
HAL Id: tel-04595476
https://hal.science/tel-04595476

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Availability modeling and evaluation of web-based
services

Magnos Martinello

To cite this version:
Magnos Martinello. Availability modeling and evaluation of web-based services: A pragmatic ap-
proach. Computer Science [cs]. Institut National Polytechnique (Toulouse), 2005. English. �NNT :
2005INPT043H�. �tel-04595476�

https://hal.science/tel-04595476
https://hal.archives-ouvertes.fr

N
�

d’ordre : 2275 Année 2005

THÈSE

préparée au

Laboratoire d’Anal yse et d’Ar chitecture des Systèmes du CNRS

en vue de l’obtention du

Doctorat de l’Institut National Polytec hnique de Toulouse

Ecole doctorale : Systèmes

Spécialité : Systèmes Informatiques

par

Magnos MARTINELLO

Modélisation et évaluation de la disponibilité de services
mis en œuvre sur le web - Une appr oche pragmatique

Availability modeling and evaluation of web-based services -
A pragmatic appr oach

Souten ue le 4 novembre 2005 devant le jur y :

Président M. Daniel NOYES
Directeur de thèse M. Mohamed KAÂNICHE
Rapporteurs M. Yves DUTUIT

M. András PATARICZA
Examinateurs M. Nicolae FOTA

Mme. Karama KANOUN

Laboratoire d’Analyse et d’Architecture des Systèmes du CNRS
7, avenue du Colonel Roche, 31077 Toulouse Cedex 4

Rapport LAAS N
�

0000

In Memory of my grandmother Leocadia.

ii

Avant-propos

Les travaux présentés dans ce mémoire ont été effectués au Laboratoire d’Analyse
et d’Architecture des Systèmes du CNRS. Je remercie Messieurs Jean-Claude Laprie
et Malik Ghallab, qui ont assuré la direction du LAAS-CNRS depuis mon entrée, de
m’avoir accueilli au sein de ce laboratoire.

Je remercie également Messieurs David Powell et Jean Arlat, Directeurs de
Recherche CNRS, responsables successifs du groupe de recherche Tolérance aux fautes
et Sûreté de Fonctionnement informatique (TSF), de m’avoir permis de réaliser mes
travaux dans ce groupe.

J’exprime ma profonde reconnaissance à Mohamed Kaâniche, Chargé de Recherche
CNRS, pour avoir dirigé mes travaux de thèse, pour ses conseils, sa détermination
impressionnante et notamment une méthodologie remarquable. Je suis également
très reconnaissant à Karama Kanoun, Directeur de Recherche CNRS, pour ses orien-
tations et ses critiques constructives. Je la remercie pour ses remarques pertinentes
et pour avoir su canaliser mon énergie. J’ai tiré de nombreux enseignements de leur
compétence et de leur expérience.

Je remercie Monsieur Daniel Noyes, Professeur à l’École Nationale des Ingénieurs
de Tarbes, pour l’honneur qu’il me fait en présidant mon jury de thèse, ainsi que:

� Monsieur Yves Dutuit, Professeur à l’Université de Bordeaux I

� Monsieur Nicolae Fota, Responsable du Pôle Safety à SOFREAVIA

� Monsieur Mohamed Kaâniche, Chargé de Recherche CNRS

� Madame Karama Kanoun, Directeur de Recherche CNRS

� Monsieur András Pataricza, Professeur à Budapest University of Technology and
Economics

iii

iv

pour l’honneur qu’ils me font en participant à mon jury. Je remercie tout partic-
ulièrement Messieurs Dutuit et Pataricza d’avoir accepté la charge d’être rapporteurs.

Les travaux développés dans cette thèse ont été partiellement effectués dans le
cadre du projet européen DSOS - Dependability Systems of Systems et financés en
partie par la CAPES. J’exprime ma vive reconnaissance à la société brésilienne d’avoir
soutenu mes études à travers la bourse de doctorat fournie par la CAPES.

Je remercie vivement tous les membres du groupe TSF, permanents, doctorants
et stagiaires. C’était un grand plaisir et je dirais un privilège d’échanger des idées,
de discuter, de rigoler, enfin de vivre cette expérience parmi vous. J’associe à ces
remerciements Joëlle, Gina et Jemina pour leur collaboration dans l’organisation de
déplacements et, surtout, les derniers préparatifs de la soutenance.

Les différents services techniques et administratifs du LAAS-CNRS, par leur efficac-
ité et leur disponibilité, m’ont permis de travailler dans d’excellentes conditions. Je les
remercie sincèrement.

Il m’est impossible de ne pas mentionner le front philosophique de libération
du bureau 20. J’ai trouvé de véritables compagnons de route qui ont su maintenir
l’ambiance de travail plutôt décontractée et animée.

Un grand merci à tous mes amis qui ont été toujours là, même virtuellement et
avec qui j’ai partagé des moments formidables. Vous étiez une source de motivation
et grâce à vous je me suis rechargé tout en gardant mon enthousiasme.

Eu quero deixar um agradecimento especial à todos os brasileiros, latinos e agre-
gados com quem eu pude passar vários momentos maravilhosos na França e fora da
França. Eu posso dizer sinceramente que esta lista é enorme, e prefiro resumir dizendo
que tive uma sorte imensa de encontrar pessoas como vocês, porque simplesmente
vocês são fantásticos.

Je remercie ma famille pour leur encouragement permanent, malgré l’océan qui
nous sépare. Apesar de fisicamente estarmos distantes, vocês estiveram presentes em
pensamento e graças à vocês eu cheguei onde cheguei.

Enfin, mon amour, celle qui a tout partagé avec moi pendant ces années d’études.
Robertinha, você é a minha fonte de inspiração e a pessoa mais especial deste mundo.
Eu só posso te dizer do fundo do meu coração: obrigado por me amar.

Acknowledgments

First of all, I would like to express my sincere gratitude to all the people who
made this work together with me, participating intensively along these four years of
adventure. Four years of intensive learning with a mix of excellent experiences and
difficulties, but certainly a wonderful period of my live.

My gratitude to the directors of the LAAS-CNRS, Jean-Claude Laprie and Malik
Ghallab and also to David Powell and Jean Arlat the successive heads on dependable
computing and fault tolerance research group (TSF), for their support allowing me to
work in the best conditions.

A very special thanks to the main responsibles of this adventure. Mohamed
Kaâniche for being an advisor always ready to give all his energy with an inestimable
determination and a remarkable methodology. Karama Kanoun for leading our dis-
cussions with her strategic vision, constant help and guidance in the research. I need
to say that my multiple intrusions in their office were answered with availability and
much attention. Moreover, the remarks and the way both conducted this work were
not only fundamental to this thesis, but also they had a special value for me in the
process of formation.

My sincere thanks to the people of group TSF with whom I had the pleasure of
interacting and collaborating not only on technical aspects but specially personally. I
think the most important lesson learned is how to do scientific research.

Special thanks go to my friends. For me, you are like brothers and sisters and an
incredible source of motivation.

Finally, I thank my family for their love and support during these years of study.
My parents Darci and Silvia two of the most wonderful people in the world. Tiago and
Diego who are fantastic brothers. My wife Robertinha, who is my inspiration and the
most special person in the world. I just thank you from the bottom of my heart for
loving me.

v

vi

Contents

Introduction 1

1 Context and background 7

1.1 Context and motivation . 7

1.2 Dependability concepts . 8

1.3 Dependability evaluation . 9

1.4 Modeling process . 11

1.4.1 Dependability measures . 13

1.4.2 Model construction . 14

1.4.3 Model solution . 16

1.4.4 Model validation . 16

1.5 Dealing with large models . 17

1.6 Related work on web evaluation . 19

1.6.1 Measurements based evaluation 19

1.6.2 Modeling based evaluation . 22

1.7 Conclusion . 23

2 Availability modeling framework 25

2.1 Problem statement . 26

2.2 Dependability framework . 28

2.2.1 User level . 28

2.2.2 Function level . 31

2.2.3 Service Level . 31

2.2.4 Resource level . 32

2.2.5 Availability modeling . 34

vii

viii CONTENTS

2.3 Travel Agency (TA) description . 36

2.3.1 Function and user levels . 37

2.3.2 Service and function levels . 40

2.3.3 Resource level . 45

2.4 TA availability modeling . 46

2.4.1 Service level availability . 46

2.4.1.1 External services . 46

2.4.1.2 Internal services . 47

2.4.2 Function level availability . 51

2.4.3 User level availability . 53

2.5 Evaluation results . 53

2.5.1 Web service availability results 54

2.5.2 User level availability results 56

2.6 Conclusion . 57

3 Web service availability: impact of recovery strategies and traffic models 61

3.1 Introduction . 62

3.2 Fault tolerance strategies in web clusters 63

3.2.1 Non Client Transparent (NCT) recovery strategy 63

3.2.2 Client Transparent (CT) recovery strategy 64

3.3 Modeling assumptions . 65

3.4 Cluster Modeling . 67

3.4.1 Availability model . 67

3.4.2 Performance model . 68

3.4.2.1 Poisson Process Traffic 68

3.4.2.2 Markov Modulated Poisson Process Traffic 69

3.4.3 Composite Availability - Performance model 70

3.4.3.1 Loss probability due to buffer overflow ���� 71

3.4.3.2 Loss probability due to server node failure ����� . . 72

3.4.3.3 Loss probability during the node failure detection time
����� . 72

3.4.3.4 Summary . 74

3.5 Evaluation Results . 74

3.5.1 Sensitivity to MTTF . 77

CONTENTS ix

3.5.2 Sensitivity to MTTD . 78

3.5.3 Sensitivity to service rate . 78

3.5.4 Impact of traffic model . 80

3.5.4.1 Sensitivity to traffic burstiness 82

3.5.4.2 Load effects on �� 84

3.6 Conclusion . 85

4 Service unavailability due to long response time 87

4.1 Availability measure definition . 88

4.2 Single server queueing systems . 90

4.2.1 Modeling unavailability due to long response time 90

4.2.1.1 Conditional response time distribution 90

4.2.1.2 Service availability modeling 91

4.2.2 Sensitivity analysis . 92

4.2.2.1 Variation of response time 92

4.2.2.2 Effects of � and � on �� 94

4.2.2.3 Finite buffer effects on �� 95

4.2.2.4 Approximation for �� 95

4.3 Multi-server queueing systems . 97

4.3.1 Modeling unavailability due to long response time 97

4.3.1.1 Conditional response time distribution 97

4.3.1.2 Service availability modeling 98

4.3.2 Sensitivity analysis . 100

4.3.2.1 Variation of response time distribution 100

4.3.2.2 Load effects on �� 101

4.3.2.3 Impact of aggregated service rate on �� 102

4.3.2.4 Impact of the number of servers 	 on �� 103

4.4 Conclusion . 103

Conclusion 105

Appendix I 109

Appendix II 119

Bibliography 127

x CONTENTS

List of Figures

1 Interdependence of chapters . 3

1.1 A simplified view of the modeling process and its interactions with
measurement based evaluation . 12

2.1 Three key players of a web based system 26

2.2 Hierarchical availability modeling framework 29

2.3 User’s operational profile . 30

2.4 An example of Interaction diagram associated to a function 32

2.5 Example of configurations for a Web server 34

2.6 TA high-level structure . 36

2.7 User operational profile graph . 38

2.8 Interaction diagram of the Browse function 43

2.9 Interaction diagram of the Search function 44

2.10 Interaction diagram of the Book function 44

2.11 Interaction diagram of the Pay function 44

2.12 Basic architecture . 45

2.13 Redundant architecture . 46

2.14 Perfect coverage model . 49

2.15 Imperfect coverage model . 50

2.16 Web service unavailability with perfect coverage 55

2.17 Web service unavailability with imperfect coverage 55

2.18 User perceived unavailability with ���
��� 58

3.1 Basic web cluster architecture . 66

3.2 Availability model of the web cluster 68

xi

xii LIST OF FIGURES

3.3 A web cluster with � servers available and load balancing 69

3.4 Markov Modulated Poisson Process modeling the request arrival process 70

3.5 Impact of MTTF on �� . 77

3.6 Impact of failure detection duration on �� for both recovery strategies 79

3.7 Impact of service rate on �� . 80

3.8 MMPP traffic models representing the traffic distribution along the day 81

3.9 Effects of the traffic burstiness on �� for both recovery strategies . . . 83

3.10 Effects of service load � on �� . 84

4.1 � ����� � �� variation for single server queueing system 93

4.2 �� for an M/M/1 queue system model as a function of � 94

4.3 �� for an M/M/1 queue system model as a function of � 95

4.4 The effect of finite buffer size � on �� 96

4.5 �� as a function of � using equation (4.8) and equation (4.11) . . . 97

4.6 � ������ � �� variation for multi-server queuing systems 101

List of Tables

2.1 Examples of functions provided by e-Business web sites 31

2.2 TA user scenarios with associated probabilities �� 39

2.3 Profile of user class A . 40

2.4 Profile of user class B . 41

2.5 User scenario probabilities (in %) . 41

2.6 Scenario categories for user classes A and B 41

2.7 Mapping between functions and services 42

2.8 External service availability . 47

2.9 Application and database service availability 47

2.10 Web service availability . 52

2.11 Function level availabilities . 53

2.12 Numerical values of the model parameters 56

2.13 User availabilities for classes A and B 56

3.1 Closed-form equations for NCT recovery strategy 75

3.2 Closed-form equations for CT recovery strategy 76

3.3 Numerical values of the model parameters 76

3.4 The MMPP models and traffic burstiness 82

4.1 Closed-form equations for single server queueing systems 92

4.2 Effects on �� as � increases for � � ��� 94

4.3 Closed-form equations for multi-servers queueing systems 99

4.4 Configurations for an aggregated service rate of 	 � �	� requests/sec. 100

4.5 �� for an aggregated service rate of 	 � �	� requests/sec. 102

4.6 �� for an aggregated service rate of 	 � 	� requests/sec. 102

4.7 �� in days:hours:minutes per year for � � ���. 103

xiii

xiv LIST OF TABLES

Introduction

Deal with the faults of others as
gently as with your own.

Chinese proverb

OVER the past years, the Internet has become an huge infrastructure used daily
by millions of people in the world. The world wide web (www or web) is
a publishing medium used to disseminate information quickly through this

infrastructure. The web has had a rapid growth in size and usage, with an extensive
development of web sites delivering a large variety of personal, commercial and edu-
cational material. Virtual stores on the web allow to buy books, cds, computers, and
many other products and services. New web applications such as e-commerce, digital
libraries, video on-demand and distance learning make the issue of dependability
evaluation increasingly important, in particular with respect to the service perceived
by web users.

Businesses and individuals are increasingly depending on web-based services for
any sort of operations. Web-based services 1 connect departments within organiza-
tions, multiple companies and the population in general. In addition, the web is often
used for critical applications such as online banking, stock trading, booking systems
requiring high availability and performance of the service. In those applications, a
temporary service unavailability may have unacceptable consequences in terms of
financial losses.

A period of service unavailability may cost millions to the site depending on the
duration and on the importance of the period 2. It may be very difficult to access a
major newspaper or TV site after some important news due to site overload. Those
periods are usually most important to the web service provider because unplanned

1In this thesis, web services refer to the services delivered by a web application. Such services do not
refer to the standards and protocols proposed by W3C and OASIS (both responsible for the architecture and
standardization of web services).

2According to [Patterson et al. 2002] well-managed servers today achieve an availability of 99.9% to
99%, or equivalently between 8 to 80 hours of downtime per year. Each hour can be costly e.g. $200,000
per hour for Amazon.

1

unavailability is more expensive than planned unavailability [Brewer 2001]. For
instance, ebay web site was unavailable for a period of 22 hours on June 1999, leading
to a lost revenue of approximatively 5 billion dollars.

Dependability analysis and evaluation methods are useful to understand, analyze,
design and operate web-based applications and infrastructures. Quantitative measures
need to be evaluated in order to estimate the quality of service and the reliance that
can be placed on the provided service. This evaluation may help web site designers
to identify the weak parts of the architecture which can be used for improving the
provided service. Dependability evaluation consists in estimating quantitative mea-
sures allowing to analyze how hardware, software or human related failures affect the
service dependability. It can be carried out by dependability modeling with the goal
of analyzing the various design alternatives in order to choose the final solution that
better satisfies the requirements.

Evaluation can be carried out using two complementary approaches: i) measure-
ment and ii) modeling. Measurements provide information for characterizing the
current and past behavior of already existing systems. Recently, much research effort
has been devoted to the analysis of service availability using measurements based on
monitoring of operational web sites. On the other hand, it is fundamental to anticipate
future behavior about the infrastructure supporting the service. Modeling is useful
to guide the development of a web application during its design phase by providing
quantitative measures characterizing its dependability. In the context of web-based
services, modeling has been mainly used for performance evaluation purposes. How-
ever, less attention has been devoted to the dependability modeling and evaluation of
web-based services and applications, specially from the user perceived perspective.

The user perceived availability of web-based services is affected by a variety of
factors (e.g., user behaviors and workload characteristics, fault tolerance and recovery
strategies, etc.). Due to the complexity of the web-based services and the difficulty to
combine various types of information, a systematic and pragmatic modeling approach
is needed to support the construction and processing of dependability models. The
contributions presented in this thesis are aimed at fulfilling these objectives, introduc-
ing a pragmatic approach for analyzing the availability of such services from the user
point of view.

The traditional notion of availability is extended in order to include some of the
main causes of service unavailability relying on a performability modeling approach.
Our modeling approach is based on a combination of Markov reward models and
queuing theory, in which we investigate the potential existing closed-form equations.
In fact, analysis from pure performance viewpoint tends to be optimistic because it ig-
nores the failure/repair behavior of the system. On the other hand, pure dependability
analysis that does not include performance levels of service delivery tends to be too
conservative. Therefore, a performability based approach is well suited to capture the
various degraded states, measuring not only whether the service is up or down but also
operational degraded states. The causes of service unavailability considered explicitly
in our modeling based approach fall into the following categories: i) hardware and

2

software failures affecting the servers; and ii) performance-related failures including:
overload, loss of requests, and long response time.

������ ���	�
�

The core of this thesis deals with web service availability modeling and evaluation
and is structured in four chapters. Figure 1 presents the interdependence of chapters.

 Chapter 4
 Service unavailability
 due to long
 response times

 Chapter 3
 Web service availability:
 impact of recovery strategies
 and traffic models

Introduction

 Chapter 2
 Availability modeling framework

 Appendix II
 Proofs and
 implementation

 Appendix I
 Proofs and
 implementation

 Conclusion

 Chapter 1
 Context and background

Figure 1: Interdependence of chapters

3

Chapter 1 states the motivation and the context of the work. It briefly presents
the theory and techniques for dependability modeling providing a background for our
investigation. We provide a discussion on dependability modeling starting by the main
concepts of dependability. A brief overview of dependability evaluation is presented
with some existing methods useful to build and to solve models. Some approaches in
the probabilistic evaluation domain are reported. Also, the related works are reviewed
presenting prior studies and contributions on web availability evaluation including
measurements and modeling approaches.

The general problem addressed in this thesis is introduced in Chapter 2. This
chapter presents the proposed framework using a web-based travel agency as example,
illustrating the main concepts and the feasibility of the framework. The framework is
based on the decomposition of the web based application following a hierarchical
description. The hierarchical description is structured into four levels of abstraction.
The highest level describes the dependability of the web application as perceived by
the users. Intermediate levels describe the dependability of functions and services
provided to the users. The lowest level describes the dependability of the component
systems on which functions and services are implemented. Sensitivity analyses are
presented to show the impact of users operational profile, the fault coverage and the
travel agency architecture on user perceived unavailability.

Chapter 3 provides a modeling based approach of web service availability sup-
ported by web cluster architectures. We are particularly interested in fault-tolerant
web architectures. Our interest is justified by the fact that web clusters architectures
are leading architectures for building popular web sites. Web designers require to find
an adequate sizing of these architectures to ensure high availability and performance
for the delivered services. Moreover, it is crucial to study the impact of recovery
strategies supported by these architectures on web service availability.

Thus, we address especially recovery strategies issues and traffic burstiness effects
on web service availability. Web cluster architectures are studied taking into account
the number of nodes, recovery strategies after a node failure and the reliability of
the nodes. Various causes of request loss are considered explicitly in the web service
availability measure: losses due i) to buffer overflow or ii) to node failures, or iii)
during recovery time. Closed-form equations for request loss probability are derived
for both recovery strategies. Two simple traffic models (Markov Modulated Poisson
Process (MMPP) and Poisson) are used to analyze the impact of traffic burstiness on
web service availability.

From the user perspective, the service is perceived as degraded or even unavailable
if the response time is too long compared to what the users are expecting. Certainly,
the long response time has an impact on the overall service availability. To our
knowledge, however, there has not been a quantitative evaluation of the long response
time effects on service availability especially from the web user perspective. Chapter 4
introduces a flexible analytic modeling approach for computing service unavailability
due to long response times. The proposed approach relies on Markov reward models
and queuing theory. We introduce a mathematical abstraction that is general enough

4

���� �� ����	�

to characterize the unavailability behavior due to long response times. The computa-
tion of the service unavailability measure is based on the evaluation of the response
time distribution. Closed-form equations are derived for conditional response-time
distribution and for the service unavailability due to long response time, considering
single and multi-server queueing systems.

The developed models are implemented using tools such as gnu-octave and maple.
Since we specifically focus on small models aiming to obtain closed-form equations as
much as possible, these tools are enough for evaluating the obtained equations and
for supporting the sensitivity analyses. Appendix I and II show the obtained equations
proofs as well as the models implementation of the chapters 3 and 4.

�

���� �� ����	�

�

Chapter 1

Context and background

All models are wrong. Some
models are useful.

Albert Einstein

THIS chapter presents the motivation and the context of our work. We provide
a discussion on dependability evaluation starting by the main concepts of de-
pendability. A brief overview of dependability evaluation is presented through

some existing methods useful to build and to solve models. Various approaches
used in probabilistic evaluation domain are non-exhaustively reported, illustrating the
considerable advances that have extended the capabilities of analytic models.

We introduce the modeling process indicating its phases. The phases are described
presenting some of the main problems and methods used in each phase. After that,
two major problems related to models construction and processing are discussed:
largeness and stiffness. We report some approaches useful to build large models.
Finally, we review the related studies that form the basis for our investigation on web
availability evaluation including measurements and modeling approaches.

��� ������� 	�
 ����	����

The web is an evolving system incorporating new components and services at a very
fast rate. A large number of new applications such as e-commerce, digital libraries,
video on-demand, distance learning have been migrated to the web. Many web site
projects are built in three or four months because they need to beat competitors and
quickly establish a web presence. This requirement of becoming visible online often

7

����	 ��
���	�� ��� ��
������

comes without a careful design and testing, leading to some problems on dependabil-
ity and performance.

Recently, many high-tech companies providing service on the web have experi-
enced operational failures. Financial web services experienced intermittent outages
as the volume of visitors has increased. A report presented in [Meehan 2000] showed
that online brokerage companies were concerned with system outages and with the
inability to accommodate growing numbers of online investors. During those outages,
users and investors could not access real-time quotes. Such operational problems
have resulted, in many cases, in degraded performance, unsatisfied users and heavy
financial losses.

Quantitative methods are needed to understand, analyze, design and operate such
large infrastructure. Quantitative measures need to be evaluated in order to estimate
the quality of service and the reliance that can be placed on the provided service.
This evaluation may help system designers to identify the weak parts of the system
that should be improved to support an acceptable dependability level for the provided
service. Dependability evaluation consists in estimating quantitative measures allow-
ing to analyze how hardware, software or human related failures affect the system
dependability. It can be carried out by dependability modeling with the goal of
analyzing the various design alternatives in order to choose the final solution that
better satisfies the requirements.

The rest of this chapter is structured as follows. Section 1.2 presents the main
concepts of dependability. Section 1.3 outlines the main approaches that can be used
for dependability evaluation. Section 1.4 reports some formalisms and tools used
in the analytic modeling process. Section 1.5 describes some of the main problems
related to large models and the existing techniques to deal with large models. Section
1.6 presents the related work on the evaluation of web-based services. Finally, section
1.7 summarizes the chapter.

��� �����
	������ ��������

Dependability is defined as the trustworthiness of a computer system such
that reliance can justifiably be placed on the service it delivers [Laprie 1995,
Laprie et al. 1996, Avizienis et al. 2004]. It is a global concept which includes var-
ious notions that can be grouped into three classes: threats, means and attributes.
Dependability goal is to specify, conceive and investigate systems in which a fault is
natural, predictable and tolerable.

The threats to dependability are: faults, errors and failures; they are undesired
- but not in principle unexpected - circumstances causing or resulting from un-
dependability.

The means for dependability are: fault prevention, fault tolerance, fault removal and
fault forecasting or prediction; these are the methods and techniques that enable one

�

���� �	�	��������� 	���������

a) to provide the ability to deliver a service on which reliance can be placed, and b) to
reach confidence in this ability.

The attributes of dependability are: availability, reliability, safety, confidentiality,
integrity, maintainability and security.

� Reliability: continuity of correct service;

� Availability: readiness for correct service;

� Safety: absence of catastrophic consequences on the user(s) and the environ-
ment;

� Confidentiality: absence of unauthorized disclosure of information;

� Integrity: absence of improper system alterations;

� Maintainability: ability to undergo modifications and repairs;

Security is a composition of the attributes: confidentiality, integrity and availability
requiring the concurrent existence of a) availability for authorized actions only, b)
confidentiality, and c) integrity with ’improper’ meaning ’unauthorized’.

In this study, we concentrate our attention on the fault forecasting domain taking
into account only accidental faults. Fault forecasting is conducted by performing
an evaluation of the system behavior with respect to fault occurrence or activation.
Evaluation aims to estimate the presence, the creation and the consequences of faults
or errors on dependability.

��� �����
	������ �	��	����

Fault forecasting is performed using evaluations of the behavior of a system relative
to the occurrence of faults and their activation. By adopting a structural view of a
system, evaluation consists in reviewing and analyzing the failures of its components
and their consequences on the system’s dependability. Evaluation can be conducted in
two ways [Laprie et al. 1996]:

� Ordinal evaluation: aims to identify, list and rank failures, or the methods and
techniques implemented to avoid them;

� Probabilistic evaluation: aims to evaluate in terms of probabilities the degree of
satisfaction of certain attributes of dependability;

The probabilistic evaluation is basically carried out using two complementary ap-
proaches: i) measurement based evaluation and ii) modeling based evaluation.

In the area of measurement, it is possible to distinguish two techniques:

�

����	 ��
���	�� ��� ��
������

� Fault injection: consists in injecting faults in a target system which is usually
not operational, aiming to speed up its behavior in the presence of faults
[Arlat et al. 1993]. This technique is based on controlled experiments which
are subjected to a given workload;

� Operational observation: consists in collecting data characterizing the behavior
of a target system during its operational execution. The estimation of the de-
pendability measures is based on the statistical processing of failure and recovery
events extracted from the data. Such analysis can be carried out based on
the error logs maintained by the operating system [Simache & Kaâniche 2002,
Simache 2004];

Measurements provide the most accurate information on already existing systems,
although sometimes it is difficult to ensure by measurements that a system meets
the dependability requirements. For example, in the case of highly reliable systems
waiting for the system to fail enough times to obtain statistically significant samples
would take years. Nevertheless, measurements data can be used for model validation,
for instance to calibrate the input of the model parameters. In the case of a system that
does not exist yet, the parameters could be estimated from measurements on similar
systems. Consequently, the better is to combine both measurement and modeling as
much as possible.

Modeling is useful to guide the development of the target system during the design
phase by providing quantitative measures characterizing its dependability. Various
design alternatives can be analyzed in order to choose the final solution that better
satisfies the requirements. In particular, models can enable the designers i) to under-
stand the impact of various design parameters from the dependability point of view,
ii) to identify potential bottlenecks, iii) to aid in upgrade studies. These reasons make
the modeling attractive in the probabilistic evaluation.

We can distinguish essentially two main modeling techniques: simulation and
analytical modeling. Discrete-event simulation can be applied to almost all prob-
lems of interest, but the main drawback is that it can take a long time to run,
mainly for large and realistic systems with high accuracy. In particular, it is not
trivial to simulate with high confidence scenarios mainly in the presence of rare
events [Heidelberger 1995, Heidelberger et al. 1992], even if rare events can be
speeded up in a controlled manner using for example importance sampling techniques
[Nicola et al. 1990].

A designer faces many issues that should be considered at the same time when
choosing an adequate method. Simplicity, accuracy, computational cost and availabil-
ity of information about the system under study are some factors that can be used to
determine the well-suited method. Analytic-based approach favors simplicity allowing
to cover essential aspects of the target system. Indeed, analytical models can be a cost-
effective alternative to provide relatively quick answers to ”what-if” questions giving
more insights for the system being studied.

��

���� ���	���� ��
	��

Clearly, analytical models often use simplifying assumptions in order to make them
tractable. However, considerable advances have extended the capabilities of analytic
models. Our work explores how analytic-based models can be used for dependability
evaluation of web-based services.

��� ��
����� �������

In the modeling process, it is possible to identify the major phases as well as the
interdependencies among the phases. A modeling process can be structured basically
into four phases as shown in the right side of Figure 1.1: choice of measures, model
construction, model solution and model validation.

� The choice of measures consists in determining the measures of predominant
importance reflecting the evaluation objective according to system characteris-
tics and application context. The application context determines the type of
information that should be represented. Also, there are certain requirements
that are directly related to the choice of measures. System requirements can be
defined as the desired qualities explicitly or implicitly specified that need to be
taken into account.

� The second step consists in selecting the most adapted modeling technique al-
lowing the evaluation of the desirable measures and the building of an adequate
model. This step is referred to as model construction.

� Once a suitable model has been developed, we need to solve the model. Model
solution corresponds to the computation of the model in order to evaluate the
measures, e.g. in terms of probabilities.

� Model validation is the task of checking model assumptions and its correctness.
It is executed in an iterative process involving experts trying to reach consensus
into the validation of the model assumptions and results.

Whenever possible, the computed measures should be compared against operational
measures obtained from measurement based evaluation executed in a real environment
as indicated in Figure 1.1. The measurement results are used not only for model
validation but also for providing numerical values for the model parameters.

��

����	 ��
���	�� ��� ��
������

 Model
 construction

Target
System

Model SolutionMeasurements

Operational
 measures

Computed
 measures

 Model
Validation

Compare

Modeling based
 evaluation

 Choice of
 measures

 Measurement based
 evaluation

 Real
 environment

 Modeling
 environment

Figure 1.1: A simplified view of the modeling process and its interactions with mea-
surement based evaluation

��

���� ���	���� ��
	��

���� ����
����	��� ��������

The life of a system is perceived by its user(s) as an alternation between two states
of the delivered service relative to the accomplishment of the system function:

� Correct service, where the delivered service accomplishes the system function;

� Incorrect service, where the delivered service does not accomplish the system
function;

A service failure is an event that occurs when the delivered service deviates from
correct service. A service failure is thus a transition from a state of correct service to a
state of incorrect service. In contrast, the transition from incorrect to a correct service
is a restoration. The period of delivery of incorrect service is an outage. Quantifying
the alternation of correct-incorrect service enables some measures of dependability to
be defined [Avizienis et al. 2004]:

� Reliability: a measure of the continuous delivery of correct service or, equiva-
lently the time to failure;

� Availability: a measure of the delivery of correct service with respect to the
alternation of correct and incorrect service. In other words, the system alternates
through periods in which it is operational - the up periods - and periods in which
it is down - the down periods;

� Maintainability: a measure of the time to restoration since the last failure, or
equivalently, the continuous delivery of an incorrect service;

However, a system might have various modes of service delivery. These modes can
be distinguished, ranging from full capacity to complete interruption going through
different states of degradation. The modes can be classified as correct or incorrect
according to the service requirement of the applications. From the dependability
evaluation point of view, it is possible to consider two classes of systems:

� Degradable systems for which there are several modes of service delivery;

� Non-degradable systems that have only one mode of service delivery;

Fault-tolerant systems supporting recovery strategies with service restoration are
examples of degradable systems. Such systems are usually capable of providing
multi modes of service delivery achieving acceptable levels of performance (multi-
performing systems). Dependability evaluation of those systems can be carried out
considering different classes of service degradation.

It is important to notice that modeling any system with either a pure performance
model or a pure dependability model can lead to incomplete or even misleading re-
sults. Analysis from pure performance viewpoint tends to be optimistic since it ignores

��

����	 ��
���	�� ��� ��
������

the failure/repair behavior of the system. On the other hand, pure dependability
analysis taking into account system component failures tends to be too conservative
if it does not consider the performance levels related to different modes of service
delivery.

The combination of performance related measures and dependability measures
is usually called performability [Meyer 1980, Meyer 1982], which is well suited to
evaluate the impact of service degradation on system dependability. It allows to
consider the performance of a given system based on its different modes of service
delivery. Performability measures characterize the ability of fault-tolerant systems
to perform certain tasks in the presence of failures, taking into account component
failures and performance degradation.

In the following sections, we discuss in more details some of the main problems
and methods used in model construction, solution and validation phases.

���� ����	 ��
��������

Model construction is usually based on analytical or graphical description of the
system behavior. Either information about a real computer system is used to build the
model, or experiences gained in earlier modeling studies are implicitly used. Certainly,
this process is rather complicated and it needs both modeling and system expertise.

Analytical modeling has proved to be an attractive technique. A model is an
abstraction of a system that includes sufficient details to facilitate the understanding
of the system behavior. Analytical models can be classified into state space models (e.g.
Markov chains and extensions) and non-state space models (e.g. fault trees, reliability
block diagrams and reliability graphs).

Non-state space models are commonly used to study system dependability
[Vesely et al. 1981, Trivedi 2002, Dutuit & Rauzy 2000, Dutuit & Rauzy 1998]. They
are concise, easy to understand, and have efficient solution methods. However,
features such as non-independent behavior of components, imperfect coverage, and
combination with performance can not be captured easily by these models. In the per-
formance modeling, examples of non-state space models are precedence graphs (see
the book [Roche & Schabes 1997] for a formal definition) and product form queueing
networks [Jackson 1963]. A precedence graph is a directed and acyclic graph that
can be used to model concurrency for the case of unlimited resources. On the other
hand, contention for resources can be represented by a class of queueing networks
known as product form queueing networks, for which there are efficient solution
methods [Buzen 1973, Baskett et al. 1975, Reiser & Lavenberg 1980] allowing to de-
rive steady state performance measures. However, they cannot model concurrency,
synchronization, or server failures, since these violate the product form assumptions
[Popstojanova & Trivedi 2000].

State space models enable us to overcome the limitations of the non-state space
models by modeling complicated interactions among the components taking into

��

���� ���	���� ��
	��

account the stochastic dependencies [Rabah & Kanoun 2003, Fota et al. 1999]. Also,
they allow evaluation of different measures of interest. This evaluation can provide
useful tradeoffs. Markov chains are the state space models most commonly used
for modeling purposes. They provide great flexibility for modeling dependability,
performance, and combined dependability and performance measures.

Markov chains can also have rewards assigned to states or to transitions between
states of the model. Reward structures refine the possibilities of evaluation. Markov
reward models have been used in Markov decision theory to assign cost and reward
structures to states [Howard 1971a]. Meyer [Meyer 1980] adopted Markov reward
models to provide a framework for an integrated approach to allow combined per-
formance and dependability evaluation. By extension, it is equally well-suited to
the evaluation of systems with several modes of service delivery, notably through
the computation of performability type measures. In practice, modeling tools have
been developed to deal with Markov reward models. For instance, TANGRAM-II
[Carmo et al. 1998] supports performability-oriented analysis using object-oriented
language [Berson et al. 1991].

Petri nets and their extensions (e.g. stochastic Petri nets, reward Petri
nets) represent another formalism extensively used for model construction
[Florin & Natkin 1985]. They provide a higher-level model specification from which
a Markov chain is generated. When model specification becomes too complex
(i.e., models become huge to handle manually), it is necessary to use a mod-
eling tool. In the case of Petri nets and their extensions, there are a num-
ber of tools suitable for modeling and evaluation. Among these tools are the
following: SURF2 [C.Béounes et al. 1993], SPNP [Ciardo et al. 1989], ULTRASAN
[Couvillion et al. 1991] and DEEM [Bondavalli et al. 2000].

In addition to Petri nets, recent research studies have focused on the generation
of dependability models from high level specification formalisms and languages such
as UML [Bondavalli et al. 2001a, Pataricza 2002, Majzik & Huszerl 2002], ALTARICA
[Signoret et al. 1998] and AADL [Rugina et al. 2005, Rugina 2005]. The objective is
to integrate dependability modeling into the industrial development processes. It is
achieved by i) the enrichment of the functional specification and design models with
dependability related informations and assumptions and ii) the definition of trans-
formation rules allowing to generate dependability evaluation models (fault trees,
GSPNs, Markov chains) from the enriched model.

In this dissertation, we rely on Markov chains and Markov reward models as an ab-
straction model representing web-based services. Nevertheless, combined approaches
using state space and non-state space based models are used for taking advantage of
the different methods (e.g., the mixed reliability block diagrams with Markov chains
structured in a multi-level hierarchical way).

��

����	 ��
���	�� ��� ��
������

���� ����	 ��	����

The algorithms for computation the state probabilities can be divided into those
applicable for computing the steady-state probabilities and those applicable for com-
puting the time-dependent state probabilities. The analyses presented in all chapters
of this dissertation assume that the systems being studied are in operational equilib-
rium or at steady-state [Kleinrock 1975]. We compute the steady-state probabilities of
the underlying model. The goal is to evaluate measures of interest, such as availability,
reliability or performability.

Most techniques commonly used for model solution at steady-state fall into the
following categories: direct or iterative numerical methods.

While direct methods yield exact results, iterative methods are generally more
efficient, both in time and space. Disadvantages of iterative methods are that for
some of these methods no guarantee of convergence can be given in general and
the determination of suitable error bounds for termination is not always easy. Since
iterative methods are considerably more efficient in solving Markov chains, they are
widely used for larger models. For smaller models with less than a few thousand
states, direct methods are reliable and accurate. Although closed-form results are
highly desirable, they can be obtained for only a class of models. A comprehensive
source on algorithms for steady-state solution is discussed in [Bolch et al. 1998].

There are many direct methods for solving the model at steady-state. Among
the methods most applied are the well known Gaussian elimination and Grassmann
algorithm or GHT algorithm[Grassmann et al. 1985]. In the case of iterative methods,
among the most used are: SOR, Jacobi, Gauss-Seidel and Power methods. We do not
discuss these issues because they go beyond the scope of this work. In fact, our focus
is on smaller models with a few hundred states for which direct methods are reliable
and accurate. We restrict ourselves to explore special structures of Markov chains
investigating the potential existing closed-form equations.

��� ����	 ��	������

Model validation is the task of checking model correctness. Some properties of the
model can be checked by answering the following questions:

� Is the model logically correct, complete and detailed?

� Are the assumptions justified?

� Are the features represented in the model significant for the application context?

Model validation can be split into two subproblems [Laprie 1983]:

� Syntactic validation: consists in checking the model properties in order to verify
if the model is syntactically correct;

��

���� �	����� ���� ���	 ���	��

� Semantic validation: consists in checking that the model represents the behavior
of the system under consideration;

The syntactic validation can be carried out before and after model processing. For
instance, the evaluated measures must satisfy general properties, independently of
the model such as: reliability is a non-increasing function of time that asymptotically
tends to 0. This verification allows to validate the syntax after the model processing.

The semantic validation aims to check the representation of a system behavior with
respect to the events acting on it. Usually, for implementing a semantic validation, it is
required to perform a sensitivity study 1. This study depends on the particular system
under evaluation. However, it is possible to distinguish two classes:

� Sensitivity on the model parameters: values and consistency of the rates;

� Sensitivity on the model structure: events that should be taken into account;

These sensitivity studies may lead to model simplification, e.g., if large variations
on the model parameters do not imply in a significant impact on the evaluated
measures. If a real environment exists as in the left side of Figure 1.1, the errors
can be found either in the measurement process or in the modeling environment. A
model can also be considered valid if the measures calculated by the model match
the measurements of the real system within a certain acceptable margin of error
[Menascé & Almeida 2000] .

The validation results can be used for modification of the model or for improving
our confidence on its validity. Certainly, many interactions are required for this
important task. Note that a valid model is one that includes the most significant
effects in relation to the system requirements [Bolch et al. 1998].

��� ��	���� ���� �	��� ��
���

One of the main problems when building models for complex systems is the well-
known state explosion problem. In fact, the number of states in a given model repre-
senting a complex system can quickly become very large. Many techniques have been
suggested to deal with large models. Techniques addressing this problem fall into the
following categories: largeness avoidance and largeness tolerance [Trivedi et al. 1994].

Largeness avoidance technique consists in separating the original large prob-
lem into smaller problems and to combine submodel results into an overall so-
lution. The results of the sub-models are integrated into a single model that is
small enough to be processed. Among these techniques, there are e.g. state
lumping [Nicola 1990], state truncation [Muppala et al. 1992], model composition

1Also called sensitivity analysis.

��

����	 ��
���	�� ��� ��
������

[Bobbio & Trivedi 1986], behavioural decomposition [Balbo et al. 1988], hybrid hier-
archical [Balakrishnan & Trivedi 1995], etc .

Largeness tolerance techniques deal with large models mastering the generation of
the global system model through the use of concise specification methods and software
tools that automatically generate the underlying Markov chain. The specification
consists in defining a set of rules allowing an easy construction of the Markov chain.
These rules may be either i) specifically defined for model construction (see e.g.,
[Goyal et al. 1986], [Berson et al. 1991]) or ii) formal rules based on Generalized
Stochastic Petri Nets (GSPNs) and their extensions [Ciardo et al. 1989]. Several
specification and construction methods based on model composition techniques have
been developed. In particular for GSPNs based models, we can report the follow-
ing modeling approaches [Betous-Almeida & Kanoun 2004, Kanoun & Borrel 2000,
Bondavalli et al. 1999].

It is worth to note that both techniques are complementary and can be com-
bined. Largeness avoidance can be used to complement efficiently largeness tol-
erance techniques using states truncation (i.e., states with very small probabilities)
as in [Muppala et al. 1992]. Multilevel modeling is another interesting approach to
combine both techniques. In this case, the target system is described at different
abstraction levels with a respective model associated to each level. The flow of
information needed among the submodels is organized in a hierarchical model. In
[Kaâniche et al. 2003b] largeness avoidance is applied to the levels where indepen-
dence or weak dependency assumptions hold, while largeness tolerance is used for
constructing sub-models that exhibit strong dependencies. Other examples of hierar-
chical modeling approaches are presented in [Bondavalli et al. 2001b].

Another difficulty when processing large Markov models is the stiffness problem. It
is due to the different orders of magnitude (sometimes ��� times) between the rates of
performance-related events and the rates of the rare, failure-related events. Stiffness
leads to difficulty in the solution of the model and numerical instability. Research
in the transient solution of stiff Markov models follows two main lines: stiffness-
tolerance and stiffness-avoidance. The first one is aimed at employing solution meth-
ods that remain stable for stiff models (see the survey [Bobbio & Trivedi 1986]). In
the second approach, stiffness is eliminated from a model solving a set of non-stiff
submodels using aggregation and disaggregation techniques [Bolch et al. 1998].

Largeness and stiffness problems can be avoided by using hierarchical model
composition [Popstojanova & Trivedi 2000]. Occurrence rates of failure/repair events
are several orders of magnitude smaller than the request arrival/service rates. Con-
sequently, we can assume that the system reaches a (quasi-) steady state with re-
spect to performance related events between successive occurrences of failure/repair
events. That is, the performance measures would reach a stationary condition be-
tween changes in the system structure. This leads to a natural hierarchy of mod-
els. The structure state model is the higher level dependability model representing
the failure/repair processes. For each state in the dependability model, there is a
reward model, which is a performance model having a stationary structural state.

��

���� 	���	� ��� �� �	� 	���������

Several authors have used this concept for combined performance and dependabil-
ity analysis [Haverkort et al. 2001, de Souza e Silva & Gail 1996, Trivedi et al. 1992,
Smith et al. 1988].

This thesis explores the concept of composite performance and dependability
approach [Meyer 1980, Meyer 1982] for modeling the dependability of web based
services including hardware and software failures as well as performance degradation
related failures. The performance model takes into account the request arrival and
service processes relying on queueing theory. It allows to evaluate performance related
measures conditioned on the states determined from the dependability model. The
dependability model is used to evaluate the steady state probability associated to the
states that result from the occurrence of failures and recoveries. The assumption of
quasi steady state is acceptable in our context, since the failure/recovery rates are
much lower than the request arrival/service rates.

��� ��	��
 ���! �� ��� �	��	����

The focus of our research is on the availability evaluation of web-based services.
In this section, we review the studies that are basis for our investigation. We be-
gin introducing some studies related to web measurements based evaluation. Web
measurements provide important insights for the development of analytic models.
Further, modeling approaches are briefly reported presenting prior studies with recent
theoretical developments related to the web modeling based evaluation.

����� ���������
�� ����� ���	�����

From a performance viewpoint, a significant body of work has focused on various
aspects related to web performance measurements. An interesting aspect is the web
traffic characterization which has received much attention. It has been evaluated in
order to capture its most relevant statistical properties. Some of the properties consid-
ered in the literature deal with file size distributions [Arlitt & Williamson 1997], self-
similarity [Crovella & Bestavros 1997] and reference locality [Almeida et al. 1996].

[Arlitt & Williamson 1997] identified some properties called invariants, for in-
stance file sizes follow the Pareto distribution. [Almeida et al. 1996] showed that the
popularity of documents served by web sites dedicated to information dissemination
follows Zipf’s law. [Crovella & Bestavros 1997] pointed to the self-similar nature of
the web traffic. Intuitively, a self-similar process looks bursty across several time
scales. In contrast, there are other works suggesting that the aggregate web traffic
tends to smooth out as Poisson traffic [Iyengar et al. 1999, Morris & Lin 2000].

Using measurement from traces of real web traffic, [Morris & Lin 2000] presented
evidences that traffic streams do not exhibit correlation, that is, the aggregation of
sources leads the web traffic to smooth out as Poisson traffic 2. Two explanations are

2These results are useful mainly within the context of a busy hour.

��

����	 ��
���	�� ��� ��
������

given. First, there appears to be little correlation among users in their consumption
of bandwidth. Second, individual web users consume differing amounts of bandwidth
mostly by pausing longer between transfers.

Modulated Markov Poisson Process (MMPP) has been shown to be well suited
to capture some characteristics of the input traffic. Based on traffic traces,
[Muscariello et al. 2004] showed how MMPP approximates the long-range depen-
dency (LRD) characteristics. Also, MMPP based models have been often used for
modeling the arrival rate. In [Chen et al. 2001], a multi-stage MMPP is used to
describe the input traffic, capturing the arrival rate of requests varying according to
the period of the day (daily cycles). In [Heyman & Lucantoni 2003], an MMPP is
developed to study the multiple IP traffic streams.

From a dependability viewpoint, many commercial providers today advertise four-
9’s or five-9’s for server availability (i.e., an availability of 99.99 or 99.999, respectively
). In fact, high available servers are not sufficient for providing a highly available
service since many types of failures can prevent users to access services. Practical
experiences [Merzbacher & Patterson 2002] have shown that advertised numbers re-
flect performance under optimal operating conditions, rather than real-world environ-
ment. For example, [Paxson 1997] has shown that "significant routing pathologies"
prevent certain pairs of hosts from communicating about 1.5% to 3.3% of the time.
[Kalyanakrishnan et al. 1999] have suggested that average availability of a typical
web service is two-9’s. Therefore, in contrast with the 5 minutes per year of un-
availability for a five-9’s system, a typical two-9’s web service will be unavailable for
nearly 15 minutes per day from end users perspective.

A failure affecting the web service might be due to problems with the remote host
(e.g., the site is overloaded), problems with the underlying network (e.g., a proper
route to the site does not exist) or problems with the user host (e.g., a failure in the
user’s subnet preventing the access to the Internet). Recent studies has been devoted
to measure the web service availability and reliability in order to characterize the
failure behavior of web based systems. For instance, [Oppenheimer et al. 2003] have
studied the causes of failures and the potential effectiveness of various techniques
for preventing service failure using data from three large-scale web services. They
suggest that the operator error is the largest cause of failures in two of the three
services. Configuration errors are the largest category of operator errors and failures
in front-end software are significant. They point out the fact that improving the
maintenance tools used by service operators would decrease the time to diagnose
and repair problems.

[Chandra et al. 2001] proposed a failure classification based on location in which
we can distinguish three types of failures: i) "near-user" ii) "in-middle" and iii) "near-
host". Near-user failures represent failures that disconnect a client machine or a client
subnet from the rest of the Internet. Analogously, "near-host" failures make the web
host unreachable from the outside world. "In-middle" failures usually refer to the
Internet backbone connection malfunctions that separate the user and the specific
service host, but the user may still visit a significant fraction of the remaining nodes
on the Internet. Most notably, these failures represent an interruption of connectivity

��

���� 	���	� ��� �� �	� 	���������

between a single pair of nodes that does not affect any other pairs’ to communicate.
In reality failures in the middle of the Internet infrastructure will typically affect more
than one pair of nodes [Labovitz et al. 1999].

[Labovitz et al. 1999] have explored route availability by studying routing table
update logs. They found that only 25% to 35% of routes had an availability higher
than 99.99% and that 10% of routes were available less than 95% of the time. They
show that 60% of failures are repaired in thirty minutes or less and that the remaining
failures exhibit a heavy-tailed distribution. There results are qualitatively consis-
tent with the end-to-end analysis presented in [Dahlin et al. 2003] which provides
additional evidence that connectivity failures may significantly reduce WAN service
availability.

[Dahlin et al. 2003] have analyzed connectivity traces in order to develop a model
suitable for evaluating techniques dealing with unavailability. They focus on WAN
connectivity model that includes average unavailability, the distribution of unavail-
ability durations and the location of network failures. They provided a synthetic
unavailability model in which average unavailability is 1.25% with a request-average
unavailability varying from 0.4% to 7.4% and unavailability duration distributions
appear heavy-tailed, indicating that long failures account for a significant fraction of
failure durations.

Finally, there are web sites today such as Netcraft (www.netcraft.com) that provide
statistics based on remote measurements showing the quality of service supported by
a wide variety of web sites in terms of availability and performance related issues. In
practice, Netcraft is unable to detect the ’back end’ computers that are hosting a web
service. In fact, Netcraft measure consists in determining how long the responding
computer hosting a web site has been running, i.e., uptime based on server availability
("time since last reboot"). However, the availability of the responding computer
does not necessarily reflect the service availability delivered by the web site, given
the fact that the service is usually hosted on several computers that are locally or
geographically distributed.

Netcraft measurements are collected at intervals of fifteen minutes from four sep-
arate points around the Internet. The averages of the samples are calculated using
an arithmetic mean over a time window period (default 90 days). The statistics are
provided ordered by e.g. outage periods presenting a ranking of the fifty sites per
month. We made a preliminary study using such statistics in which we found that
54% of the sites had an outage period in the order of 25 seconds per month or lower
on average. Approximatively 18% of the sites had on average an outage of 4 minutes
per month and 21% around 43 minutes per month. Finally, 6% of the sites had an
outage in the order of 7 hours per month and 1% had an outage around 70 hours per
month. The average unavailability was about 1 hour and 17 minutes per month. The
data was obtained from the Netcraft’s site in the period of June to December 2003,
using the ranking reports available in the site.

��

����	 ��
���	�� ��� ��
������

����� ����	�
� ����� ���	�����

While measurement based studies are essential for characterizing the current and
past behavior of an existing system, it is also important to anticipate future behavior
with different architecture configurations or under different workloads. In the context
of web-based services, modeling has been mainly used for performance evaluation
to support design decisions (capacity planning, scalability analysis, comparison of
load balancing strategies, etc.). The proposed performance models are usually based
on queuing theory and queuing networks, although recent theoretical developments
have provided elegant theories such as network calculus [LeBoudec 1998], effective
bandwidth [Elwalid & Mitra 1993] which have been used for analyzing the quality
of service supported by the Internet [Firoiu et al. 2002]. The quantitative measures
evaluated from the models include response time, throughput, queue length, blocking
probability, etc.

Queuing network (QN) models are basically a network of interconnected queues
that represent a computer system. A queue in a QN stands for a resource (e.g. CPU,
disk) and the queue itself stands for requests waiting to use the resource. A QN
model may be classified as open QN or closed QN depending on whether the number
of requests in the QN is unbounded or fixed, respectively. Open QNs allow requests
to arrive, go through the various resources, and leave the system. Closed QNs are
characterized by having a fixed number of requests in the QN.

Various queuing models have been investigated for the performance evaluation
of web servers, proxy servers, etc. The main differences between the proposed
models concern the assumptions characterizing the arrival and service time distri-
butions (e.g., M/M/1, M/M/c/k, M/G/1 etc.) as well as the level of detail of the
models. In particular, two types of web server models can be distinguished: i)
system level models where the web server is viewed as a black box or as a resource
with a queue [Slothouber 1996, Andersson et al. 2003, Cao et al. 2003], and ii) com-
ponent level models which take into account the different resources of the system
(CPUs, memory, disks, threads, etc.) and the way they are used by distinct requests
[Dilley et al. 2001, Menascé et al. 2001].

Recent efforts focused on the performance modeling of multi-tier web based
applications and e-commerce sites [Urgaonkar et al. 2005, Reeser & Hariharan 2000,
Menascé et al. 2001]. Such studies are aimed at taking into account various interac-
tions among the different tiers involved in the processing of user requests (e.g. Web,
Java, and database servers), considering various execution scenarios describing the
users behaviors. The proposed models are generally based on a network of queues,
where the queues represent different tiers of the applications.

As regards dependability, to our knowledge, only a few studies have been devoted
to the dependability modeling and evaluation of web-based services and applications.

[Tang et al. 2004] presented an availability evaluation approach for a fault tolerant
application server combining measurement and modeling analysis. The study deals
with fault tolerant Sun Java System Application server, used for deploying web services

��

����
��
������

in Java 2 Enterprise Edition 7 three-tier architectures. Under conservative assumptions
used for building the model and estimating model parameters from experimental
tests3, they showed that the average availability of the target system was evaluated
to be at the 99.999% level in the sun server environment. This availability level does
not necessarily reflect the quality of service perceived by the users, given that the
behavior of users was not taken into account in the model.

[Xie et al. 2003] proposed a modeling approach for analyzing user-perceived avail-
ability based on Markov regenerative process models. Two different scenarios are
considered: single-user/single-host and single-user/multiple-hosts. This study ana-
lyzes the dependency of the user perceived unavailability on parameters including
the service platform failure rate, repair rate and user retry rate. The results suggest
that the user perceived unavailability depends not only on the characteristics of the
underlying infrastructure but also on the user’s behavior.

In [Nagaraja et al. 2003], a two-phased methodology combining fault injection
and analytical modeling is proposed to evaluate the performability of Internet services
using cluster based architectures. A performability metric combining the average
throughput and availability is defined for comparing alternative design configurations.
The methodology is illustrated through the analysis of 4 versions of the PRESS clus-
ter based web server [Carrera & Bianchini 2005, Carrera & Bianchini 2001] under 4
categories of faults (Network, disk, Node and Application), quantifying the effects of
different design decisions on performance and availability. The models proposed in
this study are based on the assumption that faults in different components are not
correlated. The effects of multiple faults are combined into an average performance
and availability metric based on the estimation of the average fraction of time spent
in the degraded mode caused by each fault. An application of the methodology to
analyze various state maintenance strategies in an online bookstore and an auction
multi-tier Internet service is presented in [Gama et al. 2004, Nagaraja et al. 2005].

��" ����������

Dependability is a key issue in web-based services and applications. The web is
a large evolving infrastructure incorporating new components and services at a very
fast rate. Recently many high-tech companies providing service on the web have ex-
perienced operational failures. Such operational problems have resulted in degraded
performance, unsatisfied users and heavy financial losses. Quantitative methods are
needed to understand, analyze, design and operate such a large infrastructure. Quan-
titative measures need to be evaluated in order to estimate the quality of service and
the reliance that can be placed on the provided service.

This chapter introduced the concepts of dependability as well as the required back-
ground including some approaches and techniques for web dependability evaluation.
Our work relies on modeling based methodologies in order to provide a quantitative

3Using fault injections.

��

����	 ��
���	�� ��� ��
������

approach for evaluating the availability of web-based services. The models presented
along the chapters are based on probability fundamentals, queueing theory and per-
formability modeling approach.

An overview of the modeling process indicating its phases was briefly discussed.
The phases are described presenting some of the main problems and methods related
to each phase. We reviewed the related studies that have driven most of the work
presented along the chapters. First, we focused on web evaluation based on mea-
surements results. After this discussion, some investigations based on web modeling
evaluation were presented.

All the studies outlined above are recent, illustrating the fact that this topic is not
fully explored in the literature. While the proposed modeling approaches are useful to
support dependability tradeoffs at the design stage, they are not sufficient to model the
user perceived dependability of Internet based applications and services, taking into
account the multiple interactions between the users and the various resources involved
in the processing of user requests. Indeed, the user perceived dependability of web-
based applications is affected by a variety of factors (e.g., user behaviors and workload
characteristics, hardware and software distributed execution platforms, quality of
service provided by the interconnection networks, fault tolerance and maintenance
strategies, etc.). Also, both hardware and software failures as well as performance
related failures have to be taken into account in the analysis. Due to the complexity
of the target system and the difficulty to combine various types of information, a sys-
tematic and pragmatic modeling approach is needed to support the construction and
processing of dependability models that can be used by the designers to further under-
stand the dependability capabilities and limitations of their systems, under different
workload scenarios and architecture configurations. The contributions presented in
this dissertation are aimed at fulfilling these objectives. Our research builds on the
multi-level modeling proposed in [Kaâniche et al. 2001, Kaâniche et al. 2003b] and
presented in detail in Chapter 2.

In the following chapters, we are particularly interested in the service availability
and user perceived availability evaluation and modeling. The directive lines of this
work are structured as follows. In chapter 2, an availability modeling framework is
presented using a web-based travel agency as example illustrating the main concepts
of the framework. Chapter 3 provides a modeling based approach of web service
availability supported by web clusters architectures. We address especially recovery
strategies and traffic burstiness effects on web service availability. Finally, chapter 4
introduces a flexible analytic modeling approach for computing service unavailability
due to long response times.

��

Chapter 2

Availability modeling
framework

Prediction is fine as long as it is
not about the future.

Mark Twain

THE objective of this chapter is twofold i) define a multi-level modeling framework
for the dependability evaluation of web based applications, ii) illustrate the main
concepts and the feasibility of the proposed framework using a web-based travel

agency as an example. This framework allows us to evaluate the user perceived
availability. Modeling is carried out considering four levels, namely: user, functions,
service and resource. The first level describes how the users invoke the application and
the three remaining levels detail how user requests are handled by the application at
distinct abstraction levels.

The user perceived availability measure takes into account the combined impact of
performance related failures and traditional software and hardware failures. For illus-
tration purposes, sensitivity analysis results are presented to show how user perceived
availability performs considering various situations, e.g. the users operational profile,
the travel agency architecture and the fault coverage.

25

����	 �� ������������ ���	���� ���	���

��� #������ ��	������

Web based services are implemented on largely distributed infrastructures, with
multiple interconnected layers of software and hardware components, involving var-
ious types of servers such as web, application, and database. A typical web based
service usually involves three key players shown in Figure 2.1: 1) the users, 2) the
web application provider, and 3) external suppliers.

� The users interact through a web browser with the web application providing
the service;

� The web application provider implements a set of e-business functions that are
invoked by the users. These functions are based on a set of services and resources
that are under the direct control of the application provider or are provided by
external suppliers;

� The external suppliers contribute to the implementation of some of the functions
and services provided by the web application;

Internet

Users

Web application
 provider

User N

User 2

User 1 Supplier 1

Supplier 2

Supplier M

 External
suppliers

Figure 2.1: Three key players of a web based system

Every request initiated by a user is processed in several steps. It starts in the users
browsers, flows through the Internet being executed in the web application provider
(or shortly provider), and it can also be processed by the application using the external
suppliers. For example, a provider can offer a book selling electronic service by out-
sourcing shipping, payment and billing to other external service providers (suppliers).
At the provider level, the user requests and the interactions with the external suppliers
are supported by a set of complex distributed applications and middleware such as
web servers, application servers and database servers. Similar infrastructures are used
at the external supplier sites.

Users usually have different behaviors and they may invoke the various func-
tions provided in the application site in different ways with variable frequencies.

��

���� ����	� ����	�	��

Considering a travel agency, the classes of users (i.e. managers, operators, sellers,
etc.) have distinct objectives requiring a variety of different features of the system.
Indeed, even in the same class of users, the behavior may be completely dissimilar.
For example, there are clients who buy very often while others may do extensive
searching and browsing without buying anything. Definitely the types of functions
invoked and the resources involved to support such functions are not necessarily the
same. As a consequence, the user perceived availability is affected not only by the user
operational profile (i.e. workload) but also by the state of the components supporting
the functions.

Generally, the service provider architecture is under direct control of web designers.
Therefore, a detailed analysis of this architecture can be carried out to support design
architectural decisions. However, only limited information is usually available about
the infrastructure supporting the external suppliers. For the external suppliers, remote
measurements should be performed in order to characterize the dependability of such
services. These measures can then be incorporated into the models describing the
impact of component failures and repairs on web service availability and also on user
perceived availability.

The discussion above shows that several issues should be taken into account for
modeling the availability of web based applications as perceived by users. From the
designers point of view, it is critical to understand how the different components of
the distributed infrastructure supporting the provided service might affect the user
perceived availability. Hierarchical modeling has proven to be well suited to support
such analysis by describing progressively the target system at different abstraction
levels, with a sub-model associated to each level. The availability measure can be
computed based on the hierarchical composition of the sub-models. The multi-level
modeling framework proposed in [Kaâniche et al. 2001, Kaâniche et al. 2003b] for
analyzing the user perceived availability of web based applications has been developed
following such hierarchical composition approach. The modeling is carried out in two
steps:

� hierarchical description of the system and its interactions with the users, from
the functional and structural viewpoints;

� hierarchical construction and solution of the availability models based on the
information obtained from the first step;

The rest of this chapter is structured as follows. Section 2.2 defines the main
concepts of the modeling framework. Sections 2.3 and 2.4 present the travel agency
example and its hierarchical description and modeling. Section 2.5 presents some
sensitivity evaluation results either at web service availability level or at user perceived
availability level. Finally, section 2.6 summarizes the chapter.

��

����	 �� ������������ ���	���� ���	���

��� �����
	������ $�	�����!

The information needed for dependability modeling and analysis can be structured
into four levels as shown in Figure 2.2, where the dependability measure considered
is availability.

� The user level describes the user operational profile in terms of the types of
functions invoked and their probability of activation.

� The function level describes the set of functions available to the user level.

� The service level describes the main services needed to implement each function
and the interactions among them. Two categories of services are distinguished:
those delivered by the web application provider (internal services) and those
provided by external suppliers (external services).

� The resource level describes the architecture on which the services identified at
the service level are implemented. At this level, the architecture, fault tolerance
and maintenance strategies implemented at the provider site are detailed. How-
ever, each service provided by an external supplier is represented by a single
resource that is considered as a black box.

The function and service levels describe according to a top-down approach, how
the application software implementing the e-business logic is structured and decom-
posed, whereas the resource level describes the corresponding execution environment
(software, hardware components, etc).

The hierarchical decomposition proposed above builds on some concepts defined in
[Menascé & Almeida 2000] to describe e-business applications and analyze their per-
formance. However, since our framework is oriented to dependability modeling and
evaluation from the user perspective, we have refined these concepts and extended
them to fulfill the objectives of our study.

In the following subsections, we present each of these levels describing how de-
pendability modeling is carried out based on the hierarchical description, where the
dependability measure considered is the availability.

����� ���� 	���	

This level describes the user operational profile. It models the execution scenarios
performed by the user when visiting the web site(s). Each scenario is defined by
the set of functions invoked and the probability of activation of each function in the
corresponding scenario. As illustrated in Figure 2.3, the user operational profile can be
described as a graph with a set of nodes and transitions. A compact description of this
graph is given by the matrix representation. The “Start” and “Exit” nodes correspond
to the beginning and end of an user scenario when visiting the provider site(s). Each

��

���� �	�	��������� ���	���

User level

Start F1 ... Fn Exit
Start ... 0.10 0.5 0.2
 F1 ... 0.40 0.1 0.2
 0.30 0.1 0.2
 Fn ... 0.40 0.3 0.3
 Exit ... 10 0 0

Start F1 ... Fn Exit
Start ... 0.20 0.3 0.1
 F1 ... 0.40 0.1 0.2
 0.20 0.1 0.5
 Fn ... 0.10 0.3 0.3
 Exit ... 10 0 0

User 1 User 2 User 3

Function level

F1 ... FnF2

Si1 ...
 F1
 ...

 Fn

...

Service level
E-Business Provider External suppliers

Si1 Si2 Sim Se1 Se2 Sep

Sim Sep Se1

Resource level
E-Business Provider External suppliers

Ri1 Ri2 Rik Re1 Re2 Rep

Ri1 Rin

 ...

Sin

Si1
 ... Re1 Ren

 ...

Sen

Se1
 ...

Availability modeling
 at the user level

A(user1) A(user2) A(usern)...

Availability modeling
 at the function level

A(F1) A(F2) A(Fn)...

A(Si1) A(Sim) A(Sep)...

A(Ri1) A(Rik) A(Rep)...

Availability modeling
 at the resource level

Availability modeling
 at the service level

System Description Availability modeling

...A(Se1)

... A(Re1)

Figure 2.2: Hierarchical availability modeling framework

��

����	 �� ������������ ���	���� ���	���

Start

F2

F3

F1 F2 F3 F4

ps2 0 ps4

F1

F4

Exit

Start Exit

0 ps1 0

p12 0 p140 0 p1x

p22 p23 00 p21 p2x

p32 p33 p340 0 p3x

0 p43 00 p41 p4x

0 0 00 0 1

F2

F3F1

F4

Exit

p21

p12
p32

p23
p2x

p1x

p14

p41

p43

p34

p3x

p33

p22

Start

ps4

ps2

ps1

p4x

Figure 2.3: User’s operational profile

node �� means that function �� is invoked by the user. A transition from node �� to
node �� means that function �� is executed after execution of ��.

The transitions among the nodes and the associated probabilities ��� describe how
users interact with the web site. This means that a transition from state � to state
is said to occur when the request going to state arrives at the server. The output
transitions from the start node, and the corresponding probabilities ���, specify the
first function executed by the user when entering the web site(s). Finally, parameters
��� specify the probability of leaving the web site after executing function ��. The
probabilities of activation with respect to the user scenarios can be derived using
traditional methods such as flow graph reduction [Howard 1971b].

It is possible to define a class of users consisting of a specific set of ��� .
These probabilities can be obtained by collecting data on the web site (see e.g.,
[Menascé & Almeida 2000]). In addition, it should be noted that other techniques
such as data mining have been used to analyze web logs in which a similar matrix
exists [Zaiane et al. 1998]. The authors discuss the problem of relying on server
side information in the context of data mining on http logs. They conclude that
although server side information is not 100% complete, much useful information can
be discovered from it, e.g. identify population of potential customers for electronic
commerce.

The availability as perceived by the users can be evaluated by considering a partic-
ular scenario or by taking into account all the scenarios from the start node to the exit
node. The availability measure will be affected by the probability of the corresponding
scenario(s) and the availabilities of the functions involved in these scenarios. It is
worth noting that different operational profiles with different probability matrices can
be defined to analyze different classes of users: heavy buyers, occasional buyers, etc.

��

���� �	�	��������� ���	���

����� ��
����
 	���	

This level identifies the set of functions offered to the users at the web site(s). Table
2.1 presents some examples of such functions. Some of these functions (e.g., Search,
Login) may be found in most web sites, whereas others are characteristic of certain
web sites or of specific types of web sites. The identification of all functions offered
by the web site and the classification of these functions according to their criticality
require a thorough analysis of the web specifications and the users expectations in
terms of quality of service. Different levels of degradation on the quality of service
delivered to the users can be defined based on the evaluation of the impact of tem-
porary loss or degradation of a function and its cost (e.g., loss of revenue). Such a
classification should also take into account the impact of the loss or degradation of
several functions.

Category Function Description
Common Login Login to the site

Register Register as a new user
Search Search site database
Select Show one of the results of a search
Browse Follow links within the site

Retail Add Item Add item to shopping cart
Remove Item Remove item from shopping cart
See Shopping Cart Check contents and value of shopping cart
Pay Pay for items in shopping cart

Trading Open Account Open account for trading
Trade Buy/sell/exchange stocks or mutual funds
Create Portfolio Create stock/funds portfolio
Add to Portfolio Add stock/funds to portfolio

Table 2.1: Examples of functions provided by e-Business web sites

����� ������� ���	

This level describes the mapping between the functions and the services required
to implement them. Each function identified at the function level is decomposed and
refined into a set of services implemented by various software entities (i.e., servers).
Examples of servers include Web, Application, Authentication, Name, File, Database
and Communication servers. Generally, the execution of one function may involve
more than one server. Based on the analysis of client-server interactions, we can define

��

����	 �� ������������ ���	���� ���	���

Begin
q23

WS AS DBMS WS

WSEnd

q45

q24 q47

S1

End

End

S3 S5 S6

S2 S4 S7 S8 S9

Figure 2.4: An example of Interaction diagram associated to a function

a matrix specifying the mapping between the functions identified at the function level
and the servers identified at the service level.

Several graphical notations and formalisms (e.g. Unified Modeling Language-UML,
Message Sequence Charts-MSC, etc.) are used not only to describe, for each function,
the dynamic interactions among the servers involved in its accomplishment, but also to
identify all possible execution scenarios of the function. The graphical representation
given in Figure 2.4 is based on the concept of the Interaction Diagram defined in
[Menascé & Almeida 2000]. The interaction starts and ends with the client node
(“Begin” and “End” nodes). Each path between a pair of client nodes identifies the
set of servers involved in the interaction.

Figure 2.4 presents three possible scenarios for the execution of a given function
(
� �
� �
�,
� �
� �
� �
� �
�, and
� �
� �
� �
� �
� �
).
The nodes are numbered for the sake of clarity and each arc between two nodes � and
is labeled with the probability of occurrence of the corresponding transition (denoted
!��).

All paths in the interaction diagram, from a “Begin” to an “End” node, should be
accounted for in the evaluation of the availability of the corresponding function.

���� !������� 	���	

This level describes the mapping between the services defined at the server level
and the resources involved in the achievement of these services. Also, it provides
information on the replication of each service as well as the fault tolerance and
maintenance strategies implemented at the web site(s). A resource is a component
of the system or an element of a component (computer host, software and hardware
components, communication link) that contributes to the implementation of services.
Indeed, one service may be partitioned and replicated among several resources or
clusters of resources and one resource may host many services. At this level, we
distinguish between internal and external services.

As the architecture whose the external services are implemented is not known, we
associate to each of them a single resource. For example, an Internet service provider
can be represented by a single resource providing service connectivity.

��

���� �	�	��������� ���	���

As regards internal services, a detailed analysis of the web site(s) architecture can
be performed. We must define the mapping between the resources and the services,
as well as the interactions among these resources, since the availability of each service
will depend on the availability of the corresponding resources. Several alternative
architectural solutions may be considered for implementing the internal services.
These solutions may be defined based on:

� various organizations of the services on the hardware support (e.g., dedicated
hosts for each server, vs. multiple servers on the same host);

� various fault tolerance strategies (non-redundant servers vs. replicated servers);

� various maintenance strategies adopted by the web (e.g., immediate mainte-
nance vs. delayed maintenance, dedicated vs. shared repair resources).

Alternative architectures may be compared to help the designers in the selection
of the most appropriate solution from the availability point of view. The analysis
of the architectures should lead to the definition of the mapping between the re-
sources and the services implemented on these resources. For each service, different
accomplishment levels can be defined depending on the types of failures affecting
the corresponding resources. In particular, when the service is distributed on several
resources, the service accomplishment levels can be defined according to the number
of resources that are still available to run the service (graceful degradation concept).

Knowledge of the system architecture is required for modeling purposes. Figure 2.5
presents examples of configurations of a Web server: a) a non-redundant configuration
with a single server, b) a redundant configuration with geographically distributed
replicas, and c) a cluster-based configuration with several Web servers interconnected
through a LAN and centralized at a single site with a load balancer directing incoming
requests to one of the servers. Configuration (b) requires the replica states to be kept
mutually consistent to ensure that clients do not get out-of-date information. This is
not easy to achieve on a large-scale system [Ingham et al. 2000]. Alternative solutions
are proposed for instance in [Bowen et al. 2000] to ensure a weak coupling between
functions implemented on geographically distributed servers. The cluster-based con-
figuration is widely used for the implementation of internet-based applications. This
configuration is able to handle heavy traffic loads, however it has a single point of
failure, the load balancer. Therefore, fault tolerant solutions with error detection and
recovery capabilities should be considered for the load balancer. Popular web sites
generally combine the clustering approach with geographically distributed servers in
order to provide high performance and available web service (see for instance, the
architecture deployed by IBM for the Nagano Olympic games [Iyengar et al. 2000]).

Fault tolerance solutions should also be considered to ensure reliable communica-
tion among the Web servers as well as the availability of the data accessed by Web
server processes. Different configurations can be considered for accessing data from
the Web servers [Ingham et al. 2000]. For example, data can be partitioned among
the servers and accessed through a shared bus, or a shared master copy of the data is

��

����	 �� ������������ ���	���� ���	���

Internet Load
Balancer

LAN

Internet

Replica 1

Replica 2

Replica 3
Internet

Web
server

a) nonredundant b) redundant c) cluster-based

Web
server

Web
server

Web
server

Web
server

Web
server

Web
server

Figure 2.5: Example of configurations for a Web server

accessed by all the servers through a distributed file system. Each web server mounts
and processes the same data set from the distributed file system.

����" #���	���	��� ����	�
�

As shown in Figure 2.2, the availability modeling and evaluation step is directly
related to the system hierarchical description. The outputs of a given level are used
in the next immediately upper level to compute the availability measures associated
to this level (denoted by ��"� where " is a user, a function, a service or a resource).
Accordingly, at the service level, the availability of each service is derived from the
availability of the resources involved in its accomplishment. Similarly, at the function
level, the availability of each function is obtained from the availability of the services
implementing it. Finally, at the user level, the availability measures are obtained from
the availability of the functions invoked by the users.

At the service/resource level, one or several availability models are built based
on the knowledge of the infrastructure and the resources implementing the required
services. This level includes also the fault tolerance and recovery mechanisms as well
as the maintenance policies at the service provider site(s). Various techniques can be
used to build and solve these models including non state-based techniques also called
combinatorial techniques (e.g. fault trees, reliability block diagrams), and state-based
techniques (e.g. Markov chains, Generalized Stochastic Petri Nets - GSPNs).

The selection of the right technique depends mainly on the kinds of depen-
dencies among the elements of the underlying level and on the quantitative mea-
sures to be evaluated. Markov chains and GSPNs are well suited for strong de-
pendencies. In particular, there are modeling approaches [Rabah & Kanoun 2003,
Kanoun & Borrel 2000, Fota et al. 1999] that take into account the stochastic de-
pendencies that might exist among the various components of the service/resource
availability model. Examples of models at the service/resource level are given in the
following sections. The outputs of this modeling step are the availability of internal
services denoted ��
���.

The availability model at the function level relies on the knowledge of the avail-
ability of all services involved in function accomplishment and all possible execution

��

���� �	�	��������� ���	���

scenarios associated to each function. The outputs of this level are the availability of
the functions denoted ����� that can be defined as follows:

����� �

��
�
�

#���$������ (2.1)

� N is the number of execution scenarios for function ��;

� #� is the probability of activation of execution scenario ;

� $����� denotes the set of services involved in execution scenario ;

� ��$������ is the availability of the services involved in execution scenario .

This formula is general and can be applied whether the services are independent
or not. When the services are independent, ����� can be expressed as:

����� �
��
�
�

#�

�
�����	��

��
�� (2.2)

��
�� is the availability of a service
� involved in execution scenario .
� could
be an internal or external service.

At the user level, the availability model for a given user class is based on the
execution scenarios activated by the user when visiting the web site. The outputs of
this level are the availability as seen by the various classes of users denoted ��%&'(��.

Similarly the function level, ��%&'(�� can be obtained by the following formula:

��%&'(�� �

�
�
�

)������ (2.3)

� M is the number of user execution scenarios derived from the user operational
profile;

�)� is the probability of activation of scenario ;

� �� is the set of functions involved in scenario ;

� ����� is the availability of the functions involved in scenario .

��

����	 �� ������������ ���	���� ���	���

Once again, if the functions are independent:

��%&'(�� �

�
�
�

)�
�
����

����� (2.4)

����� is the availability of function �� executed in scenario .

The following section illustrates the main concepts of hierarchical framework using
a travel agency application as an example. The objectives are : 1) to show how to
apply the proposed framework based on the decomposition of the target application
according to the four levels and 2) to present typical availability modeling and analysis
results that can be used for supporting design decisions.

��� %�	�� &����� '%&(
����������

The TA is designed to allow the users to plan and book trips over the web. TA
interacts through dedicated interfaces with several flight reservation systems (AF, KLM,
Varig, ...), hotel reservation systems (Sofitel, Holiday Inn, ...), and car rental systems
(Hertz, ...).

The TA application can be seen as composed of two basic components
[Periorellis & Dobson 2001]: the travel agent front end-client side, denoted as TAFE-
CS, and the travel agent front end-server side, denoted as TAFE-SS (Figure 2.6).

Travel Agency

Users TAFE-CS

TAFE-SS

 Abstract
Service Interface

Flight Hotel Car

Trip details

 Flight reservation
component systems

 Hotel booking
component systems

 Car rental
component systems

Figure 2.6: TA high-level structure

The client side handles user’s inputs, performs necessary checks and forwards the
data to the server side component. TAFE-SS is the main component of the TA. It
is designed to respond to a number of calls from the client side concerning e.g.,
availability checking, booking, payment and cancellation of each item of a trip. It
handles all transactions to, and from, the booking systems, composes items into full

��

���� ���	� ��	�
� ��! �	�
������

trips, converts incoming data into a common data structure and finally handles all
exceptions.

Starting from this very high-level description, we will further detail it according
to the various aspects required for the hierarchical description. We will first focus
on the function and user levels together, then the service and function levels before
addressing the resource level.

����� ��
����
 �
� ���� 	���	�

The behavior of the users accessing the TA web site is characterized by the opera-
tional profile example presented in Figure 2.7. This graph is the basis for capturing the
navigational pattern of a group of clients, as viewed from the server side. The nodes
"Start" and "Exit" represent the start and the end of a user visit to the TA web site,
and the other nodes identify the requested functions during their visit. For illustration
purposes, we have considered five functions for the TA example:

� Home: invoked when a user accesses the TA home page.

� Browse: the customer navigates through the links available at the TA site to
view any page of the site. These links include weekly promotions, help pages,
frequent queries, etc.

� Search: the TA checks the availability of trip offers according to the user specifi-
cation. A user request can be composed of a flight, a hotel and a car reservation.
Based on the information provided by the user, the TA converts the user requests
into transactions to hotel, flight and car reservation systems and returning the
results of the search to the user.

� Book: the customer chooses the trip that suits his request confirming his reser-
vation.

� Pay: the customer is ready to pay for the trips booked on the TA site.

The operational profile defines all user execution scenarios (or shortly, user sce-
narios) when visiting the TA web site. Recall that the probabilities of activation with
respect to the user scenarios can be derived using traditional methods such as flow
graph reduction [Howard 1971b].

Table 2.2 shows the user scenarios obtained from Figure 2.7 and the corresponding
probabilities of activation. The notations {Home - Browse}* and {Search-Book}*
mean that these functions are activated more than once in the corresponding sce-
narios, due to the presence of cycles in the graph.

The identification of the most frequently activated scenarios provides useful in-
sights into the most significant scenarios to be considered when evaluating the user
perceived availability. Indeed, the higher the activation probability of a given scenario,

��

����	 �� ������������ ���	���� ���	���

Home

Start

Browse

Book

Pay

SearchExit

p12

p13

p32

p23

p33

p37

p27

p67

p47

p57
p56

p45

p54

p44

p34

p24

Figure 2.7: User operational profile graph

the higher its impact on the availability perceived at the user level. Such measure is
affected by the availability of the functions, services and resources involved in the
underlying scenario.

The scenarios listed in Table 2.2 can be grouped into four categories, denoted as
SC1, SC2, SC3 and SC4 according to the activated functions:

� SC1 gathers all scenarios that lead to the execution of functions "Home" or
"Browse" without invoking the other functions (scenarios 1-3 of Table 2.2).

� SC2 gathers all scenarios that include the invocation of the "Search" function,
without going through the "Book" or "Pay" functions (scenarios 4-6 of Table 2.2).
These scenarios may require several interactions between the TA and the flight,
hotel and car reservation component systems. However, they do not end up with
a booking or payment.

� SC3 gathers all scenarios that include the invocation of the "Book" function (sce-
narios 7-9 of Table 2.2). These scenarios involve several interactions between
the TA and the booking systems.

� SC4 gathers all scenarios that reach the "Pay" function (scenarios 10-12 of Table
2.2). These scenarios end up with a payment.

Let us denote by
�
���,
�
���,
�
��� and
�
�� the activation probability
of SC1, SC2, SC3 and SC4. These probabilities can be obtained from Table 2.2 by
summing the probabilities associated to the corresponding scenarios.

Example of two user classes

Two user profiles (denoted as user class A and user class B) are defined with
different values of transition probabilities ��� . In particular, the class A is characterized

��

���� ���	� ��	�
� ��! �	�
������

User scenario Scenario activation probability (��)

1: Start-Home-Exit ������

2: Start-Browse-Exit ����
����

3: Start-{Home-Browse}*
���������������������

������
�����

�

���������
-Exit

4: Start-Home-Search-Exit ������
����

5: Start-Browse-Search-Exit ������
������������

6: Start-{Home-Browse}*
������������������������

������
�����

��

�����������������
-Search-Exit

7: Start-Home-{Search-Book}*
���������

���������
�����

�

���������
-Exit

8: Start-Browse-{Search-Book}*
���������

���������
�����

�

�����������������
-Exit

9: Start-{Home-Browse}*
����������������������

������
�����

�������
���������
�����

�

����������������������
-{Search-Book}*-Exit

10: Start-Home-{Search-Book}* ����������
���������

-Pay-Exit

11: Start-Browse-{Search-Book}* ����������
�����������������

-Pay-Exit

12: Start-{Home-Browse}*
����������������������������

������
�����

��

����������������������
-{Search-Book}*-Pay-Exit

Table 2.2: TA user scenarios with associated probabilities ��

��

����	 �� ������������ ���	���� ���	���

by a high proportion of users who are mainly seeking for information without a buying
intention, whereas the class B is characterized by a higher proportion of users really
seeking for booking a trip.

Tables 2.3 and 2.4 present the probability transition matrices associated to the class
A and class B, respectively. Table 2.5 lists the user scenarios derived from Figure 2.7
and shows the probabilities of these scenarios (in terms of percentage) associated to
the two user profiles. Table 2.6 shows the probabilities
�
���,
�
���,
�
��� and

�
�� associated with the scenario categories SC1 to SC4, involving the following
functions: Browse, Search, Book and Pay respectively.

We note that for class B, 80% of user transactions lead to the invocation of the
functions Search, Book or Pay. Such scenarios involve not only the TA system but also
the external reservation systems. Therefore, the quality of the service supported by
these reservation systems has a significant impact on the user perceived availability.
The percentage is lower (50%) when considering the class A. It can be seen from Table
2.6 that the user class B exhibits a higher probability of activation for scenarios SC2,
SC3 and SC4, compared to the user class A. The percentage of transactions that end
up with a payment of a trip is around 20% for user class B while it is almost 3 times
lower for user class A.

These two examples of user classes will be used in Section 2.4 to evaluate the user
perceived availability.

Start Home Browse Search Book Pay Exit
Start 0 0.50 0.50 0 0 0 0
Home 0 0 0.30 0.50 0 0 0.20

Browse 0 0.10 0.25 0.25 0 0 0.40
Search 0 0 0 0.25 0.20 0 0.55
Book 0 0 0 0.30 0 0.50 0.20
Pay 0 0 0 0 0 0 1
Exit 0 0 0 0 0 0 1

Table 2.3: Profile of user class A

����� ������� �
� $�
����
 	���	�

The service level identifies the set of servers involved in the execution of each
function and describes their interactions. This analysis requires a deep understanding
of the business logic and the technical solutions implemented in the TA system.

��

���� ���	� ��	�
� ��! �	�
������

Start Home Browse Search Book Pay Exit
Start 0 0.50 0.50 0 0 0 0
Home 0 0 0.30 0.50 0 0 0.20

Browse 0 0.10 0.25 0.55 0 0 0.10
Search 0 0 0 0.55 0.20 0 0.25
Book 0 0 0 0.30 0 0.50 0.20
Pay 0 0 0 0 0 0 1
Exit 0 0 0 0 0 0 1

Table 2.4: Profile of user class B

User scenario Class A Class B
1:Start-Home-Exit 10.0 10.0
2:Start-Browse-Exit 26.7 6.6
3:Start-{Home-Browse}*-Exit 11.3 4.2
4:Start-Home-Search-Exit 18.4 13.9
5:Start-Browse-Search-Exit 12.2 20.4
6:Start-{Home-Browse}*-Search-Exit 7.6 9.7
7:Start-Home-{Search-Book}*-Exit 3.0 4.7
8:Start-Browse-{Search-Book}*-Exit 2.0 6.9
9:Start-{Home-Browse}*-{Search-Book}*-Exit 1.3 3.3
10:Start-Home-{Search-Book}*-Pay-Exit 3.6 6.4
11:Start-Browse-{Search-Book}*-Pay-Exit 2.4 9.4
12:Start-{Home-Browse}*-{Search-Book}*-Pay-Exit 1.5 4.5

Table 2.5: User scenario probabilities (in %)

�
���
�
���
�
���
�
��

Class A 47.9% 38.2% 6.4% 7.5%
Class B 20.8% 44% 14.9% 20.3%

Table 2.6: Scenario categories for user classes A and B

��

����	 �� ������������ ���	���� ���	���

Internal services External services
Web Application Database Flight Hotel Car Payment

Home �

Browse � � �

Search � � � � � �

Book � � � � � �

Pay � � � �

Table 2.7: Mapping between functions and services

For the sake of illustration, Table 2.7 presents a simplified example of mapping
between the functions provided at the TA site, the internal servers and the external
servers managed by external suppliers.

The external suppliers correspond to the flight, hotel, and car reservation systems
that provide information about a potential trip. Also, we assume that the TA provider
uses the services of an external payment system for handling card-based transactions.

The internal services are supported by three types of servers: 1) Web servers
that receive user requests and reply the requested data, 2) Application servers that
implement the main operations needed to process user requests, and Database servers
handling data related operations (for storing and retrieving information about flight,
hotel and car reservation companies, as well as information about users orders).

The "Home" function execution involves only the web server. However, for the
other functions several servers are required. In this case, it is necessary to analyze for
each function the interactions among the servers and all possible execution scenarios
(referred to as function scenarios). In the following, we present the interaction
diagrams representing each function including Browse, Search, Book and Pay.

Browse

Figure 2.8 describes the interactions among the servers involved in the accom-
plishment of the Browse function. The "Begin" and "End" nodes identify the beginning
and the end of a function execution. Each path from the "Begin" node to the "End"
node identifies one possible function scenario. The probability of activation of each
scenario can be evaluated taking into account the probabilities !�� associated to the
transitions of the underlying scenario. Note that the probability of activation of non-
labeled transitions is one.

We can identify three scenarios described as follows:

� � � � � �: The user sends a request to the web server (node 2). The data
requested is available and is returned back to the user (node 3). This marks the
end of this interaction.

��

���� ���	� ��	�
� ��! �	�
������

Begin
q23

WS AS DS WS

WSEnd

q45

q24 q47

1 2

3 5

4

6
End

End

7 9 10
AS

8

Figure 2.8: Interaction diagram of the Browse function

� �� �� � 	� �: The web server accepts the user request and sends it to the
application server (node 4). In this case, the requested data is not available. The
application server processes the request and returns a dynamically generated
page to the web server (node 5). The latter is then forwarded to the user (node
6). The database is not involved in this case.

� � � � � � � � � � � � ��: The application server requires some specific
information that is on the TA database server (node 7). After the database server
has answered the application server, the latter processes the user request (node
8) and sends the results to the web server (node 9). The latter generates an
HTML page incorporating the corresponding outputs (node 10).

Search

The interaction diagram describing the execution of the Search function is decom-
posed into 9 stages (Figure 2.9). The input data provided in the search request issued
by the user (node 1) are first processed by the web server WS (node 2). WS performs
necessary checks, and then breaks down the user request into three individual requests
corresponding to each aspect of the trip. If data is correct and in the right format, it
is forwarded to the application server AS (node 4), otherwise an exception is sent to
the user (node 3). AS uses the request information to formulate a query and asks the
database server (node 5) for the list of booking systems to be contacted. Based on the
answer received, AS sends a query (node 6) to the selected systems (identified by the
Flight, Hotel and Car nodes). The AND operator means that the request is submitted
to the three types of booking systems (nodes 7.a, 7.b, 7.c). The answers returned to
AS are formatted (node 8) and sent to WS (node 9) that forwards them to the user
(node 10).

The number of Flight, Hotel and Car reservation systems is not indicated in this
figure. We assume that the TA always interacts with the same systems. A transaction
is successful when, for each service (Flight, Hotel and Car reservation), at least one
system responds.

Book

An example of interaction diagram of the Book function is given in Figure 2.10. The
trip booking order received from the user through WS is processed by AS. Using the
parameters embedded in the book order, AS interacts with the corresponding flight,
hotel and car booking systems to book the selected trip. The booking references

��

����	 �� ������������ ���	���� ���	���

Begin
q23

WS AS DS AS

End

q24

1 2

3

4 5
Flight

Hotel

Car

AS

AND

WS End

6

7.a

7.b

7.c

8 9 10

Figure 2.9: Interaction diagram of the Search function

returned to the application server are then stored in the database. After that, a
confirmation is sent to the user.

Begin WS AS

1 2
Flight

Hotel

Car

AS

AND

DS End

4.a

4.b

4.c

5 6

AS WS

3 7 8 9

Figure 2.10: Interaction diagram of the Book function

Pay

The interaction diagram for the Pay function is presented in Figure 2.11. When a
payment call is received through the web server, the booking data is first checked by
the application server, then a call is sent to the payment server, for authentication
and verification purposes, and definitely to accomplish the payment. Finally, the
application server updates the information in the database concerning client orders,
before sending a confirmation to the user.

Begin WS AS

1 2

PS AS End

4 5

DS WS

3 6 7 8

Figure 2.11: Interaction diagram of the Pay function

��

���� ���	� ��	�
� ��! �	�
������

����� !������� 	���	

The various services are mapped into the resources involved in their accomplish-
ment. Therefore, we need to consider the real hardware and software organization of
the system. With respect to external services, since the architecture is not known, we
associate to each external service a single resource that is considered as a black box.
For internal services, it is possible to detail the organization of internal resources for
which the architecture is known.

For illustration purposes, we consider two simple architectures presented in figures
2.12 and 2.13. We assume that the external resources are identical for both architec-
tures. They correspond to Flight reservation, Hotel reservation, Car reservation and
Payment. Flight, hotel and car reservation services are provided by respectively *	 ,
*� and *� components each.

The basic architecture (Figure 2.12) consists of allocating a dedicated host to each
server and interconnecting these hosts through a LAN. The LAN is viewed as a single
resource providing communication among the servers.

Internet

Payment
 system

 Flight
reservation
 system

#1
 Flight #2

 Flight #NF

 Hotel
reservation
 system

#1
 Hotel #2

 Hotel #NH

 Car
reservation
 system

#1
 Car #2

 Car #NC

 Database
 server

Application
 server

Disk

 Web
server

LAN

TA provider site

Figure 2.12: Basic architecture

The architecture described in Figure 2.13 employs redundancy in several points
to improve the availability and scalability of the basic architecture. It is based on a
server farm architecture with load balancing, including * web servers, two application
servers and two database servers with two mirrored disks. Servers are connected
through a LAN. Indeed, several LANs are usually used to interconnect these servers,
nevertheless we will assume that all of them are represented as a single LAN. Also, to
simplify the modeling, the load balancers are not explicitly described in this architec-
ture.

In the following section, we will model the availability of both architectures.

��

����	 �� ������������ ���	���� ���	���

Internet

Payment
 system

 Flight
reservation
 system

#1
 Flight #2

 Flight #NF

 Hotel
reservation
 system

#1
 Hotel #2

 Hotel #NH

 Car
reservation
 system

#1
 Car #2

 Car #NC

 Web
server N

LAN

TA provider site

 Web
server 2

 Web
server 1 Application

 server 1

 Application
 server 2

 Database
 server 2

 Database
 server 1 D1

D2

Figure 2.13: Redundant architecture

��� %& 		��	������ ��
�����

TA availability modeling will be carried out according to the hierarchical descrip-
tion of the system (see Figure 2.2), starting at the service level based on the description
of the resource level for which two architectures are considered (Figures 2.12 and
2.13) .

���� ������� 	���	 ����	���	���

In this section, we are interested in the evaluation of external and internal service
availabilities.

������� ����	
�� �	����

Each external system is modeled as a black box that is assumed to fail indepen-
dently of all the others.

Let us consider the following notations: �	 ���, ��� � and �����: Availabilities of
a flight, hotel and car reservation system, (i = 1, ..., *	 ; j = 1, ..., *� ; k = 1,..., *�).

� ��� : Availability of the payment system.

� ����: Availability of the TA connectivity to the Internet.

Using the failure independence assumption and considering that the service is
provided as long as at least one reservation system for each item of a trip (flight,
hotel and car reservation) is available, the availability of the external services can
be derived as in Table 2.8. It is worth mentioning that if the TA connectivity to the
Internet is unavailable, none of these services is provided. Thus, the availability of
the TA connectivity to the Internet will be taken into account by multiplying the user
perceived availability equation by ����.

��

���� �� ������������ ���	����

��� +�,-.� � ��

���
�
�

����	 ���� ��/0.'+� � ��

���
�
�

��� ������

���1(� � ��

���
�
�

��������� ���123'4.� � ���

Table 2.8: External service availability

������� �
��	
�� �	����

The internal services are related to web, application and database services. For
both architectures, the communication between servers is achieved by a local area
network (LAN). Although an LAN can be fault tolerant supporting high availability,
the LAN is assumed to be a single point of failure, i.e., when the LAN is unavailable,
all internal services are unavailable. As a consequence, the LAN availability, denoted
by ���� , is a multiplying factor for all equations in the following sections. ����

can be evaluated using for example the models discussed in [Kanoun & Powell 1991,
Hariri & Mutlu 1991].

Since the first goal of the TA example is to show the applicability of the framework
illustrating the main concepts, simplistic assumptions are stated for application and
database services.

Application and database service availability

Let us denote by ���� and ���� the availabilities of the computer hosts associ-
ated with the application and database servers, respectively. The disk availability is
denoted by ����� . To simplify the presentation, we assume that the computer hosts
and the disks fail independently of each other. The application and database service
availability (denoted ���
� and ���
�) are given in Table 2.9.

Basic architecture Redundant architecture
���
� ���� �� ������� �

�

���
� ���� ����� ��� ������� �
����� �������� �

��

Table 2.9: Application and database service availability

In the following, we focus on the evaluation of web service availability considering
basic and redundant architectures, respectively.

Web service availability

��

����	 �� ������������ ���	���� ���	���

To evaluate the availability of the web service, we distinguish two sources of
failure:

1. hardware and software failures that affect the computer host and lead to web
server failure.

2. performance-related failures that occur when the incoming requests are not
served due to the limited capacity of the web servers.

The web service is assumed to be available when no failures of these types occurs.
The impact of both types of failures on the web service availability can be accounted
for by adopting a composite performance and availability evaluation approach (see
section 1.4.2). The main idea consists of combining the results obtained from two
models: a pure performance model and a pure availability model. The performance
model takes into account the request arrival and service processes and evaluates
performance related measures conditioned on the state of the system as determined
from the availability model. The availability model is used to evaluate the steady state
probability associated to the system states that result from the occurrence of failures
and recoveries.

This approach is based on the assumption that the system reaches a quasi steady
state with respect to the performance-related events, between successive occurrences
of failure-recovery events. This assumption is valid when the failure/recovery rates
are much lower than the request arrival/service rates, which is typically true in our
context.

Basic architecture

The web service relies on a unique computer host. Let us denote by �� the
probability that the web server input buffer (whose size is b) is full upon a request
arrival. The evaluation of �� is derived from the performance model and depends
on the assumptions made about the request arrival process and the request service
process. Let us assume that the request arrivals are modeled by a Poisson process
with rate 5 and the request service times are exponentially distributed with rate .
Then the web server behavior can be modeled by an M/M/1/b queue. In this classical
queueing system, the probability that an arriving request is lost due to buffer overflow
is well-known (see e.g., [Bolch et al. 1998]):

�� �

�
�� ���

������ , if 5 ��
�

�� , if 5 �
(2.5)

where � � �
� is the server load.

The traditional availability model consists of two states: up and down states.
The steady state probability of the up state corresponds to the system steady-state
availability denoted ���� . Thus, the availability of the web service is:

��6
� � ��� ������� (2.6)

��

���� �� ������������ ���	����

Redundant Architecture

The redundant architecture is composed of * identical web servers. We assume
that all component failures are independent and that the web service is provided as
long as at least one of the redundant component systems is available. The performance
model representing this architecture is assumed to be a M/M/c/b queue, where 	 is
the number of operational servers and � is the size of the buffer. For a system with 	
operational servers, the probability that web requests are lost due to buffer overflow,
denoted ���	�, is given by (see, e.g. [Gross & Harris 1985]):

���	� �

�������
������

��

������
�
����
�
�

��

 �
�

��
�
�

��

	���	�
��� , if � � 	

��

�� �
��

�
�

��

 �
��� , if � 7 	

(2.7)

With respect to the availability model, the aim is to evaluate the redundant
architecture behavior resulting from the occurrence of failures/repairs, in order to
calculate the steady state probabilities associated to system states 	 (is the number
of operational servers, as denoted above). Two assumptions are made with regards to
the coverage of web server failures: 1) perfect coverage, and 2) imperfect coverage.

Perfect coverage

In Figure 2.14, it is assumed that each web server runs on a dedicated computer
host. Web server failures occur with rate �. The model assumes shared repair facilities
with repair rate 8 . When a server fails, it is automatically disconnected and the system
is reconfigured (with probability 1) with the web servers that are still operational.

N

τ

N-1 N-2 N-3 1 0

τ τ τ

γNγ (N−1)γ (N−2)γ

Figure 2.14: Perfect coverage model

Let us denote by 9� the steady-state probability of state 	, 	 � �: �: ���: * . In state c,
there are 	 web servers available to process the incoming requests (9� corresponds to
the state in which all web servers are down). The availability of the web service is as
follows:

9� �
�

	�

�
8

�

	�

9�: 	 � � � � �* (2.8)

��

����	 �� ������������ ���	���� ���	���

with

9� �

��
�
�

�

	�

�
8

�

	�
���

(2.9)

The web service availability is:

��6
� � �� �

��
�
�

9����	� � 9�� (2.10)

in which ���	� is computed using equation 2.7.

This equation corresponds to the probability that a web request is not served either
due a) to buffer overflow or b) to the fact that all servers are unavailable.

Imperfect coverage

This model is described in Figure 2.15. From each state 	, two transitions are
considered:

1. After a covered failure (transition with rate 	;�) the system is automatically
reconfigured into an operational state with (� �) web servers, where ; is the
coverage factor.

2. Upon the occurrence of an uncovered failure (transition with rate 	��� ;��) the
system moves to a down state <�, where a manual reconfiguration is required
before moving the system to an operational state (� �). The reconfiguration
times are exponentially distributed with mean �=).

N
τ τ

N-1 N-2 N-3
τ

 γ
1 0

τ

YN
N v γ

β

YN-1

β

YN-2

β

(N-2)v γ
_

N v γ (N-1) v γ (N-2) v γ

_ _
(N-1)v γ

Figure 2.15: Imperfect coverage model

Solving this model at steady-state, we obtain:

9� �
�

	�

�
8

�

	�

9�: 	 � � � � �* (2.11)

9�� �
8��� ;�

)�	� ���

�
8

�

	���
9�: 	 � � � � �* (2.12)

��

���� �� ������������ ���	����

9� �

��
�
�

�

 �
�
8

�
�� �

��
�
�

�
8

�
����

8��� ;�

)� � ���

���
(2.13)

In this example, we assume that states <� correspond to down states. 1 Accordingly,
the availability of the web service is computed as follows:

��6
� � �� �

��
�
�

9����	� �

��
�
�

9�� � 9�� (2.14)

Summary

Table 2.10 recalls all equations of the web service availability for basic and redun-
dant architecture, assuming perfect and imperfect coverage.

���� ��
����
 	���	 ����	���	���

The availability evaluation of each function is based on the availabilities of the ser-
vices involved in its accomplishment. When many scenarios of execution are possible,
the availability of each function relies on the activation probability of each scenario.
Table 2.11 gives the availability for Home, Browse, Search, Book and Pay functions.
��6
�, ���
� and ���
� correspond to A(Web service), A(Application service) and
A(Database service) (Tables 2.9 and 2.10). ��� corresponds to A(Payment service)
as well as A(Flight), A (Hotel) and A(Car) are given in Table 2.8. Parameters !��
involved in the availability of the Browse function are associated to the three execution
scenarios of this function discussed in Section 2.3.2.

Note that all equations include the product ���� ���� , therefore if the TA connec-
tivity to the Internet or the internal communication among the servers is not available,
none of the TA functions can be invoked by the users. Also, the Book function has the
same availability equation as the Search function. This is due to the assumption that
the former uses a subset of the resources used by the latter. Indeed, in the Book
example, this function is achieved only if the Search function has succeeded.

1For illustration purposes, we deliberately consider simple assumptions in this chapter. More realistic
assumptions, leading to more complex analytic models are considered in the following chapters.

��

����	 �� ������������ ���	���� ���	���

Basic architecture

��6
� � ��� ������� �� �

�
�� ���

������ , � �� �
�

�� , � � �

Redundant architecture (perfect coverage)

��6
� � �� �

��
�
�

9����	� � 9�� 9� �
�

	�

�
8

�

	�

9�

���	� �

�������
������

��

������
�

����
�
�

��

 �
�

��
�
�

��

	���	�
��� , if � � 	

��

�� �

��
�
�

��

 �
��� , if � 7 	

9� �

��
�
�

�

	�

�
8

�

	�
���

Redundant architecture (imperfect coverage)

��6
� � �� �
��
�
�

9����	� �
��
�
�

9�� � 9�� 9� �
�

	�

�
8

�

	�

9�

���	� �

�������
������

��

������ �

����
�
�

��

 �
�

��
�
�

��

	���	�
��� , if � � 	

��

�� �

��
�
�

��

 �
��� , if � 7 	

9�� �
8��� ;�

)�	� ���

�
8

�

	���
9�

9� �

��
�
�

�

 �
�
8

�
�� �

��
�
�

�
8

�
����

8��� ;�

)� � ���

���

Table 2.10: Web service availability

��

���� 	��������� 	�����

��/03'� � ����������6
�

��>(0?&'� � ����������6
��!�� ����
��!��!�� � !��!�����
���

��
'1(-� � ��>00�� � ����������6
����
����
���� +�,-.���/0.'+����1(�

���12� � ����������6
����
����
����

Table 2.11: Function level availabilities

���� ���� 	���	 ����	���	���

The user perceived availability is obtained by evaluating the availability of each
user execution scenario derived from the operational profile. If many functions are
invoked in a given scenario, there may be several dependencies among the functions
due to shared services or resources. A careful analysis of the dependencies is needed
in order to evaluate the availability associated to the scenario of the corresponding
functions.

Based on the activation probabilities of all user scenarios denoted �� (Table 2.2)
with the respective availability of the functions involved in each scenario, we have the
following equation:

��%&'(� �����������6
���� � ��� � ���	!�� ����
��!��!�� � !��!�����
��
�

���
����
���� +�,-.���/0.'+����1(�	��� � �� � �� � �� � �� � �	��

���� � ��� � �������
�

(2.15)

This equation integrates in a combinatorial way all the scenarios with the avail-
ability of the functions involved in each scenario. It can be seen that ���� , ����

and ��6
� are the most relevant availabilities since their impact is of the first order,
while the others are at least of the second order. This is explained by the fact that all
requests (i.e., user scenarios) use these three services.

���)	��	���� �������

We first evaluate the web service availability of the two architecture described in
section 2.3.3. Then, based on the various equations derived so far, the user availability
as perceived by user classes A and B will be evaluated.

��

����	 �� ������������ ���	���� ���	���

��"�� %�� ������� ����	���	��� ����	��

Figures 2.16 and 2.17 show the web service availability for perfect and imperfect
fault coverage, with the number of web servers * varying from 1 to 10. When only
one web server is used (* � �), the results correspond to the basic architecture.
The parameters used to obtain these curves are indicated on the figures. Sensitivity
analyses are made considering different values of web server failure rates (����, ����

and ���� per hour) and request arrival rates (50, 100 and 150 req/s). It is assumed
that each web server has a service rate of � ��� req/s and a repair rate 8 � � per
hour. The mean reconfiguration rate of the web server architecture) is 12 per hour
(i.e., �=) � 	 min) and the buffer size b is assumed to be 10.

Both figures show that increasing the number of web servers * (depending on
the failure and request arrival rates) reduces the web service unavailability. However,
when the coverage is imperfect for * higher than 4, the trend is reversed (Figure
2.17). This is due to the fact that when the coverage is imperfect, increasing the
number of servers also increases the probability of the system being in states <�. In
these states, the web service is unavailable and a manual reconfiguration action is
required. In fact, the request loss probability plays a significant role until a certain
value of * . When the number of servers is higher than a threshold value, the total
service rate and the buffer capacity are sufficient to handle the flow of arrivals without
rejecting requests. In this case, the unavailability of the web service is caused by
hardware and software failures leading the web server architecture to a down state.
Compared to the imperfect coverage model, it can be noticed that the model with
perfect coverage is more sensitive to the variation of * . Indeed, the unavailability
decreases exponentially with * , and this trend is not reversed for values higher than
4. Also, the web servers failure rate has a significant impact on availability only when
the system load (� � 5=) is lower than 1.

Design decisions can be made based on these results. In particular, we can de-
termine the number of servers needed to achieve a given availability requirement, or
evaluate the maximum availability that can be obtained when the number of servers
is set to a given value. For instance, considering the model with imperfect coverage,
the number of servers needed to satisfy an unavailability lower than 5 min/year
(unavailability 7 ����), with a failure rate equal to ���� per hour will be at least
* � � if the request arrival rate is 50 req/s and * � if the request arrival rate is 100
req/s. We obtain the same result with a failure rate of ���� per hour, however such a
requirement cannot be satisfied with a failure rate of ���� per hour.

Similar sensitivity analyses can be done to study the level of availability that can
be achieved when the number of web servers is set to a given value. For example,
if we decide to employ three servers to support the web service, we would have an
unavailability lower than 1 hour per year, when the failure rate varies from ���� per
hour to ���� per hour and � 7 �.

��

���� 	��������� 	�����

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1 2 3 4 5 6 7 8 9 10

 1e-04

 1e-03

 1e-02

 1e-01

 λ=100 req/s, γ=10−2 /h

W
eb

 u
na

va
ila

bi
lit

y
(1

 -
 A

(W
S)

)

Number of servers (N)

 λ=100 req/s, γ=10−3 /h

 λ=100 req/s, γ=10−4 /h

 λ=50 req/s, γ=10−2 /h

 λ=50 req/s, γ=10−4 /h

 λ=50 req/s, γ=10−3 /h

Figure 2.16: Web service unavailability with perfect coverage

1e-07

1e-06

1e-05

1e-04

1

1 2 3 4 5 6 7 8 9 10

1e-03

1e-02

1e-01
 λ=100 req/s, γ=10−2 /h

 λ=50 req/s, γ=10−2 /h

 λ=100 req/s, γ=10−3 /h

 λ=50 req/s, γ=10−3 /h

 λ=50 req/s, γ=10−4 /h

 λ=100 req/s, γ=10−4 /h

W
eb

 u
na

va
ila

bi
lit

y
(1

 -
 A

(W
S)

)

Number of servers (N)

Coverage (v) = 0.98

Figure 2.17: Web service unavailability with imperfect coverage

��

����	 �� ������������ ���	���� ���	���

��"�� ���� 	���	 ����	���	��� ����	��

Considering equation 2.15, we will evaluate the availability as perceived by user
classes A and B. The values of the parameters involved in this equation are given
in Table 2.12. The probabilities characterizing user execution scenarios for classes
A and B have been presented in Table 2.5. It is assumed that the web service is
implemented on four servers, with imperfect coverage (* � , ; � ����, 5 � ���
req/s and � � ����/hour). For this study, ���� is assumed to be in the order of two
nines according to the work of [Kalyanakrishnan et al. 1999]. ��6
� is derived from
the results presented in section 2.5.1.

���� � ���� � ������ ���� � ���� � ����� ����� � ���

��� � �	 ��� � ����� � ����� � ��� ��6
� � �������		�� !�� � ���

!�� � ��� !�� � �� !�� � ���

Table 2.12: Numerical values of the model parameters

Table 2.13 presents the user perceived availability for user classes A and B, consid-
ering different values of flight, car and hotel reservation systems (*	 , *� , *�) that
are external to the web site and interact with the travel agency system. Let us consider
the same number of systems for *	 , *� and *� .

*	 � *� � *� ��%&'(&�� ��%&'(&��

1 0.84235 0.76875
2 0.96509 0.95529
3 0.97867 0.97593
4 0.98004 0.97802
5 0.98018 0.97822
10 0.98020 0.97825

Table 2.13: User availabilities for classes A and B

The results show that for both user classes, user perceived availability increases
significantly when the number of reservation systems increases from 1 to 4, and then
increases slowly. The availability variation rate is directly related to the availability
assigned to each reservation system.

A comparison between class A and B shows that different operational profiles might
lead to significant differences on user perceived availability. For instance, considering
the case *	 = *� = *� � 	, the user perceived unavailability is about 173 hours

��

����
��
������

per year for class A and 190 hours for class B. Such unavailability takes into account
all the scenarios that might be invoked by the users.

The user perceived availability can be analyzed from another perspective by group-
ing user scenarios listed in Table 2.6 into four categories, denoted as SC1, SC2, SC3
and SC4, and evaluating the contribution of each category into the user perceived
availability. Figure 2.18 shows users class A and class B, assuming that the web service
is implemented with four servers with imperfect coverage. �� (users A) denotes the
unavailability perceived by users class A, and ���
��� denotes the contribution of
scenarios
�� into the user perceived unavailability.

It can be seen that the unavailability caused by scenarios SC4 that end up with
a trip payment is higher for class B compared to class A (43 hours downtime per
year for class B compared to 16 hours for class A). Therefore, the impact in terms
of loss of revenue for the TA provider will be higher. Indeed, if we assume that the
users transaction rate is 100 per second, the total number of transactions ending up
with a payment that are lost is 5.7 millions for class A and 15.5 millions for class B.
Assuming that the average revenue generated by each transaction is 10 euros, then the
loss of revenue becomes 57 millions of euros and 155 millions of euros, respectively.
This result clearly shows that it is important to have a faithful estimation of the user
operational profile to obtain realistic predictions of the impact of failures from the
economic and business viewpoints.

��� ����������

The evaluation of quantitative measures characterizing user-perceived availability
for web-based applications is widely recognized as highly important to faithfully reflect
the impact of failures from the business point of view. However, there is still a lack of
modeling framework and examples illustrating how to address this issue. This chapter
has been intended to fill this gap by illustrating on a simplified example how models
can be built and what kinds of practical results can be derived.

A hierarchical modeling framework for dependability evaluation of web-based
applications is presented in this chapter. The framework relies on hierarchical de-
composition using some concepts defined in [Menascé & Almeida 2000] to describe e-
business applications and analyze their performance. However, since our framework
is oriented to dependability modeling and evaluation from the user perspective, we
have refined these concepts and extended them to fulfill the objectives of our study.

We have illustrated the main concepts of the framework proposed in
[Kaâniche et al. 2001, Kaâniche et al. 2003b] through a modeling example of web
based travel agency [Kaâniche et al. 2002, Kaâniche et al. 2003a]. Our objectives in
this study were:

��

����	 �� ������������ ���	���� ���	���

 0.001

 0.01

 0.1

 1

 1 2 3 4 5

 UA(Users A)

Users Class A

U
na

va
ila

bi
lit

y

 UA(SC2)

 UA(SC1) UA(SC4)

 UA(SC3)

NF=NH=NC

 0.001

 0.01

 0.1

 1

 1 2 3 4 5

U
na

va
ila

bi
lit

y

 UA(Users B)

Users Class B

 UA(SC2)

 UA(SC1)

 UA(SC3)

 UA(SC4)

NF=NH=NC

Figure 2.18: User perceived unavailability with ���
���

��

����
��
������

1. to show how to apply our framework considering the decomposition of the target
system according to four levels in a top-down approach: user, function, service,
and resource levels.

2. to present typical availability analysis and evaluation results. The sensitivity
analysis results show how web based applications are affected from different
point of views: web service availability and user perceived availability. In
practice, the obtained results provide useful guidelines orienting web designers
in design decisions.

For the sake of illustration, we have deliberately considered simplified assumptions,
dealing with users operational profile and TA architecture models. The effects of these
aspects have been evaluated on the user perceived availability. The availability mea-
sure considered takes into account the impact of performance related failures as well
as traditional software and hardware failures. Also, we have shown that the proposed
hierarchical framework provides a systematic and pragmatic modeling approach, that
is necessary to evaluate availability characteristics of the target application at different
levels of abstractions.

In the following chapters, we develop more detailed analytic models for the web
service availability focusing on the resource level. In chapter 3, we address especially
recovery strategies issues and traffic burstiness effects on web service availability. In
chapter 4, we deal with service unavailability due to long response time.

��

����	 �� ������������ ���	���� ���	���

��

Chapter 3

Web service availability:
impact of recovery strategies
and traffic models

Whenever you find you are on the
side of the majority, it is time to
pause and reflect.

Mark Twain

IN this chapter, the web service availability is analyzed focusing on the service and
resource level of the modeling framework (see Figure 2.2) introduced in chapter 2.
At the resource level, a web cluster architecture consisting of various web servers

is used for supporting the service. We address especially recovery strategies in web
cluster architectures. At the service level, we evaluate the traffic burstiness effects and
the impact of recovery strategies on web service availability supported by web clusters.

Web systems with multiple nodes are leading architectures for building popular
web sites that have to guarantee scalable, highly available and reliable services. Web
clusters consisting of multiple nodes have proved to be a promising and cost-effective
approach to support such services [Brewer 2001, V. Cardellini & Yu 2002]. Many giant
service providers run on a cluster of nodes (e.g. Yahoo, eBay, Alta Vista, Netscape)
supporting millions of requests per day.

This chapter presents an analytic modeling approach that is aimed at evaluating
the web service availability taking into account explicitly:

61

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

1. the cluster architecture characteristics, considering the number of nodes in the
cluster, the recovery strategy after a node failure, as well as the reliability of
cluster nodes;

2. the traffic model, describing the web traffic characteristics (i.e. the access
patterns);

3. various causes of request loss due to buffer overflow, or node failures as well as
during recovery time.

Analytical performability models are developed to analyze the impact of the above
aspects on the service availability based on web clusters. We obtain closed form
equations for web service availability, for which sensitivity analyses are conducted
with respect to cluster and traffic characteristics.

��� *����
������

Most popular sites (e.g. Altavista, Yahoo) support millions of requests
per day using mainly web cluster architectures [Oppenheimer & Patterson 2002,
V. Cardellini & Yu 2002, Brewer 2001]. Such architectures are composed of multiple
web server nodes and one or several frontend dispatchers for distributing client re-
quests to the servers.

One of the main problems faced by the web systems designers is to find an adequate
sizing of the architecture to ensure high availability and performance for the delivered
services. Modeling techniques have shown to be well suited to address this problem
and to find the right tradeoffs for achieving availability while providing acceptable
levels of performance.

A significant body of work has focused on various aspects of web cluster
performance evaluation. Particular attention has been devoted to the perfor-
mance analysis considering different algorithms for load balancing among the
servers [V. Cardellini & Yu 2002]. Although many efforts have been dedicated
to analyze the availability of web hosts using measurement based techniques
[Oppenheimer & Patterson 2002, Kalyanakrishnan et al. 1999], less emphasis was de-
voted to the modeling of the web service availability taking into account the impact
of server node failures and performance degradations. In this chapter, models are
developed considering explicitly i) the cluster characteristics especially related to the
recovery strategies and ii) the essential characteristics of the web traffic.

Regarding the cluster characteristics, we concentrate our attention on two recovery
strategies, referred to as non client transparent and client transparent. In the first
strategy, all the submitted requests are lost as long as a node failure has not been
detected. In the second strategy, the submitted requests are smoothly migrated to the
remaining nodes in a user transparent way.

��

���� ����� ���	��
	 ����	��	� �� �	�
����	�

Concerning traffic characteristics, to accurately represent the access patterns of real
web based environments, a traffic model must capture the relevant properties of the
request patterns for the system of interest. Some of the properties considered in the
literature deal with file size distributions, self-similarity [Crovella & Bestavros 1997],
reference locality [Almeida et al. 1996]. As discussed in section 1.6, the results
presented in [Iyengar et al. 1999, Morris & Lin 2000] suggested that the aggregate
web traffic tends to smooth out as Poisson traffic. In addition, other works
[Chen et al. 2001, Muscariello et al. 2004] have shown that Modulated Markov Pois-
son Process (MMPP) is enable to capture relevant characteristics of the input traffic.

Based on the above observations, we consider two traffic models representing the
request arrivals. First, a pure Poisson process capturing the average arrival rate of
requests to the cluster, and secondly, a multi-stage Modulated Markov Poisson Process
(MMPP) are used for modeling the arrival rate of requests varying according to the
period of the day (daily cycles).

The rest of this chapter is organized as follows. Section 3.2 presents an overview of
web cluster architectures focusing on fault tolerance strategies. Section 3.3 introduces
the modeling assumptions. Section 3.4 describes the modeling approach providing
closed-form equations for web service availability. Section 3.5 presents sensitivity
analysis results and section 3.6 concludes the chapter. The results presented along this
chapter were recently published in [Martinello et al. 2003, Martinello et al. 2005].

��� +	��� �����	��� ���	������ �� ��� ��������

A cluster-based web system (briefly, web cluster) refers to a collection of machines
that are housed together in a single location, interconnected through a high-speed
network, and present a single system image to the outside. In literature, some
alternative terminology is used to refer to a web cluster architecture for example web
farm. We will use the term web cluster as proposed in [V. Cardellini & Yu 2002].

A typical web cluster consists of a front-end dispatcher (sometimes called load
balancer) and many back-end servers. Over the past few years, a number of web
cluster architectures have been proposed. These architectures implement a large
variety of strategies for routing new requests (load balancing) and for fault tolerance.
[V. Cardellini & Yu 2002] presents a recent overview of web cluster architectures.

����� &�
 '	��
� ���
�����
� (&'�) �������� ��������

Non client transparent (NCT) recovery strategy corresponds essentially to tradi-
tional web cluster solutions. These solutions do not provide transparent handling of
requests at the time of node failure.

Round robin DNS [Brisco 1995] and DNS aliasing are examples of architectures in
which the new requests are routed to available servers. If server replicas are running

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

on multiple hosts, these schemes can be used to provide fault tolerance for web service
by changing the host name to IP address mapping depending on the state of the
system. When a server failure is detected, the host name is no longer mapped to
the IP address of the failed server host. As a result requests arriving after a failure will
not be routed to failed servers. This scheme requires that clients re-issue the request
if they do not receive a reply. In practice, clients may continue to see the old mapping
due to DNS caching at the clients and DNS servers. This reduces the effectiveness of
this scheme since after a failure, the client may need to re-issue the request several
times before it is routed to a new server. Also, there is no support for recovering
requests under processing at failure time.

Centralized schemes, such as Magic Router [E. Anderson & Brewer 1996] and
Cisco Local Router [Inc 2000], require requests to travel through a central router
where they are routed to the desired server. Typically, the router detects server failures
and does not route packets to servers that have failed. The central router is a single
point of failure and a performance bottleneck since all packets must travel through it.
Distributed Packet Rewriting [Aversa & Bertavros 2000] avoids single entry point by
allowing the servers to send messages directly to clients and by implementing some
of the router logic in the servers, so that they can forward the requests to different
servers. However, these architectures are only capable to provide high availability
via redundancy. Actually, a failed component can be replaced with the available
redundant component. None of these schemes support recovering requests that were
being processed when the failure occurred, in other words all ongoing requests on the
failed node will be lost (i.e., these requests must be resent by the users).

����� '	��
� ���
�����
� ('�) �������� ��������

Client transparent (CT) recovery strategy supports requests migration. It enables
web requests to be smoothly migrated and recovered on other working node(s)
in the presence of server failure, in a user transparent way. Recently, there have
been cluster implementations providing client transparent recovery strategies, e.g.
[Aghdaie & Tamir 2001, Luo & Yang 2002, Zhang et al. 2004]. These architectures
support requests migration for static and dynamic objects.

In [Luo & Yang 2002], if a node fails while processing a request related to static
objects, then the dispatcher will select a new server node with an idle pre-forked
connection connected with the target server re-binding the client-side connection to
the new selected server connection. After the new connection binding is determined,
the dispatcher issues a "range request" on the new server connection. The "range
request" is defined in the http 1.1 protocol allowing a client to request portions of a
resource. Using this property, we can enable a request to continue downloading a file
from another node. The web requests for dynamic content, for which responses are
created on demand (cgi, scripts, asp) are mostly based on client-provided arguments.
The size and content of such response is variable. A request related to a dynamic
object is not "idempotent", i.e. sometimes the result of two successive requests may
be different due for example to updates of the database. Consequently, they solve

��

���� ���	���� �����������

this problem using "store and forward" of the response of a dynamic request. In other
words, the dispatcher will not relay the response to the client until it receives the
complete result.

On the other hand, the basic idea in the design of [Aghdaie & Tamir 2001] is to use
the error handling mechanisms of TCP to ensure that the backup has a copy of each
request before it is available to the primary. Once a reply is generated by the primary,
a complete copy is sent to the backup before any reply has been sent to the client. If
the primary fails before starting to transmit the reply, the backup can transmit its copy.
If it fails while sending the reply, the error handling mechanism of TCP is used.

Additionally, a transparent TCP connection failover mechanism is presented in
the architecture proposed by [Zhang et al. 2004]. The architecture consists of four
components namely 1) failure detection, 2) ring maintenance, 3) connection state
tracking and 4) connection failover. Periodically, each back-end server sends out a
heartbeat message to the dispatcher. If the dispatcher does not heard from a server for
some duration, this server is considered to be dead. In this architecture, the servers
are organized into a ring. Consequently, each server can play the role of backup server
for a predecessor and a successor in the ring. After a server failure detection, one of its
backups is notified to take over its connections and the ring maintenance is invoked to
repair the ring structure. The connection state tracking and failover are supported by
a protocol named backup tcp (btcp). This protocol basically processes each incoming
request in a similar way as tcp does, but it never sends back any reply to the client.

��� ��
����� 	����������

Figure 3.1 shows a simple example of a clustered architecture composed of multiple
server nodes with a dispatcher that distributes the incoming requests among the
nodes. For this study, we assume that the arriving traffic is dispatched to the nodes
according to a round robin strategy. It is also assumed that each node has an associated
buffer with limited capacity. Thus, all the requests sent to the node are lost, if its
buffer is full. In addition, the dispatcher runs a monitoring process, e.g., based on
heartbeat messages in order to detect node failures. The objective is to early detect
the failed nodes and disconnect them from the cluster. So, the cluster supports a
failure-detection mechanism that is able to provide a fail-stop behavior, i.e. a node
crashes and stops working in a way detectable from its neighbors. This is known as
the fail-stop assumption.

In order to evaluate the web service availability, we focus on the server side that
is under the direct control of the web designer. We do not include in our analysis the
service unavailability caused by failures in the path from the client to the server, or by
the failure of the dispatcher. Thus, we take the web designer perspective.

The web service availability is defined as the probability at steady state that re-
quests submitted to the cluster are successfully processed. In other words, they are
not lost due to server failures or overloads. We distinguish two main causes of failure:

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

Internet

 Web
server N

LAN

Web cluster

 Web
server 2

 Web
server 1

 Dispatcher Users

 Users

 Users

Figure 3.1: Basic web cluster architecture

1. Hardware and software failures that affect the computer hosts running server
nodes;

2. Performance-related failures that occur when the incoming requests are not
served due to limited capacity of the server buffers.

Failures of nodes have a direct impact on the performance capabilities of the web
cluster. Indeed, when nodes fail and are disconnected from the cluster, the remaining
healthy nodes have to handle all the original traffic, including the requests previously
served by the failed nodes. This leads to an increase of the workload redirected to the
remaining nodes, with a potential degradation of the corresponding quality of service.
For example, a failure of two nodes in a five node cluster increases by ��� the load
to be processed by three remaining nodes. Clearly, an accurate estimation of the web
service availability should take into account the performance degradation of the web
cluster.

The selection of the appropriate architecture supporting the web service requires
knowledge about the recovery strategy following a node failure as well as the con-
sequences of node failures. For this purpose, two recovery strategies are compared,
namely: Non Client-Transparent (NCT), and Client-Transparent (CT) (see section 3.2
for more details).

From the modeling viewpoint, NCT and CT are defined as follows:

� NCT recovery strategy: all requests in progress as well as the input requests
directed to the failed node before the failure is detected are lost;

� CT recovery strategy: all requests in progress and the input requests directed to
the failed node during failover latency time 1 are not lost; they are redirected to
the non failed nodes.

1The failover latency corresponds to the detection and recovery time i.e., the time taken by the dispatcher
to detect a failure and remove the failed node from the list of alive nodes in the cluster.

��

����
����	 ���	����

In the following section, we present analytical models addressing these strategies
in a unified approach. For CT recovery strategy, we assume that the architecture is
implemented as in [Luo & Yang 2002].

��� ������� ��
�����

The evaluation of the web service availability taking into account the modeling as-
sumptions presented in section 3.3 is carried out adopting the composite performance
and availability approach (presented in section 1.5 and chapter 2). It is worth to
mention that our approach builds on the traditional performability modeling approach
by providing closed-form equations for requests loss probability. The requests loss
probability can be caused by i) buffer overflow, ii) server failures or, iii) latency
of failure detection. The evaluated availability measure allows a distinction among
these causes and includes such requests loss probability as a source of web service
unavailability.

In the following, we consider a web cluster system composed of * server nodes
and a dispatcher balancing the requests among the servers in a round robin way, and
capable of detecting the failure of the servers connected to the cluster.

���� #���	���	��� ����	

Let us assume that the times between node failures are exponentially distributed
with rate �, and that failure detection occurs with rate @. After detection of a node
failure, the cluster is reconfigured by disconnecting the failed node. The latter is
reintegrated into the cluster after restoration. The restoration times are assumed to
be exponentially distributed with rate 8 .

Figure 3.2 shows the availability model describing the behavior of the cluster
governed by server failures, detection, recovery and restoration processes. In states
� � �: ���: * , the system has � available nodes capable of processing the input traffic.
However, requests could be rejected in these states due to overload conditions. The
failure of a server node in state �, leads the cluster to state �� with a transition rate
��. In states ��, although the server has failed, this failure is not yet perceived by
the dispatcher. Accordingly, client requests could still be directed by the dispatcher to
the failed node during the failover latency time. Upon detection, the system moves to
state �� � indicating that the number of operational servers has been reduced by one
and the restoration of the failed server is initiated. In this model, it is assumed that no
other failure can occur when the system is in state ��. This assumption is acceptable
because the failover latency times are generally very small compared to the times to
failure.

We have to solve this model to obtain the steady-state probabilities for states �
and ��, denoted as 9� and 9�	

, respectively. Processing is straightforward and the
analytical expressions for (� � �: ���: *) are given by equations (3.1) and (3.2)

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

N

Nγ (N-1)γ

τ

α α

DN-1

τ

DN

N-1 N-2

 γ
α

D1

1 0
τ

Figure 3.2: Availability model of the web cluster

9� �
* �

��

�

8

����
9� : � � � � � �* (3.1)

9�	
�

* �

��

�

8

���� ��

@
9� : � � � � � �* (3.2)

where

9� �

��
�
�

�
�

8
��

* �

�* � ��
�

����
�
�

�
�

8
��

��* � �* �

@�* � ��

���

���� *��$����
�� ����	

In order to model the cluster input traffic, we consider two different traffic assump-
tions. First, the web traffic is characterized by a Poisson process. Then, in the second
assumption, the traffic is assumed to be described by a Markov Modulated Poisson
Process (MMPP).

������� ����
 �	��� �	���

The first assumption, illustrated in Figure 3.3, is that the traffic arriving to the web
cluster is modeled as a Poisson process with rate 5 req/s (requests per second) and is
independent of the failure process. Assuming that there are � available servers in the
cluster with the input traffic being distributed among the servers, then this system has
� independent Poisson arrival processes each one with rate 5� � �

� .

Also, each server supports a maximum number of requests � (buffer size) and has
a service rate of req/s. The requests arriving at the server when the buffer is full are
rejected.

The performance behavior of each server can be modeled by an M/M/1/b queueing
system2. It is important to remark that for this analytical model, each server has its

2Since there are no more than � requests in the queueing system, this system is stable for all values of
arrival rate �� and service rate � (see [Bolch et al. 1998]).

��

����
����	 ���	����

λ

rejected
requests

server 1

rejected
requests

server (k)

λ /k

λ /k

Figure 3.3: A web cluster with � servers available and load balancing

own independent queue, while the model of the section 2.4 of chapter 2, there is only
a queue that is served by 	 servers (M/M/c/b queueing model). Let us denote by ��
the steady state probability of having � requests in this queue3. Thus, �� is calculated
as follows (see e.g., [Bolch et al. 1998]):

�� �

�
�� ���

������ , if 5� �� and � � � � �
�

�� , if 5� � and � � � � �
(3.3)

where � is the server load given by:

� �
5

�
(3.4)

������� ��	��� ��������� ����
 �	��� �	���

Based on the published results [Chen et al. 2001, Morris & Lin 2000,
Iyengar et al. 1999] previously discussed in section 1.6, it is reasonable to employ an
Markov Modulated Poisson Process (MMPP) as described in [Frost & Melamed 1994]
to capture the seasonal behavior of the aggregate traffic in the web cluster, while
preserving the tractability of modulated Poisson process. Thus, we assume that
the request arrival rate is described as a Markov process A��� with state space
�: �: ���: �: ���:
. State � has arrivals with Poisson process at rate 5�. To follow the
seasonal behavior, especially the day/night cyclic behavior of the web cluster load,
the traffic is divided into phases on a daily basis. Each phase corresponds to a state in
the MMPP process A���.

3Note that the request loss probability due to buffer overflow is given by �� based on the PASTA (Poisson
Arrivals See Time Averages) theorem [Wolff 1982]. Recall that this theorem shows that the probability that
a request entering in a queue finds such a queue in a given state is equal to the steady-state probability for
this state.

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

Figure 3.4 shows an example of a MMPP model where the arrival traffic to the
web cluster is divided into 5 phases along the day. Average arrival rate per day is also
plotted in this figure.

For each phase of the MMPP, the performance model describing the arrival traffic
to each server can be modeled by M/M/1/b queue system, where the input traffic is
described by the Poisson process associated with the corresponding phase (rate 5�).
Accordingly, the request loss probability will be calculated conditioned on the phases
of the MMPP process with its corresponding arrival rate using equation (3.3).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
eq

ue
st

s
A

rr
iv

al
 R

at
e

Hour of the day

 55

Average arrival rate

Figure 3.4: Markov Modulated Poisson Process modeling the request arrival process

���� '�������� #���	���	��� + *��$����
�� ����	

The web service availability is evaluated based on a composite availability-
performance model. Let us denote by ��, the web service unavailability defined
as the probability in steady state that a request is not processed successfully. This
means that requests can be lost: i) upon arrival to the cluster, or ii) while they are
being processed or waiting for service, due to a server failure, or iii) during failure
detection.

In order to evaluate ��, we need to compute the request loss probability in states
� and �� of the availability model (Figure 3.2), also during the transition between
these states taking into account the traffic model.

For � � �: � � � : * , let us denote by:

� ����: the request loss probability due to buffer overflow in state �

��

����
����	 ���	����

� �����: the request loss probability caused by a transition from state � to state
��, due to a server failure

� �����: the request loss probability in state ��, during the node failure detection
time.

For the Poisson traffic model, the web service unavailability �� is computed as
follows:

�� �

��
�
�

9�	���� � �����
�

��
�
�

9�	
����� � 9� (3.5)

Recall that 9�	
, 9�, and 9� are the steady state probabilities evaluated from the

availability model, given by equations (3.1) and (3.2).

In the case of MMPP traffic model, it is important to note that the web service
availability depends on the phase duration as well as on the arrival rate of each phase.

Thus, let us denote by:

�
: the number of phases;

� ��: the steady-state probability of a given phase �;

� ���: the web service unavailability at phase �.

Therefore,

�� �

��
�
�

����� (3.6)

where ��� is computed by equation (3.5) using the corresponding request arrival rate
5� of phase � (instead of 5).

The closed analytical equations for ����, ����� and �����, considering both re-
covery strategies (i.e., NCT and CT) are evaluated in the following sections.

������� �� �	��������� ��� �� ����	 ���	 �! ����

Given that � servers are available in the cluster, let us assume that all servers
have the same loss probability at steady-state. This assumption holds with a system
containing equally utilized servers. Thus, when at least one of the available servers
has the buffer full, the probability of loss can be computed as follows:

���� � ��� ��� ���
�� (3.7)

Note that �� is the request loss probability due to buffer overflow. It is obtained
from equation (3.3) with a request arrival rate to each server given by 5� � �

� . Also, it
is worth to mention that ���� is the same for both recovery strategies.

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

������� �� �	��������� ��� �� �	��	
��� "����	� �����

This loss scenario occurs only with the NCT recovery strategy (see Section 3.4). The
request loss probability caused by a transition from state � to state �� corresponds to
the loss of all requests (queued or in service), when a web server node fails. ����� is
computed by the following closed-form equation (see appendix I for details)

����� �

�
���� ���

�� ���

�
�

�
��� ��;���� ;��

���� ������� ;�

�
(3.8)

Recall that a M/M/1/b queue system is stable for all values of load � �� � (see
[Bolch et al. 1998]). Therefore, for � � �, ����� is computed using

����� �

�
�

�� �

�
�

� �
��� �

���� �
��� �

�

��� ����� �
��� �

�
(3.9)

������� �� �	��������� ��	�
�$�
��� "����	� ��������
 ��%� �����

The computation of request loss probability when the system is in state �� of
the availability model, depends on the recovery strategy. In these states, a node has
failed but the failure was not yet detected by the dispatcher. Therefore, before the
system exits from states ��, i.e. before detection occurs, the dispatcher continues to
send requests to the failed node. For both strategies, we need to evaluate the loss
probability caused by the failed server and the loss probability caused by the � � �
operational servers in the cluster due to their limited buffer capacity. In state ��, we
need to take into account two competing processes: the request arrival process to a
server node with associated rate 5�, and the failure detection process with associated
rate @.

For NCT recovery strategy, all the requests sent to the failed node before the
failure is detected are lost. The probability of loss in state �� is given by the probability
that one or more arrivals occur in the failed node before failure detection (system
exits from state ��). When the cluster enters in state ��, only one of two events can
occur: 1) detection, which takes the system to state � � �, or 2) an arrival, which
increases the number of requests in the queue by one. Since these events are assumed
to be independent and exponentially distributed with respective means �=5� and �=@,
then the probability that an arrival happens before detection is given by ��

��� . As the
probability of loss in state �� corresponds to the probability that at least one arrival
occurs, by little law there are 5�=@ arrivals on average before detection, which leads

to the following equation

��

���

��� �
.

In addition, the loss probability in state �� caused by the �� � operational servers
due to their finite buffer is ��� ��� ���

����, following arguments explained earlier in
the previous section, where �� is the loss probability for one operational server.

��

����
����	 ���	����

Therefore ����� is computed by the sum of the loss probability of requests sent
to the failed node, and the loss probability caused by buffer overflow of the � � �
operational nodes in the cluster:

����� �

�
5�

5� � @

	�� �

� ��� ��� ���
���� (3.10)

For CT recovery strategy, the system provides request migration for all user
submitted requests, even when a server node fails. Thus, the only loss scenario is
due to buffer overflow.

Let us denote by +�@� the probability of loss due to buffer overflow for a failed node.
This probability can be derived following the approach proposed in [Garg et al. 1999]
using probability fundamentals. When the cluster enters in state ��, let us assume
that there were � requests in the queue of size �. The loss probability is equal to
the probability that � � � arrivals occur before the system exits from state �� (i.e.,
transition @ takes place). This conditional probability is given by � ��

��� �
���. By PASTA

theorem, the probability that there are � requests in the queue when a detection occurs
is equal to the steady state probability that there are � requests in the queue denoted
��. Thus

+�@� �
��

�
�

���
5�

5� � @
����

+�@� �
��

�
�

�
�� �

�� ���
��
��

�
5�

5� � @
����

�

+�@� �

�
�� �

�� ���

��
5�

5� � @

��
 ��
�
�

��
5� � @

5�
��

�

+�@� �

�
�� �

�� ���

��
5�

5� � @

��
 ��
�
�

�
5� � @

��

�

Finally, the following closed-form equation is obtained

+�@� �

�
�� �

�� ���

� �
5�

5� � @

��
�� ��
��
� ���

�� ��
��
� �

�
(3.11)

When � � �, +�@� is computed as follows

+�@� �

�
�

�� �

��
5�

5� � @

��
�� ��
��
� ���

�� ��
��
� �

�
(3.12)

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

We need also to include the loss probability in state �� caused by the � � �
operational servers due to their finite buffer. Note that the operational servers do
not stop working during the detection time and we assume that the migrated requests
do not increase the loss of requests in the operational servers.

Hence, the loss probability for the CT strategy can be computed by equation:

����� � +�@� � ��� ��� ���
���� (3.13)

������� &�%%�	�

The web service unavailability �� for the Poisson traffic is computed by equation
(3.5). Tables 3.1 and 3.2 summarize the components of equation (3.5) for both
recovery strategies. In the case of MMPP traffic model, �� is calculated using
equation (3.6).

���)	��	���� ������

This section presents some results in order to study the sensitivity of the web
service availability to different design decisions. For both recovery strategies, we
investigate the effect of the cluster size, the impact of the failure detection duration,
the reliability of the cluster nodes as well as the overload effects under different traffic
models (Poisson and MMPP). We quantify the different design decisions analyzing the
performance and availability tradeoffs using the web service performability model.

The parameters used in the model may be obtained either via measurements or
based on results published in the literature. In particular, the server failure and
recovery rates as well as the mean time between request arrivals may be estimated
for example through the analysis of the logs maintained by the web server systems.

We first assume that request arrivals to the web cluster follow an exponential
distribution [Willinger & Paxson 1998], where the arrival rate is 5 � �� req/sec. Table
3.3 summarizes the nominal values used for performability evaluation, where:

� MTTF: mean time to a node failure;

� MTTD: mean time to detect a node failure;

� MTTR: mean time to node restoration.

The numerical value of ABB� � ��� sec. represents essentially failures recovered
by reboot and restart of the node.

��

���� 	��������� 	�����

�� �

��
�
�

9�	���� � �����
�

��
�
�

9�	
����� � 9�

9� �
* �

��
�
�

8
����9� : � � � � � �*

9�	
�

* �

��

��

@
�
�

8
����9� : � � � � � �*

9� �

��
�
�

�
�

8
��

* �

�* � ��
�

����
�
�

�
�

8
��

��* � �* �

@�* � ��

���

9� � * ��
�

8
��9�

���� � ��� ��� ���
��

�� �

�����
����

��
�� �

�� ���
, for � �� �

�

�� �
, for � � �

����� �

�������
������

�
���� ���

�� ���

�
�

�
��� ��;���� ;��

���� ������� ;�

�
, for � �� �

�
�

�� �

�
�

� �
��� �

���� � �
��� �

��

��� ����� �
��� �

�
, for � � �

����� �

�
5�

5� � @

	�� �

� ��� ��� ���
���� : 5� � 5=�

Table 3.1: Closed-form equations for NCT recovery strategy

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

�� �

��
�
�

9�	���� � �����
�

��
�
�

9�	
����� � 9�

9� �
* �

��
�
�

8
����9� : � � � � � �*

9�	
�

* �

��

��

@
�
�

8
����9� : � � � � � �*

9� �

��
�
�

�
�

8
��

* �

�* � ��
�

����
�
�

�
�

8
��

��* � �* �

@�* � ��

���

9� � * ��
�

8
��9�

���� � ��� ��� ���
��

�� �

�����
����

��
�� �

�� ���
, for � �� �

�

�� �
, for � � �

����� � �

����� �

��������
�������

�
���

������
� �

��

���

��
 ��
�

���
�

����

��
�

���
�

�
�
�
�
�� ��� ���

���� , for � �� �

�
�

��

� �
��

���

��
 ��
�

���
�

����

��
�

���
�

�
�
�
�
�� ��� ���

���� , for � � �

Table 3.2: Closed-form equations for CT recovery strategy

Service rate MTTF MTTD MTTR Buffer size
 �=� �=@ �=8 �

5 req/sec 10 days 20 sec. 200 sec. 20

Table 3.3: Numerical values of the model parameters

��

���� 	��������� 	�����

��"�� ��
�������� �� ����

Figure 3.5 shows the web service unavailability �� as a function of the number of
servers (cluster size) for two different values of MTTF: �� days and days. The other
values of model parameters are those of Table 3.3. We analyze clusters with * � �	�
nodes that is large enough for most of cluster architectures 4.

 1

 20 40 60 80 100 120 140
 1e-06

 1e-05

 1

 20 40 60 80 100 120 140

Number of Nodes

U
A

NCT

CT

 1e-04

 1e-03

 1e-02

 1e-01

MTTF=4 days

MTTF=10 days

MTTF=10 days

MTTF=4 days

 0

Figure 3.5: Impact of MTTF on ��

For both strategies, increasing the number of nodes * in the cluster from 1 to
8 leads to a significant availability improvement. However, for a higher number of
nodes, we observe different trends:

� For NCT strategy, the trend is reversed for * C �. This is explained by the fact
that the higher is the number of nodes, the higher is the probability of the system
being in states ��, which increases the probability of requests loss during failure
detection time. This fact is more effective when the sejourn time in states �� is
long, i.e. for longer MTTD5.

4Although for the sensitivity analysis � � ��� is enough to illustrate the main trends of ��, we
emphasize that the underlying model allows to evaluate clusters with a larger number of nodes (� � ���).
Special care has to be taken for computing the factorial for large � in the equations of Tables 3.1 and 3.2.
In this case, we can use the Stirling approximation: � � �

�
�	������
�� .

5The time taken to detect a failed node relies on the frequency of heartbeat messages sent to the nodes.
Clearly, the higher the frequency, the faster failed nodes will be detected.

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

� For CT strategy, �� increases for a cluster with 9 up to 40 nodes. In this
case, the loss probability in states �� is only due to buffer overflow. This
loss probability decreases as the load submitted to each node decreases, which
explains why �� restarts to decrease substantially for N beyond 40. In fact,
another important reason is that the mean time to detect a failure (MTTD)
is not fast enough to avoid the buffer overflow at a failure node, notably for
� � * � �.

��"�� ��
�������� �� ����

Figure 3.6 plots �� as a function of the number of servers. The goal is to analyze
the impact of the mean time to detect a failure MTTD, i.e. the mean time spent in
states ��. We consider two different MTTDs: �� and � sec., and two different values
of MTTF:10 days and 4 days. The other parameter values are those of Table 3.3.

The two highest curves of Figure 3.6 correspond to those of Figure 3.5. According
to these figures, it is clear that there is a notable difference between NCT and CT
recovery strategies. In the case of NCT, as the number of nodes increases, �� reaches
���� for ABB� � ��, against �� � ���� for ABB� � � and � � * � ��. On the
other hand for CT, �� is in the order of ���� for ABB� � ��, and for ABB� � �,
�� decreases substantially reaching ����� as the number of nodes increases to * �
�	�.

This is explained by the fact that when the number of servers increases, the loss
probability due to buffer overflow decreases significantly especially for small values of
MTTD. However, for NCT, even for small values of MTTD, all the requests that were
queued when the server fails as well as those that are directed to this server before
failure detection, are lost as well.

��"�� ��
�������� �� ������� ����

Figure 3.7 shows the effect of the service rate on ��, considering two values of
(5 and 10 req/sec). MTTD is set to � sec., while the other parameters are set to their
nominal values of Table 3.3.

In fact, we note that �� decreases faster for a higher service rate as expected,
for both strategies. However, the service rate plays a significant role until a certain
threshold. According to the figure, the service rate variation does not have effect on
�� in a cluster containing more than 10 nodes for both strategies. In contrast, the
service rate reduces substantially �� from * � � to 	 with � ��, while �� has
been affected from * � � to � with � 	.

In this study, the best evaluated ��, for NCT, would be obtained for a cluster with
* � 	 nodes and � �� or with * � � nodes and � 	. However, for CT, �� keeps
decreasing as the number of nodes increases.

��

���� 	��������� 	�����

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 1e-02

 1

 0 20 40 60 80 100 120 140

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 1e-02

 1

 0 20 40 60 80 100 120 140

Number of Nodes

U
A

MTTF=4 days, MTTD=2 sec

MTTF=10 days, MTTD=2 sec

MTTF=4 days, MTTD=20 sec

MTTF=10 days, MTTD=20 sec

Client Transparent - CT

Number of Nodes

U
A

 Non Client Transparent - NCT

MTTF=10 days, MTTD=2 sec

MTTF=4 days, MTTD=2 sec

MTTF=4 days, MTTD=20 sec MTTF=10 days, MTTD=20 sec

Figure 3.6: Impact of failure detection duration on �� for both recovery strategies

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

1e-09

1e-08

1e-07

1e-06

1e-05

1

0 5 10 15 20 25

 1e-04

 1e-02

 1e-03

 1e-01

Number of Nodes

μ=5 req/s

 μ=10 req/s
 μ=5 req/s

μ=10 req/s

U
A

CT

NCT

MTTD = 2 sec.

Figure 3.7: Impact of service rate on ��

��"� ,����� �$ ���-� ����	

Preliminary analysis of the access logs from the web server of our laboratory
suggests that the daily cycles can be divided into five phases during which we assume
the arrival process being stationary. Figure 3.8 provides examples of MMPP traffic
model, for which the first phase (from 1h to 6h) consists of the lowest period of the
day, then the traffic increases (from 6h to 9h) and continues to increase from 9h to
13h. From 13h to 18h, it reaches the high intensity area and then decreases from 18h
until 24h.

We have considered three traffic models referred to as MMPP1, MMPP2, MMPP3
illustrated in figure 3.8. The values of the request rates were chosen for comparison
purposes with the basic Poisson traffic with average arrival rate of �� req/sec.

The traffic burstiness is an important characteristic extensively used for traffic
characterization [Menascé & Almeida 2002]. It can be defined by a pair of descriptors
(D,)) .

Let 5 be the average arrival rate per day:

5 �
�

��
�
�

5� (3.14)

and let � be the sum of arrival rates that exceed 5. Accordingly,

� �
�

�������!�

5� (3.15)

Descriptor D is defined as follows:

D �
�

5
(3.16)

��

���� 	��������� 	�����

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
eq

ue
st

s
A

rr
iv

al
 R

at
e

Hour of the day

 55

Average arrival rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of the day

 55

R
eq

ue
st

s
A

rr
iv

al
 R

at
e

Average arrival rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of the day

 55

R
eq

ue
st

s
A

rr
iv

al
 R

at
e

Average arrival rate

Figure 3.8: MMPP traffic models representing the traffic distribution along the day

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

) is the fraction of time during which the arrival rate exceeds the average rate.

Table 3.4 computes the traffic burstiness for MMPP models of figure 3.8. MMPP1
has the lowest burstiness value while MMPP3 has the highest one. If traffic is not
bursty, which is the case of Poisson traffic model, then D �) � �.

Day time MMPP 1 MMPP 2 MMPP 3
0h-6h 10 5 5
6h-9h 15 10 5
9h-13h 25 25 30
13h-18h 30 40 55
18h-24h 20 20 10
Average 19.78 18.32 25.59

(D,)) (6.31,0.6) (7.73,0.6) (10.62,0.4)

Table 3.4: The MMPP models and traffic burstiness

��'���� &�
������� �� �	��� ��	��
�

Figure 3.9 shows �� as a function of the number of servers, for the three different
MMPP models using both recovery strategies. The parameter values used for this
evaluation are given in Table 3.3 where MTTD is set to � sec.

Clearly, �� is directly affected by traffic burstiness for both recovery strategies.
We can note that the higher is the traffic burstiness, the slower �� decreases. That
is, service availability can be degraded due to high variability or “burstiness” on web
traffic. In particular, the effect of descriptor D on �� is considerably more dominant
than). For example, taking * � �	 in NCT and CT cases, we can see that �� is higher
for MMPP3 than for the other traffic models, since this traffic model is characterized
by the highest D, even if) is lower than for MMPP1 and MMPP2.

Comparing NCT to CT, assuming that the cluster contains at least 20 nodes, all
traffic models lead to the same �� for NCT, while in the case of CT, the traffic models
still have a relevant impact on ��. Moreover, beyond of * � �� nodes, �� is lower
than ���� for all models in the case of CT, while for NCT, �� is in the order of ����.

��

���� 	��������� 	�����

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 1e-02

 1

 0 20 40 60 80 100 120 140

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 1e-02

 1

 0 20 40 60 80 100 120 140

 Poisson Arrival
 Rate = 20 req/s

Number of Nodes

Client Transparent - CT

U
A

MMPP 1

MMPP 2

MMPP 3

MMPP 1

MMPP 2

MMPP 3

 Poisson Arrival
 Rate = 20 req/s

Number of Nodes

Non Client Transparent - NCT

U
A

Figure 3.9: Effects of the traffic burstiness on �� for both recovery strategies

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

��'���� ���� ����� �
 ��

Figure 3.10 shows the results of �� variation with respect to the service load with
a cluster containing ��: ��: � and �� nodes considering both recovery strategies with
traditional Poisson arrival traffic compared to MMPP2 traffic model. In this figure,
� denotes the initial load where all the nodes are available � � * (� � �

��). The
obtained results provide additional insights about the load effects on ��. MTTD is set
to 2 seconds.

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 1e-03

 1e-02

 1e-01

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MMPP CT
 CT

 NCT
MMPP NCT

Load - ρ

U
A

N = 10

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 1e-03

 1e-02

1e-01

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 1e-02

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 1e-02

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load - ρ

U
A

N = 20

Load - ρ

U
A

N = 40

Load - ρ

U
A

N = 80

MMPP CT
 CT

 NCT
MMPP NCT

 NCT
MMPP NCT

MMPP CT

 CT

MMPP CT

 CT

 NCT
MMPP NCT

Figure 3.10: Effects of service load � on ��

Considering NCT, a first observation is that �� increases as the number of node
increases for both traffic models subjected to light load (� 7 ���). For instance, for
N=10, �� is in the order of ���� against �� � ���� for N=80. Recall that the greater
is the number of nodes (*), the higher is the probability of the system being in states
��, which increases the loss of requests during failure detection latency. Also, it is

��

����
��
������

important to note that the difference between MMPP and Poisson becomes significant
for heavier load6.

However, for CT, MMPP and Poisson may differ even for light loads (� 7 ���). In
particular, it can be noticed that the difference between the traffic models becomes
significant as the number of nodes increases. For instance, when * � ��, �� is in the
order of ���� for CT against ���� for MMPP-CT, and when * � �, �� is in the order
of ����� for CT against ���� for MMPP-CT.

The results presented in Figure 3.10 can be analysed from another perspective
concerning the impact of the recovery strategies on ��. For the MMPP model,
significant differences between NCT and CT results are observed only for light load
values (� 7 ���). In the case of Poisson model, there is an impact of the recovery
strategies on �� for higher load values (� 7 ���). We should emphasize the fact
that �� takes into account the service unavailabity due to requests loss that is very
sensitive to system overloads and traffic burstiness.

��� ����������

In this chapter, we presented performability models for analyzing the availability
of web based services implemented in cluster architectures. In particular, we provided
closed form equations for web cluster availability taking into account server failures
and loss of requests due to system overload. The developed models consider explicitly
the cluster recovery support for requests migration and the arrival traffic characteris-
tics.

Sensitivity analyses with respect to cluster characteristics have shown the impact
on cluster availability of i) the node failure rate, ii) the failure detection rate, iii)
the service rate, iv) the traffic burstiness and v) the load effects. These analyses
provide useful guidelines for the design of web-based services, since they can be used
for dimensioning the web architecture and making the right tradeoffs for achieving
high availability with acceptable performance levels. Also, such results allowed us
to understand the impact of the arrival traffic burstiness and the load effects on the
service availability supported by web clusters.

For instance, supposing that the traffic follows a Poisson process, we have found
that when the number of servers in the cluster is lower than a given threshold (in
this study lower than 8), the server processing capacity (service rate plus buffer size)
have the highest impact on service availability. In this case, the availability related
to the two recovery strategies (i.e., traditional non client transparent strategy and
client transparent strategy) is of the same order of magnitude. When the number of
servers is higher than this threshold, a significant difference is observed between the
two recovery strategies.

6According to the model, recall that � � � does not imply that �� � �.

��

����	 �� �	� �	��
	 ������������" ����
� �� 	
��	� ����	��	� ��� �����
 ���	��

The results confirm that the client transparent strategy is better from an availability
point of view quantifying this impact. However, to develop a client transparent
strategy requires more complex and expensive recovery mechanisms (that allow on-
going and arriving requests to be migrated to other servers). Therefore, a tradeoff
between the cost of the recovery strategy and its impact on service availability is
necessary. Nevertheless, it is worth mentioning that the two recovery strategies are
extreme cases. Indeed even in the client transparent strategy some requests may be
lost due to imperfect coverage. Considering a coverage factor lower than ���� (i.e.
not all the requests are migrated correctly to the non-failed servers), will certainly
reduce the difference between the two strategies.

The sensitivity analysis results allowed to understand the impact of the traffic
model on the web service availability. In particular, the higher the traffic burstiness,
the slower unavailability decreases as the nodes increase. We have shown that Poisson
and MMPP traffic models provide similar results only for light load (less than ��� in
this study) in the non-client transparent strategy. On the other hand, for heavier load,
Poisson traffic model tends to overestimate the web service availability. As expected,
this result suggests that Poisson traffic model leads to a more optimistic availability
than MMPP traffic models.

In our evaluation study, the support for requests migration has been efficient
only for light load (load being less than ��� for MMPP and ���	 for Poisson). For
clusters relatively overloaded, the web traffic burstiness has been a more relevant
cause of unavailability affecting significantly the web service availability supported by
web clusters. We should emphasize the fact that �� takes into account the service
unavailability due to requests loss that is very sensitive to system overloads and traffic
burstiness.

Finally in this study, the detection rate was assumed to be constant independently
of the number of nodes. However, in practice this rate could be variable as a function
of the cluster size. Also, to simplify cluster modeling, we assumed that the dispatcher
does not fail. However, the proposed model can be easily extended to include dis-
patcher failure and recovery in the analysis.

��

Chapter 4

Service unavailability due to
long response time

Don’t say you don’t have enough
time. You have exactly the same
number of hours per day that were
given to Pasteur, Michaelangelo,
Euler, Leonardo da Vinci, ...

H. Jackson Brown

FROM the user point of view, the service is perceived as degraded or even unavail-
able if the response time is too long compared to what he or she is expecting.
A long response time may discourage some users who will visit other service

providers. For instance, if a request takes 30 seconds to complete, web users may
consider the request failed.

This chapter is devoted to the evaluation of service unavailability due to long
response time. We concentrate on the service and resource levels defined in our
modeling framework (see Figure 2.2) presented in chapter 2.

The goal of this chapter is to provide a simple analytic modeling approach for
computing service unavailability due to long response time relying on Markov reward
models and queueing theory. To the best of our knowledge, the quantitative modeling
and evaluation of the impact of long response time on web service unavailability has
been seldom addressed in previous research. In order to provide a practical analytic
approach, we introduce a flexible mathematical abstraction that is general enough to
capture the essence of unavailability behavior due to long response time. We analyze
this measure at steady state, starting with a single-server queueing system, then multi-
server queueing systems are considered.

87

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

A long response time may be due to long delay in communication or to an over-
loaded server. We do not distinguish between these two causes in this chapter. The
aim of our work is twofold:

� Evaluate the effects of long response times on service unavailability.

� Provide practical quantitative results that can help web server designers in de-
sign decisions.

Although the derivation of the response-time distribution is widely recognized
to be not trivial [Trivedi et al. 2003], some interesting approaches have been
proposed to define measures combining performance and dependability issues
[Shin & Krishna 1986, Muppala et al. 1991, Mainkar 1997]. [Shin & Krishna 1986,
Muppala et al. 1991] introduced a model for hard and soft real-time systems, while
[Mainkar 1997] has considered transactional systems in which failures may be due to
frequent violation of response time constraints.

The proposed modeling approach builds and extends the work introduced in
[Mainkar 1997]. The latter uses i) a Markov model to evaluate system availability,
and ii) a tagged job approach to compute the response time distribution. We take a
step further by providing closed-form equations for response-time distribution and for
service unavailability due to long response time in single and multi-server systems.
The closed-form equations are derived using the well-known gamma function. We
present several sensitivity analyses to illustrate how the designers can use the models
to guide the system design.

The rest of the chapter is organized as follows. Section 4.1 defines the availability
measure based on response time. In section 4.2, we introduce the modeling approach
using single server queueing systems. This is followed by sensitivity analysis results
illustrating the measure behavior. Section 4.3 provides a modeling approach using
multi-server queueing systems with sensitivity analysis. Section 4.4 concludes the
chapter.

��� &	��	������ ��	����
�,������

In the context of this chapter, steady service availability is defined as the long-term
fraction of time of service delivery within an acceptable delay. We assume that the
service states as perceived by the users are partitioned into two sets: i) a set of states
in which the service is perceived as available and ii) the complementary set in which
the service is perceived as unavailable.

Let

� �: denote the set of all service states;

� ��: be the probability that the service is in state � at steady-state;

��

���� ������������ �	���	 �	��������

� (�: be a reward rate associated to the state �, defined as follows

(� �

�
� , if the service is available
� , otherwise

Thus, the service availability A is given by

� �
�
���

(��� � �� � ��
�
���

(��� (4.1)

�� denotes the service unavailability.

In order to define the service availability based on the response time, let us intro-
duce

� ����: the random variable denoting the response time given that the system is
in � at steady-state;

� �: the maximum acceptable response time (i.e., if the response time is longer,
the service is considered as unavailable), it is also referred to as the maximum
response time requirement;

� �: the quality of service requirement (or the accepted quality of service) rep-
resenting the minimum fraction of requests that satisfy the maximum response
time requirement;

� � ����� � ��: the conditional response-time distribution (i.e., the probability that
the response time of a request is lower than or equal to �, given that the system
is in state � at steady-state).

Using the definitions above, the service is said to be available if the following
condition is satisfied

� ����� � �� C � (4.2)

Let us denote by � the states in which the service is available (i.e., equation (4.2)
is satisfied for all states �, � � � to �). Then, the reward rate (� is defined as follows

(� �

�
� , if � ����� � �� C � (i.e., for � � � to �)
� , otherwise (i.e., for � C �) (4.3)

With this notation, equation (4.1) becomes

� �

"�
�
�

�� � �� � ��

"�
�
�

�� (4.4)

��

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

To summarize, the evaluation of the unavailability measure based on response time
is carried out according to the following steps. First, one needs to specify the service
model describing in particular the distribution of request arrivals and processing times
as well as the servers capacity. Based on this specification, � ����� � �� and �� can be
obtained for a given � in two steps as follows:

� For a given �, using � ����� � �� C �, � is derived;

� Then the availability is computed by equation (4.4).

It is worth to mention that the two parameters, � and � characterize the quality of
service and should be specified a priori. For example, one can specify � to be equal
to � � ��� and � � 	 seconds. This means that the response time of the web-based
service should be less than 5 seconds for at least 90% of all requests.

In the following sections, relying on queuing theory, we i) build analytical models
for single-server systems and for multi-server systems, and ii) derive closed-form
equations for the conditional response time probability and service unavailability.

��� -����� ����� .������� �������

In this section, we assume that the web server is modeled as a single queueing
system with exponential arrival and service times. The modeling approach using single
server queueing systems is carried out in two steps. First, we define the availability
measure itself based on the response time distribution at steady-state and then some
numerical sensitivity analysis results are presented.

���� ����	�
� �
����	���	��� ��� �� 	�
� �����
�� ����

������� (�
�����
�� 	���
� ��%� ���	������

In this simplest example, we assume that there is only a single process serving the
incoming requests at a constant rate requests/sec. The system is assumed to be in
state � when there are � requests in the system (�� � waiting for service in the queue
and one being served). By definition, if a request arrives given that there are already �
requests in the system, then the total time spent in the system by the request, denoted
as ����, is given by a sum of � � � random variables. Since the random variables are
independent and identically distributed with mean �=, it can be shown that ���� is
described by an Erlang distribution [Kleinrock 1975] as follows

� ����� � �� � ��

��
�
�

����

 �
'��# (4.5)

��

���� �����	 �	�	 #�	�	��� ����	��

Let us consider the incomplete gamma function1 defined as

���� �: �� �

� �

��#
'��.��.

Using the fact that�
� � E �

E�

��
� � � ��

E�

 �

�
'�$ �

�� � �: E�

�� � ��

� ����� � �� can be expressed as follows

� ����� � �� � ��

��
�
�

����

 �
'��# � ��

���� �: ��

���� ��
(4.6)

������� &�	���� ������������ %�����
#

Consider a web-based system accessible to a very large population. The arrival pro-
cess is characterized by requests arriving at an average arrival rate of 5 requests/sec.

We first assume that all requests arriving are queued for service. This assumption is
known as infinite buffer. Then we will consider the finite buffer case. All the analyses
presented assume that the system being analyzed is in operational equilibrium.

Infinite buffer

Requests arrive at the web based system at a rate of 5 requests/sec, queue for
service, get served at rate requests/sec and depart. Such a system is a traditional
M/M/1 queue system [Kleinrock 1975], in which the probability (��) that there are �
requests at steady-state is well-known

�� � ��� ���� (4.7)

where � � �
�

Therefore, equation (4.4) becomes � �

"�
�
�

��� ����.

Using the fact that
"�
�
�

�� �
�� �"�

�� �
, we obtain

� � �� �"� � �� � �"� (4.8)

1Note that ���	�
 is defined by the following integral ���	�
 �

�
�

�

����. If � is a positive integer,

then ��� 	 �
 � ��. It is also important to note that � is not a complex number.

��

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

Finite buffer

For a system supporting at most � requests including the request being processed
(finite buffer) denoted by M/M/1/b queue system, we have

� �
�� �"�

�� ���
� �� � ��

�
�� �"�

�� ���

�
(4.9)

where � 7 �.

Table 4.1 summarizes the equations for service unavailability due to long response
time in single server queueing systems. Recall that the computation of �� requires to
calculate � which corresponds to the maximum value of � satisfying equation (4.2).

Conditional response time probability

� ����� � �� � ��

��
�
�

����

 �
'��# � ��

���� �: ��

���� ��

Unavailability due to long response time for an M/M/1 queue system
�� � �"�

Unavailability due to long response time for an M/M/1/b queue system

�� � ��
�
�����

������
�

Table 4.1: Closed-form equations for single server queueing systems

���� ��
�������� �
�	����

In this section, some numerical results are presented in order to illustrate the
behavior of �� using the equations derived in Table 4.1.

�������)�	�����
 �" 	���
� ��%�

An important consideration for design purposes is to define when the service is
"too slow". In fact, one has to specify the threshold � for the acceptable response
time. Practical experiences have suggested that ten seconds is well above the normal
response time for all the sites studied in [Merzbacher & Patterson 2002]. The latter

��

���� �����	 �	�	 #�	�	��� ����	��

divides timing problems affecting sites availability into "medium" (ten seconds) and
"severe" (thirty seconds) problems.

Figure 4.1 shows the conditional response time distribution (� ����� � ��), given
in Table 4.1, as a function of the number of requests, considering different values for
�. In fact, the evaluation of this distribution allows us to determine the � states for
which (� ����� � �� C �) according to equation (4.3).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

Number of requests

P
 (

 R
(i)

 <
 d

)

μd=12.5 μd=25 μd=50 μd=75

Κ=7 Κ=18 Κ=40 Κ=63 φ=0.9

Figure 4.1: � ����� � �� variation for single server queueing system

As it can be seen, the response time probability is directly affected by the product
�. It is noteworthy that � corresponds to the average number of requests processed
by the server during a period of time �. Another observation is that � increases with
�. For example, setting the quality of service parameter � to 0.9, � � � for � � ���	
and � � �� for � � �	. In fact, the greater is �, the higher is the probability that
the response time is lower than �. Figure 4.1 also shows that lower values for the
quality of service parameter � (e.g., � � ���) clearly lead to greater values for �. In
other words2, the greater is �, the more requests arriving at the web server are likely
satisfied within the acceptable response time.

Such analyses are useful for design decisions, since the expected level of degrada-
tion of response time probability as a function of the number of requests queued in
the system can be evaluated.

Once � is evaluated, one can compute the service unavailability using equation
(4.8). Table 4.2 shows how �� varies as � increases for different loads � and for
� � ���. We clearly observe that �� decays faster as � decreases.

2It can be noticed that for a given �, the longer is the response time requirement, the greater is �.

��

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

� � � � ��� � � ��� � � ��� � � ���

12.5 7 4.3e-01 1.6e-01 5.7e-02 1.6e-02
25 18 1.3e-01 1.4e-02 1.1e-03 6.0e-05
50 40 1.3e-02 1.0e-04 4.4e-07 8.0e-10
75 63 1.2e-03 6.2e-07 1.2e-10 6.3e-15

Table 4.2: Effects on �� as � increases for � � ���

������� ����� �" � �
� � �
 ��

�� provides a useful indicator to analyze the impact of response time on service
unavailability. By definition, parameter � represents the set of states for which the
response time is acceptable for a given quality of service requirement. Figure 4.2
shows �� as a function of � for different loads �. The system is assumed to be
composed by one server with infinite buffer (M/M/1). Note that by definition, � � �
implies �� � � and ���

"��
�� � �.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

U
A

K

ρ = 0.9

ρ = 0.8

ρ = 0.6

Figure 4.2: �� for an M/M/1 queue system model as a function of �

From the figure, we can see that �� is very sensitive to the load �. �� decays
slowly for heavy loads �. In contrast, for "light" loads � 7 ���, the unavailability due
to long response time is negligible. On the other hand, the greater is K, the lower
is ��. It is better illustrated on Figure 4.3 that plots �� as a function of the load
(� C ���) for different values of �. In particular, for systems in which � CC 	�, there
is a small probability that the service is perceived as unavailable due to long response
time. Thus, according to the figure, it is likely that service unavailability due to long
response time will be very low.

��

���� �����	 �	�	 #�	�	��� ����	��

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

U
A

Load ρ

K=50K=10 K=20

Figure 4.3: �� for an M/M/1 queue system model as a function of �

������� *�
��� ����	 ����� �
 ��

All the evaluations presented along the previous section can also be applied to a
system with a finite buffer (i.e., considering an M/M/1/b queue).

Figure 4.4 shows a comparison between a system with a finite buffer (M/M/1/b)
and a system with an infinite buffer (M/M/1). The results for M/M/1/b (dotted lines)
are obtained using equation (4.9). For this example, it can be seen that for � 7 ���,
there is no difference between M/M/1 and M/M/1/b for � � �� and � � �. For higher
loads (e.g., � � ���), the difference becomes more visible especially for � � ��.

For a given request, the greater is its position in the buffer, the lower is the
probability that it is served within the maximum response time requirement. In finite
queueing systems, the requests arriving when the buffer capacity � is full are rejected,
and therefore, they are not considered in service unavailability due to long response
time. This explains the fact that �� for M/M/1/b is lower than �� for M/M/1.

������� +��	���%����
 "�	 ��

The evaluation of �� requires to compute the parameter � which represents
the set of states after which all arriving requests probably perceive the service as
unavailable. � is not known a priori. We have investigated a more direct approach for
computing �� based on an approximation for �. The goal is to obtain an analytical
equation of �� as a function of only well-known parameters, such as service rate ()
and maximum response time requirement (�), without needing to compute � in an
intermediate step based on the conditional response time distribution.

��

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

U
A

Κ

ρ = 0.7

ρ = 0.9

M/M/1

M/M/1/40

ρ = 0.6

M/M/1/20

Figure 4.4: The effect of finite buffer size � on ��

By analyzing the properties of the finite series F�4� �
��

�
�

����

 �
, we found the

following approximation3 for �

� �
�
�� @

�
�
�

(4.10)

where @ is a constant that can be set to support a given quality of service (e.g., @ �
���	 for � � ���).

Accordingly, �� can be obtained as follows

�� � ���#��
�
�#��� (4.11)

Thus, �� can be evaluated directly as a function of and � only, for a given �.

Figure 4.5 shows a comparison between the unavailability computed by equation
(4.8) (where � is an integer value obtained from equation (4.6)) and the approxima-
tion given by equation (4.11) (@ � ���). �� is plotted as a function of �, where
dotted lines represent the approximation. As it can be seen, the approximation is very
accurate. It differs from the exact value only for � 7 	. In other words, for any � C 	
(which is the case of most web based systems capable of handling much more than 5
requests per second), there is no difference between the exact and the approximated
value of ��.

Equation (4.11) and the results of figure 4.5 show that �� approaches � as �
approaches infinity, (i.e., ���

�#��
�� � �). It means that for a given � C � with a

server having infinite service rate ��, there is no service unavailability due to long
response time. At the same time, for a given service rate C �, there is no service
unavailability for a user with an infinite patience � ��.

3In fact, � is obtained through a sub-linear approximation to the inflexion point of f(n) around ��.

��

���� �����$�	�	 #�	�	��� ����	��

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60
μd

ρ=0.95

ρ=0.9
ρ=0.8

ρ=0.6

U
A

equation (4.8)

equation (4.11)

Figure 4.5: �� as a function of � using equation (4.8) and equation (4.11)

��� �����/����� .������� �������

Let us consider a multi-server queueing system consisting of a queueing buffer of
finite or infinite size, with multiple identical servers. Such an elementary queueing
system is also referred to as a multi-server system. The modeling approach is carried
out in two parts. First, a conditional response time probability is obtained providing a
closed-form equation. Then, we extend �� to multi servers.

���� ����	�
� �
����	���	��� ��� �� 	�
� �����
�� ����

������� (�
�����
�� 	���
� ��%� ���	������

Let us suppose that the web-based system is composed of 	 identical servers, where
each server is capable of handling requests/sec. Let ����� be the random variable
denoting the response time in steady-state of an arriving request at a system with
	 servers and � requests. If a request arrives when there are already � requests
in the system, two different cases can be distinguished to model the corresponding
conditional response time distribution:

� If � 7 	, the new arrival can be processed immediately by one of the free servers.
Thus, the response time ����� is an exponential random variable with parameter
.

� If � � 	, the new arrival must wait for � � 	 � � service completions before
receiving service (If � � 	, the new request must wait for one service completion.
If � � 	��, two service completions are required, etc.). In this case, the response
time distribution ����� is the sum of an Erlang random variable G corresponding
to the request waiting time and an exponential random variable < denoting the

��

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

service time. Therefore, by convolution

� ������ � G � < � �� �

� #

�

� ��� 2�,�2��2, where

� �": �� 	� �� � ��

����
�
�

�	"��

 �
'���� and ,�2� � '��%.

Accordingly, we have

� ������ � �� �

����
���

�� '��# , if � 7 	� #

�

�
��� ����

�
�

�	�� � 2���

 �
'����#�%�

�
�'��%�2 , otherwise

After a set of transformations (see appendix II for all details), we obtain equation
(4.12)

� ������ � �� �

�
�� '��# , if � 7 	

�� � �
��� �

����'��#
�
�� ������&������#�

�������

�
� ������&��#�

������� , if � � 	

(4.12)

������� &�	���� ������������ %�����
#

Let us take the same web based system consisting of 	 identical servers, where
each server is capable of handling requests/sec. We need to compute the probability
that the system with 	 servers has � requests at steady-state denoted ���	�. Assuming
that the sequence of interarrival times is described by a set of independent and
identical exponential random variables of rate 5 (a traditional M/M/c in which ���	�
is well-known [Kleinrock 1975] with � � �

��), we obtain for service unavailability the
following closed-form equation (see appendix II for all details)

�� �

����
���

�� ��
��� � �: 	��'��

��� � ��
, if � � 	� �

�� ��

�
��	: 	��'��

��	�
�

�	���

	�

��� �"����

�� �

�
, if � � 	

(4.13)

where �� denotes the probability that there is no request in the system.

To summarize, for � � �: �: �: ��� requests, � ������ � �� can be computed using
equation (4.12). Based on this distribution, K is obtained as the maximum value of
� satisfying � ������ � �� C �, according to equation (4.3). Then, we can proceed
to calculate �� for multi-servers in an infinite and finite queueing systems using
equation (4.13). Table 4.3 summarizes the equations for service unavailability due
to long response time in multi-servers queueing systems.

��

���� �����$�	�	 #�	�	��� ����	��

Conditional response time probability

� ������ � �� �

�
�� '��# , if � 7 	

�� � �
��� �

����'��#
�
�� ������&������#�

�������

�
� ������&��#�

������� , if � � 	

Unavailability due to long response time for multi servers queueing system

�� �

����
���

�� ��
��� � �: 	��'��

��� � ��
, if � � 	� �

�� ��

�
��	: 	��'��

��	�
�

�	���

	�

��� �"����

�� �

�
, if � � 	

Infinite buffer

�� �

����
�
�

�	���

4�
� �

�

�� �
��
�	���

	�
�

���

Finite buffer

�� �

��

�
�

�	���

4�
�

�	���

	�

����
�
�

��

���

Table 4.3: Closed-form equations for multi-servers queueing systems

��

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

���� ��
�������� �
�	����

In this section, we study the effect of the number of servers on �� using the
modeling approach developed in the previous section. The analysis is divided in two
parts. First, in 4.3.2.1 the response time distribution is studied in order to quantify
how the response time is affected by the number of servers. A simple example of
system is presented illustrating some possible configurations. Then, we evaluate ��
itself taking into account the response time variation, the load effects in 4.3.2.2, the
impact of aggregated service rate in 4.3.2.3 and the number of servers in 4.3.2.4.

�������)�	�����
 �" 	���
� ��%� ���	������

Figure 4.6 shows the response time distribution (� ������ � ��) as a function of the
number of requests computed by equation (4.12). This function is evaluated varying
the number of servers 	 and the product �. As it can be seen, as 	 or � increases
the response time probability is improved. This is illustrated by the increase of �.
Clearly, the greater is �, the lower is ��. Such a trend is expected and it shows that
the effect of � on �� is similar for multi-servers (it was discussed in section 4.2.2.2
for single-server).

These results can be used for supporting design decisions. For instance, let us
define by 	 the aggregated service rate provided by 	 servers. Assume that a system
is designed to support an aggregated service rate of 	 � �	� requests/sec. Assuming
the service rates of Figure 4.6 and setting � � �, there are four possibilities of
system configuration using only multi-servers (configurations i) to iv) of Table4.4),
and configuration v) with a single server given in Table4.4.

Configuration 	

i) 12 12.5
ii) 6 25
iii) 3 50
iv) 2 75
v) 1 150

Table 4.4: Configurations for an aggregated service rate of 	 � �	� requests/sec.

The values4 of � are � � ����: ���: ���: ���: ���� corresponding to configurations
i), ii), iii), iv) and v) respectively. This result shows that a configuration with only 1
server provides the greatest �. Clearly, the response time is longer as the aggregated

4� for each configuration can be computed using the procedure Compute_K implemented in maple and
available in Appendix II.

���

���� �����$�	�	 #�	�	��� ����	��

service rate is shared among the servers. This fact explains why � decreases for
configurations that employ various servers with low service rates (e.g., � � ��� for
	 � �� and � ���	, compared to � � ��� for 	 � � and � �).

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450

c=1 c=2 c=3 c=4 c=5

P
 (

 R
c(

i)
<

 d
)

Number of requests

μd=75

 0.9
Κ=63 Κ=131 Κ=202 Κ=272 Κ=344

P
 (

 R
c(

i)
<

 d
)

μd=50

 0.9

c=1 c=2 c=3 c=4 c=5

Number of requests

Κ=40 Κ=84 Κ=130 Κ=176 Κ=223

P
 (

 R
c(

i)
<

 d
)

P
 (

 R
c(

i)
<

 d
)

 0.9 0.9

Number of requestsNumber of requests

μd=25μd=12.5

φ=0.9 φ=0.9

φ=0.9φ=0.9

c=1 c=2 c=3 c=4 c=5
c=5

c=1

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450
 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450

 0.1

 0.3

 0.5

 0.7

 1

 0 100

c=12

Κ=116

 0.1

 0.3

 0.5

 0.7

 0 100 100

c=6

Κ=126

Figure 4.6: � ������ � �� variation for multi-server queuing systems

������� ���� ����� �
 ��

Table 4.5 shows the impact of 	 and � on �� for different loads � (setting � to
1 to simplify the analysis) assuming the same aggregated service rate of 	 � �	� re-
quests/sec. The service unavailability is given in minutes per year for 	 � ���: �: �: �: ��
servers subject to various loads � � ����: ���: ���: ���	�. �� is computed using equation
(4.13) based on the value of � obtained from equation (4.12). Note that for � � ���,
there is a very small unavailability due to long response time.

According to the Table 4.5, it can be seen that the lowest �� is obtained for a single
powerful server (configuration v). For all configurations, �� is less than 	 min 30 sec
per year, which is not significant. Therefore, in this design study, all configurations

���

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

UA in minutes per year or days:hours:minutes
Configuration 	 � � ��� � � ��� � � ���	

i) 12 12.5 0 5.27 1948.03 = 00:32:28
ii) 6 25 0 1.13 917.32 = 00:15:17
iii) 3 50 0 0.53 667.95 = 00:11:07
iv) 2 75 0 0.50 616.85 = 00:10:16
v) 1 150 0 0.38 544.02 = 00:09:04

Table 4.5: �� for an aggregated service rate of 	 � �	� requests/sec.

support basically the same �� even for heavy loads � � ���. However, �� is
significantly higher for � � ���	. This fact suggests that �� decreases significantly
as the load decreases for all configurations.

������� �%���� �" �##	�#���� �	���� 	��� �
 ��

In order to compare the effect of the aggregated service rate on ��, let us take
another simple example. Assume that the system is able to provide an aggregated
service rate of 	 � 	� requests/sec. Table 4.6 illustrates the configurations with the
evaluated ��s. If we compare the first example (� �	�) to the second (� 	�),
it can be seen that the difference on �� among the configurations becomes negligible
as the aggregate service rate increases. Actually, when � � ���, �� is in the order
of hours per year for 	 � 	� and minutes per year for 	 � �	�. This fact is better
illustrated comparing Tables 4.5 and 4.6. Thus, for the same load � � ���, there is a
difference on �� varying from hours to 	 minutes per day (Table 4.65), but such
a difference does not exist when the aggregated service rate is 150 requests/sec (see
Table 4.5). This trend suggests that the effect of loads relatively heavies on �� is less
substantial as the aggregate service rate increases.

UA in days:hours:minutes per year
Configuration 	 � � ��� � � ��� � � ���	

i) 4 12.5 00:04:08 09:20:56 63:06:09
ii) 2 25 00:01:34 06:07:24 50:15:22
iii) 1 50 00:00:54 05:01:31 44:13:26

Table 4.6: �� for an aggregated service rate of 	 � 	� requests/sec.

5For � � ���, the obtained value of �� is acceptable (�� � � hours per year in the worst case)

���

����
��
������

������� �%���� �" �$�
�%��	 �" �	��	 	 �
 ��

Table 4.7 shows the impact of 	 for three values of service rates � ��	: 	�: �	�,
when the load is set to � � ���. It is important to note that increasing 	 is efficient for
reducing �� especially when the load is not heavy � 7 ���. For instance, if � �	
and � � ���, then �� is 49 days per year for 	 � � compared to (�� � �� minutes
per year) for 	 � �. It becomes more efficient as increases (e.g., for � 	�, �� �
days per year for 	 � � compared to �� � � minute per year for 	 � �).

	 � �	 � 	� � �	

1 49:07:22 04:20:29 00:10:16
2 06:07:24 00:01:09 0
3 00:15:51 0 0
4 00:01:38 0 0
5 00:00:07 0 0

Table 4.7: �� in days:hours:minutes per year for � � ���.

��� ����������

It is widely recognized that long response time has an impact on the overall service
availability. To our knowledge, however, previous research dealing with availability
modeling of web-based services has not taken into account the long response time
effects on service availability especially from the web user perspective.

In this chapter, we have introduced a simple analytic modeling approach for com-
puting unavailability due to long response time based on queueing systems theory
and Markov reward models. In order to provide a practical approach, closed-form
equations have been obtained introducing a flexible mathematical abstraction that is
general enough to capture the essence of service unavailability due to long response
time. One of the main advantages of closed-form equations is that they show explicitly
the relationships between the measures and the various parameters characterizing the
service. The developed approach can be applied to a wide range of systems needing
to provide service under time constraints.

In the context of this thesis, the sensitivity analysis results allow the web server
designers to draw some practical conclusions concerning the impact of various param-
eters on the service unavailability. For example, the results have shown that for "light"
loads (i.e., � � ���), the unavailability due to long response time is negligible. From
the web server designer perspective, the evaluations suggest that systems with low
service rate subject to a heavy load � � ��� tend to exhibit the highest unavailability

���

����	 �� �	��
	 �������������� ��	 �� ���� 	�����	 ���	

due to long response time. The effect of heavy loads on �� is less substantial as
the aggregate service rate increases. Also, the obtained results have suggested that
the difference on �� among the configurations becomes negligible as the aggregate
service rate increases. Finally, increasing the number of servers () has been efficient
for reducing �� especially for not heavy loads � 7 ���.

It has been shown that it is possible to provide a service satisfying a response time
requirement using only servers with low service rate, although this is not the optimal
configuration. In fact, we should employ either a powerful single server or various
servers preventing as much as possible the overloaded periods (� � ���). For multi-
servers systems, the response time is longer as the aggregated service rate is shared
among the servers. This fact explains why configurations that employ various servers
with low service rates are not the optimal configuration.

All the analyzes presented have focused on the unavailability due to long response
time, assuming that all the servers are available. We emphasize the fact that if we take
into account the failures of one or more servers, the impact of long response time on
service unavailability should be more significant. Although the optimal configuration
consists of a powerful single server, it represents a single point of failure under the
availability viewpoint. Therefore, an alternative configuration employing more than a
single server should provide a better tradeoff supporting degradable service under the
presence of failures.

Finally, it is recognized that the service unavailability in the context of web based
systems might be due to problems with the host (e.g., the remote host is too busy
handling other requests), problems with the underlying network (e.g., a proper route
to the site does not exist) or problems in the user host. In this chapter, our attention
was devoted to the service unavailability due to long response time concentrated at
the server side. In order to analyze the impact of the response time on the service
availability as perceived by users, it is necessary to include other components affecting
the time spent by a user request, e.g. the network delay (latency and transmission
time), etc.

���

Conclusion

L’utopie n’est pas ce qui est
irréalisable mais ce qui reste à
réaliser.

THIS thesis has addressed the problem of modeling and evaluating the availability
of web-based service using a pragmatic approach. Much research effort has been
devoted to the analysis of the causes of service unavailability. These studies

are based on measurements and monitoring of web sites. However, there is still a
need for analytical modeling approaches in order to provide a support to the web
designers for the availability evaluation of the web-based services. This thesis is aimed
at contributing to fill this gap, introducing a pragmatic analytical modeling approach
for analyzing the availability of such services. The developed models included multiple
sources of service unavailability taking into account, in particular i) hardware and
software failures affecting the servers, and ii) performance related failures that are
due to e.g. the overload of the servers, or that lead to very long response times
unacceptable from the user perspective.

'�
��������
�

The main contributions of the work presented in this thesis are summarized in the
following :

1) We have presented a hierarchical modeling framework that is aimed to provide
a pragmatic approach to the designers of web-based applications and systems in
order to analyze and quantify the availability of the service delivered to the users.
The proposed framework distinguishes four different abstraction levels, namely, user,
function, service and resources levels. Such decomposition enables the designers to
better understand how the various components of the web based application and
infrastructure might impact the quality of service delivered to the users from the avail-
ability point of view. A performability modeling approach combining Markov chains
and queuing models is proposed to evaluate the quantitative availability measures

105

and to carry out various sensitivity analyses considering different assumptions on the
architecture, the faults types, the recovery strategies, the users profile and the traffic
characteristics. It is noteworthy that although our research is specially focused on the
availability evaluation, the multi-level modeling framework presented in this thesis
can be applied to evaluate other dependability measures, e.g., reliability.

The main concepts and the feasibility of the proposed framework have been illus-
trated using the example of a travel agency implemented on the web. We have shown
that the proposed hierarchical framework provides a systematic and pragmatic model-
ing approach, that is necessary to be able to evaluate the dependability characteristics
of the target application at different levels of abstractions. Several sensitivity analyses
were presented to show the impact of user operational profile, the fault coverage and
the travel agency architecture. In particular, this example showed that different user
operational profiles might affect significantly the user perceived availability. Thus, it is
important to have an accurate characterization of the behavior of the users interacting
with the web site in order to have realistic estimation of the impact of failures from
the user perspective.

2) With respect to cluster-based architectures that are the leading architectures
for implementing large commercial web sites, we have developed detailed analytical
models presented in Chapter 3. Our approach builds on the traditional performability
modeling approach by providing closed-form equations for requests loss probability.
The requests loss probability can be caused by i) buffer overflow, ii) servers failures or,
iii) latency of failure detection. The evaluated availability measure includes such re-
quests loss probability as a source of web service unavailability extending the classical
notion of availability.

The developed models are well suited to analyze the impact on the web service
availability of two different recovery strategies, namely i) Non Client Transparent
(NCT) recovery strategy, for which all requests in progress as well as the arriving
requests directed to the failed server node before failure detection are lost; and ii)
Client Transparent (CT) recovery strategy, that in contrast ensures the migration of
all those requests to the non-failed nodes of the cluster, in a transparent way. Such
analysis is carried out using two simple traffic models (Markov Modulated Poisson
Process (MMPP) and Poisson) addressing the impact of traffic burstiness on web
service availability for both recovery strategies.

We have carried out several sensitivity analyses to study the impact on the service
availability of i) the number of server nodes in the cluster, ii) the failure rates of the
server nodes, iii) the failure detection rate, iv) the service rate, v) the traffic burstiness
and vi) the load. These analyses provide useful guidelines for the design of web-based
clusters, since they can be used for dimensioning the web architecture and making
the right tradeoffs for achieving high availability with acceptable performance levels.
An interesting result suggests that the support for requests migration (CT) has been
significantly efficient only for light loads (load being less than 0.3 for MMPP and
0.65 for Poisson). Concerning the impact of the traffic model on the results, we have
observed that the Poisson and MMPP models provide similar results only for light load
(less than 0.3 in our study). For higher load values significant differences between the

106

availability results associated to these models are observed. Also, we have shown that
for clusters that are relatively overloaded, the service availability supported by web
clusters is highly sensitive to web traffic burstiness.

3) Considering the service availability from the user perspective, the service is
generally perceived as degraded or even unavailable if the response time is too long
compared to what the users are expecting. Thus, it is important to take into account
the response time when evaluating the service availability. Unfortunately, this is not
usually the case. The analytical modeling approach for computing service unavailabil-
ity due to long response time and the sensitivity analysis results presented in Chapter 4
are aimed to fill this gap. The proposed approach relies on Markov reward models and
queuing theory. In particular, a new quantitative measure is defined to characterize the
service unavailability taking into account the maximum acceptable response time and
the required quality of service. The computation of the service unavailability measure
is based on the evaluation of the response time distribution. Closed-form equations
are derived for conditional response-time distribution and for the service unavailability
due to long response time, considering single and multi-server queueing systems.

In addition, sensitivity analysis results are presented to illustrate how designers
can draw some practical conclusions from the models when considering the service
unavailability due to long response time. For example, for the parameters evaluated in
our study, the results have shown that for "light" loads (i.e., � 7 ���), the unavailability
due to long response time is negligible. From the web designer perspective, the
evaluations suggest that systems with low service rate subject to a heavy load � � ���
tend to exhibit the highest unavailability due to long response time. It has been shown
that it is possible to provide a service satisfying a response time requirement using only
servers with low service rate, although this is not the optimal configuration. In fact, we
should employ either a powerful single server or various servers preventing as much
as possible the overloaded periods.

������ ��������

Several directions can be explored for future research to extend the contributions
presented in this thesis towards the availability modeling and evaluation of web-based
services. First, it is important that we apply our hierarchical multi-level modeling
to a more complex case study with detailed information describing the web based
application. Indeed, although the travel agency example presented in this thesis
illustrated the main concepts and the feasibility of our approach, a more realistic
example is needed to study the scalability and suitability of our approach in other
application contexts. In particular, with the emergence and the increasing use of the
web service standard developed by the web consortium, we should analyze how to
adapt our modeling framework in such context. In addition, it would be useful to
complement the models presented in this thesis with measurement-based analyses in
order to validate some of the modeling assumptions and sensitivity analysis results.

107

Also, it is very important to identify the factors that will shape the web traffic in the
future. Further developments are needed to analyze how the web traffic characteristics
might affect the user perceived availability. The representativity of the considered
web traffic models (Poisson and MMPP) has been the subject of several debates
[Muscariello et al. 2004, Chen et al. 2001, Iyengar et al. 1999, Morris & Lin 2000].
Extensions of our modeling results are needed to analyze other traffic models
that better reflect self-similarity and long range dependence (LRD) properties ob-
served in e.g. in the traces analyzed in [Paxson 1997, Crovella & Bestavros 1997,
Arlitt & Williamson 1997].

Finally, in this thesis, we have analyzed service availability taking into account
unavailability causes that might occur at the service provider sites due to accidental
faults. Extensions are needed to include failures due to intentional malicious faults.
For example, denial of service attacks constitute a serious problem preventing users to
access the provider sites. Failures occurring at the network side and at the client side
should also be included to analyze the end-to-end service availability. Such analysis is
likely to lead to complex models that may not be tractable if we use analytical models.
Simulation based approaches or approximate solutions should be more appropriate to
carry out such analyzes.

108

Appendix I

L’imagination est plus importante
que le savoir.

Albert Einstein

The objective of this appendix is twofold: i) to show the proofs of the obtained
equations related to the chapter 3; ii) to provide an implementation of the developed
models in chapter 3.

 ��� �������	��� ��� �� ������
��� $��	��� �����

Claim 1 Using the notations introduced in chapter 3, we obtain

����� �

�
���� ���

�� ���

�
�

�
��� ��;���� ;��

��� �������� ;�

�

Proof:

As shown in chapter 3, this loss scenario occurs only with the NCT recovery
strategy. The request loss probability caused by a transition from state � to state ��

corresponds to the loss of all requests (queued or in service), when a web server node
fails.

In order to determine the probability that a node failure affects the requests, let
������ be defined as the conditional probability that � requests are lost when a failure
occurs. By PASTA theorem [Wolff 1982], the probability of loss denoted ����� due to
server failure is equal to the steady state probability that there are � requests in the
queue �� when a failure occurs, given by

����� �

��
�
�

��������

109

where �� denotes the steady state probability for an M/M/1/b queue defined as
follows

�� �
�� �

�� ���
��

In order to determine ������, let us define the following random variables:

i) � denoting a node failure event with probability distribution (�� '����);

ii)
 denoting the total time spent in an M/M/1/b queue with probability density

function &�.� �
��.�'���

��
[Kleinrock 1975], given that there are � requests in the

system6.

Assuming that the random variables � and
 are independent, we need to calculate
the probability that one variable is smaller than another � �� 7
�, which captures the
probability that a node failure affects the queued (or in service) request(s). Thus,
given that there are � requests (at least 1 request � � � � �) in the system before the
server failure, the conditional probability of loss denoted ������ can be calculated by
conditioning on
 as follows

������ �

� �

�

� �� 7
�
 � .�&�.��.

�

� �

�

� �� 7 .�
��.�'���

��
�.

�

� �

�

��� '�����
��.�'���

��
�.

�

� �

�

��.�'���

��
�.�

� �

�

��.�'�������

��
�.

� ��

� �

�

.�'���

��
�.� ��

� �

�

.�'�������

��
�.

� ��

�

� ��

���

Therefore, we have

����� �

��
�
�

�
�� �

�� ���
��
��

�� �

� ��
���

�

6The total time spends in the system is the sum of � 	 � independent exponential random variables,
each with mean ���

110

Let ; be defined as ; �
�

� ��
,

����� �

�
�� �

�� ���

��
�

�

�
 ��
�
�

��� �

��
�
�

;��

�

����� �

�
�� �

�� ���

��
���� ���

��� ��
�

;���� ;��

���� ;�

�

Finally we obtain the following closed-form equation

����� �

�
���� ���

�� ���

�
�

�
��� ��;���� ;��

��� �������� ;�

�

Recall that an M/M/1/b queue system is stable for all values of load � �� � (see
[Bolch et al. 1998]). In the case of � � �, ����� should be computed using

����� �

�
�

�� �

�
�

� �
��� �

���� �
��� �

�

��� ����� �
��� �

�

�

,��	���
�����
 ���
� ���	�� ������
 ��"

,(� 	�����	� �	���#�

This section presents an implementation of the model developed in chapter 3
corresponding to the NCT recovery strategy. The function NCT computes the un-
availability measure �� introduced by equation (3.5) as a function of the number
of nodes * in the cluster (e.g., * � �����	 can be executed doing NCT([1:25]) in
the matlab environment). In fact, the model specification can be made by assigning
numerical values to the required parameters (see the example below). In this case,
the unavailability measure �� is computed for * varying from 1 to 25. The results
are written to the file UA.plot as well as the model specification is saved into the file
Model_Parameters. Also, if the matlab support for graphical generation is available, a
graphic is plotted to the standard output.

�������� �	
����

����� 	 �������

�� �� 		 �� � � 		 ��� � � 		 � � � 		 ���

����������� ���� � ! "�������

��#

111

�# 	 ������$%&�'�����(���

) *�#�' ��������!����

) %���"!' +!��

'!� #!	,-�) ��.����� ��� �����#

)
�#� /��"��� +!��

��	0�) ��.����� ��� �����#

) 1����� /���

1	,-�

) 2!�'��� +!��

3!��!	�4567---�) *�!� ���� �� �!�'��� 	 �- #!�� 	 567--- �����#�

) +��!�� +!��

�!�	�4,--�) *�!� ���� �� ���!�� 	 ,-- �����#�

) 8�������� +!��

!'�9!	�4,�) *�!� ���� �� #�������� 	 , �����#�

)
 	
�� �� �� ��#��

���
	�:'��3�9���

) ��������3 ���!#� ��!�� ��� ! �'����� �� �9� !"!�'! �'��� ��#�'

�!�
 	 �!�����!'
��

��!��	-

��!�;	-

) ��������3 ��� ! �'��� ��
 !"!�'! '� ��#��

��� �	-:

+9�� 	 3!��!4�!��<��

�!�
� 	 �!�����!'
=���

!��� 	 +9�� > �!�
4�!�
�� �

��!�� 	 ��!�� ? !����

�� � @	
=�� �

!��; 	 3!��! >
=�� > �!�
�

!��; 	 !��;4 !'�9! > �!�
� ��

!��; 	 +9�� > !��;�

112

��!�; 	 ��!�; ? !��;�

��#

��#

!��� 	 ��!�� ? ��!�;�

A��
 	 � 4 !����

A��
B�-	 3!��!4�!��<
 > A��
 > �!�
�

��� �	-:
=��

+9�� 	 3!��!4�!��<��

�!�
� 	 �!�����!'
=���

!��� 	 +9�� > �!�
4�!�
�� > A��
�

A��
B�
=�� 	 !����

!��� 	 !��� > 3!��! >
=�� � 4 !'�9!� �

A�� 8B�
=�� 	 !����

��#

) ��������3 ��� ! �'��� �� '��� ���#������# �� ��!��� �� �9�

) !"!�'! �'��� ��#�'

��� �	-:
=��

'!� #!B!�� 	 '!� #! 4
=���

) $��'��!���� �!����

�9�	'!� #!B!��4���

�� '!� #!B!�� 		 ���

A 	 �4 1?���

A- 	 A �

�'��

A 	 �=�9�� > �9�<1��

A 	 A 4 � = �9�<1?��� ��

A- 	 �=�9�� 4 � = �9�<1?��� ��

��#

C���
=��	 � = � = A �<
=�� ��)
=� 	 D �� �9� ��#�'

) A�� ! �'��� �� '��� ��� ��.����� �� ���������3

�� '!� #!B!�� 		 ���

!��; 	 3!��! >
=��� ? ���

!��7 	 ��4!��;�

!��0 	 14 1?���

!��6 	 � = !��7<1�

!��E 	 � = !��7�

113

!��5 	 !��64 !��E > 1 ? ����

!���- 	 !��7<, > !��5 �

CD 	 !��0 = !���-�

�'��

!��; 	 3!��! >
=��� ? ���

!��7 	 � = �9�<1?���

!��0 	 ��>�9�4!��;�

!��6 	 � = �9�<1�

!��E 	 � = !��0<1�

!��5 	 !��6 4 !��7� > �9��

!��F 	 � = �9�� > !��0<, > !��E�

!���- 	 �9� > !��7 > � = !��0� �

!���- 	 !��F4!���-�

CD 	 !��5 = !���-�

��#

C���B��B����
=��	 CD�

) ��.���� !���"!' #����3 #�������� ����

���� 	 '!� #!B!�� 4 !'�9! � �

!�� 	 '!� #!B!�� 4 '!� #!B!�� ? !'�9!� � �

!�� 	 !��<�����

!��, 	 � = � = A �<
=�=�� � ��

C���B8��������
=�� 	 !�� ? !��, �

��#

$ 	 A��
B�-�) ��� ! �'��� �9!� !'' ��#�� !�� ��!"!�'! '�

��� �	-:
=��

!�� 	 A��
B�
=�� > C���
=��� ? A��
B�
=��> C���B��B����
=����

!��, 	 A�� 8B�
=�� > C���B8��������
=���

$ 	 $? !�� ? !��,�

��#

$�
�	$�

��������#��)#)&,-�G���
�$��

��#) ��# �� �9� ���

��'����#��

� 	 - �

114

) ��# ��
�� ��������

) A'�����3 �9� ����'��

�'! �'�
�� �� �� ��#�� �� �9� �'����� ��

�'! �'�$%��

���'���
�� !��������� ���

9�'# ���

�'���:
�� $��:
����

(� 	�����	� �	���#�

This section presents an implementation of the model developed in chapter 3
corresponding to the CT recovery strategy. As in the previous section, the function
CT computes the unavailability measure �� defined by equation (3.5) as a function
of the number of nodes * in the cluster. The function implements the same fea-
tures as in NCT (i.e., results written to the file UA.plot, model specification saved in
Model_Parameters, graphic generation if matlab support is available).

�������� �	����

����� 	 �������

�� �� 		 �� � � 		 ��� � � 		 � � � 		 ���

����������� ���� � ! "�������

��#

�# 	 ������$%&�'�����(���

) *�#�' ��������!����

) %���"!' +!��

'!� #!	,-�) ��.����� ��� �����#

)
�#� /��"��� +!��

��	0�) ��.����� ��� �����#

) 1����� /���

1	,-�

) 2!�'��� +!��

3!��!	�4567---�) *�!� ���� �� �!�'��� 	 �- #!�� 	 567--- �����#�

) +��!�� +!��

115

�!�	�4,--�) *�!� ���� �� ���!�� 	 ,-- �����#�

) 8�������� +!��

!'�9!	�4,�) *�!� ���� �� #����� 	 , �����#�

)
 	
�� �� �� ��#��

���
	�:'��3�9��

) ��������3 ���!#� ��!�� ��� ! �'����� �� !"!�'! �'��� ��#�'

�!�
 	 �!�����!'
��

��!��	-

��!�;	-

) ��������3 ��� ! �'��� ��
 !"!�'! '� ��#��

��� �	-:

+9�� 	 3!��!4�!��<��

�!�
� 	 �!�����!'
=���

!��� 	 +9�� > �!�
4�!�
�� �

��!�� 	 ��!�� ? !����

�� � @	
=�� �

!��; 	 3!��! >
=�� > �!�
�

!��; 	 !��;4 !'�9! > �!�
� ��

!��; 	 +9�� > !��;�

��!�; 	 ��!�; ? !��;�

��#

��#

!��� 	 ��!�� ? ��!�;�

A��
 	 � 4 !����

A��
B�-	 3!��!4�!��<
 > A��
 > �!�
�

��� �	-:
=��

+9�� 	 3!��!4�!��<��

�!�
� 	 �!�����!'
=���

!��� 	 +9�� > �!�
4�!�
�� > A��
�

A��
B�
=�� 	 !����

!��� 	 !��� > 3!��! >
=�� � 4 !'�9!� �

A�� 8B�
=�� 	 !����

��#

) ��������3 ��� ! �'��� �� '��� ���#������# �� �9� ��!��� �� �9�

116

) !"!�'! �'��� ��#�'

��� �	-:
=��

'!� #!B!�� 	 '!� #! 4
=���

) $��'��!���� �!����

�9�	'!� #!B!��4���

�� '!� #!B!�� 		 ���

A 	 �4 1?���

A- 	 A �

�'��

A 	 �=�9�� >�9�<1��

A 	 A 4 � = �9�<1?��� ��

A- 	 �=�9�� 4 � = �9�<1?��� ��

��#

!�� 	'!� #!B!�� 4 '!� #!B!�� ? !'�9!��<1� �

��� 	 A- > !���

��� � 	 �:1

�� '!� #!B!�� 		 ���

A�� 	 �4 1?���

�'��

A� 	 �=�9�� > �9�<���

A� 	 A�4 � = �9�<1?��� ��

A�� 	 A��

��#

!�� 	'!� #!B!�� 4 '!� #!B!�� ? !'�9!��<1=�� �

!�� 	 !�� > A���

��� 	 ��� ? !���

��#

C���
=��	 � = � = A �<
=�� � �

!��, 	 � = � = A �<
=�=�� � �

C���B8��������
=�� 	 ��� ? !��, �

��#

$ 	 A��
B�-�) ��� ! �'��� �9!� !'' ��#�� !�� ��!"!�'! '�

��� �	-:
=��

!�� 	 A��
B�
=�� > C���
=���

!��, 	 A�� 8B�
=�� > C���B8��������
=���

$ 	 $? !�� ? !��,�

��#

117

$�
� 	 $�

��������#��)#)&,-�G���
�$��

��#) ��# �� ���

��'����#��

� 	 - �

) ��# �� �� ��������

) A'�����3 �9� ����'��

�'! �'�
�� �� �� ��#�� �� �9� �'����� ��

�'! �'�$%��

���'����� !��������� ���

9�'# ���

�'���:
�� $��:
����

118

Appendix II

That I have been able to
accomplish anything in
mathematics is really due to the
fact that I have always found it so
difficult.

David Hilbert

The objective of this appendix is twofold: i) to show the proofs of the obtained
equations related to the chapter 4; ii) to provide an implementation of the approach
introduced in chapter 4.

'�
�����
�	 !����
�� ���� �����������

Claim 2 Using the notations introduced in section 4.1, we have

� ������ � �� �

�
�� '��# , if � 7 	

�� � �
����

����'��#
�
�� ������&������#�

�������

�
� ������&��#�

������� , if � � 	

Proof:

As shown in section 4.3

� ������ � �� �

����
���

�� '��# , if � 7 	� #

�

�
��� ����

�
�

�	�� � 2���

 �
'����#�%�

�
�'��%�2 , otherwise

For � � 	, this equation can be written as follows

119

� ������ � �� � �� '��# � '���#
� #

�

����
�
�

�	��� 2���

 �
'�%������2 (4.14)

Let H��� be defined as

H��� �

� #

�

��
�
�

�	��� 2���

 �
'�%������2

The integration by parts of H��� leads to an induction formula from which we can
easily obtain a simple expression for H���

H��� �
�

�	� ��

�
�'�#����� �

��
�
�

�	���

 �

�
��

	

	� �

� #

�

����
�
�

�	��� 2���

 �
'�%������2

� I ��� �
	

	� �
H�� � ��

� I ��� �
	

	� �
I �� � �� � �

	

	� �
��I �� � �� � � � �� �

	

	� �
����I ��� � �

	

	� �
��I ���

�
�

�	� ��

��
'
�

�
	

	� �
���'

�
�'�#����� �

'�
�
�

�	���

 �

�
�

Replacing H��� in (4.14) with � � �� 	 and � � 	, we obtain

� ������ � �� � �� '��# �
'���#

	� �

����
'
�

�
	

	� �
�����'

�
�'�#����� �

'�
�
�

�	���

 �

�
�

� �� '��# � �
	

	� �
����

'���#

	� �

����
'
�

�
	� �

	
�'

�
�'�#����� �

'�
�
�

�	���

 �

�
�

Using the fact that
����
'
�

�
	� �

	
�' � 	

�
�� �

	� �

	
�����

�
, the expansion of this equa-

tion results in

120

� ������ � �� � �� '��# � �
	

	� �
����

'���#

	� �

�
	

�
�� �

	� �

	
�����

�	
'�#�����

�

�
�� 	

	� �
����

'���#

	� �

����
'
�

�
	� �

	
�'

'�
�
�

�	���

 �

�
�

� �� '��# � '��# � �
	

	� �
�����'��#

�

�
�� 	

	� �
����

'���#

	� �

����
'
�

�
	� �

	
�'

'�
�
�

�	���

 �

�
�

� �� �
	

	� �
�����'��# �

'���#

	� �

����
'
�

�
	

	� �
�����'

'�
�
�

�	���

 �
(4.15)

Note that the last term of the equation can be simplified through the inversion of
the two sums

����
'
�

�
	

	� �
�����'

'�
�
�

�	���

 �
� �

	

	� �
����

����
�
�

�	���

 �

������
'
�

�
	� �

	
��'

� �
	

	� �
����

����
�
�

��	� �����

 �

������
'
�

�
	� �

	
�'

Simplifying
������
'
�

�
	� �

	
�' as done in the previous step, we will have

����
'
�

�
	

	� �
�����'

'�
�
�

�	���

 �
� 	�

	

	� �
����

����
�
�

��	� �����

 �

�
�� �

	� �

	
�������

�

Applying this result in the equation (4.15) and rearranging the terms, we obtain
the following equation

� ������ � �� � �� �
	

	� �
�����'��#

�
��� '�������#

����
�
�

��	� �����

 �

�
�� '���#

����
�
�

�	���

 �

Finally, using the incomplete gamma function, this equation can be rewritten as
follows

121

� ������ � �� �

�
�� '��# , if � 7 	

�� � �
��� �

����'��#
�
�� ������&������#�

�������

�
� ������&��#�

������� , if � � 	

�

�
����	���	��� ��� �� 	�
� �����
�� ���� $�� ��	��+������ .�����
� ������

Claim 3 Using the notations introduced in section 4.1, we have

�� �

����
���

�� ��
��� � �: 	��'��

��� � ��
, if � � 	� �

�� ��

�
��	: 	��'��

��	�
�

�	���

	�

��� �"����

�� �

�
, if � � 	

Proof:

Assuming that the sequence of interarrival times ��: ��: � � � and the sequence of
service times >�: >�: � � � are described by a set of independent and identical exponen-
tial random variables, this system is a traditional M/M/c in which ���	� the probability
that the system has � requests at steady-state is well-known [Kleinrock 1975]

���	� �

���
��

��
�	���

��
, if � � 	� �

���
��	�

	�
� , if � � 	

where � � �
�� , with

�� �

����
�
�

�	���

4�
� �

�

�� �
��
�	���

	�
�

���

By definition � �

"�
�
�

���	�, and using the fact that

�
� � E �

E�

��
� � � ��

E�

 �

�
�

�� � �: E�'$

�� � ��

If � � 	� �

� � ��

�
� � 	��

�	���

��
� � � ��

�	��"

��

�
� ��

��� � �: 	��'��

��� � ��

122

If � � 	 then

� � ��

�
� � 	��

�	���

��
� � � ��

�	�����

�	� ���

�
� ��

	�

	�

"�
�
�

��

�

� � ��

�
��	: 	��'��

��	�

�
� ��

�
�	���

	�

�� �"���

�� �

�

By definition �� � ��� which yields in the following closed-form equation

�� �

����
���

�� ��
��� � �: 	��'��

��� � ��
, if � � 	� �

�� ��

�
��	: 	��'��

��	�
�

�	���

	�

��� �"����

�� �

�
, if � � 	

Using the fact that 	� � 5=, the last equation can be written as follows

�� �

����
���

�� ��
��� � �: 5=�'� �

��� � ��
, if � � 	� �

�� ��

�
��	: 5=�'� �

��	�
�

�5=��

	�

��� �"����

�� �

�
, if � � 	

The development is similar for an M/M/c/b queueing system for � 7 � with

�� �

��

�
�

�	���

4�
�

�	���

	�

����
�
�

��

���

�

,��	���
�����
 ���
� ���	� ������
 /�"

(�
�����
�� -���
� ��%� .��	������

Using the same notation introduced in section 4.1, the procedure Resp_Time imple-
ments the response time probability as a function of the number of requests � given
by equation (4.12). In fact, it requires the specification of the parameters �, 	 and
31". The response time probability is computed for � varying from 1 until max. The
results are written to the file response-time.plot. This computing is performed with a
precision of 30 digits when calculating with floating-point numbers. The precision is
fundamental especially when calculating the gamma function. In fact, maple allows to
specify a precision which led us to implement this model in maple instead of matlab.
The default value of digits in maple is 10.

123

+���B���� :	 �����#����!��

'��!' ��A��#�

�# :	 �����H��������=����&�'��H� I+��J��

��� � ���� � �� �!�

#�

A :	 �"!'��;-�� = �4�=���<�?�� > ���=�#�

>� =K%**%�?���=��>�#�4K%**%�?�� � = K%**%�?���>�#�4K%**%�?����

��������#�H)#)&;-�G�H���A��

�#�

��'����#��

��#�

The procedure Compute_K computes the parameter � based on the response time
probability. It is required to specify �, 	 and the quality of service requirement �. The
number of requests � increases, as long as the probability denoted by � is greater than
�. This procedure returns the value of � writing the response time probability results
to the file response-time.plot.

�������BL :	 �����#����9��

'��!' ��A��#�

A :	 ��

�# :	 �����H��������=����&�'��H� I+��J��

��� � ���� � � � (9�'� A M �9�

#�

A :	 �"!'��;-�� = �4�=���<�?�� > ���=�#�

>� =K%**%�?���=��>�#�4K%**%�?�� � = K%**%�?���>�#�4K%**%�?����

��������#�H)#)&;-�G�H���A��

�#�

��'����#��

������ �=,��

��#�

/
������������ ��� �� ��
# 	���
� ��%�

The procedure UA_MMc computes the service unavailability due to long response
time �� for an M/M/c queueing system given by equation (4.13). All the parameters
follow the notation introduced in section 4.1.

$%B**� :	 �������9���#��9��

'��!' L� $%� A-�

L :	 �������BL�#����9���

A- :	 A-B**����9���

124

�� L @ �� �9��

$% :	 � = A->K%**%L?���>�9��4K%**%L?���>����>�9�����

�'��

���� :	 K%**%���>�9��4K%**%���>����>�9���

����, :	 �>�9��<�4�N > � = �9�<L=�?���4� = �9����

$% :	 � = A->���� ? ����,��

��#�

������$%��

��#�

The procedure P0_MMc computes �� for an M/M/c queueing system.

A-B**� :	 �������9��

'��!' �� ���� ��

��� :	 -�

��� � ���� - �� �=��

#�

� :	 �>�9��<�4�N�

��� :	 ��� ? ��

�#�

� :	 �>�9��<�4�N�

� :	 � > �4�=�9����

� :	 � ? ����

� :	 �4��

���������

��#�

The procedure P0_MMcb computes �� for an M/M/c/b queueing system, where �
denotes the buffer size. In order to implement �� for an M/M/c/b queueing system, it
is worth to note that we need to change the procedure UA_MMc adding the parameter
� and replacing the call to P0_MMc by P0_MMcb.

A-B**� :	 �������9�� �

'��!' �� ���� ���,� ��

��� :	 -�

���, :	 -�

��� � ���� - �� �

#�

��� :	 ��� ? �>�9��<�4�N�

�#�

��� � ���� � �� =��

#�

125

���, :	 ���, ? �9�<��

�#�

� :	 �>�9��<�4�N�

� :	 ��� ? � > ���, ��

� :	 �4��

���������

��#�

126

Bibliography

[Aghdaie & Tamir 2001] Aghdaie, N. & Tamir, Y. (2001). Client-Transparent Fault-
Tolerant Web Service. IEEE International Performance, Computing, and Communica-
tions Conference, pages 209–216.

[Almeida et al. 1996] Almeida, V., Bestavros, A., Crovella, M., & de Oliveira, A.
(1996). Characterizing reference locality in the WWW. Conference on Parallel and
Distributed Information Systems (PDIS), pages 92–103.

[Andersson et al. 2003] Andersson, M., Cao, J., Kihl, M., & Nyberg, C. (2003). Perfor-
mance modeling of an apache web server with bursty arrival traffic. International
Conference on Internet Computing.

[Arlat et al. 1993] Arlat, J., Costes, A., Crouzet, Y., Laprie, J. C., & Powell, D. (1993).
Fault injection and dependability evaluation of fault-tolerant systems. IEEE Trans-
actions on Computers, 8(42):913–923.

[Arlitt & Williamson 1997] Arlitt, M. & Williamson, C. (1997). Internet Web servers:
Workload characterization and implications. IEEE/ACM Transations on Networking,
5(5):631–644.

[Aversa & Bertavros 2000] Aversa, L. & Bertavros, A. (2000). Load balancing a cluster
of web servers using distributed packet rewriting. IEEE International Performance,
Computing and Communication Conference, pages 24–29.

[Avizienis et al. 2004] Avizienis, A., Laprie, J. C., & Randell, B. (2004). Dependability
and its threats: A taxonomy. In 18th IFIP World Computer Congress, pages 91–120.

[Balakrishnan & Trivedi 1995] Balakrishnan, M. & Trivedi, K. S. (1995). Component-
wise decomposition for an efficent reliability solution of complex models of system
with repairable components. International Symposium on Fault-Tolerant Computing
(FTCS), pages 259–268.

[Balbo et al. 1988] Balbo, G., Bruell, S., & Ghanta, S. (1988). Combining queuing
networks and GSPNs for the solution of complex models of system behaviour. IEEE
Transaction on Computers, 37:1251–1268.

127

[Baskett et al. 1975] Baskett, F., Chandy, K., Muntz, R., & Palacios, F. (1975). Open,
Closed, and Mixed Networks of Queues with Different Classes of Customers. Jour-
nal of ACM, 22(2).

[Berson et al. 1991] Berson, S., de Souza e Silva, E., & Muntz, R. (1991). A Method-
ology for the Specification and Generation of Markov Models. Numerical Solution
of Markov Chains, pages 11–36.

[Betous-Almeida & Kanoun 2004] Betous-Almeida, C. & Kanoun, K. (2004). Con-
struction and stepwise refinement of dependability models. Performance Evalua-
tion, 1(56):277–306.

[Bobbio & Trivedi 1986] Bobbio, A. & Trivedi, K. (1986). An aggregation technique
for the transient analysis of stiff markov chains. IEEE Transactions on Computers,
9(35):803–814.

[Bolch et al. 1998] Bolch, G., Greiner, S., de Meer, H., & Trivedi, K. S. (1998). Queue-
ing Networks and Markov Chains. John Willey and Sons, Inc.

[Bondavalli et al. 2001a] Bondavalli, A., Cin, M. D., Latella, D., Majzik, I., Pataricza,
A., & Savoia, G. (2001a). Dependability analysis in the early phases of uml
based system design. In International Journal of Computer Systems - Science and
Engineering, volume 16, pages 265–275.

[Bondavalli et al. 2000] Bondavalli, A., Mura, I., Chiaradonna, S., Filippini, R., Poli,
S., & Sandrini, F. (2000). DEEM: a Tool for the Dependability Modeling and
Evaluation of Multiple Phased Systems. In International Conference on Dependable
Systems and Networks, pages 231–236. IEEE Computer Society Press.

[Bondavalli et al. 1999] Bondavalli, A., Mura, I., & Trivedi, K. S. (1999). Dependabil-
ity modeling and sensitivity analysis of scheduled maintenance systems. European
Dependable Computing Conference EDCC, pages 7–23.

[Bondavalli et al. 2001b] Bondavalli, A., Nelli, M., Simoncini, L., & Mongardi, G.
(2001b). Hierarchical modeling of complex control systems : dependability analy-
sis of a railway interlocking. Journal of Computer System Science and Engineering,
4(16):249–261.

[Bowen et al. 2000] Bowen, N., Sturnam, D., & Liu, T. T. (2000). Towards contin-
uous availability of internet services through availability domains. International
Conference on Dependable Systems and Networks (DSN), pages 559–566.

[Brewer 2001] Brewer, E. (2001). Lessons from Giant-Scale Service. IEEE Internet
Computing, pages 46–55.

[Brisco 1995] Brisco, T. (1995). DNS support for load balancing . IETF RFC 1794.

[Buzen 1973] Buzen, J. P. (1973). Computational Algorithms for Closed Queuing
Networks with Exponential Servers. Communications ACM, 16(9).

128

[Cao et al. 2003] Cao, J., Andersson, M., Nyberg, C., & Kihl, M. (2003). Web
performance modeling using an m/g/1/k*ps queue. International Conference on
Telecommunications.

[Carmo et al. 1998] Carmo, R., de Carvalho, L., de Souza e Silva, E., Diniz, M.,
& Muntz, R. (1998). Performance/Availability Modeling with the TANGRAM-II
Modeling Environment. Performance Evaluation, 33:45–65.

[Carrera & Bianchini 2001] Carrera, E. V. & Bianchini, R. (2001). Efficiency vs. porta-
bility in cluster-based network services. Symposium on Principles and Practice of
Parallel Programming.

[Carrera & Bianchini 2005] Carrera, E. V. & Bianchini, R. (2005). Press: a clustered
server based on user-level communications. IEEE Transactions on Parallel and
Distributed Systems, 16(5):385–395.

[C.Béounes et al. 1993] C.Béounes, M.Aguéra, J.Arlat, S.Bachmann, C.Bordeau, J.-
E.Doucet, K.Kanoun, J.C.Laprie, S.Metge, de Souza, J., D.Powell, & P.Spiesser
(1993). SURF-2: A Program for Dependability Evaluation of Complex Hardware
and Software Systems. In 23th IEEE International Symposium on Fault-Tolerant
Computing, pages 668–673. IEEE Computer Society Press.

[Chandra et al. 2001] Chandra, B., Dahlin, M., Gao, L., & Nayate, A. (2001). End-to-
end WAN Service Availability. Third Usenix Symposium on Internet Technologies and
Systems (USITS01).

[Chen et al. 2001] Chen, X., Mohapatra, P., & Chen, H. (2001). An Admission Control
Scheme for Predictable Server Response Time Web Accesses. IEEE World Web
Conference.

[Ciardo et al. 1989] Ciardo, G., Muppala, J., & Trivedi, K. (1989). SPNP: Stochastic
Petri Net Package. In International Workshop on Petri Nets and Performance Models,
pages 142–151. IEEE Computer Society Press.

[Couvillion et al. 1991] Couvillion, J., Freire, R., Johnson, R., Obal, W., Qureshi, M.,
Rai, M., Sanders, W., & Tvedt, J. (1991). Performability modeling with UltraSAN.
IEEE Software, 5(8):69–80.

[Crovella & Bestavros 1997] Crovella, M. & Bestavros, A. (1997). Self-Similarity in
World Wide Web Traffic: Evidence and Possible Causes. IEEE/ACM Transactions on
Networking, 6(5):835–846.

[Dahlin et al. 2003] Dahlin, M., Chandra, B., Gao, L., & Nayate, A. (2003). End-to-
end wan service availability. ACM/IEEE Transactions on Networking, 11(2).

[de Souza e Silva & Gail 1996] de Souza e Silva, E. & Gail, H. R. (1996). The uni-
formization method in performability analysis. Technical Report RC20383, IBM.

129

[Dilley et al. 2001] Dilley, J., Friedrich, R., Jin, T., & Rolia, J. (2001). Web server
performance measurements and modleing techniques. Performance evaluation,
33:5–26.

[Dutuit & Rauzy 1998] Dutuit, Y. & Rauzy, A. (1998). A guided tour of minimal cut-
sets handling by means of binary decision diagrams. Probabilistic Safety Assessment
Conference (PSA), 2:55–62.

[Dutuit & Rauzy 2000] Dutuit, Y. & Rauzy, A. (2000). Efficient algorithms to assess
components and gates importances in fault tree analysis. Reliability Engineering
and System Safety, 2(72):213–222.

[E. Anderson & Brewer 1996] E. Anderson, D. P. & Brewer, E. (1996). The Magi-
cRouter, an application of fast packet interposing. http://www.cs.berkeley.edu.

[Elwalid & Mitra 1993] Elwalid, A. & Mitra, D. (1993). Effective Bandwidth of Gen-
eral Markovian Traffic Sources an Amission Control of High-Speed Networks. IEEE
ACM Transactions on Networking, 1(3):329–343.

[Firoiu et al. 2002] Firoiu, V., Boudec, J. L., Towsley, D., & Zhang, Z. (2002). Theories
and Models for Internet Quality of Service. IEEE Proceedings.

[Florin & Natkin 1985] Florin, G. & Natkin, S. (1985). Les réseaux de Petri stochastic.
Technique et Science Informatiques, 4(1):143–160.

[Fota et al. 1999] Fota, N., Kaâniche, M., & Kanoun, K. (1999). Dependability evalua-
tion of an air traffic control computing system. Performance Evaluation, 4(34):553–
573.

[Frost & Melamed 1994] Frost, V. S. & Melamed, B. (1994). Traffic modeling for
telecommunications network. IEEE Communications Magazine, 32(3):70–81.

[Gama et al. 2004] Gama, G., Nagaraja, K., Bianchini, R., Martin, R. P., Meira, W., &
Nguyen, T. D. (2004). State maintenance and its impact on the performability of
multi-tiered internet services. Symposium on Reliable Distributed Systems - SRDS,
pages 146–158.

[Garg et al. 1999] Garg, S., Huang, Y., Kintala, C., Trivedi, K., & Yajnik, S. (1999).
Performance and Reliability Evaluation of Passive Replication Schemes in Applica-
tion Level Fault Tolerance. IEEE Dependable Systems and Networks.

[Goyal et al. 1986] Goyal, A., Carter, W., de Souza e Silva, E., Lavenberg, S., & Trivedi,
K. (1986). The system availability estimator. In 16th IEEE International Symposium
on Fault-Tolerant Computing, pages 84–89. IEEE Computer Society Press.

[Grassmann et al. 1985] Grassmann, W., Taksar, M., & Heyman, D. (1985). Regen-
erative Analyses and Steady-State Distribution for Markov Chains. Operations
Research, (33):1107–1116.

130

[Gross & Harris 1985] Gross, D. & Harris, C. (1985). Fundamentals of Queueing
Theory. John Wiley and Sons - New York.

[Hariri & Mutlu 1991] Hariri, S. & Mutlu, H. B. (1991). A hierarchical modeling
of availability in distributed systems. IEEE Conference on Distributed Computing
Systems, pages 190–197.

[Haverkort et al. 2001] Haverkort, B., Marie, R., Rubino, G., & Trivedi, K. (2001).
Performability Modelling - Techniques and Tools, volume I. Wiley.

[Heidelberger 1995] Heidelberger, P. (1995). Fast simulation of rare events in queue-
ing and reliability models. ACM Transactions on Modeling and Computer Simulation,
1(5):43–85.

[Heidelberger et al. 1992] Heidelberger, P., Nicola, V., & Shahabuddin, P. (1992). Si-
multaneous and efficient simulation of highly dependable systems with different
underlying distributions. Winter Simulation Conference, (4):137–164.

[Heyman & Lucantoni 2003] Heyman, D. P. & Lucantoni, D. (2003). Modeling mul-
tiple ip traffic streams with rate limits. IEEE/ACM Transactions on Networking,
11(6):948–958.

[Howard 1971a] Howard, R. (1971a). Dynamic probabilistic systems: Semi-markov
and decision processes. Wiley, New York.

[Howard 1971b] Howard, R. A. (1971b). Dynamic Probabilistic Systems, volume
Volume I - Markov Models. Wiley.

[Inc 2000] Inc, C. S. (2000). Failover Configuration for LocalDirector.
http://www.cisco.com.

[Ingham et al. 2000] Ingham, D. B., Shrivastava, S. K., & Panzieri, F. (2000). Con-
structing dependable web services. IEEE Internet Computing, pages 25–33.

[Iyengar et al. 2000] Iyengar, A., Challenger, J., Dias, D., & Dantzig, P. (2000). High-
performance web site design techniques. IEEE Internet Computing, pages 17–26.

[Iyengar et al. 1999] Iyengar, A. K., Squillante, M. S., & Zhang, L. (1999). Analysis
and Characterization of Large-Scale Web Server Access Patterns and Performance.
IEEE World Wide Web Conference, pages 85–100.

[Jackson 1963] Jackson, J. (1963). Jobshop-Like Queuing Systems. Management
Science, 1(10):131–142.

[Kalyanakrishnan et al. 1999] Kalyanakrishnan, M., Iyer, R. K., & Patel, J. U. (1999).
Reliability of Internet Hosts: a Case Study from the End User’s Perspective. Com-
puter Networks, (31):47–57.

[Kaâniche et al. 2003a] Kaâniche, M., Kanoun, K., & Martinello, M. (2003a). User-
Perceived Availability of a Web Based Travel Agency. Proceeding of IEEE Interna-
tional Conference on Dependable Systems and Networks (DSN), pages 709–718.

131

[Kaâniche et al. 2001] Kaâniche, M., Kanoun, K., & Rabah, M. (2001). A framework
for modeling the availability of e-business systems. International Conference on
Computer Communications and Networks (ICCCN), pages 40–45.

[Kaâniche et al. 2003b] Kaâniche, M., Kanoun, K., & Rabah, M. (2003b). Multi-
level modeling approach for the availability assessment of e-business applications.
Software-Practice and Experience, (33):1323–1341.

[Kaâniche et al. 2002] Kaâniche, M., Simanche, C., Kanoun, K., & Martinello, M.
(2002). SoS Dependability Assessment: Modelling Example and Measurement-
based experiments. Deliverable CSAD3.

[Kanoun & Borrel 2000] Kanoun, K. & Borrel, M. (2000). Fault-tolerant system de-
pendability - explicit modeling of hadware and software component-interactions .
IEEE Transactions on Reliability, 4(49):363–376.

[Kanoun & Powell 1991] Kanoun, K. & Powell, D. (1991). Dependability evaluation
of bus and ring communication topologies for the Delta-4 distributed fault-tolerant
architecture. Symposium on Reliable Distributed Systems (SRDS), pages 130–141.

[Kleinrock 1975] Kleinrock, L. (1975). Queueing Systems, volume I - Theory. Wiley.

[Labovitz et al. 1999] Labovitz, C., Ahuja, & Jahanian, F. (1999). Experimental study
of internet stability and backbone failures. IEEE International Symposium on Fault-
Torelant Computing Systems.

[Laprie et al. 1996] Laprie, J., Arlat, J., Blanquart, J., A.Costes, Crouzet, Y., Deswarte,
Y., Fabre, J., Guillhermain, H., Kaâniche, M., Kanoun, K., Mazet, C., Powell, D.,
Rabéjac, C., & Thévenod, P. (1996). Guide de la sûrete de fonctionnement. Cépaduès-
Éditions, Toulouse.

[Laprie 1983] Laprie, J. C. (1983). Trustable evaluation of computer systems de-
pendability. In Applied Mathematics and Performance/Reliability Models of Computer
Systems. Invited contribution to the International Workshop - Pisa.

[Laprie 1995] Laprie, J. C. (1995). Dependable computing: Concepts, limits, chal-
lenges. In 25th IEEE International Symposium on Fault-Tolerant Computing - Special
Issue, pages 42–54. IEEE Computer Society Press.

[LeBoudec 1998] LeBoudec, Y. (1998). Application of network calculus to guarran-
teed services networks. IEEE Transactions on Information Theory, 44:1087–1096.

[Luo & Yang 2002] Luo, M. Y. & Yang, C. S. (2002). Enabling fault resilience for web
services. Computer Communications, (25):198–209.

[Mainkar 1997] Mainkar, V. (1997). Availability Analysis of Transaction Processing
Systems based on User-Perceived Performance. Proceedings of 16th Symposium on
Reliable Distributed Systems, pages 10–17.

132

[Majzik & Huszerl 2002] Majzik, I. & Huszerl, G. (2002). Towards dependability
modeling of ft-corba architectures. In EDCC-4: Proceedings of the 4th European
Dependable Computing Conference on Dependable Computing, volume 2485, pages
121–139.

[Martinello et al. 2003] Martinello, M., Kaâniche, M., & K.Kanoun (2003). Web Ser-
vice Availability : Impact of Error Recovery. International Conference on Computer
Safety, Reliability and Security (Safecomp), pages 165–178.

[Martinello et al. 2005] Martinello, M., Kaâniche, M., & K.Kanoun (2005). Web Ser-
vice Availability : Impact of Error Recovery and Traffic Model. Journal of Reliability
Engineering and System Safety (RESS), 89(1):6–16.

[Meehan 2000] Meehan, M. (2000). Upate: System Outages Top Online Brokerage
Exec’s Concerns. Computerworld.

[Menascé et al. 2001] Menascé, D., Barbara, D., & Dodge, R. (2001). Preserving qos
of e-commerce sites through self-tuning: a performance model approach. ACM
conference on e-commerce, pages 224–234.

[Menascé & Almeida 2000] Menascé, D. A. & Almeida, V. A. F. (2000). Scaling for
E-Business: Technologies, Models, Performance and Capacity Planning. Prentice Hall
Inc.

[Menascé & Almeida 2002] Menascé, D. A. & Almeida, V. A. F. (2002). Capacity
Planning for Web Services. Prentice Hall Inc.

[Merzbacher & Patterson 2002] Merzbacher, M. & Patterson, D. A. (2002). Measuring
End-User Availability of the Web:Practical Experience. Dependable Computing and
Network.

[Meyer 1980] Meyer, J. F. (1980). On evaluating the performability of degradable
computing systems. IEEE Journal on Selected Areas in Communications, 29(8):720–
731.

[Meyer 1982] Meyer, J. F. (1982). Closed-form solutions of performability. IEEE
Transactions on Computing, 7(31):648–657.

[Morris & Lin 2000] Morris, R. & Lin, D. (2000). Variance of aggregated web traffic.
IEEE Infocom.

[Muppala et al. 1992] Muppala, J., Trivedi, K., Woolet, S., & Haverkort, B. R.
(1992). Composite performance and dependability analysis. Performance Evalu-
ation, 14(3):197–216.

[Muppala et al. 1991] Muppala, J., Woolet, S., & Trivedi, K. (1991). Real-time sys-
tems performance in the presence of failures. IEEE Computer, pages 37–47.

133

[Muscariello et al. 2004] Muscariello, L., Mellia, M., Meo, M., Marsan, M. A., &
Cigno, R. (2004). Markov models of internet traffic and a new hierarchical MMPP
model. IEEE International Conference on Communications.

[Nagaraja et al. 2005] Nagaraja, K., Gama, G., Bianchini, R., Martin, R., Meira, W., &
Nguyen, T. (2005). Quantifying the performability of cluster-based services. IEEE
Transactions on Parallel and Distributed Systems, 16(5):456–467.

[Nagaraja et al. 2003] Nagaraja, K., Li, X., Zhang, B., Bianchini, R., Martin, R., &
Nguyen, T. (2003). Using fault injection and modeling to evaluate the performa-
bility of cluster-based services. In Proceedings of the Usenix Symposium on Internet
Technologies and Systems.

[Nicola 1990] Nicola, V. (1990). Lumpability of Markov Reward Models. Technical
report IBM T.J. Watson Research Center.

[Nicola et al. 1990] Nicola, V., Nakajama, M., Heidelberger, P., & Goyal, A. (1990).
Fast Simulation of Dependability Models with General Failure, Repair and Mainte-
nace Processes. IEEE International Symposium on Fault-Torelant Computing Systems.

[Oppenheimer et al. 2003] Oppenheimer, D., Ganapathi, A., & Patterson, D. A.
(2003). Why do Internet services fail, and what can be done about it? Usenix
Symposium on Internet Technologies and Systems (USITS).

[Oppenheimer & Patterson 2002] Oppenheimer, D. & Patterson, D. A. (2002). Archi-
tecture and Dependability of Large-Scale Internet Services. IEEE Internet Comput-
ing, pages 41–49.

[Pataricza 2002] Pataricza, A. (2002). From the general resource model to a general
fault modeling paradigm. In Jürjens, J., Cengerale, M. V., Fernandez, E. B., Rumpe,
B., & Sandner, R., editors, Critical Systems Development with UML- Proceedings of
the UML’02 Workshop, volume TUM-I0208, pages 163–171. Technische Universität
München.

[Patterson et al. 2002] Patterson, D. A., Brown, A., Broadwell, P., Candea, G., Chen,
M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D.,
Sastry, N., Tetzlaff, W., Traupman, J., & Treuhaft, N. (2002). Recovery Oriented
Computing (ROC): Motivation, Definition, Techniques, and Case Studies. UC
Berkeley Computer Science Technical Report.

[Paxson 1997] Paxson, V. (1997). Measurements and Analysis of End-to-End Internet
Dynamics. PhD thesis, University of California.

[Periorellis & Dobson 2001] Periorellis, P. & Dobson, J. (2001). The Travel Agency
Case Study. DSoS Project IST-1999-11585.

[Popstojanova & Trivedi 2000] Popstojanova, K. G. & Trivedi, K. S. (2000). Stochastic
Modleing Formalism for Dependability, Performance and Performability. In Perfor-
mance Evaluation: Origins and Directions, pages 403–422. Springer-Verlag.

134

[Rabah & Kanoun 2003] Rabah, M. & Kanoun, K. (2003). Performability evaluation
of multipurpose multiprocessor systems: the separation of concers. IEEE Transac-
tions on Computers, 2(52):223–236.

[Reeser & Hariharan 2000] Reeser, P. & Hariharan, R. (2000). Analytic Model of Web
Servers in Distributed Environments. Proceedings of Second International Workshop
on Software an Performance, pages 158–167.

[Reiser & Lavenberg 1980] Reiser, M. & Lavenberg, S. (1980). Mean-value Analysis
of Closed Multi-Chain Queuing Networks. Journal ACM, 27(2).

[Roche & Schabes 1997] Roche, E. & Schabes, Y., editors (1997). Finite-State Lan-
guage Processing. Bradford Book. MIT Press, Cambridge, Massachusetts, USA.

[Rugina 2005] Rugina, A. E. (2005). System dependability evaluation using aadl
(architecture analysis and design language). Rencontres Jeunes Chercheurs en In-
formatique Temps Réel (RJCITR).

[Rugina et al. 2005] Rugina, A. E., Kanoun, K., Kaâniche, M., & Guiochet, J. (2005).
Dependability modelling of a fault tolerant duplex system using aadl and gspns.
Rapport du LAAS, (05315).

[Shin & Krishna 1986] Shin, K. & Krishna, C. M. (1986). New performance measures
for design and evaluation of real-time multiprocessors. Computer System Science
and Engineering, 4(1):179–192.

[Signoret et al. 1998] Signoret, J. P., Lajeunesse, S., Point, G., Thomas, P., Griffault,
A., & Rauzy, A. (1998). The altarica language. European Safety and Reliability
Association Conference (ESREL).

[Simache 2004] Simache, C. (2004). Évaluation de la sûrete de fonctionnement
de systèmes Unix et Windows à partir de données opérationnelles : méthode et
application. PhD Thesis.

[Simache & Kaâniche 2002] Simache, C. & Kaâniche, M. (2002). Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC). IEEE Computer Society,
pages 311–325.

[Slothouber 1996] Slothouber, L. P. (1996). A model of web server performance.
International World Wide Web Conference.

[Smith et al. 1988] Smith, R., Trivedi, K., & Ramesh, A. (1988). Performability Anal-
ysis: Measures, An Algorithm and a Case Study. IEEE Transactions on Computers,
C-37(4):406–417.

[Tang et al. 2004] Tang, D., Kumar, D., Duvur, S., & Torbjornsen, O. (2004). Availabil-
ity measurement and modeling for an application server. IEEE Dependable Systems
and Networks.

135

[Trivedi et al. 1994] Trivedi, K., Haverkort, B., Rindos, A., & Mainkar, V. (1994).
Techniques and tools for reliability and performance evaluation: Problems and
perspectives. Lecture Notes in Computer Science, pages 1–24.

[Trivedi et al. 1992] Trivedi, K., Muppala, J., Woolet, S., & Haverkort, B. (1992).
Composite performance and dependability analysis. Performance Evaluation,
14:197–215.

[Trivedi 2002] Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queu-
ing, and Computer Science Applications. John Willey and Sons, Inc.

[Trivedi et al. 2003] Trivedi, K. S., Ramani, S., & Fricks, R. (2003). Recent advances
in modeling response-time distributions in real-time systems. Proceeding of the
IEEE, 91(7):1023–1037.

[Urgaonkar et al. 2005] Urgaonkar, B., Pacifini, G., Shenoy, P., Spreitzer, M., &
Tantawi, A. (2005). An analytical model for multi-tier internet services and its
applications. International Conference on Measurement and Modeling of Computer
Systems SIGMETRICS, 33(1):291–302.

[V. Cardellini & Yu 2002] V. Cardellini, E. Casalicchio, M. C. & Yu, P. S. (2002). The
state of the art in Locally Distributed Web-Server System. ACM Computing Surveys,
34(2):363–371.

[Vesely et al. 1981] Vesely, W. E., Goldberg, F. F., Robert, N. H., & Haasl, P. F. (1981).
Fault tree handbook. Technical Report WUREG, US Nuclear Regulatory Commision.

[Willinger & Paxson 1998] Willinger, W. & Paxson, V. (1998). Where Mathematics
meets the Internet. Notices of the American Mathematical Society, 45(8):961–970.

[Wolff 1982] Wolff, R. (1982). Poisson arrivals see time averages. Operations Re-
search, (30):223–231.

[Xie et al. 2003] Xie, W., H.Sun, Cao, Y., & Trivedi, K. S. (2003). Modeling of user
perceived webserver availability. IEEE Internation Conference on Communications.

[Zaiane et al. 1998] Zaiane, O. R., Xin, M., & Han, J. (1998). Discovering Web access
patterns and trends by applying OLAP and data mining technology on web logs.
Advances in Digital Libraries conference, pages 19–29.

[Zhang et al. 2004] Zhang, R., Abdelzaher, T. F., & Stankovic, J. A. (2004). Efficient
TCP Connection Failover in Web Server Clusters. IEEE Infocom.

136

Modélisation et évaluation de la disponibilité de services mis en
œuvre sur le web - Une approche pragmatique

Cette thèse porte sur le développement d’une approche de modélisation pragma-
tique permettant aux concepteurs d’applications et systèmes mis en œuvre sur le
web d’évaluer la disponibilité du service fourni aux utilisateurs. Plusieurs sources
d’indisponibilité du service sont prises en compte, en particulier i) les défaillances
matérielles ou logicielles affectant les serveurs et ii) des dégradations de performance
(surcharge des serveurs, temps de réponse trop long, etc.). Une approche hiérar-
chique multi-niveau basée sur une modélisation de type performabilité est proposée,
combinant des chaînes de Markov et des modèles de files d’attente. Les principaux
concepts et la faisabilité de cette approche sont illustrés à travers l’exemple d’une
agence de voyage. Plusieurs modèles analytiques et études de sensibilité sont présen-
tés en considérant différentes hypothèses concernant l’architecture, les stratégies de
recouvrement, les fautes, les profils d’utilisateurs, et les caractéristiques du trafic.

Mots clefs: sûreté de fonctionnement, web, performabilité, disponibilité de service,
modélisation hiérarchique, évaluation.

Availability modeling and evaluation of web-based services
- A pragmatic approach

This thesis presents a pragmatic modeling approach allowing designers of web-based
applications and systems to evaluate the service availability provided to the users. Mul-
tiple sources of service unavailability are taken into account, in particular i) hardware
and software failures affecting the servers, and ii) performance degradation (overload
of servers, very long response time, etc.). An hierarchical multi-level approach is
proposed based on performability modeling, combining Markov chains and queueing
models. The main concepts and the feasibility of this approach are illustrated using
a web-based travel agency. Various analytical models and sensitivity studies are pre-
sented considering different assumptions with respect to the architectures, recovery
strategies, faults, users profile and traffic characteristics.

Key words: dependability, web, performability, service availability, hierarchical mod-
eling, evaluation.

	Avant-propos
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Chapter 1 - Context and background
	1.1 Context and motivation
	1.2 Dependability concepts
	1.3 Dependability evaluation
	1.4 Modeling process
	1.4.1 Dependability measures
	1.4.2 Model construction
	1.4.3 Model solution
	1.4.4 Model validation

	1.5 Dealing with large models
	1.6 Related work on web evaluation
	1.6.1 Measurements based evaluation
	1.6.2 Modeling based evaluation

	1.7 Conclusion

	Chapter 2 - Availability modeling framework
	2.1 Problem statement
	2.2 Dependability framework
	2.2.1 User level
	2.2.2 Fuction level
	2.2.3 Service level
	2.2.4 Resource level
	2.2.5 Availability modeling

	2.3 Travel Agency (TA) description
	2.3.1 Function and user levels
	2.3.2 Service and function levels
	2.3.3 Resource level

	2.4 TA availability modeling
	2.4.1 Service level availability
	2.4.1.1 External services
	2.4.1.2 Internal services

	2.4.2 Function level availability
	2.4.3 User level availability

	2.5 Evaluation results
	2.5.1 Web service availability results
	2.5.2 User level availability results

	2.6 Conclusion

	Chapter 3 - Web service availability : impact of recovery strategies and traffic models
	3.1 Introduction
	3.2 Fault tolerance strategies in web clusters
	3.2.1 Non Client Transparent (NCT) recovery strategy
	3.2.2 Client Transparent (CT) recovery strategy

	3.3 Modeling assumptions
	3.4 Cluster Modeling
	3.4.1 Availability model
	3.4.2 Performance model
	3.4.2.1 Poisson Process Traffic
	3.4.2.2 Marlow Modulated Poisson Process Traffic

	3.4.3 Composite Availability - Performance model
	3.4.3.1 Loss probability due to buffer overflow L(k)
	3.4.3.2 Loss probability due to server node failure L(ky)
	3.4.3.3 Loss probability during the node failure detection time L(Dk)
	3.4.3.4 Summary

	3.5 Evaluation results
	3.5.1 Sensitivity to MTTF
	3.5.2 Sensitivity to MTTD
	3.5.3 Sensitivity to service rate
	3.5.4 Impact of traffic model
	3.5.4.1 Sensitivity to traffic burstiness
	3.5.4.2 Load effects on U A

	3.6 Conclusion

	Chapter 4 - Service unavailability due to long response time
	4.1 Availability measure definition
	4.2 Single server queueing systems
	4.2.1 Modeling unavailability due to long response time
	4.2.1.1 Conditional response time distribution
	4.2.1.2 Service availability modeling

	4.2.2 Sensitivity analysis
	4.2.2.1 Variation of response time
	4.2.2.2 Effects of K and p on U A
	4.2.2.3 Finite buffer effects on U A
	4.2.2.4 Approximation for U A

	4.3 Multi-server queueing systems
	4.3.1 Modeling unavailability due to long response time
	4.3.1.1 Conditional response time distribution
	4.3.1.2 Service availability modeling

	4.3.2 Sensitivity analysis
	4.3.2.1 Variation of response time distribution
	4.3.2.2 Load effects on U A
	4.3.2.3 Impact of aggregated service rate on U A
	4.3.2.4 Impact of the number of servers c on U A

	4.4 Conclusion

	Conclusion
	Appendix I
	Appendix II
	Bibliography
	Résumé / Abstract

