49

Definition 3: Given a set of n source worlds {wsi,T }i=1:n ⊂ U and a target world
wt,T ∈ U , Cross-Agent Transfer Learning (CATL) aims to derive an optimal policy πt,T for
the target world more efficiently than learning it from scratch, by leveraging information
I is from {wsi,T }i=1:n as well as information It from wt,T .

The above definition is rather general but conveys the idea that we transfer knowledge from
one or several source domains to a target domain with respect to a given task (see Figure
3.4). It also makes no assumption about the nature of the information I transferred.
As such it could be a teacher neural network’s hidden state as in [Wan 20], Q-Values
as in [Beck 22], expert demonstrations or a partial/complete policies. As discussed and
analyzed in [Da Silva 19], it is not trivial to define what kind of knowledge should be
transferred and through which medium. A recent but popular and successful type of
approach to address CATL, is to find a single policy that can manage a variety of robot
hardware configurations for a given task T . In this case, what is transferred is the policy.
More formally, if we denote by π∗

T such a policy and R the set of robot morphologies
contained in our universe U , we wish to solve:

π∗
T = argmax

π
Er∼R[G

T (r)] (3.3)

where GT (r) is the discounted return for robot rR on task T . In other words, π∗
T should

be optimal and robot-agnostic.
In this work, we will consider the challenging CATL setting where R is composed

of robots functionally and morphologically different. In other words, they differ both
by their segment length and by their number of joints. If we denote by Ds, the source
domain and Dt, the target domain, then we will have in general dim(As) ̸= dim(At) and
dim(Ss) ̸= dim(St).

3.3.2 A naive attempt

Given the current transfer learning paradigm in other ML fields such as NLP and CV, one
might be tempted to use the same straightforward approach with TL in Reinforcement
Learning. Given an expert policy network πR1,A trained on task A with robot R1, we
could attempt a direct policy transfer by re-using some of the layers of πR1,A to initialize
πR2,A, the student policy network for the same task using robot R2. Similarly to CV and
NLP, only the newly added layers would be adjusted by the gradient back-propagation
procedure. Intuitively, we can expect that some useful knowledge about how to achieve
task A resides inside these transferred layers, which could jump-start and speed up training
for πR2,A. We explore this simple idea in a toy experiment to demonstrate its inefficiency
and highlight the need for a more sophisticated approach.

Experiments

We consider two serial robot arms: a UR10 robot with 6 DoF and a Panda robot with 7
DoF, both trained from scratch with PPO on a ball catching task. In this task, the agent
is equipped with a basket and must catch a ball thrown at him. We denote by πEP and
πEU the expert policy obtained respectively for the Panda and UR10 robots. To study
the effectiveness of a naive policy transfer, we initialize new policy networks for both
robots with the expert policy trained of the other robot, and train the new models. More

50

formally, we denote by πSP→U
the UR10 student policy initialize with the expert policy

trained on the Panda robot and πSU→P
the reciprocal. Note that given the mismatch

in control dimensionality due to different numbers of DoF, only the hidden layers of the
policy networks can be transferred (see Figure 3.5). Given this setup, we analyze two
cases: (A) only the randomly initialized layers (i.e input and output layers) are adjusted
by the task gradient and (B) the whole policy network is fine-tuned.

Figure 3.5: Illustration of the naive experiment setup. The hidden layers of the expert
policy trained on the panda robot are used to initialize the student policy to be trained
on the UR10. Only the input and output layers are initialized from scratch. When fine-
tuning for (A) only the randomly initialized layers and for (B) the whole policy network.

.

Results

We examine the results for both transfer settings: Panda to UR10 and UR10 to Panda.
The learning curves are depicted in Figure 3.6. We can see the evolution of the mean
cumulative reward obtained by the agent over time as training progresses. Therefore, it
is a reliable metric to monitor the agent’s performance in its environment and a good
indicator of learning efficiency. If direct transfer of the expert policy hidden layers was
beneficial, we should observe the student agent converge to a high reward faster than the
expert trained from scratch on the same robot. However, Figure 3.6 show that in both
cases A and B, there is no improvement over regular training from scratch with PPO.
In fact, case A is significantly slower to converge than baseline. These results indicate
that a naive policy transfer not only fails to improve sample-efficiency, but may also prove
to be detrimental for learning. This is likely due to a lack of structured knowledge in

51

the policy network, leading to an entangled task-specific/robot-specific representation. In
contrast, we demonstrate the effectiveness of our approach on the same challenging setting
in chapter 4.

(a) Panda robot.

(b) UR10 robot.

Figure 3.6: Learning curves when using direct transfer of the hidden layers between the
panda and the UR10 robot with fine-tuning for (A) only the randomly initialized layers
and for (B) the whole policy network.

3.4 Foundational Works
In this section, we provide a comprehensive review of the foundational works that inspired
the development of our own related contribution, naturally leading the discussion towards
a detailed description of all the components of our approach and design decisions in
the next chapter. In particular, we highlight some of the limitations of these previous

52

Cross-Agent Transfer Learning techniques, thus justifying the need to develop our own
approach to address these. We begin with an overview of two early attempts at CATL,
namely Transfer with Invariant Feature Spaces and Modular Network Policy. Lastly, we
focus our attention on the Universal Notice Network (UNN) framework as it is the main
building block of our contribution. Furthermore, many of the concept explained for the
UNN will also be relevant when we discuss the Latent-Space UNN in Chapter 4 and
another contribution, named the Delay-Aware Universal in Chapter 5.

3.4.1 Invariant Feature Space

This approach was jointly introduced in [Gupta 17] by Colin Devin and Abhishek Gupta.
The aim of their mutual work is to enable two agents, regardless of their potential mor-
phology divergence, to learn multiple skills by sharing information. Their endeavor was
also motivated by a desire to improve sample efficiency of RL algorithms and accelerate
the acquisition of new skills.

Learning a shared latent space

Given two agents rS and rT , their methodology leverages the common skills learned
by both agents to train an invariant feature space, which can then be used to trans-
fer additional skills between them. Formally, let ηπ∗

S(sS) and ηπ
∗
T (sT) denote, respec-

tively, the state distribution induced by the optimal policies π∗
S and π∗

T of rS and rT . A
common feature space K = {f, g} is defined using two embeddings f and g such that
p(f(ηπ

∗
S(sS)) = p(g(ηπ

∗
T (sT)). In plain English, the embedded state distributions of the

optimal policies are similar in the invariant feature space. To learn this shared latent
space, they assume that the agents possess prior knowledge of one another in the form of
basic, common skills, learned while performing a "proxy" task. Using this setup, they can
compare how they perform this task in order to estimate the correspondences between
both agents and determine the common feature space. In practice, they first obtain pairs
of corresponding states across domains through time-alignment. In other words, they
consider that both agents perform the same proxy task at the same pace, and therefore,
states visited at the same time step can be matched. Additionally, the state space of each
domain is divided into an agent-specific state xr and a task-specific state oτ . Given a list
of paired states, the embeddings f and g can be learned using a simple similarity metric
introduced in [Chopra 05]:

Lsim(x
p
S, x

p
T) = ||f(x

p
S; θf)− g(x

p
T ; θg)||

2 (3.4)
where subscript p denotes the proxy skill and θf and θg are the parameters of the neural
network approximating f and g. Equation (3.4) can be trivially optimized by setting every
embeddings to 0, i.e f(xSp,r) = g(xTp,r) = 0. As such, it is necessary to add reconstruction
losses in the training objective, to ensure that useful information is encoded in the latent
space.

LrecS(x
p
S) = ||x

p
S −DecS(f(x

p
S); θDecS)||2 (3.5)

LrecT (x
p
T) = ||x

p
T −DecT (f(x

p
T); θDecT)||2 (3.6)

In practice, this yields an auto-encoder training scheme where DecS and DecT respectively
decode the states encoded by f and g. The full training objective is thus:

min
θf ,θg ,θDecS ,θDecT

∑
(xpS ,s

p
T)

Lsim + LrecS + LrecT (3.7)

53

A diagram of their learning approach is shown in Figure 3.7.

Figure 3.7: Auto-encoders training with an Euclidean distance between embeddings as
the similarity metric[Gupta 17].

.

Transferring knowledge

Using the invariant feature space defined by f and g, they can transfer knowledge and
speed up the learning process in the target domain. To do so, they incentivize the distri-
bution of trajectories in the target domain to be similar to the source domain under the
mappings f and g. This is done by adding a term rtransfer to the reward function

rtransfer = α||f(x(t)S ; θf)− g(x(t)T ; θg)||2 (3.8)

where x(t)S is the source agent-specific state at time step t under the optimal policy and
x
(t)
T is the target agent-specific state at the same time-step during training. The constant
α is weighting the contribution of the transfer reward relative to the overall task goal.

rt = rtransfer + rtask (3.9)

where rtask is the task-specific reward. This shaped reward function provides an additional
training signal that guides the learning policy in the target domain towards potentially
beneficial states.

They assessed the effectiveness of their approach on simple planar robots (depicted in
Figure 3.8) on several 2D manipulation tasks such as button push and block push. Over-
all, their method demonstrated an improved sample efficiency when compared to baseline
agents trained without knowledge transfer. Moreover, it succeeded in learning tasks where
rtask is sparse using the extra guidance offered by rtransfer. However, their method does
not allow for zero-shot transfer and has not been shown to scale to more complex tasks
and higher-dimensional robots.

54

Figure 3.8: Robots considered for the experiments performing the proxy tasks[Gupta 17].
.

3.4.2 Modular Network Policies

This approach was also introduced by Gupta and Devin in 2017 [Devin 17]. The goal is
similar: transfer knowledge between robots with different kinematic and dynamic struc-
ture to improve sample-efficiency. They also introduced the notion of world and universe
used and adapted in Section 3.3.

Principle

Figure 3.9: Illustrative example of a Universe with 4 different worlds (2 robots and 2
tasks) [Devin 17].

.

Their approach aims to demonstrate that neural network policies can be divided into
two modules: "task-specific" and "robot-specific". The task-specific modules are shared
across different robots, while the robot-specific modules are shared across all tasks per-
formed by that robot (see Figure 3.9 for an illustration). This decomposition can be
leveraged to share task-related information, such as perception, across different robots,
and share robot-related information, such as dynamics and kinematics, across different
tasks. As such, they denote by sw the observation for world w. They consider that an ob-
servation can be split into "intrinsic" (i.e robot-specific) information xw,r and "extrinsic"
(i.e task-specific) information ow,τ . Robot-specific information xw,r could include joints
state, images and sensor readings, while task-specific information ow,τ may contain object

55

locations and position of the robot’s end-effector for instance. Furthermore, let πwr,T (·|w)
be the policy for world w with robot r performing task T such that:

πwr,T (·|w) = N (ϕwr,T (ow),Σ) (3.10)

with ϕwr,T a neural network and Σ a diagonal covariance matrix. The function ϕwr,T is
the composition of the robot-module fr and the task module gT . Given above definitions,
we can formally express the modular policy with:

ϕwr,T (ow) = ϕwr,T (ow,τ , xw,r) = fr(g
T (ow,τ , xw,r) (3.11)

To enable the reuse of modules across similar instances, a distinct set of parameters is
used for each robot and task module. Specifically, if multiple worlds feature the same
robot instantiation r, they would utilize the same robot module fr, while worlds that
share a task instantiation T would employ the same task module gT .

Learning Modular Policies

Given a robot module and a task module, the expectation is that their combination will
produce a fully operational policy. This implies that both modules are able to generalize
to each other, even though they have not been trained together. To reach this goal, the
authors proposes to train simultaneously mix-and-match modules such that a common
feature space eventually emerges through ongoing interactions between a wide variety of
modules. As the number and diversity of worlds grow, the likelihood of a robust and
general shared feature space emerging also increases. Consequently, the trained modules
become increasingly invariant to variations in tasks/robots, which also improves general-
ization to novel worlds. The training procedure is thus conceptually simple: train multiple
robot and task modules simultaneously until a global optimum is reached (with respect
to the tasks reward functions). The training procedure is illustrated in Figure 3.10.

Figure 3.10: This universe is composed of 2 robots and 2 tasks with an equal number of
modules. A subset of these modules is drawned and combined to be trained jointly until
convergence. One of the possible combinations has been left off to serve as a test world
[Devin 17].

.

56

They thoroughly tested their approach with a multitude of 2D robots and manipulation
tasks (see Figure 3.11). They report an improved sample efficiency as well as zero-shot
generalization in some cases. However, it is not clear how much time is needed to jointly
train every combination. This could potentially be prohibitively large for more complex
robots and tasks, significantly exceeding the time needed for a regular training on the
desired world. Moreover, it is unknown how many training worlds are required to reach a
shared and robust latent representation for efficient transfer.

Figure 3.11: Grid of tasks and robots considered for their experiments. As shown, one
world was not seen during training and later tested on to study generalization [Devin 17].

.

3.4.3 Universal Notice Network

Our primary source of inspiration and one of the earliest attempts of CATL is the Universal
Notice Network method (UNN) [Mounsif 19b], defined and explored by Mehdi Mounsif
during his PhD [Mounsif 20].

Principle

The main motivation behind the UNN framework was to tackle the entangled knowl-
edge representation issue resulting from the unconstrained optimization procedure in the
shallow networks typically used in Reinforcement Learning. As such, it aims at decom-
posing and segmenting the knowledge encompassed in a policy network such that it can
be efficiently transferred to multiple agents, regardless of their morphologies, number of
articulations or actuators. This approach is based on a functional and hierarchical decom-
position of the policy, with at the center, a high-level task-specific module, and on each
side, acting as an interface, agent-specific modules (see Figure 3.12). The task-module is
called the Universal Notice Network to highlight the idea that it should contain a set of

57

high-level instructions that any kind of robot could follow to solve a given task. This is
analogous to a notice used to build furnitures where the instructions are general enough to
be achievable by most people as they do not assume any particular morphologies. In other
words, the UNN module is not concerned with the details of actuation and focuses on the
high-level decisions. As such, the task-solving process is largely agnostic to the robot mor-
phology and can suit any of the targeted robots for transfer. For example, solving a pick
and place task may require low-level robot-specific motor commands, but the high level
process will roughly be the same: first move the effector close to the pick target, grasp
the object and get it at the desired location. Consequently, the agent-agnostic nature of
the UNN module makes it suitable for transfer between agents, even in the presence of
morphology discrepancies.

Figure 3.12: Schematic representation of the UNN pipeline[Mounsif 23] and its three
different modules. The red task-specific module is at the center with the robot-modules
on each side

.

However, it is primary to ensure that the agent has the mobility and capacities required
to comply with the UNN instructions and accomplish the task. Therefore, the UNN
methodology assumes indeed that the agent can perform the required actions. Formally,
if R denotes the set of feasible actions the robot can produce and U the set of actions
required by the UNN to perform a task, then it should be satisfied that:

U ⊆ R (3.12)

Another prerequisite to enable transfer is the availability of robot-specific modules called
the bases in the UNN framework. They are used as intermediaries between the high-level
UNN task-module instructions and the agent’s low level hardware. More specifically they
serve two main purposes:

• Translating robot-specific observations into a feature space shared by the considered
agents before being fed to the UNN module. This part is handled by the input base
(green module in the Figure 3.12).

58

• Translating the high-level and robot-agnostic commands delivered by the UNN mod-
ule into robot-specific actions that the robot can execute (i.e robot’s actuation). This
mapping is managed by the output base (blue module in Figure 3.12).

Similarly, the bases modules are designed to be task-agnostic and can be reused with
other tasks. However, they are unique to a robot hardware and morphology. A complete
and fully functional policy thus requires to combine the corresponding robot modules
and task module as presented in Section 4.3. When varying the task, the robot modules
are kept unchanged and when varying the robot we transfer the task module. Figure
3.12 illustrates the full policy architecture with the corresponding input/output of each
module.

Formalization

More rigorously, the three modules form a pipeline composed of the input base Bi
r and in

between the output base Bo
r , specific to the robot, and the UNN UT agent-agnostic and

specific to the task only. In this modular framework, the full observed state s provided
by the environment is split into robot-specific and task-specific information:

s = {xr, oτ}

The robot-specific information xr holds the observations regarding the state of the robot
itself, such as joint position, or joint velocity. In contrast, everything the agent needs
to know about the state of the task is contained in the task-specific information oτ . It
could include objects location and velocity and more broadly any robot-agnostic data. We
denote by K the shared feature space in which the UNN module operates. Please note
that the UNN formulation is rather general and does not suppose any particular nature
for the feature space. The input base Bi

r : Xr 7→ K maps the robot state to the feature
space K while the output base Bo

r : Kd 7→ Ar remaps the UNN command to the robot
action space.

To summarize, at each time step, the environment produces sr, the full state which
is first decomposed into robot specific information xr and task specific information oτ .
Then, the robot specific vector xr is translated into a robot agnostic vector k ∈ K by
means of the input base

k = Bi
r(xr) (3.13)

Following this, the UNN processes the agent-agnostic representation k as well as oτ , task-
related information, to compute a robot agnostic action kd, which can be seen as the
desired robot action in the feature space:

kd = UT (k, oτ) (3.14)

Finally, we get the effective action executed by the robot ar in the environment by project-
ing the action from the common feature space kd ∈ Kd back to the robot space through
the use of the output base

ar = Bo
r (kd) (3.15)

The modular policy π∗
r,τ is thus the composition of the 3 modules

π∗
r,τ = Bo

r ◦ UT ◦Bi
r (3.16)

59

or more explicitly
π∗
r,τ = Bo

r (UT (B
i
r(xr), oτ)) (3.17)

This modular and functional decomposition approach also allows us to overcome a tech-
nical difficulty: since we are dealing with transfer for robots with heterogeneous state and
action dimensions (i.e dim(As) ̸= dim(At) and dim(Ss) ̸= dim(St)), we cannot have a
single policy fitting every state-action space dimension. This issue is solved by having
each robot represented by its own pair of bases, fitted to its control dimensionality.

Modules training

In practice, each of the three mappings discussed above Bi
r, Bo

r and UT can be either
learned by a feed-forward neural network or obtained via analytical methods. In the
"classical" UNN framework ([Mounsif 19a], [Mounsif 23]), the robot-agnostic information
used by the UNN module has to be "manually" defined. For instance, in his experiments,
Mehdi Mounsif sets the feature space to be the Cartesian space (i.e K = R3) of the end-
effector. As such, the UNN module is working either with the end-effector position or
velocity.

Before training or transferring a UNN module, it is first mandatory that the source
or target agent has the infrastructure to comply with the UNN instructions. Therefore
a pair of bases corresponding to the considered robot should be either already available
or trained prior to using/training a UNN module. In the case where bases are obtained
using neural networks, they can be trained on a suitable primitive task to acquire basic
motor skills. Another alternative is to collect a data-set of trajectories of the robot and fit
a regression model with supervised learning techniques. Finally, the last option consists
in using analytical models for the robot bases. Regardless of the procedure used to obtain
the robot modules, the input and output bases will respectively serve as forward and
inverse kinematic models of the agent, since we are dealing with the Cartesian space, i.e
ar is a desired position.

Naturally in this paradigm, the UNN module (or task module) has to output the
desired effector position (or velocity) given task-related information and current effector
position (or velocity). It can be trained via Reinforcement Learning in two different
ways. In the first case, the UNN is coupled with a robot and its associated bases. The
UNN interacts with the environment through the bases and its error on the task is back
propagated through the network. However, the UNN module may then take advantage of
the robot hardware structure to achieve the task (for instance, blocking an object between
two articulations). As a consequence, the UNN may favor certain body configurations
which may be detrimental for transfer. This issue is tackled by the Base Abstracted
Modeling (BAM) method [Mounsif 19a] also developed by Mehdi Mounsif. It assimilates
the robot to its effector by setting Bi

r and Bo
r to identity mappings, thus making no

assumption on the robot’s constitution and preventing any bias related to the bases (see
Figure 3.13). This is equivalent to considering a purely virtual and free-flying robot. BAM
has shown, in practice, a faster convergence of the policy and a more defined knowledge
segmentation, which in turn improves UNN transfer. In both cases, the stochastic gradient
ascent procedure focuses on the UNN module’s weights, leaving the bases unaffected
by gradients. An illustration of the difference between the "classical" UNN and BAM
formulation is provided in Figure 3.13.

60

Figure 3.13: Schematic representation of the UNN module training with and without the
Base Abstracted Modeling on a pick and place task. On the left, the "classical" UNN
interacts with the environment through the robot bases represented by its kinematic
models. On the right, the robot is assimilated to its effector and can move freely in the
space, avoiding any bias due to the robot morphology.

Transfer is then as simple as a plug-and-play of the UNN module in between the
robot’s bases. In a number of cases, UNN transfer results in an instant generalization to
a new and unseen morphology. In the worst case scenarios, performance achieved on the
source robot can be recovered very fast with a bit of fine-tuning on the target robot. It
is then possible to build a library of UNN modules and robot’s modules, draw any subset
of interest from it and combine a UNN/Bases pair into a novel fully functional policy.

This approach was exhaustively validated in simulation on a broad range of challenging
manipulation tasks and robots. In every instance, the UNN-based agents significantly
outperformed the baselines and demonstrated near zero-shot generalization. However,
the efficiency of this approach was not proven on physical hardware. Figures 3.14 and
3.15 depict some of the robots and a task on which the UNN method was tested.

61

Figure 3.14: Schematic representation of some the robots used for the experiments on the
UNN method. From left to right: Generic-3 robot, Berkeley Blue, Kuka-LWR, Leg Type
1, Leg Type 2. Image taken from [Mounsif 23]

3.5 Conclusion
This chapter introduced and formalized the concept of Transfer Learning. It discussed
some of its most widely spread applications, in particular computer vision and natural
language processing. Following this, this chapter formally defined and framed our specific
problem setup: cross-agent transfer learning where the goal is to transfer knowledge be-
tween different agents in a RL setting. We first tried to solve our CATL problem with a
naive, but straightforward method inspired by current approaches in CV and NLP. How-
ever, this simple approach proved to be inefficient at best, motivating the need for more
sophisticated methods. Some of these approaches, discussed and analyzed in this chapter,
yield very interesting results from a sample-efficiency standpoint, but either do not allow
for zero-shot transfer or require a relatively high computing power. Lastly, we reviewed
the original Universal Notice Network, a general framework for CATL, and detailed one
particular instantiation where the agent-agnostic feature space is defined as the Cartesian
space. However, in its current form, the UNN relies on hand-crafted features to define
the space that interfaces the task module with the robots. As a result, this limits the
method flexibility and practicability. To address this shortcoming, a new UNN approach
was developed to learn the robot-agnostic feature space from multiple agents with differ-
ent morphologies, thus removing the need for hand-crafted vectors. In the next chapter,
this novel method is explained in details along with the corresponding experiments.

62

Figure 3.15: Schematic representation of a tennis-table setting, one of the tasks used for
the experiments on the UNN method. Image taken from [Mounsif 23]

63

Chapter 4

Latent Space Universal Notice Network

This chapter introduces the Latent Space Universal Notice Network (LS-UNN), our main
contribution. The motivation for our proposed framework stems from the limitations
of several existing approaches, which we recalled and discussed in the previous chapter.
To address these limitations, we have developed a methodology that builds upon the
strengths of previous works and incorporates new strategies to overcome the shortcomings.
In the dedicated results section, we present extensive experimental results supporting its
effectiveness. Finally, we analyze how the LS-UNN fits into the current literature on CATL
and draw connections to other related fields such as domain adaptation, imitation-learning
and hierarchical reinforcement learning.

4.1 Motivations
One question left unanswered by the UNN framework in its original formulation, is how
do we choose K, the shared feature space inhabited by the task-module? While the
Cartesian space seems to be well suited for tasks involving robot arms, its definition relies
on expert knowledge. Furthermore, it is not obvious what kind of feature space should be
picked for more sophisticated and complex robots such as mobile base, robotic hands or
bipedal robots. Even if an expert can manually craft a feature space, it is not guaranteed
that this is the optimal agent-agnostic representation to support transfer of knowledge.
Ideally, we should have a way of automatically learning an adequate representation for our
agent-agnostic feature space, directly from raw data. This would avoid the need to rely
on domain-specific knowledge or to assume particular properties of the robot morphology
such as whether or not it possesses an end-effector. Moreover, given that we generally
do not have access to the ground truth feature space, learning should proceed without
supervision. Luckily, it is possible to leverage representation learning to discover the
appropriate set of features for an efficient knowledge transfer. Furthermore, as explained
in Section 2.6, feature learning frequently outperforms feature engineering in a number of
tasks. This realization motivated our search for a unsupervised representation learning
method that would generalize the "classical" UNN approach with a learned rather than
manually defined, shared feature space.

64

4.2 Towards Zero-Shot Cross-Agent Transfer Learning
via Aligned Latent-Space Task-Solving

In this section, we describe our CATL method, the Latent Space Universal Notice Net-
work (LS-UNN), which extends the range of applications of the UNN framework. More
specifically, it enhances the UNN formulation by providing a methodology for learning an
agent-agnostic feature space, rather than relying on hand-crafted features. Our proposed
method leverages Variational Auto-Encoders to learn an agent-agnostic latent space from
paired, time-aligned trajectories collected on a set of agents of interest. We first pro-
vide a detailed and formal description of each component of the pipeline. Following this,
we explain how the different modules come together to enable near zero-shot cross-agent
transfer learning. Finally, we delve into the training process for each individual part and
provide experimental evidence for the effectiveness of our CATL approach.

4.2.1 Preliminaries

As mentioned in the previous sections, we seek to learn the agent-agnostic feature space
needed for cross-agent UNN transfer. Naturally, an ideal candidate for our goal is the
auto-encoder framework described in Section 2.6.2. Indeed, its properties perfectly match
the expected requirements:

• The encoder maps from the data space into a latent representation Z. Analogously,
an input base maps from the robot space to a robot-agnostic feature space K.

• The decoder remaps from the latent space Z back to the data space. Similarly, an
output base translates a robot-agnostic feature K.

From these observations, it is obvious that we could leverage a learned auto-encoder
latent space for the robot-agnostic feature space given their similarities. As such, the
UNN module, plugged between the bases, would operate within Z to learn the desirable
latent state of the robot given a task (see Figure 4.1 for the full policy network). However,
setting K = Z raises a question. How do we ensure that the the latent representation Z
is shared by the agents considered for transfer ? Simply learning independently a latent
representation for each robot will very likely result in dissimilar latent spaces. In contrast
we strive for a shared feature space, allowing the UNN module to learn a robot-agnostic
policy. This requires to align the representations learned by the distinct robot’s bases. To
address this issue, we rely on a time alignment procedure to find pairs of corresponding
states across robots morphologies. We explain our approach and detail our entire transfer
pipeline in the following subsections.

State pairing

Our solution to align the latent representation learned by all the considered robots is
based on state-pairing (illustrated in Figure 4.2). Inspired by prior works [Gupta 17], we
construct Z such that a pair of similar robot states from two different robots r1 and r2
(xr1 , xr2) ∈ Xr1 ×Xr2 maps to the same point in the latent space. As such, the LS-UNN
workflow first requires to get corresponding pairs of states across robots morphologies.
In this work, we considered primitive tasks performed by both robots at the same speed
with optimal policies. The optimal policies can be obtained through standard analytic

65

Figure 4.1: Schematic representation of the Latent Space UNN pipeline and its three
different modules. The red task-specific module is at the center, inside the latent space,
with the robot-modules on each side

methods or can be learned. Then, we assume that two states visited at the same time-step
during the execution of the optimal policies for the primitive task can be matched. In
other words, if we denote by π∗,T

r1
and π∗,T

r2
the optimal policy for primitive task T on

respectively, robot r1 and robot r2, then:

xr1(t1) ≈ xr2(t2) ⇐⇒ t1 = t2 (4.1)

with t1 and t2 two time-steps occurring during the same task execution and "≈" de-
note similarity between two states. This simple but effective time-alignment process has
already been used in prior works ([Gupta 17], [Makondo 18], [Makondo 15]), to find cor-
respondences between states. In this work, we focus on efficient transfer of skills rather
than how to find similarities between states. Finding correspondences using paired and
time-aligned trajectories can be quite limiting and unpractical. Therefore, we study a
more versatile approach over time-alignment in Appendix A.

In practice, we can consider several distinct primitive tasks (each with its optimal
policy) to generate a large variety of trajectories along which states will be paired. This
is to ensure that the robots bases generalize well even if they have not seen the entire
robot state-space. As a consequence, these primitive tasks should be carefully crafted in
order to be representative of how the robots can move, but also fairly simple to obtain
optimal policies easily. It should also be taken into consideration that the bases training
should focus on the state-space regions that will be visited during the UNN training for
maximum efficacy. Once we have a dataset of corresponding paired states defined as:

D = (xnr1(t), x
n
r2
(t))t=1:T,n=1:N (4.2)

where T is the length of a trajectory and N the number of trajectories, the bases can be
trained in an unsupervised setting to build the shared latent space as described in the
next section.

66

Figure 4.2: Illustration of the state pairing procedure for two robots with different mor-
phologies.

4.2.2 Modules Training

The overall formalization and principle for the LS-UNN are very similar to the ones
described in section 3.4.3. Indeed, equations and pipeline for the LS-UNN can be derived
by simply replacing the robot-agnostic feature spaceK with the latent space Z and keeping
everthing else as is. The originality of our approach lies in the bases training procedure
which encompasses the latent space building. In this subsection, we explicit the latent
space creation and alignment process, as well as the task-module training process. First,
we consider the case where we only have two robots at our disposal. But later in the same
subsection, we describe the procedure to "plug" any extra robot to the common latent
space already created to act as a source or target robot for UNN transfers.

Bases Training

In this Section, we explicit how to create and align the robots latent space Z. For this pur-
pose, we assume access to D, a dataset containing pairs of corresponding states across the
two robots considered, obtained following the procedure described in section 4.2.1. Figure
4.3 depicts the training procedure. From a high-level point of view, three essential condi-
tions must be met at the end of training to increase the odds of zero-shot generalization
for UNN transfers:

Condition 1: The latent space of both agents should be aligned. In other words, a
pair of similar states (xr1 , xr2) ∈ D should map to the same latent vector z through
their respective input bases.

Condition 2: Once decoded by the output bases of both agents, a latent vector z
should give similar states (x̂r1 , x̂r2) ∈ D with x̂r1 ≈ xr1 and x̂r2 ≈ xr2 .

67

Figure 4.3: Illustration of the bases training procedure for two robots with different
morphologies.

Condition 3: Finally, both metrics have to be balanced with a proper regulariza-
tion of the latent space with the KL divergence to improve generalization.

Conditions 1 and 2 ensure that the latent spaces of considered agents are well aligned.
This is paramount because the UNN module will output latent vectors and expect both
agents to react similarly given the latent command. Condition 3 avoids "holes" in the
latent space that would lead to meaningless decodings and as such, dissimilar states.

The two bases Bi : Xr → Z and Bo : Z → Xr are represented using variational
autoencoders (VAE) structure to benefit from its dimension reduction and generative
capabilities. They are specific to the robot so we will denote them by Bi

ϕr
,Bo

θr
, where

subscript r denotes the robot and ϕ and θ respectively parametrize the encoder and
decoder. In this regard, we rewrite Equation (2.44) with corresponding notations:

LBr = −Ez∼Biϕr (·|xr)
[
logBo

θr(xr|z)
]
+ βDKL

(
Bi
ϕr(z|xr)||N (0, I)

)
(4.3)

where xr denotes the robot state (e.g joint velocity and joint position). As mentioned
earlier, we wish to find a shared latent space between the robots by aligning their respective
latent space to enable cross robot transfer. In other words, if xr1 ≈ xr2 (xr1 similar to
xr2), zr1 ∼ Bi

ϕr1
(·|xr1) and zr2 ∼ Bi

ϕr2
(·|xr2), we ideally want zr1 = zr2 (similar inputs

should be represented by the same latent vector). We enforce this condition through the
use of a similarity loss defined as

Lsim = Ezr1∼Biϕr1 ,zr2∼B
i
ϕr2

[
||zr1 − zr2||2

]
(4.4)

which encourages their encoding distance to be small. The reconstruction and the sim-
ilarity losses ensure that both latent spaces are aligned and meaningful. Together they
make sure that conditions 1 and 2 are satisfied. Condition 3 is enforced with the KL
penalty. Each term should be carefully weighted as in practice, a low KL divergence is
hard to conciliate with a low reconstruction error. Too much regularization will lead the
latent space to collapse to the prior, hurting the reconstruction process and limiting the
amount of information contained in the bottleneck. Conversely, not enough regularization
will harm its generative capabilities.

68

Inspired by [Schönfeld 19], we also used a cross-alignment loss to further improve cross-
domains transfers. Each decoder reconstructs its input by using the latent encoding of
the paired similar state sampled from the other robot’s encoder:

LCA = Ezr1∼Biϕr1

[
||Bo

θr2
(zr1)− xr2||2

]
+ Ezr2∼Biϕr2

[
||Bo

θr1
(zr2)− xr1||2

]
(4.5)

Finally, we train the bases of both robots end to end at the same time with the following
full objective

min
θr1 ,θr2 ,ϕr2 ,ϕr1

∑
(xr1 ,xr2)∈D

LBr1 + LBr2 + δLsim + λLCA (4.6)

where δ and λ are constants respectively weighting the contributions of Lsim and LCA to
the full training loss.

.

Adding a new robot to the set

Even though we considered only 2 robots until now, it is possible to transfer a UNN
module to and/or from an arbitrary number of robots that were not initially considered
during the shared latent space building. There is no need to retrain any of the previously
obtained robot modules. We simply need to align the new robot’s latent space to the
already existing common latent space. The alignment process is depicted in Figure 4.4.
The steps are very similar to the previously described workflow:

• Enlarge the dataset D of paired similar states with collected states on the new robot
by following section 4.2.1.

• Use the input base Bi
ϕref

of one of the robot already contributing to Z as a reference
to align the latent space of the newly added robot. The weights ϕref are frozen and
only ϕnew and θnew, respectively the input and output base weights of the added
robot, are adjusted. More formally, the following loss is minimized

min
θnew,ϕnew

∑
(xref ,xnew)∈D

LBnew + δLsim + λLCA (4.7)

Once the new robot’s latent space is aligned, it can act as a source or as a target robot
for any UNN module training or transfer. This process can be repeated to add as many
extra robots as needed.

UNN training

Once the bases training is done, we can proceed to the training of a UNN module UT ψ,
approximated by a neural network with weights ψ on a chosen task T . We parametrize
the UNN policy as a Gaussian distribution i.e

UTψ = N (µψ(z, oτ),Σψ) (4.8)

where µψ(z, oτ) is the neural network that maps from observations to mean actions and Σψ

is the covariance diagonal matrix whose parameters are independent of the state. For an
intuitive and visual understanding of how the UNN module fits into the complete policy

69

Figure 4.4: Bases fitting process. Above figure describes the methodology to align the
latent space of a new robot. The similarity and cross-alignment losses are minimized with
respect to a ground truth provided by the frozen input base of a robot already sharing
the latent space.

Figure 4.5: Illustration of the UNN training procedure.

architecture, please refer to Figure 4.1. The whole UNN training process is detailed in
Algorithm 1. During task training, the bases weights of the robot the UNN is training on
are frozen and the gradient is backpropagated through the UNN module only to adjust
ψ (see Figure 4.5). From Bi

ϕr
(·|xr) we sample z ∼ N (z|µϕr(xr), σ2

ϕr
(xr)), input to the

UNN module, rather than taking the mean, to keep stochasticity in the observed latent
state as a form of domain randomization. We empirically found that it improves UNN
robustness against domain shift that may appear when transferring the UNN modules
from one robot to another, which in turn improves zero-shot performance after transfer.
The deterministic alternative is to take the mean z = µϕ(xr). For the sake of clarity,
we rewrite Equations (2.36), the RL objective optimized by the UNN module, with the
relevant notations and by using Equation (3.13) and (3.14). Denoting su = (z, oτ), the
concatenation of the current latent state z and the task-specific observation oτ :

L(su, zd, ψold, ψ) = min
(
r(ψ)AUψold (su, zd) , clip(r(ψ), 1− ϵ, 1 + ϵ)AUψold (su, zd)

)
(4.9)

70

with
r(ψ) =

Uψ(zd|su)
Uψold(zd|su)

(4.10)

Since the UNN operates on the shared latent space, it is by definition robot-agnostic
and thus can be transferred to any robot of the set by plugging it between the correspond-
ing pair of bases (as shown in step 4 of Figure 4.6).

Algorithm 1: UNN training with PPO
Input: Bi

ϕr
,Bo

θr
, lr (learning rate), N (number of epochs)

Output: Trained Uψ
1 Initialize ψ
2 while not converged do
3 sr ∼ ρ0 (initial state distribution)
4 D ← ∅ (empty buffer)
5 while sr not terminal do
6 xr, oτ ← sr (decompose full observed state)
7 z ∼ Bi

ϕr
(·|xr)

8 zd ∼ Uψ(·|z, oτ)
9 ar ← Bo

θr
(zd)

10 Take action ar and observe next state sr and reward r
11 D ← D ⊕ (z, oτ , zd, r) (store transition in buffer)

12 if D full enough then
13 for k = 1..N do
14 z, oτ , zd ← D
15 ψ ← ψ + lr.∇ψL(z, oτ , zdψ, ψk)

You can refer to Figure 4.6 for a visual representation of the full training and transfer
pipeline of our approach.

4.3 Experimental setup
In this Section we experimentally demonstrate the effectiveness of our TL framework
through 3 increasingly complex robotic tasks on 3 dissimilar robots on simulation. We
also provide results for the medium difficulty task on the physical domain with 2 of the
considered robots. More specifically we report zero-shot generalization in some instances,
where performance after transfer is recovered instantly. In worst case scenarios, perfor-
mance is retrieved after fine-tuning on the target robot for a fraction of the training cost
required to train a policy with similar performance from scratch. We mainly focus our
discussion and analysis on the sample-efficiency boost exhibited by our method when
compared to regular but state-of-the-art Reinforcement Learning algorithms.

A summary of the robots used and tasks learned is depicted in Figure 4.7. Each
possible transfer is studied. The control loop executes at 10 Hz and simulation is run on the
Unity physic simulator[Juliani 18]. For the real world experiments, we use ROS [ROS] to
operate the robots and the regular joint velocity controllers from the ros-control package.

71

Figure 4.6: Latent space UNN learning process, from 1 to 4. The first step is the collection
of time-aligned pairs of corresponding states along primitive task execution. The next step
is the bases training to obtain Bp and Bb (respectively for the panda and braccio robot).
Using the trained bases, it is possible to train a UNN module inside the shared latent
space. Finally, the trained task module is transferred to another robot.

4.3.1 Considered robots

In this section, we briefly present the different robots used throughout these experiments.
To highlight the benefits of our cross-robot transfer method, we consider robots with
distinct morphology traits, such as the number of joints and links length. More specifically
our pool of robots is composed of a Panda robot with 7 DoF, a UR10 with 6DoF and a
Braccio robot with 5 DoF (see Figure 4.8). For the simulations, we normalize the total
length such that all considered robots have roughly the same reaching capabilities for
practical reasons. For the experiments done with the physical robots, we include the scale
difference into the task setting and environments. All robots are velocity controlled.

4.3.2 Considered tasks

We evaluate the efficiency of our proposed transfer method on three increasingly complex
3D tasks: pick and place, peg insertion and ball catcher(see Figure 4.10). In all tasks,
the robot-specific observations that the input bases encode into the latent spaces are the
joints position ∈ Rn and joints velocity ∈ Rn, where n is the number of joints, so we have
X ∈ R2n. As such, the decoded (i.e provided by the UNN and translated by the output
base) robot state also contains the joints position. However, in all our experiments the

72

Figure 4.7: Considered Universe. The setup considers 3 robots with different DoF, each
of them performing 3 tasks. This amounts to a combination of 9 worlds in total.

robots are velocity controlled, so we ignore the joints position given by the output base
when working with the UNN module.

• Pick and Place: The goal of the agent is to pick a cube from a table and place
it at a desired location (see Figure 4.10a). While conceptually simple, it requires
the agent to solve a sequential problem: first picking, then placing. It will show
that high level understanding of the task and sequencing skills are transferred from
one robot to another. The picking part is controlled by a simple boolean set by the
agent. If this boolean is true and the suction part of the gripper is colliding with
the cube, it sticks. The position of the cube and the desired location are chosen
randomly at the beginning of each episode from a range of possible coordinates.
The task-related observations for this task are OT = R10 with current cube position
∈ R3, target cube location ∈ R3, effector position ∈ R3 and a flag hold to indicate
to the agent if a cube is held or not. The actions applied to the robot are desired
joints velocity ∈ Rn and a boolean indicating whether the effector should stick or
not. The reward function used for training is the following:

rt =

{ a
dz,c

if hold = True

−b.de,c else
(4.11)

where de,c and dz,c are respectively the distance effector-cube and the distance cube-
drop zone. The constants a and b are small scaling parameters. In our settings
a = 1.2 and b = 0.3.

73

Figure 4.8: Kinematic diagrams of the considered robots

• Peg insertion: The effector of the robot is replaced by a stick and the agent task
is to insert it into a hole of appropriate dimensions (see Figure 4.10c). The position
of the hole is randomly sampled at the beginning of each episode from a box region.
This task is particularly challenging in the context of cross-robot transfer because
it requires a precise control policy. It will highlight the UNN ability to accurately
operate the robots it is transferred on, even when their kinematic structure varies
significantly. The task-related observations for this task are OT = R6 with the tip
of the peg position p ∈ R3 and the hole position h ∈ R3. Like previous task, the
actions applied to the robot are desired joints velocity ∈ Rn. The reward function
used for training simply incentivizes the agent to get the peg closer to the bottom
of the hole:

rt =

{
−s.dp,h if close = True
f else (4.12)

where dp,h is the distance between the peg tip and the hole bottom. The constant
s = 0.15 is a small scaling parameter. The boolean close is True if dp,h is below a
fixed threshold and trigger a small positive reward f = 0.1.

• Ball Catcher: The effector of the robot is replaced by a basket and the goal of
the agent is to catch a ball thrown at it before it touches the ground. The ball is
thrown from the same location but the trajectory is varied by randomly selecting

74

the ball velocity for each of the 3 spatial axes. This task is used to demonstrate
that the UNN is able to cope with dynamic tasks. The task-related observations for
this task are OT = R13 with ball position ∈ R3, ball velocity ∈ R3, basket position
∈ R3 and basket velocity ∈ R3 and a flag catch to indicate to the agent if the ball
is inside the basket. Once again the actions applied to the robot are desired joint
velocity ∈ Rn. The reward function used for training is the following:

rt =

{
−c.db,t − β|θe| if catch = False
e− β|θe| else (4.13)

where db,t is the distance between the basket and the target receiving position. The
constant c is a small scaling parameter and e is a small positive constant reward.
In our settings, c = 0.15 and e = 0.15. The term |θe| is the angle between the
effector pose and the vertical plane which guides the agents towards suitable body
configurations. Its contribution to the overall reward is weighted by the constant
β. Interestingly, this reward term is required by the regular RL agents to learn a
successful policy but not for our UNN agents, already imbued with prior knowledge
about adequate effector orientation through the bases.

To summarize, we perform transfer between 3 different robot morphologies with 3
tasks which demonstrate the ability of our transfer method to cope with: planning tasks,
precision tasks and dynamic tasks.

For the real world experiments, we transfer the UNNs and the RL agents correspond-
ing to the peg insertion task trained in simulation, to the physical Panda and UR10 only.
The physical Braccio robot was not reliable enough to attempt a peg insertion task due
to significant mechanical play and offsets in the joints. The position of the peg hole is
measured in real time using a motion capture system from qualisys. The position of the
peg tip is computed using the Forward Kinematic provided by the robot’s manufacturer.
The robots and the task setup can be seen in Figure 4.9.

4.3.3 Modules Training

In this part we go over the actual implementation details of our methodology to learn both
the robot-specific modules and the task modules. We describe all the relevant technical
and training details used for the results displayed in section 4.4.

Bases Training

We arbitrarily chose to use the Braccio-Panda pair for the latent space creation but any
pair of robots could have been used. Future work may investigate the impact of such
a choice on downstream transfer success. Following the training of the Braccio-Panda
modules, we aligned the bases of the UR10 robot using the Braccio robot input module as
reference. The primitive task used for the bases training was a simple reaching task.
A target is randomly moving in the robot work-space and the goal of the agent is to put
the robot’s effector at the desired pose (see Figure 4.11 for an illustration). Although it is
a very basic task, it is the fundamental building block of a lot of more advanced robotic
skills. Therefore, we hypothesized that most robotic behaviors could be recovered from a
large enough number of reaching trajectories, yielding a suitable latent state-action space
for the UNN.

75

(a) UR10 robot. (b) Panda robot.

Figure 4.9: Peg insertion task setting with the physical robots.

The optimal policies for the primitive task were obtained with analytical methods
[Starke 17]. More specifically, we simply provide the target position to a general inverse
kinematic solver. As the bases represent the robots from the UNN’s point of view, it is
possible to include a priori knowledge of how the robot should behave. For example, the
tasks that the robots need to achieve require the effector perpendicular to the horizontal
plane, so we constrained our inverse kinematic solutions accordingly. As a consequence,
the output bases will mostly generate trajectories suited for the given tasks.

We determined the optimal size of the latent space based on the reconstruction error
for a fixed β, the weighting constant for the KL-divergence in Equation (4.3) (see Figure
4.12). The reconstruction error is a good metric in this case because it measures how
much information about the input data is contained in the latent variables. Naturally,
a low dimensional bottleneck (a dimension of 2 for instance) has not enough capacity to
encode all the required information for proper reconstruction by the decoder. On the
contrary, increasing the latent space size too much results in over-fitting as the network
starts memorizing the data rather than finding a robust and meaningful low-dimensional
representation. As a result, the reconstruction error on the test set increases. As shown
in Figure 4.12, a latent space of dimension 6 achieves the best results for an input size of
10 (Braccio) and 14 (Panda).

The recorded trajectories ultimately define the latent space so it is paramount to
ensure that we visit a large variety of states in the work space to obtain a sufficiently rich
latent space. We chose to record a dataset consisting of 100 000 pairs of similar states. In
order to get them, the collected datasets were time-aligned as discussed in Section 4.2.1.

76

(a) Pick and Place task. The picking cube is placed on the table and the goal position is
represented by the red transparent cube.

(b) Ball catcher task. The ball is thrown from a fixed location in front of the robot.

(c) Peg insertion task. The grey platform contains the square hole and the robot clamp holds
the cylindrical peg.

Figure 4.10: Considered tasks for the experiments. From top to bottom: Pick’n Place,
Ball catcher and Peg insertion. From left to right: Braccio robot, Panda robot and UR10
robot.

77

Figure 4.11: Primitive reaching task. The violet reaching target can move freely inside a
reachable pre-defined working space.

Figure 4.12: Averaged reconstruction error (on the test set) as a function of the dimension
of the latent space Z, for the bases training. Both robot pairs are tested.

To do so, the target to be reached was moving at constant speed and visiting the same
locations during the primitive task execution, for all robots considered. The robot state
(joints position and velocity) was sampled at 40 Hz. In total, the trajectory recording
took approximately 45 minutes per robot. As for the bases training, it took around 15 to
20 mins to complete on a single CPU without GPU parallelization. Figure 4.13 depicts
the plotted latent space after applying principal component analysis (PCA) for dimension
reduction (mu components are the mean of the gaussian distributions outputted by the
input base). It can be seen, the latent space of both robots are well aligned and regularized
(clustered around zero, see Figure 4.14). Figure 4.14 is also interesting because it indicates
the span of the latent space. Using this plot, we can deduce the spread of each latent
variable to scale the UNN action space accordingly.

The input and output bases were both approximated by a neural network of 3 hidden
layers and leaky ReLU with a negative slope of 0.01 were used as activation functions (see
Section 2.3.3 for a recall). The full neural network architecture is detailed in Figure 4.15.
For the weighting constant of equation A.8, we chose δ = 2/3, λ = 1/3 and β = 0.00015.
We trained for 100 epochs with a learning rate of 5.10−4 and batch size of 100.

UNN and baseline agents trainings

We use the PPO implementation of ml-agents [Juliani 18] modified to suit our needs
for both the UNN task modules and the RL agents training. Their feed-forward neural

78

Figure 4.13: Latent space for the Brac-
cio/Panda pair after applying PCA for di-
mensionality reduction and visualization
on a 2D space.

Figure 4.14: Mean and standard deviation
for each latent variable. The mean and
standard deviation of the latent variables
are the same across robots.

networks is composed of 3 hidden layers with 225 neurons each (see Figure 4.15 and Figure
4.16 for a full description of the neural network structure). The discount parameter γ is
0.99 and λ (GAE) is set to 0.95. An entropy bonus term of weight 1.10−2, linearly
decayed over time, is added to the reward to incentivize exploration in the early stage of
training. The learning rate used is 3.10−4 and the clipping parameter ϵ is 0.2. Both hyper
parameters were also linearly decayed to improve learning stability. We used a buffer
of size 40960 with a batch of size 2048. The number of epochs for each policy update
was set to 6. The inputs provided to the agents as observation are first normalized by
tracking a running mean and variance. Finally, the non linear activation function used is
the SiLU [Ramachandran 17]. The choice for the activation function is motivated by the
fact that SiLU has been empirically proven to significantly outperform ReLUs on some
RL environments [Elfwing 18].

As it is often the case when working with continuous action spaces, we clip the output
of the network between −1 and 1 and scale it as needed. As explained earlier, we need
to constraint the UNN action space during training to ensure that it does not wander
outside of the latent space known to the decoder/output base. As such, it is critical to
choose the scaling factor of the UNN clipped output carefully. At the end of the bases
training, we compute the standard deviation σ of the latent variables to the extent of the
latent space is. Then, we set the scaling factor to 3σ to ensure that the UNN has access
to the full latent space, but cannot operate outside of its defined boundaries.

4.4 Results
In this section, we present our results both on training and transferring on the chosen
manipulation tasks. The main goal of these experiments is to demonstrate the effectiveness
of task transfers using LS-UNN and as such, the training time saved when compared to
regular RL training. Videos demonstrating some of our experiments are available here.
Code can be found at https://github.com/sabeaussan/LS-UNN. Inspired by early work
on TL for RL agents [Taylor 07], we analyze three metrics when comparing both methods:

• Zero-shot performance: Initial performance of the UNN agent right after transfer.
It will measure how useful the knowledge transfer is to jumpstart learning on the
target robot.

79

https://youtu.be/d8KxXaEd3is

Figure 4.15: Neural network architecture of the full UNN network. In this figure, we set
the latent space to a size 6 and suppose a task with observation of dimension k performed
by a robot with n DoF. In our experiment we only make use of the joints velocity given by
the output base. The task specific action is not processed by the output base (e.g suction
boolean for the pick and place task).

Figure 4.16: Neural network architecture of the full PPO agents. We suppose a task of
dimension k performed by a robot with n DoF.

• Asymptotic performance: The final performance obtained after training from
the Zero-shot performance of the UNN agent (fine-tuning) or from scratch. This
will show whether or not our method falls into local minima or enables similar
asymptotic performance as baselines.

• Sample efficiency: Number of samples needed for the agent to reach its final
performance. This is, arguably, the most appropriate metric for evaluating a transfer
learning method, especially in RL which is notoriously sample inefficient.

The aforementioned metrics reflect our primary concern: to improve the learning speed
of RL-trained agents, i.e how much interaction with the environment is needed for an
agent to learn a high-performance policy. In this regard, our baselines will consist of
agents trained from scratch with regular PPO on the target robot. They will serve as
a upper bound for the performance and corresponding amount of training steps needed
when using state-of-the-art RL algorithms. In contrast, our method also leverages PPO

80

to fit the UNN module, but inside a pre-trained and shared latent space.
Our main focus is zero-shot transfer as it is the most appealing kind of transfer, since

it requires no further training on the target robot. It is as sample efficient as can be.
We therefore compare zero-shot performance of the transferred UNN to the asymptotic
performance of the corresponding baseline to emphasize the training-time saved. However,
in some instances, source performances cannot be recovered directly after transferring the
UNN agent. To correct this, the UNN module can be fine-tuned on the target robot to
recover near maximum performance. It is realized with a fraction of the training time
needed by the pure RL baselines. Finally, it is demonstrated that the prior knowledge
included in the bases can, in some cases, speed up the learning of the tasks on the source
robot (i.e the UNN training), when compared to standard PPO training.

We train one UNN module per robot for each task (i.e 9 UNN modules in total)
before transferring it to the other robots of the pool. As explained earlier, when varying
the task, the robot bases are kept the same. We then measure performance as the task
success rate, i.e the percentage of successful episodes over 1000 trials. For the pick and
place task, an episode is considered successful if the distance between the cube and the
place location is smaller than a threshold set to 0.15 Unity units (approximately 3 cm
for an environment scaled for the UR10 robot). For the ball catching task, we define
success as simply catching the ball, i.e the ball does not bounce outwards and is kept
inside the basket. In the case of the peg insertion task, we also define task success with
a distance threshold set to 0.05 Unity units or 1 cm between the peg tip and its desired
position inside the hole. For the execution on the real robot the success threshold is set
according to the scale of the robot. Regarding the experiments on the physical robots,
we test 28 different positions uniformly spread out on the working area. Its size is scaled
proportionally to the robot total length (approximately 1 cm). The square hole (depicted
in Figure 4.17) is 2.25 cm x 2.25 cm wide and the peg diameter is 1.9 cm. The bases used
on the physical robots are the same as the ones used on their virtual counterparts.

Figure 4.17: Close-up look on the red square hole and blue peg used for the peg insertion
task. The square hole is 2.25 cm x 2.25 cm wide and the peg diameter is 1.9 cm

81

4.4.1 Zero-shot transfers

Here we discuss the performance obtained on the target robot right after transfer from
a different source robot, without fine tuning the UNN module. In particular we com-
pare immediate performance on the target robot after transfer to the performance of the
corresponding RL baseline which serves as an upper bound. In other words, we answer
the question "What kind of performance can be expected with a simple plug-and-play of
the UNN module on a target robot?". As we are ultimately interested in reducing the
training time on the target robot, it could be interesting to see if a UNN transfer recovers
performance close to the source robot or even RL baseline only with zero-shot transfer.

Pick and place

On the pick and place task, which deals with high-level task-sequencing, nearly all transfers
are zero-shot. Except for Braccio → Panda transfer, maximum performance is recovered
after direct transfer without the need for further training on the target robot as shown in
Table 4.1. It means that we get results competitive with those of the corresponding RL
baselines, without any fine tuning or training on the target robot, saving us an average
of 1.8 millions training steps required to reach convergence (see Figure 4.18). As such,
results indicate that the high-level understanding of the task is transferred along with the
UNN module.

Source\Target Braccio Panda UR10
Braccio 100 93 / 100 100
Panda 100 100 100
UR10 100 100 100

(a) Performance obtained for UNN agents (zero-shot/fine-tuned).
Braccio Panda UR10
100 100 100

(b) Performance obtained for RL agents.

Table 4.1: Pick and Place task: performances on the simulated robots. Results are
reported as percentage of task success over 1000 trials.

Ball catcher

Regarding the zero-shot performance on the ball catcher task shown in Table 4.2, we can
see that half of the transfers exhibits zero-shot performance close to the RL baselines
performance: Braccio → UR10 (98%), Braccio → Panda (98%) and UR10 → Panda
(98%). However, some of the zero-shot transfers experience a performance drop: Panda
→ Braccio (86%), Panda → UR10 (90%) and UR10 → Braccio (89%). This can be
explained by the fact this task requires much more precise movements to catch the ball.
If, for instance, the basket is tilted too much on the left or is leaning a little too far
forward, the ball will bounce back outward, hit the basket’s edge or miss it, resulting in
task failure. The reconstruction error occurring during the bases training will inevitably
induce these small parasitic movements. As a consequence, this task is less tolerant
towards imprecision and more challenging when it comes to transfer. Moreover, results
seem to suggest that UNN policies learned on higher DoF robots tend to not transfer

82

well to robots with less DoF. All transfers from the Panda robot (7 DoF) need further
fine tuning on the target robot. The same phenomenon can be observed from UR10 (6
DoF) to Braccio (5 DoF). We hypothesize that the UNN will somehow take advantage of
the extra joints when learning its policy, yielding a policy that may not be adapted to
less "expressive" robots. Though, performance is still high enough to demonstrate that
transfer is beneficial and as it will be presented in section 4.4.2, maximum performance
can be recovered with a fraction of the required training for RL baselines.

Source\Target Braccio Panda UR10
Braccio 98 98 98
Panda 86 / 98 98 90 / 98
UR10 89 / 98 98 99

(a) Performance obtained for UNN agents (zero-shot/fine-tuned).
Braccio Panda UR10
100 99 99

(b) Performance obtained for RL agents.

Table 4.2: Ball Catcher task: performances on the simulated robots. Results are reported
as percentage of task success over 1000 trials.

Peg insertion

Simulation results: This task is also very challenging for transfer between robot’s mor-
phologies as it requires accurate movements and careful control of the robot to successfully
insert the peg. Nevertheless, success rates right after transfer of the UNNs are significantly
high, indicating a beneficial and efficient transfer of knowledge between the considered
agents as shown in Table 4.3. But once again, fine tuning is required to recover from
performance loss after transfer.
Physical results: We also show results from transferring the UNN policies on the physi-
cal UR10 and Panda robots. The UNN were trained in simulation and the bases used are
the same as their virtual counterparts. The fine-tuned UNNs are also the ones obtained in
simulation, they are not fine-tuned on the physical robots. Results are reported in Table
4.4. All the considered agents experience a performance drop after the sim2real trans-
fer. In particular UR10 → Panda decreases from 90% to 71% success rate in zero-shot.
Likewise, Braccio → UR10 suffers from the sim2real transfers but its fine-tuned version
performs well. Despite the large reality gap, performance on the physical robots is still
above 85% after fine-tuning on the virtual robots.

4.4.2 UNN fine tuning

In this section, we analyze the performance of the transferred UNN after fitting it on the
target robot. When fine-tuning the UNN agent on a target robot, we remove stochasticity
in the observed latent state (see Section 4.2.2), i.e z = µϕr(xr). We are especially interested
in the time gained by simply fine tuning the UNN module as opposed to training a RL
agent from scratch. As such we will discuss the Asymptotic performance and the sample
efficiency metrics described in Section 4.4. As shown in Figures 4.18, 4.19 and 4.20, most
of the fine tuned UNN agents start from an already high jumpstart performance and

83

Source\Target Braccio Panda UR10
Braccio 100 95 / 100 92 / 100
Panda 95 / 100 100 82 / 100
UR10 99 / 100 90 / 100 100

(a) Performance obtained for UNN agents (zero-shot/fine-tuned).
Braccio Panda UR10
100 100 100

(b) Performance obtained for RL agents.

Table 4.3: Peg Insertion task: performances on the simulated robots. Results are reported
as percentage of task success over 1000 trials.

Source\Target Panda (physical) UR10 (physical)
Braccio (virtual) 79 / 93 75 / 93
Panda (virtual) 93 79 / 96
UR10 (virtual) 71 / 85 96

(a) Performance obtained for UNN agents (zero-shot/fine-tuned).
Panda UR10
89 100

(b) Performance obtained for RL agents.

Table 4.4: Peg Insertion task: performances on the physical robots. Results are reported
as percentage of task success over 28 trials.

converge faster to the highest performance than their RL counterparts. It is worth noting
that PPO is a trust-region based RL algorithm which theoretically provides monotonous
improvement by solving a KL-constraint. As such it is well suited for fine tuning because
it mitigates catastrophic forgetting and improves training stability.

Pick and Place

For the pick and place task (see Figure 4.18), most of the transfers are already close to
baseline so fine tuning was performed only for the Braccio → Panda transfer. While the
UNN has experienced a performance drop, it recovers competitive results significantly
faster than what was needed for its RL counterpart to reach the same performance. More
precisely, it achieves roughly a 2x speed up over a regular PPO training.

Ball Catcher

For the more dynamic ball catcher task, fine tuning is necessary on half of the transfer.
However, all considered transfers achieve competitive performance provided some quick
fine tuning. The Panda → Braccio and UR10 → Braccio transfers which had the lowest
zero-shot performance (86% and 89%), reach near baseline performance in respectively 1.6
millions and 2 millions steps of fine-tuning against the 4.5 millions required by the regular
RL agent, yielding a 2.8x and 2x speed up. Regarding the UR10 → Braccio transfer
starting with a 90% performance, the fine-tuning required only 14% of the amount of
training samples needed by its corresponding RL baseline to achieve similar performance.

84

(a) Panda robot. (b) Braccio robot.

(c) UR10 robot.

Figure 4.18: Pick and place task. Training curves on considered robots: y-axis is the
normalized average reward / average performance and x-axis is the number of training
steps. The PPO agent refer to our baseline, the UNN agents refer to the transferable task
module.

Peg Insertion

None of the transfers retrieve full performance after zero-shot transfer. Nevertheless, suc-
cess rates are already close to baseline. Braccio → UR10 has the lowest zero-shot success
rate amongst all transfers, successfully achieving the task 82% of the time. Yet, Figure
4.20c shows that the Braccio UNN can quickly adapt to the UR10, reaching maximum
performance with as little as 2% (100000 steps against 3.8 millions) of the experience re-
quired by the corresponding baseline. Other fine-tuned transfers depicted in Figure 4.20
exhibit similar recovery speed and improved sample efficiency.

4.4.3 Agent’s training

In this section we answer the question: "Are there any benefits or drawbacks in learning a
task with the UNN module?". To this end, we analyze and compare the convergence speed
and asymptotic performance reached by the UNN agents during training against vanilla
RL baselines. Transfer performances have been already discussed, so we focus solely on
training performance. We train the agents for 6.106 steps on the pick and place task, 7.106
steps on the ball catching task and 6.106 steps on the peg insertion task. We monitor their
improvement through the average cumulative reward obtained per episode. This metric
measures how well the agent behaves within its environment and as such informs us of
which approach yields the better results, learning-performances wise.

As shown in Figures 4.18, 4.19 and 4.20, except for the Braccio robot on the pick and

85

(a) Panda robot. (b) Braccio robot.

(c) UR10 robot.

Figure 4.19: Ball catcher task. Training curves on considered robots: y-axis is the nor-
malized average reward / average performance and x-axis is the number of training steps.
The PPO agent refers to our baseline, the UNN agents refers the transferable task module.

place and ball catcher tasks, the UNN agents trained from scratch slightly outperform the
Vanilla RL agents in terms of convergence speed. As explained in section 4.2.1, during
state collection the robots effector orientation is constrained such that they remain vertical
and these desirable body configurations were used to train the bases. Consequently, we
believe that the latent space embeds states that are well suited for the tasks, in contrast to
the original state-action space containing all kinds of inappropriate joints configurations.
As such, exploration is faster and more efficient within a compressed latent space.

However, despite similar asymptotic performance on the pick and place and peg in-
sertion tasks (depicted as dashed curves), UNN agents systematically converge to lower
asymptotic average cumulative rewards. We hypothesize that it is due to the nature of
the latent space. It is a compressed representation of the state-action space of each robot
constructed from a finite number of trajectories. As such, it may not include the optimal
policies reached by RL agents, which results in slower and sub-optimal trajectories for
task execution. Hence, as the considered reward functions penalize slow behaviors, UNN
agents will end up with a lower reward even though they complete the task. This is not
the case in the ball catcher task, because the ball cannot be catched faster or slower than
its throwing speed.

Overall, these results seem to indicate that a UNN agent trained from scratch will
learn slightly faster than the RL agent on the same robot, which may be attributed to the
prior knowledge included in the robot’s bases. However, they may be unable to obtain
similar rewards depending on the task and reward function shape, which indicates a less
optimal policy with respect to the RL objective. Furthermore, it also worth taking into
account the extra time needed to train the bases when assessing the training cost saved.

86

(a) Braccio robot. (b) Panda robot.

(c) UR10 robot.

Figure 4.20: Peg insertion task. Training curves on considered robots: y-axis is the
normalized average reward / average performance and x-axis is the number of training
steps. The PPO agent refer to our baseline, the UNN agents refer to the transferable task
module.

4.4.4 Over-fitting

In essence, our methodology promotes robot-agnosticity of the UNN module, by training
within a latent space that is common among the robots considered for transfer. By doing
so, our goal is to develop a module usable consistently by our pool of robots, regardless
of their physical characteristics. However, in practice, we observe significant over-fitting
when learning a UNN module depending on the robot platform. It clearly appears when we
monitor the performance of the UNN module on the source robot (training domain) and its
corresponding performance on the target robots (testing domains) at several points during
training. Figure 4.21 depicts the performance curves of the UNN trained on each possible
source robots, and evaluated on the rest of the available robots, for the peg insertion task.
As shown, the UNN performance is relatively homogeneous at the beginning of training
both on source and target robots. However, after the UNN has converged on the source
robot, performance starts to degrade on the test robots in most cases (except in Figure
4.21c with the Braccio robot). It seems to indicates that the UNN module finds and
exploits robot-specific strategies when trying to keep increasing and optimizing the RL
objective.

As a workaround we checkpoint the UNN models every 50000 training steps and take
the best performing one. All previously presented results were obtained using this simple
method. Moreover, as mentioned in section 4.2.2, we empirically found that sampling
z from Bi

ϕr
(·|xr) = N (µϕr(xr),Σϕr(xr)) instead of taking z = µϕr(xr) improves overall

transfers by acting as a form of domain randomization. We let the design of a more

87

(a) Braccio robot. (b) Panda robot.

(c) UR10 robot.

Figure 4.21: Peg insertion task. Performance curves on considered robots: y-axis is the
performance and x-axis is the number of training steps. The UNN agent was trained on
the (a) Braccio robot, (b) Panda robot, (c) UR10 robot, and tested on the rest of the
available robots. Performance on the test robots is recorded every 50000 steps.

robust and sophisticated method to future works.

4.5 Relation to prior works
Cross-Agent Transfer is concerned with reusing and leveraging knowledge and past expe-
rience from a morphologically distinct agent in order to speed up the learning of a target
agent. It is a very promising avenue of research in the quest for mitigating the notorious
sample-inefficiency of RL. Despite its appealing practical application, it is still an under-
studied sub-field of transfer learning and only a handful of prior works has tackled the
cross-agent transfer learning problem. In this section, we review relevant works on the
topic of transfer learning in robotics. For the sake of clarity we propose to classify the
methods discussed in three broad categories that we introduce in the next sub-sections.
We analyze how our work fits into that body of literature and draw connections to other
related fields such as domain adaptation, meta-learning and hierarchical reinforcement
learning.

4.5.1 Learning a robot-agnostic policy

In this section, we present methods that achieve Cross-Agent Transfer learning by training
a single policy on a large variety of robot morphologies, which can be thought as a form

88

of domain randomization. Their main goal is to learn an agent-agnostic policy, that is, a
policy that can control a wide range of robots, regardless of their shapes.

Hardware Conditioned Policies (HCP) from [Chen 18] trains a single policy on a variety
of body configurations in order to achieve agent-agnostic control. However, their main
contribution to earlier methods is to condition the policy both on the state and on a vector
representing the robot hardware. This vector can be as simple as an explicit description of
the robot kinematic following the popular URDF format, or learned to accommodate with
complex locomotion tasks requiring the policy to have knowledge about dynamic factors
such as friction or damping in motors. To account for differences between state-action
space dimensions, they used zero-padding in the input and output of the policy network.
Their method successfully learned a policy able to control 9 different variations of the
same robot, including modification on the number of degrees of freedom and link length
(see Figure 4.22). They also showed interesting zero-shot results on a Peg Insertion task.
Nevertheless, reported performances are lower than ours on the most similar setting: the
transfer to a robot with a different number of DoF only yields 23% success rate.

Figure 4.22: Variations based on the Sawyer robot in MuJoCo. Joints are represented by
white rings and are shuffled to create different kinematic chains [Chen 18].

An effective and meaningful extension to their work is "Hardware Agnostic Rein-
forcement Learning" (HARL) [Jackson 21]. More specifically, they added an adversarial
network responsible for sampling morphologies for the policy network to train on, using a
"learning potential" defined as the ratio between performance in the environment following
the policy and performance in the environment following the same policy after K updates.
Additionally, they introduce a modification network which takes as input the hardware
vector and the action given by a pre-trained expert network conditioned on the envi-
ronment state, and outputs the modified action suited for the specific robot-morphology.
They report improved results both on learning speed and zero-shot performance when
compared to HCP. However, their approach was only tested on simple 2D tasks and mor-

89

phologies such as cartpole and BipedalWalker from the open-AI gym [Brockman 16] (see
Figure 4.23. Furthermore, they did not consider transfer between agents with varying
DoF for their experiments, keeping the morphologies tested very similar in contrast to
previous work and our contribution.

(a) Bipedal walker: the agent must travel
as far as possible[Brockman 16].

(b) Cartpole: the agent must bal-
ance a pole fixed to a cart moving
horizontally[Brockman 16].

Figure 4.23: Samples of environments used for the experiments on HARL. Multiple vari-
ations of these robots were designed by changing links length.

A different but related approach [Ghadirzadeh 21], frames the challenging problem of
hardware-agnostic policy training as a few-shot learning problem. In the general case,
this type of problem consists in learning to adapt to a new, but related situation using
as little data as possible. It is usually addressed and solved using Meta-learning, a sub-
field of Machine Learning which focuses on learning to learn. In contrast to traditional
ML, meta-learning takes a higher-level perspective and aims to improve the learning
process itself. It involves training models on multiple related tasks or datasets to acquire
general knowledge or "meta-knowledge" that can be applied to new tasks with minimal
additional training. In other words, instead of directly optimizing for performance on a
single task, they optimize for learning strategies or initialization parameters that enable
rapid adaptation to new tasks. Regarding the approach described in [Ghadirzadeh 21], the
goal is to adapt an action-selection policy to a new robot from small amounts of new data.
They address this problem using a gradient-based meta-learning method [Finn 17] in order
to model a common structure shared across different robotic platforms to enable fast and
sample-efficient adaptation. Furthermore, like previous works and the UNN method, they
decompose their robot-agnostic policy into a high-level robot-agnostic network generating
action latent variables, and low-level robot-specific generative models to produce motor
action trajectories. Their results, obtained on 400 variations of 4 types of 7 DoF robots
(see Figure 4.24 below), for a reaching and a pick and place tasks, show that the trained
policy is able to adapt to unseen robotic hardware in a few-shot manner. Unfortunately,
their method was not designed to adapt policies for robots with different number of DoF.

A recent but promising line of work, is to explicitly model the structure of an agent as
a graph where limbs and actuators can be represented as edges and nodes (see Figure 4.25
for an illustration). Such a representation, when used with the appropriate kind of neural
networks, is more flexible, transferable and generalizable [Wang 18]. For instance, Graph
Neural Networks (GNNs) [Scarselli 08] which can process graphs of arbitrary shape and
size, naturally bypass the issues and challenges encountered with MLPs for agent-agnostic
control when the state and action space dimensionalities are not the same across robots.

90

Figure 4.24: Top: schematic representation of the modular robot-agnostic policy. Bottom:
robots considered for the experiments. Image taken from [Ghadirzadeh 21]

.

Notably, authors of [Wang 18] tested the zero-shot generalization capabilities of GNNs
across multiple body configurations when learning locomotion skills. Each jointsbody has
its own internal state derived from node-specific observations and the propagating state
of neighbor nodes. At the end of the propagation phase, each actuator node computes a
joint-specific action using its own policy. They experimented with centipede-like robots
with varying number of legs, and demonstrated improved performance after direct transfer
of the policy from one morphology to another.

Figure 4.25: Example of graph structure for a Walker-Ostrich. Each node receives a set
of specific observations, derives an internal state and propagates to its neighbors. The
outputs from each controller are then concatenated to derive the full-body policy. Image
taken from [Wang 18]

Similar work [Huang 20] decided to express the control policies as a modular neural
network where each of its component is an identical reusable module instantiated at each
of the agent’s actuator. In this particular policy architecture dubbed Shared Modular

91

Policies (SMP), each module instance generates a local motor command from the actua-
tor’s local sensors and coordination between modules is achieved using a learned message
passing procedure. By training such a decentralized multi-agent population on a wide
range of robot morphologies, they show that it is able to learn a shared control policy
and generalize to unseen kinematic structure. In both previous work, the structure of the
graph is based on the agent’s physical morphology. However, successor work [Kurin 21]
studied the role of morphology in graph-based control and concluded that a morphology-
based graph is not necessary and may even hurt performance. They argue that efficient
messaging passing communication can be hard to learn in practice with such graphs. In-
stead, they propose to use an architecture based on Transformers [Vaswani 17], a special
kind of GNNs [Battaglia 18], significantly outperforming previous works. [Trabucco 22]
managed to improve on their results by framing morphology learning as a sequence mod-
eling problem with tokenized actuators. The body representation is optimized using a
RL-objective and the policy is modeled with a Transformer architecture. They showed
that their method generalizes better to unseen morphologies when compared to prior
methods, even exhibiting interesting zero-shot performance.

All the previously mentioned methods require training until convergence a policy on
multiple possible robots of the training set, before a shared representation can emerge
and be used for transfer on an unseen robot/task. In practice, it is therefore not clear
if their method exhibits an actual learning speed up over a simple training from scratch
on the target robot or task, as the amount of training needed prior to transfer could be
significant. Furthermore, designing variations of the robots in the training set to help
the policy generalize is not a trivial task as explained in [Jackson 21]. It requires expert
knowledge to determine which physical parameters should vary and careful crafting of
their distributions. Poorly handled parameters randomizations could even be detrimental
for learning. Thus, it introduces new hyper-parameters to tune in the learning setting.
In contrast, our method leverages the creation of a robot-agnostic latent space, ensuring
instant generalization to new morphologies in a simple, fast and unsupervised manner by
encoding time-aligned trajectories of a primitive task execution for the robots considered.
There is no need for any physical parameters randomization and we only need to train the
task module once, on one robot. Moreover, for most of the aforementioned methods, zero-
shot results are reported for related but unseen morphologies (i.e morphologies slightly
modified from a type seen during training). In contrary, the UNN module is trained on
one robot and instantly generalizes to completely unseen robots.

4.5.2 Learning a correspondence mapping

Here we review CATL methods which focus on learning a mapping between states and/or
actions of a policy in the source domain to obtain the policy in the target domain.

Work by [Zhang 21] proposed a novel method to learn cross-domain correspondence
by using dynamic cycle-consistency, a form of adversarial training they have introduced.
With unpaired and unaligned trajectories from source and target domains, they are able to
learn correspondence across domains differing in representation (vision vs. internal state),
physics parameters (mass and friction), and morphology (number of limbs) (see Figure
4.26). The learnt mapping is then used to adapt an expert source policy to the target
domain. Experiments for cross-morphology transfers were performed on half-cheetah and
swimmer, two agents from the MuJoCo library [Todorov 12].

One of the most recent papers in the field [Shankar 21], is concerned with a similar

92

Figure 4.26: Experiments performed in [Zhang 21]: (a) sim2real visual adaptation, (b)
cross-physic transfer and (c) cross-morphology transfer.

problematic as previous work: how to learn correspondences between morphologically
different robots in an entirely unsupervised manner? However, rather than learning cor-
respondences between states and actions, they focus on correspondences between skills.
Inspired by novel advances in unsupervised machine translation (typically used in lan-
guage processing), they build a translation model which helps transfer task-strategies
across robots morphologies by translating skills from source to target domains. Using
a more classical approach, authors of [Helwa 17] studied the properties of an optimal
transfer learning mapping between source and target domains through a dynamical per-
spective. They theoretically analyze the properties and conditions of existence of such a
mapping, and derive an algorithm to learn it from data and system identification. How-
ever, their method is limited to single-input, single-output systems and has not been
shown to generalize to high-dimensional manipulators, only quadrotor platforms. Other
works investigated the use of a lower-dimensional manifold to embed robot states and
transfer knowledge. Specifically, [Bócsi 13] used Principal Component Analysis to obtain
a source and a target manifold for the two robots considered. Then, a linear mapping is
learned between manifolds to transfer task execution from source robot to target robot.
A non-linear variant with Local Procrustes Analysis is explored in [Makondo 15] and
[Makondo 18].

All aforementioned approaches use a correspondence mapping to transfer knowledge
between domains. We argue that it is not a very scalable approach as it requires learning
a mapping for each transfer direction (e.g one for UR10 → Panda and one for Panda →
UR10). Moreover, some methods such as [Zhang 21] also require learning a forward dy-
namic model (which can be prone to compound errors) as well as action-specific and state-
specific correspondence mappings. As a consequence, considering an additional robot for
transfer entails learning an increasing number of mappings if we want every transfer di-
rection to be possible (at least 2n mappings, with n the number of considered robots).
On the other hand, with a shared latent space, adding a robot requires a constant number
of mappings (2 in our case). As an analogy, we can think of a network of computers that
need to communicate with each others. Using a shared latent space is the same as using
a hub, while learning a mapping across domains requires a connection link between each
possible pair of computers in a peer to peer fashion.

93

4.5.3 Using a common feature space

Our proposed robot-agnostic latent space is similar to the invariant feature space intro-
duced in [Gupta 17]. However, their work is focused on transferring knowledge between
robots through reward shaping by adding an "alignment" term to guide the student agent
during training. As a consequence, their method does not enable zero-shot transfer unlike
ours. Furthermore, they used simple autoencoders which are prone to overfitting and less
expressive due to their lack of regularization. In contrast, we make use of VAE for all
the reasons detailed in section 4.2.2. As a follow up to their work, [Hu 19] proposed to
use paired variational encoder-decoder models that disentangles the control of robots into
shared and agent-specific latent spaces. By doing so, they argued that they remove the
individual factors from the shared latent space to improve knowledge transfer through
reward shaping. This is similar in spirit to work by [Bousmalis 16] on domain adaptation,
except that they did not explicitly enforce orthogonality between shared and individual
latent space. Inspired by several prior works on policy distillation [Liu 19], [Rusu 15]
[Wan 20] proposed to augment representations in the layers of the student network with
useful representations from the layers of a teacher network by using lateral connections be-
tween their respective policy and value networks. As such, knowledge can "flow" between
a teacher pre-trained on a related task and a single student agent. Their main contri-
bution to previous works is the use of an embedding-space such that |Semb| = |Steacher|
to handle the mismatch when the state-space dimensions of the teacher and student are
different. First, the encoder is trained to produce task-aligned embeddings by utilizing
the policy gradient to update embedding parameters. Then, to maximize correlation be-
tween the embedding vectors and their input states, a mutual information objective is
maximized. The authors argue such a high-correlation helps for knowledge transfer. Dur-
ing student training, transfer is performed by first deriving an embedding vector from an
observed student state and then feeding it to the teacher network to extract the corre-
sponding hidden representation. Extracted pre-activation outputs are then mixed to the
student hidden representation to guide its learning process. They tested their approach
on six morphologies on a locomotion task (see Figure 4.27). While significantly improving
sample-efficiency, their method does not exhibit zero-shot performance contrary to ours.

Figure 4.27: Morphologies considered for the locomotion task in [Wan 20]

Building on top of a broad range of topics, including transfer learning, imitation learn-
ing, and information theoretic RL, [Hejna 20] proposed a method to hierarchically de-
couple high-level transferable knowledge from low-level robot-specific knowledge. Their
method is conceptually very similar to ours and [Mounsif 19a], but fundamentals differ-
ences exist:

• They consider a goal space (i.e a robot-agnostic space) which needs to be defined by
an expert (effector position/velocity, torso position etc..). We opted for a learned
robot-agnostic space to avoid the need for expert knowledge.

94

• They minimize the mutual information between the morphology and the behavior to
enforce decoupling between high-level and low-level modules and encourage robot-
agnosticity of the high-level policy. In our case, robot-agnosticity of the high-level
task module is ensured by training it into a shared latent space.

• They tackle catastrophic forgetting during fine tuning of the task module on the
target robot, by adding a KL-constraint such that the fine-tuned policy stays close
to the original one. We addressed the same issue by using a trust-region based RL
algorithm such as PPO, which optimizes a policy under a KL-constraint.

4.6 Conclusion
This chapter discussed some of the limitations of the UNN framework as proposed by
Mehdi Mounsif during his PhD. While his approach is very effective and has proven to be
successful for transfer learning between robotic arms, it relies on hand-crafted features to
define the agent-agnostic feature space. Motivated and inspired by several prior works,
we introduced a simple and yet efficient methodology to overcome this shortcoming and
transfer knowledge between agents regardless of their body morphology. At the core of our
approach: a robot-agnostic latent space constructed from time-aligned demonstrations on
the considered robots, followed by the training of the task-module within it. Regarding
sample-efficiency, our method outperformed by a large margin the baseline models com-
posed of state-of-the-art RL algorithms. In particular, our experimental results showcased
(i) close to baselines zero-shot performance in most of the transfers considered, (ii) signifi-
cantly less required training samples than baselines, when fine-tuning is needed to recover
performance and (iii) slight sample-efficiency increase when training an agent from scratch
thanks to the prior knowledge included in the bases. Overall, our approach demonstrates
an undeniable superiority in terms of sample-efficiency over regular RL training and does
not require a large additional computation cost to setup.

However, several challenges remain to be solved. Despite very convincing results,
directions for future improvements are obvious when looking at the data. Our approach
suffers from: (i) occasional lower asymptotic cumulative rewards which indicates a less
optimal policy with respect to the RL objective and (ii) over-fitting to the source domains,
which requires a thorough testing of the model’s checkpoints on the targeted robots.
From a practical point of view, using unpaired and/or unaligned trajectories (instead
of time-aligned demonstrations) for latent space building may prove a valuable addition
to our framework. Some preliminary results presented in Appendix A are available when
dealing with unaligned trajectories. Addressing all these issues will motivate future works.
Additionally, it could also be interesting to investigate more sophisticated types of VAE
models to study the impact of the structure of the latent space for downstream model
optimization and transfer. For instance, [Davidson 18] proposes to use a hyperspherical
latent space using a von Mises-Fisher prior distribution to better represent directional
data such as joint configurations or velocities. They argue that a more uninformative
prior could better capture the true data manifold unlike a biased Gaussian prior.

95

Chapter 5

Delay Aware Universal Notice Network

In the previous chapters, we introduced the UNN framework along with the LS-UNN
extension as effective methods for dealing with CATL. We have shown that zero-shot
generalization was possible for sim2sim transfers. Additionally, despite the reality gap,
sim2real transfers also exhibited interesting performance. However, the manipulation task
considered with the physical robots did not pose much issues from a sim2real point of view
and was straightforward to implement. Many applications involving transition from sim-
ulation to reality are significantly more challenging. One major issue is the delay on the
physical robot that may deteriorate the performance of the deployed agent. In this chap-
ter, we introduce the Delay Aware Universal Notice Network (DA-UNN), which deals with
delays immanent to physical systems in order to improve sim2real transfer. We evaluate
the efficiency of our approach using simulated and actual robots on a dynamic manipu-
lation task where delay management is crucial. As this delay-management approach was
developed before the LS-UNN, all experiments only feature the regular Cartesian UNN
method.

5.1 Motivations
General purpose simulators provide cheap training data to learn complex robotic skills.
However, simulation to real world transfer is still an open problem. In general, simula-
tions are imperfect and difficult to calibrate. The resulting modeling discrepancies cause
a reality gap, which makes the transfer of RL policies from simulation to the real-world
non-trivial. Most of the time, sim2real methods focus solely on domain adaptation be-
tween the real world and the simulation [Bousmalis 18, Arndt 20]. They tend to ignore
troublesome hardware specific issues such as control latency induced by medium of data
transmission, computation delay, sensor sampling rates (etc.) unmodeled in the simulator.
Consequently, the policy obtained by training in simulation could be drastically disturbed
once transferred in the real world if the task requires short reaction time.

In this contribution, we considered the time delay associated with the physical system
as another model’s input by including it in the observed state. At training time, we
randomize the value of the delay and show that the agent is able to adapt to multiple
delays on a dynamic and delay-sensitive manipulation task. Our contributions are as
follows:

1. We present and evaluate a delay-aware method to deal with the immanent delay on
real hardware, thus furthering the adaptation capabilities of the UNN.

96

2. We evaluate the benefits of the UNN multi-robot transfer method over a vanilla
transfer on real world robots. A pool containing four differently shaped real and
virtual robots is tested against a dynamic manipulation task they have not been
trained on, by using the knowledge created by another agent as depicted in Fig-
ure 5.3.

5.2 DA-UNN

5.2.1 Constant Delayed Markov Decision Process (CDMP)

The standard UNN and LS-UNN proved their efficiency and versatility on a broad panel
of tasks in simulation and on physical robots. However, these results were obtained with
perfect robots (e.g no offset and no delay) acting in a standard Markov Decision Process
(MDP). Traditionally it is assumed in RL that at every timestep, the environment pauses
while the agent receives the current observation, in order to derive an action that will
be executed without delay. Naturally, things do not behave this way in the real world.
All agent observations and actions are delayed by an amount depending on the hardware
used for the task and for perception. Therefore, an agent trained in simulation without
exposition to delays will perform worse or even fail in the real world if the task requires fast
reaction time. This brings up the need to adopt a different decision process modeling to
solve tasks in the presence of delay. As we consider the delay to be constant, we found the
Constant Delay MDP formulation introduced in [Walsh 09] to be well suited. A CDMPD
enlarges the regular MDP formulation described in 2.5.2 with an extra parameter d ∈ N
defined as the number of timesteps between an agent occupying a state and receiving its
feedback from the environment. As such, d models the delay governing the environment
and a CDMDP is defined by a 6-tuple CDMPD =< S,A, P,R, ρ0, d >. Naturally, when
d = 0 we recover a regular MDP. A known result in CDMPD is that observation delay
and action delay are equivalent from the agent’s point of view [Katsikopoulos 03]. Hence,
we treated the total delay as being entirely caused by observation delay (see Figure 5.1).

5.2.2 Solving a CDMDP

Introducing the notion of delay inside a Markov decision Process raises new challenges.
When observations are delayed, the agent must predict an action only based on outdated
information about the environment. Consequently, a CDMDP can be seen as a Partially
Observable MDP, as the agent does not act with a complete knowledge of the environ-
ment’s state. According to [Katsikopoulos 03], we can transform a CDMDP into an "aug-
mented" MDP by expanding the state space such that it recovers the Markov property.
This approach relies on the so-called information-state Id ∈ S×Ad, where the state space
S is augmented with the history of the d last actions taken since the last delayed observa-
tion. More formally, given a MDP with constant delay C =< S,A, P,R, ρ0, d >, we can
construct an equivalent undelayed MDP M =< Id, A, P,R, ρ0 > with Id = (s, a1, ..., ad)
for s ∈ S and ai ∈ A. It is theoretically possible to derive an optimal policy π(·|Id) for
the CDMDP [Bertsekas 00] by acting conditioned on the information-state Id, rather than
the original state-space S.

97

5.2.3 Delay Aware UNN

While this approach is sound and theoretically motivated, it does not allow direct transfer
between systems with different delays, as the input dimension depends on d. Moreover, it
induces an exponential growth of the state-space when d increases. As a result, exploration
of the state space is much more challenging, as the agent may need to experience state-
actions in S × Ad × A, requiring more samples to converge. In this work, we address the
delay issue by augmenting the state space of the UNN module with the estimated delay of
the system and by training the agent on a corresponding delayed environment as depicted
in Figure 5.1. A key feature of the UNN is its ability to adapt to any robot regardless
of its morphology. To keep this idea of "universality", the delay was randomized during
training to ensure that the UNN can adapt to a wide range of delay. By giving it access
to the immanent delay, we enable the UNN to act accordingly and to develop predictive
capabilities. Thus, we add d to the task specific observations.

Figure 5.1: Schematic representation of the delay aware UNN. Observations are queued
into a pile of length d and at each timestep the observation at the top is fed to the agent
(first in, first out).

During training, the delay is sampled regularly from a discrete uniform distribution
U(dmin, dmax) where dmin and dmax are respectively the minimum and the maximum delay
considered for the environments. Since there is no assumption about the systems, we
assumed a uniform distribution of the delay. But any prior knowledge could be used
to deduce a more suited delay distribution. When deployed, the identified delay of the
system is fed to the UNN, so that it is "aware" of the delay it is working with and can act
accordingly. While our approach can only yield sub-optimal CDMDP policies due to the
hidden information and incomplete state space considered, we believe that it represents
an interesting trade-off between optimality and flexibility. This very simple method can
improve drastically the performance of an agent on a delayed MDP as presented in section
5.4, given that the delay has been accurately determined. Morevover, it can generalize
to a wide range of delays and as such, is suited for transfer on systems with different
hardware and on different robots.

98

5.3 Experimental setup

5.3.1 System Architecture and Robots

In this section, we briefly present the different robots adopted throughout these experi-
ments. We tested our method on both physical and simulated robots to demonstrate its
efficiency and versatility. We consider a serial arm braccio robot with 5 DoF and a 4 DoF
serial arm (see Figure 5.2b). These DIY robots are cheap and usually hard to work with,
given their low reliability. Still, we manage to use them efficiently in our experiments. We
also consider their simulated counterparts (see Figure 5.2a and 5.2b).

We also consider the virtual BAM robot on top of the 4 other robots:

• BAM: the virtual BAM robot with the identity bases.

• Robot 1: the virtual braccio robot.

• Robot 2: the virtual 4 DoF robot.

• Robot 3: the physical braccio robot.

• Robot 4: the physical 4 DoF robot.

Regarding the cheap robots, significant offset was present in the robots joints, making
each movement inaccurate. In this regard, the offsets first needed to be identified, in
order to use analytical models efficiently on both physical robots.

(a) Robot 1 (left) and 2 (right). (b) Robot 3 (left) and 4 (right)

Figure 5.2: Robots considered for the experiments

A fixed webcam was used to obtain the required pose estimations with OpenCV. The
control frequency was 10 Hz, which means the agent was observing the environment state
and acting every 0.1 second. The nominal delay was in average 300 ms on the physical
systems. We identified the delay by measuring the time between a command sent to the
robot and the observation by the agent that the robot moved.

On the simulation side, agent’s training was performed in the Unity physic engine
with the ML-agent package. The PPO algorithm [Schulman 17] was used to create the

99

Figure 5.3: Transfers considered for the robots. UNN module is trained with the BAM
robot and then transferred to all robots. Vanilla agents are trained directly on the simu-
lated robots and then transferred on the corresponding physical robots.

neural network policies, as it provides a monotonous performance improvement while
being perfectly adapted to continuous action spaces. We trained four kinds of agents:

• Delay Aware UNN Agents: The BAM virtual robot is trained in simulation with
exposition to randomized delays to create the UNN.

• Delay Aware Vanilla Agent: The agents are trained from scratch directly on the
simulated robot, with exposition to randomized delays.

• Finally, we also considered their delay unaware counterparts, trained without
exposition to delays, in order to display the benefits of our delay management ap-
proach.

These agents will be used for the transfers detailed in section 5.4.2 (see Figure 5.3).

5.3.2 Task description

We display our method benefits on a 2D manipulation task (planar task), where a robot
needs to keep a ball at a desired position on a gutter. In this regard, only 3 DoF are
required for the physical robots (base rotation and wrist roll are unused). To further
increase the gap between both robots, the Robot 4 is used as a 2 DoF robot (wrist pitch
is unused). The gutter is fixed at one end and held at the other end by the robot’s effector
which therefore decides of its orientation and, as a consequence, of the position of the ball
(see Figure 5.4). This task can be formalized with the following MDP:

State: st ∈ R4+1: the ball position and velocity on the gutter, the effector height, the
desired ball position and the system delay d for the delay aware agents.

100

Action: at ∈ Rn is the target joints position (n being the number of considered
joints). The vanilla agent was not making any progress with a full access to the
action space. Indeed, to balance the ball on the gutter, it is first needed to hold it
properly. These desired body configurations are just a fraction of the full state space
and it is very unlikely to discover them without any prior knowledge of the task.
To ease the vanilla agent learning process, its action space has been constrained
to output joints offset values w.r.t a reference joints position which maintains the
gutter in an equilibrium position.

Reward:
rt =

{
r − β|θe| if ddes,b < δ
−αddes,b − β|θe| else (5.1)

where r is a small positive reward, δ is the positive reward area and ddes,b is the
distance between the ball and the desired ball position. |θe| is the angle between
the effector pose and the vertical plane and α and β are weighting constants. This
penalty ensures that the effector is in the right orientation to hold the gutter properly
for the vanilla agent. In contrast, the effector orientation constraint for the UNN is
handled by the output base, which means that β is set to zero when training the
UNN.

Figure 5.4: Physical experiments setup. Left robot performs the task, while the right
robot is used only to hold one end of the gutter.

5.3.3 Delay Aware UNN creation

As the BAM method showed better transfer results [Mounsif 19a], we decided to use it to
create the UNN module. As a recall, in Base Abstracted Modeling, the robot is assimilated
to its effector. For this task, we chose the intermediate states k ∈ R and kd ∈ R shared
between the UNN module and the bases to be a single value indicating at what height
below or above the horizontal reference position of the gutter the effector is/should be.
The UNN module was receiving an extra input d ∼ U(0.1, 1) representing the current

101

delay of the system during training. A delay range between 0 and 1 is recommended as
it corresponds to a normalized input. In our case, it also corresponds to our actual delay
in second, with 0.1s being the smallest delay possible given our control frequency. The
delay was created in the simulator by stacking the observations in a FIFO buffer, before
feeding them to the UNN module.

5.4 Results
In this section, we present our results both on training and transferring on the chosen
manipulation task. In particular, we compare the UNN agents with the vanilla agents
with and without delay awareness. For further experiments, delay was added artificially
to the real system with the same FIFO method seen in section 5.3.3. Code can be found at
github.com/sabeaussan/DelayAwareUNN. Videos showing our results are available here.

5.4.1 Training

During the training, the desired ball position and system delay (for delay aware agents)
were regularly changed to improve the adaptive capabilities and re-usability of the UNN.
More precisely, a new delay d was sampled from U(0.1, 1) every 15 episodes. The desired
ball position given to the model, varying between 20% and 80% of the gutter length, was
also sampled from a uniform distribution U(0.2, 0.8) every 1000 training steps. Both the
BAM agents and the Vanilla agents were trained for 4 millions steps. Figure 5.5 shows
the cumulative reward obtained per episode. Only the term ddes,b (distance between the
ball and the desired position) common to both reward functions was considered for the
comparison, as it reflects the agent overall progression on the task. As shown in Figure 5.5,
the BAM agents in both settings converge slightly faster than their vanilla counterparts.
The BAM agents focus solely on the task, leaving robot specific considerations to their
bases. This decomposition of the learning problem similar to hierarchical RL eases the
learning process. It is also worth noting that introducing varying delay during training
reduces the convergence speed, as the task becomes more challenging. However, in the
UNN framework, this training overhead is outweighed by the increased reusability of the
UNN module.

5.4.2 Transfer

There are two kinds of transfer to consider: simulation to real robot transfer and robot to
robot transfer. The UNN framework mitigates the sim2real transfer problem by consid-
ering the real robot and the simulated one as two different robots, each one with its own
bases, thus partially addressing the sim2real transfer as a robot to robot transfer. In this
section we evaluate two methods of transfer

• UNN transfer: Once trained until convergence with the BAM robot, the UNN
module is transferred to each robot of the set.

• Vanilla transfer: The vanilla agents trained on the simulated robot are directly
transferred to their physical counterpart. This will serve as a baseline to study the
UNN benefits for sim2real transfer.

102

https://youtu.be/dQd4jfnWR8g

Figure 5.5: Training curves. All the agents were trained for 400000 steps.

The performance metric used is the integral of the absolute value of the error between
the ball position and the desired ball position over time. This metric has the advantage
of taking into account both settling time and the steady state error (the closer to 0,
the better). For a fair comparison, each experiment has been conducted with the same
settings (same initial ball position and desired ball position). Performances displayed in
Tables 5.1 and 5.2 are averaged over 50 episodes.

Influence of delay:

Robots/Delays 0.3 0.5 0.7
BAM 3.12 / 15.57 3.94 / 22.57 4.91 / 25.28
UNN Robot 1 3.26 / 11.84 3.96 / 20.12 4.98 / 23.48
UNN Robot 2 3.43 / 12.21 4.19 / 18.47 5.10 / 21.19

Table 5.1: Sim2sim transfer. Performances obtained for the UNN transfer on the simulated
robots. Results are displayed with delay aware method on the left / delay unaware method
on the right.

In this part, we evaluate the contribution of the DA-UNN for delay management, on
both simulated and physical robots. Three delays were considered for the experiments:
300 ms (corresponding to the delay on the physical system), 500 ms and 700 ms. Figure 5.6
shows ball trajectories for the three delays considered, obtained by the UNN agents on
robot 1 (virtual braccio robot) and 3 (physical braccio robot). On the simulation side,
we added an optimal trajectory obtained with the delay unaware UNN agent acting on
an undelayed environment to serve as a reference (see Figure 5.6b). The same agent
was then exposed to the delays considered to study how performance deteriorates for

103

(a) BAM robot

(b) UNN Robot 1

104

(c) UNN Robot 3

Figure 5.6: Ball trajectories with 0.3, 0.8 and 0.5 as desired ball positions.

unaware agents as the delay increases. As shown, agents not exposed to delays during
training completely failed and systematically overshot when trying to get the ball at the
required position in delayed environment. Figure 5.6c emphasizes the inability of the
delay unaware agents to cope with the physical system immanent delay (300 ms) as the
ball starts oscillating. Moreover, as the delay increases, the delay unaware agents tend
to become unstable. As for delay aware agents, in the simulation, they still manage to
follow closely the optimal trajectory.

Table 5.1 shows the performances obtained in sim2sim transfer with the UNN agents
on both delay aware and unaware settings. It is shown that delay aware agents perform
from 3.5 to 5.72 times better than their unaware counterparts. It is also clear from looking
at Figure 5.6c and Table 5.2, which shows the average performance after sim2real transfer,
that dealing with delay in simulation greatly improves the results of the UNN agents once
deployed on the physical robots. Vanilla agents also benefited from this delay management
method, as shown in Table 5.2b, demonstrating the versatility of the proposed method.

sim2sim transfer

In this paragraph, we discuss the results obtained when transferring the delay aware UNN
module from the BAM robot to robots 1 and 2 in simulation. We also compare the per-
formance obtained against delay aware vanilla agents which learned the task from scratch
on robots 1 and 2. As shown in Tables 5.1 and 5.2b, UNN-based approaches slightly out-
perform the policies of the vanilla agents for the robots and delays considered. We want
to emphasize that the UNN module has been trained only once and on only one robot, the
BAM robot, but still performs better than the vanilla agents specifically trained on robots

105

Robots/Delays 0.3 0.5 0.7
BAM 3.12 / 15.57 3.94 / 22.57 4.91 / 25.28
UNN Robot 3 4.78 / 9.88 5.05 / 22.32 8.02 / 24.43
UNN Robot 4 5.86 / 15.72 7.45 / 22.42 8.76 / 24.41

(a) UNN transfer: BAM → robot 3 and BAM → robot 4

Robots/Delays 0.3 0.5 0.7
Vanilla Robot 1 3.32 / 17.33 4.22 / 26.17 5.56 / 31.48
Vanilla Robot 3 5.43 / 19.65 5.97 / 28.22 9.33 / 33.43
Vanilla Robot 2 3.78 / 18.63 4.81 / 26.45 6.16 / 32.48
Vanilla Robot 4 7.58 / 21.13 9.55 / 27.05 10.62 / 33.82

(b) Vanilla transfer: robot 1 → robot 3 and robot 2 → robot 4

Table 5.2: Sim2real transfer. Performances obtained for the vanilla transfer and the UNN
transfer on the physical robots. Results are displayed as delay aware method on the left
/ delay unaware method on the right.

1 and 2. These results demonstrate the appealing re-usability and effectiveness of the UNN
module. In some cases, the delay aware UNN agents achieve zero-shot performances (e.g
robot 1 with delay 0.5). In the worst case, the transfer efficiency is 90.9% (3.12/3.43),
100% being the performance obtained by the UNN module on the BAM robot. In aver-
age, the transfer efficiency is 97.7 % for robot 1 and 93.7% on robot 2. Ideally, the UNN
module paired with any of the robots would yield similar performance as with the BAM
robot. However, in some cases the body configurations required to comply with the UNN
commands are not precisely achievable by the robot. For instance, the desired effector
position may need some of the joints to rotate beyond their limits. This also explains why
the UNN transfer is less efficient on the 2 DoF robot, as it is less expressive and has a
harder time following UNN commands.

sim2real transfer

In this paragraph, we study the UNN methodology as a sim2real transfer tool. More
specifically, we compare the performance obtained after transfer on the physical robots
for Vanilla agents and UNN agents. In this case, both the UNN module obtained on the
BAM robot and the vanilla agents obtained on the simulated robots, were transferred to
the physical robots. As shown in Figure 5.6, the UNN agent on robot 3 still manages
to put the ball at the desired positions without too much overshooting. Table 5.2 shows
the results obtained. As usual, the agents trained in simulation and transferred to the
real world show lower performance than their virtual counterparts due to the reality gap.
However, they still manage to obtain decent performances. One notable result is that
the delay unaware agents transferred to the physical robot obtain very poor performance
unlike their delay-aware counterparts. Once again, UNN based agents outperform vanilla
agents. FOr instance, the UNN based transfer reaches up to 78% (100% corresponds to
the BAM performance) in the best case, while the vanilla transfer reaches 70.6% (100%
corresponds to the vanilla agent on robot 1). In average, the UNN sim2real transfer

106

efficiency is 68% on robot 3 and 54% on robot 4, against 63% on robot 3 and 52.7%
for robot 4 for the vanilla sim2real transfer. As mentioned earlier, this slight sim2real
improvement can be attributed to the robot-agnostic nature of the UNN module. Indeed,
even if the vanilla agents were trained in simulation with a virtual copy, it remains an
inaccurate model of the physical robot. The UNN module on the other hand ignores those
discrepancies by considering the physical robot and the virtual one as two different robots,
each with their own bases.

5.4.3 Discussion and perspectives

From the previous results, it clearly appears that the delay management method used
considerably improves the performances when working with delayed environment, as it
is often the case in the real world. Moreover, the UNN approach not only achieves very
efficient transfer between robots in simulation, but slightly improves sim2real transfer over
vanilla transfer. However, the zero-shot sim2real transfer efficiency is nowhere near what
was obtained for the sim2sim transfers. Nevertheless, further training could be done on
the physical robots to achieve better performance. As aforementioned, the UNN mitigates
the sim2real transfer by considering the physical system as just another robot that can
be interfaced with the UNN module. Nevertheless, the UNN module which was trained
in simulation can still overfit on its environment. As a result, the instructions given can
be unsuitable if it is placed in a new domain with a slightly different state distribution,
e.g the real world. Fortunately, the UNN approach can be combined with state-of-the
art sim2real methods such as automatic domain randomization[Akkaya 19] to improve
sim2real transfer.

5.5 Relation to prior works
In this section we review works that address the issue of delay management. Several
approaches have been proposed in the context of Machine Learning. Roughly speaking,
they can be classified in two categories: Model-based and state-augmented approaches.

5.5.1 Model-based approaches

This subsection presents an overview of methods implementing a model to predict future
states given a history of past actions or states. By doing so they assume a regular MDP and
develop a controller oblivious to delay. A cornerstone paper in RL with delay [Walsh 09]
learns a model of the undelayed Markov Decision Process (MDP) to simulate the most
likely state in which the agent currently is, given the last observed (delayed) state and
the k last actions taken since, k being the delay in timestep. This allows the agent
to take decisions based on the expected current state rather than an outdated state,
effectively undoing the harmful effect of delays. They also introduced the concept of
Constant Delayed MDP presented in Section 5.2.1. In [Behnke 04], the authors proposed
a neural network-based method to address the control delay issue. Their contribution
emerged from the practical need of controlling a robot during the RoboCup small size
league. Indeed, the feedback control system composed of computer vision, motion control
and communication, introduced a delay ranging from 100 ms to 150 ms. To address
this issue, a predictor approximated by a neural network (more specifically a multi-layer
perceptron), must infer the current state of the fast moving robot by observing a vector

107

of stacked outdated states and the last undelayed action. Given the predicted state and a
simple PID controller, they were able to successfully cancel the adverse effects of delay and
control the robot. In [Firoiu 18], the authors have voluntarily introduced action delays to
evaluate the performance of an agent with human level reaction time. To highlight their
contribution, they consider a highly-dynamic and fast paced multi-player fighting video
game. Unlike previous work, they solve the delay problem by using a state-predictive
model based on a multi-layer Gated Recurrent Unit [Cho 14]. The predicted state is then
fed to a regular policy to compute the action at+d, with d the delay. Similarly, the authors
of [Derman 21], recursively apply a one-step ahead forward model of the environment to
predict the future state the agent will be in when the delayed action will be executed. The
authors of [Chen 21] proposed a model-based approach to solve a state-augmented MDP
(which they call Delay-Aware MDP) in the presence of action delay (see Figure 5.7). The
transition function is decomposed into a known part which corresponds to the dynamics
induced by the action delay, and an unknown part which corresponds to the dynamics of
the delay-free MDP. By leveraging SOTA model-based methods they were able to learn the
unknown dynamic and solved the delay MDP with minimal degradation of performance.
Additionally, the learned dynamics model is transferable between systems with different
delay steps. However, their method does not enable transfer between morphologically
distinct entities. Furthermore, all of these previous methods rely on a predictive model
to solve the delay issue. In addition to being hard to learn and subject to compounding
errors, a predictive model is explicitly trained on a particular system, preventing any
Cross-Agent Transfer Learning.

Figure 5.7: RL policy (Q-Network) using a forward model to act on undelayed observations
[Derman 21].

5.5.2 State-augmented approaches

In this subsection, we review methods that directly rely on the information-state approach
presented in section 5.2.2. As such, they leverage policies conditioned on a buffer of
pending actions and the last observed state to solve the CDMDP. Ramstedt and Pal
[Ramstedt 19] studied real-time RL by taking into account the computation time needed

108

to select an action (supposed inferior to one time step). Their proposed algorithm, Real-
Time Actor-Critic, additionally takes as input the action from the previous step in order to
compensate the one-step action delay. They demonstrate the efficiency of their proposed
method on a real-time autonomous driving simulator. Successor work [Bouteiller 21]
studies reinforcement learning in the presence of random delays. They argue that off-
policy learning algorithms, even when using the information state Id = (s0, a1, ..., ad) may
struggle to converge. They hypothesize that this is due to the credit assignment problem
(i.e how to attribute an outcome to a delayed action). By partially re-sampling fragments
of trajectories from the experience buffer, they can estimate the value function on-policy
to fix this issue. Experiments clearly show the superiority of their approach against
the vanilla state-augmentation approach. Related work [Nath 21], proposed the delay-
resolved DQN, an extension to the regular deep Q-Network algorithm acting based on
the information state Ik rather than the current state (see Figure 5.8). They demonstrate
the effectiveness of their approach on gym environments[Brockman 16] over regular DQN
for constant-delay MDP. Additionally, they claim that their algorithm is computationally
cheaper than previous approaches. However, these previous methods are not suited for
transfer between systems with different delays. The agent must learn again from scratch
whenever the system delay changes as the size of Id depends on it. In contrast, our
proposed method is able to handle a range of different delays with randomization. This
is similar in spirit to [Akkaya 19], where authors account for the imperfect actuators of
the real hardware by introducing a fixed action delay with a probability of 0.5 at the
beginning of every simulation training episode.

Figure 5.8: RL policy acting on a environment with observation delay using information-
state I2 to derive a delayed action [Nath 21].

109

5.6 Conclusion
In this chapter, we studied the benefits of the UNN transfer for a sim2real application.
More specifically, we addressed the delay management problem that occurs when working
with a physical system by making the UNN "aware" of the latency of the system it is
working with. By doing so, we extended the versatility of the UNN method and the range
of compatible systems. We demonstrated this method efficiency by solving a dynamic ma-
nipulation task where delay management is paramount and showed that transfer across
systems with heterogeneous delays and structurally distinct robots is possible. However,
the UNN approach only is not sufficient for efficient sim2real transfer, but could be en-
hanced with other sim2real methods. This work empirically demonstrated the feasibility
of our approach on a low dimensional task with constant delay. Future work may inves-
tigate the efficiency of our delay-management method on a higher dimensional task and
methods to deal with variable delay.

110

Conclusion

Given the current ecological landscape and the growing significance of environmental
concerns in the years to come, several researchers are voicing criticism regarding the un-
restrained pursuit of performance and the subsequent excessive utilization of computing
power and energy. Moreover, to ensure inclusiveness and avoid a form of centralization
in deep reinforcement learning research, it is important to change the current paradigm
based on from-scratch learning, which is extremely costly and energy-inefficient. In this
thesis, we discussed transfer learning in robotics as a promising avenue for reducing the
training costs currently encountered, even with SOTA reinforcement learning algorithms.
We argued that enabling robots to share knowledge despite different physical characteris-
tics was a crucial step towards sample-efficient training. As such, we framed our problem
as a Cross-Agent Transfer Learning problem and proposed suitable experiments involving
multiple robots and tasks to study our problematic. The approaches developed and show-
cased in this manuscript made concrete contributions to the field of deep reinforcement
learning and are further analyzed in the subsequent sections.

Conclusion for the LS-UNN approach
Inspired by Mehdi Mounsif’s work on the Universal Notice Network and transfer learning,
we proposed in Chapter 3 a learning method for the emergence of a common representation
to support the transfer of knowledge from one robot to another. Our method relies on
time-alignment to establish correspondences across robots and minimizes the encoding
distance of similar states to create invariance to the morphology. In the experimental part,
we demonstrated the effectiveness of this approach through 3 tasks of different nature and
transferred corresponding policies across 3 robots of distinct morphology. Compared with
Proximal Policy Optimisation, a state-of-the-art learning method, our approach yield a
significant sample efficiency boost, while retaining performance. Some transfers result in
immediate generalization (zero-shot), and in the worst case significantly reduced the cost
of training the target robot. In addition, the bases provide a learning bias which depending
on the constraint imposed on the robot during execution of the primitive task(s), can ease
learning of downstream tasks. Last but not least, we validated the UNN approach on
industrial-grade physical robots, which had not been undertaken in previous work. In
addition to the contributions mentioned above, we release the environments created and
used for our CATL experiments in the hope that they may serve as a benchmark to
compare different transfer approaches on industrial robots with different morphologies,
and for tasks of various kinds. To the best of our knowledge, this kind of benchmark has
never yet been proposed in the literature.

111

Perspectives and future works for LS-UNN
Our approach to learn a robot-agnostic space overcomes some of the limitations of the
standard UNN, notably the need to define a robot-agnostic space by hand. However, it
also introduces its own set of difficulties and questions:

Dealing with over-fitting

As highlighted in Section 4.4.4, LS-UNN suffers from overfitting. Indeed, the UNN mod-
ule is somehow able to takes advantage of the morphology of the robot on which it is
learning to continue increasing its reward. As a consequence, the optimized task-strategy
becomes less transferable and performance after transfer degrade. While our already pro-
posed solution is effective, it hinders the practicality of this method with additional and
time-consuming checkpoint testing. A possible workaround to mitigate over-fitting is to
leverage consistent dropout [Hausknecht 22]. Dropout (see Section 2.3.4 for a recall) has
proven extremely efficient in many Supervised Learned scenarios, but were rarely used
in Reinforcement Learning due to training stability issues. However, consistent dropout
were shown recently to provide a stable training, potentially helping RL agents to better
generalize. It would be interesting to see whether this type of dropout improves transfer
results.

Impact of the type of latent space on transfer and learning.

In this thesis, we restricted ourselves to the study of a latent space obtained with simple
VAEs, which we used for training a UNN module and transfers. However, a wide range
of more moderns alternatives are available with arguably better performance. To name
just a few:

• Wassertein Auto-Encoder [Tolstikhin 17] have proven to outperform the regular
VAE on data generation tasks. Given our approach relies on the generative ca-
pabilities of the decoder, it could be interesting to explore WAE for transfer.

• Hyperspherical Variational Auto-Encoders [Davidson 18] suggests to use a hyper-
spherical latent space, employing a von Mises-Fisher prior distribution to more ac-
curately model directional data, such as joint configurations or velocities. Inves-
tigating a different and arguably more suited latent-space geometry could unlock
more efficient transfers.

Studying these alternatives and their influence on UNN module training (sample-efficiency
and asymptotic performance) and the resulting transfer performances is therefore an ap-
pealing future research direction.

Building a latent space from unpaired trajectories

Requiring paired and time-aligned trajectories to build the shared latent space can be a
practical limitation in some cases. For instance, running the robot to record trajectories
can be costly or synchronizing task execution for more complex primitive tasks or robot
may prove difficult. Additionally, with the emergence and availability of demonstration
datasets for different types of robots on multiple tasks such as Roboturk [Mandlekar 18] or

112

Robotmimic [Mandlekar 21], it could be of major practical interest to leverage these gen-
eral purpose, ready-to-use datasets to learn the robot-agnostic feature space. In appendix
A, we present some early experiments and results to deal with paired but non-aligned
trajectories using a trajectory-wise, rather than point-wise similarity loss during bases
training.

Finally, as learning gait controllers for locomotion tasks is extremely data-hungry,
adapting the LS-UNN approach to fit quadrupedal or even humanoid robots is of major
interest. A couple of prior works have already attempted transfer for simple ant-like
walking robots with promising results.

Conclusion and Prospects for the DA-UNN approach
In order to further validate the UNN approach on a physical robot arm, Chapter 4 tackled
the challenge posed by the presence of delay in the robot’s RL control loop. It was
observed that this delay adversely affects the performance of an agent trained in simulation
when transferred to its physical counterpart. This realization motivated the development
of the Delay Aware UNN approach, wherein the delay is randomized during training
and supplied as additional information to the task module. Consequently, we obtain a
task module capable of adapting to simultaneously to different morphologies and delays.
This methodology was validated through simulation and experimentation on two distinct
physical robots using a dynamic task. Our experimental findings clearly demonstrated
a significant disparity in performance between a delay aware agent and a delay unaware
agent, affirming the importance of considering delays in achieving sim2real success.

However, as discussed in Section 5.2.3, our approach may result in sub-optimal policies
due to incomplete information in the state. In contrast, many approaches use the infor-
mation state I = {s, a0, ..., ak} to counterbalance the effect of delay. While this approach
is theoretically sound and can yield optimal policies in Constant-Delay MDPs, it is not
directly transferable as it depends explicitly on k, the delay. But a LSTM-based UNN
module could compress Ik into a vector of fixed size no matter what k is, in order to
be compatible with a delay range. This could potentially improve results over a simple
Multi-Layered Perceptron. Furthermore, from an application point of view it could be
interesting to merge our two main contribution, the DA-UNN and the LS-UNN.

Positioning in relation to recent advances in the litera-
ture
Some recent advances in the literature need to be discussed and analyzed in order to
reposition our contribution. The Isaac-gym simulator [Makoviychuk 21a] enables massive
parallel experience collection directly on the GPU which drastically reduces the time
needed to train a RL model from scratch. However, the amount of samples to collect is still
extremely high as well as the associated energy-consumption. As a result, our approach
could complements this high-performance simulator by additionally reducing the amount
of interaction needed with the environment, further decreasing the training cost. Other
approaches orthogonal to ours such as PalM-E [Driess 23] rely on extremely costly large
language models to bring about a common representation suited for task transfer and
generalization across morphologies. Although effective, the hardware requirements and
massive energy resources required to train and use these kinds of models are prohibitive

113

for all but a few extremely well funded and equipped laboratories, fueling the race for
evermore closed-source, exclusive research and high carbon footprint models. In contrast,
we believe that our approach can be applied to reduce resources requirements and meets
the Green AI efficiency criteria.

114

Appendix A

Dealing with misaligned trajectories

In section 4.2.1, we proposed to use time-alignment as a way to pair similar states across
robots. While in practice, time-based alignment can be achieved straightforwardly on
simple settings, it may not be robust enough when both robots are performing the primi-
tive task at somewhat different speeds, or if the sampling loop does not run at a perfectly
fixed rate. To address this issue and guaranty a reasonable alignment and state-pairing
regardless of of possible desynchronization, we propose to slightly change the bases train-
ing procedure. This approach is still under development due to lack of time. Hence, we
discuss it in an Appendix.

A.1 Trajectory pairing
This new alignment relies on trajectory pairing rather than state-pairing. As such, agents
are not required to execute the primitive task at the same pace, they should simply reach
the same state goals. More formally, if we denote by π∗,T

r1
and π∗,T

r2
the optimal policies

for primitive task T on respectively, robot r1 and robot r2, then:

τT1r1 (s
T
g1
) ≈ τT2r2 (s

T
g2
) ⇐⇒ sTg1 = sTg2 (A.1)

where τTri (sg) = (st1ri , s
t2
ri
, ..., sTri) ∈ RTi×Ni is a trajectory of length Ti with Ni features,

landing on goal state sTg . In other words, if two trajectories reach the same goal state sg,
they are deemed equivalent and can be matched. For instance, if T is a reaching task, the
goal state sTg would be the desired end-effector position. This alignment method therefore
produces a dataset D of paired and equivalent trajectories such that:

D = (τr1,n, τr2,n)
n=1:M (A.2)

where M is the number of trajectories. The training process of the bases given D the
dataset of paired trajectories, is relatively similar to the procedure already described in
Section 4.2.2. However, as trajectories are not time-aligned but merely equivalent, we
can’t align the latent space of both robots by minimizing Lsim (see Equation 4.4), the loss
enforcing proximity in the latent space of two similar and paired states.

A.2 Latent trajectories alignment
A straightforward solution could be to align trajectories using Dynamic Time Warping
(DTW) [Müller 07], an algorithm that measures the accumulated cost for the optimal

115

alignment between two time series. It is a useful tool to compare time series with different
lengths as it is robust against shifts or dilatations along the time dimension. It also
provides, as a byproduct, the corresponding optimal pairing between points of two time-
series with different length. More formally it solves the following optimization problem:

DTW(X,Y) = min
π∈A(X,Y)

√ ∑
(i,j)∈π

d(xi, yj) (A.3)

where X = (x1, ..., xNx) and Y = (y1, ..., yNy) are two time-series respectively of length
Nx and Ny, A(X, Y) is the set of all possible alignments, π is one possible alignment
and d(xi, yj) measures the distance between xi and yj (the euclidean distance in most
cases). Most of the time, this minimal-cost alignment problem is solved using dynamic
programming. Reformulating the problem using our specific CATL setting, we consider
two joints state trajectories τr1(sTg1) ∈ RT1×N1 and τr2(s

T
g2
) ∈ RT2×N2 . In general, both

robots have a different number of DoFs so N1 ̸= N2. As a result, it is not possible
to directly compute the distance (which DTW rely on) between two points on these
trajectories due to the dimensionality mismatch. Therefore, DTW (τT1r1 (s

T
g1
), τT2r2 (s

T
g2
)) is

not well-defined and cannot be computed. To overcome this limitation, we propose to
minimize the divergence between the latent representations of two equivalent trajectories
using Soft Dynamic Time Warping (Soft-DTW) [Cuturi 17], a differentiable formulation
of DTW. Soft DTW modifies the original formulation by replacing the min operator with
a smooth version:

minγ(a1, a2, ..., an) :=
{

min(a1, a2, ..., an) if γ = 0
−γ log

∑n
i=1 e

−ai/γ if γ > 0
(A.4)

where γ is a constant used to adjust the smoothing. The optimization becomes:

SoftDTWγ(X, Y) = minγπ∈A(X,Y)

√ ∑
(i,j)∈π

d(xi, yj) (A.5)

An immediate consequence of this reformulation is that Soft DTW can be used as a loss
function to fit a model, unlike DTW [Cuturi 17]. In our case, it can optimize the bases
such that latent projections of two equivalent trajectories are aligned. However, Soft
DTW is not a valid divergence because it can be negative and is not minimized when
two time-series are equal. These issues are addressed in [Blondel 21] where the authors
derived a new divergence Dγ, named soft-DTW divergence and based on Soft DTW. It is
define as:

Dγ(X, Y) = SoftDTWγ(X, Y)− 1

2
SoftDTWγ(X,X)− 1

2
SoftDTWγ(Y, Y) (A.6)

A.3 Bases training
The new similarity loss introduced in the previous section is straightforward to integrate
in the already existing bases training pipeline. We simply need to replace the point-wise
euclidean distance by the trajectory-wise SoftDTW divergence. In other words, we now
have:

Lsim(τ
T1
r1
, τT2r2) = SoftDTWγ(τT1r1 , τ

T2
r2
)− 1

2
SoftDTWγ(τT1r1 , τ

T1
r1
)− 1

2
SoftDTWγ(τT2r2 , τ

T2
r2
)

(A.7)

116

Additionally, we also remove the LCA cross-alignment term as it requires paired states
and can’t be adapted for paired trajectories of different length. Finally, the overall objec-
tive function using the same notations as Section 4.2.2 is the following:

min
θr1 ,θr2 ,ϕr2 ,ϕr1

∑
(xr1 ,xr2)∈D

LBr1 + LBr2 + δLsim (A.8)

A.4 Experiments

A.4.1 Training setup

We evaluate our alignment approach on the same benchmark as Section 4.3. We enforce
misaligned trajectories by setting different task execution speeds. More specifically, taking
the UR10 robot as reference, the Panda robot is moving 20% faster and the Braccio robot
40% faster. We generate 2500 equivalent trajectories on a Reaching task across robots
and proceed to train a UR10-Panda pair of bases. The final preliminary step is to fit the
Braccio bases to align with the Panda ones, following the same procedure as Section 4.2.2
but adapted using SoftDTW. The neural networks architecture is the same as in Section
4.3 and we set δ, the weighting constant for Lsim, to 0.0025.

A.4.2 Results

In this section, we present the zero-shot transfer results obtained after training a UNN
module on each robots (UR10, Panda and Braccio) and for each tasks (Pick and Place,
Peg Insertion and Ball Catching). Performance are measured exactly as in Section 4.4.

Pick and place

Regarding zero-shot transfers performance shown in Table A.1, all transfers except the
ones targeting the Panda robot yield a 100% performance success rate. Surprisingly, the
Panda robot is not benefiting as much as other robots from transfers, even though it is
halfway between the Braccio and the UR10 in terms of speed. Indeed, we would expect
UR10 and Braccio transfers to suffer from the relatively large speed difference present
while performing the primitive task, resulting in the least successful transfers. However,
for a such a simple, non-dynamic task, this kind discrepancies could not be critical.

Source\Target Braccio Panda UR10
Braccio 100 91 100
Panda 100 100 100
UR10 100 82 100

Table A.1: Performance obtained for UNN agents on the Pick and Place task and zero-
shot transfers.

Peg Insertion

For the Peg Insertion task, we observe in Figure A.2 (near) zero-shot generalization in three
occasions: UR10→ Panda, Panda→ UR10 and Braccio→ Panda. The transfers involving
the Braccio robot (either as source or target) tend to be less effective. Most notably,

117

UR10 → Braccio results in only a 51% success rate after transfer which is significantly
lower than other transfers. Other Braccio related transfers also do not exhibit zero-shot
generalization, but are far more beneficial.

Source\Target Braccio Panda UR10
Braccio 100 75 98
Panda 89 100 100
UR10 51 99 100

Table A.2: Performance obtained for UNN agents on the Peg Insertion task and zero-shot
transfers.

Ball Catching

The Ball Catching task is a dynamic task and as such, supposedly very sensitive to
trajectories misalignment. Looking at transfer results in Figure A.3, we can see near zero-
shot generalization for the UR10→ Panda. Other transfers, while still being significantly
beneficial, would require further fine-tuning. Surprisingly, the UNN trained on the Panda
robot converge to a sub-optimal policy and successfully catch the ball only 87% of the time.
In contrast, it can reach a 95% performance when receiving the UR10 UNN, indicating
that a near optimal policy do exist in the latent space for the Panda robot, but PPO was
not able to find it when training on the Panda, due to a bad seed or other unknow factors.

Source\Target Braccio Panda UR10
Braccio 97 77 81
Panda 81 87 87
UR10 88 95 98

Table A.3: Performance obtained for UNN agents on the Ball Catcher task and zero-shot
transfers.

A.5 Discussion and Perspectives
Overall, transfer performances reported in this preliminary experiment with misaligned
trajectories are lower than those reported in Section 4.4. Performance seems to drop as the
misalignment increases. Naturally, future work will investigate how efficiently full perfor-
mance can be recovered when fine-tuning on the target robots. But still, Soft-DTW shows
promising results even for early tests with very little hyper-parameters tuning. Moreover,
the misalignment considered were voluntarily exaggerated to test the robustness and lim-
itations of this alignment approach. In practice, a de-synchronization of 40 %, as studied
for the Braccio robot, is unlikely when working with industrial-grade robots. Therefore,
it could be interesting to conduct other experiments with more realistic misalignment to
assess the benefit of Soft-DTW for alignment and Cross-Agent Transfer Learning.

118

Bibliography

[Ahmed 19] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi & Dale Schu-
urmans. Understanding the impact of entropy on policy optimiza-
tion. In International conference on machine learning, pages 151–
160. PMLR, 2019.

[Akkaya 19] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz
Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plap-
pert, Glenn Powell, Raphael Ribaset al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, vol. 10, 2019.

[Amodei 16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John
Schulman & Dan Mané. Concrete problems in AI safety. arXiv
preprint arXiv:1606.06565, 2016.

[Andrychowicz 20] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej,
Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,
Matthias Plappert, Glenn Powell, Alex Rayet al. Learning dexter-
ous in-hand manipulation. The International Journal of Robotics
Research, vol. 39, no. 1, pages 3–20, 2020.

[Arndt 20] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh & Ville Kyrki. Meta
reinforcement learning for sim-to-real domain adaptation. In 2020
IEEE international conference on robotics and automation (ICRA),
pages 2725–2731. IEEE, 2020.

[Battaglia 18] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro
Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea
Tacchetti, David Raposo, Adam Santoro, Ryan Faulkneret al. Re-
lational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, vol. 10, 2018.

[Beck 22] Nathan Beck, Abhiramon Rajasekharan & Hieu Tran. Transfer
Reinforcement Learning for Differing Action Spaces via Q-Network
Representations. ArXiv, vol. abs/2202.02442, 2022.

[Behnke 04] Sven Behnke, Anna Egorova, Alexander Gloye, Raúl Rojas & Mark
Simon. Predicting away robot control latency. In RoboCup 2003:
Robot Soccer World Cup VII 7, pages 712–719. Springer, 2004.

[Bellemare 16] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul,
David Saxton & Remi Munos. Unifying count-based exploration and

119

intrinsic motivation. Advances in neural information processing sys-
tems, vol. 29, 2016.

[Bengio 13] Yoshua Bengio, Aaron Courville & Pascal Vincent. Representation
learning: A review and new perspectives. IEEE transactions on pat-
tern analysis and machine intelligence, vol. 35, no. 8, pages 1798–
1828, 2013.

[Bertsekas 00] Dimitri P. Bertsekas. Dynamic programming and optimal control.
Vol.1. Numeéro 1 in Athena scientific optimization and computation
series. Athena Scientific Publ, Belmont, Mass, 2. ed edition, 2000.
OCLC: 833754683.

[Blondel 21] Mathieu Blondel, Arthur Mensch & Jean-Philippe Vert. Differen-
tiable divergences between time series. In International Conference
on Artificial Intelligence and Statistics, pages 3853–3861. PMLR,
2021.

[Bojarski 16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew
Monfort, Urs Muller, Jiakai Zhanget al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[Bommasani 21] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Sim-
ran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg,
Antoine Bosselut, Emma Brunskillet al. On the opportunities and
risks of foundation models. arXiv preprint arXiv:2108.07258, vol. 10,
2021.

[Bousmalis 16] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman,
Dilip Krishnan & D. Erhan. Domain Separation Networks. In Neural
Information Processing System (NIPS), 2016.

[Bousmalis 18] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai,
Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz,
Peter Pastor, Kurt Konoligeet al. Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. In 2018
IEEE international conference on robotics and automation (ICRA),
pages 4243–4250. IEEE, 2018.

[Bouteiller 21] Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher
Pal & Jonathan Binas. Reinforcement learning with random delays.
In International conference on learning representations, 2021.

[Bro 14] Rasmus Bro & Age K Smilde. Principal component analysis. Ana-
lytical methods, vol. 6, no. 9, pages 2812–2831, 2014.

[Brockman 16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang & Wojciech Zaremba. OpenAI Gym, 2016.

[Brown 20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav

120

Shyam, Girish Sastry, Amanda Askellet al. Language models are
few-shot learners. Advances in neural information processing sys-
tems, vol. 33, pages 1877–1901, 2020.

[Bócsi 13] Botond Bócsi, Lehel Csató & Jan Peters. Alignment-based transfer
learning for robot models. In The 2013 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–7, 2013.

[Campbell 02] Murray Campbell, A Joseph Hoane Jr & Feng-hsiung Hsu. Deep
blue. Artificial intelligence, vol. 134, no. 1-2, pages 57–83, 2002.

[Chai 21] Junyi Chai, Hao Zeng, Anming Li & Eric WT Ngai. Deep learning
in computer vision: A critical review of emerging techniques and
application scenarios. Machine Learning with Applications, vol. 6,
page 100134, 2021.

[Chebotar 19] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Mack-
lin, Jan Issac, Nathan Ratliff & Dieter Fox. Closing the sim-to-real
loop: Adapting simulation randomization with real world experience.
2019 International Conference on Robotics and Automation (ICRA),
pages 8973–8979, 2019.

[Chen 18] Tao Chen, Adithyavairavan Murali & Abhinav Gupta. Hard-
ware Conditioned Policies for Multi-Robot Transfer Learning. page
9355–9366, 2018.

[Chen 21] Baiming Chen, Mengdi Xu, Liang Li & Ding Zhao. Delay-aware
model-based reinforcement learning for continuous control. Neuro-
computing, vol. 450, pages 119–128, August 2021.

[Cho 14] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk & Yoshua Bengio.
Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Associ-
ation for Computational Linguistics.

[Chopra 05] Sumit Chopra, Raia Hadsell & Yann LeCun. Learning a similar-
ity metric discriminatively, with application to face verification. In
2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 539–546. IEEE,
2005.

[Chowdhery 22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten
Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won
Chung, Charles Sutton, Sebastian Gehrmannet al. Palm: Scaling
language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

[Cortes 95] Corinna Cortes & Vladimir Vapnik. Support-vector networks. Ma-
chine learning, vol. 20, pages 273–297, 1995.

121

[Cuturi 17] Marco Cuturi & Mathieu Blondel. Soft-dtw: a differentiable loss
function for time-series. In International conference on machine
learning, pages 894–903. PMLR, 2017.

[Da Silva 19] Felipe Leno Da Silva & Anna Helena Reali Costa. A survey on trans-
fer learning for multiagent reinforcement learning systems. Journal
of Artificial Intelligence Research, vol. 64, pages 645–703, 2019.

[Davidson 18] Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf &
Jakub M. Tomczak. Hyperspherical Variational Auto-Encoders. 34th
Conference on Uncertainty in Artificial Intelligence (UAI-18), 2018.

[Degrave 22] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Bren-
dan Tracey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Ab-
bas Abdolmaleki, Diego de Las Casaset al. Magnetic control of toka-
mak plasmas through deep reinforcement learning. Nature, vol. 602,
no. 7897, pages 414–419, 2022.

[Deisenroth 13] Marc Peter Deisenroth, Dieter Fox & Carl Edward Rasmussen.
Gaussian processes for data-efficient learning in robotics and con-
trol. IEEE transactions on pattern analysis and machine intelligence,
vol. 37, no. 2, pages 408–423, 2013.

[Derman 21] Esther Derman, Gal Dalal & Shie Mannor. Acting in delayed envi-
ronments with non-stationary markov policies. International confer-
ence on learning representations, 2021.

[Devin 17] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel &
Sergey Levine. Learning modular neural network policies for multi-
task and multi-robot transfer. pages 2169–2176, 2017.

[Devlin 18] Jacob Devlin, Ming-Wei Chang, Kenton Lee & Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, vol. 10, 2018.

[Donahue 14] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning
Zhang, Eric Tzeng & Trevor Darrell. Decaf: A deep convolutional
activation feature for generic visual recognition. In International con-
ference on machine learning (ICLR), pages 647–655. research PMLR,
2014.

[Driess 23] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan
Vuong, Tianhe Yuet al. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378, 2023.

[Elfwing 18] Stefan Elfwing, Eiji Uchibe & Kenji Doya. Sigmoid-weighted linear
units for neural network function approximation in reinforcement
learning. Neural Networks, vol. 107, pages 3–11, 2018. Special issue
on deep reinforcement learning.

122

[Eysenbach 19] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz & Sergey
Levine. Diversity is All You Need: Learning Skills without a Reward
Function. In International Conference on Learning Representations,
2019.

[(FAIR)† 22] Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton
Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Fla-
herty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Huet al.
Human-level play in the game of Diplomacy by combining language
models with strategic reasoning. Science, vol. 378, no. 6624, pages
1067–1074, 2022.

[Fefferman 16] Charles Fefferman, Sanjoy Mitter & Hariharan Narayanan. Test-
ing the manifold hypothesis. Journal of the American Mathematical
Society, vol. 29, no. 4, pages 983–1049, 2016.

[Finn 16] Chelsea Finn, Sergey Levine & Pieter Abbeel. Guided cost learning:
Deep inverse optimal control via policy optimization. In International
conference on machine learning, pages 49–58. PMLR, 2016.

[Finn 17] Chelsea Finn, Pieter Abbeel & Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. pages 1126–1135, 2017.

[Firoiu 18] Vlad Firoiu, Tina Ju & Josh Tenenbaum. At Human
Speed: Deep Reinforcement Learning with Action Delay. CoRR,
vol. abs/1810.07286, 2018.

[Fukushima 69] Kunihiko Fukushima. Visual feature extraction by a multilayered
network of analog threshold elements. IEEE Transactions on Systems
Science and Cybernetics, vol. 5, no. 4, pages 322–333, 1969.

[Ghadirzadeh 21] Ali Ghadirzadeh, Xi Chen, Petra Poklukar, Chelsea Finn, Marten
Bjorkman & Danica Kragic. Bayesian Meta-Learning for Few-Shot
Policy Adaptation Across Robotic Platforms. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 1274–1280, Prague, Czech Republic, September 2021.

[Girshick 15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.

[Glorot 11] Xavier Glorot, Antoine Bordes & Yoshua Bengio. Deep sparse recti-
fier neural networks. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 315–323.
JMLR Workshop and Conference Proceedings, 2011.

[Goodfellow 16] Ian Goodfellow, Yoshua Bengio & Aaron Courville. Deep learning.
MIT press, 2016.

[Goodfellow 20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville & Yoshua Bengio. Gen-
erative adversarial networks. Communications of the ACM, vol. 63,
no. 11, pages 139–144, 2020.

123

[Grigorescu 20] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias & Gigel Mace-
sanu. A survey of deep learning techniques for autonomous driving.
Journal of Field Robotics, vol. 37, no. 3, pages 362–386, 2020.

[Gupta 17] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel & Sergey
Levine. Learning Invariant Feature Spaces to Transfer Skills with
Reinforcement Learning. International Conference Learning Repre-
sentation (ICLR), vol. 10, 2017.

[Gupta 18] Madhuri Gupta & Bharat Gupta. A Comparative Study of Breast
Cancer Diagnosis Using Supervised Machine Learning Techniques.
In 2018 Second International Conference on Computing Methodolo-
gies and Communication (ICCMC), pages 997–1002, 2018.

[Haarnoja 18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel & Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. International conference on machine
learning (ICLR), pages 1861–1870, 2018.

[Hausknecht 22] Matthew Hausknecht & Nolan Wagener. Consistent dropout
for policy gradient reinforcement learning. arXiv preprint
arXiv:2202.11818, 2022.

[He 15] Kaiming He, Xiangyu Zhang, Shaoqing Ren & Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on ima-
genet classification. In Proceedings of the IEEE international con-
ference on computer vision, pages 1026–1034, 2015.

[He 16] Kaiming He, Xiangyu Zhang, Shaoqing Ren & Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 770–778,
2016.

[He 17] Kaiming He, Georgia Gkioxari, Piotr Dollár & Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on com-
puter vision, pages 2961–2969, 2017.

[Hejna 20] Donald Hejna, Lerrel Pinto & Pieter Abbeel. Hierarchically decou-
pled imitation for morphological transfer. pages 4159–4171, 2020.

[Helwa 17] Mohamed K Helwa & Angela P Schoellig. Multi-robot transfer learn-
ing: A dynamical system perspective. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages
4702–4708, 2017.

[Higgins 17] Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess,
Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed & Alexan-
der Lerchner. beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework. In International Conference
Learning Representation (ICLR), 2017.

124

[Hinton 12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever & Ruslan R Salakhutdinov. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[Ho 16] Jonathan Ho & Stefano Ermon. Generative adversarial imitation
learning. Advances in neural information processing systems, vol. 29,
2016.

[Hoang 19] Mickel Hoang, Oskar Alija Bihorac & Jacobo Rouces. Aspect-based
sentiment analysis using bert. In Proceedings of the 22nd nordic
conference on computational linguistics, pages 187–196, 2019.

[Hornik 89] Kurt Hornik, Maxwell Stinchcombe & Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
vol. 2, no. 5, pages 359–366, 1989.

[Hu 19] Yang Hu & G. Montana. Skill Transfer in Deep Rein-
forcement Learning under Morphological Heterogeneity. ArXiv,
vol. abs/1908.05265, 2019.

[Hu 22] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang & Weizhu Chen. LoRA: Low-
Rank Adaptation of Large Language Models. In International Con-
ference on Learning Representations, 2022.

[Huang 20] Wenlong Huang, Igor Mordatch & Deepak Pathak. One policy to
control them all: Shared modular policies for agent-agnostic control.
In International Conference on Machine Learning (ICML), pages
4455–4464. research PMLR, 2020.

[Jackson 21] Lucy Jackson, Steve Eckersley, Pete Senior & Simon Hadfield.
HARL-A: Hardware Agnostic Reinforcement Learning Through Ad-
versarial Selection. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3499–3505, Prague,
Czech Republic, September 2021.

[Jangir 20] Rishabh Jangir, Guillem Alenya & Carme Torras. Dynamic cloth
manipulation with deep reinforcement learning. 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages
4630–4636, 2020.

[Jones 09] Susan S Jones. The development of imitation in infancy. Philo-
sophical Transactions of the Royal Society B: Biological Sciences,
vol. 364, no. 1528, pages 2325–2335, 2009.

[Judd 08] Charles Hubbard Judd. The relation of special training and general
intelligence. Educational Review, vol. 36, pages 28–42, 1908.

[Juliani 18] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter
Henry, Marwan Mattar & Danny Lange. Unity: A General Platform
for Intelligent Agents. ArXiv, vol. abs/1809.02627, 2018.

125

[Jumper 21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool,
Russ Bates, Augustin Žídek, Anna Potapenkoet al. Highly accu-
rate protein structure prediction with AlphaFold. Nature, vol. 596,
no. 7873, pages 583–589, 2021.

[Katsikopoulos 03] K.V. Katsikopoulos & S.E. Engelbrecht. Markov decision processes
with delays and asynchronous cost collection. IEEE Transactions on
Automatic Control, vol. 48, no. 4, pages 568–574, April 2003.

[Kim 20] Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao & Stefano
Ermon. Domain Adaptive Imitation Learning. Rapport technique,
July 2020. arXiv:1910.00105.

[Kingma 14] Diederik P. Kingma & Max Welling. Auto-Encoding Variational
Bayes. CoRR, vol. abs/1312.6114, 2014.

[Kirillov 23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe
Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexan-
der C Berg, Wan-Yen Loet al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

[Kramer 91] Mark A Kramer. Nonlinear principal component analysis using au-
toassociative neural networks. AIChE journal, vol. 37, no. 2, pages
233–243, 1991.

[Krizhevsky 17] Alex Krizhevsky, Ilya Sutskever & Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Communications
of the ACM, vol. 60, no. 6, pages 84–90, 2017.

[Kurin 21] Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer
& Shimon Whiteson. My body is a cage: the role of morphology in
graph-based incompatible control. International Conference on Learn-
ing Representations (ICLR), vol. 10, 2021.

[Langman 77] Vaughan A Langman. Cow-calf relationships in giraffe (Giraffa
camelopardalis giraffa). Zeitschrift für Tierpsychologie, vol. 43, no. 3,
pages 264–286, 1977.

[LeCun 89] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson,
Richard Howard, Wayne Hubbard & Lawrence Jackel. Handwrit-
ten digit recognition with a back-propagation network. Advances in
neural information processing systems, vol. 2, 1989.

[Lennon 08] Paul Lennon. Contrastive analysis, error analysis, interlanguage.
Bielefeld Introduction to Applied Linguistics. A Course Book. Biele-
feld: Aisthesis Verlag, pages 51–60, 2008.

[Lillicrap 16] Timothy Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Manfred Otto Heess, Tom Erez, Yuval Tassa, David Silver & Daan
Wierstra. Continuous control with deep reinforcement learning.
CoRR, vol. abs/1509.02971, 2016.

126

[Liu 19] Iou-Jen Liu, Jian Peng & Alexander Schwing. Knowledge Flow:
Improve Upon Your Teachers. International Conference on Learning
Representations (ICLR), 2019.

[Maas 13] Andrew L Maas, Awni Y Hannun, Andrew Y Nget al. Rectifier
nonlinearities improve neural network acoustic models. In Proc. icml,
volume 30, page 3. Atlanta, Georgia, USA, 2013.

[Makondo 15] Ndivhuwo Makondo, Benjamin Rosman & Osamu Hasegawa.
Knowledge transfer for learning robot models via local procrustes
analysis. In 2015 IEEE-RAS 15th International Conference on Hu-
manoid Robots (Humanoids), pages 1075–1082, 2015.

[Makondo 18] Ndivhuwo Makondo, Benjamin Rosman & Osamu Hasegawa. Ac-
celerating Model Learning with Inter-Robot Knowledge Transfer. In
2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 2417–2424, Brisbane, QLD, May 2018.

[Makoviychuk 21a] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle
Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin,
Arthur Allshire, Ankur Handaet al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

[Makoviychuk 21b] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle
Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin,
Arthur Allshire, Ankur Handaet al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

[Mandlekar 18] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max
Spero, Albert Tung, Julian Gao, John Emmons, Anchit Gupta,
Emre Orbayet al. Roboturk: A crowdsourcing platform for robotic
skill learning through imitation. In Conference on Robot Learning,
pages 879–893. PMLR, 2018.

[Mandlekar 21] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen
Wang, Rohun Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu
& Roberto Martín-Martín. What matters in learning from of-
fline human demonstrations for robot manipulation. arXiv preprint
arXiv:2108.03298, 2021.

[Minsky 69] Marvin Minsky & Seymour Papert. An introduction to computa-
tional geometry. Cambridge tiass., HIT, vol. 479, page 480, 1969.

[Mnih 13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra & Martin Riedmiller. Playing
atari with deep reinforcement learning. arxiv, 2013.

[Mnih 15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovskiet al. Human-level control

127

through deep reinforcement learning. nature, vol. 518, no. 7540, pages
529–533, 2015.

[Moravec 88] Hans Moravec. Mind children: The future of robot and human
intelligence. Harvard University Press, 1988.

[Mounsif 19a] Medhi Mounsif, Sebastien Lengagne, Benoit Thuilot & Adouane
Lounis. BAM ! Base Abstracted Modeling with Universal Notice
Network : Fast Skill Transfer Between Mobile Manipulators. July
2019.

[Mounsif 19b] Mehdi Mounsif, Sebastien Lengagne, Benoit Thuilot & Lounis
Adouane. Universal notice network: Transferable knowledge among
agents. In 2019 6th International Conference on Control, Decision
and Information Technologies (CoDIT), pages 563–568. IEEE, 2019.

[Mounsif 20] Mehdi Mounsif. Exploration of Teacher-Centered and Task-Centered
paradigms for efficient transfer of skills between morphologically dis-
tinct robots. Theses, Université Clermont Auvergne [2017-2020], De-
cember 2020.

[Mounsif 23] Mehdi Mounsif, Sebastien Lengagne, Benoit Thuilot & Lounis
Adouane. Universal Notice Networks: Transferring Learned Skills
Through a Broad Panel of Applications. Journal of Intelligent &
Robotic Systems , 2023.

[Müller 07] Meinard Müller. Dynamic time warping. Information retrieval for
music and motion, pages 69–84, 2007.

[Nath 21] Somjit Nath, Mayank Baranwal & Harshad Khadilkar. Revisiting
state augmentation methods for reinforcement learning with stochas-
tic delays. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages 1346–1355, 2021.

[Neyshabur 17] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester & Nati
Srebro. Exploring generalization in deep learning. Advances in neural
information processing systems, vol. 30, 2017.

[Ng 00] Andrew Y Ng, Stuart Russellet al. Algorithms for inverse reinforce-
ment learning. In Icml, volume 1, page 2, 2000.

[OpenAI 23] OpenAI. GPT-4 Technical Report. arXiv, 2023.

[Otter 20] Daniel W Otter, Julian R Medina & Jugal K Kalita. A survey of
the usages of deep learning for natural language processing. IEEE
transactions on neural networks and learning systems, vol. 32, no. 2,
pages 604–624, 2020.

[Pan 10] Sinno Jialin Pan & Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pages 1345–1359, 2010.

128

[Pathak 17] Deepak Pathak, Pulkit Agrawal, Alexei A Efros & Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Inter-
national conference on machine learning, pages 2778–2787. PMLR,
2017.

[Peng 18a] Xue Bin Peng, Pieter Abbeel, Sergey Levine & Michiel Van de
Panne. Deepmimic: Example-guided deep reinforcement learning
of physics-based character skills. ACM Transactions On Graphics
(TOG), vol. 37, no. 4, pages 1–14, 2018.

[Peng 18b] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba & Pieter
Abbeel. Sim-to-real transfer of robotic control with dynamics ran-
domization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810. IEEE, 2018.

[Peng 18c] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba & Pieter
Abbeel. Sim-to-real transfer of robotic control with dynamics ran-
domization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803–3810. IEEE, 2018.

[Radosavovic 23] Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra
Malik & Koushil Sreenath. Learning Humanoid Locomotion with
Transformers. arXiv preprint arXiv:2303.03381, 2023.

[Ramachandran 17] Prajit Ramachandran, Barret Zoph & Quoc V. Le. Searching for
Activation Functions. CoRR, vol. abs/1710.05941, 2017.

[Ramstedt 19] S. Ramstedt & C. Pal. Real-Time Reinforcement Learning. NeurIPS,
2019.

[Redmon 16] Joseph Redmon, Santosh Divvala, Ross Girshick & Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 779–788, 2016.

[Rombach 22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick
Esser & Björn Ommer. High-resolution image synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10684–10695,
2022.

[ROS]

[Rudin 22] Nikita Rudin, David Hoeller, Marko Bjelonic & Marco Hutter. Ad-
vanced Skills by Learning Locomotion and Local Navigation End-
to-End. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2497–2503. IEEE, 2022.

[Russell 10] Stuart J Russell. Artificial intelligence a modern approach. Pearson
Education, Inc., 2010.

129

[Rusu 15] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guil-
laume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr
Mnih, Koray Kavukcuoglu & Raia Hadsell. Policy distillation. arXiv
preprint arXiv:1511.06295, vol. 10, 2015.

[Saikat Islam 22] Khan Saikat Islam, Anichur Rahman, Tanoy Debnath & Razaul
Karim. Accurate brain tumor detection using deep convolutional neu-
ral network. Computational and Structural Biotechnology Journal,
vol. 20, pages 4733–4745, 2022.

[Scarselli 08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner
& Gabriele Monfardini. The graph neural network model. IEEE
transactions on neural networks, vol. 20, no. 1, pages 61–80, 2008.

[Schaal 96] Stefan Schaal. Learning from Demonstration. In M.C. Mozer,
M. Jordan & T. Petsche, editeurs, Advances in Neural Information
Processing Systems, volume 9. MIT Press, 1996.

[Schönfeld 19] Edgar Schönfeld, Sayna Ebrahimi, Samarth Sinha, Trevor Darrell &
Zeynep Akata. Generalized Zero-Shot Learning via Aligned Varia-
tional Autoencoders. 2019.

[Schulman 15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan &
Philipp Moritz. Trust region policy optimization. International con-
ference on machine learning (ICML), pages 1889–1897, 2015.

[Schulman 16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan &
Pieter Abbeel. High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

[Schulman 17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford
& Oleg Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

[Schwartz 20] Roy Schwartz, Jesse Dodge, Noah A Smith & Oren Etzioni. Green
ai. Communications of the ACM, vol. 63, no. 12, pages 54–63, 2020.

[Shankar 21] Tanmay Shankar, Yixin Lin, Aravind Rajeswaran, Vikash Kumar,
Stuart Anderson & Jean Oh. Translating Robot Skills: Learning
Unsupervised Skill Correspondences Across Robots. In Proceedings
of the 39th International Conference on Machine Learning (ICML),
PMLR, 2021.

[Sharif Razavian 14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan & Stefan
Carlsson. CNN features off-the-shelf: an astounding baseline for
recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 806–813, 2014.

[Silver 18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent

130

Sifre, Dharshan Kumaran & Thore Graepel. A general reinforce-
ment learning algorithm that masters chess, shogi, and Go through
self-play. Science, vol. 362, December 2018.

[Srivastava 14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever
& Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research,
vol. 15, no. 56, pages 1929–1958, 2014.

[Starke 17] Sebastian Starke, Norman Hendrich, Dennis Krupke & Jianwei
Zhang. Evolutionary multi-objective inverse kinematics on highly
articulated and humanoid robots. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6959–
6966, Vancouver, BC, September 2017.

[Sumers 20] Theodore R Sumers, Mark K Ho & Thomas L Griffiths. Show or
tell? demonstration is more robust to changes in shared perception
than explanation. arXiv preprint arXiv:2012.09035, 2020.

[Sutton 99] Richard S Sutton, David McAllester, Satinder Singh & Yishay Man-
sour. Policy gradient methods for reinforcement learning with func-
tion approximation. Advances in neural information processing sys-
tems, vol. 12, 1999.

[Sutton 18] Richard S Sutton & Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[Szegedy 15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke &
Andrew Rabinovich. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[Tang 17] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Ope-
nAI Xi Chen, Yan Duan, John Schulman, Filip DeTurck & Pieter
Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. Advances in neural information processing
systems, vol. 30, 2017.

[Taylor 14] Frederick W Taylor. Scientific management: reply from Mr. FW
Taylor. The Sociological Review, vol. 7, no. 3, pages 266–269, 1914.

[Taylor 07] Matthew E Taylor, Peter Stone & Yaxin Liu. Transfer Learning via
Inter-Task Mappings for Temporal Difference Learning. Journal of
Machine Learning Research (JMLR), vol. 8, no. 9, 2007.

[Todorov 12] Emanuel Todorov, Tom Erez & Yuval Tassa. Mujoco: A physics en-
gine for model-based control. In 2012 IEEE/RSJ international con-
ference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

131

[Tolstikhin 17] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly & Bern-
hard Schoelkopf. Wasserstein auto-encoders. arXiv preprint
arXiv:1711.01558, 2017.

[Trabucco 22] Brandon Trabucco, Mariano Phielipp & Glen Berseth. Anymorph:
Learning transferable polices by inferring agent morphology. pages
21677–21691, 2022.

[Tsounis 20] Vassilios Tsounis, Mitja Alge & Joonho Lee. DeepGait: Planning and
Control of Quadrupedal Gaits using Deep Reinforcement Learning.
IEEE Robotics and Automation Letters, vol. 5, 2020.

[Vaswani 17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser & Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems
(NIPS), vol. 30, 2017.

[Vincent 10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio,
Pierre-Antoine Manzagol & Léon Bottou. Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local
denoising criterion. Journal of machine learning research, vol. 11,
no. 12, 2010.

[Vogel 16] David Vogel & Audrey Dussutour. Direct transfer of learned be-
haviour via cell fusion in non-neural organisms. Proceedings of
the Royal Society B: Biological Sciences, vol. 283, no. 1845, page
20162382, 2016.

[Walsh 09] Thomas J Walsh, Ali Nouri, Lihong Li & Michael L Littman.
Learning and planning in environments with delayed feedback. Au-
tonomous Agents and Multi-Agent Systems, vol. 18, pages 83–105,
2009.

[Wan 20] Michael Wan, Tanmay Gangwani & Jian Peng. Mutual Informa-
tion Based Knowledge Transfer Under State-Action Dimension Mis-
match. Conference on Uncertainty in Artificial Intelligence (UAI),
2020.

[Wang 18] Tingwu Wang, Renjie Liao, Jimmy Ba & Sanja Fidler. Nervenet:
Learning structured policy with graph neural networks. In Interna-
tional conference on learning representations (ICLR), 2018.

[Weng 19] Lilian Weng. Domain Randomization for Sim2Real Transfer. lilian-
weng.github.io, 2019.

[Wulfmeier 17] Markus Wulfmeier, Ingmar Posner & Pieter Abbeel. Mutual Align-
ment Transfer Learning. In Sergey Levine, Vincent Vanhoucke &
Ken Goldberg, editeurs, Proceedings of the 1st Annual Conference
on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pages 281–290. PMLR, 13–15 Nov 2017.

132

[Zhang 21] Qiang Zhang, Tete Xiao, Alexei A Efros, Lerrel Pinto & Xiaolong
Wang. Learning Cross-Domain Correspondence for Control with Dy-
namics Cycle-Consistency. In International Conference on Learning
Representations (ICLR), 2021.

[Zhou 17] Chong Zhou & Randy C Paffenroth. Anomaly detection with robust
deep autoencoders. In Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pages
665–674, 2017.

[Zhu 20] Zhuangdi Zhu, Kaixiang Lin & Jiayu Zhou. Transfer Learn-
ing in Deep Reinforcement Learning: A Survey. CoRR,
vol. abs/2009.07888, 2020.

[Zhuang 20] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun
Zhu, Hengshu Zhu, Hui Xiong & Qing He. A comprehensive survey
on transfer learning. Proceedings of the IEEE, vol. 109, no. 1, pages
43–76, 2020.

[Ziebart 10] Brian D Ziebart. Modeling purposeful adaptive behavior with the
principle of maximum causal entropy. Carnegie Mellon University,
2010.

[Zong 18] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian
Lumezanu, Daeki Cho & Haifeng Chen. Deep autoencoding gaussian
mixture model for unsupervised anomaly detection. In International
conference on learning representations (ICLR), 2018.

133

	Introduction
	Initial discussion
	Thesis context
	Challenges
	Material and scientific background

	Contributions
	Learning a robot-agnostic feature space
	Dealing with multiple delay for sim2real transfer
	Leveraging event-based camera for low-latency tracking
	Diver gesture recognition

	Manuscript Layout
	Introduction to Machine Learning
	State-of-the-art and problem statement
	Transferring skills by aligning representations
	Dealing with delay for simulation to reality transfers

	Scientific publications
	International
	National

	Preliminaries: Machine Learning
	Introduction
	Machine Learning
	Neural Networks and Deep Learning
	Artificial Neurons
	Multi Layer Perceptrons
	Activation Functions
	Dealing with overfitting

	Supervised Learning
	(Deep) Reinforcement Learning
	Motivations
	Markov Decision Process
	Solving MDPs with Reinforcement Learning
	Reinforcement Learning Concepts
	Proximal Policy Optimization
	Current challenges in Reinforcement Learning

	Representation Learning
	Auto-encoders
	Variational Auto-encoders

	Conclusion

	Transfer Learning in Reinforcement Learning
	Motivations
	Transfer Learning
	Definitions
	Computer Vision
	Natural Language Processing
	Simulation to real world
	Reinforcement Learning

	Problem statement
	Formalization
	A naive attempt

	Foundational Works
	Invariant Feature Space
	Modular Network Policies
	Universal Notice Network

	Conclusion

	Latent Space Universal Notice Network
	Motivations
	Towards Zero-Shot Cross-Agent Transfer Learning via Aligned Latent-Space Task-Solving
	Preliminaries
	Modules Training

	Experimental setup
	Considered robots
	Considered tasks
	Modules Training

	Results
	Zero-shot transfers
	UNN fine tuning
	Agent's training
	Over-fitting

	Relation to prior works
	Learning a robot-agnostic policy
	Learning a correspondence mapping
	Using a common feature space

	Conclusion

	Delay Aware Universal Notice Network
	Motivations
	DA-UNN
	CDMP
	Solving a CDMDP
	Delay Aware UNN

	Experimental setup
	System Architecture and Robots
	Task description
	Delay Aware UNN creation

	Results
	Training
	Transfer
	Discussion and perspectives

	Relation to prior works
	Model-based approaches
	State-augmented approaches

	Conclusion

	Dealing with misaligned trajectories
	Trajectory pairing
	Latent trajectories alignment
	Bases training
	Experiments
	Training setup
	Results

	Discussion and Perspectives

