
HAL Id: tel-04589687
https://hal.science/tel-04589687v1

Submitted on 13 Jan 2023 (v1), last revised 27 May 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Unsupervised Machine Learning Paradigms for the
Representation of Music Similarity and Structure.

Axel Marmoret

To cite this version:
Axel Marmoret. Unsupervised Machine Learning Paradigms for the Representation of Music Similarity
and Structure.. Signal and Image Processing. Université Rennes 1, 2022. English. �NNT : �. �tel-
04589687v1�

https://hal.science/tel-04589687v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

Axel MARMORET
Unsupervised Machine Learning Paradigms for the Representation
of Music Similarity and Structure.

Paradigmes d’Apprentissage Automatique Non-Supervisés pour les Représen-
tations de la Similarité et de la Structure Musicale.

Thèse présentée et soutenue à l’Université de Rennes 1, IRISA, le 2 Décembre 2022
Unité de recherche : IRISA (UMR CNRS 6074)

Rapporteurs avant soutenance :

Cédric FÉVOTTE Directeur de Recherche à l’Institut de Recherche en Informatique de Toulouse (IRIT), Université de Toulouse
Mathieu GIRAUD Directeur de Recherche au CRIStAL (UMR CNRS 9189), Université de Lille

Composition du Jury :
Présidente : Elaine CHEW Professeure au King’s College London
Examinateurs : Cédric FÉVOTTE Directeur de Recherche à l’Institut de Recherche en Informatique de Toulouse (IRIT)

Université de Toulouse
Mathieu GIRAUD Directeur de Recherche au CRIStAL (UMR CNRS 9189), Université de Lille
Aline ROUMY Directrice de Recherche à l’IRISA (UMR CNRS 6074), Inria, Université de Rennes 1
Elaine CHEW Professeure au King’s College London

Dir. de thèse : Frédéric BIMBOT Directeur de Recherche à l’IRISA (UMR CNRS 6074), Université de Rennes 1
Co-enc. de thèse : Jérémy COHEN Chargé de Recherche au CREATIS, CNRS, Université de Lyon

Invité(s) :

Nancy BERTIN Chargée de Recherche à l’IRISA (UMR CNRS 6074), Université de Rennes 1
Simon LEGLAIVE Maître de Conférences à CentraleSupélec, IETR (UMR CNRS 6164)





“...”
L’âne Rouge - L’effondras

3





RÉSUMÉ

Traiter informatiquement la musique ? La musique fait partie des formes d’art les
plus répandues sur la planète, avec des origines remontant à 10 000 ans [Law88], si ce
n’est plus. Néanmoins, la musique est également un objet complexe, en particulier sous sa
forme audio. Alors que le cerveau humain produit inconsciemment un travail d’analyse de
la musique lors de l’écoute, même sans entraînement ni pratique musicale (reconnaissance
des instruments présents dans un morceau, perception de l’organisation du morceau, déter-
mination de la pulsation pour taper dans ses mains, ...), l’analyse musicale par traitement
informatique s’avère être une tâche délicate.

Un domaine de recherche est dédié à ce sujet : la Recherche d’Information Musicale
(MIR). Ce domaine est aujourd’hui en plein essor, notamment grâce au déploiement de
gigantesques bases de données et de services d’écoutes (plateformes de “streaming” no-
tamment) alliant la possibilité de traiter de grandes masses de données avec le besoin de
plus en plus étendu de traitement automatisés.

Les tâches du domaine du MIR sont nombreuses. Citons par exemple la transcription
automatique (représenter un extrait audio par sa partition), la séparation de sources
(séparer les parties audios de chacun des instruments) ou encore la génération automatique
de musique. Le MIR se trouve au centre de nombreux domaines scientifiques, tels que les
mathématiques, l’informatique, l’acoustique, la musicologie, la biologie humaine, l’histoire,
... Ce vaste domaine ne saurait être parfaitement résumé en quelques lignes.

Les techniques récentes de traitement automatique de la musique peuvent s’appuyer
directement sur le signal audio (typiquement, les architectures récentes de réseaux de neu-
rones, tels [DS14]), mais la majorité des travaux dans le domaine du MIR s’appuient sur
des descripteurs temps-fréquence de la musique, le plus connu étant la Transformée
de Fourier à Court Terme, également appelés spectrogrammes.

Quel est le périmètre de cette thèse ? Au sein du domaine du MIR, cette thèse
concerne plus particulièrement la tâche de segmentation structurelle de la musique,
c’est-à-dire la tâche consistant à fournir une organisation simplifiée de la musique en
sections (couplet, refrain, solo, ...), et, plus particulièrement, identifier les frontières entre
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ces différentes sections.
Cette tâche, déjà traitée par de nombreux chercheurs (voir les synthèses de Paulus

et al. [PMK10] ou de Nieto et al. [Nie+20]), n’est pas considérée comme résolue : les
systèmes automatiques n’étant pas suffisamment performants à ce jour. D’autant plus
que la segmentation musicale manque d’une définition concise et précise, car la structure
musicale est en partie subjective et parfois ambiguë. Cette thèse contient une présentation
détaillée des algorithmes de segmentation structurelle existants.

Comment déterminer automatiquement la segmentation structurelle ? La seg-
mentation structurelle, i.e. déterminer les frontières entre différentes sections musicales,
peut s’effectuer de différentes façons [PMK10; Nie+20]. En général, les algorithmes exis-
tants se concentrent sur 4 critères : l’homogénéité, la nouveauté, la répétition, et la
régularité.

Le critère d’homogénéité suppose que les différents éléments musicaux (notes, accords,
tonalité, timbres présents, ...) constituant une section musicale devraient être similaires
les uns avec les autres, et se concentre ainsi sur le fait d’identifier des frontières entre des
blocs homogènes. La nouveauté est le pendant de l’homogénéité : ce critère fait l’hypothèse
qu’un contraste très marqué entre deux éléments musicaux devrait constituer une fron-
tière. En particulier, une forte nouveauté n’est possible que lorsqu’elle est précédée par
un élément très homogène (une rupture d’homogénéité), et inversement.

Le troisième critère, la répétition, repose sur l’idée qu’une section n’est pas définie
de façon isolée, mais par la répétition d’une séquence d’éléments, par exemple une ligne
mélodique. Pour illustrer ce principe, considérons le refrain dans une chanson de type
“Pop”. Le refrain est souvent considéré “refrain” car les paroles sont consistantes entre
les différentes répétitions, de même que la mélodie de la voix et les lignes instrumentales.
Prise isolément, ces lignes peuvent être peu homogènes, mais leur répétition à différents
endroits du morceau suggère une cohérence et une appartenance à un même ensemble.
Finalement, le critère de régularité se base sur l’idée que les segments dans une même
chanson (voir dans un même genre) doivent être de même taille.

Les algorithmes de segmentation structurelle existants s’appuient en général sur un
outil appelé “matrice d’autosimilarité”, présenté dans la Figure 1. Cette matrice représente
la similarité (au sens large) entre toutes les paires d’instants temporels d’un morceau. Les
parties très homogènes apparaissent alors comme des blocs rectangulaires ou carrés dans
la matrice (représentés en gris dans le schéma de la Figure 1), la nouveauté se conçoit
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comme le point de contact entre deux blocs, et la répétition est représentée par des
portions de sous-diagonales (parallèles à la diagonale principale). Notons que la diagonale
elle-même représente la similarité entre un instant temporel et lui-même, et est donc
peu informative. Les coefficients de la matrice d’autosimilarité sont en général calculés
comme le produit scalaire normalisé entre les vecteurs de descripteurs correspondant à
deux instants temporels.

Figure 1 – Un exemple schématique et idéalisé de matrice d’autosimilarite, extrait
de [PMK10].

Bien que la matrice d’autosimilarité soit parfois calculée directement sur la représen-
tation en descripteurs de la musique (citons en particulier les travaux de Foote [Foo00]),
les avancées récentes dans le domaine s’attèlent à retravailler cette représentation en de-
scripteurs afin de plus clairement faire apparaître la structure dans l’autosimilarité (par
exemple [NJ13; ME14a; SNB21; Wan+21], cette liste n’étant pas exhaustive).

Comment se situe cette thèse dans la littérature scientifique ? Tout d’abord,
il faut noter que cette thèse se concentre sur l’analyse de la musique “Pop”. Bien que,
conceptuellement, les travaux présentés pourraient être utilisés pour d’autres genres mu-
sicaux, la musique “Pop” est particulièrement régulière dans sa structure, ce qui permet
de traiter dans l’immédiat un problème plus simple que le problème de segmentation
“global”, i.e. indépendant du genre musical.

Les travaux de cette thèse se concentrent sur trois axes principaux : le traitement
de la musique par mesures, l’utilisation d’un nouvel algorithme de segmentation (CBM),
et l’utilisation de méthodes de compression de l’information musicale. Ces parties sont
explicitées ci-dessous.
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1. Un traitement de la musique par mesures musicales. Nous considérons dans cette
thèse que l’échelle temporelle de la mesure est l’échelle la plus pertinente pour
analyser la structure musicale, en particulier pour la musique “Pop”. En effet, nous
supposons que les frontières structurelles apparaissent presque exclusivement entre
deux mesures. De plus, nous considérons que les phrases et motifs musicaux se
développent à cette échelle, nos travaux visant ensuite à comparer les différentes
mesures pour définir et identifier les segments selon ces motifs.
Ce traitement par mesures concerne les données initiales : à partir du spectro-
gramme d’une chanson (représentation en descripteurs temps-fréquence de base),
et en estimant les débuts de chaque mesure (à l’aide d’une librairie extérieure),
notre travail consiste à séparer ce spectrogramme en une collection de spectro-
grammes, chacun se limitant à une unique mesure de la chanson. Le processus est
représenté en Figure 2.
Il est à souligner que l’étape d’estimation des mesures est issue de travaux extérieurs
et, bien qu’importante, n’a pas fait l’objet d’un travail de recherche dans cette thèse.

Spectrogramme
originalF

S × B

F

S

B

Collection de
spectrogrammes

par mesures
(tenseur)

B

F × S

Collection de
spectrogrammes

par mesures
(matrice)

Figure 2 – Traitement par mesures de la musique, en tenseur et en matrice. Les dimensions
F, S, B sont représentées afin de faciliter la compréhension du processus.

2. Le développement d’un nouvel algorithme de segmentation, appelé algorithme
“CBM” pour Convolutive Block Matching. Cet algorithme est un algorithme de
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programmation dynamique, i.e. un algorithme qui divise une tâche initiale (ici, la
tâche de segmentation structurelle) en un ensemble de sous-tâches (ici, la déter-
mination d’un score pour chaque potentiel segment) qui, résolues récursivement et
comparées au sein d’un problème d’optimisation, fournissent une solution globale
à la tâche initiale.
Ainsi, la tâche de segmentation structurelle se trouve ici réduite à la définition
d’un score pour chaque segment, et la programmation dynamique trouve ensuite
une solution optimale, maximisant la somme de ces scores.
Dans cette thèse, l’algorithme CBM se concentre sur les principes d’homogénéité-
nouveauté et de régularité, mais de futurs travaux pourraient également incorporer
le principe de répétition. L’algorithme CBM est détaillé dans le Chapitre 3.

3. L’utilisation de nouvelles méthodes de compression pour analyser la musique en
mesures. En particulier, cette thèse étudie la décomposition nonnégative de Tucker
(NTD), un modèle de factorisation tensorielle représenté en Figure 3 et détaillé dans
le Chapitre 4, ainsi que des techniques de compression matricielles plus classiques
que sont la factorisation en matrices nonnégatives (NMF), l’analyse en composantes
principales (PCA) et les autoencodeurs, détaillées dans le Chapitre 5.
En particulier, les autoencodeurs utilisés dans cette thèse n’ont pas pour objectif
l’apprentissage de représentations généralisées entre différentes chansons, mais sont
utilisés comme méthodes de compression à l’échelle de chaque chanson, ce qui, à
notre connaissance, est un nouveau paradigme.
Enfin, cette thèse explore une combinaison entre les paradigmes NTD et autoen-
codeurs, les deux techniques présentant des similarités conceptuelles et mathéma-
tiques, qui sont détaillées dans le Chapitre 6. Ce paradigme, dénommé “AE-NTD”
est, à notre connaissance, le premier travail combinant ces deux techniques de
compression.

Les articulations de cette thèse sont schématisées dans la Figure 4.

Quelles sont les conclusions expérimentales de ces travaux ? L’étude de ces
méthodes s’accompagne d’expérimentations visant à évaluer leur potentiel quant à l’étude
de la structure musicale et, dans un sens plus large, quant à l’analyse musicale, via la
découverte de motifs à l’échelle de la mesure. Les conclusions sont plurielles :

— L’algorithme CBM, dans sa version actuelle et utilisant la similarité cosine (similar-
ité standard), permet d’obtenir des performances proches de celles obtenues avec
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Figure 3 – Décomposition nonnégative de Tucker (NTD) du tenseur construit à partir de
la collection de spectrogramme par mesures. La NTD résulte en trois matrices de facteurs
W, H, Q, et un tenseur G (appelé “cœur”).

les algorithmes non supervisés état-de-l’art, typiquement [Foo00; NJ13; Ser+14;
ME14a]. Il n’est en revanche pas compétitif avec l’algorithme état-de-l’art global
(avec supervision) [GS15b], lequel requiert toutefois de grandes bases de données
étiquetées manuellement.

— L’augmentation du contraste entre zones très similaires (donc très homogènes)
et peu similaires dans la matrice d’autosimilarité améliore les performances de
l’algorithme CBM. Cela s’explique principalement par le fait que les zones très
homogènes sont identifiées en tant que segments par l’algorithme, et ainsi, un haut
contraste permet de désambiguïser les frontières entre les blocs.
Dans cette thèse, deux stratégies se sont avérées pertinentes pour augmenter ce
contraste (et donc les performances de l’algorithme CBM) :
— L’utilisation de fonctions de similarité différentes de la similarité cosine, en

particulier l’utilisation d’un noyau gaussien, fonction non-linéaire.
— L’utilisation de méthodes de compression pour représenter les différentes mesures

de la chanson. En effet, compresser les différentes mesures permet de ne con-
server que certains traits distinctifs du contenu musical, permettant ainsi de
mieux distinguer les similarités et les dissimilarités.

Dans ces deux conditions, l’algorithme CBM est compétitif avec l’état-de-l’art
global [GS15b], alors qu’il ne nécessite aucune phase d’apprentissage.
En revanche, l’utilisation de ces deux techniques simultanément (i.e. utiliser des
fonctions de similarité autres que la similarité cosine sur des représentations com-
pressées) ne permet pas d’augmenter les performances par rapport à l’une ou l’autre
utilisée seule.
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Musique
(signal audio)
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compressées
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Algorithme CBM

Figure 4 – Articulations de la thèse. Cette thèse présente les étapes de calcul de la col-
lection de spectrogrammes en mesures, l’algorithme CBM et les différentes méthodes de
compression. Les étapes de représentation en descripteurs et d’estimation des mesures
sont issues de travaux extérieurs et, bien qu’importantes, n’ont pas fait l’objet d’un travail
de recherche dans cette thèse.
Trois logiciels libres ont été développés durant ce doctorat, chacun étant dédiée à une
partie du travail : l’algorithme CBM est inclus dans la librairie as_seg [MCB22a], les algo-
rithmes de résolution de la NTD et de la NMF sont inclus dans la librairie nn_fac [MC20],
et l’ensemble du code informatique associé aux représentations compressées est rassemblé
dans la librairie BarMusComp [MCB22b].

— Certaines techniques de compression, en particulier la NTD, permettent de représen-
ter les différentes mesures selon des motifs, eux-mêmes obtenus dans la factorisa-
tion. Pour la NTD, cela est rendu possible grâce aux contraintes de nonnégativité
et à la structure de la factorisation.
Ainsi, les différents facteurs issus de la NTD permettent de définir des “patterns

11



musicaux”, motifs à l’échelle d’une mesure, représentant une partie du contenu
musical original. Ces patterns pourraient incidemment être utilisés pour de la re-
composition musicale [SKG19] ou de l’analyse.

— Dans le cadre des méthodes de compression, un compromis apparaît entre les per-
formances de segmentation et l’interprétabilité des résultats. En effet, alors que la
NTD permet d’interpréter le contenu de la factorisation, les techniques de compres-
sion non contraintes (ici, PCA et autoencodeurs) n’ont pas cette propriété, mais
obtiennent de meilleures performances dans la tâche de segmentation structurelle.
Ce compromis est particulièrement clair dans l’étude de l’AE-NTD, où les meilleures
performances en termes de segmentation sont obtenues sans contrainte, mais où
l’interprétabilité des résultats s’améliore avec l’ajout d’information a priori liée à
la NTD.

Quelles ouvertures à cette thèse ? Tout d’abord, les conclusions expérimentales
se limitent pour l’instant au corpus étudié et nécessitent d’être confirmées sur d’autres
données, notamment de la musique appartenant à d’autres styles que la Pop. L’impact
de l’étude de la musique par mesures mérite également d’être approfondi par l’étude de
genres où la division en mesures est plus ambiguë ou moins régulière (par exemple avec
de nombreux changements de tempo).

Ensuite, l’algorithme CBM peut être amélioré et étendu dans différentes directions,
permettant notamment de favoriser le principe de répétition, ou bien de mitiger entre les
différents critères. Certaines pistes existent déjà, en particulier en utilisant les “noyaux”
développés par Shiu et al. [SJK06] dans l’algorithme CBM.

De la même manière, les techniques de compression prouvent leur efficacité mais
nécessitent d’être étudiées plus en détail afin de mieux capturer la structure musicale.
Chaque technique ouvre des pistes potentielles spécifiques, qui ne sauraient être résumées
ici, et sont donc à retrouver dans les conclusions des chapitres associés. Toutefois, de
manière générale, il semblerait pertinent d’ajouter une phase de supervision (ou de semi-
supervision) aux différentes techniques étudiées dans cette thèse lorsque possible.

Les techniques dites “interprétables” (en particulier la NTD et l’AE-NTD) mérit-
eraient d’être approfondies, permettant d’étendre les conclusions à d’autres tâches que la
recherche de structure musicale.
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Chapter 1

INTRODUCTION

Computational analysis of music? Music is an artistic, human form of expression,
which may trace back to 10,000 years [Law88] or even more. Still, music is a complex
object, in particular in its audio form. While the human brain unconsciously analyses the
musical content while listening, even without training or musical practice (recognizing the
instruments in a song, understanding the organization of a song, finding the pulse to clap
hands, ...), computational musical analysis is a challenging topic.

The Music Information Retrieval (MIR) research field is dedicated to this topic. This
field is growing nowadays, notably due to the presence of large datasets, which combines
the need for automated processing of musical information with the possibility to study
gigantic quantities of data, which is important in recent supervised learning schemes.

The MIR field covers numerous tasks, for instance automatic music transcription [Ber09]
(computing the musical score from an audio excerpt), source separation [OF09] (retrieving
the original audio contribution of each source in an audio mixture), or automatic music
generation [BHP20]. It is therefore at the crossroad of numerous scientific domains, e.g.
mathematics, computer science, acoustics, musicology, human biology, history, ...

A common platform for comparing the algorithms relative to the different MIR sub-
tasks has been developed in the last two decades, called “Music Information Retrieval
Evaluation eXchange” 1 (MIREX) [Dow08], allowing to compare algorithms on standard
benchmarks.

What is the scope of this thesis? This thesis studies the Music Structure Analysis
task [PMK10; Nie+20], which consists of representing a song in sections (such as “chorus”,
“verse”, “solo” etc). It can be seen as the retrieval of a simplified organization of the
song, at the macroscopic scale, but lacks a clear and concise definition. In particular, this
thesis studies the subtask of structural segmentation, which consists of retrieving the
boundaries between sections, i.e. segmenting the song in non-overlapping segments.

1. https://www.music-ir.org/mirex/wiki/MIREX_HOME
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Chapter 1 – Introduction

How to identify structural segmentation? Structural segmentation can be algorith-
mically achieved in numerous ways, as presented in Section 2.3 of this thesis. Firstly, it
should be noted that, while some recent works in MIR study the raw waveform (typically
“end-to-end” neural networks, such as [DS14]), the vast majority of works use features to
describe the musical content. The particular feature descriptions used in this thesis are
different forms of spectrograms.

Existing algorithms for the estimation of structural segmentation mainly focus on 4
criteria: homogeneity, novelty, repetition, and regularity. The homogeneity criterion
assumes that musical elements (notes, chords, tonality, timbre, ...) should be similar to
constitute a section. Novelty is the counterpart of homogeneity: this criterion considers
that boundaries must be placed between consecutive musical elements that are highly
contrastive. A high contrast, i.e. a high novelty, is only possible between two homogeneous
zones (“break” of homogeneity), and, conversely, homogeneity is evaluated relatively to
the dissimilar portions in the song.

The third criterion, repetition, does not consider segments locally, but rather relies on
a global approach of the song. The rationale is that segments are constituted of recurring
motifs, for instance a melodic line, and these motifs may be heterogenous. This criterion
may be illustrated by the chorus in a song, which is generally defined as the most consistent
section across the song, both in terms of lyrics and instrumental lines: a chorus, on its
own, may be heterogenous and contrasting, but its repetition suggests that this is indeed
a section. Finally, the regularity criterion assumes that, within a song (and even within a
same musical genre), segments should be of similar sizes.

What are the contributions of this thesis? First of all, this thesis focuses on “Pop”
music. Even if, conceptually, the methods presented could be used for other genres, Pop
music is particularly regular in its structure, which simplifies the problem compared to
the segmentation of any musical piece from any musical genre.

Contributions in this thesis mainly cover three axes: barwise processing of music, a
segmentation algorithm called CBM, and the use of compression methods to analyze
musical structures. These axes are detailed hereafter.

1. Barwise processing of music. In this thesis, we assume that the barscale is the most
relevant scale to study structural segmentation, in particular for Pop music. Indeed,
we assume that structural boundaries can be placed on downbeats, i.e. between
two bars. In addition, we assume that musical motifs are developed at the barscale,
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and our methods are designed so as to catch these barwise motifs, thus defining
segments according to these motifs and their local redundancies.
Barwise processing is performed on the input data: by computing the spectrogram
of a song (its feature description), and by simultaneously estimating downbeats
in this song (by using the madmom toolbox [Böc+16], which is external from
our work), our work consists of splitting the single spectrogram as a collection
of barwise spectrograms. This process is detailed in Figure 1.1, resulting into two
representations for a song: the Barwise TF matrix, introduced in Chapter 2, which
regroups both frequency and inner-bar time dimensions in only one dimension, and
the TFB tensor, a third-order tensor (tensors are introduced in Chapter 4).

Original
spectrogramF

S × B

B

F × S

Barwise TF:
collection
of barwise

spectrograms

F

S

B

TFB tensor:
collection
of barwise

spectrograms

Figure 1.1 – Barwise processing of music, resulting in a matrix (the Barwise TF matrix)
and in a tensor (the TFB tensor), depending on the technique which is to be used.
Dimensions F, S, B are represented so as to ease the understanding of the process, but
are not at the same scale in the different representations.

2. A new segmentation algorithm, called “CBM” for Convolutive Block Matching.
This algorithm is a dynamic programming algorithm, i.e. an algorithm which di-
vides an initial task (here, structural segmentation) in a set of subtasks (here, a
score associated with each potential segment). Solving the subtasks recursively (in
an optimization scheme) results in a solution for the initial task. Hence, in the CBM
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Chapter 1 – Introduction

algorithm, the structural segmentation problem boils down to the definition of a
score for each segment, and the dynamic programming computes an optimal global
solution for this score at the song scale (maximization), as introduced in [Jen06;
SBV16]. The main contribution related to the CBM algorithm is the definition
of the score function applying on each segment. In our work, the score function
focuses on the homogeneity/novelty and on the regularity criteria, as detailed in
Chapter 3.

3. The use of compression schemes on barwise representation of the song. In this the-
sis, we apply several compression schemes on the barwise representations of music.
In particular, we focus on the Nonnegative Tucker Decomposition (NTD), which
is a tensor factorization scheme sketched in Figure 1.2 and detailed in Chapter 4.
The thesis also considers alternative matrix compression schemes, namely Non-
negative Matrix Factorization (NMF), Principal Component Analysis (PCA) and
AutoEncoders (AE), detailed in Chapter 5.
It is worth noting that AutoEncoders studied in this thesis are not designed so as
to learn general embeddings on a large dataset, but are rather used as compression
schemes at the song scale, i.e. independently compressing each song, which, to the
best of our knowledge, has not previously been studied for music.
Finally, this thesis investigates a mix between both NTD and AutoEncoders paradigms,
coined “AE-NTD”, and detailed in Chapter 6. While some works previously mixed
AutoEncoders with standard factorization methods such as NMF [SV17] and the
CANDECOMP/PARAFAC decomposition [CCS19], we believe that this chapter
represents an original work mixing NTD and AutoEncoders, inspired from these
previous developments.

The outline of this thesis is schematized in Figure 1.3. In addition to the structural
segmentation task, NTD and AE-NTD are studied on a task of pattern uncovering, consist-
ing of estimating the audio quality of the barwise factorization outputs when transformed
into audio signals. This task aims at evaluating the interpretability of both factorization
schemes.

What are the experimental hypotheses of this thesis? The various methods are
studied in the context of structural segmentation, with quantitative results on the RWC
Pop [Got+02] and SALAMI [Smi+11] datasets. The goals of these experiments are 1) to
evaluate the CBM algorithm, 2) to study to what extent the use of compression schemes
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Figure 1.2 – Nonnegative Tucker Decomposition (NTD) of the TFB tensor, i.e. the tensor
composed of barwise spectrograms. NTD results in three factor matrices W, H, Q, and a
“core” tensor G.

is relevant to the task of structural segmentation, and 3) how the choice of the similarity
function used to compare the different bars influences segmentation results.

Mathematical notations Throughout this thesis, we use mathematical objects, and
define hereafter the associated mathematical notations.

— Vectors are denoted as lowercase letters, e.g. a.
— Matrices are denoted as capital letters, e.g. A. Rows of a matrix, which are hence

vectors, are denoted with their index as subscript, e.g. Ai, and equivalently for the
columns A:i, where the colon is a notation for “all the values on this dimension”.

— Third-order tensors are denoted as Euler letters, e.g. A. Colons are also used to
represent particular dimensions of a tensor, e.g. A:i: represents every element where
the index of the second dimension is equal to i.

— The elementwise product between vectors/matrices/tensors, e.g. a and b, is denoted
as a.b, and the elementwise division as a

b
.
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Music
(audio signal)

Feature representation
(spectrogram)

Estimation of bars
madmom [Böc+16]

Barwise
spectrograms

Computation of
compressed

representations

Estimation
of structural
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NTD
NMF
PCA
AutoEncoders
AE-NTD

CBM algorithm

Figure 1.3 – This thesis covers the computation of barwise spectrograms, the CBM algo-
rithm for estimating structural boundaries, and the impact of using compressed represen-
tations on the estimation quality. The stages of feature representation and bar estimation,
while important to the process, use earlier work from the MIR community, and do not
constitute novel contributions in this thesis.
Three open-source toolboxes were developed during this PhD, each dedicated to a part
of the work: the CBM algorithm is included in the as_seg toolbox [MCB22a], the NTD
and NMF resolution algorithms are included in the nn_fac toolbox [MC20], and the
entire work related to the compressed representations is pooled in the BarMusComp tool-
box [MCB22b].
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Music Structural Segmentation
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Chapter 2

MUSIC PROCESSING AND

MUSIC STRUCTURE ANALYSIS

This chapter presents the essential tools to study music computa-
tionally, the standard algorithms for studying structure in music,
and important concepts used throughout this thesis, such as bar-
wise analysis of music.

Synopsis
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Chapter 2 – Music Processing and Music Structure Analysis

2.1 Introduction

In a first part, this chapter aims at presenting basic and important music theory con-
cepts, though in a simplified manner. Indeed, while this thesis studies the musical object,
presented music theory concepts are intended to properly introduce technical aspects
of the work, and not to contribute to the field of musicology. In addition, this chapter
also introduces important tools for the computational processing of music, particularly
time-frequency representations of music, regrouped under the concept of “spectrogram”.

In a second part, this chapter presents the task of Music Structure Analysis, and in
particular the subtask of boundary retrieval (“structural segmentation”), along with a
review of the literature in this domain. Finally, this chapter introduces in a third part the
concept of barwise processing of music, which is at the heart of this thesis.

2.2 Music Processing (generalities)

2.2.1 Audio and Symbolic Representations of Music

Music is perceived by humans in the form of audio signals, via acoustic waves, and is
generally conveyed in this format, whether on vinyls, CDs, streaming platforms, or many
other media supports. An example of audio signal is presented in Figure 2.1.

0 1 2 3 4 5 6 7
Time (s)

2

1

0

1

2

Am
pl

itu
de

Figure 2.1 – An example of audio signal: passage from the song Rosetta Stoned of the
band TOOL.

Even though music may originate from human actions or natural events not necessarily
designed for musical purposes, as for instance in “musique concrète” or in “sampling”, for a
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2.2. Music Processing (generalities)

large part music can be considered as intentionally designed by musicians, with or without
musical instruments 1. Hence, to help the transmission of information between musicians,
humans developed abstract music notations, describing the audio musical content.

Citing Neely, “music notation is a recipe” [Nee22], particularly useful for learning an
instrument, performing a song or composing a music piece. The Western musical score 2 is
an example of human-intended music notation, with an example presented in Figure 2.2.
More generally, we can refer to music notation as the “symbolic” representation of music.
Originally designed for human, the symbolic representation of music also encompasses
computational formats, such as the Musical Instrument Digital Interface (MIDI) format 3.

Symbolic representations of music rely, in their vast majority, on the musical “note”
as the basic element of music. Each musical note represents a musical event, and the
composition of notes form the final score. In the audio domain, musical notes are mainly
defined according to 4 parameters [Ber09], namely the pitch, the duration, the loudness
and the timbre.

The pitch of a note allows to place it on a frequency-related scale, from “low” to “high”
note. Depending on the musical instrument, the pitch can be more or less well defined,
but, in a vast majority of cases, it is related to the fundamental frequency of the sound,
denoted as f0. The fundamental frequency additionally defines “harmonic partials”: the
multiples kf0 of the fundamental frequency.

The duration of a note is its temporal location, generally defined as an onset and a
length. The loudness of a note corresponds to its “volume”, and is related to the amplitude
of the signal. Finally, the timbre models pretty much everything not covered by the other
three dimensions, and is hard to define precisely. Figuratively, the timbre primarily is
what differentiates two notes of same pitch, duration and loudness, but played on two
different instruments. It is related to the spectral and temporal envelopes of the signal,
and influences the amplitude ratios between partials and their evolution.

In a musical score, such as the one presented in Figure 2.2, only the pitch, duration

1. The human voice can be considered as a musical instrument.
2. Music in general, and musical notations subsequently, are strongly rooted in a cultural context.

This thesis focuses on the standards of the Western culture, defined in Europe around the 16th century,
as it constitutes the cultural background of the authors, and as these standards are generally used as
“music theory standards” nowadays. Nonetheless, note that other cultural practices and standards exist,
and should be studied for a more exhaustive view on “music”.

3. Some authors, for instance Müller [Mül15], make the distinction between the visual representations
of a score (i.e. the sheet music), and the symbolic format, which should explicitly model each musical
event, i.e. broadly, human- and machine-intended representations. We do not make this distinction here,
and consider both formats as symbolic, in opposition to audio representations.
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Figure 2.2 – Musical score example
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and loudness of a note are represented. In particular, the vertical position of the note
represents its pitch on the “chromatic scale”, defined hereafter, relatively to the “clef”
which indicates the position of the pitch of reference; the shape of the note represents the
duration, as detailed in Section 2.2.2. The loudness is indicated as a symbol under the
note, such as pp under the first note in Figure 2.2. Loosely speaking, several notes, when
played simultaneously, define a “chord”.

In this thesis, we focus on the audio representation of music. In particular, we study
music according to two dimensions: the frequency dimension (relating to the pitch and
timbre of notes) and the time dimension, detailed in Section 2.2.2. While the note is
defined here for the symbolic representation of music, it has strong connections with the
audio representation and interpretation of music.

The Western pitch scale is generally reduced to the chromatic scale
in equal temperament, which is composed of 12 semi-tones and their
octaves. In details, this scale is constructed starting from the 7 notes
of the C-major scale: A, B, C, D, E, F, G. Notes on this scale are
either spaced by a tone (e.g. A and B) or a semi-tone (e.g. B and
C), leading to a scale composed of 5 whole tones and 2 semi-tones.
The 5 remaining semi-tones are obtained by adding a flat (♭) or a
sharp (♯) symbol to a note (e.g. A♯), which respectively decrease
or increase the pitch by a semi-tone. The equal temperament is
enharmonic, meaning that the chromatic scale is exactly discretized
in semi-tones, i.e. increasing a note by a semi-tone results exactly
in the upper note (e.g. A♯ = B♭ and B♯ = C). Finally, the octave
of a note represents the same note, increased by 12 semi-tones. An
octave is represented by adding a number to the note (e.g. C4).

Chromatic scale

2.2.2 Time in Music

The most basic unit of time in music is referred to as “pulse”. According to Cooper
and Meyer, a pulse is “one of a series of regularly recurring [...] stimuli” [CM63]. In that
sense, pulses are regular events occurring in a larger information context. In music, pulses
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can be seen as the smallest regular division of time, at which people tend to clap their
hands or snap their fingers.

Starting from the pulses, Cooper and Meyer then defines the meter as “a measurement
of the number of pulses between more or less regularly recurring accents”. The notion of
accents means that some pulses are accented, compared to others, and that these accents
organize and differentiate the different pulses. The meter hence determines which pulses
are important in the context of this music, even if these pulses are not sounded.

This leads Cooper and Meyer to define one of the most important notion in music,
which is the beat, as “pulses [...] counted within a metric context”. Beat is an important
notion in Western music, as a reference point for musicians and listeners when performing
and/or listening to music. Beats may be exactly all pulses, or only some regularly spaced
pulses. The frequency of beats generally serves as a reference for the tempo, as in the
“bpm” metric (beats per minute).

The “metric context” is the information about the organization of beats and accented
pulses at a larger time scale, particularly the bar. The bar (or measure) is typically a
larger counterpart of beat in Western music, defining the segments where patterns tend
to develop and repeat. The bar segments the song, and beats within a bar are ordered
(with beat “1” as the start of a bar). We define the downbeat as the start of the bar,
i.e. the beat “1” of a bar.

In Western music, time is generally expressed in beats and bars, and notes are ex-
pressed relatively to them, via note values and time signatures. Time signatures are com-
posed of two numbers, one being placed on top of the other, such as 4

4 . The top number
indicates the number of beats in a bar, and the bottom number indicates the note dura-
tion of each beat. With these two numbers, the reader knows the duration of each beat
and the number of beats in each bar.

Finally, the duration of each note is expressed by a note value. The basis unit of time
for a note is the “whole note” (or “semibreve”), represented by a 1 in the time signature.
This whole note is then divided to obtain “half notes” (2 in the time signature, half the
duration of a whole note), “quarter notes” (4 in the time signature, a quarter of the
duration of the whole note), etc. The different note values are presented in Figure 2.3.

Hence, given the time signature, a trained musician can understand the rhythmic
organization of the different notes composing a musical score, and can play the song 4.

4. A musician would also need an additional information about tempo to accurately perform a song,
for instance in bpm, indicating the number of beats per minute, to represent the duration of a beat in
absolute time.
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Figure 2.3 – Note values, from top to bottom: a whole note, half notes, quarter notes,
eighth notes, sixteenth notes and thirty-second notes. Each line represents the same
amount of time. (From Wikimedia, Public Domain.)

In Western music, time is organized around the two concepts of beats and bars. This
is particularly visible in musical scores, as the previous example presented in Figure 2.2:
in this example (and in musical scores in general), bars are represented by vertical lines
(or vertical “bars”), and notes are expressed by their note values, relatively to the beats,
the latter being defined relatively to the time signature. In this particular example, the
time signature is 3

8 , meaning that each bar contains three beats, and each beat lasts one
eighth note. In this example, almost every bar contains six sixteenth notes, meaning that
each note lasts half of a beat.

Summing up, in a musical score, the time is divided in bars, them-
selves divided in beats. Given the clef (reference pitch) and the time
signature (reference duration), the symbol of a note expresses its
pitch and its note duration, respectively in its vertical position and
its shape.

The remaining of this thesis focuses on audio representations and not symbolic ones,
such as the score, but the musical score is at the heart of musical understanding and
composition. In particular, the score of a music piece can be seen as a compressed rep-
resentation of its audio content. Thus, music analysis in this thesis can be understood
in this viewpoint: interpreting audio signals as individual notes (or chords), located at
precise locations in a bar, and using compression methods in order to exhibit the motifs
arising from arrangements of these notes. This will be in particular the case for “musical
patterns”, latter introduced in Section 4.4.
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2.2.3 Digital Signal Processing

An audio signal is an acoustic wave, originating from one or several sources, generally
musical instruments, and recorded by microphones. In that sense, a music audio signal
can be represented as a continuous function x such that:

x : R → R
t 7→ x(t),

(2.1)

t representing the time instances and x(t) the amplitudes. In practice, computers are not
suited to handle non-stationary continuous functions, like audio recordings. Thus, digi-
tal signal processing requires additional stages of sampling and quantization [Mül15],
respectively aiming at discretizing the analog signal in time and amplitude.

In the time domain, sampling consists of evaluating the signal on a finite subset of
time instances, as represented in the upper part of Figure 2.4. In practice, denoting as
T the sampling period, i.e. the gap in time between two consecutive samples, sampling
is obtained by evaluating x on the subset {nT/n ∈ N}, finite when the signal is itself of
finite duration. Hence, we define the sampling operator S in Equation 2.2 5:

S : R → TN
t 7→ T ⌊ t

T
⌋.

(2.2)

Sampling can be obtained by the composition x ◦ S.

In general, sampling is expressed according to the sampling frequency fs = 1
T

,
i.e. the number of frames sampled for a given unit of time. When expressed in Hz, the
sampling rate represents the number of samples per second. A standard value for the
sampling rate in music is fs = 44.100Hz, typically used for compact discs. This standard
value satisfies the Shannon sampling theorem [Sha49].

5. We define the notation kN as the set of integers multiplied by the constant k.
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The Shannon sampling theorem states that the sampling rate fs

must be at least twice as much as the largest frequency of the
original continuous signal, i.e. denoting as F the highest frequency
in the signal, fs ≥ 2F .

Shannon sampling theorem

As the human hearing range (i.e. the range of audible frequencies for a general human
ear) ends at 20kHz, higher frequencies are of no use in this context, and, as a consequence,
validates the Shannon sampling theorem for fs = 44.100Hz.

In the amplitude domain, quantization consists of representing the amplitude values
on a discrete grid, as represented in the lower part of Figure 2.4. The grid of discrete values
is defined by a quantization step A, analogous of the sampling period in the amplitude
domain. Hence, starting from a continuous signal x(t), we present in Equation 2.3 an
example of quantization operator Q defined in [Mül15]:

Q ◦ x : R → AZ
t 7→ sign(x(t))A⌊ |x(t)|

A
+ 1

2⌋.
(2.3)

Practically, the operator Q takes the value in the grid closest to the original value of the
signal. In music processing, for instance for compact discs, it is standard to represent the
amplitude values with 16bits, leading to 65.536 discrete values to quantize amplitudes 6.

Hence, a digital audio signal can be seen as a function of discrete time and amplitude
values, i.e. a function from TN to AZ.

2.2.4 Feature Representations

Nowadays, some recent neural networks architectures directly treat the digital audio
signal as input, called “end-to-end” networks [DS14], see the recent overview on the use
of neural networks in MIR given by Peeters and Richard [PR21, Chap. 3]. Still, the vast
majority of work in MIR (and notably the non-deep learning approaches) is unsuited to
treat the raw audio signal, and requires a feature transformation, called time-frequency

6. The exact quantization step A also depends on the range of admissible amplitudes (in particular
maximal and minimal values) which, to the best of our knowledge, is not subject to a consensus.
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Figure 2.4 – Sampling operation ((a), upper) and quantizing operation ((b), lower), ex-
tracted from [Mül15].

analysis, resulting in time-frequency representations, abusively referred to as spec-
trograms. We present in this section some of the most important features, of particular
interest in this thesis. Details on the computation and parametrization of these features
in the context of this thesis are presented in Appendix A.1.

Short-Time Fourier Transform A renowned time-frequency representation of the
signal is the Short-Time Fourier Transform (STFT). The rationale of the STFT is to
study the frequencies present in the signal, as both pitch and timbre relate to frequential
aspects in the waveform. Frequencies are estimated by the discrete Fourier transform
applied on frames (i.e. blocks of samples) of the digital signal.

The tricky part in the STFT is to compute the Fourier transform on frames long
enough to be accurate in the estimation of frequencies (the longer the signal, the more
accurate the estimation), but short enough to be accurate in time, given that the signal
is non-stationary. Simultaneous perfect time and frequency estimation are impossible,
but inconsistencies are generally reasonable for music analysis. Still, some recent works
propose to perform Fourier analysis with frames of different sizes at the same time, in a
“multiscale” setting [ZEH16] (though it is not exactly the STFT). We restrict this thesis
to the study of fixed length frames.

Formally, we denote N the size of each frame, and each frame is windowed by a non-
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negative function w(), a particular example being the rectangular function 7. A standard
value for N in MIR is 2048, i.e. 2048 samples per frame (for signals sampled at 44.100Hz).

The time difference between two consecutive frames in the computation of the STFT
is called the “hop length”, denoted as H here. In general, H < N in order to allow some
overlap between two consecutive STFT frames and limiting side effects.

Finally, the STFT of a signal x is obtained by applying a Dicrete Fourier Transform on
each frame, as presented in Equation 2.4. Parameters f and t are respectively the indexes
for the frequential and time bandwidths of the resulting STFT, which are evenly spaced.
A reader unfamiliar with the STFT, and curious about details, can refer to [Mül15, Chap.
2].

STFT (x)(f, t) =
N−1∑
n=0

x(tH + n)w(n)e− 2iπfn
N (2.4)

STFT results in a complex-valued time-frequency representation, called STFT spec-
trogram, but music analysis is generally performed on real-valued representations, either
the modulus |.| or the squared modulus |.|2 of these coefficients, respectively defining
magnitude and power spectrograms. Indeed, the modulus (or squared modulus) of the
complex-valued coefficients represents the relative importance of each frequency bin at
each time bin.

In most of the work using the STFT, the phase information, representing the argument
of each complex-valued coefficient, is not considered, though recent work integrates it in
the analysis [PR21].

In practice, low-frequency STFT coefficients are generally observed to be larger in
magnitude than high-frequency coefficients. This property is exhibited in Figure 2.5a,
which presents the average values of the coefficients in a magnitude spectrogram according
to the frequency bins. In this example, the decrease in magnitude values is empirically
close to logarithmic.

In addition, in audio signals, components of low intensity can perceptually be as im-
portant as components of high intensity, due to the perception of loudness in the hu-
man ear. In particular, the loudness of a sound is known to depend on the frequency of
the sound, especially for low-frequency components. This leads researchers to study the
“equal-loudness contours”, consisting of evaluating the differences in loudness perception
according to the frequency of the sound, see [ST04] for a comparison between models of

7. 1 for samples at indexes lower than N , 0 otherwise.

39



Chapter 2 – Music Processing and Music Structure Analysis

equal-loudness contours. Thus, the intensity of a sound and, consequently, dynamics in
amplitude, are not proportional to its perceptual evaluation.

In MIR, both of these effects may obscure relevant information and complicate the
extraction of information from the raw magnitude spectrogram. For that reason, mag-
nitude spectrograms can be studied by applying the logarithm function to the original
coefficients, hence resulting in log-magnitude spectrogram, an example being presented in
Figure 2.5b.
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(a) Average value of the magnitude coefficients
according to each frequency bin (in the mag-
nitude spectrogram).

(b) Logarithm values of the magnitude spec-
trogram (log-magnitude spectrogram).

Figure 2.5 – Example of STFT magnitude spectrogram, on a passage from the song
Rosetta Stoned of the band TOOL (presented in Figure 2.1). The left figure presents the
average magnitude values according to the frequency bins. The right figure presents the
log-magnitude spectrogram, i.e. the logarithm of the magnitude values of the STFT.

Mel-scale Representations Frequencies on the STFT spectrogram are sampled on a
linear scale. In practice though, in an music audio signal, the fundamental frequencies of
the different notes are not linearly but exponentially spaced. This is due to the harmonicity
of musical notes: starting from a note with a fundamental frequency f0, its frequential
spectrum is principally composed of harmonic partials of multiple frequencies, i.e. kf0.
This property is in particular true for the octave of this note, with a fundamental frequency
2f0, and its harmonic counterparts 2kf0. The second octave for this note (i.e. the octave of
the octave) have a fundamental frequency 2×2f0 = 22f0, and similarly for the subsequent
n octaves with fundamental frequencies 2nf0, and harmonic partials of frequencies 2nkf0.

In that sense, some authors adapted the frequency bins to the spread of the funda-
mental frequencies of notes, resulting in scales such as Mel scales [SVN37; War70] or
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the Equivalent Rectangular Bandwidth (ERB) scale [GM90]. We restrict this study to
Mel scales, which not only depends on the aforementioned exponential spread of octaves,
but also depends on perceptual evaluation of pitches [SVN37]. The perceptual evaluation
phase is intended to space Mel coefficients according to what listeners consider to be an
even scale of notes, which may not be exactly exponential in frequencies.

In particular, while several Mel scales coexist in literature [UCN99], we use the par-
ticular Equation 2.5, defined by O’Shaughnessy [OSh87], which converts a frequency f in
Hertz into a Mel coefficient m as:

m = 2595 log10

(
1 + f

700

)
. (2.5)

This conversion is implemented is the librosa standard toolbox [McF+21]. Following the
Mel conversion, Mel spectrograms are computed by keeping only a few anchor points,
linearly spaced on the Mel scale, and aggregating the energy of the STFT coefficients
around these anchor points.

In practice, this is made by constructing a Mel filter bank (an illustrative example
being shown in Figure 2.6) and applying the filter bank to the STFT coefficients. Each
filter (here, of triangular shape) considers a few STFT frequency bins only (the number
of which depends on the frequency: the higher is the frequency, the more STFT bins are
considered), weights each STFT coefficient (depending on the value of the filter at this
frequency bin), and sums all resulting coefficients.

The Mel spectrogram, in addition from being more closely related to the acoustic
properties of music, also has the advantage of being more efficient computationally, as it
reduces the number of features.
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Figure 2.6 – Illustrative example of a Mel filter bank, with only 12 Mel filters, presented
on the frequency scale. STFT coefficients are aggregated along the filters.
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Mel coefficients being computed from the STFT coefficients, they are subject to the
phenomenon presented in Figure 2.5, i.e. nonlinear relations between the values of the
Mel coefficients and their human perception. In that sense, some authors have applied
the logarithm function to the Mel coefficients, resulting in the Log Mel spectrogram.
In the Log Mel spectrogram, the energy discrepancies leading to small and large Mel
components are constricted.

In addition to the previous Log Mel spectrogram, we introduce the Nonnegative Log
Mel spectrogram, abbreviated NNLMS or NNLM spectrogram. The NNLMS is
computed as 10 log10(Mel+1) where Mel represent the coefficients of the Mel spectrogram,
which are nonnegative, and log the elementwise logarithm.

The NNLMS has the advantage of penalizing less the very low Mel coefficients com-
pared to the Log Mel spectrogram, because the logarithm is approximately linear for
values close to 1. In that sense, low Mel coefficients remain low in the NNLMS while
higher values are damped. In addition, this feature is nonnegative, which will be impor-
tant for some of the work presented, in particular NTD in Chapter 4.

The three spectrograms (Mel, Log Mel and NNLM spectrograms) are presented in
Figure 2.7.

Chromagram A Chromagram represents the frequency according to the 12 semi-
tones of the Western chromatic scale. In this feature, each row represents the weight of a
semi-tone (and its octave counterparts) at a particular instant. The rationale of chroma-
grams is to represent the energy associated with each semi-tone. Originally, chromagrams
were computed from a Fourier transform of the signal, by pooling frequency coefficients
along pitch-designed bandwidths [Got03], but recent work makes use of deep learning
schemes to precisely compute chromagrams [KW16], see [PKS22] for a comparison be-
tween recent models.

Of particular importance in this thesis is the “Chroma Energy Normalized Spectro-
gram” (CENS) [MKC05]. After the computation of chroma vectors, the CENS applies a
l1 normalization on each chroma vector, and samples their amplitudes based on “log-like”
amplitude thresholds. The latter log-like thresholding is motivated in order to account
for the perceptual evaluation of energy discrepancies, as discussed for the Log-magnitude
STFT spectrogram. In addition, a smoothing window is applied on the time axis. We
abusively use the term chromagrams to denote the particular CENS computed here. An
example of chromagram is presented in Figure 2.8.
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(a) Mel spectrogram (values are concentrated on the lowest frequencies).

(b) Log Mel spectrogram. (c) NNLM spectrogram.

Figure 2.7 – Example of Mel, Log Mel and NNLM spectrograms, on a passage from the
song Rosetta Stoned of the band TOOL (presented in Figure 2.1).

Figure 2.8 – Example of chromagram, on a passage from the song Rosetta Stoned of the
band TOOL (presented in Figure 2.1).
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MFCC Mel-Frequency Cepstral Coefficients (MFCCs) are timbre-related coefficients,
obtained by a discrete cosine transform of a Log Mel spectrogram. The rationale of MFCC
is to represent broadly the spectral envelope of a signal at every instant, hence giving
information about the evolution of timbre (correlated with the spectral envelope of sig-
nals) [PMK10]. An example of MFCC, with 10 coefficients, is presented in Figure 2.9.

Figure 2.9 – Example of MFCC, on a passage from the song Rosetta Stoned of the band
TOOL (presented in Figure 2.1).

These representations focus on representing the music as a sequence
of frequency-related information. On the first hand, STFT, Mel
and Log Mel/NNLM spectrograms represent the raw frequential
content, estimated by means of Fourier transformations. On the
other hand, chromagrams and MFCC focus on a particular aspect
of the signal (harmony for chromagrams, timbre for MFCC).

2.3 Music Structure Analysis

Citing Paulus et al. [PMK10], “[...] it is the structure, or the relationships between the
sound events that create musical meaning”. In that sense, researchers in MIR developed
the Music Structure Analysis (MSA) task, which focuses on the retrieval of the structure
in a song.

Music structure is ill-defined, but is generally introduced as a hierarchical system, from
the level of notes to the level of the song itself [McF+17; Nie+20]. A tentative definition
is that structure is a simplified representation of the organization of the song.
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In that sense, motifs, which arise from the organization of notes themselves, is a first
element of structure. These motifs create phrases and chord progressions, which further
define higher-scale elements such as patterns, etc. In general, the highest level of structure
defines musical sections, such as “chorus”, “verse” and “solo”, which is a macroscopic level
of the study of music [SBV16]. Some work focus on estimating structure in its hierarchical
nature, e.g. [ME14a; ME14b; Ber+20; SNB21], but this thesis rather focuses on a “flat”
level of segmentation, i.e. the macroscopic level, corresponding to musical sections.

MSA is subdivided into two subtasks, not necessarily mutually exclusive: the bound-
ary retrieval and the labelling of segments.

— The boundary retrieval task consists of estimating the boundaries between differ-
ent sections, and hence partitions the music in several non-overlapping segments,
covering the entire song.

— The labelling task consists of assembling the similar segments altogether by la-
belling them with similar labels, typically letters such as ’A’, ’B’, ’C’, etc, or plain
words such as ’chorus’, ’verse’ ’solo’, etc, i.e. musically-designed identifiers corre-
sponding to the role of the different segments in the song. The latter labelling
scheme, with musical identifiers, is called “functional” labelling [Bim+12], but
works attempting to estimate functional labelling are scarce [WHS22].

A schematic example of musical structure is presented in Figure 2.10. A task is devoted
to MSA in the MIREX contest 8.

Organization
of the song: Verse Chorus Verse Solo Chorus

High scale
structure: A B A C B’

Low scale
structure: a b c c a b d e f c c’

Figure 2.10 – A schematic example of musical structure

Many MSA algorithms make use of matrices representing the similarity and dissimilar-
ity in the music, sometimes referred to as “self-distance matrices” [PMK10], “self-similarity
matrices” [Nie+20], “recurrence matrix” or “pair-wise frame similarities” [ME14b]. These

8. e.g. www.music-ir.org/mirex/wiki/2016:Structural_Segmentation
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representations differ in their details, but share the same conceptual idea of computing
a notion of similarity (or, conversely, a notion of distance) between the different frames
in the music, and representing it in a square matrix, its size being the number of frames.
This representation is also at the heart of our MSA strategy, but we rather use the term
of “autosimilarity matrix”, as presented in Section 3.2.

In the same spirit, authors introduced “lag similarity matrix” [Got03], which also
represents the similarity at the scale of the song, but with time expressed relatively to the
current frame rather than as an absolute position in the song. Hence, in this section, we
loosely refer to these different representations under the term “autosimilarity matrices”.

An idealized autosimilarity matrix, extracted from [PMK10], is presented in Fig-
ure 2.11. Similar passages in an autosimilarity matrix lead to 2 typical shapes, exhibited
in Figure 2.11: blocks and stripes. A block is a square (or a rectangle) in the autosim-
ilarity, representing a zone of high inner-similarity, i.e. several frames which are highly
similar. A stripe is a line, parallel to the main diagonal, representing a repetition of the
content, i.e. a pattern of several frames repeated in the same order.

The blocks and stripes structures in an autosimilarity matrix depend on the features,
which relate to specific attributes in music (e.g. timbre for MFCC, harmony for chro-
magrams, etc), and hence influence the evaluation of similarity and repetition in the
song. Blocks and stripes structures also depend on the temporal resolution of the analy-
sis 9 [Pee03], which advocates for musically-motivated temporal divisions, as discussed in
Section 2.4.

As a general trend, the algorithms using autosimilarity matrices are designed so as to
retrieve segments based on blocks and stripes. Such algorithms are introduced hereafter.

2.3.1 Boundary Retrieval - Structural Segmentation

Formally, given a musical song sampled in time as Ω audio frames, the subtask of
boundary retrieval can be defined as finding a set of boundaries Ze representing the start
of all segments, i.e. Ze = {ζe

i , i ∈ J1, EK}, E representing the number of boundaries
estimated in this song. In particular, the first boundary is the start of the song, i.e.
ζe

1 = 1, the last boundary is the last audio sample, i.e. ζe
E = Ω, and each boundary is

located on an audio sample, i.e. ∀i, ζe
i ∈ J1, ΩK. The i-th segment Si is exactly composed

of the samples indexed in the interval Jζe
i , ζe

i+1J. By definition, E boundaries define E − 1

9. Note that the author refers to blocks and stripes respectively under then names of “states” and
“sequences”.

46



2.3. Music Structure Analysis

Figure 2.11 – An idealized autosimilarity matrix, extracted from [PMK10].

segments.
Boundary retrieval aims at segmenting the song, and is also referred to as structural

segmentation. It consists of segmenting the song in non-overlapping parts. The work
presented in the subsequent chapters of this thesis focuses on the boundary retrieval task.

Algorithms aimed at solving the task are designed following one or several criteria
among four: homogeneity, novelty, repetition and regularity [Nie+20]. Homogeneity
and novelty relate to one another, and can be studied together.

Homogeneity and Novelty

The homogeneity criterion consists of defining a segment as internally stable with
respect to some musical attributes, e.g. harmonic content or timbre characteristics. The
rationale is that similar passages must belong to a same segment, as they share musical
properties. The novelty is the complementary criterion, focusing on retrieving boundaries
as points of high dissimilarity, for instance a change in instrumentation or a switch to
another harmonic line.

As an immediate observation, homogeneity focuses on finding segments themselves,
or strongly similar parts in a music, while novelty focuses on the boundaries between
segments. In that sense, both criteria are often considered as two viewpoints of the same
problem, typically a point of high novelty may be defined as a breaking point of homo-
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geneity, and homogeneity values are low or high relatively to the novelty values.
The kernel of Foote [Foo00], which may be one of the earliest work on audio MSA,

exploits this definition of novelty, and estimates boundaries as points of high dissimilarity
between the recent past and the near future. The kernel is a square block matrix, composed
of 4 square blocks of same size, either constant equal to 1 or equal to -1. Hence, the 4
blocks divide the kernel in 4 smaller square blocks. The upper left and lower right blocks
are constant equal to 1, and the lower left and upper right blocks are constant equal to

-1, for instance:
 1 1 −1 −1

1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

, also represented in Figure 2.12a.

This kernel works ideally when the recent past and the near future are homogenous in
their respective neighborhoods, but very dissimilar with each other, for instance on the
diagonal point between the first A and B segments in Figure 2.11. In practice, this kernel
is convolved with the autosimilarity matrix of the song, centered on the diagonal, which
gives a “novelty” value for each temporal sample of the song, finally post-processed into
boundaries with a thresholding operation. An illustration of novelty, computed on the
idealized autosimilarity matrix of Figure 2.11, is presented in Figure 2.12b.

1
-1

(a) Example of a binary kernel from
Foote [Foo00].

(b) Illustration of novelty computed with
Foote’s kernel on the idealized autosimilarity
matrix of Figure 2.11.

Figure 2.12 – Representation of the Foote’s novelty kernel.

The size of the kernel strongly influences the computation of novelty, and hence in-
fluences the boundaries. This impact may be tampered by a smoothing operation on
the values of the kernel, typically with a gaussian kernel, as introduced in the seminal
paper [Foo00], which also smoothes the novelty curve.

While this technique is rather simple, it is still used as a standard segmentation tool in
recent work, e.g. [McC19; Wan+21] focusing on improving the segmentation scores by en-
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hancing the autosimilarity matrix. In particular, both of these works belong to the domain
of representation learning [BCV13], consisting of designing machine learning algorithms
prone to learn relevant representations instead of focusing on solving a particular task.
In that context, using prior knowledge, both works design neural networks architectures
and optimization schemes with the objective to obtain enhanced (nonlinear) similarity
functions, more prone to highlight the structure in the autosimilarity matrices.

Notably, McCallum [McC19] develops an unsupervised learning scheme where the prior
knowledge enforced in the representation is based on the proximity of samples: the closer
the frames in the song, the more probable they belong to the same segment. In the same
spirit, Wang et al. [Wan+21] develop a supervised learning scheme: the neural network
must learn representations where segments annotated with the same label are close, and
segments annotated differently are far apart. The rationale for both methods is to learn
a similarity function which is not only representing the feature-wise correspondence of
two music frames, but can also discover frequent patterns in the learning samples, and
hence transform the stripes (corresponding to repeated patterns) into blocks, thus favoring
homogeneity.

To some extent, this is also the objective of the Spiral Array model [Che02], used
for the related task of key segmentation, and implemented for audio-based analysis by
Chuan & Chew [CC05]. Indeed, by projecting the chords into a new feature space (here the
spiral-array), the musical patterns turn into tonal representations accounting for musical
proximity of the chords, hence turning the sequential aspect of music into some form of
homogeneity.

Not all techniques focusing on novelty make use of Foote’s kernel. Considering homo-
geneity as blocks, Jensen [Jen06] developed an optimization problem aiming at minimizing
the average self-dissimilarity of each segment as a way to score the homogeneity of each
segment. This optimization problem is solved by dynamic programming (more precisely,
finding the shortest path in a directed acyclic graph), with an additional constraint in
order to limit the number of segments. Sargent et al. [SBV16] later extended this op-
timization paradigm to the incorporation of constraints, based on prior knowledge, in
particular on the size of segments.

Another, popular, dynamic programming algorithm is the Viterbi algorithm, used in
particular to solve Hidden Markov Models (HMM), as detailed in [Rab89]. HMM were used
in the context of music segmentation to represent individual segments as states, and the
Viterbi algorithm decodes the sequence of states to compute the final segmentation [LC00;
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AM01; PLR02].
Clustering methods, e.g. k-means or Nonnegative Matrix Factorization (NMF) (NMF

is formally introduced in Section 4.2.3), which aims at discovering correlations between
data points by regrouping them in large classes (“clusters”), are standard in many ma-
chine learning tasks to uncover similarities in data without supervision. One such example
in MSA is the use of Convex NMF [NJ13], a variant of NMF were the feature space is
contracted in convex combinations of columns of the original data. In the context of struc-
tural segmentation, Convex NMF is applied on autosimilarity matrices, and factorization
results are thus interpreted as the most similar frames, then processed into sections.

Clustering methods may seem adapted for uncovering sections following the homo-
geneity criterion. Nonetheless, as pointed out by Peeters et al. [PLR02], standard un-
constrained clustering methods often fail to catch the temporal continuity in consecutive
frames to form sectional clusters, while it is primordial in music. In that sense, Levy &
Sandler [LS08] developed a temporally-constrained clustering algorithm, applied on states
sequences of a HMM. In that same idea, McFee and Ellis [ME14b] uses a constrained ag-
glomerative clustering to form consistent clusters, where homogeneity is enhanced using
supervision.

Repetition

While the homogeneity/novelty criteria consider segments as locally uniform, the rep-
etition criterion considers that segments should be sequences, prone to be repeated in the
song. In that sense, individual sequences may be self-dissimilar by nature, i.e. composed
of very different musical components, but the fact that they are repeated constitutes the
segment. This is a common assumption in music when considering musical attributes, like
chord progressions in harmony for instance.

This criterion is very popular in Symbolic MSA (retrieving the structure of music
seen as a symbolic flow of information, typically chords), see [PMW10] for an overview
of melodic segmentation methods, i.e. techniques aiming at computing the main motifs
and melodic phrases in a music piece. More recently, Giraud & Staworko [GS15a] and
Guichaoua [Gui17] developed algorithms searching for musical sequences based on gram-
mars. Guichaoua [Gui17] and Louboutin [LB17] developed additional models based on
polytopic graphs, the former model being presented in the Appendix D.2 10.

10. In addition to the presentation of the model, Appendix D.2 presents the opensource MusicOnPoly-
topes toolbox [MCB21], which has been developed in the context of this thesis, and which regroups both
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In the audio domain, and more particularly in the context of autosimilarity-based
techniques, the repetition criterion focuses on retrieving stripes in the autosimilarity ma-
trix. In practice, algorithms must pre-process the autosimilarity matrix, to enhance the
stripes [PMK10]. Pre-processing may be inspired from image processing, such as aver-
age [BW01], median [MND09], erosion/dilation [LWZ04] or additional filtering [Got03;
Pee07].

After this pre-processing operation, stripes may be located in the autosimilarity ma-
trix. Dannenberg & Hu [DH03] and Goto [Got03] proposed algorithms based on thresh-
olding to select the most important stripes. While the algorithm by Goto [Got03] initially
focused on chorus retrieval, it was later extended for MSA by Ong [Ong+06, Chap. 4].

Shiu et al. [SJK06] proposed to detect stripes by applying a convolution kernel, in the
same spirit as Foote [Foo00], but specifically designed for stripes. In details, this kernel
is a binary kernel, with 1 on several diagonals and 0 everywhere else, which results in a
high repetition value when several stripes are present in the autosimilarity of the current
segment considered, and a low repetition value when no stripes are present. An example
of kernel is presented on Figure 2.13.

In this work, convolution kernels are more particularly used to estimate the period
between two consecutive stripes, the algorithm applying different kernels concurrently.
Finally, the periods of repetition are used as constraints in an optimization scheme, such
that excerpts with different periods of repetitions should not belong to a same segment.
The optimization scheme itself is not based on the kernels.

1
n

0

Figure 2.13 – Kernel from Shiu et al. [SJK06], designed to find stripes (and so, patterns)
repeating every two frames. The parameter n is the number of nonzero elements (18 in
this example).

As for homogeneity, some clustering methods have been employed, focusing on re-
trieving musical sequences. In that sense, Weiss & Bello [WB10] used a Convolutive NMF
model to catch repetitive sequences in the music. The Convolutive aspect of NMF allows
to incorporate several consecutive frames in the feature space, hence representing patterns
of several frames in factors. Convolutive NMF needs a precise number of time frames in
models [Gui17; LB17] in a same framework.
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the feature space though, as a parameter, while patterns can be of different sizes. To
counteract this effect, the authors implemented sparsity constraints.

In the same spirit, Cheng et al. [CSG18] uses an extended version of Convolutive
NMF, called “Nonnegative matrix factor 2-D deconvolution” [SM06], which, applied to the
autosimilarity matrix, retrieves the stripes structure and, hence, their repetition, finally
post-processed into boundaries.

Still focusing on stripes is the work of McFee & Ellis [ME14a], which developed an
algorithm based on spectral clustering, aiming at interpreting the stripes as principally
connected vertices in a graph. The structure is then obtained by studying the eigenvectors
of the Laplacian of this graph, forming cluster classes for segmentation. This technique
is amongst the best-performing techniques nowadays, and is improved by recent work of
Salamon et al. [SNB21], which replace or enhance the acoustic features on which is applied
spectral clustering by nonlinear embeddings, learned by ways of a neural network.

Combining Homogeneity and Repetition

While the aforementioned algorithms mainly focus on one criterion from homogene-
ity/novelty and repetition, the concepts are not mutually exclusive. In that sense, some
methods combine the different criteria in a larger framework, a particular example being
the constrained clustering algorithm of Levy & Sandler [LS08] that we previously intro-
duced under the homogeneity criterion. Indeed, the time constraints favor the construc-
tion of clusters based on temporal proximity, and hence favor clusters based on repetitive
sequences rather than clusters based on feature-wise similarity only.

Kauppinen et al. [KKV13] present an “augmented” NMF model, accounting for both
the blocks and stripes shapes in the autosimilarity by explicitly modeling these shapes in
factors. Hence, their model explicitly exploits both criteria, even if, in their final experi-
ments, boundaries are computed considering the blocks only (and hence homogeneity).

Serrà et al. [Ser+14] develop “Structural Features”, which, by design, encode both
repetitive and homogeneous parts. The rationale of these features is to compute the sim-
ilarity between bags of instances, composed of several consecutive frames. In that sense,
the similarity encodes the repetition of any sequence, which can be constant (homogene-
ity) or evolving (repetition). Boundaries are obtained as points of high novelty between
consecutive structural features.

Finally, Grill & Schlüter [GS15b] develop a Convolutional Neural Network (CNN)
which outputs estimated boundaries. This CNN is one of the few techniques which do
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not compute an autosimilarity to later post-process it into boundaries, but it still uses
autosimilarities as input. The network is supervised on two-level annotations, on the
SALAMI dataset (presented in Section 2.3.4), and, according to the authors, using these
two-levels of annotations is beneficial to the performance. Practically, the network uses
Log Mel spectrograms as inputs, in conjunction with autosimilarity matrices.

The boundary estimation being the result of the nonlinear function learned in the
neural network, it is impossible to assume which criterion is covered by the network
in its estimation. Nonetheless, Maezawa [Mae19] combined the CNN-based estimation
with regularity and timbre-homogeneity constraints, and explicitly mitigate them in a
combination of local optimization schemes.

Regularity

The regularity criterion assumes that segments in a song are generally lasting the
same size [SBV16], or multiples of that particular size [LS06; SG16], in general computed
in beats or bars (32 beats (i.e. 8 bars) according to Sargent et al. [SBV16], 4 bars and
multiples for Levy & Sandler [LS06]). Hence, this criterion aims at favoring some particular
sizes for segments, and is generally implemented as a constraint [SBV16].

As an example of algorithm using only the regularity criterion, Serrà et al. [Ser+14]
compares their structural features algorithm with a regular baseline, estimating bound-
aries as equally spaced in each song, regardless of any other musical aspect. Experimen-
tally, the baseline is outperformed by every other algorithm, showcasing the need for
considering musical attributes in the decision-making process. We will see in Section 2.3.4
that the datasets used for evaluation on this thesis present regularity in their annotations,
motivating the use of regularity constraints.

2.3.2 Labelling of Segments

In addition to the boundary retrieval task, MSA is comprised of the subtask of labelling
the segments. Some of the aforementioned algorithms estimate boundaries and labels in
a same framework, for instance (but not restricted to) [LS08; WB10; NJ13].

Additional works focus on estimating the labels of segments after the segmentation
stage, i.e. once boundaries have been estimated, and hence consist of evaluating the simi-
larity between entire sections. This can be achieved for instance with clustering techniques,
such as NMF [KS10] or k-means [NB14].
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We do not present much further this subtask, as this thesis focuses on the boundary
retrieval subtask, but an interested reader can refer to [PMK10; Nie+20].

2.3.3 Feature Representation in MSA

The consensus in MSA is that the choice of the features impacts the type of segments
considered [SC13; VOM21]. Early works were focusing on both MFCC and chromagrams,
depending on the favored criterion: timbre information is considered stable across seg-
ments, hence generally used in homogeneity-based criteria such as [Foo00], and the repe-
tition is in general favored by chromagrams and harmony, such as in [Got03]. Some work
combines different features, such as [TM19], which fusions the outputs of several spectral
clustering results, each computed on different features.

In recent work, Nieto & Bello [NB16] found that the Constant-Q Transform, a compact
spectral representation [BP92], provided better results than MFCC or chromagrams for
most of the State-of-the-Art algorithms. Nieto et al. extended this conclusion to Mel
spectrograms [Nie+20], which is also a compact spectral representation.

The best-performing model to date [GS15b] also uses Mel spectrograms (in particular,
Log Mel spectrograms). Still, we consider in this thesis that no set of features clearly stands
out for structural segmentation and, as a consequence, we instead study experimentally
the impact of the features on the segmentation estimations. Particularly, we compare
Mel/Log Mel/NNLM spectrograms, MFCC and chromagrams, presented in Section 2.2.4,
whose practical details are presented in Appendix A.1.

2.3.4 Metrics and Datasets

Evaluation baselines, in particular benchmark datasets and standard metrics, are im-
portant to quantitatively evaluate and compare different algorithms. Thus, this section
presents the evaluation criteria used throughout this thesis to compare the State-of-the-
Art algorithms with the methods developed in this work.

Metrics

Because this thesis focuses on boundary retrieval, we consider the Hit-Rate metrics,
which compares a set of estimated boundaries with a set of annotations, by intersecting
them with respect to a tolerance t [OH05; Tur+07]. Additional metrics, not considered in
this thesis, are presented in [Luk08].
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In practice, given two sets of boundaries Ze and Za, respectively the sets of estimated
and annotated boundaries, an estimated boundary ζe

i ∈ Ze is considered to be correct if it
is close enough to an annotated boundary ζa

j ∈ Za (“close enough” meaning that the gap
is smaller than the tolerance t), i.e. if ∃ ζa

j ∈ Za / |ζe
i − ζa

j | ≤ t. Each estimated boundary
can be coupled with a maximum of one annotated boundary, and vice versa.

Denoting as Ct the set of correct boundaries subject to the tolerance t, Ct con-
tains at most as many elements as the annotations or the estimations, i.e. 0 ≤ |Ct| ≤
min(|Ze|, |Za|). In case of perfect concordance between Ze and Za, Ct = Ze = Za. In
practice, the concordance of Ct with Ze and Za is evaluated by the precision Pt, recall Rt

and F-measure Ft, defined as:
— Pt = |Ct|

|Ze| , i.e. the proportion of accurately estimated boundaries among the total
number of estimated boundaries. Hence, a high precision indicates that a large part
of the estimated boundaries is correct. It may indicate some under-segmentation:
the fewer boundaries are estimated, the more likely they are to be all correct, the
degenerate case being the estimation of a unique boundary.

— Rt = |Ct|
|Za| , i.e. the proportion of accurately estimated boundaries among the total

number of annotated boundaries. Hence, a high recall indicates that a large part
of the annotated boundaries is accurately retrieved in the estimation. It may indi-
cate some over-segmentation: the more boundaries are estimated, the more likely
some of them are to match the annotations, the degenerate case being the estima-
tion of boundaries at every instant (or spaced exactly equal to the tolerance, as
in [Ser+14]).

— Ft = 2PtRt

Pt+Rt
is the harmonic average of both aforementioned measures. The harmonic

average is less sensible to large values than the arithmetic (standard) average,
and is conversely more strongly penalized by low values. Hence, a high F-measure
requires both a high recall and a high precision, which may ensure a trade-off
between obtaining accurate boundaries and spanning the annotations.

In structural segmentation, common conventions for the tolerance values are 0.5s [Tur+07]
and 3s [OH05]. The 3 seconds tolerance, citing Ong & Herrera [OH05], is justified as being
equal to “approximately 1 bar for a song of quadruple meter [NB: 4 beats per bar, e.g. 4

4
metric] with 80 bpm in tempo”, while the 0.5 second tolerance is at an order of magnitude
corresponding to the beat.

In this thesis, we use both tolerance values, leading to 6 metrics P0.5, R0.5, F0.5 and
P3, R3, F3. In practice, these metrics are computed using the mir_eval toolbox [Raf+14].
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Note that the tolerance considers the absolute value of the difference between the
estimation and the annotation. Hence, it can equivalently be considered that an estimation
is correct if it is contained in a window of size 2t centered on the annotation, in our case
windows of 1s and 6s respectively.

Datasets

Several standard datasets, with structural annotations, are available for research pur-
poses nowadays [Got+02; Smi+11; Nie+19; Mau+09]. Still, while annotations are easily
shareable, copyright infringement issues can complicate the distribution of the actual
audio files.

In that sense, Goto et al. [Got+02] designed the RWC dataset, a copyright-cleared
dataset, designed by and for researchers in MIR. The dataset is composed of four subsets:
the Pop, Classical Music and Jazz datasets, which contain songs according to the epony-
mous musical styles, and the Royalty-Free Music dataset, which contain public-domain
traditional pop music. This thesis focuses on the Pop dataset, hereafter designed as the
RWC Pop dataset.

The RWC Pop dataset is composed of 100 songs, all originally written, composed
and recorded by professional musicians and sound engineers, with the aim of achieving
sound quality equivalent to that of commercially distributed music. Two sets of structural
annotations are available for this dataset: AIST [Got+06] and MIREX10 [Bim+10].

AIST annotations were designed by the original authors of the dataset, and were the
first annotations publicly available. Bimbot et al. later produced the MIREX10 annota-
tions 11 precisely following the methodological guideline described in [Bim+10]. The au-
thors aimed at producing annotations which are consistent across annotators and datasets,
in order to reduce the inter-annotator ambiguity which exists in structural evaluation. In
general, in the MIREX contest 12, the MIREX10 set of annotations leads to significantly
better segmentation scores compared to the AIST set of annotations.

Hence, in this thesis, we only consider the MIREX10 set of annotations for experi-
mental results. It is to be noted that the MIREX10 set of annotations does not provide
label annotations, while the AIST set of annotations does. Though, we recall that labels
are not evaluated in this thesis.

In this thesis, we also consider the SALAMI dataset [Smi+11], which, to this date,

11. The name stems from the 2010 MIREX contest, where the set of annotations was introduced.
12. e.g. the 2016 results: www.music-ir.org/mirex/wiki/2016:MIREX2016_Results
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is the largest publicly available dataset of professionally recorded music with structural
annotations. This dataset is composed of 1359 songs, labelled as belonging to popular,
jazz, classical and world music styles.

This dataset is composed of annotations at two hierarchical levels: fine (corresponding
to melodic motifs and phrases) and coarse (related to sections). The coarse level is the
hierarchical level which best corresponds to the “flat” segmentation targeted in this thesis.
In addition, 884 songs are annotated by at least two annotators, and, when faced with
several annotations, we keep the closest to our estimation (i.e. the best value for the
average between F0.5 and F3).

Evaluation Limits

Citing Bruderer et al. [BMK06], “Algorithms that segment music are often binary in
nature”, but “the perception of boundaries is not binary”. Indeed, musical structure is
highly subjective, and depends on the musical properties under consideration as well as
on the musical background of the listener.

In that spirit, Nieto et al. proposed to adapt the F-measure to better represent the
perceptual evaluation of boundaries. According to the authors, the precision metric is
more relevant perceptually than the recall when evaluating estimated boundaries. In the
same spirit, Wang et al. studied the subjectivity in annotations [WMD17], and concludes
that some boundaries are more consensual than others. The authors suggest to refine the
methodology and definitions of structure, in particular for annotators.

While some authors developed guidelines for refining musical structure definition, e.g.
[Bim+10; Smi+11; Bim+12], the structure remains ambiguous in its essence [Nie+20], and
more accurate systems should clearly consider ambiguity, for instance by differentiating
the structure depending on the instrument considered [SG17], by considering structure as
a multi-dimensional object [PD09], or by considering different metrics to quantitatively
evaluate the structure [Luk08; GGL16].

These considerations must be kept in mind when evaluating and comparing algo-
rithms, but they are beyond the scope of this thesis, which only attempts to provide new
algorithms and representations to evaluate boundaries in an audio musical signal.

Algorithms Used as State-of-the-Art

Despite the large literature on MSA, we restrict the choice of State-of-the-Art al-
gorithms to only five algorithms. Firstly, we have chosen four unsupervised algorithms,

57



Chapter 2 – Music Processing and Music Structure Analysis

namely Foote’s kernel [Foo00], Convex NMF from Nieto & Jehan [NJ13], Spectral Cluster-
ing from McFee & Ellis [ME14a], and the Structural Features from Serrà et al. [Ser+14].

All these algorithms are developed in the MSAF toolbox [NB16]. Foote’s kernel is
motivated as State-of-the-Art algorithm because, despite its simplicity, it is still one of
the best-performing algorithms nowadays, and is still used in many recent articles for
comparison. Comparison with Convex NMF is motivated by its conceptual proximity to
some factorization and compression schemes presented in this thesis (particularity NTD
and NMF, respectively Sections 4.2.2 and 5.3.1). Finally, the Spectral Clustering and the
Structural Features are also considered because they are the best-performing unsupervised
methods.

As global State-of-the-Art though, we consider the CNN of Grill & Schlüter [GS15b],
which is the best-performing algorithm, and keep the results publicly available from the
2015 MIREX contest. However, this approach is a supervised method, as it requires a
larger number of training data. In particular, this method is supervised on a subset of
the SALAMI dataset, the remaining part of the dataset being used as a test dataset
(stemming from the MIREX contest). Details about the learning/test repartition of the
SALAMI dataset are presented in Appendix A.2.

2.4 Focus on Barwise Music Processing

As previously mentioned, this thesis studies structure at the barscale, i.e. it considers
that boundaries occur precisely between bars, on downbeats, and that sections are com-
posed of several whole bars. This section aims at detailing this viewpoint both in terms
of motivations and practical considerations.

2.4.1 Motivations

In previous work on MSA, features were either computed with a fixed hop length, typi-
cally between 0.1s and 1s [PMK10], or (in the more recent works), aligned on beats [Nie+20].
The beat alignment is musically-relevant because it aligns the features and the estimations
with respect to a time segmentation consistent with music performance.

In this thesis, we consider that the barscale is more relevant than the beat scale to
study structural segmentation of Pop and Western modern music (which are the styles of
both RWC Pop and SALAMI). In our opinion, bars are well suited to express patterns
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and sections in Western modern music.
Indeed, in the conventions of Western musical notations (as presented in Section 2.2.2),

musical notes are expressed relatively to beats, and beats are combined to form bars. Bars
finally segment the musical scores (with vertical lines), and repetition occurs generally
between different bars (which is particularly visible by the use of repeat bars, or symbols
as “Dal segno”, “Da Capo”, etc).

In addition, the intuition that musical sections start and end on downbeats is ex-
perimentally confirmed by works such as [MND09; Fue+19], where the use of structural
information improves the estimation of downbeats. The direct drawback is the need for a
powerful tool to estimate bars.

In this thesis, we use the madmom toolbox [Böc+16]. In details, the madmom tool-
box uses a neural network to perform the estimation, described in [BKW16]. In the 2016
MIREX contest 13, which was the last edition of the contest comparing downbeat esti-
mation algorithms, this neural network obtained the best performance, and can hence be
considered as a State-of-the-Art algorithm for the task.

To support the idea of barwise estimation of structure, we estimate boundaries with the
four unsupervised State-of-the-Art algorithms, computed with the MSAF toolbox [NB16],
and post-process the segmentation outputs by aligning each boundary with the closest
downbeat. A comparison of the segmentation scores with and without the alignment is
presented in Figure 2.14 for both RWC Pop and SALAMI datasets. In these algorithms,
the original boundaries are aligned with beats, thus, we are comparing segmentation re-
sults either beatwise or barwise aligned. These results were already presented in [Mar+20]
for some of the algorithms, and on the RWC Pop dataset only.

Results show that aligning estimated boundaries on downbeats results in a strong
increase in performance for F0.5, and to comparable results for F3, on both datasets.
Hence, aligned on downbeats, estimations are more accurate, but the F3 metric is not
significantly impacted by this alignment. We recall that the 3 seconds tolerance was
initially motivated as corresponding approximately to one bar [OH05], which is consistent
with the lack of significant difference in the results. Thus, in the remainder of this thesis,
results of these four State-of-the-Art algorithms are given aligned on downbeats.

For the CNN [GS15b], global State-of-the-Art, we used results obtained at the 2015
MIREX contest 14 (hence, not aligned barwise), as the code and the experimental frame-

13. www.music-ir.org/mirex/wiki/2016:Audio_Downbeat_Estimation_Results
14. nema.lis.illinois.edu/nema_out/mirex2015/results/struct/mrx10_1/
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work are not publicly available.

(a) RWC Pop.

(b) SALAMI (test subset).

Figure 2.14 – Segmentation results of State-of-the-art algorithms on the RWC Pop and
the SALAMI datasets, for beatwise (original) and barwise aligned boundaries.

2.4.2 Barwise Processing of Inputs

The remainder of this thesis studies structure at the barscale, motivated by the afore-
mentioned arguments and experimental results reported in Figure 2.14. Nonetheless, in-
stead of post-processing the estimations, we rather pre-process the input features.

In this setting, each frame of information holds the context of exactly one bar, i.e.
barwise sampled features. Indeed, following the idea that music is organized barwise, in
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different patterns, the rationale of the methods studied in this thesis is to catch these
barwise patterns. In addition, barwise alignment allows to cope with tempo variations in
songs, and catch patterns even if performed with some temporal inaccuracies.

The direct drawback of this alignment is that it hinders all differences in tempo, as-
suming that tempo should be steady across the song. In some musical contexts, variations
of tempo are an important part of the musical content, and some structural boundaries
can be based solely on changes of tempo, as discussed in [VOM21]. We do not propose
a strategy to counteract this effect, and assume that, in our case study (i.e. Pop and
modern Western music), the benefits of lowering imperfections in performance and study-
ing patterns at the barscale are greater than trying to detect boundaries solely based on
tempo differences.

Practically speaking, the feature representation is re-sampled in barwise spectrograms.
Firstly, spectrograms are computed (in any feature representation) with a low hop length
of 32 frames. Denoting as F the dimension of the feature representation, presented in
Section 2.2.4, and Ω the number of frames, this results in an oversampled spectrogram
of size F × Ω. Then, downbeats are estimated with the madmom toolbox. This allows
us to split the original spectrogram in B barwise spectrograms (B being the number of
bars in this song) each containing ΩB frames. As bars can be of different lengths (because
of differences in tempo or inaccuracies in the performance), different bars can contain a
different number ΩB of frames.

Thus, we define a subdivision parameter S, which is the desired number of time
frames in each bar. Hence, barwise sampling transforms the spectrogram of size F × Ω,
in a “barwise sampled” spectrogram of size F × BS (with BS < Ω), and this process is
schematized in Figure 2.15.

Original
spectrogram

(oversampled)
F

Ω

“Barwise
sampled”

spectrogam
F

S × B

Figure 2.15 – Barwise sampled spectrogram, i.e. a representation where each bar contains
the same number S of time frames.

Practically, starting from the subdivision S, and from indexes ω1 and ω2, respectively
the indexes of the closest frames to the downbeats starting and ending the bar, barwise
sampling consists of selecting all frames

{
ω1 + ⌊k(ω2−ω1)

S
+ 1

2⌋, 0 ≤ k < S, k ∈ N
}

, i.e.
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equally-spaced frames in the bar to fit the chosen subdivision, as presented for a particular
bar in Figure 2.16 15.

A different strategy [SG18], not considered in this thesis, consists of taking the length
of the largest bar as the desired dimension, and zero-pad all smaller barwise spectrograms.

...

ω1 ω2

ΩB

... ...

ω1 ω2

S

...

Figure 2.16 – Barwise sampling: zoom on a bar. Here, the bar corresponding to the original
feature representation is composed of ΩB = 21 frames, and the barwise sampled bar of
S = 6 frames.

By vectorizing each barwise spectrogram (of size F × S) in the “barwise sampled”
spectrogram, and concatenating them along the bar dimension, we introduce the Bar-
wise TF representation, consisting of a matrix of size B × FS. Note that we choose to
vectorize the time-frequency features, thus discarding the dependencies between the time
and frequency dimensions. The aforementioned process is described in Figure 2.17.

Barwise
sampled

spectrogram
F

S × B

B

F × S

Barwise TF
matrix

Figure 2.17 – Barwise TF matrix.

In early tests, we compared three values for S: 96, 128 and 192, empirically chosen
as good fits for time signatures multiple of 4 (as they are all multiple of 4), typically
4
4 , but also of 3 (for 96 and 192), typically 3

4 , as both 4
4 and 3

4 time signatures
seem empirically to be the most common time signatures in Pop Music. In addition, we
wanted these subdivisions to be large enough to catch important musical information in

15. Other techniques could be applied to reduce the number of frames (for example averaging the
content of all frames instead of choosing one), but we did not pursue that lead.
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the bars 16. Experiments showed no significant differences between these three values, so
we fixed it to 96, the lowest value, to gain in calculus complexity.

2.4.3 Dataset Analysis

Of particular importance for this thesis is the study of the impact of barwise processing
on the datasets. Firstly, to study the impact on the annotations, Table 2.1 presents the
structural segmentation metrics when comparing the annotations aligned on the closest
downbeats with the original annotations. Comparing the annotations re-aligned on down-
beats with their original values provides the upper limit of metrics when using barwise
aligned features.

The performance of the barwise-aligned annotations are way higher than those of the
current State-of-the-Art (see Figure 2.14), which indicates that barwise processing may
not be a problem as long as the associated methods gain in performance in the estimation
of boundaries. Still, while the annotations of RWC Pop seem to be precisely located on
downbeats, the SALAMI annotations obtain lower results for the metrics with the 0.5s
tolerance, indicating either wrong downbeats estimation or annotations which are less
systematically synchronized on the downbeats.

Dataset P0.5 R0.5 F0.5 P3 R3 F3
RWC Pop 96.46% 96.21% 96.33% 100% 99.73% 99.86%
SALAMI Annotation 1 82.89% 82.85% 82.87% 99.95% 99.91% 99.93%
(test subset) Annotation 2 81.94% 81.89% 81.91% 99.96% 99.88% 99.92%

Table 2.1 – Metrics when aligning the references on the downbeats (compared to the
original annotations). The SALAMI dataset is restricted to the test subset, as detailed in
Appendix A.2, and the two sets of annotations are presented.

From these barwise annotations, Figure 2.18 presents the distribution of the sizes of
segments, in terms of number of bars in the annotations. This distribution is important
regarding the criterion of regularity, as the majority of segments in both datasets are
of size 8 bars, and the remainder are mostly of sizes 4, 12 and 16 bars (especially in
SALAMI). Hence, methods employed on these datasets should favor these sizes.

16. In a 4
4 metric, a subdivision of 96 corresponds to 24 frames per beat.
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(a) RWC Pop. (b) SALAMI (test subset).

Figure 2.18 – Distribution of segments sizes, in terms of number of bars, in the annotations.
The SALAMI dataset is restricted to the test subset, as detailed in Appendix A.2, and
both sets of annotations are mixed here.

2.5 Conclusions

This section presented the important tools to process music computationally, such as
standard music theory concepts and important features to describe music.

Furthermore, this section has reviewed the literature in structural segmentation, a
subtask of the larger Music Structure Analysis task, typically divided in four criteria:
homogeneity, novelty, repetition and regularity. Algorithms may focus on one or more of
these criteria to estimate the different sections in a song.

Finally, we introduced the notion of barwise aligned features, along with the Barwise
TF matrix representation, which consists of processing the original spectrogram in barwise
representations. The next chapter introduces the use of this representation for structural
segmentation, along with a new segmentation algorithm, the CBM algorithm.
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Chapter 3

CONVOLUTIVE “BLOCK-MATCHING”
SEGMENTATION ALGORITHM

This chapter details the segmentation algorithm used throughout
this thesis. This algorithm is called the CBM algorithm, standing
for Convolutive Block-Matching.

Synopsis
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3.1 Introduction

This chapter introduces a segmentation algorithm, i.e. an algorithm which computes a
set of boundaries Ze from a feature representation of the song. In practice, this algorithm
works at the barscale, i.e. it takes a barwise representation of the song as input (in this
chapter, the Barwise TF matrix). This algorithm is called Convolutive “Block-Matching”
(CBM) segmentation algorithm, and focuses on the homogeneity/novelty and regularity
criteria, presented in the Section 2.3.

The first part of this chapter is dedicated to the formal definition of barwise autosim-
ilarity matrices, representing the similarity between all pairs of bars in a song. These
autosimilarities are computed according to different similarity functions, namely Cosine,
Covariance and RBF. The principle of the CBM algorithm, along with the details of im-
portant parameters in this algorithm (namely the convolution kernels and penalty func-
tions) are presented in a second part. Finally, this chapter presents the segmentation
performance of this algorithm on both the RWC Pop and SALAMI datasets in a third
part.

The contributions reported in this section are twofold:

— Algorithmic: While the use of dynamic programming for estimating the structure
in a song was already presented in previous works [Jen06; SBV16], the current
CBM algorithm extends both algorithms by redesigning the score computation for
a segment. In that sense, the CBM algorithm is more flexible, and the estimation
of segments can be adapted to specific hypotheses on their definition.
In addition, this chapter extends the computation of autosimilarity matrices to
similarity functions not yet explored in the audio segmentation literature (in par-
ticular, the Radial Basis Function).

— Experimental: The current version of the CBM algorithm, specifically tuned for
barwise processing of music, obtains experimental results achieving a level of per-
formance close to those of current State-of-the-Art methods.

This segmentation algorithm has been used in three publications [Mar+20; Mar+22;
MCB22c], and a dedicated publication is currently under review [MCB22d] 1. The CBM
algorithm is implemented in the open-source as_seg toolbox [MCB22a].

1. An international journal publication, fully dedicated to the CBM algorithm, is currently under
preparation.
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3.2. Autosimilarity Matrix

3.2 Autosimilarity Matrix

Given a matrix X ∈ RB×M , an autosimilarity of X is defined as a matrix A(X) ∈ RB×B

where each coefficient (i, j) represents the similarity between vectors Xi and Xj. The
similarity between two vectors is subject to a similarity function (the dot product for
instance), and, as a consequence, different autosimilarity matrices can be constructed,
depending on the choice of the similarity function. The main diagonal in an autosimilarity
matrix represents the self-similarity of each vector, and is in general (and in this thesis in
particular) normalized to one. This thesis studies three different similarity functions (and,
subsequently, three different autosimilarity matrices), namely the Cosine, Covariance and
RBF similarity functions.

In this chapter, an autosimilarity matrix is computed on the Barwise TF matrix, i.e.
X ∈ RB×SF , which consists of the time-frequency representations for each bar. Hence,
each coefficient in the autosimilarity represents the feature-wise similarity for a pair of
bars.

3.2.1 Cosine Autosimilarity Matrix

The Cosine similarity function computes the normalized dot products between two
vectors, and leads to the Cosine autosimilarity matrix, denoted as Acos(X). Practically,
denoting as X̃ the row-wise l2-normalized version of X (i.e. the matrix X where each
row has been divided by its l2-norm), the Cosine autosimilarity matrix is defined as
Acos(X) = X̃X̃⊺, or, elementwise, for 1 ≤ i, j ≤ B:

Acos(X)ij = ⟨Xi, Xj⟩
∥Xi∥2∥Xj∥2

=
T F∑
k=1

X̃ikX̃jk. (3.1)

This similarity function is called the “Cosine” similarity because the normalized dot prod-
uct is equal to the cosine of the angle between both vectors 2.

The normalized dot product is related to the Euclidean distance d(Xi, Xj) (in the
Euclidean space associated with the TF dimensions) by 3 d(Xi,Xj)2

2 = 1 − ⟨Xi, Xj⟩. Hence,
the larger is the dot product, the smaller is the distance. This attests that the Cosine
autosimilarity matrix represents similarity between pairs of vectors.

2. Trivially recalling that ⟨x, y⟩ = ∥x∥2∥y∥2 cos(x̂y).
3. This is straightforward as d(x, y)2 = ⟨x, x⟩ + ⟨y, y⟩ − 2 ⟨x, y⟩, recalling that ⟨x, x⟩ = ⟨y, y⟩ = 1 in

our case.
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3.2.2 Covariance Autosimilarity Matrix

The Covariance of two random variables a and b (seen as row vectors), is defined
as cov(a, b) = E

[
(a − E[a])(b − E[b])⊺

]
. In our discrete and non-probabilistic context, we

define the Covariance similarity function for 2 bars Xi and Xj as cov(Xi, Xj) = (Xi −
x̄)(Xj − x̄)⊺, denoting as x̄ ∈ RT F the average of all bars in the song.

The barwise Covariance similarity function defines the Covariance autosimilarity ma-
trix Acov(X) as:

Acov(X)ij = ⟨Xi − x̄, Xj − x̄⟩
∥Xi − x̄∥2∥Xj − x̄∥2

. (3.2)

In other words, the Covariance matrix is exactly the Cosine autosimilarity matrix of the
centered matrix X − 1Bx̄, i.e. Acov(X) = Acos(X − 1Bx̄).

3.2.3 RBF Autosimilarity Matrix

Kernel functions are symmetric positive definite or semi-definite functions. In machine
learning, kernel functions are generally used to represent data in a high-dimensional space
(sometimes infinite), enabling a nonlinear processing of data with linear methods (for
instance, nonlinear classification with Support Vector Machines, SVM). In particular, the
“kernel-trick” allows to study relations in the data in a high-dimensional space without
directly embedding the data in that space, which would have been inefficient, or even
intractable, in practice.

In particular, the Radial Basis Function (RBF) kernel is a kernel function defined
as RBF(Xi, Xj) = exp(−γ∥Xi − Xj∥2

2), with γ a user-defined parameter. The RBF can
be used as a similarity function between two bars Xi and Xj, hence defining the RBF
autosimilarity matrix ARBF (X) as:

ARBF (X)ij = RBF(X̃i, X̃j) = exp
−γ

∥∥∥∥∥ Xi

∥Xi∥2
− Xj

∥Xj∥2

∥∥∥∥∥
2

2

 . (3.3)

Bars are normalized by their l2 norm in the computation of ARBF , in order to limit the
impact of variations of power between the different bars. The self-similarity of a bar is
equal to e0 = 1, hence the RBF autosimilarity matrix does not require normalization to
result in self-similarities equal to one.

Parameter γ is set relatively to the standard deviation of the pairwise Euclidean dis-
tances of all bars in the original matrix (self-distances excluded), to adapt the shape of the
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exponential function to the relative distribution of distances in this song. Hence, denoting
as σ = std

1<i,j<B,i ̸=j

(∥∥∥ Xi

∥Xi∥2
− Xj

∥Xj∥2

∥∥∥2

2

)
, we set γ = 1

2σ
.

These three autosimilarities are presented in Figure 3.1, on the Barwise TF (in Log
Mel spectrogram) of the song POP01 of RWC Pop.

Figure 3.1 – Cosine, Covariance and RBF autosimilarities on the song POP01 of RWC
Pop, in the Log Mel feature.

3.3 Convolutive “Block-Matching” Algorithm

Starting from an autosimilarity matrix, structural segmentation is obtained by means
of a dynamic programming algorithm, called Convolutive “Block-Matching” segmentation
algorithm (CBM). This algorithm was previously introduced in [Mar+20; MCB22c]. This
section aims at presenting this algorithm in details, along with a study of important
parameter settings.

The CBM algorithm estimates structural segmentation based on the homogeneity/novelty
and regularity criteria. As a reminder, the homogeneity/novelty criteria assume that sec-
tions can be defined as highly similar regions (i.e. regions with little inner variations), and
that boundaries should be placed at breaking points. Regarding the regularity criterion,
it assumes that boundaries should preferably be spaced evenly.
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Chapter 3 – Convolutive “Block-Matching” Segmentation Algorithm

3.3.1 Structural Segmentation Solved as a Dynamic Program-
ming Algorithm

In the CBM algorithm, segmentation is estimated by means of a dynamic programming
algorithm. The Viterbi and Dynamic Time Warping (DTW) algorithms are examples of
dynamic programming algorithms with a lot of applications in the Audio community.
As reported in Section 2.3, several dynamic programming algorithms have already been
developed for structural segmentation of music.

Of particular interest is the work of Jensen [Jen06], later extended by Sargent et
al. [SBV16] (to account for the regularity principle). The CBM algorithm is based on the
principles introduced in these articles, which are reformulated hereafter in a first part.

In a nutshell, the CBM algorithm is based on the definition of a score function γ()
applied on segments, with the overall segmentation of the song resulting in the maximum
total score of the segments. This defines an optimization problem, which can be solved by
dynamic programming. The details of the score function are presented in a second part.

Definition of the Problem

Formally, a segmentation is defined as a set of boundaries Z = {ζi, i ∈ J1, EK}, ζi

being located on a time-frequency frame, and E representing the number of boundaries
estimated. The set of admissible segmentations is denoted as Θ, i.e. Z ∈ Θ.

Each segment Si is composed of the time-frequency frames between two consecutive
boundaries, i.e. Si = Jζi, ζi+1J. The second bound is exclusive as it represents the start of
the consecutive segment Si+1. Boundary ζi is called the antecedent of boundary ζi+1.

In our paradigm, each boundary is located on a bar, i.e. ∀i, ζi ∈ J1, B + 1K, with B

the number of bars in this song 4. The first boundary is the start of the song, i.e. ζ1 = 1,
and the last boundary is the end of the last bar in the song, i.e. ζE = B + 1. Without
prior knowledge, any bar can constitute a boundary.

In this formulation, each set of boundaries consists of selecting E bars as boundaries
among B + 1. As a consequence, there exists

(
B+1

E

)
different sets of boundaries composed

of exactly E boundaries, and, more generally, at most
B+1∑
k=0

(
B+1

k

)
= 2B+1 segmentations

for each song 5. Hence, the segmentation problem admits a finite number of solutions,

4. As the song contains B bars, B + 1 represents the end of the last bar, i.e. the last downbeat of the
song.

5. In fact, as each set of boundaries must contain the first and last downbeats of the song, at most
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which can theoretically be solved in a combinatorial way. In practice though, evaluating all
possible segmentations leads to an algorithm of exponential complexity O(2B), considered
intractable in practice.

Dynamic Programming

The segmentation problem is approached by both Jensen and Sargent et al. [Jen06;
SBV16] as an optimization problem. In particular, by associating a score γ(S) to each
potential segment S, the optimal segmentation Z∗ is the segmentation maximizing 6 the
sum of all its segment scores 7:

Z∗ = arg max
Z∈Θ

E−1∑
i=1

γ(Jζi, ζi+1J). (3.4)

The problem can be solved using a dynamic programming algorithm. Dynamic pro-
gramming is an algorithmic method, which can be employed to solve particular optimiza-
tion problems [Cor+09, Chap. 9].

The principle of dynamic programming is to solve a combinato-
rial optimization problem by dividing it into several independent
subproblems. The independent subproblems are formulated in a re-
cursive manner, and their solutions can be stitched together to form
a solution to the original problem.

Dynamic Programming

Notice that in the current formulation of the segmentation problem, defined in Equa-
tion 3.4, each potential segment is evaluated independently, via its score, and is never
compared with the others. In other terms, repetitions of the same section are not consid-
ered, while they could inform on the overall structure, typically considering the repetition
criterion.

2B−1 sets of boundaries can be obtained.
6. In details, both Jensen and Sargent et al. [Jen06; SBV16] introduced the optimal segmentation as

the minimum of a cost function, when it is rather defined here as a maximum. It actually depends on
the way of conceiving the score function γ(), and, in particular, by defining a cost function equal to the
opposite of the score function γ(), both problems are equivalent.

7. Notation “arg max” means finding the elements maximizing the score.
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Thus, the segmentation problem defined in Equation 3.4 is a relaxation of the general
segmentation problem. This relaxation is considered because it allows us to use princi-
ples of dynamic programming, by evaluating the score of each segment independently,
as independent subproblems. In particular, this relaxed problem is said to exhibit “opti-
mal substructure”, defined by Cormen et al. as the following property: “optimal solutions
to a problem incorporate optimal solutions to related subproblems, which we may solve
independently” [Cor+09].

Longest-Path on a Directed Acyclic Graph

Following the formulation of Jensen [Jen06], the segmentation problem is reframed
into the problem of finding the longest path on a Directed Acyclic Graph (DAG) 8.

A DAG is a graph, composed of vertices and edges. Edges between
vertices are directed, meaning that an edge is directed from a
vertex to one another (for instance u → v). The graph is acyclic,
meaning than no loop can be formed by following consecutive edges
(for instance, u → v → w → u is impossible).

Directed Acyclic Graph (DAG)

By considering each possible boundary ζi (in the standard case, each bar in the song) as
a vertex, and each segment Si = Jζi, ζi+1J as an edge, a segmentation can be reinterpreted
as a path in a DAG. By assigning the score of each segment as the length of the associated
edge, the optimal segmentation of Equation 3.4 is exactly the problem of finding the
longest path in the graph.

In addition, the graph is topologically ordered (due to the chronological order of bars
in the song), and is both composed of a single vertex as origin (the first bar of the song)
and a single final vertex (the last bar). This problem is presented and solved in [Cor+09,
Chap. 24], for both shortest and longest paths, as the “Single-Source Shortest Paths in
Directed Acyclic Graphs” problem.

The rationale of the solution algorithm is that the optimal segmentation until any
given bar bk (any vertex) can be found exactly by recursively evaluating the optimal seg-
mentations until each antecedent of bk, i.e. (without any constraint) all bars bl < bk, and

8. Precisely, shortest path in the minimization problem, longest path in the maximization problem.
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the score of the segments Jbl, bkJ. Formally, denoting as Z∗
[1:bk] the optimal segmentation

until bar bk, the algorithm consists of:

1. Computing 9 {γ(Z∗
[1:bl]), ∀bl < bk}, i.e. the longest paths connecting every an-

tecedent,

2. Computing {γ(Jbl, bkJ)}, i.e. the length of the edge between vertices bl and bk,

3. Finding the best antecedent of bk, denoted as ζ∗
bk−1, with the following equation:

ζ∗
bk−1 = arg max

bl

(γ(Z∗
[1:bl]) + γ(Jbl, bkJ)). (3.5)

Finally, at the last iteration, the algorithm computes the best antecedent for B+1, i.e.
the last downbeat of the song. Then, recursively, the algorithm is able to track back the
best antecedent of this antecedent, and so on and so forth until the first bar of the song,
thus leading to the optimal segmentation. A graph visualization for a 4 bars example is
presented in Figure 3.2.

b1

b2

b3

b4

γ(Z∗
[b1:b1]) = 0

2

6

8

Z∗
[b1:b2] = {b1, b2}

γ(Z∗
[b1:b2]) = γ(Jb1, b2J) = 2

1
1

γ(Z∗
[b1:b3]) = max(γ(Z∗

[b1:b2]) + γ(Jb2, b3J), γ(Jb1, b3J)) = 6

Z∗
[b1:b3] = {b1, b3}

4

γ(Z∗
[b1:b4]) = γ(Z∗

[b1:b3]) + γ(Jb3, b4J) = 10

Z∗
[b1:b4] = Z∗

[b1:b3] ∪ {b4} = {b1, b3, b4}

Figure 3.2 – Longest path resolution for a DAG with 4 bars. The lengths of each edge
corresponds to the score of the segment between the associated bars, i.e. γ(Jbi, bjJ).

9. In practice, as presented in Algorithm 1, longest paths are stored at first computation, hence
bringing the complexity of this operation to the evaluation of an array.
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Algorithm 1: Dynamic programming algorithm, computing the optimal seg-
mentation given a score function γ().

Input: Bars {bk ∈ J1, BK}, score function γ()
Output: Optimal segmentation Z∗ = {ζi}
Z∗ = {1, B}

A∗ = [ ]
/* Array storing the optimal antecedents for every bar (empty at

initialization). */

Γ∗ = [0]
/* Array storing the optimal segmentation until each bar (set to

Γ∗[1] = 0 at initialization). */
for bk = 2, ..., B + 1 do

ζ = bk

/* Considering bar bk as current boundary ζ. */

ζ∗
−1 = arg max

1≤ζj<ζ
(Γ∗[ζj] + γ(Jζj, ζJ))

/* Finding the best antecedent for the current boundary ζ with
Equation 3.5. */

A∗[ζ] = ζ∗
−1

/* Storing the best antecedent for ζ. */

Γ∗[ζ] = Γ∗[ζ∗
−1] + γ(Jζ∗

−1, ζJ)
/* Computing and storing the optimal segmentation until ζ. */

end
ζ = B + 1
while A∗[ζ] ̸= 1 do

/* Recursively tracking back all optimal antecedents, from the
last to the first bar. */

ζ∗
−1 = A∗[ζ]

Z∗ = Z∗ ∪ {ζ∗
−1}

/* Searching for the best antecedent and adding it to the optimal
segmentation. */

ζ = ζ∗
−1

/* Iterating the process with the current best antecedent. */
end
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The detailed algorithm, assuming that the score function γ() is given, is detailed in
Algorithm 1. Practically, the advantage of the algorithm is to be able to store in memory
both the optimal antecedent for each bar and the scores of the optimal segmentation
until each bar when they are computed for the first time, respectively denoted as the
arrays A∗ and Γ∗ in Algorithm 1. Storing these two quantities in memory allows to gain
in complexity by reusing them instead of recomputing them several times.

In the end, for any bar bk, the optimal segmentation until bk can be computed in
O(bk −1) operations, i.e. parsing each antecedent only once. Hence, the solution algorithm
boils down to O(B(B+1)

2 ) evaluations, which corresponds to a complexity in the order of
O(B2), and is polynomial. In practice, we even limit the size of admissible segments to
be at most 32 bars, which further reduces the complexity.

Finally, the segmentation problem boils down to the definition of the score function
γ(Jζi, ζi+1J) for a segment. In the CBM algorithm and following [SBV16], the score of each
segment is defined as a mixed score function, presented in Equation 3.6 as the weighted
sum of two terms: the first one, γK(Jζi, ζi+1J), is based on the homogeneity criterion,
and is presented in Section 3.3.2; the second one, p(ζi+1 − ζi), is based on the regularity
criterion, and is presented in Section 3.3.3. Parameter λ is a weighting parameter.

γ(Jζi, ζi+1J) = γK(Jζi, ζi+1J) − λp(ζi+1 − ζi). (3.6)

3.3.2 Convolution Kernels

The first term γK() of the score function defined in Equation 3.6 is obtained from the
autosimilarity values in this segment. Practically, given an autosimilarity matrix A(X), the
score γK(Si) of the segment Si = Jζi, ζi+1J (of size n = ζi+1−ζi) is computed by evaluating
the autosimilarity values restricted to the segment, i.e. A(X:Si

) = A(X[:,ζi:ζi+1−1]). It can be
seen as cropping the autosimilarity A(X) on this particular segment, around the diagonal,
as shown in Figure 3.3.

The CBM algorithm aims at favoring the homogeneity of estimated segments, i.e.
favoring sections composed of similar components. Thus, the score function γK() is devel-
oped so as to represent, in some sense, the inner similarity of this segment. In practice,
this is obtained by weighting the different values in the autosimilarity, in a convolution 10

10. Even if the operation is not formally a convolution but rather a cross-correlation, we abusively define
the operation as a convolution, representing the essence of the elementwise product of two matrices. In
addition, as the autosimilarity matrix is symmetric, both the 2D convolution and 2D cross-correlation
are equivalent.
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Figure 3.3 – Autosimilarity restricted to the segment J40, 60J.

operation between the autosimilarity and a (fixed) kernel matrix K, such as:

γK : Rn×n → R
A(X:Si

) 7→ 1
n

n∑
k=1

n∑
l=1

A(X:Si
)klKkl.

(3.7)

The kernel is called a “convolution kernel”. A first observation is that the convolution
kernel is exactly of the size of the autosimilarity, i.e. it adapts to the size of the segment.

A very simple kernel is a kernel matrix full of ones, i.e. K = 1n×n, resulting in a score
function equal to the sum of every element in the autosimilarity, normalized by the size
of the segment. The normalization by the size of the segment is meant to transform the
squared dependence of the size of the segment in the number of autosimilarity values (n2

values in the autosimilarity) in a linear dependence 11.
In a very similar work, Jensen [Jen06] defines the homogeneity value for a segment

as an aggregated value of the similarities in this segment 12. In details, the score for the

11. It can equivalently be seen as computing the average value, hence dividing the result of the convo-
lution by n2, and then multiplying this average value by the size of the segment n, i.e. weighting every
bar constituting this segment with this average value.

12. In details, in their work, the autosimilarity values are defined in the sense of a “distance”: the lower
are the values in the autosimilarity, the more similar are the elements. Still, minimizing the distance
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segment Si in [Jen06] is computed as γ(Si) = 1
n

n∑
k=1

k∑
l=1

A(X:Si
)kl. This score corresponds to

the sum of the autosimilarity values in the lower triangle of the autosimilarity restricted
to the segment (including the main diagonal), divided by the size of the segment. To some
extent, it represents a score close to the average similarity value in the segment. It could be

implemented in the CBM formulation by defining a convolution kernel Kkl =

1 if k ≥ l

0 if k < l
.

In the CBM algorithm, the design of the convolution kernel defines how to transform
bar similarities into segment homogeneity, which is of particular importance. As opposed
to the work of Jensen, we consider that the main diagonal in the autosimilarity is not
informative regarding the overall similarity in the segment, as its values are normalized to
one. In addition, it could even favor the shortest segments: any segment being composed
of n2 values, and the diagonal representing n values, the proportion of diagonal values in
the segment is equal to 1

n
, which decreases with the size of the segment.

The CBM algorithm does not take into account the main diagonal
in the score computation, because it represents the self-similarities
of each bar, which is not informative. Hence, for every convolution
kernel K used in the CBM algorithm, Kii = 0, ∀i.

The remainder of this section presents two types of kernels, namely the “full” kernel
and the “band” kernel.

Full Kernel

The first kernel is called the “full” kernel, because it corresponds to a kernel full of 1
(except on the diagonal where it is equal to 0). The full kernel captures the average value
of similarities in this segment, without the self-similarity values. Practically, denoting as
Kf the full kernel:

Kf
ij =

1 if i ̸= j

0 if i = j
(3.8)

Hence, the convolution score function associated with the full kernel is equal to:

γKf (Si) = 1
n

n∑
k=1

n∑
l=1

A(X:Si
)klK

f
kl = 1

n

n∑
k=1

n∑
l=1,l ̸=k

A(X:Si
)kl. (3.9)

is conceptually similar to maximizing the similarity, and, except for correctness, we do no pay closer
attention to the differences in formulations.
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A full kernel of size 10 is presented in Figure 3.4.

1
0

Figure 3.4 – Full kernel of size 10

Band Kernels

A second class of kernels, called “band” kernels, are developed in order to emphasize
on short-term similarity. Indeed, in band kernels, the convolution score is computed on
a few bars in the segment only, depending on their temporal proximity: only close bars
are considered. In practice, this can be obtained by defining a kernel with entries equal
to 0, except on some upper- and sub-diagonals. The number of upper- and sub-diagonals
is a parameter, corresponding to the maximal number of bars considered to evaluate the
similarity, i.e. an upper bound on |bi − bj| for a pair of bars (bi, bj).

Hence, a band kernel is defined according to its number of bands, denoted as v, defining
the v-bands kernel Kvb such that:

Kvb
ij =

1 if 1 ≤ |i − j| ≤ v,

0 otherwise (i = j or |i − j| > v).
(3.10)

Three band kernels, of size 10, are represented in Figure 3.5.

1
0

(a) 1-band kernel K1b.

1
0

(b) 3-bands kernel K3b.

1
0

(c) 4-bands kernel K4b.

Figure 3.5 – Band kernel, of size 10
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3.3.3 Penalty Functions

Sargent et al. [SBV16] extended the score function of Jensen [Jen06] to take into
account both the homogeneity and the regularity criteria, resulting in Equation 3.6. In
practice, this is obtained by defining a penalty function p(n), which corresponds to the
second term in Equation 3.6, and is related to the regularity of the segment. More precisely,
the regularity term penalizes segments according to their size n, in order to favor particular
sizes.

In order to mitigate both the convolution score function γK() and the penalty function
p(), we implemented an additional normalization step based on the convolution values in
this particular song. In details, this results in the score function:

γ(Jζi, ζi+1J) = γK(Jζi, ζi+1J) − γK8
maxλp(ζi+1 − ζi), (3.11)

where γK8
max is the maximal convolution value obtained by sliding a kernel of size 8 on this

autosimilarity, i.e. the highest score among all possible segments of size 8. This size of 8
for the kernel is chosen as the most common segment size in terms of number of bars in
both RWC Pop and SALAMI datasets.

The penalty function is based on prior knowledge, and aims at enforcing particular
sizes of segments, which are known to be common in a number of music genres, notably
Pop music. In particular, some sizes of segments were shown to be most common in the
annotations in Section 2.4.3. For convenience, the distributions of the sizes of segments,
in terms of number of bars, in the annotations of both RWC Pop and SALAMI datasets,
are presented again in Figure 3.6. Hence, penalty functions p() can be inspired from these
distributions.

Two different penalty functions p() are studied in this section, namely the “target-
deviation” and “modulo” functions. In what follows, n denotes the size of the segment,
i.e. n = ζi+1 − ζi.

Target-Deviation Functions

The first set of penalty functions, called “target-deviation” and denoted as ptd(), is
defined by Sargent et al. [SBV16]. Target-deviation functions compute the difference be-
tween the size of the current estimated segment and a target size τ , raised to the power of
a parameter α, i.e. ptd(n) = |n − τ |α where parameter α takes typical values in {0.5, 1, 2}.
In the work of Sargent et al. the target size is set to 32, to favor segments of size 32 beats,
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(a) RWC Pop. (b) SALAMI (test subset).

Figure 3.6 – Distribution of segments sizes in terms of number of bars, in the annotations.

in line with their evaluations of most common segment sizes. In our barwise context 13,
τ = 8, which is the most common segment size in both RWC Pop and SALAMI datasets.

This penalty function is adapted to enforce one size in particular, and tends to dis-
advantage all the others. Hence, this function is adapted to datasets where one size is
predominant among the reference, which seems true for RWC Pop with MIREX 10 an-
notations (where more than half of the segments in the annotation are of size 8), but not
so definite for the SALAMI dataset, where the segment sizes are more balanced between
4, 8, 12 and 16, as presented in Figure 3.6. In particular, segments of size 16 are strongly
penalized.

Modulo function

The second set of penalty functions, called “modulo functions”, is designed to favor
particular segment sizes, directly based on prior knowledge. In this study, we only present
the “modulo 8” function pm8(n) based on both RWC Pop and SALAMI annotations.
Indeed, in both dataset, most segments are of size 8, and the remaining segments are
generally of size 4, 12 or 16. Finally, outside of these sizes, even segments are more common

13. Note that 8 bars containing 4 beats each leads to 32 beats. 4 beats per bar is a common value for
Pop music.
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than segments of odd sizes. Hence, the modulo 8 function models this distribution, as:

pm8(n) =



0 if n = 8
1
4 else, if n ≡ 0 (mod 4)
1
2 else, if if n ≡ 0 (mod 2)

1 otherwise

(3.12)

Penalty values for the different cases were set quite empirically, and would benefit from
further investigations.

3.4 Experiments

The CBM algorithm being a segmentation algorithm, it is evaluated on the structural
segmentation task on both RWC Pop and SALAMI datasets. In details, following the
guideline defined in Appendix A.2, the experiments are conducted on the test set of the
SALAMI dataset.

The CBM algorithm is applied on autosimilarity matrices, which are computed from
the Barwise TF matrix. In this set of experiments, we focus on Barwise TF matrices
computed in the Log Mel feature, as it is the feature used in the current State-of-the-Art
algorithm [GS15b].

Several similarity functions for the computation of autosimilarities are introduced,
namely the Cosine, Covariance and RBF autosimilarity matrices. The CBM algorithm
itself is subject to the choice of the kernel, and particularly to the number of bands when
using a band kernel. In addition, the score function depends on the design of the penalty
function.

Rather than studying all of these parameters at the same time, experiments focus
on each aspect independently. In particular, the experiments aim at answering the three
following questions:

Question 1 Which similarity function is the most adapted to the segmentation of the
Barwise TF autosimilarity matrices?

Question 2 Which convolution kernel is the most adapted to the segmentation of the
Barwise TF autosimilarity matrices?

81



Chapter 3 – Convolutive “Block-Matching” Segmentation Algorithm

Question 3 Which penalty function is the most adapted to the segmentation of the Bar-
wise TF autosimilarity matrices?

Each question is evaluated sequentially, and the conclusion of each question serves as
the basis to study the following ones.

3.4.1 Autosimilarity Matrices

Firstly, we study the impact of the design of the similarity function (and, hence, of
the autosimilarity) on the performance of the CBM algorithm. To do so, we use the CBM
algorithm with the full kernel, as it does not need the fitting of the number of bands. In
addition, we do not use penalty function.

Segmentation results are presented in Tables 3.1 and 3.2 respectively for the RWC
Pop and SALAMI datasets, and according to the metrics defined in Section 2.3.4, i.e.
P0.5, R0.5, F0.5 and P3, R3, F3. For both datasets, the RBF autosimilarity is the best-
performing autosimilarity in terms of F measure (in both tolerances), hence suggesting a
better segmentation in average than the other similarity functions.

Autosimilarity P0.5 R0.5 F0.5 P3 R3 F3
Cosine 62.40% 33.46% 43.17% 81.83% 43.95% 56.66%
Covariance 51.44% 62.00% 55.35% 64.61% 77.89% 69.54%
RBF 60.31% 54.02% 56.25% 77.27% 68.84% 71.86%

Table 3.1 – Results when computing different autosimilarities on the Barwise TF matrix,
on the RWC Pop dataset. (Full kernel, no penalty function.)

Autosimilarity P0.5 R0.5 F0.5 P3 R3 F3
Cosine 47.61% 34.11% 38.74% 64.86% 46.44% 52.76%
Covariance 27.98% 58.39% 36.37% 40.29% 85.13% 52.58%
RBF 44.22% 45.99% 43.75% 62.84% 65.88% 62.41%

Table 3.2 – Results when computing different autosimilarities on the Barwise TF matrix,
on the SALAMI dataset. (Full kernel, no penalty function.)

The precision/recall trade-offs depend on the autosimilarity matrices, and deserves to
be studied to give further information on the quality of the segmentations. The Cosine
autosimilarity results in a higher precision than recall on average, which suggests an under-
segmentation, i.e. estimating too few boundaries (a large part of estimated boundaries
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are correct, but a large part of boundaries from the annotations are not estimated). Con-
versely, the Covariance autosimilarity results in a higher recall than precision, suggesting
over-segmentation. The RBF autosimilarity performance is more balanced between both
metrics.

These conclusions can be confirmed by studying the distribution of the sizes of the esti-
mated segments, as presented in Figure 3.7 for the RWC Pop dataset. These distributions
must be compared with the distribution of segment sizes in the annotation, presented in
Figure 3.6.

(a) Cosine autosimilarity. (b) Covariance autosimilar-
ity. (c) RBF autosimilarity.

Figure 3.7 – Distribution of the segment sizes, with the full kernel, according to the
autosimilarity matrix. Results are computed on the RWC Pop dataset.

While the segments in the annotation are predominantly of size 8 (and, secondar-
ily, 4), the most common estimated sizes for the Cosine and Covariance autosimilarity
matrices are respectively 32 bars 14 and 1 bar. A perfect estimation would compute a
distribution close to those of the annotations, while no segment distribution for estimated
segmentations is indeed following the annotation’s distribution here. The distribution of
segment sizes with the RBF autosimilarity is visually the closest one to the distribution
in annotation, again suggesting that this similarity function is the most adapted.

We explain these differences in segmentation by contrast differences in the different
autosimilarity matrices. The contrast in an autosimilarity matrix represents the value
differences between zones of high similarity and low similarity and, empirically, autosim-
ilarity matrices represented in Figure 3.1 exhibit differences in contrast.

In our context, the CBM algorithm is designed so as to frame homogenous regions (i.e.
blocks). In that spirit, the more contrastive are regions of high and low similarity, the less

14. Note that 32 bars is the largest admissible size of segments in our algorithm. As a test, we extended
the largest admissible segment size to 36 bars and observed that the most common segment size was 36.
Hence, it seems that the full kernel favors the longest admissible segments.

83



Chapter 3 – Convolutive “Block-Matching” Segmentation Algorithm

ambiguous is the block structure in the matrix and the larger are the differences between
the convolution values on zones of high and low similarity. Hence, increasing the contrast
in an autosimilarity matrix should improve the retrieval of the optimal segmentation in
the CBM algorithm.

In what follows, we hence study only the RBF autosimilarity function.

3.4.2 Convolution Kernels

Secondly, an important parameter in the CBM algorithm is the design of the kernel.
We thus compare the full kernel with band kernels, the number of bands varying from 1
to 16 bands. Results, focusing on the F-measures, are presented in Figures 3.8 and 3.9
respectively for the RWC Pop and SALAMI datasets. The 7-bands kernel stands out
for the RWC Pop as the best-performing kernel, while the 15-bands is the best one for
SALAMI.

(a) F0.5. (b) F3.

Figure 3.8 – Comparison of the F measures, according to the full and band kernels (with
different number of bands). Results are computed on the RWC Pop dataset.

(a) F0.5. (b) F3.

Figure 3.9 – Comparison of the F measures, according to the full and band kernels (with
different number of bands). Results are computed on the SALAMI dataset.

Improved performance of the kernels may be explained by looking at the distribution
of segment sizes in the estimation, in Figures 3.10 and 3.11 respectively for the RWC
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Pop and SALAMI datasets. In both datasets, the 7-bands kernel leads to a majority of
estimated segments of size 8 (more than 50% for SALAMI). For the RWC Pop dataset,
this is a major asset, as this is also the most common size in the annotation.

Conversely, for the SALAMI dataset, the 7-bands kernels is not able to estimate ac-
curately segments larger than 8 bars (for 12 and 16 bars in particular, which are present
in the annotation), and estimates twice as much segments of size 8 as in the annotation,
in proportion. As for the 15-bands kernel, estimated segments are mostly of size 16 bars.
Hence, while it does not accurately represent the annotation, better segmentation results
are obtained with the 15-bands kernels, indicating that this latter distribution is bene-
ficial to the segmentation overall. The full kernel obtains similar performance than the
15-bands kernel, while it was performing less well on RWC Pop.

(a) Full kernel. (b) 3-bands kernel. (c) 4-bands kernel.

(d) 7-bands kernel. (e) 12-bands kernel. (f) 15-bands kernel.

Figure 3.10 – Distribution of the segment sizes, with the RBF autosimilarity matrix,
according to different kernels. Results are computed on the RWC Pop dataset.

As an additional conclusion, the number of bands in the kernel largely influences the
distribution of segment sizes in the annotation, in particular the most common segment
size. As a general trend, it seems that a kernel with v bands favors segments of size
v + 1. We assume that this behavior stems from the fact that, for a v-bands kernel and
a large segment of size n > v, the number of elements equal to 0 is important, but the
normalization remains adapted to kernels with n2 values. Adapting the normalization in
the kernel to the number of nonzero values, as in the work of Shiu et al. [SJK06], could
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(a) Full kernel. (b) 7-bands kernel. (c) 15-bands kernel.

Figure 3.11 – Distribution of the segment sizes, with the RBF autosimilarity matrix,
according to different kernels. Results are computed on the SALAMI dataset.

possibly reduce the effect of the number of bands in the sizes of estimated segments. This
lead was not explored to this day, and may constitute future work.

Finally, for the rest of this study, we conclude that the 7-bands kernel is the optimal
kernel for the RWC Pop dataset, and that the 15-bands kernel is the most adapted for
the SALAMI dataset. We thus fixed these kernels for these datasets.

3.4.3 Penalty Functions

Finally, the last experiments focus on the penalty functions. In this set of experi-
ments, we compare the target deviation functions, with α ∈ {0.5, 1, 2}, with the modulo
8 function. The CBM algorithm is parametrized with the 7-bands and 15-bands kernels
respectively for the RWC Pop and SALAMI datasets, and is applied on the RBF autosim-
ilarity matrices. The parameter λ, weighting the penalty function, takes values between
1
10 and 2, with a step of 1

10 . This parameter is fitted by cross-validation on the RWC Pop
and on the learning dataset for SALAMI, as precisely defined in Appendix A.2.

Results are presented in Tables 3.3 and 3.4 respectively for the RWC Pop and SALAMI
datasets. In both conditions, the modulo 8 function appears to improve segmentation re-
sults, in particular for the metrics with 0.5s tolerance. A good estimation with a tolerance
of 0.5s indicates that the estimated boundary is precisely located on the same bar than
an annotated one. Hence, a better performance with a 0.5s tolerance indicates a more ac-
curate estimation. Results with the 3s tolerance are not strongly impacted by the choice
of the penalty function, except for the target deviation with a large α, obtaining worst
performance than the other conditions.

Overall, it seems that the modulo 8 function is the most adapted penalty function to
estimate segments more accurately.
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Penalty function P0.5 R0.5 F0.5 P3 R3 F3
Without penalty 59.09% 67.13% 62.28% 75.17% 85.91% 79.47%

Target deviation
α = 1

2 63.43% 64.90% 63.70% 80.22% 82.55% 80.80%
α = 1 62.70% 62.06% 61.94% 81.51% 81.20% 80.79%
α = 2 56.48% 53.03% 54.30% 78.09% 73.63% 75.27%

Modulo 8 64.32% 70.01% 66.52% 78.31% 85.64% 81.16%

Table 3.3 – Segmentation results depending on the penalty function, for the RWC Pop
dataset, with the RBF autosimilarity and the 7-bands kernel.

Penalty function P0.5 R0.5 F0.5 P3 R3 F3
Without penalty 40.84% 49.45% 43.59% 59.43% 72.24% 63.55%

Target deviation
α = 1

2 41.35% 49.96% 43.96% 60.07% 72.69% 63.93%
α = 1 38.85% 50.10% 42.55% 56.92% 74.00% 62.54%
α = 2 33.40% 47.08% 37.84% 51.11% 72.18% 57.96%

Modulo 8 42.56% 50.30% 44.94% 59.66% 70.99% 63.18%

Table 3.4 – Segmentation results depending on the penalty function, for the SALAMI
dataset, with the RBF autosimilarity and the 15-bands kernel.

3.4.4 Experimental Conclusions

In light of these results, we finally conclude regarding the choice of settings in the
CBM algorithm.

Experimental conclusion 1 On studied datasets, the RBF autosimilarity matrix is the
most adapted autosimilarity matrix for the segmentation of the Barwise TF autosimilarity
matrices.

Experimental conclusion 2 Both 7-bands and 15-bands kernels are the most adapted
kernels for the segmentation the Barwise TF autosimilarity matrices, respectively for the
RWC Pop and SALAMI datasets.

Experimental conclusion 3 On studied datasets, the modulo 8 penalty function is the
most adapted penalty function for the segmentation of the Barwise TF autosimilarity
matrices.

From these experimental conclusions, we decided to fix the CBM algorithm in terms of
convolution kernel and penalty function to the best of conditions obtained here. Indeed,
subsequent chapters will use the CBM algorithm, and thus reuse these settings. The
impact of the different autosimilarity matrices will be studied again.
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Figures 3.12 and 3.13 present the results of the CBM algorithm depending on the
different features, and depending on the different autosimilarity matrices. Results confirm
that the choice of both autosimilarity matrices and feature representation impact the
performance of segmentation.

Figures 3.14 and 3.15 compare the best results obtained with the CBM algorithm
with those of the State-of-the-Art (aligned on downbeats, as presented in Figure 2.14).
In this comparison, the CBM algorithm largely outperforms the other blind segmentation
methods, and is competitive with the global (supervised) State-of-the-Art [GS15b].

(a) F0.5. (b) F3.

Figure 3.12 – Segmentation results depending on the choice of the feature description and
on the autosimilarity matrix. Results are computed on the RWC Pop dataset, with the
7-bands kernel and the modulo 8 penalty function.

(a) F0.5. (b) F3.

Figure 3.13 – Segmentation results depending on the choice of the feature description and
on the autosimilarity matrix. Results are computed on the SALAMI dataset, with the
15-bands kernel and the modulo 8 penalty function.

3.5 Conclusions

This chapter has presented different autosimilarity matrices, studying several distinc-
tive ways to represent similarities between pairs of bars in a song. These autosimilarities
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Figure 3.14 – Segmentation results of the best CBM algorithm, compared to the other
State-of-the-Art algorithms. Results are computed on the RWC Pop dataset.

Figure 3.15 – Segmentation results of the best CBM algorithm, compared to the other
State-of-the-Art algorithms. Results are computed on the SALAMI dataset.

are at the heart of the segmentation strategy, through the CBM algorithm. Boundaries
between sections are computed by maximizing the homogeneity (in some sense) of each
segment composing the segmentation, using dynamic programming.

The CBM algorithm is introduced here with several settings, which have been partly
discussed. This algorithm could still be improved, but it already achieves levels of perfor-
mance comparable to those of the State-of-the-Art [GS15b], which makes of it a useful
tool to investigate a variety of music representations. We strongly believe that the barwise
process of music is one of the main reasons for explaining these performance.

Overall, the design of the kernel clearly impacts the segmentation results. Hence, future
work could focus on studying alternative types of kernels. The kernel values could depend
on the particular song or dataset considered, or, following the developments of the kernel
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of Foote [Foo00], values could be taken following a Gaussian distribution. Of particular
interest could be the learning of such kernels instead of an (empirical) definition.

Convolution kernels presented in this section focus on the homogeneity of each seg-
ment, but different kernels, in particular considering those of Shiu et al. [SJK06], could
be considered in order to account for repetition in the song.

Finally, the number of bands in the convolution kernels seems to enforce some seg-
ment sizes in particular. This could be further exploited, for instance by using different
kernels concurrently, each one accounting for a different level of structure, hence studying
segmentation hierarchically.

A major problem observed with the current version of the CBM algorithm is some
lack of robustness: we observed in practice that very similar autosimilarity matrices could
result in different segmentations, sometimes inconsistent with one another. One way which
was investigated to counteract this effect consisted in adding a second penalization in the
cost, proportional to the largest convolution score in the current row. The rationale was to
favor segments when a block of high similarity appeared in the same row, hence indicating
a repetition of this segment in previous or subsequent bars.

Unfortunately, this idea was not sufficiently beneficial segmentation-wise compared
to the loss in complexity (numerous convolutions across the whole row instead of only
convolution around the diagonal). Still, this kind of score could be highly informative to
stabilize the outputs, and/or consider repetitions, or in a labelling phase for instance.

Additionally, the lack of robustness could be related to the observed impact of the num-
ber of bands in the distribution of the estimated segment sizes. We conjecture that coun-
teracting this effect, for instance by using normalized values in the kernel (as in [SJK06])
and normalizing the score associated with each kernel by the number of nonzero values
instead of the size of the kernel could make the algorithm more robust.

Subsequent chapters will study how compressed representations of bars can pro-
vide relevant features for structural segmentation. Indeed, instead of computing the au-
tosimilarity matrices on the barwise feature representation of the song, they can be com-
puted on barwise compressed representations and be used as the input of the CBM algo-
rithm. These compressed representations will largely impact the similarity values between
the different bars of the song, and notably the contrasts between zones of high and low
similarity.
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Barwise Compression Methods
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Chapter 4

NONNEGATIVE TUCKER

DECOMPOSITION - NTD

This chapter presents the Nonnegative Tucker Decomposition, a
tensor factorization scheme, algorithms to compute it, and presents
its use for structural segmentation and the discovery of patterns in
music.

Synopsis
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4.1 Introduction

Nonnegative Tucker Decomposition (NTD) is a nonnegative tensor factorization tech-
nique introduced by Kim and Choi [KC07]. NTD computes a part-based representation
of the (nonnegative) tensor of data, and generally serves as a multilinear dimensionality
reduction technique. NTD is a powerful tool to extract relevant patterns in data in an un-
supervised fashion, and is nowadays used in numerous applications, see for instance [ZF22]
for a recent overview of applications. NTD is computed by solving an optimization prob-
lem, subject to a loss function.

NTD is used in this thesis as a barwise compression method, which can help to reveal
structure in music. In addition, NTD is able to extract interpretable musical patterns at
the barscale, showcased on a task of pattern uncovering.

This chapter first introduces the mathematical aspects of NTD, along with some pri-
mordial notions of tensor algebra. In a second part, algorithms to compute NTD are
introduced, relatively to different loss functions: the Euclidean distance and the family of
β-divergences. Finally, NTD is presented in the context of Music Information Retrieval,
from a theoretical point of view firstly, and in an experimental phase secondly. In par-
ticular, experiments are made on the structural segmentation task, defined in previous
chapters, and in a new task of pattern uncovering, showcasing numerous potential appli-
cations for NTD.

The contributions reported in this section are threefold:
— Algorithmic: Two NTD algorithms are presented (one optimizing the Euclidean

distance with HALS, one optimizing the β-divergence with MU) in the context
of this thesis. Both algorithms were developed by the authors, based on existing
algorithms used for other low-rank approximations (mainly Nonnegative Matrix
Factorizations).

— Experimental: NTD was previously used in MIR in a pattern uncovering task [SG18],
and we extend its use to structural segmentation. Experimental performance of
NTD outperform the unsupervised State-of-the-Art techniques, and obtain, to
some extent, comparable results with those of the current supervised State-of-
the-Art [GS15b].

— Pedagogical: an important part of this work lies in pedagogical efforts to interpret
NTD, which may be hard to decipher when introduced to a novel reader.

These contributions have also resulted in two publications [Mar+20; Mar+22]. The
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NTD algorithms are included in the open-source nn_fac toolbox [MC20], and the remain-
der of the code, along with the conducted experiments, are included in the open-source
BarMusComp toolbox [MCB22b].

4.2 Elements of Tensor Algebra

Let us start by introducing tensors and essential notions of tensor algebra. This sec-
tion does not cover exhaustively tensor algebra, only primordial concepts to rigorously
introduce NTD.

4.2.1 Tensors

Generally speaking, a tensor is a multi-dimensional array. Citing [KB09], “formally, a
N-way or Nth-order tensor is an element of the tensor product of N vector spaces”. It means
that tensors are the generalization of both vectors (1st-order tensor) and matrices (2nd-
order tensor). In this thesis, tensors are studied up to the 3rd-order, even if the algorithms
and algebra presented can be applied to arbitrary Nth-order tensors. Hence, we further
simplify the notations by denoting 3rd-order tensors as “tensors”.

Notation-wise, tensors are represented by Euler script letters, such as X, and any
element (i, j, k) of a tensor is denoted as Xijk. In this thesis, tensors are restricted to
real-valued tensors, generally nonnegative, thus X ∈ RI×J×Kor RI×J×K

+ .
Each of the three dimensions of a tensor is called a mode. When fixing the index along

one mode, e.g. Xi:: on the first mode (a colon represents all the elements in a mode), the
resulting subarray has two modes, and can be seen as a matrix, called slice of the tensor.
When fixing two modes, such as Xij:, the resulting subarray is a vector, called fiber of
the tensor. A tensor and its representation in slices are presented in Figure 4.1.

Matricization - Unfolding

A tensor can be transformed into a matrix via the mode-n unfolding operation.
Practically, the idea is to keep one mode intact, and to reorder all the elements of the
other modes into a unique mode, i.e. concatenate all the fibers of a tensor in a second
mode. For instance, given the tensor X ∈ RI×J×K , it can be transformed into matrices
X(1) ∈ RI×JK ,X(2) ∈ RJ×IKor X(3) ∈ RK×IJ , respectively by unfolding on the first, second
or third mode. As presented with the previous example, the mode-n unfolding of a tensor
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1 ≤ i ≤ I

1 ≤ j ≤ J

1 ≤ k ≤ K

(a) Tensor, with (i, j, k) indexing the three
modes.

(b) Tensor, evaluated by its different slices on
the last mode: X::k∀1 ≤ k ≤ K.

Figure 4.1 – A tensor, seen with its 3 modes and in slices.

X is denoted as X(n). The inverse operation is called folding, i.e. obtaining a tensor from
a matrix by reordering its elements.

The order for unfolding is not subject to a consensus in the community. In this the-
sis, we choose to reorder elements by taking them in the descending order of their in-
dex [Coh15]. Practically, the mode-1 unfolding of tensor X takes elements on the 3rd

mode first and on the 2nd mode last.
Similarly, the vectorization operation vec(X) ∈ RIJK can be defined, in the same

order (from the highest order to the smallest one). Illustrations are given in Figure 4.2.

(3)

i

(2)
j

(1) k

(a) Schematic representation of the order for un-
folding/vectorizing, taken from [Coh15]. (b) Example of vectorization with a 2×

2 × 2 tensor.

Figure 4.2 – Order for unfolding and vectorization.

Kronecker and n-mode products

The Kronecker product is a matrix product, between A ∈ Ra1×a2 and B ∈ Rb1×b2 ,
denoted as ⊗. The Kronecker product multiplies each entry in A with all entries in B,
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hence A ⊗ B ∈ Ra1b1×a2b2 :

A ⊗ B =


a11B · · · a1a2B

... . . . ...
aa11B · · · aa1a2B

 . (4.1)

Equation 4.2 presents the Kronecker product elementwise for 2 × 2 and 2 × 3 matrices:

 a11 a12

a21 a22

⊗

 b11 b12 b13

b21 b22 b23

 =


a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

 .

(4.2)

The Kronecker product is distributive with respect to transposition:

(A ⊗ B)⊺ = A⊺ ⊗ B⊺,

(A ⊗ B)⊺(A ⊗ B) = A⊺A ⊗ B⊺B.
(4.3)

The (matrix) n-mode product, denoted as ×n, corresponds to the product between a
matrix and a tensor on mode n. Practically, given a tensor X ∈ RI×J×K and a matrix
A ∈ RD×I , (X ×1 A) ∈ RD×J×K . Elementwise, (X ×1 A)d,j,k = ∑I

i=1 Xi,j,kAd,i. It can also
be seen as a matrix product when unfolding tensors:

T = X ×1 A ⇔ T(1) = AX(1). (4.4)

The Kronecker and n-mode products can be linked through the Equations 4.5 and 4.6
listed below.

T = P ×1 A ×2 B ×3 C ⇔ vec(T) = (A ⊗ B ⊗ C) vec(P) (4.5)

T = P ×1 A ×2 B ×3 C ⇔ T(1) = AP(1)(B ⊗ C)⊺ (4.6)
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4.2.2 Nonnegative Tucker Decomposition Model

Nonnegative Tucker Decomposition (NTD) is a nonnegative tensor factorization tech-
nique [KC07] in the framework of which a nonnegative tensor is approximated as the
product of factors (one for each mode of the tensor) and a small core tensor linking these
factors. This decomposition results in a low-rank approximation of the original tensor,
which can also be seen as a projection of the original tensor in the multilinear space
spanned by the factors.

NTD is often used as a dimensionality reduction technique, but it may also be seen as
a part-based representation (as we will present in Section 4.4) although its identifiability
properties are still not fully understood [Zho+15]. Computing the NTD means seeking
for three nonnegative matrices W ∈ RI×I′

+ , H ∈ RJ×J ′
+ and Q ∈ RK×K′

+ and a core tensor
G ∈ RI′×J ′×K′

+ such that:
X ≈ G ×1 W ×2 H ×3 Q (4.7)

which rewrites using element-wise notation:

X(i, j, k) ≈
I′,J ′,K′∑

i′,j′,k′=1
G(i′, j′, k′)W (i, i′)H(j, j′)Q(k, k′). (4.8)

Figure 4.3 depicts a schematic 3-D representation of an NTD. NTD core dimensions
I ′, J ′ and K ′ are assumed to be known (or set empirically) prior to the decomposition.
Core dimensions are sometimes loosely referred to as “ranks” of the decomposition (as in
our previous work [Mar+20]). Mathematically, the core dimensions are related to, but not
a trivial extension of the multilinear ranks of the core tensor. Discussion about multilinear
ranks and NTD is to be found in [Ale+22].

NTD is performed by minimizing a loss function, which is generally a distance or
divergence function d() between the original tensor and the approximation. It leads to the
following optimization problem:

W ∗, H∗, Q∗,G∗ = arg min
W ≥0,H≥0,Q≥0,G≥0

d(X,G ×1 W ×2 H ×3 Q), (4.9)

i.e. computing factors such that the error between the original data and the approximation
in factors (reconstruction error) is minimized 1.

Many algorithms are devoted to the optimization of the Euclidean distance between

1. Notation “arg min” means finding the factors minimizing the error.
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≈XI

J

K

I

I ′

K ′
K

I ′

J ′

K ′

J ′

J

W

Q⊺

H⊺G

Figure 4.3 – Nonnegative Tucker Decomposition of tensor X in factor matrices W, H, Q,
and core tensor G, with their dimensions.

the original tensor and the factors [Zho+15; PC11; Xu15; Mar+20], as for the HALS
algorithm, presented in Section 4.3.2. Other algorithms optimize the α- [KCC08] and β-
[Mar+22] divergences. This thesis does not consider α-divergences, but β-divergences and
an associated algorithm are presented in Section 4.3.3.

4.2.3 Nonnegative Matrix Factorization - NMF

Nonnegative Matrix Factorization (NMF) is a matrix decomposition model, resulting
in part-based representation of the original data [LS99]. Starting from a nonnegative
matrix M ∈ Rn×m

+ , and a dimension hyperparameter r, NMF aims at finding two matrices
U ∈ Rn×r

+ and V ∈ Rr×m
+ such that:

M ≈ UV. (4.10)

As for NTD, the problem is generally defined as an optimization problem:

U∗, V ∗ = arg min
U≥0,V ≥0

d(M, UV ), (4.11)

with d() the loss function, i.e. some distance or divergence. Even if NTD and NMF are
different problems, we will see in Section 4.3 that both can be solved using the same
methods. In addition, NTD can be seen as a generalization of NMF.
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4.3 Algorithms for NTD

This section presents the different algorithms developed during this thesis to compute
NTD. They are based on the resolution of the NTD optimization problem subject to
the Euclidean distance and β-divergences (d() in Equation 4.9). Algorithms are iterative,
hence iteration t for the update of a factor A is denoted as A(t).

Both of these algorithms are present in the open-source nn_fac toolbox [MC20], de-
veloped in the context of this thesis. Tensors (i.e. the data arrays) are computed and
handled with the Tensorly toolbox [Kos+19]. Algorithms presented in this section should
be deployed in the Tensorly toolbox in near future thanks to the work of my colleague C.
Tuna.

4.3.1 Alternating Scheme

In general, algorithms used to solve NTD face the fact that the loss function defined
in Equation 4.9 is non-convex with respect to all factors. In addition, finding a global
solution to this equation is NP-Hard when the loss function is the Euclidean distance or
a β-divergence 2. These conclusions stem from results obtained for NMF [Vav10], which
is a particular case of NTD.

Therefore, NTD (and, analogously, NMF), is generally solved using
alternating strategies: solving the problem with respect to one fac-
tor at a time (for instance, W ) by fixing all the other factors (here,
H, Q and G).

Each alternating subproblem is easier to solve, and is even convex for the Euclidean
distance and some of the β-divergences (when β ∈ [1, 2]). Hence, a general routine for
solving both NMF and NTD is to alternate between factors, solving each subproblem
independently.

When fixing one of the matrix factors (W , H or Q), NTD can be recast into a matrix
regression problem by using tensor algebra and unfolding. For instance, with respect to
mode 1 and using Equation 4.6, the NTD problem can be rewritten:

X = G ×1 W ×2 H ×3 Q ⇔ X(1) = WG(1)(H ⊗ Q)⊺. (4.12)

2. We will see in Section 4.3.3 that the β-divergences generalize the Euclidean distance.
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Hence, solving NTD with respect to W is equivalent to solving a matrix problem X(1) ≈
WV with V = G(1)(H ⊗ Q)⊺ being fixed, i.e. equivalent to an NMF problem when fixing
one of the factors.

Thus, solving the NTD subproblem subject to one factor can be
done by using algorithms designed to solve NMF in an alternating
scheme.

This is of particular interest because NMF is largely studied in literature [Gil20], and
many algorithms are designed to solve NMF by alternating between the factors [Gil20,
Chap. 8]. Hence, in this thesis, each of the matrix factors W, H and Q are solved as matrix
regression problems, using tools developed for NMF.

With respect to the core G, the subproblem may be solved as an alternating vectorized
problem (rank-1 NMF), using Equation 4.5:

X = G ×1 W ×2 H ×3 Q ⇔ vec(X) = (W ⊗ H ⊗ Q) vec(G), (4.13)

or as a tensor problem, using gradient descent 3. Still, in practice, computing the Kronecker
products (H ⊗ Q, W ⊗ H ⊗ Q, etc) would be extremely inefficient, or even intractable,
because it requires the computation of very large matrices 4. In that sense, strategies are
generally employed to avoid this computation, which are specific to the considered loss
function, and are detailed in related sections (4.3.2 and 4.3.3).

The general framework to solve NTD with respect to β-divergences or the Euclidean
distance is detailed in Algorithm 2. The term “arg reduce” refers to an optimization process
decreasing the loss function, but which may not be the “arg min”.

4.3.2 Euclidean-NTD: Optimizing the Euclidean Distance

One of the most common distance to solve optimization problems is the (squared)
Euclidean distance deuc. This distance, computed between two vectors, corresponds to the
length of the straight line between these vectors seen as points in the associated Euclidean

3. Many more optimization strategies could probably be used, but this thesis restricts to both these
methods.

4. For instance, given W ∈ RI×I′ , H ∈ RJ×J′ and Q ∈ RK×K′ , W ⊗ H ⊗ Q ∈ RIJK×I′J′K′ .
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Algorithm 2: High-level organization of algorithms solving NTD.
Input: X, initial values for G(0), W (0), H(0), Q(0)

Output: G, W, H, Q
for t = 1, 2, ... do

W (t+1) = arg reduce
W ≥0

d
(
X(1), WG

(t)
(1)(H(t) ⊗ Q(t))⊺

)
H(t+1) = arg reduce

H≥0
d
(
X(2), HG

(t)
(2)(W (t+1) ⊗ Q(t))⊺

)
Q(t+1) = arg reduce

Q≥0
d
(
X(3), QG

(t)
(3)(W (t+1) ⊗ H(t+1))⊺

)
Updating G(t+1) (details in sections 4.3.2 and 4.3.3)

end

space. Practically, for two vectors x, y ∈ RL:

deuc(x, y) = ∥x − y∥2
2 =

L∑
l=1

(xl − yl)2. (4.14)

The Euclidean distance can be extended to matrices and tensors as the elementwise l2

norm of the difference between two matrices/tensors, and is called the Frobenius norm, de-
noted as ∥.∥F . Hence, in the NTD framework, minimizing the squared Euclidean distance
between the original tensor and the approximation defines the following optimization
problem:

W ∗, H∗, Q∗,G∗ = arg min
W ≥0,H≥0,Q≥0,G≥0

1
2 dEuc(X,G ×1 W ×2 H ×3 Q) (4.15)

with dEuc(X,G×1 W ×2 H ×3 Q) = ∑
i,j,k

(Xijk − (G×1 W ×2 H ×3 Q)ijk)2. This optimization

problem is called in this manuscript “Euclidean-NTD”.

Many algorithms are designed to solve the Euclidean-NTD [PC11; Zho+15; Xu15;
Mar+20]. Our particular way to solve the Euclidean-NTD [Mar+20] makes use of the
Alternating Least Squares (ALS) method and, more precisely, a variant called Hierarchical
ALS (HALS).
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Nonnegative Least Squares problem

The Nonnegative Least Squares problem (NNLS) is a convex optimization problem,
defined as:

arg min
x≥0

1
2 ∥y − Ax∥2

2, (4.16)

i.e. arg min
x≥0

1
2 deuc(y, Ax) for a matrix A and a vector y. The NNLS problem can be solved

exactly with active-set methods [LH95]. In the general formulation, A and y are not
constrained to be nonnegative, but in our case both A and y are in general nonnegative.

The NNLS problem can be extended to matrices as: arg min
X≥0

1
2 ∥Y − AX∥2

F because, in

this formulation, X defines a concatenation of independent NNLS subproblems [NVG20].
The problem can be equivalently written as: arg min

X≥0

1
2 ∥Y ⊺ − X⊺A⊺∥2

F .

Finally, given M ∈ Rm×n, V ∈ Rd×n, and d ∈ N, d < min(m, n), the NNLS problem is
the problem of finding U∗ ∈ Rm×d

+ such that:

U∗ = arg min
U≥0

1
2∥M − UV ∥2

F . (4.17)

Solving NTD and NMF as NNLS subproblems

Section 4.3.1 introduced the alternating strategy for solving NTD: fixing all factors
except one, e.g. W , and solving the subproblem associated with this factor, e.g. X(1) ≈ WV

with V = G(1)(H ⊗Q)⊺ being fixed. When using the Euclidean distance to optimize NTD,
this subproblem is exactly a NNLS problem: arg min

W ≥0

1
2∥X(1) − WV ∥2

F . Hence, the NTD

with respect to matrix factors W, H, Q can be solved using NNLS resolution methods.
Analogously, NMF can be solved as NNLS subproblems.

In practice, both NMF and NTD being based on alternating schemes, it is not nec-
essary to perform exact decompositions, which can be costly. Instead, it is sufficient to
approximately solve each NNLS subproblem to guarantee the convergence of NMF to a
stationary point [GG12], which is the sense of arg reduce.

Hierarchical Alternating Least Squares

Hierarchical Alternating Least Squares (HALS) is a method introduced by Cichocki
et al. [CZA07] to approximately solve NNLS problems. The convergence of HALS is guar-
anteed as a particular case of the more general PALM optimization framework [BST14].
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Instead of updating in one iteration the entire matrix U , HALS updates iteratively each
column 5 U:k (1 ≤ k ≤ r). Hence, the subproblem: U∗ = arg min

U≥0

1
2 ∥M − UV ∥2

F is itself

divided in subproblems:

U∗
:k = arg min

U:k≥0

1
2 ∥M −

∑
i ̸=k

U:iVi: − U:kVk:||2F . (4.18)

Each columnwise subproblem admits an optimal closed-form solution, giving the fol-
lowing update rule [GG12]:

U
(t+1)
:k = max

0,
MV

(t)
k:

⊺
−∑k−1

i=0 U
(t+1)
:i V

(t)
i: V

(t)
k:

⊺
−∑r

i=k+1 U
(t)
:i V

(t)
i: V

(t)
k:

⊺

V
(t)

k: V
(t)

k:
⊺

 (4.19)

Denoting as A = MV (t)⊺ and B = V (t)V (t)⊺, Equation 4.19 can be rewritten as: U
(t+1)
:k =

max
(

0,
A:k−

∑k−1
i=0 U

(t+1)
:i Bik−

∑r

i=k+1 U
(t)
:i Bik

Bkk

)
. Hence, A and B can be computed only once for

the update of all columns U:k of U .

Accelerated variant of the HALS

In this work, we particularly implemented the accelerated variant of the HALS intro-
duced by Gillis & Gilneur [GG12]. The idea of this variant is to make use of the fact
that previously defined A and B matrices are computed only once for the update of all
columns U

(t)
:k of U (t) (at iteration t), and could then be reused to update U (t) several times

in a row.
Indeed, updating U (t) several times instead of once before alternating to V (t) still

results in only one computation of matrices A and B. The computation of these two
matrices being in general the heaviest operation complexity-wise in the update rule, the
second (and subsequent) updates for U (t) are relatively cheaper computationally than the
first one.

Even if performing several updates for U (t) is itself more expensive than performing
only one update, this technique leads to a better solution U (t) to the NNLS subproblem
defined in Equation 4.17 at a relatively cheap cost, which, in the end, could reduce the
overall number of iterations t.

Results presented in [GG12] indeed show an overall acceleration of the accelerated

5. This is the sense of “Hierarchical”.
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variant of HALS over the traditional one (where each factor is updated once before alter-
nating), without losing the convergence properties.

Practically, this accelerated variant results in the following routine:
— 1- Compute A and B for the update t of U (t),
— 2- Update each column U

(t)
:k of U (t),

— 3- Repeat step 2 several times (this is called “inner iterations”, denoted as U (t,l)),
— 4- Alternate factors, and perform analogously for V (t).

Finally, step 3 needs the definition of a stopping criterion to halt the inner iterations, or
at least a definition of “several times” (how many inner iterations l should be performed
for U (t,l) before alternating to V (t)). This can be achieved in three different ways [GG12]:

— The first way estimates the gain ρ between the first and the subsequent updates
(i.e. the gain between computing A and B and reusing them), and then fixes the
number of inner iterations as ⌊1 + αρ⌋, α being an hyperparameter. Following the
experimental results of [GG12], we fix α = 0.5.
In theory, ρ is computed as the ratio between the computational complexity of
the first and the second update. In practice, instead of computing the exact com-
putational complexities, a cheaper way (but not a deterministic one) consists of
measuring the time of both updates.

— The second way consists of evaluating the gain in reconstruction error of these
inner iterations relatively to the NNLS subproblem (Equation 4.17), and halt the
inner iterations if the improvement becomes too small.
In practice, this can be achieved by computing the initial error ∥U (t,1) − U (t,0)∥2

F ,
and halting the inner iterations at l when ∥U (t,l) − U (t,l−1)∥2

F ≤ η∥U (t,1) − U (t,0)∥2
F .

Hyperparameter η is fixed to 0.01, meaning that inner iterations stop when the
current gain in reconstruction error becomes 100 times lower than the gain between
the first two inner iterations.

— The third way is an absolute maximal number of inner iterations.
In practice, we implemented all of these stopping criteria. The final algorithm is presented
in Algorithm 3.

Core Update

The core update could be carried with the same HALS method, using Equation 4.5, as:
arg min

G≥0

1
2∥ vec(X)−(W ⊗H ⊗Q) vec(G)∥2

2 is a vectorial NNLS problem. Still, this solution

requires the computation of the Kronecker product W ⊗ H ⊗ Q, which is generally costly,
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Algorithm 3: One step of Accelerated HALS on U (t)

Input: M ∈ Rn×m
+ , U (t) ∈ Rn×r

+ , V (t) ∈ Rr×m
+ , α, η, maxiter

Output: U (t+1)

A = MV (t)⊺, B = V (t)V (t)⊺

for k = 1, 2, ..., r do
if Bkk ̸= 0 then

U
(t+1,0)
:k = max

0,
A:k−

k−1∑
i=0

U
(t+1,0)
:i Bik−

r∑
i=k+1

U
(t)
:i Bik

Bkk


for k = 1, 2, ..., r do

if Bkk ̸= 0 then

U
(t+1,1)
:k = max

0,
A:k−

k−1∑
i=0

U
(t+1,1)
:i Bik−

r∑
i=k+1

U
(t+1,0)
:i Bik

Bkk


ρ = time(U(t+1,0)

:k )
time(U(t+1,1)

:k )

/* The time for U
(t+1,0)
:k includes the computation of A and B */

for l = 1, 2, ..., min(⌊1 + αρ⌋, maxiter) do
for k = 1, 2, ..., R do

if Bkk ̸= 0 then

U
(t+1,l+1)
:k = max

0,
A:k−

k−1∑
i=0

U
(t+1,l+1)
:i Bik−

r∑
i=k+1

U
(t+1,l)
:i Bik

Bkk


if ∥U (t,l+1) − U (t,l)∥F ≤ η∥U (t,1) − U (t,0)∥F then

break.

with a complexity of O(IJKI ′J ′K ′). In practice, computing this product can be inefficient
or even intractable for large dimensions.

Computational complexity can be reduced by using the multi-mode product instead
(i.e. n-mode product on several modes), using Equation 4.5. Still, the vectorization oper-
ation: vec(G ×1 W ×2 H ×3 Q) still requires the computation of large vectors, and HALS
applied on vectors reduces to the update of each coefficient independently, which can be
costly.

Instead, we choose to solve the subproblem: arg min
G≥0

1
2∥X−G×1 W ×2 H ×3 Q∥2

2 with a

proximal gradient descent, i.e. G(t+1) = max(0,G(t)−γ∇G(t)). Using Equations 4.3 and 4.5,
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the 6 gradient ∇G is equal to:

∇G = G ×1 W ⊺W ×2 H⊺H ×3 Q⊺Q − X ×1 W ⊺ ×2 H⊺ ×3 Q⊺. (4.20)

The gradient step γ is (globally) optimal when equal to the inverse of the product of the
largest singular values of W ⊺W , H⊺H and Q⊺Q [Bec17, Chap. 10], i.e. denoting as λW ,
λH and λQ the largest singular values of W ⊺W , H⊺H and Q⊺Q respectively, γ = 1

λW λHλQ
.

4.3.3 β-NTD: Optimizing the β-divergences

The family of β-divergences was introduced in [Bas+98]. Given two nonnegative scalars
x and y, the β-divergence between x and y, denoted as dβ(x|y), is defined as follows:

dβ(x|y) =


x
y

− log(x
y
) − 1 β = 0

x log(x
y
) + (y − x) β = 1

xβ+(β−1)yβ−βxyβ−1

β(β−1) β ∈ R\{0, 1}
(4.21)

These divergences generalize the Euclidean distance (β = 2), the Kullback-Leibler (KL)
divergence (β = 1) and the Itakura-Saito (IS) divergence (β = 0). This family of diver-
gences can be of particular interest in the presence of specific noise distributions, such as
KL for i.i.d. Poisson noise [LS99], or IS for i.i.d. multiplicative Gamma noise [FBD09],
see [Gil20, Chap. 5] for a quick overview.

The β-divergences dβ(x|y) are homogeneous of degree β, that is for any λ ∈ R:

dβ(λx|λy) = λβdβ(x|y). (4.22)

It implies that factorizations obtained with β > 0 (such as the Euclidean distance or the
KL divergence) rely more heavily on the largest data values and less precision is to be
expected in the estimation of the low-power components. The IS divergence (β = 0) is
scale-invariant and is the only one in the family of β-divergences to possess this property.
It implies that low power entries are as important in the divergence computation as high-
power areas. For instance, approximating as 10 an entry equal to 1 results in the same IS
divergence error than approximating as 10−4 an entry equal to 10−5.

More generally, the lower is β, the more impact is given to the good fit of low-power
coefficients in the error computation. This property may be particularly useful for the

6. We drop the iteration notation .(t) for clarity.
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processing of audio signals. Indeed (as presented in Section 2.2.4), low-frequency STFT
and Mel coefficients are generally observed to be larger in magnitude than high-frequency
coefficients. In addition, in audio signals, components of low intensity can perceptually
be as important as components of high intensity, due to the perception of loudness in the
human ear.

In audio signals, using divergences which rely less on the largest
coefficients and more on low-power coefficients can better suit the
particular characteristics of audio signals, as components of low
intensity can perceptually be as important as components of high
intensity.

In particular, both KL and IS divergences are notoriously known to be better suited
to audio source separation than the Euclidean distance [FBD09]. An overview of works
using different β values in the audio domain (β ∈ {0, 0.5, 1} in general) can be found in
the thesis of Lefèvre [Lef12, Chap. 2].

This section focuses on the computation of a candidate solution to approximate NTD
with β-divergence as a loss function:

W ∗, H∗, Q∗,G∗ = arg min
W ≥0,H≥0,Q≥0,G≥0

dβ(X|G ×1 W ×2 H ×3 Q) (4.23)

with dβ the elementwise β-divergence between two tensors.
Similarly than for the Euclidean distance, the loss function is non-convex with respect

to all factors, and computing a global solution to NTD is NP-Hard [Vav10] (since NTD
is a generalization of NMF). However, each subproblem obtained when fixing all but one
mode is convex as long as β ∈ [1, 2], and remains solvable for other β values [Gil20].

Hence, while recent work [MGF21] focused on jointly optimizing the problem with
respect to both factors “at-once”, alternating schemes are still standard to solve NMF
with respect to β-divergences [LS99; FI11; Gil20]. In particular, the seminal paper by
Lee and Seung [LS99] proposed an alternating algorithm for NMF with respect to the
KL-divergence based on the multiplicative updates (MU) rule, later revisited and ex-
tended to β-divergences by Févotte and Idier [FI11]. We further extend the MU rule for
NTD [Mar+22].
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Multiplicative Updates rule for Alternating NMF

Recalling that we denote as · and ÷ the element-wise product and division, the mul-
tiplicative updates (MU) rule in approximate NMF (M ≈ UV ⊺) is defined as:

U (t+1) = max

U (t) ·


[
(U (t)V (t))·(β−2) · M

]
V (t)⊺

(U (t)V (t))·(β−1)V (t)⊺

.γ(β)

, ϵ

 . (4.24)

In Equation 4.24, ϵ > 0 is a small constant. The element-wise maximum between
the matrix update (i.e. the closed-form expression of the minimizer of the majorization
built at the current iterate) and ϵ in Equation 4.24 aims at avoiding zero entries in
factors and establishing convergence guarantee to stationary points within the BSUM
framework [RHL13]. Zero entries in factors may cause division by zero and the zero-
locking phenomenon.

Function γ(β) in Equation 4.24 is a function such that [FI11]:

γ(β) =


1

2−β
β < 1

1 1 ≤ β ≤ 2
1

β−1 β > 2
(4.25)

MU for NTD

The previous MU rule can be used to solve the different alternating subproblems
presented in Algorithm 2. A difficulty is that forming the Kronecker products is bound
to be extremely inefficient both in terms of memory allocation and computation time.

Instead, in the MU rule for updating the factor matrix W , the matrix V = G(i) (H ⊗ Q)⊺

can be computed efficiently using Equation 4.6 (setting A as the identity matrix):

G(1) (H ⊗ Q)⊺ = (G ×2 H ×3 Q)(1), (4.26)

which brings down the complexity of forming V from O(KLJ ′K ′L′) if done naively to
O(KJ ′K ′L′ + LJ ′KL′), and drastically reduces memory requirements. The same rule is
used for H and Q.

For the core factor, one can use the vectorization property of Equation 4.5 (i.e. using
X − G ×1 W ×2 H ×3 Q = vec(X) − (W ⊗ H ⊗ Q) vec(G)) to relate the core update with
the NMF MU rules. Once again, matrix U = W ⊗ H ⊗ Q is J ′K ′L′ times larger than the
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data itself. Therefore, to avoid computing heavy Kronecker products, we use Equation 4.5,
which states that (W ⊗ H ⊗ Q) vec(G) = vec(G ×1 W ×2 H ×3 Q).

This results in Algorithm 4, presenting one loop of update for the NTD, with respect
to the β-divergence.

Algorithm 4: A loop of β_NTD(X,dimensions,β)
Input: X,G(t), W (t), H(t), Q(t), ϵ, β
Output: G(t+1), W (t+1), H(t+1), Q(t+1)

VW = (G(t) ×2 H(t) ×3 Q(t))(1)

W (t+1) = max
(

W (t) ·
( [(W (t)VW )·(β−2)·X(1)]V ⊺

W

(W (t)VW )·(β−1)V ⊺
W

).γ(β)
, ϵ

)
VH = (G(t) ×2 W (t+1) ×3 Q(t))(1)

H(t+1) = max
(

H(t) ·
( [(H(t)VH)·(β−2)·X(2)]V ⊺

H

(H(t)VH)·(β−1)V ⊺
H

).γ(β)
, ϵ

)
VQ = (G(t) ×2 W (t+1) ×3 H(t+1))(1)

Q(t+1) = max
(

Q(t) ·
( [(Q(t)VQ)·(β−2)·X(3)]V ⊺

Q

(Q(t)VQ)·(β−1)V ⊺
Q

).γ(β)
, ϵ

)
N = (G(t) ×1 W (t+1) ×2 H(t+1) ×3 Q(t+1))·(β−2) · X
D = (G(t) ×1 W (t+1) ×2 H(t+1) ×3 Q(t+1))·(β−1)

G(t+1) = max
(
G(t) ·

(
N×1W (t+1)⊺×2H(t+1)⊺×3Q(t+1)⊺

D×1W (t+1)⊺×2H(t+1)⊺×3Q(t+1)⊺

).γ(β)
, ϵ
)

A Note on MU for Euclidean Distance

The 2-divergence (β-divergence with β = 2) is exactly the Euclidean distance. Hence,
the previous algorithm with MU rule is also suited to solve NTD with respect to the Eu-
clidean distance. In practice though, HALS is known to be more efficient than MU [GG12].
In that sense, only HALS is considered to solve NTD with respect to the Euclidean dis-
tance.

4.4 Musical Barwise Interpretation

The previous sections were dedicated to the algebraic and algorithmic aspects of NTD
(respectively Sections 4.2 and 4.3). The current section is dedicated to its interpretation as
a barwise factorization technique for music. Firstly, we introduce how a spectrogram can
be folded into a tensor, called “Time-Frequency-Bar” tensor, with two temporal modes,
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and, secondly, we propose a tentative interpretation for the different factors W , H, Q and
G.

4.4.1 TFB Tensor

NTD is a tensor decomposition model. In that sense, it must be applied on a 3rd-
dimensional representation of music, which we introduce under the name of “TFB tensor”,
standing for “Time-Frequency-Bar tensor”.

Music in its audio form is often represented in the time-frequency domain as a spectro-
gram, i.e. a 2-dimensional matrix (further denoted as X). Along the x-axis, the temporal
dimension unfolds, with the indices of signal frames, while the y-axis is a frequency-related
index (indices of Fourier coefficients, pitches, wavelet coefficients, etc).

In the TFB representation, the temporal dimension is broken up
into two distinct dimensions: a dimension for time at a low-scale,
representing time in each bar, and a barwise dimension. This result
in a tensor with a frequential mode, a mode for time at barscale,
and a mode for the different bars, represented in Figure 4.4.

Analogously to the Barwise TF matrix, introduced in Section 2.4.2, time at barscale
is re-sampled in S values, where S is the subdivision parameter.

1 ≤ f ≤ F
Frequential
mode

1 ≤ s ≤ S

Time at barscale

1 ≤ b ≤ B Different
bars

Figure 4.4 – TFB tensor
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NTD is then applied to the TFB tensor, in any feature representa-
tion (STFT, Mel, chromagram, ...). In that paradigm, each factor
matrix relates to one particular mode: W relates to the frequential
mode, H to the inner bar time, and Q to the mode indexing the
different bars, and the core G mix these different factors.

This section aims at explaining what each of these factors represents in the barwise
musical context.

4.4.2 Factors Interpretation

For the NTD applied on the TFB tensor X ∈ RF ×S×B
+ , NTD core dimensions are

denoted as F ′, S ′ and B′. Hence, W ∈ RF ×F ′
+ , H ∈ RS×S′

+ , Q ∈ RB×B′
+ and G ∈ RF ′×S′×B′

+ .

NMF for Music Transcription

Let’s start with W , by taking the example of NMF for Music Transcription (NMF was
presented in Section 4.2.3). It consists of factorizing a nonnegative matrix X ∈ RM×N

+

(here, a spectrogram) in two nonnegative matrices W and V such that X ≈ WV =∑D
d=1 W:dVd:. NMF has been extensively used in audio signal processing, generally for

source separation [Vir07; OF09; Lef12] and music transcription [SB03; VBB09; Che+16;
Gao+17; WMC22].

The task of music transcription aims at representing the musical content of an audio
signal into a symbolic format (typically a musical score), i.e. converting spectrograms
into frequential information (which note is played?) and temporal information (when is
this note played?). With NMF, W represents frequential information while V represents
temporal information. A toy example is represented in Figure 4.5, adapted from [WMC22].

In this example, each column W:d of W represents the frequential content of a note,
and each associated row Vd: represents the activations of this particular note. Hence, W

is a concatenation of the frequential content of several notes (here, 3 columns for G, A
and B), representing templates of frequential content.

In NTD, W holds the same purpose. Matrix V is used in transcription to indicate
when notes are played, which is not transferable as such in the NTD framework.
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Figure 4.5 – A toy example of transcription using NMF, adapted from [WMC22].

Nonnegative Matrix Tri-Factorization

In the NMF model, each column of W is linked to a unique row in V by conven-
tional matrix product. This model can be extended by adding a “mix matrix” G, such
that a spectrogram X is decomposed in three nonnegative matrices 7 W ∈ RM×DW

+ , G ∈
RDW ×DH

+ , H ∈ RDH×N
+ such that X = WGH.

This model is referred to in the literature as Nonnegative Matrix Tri-Factorization
(NMTF) [Din+06] or three-factor NMF [Cic+09]. Pushing the analogy with NMF, the
idea of NMTF is to represent X as conic combinations of columns of W with rows of
H, defined in the matrix G. Practically, X ≈

DW∑
dW =1

DH∑
dH=1

GdW dH
W:dW

HdH :, meaning that

coefficient (dW , dH) of G is the weight of the combination of W:dW
and HdH :. NMF is a

particular case of NMTF where G = IDW
and DW = DH .

Applied to a barwise spectrogram X, we interpret NMTF as modeling the musical
content in X as a mix between frequential templates in W and barwise rhythmic templates
in H. This notion of “barwise rhythmic template” is novel with respect to the traditional
interpretation of NMF in audio domain, but seems rather clear in music composition.

In conventional music notation, rhythm is represented with symbols such as “quarter
notes”, “rests” and “beamed notes”, as presented in Section 2.2.2. A barwise rhythmic
template is formed of a group of symbols, regularly spaced at the bar scale, representing
the onsets of musical events in this bar. For example, in a 4

4 metric, an event occurring
on each beat is represented with 4 consecutive quarter notes.

7. Note that we changed the notation of the previous matrix V by matrix H to disambiguate the
different roles of these matrices between NMF and NTD, both relating to time information.
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Hence, for a barwise spectrogram, NMTF associates frequential
templates (e.g. musical notes) with rhythmic templates at the
barscale (e.g. each beat in the bar), forming musical content at the
barscale. Frequential and rhythmic templates can be interpreted
as encoding respectively the pitches and durations of the different
notes.

As an example, we study a simple drum pattern, presented in symbolic format in
Figure 4.6. This drum pattern can be factorized with NMF or NMTF. An example of
decompositions for both models is presented in Figure 4.7.

Figure 4.6 – A simple drum pattern, taken as an example for NMTF

Musical Pattern

Mathematically, unconstrained NMTF can always be recast as an NMF [Din+06],
typically by setting V = GH. The relevance of NMTF becomes more obvious when
considering different matrices (G(b′))b′∈N applying on the same W and H matrices.

In this context, the different “mix matrices” G(b′) define different combinations between
the columns of W and of H. When considering W and H as dictionaries, each G(b′) defines
a (potentially sparse) dictionary combination, i.e. a combination of frequential and barwise
rhythmic templates, resulting in a barwise spectrogram. The concatenation of different
matrices G(b′) results in a tensor G.

We call “musical pattern”, denoted as Pb′ , the product WG::b′H⊺,
which corresponds to a barwise spectrogram resulting of a combi-
nation of frequential and rhythmic templates.

Musical pattern
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Figure 4.7 – Drum pattern from Figure 4.6, decomposed in both NMF and NMTF models.
Matrix H is composed of 5 different barwise rhythmic templates, but only 2 are actually
used (H2: and H3:), presenting H as a dictionary of rhythmic patterns. This is useful in
the interpretation of NTD, as matrices W and H can be interpreted as dictionaries of
pitch-related and duration-related information (at barscale) in the song.
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NTD: Musical Patterns as Barwise Features

Finally, NTD consists of factorizing a TFB tensor X in a product G×1 W ×2 H ×3 Q. In
this decomposition, W consists of frequential templates, H in barwise rhythmic templates,
and the different slices of G consist of mix matrices between these dictionaries.

Matrix Q represents the barwise information of the original content X, which is missing
from the other factors. In particular, any given bar of index b in the TFB tensor is
represented as:

X::b ≈ W

 B′∑
b′=1

Qbb′G::b′

H⊺ =
B′∑

b′=1
Qbb′Pb′ , (4.27)

i.e. a conic combination of musical patterns.

Matrix Q represents the different bars in the song from the musical
patterns. Hence, musical patterns can be interpreted as barwise
features in the Q matrix.

Figure 4.8 presents a practical example when using NTD on the song Come Together
by The Beatles, represented as a chromagram. NTD is computed with dimensions F ′ =
12, S ′ = 12, B′ = 10.

Chromagrams (as presented in Section 2.2.4) are features where the frequential content
is represented in the chromatic scale, corresponding to each of the 12 semi-tones. As a
consequence, we do not expect factorization on this mode: notes are already expressed by
different columns and 12 is a small dimension compared to the other modes. In addition,
it seems detrimental to lower the dimensionality compared to the drawback of factorizing
notes (i.e. assuming that some notes do not appear in the entire song or only appear in
a same chord). Hence, when processing chromagrams, W is fixed to I12, i.e. the 12-size
identity matrix, as in [Mar+20].

In the end, structural segmentation is studied through the Q matrix, and the musical
patterns Pb′ = WG::b′H⊺, ∀1 ≤ b′ ≤ B′ are studied in a pattern uncovering task.

Robustness of the Interpretation

A tentative interpretation for the factors in the decomposition is presented in the
current section, which seems valid in the particular example shown in Figure 4.8. In
theory though, there might be several solutions W, H, Q,G that provide the same (or a
very similar) estimate G ×1 W ×2 H ×3 Q ≈ X.
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Figure 4.8 – NTD example on the chromagram of Come Together by The Beatles, with
dimensions F ′ = 12, S ′ = 12, B′ = 10, and W = I12. Columns of the H and Q matrices
(and, accordingly, slices of G) are reordered for visualization purposes.

This problem, known as identifiability deficiency, has been little studied for NTD,
and established identifiability conditions are very restrictive [Zho+15]. Moreover, these
conditions are hard to check in practice 8. Therefore it is unreasonable to assess the iden-
tifiability of the NTD in our application. As a consequence, this means that there might
be infinitely many solutions minimizing Equation 4.9 that are, from an optimization point
of view, equally satisfying.

Secondly, even in the case where the NTD is identifiable, the loss function 4.9 is highly
non-convex, and local algorithms can only hope to recover a local minimum at best.

These two issues combined give rise to a high dependency of the solution on the initial
condition: from two different initializations, two different results are likely to be obtained,
most probably non-identifiable local minima. We have observed such situations in our
investigations, with various initializations indeed resulting in different outputs.

However, in practice, the decomposition provides results that are reasonably inter-
pretable from a musical perspective, as we present in Section 4.5. In particular, we initial-
ized the algorithm with the absolute values of the Higher Order SVD [DDV00] computed
with the Tensorly toolbox [Kos+19], resulting in a consistent and deterministic initializa-
tion.

Nevertheless, perfectly controlled convergence of the NTD decomposition on music

8. For instance, one can show that the identifiability of the parameters is conditioned on the identifi-
ability of the Nonnegative Matrix Factorizations obtained by unfolding the tensor X̂ along each dimen-
sion [Zho+15]
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data remains a challenging research topic. Finding appropriate priors or additional con-
straints to disambiguate the outputs of the decomposition is an open problem, and condi-
tions that may be specific to music signal processing should be investigated. In particular,
in most NTD works, sparsity constraints are set on the core [MHA08].

A Note on Factor Normalization In addition to the identifiability deficiency, the
decomposition is ambiguous with respect to scaling factors, e.g. G ×1 W ×2 H ×3 Q =
G×1(λW )×2( 1

λ
H)×3Q for any λ ∈ R∗

+. As a convention, the decomposition is normalized
for every factor except Q, in order to let the energy discrepancies between the different
bars appear in Q.

In practice, normalization means that every column W:f ′ and H:s′ , and every slice G::b′

is divided by its l2 norm. This choice was motivated in the very beginning because Q serves
for structural segmentation (see future Section 4.5.1), and we have assumed that energy
discrepancies could help disambiguate the structure. Still, we have not made experiments
to confirm this assumption, and other normalization paradigms could be employed (such
as normalizing the matrix factors and not the core).

Dimensioning NTD

Dimensions F ′, S ′ and B′ (dimensions of the core, number of columns in each factor,
one for each mode) are crucial parameters of NTD. Indeed, low values for F ′, S ′ and B′

tend to over-compress information in the data, failing to uncover relevant patterns in the
song. Conversely, high values for F ′, S ′ and B′ may give too much importance to details in
the data, resulting in the inability of the model to extract relevant structural information
by over-specializing the different musical patterns.

As developed further in Section 4.5, our experiments indicate that the optimal dimen-
sions for F ′, S ′ and B′ are probably specific for each song, which can be easily understood
as a consequence of the diversity of intrinsic variability across music pieces. Providing an
efficient and accurate method for selecting the dimensions is a challenging topic, left to
future work. It is certainly another aspect that deserves further research (including its
link with hierarchical levels of music description).
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4.5 Experiments

Finally, this section presents experimental frameworks to evaluate NTD on real musi-
cal applications. In particular, this section studies the structural segmentation [Mar+20;
Mar+22] and pattern uncovering tasks [SG18; Mar+22].

For structural segmentation, this section presents how NTD, by computing barwise
representation of a music, can serve to compute barwise similarities, finally fueled to
the CBM algorithm presented in Chapter 3. Pattern uncovering consists of a qualitative
evaluation of musical patterns Pb′ .

We compare 3 methods in these experiments: the Euclidean-NTD, optimizing the
Euclidean distance with HALS, and both KL- and IS-NTD, optimizing the Kullback-
Leibler (β = 1) and Itakura-Saito (β = 0) divergences with MU.

4.5.1 NTD for Structural Segmentation

NTD serves as barwise dimensionality reduction when applied to a collection of barwise
spectrograms. In particular, matrix Q results in a barwise feature representation of the
song, where features are the activations of the musical patterns defined by other factors.

As a consequence, Q can be used to compute autosimilarity matrices, such as Acos(Q)ij =
⟨Qi,Qj⟩

∥Qi∥2∥Qj∥2
=

b′∑
k=1

Q̃ikQ̃jk, i.e. the normalized dot product between each barwise repre-
sentation (with musical patterns as features). Figure 4.9 compares the autosimilarities
computed on the Barwise TF matrix with the NTD-based autosimilarities.

Segmentation can then be obtained by using the CBM algorithm on these autosimilar-
ities. In these experiments, the core dimensions take their values in {8, 16, 24, 32, 40}. Due
to the high number of resulting configurations (for each song, 53 = 125 decompositions),
we restrict this part to the study of RWC Pop, which is a smaller dataset than SALAMI.
As an example, on an Intel® Core(TM) i7 CPU, decomposing the song POP01 with di-
mensions F ′ = 16, S ′ = 16, B′ = 16 for the Nonnegative Log Mel (NNLM) spectrogram
takes approximately 40 seconds for the Euclidean-NTD, and respectively 2 1

2 minutes and
5 1

2 minutes for KL- and IS-NTD.
Following experimental conditions defined in Appendix A.2, the core dimensions are

fitted by cross-validation: the RWC Pop dataset is divided in two subsets, songs with odd
and even indexes, which alternatively act as test subset while the other half is used to set
the optimal values for the core dimensions.

Parameter λ in the CBM algorithm (weighting the penalty function) is fixed to 1

119



Chapter 4 – Nonnegative Tucker Decomposition - NTD

Figure 4.9 – Different autosimilarities on the song POP01 of RWC Pop, computed on the
feature (Barwise TF matrix, top) and on the Q matrix resulting of the NTD (bottom). Our
particular example for NTD was taken for the chromagram feature, with Euclidean-NTD
and by setting W = I12, S ′ = 16 and B′ = 16.

instead of being learned by cross-validation, in order to reduce the number of parameters
in cross-validation and reduce the computational complexity of the experimental phase.
Some experiments on early work (not presented here) showed that λ was of little impact
on the NTD-based results.

The remainder of this section aims at comparing the structural segmentation perfor-
mance obtained with NTD-based autosimilarities with the performance obtained with
Barwise TF autosimilarities. Hence, experiments compare the different similarity func-
tions (Cosine, Covariance and RBF) and the different features.

NTD being a nonnegative model, only nonnegative features are relevant as inputs. In
that sense, we study songs represented as chromagrams, Mel and NNLM spectrograms.
In addition, we compare Euclidean-, KL- and IS-NTD, studying the impact of the loss
function with respect to the different features.
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This set of experiments requires 3 × 3 × 3 = 27 distinct conditions, which may be
hard to test exhaustively. In order to focus conclusions, we design experiments trying to
answer the three following questions:

Question 4 With the current version of the CBM algorithm applied to NTD-based au-
tosimilarities, how are segmentation performance impacted by the similarity function (Co-
sine, Covariance and RBF)?

Question 5 Is the NTD-based Cosine similarity better performing than the Barwise TF
Cosine similarity in the structural segmentation task, and, when yes, in what features?

The rationale of Questions 4 and 5 is to study how the compression induced by
NTD impacts the overall barwise similarity and homogeneity in the autosimilarities, and,
more particularly, the contrast between similar and dissimilar bars (i.e. the difference in
values between similar and dissimilar bars). Indeed, differences in performance between
the similarity functions in Section 3.4 are explained by a higher contrast between similar
and dissimilar bars in the Covariance and RBF autosimilarities compared to the Cosine
autosimilarity. These differences in contrasts are empirically exhibited in Figure 4.9.

Question 6 How KL- and IS-NTD impact segmentation results, compared to Euclidean-
NTD, when the features exhibit energy discrepancies across frequencies, such as for STFT
and Mel spectrograms?

And how are KL- and IS-NTD performing when the energy discrepancies between
frequencies are mitigated in the feature, such as energy-normalized chromagrams (CENS)?

Question 6 evaluates quantitatively the motivations behind the use of KL- and IS-
divergences (i.e. aiming at reducing the impact of energy discrepancies between frequen-
cies) in the structural segmentation task, via the NTD.

Chromagram, Euclidean-NTD

The first experiments with NTD [Mar+20] were obtained using chromagram as the
feature representation, and the Euclidean-NTD. These results were computed with the
CBM algorithm, applied to the Cosine autosimilarity matrix, and with the 4-bands kernel,
which was shown to be poorly performing for segmentation in Chapter 3. Hence, Table 4.1
compares segmentation results obtained on the Cosine autosimilarity of chromagrams
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with both 4-bands and 7-bands kernels, on RWC Pop. Factor W is fixed to I12, as already
discussed is Section 4.4.2.

Results in Table 4.1 indicate that NTD achieves better segmentation performance than
the Barwise TF matrix, consistently with findings in [Mar+20], with both 4-bands and
7-bands kernels 9. In addition, the 7-bands kernel obtains better performance than the
4-bands kernel for NTD, hence, for future experiments and as concluded in Chapter 3, we
focus on the 7-bands kernel.

Results presented in Table 4.1 seem to answer Question 5 positively, i.e. that the
NTD-based Cosine similarity performs better for the task of structural segmentation than
does the Barwise TF Cosine similarity.

Table 4.2 presents segmentation results with the different autosimilarities computed
from the Q matrix. While differences in performance are important on the Barwise TF
matrix, presented in Figure 3.12 of Chapter 3, the different autosimilarities obtain similar
results here.

These results are a first answer to Question 4, indicating that NTD-based autosim-
ilarities perform similarly with all similarity functions, with a small decrease for the Co-
variance similarity though.

Cosine Kernel P0.5 R0.5 F0.5 P3 R3 F3
Barwise TF
matrix

4-bands 43.88% 46.59% 44.71% 67.62% 71.01% 68.62%
7-bands 47.00% 44.25% 45.16% 68.26% 63.98% 65.48%

Q of NTD 4-bands 54.13% 62.76% 57.71% 68.35% 79.90% 73.16%
7-bands 59.45% 64.76% 61.71% 73.50% 80.22% 76.36%

Table 4.1 – Comparing results between Barwise TF-based and NTD-based Cosine au-
tosimilarities, on the chromagram.

Autosimilarity P0.5 R0.5 F0.5 P3 R3 F3
Cosine 59.45% 64.76% 61.71% 73.50% 80.22% 76.36%
Covariance 54.51% 67.72% 59.53% 66.44% 83.00% 72.78%
RBF 58.30% 65.37% 61.24% 72.27% 80.72% 75.78%

Table 4.2 – Results when computing different autosimilarities on Q, on the chromagram.

9. Differences between results with the 4-bands kernel presented here and results presented in [Mar+20]
can be explained by the use of different values for the dimensions, and by small corrections in the CBM
since the publication of [Mar+20].
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Chromagram, KL- and IS-NTD

As presented in 4.3.3, the motivation for the use of β-divergences is to better account
for the dynamic of the signal’s spectrum. In the chromagram used here though (see Sec-
tion 2.2.4), normalization steps are applied to counteract the energy unbalance in the
spectrogram. Thus, we expect less advantages on the use of β-divergences for chroma-
grams, which is confirmed in practice by the segmentation results presented in Table 4.3.

Hence, Euclidean distance seems more suited for this type of energy-normalized chro-
magram, which is a partial answer to Question 6.

Chromagram P0.5 R0.5 F0.5 P3 R3 F3
Euclidean-NTD 59.45% 64.76% 61.71% 73.50% 80.22% 76.36%
KL-NTD 54.99% 58.80% 56.56% 71.50% 76.27% 73.47%
IS-NTD 52.10% 56.27% 53.87% 70.59% 76.45% 73.11%

Table 4.3 – Segmentation results on the Cosine autosimilarity of Q with Euclidean-, KL-
and IS-NTD, on the chromagram.

Mel and NNLM spectrograms, Euclidean-, KL and IS-NTD

If we turn towards Mel and NNLM spectrograms [Mar+22], it can be assumed that,
without any normalization step, coefficients exhibit high variation in intensity which are
not correlated to human perception. Nonetheless, the logarithm scaling in the NNLMS
should dampen high-power values, and hence the NNLMS should be less sensible to large
variations than the Mel spectrogram.

Segmentation results for both features and the different loss functions are presented
in Table 4.4. These results show an advantage for the KL- and IS-NTD over Euclidean-
NTD on both features, which may confirm that KL- and IS-divergences are better suited
for Mel and NNLM spectrograms, partially answering to Question 6. In addition, both
KL- and IS-NTD achieve better performance than the Barwise TF Cosine autosimilarity,
which positively answers Question 5. This is consistent with findings in [Mar+22].

We point out the results obtained on the Mel spectrogram, where the Euclidean-NTD is
the worst performing method, and notably worse than the results obtained on the Barwise
TF matrix. It means that NTD-based Cosine autosimilarity is not always better than the
Cosine autosimilarity of the Barwise TF, presenting a negative example to Question 5.
Nonetheless, on the Mel spectrogram, KL- and IS-NTD obtain higher results than the
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Barwise TF matrix, suggesting that NTD improves results when the model is suited to
the characteristics of the input data.

Table 4.5 present results of KL-NTD with the different autosimilarities (results are
equivalent for Euclidean- and IS-NTD): segmentation results obtained with the different
autosimilarities are really close.

Still, as presented in Table 4.6, NTD-based autosimilarity is not always the best-
performing case in terms of segmentation results. Indeed, results obtained with the RBF
autosimilarity of the Barwise TF, with NNLM spectrogram, are higher in terms of F0.5

than the best-performing NTD-based autosimilarity, obtained on the Cosine similarity of
the KL-NTD.

In addition, results of the Barwise TF Log Mel spectrogram (hence, uncompressed
representation of the song), are higher for both F0.5 and F3 than the best-performing
NTD. The Log Mel spectrogram taking values in R (hence, potentially negative), we
cannot compute NTD on this feature to compare.

Overall, the NTD is competitive with the State-of-the-Art [GS15b] in terms of F3, and
remains behind in terms of F0.5. NTD outperforms the other unsupervised State-of-the-
Art techniques segmentation-wise.

Feature Kernel P0.5 R0.5 F0.5 P3 R3 F3

Mel

Barwise TF 55.58% 57.18% 55.88% 74.17% 76.61% 74.71%
Euclidean-NTD 45.60% 48.08% 46.51% 68.30% 72.01% 69.66%
KL-NTD 55.50% 60.13% 57.42% 73.69% 80.00% 76.34%
IS-NTD 53.39% 60.21% 56.35% 71.17% 80.78% 75.32%

NNLMS

Barwise TF 50.89% 49.80% 49.92% 68.70% 66.98% 67.26%
Euclidean-NTD 56.56% 57.75% 56.97% 74.05% 75.74% 74.63%
KL-NTD 60.34% 63.84% 61.79% 78.25% 83.32% 80.37%
IS-NTD 57.85% 64.11% 60.55% 75.33% 83.43% 78.83%

Table 4.4 – Segmentation results when computing Euclidean-, KL- and IS-NTD on Cosine
similarity.

Importance of Dimension Selection

Finally, as an additional experiment, we present results where the dimensions F ′, S ′

and B′ of NTD are not fixed or learned by cross-validation, but selected a posteriori as
the dimensions maximizing F0.5 + F3, i.e. a trade-off between the F measures at both
tolerances. This condition, called “oracle condition” does not correspond to a realistic
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Feature Kernel P0.5 R0.5 F0.5 P3 R3 F3

Mel
Cosine 55.50% 60.13% 57.42% 73.69% 80.00% 76.34%
Covariance 52.89% 60.41% 55.91% 68.81% 78.89% 72.90%
RBF 53.75% 58.94% 55.94% 71.66% 78.50% 74.55%

NNLMS
Cosine 60.34% 63.84% 61.79% 78.25% 83.32% 80.37%
Covariance 55.39% 68.22% 60.64% 67.80% 84.36% 74.53%
RBF 60.17% 65.20% 62.31% 76.77% 83.54% 79.67%

Table 4.5 – Segmentation results for KL-NTD with the different autosimilarities.

Method Conditions P0.5 R0.5 F0.5 P3 R3 F3

NTD
KL-NTD,
Cosine,
NNLM

60.34% 63.84% 61.79% 78.25% 83.32% 80.37%

Barwise TF
RBF,
NNLM 63.34% 66.33% 64.27% 76.53% 80.47% 77.80%

RBF,
Log Mel 64.32% 70.01% 66.52% 78.31% 85.64% 81.16%

Foote [Foo00] 42.03% 29.95% 34.48% 67.06% 47.66% 55.01%
CNMF [NJ13] 31.57% 28.11% 28.81% 50.68% 45.37% 46.53%

Spectral Clustering [ME14a] 49.21% 45.03% 45.01% 65.54% 60.56% 60.30%
Structural Features [Ser+14] 51.31% 38.02% 42.96% 74.40% 54.73% 62.15%

CNN [GS15b] 80.36% 62.68% 69.70% 91.86% 71.13% 79.34%

Table 4.6 – Comparison of the best-performing NTD (Cosine similarity of Q obtained
with KL-NTD on the NNLM spectrogram) with the best-performing Barwise TF on the
same feature (RBF on the NNLM spectrogram), the global best-performing Barwise TF
(RBF on the Log Mel spectrogram), and the State-of-the-Art methods.

scenario, but presents a potential upper limit of NTD if some criterion was found to
adequately dimension the parameters of NTD prior to the decomposition.

In this experiment, we focus on the Euclidean-NTD applied on chromagrams with
W = I12, because it is our least computationally expensive condition: firstly, one of
the 4 factors is fixed, hence gaining one alternate in the optimization, and, secondly,
chromagrams have a dimension equal to 12, which reduces complexity in the computation
of update rules. In this experiment, dimensions S ′ and B′, respectively number of columns
of H and Q, take their values in {12, 16, 20, 24, 28, 32, 36, 40, 44, 48}, which is a finer grid
(but still not an exhaustive search in all the parameters spaces).

Results, presented in Table 4.7, show a strong increase in performance for all the
autosimilarity conditions. With these results, we conclude that providing a dimensioning
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criterion for NTD would be a strong asset. Still, to this day, all our attempts in that
direction were unsuccessful.

Dimension selection Autosimilarities F0.5 F3

Cross-validation
Cosine 61.71% 76.36%
Covariance 59.53% 72.78%
RBF 61.24% 75.78%

Oracle condition
Cosine 74.25% 85.25%
Covariance 71.77% 79.60%
RBF 73.91% 84.50%

Table 4.7 – Results of Euclidean-NTD with dimensions fitted by cross-validation (previous
scenario) and in the oracle condition, on the chromagram.

Conclusions: NTD for Structural Segmentation

In this Section, the output of the NTD, and in particular the Q matrix, served as a
barwise feature representation used in a segmentation context via the CBM algorithm.
Experiments were conducted with the objective to answer 3 questions, for which we make
the following conclusions.

Experimental conclusion 4 The different autosimilarity strategies (Cosine, Covari-
ance and RBF) used with NTD-based representations do not influence segmentation results
as much as for the Barwise TF-based autosimilarities. In general, results are close, with
a slight empirical advantage for the Cosine autosimilarity.

Experimental conclusion 5 Reported segmentation results show in every condition (with
the exception of Mel spectrograms and Euclidean-NTD) an advantage of the NTD-based
Cosine autosimilarity over the Barwise TF-based Cosine autosimilarity.

We assume that these conclusions stem from a higher contrast between zones of high
and low similarity in the Cosine autosimilarity of the NTD-based autosimilarity, compared
to the Cosine autosimilarity of the Barwise TF.

This conclusion is empirically exhibited in Figure 4.9, where the NTD-based autosim-
ilarities show more contrasted similarities. Nonetheless, in Figure 4.9, some NTD-based
autosimilarities (in particular the RBF autosimilarity) exhibit stripe structures, which
is closely related to the repetition criterion in structural segmentation, while the CBM
algorithm focus on block structures, according to the homogeneity criterion.

126



4.5. Experiments

In that sense, it should be informative to study the performance of NTD-based au-
tosimilarities with a repetition-based algorithm (either by improving the CBM algorithm
itself or by studying these autosimilarities with a different algorithm).

Experimental conclusion 6 On our dataset, KL-NTD is the best-performing model for
segmentation when studying Mel and NNLM spectrograms, and IS-NTD performs better
than Euclidean-NTD.

Euclidean-NTD is the best-performing method for the chromagrams, and this could be
related to the fact that they are energy-normalized.

Considering the energy discrepancies in Mel and NNLM spectrograms result in higher
segmentation scores, while using the KL and IS divergences is counter-productive when
the feature already normalizes the energy.

Still, the optimal performance obtained with Barwise TF-based autosimilarities (i.e.
the RBF autosimilarity), and with the NNLM and Log Mel spectrograms, are competi-
tive with the optimal performance obtained with NTD (except in the unrealistic oracle
condition). Nonetheless, in the light of these experimental conclusions, we conclude that
NTD is an interesting paradigm for structural segmentation of music, which deserves to
be further investigated and improved, as pointed out by the experiments in the oracle
condition.

To further demonstrate the potential interest of NTD, and study more qualitatively
the output of the decomposition, we study in Section 4.5.2 the other factors (W, H and G)
and, more particularly, their products, which form musical pattern, as a way to uncover
patterns in music. This also allows us to qualitatively compare the different β values for
audio signal processing with NTD, and test more extensively the Experimental conclu-
sion 6, in different conditions.

4.5.2 NTD for Pattern Uncovering

As presented in Section 4.4.2, the product Pb′ = WG::b′H⊺ for each 1 ≤ b′ ≤ B′ is
analog to a barwise spectrogram, which we call “musical pattern”. The previous section
showed how the Q matrix, representing the song using the musical patterns as barwise
features, can be used for structural segmentation.

This section focuses on the musical patterns themselves. Indeed, optimization-wise,
each musical pattern represents some factorized content in the song, but this does not
ensure that each pattern is musically relevant, or even interpretable. To this end, we
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perceptually investigate the quality of patterns, by considering the NTD computed on
STFT only. In particular, as NTD must be computed on nonnegative spectrograms, we
consider NTD computed on the modulus of the STFT (magnitude spectrogram).

Until 2017, a task in the MIREX contest called “Discovery of Repeated Themes &
Sections” was dedicated to pattern uncovering, but was restricted to the identification
of patterns in symbolic format. In our scenario, patterns are spectrograms, and should
be converted into MIDI representation, which is not straightforward and may alter the
information.

In that sense, as in [SKG19], we turn towards the task of audio source separation to find
evaluation metrics. Even if pattern uncovering is not the same task as source separation,
it shares the idea of extracting relevant parts in an audio mixture and evaluating the
quality of these extracted parts. Still, standard metrics are based on audio signals, while
our patterns are real-valued spectrograms. In that sense, from a real-valued spectrogram
WG::b′H, we first estimate the missing phase information, and then apply the Inverse
STFT to result in an audio signal.

Reconstructing Phase Information

As presented in Section 2.2.4, STFT computes a complex-valued representation of
signals. The Inverse STFT can be used to compute a signal from a complex-valued rep-
resentation, but NTD is performed on real-valued spectrograms (in particular here, the
magnitude spectrogram).

The argument of each complex STFT coefficient is the phase information, and must be
estimated prior to signal reconstruction from the Inverse STFT. It is a common problem
in signal processing [Bal10; Mag16] and in many engineering situations in general [CLS15;
She+15; EHM16].

Phase Retrieval A first option, called “phase retrieval”, consists of estimating the
phase from the real-valued spectrogram only, but it is a difficult task, still unsolved.
Phase retrieval has been largely studied for audio source separation, with the aim to
estimate the quality of separated sources [Mag16; Via+21].

In the current context, we aim at identifying whether musical patterns are musically
relevant or not, and interpretable in musical contexts. Thus, rather than presenting an
exhaustive list of phase retrieval algorithms and seeking for the optimal phase retrieval
algorithm for our specific context, we focus on the Griffin-Lim algorithm [GL84], still
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largely used in practice.
This algorithm has the advantages of being conceptually simple, with theoretical guar-

antees regarding the improvement of the estimation at each iteration, and implemented
in the librosa toolbox [McF+21]. Denoting as Y = X.Φ a complex-valued spectrogram
of magnitude coefficients X and of phase information Φ = eiϕ, F and F−1 respectively
the STFT and Inverse STFT operators, the idea of the algorithm is to iteratively 1)
compute Ŷ (t) = (F ◦ F−1)(Y (t)), i.e. the projection of the spectrogram into the audio do-
main, then re-projected in the time-frequency domain 10 and 2) compute the new estimate
Y (t+1) = Ŷ (t)

|Ŷ (t)| .X, i.e. the previous complex estimate with the original magnitude X.
The initial phase information Φ can be initialized at random or from a particular value.

In this study, we only consider random initialization for the Griffin-Lim algorithm. Note
here that any other phase retrieval algorithm could be used instead if musically-motivated,
which could improve the final audio signals.

To sum up, for a pattern Pb′ , we retrieve a complex-valued spectrogram P̃ GL
b′ = Pb′ .Φb′

where Φb′ is estimated using the Griffin-Lim algorithm.

Masking A second option is to use the phase information from the original spectrogram
(of the song) as phase information for the pattern [SKG19]. Each musical pattern Pb′ acting
as a factorization of the barwise real-valued spectrograms, the closer is Pb′ to a barwise
spectrogram in the song, the closer is the phase information between this pattern and this
bar.

In that sense, if a pattern indeed corresponds to a barwise factorization of the musical
content in the original song, the phase information of a well-chosen bar could be used to
transform the pattern in a complex-valued spectrogram. In practice though, it may not
be as straightforward, as a pattern could also correspond to a part of a bar (such as a
bass line among the entire barwise mixture).

Hence, as in the work of Smith et al. [SKG19], we instead turn towards source separa-
tion techniques, and, in particular, softmasking [Ben+03]. The idea behind masking is to
apply a binary mask M on the original complex-valued spectrogram Y as the elementwise
product M.Y . When a coefficient Mij is equal to 1, the value of (M.Y )ij is unchanged.
When Mij equals 0, (M.Y )ij = 0, discarding the original spectrogram content. Hence, only
some particular complex time-frequency points of Y are kept in the masked spectrogram.

10. This operation makes sense because the STFT is not bijective, thus F−1 is not the mathematical
inverse of F.
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Softmasking follows that idea, but M takes values in [0, 1] instead, which brings more
nuance than binary operations. In source separation, softmasking is applied to evaluate
the impact of a particular source sk among a set of sources, hence 1 ≤ k ≤ K. Each source
then defines a different mask Mk, where:

Mk = sk

K∑
i=1

si

, (4.28)

i.e. the impact of each source in the overall mixture. This softmask operator is optimal
in source separation with respect to a least squares fit of the energy repartition between
the different sources, but it may not be optimal in a perceptual sense [FJ12]. We do not
explore further this question and restrict to the mask presented in Equation 4.28, while
KL- and IS- divergences based masks are presented in [FJ12]. Least squares problems
being based on the Euclidean distance, we conjecture that other masking techniques
could better adapt to the characteristics of audio signals, and may also be better suited
to compare the different loss functions for NTD.

Still, our context differs from source separation in the sense that we evaluate barwise
patterns which may not be present in all bars. Hence, the first step in our scenario is to
choose a bar of interest to evaluate this pattern. Some discussion about how to choose
a bar can be found in [SKG19], but we restrict this discussion to a unique strategy, the
“loudness” strategy in [SKG19], based on the maximal values of Q.

Recalling that matrix Q represents the relative importance of each musical pattern in
the different bars, we choose, for pattern Pb′ , the bar b such that b = arg max

l
Qlb′ , i.e. the

bar b with maximal presence of pattern Pb′ among all bars.
When such a bar is found, mask Mb′ is defined following Equation 4.29:

Mb′ = Qbb′WG::b′H⊺

B′∑
i=1

QbiWG::iH⊺

, (4.29)

i.e. softmasking based on the presence of pattern Pb′ in bar b compared to the overall fit
of bar b with NTD. Bar b is referred to as the bar associated with pattern Pb′ .

This masking strategy is different from the one of Smith et al. [SKG19]: in their
strategy, the mask is computed as: Mb′ = G::b′ ×1W ×2H×3Q:b′

G::b′ ×1W ×2H×3Q:b′ +X
, i.e. the contribution of

pattern Pb′ , at the song scale, compared to the original spectrogram of the song. The
associated bar is selected in a post-processing stage.
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Hence, in softmasking condition, a real-valued pattern Pb′ is used to compute a mask
Mb′ , itself used to compute a complex-valued spectrogram P̃ mask

b′ as P̃ mask
b′ = X::b.Φb.Mb′ ,

where Φb represents the phase information of bar b in the original spectrogram.

Audio Evaluation Metrics

Once the phase is estimated for a pattern, a signal s can be obtained from the complex-
valued spectrogram P̃b′ by applying the Inverse STFT, sPb′ = F−1(P̃b′), using the librosa
toolbox.

The objective is now to quantitively evaluate this audio signal by comparing it to an
original barwise excerpt (or, in general, to quantitively compare two audio signals of same
length). To this aim, several metrics were designed in the source separation context. We
list in particular:

— SDR/SAR/SIR [VGF06], respectively defining the source-to-distortions, -artifacts
and -interferences ratios, estimating objective perturbations of a signal compared
to a clean version (or, in source separation settings, of the estimated sources with
the ground-truth sources),

— TPS/IPS/APS [Emi+11], respectively Target-, Interference- and Artifacts-related
Perceptual Score, which represent perceptual and subjective audio measures, de-
signed to follow human perception. They are based on human evaluation in per-
ceptual experiments.

For ease of use though, we only consider the SDR/SAR/SIR metrics 11, implemented in
the mir_eval toolbox [Raf+14].

In source separation, estimated sources are compared with ground-truth sources, which
are not available in our case. Instead, we can only make use of the original song as ground
truth, and no obvious candidate stands out for the different patterns 12.

Hence, for each pattern Pb′ , we compare its signal with the signal xb of the associated
bar b. In this pairwise comparison, and with the definitions of interferences (signal coming
from other sources), noise (related to the sensors recording the signal) and artifacts (other

11. Still, it should be highly informative to evaluate our signals with TPS/IPS/APS metrics: the use
of KL- and IS-divergences is motivated by their ability to better represent perceptually audio signals,
by being less concentrated on high-intensity components. This kind of argument is also used to motivate
perceptual metrics in [Emi+11], hence indicating that such metrics are better suited to compare the
different loss functions for NTD, and in particular highlight the potential advantages of KL- and IS-
divergences. This is left to future work, because we did not have the time to fully explore this lead.

12. The goal here is itself to evaluate if patterns are relevant.
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perturbations of the signal, like distortion) in [VGF06], only artifacts and potentially noise
are relevant in our case.

Hence, we focus on the SDR metric 13, which is a logarithmic version of the ratio
between the squared-energy of the source and the sum of the squared-energies of the
errors (interferences (= 0 here), artifacts and noise), as defined in Equation 4.30:

SDR = 10log10
∥energy of the source∥2

∥energy of artifacts + energy of noise∥2 . (4.30)

To account for artifacts generated from the application of STFT and Inverse STFT, we
apply the same transformation for xb, i.e. starting from the original audio signal, xb is
obtained by applying F−1 ◦ F.

We acknowledge that this strategy does not allow to evaluate the pattern in itself, but
rather its similarity to some original content in the song. If the pattern corresponds to a
small part of the original bar (for instance, a bass line), SDR may be low. Still, a high SDR
indicates that the pattern is indeed musical and interpretable. In addition, this strategy
allows us to compare Euclidean-, KL- and IS-NTD. Due to the lack of other pattern
uncovering methods, we are not be able to compare these results with State-of-the-Art
ones.

Patternwise Experiments

Finally, we run NTD with F ′ = 32, S ′ = 12, B′ = 10 on the STFT of the song Come
Together by The Beatles 14. This results in 10 patterns for Euclidean-, KL- and IS-NTD.
The SDR scores are then computed on each pattern Pb′ , compared to its associated bar.
For each pattern, the complex-valued spectrogram P̃b′ is computed either with the Griffin-
Lim algorithm or with softmasking, resulting in 2 conditions.

Results are presented in Table 4.8, and show a clear advantage of softmasking over
Griffin-Lim. Still, the Griffin-Lim algorithm is a blind pattern estimation technique, and
hence it retrieves phase information associated with the pattern itself, and not retrieved
from the original song (which may artificially add information). Comparing the differ-
ent NTDs, KL slightly outperforms both other loss functions, both with Griffin-Lim and

13. We could eventually consider SAR, depending on what is considered to be sensor noise. In practice,
on early experiments, both SDR and SAR were equal, suggesting that the noise term is zero here.

14. Dimensions were chosen empirically, but are equal to the ones used in Figure 4.8, except for F ′,
the frequency-related one.
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softmasking. Euclidean- and IS-NTD obtain close results with both phase retrieving tech-
niques.

While SDR is informative, conclusions should be taken with care: SDR is obtained as
an energy ratio, and softmasking is computed via an optimal least squares fit, which are
both Euclidean distance-based. Hence, these metrics do not account for intensity discrep-
ancies between frequencies, which was our motivation for the use of KL and IS divergences
in the first place. Still, even in this scenario, KL-NTD outperforms Euclidean-NTD with
both Griffin-Lim and softmasking, which goes in the same direction as Experimental
conclusion 6.

Phase estimation NTD SDR

Griffin-Lim
Euclidean-NTD -20.81 ± 2.44
KL-NTD -17.69 ± 3.03
IS-NTD -20.47 ± 3.48

Masking
Euclidean-NTD 16.71 ± 5.10
KL-NTD 25.94 ± 5.48
IS-NTD 19.02 ± 8.71

Table 4.8 – Average and standard-deviation of the SDR scores for the 10 patterns obtained
from NTD on the STFT of the song Come Together. Note that two Euclidean-NTD pat-
terns resulted in a mask with every entry equal to one, and these patterns were discarded
in the computation of SDR (the spectrogram of the pattern is exactly the spectrogram of
the bar in this scenario, which is not informative).

Evaluating the Entire Song

NTD is based on the optimization of the decomposition of the song as a whole, hence it
can be used to study the entire song. In this experiment, we compute X̂ = G×1W ×2H×3Q,
which corresponds to the real-valued spectrogram of the factorization at the song scale,
and transform it into an audio signal.

To account for phase information, we use the Griffin-Lim algorithm as previously
presented, but not softmasking, which seems unsuited at the song scale (what should
constitute the denominator of the mask?).

Instead, we directly use the phase information of the original song Φ, and reconstruct
the signal from the complex-valued spectrogram X̂.Φ. This is a new condition, which in
our opinion is more relevant here, as X̂ is assumed to reconstruct adequately the original
magnitude spectrogram X. SDR scores for these two audio signals, at the song scale, are
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presented in Table 4.9.
Results at the song scale seem to conclude in favor of KL-NTD, for both phase retrieval

techniques. Euclidean-NTD and IS-NTD result in contradictory outcomes depending on
the phase retrieval technique.

As for previous conclusions, it is hard to conclude firmly, but these results give some
hints: even if the metric seems tailored for Euclidean distance-based techniques, KL-NTD
outperforms Euclidean-NTD, going in the direction of Experimental conclusion 6.

In addition, it is pretty clear in the light of the results that the Griffin-Lim algorithm
is introducing numerous artifacts and noise, and that using the original phase should
be preferred to estimating it from scratch. The original phase could also be used as
initialization for the Griffin-Lim algorithm, which is not tested here.

In addition, results at the song scale are lower than at the pattern (i.e. bar) scale,
which may indicate that the global mixture of patterns is not sufficient for some bars.
This is expected though, as each estimated pattern is compared to its closest bar.

Phase estimation NTD SDR

Griffin-Lim
Euclidean-NTD -38.47
KL-NTD -34.53
IS-NTD -36.99

Original Phase
Euclidean-NTD 4.35
KL-NTD 6.08
IS-NTD 2.51

Table 4.9 – SDR when reconstructing the signal of the entire song from the whole NTD,
for Come Together.

Listening to Audio samples

This entire subsection being focused on evaluation of audio signals, a part of the study
consists of listening to the factorization results. Audio examples cannot be presented in
the manuscript, but some experiments are made available online at the following link:
https://ax-le.github.io/resources/examples/ListeningNTD.html.

Perceptually, with Griffin-Lim, Euclidean-NTD results in less relevant outputs than
KL- and IS-NTD, while it is hard to differentiate the techniques with softmasking. This
is somewhat consistent with previous SDR scores and the Experimental conclusion 6,
with KL-NTD being the most perceptually relevant technique musically speaking.
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Perceptually, it seems that Euclidean-NTD focuses on low-frequencies, while IS-NTD
catches mostly high-frequencies. In that sense, it is hard to conclude in favor of one of
these methods in particular. Finally, these results are encouraging towards future research
in pattern enhancement and study.

Conclusions: NTD for Pattern Uncovering

In conclusion, studying the uncovered patterns confirms that the NTD results in a
part-based and interpretable representation of the original musical content.

In light of these experiments, and following the Experimental conclusion 6, it
seems that KL-NTD is the most suited optimization paradigm here, resulting in a good
balance between low- and high-frequency components, while Euclidean- and IS-NTD seem
to respectively focus on low- and high-frequency components.

However, these conclusions are to be taken carefully. When using softmasking, Euclidean-
and KL-NTD are close in performance. Future experiments with different masking condi-
tions and different metrics (such as TPS/IPS/APS [Emi+11]) would be useful to confirm
or contradict these results.

Finally, further experiments should be designed to study to what extent patterns
represent exactly the content of particular bars/sections, or, conversely, represent only
particular components of some bars (such as focusing on an instrument).

4.6 Conclusions

This chapter has presented a multilinear dimensionality reduction technique called
Nonnegative Tucker Decomposition, performed on barwise representation of the original
spectrogram of music pieces. By introducing this technique mathematically and its inter-
pretation on music, we have demonstrated a potential relevance of this model for music
analysis.

Experimental results on the task of structural segmentation and on a pattern un-
covering framework confirmed in practice this theoretical interest. Finally, we have also
introduced two NTD algorithms, computing the decomposition with respect to both Eu-
clidean distance and β-divergences.

Experimental results presented in this chapter are based on unsupervised NTD, while
NMF, more studied in MIR and relatively similar to NTD, has shown great improvements
with constraints (such as sparsity [OP14], constraints on the shape of factors [VBB09;
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Che+16]), semi-supervision/dictionary learning [Ewe+16; HWL21; WMC22], and coupled
factorizations [Mes+15], i.e. factorizations where at least one factor is shared between
several (otherwise independent) factorizations.

In particular, depending on the factor considered, these techniques could be combined,
for instance in trying to learn or share factors W and H on several songs, acting as high-
scale dictionaries, while adapting G and Q on each song, for instance with sparsity or
prior constraints.

NMF algorithms were also designed to fit several loss functions in the same optimiza-
tion paradigm [GLT21], which could be of great interest for future NTD algorithms, to
mitigate between the different loss functions.

In that sense, we conclude that NTD seems to be a promising method for novel MIR
techniques, and notably improving performance in the structural segmentation task, which
are already close to those of the State-of-the-Art [GS15b] for the 3s tolerance. In a con-
text of source separation, NTD could additionally be used, for instance recasting the
Multichannel NMF [OF09] model for an instantaneous mixture of sources.
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Chapter 5

LINEAR AND NONLINEAR

BARWISE COMPRESSION SCHEMES

This chapter presents new barwise compression schemes, used in
place of the NTD. These compression schemes are standard lin-
ear compression schemes and nonlinear AutoEncoders. Compressed
representations at the barscale then serves for structural segmenta-
tion.

Synopsis
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5.1 Introduction

Autosimilarity matrices and the CBM algorithm were introduced in Chapter 3 as
tools for segmenting a song. Autosimilarity matrices, originally computed from the raw
barwise feature representation of the song, were extended in Chapter 4 to the use of
NTD, a multilinear dimensionality reduction technique. NTD is used with the objective
to compute barwise compressed representation of the song.

The current chapter introduces different barwise compression methods, which may be
used instead of NTD for computing barwise compressed representation of the song. We
divide these compression techniques in two sections:

— The first section presents linear compression methods, namely NMF and Principal
Component Analysis (PCA), also referred to as low-rank factorization methods.
These methods are standards for data analysis [Jol02; Mar12; Gil20], and are gen-
erally able to uncover motifs and redundancy in data in an unsupervised fashion.
Thus, studied for barwise compression of music, these methods serve so as to deepen
the conclusions obtained previously with NTD by relaxing the constraints (non-
negativity and NTD structure), and extend the barwise compression framework to
standard linear methods.

— The second section presents nonlinear compression methods, with neural networks.
In particular, this chapter presents the “Single-Song AutoEncoding” paradigm,
introduced in [MCB22c], which consists of AutoEncoders optimized on single songs
instead of large datasets.
Thus, in this paradigm, neural networks are used as blind compression methods at
the level of the song, allowing to benefit from the large neural network literature and
most recent developments. Finally, Single-Song AutoEncoding extends and studies
in more depth the unsupervised barwise compression paradigm, and, hopefully,
may improve segmentation results.

Hence, this chapter aims at further investigating the ability of compression schemes to
disambiguate the raw feature-wise barwise similarity, and presents segmentation results
which outperform those previously obtained with the NTD. The contributions reported
in this section are twofold:

— Methodological: while NMF and PCA are standard compression methods, they
were, to the best of our knowledge, never used at the barscale, studying barwise
redundancy. In addition, while AutoEncoders are also standard methods to learn
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general representations, we introduce their use as song-dependent compression.
Indeed, rather than trying to learn a general representation for similarity compu-
tation, AutoEncoders are employed here at the song scale, only for compression
abilities.

— Experimental: as previously introduced for NTD, barwise compressed representa-
tions are used to compute autosimilarity matrices, themselves used for structural
segmentation via the CBM algorithm. The best results reported here outperform
the previous NTD segmentation results.

This section resulted in one publication [MCB22c], and both the code and the conducted
experiments are included in the open-source BarMusComp toolbox [MCB22b].

5.2 Barwise TF matrix (reminder)

The Barwise TF representation was introduced in Section 2.4.2, but, as it is of particu-
lar importance in this Section, and for clarity, let us reintroduce again this representation
here.

The Barwise TF representation aims at representing the spectrogram as barwise vec-
tors of Time-Frequency components. Time and frequency only represent one dimension
in this matrix. In the tensor point of view, the Barwise TF matrix can be seen as the
unfolding of the TFB tensor (introduced in Chapter 4) along the bar mode, which is the
last mode. The Barwise TF matrix is represented in Figure 5.1.

Barwise
sampled

spectrogram
F

S × B

B

F × S

Barwise TF
matrix

Figure 5.1 – Barwise TF matrix.

In this Section, the Barwise TF matrix is denoted as X ∈ RB×F S, with F the size
of the frequency dimension, S the number of frames at the inner-bar scale (S being
the “subdivision” parameter, controlling he number of frames in each bar), and B the
number of bars. In particular, X can be nonnegative, for chromagrams, Mel and NNLM
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spectrograms, or possibly negative, for instance with Log Mel and MFCC spectrograms.

5.3 Low-Rank Factorizations

The first studied class of compression methods are low-rank matrix factorization meth-
ods [Mar12]. Low-rank factorizations methods compute an approximation of the original
matrix X with lower-rank matrices.

In particular, we compare two standard models for linear dimensionality reduction:
NMF, consisting of representing a matrix with two nonnegative matrices, and Princi-
pal Component Analysis (PCA), consisting of finding the low-rank approximation which
maximally scatters the original data points in the projection. The main difference be-
tween both models is the nonnegativity constraint of NMF, which is absent in the PCA
framework.

5.3.1 Barwise NMF

Nonnegative Matrix Factorization, or NMF, was already introduced in Section 4.2.3:
given a nonnegative matrix M , NMF computes two nonnegative matrices U and V such
that M ≈ UV .

In Barwise NMF, the idea is to approximate the Barwise TF matrix
X ∈ RB×F S

+ as the product of two matrices Q ∈ RB×B′
+ and P ∈

RB′×F S
+ with B′ the dimension of compression (parameter of the

decomposition).

Barwise NMF is computed via the following optimization problem, subject to loss
function d():

arg min
Q,P ≥0

d(X, QP ). (5.1)

This setting is particularly close to the NTD paradigm. In fact, as presented in Sec-
tion 4.3, algorithms for NTD alternate between factors by fixing all of them but one.

The particular subproblem for the barwise mode of the tensor is arg min
Q

d(X(3), QG(3)(W⊗

H)⊺). When setting P := G(3)(W ⊗ H)⊺, the optimization subproblem with respect to Q

is exactly the same between the NTD presented before and the Barwise NMF introduced
here 1.

1. Which is actually the rationale of the Q notation in the Barwise NMF setting.
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Still, while the P factor is composed of three factors in NTD, it is represented by
a unique matrix in Barwise NMF. Hence, contrary to NTD, Barwise NMF does not
assume structure in the time-frequency dimension, which presents both advantages and
disadvantages.

The main disadvantages are that, by losing the structure, Barwise NMF is less con-
strained on the time and frequency modes, which may result in less relevant and in-
terpretable decomposition. In addition, it is not possible here to extend the model by
imposing specific constraints and/or dictionary learning on the different factors, which
seems to be a promising future direction for NTD.

The main advantages are that Barwise NMF can directly profit from the large NMF
literature, that NMF depends on only one dimension parameter B′ instead of three,
correlated with the number of barwise patterns, and that NMF is faster than NTD. One
could imagine using Barwise NMF for the initialization of NTD, or in strategies to fix the
barwise dimension B′ prior to the decomposition in NTD. In practice, dimensioning NMF
is a hard problem, generally solved by fixing the dimension B′ empirically or thanks to
prior knowledge [Gil20].

Barwise NMF is computed in an alternating scheme, using the algorithms presented in
Section 4.3, i.e. HALS for the optimization of the Euclidean-NMF problem: arg min

Q,P ≥0
∥X −

QP∥2
2 and MU for the β-divergence-NMF: arg min

Q,P ≥0
dβ(X, QP ), defining in particular KL-

and IS-NMF when β = 1, 0 respectively.
Similarly to NTD, Q can be studied for structural segmentation, and P for pattern

uncovering. Still, we restrict this study here to structural segmentation, to streamline the
conclusions.

5.3.2 Principal Component Analysis - PCA

PCA is probably one of the most standard linear dimensionality reduction method.
Originally introduced in 1901 by Pearson [Pea01], and reintroduced under the name of
PCA by Hotelling [Hot33], PCA has been studied in a lot of applications, see [Jol02] for
a comprehensive presentation of the technique and its use.

PCA was already used for structural segmentation in [TEF13], but not in a barwise
context. PCA is related to the Singular Value Decomposition (SVD), whose origins trace
back to the 19th century [Ste93], which is also a standard matrix decomposition tool.
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Denoting as x̄ the average of all bars in the song, the rationale of
PCA is to project the centered data matrix Xc = X − 1Bx̄⊺ on
an orthonormal basis such that each dimension of this subspace
maximizes the variance of the projected data, hence the idea of
“principal components”.

The principal components are ordered by the variance of the projection. Mathe-
matically, it means finding vectors (p1, p2, ..., pn) such that p1 = arg max

∥p∥2=1

∑
i (Xc

i p)2 =

arg max
∥p∥2=1

∥Xcp∥2, p2 = arg max
∥p∥2=1

∥(Xc − Xcp1p
⊺
1)p∥2, etc. It is proven that such vectors

correspond to the eigenvectors of Xc⊺Xc [And58].
PCA is generally used as a low-rank approximation technique, by projecting the data

on the r first principal components. Denoting as: Xc⊺Xc = DΛD−1 the eigenvalue decom-
position of Xc⊺Xc, the projection corresponds to: XcD1:r. PCA may be computed using
the SVD of Xc, as implemented in the scikit-learn toolbox [Ped+11], used in this thesis.

In our context, PCA aims at computing barwise compressed representation, hence
projecting X on the subspace generated by the first B′ principal components, reducing
the dimensionality of the time-frequency mode. Thus, a matrix Q ∈ RB×B′ is computed
as Q = XcD1:B′ , which can be used for structural segmentation of music.

The D matrix can be possibly negative. Hence, we do not expect these vectors to
be interpretable or to consist of part-based representation of the song, thus they are not
studied in the pattern uncovering context.

By definition, Q is a centered matrix. Hence, the Cosine and Covariance autosim-
ilarities of Q are equivalent, and therefore we restrict our study to Cosine and RBF
autosimilarities.

5.3.3 Structural Segmentation Experiments

Both NMF and PCA compute a barwise compressed representation Q ∈ RB×B′ . This
representation can now be used in the context of structural segmentation, via the CBM
algorithm, and examples of Cosine autosimilarities are presented in Figure 5.2.

Still, one has to dimension the parameter B′ prior to the decomposition. It is well-
known that selecting the number of components for NMF is a difficult problem, generally
leading to manual tuning or dedicated heuristics [Gil20; Neb+21]. Note that this was also
a problem with NTD. In that sense, we compare values for B′ ∈ {8, 16, 24, 32, 40}, as for
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NTD.
Even if dimension selection heuristics are standard for PCA (such as the elbow method),

as no obvious candidate heuristic stood out relatively to the quality of segmentation, and
for fair comparison with the other techniques (NTD and NMF), PCA is tested with the
same B′ values. A clever dimension selection method could be studied in future work.

As detailed in Appendix A.2, the dimension is chosen via two-fold cross-validation for
the RWC Pop dataset (odd and even songs) and by learning/testing on two subsets for
SALAMI.

Figure 5.2 – Examples of Cosine autosimilarities of both the NMF and PCA, compared
with the raw Barwise TF Cosine autosimilarity. These autosimilarities are computed on
the NNLMS of the song Pop01 of RWC Pop, with B′ = 24.

NMF is initialized using the Nonnegative Double Singular Value Decomposition (NNDSVD)
routine [BG08]. This routine performs an SVD on X, keeps the nonnegative part of the
B′ first left and right singular vectors of the SVD, and computes a second SVD on the
products of these B′ singular vectors. This routine is deterministic, and ensures a good
nonnegative reconstruction of the original data X. The initialization largely impacts the
output of NMF [BG08; Gil20], mostly due to the fact that perfectly solving NMF is NP-
Hard [Vav10], and that most algorithms only guarantee convergence towards stationary
points.

NMF is computed via the nn_fac toolbox [MC20], developed during this thesis, and
PCA via the scikit-learn toolbox [Ped+11]. Both PCA and NMF are relatively fast al-
gorithms, compared to NTD for instance. As an example, on an Intel® Core(TM) i7
CPU, decomposing the song POP01 with B′ = 16 for the Nonnegative Log Mel (NNLM)
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spectrogram takes approximately 3 seconds for the Euclidean-NMF, 6 seconds for the
KL-NMF and 13 seconds for the IS-NMF, while it takes less than a second for PCA.

We formulate some working questions, very similar than the ones formulated for NTD,
which are tested for the two methods (NMF and PCA), on the relevant features (chroma-
grams, Mel and NNLM spectrograms for NMF, due to the nonnegativity, and additionally
MFCC and Log Mel spectrograms for PCA), and with Euclidean-, KL- and IS-NMF.

Question 7 With the current version of the CBM algorithm applied to NMF- and PCA-
based autosimilarities, how are segmentation performance impacted by the similarity func-
tions (Cosine, Covariance and RBF)?

Question 8 Are the NMF- and PCA-based Cosine similarity better performing than the
Barwise TF Cosine similarity in the structural segmentation task, for all features? And
compared to NTD?

Question 9 How KL- and IS-NMF impact segmentation results, compared to Euclidean-
NMF, when the feature exhibits energy discrepancies between frequencies, such as for
STFT and Mel spectrograms?

And how are KL- and IS-NMF performing when the energy discrepancies between
frequencies are mitigated in the feature, such as energy-normalized chromagrams?

Additionally, are these results consistent with the one obtained for NTD-based au-
tosimilarities?

RWC Pop Dataset

Starting with PCA, Question 7 is studied through the different autosimilarities,
on the RWC Pop dataset. We recall that the PCA is centered, hence the Cosine and
Covariance autosimilarities are equivalent. Question 7 is then restricted to the Cosine
and RBF autosimilarities.

Results are presented in Figure 5.3, and, except for chromagram, the Cosine autosim-
ilarity is the best-performing model for every feature and both tolerances. We do not
explain the difference in trend for the chromagram. Still, we conclude with relative confi-
dence here that the Cosine similarity is the best-performing autosimilarity for PCA, as the
chromagram, even with the RBF autosimilarity, obtains among the lowest performance.

The results are more ambiguous for NMF, as presented in Figure 5.4: the RBF au-
tosimilarity is the best autosimilarity in 2 among 3 features (NNLMS and chromagrams),
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and Cosine is the best for Mel spectrograms. Still, in particular for the F3 metric, results
are almost similar between Cosine and RBF.

Trying to solve this ambiguity, we study results for KL- and IS-NMF, but we only
present results for the KL-NMF in Figure 5.5 (results for the IS-NMF are similar). Results
in this Figure are either similar between the autosimilarities (as for the PCP and the Mel
spectrogram) or largely in favor of Cosine similarity (as for NNLM).

Hence, for both NMF- and PCA-based autosimilarities, the Cosine autosimilarity
seems to be a good similarity choice. We then decide to restrict further experiments with
this similarity function in Figure 5.6, for the different features (Mel, Log Mel, NNLM,
Chromagram and MFCC), trying to answer to Question 8, and for Euclidean-, KL- and
IS-NMF, studying Question 9.

(a) F0.5. (b) F3.

Figure 5.3 – Segmentation results for PCA, on the different autosimilarities.

(a) F0.5. (b) F3.

Figure 5.4 – Segmentation results for Euclidean-NMF, on the different autosimilarities.

In Figure 5.6, except for the Mel Spectrogram, better performance are achieved with
compressed representations, which motivates the use of compressed representations. We
recall that, in results presented in Section 4.5.1, Euclidean-NTD was less performing than
the Barwise TF, but KL- and IS-NTD obtained better performance than the Barwise TF.
A similar behavior may appear for NMF.

Results for Euclidean-, KL- and IS-NMF are presented in Figure 5.7, in comparison
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(a) F0.5. (b) F3.

Figure 5.5 – Segmentation results for KL-NMF, on the different autosimilarities.

with the results of the Barwise TF and of the best NTD 2. KL-NMF seems to be the
best-performing model for the NNLMS, IS-NMF is the best for Mel, with close results
to KL-NMF, and Euclidean-NMF seems to be the best for chromagrams. Once again,
adapting the loss function to the characteristics of the representation seems to lead to
better segmentation results.

Comparing NMF and NTD, conclusions depend on the feature. For the NNLMS,
results may be considered similar for both NTD and NMF, while, for the Mel spectro-
gram, opposite trends appear depending on the loss function (Euclidean-NMF outper-
forms Euclidean-NTD, but KL-NTD outperforms KL-NMF). NTD outperforms NMF for
chromagrams, which may be explained by the fact that, for NTD, W was fixed to the
identity matrix, hence reducing the parameter space.

Overall, the best performance for F0.5 are obtained with the PCA, on 3 features: the
Log Mel, the NNLM and the MFCC. Both of these representations, the Log Mel and the
MFCC, can be negative, which make the comparison with NTD and NMF irrelevant.

For the NNLMS, opposite conclusions can be drawn depending on the metric: the
advantage of PCA over NMF at F0.5 (respectively 64.30% and 61.64%) is inverted at F3

(respectively 77.06% and 79.75%). Still, as a general trend, PCA obtains better perfor-
mance.

The all-time best-performing technique remains the RBF autosimilarity of the Log
Mel spectrogram, as presented in Table 5.1, but, at the same time, the compressed repre-
sentations obtain in almost every condition better results with the Cosine autosimilarity.

Hence, while the aforementioned compression methods are not able to improve the
best level of performance of the CBM algorithm, the results are less dependent on the
choice of the similarity function, which probably indicates better notions of homogeneity
and of contrast in the Cosine autosimilarity, i.e. representations which are more suited to

2. Euclidean-NTD for chromagrams and KL-NTD for Mel and NNLM spectrograms.
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represent the structure in the song as so.

(a) F0.5. (b) F3.

Figure 5.6 – Segmentation results with the Cosine similarity, computed on the Q matrix
obtained from PCA and Euclidean-NMF, compared with the segmentation results on the
raw Barwise TF and with Euclidean-NTD.

(a) F0.5. (b) F3.

Figure 5.7 – Results for NMF with different loss functions, on the Cosine similarity.

Method Best conditions P0.5 R0.5 F0.5 P3 R3 F3
Barwise TF Log Mel, RBF 64.32% 70.00% 66.52% 78.31% 85.64% 81.16%
NTD NNLM, KL 60.34% 63.84% 61.79% 78.25% 83.32% 80.37%
NMF NNLM, KL 61.21% 62.99% 61.64% 79.02% 81.61% 79.75%
PCA Log Mel 61.86% 67.78% 64.17% 76.96% 84.73% 80.03%

Table 5.1 – Comparison of the best-performing linear compression methods.

SALAMI Dataset

To broaden the previous experimental conclusions on another dataset, we consider
experiments on the SALAMI dataset. To focus conclusions and due to the size of this
dataset, we only considered the NNLM spectrogram for NMF (with the three loss func-
tions), and both NNLM and Log Mel spectrograms for PCA (the latter being was the
best of condition for PCA). Focusing on the Cosine autosimilarity, results are presented
in Table 5.2.
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An important conclusion on the SALAMI dataset is that performance are closer be-
tween the different conditions compared to those obtained on the RWC Pop dataset. Of
particular interest, while the compression algorithms do not increase F measures as much
on the SALAMI dataset compared to the raw Barwise TF-based results, compression
alters the precision/recall trade-off.

Indeed, the precision and the recall are balanced for the Barwise TF-based results,
while the precision is lower than the recall for compressed-based autosimilarities, suggest-
ing over-segmentation. These differences stem from a higher precision with compressed
representations (recall values are similar), hence suggesting that additional boundaries
are obtained.

This result may indicate a higher contrast in the compression-based autosimilarity
matrix: the CBM algorithm may increase the number of boundaries estimated if the block
structure is more obvious in the autosimilarity, i.e. if the differences between similar and
dissimilar bars are higher, leading to higher novelty between homogeneous sections. Still,
this shift in trade-offs was not observed on the RWC Pop dataset.

Overall, compressed representation result in higher F-measures than Barwise TF-based
results.

Feature Compression method P0.5 R0.5 F0.5 P3 R3 F3

Log Mel Barwise TF* 35.89% 34.64% 34.17% 53.61% 51.62% 51.03%
PCA 37.06% 56.74% 43.55% 52.35% 81.07% 61.79%

NNLM

Barwise TF* 38.86% 41.63% 38.93% 58.45% 62.68% 58.63%
PCA 36.12% 57.75% 43.06% 50.54% 81.57% 60.45%

NMF
Euclidean 38.49% 51.05% 42.80% 55.82% 74.30 % 62.15%
KL 39.01% 52.11% 43.42% 55.41% 74.53% 61.84%
IS 37.59% 52.25% 42.66% 54.38% 75.98% 61.84%

Table 5.2 – Segmentation results of NMF and PCA on SALAMI, with the Cosine autosim-
ilarity. *We recall that the Barwise TF condition means that there is no compression.

Conclusions for Barwise NMF and PCA

Experimental conclusion 7 The different similarity functions (Cosine, Covariance and
RBF) do not influence segmentation results of PCA- and NMF-based autosimilarities as
much as for the Barwise TF-based autosimilarities. In general, results are similar, with
an overall empirical advantage for the Cosine autosimilarity.
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This trend follows the experimental conclusions obtained with NTD, and suggests that
compressed representations do not require further transformations to exhibit the structure.

Experimental conclusion 8 Reported segmentation results show in every condition (with
the exception of Euclidean-NMF applied on Mel spectrograms for RWC Pop) an advantage
of the NMF- and PCA-based Cosine autosimilarities over the Barwise TF-based Cosine
autosimilarity.

Compared to NTD, PCA obtains similar or higher performance, while NMF obtains
lower or similar performance.

As for NTD, we assume that these conclusions stem from a high contrast between zones
of high and low similarity in the Cosine autosimilarities, disambiguating the boundaries
(according to the homogeneity criterion) compared to feature-wise similarity.

Experimental conclusion 9 On RWC Pop, considering NMF only, KL- and IS-NMF
obtain better results than the Euclidean-NMF on both Mel and NNLM spectrograms, and
the Euclidean-NMF is the best method for the chromagrams, which, we recall, are energy-
normalized. This trend follows the trend of NTD-based autosimilarities, with the different
loss functions.

Conversely, all methods perform similarly on the SALAMI dataset.

Once again, adapting the loss function to the characteristics of audio signals leads to
better segmentation results on the RWC Pop dataset.

5.4 Single-Song AutoEncoders

AutoEncoders (AE) are neural networks, which, by design, perform unsupervised di-
mensionality reduction. Throughout the years, AE have received increasing interest, no-
tably due to their ability to extract relevant latent representations without the need for
large amount of annotations.

Recently, AEs also showed great results as generation tools [Eng+17; Roc+18]. Still,
as presented in [Roc+18], PCA and AE are competitive as compression schemes, and
PCA even leads to lower reconstruction error when AE are too “simple” (in particular
when networks are linear or “shallow”, i.e. with only a few layers).
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In our context, AEs may be used for barwise compression, in place
of the previous NTD, NMF and PCA schemes. Therefore, AEs
are developed in the context of unsupervised compression schemes
at the song scale, which defines the “Single-Song AutoEncoding”
paradigm. This paradigm is novel to the extent that AEs are gener-
ally used so as to learn a general latent representation on a dataset.

This section is dedicated to presentation and study of Single-Song AutoEncoding. In a
first part, this section introduces the motivations and formalism of this paradigm. Then,
two sets of experiments are conducted: the first studies Single-Song AutoEncoders for
structural segmentation, and the second introduces some extensions of the paradigm with
examples.

5.4.1 Motivations

The main motivations for this paradigm are the possibility to benefit from the large
literature in neural network computation, along with the inherent complexity and non-
linear mappings computed in an AE, and the flexibility allowed by the framework (large
panel of activation functions, of architectural choices, etc).

In that sense, we hope, with Single-Song AutoEncoding, to improve the previously
presented structural segmentation results, and to be able to extend the unsupervised
compression paradigm with constraints and, in potential future work, supervision.

5.4.2 Paradigm Description

Practically, given a generic entry x ∈ Rn, an AE learns a nonlinear function f with
parameters θ (weights and biases of the network) such that x̂ = f(x, θ) ∈ Rn reconstructs
x as faithfully as possible. This is achieved by minimizing a given loss function d(x, x̂). As
for NTD and NMF, AE presented here can minimize the Euclidean distance (generally
called “mean-squared error” in neural network settings), and the Kullback-Leibler and
Itakura-Saito divergences 3.

An autoencoder is divided into two parts: an encoder, which compresses the input
x ∈ Rn into a latent representation q = f e(x, θe) ∈ RB′ of smaller dimension (generally,

3. They can actually minimize many other differentiable loss function, but we restrict the study to
these three loss functions.
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B′ ≪ n), and a decoder, which reconstructs x̂ = fd(q, θd), from q. A shallow encoder is
constructed with one layer of weights Re, bias be, and a nonlinear activation function σ,
such that q = σ(Rex + be). The decoder follows as x̂ = σ(Rdq + bd).

Deep AE use the same formalism, but by stacking several layers; that is, for an encoder
with l layers, q = σl(Re

l σl−1(Re
l−1 σl−2(...(Re

1x + be
1)) + be

l−1) + be
l ). In general, the decoder

mimics the architecture of the encoder, that is, if the ith layer of the encoder Re
i has sizes

k × k′, then the ith layer of decoder Rd
i has sizes k′ × k. We apply this strategy in what

follows.
As presented earlier, while AEs generally learn a common latent representation for an

entire dataset, our technique consist of optimizing a network for each song. This framework
is called Single-Song AutoEncoding, hence resulting in Single-Song AutoEncoders (SSAE).

Single-Song AutoEncoding consists of optimizing an SSAE on every
barwise spectrogram X by minimizing d(X, X̂). The rationale is to
study the different barwise latent representation q ∈ RB′ , which are
barwise compressed representation. Hence, an SSAE is optimized
on a collection of barwise spectrograms {Xb, 1 ≤ b ≤ B} for a song,
resulting in a collection of barwise latent representation {qb}, which
forms a matrix Q ∈ RB×B′ , finally used for structural segmentation
via an autosimilarity matrix and the CBM algorithm.

The reconstruction X̂ is used for optimization purpose, and is of no use in the struc-
tural segmentation context. As for PCA, this Q matrix being potentially negative, we
do not expect interpretable pattern to be obtained from the compression (here, patterns
could be obtained from the decoder).

Depending on the architecture of the network, X can be a matrix in RF ×S or a vector
in RF S. The process is presented in Figure 5.8 with vectors as inputs and outputs of the
network.

5.4.3 Network Architecture

The architecture of the network (i.e. the design of both encoder and decoder) has a
major impact on the latent representations. In this thesis, layers are of two types: fully-
connected and convolutional.
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XbFS Encoder B′ qb Decoder X̂b FS

Figure 5.8 – Schematic representation of the general SSAE.

Convolutional layers lead to impressive results in image processing due to their ability
to discover local correlations (such as lines or edges), which turn to higher-order features
with the depth of the network [LeC+98] [GBC16, Ch. 9]. While local correlations are less
obvious in spectrogram processing [PR21], Convolutional Neural Networks (CNN) still
perform well in MIR tasks, such as MSA [GS15b].

In that context, we studied two neural networks, namely “FC” and “Conv” AutoEn-
coders. Though, this section only presents the Conv AutoEncoder, and abusively use the
term of SSAE to denote the Conv AutoEncoder. This Conv SSAE is represented in Fig-
ure 5.9. The “FC” AutoEncoder is presented and studied in Appendix B only, mostly
because of its poor performance.

The Conv SSAE architecture is designed as a trade-off between “shallow” and “deep”
networks. In our paradigm, the number of samples on which the network is optimized is
equal to the number of bars B, which, in RWC Pop, is on average 115 bars per song.

Hence, while the current trend in neural network computation leans towards deeper
networks [PR21] (i.e. networks with large numbers of layers, such as VGGish [Her+17]),
which are able to learn complex nonlinear functions, their achievements are also due to
the processing of large datasets (for instance, the Million song dataset [Ber+11], Au-
dioSet [Gem+17], or SALAMI used for training in [GS15b]), allowing to generalize across
the dataset and adequately fit the large number of parameters induced by the large num-
ber of layers.

In our context, the number of samples is rather small, and largely smaller than the
number of parameters of any deep network. On the other hand, PCA and AE are com-
petitive when the AE is too shallow [Roc+18]. Thus, we tried to design networks large
enough to compete with PCA, but small enough for the optimization paradigm to make
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sense. The single-song optimization can still be seen as “overfitting” this particular song.
Overall, the details of the architecture are set quite empirically, following existing

architectures. We use the nowadays quite standard Rectified Linear Unit (ReLU) function
as the activation function, ReLU(x) = max(0, x). This activation function is implemented
in the output of each hidden layer, except in the last layer of the encoder, because it can
result in null latent representations.

Layer Specifications

Encoder The encoder is composed of 5 hidden layers: 2 convolutional/max-pooling
blocks, followed by a fully-connected layer, controlling the size B′ of the latent space.
Convolutional kernels are of size 3x3, and the pooling is of size 2x2, as in VGGish net-
work [Her+17]. Convolutional layers define respectively 4 and 16 feature maps.

Decoder The decoder is composed of 3 hidden layers: a fully-connected layer (transpose
of the previous one) and 2 “transposed convolutional” layers of size 3x3 and stride 2x2. A
transposed convolution is similar to the convolution operation taken in the backward pass:
an operation which takes one scalar as input and returns several scalars as output [DV16,
Ch. 4]. Hence, it is well suited to reverse the convolution process.

Batch Normalization Layers Recent neural networks architectures generally contain
batch normalization layers [IS15]. A batch normalization layer consists of two steps: firstly,
normalizing the batch values for them to be of unit variance and zero mean, and, secondly,
rescaling these values with an affine transformation of learnable parameters.

Denoting as x a sample in the batch, µ and σ respectively the average and standard
deviation of the values in this batch, the batch normalization layer applies the transfor-
mation:

bn(x) =
(

x − µ

σ

)
s + m (5.2)

where parameters s and m are trained in the optimization process, and can be seen as
new standard deviation and average for the outputs of the batch normalization layer.

Batch normalization layers often lead to a gain in performance, while speeding up the
training process [IS15]. Indeed, by normalizing the input of each layer, the optimization
process is less dependent on the distribution of layer’s weights, which may vary with the
different epochs and optimization steps, especially in the first epochs due to the random
initialization. Hence, batch normalization layers can stabilize the optimization process
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with respect to the scaling of weights. In addition, the use of batch normalization layers
is motivated in our context as reducing the parameter space.

Practically, batch normalization layers are implemented for each hidden layer, be-
fore the input and after the pooling layer. The impact of batch normalization layers on
structural segmentation results is presented in Appendix B.3, which presents improved
segmentation results when using such layers.

Figure 5.9 – Architecture of the Conv SSAE.

Initialization

The initialization settings are of primordial importance, and largely influence the op-
timization process and output of the network. Note though that this is also true for
NMF [BG08; Gil20] and, subsequently, NTD, but, for both methods, we found consistent
and deterministic initialization strategies (NNDSVD [BG08] for NMF and High Order
SVD [DDV00] for NTD).

SSAEs are initialized following the uniform distribution defined in [He+15], also known
as “kaiming” initialization. SSAEs were introduced in [MCB22c], and the associated ex-
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perimental results were obtained by fixing the pseudo-randomness of the distribution with
a seed.

In this study, we compare experimental results obtained from five
different pseudo-random initializations (all following the “kaiming”
distribution), fixed with five different seeds.

We believe that this strategy better reports the real potential of SSAEs, by aggregating
the results on several computations. In particular, for each initialization, the average over
the whole dataset is computed for each metric (as for the other methods). The results are
then presented in boxplots as the median, Q1 and Q3 quartiles, and extremums of these
five averages.

When a unique percentage is presented for an SSAE (for instance in figures), this
percentage is the median of the five runs. When the median is presented with a margin
(e.g. 10% ± 1%), this margin represents the Median Absolute Deviation (MAD). The
MAD is the equivalent of the standard deviation for the median: denoting as med(x) the
median of a set of values xi, MAD(x) = med(|xi − med(x)|).

Implementation Details

SSAEs are developed using Pytorch 1.8.0 [Pas+19], trained with the Adam opti-
mizer [KB14], with a learning rate of 0.001, divided by 10 when the loss function reaches
a plateau (20 iterations without improvement) until 1e-5. The optimization stops if no
progress is made during 100 consecutive epochs, or after a total of 1000 epochs.

An important parameter in the optimization process is the size of the batch when
processing each song, i.e. the number of samples to be presented to the network before
backpropagating the error and updating the network’ parameters. It is consensual in
neural network computation to split the dataset in several batches, one of the main reasons
being memory issues, as a large dataset cannot fit at-once. Memory issues are not a concern
here, as we deal with each song separately.

Still, it is considered beneficial optimization-wise (for generalization purposes) to up-
date the neural network’ parameters in different batches [WM03], resulting in several
updates of the network per epoch. In our context, generalization is not an objective, and
processing each song in several batches leads to longer optimization schemes (in terms of
computation time).
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Results presented in [MCB22c] were reported with a batch size of 8 on the RWC Pop
dataset, which was chosen empirically. In this thesis, we studied the impact of different
batch sizes in Appendix B.2, and concludes towards the processing of each song in unique
batches, i.e. backpropagation performed on the entire song at-once.

Hence, the song is processed in a unique batch. Therefore, the aforementioned “batch
normalization” layers actually refers to the normalization of the entire input (i.e. the song).
For the simplicity of notation and convention, we keep the name “batch normalization”,
even if not accurate for our context.

Optimizing an SSAE is quite heavy computationally, in particular compared to NMF
or PCA. As an example, on an Intel® Core(TM) i7 CPU, decomposing the song POP01
with B′ = 16 for the Nonnegative Log Mel (NNLM) spectrogram takes approximately 6
and a half minutes for the Conv SSAE 4.

As for previous experiments with NMF and PCA, we focus on the RWC Pop dataset for
hyperparameter tuning, which contains fewer songs. In addition, we decided to fix the size
of the latent space. It is expected that the size of the latent space influences segmentation
results, as for the other techniques. Still, we believe that the impact of the different sizes
of the latent space would collide with the impact of the different initializations. AE are
frequently compared with PCA due to their proximity [Roc+18], and can even be designed
so as to reproduce the PCA [OK85; BH89]. In that sense, we choose the dimension which
was most frequently picked by cross-validation in the previous experiments (Section 5.3.3),
which is 24 5.

5.4.4 Structural Segmentation Experiments

Similarly to previous paradigms (NTD, NMF and PCA), barwise compressed repre-
sentation are used for structural segmentation, via the Q matrix and the CBM algorithm.
An example of Cosine autosimilarity is presented on Figure 5.10.

Experiments are designed to answer the three following questions:

Question 10 How are segmentation performance impacted by the similarity function
(Cosine, Covariance and RBF) with the CBM algorithm applied to SSAE-based autosim-
ilarities?

4. In general, neural networks are faster when run on GPU instead of CPU, and SSAEs are indeed
faster when run on GPU (in the order of magnitude of seconds), but we present results on CPU for fair
comparison with the other techniques.

5. Two-thirds of the ranks selected are either 24 or 40, for all similarities, with an advantage for 24.
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Figure 5.10 – Example of Cosine autosimilarity of the SSAE, compared with the Barwise
TF-, NMF- and PCA-based Cosine autosimilarities. These autosimilarities are computed
on the NNLMS of the song Pop01 of RWC Pop, with B′ = 24.

Question 11 How is the SSAE-based Cosine similarity performing compared to all pre-
viously presented Cosine autosimilarities (i.e. Barwise TF-, NTD-, NMF- and PCA-based
autosimilarities) in the structural segmentation task, for all features?

Question 12 What is the impact of the loss function (i.e. Euclidean loss, KL- and IS-
divergences) on segmentation results when the feature exhibits energy discrepancies be-
tween frequencies (such as for STFT and Mel spectrograms) and when the energy dis-
crepancies between frequencies are mitigated in the feature (such as energy-normalized
chromagrams)?

The first experiments focus on the RWC Pop dataset, leading to initial experimental
conclusions (notably towards the best-performing features), later and further studied on
the SALAMI dataset for generalization on a larger and more diverse dataset.
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The SSAEs are subject to different loss functions, namely the Euclidean distance, and
the KL- and IS-divergences, respectively defining the “Euclidean-SSAE”, the “KL-SSAE”
and the “IS-SSAE”.

RWC Pop Dataset

Figure 5.11 presents segmentation results computed with the Euclidean-SSAE, with
the three similarity functions and the different features. Cosine and Covariance autosim-
ilarities obtain very similar results for both F0.5 and F3.

Except for the Chromagram, the RBF autosimilarity obtain lower results at F0.5 and
similar results at F3 than the ones obtained with Cosine and Covariance autosimilarities.
On the chromagram, the best result is obtained for the RBF autosimilarity. Still, as the
best result with the chromagram is lower than results obtained with the Log Mel, NNLM
and MFCC spectrograms, we focus future experimentation on the Cosine autosimilarity
only. Note that a similar trend was observed for PCA.

Figure 5.12 presents segmentation results obtained with all barwise compression tech-
niques, when optimized subject to the Euclidean distance (i.e. the Barwise TF, result of
the CBM algorithm with no barwise compression, and the previous barwise compression
techniques: NTD, NMF and PCA).

In these results, the Euclidean-SSAE is performing similarly to PCA, in particular for
the F0.5 metric, which is not an obvious conclusion; but, conversely to results presented
in [MCB22c], the best median score for the SSAE does not outperform the best score
of PCA, for both F0.5 and F3. Results presented in [MCB22c] were obtained using one
particular initialization and keeping the best of five latent spaces dimensions, while the
current results aggregate five different initializations and use a unique latent space dimen-
sion. We assume that this condition leads to a loss in performance, but better represents
the potential of the SSAE.

Figure 5.13 compares segmentation results obtained with the Euclidean-, KL- and IS-
SSAEs. As a first conclusion, the IS-SSAE consistently obtain worse results than both
other SSAEs, which is different than previous compression methods. We do not explain
this result, but we notice that this is consistent with findings in [NLV16], where the IS-
divergence is the worst performing loss function, notably compared to both Euclidean
distance and KL-divergence.

In addition, in contrast with the other barwise compression techniques, the Euclidean-
and KL-SSAEs obtain similar results with both NNLMS and chromagrams, while we
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expected significant differences in segmentation results. Differences only appear for the
Mel spectrogram, where the KL-SSAE outperforms the Euclidean-SSAE, as expected with
results obtained with the other barwise compression techniques. We do not explain why
the KL-divergence is less advantageous for the SSAEs, compared to NTD and NMF.

Finally, Table 5.3 presents the best segmentation results for the different techniques.
In the best of conditions, the SSAE outperforms both NMF and NTD at F0.5, but obtains
similar performance at F3. In addition, the best SSAE do not achieve the best performance
obtain with PCA and with the RBF autosimilarity of the Barwise TF.

(a) F0.5. (b) F3.

Figure 5.11 – Segmentation results according to the feature and the similarity function,
for the Euclidean-SSAE. The scores above the boxplots represent the median of averaged
F measures according to the five different runs.

(a) F0.5. (b) F3.

Figure 5.12 – Median segmentation results according to the feature, for the Cosine au-
tosimilarity of the Euclidean-SSAE and the previous barwise compression techniques.

In light of these results, it seems that the Cosine autosimilarity is a good choice
for the similarity computation of SSAE-compressed representations, and that Euclidean-
and KL-SSAEs are relatively similar in term of segmentation performance. In addition,
the SSAE obtain results close to those of PCA, which is the best compression method
segmentation-wise until now.
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(a) F0.5. (b) F3.

Figure 5.13 – Segmentation results according to the nonnegative features, for the Cosine
autosimilarities of the Euclidean-, KL- and IS-SSAEs.

Method Best conditions P0.5 R0.5 F0.5 P3 R3 F3
Barwise TF Log Mel, RBF 64.32% 70.00% 66.52% 78.31% 85.64% 81.16%
NTD NNLM, KL, Cosine 60.34% 63.84% 61.79% 78.25% 83.32% 80.37%
NMF NNLM, KL, Cosine 61.21% 62.99% 61.64% 79.02% 81.61% 79.75%
PCA Log Mel, Cosine 61.86% 67.78% 64.17% 76.96% 84.73% 80.03%

Conv SSAE MFCC, Euclidean,
Covariance

60.58%
±0.84%

67.15%
±2.28%

63.14%
±2.25%

76.66%
±0.26%

84.09%
±1.18%

79.50%
±1.64%

Table 5.3 – Comparison of the SSAEs with the best-performing methods, on RWC Pop.

SALAMI Dataset

Starting from the previous conclusions, obtained on the RWC Pop dataset, SSAEs are
studied on MFCC and NNLM spectrograms. Segmentation results, computed with the
different similarity functions, are presented on Figure 5.14.

As for the RWC Pop dataset, results are similar across the different autosimilarities.
Table 5.4 presents results for the Cosine autosimilarity for the Euclidean-SSAE on the
MFCC, and for the Euclidean-, KL- and IS-SSAEs for the NNLMS.

Results on the SALAMI dataset lead to similar conclusions than for the RWC Pop
dataset: the IS-SSAE is performing worse than the other networks, and the Euclidean-
and KL-SSAE obtain similar results. The best results are obtained on the MFCC feature.

Conclusions for the SSAE

Finally, we conclude towards the use of SSAE for structural segmentation by answering
to the aforementioned questions.

Experimental conclusion 10 With the current version of the CBM algorithm, the choice
of the similarity function does not significantly impact the segmentation performance of

160



5.4. Single-Song AutoEncoders

(a) F0.5. (b) F3.

Figure 5.14 – Segmentation results according to the different similarity functions features,
for the Euclidean-SSAE, on the NNLM and MFCC spectrograms.

Feature Method P0.5 R0.5 F0.5 P3 R3 F3

MFCC Barwise TF* 35.97% 34.47% 34.13% 53.48% 51.26% 50.79%

SSAE 38.49%
±1.65%

54.20%
±0.71%

44.09%
±0.84%

53.67%
±0.91%

78.09%
±1.57%

62.06%
±0.26%

NNLM

Barwise TF* 38.86% 41.63% 39.93% 58.45% 62.68% 58.63%
PCA 36.12% 57.75% 43.06% 50.54% 81.57% 60.45%
NMF (KL) 39.01% 52.11% 43.42% 55.41% 74.53% 61.84%

SSAE

Euclidean 35.53%
±0.40%

58.23%
±0.58%

42.80%
±0.36%

49.25%
±0.40%

81.82%
±1.40%

59.44%
±0.45%

KL 35.50%
±0.36%

58.21%
±0.77%

42.74%
±0.39%

49.44%
±0.28%

81.97%
±0.90%

59.77%
±0.45%

IS 27.75%
±0.98%

49.13%
±1.42%

34.46%
±0.11%

42.16%
±1.35%

77.43%
±0.29%

52.88%
±1.21%

Table 5.4 – Segmentation results of SSAEs on SALAMI with the Cosine autosimilarity,
compared to the best other segmentation methods. *The Barwise TF condition means
that there is no compression.

the SSAE.

Experimental conclusion 11 Reported segmentation results show, in every condition,
an advantage of the SSAE-based Cosine autosimilarity over the Barwise TF-based Cosine
autosimilarity.

In most of conditions, SSAEs obtain similar results than PCA, and better or similar
results than both NTD and NMF.

A limit to the comparison with the other compression methods in Experimental
conclusion 11 is that B′ is fixed to 24 for the SSAE, when it was fitted by cross-
validation for the other techniques. Hence, we can assume that the SSAE is penalized by
this restriction.
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Experimental conclusion 12 Both Euclidean distance and KL-divergence, when used
as loss function for the SSAE, perform similarly on both datasets for NNLMS and chro-
magrams. A slight advantage appears for the KL-SSAE over the Euclidean-SSAE on Mel
spectrograms, but this score remains lower than scores obtained on NNLMS. The IS-SSAE
is significantly performing worse than both other SSAEs.

Experimental conclusions 10 and 11 are in line with the conclusions obtained with
NTD, NMF and PCA, i.e. that compression-based autosimilarities vary less according to
the choice of the similarity function, and that the Cosine autosimilarity of compressed-
based representations are better performing than the raw Cosine autosimilarity of the
Barwise TF.

Still, conversely than with the other techniques (NTD and NMF), experimental
conclusion 12 states that using either the Euclidean distance or the KL-divergence as
loss function does not influence segmentation performance with the NNLMS and chro-
magrams, while the IS-SSAE obtains worse performance. Hence, compared to NTD and
NMF, it is less important for the SSAE to adapt the loss function to the characteristics
of the feature.

5.4.5 Additional Experiments: Extending the SSAEs

In addition to the structural segmentation experiments of Section 5.4.4, evaluated on
the whole RWC Pop and SALAMI datasets, this Section presents one-song experiments,
showcasing the potential of SSAE with some architectures modifications.

These experiments are computed on the Log Mel spectrogram of the song POP01 of
RWC Pop. The rationale of these experiments is to present two additional paradigms,
that are perspectives we have not had the time to fully explore.

Activation Function on the Latent Space

The first idea consists of adding an activation function on the latent space.

Adding an activation function on the latent space constrains the
values of the Q matrix.

The different activation functions are motivated as specific constraints on the entries
of matrix Q. In this paradigm, as the batch normalization layer prior to the latent space
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already constrains values towards a certain distribution (which is learned in the optimiza-
tion process), the activation function is used in replacement of the batch normalization
layer on the latent space, while the other batch normalization layers remain unchanged.

— Softmax: the Softmax function, for a vector x, is applied to all of its values xi as
softmax(xi) = exi∑

j
exj . This function rescales the values xi such that xi ∈ [0, 1] and∑

i xi = 1, while the exponential function favors the highest values in x. This is
the sense of the name “softmax”, as the highest value is exponentially increased,
squashing the other values.

— Sigmoid: sigmoid(x) = 1
1+e−x . The Sigmoid function constrains values to be taken

in the range [0, 1], and particularly to smoothly quantize values to 0 and 1: with
the exponential function, negative values for x quickly fade to values close to 0 in
the sigmoid, while positive values for x quickly result in values close to 1 in the
sigmoid. The Sigmoid function is presented in Figure 5.15a.

— Hyperbolic Tangent (Tanh): tanh(x) = sinh(x)
cosh(x) = e2x−1

e2x+1 . The hyperbolic tangent
takes values in [−1, 1], and tanh(0) = 0. As for the previous functions, the ex-
ponential aims at quickly pushing values towards the extremums, i.e. smoothly
quantizing values to 1 and -1. The hyperbolic tangent function is presented in
Figure 5.15b.

(a) Sigmoid function. (b) Hyperbolic tangent function.

Figure 5.15 – Plots of both Sigmoid and hyperbolic tangent functions.

Figures 5.16, 5.17, 5.18 and 5.19 present the Q matrices obtained with the different
latent activation functions (respectively no activation function, the Softmax, the Sigmoid
and the hyperbolic tangent), and their respective Cosine autosimilarities. These matri-
ces are computed from the Euclidean-SSAE with a latent space of dimension 16 (for
better visualizations, leading to smaller Q matrices than the dimension of 24 chosen in
Section 5.4.4).
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Figure 5.16 – Q matrix and Cosine autosimilarity of the latent representation of the
Euclidean-SSAE, without activation function on the latent space, for the Log Mel spec-
trogram of the song POP01.

Figure 5.17 – Q matrix and Cosine autosimilarity of the latent representation of the
Euclidean-SSAE, with the Softmax activation function on the latent space, for the Log
Mel spectrogram of the song POP01.

Visually, it seems that the activation functions are fulfilling their role by pushing values
towards extremums. In particular, using the hyperbolic tangent as activation function
could particularly be useful for structural segmentation, providing a high contrast between
similar and dissimilar bars.

With the Softmax activation function, bars are represented with only one coefficient,
which weakens the homogeneity in the autosimilarity matrix, hence deteriorating the
potential of the CBM algorithm in retrieving the structure of the song. Still, the Softmax
could be interesting for pattern uncovering and musical analysis, provided an interpretable
decoder, as it extracts the most important pattern in this bar.
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Figure 5.18 – Q matrix and Cosine autosimilarity of the latent representation of the
Euclidean-SSAE, with the Sigmoid activation function on the latent space, for the Log
Mel spectrogram of the song POP01.

Figure 5.19 – Q matrix and Cosine autosimilarity of the latent representation of the
Euclidean-SSAE, with the hyperbolic tangent activation function on the latent space, for
the Log Mel spectrogram of the song POP01.

The Sigmoid activation function could be useful in both these regards, i.e. for enhanc-
ing the homogeneity in the autosimilarity and the interpretability of patterns.

Future work could further investigate this paradigm, and study other activation func-
tions or constraints.

Triplet Loss

The previously presented SSAE is totally blind, i.e. not informed with notion of struc-
ture or similarity in the song prior to the optimization. Informing the network about a
notion of similarity between segments could be a great asset. In particular, this is the
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heart of the method developed by McCallum [McC19], using the idea that beats which
are close probably belong to a same segment.

In our case, the rationale is that the Cosine autosimilarity of the Barwise TF represen-
tation (i.e. uncompressed) already catches the main similarities in the song, but fails at
finding relevant dissimilarity. Hence, we focus on increasing the contrast between similar
and dissimilar segments, by informing the network with prior information of similarity
and dissimilarity.

Our strategy, as in [McC19], is based on the Triplet Loss [SKP15]. The Triplet Loss is
an architecture paradigm used in metric learning where, instead of optimizing the network
directly on the task with supervision (in the original article, person identification), the
network is optimized on data triplets, with the goal to learn an embedding where the
distance between data points is used for the task in a later stage.

Hence, supposing that the data triplets are provided (which can be based on labels,
as in [SKP15], or on data information/priors, as in [McC19]), the process is fully unsu-
pervised. In details, the Triplet Loss LT (a, p, n) is based on three examples:

— The anchor a, which is the current data point considered,
— The positive example p, which should be close to the anchor in the embedding

space,
— The negative example n, which should be far from the anchor in the embedding

space.

Given these examples, and denoting as f(x) the projection of x in the embedding space,
LT is defined in Equation 5.3:

LT (a, p, n) =
[
∥f(a) − f(p)∥2

2 − ∥f(a) − f(n)∥2
2 + α

]
+

, (5.3)

where α is an hyperparameter, called “margin”.

Practically, the Triplet Loss is 0 if the distance between the anchor and the positive
example is smaller than the distance between the anchor and the negative example plus
a margin (i.e. the positive example is closer with at least a distance α to the anchor than
the negative example). Otherwise, the loss function increases, penalizing the optimization
paradigm, which should bring the positive example closer to the anchor and/or push the
negative example further away in the subsequent iterations. Parameter α is generally set
to 1.
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In our context, the idea is to compute relevant similarity and dis-
similarity notions between latent representations. The Triplet Loss
may be useful in that regard, constraining the distance between the
different latent representations, hence applied on a triplet of latent
representations.

This defines a “Triplet SSAE”, mixing both the SSAE and the Triplet Loss paradigms,
resulting in a network optimized on both reconstruction and Triplet Loss, as in [Oku+17].

Practically, given a triplet of barwise spectrograms (Xa
b , Xp

b , Xn
b ), and denoting as

(Qa
b , Qp

b , Qn
b ) and (X̂a

b , X̂p
b , X̂n

b ) respectively their latent representation and their recon-
struction, the Triplet SSAE is optimized via Equation 5.4. A schematic Triplet SSAE is
presented in Figure 5.20.

arg min d(Xa
b , X̂a

b ) + d(Xp
b , X̂p

b ) + d(Xn
b , X̂n

b ) + LT (Qa
b , Qp

b , Qn
b ) (5.4)

Reconstruction errors Triplet Loss

Figure 5.20 – Schematic representation of the Triplet SSAE.

The paradigm is highly sensitive to the definition of the triplets. In our context, positive
and negative samples should be selected based on structural information. In our paradigm,
though, based on single-song analysis, informing about the structure of the song (i.e.
supervising the learning scheme) would be a huge bias, not counteracted by generalization
ability.
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In that sense, we rather opt for an unsupervised technique for the generation of triplets,
based on the feature-wise similarity of the song. Indeed, our main idea with the triplet
loss being the increase of contrast between similar and dissimilar bars compared to the
feature-wise similarity, we compute positive and negative examples by thresholding the
initial similarity distribution in the Barwise TF matrix. For each bar, seen as the anchor:

— A positive example is randomly sampled from the 10% most similar bars,
— A negative example is randomly sampled from the 50% least similar bars.

The similarity in “most/least similar bars” is the Cosine similarity between bars of the
Barwise TF, and these thresholds are chosen empirically. In addition, the number of
samples (bars per song) being relatively small, triplets are regenerated at each epoch.

With this strategy, Figure 5.22 presents the optimization result for the song POP01. It
seems, empirically, that the network indeed results in more contrasted outputs, compared
to Figure 5.21, which presents the Q matrix computed from the Euclidean-SSAE.

In particular, the values of the Q matrix obtained with the triplet loss are more
concentrated on the extremums than those of the Q matrix of the original SSAE, favoring
the homogeneity.

Figure 5.21 – Q matrix and Cosine autosimilarity of the latent representation of the
Euclidean-SSAE, without activation function on the latent space, for the Log Mel spec-
trogram of the song POP01 (shown again for comparison with the Triplet Loss model).

Hence, assuming that the similarity of the Barwise TF holds the adequate structural
information in its self-similarity, only not contrasted enough, the triplet loss may be an
interesting paradigm to enhance the contrast.

Conversely, this method introduces additional hyperparameters (the margin α, the
thresholds for the generation of triplets, and, potentially, a ponderation parameter for
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Figure 5.22 – Q matrix and Cosine autosimilarity of the latent representation of the Triplet
Conv SSAE, optimized subject to the Euclidean distance, for the Log Mel spectrogram
of the song POP01.

mitigating between both losses, not introduced in Equation 5.4) which must be tested
and set.

In addition, it increases the computation time, in this test by a factor three: each
example being a triplet, each sample is composed of three spectrograms to optimize instead
of one.

Overall, we believe that this strategy is a promising paradigm.

5.5 Conclusions

This section was dedicated to the presentation and the study of three barwise compres-
sion schemes: Nonnegative Matrix Factorization (NMF), Principal Component Analysis
(PCA) and Single-Song AutoEncoders (SSAE). These compression schemes were then
used in the context of structural segmentation, by studying the autosimilarities of the
respective barwise compressed representations.

In general, PCA and SSAE obtain similar or better results than NTD and NMF, espe-
cially when optimized subject to the Euclidean-distance, and we conclude on experimental
results that there exists a trade-off between the interpretability of solutions (NTD/NMF)
and better segmentation results (PCA/SSAE), which we will study in more details in
Section 6. In addition, it seems that using the KL-divergence is more an advantage for
the NTD than for the SSAE, and that the IS-divergence is a disadvantage for the SSAE,
but we are not able to explain this result.
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Table 5.5 summarizes the best experimental results of these techniques, and compares
the compression-based results with the State-of-the-Art techniques. In short, all barwise
compression techniques obtain similar results in the best of their conditions, except for
F0.5 on the RWC Pop dataset. In this latter condition, both PCA and SSAE are better
performing than NTD and NMF. All compression techniques obtain lower results than
those of the State-of-the-Art CNN [GS15b] for F0.5, but are competitive for F3, and they
all outperform the blind State-of-the-Art for both metrics.

In addition, the overall best results with the CBM algorithm is still obtained without
compression, with the RBF autosimilarity. Overall, compressed representations obtain
more robust results with respect to the similarity function than uncompressed representa-
tions with the CBM algorithm, indicating a better contrast between similar and dissimilar
bars. In addition, all experiments were conducted using the CBM algorithm whose param-
eters (kernels and penalty function) were optimized according to the RBF autosimilarity
of the Barwise TF matrix, and it could bias the results.

Method Best conditions RWC Pop SALAMI
F0.5 F3 F0.5 F3

Barwise TF Log Mel, RBF 66.52% 81.16% 44.94% 63.18%
NTD NNLM, KL, Cosine 61.79% 80.37% - -
NMF NNLM, KL, Cosine 61.64% 79.75% 43.42% 61.84%
PCA Log Mel, Cosine 64.17% 80.03% 43.55% 61.79%

Conv SSAE MFCC, Euclidean, Covariance 63.14%
±2.25%

79.50%
±1.64%

44.04%
±1.33%

61.91%
±0.55%

Foote [Foo00] 34.48% 55.01% 32.70% 54.23%
CNMF [NJ13] 28.81% 46.53% 27.29% 44.72%
Spectral Clustering [ME14a] 45.01% 60.30% 33.69% 48.44%
Structural Features [Ser+14] 42.96% 62.15% 33.84% 53.72%
CNN [GS15b] 69.70% 79.34% 54.09% 62.28%

Table 5.5 – Comparison of all best-performing methods.

In details, NMF is generally less performing than NTD, but is faster and requires to
fix only dimension, compared to three for NMF. In addition, the NMF model is largely
studied in literature (see for instance [Gil20]), and this literature could be exploited to fur-
ther improve Barwise NMF (for instance by implementing constraints and/or developing
different optimization paradigms).

Potential future improvements of the Barwise NMF model are those already outlined
for NTD, both methods being conceptually similar. In addition, one could imagine a
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mixed optimization paradigm, where three NMF performed on the different unfoldings of
the TFB tensor could be used to initialize the three factors of NTD, which could reduce
the overall number of iterations and hence the global computation time of NTD. We never
tested this paradigm.

PCA is overall the best-performing model, and the fastest one. SSAEs obtain very
similar results, still consistently lower when averaged over five runs, and requires much
larger computation capacities. Nonetheless, results for the SSAEs are computed with a
unique latent space dimension, when five were evaluated for the PCA (and similarly for
NTD/NMF), which could favor the latter techniques.

In addition, the presented SSAE are easily improvable, which seems more complicated
PCA. In particular, we presented two potential directions for improving SSAE, namely
adding constraints on the latent space and adding prior knowledge with the Triplet Loss
paradigm.

In addition, SSAE could benefit from the large literature in the domain, and in par-
ticular benefit from different constraints, prior knowledge and supervision, for instance
via Transfer Learning [WKW16], i.e. using the first layers of a trained neural networks to
benefit from the learned representations, and optimize the deepest layers for the current
task.

In addition, some recent neural networks architectures were designed so as to disen-
tangle several components of the inputs, for instance, in speech processing, disentangling
language content, pitch and rhythm [Qia+20]. In our context, disentangling the rhythmic
from the timbral and from harmonic/melodic information could be a real asset to better
catch the changing parameters constituting the structure.
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Chapter 6

AE-NTD

This chapter presents the AE-NTD, a paradigm mixing both NTD
and AutoEncoders, studied on both structural segmentation and
pattern uncovering tasks.

Synopsis
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6.1 Introduction

This thesis has presented several barwise compression schemes, namely NTD, NMF,
PCA and SSAE, and the associated barwise representations were used in the context of
structural segmentation and, to some extent, pattern uncovering. Among the techniques,
PCA and SSAE obtain the highest segmentation scores, while NTD and NMF are slightly
less performing.

The main differences between these techniques are the nonnegativity constraints en-
forced in NTD/NMF and not present in PCA/SSAEs, which can provide interpretable
outputs, as presented for NTD in Chapter 4. A trade-off between performance and in-
terpretability seems to appear in light of these results, and this chapter aims at further
investigating this trade-off.

In particular, this chapter focuses on both NTD and SSAE paradigms, and mixes them
in a new paradigm called “AE-NTD”. The rationale is that both NTD and AE are in some
way based on matrix products, and that the structure of NTD can be implemented in the
SSAE framework.

The objective with this new paradigm is to mix the high performance of SSAE with
the interpretability of NTD, and, in addition, broaden the horizons of NTD with the
neural network tools and literature.

The first part formally recasts the decoder of an AE in the NTD framework, and
introduces the motivations behind this new paradigm. A second part is dedicated to
the experimental study of the AE-NTD, notably regarding structural segmentation and
pattern uncovering, and to compare the results of the previously introduced SSAEs with
the AE-NTDs.

The contributions reported in this section are twofold:
— Formalism: while AEs have already been linked to matrix factorization models such

as PCA [OK85; BH89], NMF [SV17], and even the CANDECOMP/PARAFAC
tensor decomposition [CCS19], the current chapter is, to the best of our knowledge,
the first attempt to recast the NTD in neural network formalism. Still, it is largely
influenced by the aforementioned existing works.

— Experimental: mixing AE and NTD results in a new barwise compression scheme,
taking advantage from both the interpretability of NTD and the high performance
and flexibility of AE. In particular, the trade-off between interpretability and seg-
mentation performance is observed in the experimental results.
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Both the code and the conducted experiments relative to this section are included in the
open-source BarMusComp toolbox [MCB22b].

6.2 Mathematical Formalism

The AE-NTD paradigm is a new barwise compression paradigm, imposing the struc-
ture of NTD in an AutoEncoder. In that sense, fundamentals of both the NTD and the
SSAEs are presented hereafter, as reminders of previous sections. Then, by first introduc-
ing the AE-NMF model [SV17], we formally introduce AE-NTDs.

6.2.1 Reminder of NTD at the Barscale

NTD was defined in Chapter 4 as the multiway product X ≈ G×1 W ×2 H ×3 Q, which
can be rewritten X(3) ≈ QG(3)(W ⊗ H)⊺ when unfolding on the third mode (i.e. focusing
on the Q matrix). In this setting, matrix X(3) is approximated as the product of three
nonnegative matrices, Q, G(3) and (W ⊗ H)⊺.

It should be noted that the matrix X(3) is exactly the Barwise TF matrix, where each
row is a barwise spectrogram (i.e. a vector where both time and frequency dimensions
are fused). For a particular bar b, the product becomes X(3)b: ≈ Qb:G(3)(W ⊗ H)⊺, which
is exactly the product between a row in Q and two matrices.

This equation can be interpreted as a conic combination, whose parameters are defined
by Qb:, of the different musical patterns defined by G(3)(W ⊗ H)⊺.

6.2.2 Reminder of SSAE

A neural network layer, applied to an input x, can be seen as the composition of an
affine transformation of x, defined with weights R and a bias b, and a nonlinear activation
function σ, such that the output of this layer is equal to σ(Rx + b).

In practice here, the activation function σ is set as the ReLU function, except for the
latent space 1, where the activation can be the identity function (no nonlinearity) or any
differentiable function, with particular examples presented in Section 5.4.5. The activation
function for the latent space is denoted as σq. AutoEncoders are composed of two parts:
an encoder and a decoder.

1. We recall that the use of the ReLU function on the latent space could lead to null latent variables.
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In Section 5.4, SSAEs were introduced to compress each barwise time-frequency rep-
resentation X(3)b: with an encoder, resulting in a latent representation Qb: (potentially
negative) and a decoder which computes an approximate X̂(3)b:.

In details, the encoder, composed of l layers, results in Qb: = σq(Re
l σ(Re

l−1 σ(...(Re
1 X(3)b:+

be
1)...) + be

l−1) + be
l ), and the decoder computes X̂(3)b: = Rd

l σ(Rd
l−1 σ(...(Rd

1 Qb: + bd
1)...) +

bd
l−1) + bd

l .

6.2.3 AE-NMF

In their work [SV17], Smaragdis and Venkataramani proposed a neural network model
which we denote “AE-NMF”. An AE-NMF aims at reproducing the structure of NMF
in an AutoEncoder, by imposing nonnegativity on the layers. Denoting as M ≈ UV the
NMF, the AE-NMF is composed of only one hidden layer (which defines the latent space),
resulting in a one-layer encoder and a one-layer decoder.

The latent representations are interpreted as the U matrix, and the
weights of the decoder are interpreted as the V matrix.

Hence, the AE-NMF computes a matrix M̂ such that M̂ = UV ≈ M . In the original
AE-NMF [SV17], the encoder is enforced to be related to the pseudo-inverse of V , but we
instead choose not to formally relate the encoder with the NMF framework for subsequent
work, in order to relax the optimization paradigm.

In an AE-NMF, the weights V of the decoder are not constrained to be nonnegative;
nonnegativity is instead imposed via the (nonnegative) activation function. Enforcing
nonnegativity via the activation function extends the subspace of solutions: a nonnegative
matrix V can be obtained in the optimization scheme of the AutoEncoder, meaning that
the entire subspace of solutions spanned by NMF is included in the subspace of the AE.
Still, the AE-NMF can in addition compute a V matrix with some negative coefficients,
and, according to the authors, this larger subspace is beneficial to the decomposition.
In addition, this formulation is standard in neural networks optimization schemes, and
allows for a diversity in the choice of the activation functions.

The original AE-NMF [SV17] uses the softplus activation function, defined as softplus(x) =
log(1 + ex), but the ReLU is also a nonnegative activation function. Figure 6.1 presents a
schematic architecture of an AE-NMF.
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In addition, this “shallow” AE-NMF, composed of only one hidden layer, can be ex-
tended into a multilayer AE-NMF, which allows to learn more complex nonlinear map-
pings between the input and the output of the neural network [SV17], or can be extended
to reproduce variants of NMF [VSS17].

M
1-layer

Encoder
σ

U V
σ

M̂

Figure 6.1 – Schematic representation of an AE-NMF.

The network minimizes some loss function d(M, M̂) between the input and the ap-
proximation, here the KL-divergence with an additional sparsity constraint on the latent
representations (penalization via the l1 norm).

The AE-NMF model is evaluated on the source separation task [SV17]. Experimental
results with the one-layer AE-NMF are equivalent or worse than with NMF (depending on
the number of factors in the decomposition), but are improved when using the multilayer
AE, showcasing the interest for such model.

In addition, one of the main assets of AE-NMF is to recast NMF in the neural network’s
framework, where it can be easily modified, for instance with constraints or numerous
layers, while it may be practically more difficult in the traditional NMF framework.

6.2.4 AE-NTD

We introduce the “AE-NTD” model, extending the previous AE-NMF for the NTD
framework.

The idea of the AE-NTD is to interpret Q, the barwise representa-
tion of the song in NTD, as the latent representations, and to use
G(3)(W ⊗ H)⊺ as a two-layer decoder.

This is represented in Equation 6.1. A schematic architecture is presented in Figure 6.2.
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X(3)b: ≈ Qb: G(3) (W ⊗ H)⊺ = X̂(3)b: (6.1)

AE-NTD input
barwise spectrogram

Latent
representations

2 decoder layers

AE-NTD output
approximated bar

X(3)b:FS Encoder
σ

B′Qb: G(3)
σ

(W ⊗ H)⊺
σ

X̂(3)b: FS

Figure 6.2 – Schematic representation of an AE-NTD. The encoder can be of any shape
(fully-connected, convolutional, ...)

Decoder

In an AE-NTD, the decoder is composed of 2 fully-connected layers (without bias),
one representing the unfolded G(3) matrix, and the second one representing the Kronecker
product (W ⊗ H)⊺. The structure of the Kronecker product is enforced in the last layer,
i.e. matrices W and H act as the weights of the fully-connected layers 2.

As for AE-NMF, these weights are not constrained to be nonnegative, and we in-
stead enforce nonnegativity using a nonnegative activation function σ, here the ReLU for
consistency with the previously-defined SSAE.

Encoder

The encoder of the AE-NTD can, in theory, be of any shape. Indeed, while it is
conventional to keep the same architecture between the encoder and the decoder when
designing an AutoEncoder, in principle, both can be different.

In practice, as a proof of concept and following the two-layer NTD-based decoder,

2. The Kronecker product being enforced in the weights of the layer, it may be considered as a
particular type of fully-connected layer.
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we implement a fully-connected encoder, composed of two fully-connected layers. In par-
ticular, this encoder is exactly the encoder of the FC SSAE presented in Appendix B.1,
with an additional nonnegative activation function on the latent space, to ensure the
nonnegativity of the Q matrix.

While the ReLU is a nonnegative function, it can lead to null latent representations
(i.e. a bar b represented by Qb: = 0:), which was observed in practice in preliminary
experiments. To counteract this side effect, a small constant is added to the activation
function, resulting in the activation function σq(x) = ReLU(x)+10−10 on the latent space.

In addition, σq must be implemented immediately before the latent space. In that
sense, and conversely than for the SSAEs and the other encoder layers (here, only one,
but many more could be implemented), the activation function for the latent space is
implemented after the batch normalization layer.

Note that the encoder and the decoder differ in some additional points: firstly, the
Kronecker product between W and H in the last layer of the decoder is not implemented
in the first layer of the encoder. Hence, the number of parameters of these two layers
differ, from FF ′ + SS ′ in the last layer of the decoder (sum of the sizes of W and H) to
FF ′SS ′ in the first layer of the encoder (size of the result of the Kronecker product).

In addition, a fully-connected layer is composed of weights, represented by a matrix
multiplication, and a bias, resulting in an affine transformation of the input, while NTD-
based layers are only composed of matrix multiplication, hence a linear transformation.

Finally, the encoder is composed of batch normalization layers, which are not imple-
mented in the decoder.

In that sense, the encoder layers contain more parameters than the decoder layers,
while the matrix weights are of the same sizes. The network is presented in Figure 6.3.

Musical Patterns in the AE-NTD

The AE-NTD are developed so as to mix both NTD and SSAE frameworks. Sec-
tion 4.5.2 studied the musical patterns, computed from the NTD, as the product P =
WG::bH.

Still, the formalism in AE-NTD is not exactly the same as for NTD: the nonnegativity
is not enforced on the matrices but on the matrix products (with the activation function),
and the product is under its matrix form, not its tensor one. Thus, a musical pattern in
an AE-NTD is defined as 3 P = σ (σ(G:b) (W ⊗ H)⊺), i.e. the particular output for each

3. In this equation, P is a vector, but may be refolded into a matrix easily.
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Figure 6.3 – Architecture of the AE-NTD.

dimension of the latent space.

6.3 Motivations

6.3.1 Study the Performance-Interpretability Trade-Off

Both previous Chapters 4 and 5 highlighted a trade-off between the interpretability of
the compression outputs and the segmentation performance. In particular, this trade-off
is observed between NTD, which computes interpretable patterns in its factorization, and
AutoEncoders, which obtain better segmentation results.

By mixing both paradigms, an objective is to study in more depth the performance-
interpretability trade-off and, if possible, to obtain a decomposition both interpretable
and highly performant.
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6.3.2 Increasing the Expressiveness of the Decomposition

The AE-NMF [SV17] was motivated by a greater expressiveness of the AE-NMF
paradigm compared to the standard NMF. In particular, this greater expressiveness stems
from a larger subspace of solutions in the AE-NMF compared to NMF (due to the non-
negative activation function instead of the nonnegativity constraint) and the possibility to
increase the depth of the network (e.g. the multilinear AE-NMF, which outperforms the
one-layer AE-NMF), this latter argument being particularly studied in the recent litera-
ture for nonnegative factorization models [DGS21]. Both arguments apply to AE-NTD.

The expressiveness of the decomposition could also benefit from the large neural net-
work literature, for instance by adapting the model to use waveforms as inputs [VTS20],
to benefit from transfer learning [WKW16] and/or representation learning [BCV13], or to
use new optimization schemes, such as the triplet loss paradigm [SKP15], presented for
the SSAE in Section 5.4.5.

Additionally, recent algorithms make use of the neural network formalism in a new
optimization scheme, called “unrolling”, which broadly consists of implementing tradi-
tional optimization methods by means of neural networks, for instance NMF [HLW14],
see [MLE21] for a recent overview. Unrolling was already applied to audio signal process-
ing [LHW15].

In this work, the AE-NTD remains a “shallow” neural network model, but, even if
these aspects are not treated in the current work, they constitute perspectives.

6.3.3 Technical Benefits

An additional advantage of formalizing NTD in the neural network paradigm is the
possibility to benefit from the toolboxes and technical advances of the neural network
community. Indeed, high-performance computing is an important aspect of neural network
computation, due to the gigantic calculus complexity necessary to train some models, and
the standard toolboxes (such as Pytorch [Pas+19], used in this thesis for the SSAEs and
the AE-NTD) use State-of-the-Art methods to optimize computation.

In addition, the neural network formalism and the associated toolboxes ease the imple-
mentation of constraints, such as the activations functions on the latent space presented
in Section 5.4.5, which may be harder to implement in the traditional matrix and tensor
factorization formalisms.
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6.4 Experiments

6.4.1 Technical Details

AE-NTD are developed in the same framework as SSAEs, i.e. using Pytorch 1.8.0 [Pas+19].
Remaining implementation details can be found in Section 5.4.3. In the current experi-
ments, we only consider the Euclidean distance and the KL-divergence as loss functions,
due to the poor performance of the IS-SSAE in Section 5.4. This leads to Euclidean- and
KL-AE-NTDs.

As already presented in the motivations, the goal of the AE-NTD paradigm is to mix
the interpretability of NTD with, potentially, better segmentation results. In that sense,
experiments focus on both the structural segmentation and pattern uncovering tasks, to
study both performance and interpretability aspects.

The structural segmentation task focuses on the RWC Pop dataset, and the NNLM
spectrograms, this feature being the best-performing nonnegative feature for both NTD
and AE. On the other hand, the pattern uncovering task focuses on the STFT of Come
Together by The Beatles, as in Section 4.5.2.

We recall that the dimensions of NTD must be set prior to the decomposition. Con-
sequently, this is also the case for an AE-NTD. Hence, for the structural segmentation
task, dimensions are set to F ′ = S ′ = B′ = 24. Indeed, 24 corresponds both to the di-
mension of the latent space in the SSAEs experiments, in Section 5.4.4, and to the most
frequently picked dimension (considering all matrices) in the cross-validation process for
NTD experiments, in Section 4.5 4. In the pattern uncovering task, as in Section 4.5.2,
dimensions are set to F ′ = 32, S ′ = 12, B′ = 10.

6.4.2 Interpretation of the NTD-based Decoder

The interpretability of the NTD outputs are not guaranteed theoretically speaking, as
discussed in Section 4.4.2. The decoder of the AE-NTD mimicking the shape of an NTD
decomposition (related to the Q matrix), there is similarly no guaranty that the AE-NTD
results in an interpretable decomposition.

For the AE-NMF, the authors argue that enforcing sparsity on the latent space is
a sufficient strategy to favor the interpretability of outputs [SV17], which is a common

4. Cross-validation set most than half of matrices to the dimension 24 when studying the NNLM
spectrograms.

182



6.4. Experiments

constraint in NMF [OP14] and NTD [MHA08].

In this work, we rather explore three different initialization strategies for the matrices
W, H and G(3) in the decoder. The rationale of experimenting different initializations
is to study the impact of prior information on the final representation, and see if the
trade-off between interpretability and segmentation results appearing in the conclusions
of Chapter 5 is present in the AE-NTD.

These initializations only impact the decoder, and the encoder is always initialized
at random, following previous work on SSAEs (Section 5.4). The three initializations are
listed below:

— “Random Init” - Random decoder: the least informed initialization technique,
which can be considered as a baseline for comparison. In this scenario, the de-
coder is fully initialized at random, following the “kaiming” distribution, as for the
SSAE and the encoder of the AE-NTD.

— “General Init” - initializing W and H with generic matrices: in this condition, both
matrices W and H are initialized following prior knowledge, and G(3) is initialized
at random. More precisely, W and H are initialized as dictionaries, based on an
average of the NTD computed on the RWC Pop dataset.
Indeed, computing the NTD on the one hundred songs of the RWC Pop dataset
(with dimensions F ′, S ′ and B′) results in one hundred W NT D and HNT D matrices.
Then, two large matrices W NT D

RW C ∈ RF ×100F ′
+ and HNT D

RW C ∈ RS×100S′
+ are obtained

by concatenating all the columns of these one hundred matrices, i.e. two matrices
containing all the frequential and rhythmic templates obtained for all the songs.
Finally, we apply the k-means algorithm [Mac67] on both of these matrices, re-
sulting in respectively F ′ and S ′ cluster centroids of frequential and rhythmic tem-
plates, leading to matrices WRW C ∈ RF ×F ′

+ and HRW C ∈ RS×S′
+ . These matrices

then serve as initialization for the matrices in the decoder in the “General Init”
paradigm.

— “NTD Init“ - initializing the decoder with the NTD: in this condition, all matrices
(W , H and G(3)) are initialized as the output of the NTD performed on this song.
In that sense, the AE-NTD tries both to learn the Q matrix of NTD as its latent
representations, and to enhance the W , H and G(3) matrices in order to obtain
better estimates.
In this condition, the parameters of the batch normalization on the latent space
are also initialized as the average and standard deviation of the Q matrix obtained
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from NTD 5.
These three conditions constitute a gradation of the level of prior knowledge enforce-

ment, via NTD outputs. This gradation starts with the NTD Init (where the network is
exactly initialized with the output of an NTD) and ends at the Random Init condition
(where NTD is only enforced by structure). The General Init condition is here an inter-
mediate condition (no particular NTD is used, but it still uses a general centroid of all
the decompositions), and many more intermediate conditions could be investigated, in
particular using supervision and learning schemes.

Matrices WRW C and HRW C for the Euclidean-AE-NTD are shown in Figure 6.4, based
on the NNLM spectrograms and NTD dimensions F ′ = S ′ = B′ = 24. For visualization
purposes, columns of these matrices are reordered, highlighting a staircase shape.

(a) WRW C (b) H⊺
RW C

Figure 6.4 – General matrices WRW C and HRW C computed from the Euclidean-NTD of
the NNLM spectrograms of the whole RWC Pop dataset.

Indeed, in the WRW C matrix, the activations in each column (except for the last
3) seem to focus on a particular row, which we interpret as the fundamental frequency
of a note (in the Mel scale), and the different columns nearly span the lowest-pitched
fundamental frequencies in a sequential order. The emphasis on the lowest-pitched notes
may be explained by the power discrepancies between low- and high-pitched notes, this
phenomenon being already presented in Section 2.2.4.

In addition, numerous columns of WRW C exhibit a comb aspect, i.e. stronger activa-
tions for frequencies which are multiples of the fundamental frequency, in the Mel scale.

5. We observed that this was important to learn the Q matrix as latent representations, in particular
for the KL-AE-NTD.
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This is consistent with previous work on NMF-based decompositions of music audio sig-
nals (as the “harmonicity constraints” in [VBB09]), and follows the physical interpretation
of musical notes, consisting of a fundamental frequency and harmonic partials.

In the HRW C matrix, a similar staircase shape arises according to the time indexes. It
seems that the columns of HRW C (rows of H⊺

RW C in the visualization) focus on particular
beats of the bar, sometimes one per column, hence activating a precise time instance in
the bar, and sometimes several time instances in the bar (in general located on fourth
or eight notes), as a rhythmic pattern. The last columns of both WRW C and HRW C span
large zones, which could constitute residual noise or centroids of inaccurate and/or scarce
estimations.

In the musical barwise interpretation of NTD, presented in Section 4.4, W and H act
as dictionary matrices, i.e. general matrices of frequential and rhythmic templates which
can be mixed in G to result in barwise patterns. In that regard, WRW C and HRW C seem
appropriate.

We expect the structural segmentation scores to decrease with the gradation, i.e. to
obtain the largest segmentation scores in the Random Init condition, and the lowest ones
in the NTD Init condition, and even with the NTD itself. Conversely, we expect higher
SDR in the pattern uncovering task for the NTD and the NTD Init AE-NTD, and low
SDR for in the Random Init. The General Init should represent an intermediate condition
in both experiments, supposing that WRW C and HRW C matrices are relevant.

Hence, experiments focus on answering Questions 13 and 14.

Question 13 How does prior knowledge (i.e. the initialization of the decoder) impact the
segmentation scores?

Question 14 How does prior knowledge (i.e. the initialization of the decoder) impact the
quality of the decomposition?

6.4.3 Structural Segmentation

As for the NTD and SSAE, the structural segmentation task is studied on autosimilar-
ities of the Q matrix, with the CBM algorithm. These experiments are computed on the
RWC Pop dataset only, leading to average scores on the dataset for the different metrics.

As in Section 5.4, AE-NTD are computed with five different seeds, and results are
aggregated in boxplots. The scores displayed in the boxplots represent the median of the
five average scores.
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Euclidean-AE-NTD

Firstly, we focus on the Euclidean-AE-NTD. Cosine autosimilarities of the song POP01,
in the different conditions, are presented in Figure 6.5.

(a) Euclidean-NTD (b) AE-NTD, NTD Init

(c) AE-NTD, General Init (d) AE-NTD, Random Init

Figure 6.5 – Cosine autosimilarities for the Euclidean-NTD and Euclidean-AE-NTD, com-
puted on the NNLMS of the song POP01, for F ′ = S ′ = B′ = 24.

Figure 6.6 presents the segmentation results for the NTD and the AE-NTD, depending
on the similarity function. Except for the NTD Init, the Cosine autosimilarity obtains bet-
ter or similar scores than the other functions, suggesting that the compression mechanism
leads to a better notion of dissimilarity, as discussed in previous chapters.

In the NTD Init condition, the RBF autosimilarity is better performing than both
others (in particular Cosine), which may indicate a worse dissimilarity notion compared
to the other compression schemes. Empirically, the setback of the NTD Init condition
compared to the others is observed in Figure 6.5, with a visually less obvious block struc-
ture in the NTD Init condition compared to the NTD, and an overall lower contrast (i.e.
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larger similarity overall) compared to the General and Random Init. Hence, the NTD Init
condition seems maladapted to enhance the similarity and dissimilarity between bars, i.e.
maladapted to highlight the structure in the autosimilarity.

Conversely, the General Init and Random Init improve segmentation performance,
and, empirically, exhibit a better contrast between zones of high and low similarity in
Figure 6.5. Still, in this particular example, the block structure seems visually less obvious
for the AE-NTD than for the NTD.

(a) F0.5 (b) F3

Figure 6.6 – Segmentation results for the Euclidean AE-NTD, depending on the initial-
ization of the decoder, compared with the NTD.

In addition, Table 6.1 presents the reconstruction errors according to the different
conditions, averaged on the RWC Pop (in particular, avg(errors) ± std(errors)) 6. The
reconstruction error is computed, for each song, as the average of the elementwise error
between the original tensor and the reconstructed one, here with the Euclidean distance,
but similarly for the KL-divergence in subsequent results 7. Precisely, denoting as X and
X̂ ∈ RF ×S×B respectively the input and output of the AE-NTD, the reconstruction error
e is computed as e = ∥X−X̂∥2

2
F SB

.
The reconstruction error provides an additional conclusion: adding prior knowledge

results in better estimates, but the quality of the estimate is not correlated with the
segmentation score. Indeed, the largest reconstruction error is obtained with the Random
Init decoder, which is also the best-performing AE-NTD segmentation-wise.

In addition, the initialization directly impacts the quality of the estimate, and, as sug-
gested for the AE-NMF [SV17], the neural network paradigm can lead to better estimates,
as presented here for both General Init and NTD Init, which outperforms the NTD in

6. Note that we use the same notation as for the median plus or minus the MAD for the different runs
of the SSAEs and AE-NTDs. We apologize for the clash in notation.

7. In general, reconstruction errors are divided by the norm of the tensor. This is not the case here,
for implementation issues: the norm of the tensor used for normalization depends on the loss function,
which could equivalently be the Euclidean distance or a β-divergence.
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terms of reconstruction error.

Method Reconstruction error
NTD 8.06

AE-NTD
NTD Init 4.03±0.02
General Init 5.68±0.02
Random Init 22.69±0.60

Table 6.1 – Average elementwise reconstruction error, in term of Euclidean distance, for
the different techniques computed on the RWC Pop dataset.

KL-AE-NTD

We pursue the experiments with the KL-AE-NTD. Examples of Cosine autosimilarities
are presented in Figure 6.7. Figure 6.8 presents the segmentation results of the KL-AE-
NTD, comparing the NTD and the different initialization conditions, for all the similarity
functions. Table 6.2 presents the average elementwise KL-divergences between the original
tensors and the estimates, i.e. dβ(X−X̂)

F SB
.

Method Reconstruction error
NTD 0.41

AE-NTD
NTD Init 0.36±0.003
General Init 0.90±0.011
Random Init 1.04±0.128

Table 6.2 – Average elementwise reconstruction error, in term of KL-divergence, for the
different intializations.

The NTD Init obtain similar (or slightly worse) segmentation scores than the NTD,
and, as for the Euclidean-AE-NTD, the best performance are obtained with the RBF au-
tosimilarity. Hence, the global trend for both loss functions is that the NTD Init condition
does not improve the performance in terms of structural segmentation compared to those
of the NTD, while the reconstruction errors are lower (i.e. it results in better estimates
in a data viewpoint). This conclusion probably stems from the CBM algorithm, with a
worst contrast and/or block structure in the NTD Init condition.

The Random Init outperforms all other conditions, which is consistent with the results
of the Euclidean-AE-NTD. Unexpectedly, the General Init condition performs worse than
the others, with all similarity functions, while it was expected to obtain (at least) similar

188



6.4. Experiments

(a) KL NTD (b) AE-NTD, NTD Init

(c) AE-NTD, General Init (d) AE-NTD, Random Init

Figure 6.7 – Cosine autosimilarities for the KL-NTD and KL-AE-NTD, computed on the
NNLMS of the song POP01, for F ′ = S ′ = B′ = 24.

performance than those of NTD. We study this condition specifically in Appendix C, with
the goal to explain this drop in performance.

Overall, and except for the General Init in the KL-AE-NTD, the gradation of the level
of prior knowledge enforcement is correlated to the segmentation performance, and, the
less prior knowledge is enforced, the better are segmentation performance.

Additionally, when comparing the KL- and Euclidean-AE-NTD, both NTD Init and
Random Init conditions react similarly to the choice of the similarity function in terms
of segmentation performance. The reconstruction errors are also acting similarly (i.e. a
better reconstruction error for the NTD Init condition compared to the Random Init).
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(a) F0.5 (b) F3

Figure 6.8 – Segmentation results for the KL AE-NTD, depending on the initialization of
the decoder, compared with the NTD.

6.4.4 Pattern Uncovering

The interpretability of the AE-NTD outputs is evaluated on the pattern uncovering
task, as defined in Section 4.5.2. The goal of this section is to study the objective audio
quality of the output of a decomposition in terms of SDR (Signal-to-Distortion Ratio),
comparing two audio signals in energy ratios. The current experiments follow those already
presented in Section 4.5.2, but we reintroduce the important notions in what follows.

Reminder of the Task

Song Scale and Pattern Scale SDR are estimated at two scales, namely the song
scale and the pattern scale. The song scale studies the reconstruction of the whole song,
i.e. compares the signal computed for the whole song by the AE-NTD with the original
signal of the song. This results in a unique SDR for the entire song.

The pattern scale studies the quality of all patterns, i.e. the products WG::b′H for
NTD and ReLU(ReLU(G:b) (W ⊗ H)⊺) for the AE-NTD. Here, the NTD and AE-NTD
compute B′ = 10 patterns, hence resulting in ten SDR values. In particular, a pattern
being a barwise spectrogram, it must be studied according to a unique bar in the original
song, namely the associated bar. In these experiments, the associated bar is chosen
similarly than for NTD, i.e. the associated bar for the pattern b′ is the bar b of maximal
coefficient Qb,b′ in matrix Q.

Results are shown as the average of these ten SDR scores plus or minus the standard
deviation (i.e. avg(SDR) ± std(SDR)) 8.

8. Note that we use the same notation as for the median plus or minus the MAD for the different runs
of the SSAEs and AE-NTDs. We apologize for the clash in notation.
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Phase Estimation The song is reconstructed as X̂, and patterns are obtained from
the AE-NTD as the product P = ReLU(ReLU(G:b) (W ⊗ H)⊺), both being real-valued
spectrograms.

Still, our experiments are designed so as to evaluate signals. An audio signal can
be computed from a complex-valued STFT spectrogram by applying the Inverse STFT.
Thus, starting from a real-valued spectrogram (X̂ or P ), corresponding to the modulus of
STFT coefficients, we additionally need to estimate the argument of each of these STFT
coefficients. Arguments of STFT coefficients correspond to the “phase information”.

Three methods are employed, depending on the scale of study. At the song scale, we
either use the Griffin-Lim algorithm [GL84] or use directly the original phase information.
At the pattern scale, we either use the Griffin-Lim algorithm or softmasking. All these
techniques are detailed in Section 4.5.2.

Results

Tables 6.3 and 6.4 present the SDR respectively for the Euclidean- and KL-based
methods. Results show that, in most conditions, increasing the level of prior knowledge
enforcement also increases the SDR, a few exceptions being obtained in the General
Init condition. Notably, the NTD Init condition generally obtains better results than the
Random Init condition for both loss functions, and in the few exceptions, performance
are similar.

When comparing the NTD performance with those of the AE-NTDs, one has to dis-
criminate the conclusions according to the loss function: the NTD obtains the best per-
formance in every condition with the KL-divergence, while, with the Euclidean distance
as loss function, performance of the NTD are outperformed in three among the four
conditions.

The general trend for the Euclidean loss function is that the AE-NTD in the NTD
Init condition obtains similar or better results than the NTD (especially considering the
standard deviations at the pattern scale), while the General and Random Init conditions
obtain similar or worse performance than the NTD.

Overall, these results conclude towards an advantage of using prior knowledge for the
interpretability of patterns, in particular when comparing the NTD Init condition with
the Random Init condition.
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Method & Phase Retrieval Song scale Pattern scale
Griffin-Lim Original Phase Griffin-Lim Softmasking

NTD -38.47 4.35 -20.81 ± 2.44 16.71 ± 5.10

AE-NTD
NTD Init -38.70 5.05 -17.95 ± 2.58 12.85 ± 3.85
General Init -37.42 0.99 -19.90 ± 3.72 7.59 ± 3.53
Random Init -40.63 0.59 -21.44 ± 4.59 8.27 ± 2.70

Table 6.3 – SDR results, both at the song scale and averaged for the different patterns,
for the Euclidean-NTD and Euclidean-AE-NTD.

Method & Phase Retrieval Song scale Pattern scale
Griffin-Lim Original Phase Griffin-Lim Softmasking

NTD -34.53 6.08 -17.69 ± 3.03 25.94 ± 5.48

AE-NTD
NTD Init -36.46 5.02 -19.21 ± 3.03 13.69 ± 4.35
General Init -40.17 -6.72 -21.81 ± 0.83 2.71 ± 1.09
Random Init -38.91 2.46 -19.47 ± 3.51 14.90 ± 18.18

Table 6.4 – SDR results, both at the song scale and averaged for the different patterns,
for the KL-NTD and KL-AE-NTD.

6.4.5 Experimental Conclusions

In light of these results, two experimental conclusions can be drawn:

Experimental conclusion 13 On the RWC Pop dataset, enforcing prior knowledge re-
lated to the NTD negatively impacts the segmentation scores.

Experimental conclusion 14 On the RWC Pop dataset, enforcing prior knowledge re-
lated to the NTD positively impacts the quality of the decomposition, both in terms of
reconstruction error and interpretability of the patterns in the decoder.

Hence, there is indeed an experimental trade-off between segmentation scores and
interpretability of the output. Except for the General Init KL-AE-NTD, increasing the
level of prior knowledge enforcement negatively impacts the segmentation scores and
positively impacts the quality of the musical patterns, i.e. the musical interpretation of
the outputs.

Finally, the AE-NTDs are designed following the SSAEs. Hence, it would be informa-
tive to compare the performance of both paradigms. Intuitively, the AE-NTD is much
more constrained than the SSAEs: nonnegativity is implemented on the latent space,
and the decoder is constrained to follow an NTD structure. In addition, the FC SSAE
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presented in Appendix B.1, which is close to the current AE-NTD (notably in their de-
coders architectures), is largely worse performing than the Conv SSAE, whose results are
presented hereafter. Thus, one can expect a drop in performance when using AE-NTD
compared to using SSAEs.

Table 6.5 compares the segmentation results of the best AE-NTD (i.e. in the Ran-
dom Init condition) with the segmentation results of the SSAEs. Results show that the
performance of the AE-NTD are worse or similar than the performance of the SSAEs.
Still, results with the KL-divergence are similar, and the largest difference is for the F0.5

of Euclidean networks.
While the best technique is the SSAE, as expected, the performance are really close,

which was not expected 9.

Compression method F0.5 F3

Euclidean Conv SSAE 62.61%
±1.23%

76.47%
±1.66%

AE-NTD, Random Init 58.93%
±0.28%

76.20%
±0.70%

KL Conv SSAE 60.95%
±1.48%

77.18%
±1.06%

AE-NTD, Random Init 60.34%
±0.49%

78.28%
±0.55%

Table 6.5 – Comparison of the segmentation scores of the Conv SSAEs and the Random
Init AE-NTDs, for the NNLMS and the RWC Pop dataset.

6.5 Conclusions

This chapter mixed both SSAE and NTD paradigms in a larger framework, called
AE-NTD, by reinterpreting the factors of NTD into a latent representation and a decoder
for an AutoEncoder.

The current paradigm must be considered as a first attempt to mix NTD with AutoEn-
coders, thus this paradigm should be extended in future work, some perspectives being
listed in the motivations (see Section 6.3). In particular, in their seminal paper [SV17],

9. In addition, it can be seen by comparing the results presented here with the results presented
for the FC SSAE in Appendix B.1 that the use of an NTD decoder is largely beneficial when using a
fully-connected encoder. This could be explained by the fact the subspace of solution is narrowed by the
structure in the decoder, hence refining the optimization scheme.
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Smaragdis and Venkataramani finds that the one-layer AE-NMF obtains worst or simi-
lar performance than the standard NMF, while the multilayer AE-MF outperforms the
standard NMF. Hence, increasing the depth of the AE-NTD could be a promising future
direction.

Nonetheless, some first conclusions can be drawn from the current experiments. In
its current version, the AE-NTD does not achieve the optimistic objective of combining
both very high segmentation performance and an interpretable representation of the song.
Nonetheless, the experiments presented in this chapter confirm and study in more depth
the trade-off between segmentation performance and interpretable representations.

It also seems that the KL-divergence is less an asset for neural networks than for NTD,
as already sketched in Chapter 5.

In addition, the NTD Init condition does not seem to improve the NTD decomposition
itself, and the Random Init condition does not outperform the SSAEs performance. The
General Init condition is an interesting intermediate condition with the Euclidean loss
function, but does not achieve sufficient performance with the KL-divergence.

In that sense, it may be interesting to study different initialization conditions, more
prone to take advantage of both models, and to extend the current AE-NTD formalism.
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Chapter 7

CONCLUSION - OUTRO

This thesis has studied the Music Structure Analysis task, consisting of representing a
song in sections (such as “chorus”, “verse”, “solo” etc), and more specifically the subtask
of structural segmentation, consisting of retrieving the boundaries between sections
within a music piece. In addition, some of the presented techniques were used in a sec-
ondary task of pattern uncovering, consisting of extracting elementary patterns in music
at the barscale.

Three aspects have been covered in this thesis: a barwise processing of music, the
CBM algorithm for segmentation, and the use of compression methods to obtain efficient
descriptions of music content for the task of structural segmentation.

1. Barwise processing of music. In this thesis, we assumed that the barscale is a rel-
evant scale to study structural segmentation, in particular for Pop music. Some
experimental results, comparing beatwise and barwise alignments of boundaries
estimated with the State-of-the-Art algorithms, supported this hypothesis. More
generally, we may conjecture that a priori aligning the estimation of the existing
structural segmentation algorithms on bars could be beneficial.
Barwise processing was also intended to study redundancies and musical motifs
developed at the barscale, and to use these redundancies for the estimation of
structure. The experimental results presented throughout this thesis suggest that
this viewpoint is relevant and beneficial to the estimation of structure in Pop music.
This thesis has introduced two representations for barwise processing of music,
namely the Barwise TF matrix and the TFB tensor. In particular, the TFB tensor
allows to study music according to two different time dimensions, and therefore to
model redundancies both within and across bars.

2. The “CBM” algorithm (standing for Convolutive Block Matching) is based on the
computation of an autosimilarity matrix, representing similarities between pairs of
time instances in the song (in our scale, between pair of bars). In line with previous
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works in the literature, this algorithm is a dynamic programming algorithm.
The main contribution related to the CBM algorithm is the definition of the score
function applying on each segment. The score function focuses on a local homo-
geneity criterion and a regularity criterion based on the expected segment distri-
bution. This results in an algorithm which turns out to be competitive with the
unsupervised State-of-the-Art algorithms for structural segmentation.
Still, the CBM algorithm has not been tested on autosimilarity matrices aligned on
other time scales than the barwise one (for instance, the beats), while it could be
informative regarding the advantages of using barwise-aligned features. Nonethe-
less, we conjecture that barwise-aligned features are particularly favorable for the
homogeneity criterion, as motifs are more prone to appear at the barscale than at
the beatscale.
As a point of particular importance, we noticed that increasing the value differ-
ences (the contrast) between zones of high and low similarity in the autosimilarity
matrix (i.e. homogeneous vs. dissimilar parts of the songs) largely enhances the
performance of the CBM algorithm. We assumed that this gain in performance
stems from the focus on the homogeneity criterion in the design of the CBM al-
gorithm. Indeed, increasing the contrast between zones of high and low similarity
disambiguates the boundaries between blocks of high similarity, i.e. segments.
In that respect, this thesis considered three different similarity functions for the
computation of autosimilarity matrices, leading to three different viewpoints on
how to consider barwise similarity, thus impacting the contrast. As a consequence,
we observed that the choice of the similarity function largely impacts performance
when considering the feature representation of songs. The Radial Basis Function
appeared to be particularly relevant in that context, compared to the more stan-
dard Cosine similarity function.

3. The use of compression schemes on barwise representations of the song. Central to
this thesis is the study of the use of several compression schemes on the barwise
representations of music, as input to the CBM algorithm. Compression schemes
are motivated as alternative strategies for increasing the contrast in autosimilarity
matrices. Indeed, compressing the different bars in the song focuses the repre-
sentation on a few essential attributes, accounting for barwise redundancies and,
incidentally, enhancing the dissimilarity between the different bars compared to
that in the primary feature space.
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In particular, the Nonnegative Tucker Decomposition (NTD), a tensor factorization
scheme, has been investigated as one of the compression techniques. Applied to
music, NTD can be viewed as a paradigm representing a song with musical patterns,
which can then serve as features for the similarity computation. In particular, these
musical patterns appear to be interpretable musically-speaking, which may open
the use of NTD for tasks such as music generation, recomposition, or musicological
analysis in general.
NTD was compared with standard matrix compression schemes, namely Princi-
pal Component Analysis (PCA), Nonnegative Matrix Factorization (NMF) and
AutoEncoders (AE). In particular, the AutoEncoders presented in this thesis are
unsupervised compression schemes at the song scale.
The comparison between the different compression schemes reveals a trade-off be-
tween the interpretability of the compressed representations and the segmentation
performance. Indeed, while NTD is prone to interpretations as musical patterns,
PCA and (unconstrained) AutoEncoders provide better segmentation results. In
light of this conclusion, a mix between both NTD and AutoEncoders paradigms,
coined “AE-NTD”, has been investigated. We believe that AE-NTD represents
an original work mixing NTD and AutoEncoders, largely inspired from previous
developments mixing AutoEncoders and matrix factorizations. Bridging the gap
between low-rank factorizations and AutoEncoders could pave the way for inter-
pretable representations in neural network schemes.
Overall, the compression methods that we investigated obtain competitive results
with those of the State-of-the-Art algorithms on the structural segmentation task,
showcasing their relevance for uncovering the structure of music. In particular, the
performance of compressed representations is less sensible to the choice of similarity
functions, compared to the representations in the primary feature space.

Summing up, two alternative strategies have been employed in this thesis for enhanc-
ing the notions of similarity and dissimilarity in the feature representation of a song:
changing the similarity function and using compression methods. Both strategies work to
some extent, but their combination remains to be optimized.

Perspectives: this work calls for further research tracks.
Firstly, the compression schemes are definitely worth devoting additional research. In

particular, a clear improvement for these techniques would be to design a criterion to
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determine accurate dimensions of the compression model prior to the decomposition. In
addition, constraints (typically, sparsity) and supervision or semi-supervision (e.g. super-
vision for W and H only in the NTD) could improve the compression outputs. While the
“interpretable” techniques (i.e. NTD and AE-NTD, potentially NMF) have provided an
interesting result on a case study, further work is needed to consolidate this observation
on a more extended set of data. In particular, this interpretable aspect could be showcased
on different applications (for instance music generation or recomposition).

Secondly, the CBM algorithm has the potential to be further extended, for instance by
studying new kernels, but also by adding mechanisms able to account for the repetition
criterion and even further combining different criteria. In particular, we believe that the
use of kernels such as the ones developed by Shiu et al. [SJK06] could be worth studying.

Thirdly, experimental conclusions should be validated on other datasets, and notably
on other musical styles than Pop music. The study of the impact of barwise processing in
music deserves to be deepened for other styles of music, especially when the bar division
may be ambiguous or rapidly-changing.

To conclude, this thesis must be view as an attempt to explore the structural segmen-
tation of music. However, music structure is still subject to debate in the communities
dealing with music analysis (Computational Music, MIR and Musicology). This unsettled
situation still results in multiple incomplete viewpoints on music structure, which adds
an additional level of complexity in interpreting the results of our models and algorithms.

Citing the song Lateralus of the band TOOL, we are (to a certain extent) in the
situation where we are “look[ing] through to these infinite possibilities” of studying the
musical object, which could be a never ending quest. Still, let us conjecture that part of
the beauty in music lies in our ability to experience it without fully grasping it, as, citing
Lateralus again, “over thinking, over analyzing, separates the body from the mind”.
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Appendix A

EXPERIMENTAL DETAILS

This Appendix aims at precising experimental details, for clarity and reproduction
purposes.

A.1 Features, in Details

This thesis studies and compares the different features presented in Section 2.2.4. Fea-
tures are all computed using the librosa toolbox, and, unless specified below, spectrograms
are computed using the default settings.

A.1.1 STFT

STFT are computed with windows containing N = 2048 samples. We compute the
STFT as power spectrograms, i.e. using only the squared modulus |.|2 of the STFT
coefficients, and do not consider the phase information for our studies. Note though that
an audio signal cannot be computed from a real-valued spectrogram solely, and requires
phase information. This is further studied in Section 4.5.2.

A.1.2 Mel Spectrograms

Unless specified and for particular contexts (typically for audio reconstruction in Sec-
tion 4.5.2), we prefer to use the Mel-rescaled STFT to the original STFT in this thesis.
In details, the Mel scale are computed following [GS15b], i.e. using a Mel filter bank of 80
triangular filters, starting at 80Hz and ending at 16kHz. Still, we compute the coefficients
of STFT as a power spectrogram instead of the magnitude spectrogram used in [GS15b].

Log Mel and NNLM spectrograms are computed on the aforementioned Mel spectro-
gram.
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A.1.3 Chromagram

We insist on the fact that we use the CENS instead of the Chromagram, and abusively
use the term of Chromagram. They are computed on 6 octaves, starting from G1 i.e. a
lowest note of 98Hz. The smoothing window has a length of 82 frames. Final chromas
vectors are normalized by the l∞ norm.

A.1.4 MFCC

We compute the MFCC spectrograms with 32 bands, following [ME14b]. When com-
puting the MFCC, we use the default librosa settings, thus, the Log Mel spectrogram used
in the computation of the MFCC is not exactly the aforementioned Log Mel spectrogram.

A.2 Dataset in Learning/Test Paradigm

This thesis presents machine learning paradigms studying music. In that sense, while
the techniques in themselves are unsupervised, some hyperparameters must be fixed to
restrict the number of experiments and focus conclusions. Hereafter, we present the spe-
cific learning/test conditions used in this thesis, depending on the dataset (RWC Pop and
SALAMI). Indeed, both datasets being composed of a different number of songs (respec-
tively 100 and almost 1400), and following previous works in literature, we handle these
datasets differently.

The RWC Pop dataset is handled in a two-fold cross-validation scheme, as in [Mar+20]:
the RWC Pop dataset is divided in two subsets (songs with odd vs even ID number), which
are alternatively used as learning and test datasets. When a subset is used for learning,
all values in the considered range of hyperparameters are tested on this subset, and the
hyperparameter leading to the best F-measure with both tolerances in average (i.e. average
of F0.5 and F3) is used on the test subset. The final metrics are then computed as the
average on both test subsets.

The SALAMI dataset is handled by dividing it in a learning and a test subset, follow-
ing [GS15b]: approximately two-thirds of the data are treated as a way to learn hyperpa-
rameters (learning dataset), and the best hyperparameter is evaluated on the remaining
of the data (test dataset, composed of 487 songs). The details of this repartition between
learning and test dataset is available online 1, and tries to mimics the repartition used in

1. jan-schlueter.de/pubs/2014_ismir/
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the MIREX contest (which is not publicly available). In particular, this test dataset con-
tains 12 songs from RWC Pop, and the SALAMI dataset used in [GS15b] (v1.2) contains
in total 15 songs from RWC Pop.
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Appendix B

TECHNICAL CHOICES FOR THE SSAE

B.1 FC SSAE

The “FC” network (FC SSAE) is a fully-connected neural network, with 3 hidden layers
of respective sizes 128, B′ and 128. This network is motivated by the work of [Roc+18].
Practically, the FC SSAE takes a vector as input, which is a barwise spectrogram, i.e.
a row of the Barwise TF matrix. This barwise spectrogram is encoded by two fully-
connected layers, resulting in a latent representation, finally decoded by the last hidden
layer. It is represented in Figure B.1.

Figure B.1 – Architecture of the FC SSAE.

As an example, on an Intel® Core(TM) i7 CPU, decomposing the song POP01 with
B′ = 16 for the Nonnegative Log Mel (NNLM) spectrogram takes approximately 1 minute
for the FC SSAE, which is about 6 times faster than Conv SSAE.
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B.2 Batch Size

The optimization paradigm is not only dependent of the choice of layers in the archi-
tecture (fully-connected and convolutional), but also of additional technical specifications.
This section focuses on the size of the batch when processing the song, i.e. the number of
samples to be presented to the network before backpropagating the error and updating
the network’ parameters. We compare the same networks when processing the entire song
in a unique batch (batch of size B), and with sizes {8, 16, 24, 32, 64}.

As a first analysis, we use the task of structural segmentation as a proxy, to obtain
quantitative conclusions. In addition, we notably study whether both FC and Conv SSAE
obtain similar results.

In this first study, we only consider networks optimized subject to the Euclidean
distance. As for experiments computed for NMF and PCA, we focus on the RWC Pop
dataset for hyperparameter tuning, which contains fewer songs. In addition, the size of
the latent space is fixed to 24, as for the Conv SSAE in Section 5.4.

For both networks, no particular batch size seems to stand out. For the Conv SSAE,
results are similar between the different batch sizes, as presented for segmentation scores
computed on the Cosine autosimilarity of the Log Mel spectrogram on Figure B.2 (we
limit the Figure to this condition, but the trend is the same with the other features and
similarities).

Conversely, for the FC SSAE, the batch size largely influences the results, but without
a clear trend between conditions, as presented in Figure B.3. We explain this erratic
behavior by the very high number of parameters compared to the number of samples
(factor of 25 parameters for 1 sample, in order of magnitude).

With these results, we decide to fix the optimization strategy to a unique batch for
each song, which represent the fastest condition in term of computation time: for the
FC SSAE, on an Intel® Core(TM) i7 CPU, decomposing the song POP01 with B′ = 16
for the Nonnegative Log Mel (NNLM) spectrogram takes approximately 1 minute with a
unique batch and almost 8 minutes with a batch size of 8. In addition, it reduces the risk
of introducing bias when processing the song by batches.

234



Figure B.2 – Segmentation results for different batch sizes, for the Conv SSAE, on the
Cosine autosimilarity of the Log Mel representation.

B.3 Batch Normalization

The erratic behavior of the FC SSAE must be handled, and this section introduces
batch normalization layers [IS15], which are generally employed in neural networks in
order to reduce the parameter space, and could be beneficial to that regard.

A batch normalization layer consists of two steps: firstly, normalizing the batch values
for them to be of unit variance and zero mean, and, secondly, rescaling these values with
an affine transformation of learnable parameters. Denoting as x a sample in the batch,
µ and σ respectively the average and standard deviation of the values in this batch, the
batch normalization layer applies the transformation:

bn(x) =
(

x − µ

σ

)
s + m (B.1)

where parameters s and m are trained in the optimization process, and can be seen as
new standard deviation and average for the outputs of the batch normalization layer.

Batch normalization layers often lead to a gain in performance, while speeding up the
training process [IS15]. Indeed, by normalizing the input of each layer, the optimization
process is less dependent on the distribution of layer’s weights, which may vary with the
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(a) Cosine autosimilarity of Log Mel represen-
tation.

(b) Covariance autosimilarity of Log Mel rep-
resentation.

(c) Cosine autosimilarity of NNLM represen-
tation.

(d) Covariance autosimilarity of NNLM repre-
sentation.

(e) Cosine autosimilarity of Mel representa-
tion.

(f) Covariance autosimilarity of Mel represen-
tation.

Figure B.3 – Segmentation results for different batch sizes, for the FC SSAE, with different
features and the Cosine and Covariance autosimilarities (the RBF autosimilarity is not
presented, because results were mainly similar to those of Covariance). The different
conditions seem to lead to different conclusions, complicating the decision-making process.

different epochs and optimization steps, especially in the first epochs due to the random
initialization. Hence, batch normalization layers can stabilize the optimization process
with respect to the scaling of weights.

Practically, batch normalization layers are implemented for each hidden layer, before

236



the input, as presented in Figure B.4 for the FC SSAE. For the Conv network, batch
normalization layers are implemented after the pooling layer.

In our particular case, as discussed in previous Section B.2, the song is processed in
a unique batch. Hence, here, “batch normalization” actually refers to the normalization
of the entire dataset. For the simplicity of notation and convention, we keep the name
“batch normalization”, even if not accurate for our context.

Figure B.4 – Architecture of the FC SSAE with batch normalization layers.

We report results of the Conv and FC networks with and without batch normalization
layers on Figures B.5 and B.6 respectively. For both SSAE, the use of batch normalization
layers seems beneficial.

For the Conv SSAE, the use of batch normalization layers generally leads to similar
or higher segmentation scores for the Cosine autosimilarity, as presented in Figure B.5
for the Log Mel and MFCC features. These differences are dampened when using another
kind of similarity, such as presented with the Covariance autosimilarity in Figure B.5.

For the FC SSAE, the use of batch normalization layers also leads to higher segmenta-
tion scores when computing the Cosine autosimilarity. Conversely, on both Covariance and
RBF autosimilarities, the FC SSAE obtains better results without batch normalization
layers, as presented in Figure B.6.

Overall, despite this undecisive conclusion that depends on the similarity function,
the variability between the different initializations is lower (e.g. a lower inter-quartile
difference), which indicates a more robust optimization process. Lowering the variability
in results is a motivation for the use of batch normalization layers in our case and in [IS15].
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(a) Cosine autosimilarity of Log Mel represen-
tation.

(b) Covariance autosimilarity of Log Mel rep-
resentation.

(c) Cosine autosimilarity of MFCC represen-
tation.

(d) Covariance autosimilarity of MFCC repre-
sentation.

Figure B.5 – Segmentation results for the Conv network, with and without batch normal-
ization layers. Results are presented on the Cosine and Covariance autosimilarities, with
different features (namely Log Mel and MFCC).

For both networks, segmentation scores are equivalent between the different autosimi-
larities when using batch normalization layers, while, without batch normalization layers,
results vary according to the type of similarity. This difference in robustness with respect
to the similarity may indicate that, with batch normalization layers, SSAEs produce Co-
sine autosimilarities with relatively higher contrast than without.

Empirically, this difference in contrast is exhibited in Figure B.7, presenting the Cosine
autosimilarity of the Log Mel spectrogram of the song POP01 of RWC Pop. Even if an
example cannot be used as a proof or for generalization, this visual confirmation on an
example strengthens the hypothesis of a better contrast with the Cosine autosimilarity
when using batch normalization layers, i.e. a more accurate notion of dissimilarity between
dissimilar bars.
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(a) Cosine autosimilarity of Log Mel represen-
tation.

(b) Covariance autosimilarity of Log Mel rep-
resentation.

(c) RBF autosimilarity of Log Mel representa-
tion.

Figure B.6 – Segmentation results for the FC network, with and without batch normaliza-
tion layers. Results are presented on the Log Mel feature, with different autosimilarities.



(a) FC SSAE, without batch normalization
layers. (b) FC SSAE, with batch normalization layers.

(c) Conv SSAE, without batch normalization
layers.

(d) Conv SSAE, with batch normalization lay-
ers.

Figure B.7 – Cosine autosimilarities of the different SSAE, with and without batch nor-
malization layers.



Appendix C

GENERAL INIT FOR THE KL-AE-NTD

Unexpectedly, the General Init condition performs worse than the others, with all
similarity functions, while it was expected to obtain (at least) similar performance than
those of NTD. We try to explain this result by studying the structural segmentation
performance and with an empirical evaluation of the latent embeddings.

As presented in Figure C.1, the Covariance and RBF autosimilarities obtain better
results than the Cosine autosimilarity, which probably indicates that the Cosine similarity
in this condition is not contrasted enough between similar and dissimilar passages. This is a
first hint towards the explanation of this result, i.e. that the barwise similarity in the latent
space of the General Init KL-AE-NTD is not well suited to the study of structure. Still,
both Covariance and RBF autosimilarities perform worse than the Cosine autosimilarities
of the other conditions.

(a) F0.5 (b) F3

Figure C.1 – Segmentation results for the KL AE-NTD, depending on the initialization
of the decoder, compared with the NTD.

In addition, while, for the Euclidean-AE-NTD, the General Init resulted in a lower
reconstruction error than for the NTD (Table 6.1), the opposite trend appears for the
KL-AE-NTD: a higher reconstruction error for the General Init than for the NTD, as
presented in Table C.1. It may indicate that the optimization paradigm is not relevant,
for example because matrices WRW C and HRW C are not suited for the task, or because
the optimization paradigm often ends in an irrelevant local minima.
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Method Reconstruction error
NTD 0.41

AE-NTD
NTD Init 0.36±0.003
General Init 0.90±0.011
Random Init 1.04±0.128

Table C.1 – Reconstruction error, average for a bar in the song, in term of KL-divergence,
for the different techniques.

Figure C.2 compares the latent embeddings of the General Init KL-AE-NTD with
both the Random Init KL-AE-NTD and the NTD (Q matrix), for the song POP01. In this
example, for the General Init KL-AE-NTD, all the latent dimensions focus on representing
a same group of bars, forming approximately half the number of bars in the song, while
the remaining of the song seems neglected. This behavior does not appear for both the
Random Init AE-NTD and the NTD, even if the same group of bars seems represented
by numerous dimensions in the Random Init AE-NTD (still, not all the dimensions).

This may explain the poor performance, as the optimization paradigm for the General
Init seems to focus on a small number of bars to represent the entire song (at least in this
example), and could also explain the high reconstruction error. Still, we do not understand
why the optimization paradigm focuses almost exclusively on an excerpt of the song, but
we suggest that sparsity constraints could be effective to counteract this effect.
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(a) AE-NTD, General Init

(b) AE-NTD, Random Init

(c) KL NTD

Figure C.2 – Q matrices (latent projections for the AE-NTD) of the General Init AE-
NTD compared with those of the Random Init AE-NTD and the NTD, computed on the
NNLMS of the song POP01, for F ′ = S ′ = B′ = 24.





Appendix D

ADDITIONAL ARTICLES, NOT

PRESENTED IN THIS THESIS

D.1 Semi-Supervised Convolutive NMF for Automatic
Piano Transcription

This article [WMC22] presents the paradigm of Semi-Supervised
Convolutive NMF, with application to Music Transcription. This
article was published at the SMC22 conference. As this work is
independent from the main developments of the PhD work, focusing
on structural segmentation of Music, it is not presented in the main
part of the manuscript.

Presentation of the Article
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ABSTRACT

Automatic Music Transcription, which consists in trans-
forming an audio recording of a musical performance into
symbolic format, remains a difficult Music Information
Retrieval task. In this work, which focuses on piano
transcription, we propose a semi-supervised approach us-
ing low-rank matrix factorization techniques, in particu-
lar Convolutive Nonnegative Matrix Factorization. In the
semi-supervised setting, only a single recording of each
individual notes is required. We show on the MAPS
dataset that the proposed semi-supervised CNMF method
performs better than state-of-the-art low-rank factorization
techniques and a little worse than supervised deep learn-
ing state-of-the-art methods, while however suffering from
generalization issues.

1. INTRODUCTION

Automatic Music Transcription (AMT) is the task of trans-
forming music recordings into symbolic format, such as
scores or MIDI. It is a fundamental musical skill to ac-
quire, taught from early age up to professional level in
music schools and, given enough training, humans can
be extremely accurate at transcription. Automatic mu-
sic transcription aims at accelerating and improving time-
consuming manual transcription and has applications in
music tutoring and rehearsing, musicology analysis or in
other music information retrieval tasks [1].

However, while audio generation from MIDI is rather
mature, its counterpart AMT is still a very challenging
task, even in scenarios involving a single multipitch instru-
ment like a piano, which is our case study. As reported in
the 2018 survey by Benetos et. al. [1], there are mainly two
families of methods to perform AMT: 1) Methods based
on low-rank factorizations of spectrograms, and in particu-
lar Nonnegative Matrix Factorization (NMF). These meth-
ods are mostly unsupervised [2–4]. 2) Deep Neural Net-
works (DNN) which are heavily supervised. They require
registered symbolic-audio training data in a large amount,
which can be hard to acquire [5–9].

Copyright: © 2022 Haoran Wu et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

A recent outbreak in the task of piano transcription (as
well as other related tasks) is due to the release of the
MAESTRO dataset [7], a large dataset of tightly matched
MIDI and audio piano recordings of professional qual-
ity which improved the training quality of deep learning
techniques. However, the supervised methods require ex-
tensive amounts of training data which may not be avail-
able for most instruments. The quality of the MAE-
STRO dataset comes from the existence of the Yamaha
Disklavier™, which enables co-recording of audio and
MIDI. This high level technology does not exist for most
instruments, and building large training dataset for most
polyphonic instruments would be extremely challenging
on the practical side.

In contrast, since unsupervised factorization-based ap-
proaches do not require training data, they obviously solve
the data frugality and generalization problems at the cost of
being far less accurate than deep supervised approaches.

The goal of this paper is two-fold. On a first hand, lever-
aging training data available only in limited quantity. On
another hand, deploying a variant of NMF, coined Convo-
lutive NMF, in the context of transcription, to improve the
transcription performance with respect to NMF. The most
closely related work is surely the Attack Decay model [3],
which also performs semi-supervision, and proposes a
model reminiscent of CNMF. The major differences be-
tween the proposed CNMF framework and this work of
Cheng et. al. are discussed in Section 2.2. Moreover, in
Section 4, we show that the performance of the proposed
approach are generally much higher and can reach the per-
formance levels observed with Deep Learning at the cost
of poor generalization properties. In [4], authors also con-
sider CNMF for piano transcription but CNMF is not the
main focus of their work.

This paper is organized as follows: in Section 2, we re-
view the basics of NMF and CNMF for transcription. In
Section 3, semi-supervised CNMF is introduced. In Sec-
tion 4 we show experimental results on MAPS and MAE-
STRO. Section 5 is devoted to discussions and perspec-
tives.

Notations: Matrices and higher-order arrays are denoted
by capital letters, Tijk is the element (i, j, k) in the three-
way array T . To denote slices, we use semicolons, so that
Ti:: denotes for instance the slice of all elements of T on
row i. Finally, we denote T[a:b]jk elements (i, j, k) with
i ∈ [a, b].



2. CNMF FOR TRANSCRIPTION

2.1 NMF and CNMF Formalisms

Given an element-wise nonnegative matrix M ∈ Rn×m
+

indexed as Mft with f ∈ [1, n], t ∈ [1,m], Nonnegative
Matrix Factorization (NMF) is a low-rank approximation
technique that summarizes M as a sum of rank-one parts,
such that

Mft =

r∑

q=1

WfqHqt (1)

where r ≤ min(n,m) is a user-defined parameter relat-
ing to the number of patterns underlying M , see Figure 1.
In practice, when M is an amplitude spectrogram, such as
in this work, NMF is computed approximately and boils
down to solving a bi-level constrained optimization prob-
lem

argmin
W∈Rn×r

+ ,H∈Rr×m
+

DKL(M,WH) (2)

where DKL(M,WH) is the element-wise Kullback-
Leibler divergence between matrix M and its nonnegative
low-rank approximation WH =

∑r
q=1 W:qHq:. In AMT,

parameter r often relates to the number of notes expected
in the recording, and therefore is generally set to (some-
times a multiple of) r = 88 for piano recordings [2].

Furthermore, factor matrices W and H are respectively
related to pitch and time activation. More specifically, each
column of W is expected to contain a spectral template
characteristic of a single pitch on the instrument used in the
recording, while each corresponding row in H is expected
to provide the activation of that note in the recording [10],
see Figure 2.

An immediate critic about applying NMF to AMT is that
reducing a note to a single frequency template, even tai-
lored for a given instrument, is too restrictive. In prac-
tice, frequency templates should evolve with both ampli-
tude and time. While explicit amplitude dependence would
break the principle of low-rank approximation underlying
NMF, it is possible to extend NMF to include a time-
dependence on the templates, which yields Convolutive
NMF [12]:

argmin
W∈Rn×τ×r

+ ,H∈Rr×m
+

DKL(M,
r∑

q=1

W::q ∗Hq:) (3)

where [W::q ∗Hq:]:t =
∑τ−1

i=0 W:iqHq(t−i) is a discrete
convolution and q ∈ [1, r], see Figure 1 for an illustration.
By convention, we set Hq(t−i) = 0 whenever t−i ≤ 0. In-
teger τ is again a user-defined hyperparameter that dictates
the size of the convolution window. To provide a different
perspective, the element-wise noiseless CNMF also writes

Mft =
r∑

q=1

τ−1∑

i=0

WfiqHq(t−i) . (4)

In a nutshell, CNMF enriches NMF by allowing each
note to have a full STFT matrix W::q as a frequency tem-
plate instead of a single column. Therefore, it may also
captures time-dependent events such as echoes or non-
uniform partials attenuation. It can also be interpreted as a

constrained NMF with large rank r× τ where each note is
represented by τ templates, and the corresponding τ rows
in H are constrained to be equal up to a shift. Other works
have also considered enriching NMF with several tem-
plates per note albeit not using convolution, typically by
fusing rows of the estimated H matrix a posteriori [13–15].

2.2 Comparing the Attack Decay Model With CNMF

A reader familiar with the work of Cheng et. al. [3] will
notice that our work is similar in several aspects with their
proposed Attack Decay (AD) framework for music tran-
scription, but let us properly compare the models. After
some rewriting of the original AD (see additional mate-
rial 1 ), AD decomposes the data M into two terms

Mft =
r∑

q=1

2τ∑

i=0

(
W̃ attack

fq P−i

)
Hq(t−i)

︸ ︷︷ ︸
one note attack

(5)

+

r∑

q=1

t+τ−1∑

i=τ

(
W̃ decay

fq e−αq(i−τ)
)
Hq(t−i)

︸ ︷︷ ︸
one note decay

. (6)

It thus appears that the attack term is a CNMF with rank-
one templates W (CNMF)

fiq = W a
fqPi which is therefore less

general than the CNMF model. The decay term is also a
CNMF with rank-one templates.

With some further manipulations, one can see that it is
possible to entirely recast the AD model as a CNMF model
with rank-two templates, which may explain the perfor-
mance gap between the two models observed in Section 4.
Indeed in the semi-supervised setting, we seem to have
enough data to learn unconstrained templates W train, and
the Attack-Decay structure on the templates may not be
beneficial.

3. TEMPLATE LEARNING AND CNMF

3.1 Challenges in Unsupervised CNMF

In the context of music transcription, it is rarely discussed
why NMF performs extremely well on simple dataset, but
rather poorly on more complex ones. Saying that NMF, or
CNMF, is a part-based representation with no destructive
interferences between components does not explain this
behavior. In fact, supposing the data indeed is generated
reasonably well with a “ground-truth” NMF M = AB for
some true frequency templates A ∈ Rn×r

+ and activations
B ∈ Rr×m

+ , we need to ensure that computing an exact
NMF M = WH will indeed yield A = W and B = H .
In other words, the data M must admit a unique NMF.

Theoretically speaking, it is known that NMF will only
enjoy this uniqueness property in particular cases, such as
when sources are sufficiently scattered or when the data is
very sparse [16,17]. While this may hold for simple songs
where notes do not overlap a lot, in the general case one
should not expect that W and H behave as expected with-
out restricting the set of solutions. Even worse, CNMF

1 https://github.com/cohenjer/TransSSCNMF



Figure 1. A visual comparison of NMF (left) and CNMF (right). CNMF allows to model complex time dependance while
maintaining the number of templates low.

Figure 2. A toy example of transcription using NMF
(adapted from [11]).

being a generalized NMF model, it is bound to have even
weaker uniqueness properties than NMF (but nothing is
known on CNMF identifiability to the best of our knowl-
edge). Blind CNMF has been used with additional spar-
sity constraints for drums transcription, but dealing with
drums typically yields much sparser and lower-rank data
than pitched audio due to the temporal localization of per-
cussive sounds.

Therefore, in general, unsupervised CNMF is not regular-
ized enough to perform transcription. While some works
focus on further regularization of NMF [18], we instead
turn towards semi-supervision.

3.2 Learning Note-Wise Templates

Our working hypothesis is that audio recordings of isolated
pitches are available, similarly to what is used for virtual
instruments, except that we only make use of one template
per note. Each recording is processed as the module of its
complex STFT, denoted V::q ∈ Rn×mq

+ where mq is the
number of STFT frames for that recording. For a regu-
lar piano one needs 88 such templates. Apart from pitch
knowledge, no registered MIDI information is required.

The goal of the learning phase here is to estimate W::q for
each q using each individual recording V::q . We propose
to compute an approximate rank-one CNMF of each V::q

to estimate W::q and htrain
q , the latter being discarded after

the training phase. From a theoretical perspective, rank-
one CNMF is a constrained version of NMF of rank τ ,
furthermore computed on a very simple dataset. Therefore
it fulfills the qualitative NMF uniqueness criteria discussed
above, and we expect the recovered W to contain adequate

Figure 3. Three trained templates from the AkPnCGdD
synthetic piano in MAPS, using τ = 10 convolution size.
Templates W::q have been square rooted to better highlight
higher frequencies.

note frequency templates.
Practically, we solve for each q ∈ [1, r] the following

optimization problem

W train
::q , htrain

q: ∈ argmin
W∈Rn×τ×1

+ , h∈R1×m
+

DKL(Vq,W ∗ h) (7)

using a recently proposed multiplicative algorithm [19]
which alternates between W and h updates while preserv-
ing nonnegativity and ensuring cost decrease.

In spite of the rank-one approximation and the simple
data, the optimization problem still proves challenging
with many local minima. Therefore initialization plays an
important role in the learning phase. Because it is reason-
able to look for W::q in the V::q data itself, we set

W init
::q = V:[t∗:t∗+τ−1]q and t∗ = argmax

t≤mq

∥V:[t:t+τ−1]q∥1
(8)

which amounts to finding the τ consecutive columns with
most energy for initialization. Then we fill hinit

q: with zeros
and place a one at t∗. Note that this initialization proce-
dure mimics a recently proposed algorithm for separable
CNMF 2 [20] but is less computationally intensive. A to-
tal of 500 outer iterations are performed to learn a single
note template.

Once the training phase is over, for a single multipitch

2 Separable CNMF is a computationally simpler variant of CNMF
which looks for all matrices W::q in the data itself.



Figure 4. An example of H test computed through rank-one
CNMF.

instrument, we have at our disposal the whole dictionary
W train, see Figure 3.

3.3 CNMF Transcription With Templates

Testing in the semi-supervised framework only consists of
computing the time activations H for a given music excerpt
M to transcribe, since W has been pre-trained. This makes
the transcription task much easier since the problem

H test ∈ argmin
H∈Rr×m

+

DKL(M,
r∑

q=1

W train
::q ∗Hq:) (9)

is convex and therefore can be solved up to arbitrary pre-
cision with the algorithm proposed in [19]. In practice 100
iterations are used, which is generally enough to reach con-
vergence. Initialization was carried out using a few itera-
tions of NMF with W fixed as the first column of each
trained template W train

::q . An example output H test is pro-
vided in Figure 4.

3.4 Post-Processing of Activations

The post-processing of H test that produces a MIDI file mat-
ters a lot. Hopefully, prior works have already proposed
quite efficient post-processing using an adaptive thresh-
old [3]. We essentially use the same technique but sim-
plified.

In short, activation values in each row of H test, aver-
aged over several consecutive frames, are added to a user-
defined threshold δ, defining an adaptative threshold. An
onset is detected at the position where the signal is above
this adaptive threshold, see Figure 5 for an illustration.
Formally, an onset is detected at frame t for note q when

hqt >
1

21

10∑

j=−10

hq(t+j) + δ, (10)

using zero-padding when necessary. The activations are
typically very sparse, so we generally did not observe spu-
rious double peaks using the adaptive threshold contrarily
to what was observed in [3].

Figure 5. The CNMF activation and adaptive peak-picking
method shown for note F4 using a song from MAPS.

4. EXPERIMENTS ON MAPS AND MAESTRO

Although the proposed semi-supervised CNMF framework
works in principle for transcribing any multipitch instru-
ment, we only evaluate the performance for piano tran-
scription as a proof on concept. Among the few existing
open piano recordings dataset with registered audio and
MIDI, in Section 4.2 we focused especially on MAPS [21]
which has several kinds of individual notes recordings for
several pianos, both virtual and acoustic. We also used
MAESTRO [7] to evaluate generalization performance in
Section 4.3. In our tests, we only considered the first 30
seconds of each song, as in [3]. Results are discussed in
Section 5.

4.1 Experimental Setup

Let us briefly state the various experimental parameters re-
quired to reproduce the experiments 3 . All time signals are
sampled at 44100Hz, the STFT is computed with windows
of 80ms (3528 samples) with a hop-length of 20ms (882
samples). This results in n = 4097 frequency bins and
m = 1501 time frames in the STFT for 30s of raw audio
signal. No smoothing is applied to the STFT, and we set
M as the amplitude spectrogram.

The τ values are chosen among τ = 5, 10, 20. We used
one template for each piano note such that r = 88. Fi-
nally to fix the peak-picking threshold for H test, two ora-
cle strategies are used: 1) use the same threshold for all
songs, and report results for the best value on the grid
[0.01 : 0.01 : 0.4] 2) perform transcription with a song-
dependent threshold, optimized on the same grid. The first
case corresponds to a scenario where the threshold is pre-
trained for a category of recording (music genre, recording
conditions) while the second case corresponds to a hand-
tuned threshold for a specific song to transcribe.

We compare our method with the Attack Decay
(AD) model presented in Section 3 which, to the best
of our knowledge, is the current state-of-the-art for

3 Python code to compute CNMF and reproduce all the experiments is
available at https://github.com/cohenjer/TransSSCNMF



unsupervised/semi-supervised piano transcription. The re-
sults reported in Table 1 are the exact results from [3]
(AD [3]), and the results of AD when applying our post-
processing (AD*). In both cases transcription is performed
on Hattack as defined in [3]. Despite our efforts we were un-
able to exactly reproduce the original AD scores. In partic-
ular the original AD paper introduces smoothness in sev-
eral aspects: the data spectrograms are locally averaged,
and peak-fusion is performed in the post-processing. Con-
sequently, the AD* results enable comparison between the
proposed CNMF and AD in the same pre/postprocessing
conditions, while AD [3] are the best results achieved by
Cheng et. al.. For completeness, we also report the tran-
scription score from the state-of-the-art piano transcription
network introduced in [8] which was trained on MAE-
STRO [7].

To measure performance, we compute a notewise score
using the mir eval [22] toolbox with a tolerance of 50ms.
The offset detection problem is not tackled. Results are
shown using only F-measure (F) and Accuracy (A) metrics
(reported in percent), but full results including Precision
and Recalls for all pianos are available in the complemen-
tary materials online.

4.2 Transcription Performance on MAPS

The MAPS dataset contains classical piano music pieces
recorded with different pianos and conditions: a Yamaha
Disklavier™in two settings ’ENSTDkCl’ (EN1) and ’EN-
STDkAm’ (EN2), and six synthetic pianos ’AkPnBcht’,
’AkPnBsdf’ (AkB1-2), ’AkPnCGdD’ (AkC), ’AkPnStgb’
(AkS), ’SptkBGAm’ (Sp), ’StbgTGd2’ (St). For each pi-
ano/setting listed above, we train a template W train us-
ing a rank-one CNMF as presented in Equation 7. Since
there are many available single notes recordings in MAPS,
we chose based on performance to use the Isolated notes
(ISOL / NO) recorded at Medium intensity (M).

In a first experiment, we study the sensitivity of the pro-
posed method to the selection of the convolution window
size τ and the choice of a threshold δ tuned on the whole
corpus versus on each song individually. We also compare
our results to the Attack Decay model and the ByteDance
supervised neural network. Results are shown in Table 1.
From this experiment, we see that generally τ = 10 per-
forms best, and that the song-wise threshold gives better
results.

In a second experiment, the templates for all other pianos
are used to transcribe AkPnCGdD and ENSTDkCl to es-
timate the generalization capacities of the trained CNMF
templates, see results in Table 2. Only CNMF with song-
tuned threshold is shown and we set τ = 10, to show the
best results only.

Additionally, Table 3 reports the average running times
when training the templates and performing transcription
on the AkPnCGdD recordings. This test was run on a per-
sonal computer with AMD Ryzen 5 2600™ processor and
16GB RAM.

4.3 Generalization on MAESTRO

A natural question regarding CNMF templates is how well
they can be used outside their training context without any
domain adaptation. While results shown in Table 2 already
provide a partial answer, we also tried to apply CNMF
to the MAESTRO dataset. However, since no individual
notes recordings are publicly available for MAESTRO, we
used the templates learnt from MAPS. We transcribed 20
songs from the MAESTRO test set randomly chosen.

The results are quite poor: even when choosing song-
wise thresholds, for all templates, CNMF does not reach
above 59% in F-measure (test results are available in the
supplementary materials). For comparison, the state-of-
the-art with supervised deep learning techniques reaches
above 95% F-measure on MAESTRO. Its performance
on MAPS with data augmentation are also state-of-the-
art, around 89% F-measure on EN1, despite the train-
ing/testing mismatch.

5. DISCUSSION

In light of the experiments conducted in Section 4, let us
discuss the strengths of the proposed CNMF. It exhibits a
significant improvement with respect to the Attack Decay
model, which as far as we know is state-of-the-art for semi-
supervised piano transcription. This is even more true
when using the same pre-processing and post-processing
for AD and CNMF, the former being in particular prone
to unstable activations which were not observed in the lat-
ter. We may therefore affirm that the improvement in per-
formance is indeed due to the CNMF model design. In
other words, CNMF with a semi-supervised setting is an
efficient piano transcription method. From numerical re-
sults, it seems that a convolution window size τ = 10 is
a good compromise between quality of transcription and
transcription computation time.

The CNMF method does not perform better than the su-
pervised state-of-the-art method we denoted as ByteDance
DNN, which is expected given that this neural-network
competitor is trained on MAESTRO which contains more
than two hundred hours of perfectly aligned MIDI and au-
dio piano recording of professional level. We still reach
similar performances on some pianos such as EN1, EN2
and AkS. Nevertheless, the ByteDance DNN is not trained
on MAPS contrarily to the proposed semi-supervised
CNMF.

Moreover, the proposed semi-supervised setting only re-
quires a handful of training dataset which are relatively
easy to acquire. Indeed, only individual notes recordings
are necessary, without any audio and MIDI registration.
Compared to the very large amount of data currently re-
quired by state-of-the-art deep learning approaches, this is
a huge advantage of the proposed approach applicable to
any acoustic instrument with well-defined onsets readily
available. Sadly our study is limited to piano transcription.
A perspective of this work is to apply it to transcribe poly-
phonic instruments for which recording registered MIDI
and audio is challenging.

Finally, while the performance does depend on the choice



EN1 EN2 AkB1 AkB2 AkC AkS Sp St
thresh τ F A F A F A F A F A F A F A F A

5 78 65 70 55 88 80 75 62 83 72 80 69 81 70 75 61
10 85 75 77 64 93 88 87 78 91 84 88 79 89 82 84 74CNMF
20 83 72 76 63 94 89 87 79 92 86 87 79 90 83 86 77global

AD* 81 69 68 53 66 50 71 56 60 43 67 51 64 47 67 50
5 82 70 74 59 90 82 80 69 87 78 84 74 86 77 81 69
10 88 79 80 68 95 91 90 83 94 89 90 82 93 87 89 80CNMF
20 85 75 78 66 95 91 90 83 94 90 89 81 92 87 89 81song

AD* 82 70 69 54 68 52 73 59 61 45 69 54 66 50 70 54
AD [3] 82 70 - - - - - - 85 74 - - - - - -

ByteDance DNN [8] 89 81 77 65 98 97 95 90 98 96 87 77 97 95 95 90

Table 1. CNMF, AD, and the ByteDance supervised network performance with respect to the choice of hyperparameter τ
and the choice of the peak-picking threshold, without training/testing mismatch for CNMF and AD. Only the first 30s of
each songs were used. AD* uses the same pre/post-processing as CNMF. Tolerance is 50ms.

EN2 AkB1 AkB2 AkS Sp St
F 74 77 77 70 74 77AkC A 59 64 63 56 59 63
F 76 67 68 69 67 69EN1 A 62 50 52 53 52 53

Table 2. Transcription scores for CNMF, with train-
ing/testing mismatch.

Training Transcription
τ 5 10 20 10

Av. time 56s 193s 634s 239s

Table 3. Average computation time for a learning pattern
(Training) or transcribing 30s of a song (Transcription) for
semi-supervised CNMF. Results are reported for the AkP-
nCGdD piano in MAPS.

of a good activation threshold, CNMF still performs well
using a global threshold over all songs in MAPS for each
piano. Therefore extensively tuning the threshold hyperpa-
rameter is not essential to the success of CNMF here.

Despite these encouraging results, CNMF has a few is-
sues which open interesting perspectives. First, it clearly
has a significant generalization problem, or in other words,
the learning stage overfits the training data. From Table 2,
it appears that a mismatch between training and testing
inside MAPS, while detrimental to transcription perfor-
mance, is not as severe as a learning on MAPS and testing
on MAESTRO. A tentative explanation is that the MAE-
STRO recordings are live performances with quite loud re-
verberation, while the MAPS recordings are drier. Looking
for an audio transformation of the templates that minimizes
recording conditions mismatch would therefore probably
prove beneficial to generalize pre-recorded CNMF tem-
plates. Retraining a template library given few annotated
data in the testing set could also be a possible solution.
Whether this domain adaptation can be done fully blindly
is still unclear however.

Second, despite performance not relying too much on the
threshold level, the threshold selection method on the other
hand is extremely important. Using a fixed threshold in-

stead of the adaptive peak-picking drastically decreased
performances in our early tests. But this also means that
the post-processing of activations can be further improved
using more involved technique than thresholding each note
individually, and this research direction should not be over-
looked if transcription performances of CNMF are to be
further improved.

Third, for simplicity only one template for each note
was used for the transcription phase. However, most in-
struments sound quite differently depending on how they
are played. The proposed semi-supervised framework cur-
rently does not account for this timbre variation with am-
plitude or technique, and adapting the current method to
make use of several templates per notes is an interesting
research direction.

Finally according to the results shown in Table 3, com-
putation time is rather large even in the testing phase.
With the current implementation, real-time processing is
therefore prohibited. Using a CNMF solver dedicated to
Kullback-Leibler divergence or working on a more effi-
cient rank-one CNMF solver than [19] could nevertheless
drastically reduce computation time.

6. CONCLUSION

The state-of-the-art for automatic piano transcription is un-
deniably nowadays detained by deep learning techniques.
However these methods rely on very large audio and sym-
bolic registered dataset which are potentially very hard
to obtain. In this work, we propose a competitive semi-
supervised matrix factorization model which only requires
labeled recordings of each individual notes. We show
that when there is no mismatch between the training data
and the test data, our approach performs significantly bet-
ter than semi-supervised state-of-the-art approaches, ap-
proaching supervised deep learning performance. There-
fore, we believe that using CNMF instead of NMF is an im-
portant step towards learning more reasonable frequency
templates in low-rank approximation techniques for piano
transcription or other similar tasks. Further works should
however be devoted to adapt pre-trained templates to re-
duce generalization error. Improving the onset detection



method, allowing timbre variation in templates and re-
ducing computation time are other important research di-
rections. Finally, the proposed semi-supervised approach
should be tested with other instruments than the piano and
in a multi-instrument setup.
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D.2 Polytopic Analysis of Music

This article presents the Polytopic Analysis of Music paradigm, and
particularly the work of Guichaoua [Gui17]. The MusicOnPolytopes
toolbox [MCB21] is associated with this article, and both the article
and the toolbox were developed at the same time. It should be noted
that the toolbox also includes the work of Louboutin [LB17], while
not presented in the article. Finally, this article has not been fully
reviewed, and is still a working document, which is why it is not
presented in the main part of the manuscript.

Presentation of the Article
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Abstract

Structural segmentation of music refers to the task of finding a symbolic representation of the organisation
of a song, reducing the musical flow to a partition of non-overlapping segments. Under this definition, the
musical structure may not be unique, and may even be ambiguous. One way to resolve that ambiguity is to
see this task as a compression process, and to consider the musical structure as the optimization of a given
compression criteria.

In that viewpoint, C. Guichaoua [1] developed a compression-driven model for retrieving the musical
structure, based on the “System and Contrast” model [2], and on polytopes, which are extension of n-
hypercubes. We present this model, which we call “polytopic analysis of music”, along with a new open-
source dedicated toolbox called MusicOnPolytopes1 (in Python). This model is also extended to the use
of the Tonnetz as a relation system. Structural segmentation experiments are conducted on the RWC Pop
dataset [3]. Results show improvements compared to the previous ones, presented in [1].

1 Introduction

Structural segmentation of music is an important task in the Music Information Retrieval (MIR) community.
This task aims at representing musical information at a mesoscopic scale with symbolic information, such as
letters or semantic information (verse, chorus, etc). The musical content is hence partitioned and organized
into a list of segments. Relevant structural segments must be computed from low-level musical information,
thus necessitating the definition of salient metrics to form and evaluate potential segments.

This work presents a compression-based scheme for structural segmentation of symbolic music (i.e. music
discretized both in time and representation as a flow of symbols) called “polytopic analysis of music”, and
introduces an open-source toolbox dedicated to this scheme [4].

The idea of linking music structure and compression schemes probably trace back to works such as
Meyer’ principles [5], Lerdahl & Jackendoff Generative Theory of Tonal Music [6] and Narmour’s Implication-
Realization model [7]. These works focus on music perception to capture some sense of music coherence in
pieces, and are in that sense knowledge-based models.

On the other hand, probabilistic and Information-Theory-oriented models (hence, models which are less
driven by prior knowledge) have been studied to capture structures of songs, such as the IDyOM (Information
Dynamics Of Music) which studies the Information Content of musical events [8], models based on the
Kolmogorov complexity [9], or, more recently, Stochastic Neural Networks such as Restricted Boltzmann
Machines [10].

An exhaustive list of compression-based structural segmentation models is beyond the scope of this article,
and such a review can be found in [8]. For its part, this article focuses on the S&C model [2], stemming
from Narmour’s theory [7].

This work is principally based on the previous work of C. Guichaoua [1], which was only presented in
french until now. It is based on geometrical objects, called “polytopes”, which support atomic musical
elements on its vertices, and allows to study these musical elements in a non-chronological manner.

1https://gitlab.inria.fr/amarmore/musiconpolytopes
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In that sense, polytopes can highlight repetition in music which don’t occur sequentially, and aims at
evaluating the information (or, more informally, the “novelty”) brought by each musical element. Poly-
topes are well suited for the compression of musical information, as demonstrated in [11], which shares this
Information-Theory point of view to study repetitions and anticipations in music2.

Polytopic analysis of music focuses on retrieving the frontiers between segments (i.e., structural bound-
aries), which are the time instances separating two consecutive parts. It does not study the labelling stage
of segments, which consists of labelling in a same way coherent segments, and distinguishing dissimilar ones.
A complete description of the structural segmentation task can be found in [12].

This article presents a compression-base definition of the structural segmentation task, in Section 2.
Then, the main components of polytopic analysis of music are introduced in Section 3, and the compression-
oriented cost function associated with these objects is presented in Section 4. Finally, numerical experiments
on the RWC Pop database are presented in Section 5.

2 Structural Segmentation as a Compression Scheme

2.1 Definition of the Problem

The polytopic analysis of music considers that the structure in music can be found by evaluating its inter-
nal repetitions, and by regrouping the similar passages in sections. Formally, this can be obtained in an
optimization scheme, by defining the optimal structure as the structure of maximal compression, i.e. the
structure minimizing a complexity cost, left to be defined.

This work only considers the compression of music in a symbolic form, meaning that music is discretized
both in time and features as a flow of symbols.

Practically, music is considered as discretized on musical beats3, and symbols represent the 24 major or
minor perfect chords, summing up the musical content to the leading triad in the harmony. Let us denote
{at, 1 ≤ t ≤ T} this symbolic representation, at being the symbol used to represent music at time t (aligned
with beats), and T the length of the song.

The structural task now consists in finding a set of segments Z = {Sn, 1 ≤ n ≤ N}. Each Sn is a
sequence of consecutive elements at, such that Sn = {atn , atn+1, ..., atn+1−1}. The set {Sn} partitions the
{at}, in the sense that every at belongs to one and only one Sn. Indexes {tn} are frontiers between segments.

Let’s suppose for now the existence of a complexity cost function C applying on musical passages. The
structural segmentation task is now defined as the search of the optimal sequence of segments regarding this
cost, i.e., denoting as C(Sn) the cost of segment Sn:

Z∗ = argmin
Z

N∑

n=1

C(Sn) (1)

This is an optimization problem, which can be solved by a combinatorial analysis of the possible solutions.
In particular, Sargent and al. [13] presented a dynamic programming algorithm which iteratively computes
the optimal segmentation with respect to a cost.

The structural segmentation task is now reframed as the search of a complexity cost function C for
segments, representing the main content of this article.

2.2 Relation Between Musical Elements

The development of this complexity cost function C is based on the study of relations between elements.
Let’s denote by A the set of possible elements: ∀1 ≤ i ≤ T, ai ∈ A. In this work, A represents all major and
minor perfect chords, i.e. A = J0, 23K.

2As a matter of fact, the toolbox MusicOnPolytopes also includes the work presented in [11], and extends it for the task of
structural segmentation by defining costs for irregular polytopes. Still, as both paradigms differ in numerous points, and for
clarity, it is not presented here. An interesting reader should refer to [11].

3Other discretization could be considered, but musical beats has the advantage of being a musically-motivated discretization
of time.
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These elements are studied relatively with the others (and not individually). Precisely, let Gr an abelian
group of elements called relations. This group allows us to operate on A, which means that relations in Gr

act on the group A.
Hence:

• ∀f ∈ Gr, ∀a ∈ A, f.a ∈ A,

• for all pair of elements (ai, aj) ∈ A, ∃f ∈ Gr/f.ai = aj .

To simplify notations, we denote as fi/j the relation between ai and aj . This group ensures that, for every
musical passage {a1, a2, ..., an}, one can represent the relation between any two elements of this passage.

2.2.1 Triad Circle

A first set of relations, defined in [1], is the “triad circle”. This circle is represented in Figure 1a. Chords
in this circle are ordered such that a clockwise rotation of one step represents the increase of the root by a
third (i.e. using respectively the third and the fifth of the first chord as the root and the third of the second
chord).

The relation f between 2 musical elements is defined as the number of steps between these two elements
in the circle, or, differently said, the clockwise oriented angle between two elements. Hence, ∀f ∈ Gf , f ∈
J−11, 12K.

2.2.2 Tonnetz

A second set of relations is based on the Tonnetz, and more particularly the Neo-Riemannian Tonnetz subject
to the western 12-chromatic scale [14]. The tonnetz is a lattice whose elements are ordered according to
3 harmonic relations between triads: P (Parallel, for triads sharing a common fifth, which represents here
relations between a minor and a major triad sharing the same root, like A major and A minor), R (Relative,
for triads sharing a common major third, such as A minor and C major) and L (for Leading-tone exchange,
meaning that both triads share a common minor third, such as C major and E minor). It is represented in
Figure 1b.

In this Tonnetz, two perfect chords can be compared as a sequence of composition of these three PLR
relations. Even if the relation between two chords is not unique, one can define the “canonic” relation
between them as the shortest relation in number of PLR relations.4

(a) Triad circle (from [1]).

(b) Tonnetz
(By Watchduck (a.k.a. Tilman Piesk) - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=33932849)

Figure 1: Two models of relations: the triad circle and the Tonnetz.

4Note that using the tonnetz with only the L and R relations redefines the previous triad circle.
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3 Polytopic Analysis of Music

3.1 Polytopes

A polytope is a geometrical pattern, composed of vertices and oriented edges (arrows). Polytopes are defined
to scale up the previously defined relations to musical passages. Vertices and arrows of a polytope respectively
represent musical elements at and their relations f .

Definition 3.1 (Regular polytope). Primary polytopes are n-dimensional hypercubes. They are of the form
of a square, a cube, a tesseract, etc.

A n-dimensional regular polytope is defined by its dimension: a regular n-dimensional polytope contains
2n elements. Hence, a 2-dimensional regular polytope represents a square and contains 4 elements; a 3-
dimensional regular polytope contains 8 elements and represents a cube; etc. A 3-dimensional regular
polytope (called 3-polytope for simplification) is represented in Figure 2.

a1

a5

a3

a6

a2

a7 a8

a4

Figure 2: 3-polytope (cube)

Hence, regular polytopes can model musical passages of 2n elements, but are not suited for passages of
different sizes. In order to consider a large number of passages size, we extend these regular polytopes to
“irregular polytopes”.

Definition 3.2 (Irregular polytope). A n-dimensional irregular polytope correspond to a n-dimensional
regular polytope on which has been deleted and/or added some vertices and edges. These alteration (either
addition or deletion) follow themselves the shape of a regular polytope of dimension d < n− 1, i.e. deleted
and/or added vertices form themselves a d-dimensional regular polytope.

An irregular polytope is constructed from at most one d-polytope modeling the addition and at most
d’-polytope representing the deletion.

For example, starting from a 3-dimensional regular polytope (a cube), and deleting its last vertex (0-
polytope) results in a 3-dimensional irregular polytope with 7 elements instead of 8. To detail the construction
specifications of these irregular polytopes, we further introduce the notions of antecedent and successor.

Definition 3.3 (Antecedent). Let an element be the extremity of (at least) one arrow. We define the
antecedent(s) of this element as the origin(s) of this (or these) arrow(s). An element can have several
antecedents if it is the extremity of several arrows. In Figure 2, a2 and a3 are two antecedents of a4.

Definition 3.4 (Successor). Let an element be the origin of (at least) one arrow. We define the successors
of this element as all elements which are at the extremity of this (or these) arrow(s). Elements do not
necessarily have successors. In Figure 2, a4 and a7 are successors of a3.

As an edge represents a relation between two elements, every edge must connect existing elements. Hence,
deleting a vertex implies the deletion of all arrows starting from its antecedents.

In addition, deleting an element at the origin of an edge implies the deletion of this edge, which can
result in elements without arrows connecting them to the polytope. Hence, deleting an element must imply
the deletion of its successors.
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To ensure this latter condition, every alteration polytope must include the last element of the polytope,
and, when both addition and deletion operate on a same vertex, this vertex is deleted without addition (i.e.
deletion is preferred over addition).

Similarly, every added element must be connected to another element of the polytope by an edge. In
that sense, when adding an element, an edge is created with the vertex supporting this addition. This new
element is considered as “attached” to this vertex. As the additional edges form themselves a polytope,
added elements are connected by new edges.

3 irregular polytopes, respectively with deletion, addition and both, are shown in Figure 3. These
polytopes were introduced in [1], and more details are to be found in this work.

a1

a5

a3

a6

a2

a7 −

a4
(a) 2-polytope with a 0-polytope
deletion.

a1

a5

a3

a6

a2

a8 a9

a4 a10

a7

(b) 2-polytope with a 1-polytope
addition.

a1

a6

a3

a7

a2

a8 −

a4 −

a5
(c) 2-polytope with a 0-polytope
deletion and a 1-polytope addition.

Figure 3: 3 irregular polytopes.

3.2 System and Contrast (S&C)

The core of the polytopic analysis lies in the fact that edges between elements model their relations. In that
viewpoint, edges can link two elements which are not consecutive in the chronological order, and, hence,
model non-sequential relations. This viewpoint is exploited in order to try to anticipate some relations.

Anticipation follows the “System and Contrast” (S&C) model, developed by Bimbot and al. [2]. The
S&C model considers a passage of 4 elements, and, by studying the relations between the first 3 elements,
tries to anticipate a “fictive” fourth element, compared with the real one.

Formally, when studying f1/2, the relation between a1 and a2, and f1/3, the relation between a1 and
a3, the 3 elements are now represented by an element (a1) and two relations (f1/2 and f1/3). Then, by
composing f1/2 and f1/3, this model defines a fictive fourth element â4, implied by the first 3 elements,
as â4 = f1/2f1/3.a1. The actual fourth element a4 is then compared to this fictive one, which defines a
“contrast” relation γ as γ4̂/4.

When the fourth element a4 is equal to the fictive fourth element, a4 can be deduced from the first 3
elements, thus reducing the amount of information necessary to model 4 elements to 1 element (the first)
and two relations. Otherwise, the fourth element is modeled with the contrast relation.

4 Polytopic Complexity Cost of a Musical Passage

Now, starting with polytopes and with the S&C model, this section defines a polytopic complexity cost
C(S, P ) for a musical passage S = {a1, a2, ..., an} on a polytope P . The polytopic cost is first defined as the
sum of the individual costs of each element. Let us start with two useful definitions.

Definition 4.1 (Primer). The first element in the polytope (and in the passage) is called “primer”. The
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a1

a3

a2

â4

a4

γ

f1/2

f1/2

f1/3

f1/3

Figure 4: System & Contrast model.

primer does not have any antecedent5.

Definition 4.2 (Under-primer). Elements whose only antecedent is the primer are called “under-primers”.
Hence, under-primers are the only successors of the primer.

4.1 Information-Theory-like Viewpoint

In polytopic analysis of music, an element is studied in comparison with previous elements (not necessarily
consecutive in chronological order). The cost of an element ai is denoted as C(ai|{a1, a2, ..., ai−1}, P ).

This viewpoint aims at finding economical representations of a musical passage, where elements are only
encoded if they can’t be described by previous elements. This idea is close to the Minimum Description
Length paradigm (MDL), an Information-Theory point of view where the shortest description (in terms of
quantity of information) is considered the best one.

Here, elements are represented by their relations rather than being entirely described, and some of these
relations are anticipated within the S&C model.

All relations belonging to a same group Gr, they can be encoded by a same quantity of information q
(for example, representing the number of steps in the circle of triads between two elements leads to a set of
24 relations, requiring an encoding with 5 bits to be entirely described). This quantity of information could
be influenced by priors over the distribution of relations or by expert knowledge, but we do not explore that
lead in this work. We can further simplify the model by considering that q = 1.

Concretely, this means that the complexity cost of a relation is 0 if the relation is the identity, or 1
otherwise. In addition, a1 can’t be described by previous elements, so C(a1|P ) = 1. Finally,

C(S, P ) = C(a1) +
n∑

i=2

C(ai|{a1, a2, ..., ai−1}, P ) (2)

with C(ai|{a1, a2, ..., ai−1}, P ) ∈ {0, 1},∀2 ≤ i ≤ n.

4.2 2-Polytope (Square, 4 elements)

The core of the implication system lies on 4 elements polytopes (which are squares). A square polytope is
composed of a primer a1, two under-primers a2 and a3, and a fourth element a4, which has both under-
primers as antecedents. This polytope is evaluated as a S&C model.

The primer must be encoded (as initialization of the passage), so the initial cost of the polytope is 1.
Then, representing each under-primer in the S&C model, for instance a2, falls on one of these two cases:

• a2 = a1: in that case, the relation f1/2 is the identity, so C(a2|{a1}, P ) = 0.

• a2 ̸= a1: it is necessary to represent the new element a2 with f1/2 ̸= id, so C(a2|{a1}, P ) = 1.

5The primer is in fact the only element without antecedent as deleting an element implies the deletion of its successors.

6



a1

a3

a2

a4

Figure 5: Square system.

The same principle applies for a3 with relation f1/3.
Finally, a4 is evaluated in comparison with the fictive element â4 = f1/2f1/3.a1:

• If â4 = a4, the contrast is null. Hence, a4 is encoded with the identity relation, yielding C(a4|{a1, a2, a3}, P ) =
0.

• If â4 ̸= a4, the contrast relation needs to be encoded to model a4, and C(a4|{a1, a2, a3}, P ) = 1.

Here, because â4 = f1/2.a3, checking if the contrast is null is equivalent to checking if f1/2.a3 == a4,
or, differently written, if the relation between a1 and a2 is equal to the relation between a3 and a4, i.e.
f1/2 == f3/4.

In this test, a4 is evaluated via its antecedent a3, and by comparing the relation f3/4 with the parallel
arrow starting from the primer (f1/2). We define as pivot element the extremity of this parallel arrow. In
this case, the pivot of a4 related to its antecedent a3 is the element a2, denoted p34.

Definition 4.3 (Pivot). In general, we define the pivot of an element ai related to its antecedent aj the

extremity of a relation parallel to fj/i and having the primer as origin. It is denoted pji .

By construction of polytopes, there always exists a pivot for elements which are not the primer or under-
primers6.

primer

antecedent

pivot

element

f1/2

f3/4

Figure 6: Square polytope with antecedent and pivot.

4.2.1 Equivalence of Both Couples Antecedent/Pivot for Square Systems

It is important to notice that, thanks to the commutativity of the relation group, in a square polytope, the
choice of the antecedent for a4 is not important. Indeed, let’s compare both cases:

• Choosing a2 as antecedent leads to choosing a3 as pivot. Hence, testing the nullity of the contrast falls
back to checking if f1/3.a2 == a4. Yet, a2 = f1/2.a1, so f1/3.a2 = f1/3f1/2.a1, which leads to a test
f1/3f1/2.a1 == a4.

6It is obvious in square polytopes, and it can be generalized to every regular polytope. It is also possible to generalize to
non-deleted and non-added vertices in irregular polytopes, because, by design, an element is necessarily deleted if one of its
antecedent is deleted.
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• Choosing a3 as antecedent leads to choosing a2 as pivot. Hence, testing the nullity of the contrast falls
back to checking if f1/2.a3 == a4. Yet, a3 = f1/3.a1, so f1/2.a3 = f1/2f1/3.a1, which leads to a test
f1/2f1/3.a1 == a4.

With commutativity of relations, f1/3f1/2.a1 = f1/2f1/3.a1, so both tests are equivalents.
Finally, when, for two different antecedents of an element, one is the pivot of the other, it is equivalent

to choose either one as the antecedent and the other as pivot. This is the case for all square
polytopes.

Algorithm 1 sums up the previous rules, as a complexity cost function for a 4-elements musical passage
on a square polytope.

Algorithm 1 Compression cost of a square polytope

Input: 4 elements {a1, a2, a3, a4} ∈ A4, and the abelian group Gr.
Output: Cost c

c = 1 ▷ Cost to encode a1
for x = a2, a3 do

if x == a1 then
c = c ▷ Information is redundant.

else
c = c+ 1 ▷ This relation must be encoded.

if f12 == f34 then
c = c ▷ Information is redundant.

else
c = c+ 1 ▷ Contrast needs to be encoded.

return c

4.3 3-Polytope (Cube, 8 elements)

Now, let’s consider 3-polytopes, i.e. cube polytopes, as presented in Figure 2. In this polytope, the primer
is a1, and the 3 sub-primers are a2, a3 and a5.

Elements a4, a6 and a7 have 2 antecedents shaping square polytopes, which is analogous to the previous
case. However, the last element a8 of this polytope leads to a new situation, as a8 has 3 antecedents (a4, a6
and a7) whose pivots are not antecedents (resp. a5, a3 and a2). Here, each of the 3 antecedents defines a
different square polytope with a different fictive element (a1, antecedent, pivot, â8), as presented in Figure
7. Can these different S&C generate different fictive elements? And, if so, can a contrast be defined?

a1

a5

a3

a6

a2

a7 a8

a4

a1

a5

a3

a6

a2

a7 a8

a4

a1

a5

a3

a6

a2

a7 a8

a4

Figure 7: Different S&C generated by the 3 different antecedents of a8.

Let us study these three cases. The “implication principle” for the contrast in the S&C means that, for a
given antecedent, the relation antecedent/â8 is equal to the relation primer/pivot, or, equivalently thanks to
commutativity, that the relation primer/antecedent is equal to the relation pivot/â8. Here, the three fictive
elements are found as:
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• â48 = f1/5.a4 in the system {a1, a4, a5, a8}.

• â68 = f1/3.a6 in the system {a1, a2, a7, a8}.

• â78 = f1/2.a7 in the system {a1, a3, a6, a8}.

Applying the relation between the primer and the antecedent to the pivot is interesting, because, if the
antecedent is itself contrasting in its own square system (for example, a4 in the system {a1, a2, a3, a4}), this
contrast is also assumed in the relation between the pivot and â48.

Hence, if several antecedents of a8 are constrasting in their own square systems, different contrasts

are assumed to construct the âi8, leading to different fictive elements. There is here an ambiguity on the
implication, which needs to be handled.

No antecedent is contrasting Firstly, let us consider the case where no antecedent of a8 (a4, a6 and a7)
is contrasting. Here, these antecedents are equal to the composition of the relations primer/under-primer
of their square systems (a4 = f1/2f1/3.a1, a6 = f1/2f1/5.a1 and a7 = f1/3f1/5.a1). Hence, the three fictive

elements âi8 are all equal to f1/2f1/3f1/5.a1, thanks to commutativity. Figure 7 can help the reader to
understand this result.

Only one antecedent is contrasting Secondly, let us consider the case where only one antecedent is
a contrast. In this case, two fictive elements are constructed without contrast as f1/2f1/3f1/5.a1 (as in the
precedent case), and the third one replicates the contrast between the primer and this constratic antecedent,
as f1/2f1/3f1/5γ.a1 (with γ denoting the contrastic relation).

Replicating this contrast holds more information than in the non-contrastic cases. Hence, as a rule, the
fictive element constructed from the contrastic antecedent is considered as the only valid one.

In both previous cases, a unique valid fictive element â8 is constructed to evaluate a8. The equality test
â8 == a8 then determines the value of C(a8|{a1, ..., a7}, P ).

More than one antecedent is contrasting Finally, when there are at least 2 antecedents with contrasts,
it is unclear which fictive element should be chosen. In that case, a8 is considered a constrast. Indeed, if a8
does not admit a valid implication, it cannot be implied, so it is by nature a contrastive element. Hence,
C(a8|{a1, ..., a7}, P ) = 1.

4.4 General Case, for Regular n-polytopes

The cube example introduces the case of an element with several antecedents, and the general case extends
this principle.

To simplify visualizations, let us consider the 4-polytope case, represented in Figure 8. In this polytope,
a8 is no longer the only element with several couples antecedent/pivot, and is itself an antecedent of a16.

When a8 admits a unique valid fictive element â8 (only 0 or 1 contrast among its antecedents, as seen
previously), the previous case can be extended by checking if a8 is itself a contrast or not (â8 == a8).

When a8 does not admit a fictive element, it is a contrast. In both cases, â816 can be constructed as
f1/8.a9, and, counting how many constrastive antecedents a16 holds, the evaluation process for a8, presented
above, can be extended (with 4 antecedents instead of 3).

Hence, for any element ai, if 0 or 1 of its antecedents is a contrast, a unique valid fictive element can be
constructed, and C(ai|{a1, ..., ai−1}, P ) depends on the relation fî/i. Otherwise, when several antecedents
are contrasting, fictive elements are ambiguous, thus ai is treated itself as a contrast, both for the cost
C(ai|{a1, ..., ai−1}, P ) and for its successors.

Definition 4.4 (Valid antecedents (set)). We call “valid antecedents” the set of all the antecedents of an
element which can be used to construct a fictive element without ambiguity. Hence, this set can contain all
antecedents of an element (if none of them is a contrast), only one (if it is the only contrast) or be empty.
It is denoted Vi.
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Figure 8: 4-polytope

The key point is to update the set of valid antecedents when facing a contrastic element: only this
contrastic element has to be considered as valid for its successors. Concretely, this is made by intersecting
each set of valid antecedents of its successors with this element (and its pivot). This indeed results in an
empty set when several antecedents are contrastive.

The aforementioned process results in the general complexity cost function for regular polytopes, pre-
sented in Algorithm 2. In addition to previous definitions, let us denote Si the set of successors of an element
ai.

Algorithm 2 Implication principle for an element ai.

Input: ai, element of a polytope, with a set of valid antecedents Vi, and relations f ∈ Gr, the current cost
of the polytope c.

Output: Updated cost c
if ∃aj ∈ Vi/f(a1, aj) = f(pji , ai) then

▷ Looking at its valid antecedents, and searching for an implication without contrast.
c = c ▷ Information is redundant.

else ▷ There is no implication without contrast (including the case where Vi is empty)
c = c+ 1 ▷ This element needs to be encoded.
for s ∈ Si do ▷ Iterating over the successors of ai

Vs = Vs ∩ {ai, pis}
▷ Updating the antecedents of this successor, to keep only ai and its pivot.

return c

4.5 Irregular Polytopes

Finally, the complexity cost function can be extended to any irregular polytope. Starting with a n-polytope,
an irregular polytope is constructed by deleting and/or adding another regular polytope of smaller dimension
which contains the last element of the n-polytope.

As stated before, this condition ensures that, when deleting an element, all of its successors are also
deleted. This also ensures that deletion does not break the previously designed rule. Thus, deletion only
reduces the number of successors of some elements, but does not change the aforementioned rule.

Nonetheless, addition in a polytope adds a new case to the general rule, presented with help of Figure 9.
When an element is added to the polytope, the element on which it is attached is its antecedent (here for

instance, a4 is an antecedent of a5, and equivalently for a9 and a10). However, these antecedence relations do
not define a pivot element, as relations f4/5 and f9/10 do not have a parallel relation starting on the primer.
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Figure 9: Visualization for addition

In that case, relations are compared with the identity function for the complexity cost. In practice, it can
be obtained by considering that the pivot of a5 related to its antecedent a4 is the primer a1, which follows
the general rule.

Additionally, a5 is also antecedent of a10, and relation f5/10 has a parallel relation f1/6 starting from the
primer, so a6 is a pivot for a10 related to a5, which follows the general rule.

4.6 Computing the Cost of a Polytope

Finally, Algorithm 3 presents the general complexity cost algorithm for a sequence of musical elements on a
polytope.

Algorithm 3 Compression cost of a polytope.

Input: Polytope with vertices {ai} ∈ A, i = 1, ...,m, and an abelian group Gr.
Output: Cost c

c = 1 ▷ Cost to encode a1
for i = 2, ...,m do

Vi = {antecedents for ai} ▷ Initializing valid antecedents for all elements with all their antecedents

for i = 2, ...,m do ▷ Iterating over the elements of the polytope
if Vi = {a1} then ▷ If this element is an under-primer

if a1 = ai then
c = c ▷ Information is redundant.

else
c = c+ 1 ▷ This element needs to be encoded.

else ▷ This element is not an under-primer
if ∃aj ∈ Vi/f(a1, aj) = f(pji , ai) then

▷ Looking at its antecedents, and searching for an implication without contrast.
c = c ▷ Information is redundant.

else ▷ There is no implication without contrast (including the case where Vi is empty)
c = c+ 1 ▷ This element needs to be encoded.
for s ∈ Si do ▷ Iterating over the successors of ai

Vs = Vs ∩ {ai, pis}
▷ Updating the antecedents of this successor, to keep only ai and its pivot.

return c
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5 Numerical Experiments

Algorithm 3 is developed in Python, along with a model handling polytopes, and is open-source7 [4]. Results
are based on the RWC Pop database [3].

5.1 Data

This algorithm has been tested in a same manner than C. Guichaoua in his PhD thesis [1], which introduces
the polytopic analysis of music. Particularly, tests are conducted on the semiotic database of annotation
for RWC Pop8 [1, Chap.3.3]. This database contains beatwise aligned chord annotations, obtained from
the initial annotations of the RWC Pop database [3] (“auto”), which were then manually corrected and
homogenized by a human annotator (“manual”).

In these annotations, each song is represented by a discretized sequence of perfect chords, synchronized
on beats of the song. As a first attempt, silences were replaced with the previous chord (or the first chord
of the song if silences are opening it). Defining a relation between a chord and a silence could be explored
in future work.

5.2 Penalties

Section 4 presents the raw polytopic cost C(S, P ) for a musical passage S on a polytope P . Two penalty
costs are added to this raw polytopic cost such that:

C(S) = min
P

(C(S, P ) + fa(P )) + fr(S) (3)

iterating over all polytopes P containing card(S) vertices, size of the musical passage.

5.2.1 Alteration Penalty fa

A first penalty is applied to the polytope itself, related to its irregularities. In an information theory-like
viewpoint, as presented in Section 4, a polytope can be defined by a quantity of information. Regular
polytopes can be entirely described by their dimension, while altering a regular polytope (either by deletion
or addition) requires to encode the shape and the position of the alteration.

In that sense, altering a polytope P increases the complexity. This increase is handled by adding a
penalty fa(P ) = pa ∈ R+ to the raw score when the polytope is irregular by either an addition or a deletion,
and by adding fa(P ) = 2pa when the polytope is altered by both addition and deletion. Parameter pa is
fitted in experiments.

5.2.2 Regularity Penalty fr

The second penalty considers the size of the segment. Indeed, as presented in [13], some segment sizes are
more frequent than other in the RWC Pop database, particularly segments of 32 beats. Sargent et al. shows
that adding a penalty prior in segmentation algorithms can enhance segmentation scores. For consistency
with [1], we use the function fr(S) = pr|card(S)− 32| as a regularization for the segment S of size card(S).
Parameter pr ∈ R+ is fitted in experiments.

5.3 Scores

The goal of the task is to retrieve frontiers between structural segments, i.e. beats on which the segment is
changing.

These estimated frontiers are compared with the annotation in order to compute True Positive, False
Positive (wrong estimation of a frontier) and False Negative (frontier not found in estimation) rates. From
this rates are computed Precision, Recall and F1-measure, as presented in [15]. A frontier is considered
correct if it is exact or falls close enough (within a tolerance window) to an annotated frontier. These
experiments were restricted to 0 and 3 beats tolerance windows, as in [1].
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Technique P0 R0 F0 P3 R3 F3 Computation time

MusicOnPolytopes [4]
pa = 0, pr = 0 50.3% 61.8% 55.1% 55% 68% 60.4% 3 1

2 hours
pa = 3, pr = 0.1 68.2% 73.6% 70.6% 68.9% 74.5% 71.4% 3 1

2 hours

Results from [1]
pa = 0, pr = 0 - - 43.7% - - - Not mentionned
Optimal conditions* - - 69% - - 70% Not mentionned

Code of [1], pa = 0, pr = 0 35.8% 56.7% 43.3% 39.6% 62.9% 47.9% 8 hours
on author’s laptop Optimal conditions* 59.2% 63.4% 61.1% 61.2% 65.6% 63.2% 8 hours

Table 1: Numerical experiences on database “Manual”. *Optimal conditions refer to the optimal conditions
of [1], which are slightly different than in our model. C. Guichaoua indeed considered that pa should be
different when considering addition and deletion, leading to two parameters p+a and p−a , and also that pr
should distinguish sizes larger and lower than 32, leading to two parameters p+r and p−r . These optimal
conditions hence refer to p+a = 2.25, p−a = 3, p+r = 0, p−r = 0.125.

Technique P0 R0 F0 P3 R3 F3

MusicOnPolytopes [4]
pa = 0, pr = 0 29% 39.5% 33.1% 42.6% 59.8% 49.2%
pa = 4, pr = 0.2 44.5% 47.1% 45.6% 56.2% 60% 57.8%

Results from [1]
pa = 0, pr = 0 - - - - - -
Optimal conditions* - - 37.4% - - 55.2%

Code of [1], pa = 0, pr = 0 23.6% 39% 28.9% 35% 59.5% 43.4%
on author’s laptop Optimal conditions* 41.7% 44.4% 42.8% 53.9% 57.7% 55.5%

Table 2: Numerical experiments on the “Auto” database. *Optimal conditions refer to the optimal conditions
of [1], equal to: p+a = 2.5, p−a = 2.5, p+r = 0, p−r = 0.125.

Database Technique P0 R0 F0 P3 R3 F3

Manual
Triad circle

pa = 0, pr = 0 50.3% 61.8% 55.1% 55% 68% 60.4%
pa = 3, pr = 0.1 68.2% 73.6% 70.6% 68.9% 74.5% 71.4%

Tonnetz
pa = 0, pr = 0 50% 61.2% 54.7% 55.3% 68.4% 60.7%
pa = 3.5, pr = 0.1 67.1% 72.5% 69.5% 68% 73.6% 70.5%

Auto
Triad circle

pa = 0, pr = 0 29% 39.5% 33.1% 42.6% 59.8% 49.2%
pa = 4, pr = 0.2 44.5% 47.1% 45.6% 56.2% 60% 57.8%

Tonnetz
pa = 0, pr = 0 27.1% 36.6% 30.8% 41.1% 57.7% 47.5%
pa = 4, pr = 0.3 44.8% 46.3% 45.4% 56.5% 58.7% 57.4%

Table 3: Results of MusicOnPolytopes [4]. Comparison between triad circle and tonnetz relations.

13



Results presented in tables 1 and 2 are computed using the triad circle model of relations, which is
common to both works. Results obtained with the new MusicOnPolytopes toolbox are higher than those
of [1]. At this time, the differences are difficult to explain.

In addition, when running the code of [1] (obtained from C. Guichaoua himself), the results on the
Manual database are worst than the ones presented in [1]. These results may be due to downgrading or
modifications of external libraries since its initial development, but are also hard to explain.

In addition, Table 3 compares segmentation results obtained either with the triad circle or the tonnetz as
relation model. Results are not significantly different between the two models of relations, but the tonnetz
obtains generally worst results than the triad circle.

6 Conclusion

In conclusion, this article presents a new code framework, in Python, to compute polytopic analysis of music,
introduced in [1]. This framework shows interesting results when applied on the structural segmentation
task of symbolic music.

This work shows an improvement in performance compared to those obtained by C. Guichaoua in [1],
and calls for further development. In particular, an exciting lead would be the development of a new group
of relation Gr for discretized audio signals, in order to extend this work for the structural segmentation of
audio signals.
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A Computational Representation of Polytopes

A polytope can be represented either by its geometrical model (n-hypercube with alteration), or by a symbolic
representation, more suited for computational treatment.

In his thesis [1], C. Guichaoua uses binary trees to model polytopes, where leafs represent final elements.
In MusicOnPolytopes, polytopes are represented by nested lists. An element of a polytope is represented

by a “1”, and every dimension represents a level of nesting of this element. For instance, a 1-polytope,
linking two elements, is represented as [1,1], and a 2-polytope, with 4 elements, is represented as [[1,1], [1,1]].

For irregularities, a deletion of an element is represented by the deletion of a “1” in this list, for instance
the 2-polytope with the 0-polytope deletion is represented as [[1,1], [1]]. An addition is represented by a
tuple, signifying on which vertex is attached the new element, for instance the 1-polytope with the 0-polytope
addition is represented as [1, (1,1)].

These general polytopes can then be adapted to a particular musical sequence (for instance [[Ab,
Ab],[Gm,Gm]]), or extended to indexed polytope, where each element represents the index of the element in
the polytope (for instance [[0,1], [2,3]]).

A tutorial notebook is present with the code9.

9https://gitlab.inria.fr/amarmore/musiconpolytopes/-/blob/master/Notebooks/Tutorial - Handling polytopes.ipynb
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Titre : Paradigmes d’Apprentissage Automatique Non-Supervisés pour les Représentations de la
Similarité et de la Structure Musicale.

Mot clés : Segmentation Structurelle, Musique, Apprentissage Automatique Non-Supervisé et Mé-

thodes d’Optimisation

Résumé : La structure musicale, définie comme
la représentation simplifiée de l’organisation d’un
morceau de musique, est un concept musico-
logique important mais néanmoins complexe à
estimer automatiquement. Cette thèse présente
de nouvelles méthodes pour estimer automati-
quement la structure musicale, se focalisant sur
l’étude à l’échelle de la mesure musicale. Par le
développement d’un nouvel algorithme de seg-
mentation (appelé “CBM”) et par l’étude et la
comparaison de différentes méthodes de com-
pression non supervisées (allant de l’algèbre li-
néaire et multilinéaire aux réseaux de neurones),
les paradigmes introduits dans cette thèse per-
mettent d’obtenir des résultats quantitatifs dé-
passant l’Etat-de-l’Art non supervisé actuel et
se rapprochant de l’Etat-de-l’Art global, issu de

méthodes d’apprentissage avec supervision. En
particulier, les méthodes décrites dans cette
thèse étant non supervisées, l’estimation ne re-
pose pas sur des bases de données annotées,
permettant ainsi de mitiger les biais liés à l’am-
biguïté et à la subjectivité (inhérents à la struc-
ture musicale), tout en limitant le perte en per-
formance par rapport aux meilleures méthodes
supervisées. Enfin, certaines méthodes étudiées
dans cette thèse (en particulier la décomposi-
tion nonnégative en Tucker) permettent d’extraire
automatiquement des parties interprétables de
la chanson qui pourraient être utilisées pour
d’autres tâches que l’estimation de structure, et
s’intégrer dans le développement d’algorithmes
interprétables d’apprentissage automatique pro-
fond, sujet de recherche majeur aujourd’hui.

Title: Unsupervised Machine Learning Paradigms for the Representation of Music Similarity and
Structure.

Keywords: Structural Segmentation, Music, Unsupervised Machine Learning and Optimization meth-

ods

Abstract: Musical structure, defined as a sim-
plified representation of the organization of a
song, is an important musicological concept,
but hard to automatically estimate. This thesis
presents new methods to automatically estimate
the structural segmentation of a song, focusing
the study of music at the barscale. By develop-
ing a new segmentation algorithm (called “CBM”)
and by comparing several unsupervised com-
pression schemes (from linear and multilinear al-
gebra to neural networks), paradigms introduced
in this thesis result in segmentation performance
outperforming those of the unsupervised State-
of-the-Art methods and almost similar with those
of the global State-of-the-Art, obtained with su-

pervised machine learning algorithms. In partic-
ular, as the methods described in this thesis are
unsupervised, the estimation do not rely on an-
notated data, lowering the bias in the estimates
related to ambiguity and subjectivity (inherent to
musical structure) while limiting the loss in per-
formance compared to the best supervised meth-
ods. In addition, some of the methods studied in
this thesis (in particular Nonnegative Tucker De-
composition) allow to extract automatically inter-
pretable parts of a song which may be used for
other task than the estimation of structure, and
participate in the development of interpretable
machine and deep learning algorithms, which is
a major field of research nowadays.
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