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Abstract

At sufficiently high phase space densities, the many-body state of a degenerate
Bose gas can be described by a single macroscopic wavefunction that undergoes non-
linear dynamics. Ultracold Bose gases are a prominent platform in the field of nonlin-
ear physics, enabling the study of stable stationary wavepackets, known as solitons.
In these platforms, atom interactions are often weak and treated within a mean-field
approach. However, interactions play a crucial role in the physics of these Bose gases
and explain for example the formation mechanism of solitons or the emergence of a
remarkable phase of matter: superfluidity. This thesis describes investigations on pe-
culiar dynamics of ultracold Bose gases, which are approximated by zero-temperature
physics. After introducing our experimental setup and its theoretical characterization,
we discuss the survival of the superfluid property in spatially modulated systems, in
connection with Leggett’s seminal work in 1970 and the spectacular supersolid phase
of matter. We then explore the physics of a specific type of 1D soliton that emerges
in a weakly-immiscible two-component mixture, known as the magnetic soliton. Its
name originates from its appearance in 1D ferromagnetic spin chains. Magnetic soli-
tons exhibit a captivating periodic motion under a uniform force field, similar to the
Bloch oscillations of electrons in solids. Finally, we introduce a new experimental
setup for studying Rydberg excitations and the realization of an all-optical Bose-
Einstein-Condensate.

Résumé

Pour des densités dans l’espace des phases suffisamment grandes, l’état à N corps
d’un gaz de Bose dégénéré peut se décrire par une unique fonction d’onde macro-
scopique qui obéit à une dynamique non linéaire. Les gaz de bosons ultrafroids sont
devenus une plateforme de choix pour la mise en évidence de phénomènes non linéaires,
permettant l’étude des solitons, des paquets d’onde stationnaires ayant des propriétés
de stabilité remarquables. Les interactions entre atomes dans cette plateforme sont
souvent faibles et peuvent être traitées dans une approche de champ moyen. Malgré
cela, les interactions jouent un rôle prépondérant dans la physique de ces gaz et per-
mettent d’expliquer notamment le mécanisme de formation des solitons, mais aussi
l’émergence d’un état superfluide de la matière à basse température. Cette thèse
décrit de récentes études de dynamique de gaz de Bose, menées à température nulle.
Après avoir introduit la plateforme expérimentale utilisée ainsi qu’une description
théorique de ces gaz de Bose, nous discutons le devenir de la propriété de superfluid-
ité en présence d’une modulation spatiale. Ce travail est en lien direct avec les travaux
menés par Leggett en 1970 et avec un état spectaculaire de la matière, connu sous
le nom de supersolide. Nous explorons ensuite la physique d’un type spécifique de
soliton unidimensionnel, qui apparaît dans des mélanges de spin faiblement immisci-
bles à deux composantes et qui est connu sous le nom de soliton magnétique. Cette
désignation provient d’un autre contexte dans lequel ce soliton apparaît: une chaîne
ferromagnétique de spins. Les solitons magnétiques répondent de manière spectacu-
laire à l’application d’une force uniforme: ils oscillent périodiquement dans le temps,
de manière similaire au mouvement d’électrons dans le potentiel périodique créé par
des solides, connu sous le nom d’oscillations de Bloch. Pour finir, nous discuterons le
début de la construction d’une nouvelle plateforme expérimentale, visant dans le futur
à étudier des excitations Rydberg, et la réalisation d’un condensat de Bose-Einstein
sans utiliser de pièges magnétiques.
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Introduction

Quantum physics governs the behavior of matter at the atomic and subatomic
scales. It was developed in the 20th century to explain phenomena that classical
physics could not account for, such as Max Planck’s black-body radiation problem
[1].

The theory elaborated at that time attributed highly counter-intuitive proper-
ties to quantum systems by relying on some postulates. These properties include an
accessible range of physical quantities (such as energy, momentum, and angular mo-
mentum) that are not continuous but discretized, the existence of a certain accuracy
limit below which a physical quantity cannot be measured, and the dual behavior of
matter and light as both waves and particles. This theory brought controversy to
the field, exemplified by the famous Bohr-Einstein debate [2]. The interpretation of
quantum mechanics is still highly debated today [3].

One of the most important quantum mechanics postulate concerns the measure-
ment procedure. It is a feature that should be thoroughly reconsidered in the quan-
tum world. In contrast to our daily experiences, it indicates that we can only predict
probabilities of the outcome of an experiment, rather than certainties. For example,
the probability of finding an isolated electron at a given position1 around a nucleus is
obtained by squaring the absolute value of a complex number, known as the wavefunc-
tion, which associates a probability amplitude to each position of the electron. The
wavefunction carries the dual property of the quantum object. Each isolated particle
is associated with a single wavefunction (particle nature), which evolves according to
a wave equation, named the Schrödinger equation2 (wave nature). In particular, this
wave description suggests the possibility of observing striking matter-wave interfer-
ences when multiple waves overlap [4].

The mathematical description of quantum mechanics postulates that the state de-
scribing the quantum object belongs to a Hilbert space, which is a linear space. When
it comes to the description of quantum many-body systems, such as a collection of
electrons, how can we describe the many-body state? The composite system postu-
late of quantum mechanics answers this question. In the absence of entanglement, the
many-body state is the tensor product state of its individual constituents. Therefore,
the size of this tensor-product Hilbert space, in which the many-body wavefunction
evolves, grows exponentially with the number of particles. This exponential growth
makes it difficult to compute the wavefunction of the many-body problem, both ana-
lytically and computationally.

For an ensemble of identical particles, the symmetrization postulate restricts the
size of the total Hilbert space. It states that a many-body state of identical particles in
3D is described by a wavefunction that is either completely symmetric (for bosons) or
antisymmetric (for fermions) under the exchange of any pair of particles. While Fermi
gases of electrons are extensively studied in condensed-matter physics since the early
days of quantum physics, Bose gases were less considered. Liquid helium, discovered
in 1938 [5, 6], was for a long time the only platform for studying Bose systems and

1We do not consider its spin degree of freedom here.
2This comes from an other postulate of quantum mechanics.
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quantum phenomena such as the observation of a superfluid flow, i.e. a dissipation-
less flow [7], or the emergence of vortices were reported [8]. A peculiar characteristic of
Bose systems is the macroscopic occupation of a single quantum state at sufficiently
low temperatures. This phenomenon is known as Bose-Einstein condensation and
was initially predicted for a system of non-interacting massive bosons by Bose and
Einstein [9]. In liquid helium, strong interactions are present and even though Bose-
Einstein Condensation still occurs at low temperature, they complicate the theoretical
description of these systems and hinder the role of quantum statistics.

This is only since the development of laser cooling theories and the realization
of a Bose-Einstein Condensate with ultracold quantum gases in 1995 [10, 11] that
these platforms provide alternative samples for the study of Bose (and later Fermi)
systems. The interactions involved are mostly weak, and these dilute, long-lived sam-
ples offered the possibility to make quantitative comparison with theoretical models
at the beginning of their study [12]. Now, their interest extends far beyond the verifi-
cation of quantum mechanics predictions. Recent technical developments make them
extremely versatile platforms for studying strongly correlated many-body quantum
phases of matter, realizing so-called quantum simulators. First, the dimension of the
system can be changed by strongly confining atoms along one or two directions [13].
Then, beam-shaping techniques allow for the arbitray control of the potential applied
on the atomic cloud [14]. Atoms can also be trapped in periodic potentials, known
as optical lattices, which mimic the trapping of electrons in a crystal [15]. Few-body
systems of atoms trapped in optical tweezers have also been shown to be promising
platforms for quantum computing [16]. Importantly, in addition to the control of the
confinement, interactions between atoms can be tuned thanks to Feshbach resonances
[17]. Finally, the internal state of the cloud can be manipulated in a versatile way,
allowing for the study of mixtures within the same atomic species, for example.

Our team chose several of these technical developments to focus on the study of
2D uniform Bose gases. The interest in 2D systems mainly lies in the existence of a
topological phase transition between a low temperature superfluid phase and a high
temperature normal phase, called the Berezinskii-Kosterlitz-Thouless transition [18,
19]. This transition was experimentally demonstrated in 2006 [20] in the platform of
ultracold gases. The superfluid properties have been pointed out, such as quantum
vortices [21, 22] or the observation of dissipationless flow [23]. Sound propagation has
also been studied in 2D Bose gases [24] and the two sound modes of the superfluid
system have recently been observed [25]. 2D weakly-interacting Bose gases also exhibit
a specific scale invariance which can be seen on the equation of state measurement [26]
or on some breather dynamics [27] for example. From an experimental point of view,
imaging atomic planes with high resolution microscope objectives allows an efficient
characterization of the cloud. Custom-shaped flat-bottom potentials are achieved by
shaping light beams with Digital Micromirror Devices (DMD).

Our team studies 2D ultracold dilute Bose gases that undergo weak interactions.
Additionally, the weakly-interacting system involves a large number of atoms, making
a mean-field theoretical approach a suitable approximation. At zero temperature,
which is also a good approximation of our system, the Gross-Pitaevskii equation, a
Nonlinear Schrödinger Equation (NLSE), is used to describe the system’s dynamics
[28, 29]. Although this consists to a considerable simplification of the initial quantum
description, the physics described by this equation are still extremely rich. This is
partly due to the complex nature of the wavefunction entering this equation and the
presence of a nonlinear term resulting from the interactions between atoms.

At first sight, it may seem surprising to describe the physics of weakly-interacting
quantum systems with a nonlinear equation, since quantum mechanics, from the
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postulates discussed above, is at its very core a linear theory. However, there is no
contradiction: the full quantum problem remains linear (the wavefunction still evolves
in a linear Hilbert space), and it is the classical mean-field treatment of the interactions
that leads to an effective nonlinear equation for the classical wavefunction.

Nonlinear physics refers to situations where a change in “input” does not lead to
a proportional change in “output”. Although their mathematical treatment is more
challenging, their study has become central in physics for several decades now, since
most systems are inherently nonlinear in various fields, including biology, climatology,
astronomy, mechanics, hydrodynamics, optics, plasma. The presence of chaos, as well
as the propagation without deformation of stationary waves, known as solitons, are
two of the key properties of nonlinear systems. The behavior of a chaotic system is
highly sensitive to the initial conditions in which the system is prepared. However,
the underlying dynamics are not random, but rather exhibit intriguing self-similarities
or fractal patterns. Remarkably, chaos may coexist with solitons, which are coherent
and stable stuctures [30].

Solitons are fundamental and fascinating objects in nonlinear physics. They are
stationary solutions of the associated nonlinear equation. Their discoveries were at-
tributed to J. S. Russell in 1834 [31], when he reported the propagation of a hydro-
dynamic wave without deformation in a narrow channel. Their observations could
not be interpreted by classical linear hydrodynamic equations, and it was not until
1895 that a nonlinear equation derived by Korteweg and de Vries could explain this
phenomenon [32]. The term soliton was coined by Zabusky and Kruskal [33] to refer
to a stable stationary wave solution of a nonlinear equation. The interest in the study
of solitons then grew, especially in photonics where the advances in lasers allow for the
generation of high intensity waves that lead to a modification of the refractive index
(Kerr effect) in nonlinear media. This is usually the compensation of this effect with
a dispersive effect which leads to the formation of a stable solitary wave [34, 35]. The
field of photonics has the most diverse range of applications for solitons, particularly
in telecommunications.

However, the field of solitons in physics is diverse, and even when restricted to the
1D NLSE, several types of solitons exist, including bright, dark, and Peregrine solitons,
to name a few. Solitons have also been produced in the ultracold gas platform. The
tunability of the nonlinear term via Feshbach resonances allowed for the creation of
bright solitons [36] (stationary solutions of the NLSE with an attractive interaction
term) and the ability to imprint a phase pattern on the cloud enabled the formation
of dark solitons [37] (stationary solutions of the NLSE with a repulsive interaction
term).

The internal state of the cloud can also be controlled in ultracold gas platforms, in
addition to the external degrees of freedom. The ultracold gas platforms are thus ideal
for creating mixtures of different internal states. Coupled with a spatial control of both
density distributions, this approach opens the way to new and exciting phenomena.
For instance, vector solitons of the two-component nonlinear Schrödinger equation
have been demonstrated to be more stable than their single-component counterpart.
The dark-bright soliton [38] is the most well-known example of a vector soliton, arising
when the interaction parameters, both for the inter and intra component terms, are
identical. It was demonstrated experimentally in the ultracold gas platform in [39,
40]. When the interaction parameters are not equal but are sufficiently close to each
other, a different type of vector soliton appears. This soliton is characterized by a
constant total density of the mixture. It is called a magnetic soliton [41, 42] since in
this case, remarkably, the coupled GPEs can be mapped onto the nonlinear Landau-
Lifschitz-Equation (LLE), which governs the dynamics of the magnetization vector in
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a ferromagnetic spin chain subjected to a magnetic field. Kosevich et al. [43] first
introduced the magnetic soliton in this context. The miscible and immiscible mixtures
produce two types of magnetic solitons, easy-plane and easy-axis, in the limit of nearly
equal interaction parameters. The former was recently demonstrated in the ultracold
atoms platform [44, 45] while the latter was only explored numerically [46, 47, 48].

Interest in magnetic solitons arises from their unique response to external forces
[49]. Remarkably, within an adiabatic approximation, the magnetic soliton exhibits
periodic motion under a linear potential. This is reminiscent of the Bloch oscilla-
tions phenomenon [50] at play in crystals with the noticeable difference that there is
no lattice breaking the translational invariance. The possibility of observing Block-
like oscillations in systems without lattices was first predicted in strongly interacting
1D gases for which the dispersion relation is periodic [51, 52, 53] and experimen-
tally demonstrated in [54]. However, achieving adiabatic following of the periodic
lowest-energy branch spectrum in this system proved to be challenging, resulting in
non-perfectly sinusoidal oscillations. This thesis presents the first experimental deter-
ministic realization of a magnetic soliton within an immiscible mixture, along with its
response to a differential linear potential. The cause of the oscillations is attributed
to a spin AC Josephson effect [48], which reinforces its broad interest.

Quantum gases also provide a platform for studying phenomena that go beyond
classical field descriptions. In particular, Petrov demonstrated in 2015 [55] that self-
bound objects can exist in such systems in presence of weak attractive interactions,
when quantum fluctuations are considered. These fluctuations provide a repulsive
term in the Hamiltonian that can stabilize these objects, which are called quantum
droplets. They were experimentally demonstrated shortly after their prediction both in
Bose-Bose mixtures and dipolar gases platforms [56, 57, 58]. The term “droplet” comes
from the liquid-like properties of these self-bound objects, which have similarities with
solitons even though the latter are solutions of a classical field equation [59].

In dipolar gases, the existence of quantum droplets relies on the anisotropic char-
acter of the dipolar interactions. For energetic reasons, this anisotropy can cause a
spontaneous spatial arrangement of several droplets inside a confined trap. Remark-
ably, the global phase coherence of the dipolar droplets array is still maintained. Since
2019 they have been observed in experiments involving highly magnetic Dysprosium
and Erbium atoms [60, 61, 62]. The paradoxical coupling between the two previ-
ous properties, namely superfluidity and spatial modulation, was explored by Leggett
back in 1970, predicting the existence of a so-called supersolid phase [63]. According
to the current definition, the spatial periodicity in the supersolid phase should arise
spontaneously and not be externally imposed. In addition to dipolar gases, the su-
persolid phase has been observed in other systems, such as gases strongly interacting
with optical cavities [64], or spin-orbit coupled BECs [65] and spectacular features
of supersolidity were explored. Although the spatial periodicity does not destroy the
superfluid phase, the superfluid fraction decreases compared to a non modulated sys-
tem even at zero temperature. The superfluid fraction represents the proportion of
the total fluid that is superfluid and not normal. Leggett established bounds within
which the superfluid fraction falls [66]. Remarkably, while the superfluid fraction is by
definition a dynamical quantity, these bounds depend solely on the static density pro-
file of the system. Moreover, these predictions are not limited to supersolid systems
but apply to other spatially modulated superfluid systems. This opens up possibilities
to investigate the coupling between density modulation and superfluidity also in our
platform.

In this work, we present an experimental study in a 1D modulated weakly inter-
acting Bose gas aiming at exploring the range of validity of Leggett’s result, which
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has never been studied experimentally [67], in our platform. We show the first static
measurement of the superfluid fraction, as a consequence of the saturation of Leggett’s
bounds in the considered system, as well as an anisotropic measurement of the sound
spectra in the gas. This opens up new possibilities to measure the superfluid fraction
in other various platforms.

This thesis is the result of a team effort and its outline is now presented:

➢ Chapter 1 describes the experimental platform used for the scientific projects
of this thesis. The chapter explains how uniform 2D samples of Rubidium 87
are prepared and how the horizontal confinement felt by the atoms and the spin
spatial distribution are controlled.

➢ Chapter 2 discusses the mean-field description of the weakly-interacting Bose
gases studied in this thesis. The NLSE governing the dynamics of our system
at zero temperature is introduced, and the emergence of superfluid properties
in this system is demonstrated.

➢ Chapter 3 deals with the survival of superfluidity under a spatially modulated
potential. Two different and compatible measurements of the superfluid fraction
are explored, investigating the range of validity of Leggett’s result in our system
[63].

➢ In Chapter 4, we introduce the magnetic soliton, which is a stationary solution
of the Landau-Lifschitz equation that governs the dynamics of the magneti-
zation vector in a ferromagnetic chain of spins. We discuss theoretically and
numerically the mapping with the miscible and immiscible mixtures of weakly-
interacting Bose gases.

➢ Chapter 5 describes the effect of a weak uniform magnetic gradient on a fer-
romagnetic chain of spins. We demonstrate the emergence of Bloch-like oscil-
lations for a magnetic soliton moving under an adiabatic approximation, both
theoretically and numerically.

➢ Chapter 6 presents an experimental demonstration of an easy-axis magnetic
soliton and the emergence of Bloch-like oscillations in the immiscible mixture
system when a differential linear potential is applied. Additionally, we provide
measurements of the phase of the majority component matter-wave, confirming
the interpretation in terms of Josephson oscillations.

➢ Chapter 7 discusses the construction of a new experimental setup designed to
investigate Rydberg excitations. The chapter demonstrates the production of
a Bose-Einstein condensate without a magnetic trap, utilizing time-averaged
potentials.
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Chapter 1

Production of ultracold Bose gases
in reduced dimensions

This thesis discusses some properties of confined quantum systems. According to
quantum mechanics, physical objects must be described as both a particle of mass
m and a wave. The so-called de Broglie wavelength λth =

√
2πℏ2/(mkBT ) gives the

typical spatial extension of such a wavepacket at a temperature T . For a macroscopic
object, λth is most often extremely small compared to its size and we can describe its
physics ignoring quantum mechanics. However, it is no longer possible to make this
approximation when dealing with very lightweight particles, such as atoms. When
considering an ensemble of atoms of density n confined spatially in a space of di-
mension d, one may question what occurs when λth becomes of the order of n−d,
which is the typical interparticle distance, i.e. when the individual atomic wavepack-
ets start to overlap. It is the so-called quantum degeneracy regime, which has been
of interest to many theoretical and experimental physicists for almost a century. The
phenomenology of the quantum system in the regime λth ≳ n−d depends on the
statistical properties of the atoms being studied (bosons or fermions) and the space
dimensionnality d.

To enter the quantum degeneracy regime with a dilute and defect-free sample, it
is necessary to ensure that the temperature and pressure of the ensemble are suffi-
ciently low. Although it is favorable to increase the density to enter the degeneracy
regime, gases are typically easier to probe than solids and therefore the density of the
studied samples is often kept sufficiently low. The associated experimental samples
are thus referred to as ultracold dilute quantum gases. The collective properties and
the exotic phases of matter that may emerge in the degeneracy regime, the high level
of control over internal and external degrees of freedom, as well as over the interaction
and external potentials experienced by the atoms make ultracold gases an extremely
appealing experimental platform, though highly demanding. The experiment that I
have been mainly working on during my PhD began 10 years ago with the aim of
studying properties of homogeneous Bose gases confined in two dimensions (d = 2).
Although the construction was finished when I joined in 2020, this chapter provides
a brief summary of how we manage to produce a reduced-dimension ultracold sample
and highlights the modifications I have been involved in. We refer the reader to the
previous Master and PhD theses for further information [68, 69, 70, 71, 72].

1.1 Preparation of a 3D ultracold gas

First, we will explain how we create a 3D Bose-Einstein Condensate of Rubidium
atoms. Then, we will discuss the reduction of the dimensionality of the gas.
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Chapter 1. Production of ultracold Bose gases in reduced dimensions

1.1.1 87Rb atom and its structure

Our group at LKB, among others, is still exploring new physics with 87Rb atoms,
which was the first atom to be brought into the quantum degeneracy regime in 1995
[10], even though it is now possible to bring various atomic species of the periodic table
to this regime. One of the reasons for this early success is the easy access to commercial
lasers to address the cooling transition at λD2 = 780 nm. Blue-detuned and red-
detuned lights at λ = 532 nm and 2λ = 1064 nm are also commonly used. Another
reason is that the sublimation temperature of Rubidium atoms is only ∼ 50 ◦C at
typical pressures less than 10−6mbar. Additionally, as an alkali atom, its theoretical
description is simplified due to the presence of a single valence electron.
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Figure 1.1: Electronic structure of 87Rb. Only the relevant levels are shown: the
electronic ground state and the first two electronic excited states, split due to the
fine structure. The hyperfine structures of 2S1/2 and 2P3/2 are also represented.
The cycling transition used for the cooling and the imaging is the F = 2 to F ′ = 3
transition1. The 2D and 3D MOT lights are slightly detuned from this transition
and are obtained from the Main Laser Frequency light passing through double-pass
Acousto-Optic Modulators (AOMs). We can optically pump atoms to F = 2 thanks
to a Repump Laser. The hyperfine splitting ∆Ehf ≃ 6.8GHz of the ground state
is in the MW domain. In the regime of low magnetic fields (i.e. µBB ≪ ∆Ehf),
which is relevant in our experiment, the splitting of the hyperfine levels is linear
(Zeeman effect). The drawing is not to scale.

Still the physics of Rubidium atoms remains appealing, particularly due to the
presence of a hyperfine structure resulting from the coupling of the electron’s total

1All discussions concerning resonant light will refer to this transition.
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Chapter 1. Production of ultracold Bose gases in reduced dimensions

angular momentum J and the nuclear spin I = 3/2 [73]. This results in various hy-
perfine states labeled by F , which represents the total angular momentum. Figure 1.1
provides an overview of the relevant states and lines involved.

1.1.2 From a Rb vapour to a 3D BEC

In about 25 seconds, we create a three-dimensional BEC and image it to gather
information on the cloud. Doing that, we destroy it using resonant light. We launch
repeatidly the sequences of creation and imaging of the cloud with the software Cicero-
Word generator [74] which controls the various instruments we use via National In-
strument analog and digital cards. The cards are synchronized to a clock, provided
by a Field-Programmable Gate Array (FPGA).

However, 50Hz line frequency noise affects the power supplies used, and the phase
of any resulting signal is not identical from one sequence to the next, which is not
desirable for a precise control of the magnetic field on the experiment, for example.
To compensate for these flucuations, we choose to trigger the synchronization of the
National Instruments cards with the FPGA once the AC line reaches an extremum (to
be less sensitive to its fluctuations) once per sequence2. This is a work done during my
PhD and it allows us to keep the same phase for all the relevant signals with respect to
each other (FPGA) and with respect to the main line signal (50Hz synchronization)
sequence after sequence.

We now describe the various sequential steps:

➢ After heating up a piece of Rb metal in a side glass cell under vacuum (10−7mbar
level), we load a 2D Magneto-Optical Trap (2D MOT) combining anti-Helmholtz
coils and near-resonant beams with circular polarizations propagating along the
y and z directions (see Figure 1.2 for their definitions). The light has sidebands
at 6.835GHz, generated with an EOM, to keep atoms cycling on the
F = 2 → F ′ = 3 transition.

➢ A resonant beam along −x pushes the resulting cloud inside the main cell of
dimensions 105 × 25 × 25mm, depicted in Figure 1.2, where a 3D MOT is
switched on and loaded during 6 s.

➢ This is followed by a compressed MOT timestep and a molasses timestep to
increase the density and further cool the cloud. The result is a cloud of half a
billion atoms at ≃ 25 µK.

➢ We then turn off the EOM so that the atoms undergo a depumping stage to
F = 1, a much longer lived state compared to F = 2. A pair of anti-Helmholtz
coils producing a maximum gradient of ∼ 200G/cm is then progressively switched
on. The atoms in the low-field seeking state |F = 1,mF = −1⟩ are trapped.
Since the initial cloud is not polarized, 1/3 of the molasses is trapped. The
compression, caused by the high magnetic gradient, leads a high collision rate
in the cloud.

➢ Radio-frequency evaporation is then performed for 12 s, during which the RF
frequency sent to the atoms by a rectangular antenna is ramped down linearly
from 35 to 2.5MHz, lowering the trap depth for the mF = −1 atoms. We get a
sample of ∼ 2× 107 atoms at 20 µK.

2The selected moment in the sequence is typically just prior to the MW transfers, as this is when
a precise control of the magnetic field is critical for ensuring experiment repeatability.
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Chapter 1. Production of ultracold Bose gases in reduced dimensions

➢ The cloud is then transferred to a crossed dipole trap consisting of two tightly
focused red-detuned beams from a single 20W ALS Laser (only 10W are used
in practice)3. The atoms are confined in the focused regions and the cloud size is
typically reduced to 30 µm in the vertical direction and 90 µm in the horizontal
directions. An optical evaporation step lasting 3 s allows to obtain a degenerate
cloud of ∼ 5 × 105 atoms at 100 nK with a typical density of 1014 atoms/cm3,
leading to nλ3th ≳ 1: the transition to a 3D BEC is crossed.

M2

M3

DMD

VI

QC1

QC2

MC1

GPC

x⃗ y⃗
z⃗

(a)

M1M2

ACC1

ACC2

DMD

VI

GPC

QC1

QC2

MC1MC2 L1L2

y⃗ x⃗

z⃗

(b)

QC2

M1

ACC2
HI

D1 D2
MC1

MC2

GPC

L1

L2

x⃗

y⃗

z⃗

(c)

LEGEND:

MC1/MC2:
M1/M2/M3/M4:
GPC:
QC1/QC2:
VI:
DMD:
D1/D2:
ACC1/ACC2:
L1/L2:
HI:

MOT Coils
MOT beams
Grad Push Coil
Quadrupole Coils
Vertical Imaging
DMD beam
Dipole beams
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Figure 1.2: Experimental setup. (a): Side view. (b): Front view. (c): Top view.
The top quadrupole coil and microscope objective are not depicted in the latter
view. We did not show the bias coils around the cell (see [69] for details), nor the
Raman beams (we will discuss their arrangement later).

1.1.3 Magnetic field and magnetic field gradient controls

The atoms experience a magnetic field with a specific direction, known as the
quantization axis. The magnitude (typically a few gauss) and direction of this field
are controlled using a set of coils arranged in a Helmholtz configuration around the
glass cell4. It is necessary to apply this magnetic field to be able to resolve the
different Zeeman states and also to avoid spin changing collisions inside the cloud.
For the stability and repeatability of the experiment, it is crucial to control both
quick and slow fluctuations of this magnetic field to the milliGauss level. Regarding
slow variations, we are limited by fluctuations in the magnetic field created by the
subway, which passes nearby the laboratory, and is mainly aligned vertically. To
compensate for this effect, we measure its vertical component in another room and we

3The quadrupole coils are still on but only to compensate the gravity, at 30G/cm.
4These coils also enable a displacement of the cloud (see Chapters 3 and 6).
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use a home-made box to extract the fluctuations of this signal and send a resulting
feedforward signal to a pair of Helmholtz coils aligned along z, shown in Figure 1.3.

+-

D
ig

ita
l P

ID

Home-made electronic box

Figure 1.3: Magnetic field control. A magnetic field probe (Bartington Mag-
03MCTP 500) measures the magnetic field near the atoms B⃗a along the 3 directions
(only its component along x ax is needed here) and another one measures the
vertical magnetic field in a side room near an independent coil (B⃗s). A large pair
of coils along the vertical direction receives the feedforward signal δsz(t), which
takes into account the subway induced fluctuations, extracted from the independent
signal, measured in the side room (sz(t))5. A microcontroller, reading the magnetic
field along x (ax(n∆t)) every ∆t (sequence duration), together with a large pair of
coils along x, can be used to match a command Ex with a digital PID correction.
For simplicity, we have not shown the power supplies of the large coils, which receive
the signals δsz(t) and cx(n∆t) and send a proportional current to the coils. We
choose for the drawing an active compensation along x because this is what will be
used in Chapter 6, although it could have been along y or z.

5A home-made electronic box transforms the signal sz(t) into its fluctuations δsz(t). A static
gain allows us to tune precisely the compensation so that we do not overcompensate the subway
fluctuations. We extract the flucuations with an offset voltage provided by a stabilized power supply.
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However, this method cannot correct local fluctuations that arise near the science
cell. To address this issue, an active correction loop was implemented during my PhD
to adjust the magnitude of the magnetic field along one direction. Once per sequence,
typically after the production of the condensate and before the MW transfers, the
magnetic field on the atoms is measured and compared to a fixed value for 200ms.
A digital proportional integral correction is performed by a microcontroller, Arduino
DUE, to correct for the observed difference. The output is then sent to a pair of coils
aligned along the chosen direction (see Figure 1.3).

With these two corrections, we are able to achieve sub-mG RMS fluctuations of
the magnetic field near the atoms for an entire day along the corrected directions. A
more challenging future improvement would be to actively compensate along all three
axes simultaneously (see for example a recent implementation in [75]).

In recent projects (see Chapters 3 and 6), we have improved our control of the
magnetic field gradient felt by the atoms. Accurate control of the gradient was found
to be crucial, particularly in the horizontal plane. The MOT coils are already in place
to create a gradient along the y direction6. However, the power supply used has a
range of 0 − 20A and the analog step precision of the cards is 5mV, which means
that we cannot control the current below 10mA of accuracy. To improve this point,
we put another Delta Electronika power supply of range 0 − 5A in parallel of this
power supply, which allows to reach 2.5mA of accuracy.

No coils were mounted along the x direction, while the residual magnetic gradient
along this direction is typically ∼ 10G/m. We added only one coil, as it was impossible
to have a second one due to the vacuum system. It is shown in Figure 1.2 (called
“Grad Push Coil”), its radius is 15mm and it is placed at a distance of ∼ 60mm to
the atoms and consists of 10 turns. The current flowing through is ≃ 2A. This allows
the residual gradient to be compensated to an accuracy of ∼ 0.2G/m along the x
direction.

1.2 Reaching the 2D regime

After creating a 3D BEC, we freeze the vertical degree of freedom by confining the
gas to a plane of height lz ≃ 0.18 µm in order to reach the 2D thermodynamic regime.
To achieve this, a plane of atoms is confined inside a node of a blue-detuned optical
lattice, obtained by interfering two beams of λ = 532 nm light. The interfringe of
this lattice can be adjusted dynamically using an accordion lattice setup. It was first
introduced in [76] and its implementation in our experiment is discussed in more details
in [70, 71]. Indeed, without any precaution, shining a lattice of a few µm spacing on
a 3D BEC with a typical Thomas-Fermi radius of 6 µm would lead to several loaded
fringes and a split cloud. To avoid this, we start with a large interfringe configuration
(∼ 13 µm) into which the 3D BEC can be loaded7 and we then reduce the interfringe of
the lattice to ∼ 3 µm by varying the angle at which the 2 beams interfere in ∼ 500ms
(Figure 1.4).

For a sufficiently deep lattice, the sinusoidal potential felt by the atoms (directly
proportional to the intensity profile) can be approximated by a harmonic potential of
angular frequency ωz, inversely proportional to the interfringe i, and the key experi-
mental quantity to assess the “2D-ness” of the cloud. The vertical degree of freedom

6We will only discuss the “strong” axis along which the gradient is twice as large as the other
axes, for anti-Helmholtz coils.

7Actually, at this step, we increase the power of one of the dipole arms to compress the BEC and
load it entirely into one fringe of the lattice.
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25 µm

z⃗

y⃗ x⃗

M1

Figure 1.4: Accordion lattice optical setup. To reach the 2D regime without
loading multiple fringes, we use an accordion lattice setup. Two beamsplitters are
vertically glued together, splitting the initial beam into two beams. They then
interfere at the position of the BEC (inside the cell depicted as a blue rectangle)
after passing through an aspherical lens (Asphericon ALL50-100-S-U, focal length
f ′ = 100mm). The interfringe i = λd/f ′ depends on the distance d between
the two beams and can be varied by translating a mirror, placed on a translation
stage, the movement being represented by the red arrow. An imaging system, not
shown on the drawing, allows the interference pattern to be imaged on a control
camera. Examples of light images before and after the compression of the lattice
are presented in the figure. The top mirror M1 is mounted on a piezo-electric stack
and can control the absolute position of the fringes. A feedback loop is implemented
to stabilize the interference pattern once per sequence acting on this mirror [71].

is indeed frozen as soon as the first excited state of the vertical harmonic oscilla-
tor cannot be reached with the relevant thermal and interaction energy scales of the
cloud, i.e. as soon as ℏωz ≫ kBT,Eint/N . When this condition is fulfilled, we speak
of quasi-2D regime, the term quasi comes from the fact that the collisions between
the atoms still keep their 3D character (see Chapter 2). At the end of the lattice
compression, this is the case for our cloud, where we reach up to ωz ≃ 2π × 4 kHz,
measured thanks to parametric resonance (see for example [77]).

1.3 Tunable shaping of the in-plane potential

The previous section described the vertical confinement of the cloud. Regarding
the horizontal confinement, we have full control over it thanks to two Digital Mi-
cromirror Devices (V-7000 by Vialux), that are imaged directly on the atoms. They
consist of 1024× 784 mirrors (pixels) of size 13.7 µm, each of which can either reflect
the light onto the atoms or reflect it in another direction without affecting the atoms.
These two DMDs, used to tailor the potential felt by the atoms, are shined with blue-
detuned light at 532 nm and the atoms are trapped in the regions where the light is
not reflected to the atoms8. DMDs are electric field modulators [78] and thanks to

8Another DMD, shined with red-detuned Raman beams allows us to spatially control the spin
state of the cloud (see section 1.4.2).
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them we can create box-like potentials, instead of more usual harmonic potentials, a
peculiarity of our setup.

DMD1

DMD2

OD

Figure 1.5: DMD1 and DMD2 setup. Green beams coming from two fibers are
directed to both DMDs. In this example, we choose a black square box pattern for
DMD1 and a sinusoidal modulation for DMD2 (zoom in to see the discretization
of the mirrors). The beams are shaped according to the patterns after diffraction
by the DMDs. A black mirror indicates no light is reflected to the atoms, while a
white mirror indicates light is reflected to the atoms. The beams are then combined
and directed towards the atoms via a microscope objective. The atomic plane, rep-
resented by the dashed line, is then imaged vertically onto a camera (Princeton
Instruments, Pixis 1024 BR Excelon) using another microscope objective. An ex-
ample of an absorption image obtained with these patterns is shown. The imaging
setup is not depicted in the drawing. The verticality is not respected.

1.3.1 Tailoring box potentials with DMD1

A first DMD, called DMD1, is used to create the boundaries of the box potential.
While loading the plane of atoms inside a node of the accordion lattice, we shine
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∼ 1W of green light on DMD1, creating the desired horizontal confinement, for which
we usually choose a square shape (see Figure 1.5). We then reduce the height of this
box potential to further evaporate the cloud by decreasing the power of the beam. We
end up with a 2D homogeneous gas (because placed in a flat potential) of N ∼ 1×105

atoms still in the state |F = 1,mF = −1⟩ at a temperature T ∼ 20 nK9. We discuss
in section 1.4.1 how we can vary the final 2D density. The DMD1 plane is imaged on
the atoms with a demagnification of 70 through a microscope objective from Nachet
with a numerical aperture NA = 0.45, which leads to an effective pixel size of 0.2 µm
for a DMD mirror on the atoms. The beam waist in the atomic plane is ∼ 40 µm,
leading to a typical maximum box size of ∼ 100 µm.

Another interesting feature of a DMD is the ability to display a movie of different
images on it, with a frequency rate up to 10 kHz. Thanks to this characteristic, more
complicated boxes can be loaded efficiently (see Figure 1.6). We will take advantage
of this feature in the science project described in Chapter 6.

0
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0.8

1

1.2
OD

(a)

(b) (c) (d)

10 µm

Figure 1.6: Example of absorption images of our 2D cloud. Each picture is
an average of 10 images. The scale is the same for the images (b), (c) and (d).
(a): Decompressed single plane cloud seen from the side with horizontal imaging.
(b), (c) and (d): Box-shaped clouds seen from the top with vertical imaging with
respectively a square shape of 40 µm, a rectangle shape of 3 × 60 µm, and a ring
shape with inner and outer radii 27 and 30 µm. (c) and (d) are obtained after
displaying a movie on DMD1 of 50 frames of 500 ms duration, starting from a
rectangle shape of 40× 60 µm and a circle of radius 30 µm, respectively.

1.3.2 Precise control of the in-plane potential with DMD2

In addition to DMD1, which creates the boundaries of the box potential, we can
apply an auxiliary repulsive light potential shaped by another DMD, called DMD2. It
is also imaged on the atomic plane via the same microscope objective with a demagni-
fication of 70 (see Figure 1.5). The waist of the beam on the atoms is ≃ 80 µm and was
increased during my thesis to get a flatter beam on the atoms. We take advantage of
DMD2 to add potentials to the cloud, which can be used for homogeneity corrections
or to imprint density modulations.

Even if the pixels of the DMD are booleans (white or black mirrors), we can still
shape continuous intensity profiles with it. To map the desired continuous intensity
profile into a boolean pattern that can be displayed by the DMD, we use the dithering
technique. Specifically, we use a certain type of dithering algorithm, the error-diffusion
algorithm [80, 78], which propagates the error caused by a binary choice on one

9The temperature of the cloud is calibrated using the equation of state of the 2D Bose gas, with
a method inspired by [79].
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pixel to the neighboring pixels with a given weight. This enables the computation
of the appropriate discretized pattern on the DMD to achieve the desired continuous
modulation of the electric field of the green light, with a good approximation.

+
-

Target

Atomic response profile

(Continuous) grey-level intensity profile

Start of the     loop

Dithered grey-level intensity profile put on DMD

For For 

OD

OD

Figure 1.7: Feedback loop for optimizing the atomic density profile with the
DMD2, example with a linear gradient target profile. In the nth loop, we com-
pare the atomic density profile An with the target T . We perform a proportional
correction of factor K10 and compute a corrected intensity profile Gn+1, which
modifies the previous pattern Gn put on DMD2 depending on the calculated er-
ror. We remove light at the pixel points x where there are not enough atoms
(An(x) − T (x) < 0) and add light where there are too many atoms. The profile
is then dithered and placed on the DMD and the n + 1 loop follows. The loop
is started with a black pattern on DMD2 and stopped when the error is below a
certain level of desired accuracy.

In describing the atomic response to this modulation, we must take into account
the finite resolution of our imaging system, which is diffraction limited. In fact, the
point spread function of our imaging system is ≃ 1 µm, so we are not able to resolve
each mirror of both DMDs of effective size in the atomic plane 0.2 µm. Instead, the
response of the atoms on a large pixel of 1 µm is a spatial average of the response
of 5 × 5 = 25 pixels. On the one hand, this smoothes out the sharp edges of the

10Actually, the K factor is corrected by a Gaussian weight. Indeed, the correction should be more
important at the edges of the image than in the center to compensate for the Gaussian shape of the
beam.
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box potential felt by the atoms11 and limits the spatial frequencies of the targeted
modulation (see Chapter 3) but, on the other hand, this enables us to overcome the
limitation of the binary nature of the DMD (either black or white). Indeed, on our
optical system, we then have access to 2512 levels of “grey” (average of black and white
pixels) for a given large pixel on the atomic plane.

It may seem possible to compute the necessary dithered pattern for any given
target atomic profile and directly image it onto the atoms. However, this process
is complicated by limitations such as optical aberrations, beam imperfections, and
residual defects in the error-diffusion algorithm. A feedback loop is implemented to
compare the atomic density profile obtained with a given DMD dithered pattern to
the targeted density profile and modify the DMD pattern accordingly. The loop is run
until the optimal DMD pattern is reached, with any difference from the target then
mainly limited by the finite numerical aperture of the system. Figure 1.7 summarizes
the principle of the loop. A detailed analysis of this implementation of grey levels can
be found in [81, 72].

1.4 Control of the internal state of the cloud

The 2D homogeneous gas is initially prepared in the state |F = 1,mF = −1⟩. In
our setup, we implement two ways to change the hyperfine state, first to precisely
image the cloud (we remember that the imaging light is only resonant with F = 2
states), also to vary the 2D density and finally to prepare mixtures of Zeeman states.
We rely on coherent fields to perform these transfers between F = 1 and F = 2. If ν0
is the resonance frequency of the hyperfine transition (which is in the MW domain),
ν is the actual frequency of the coherent field, δ = ν−ν0 is the detuning, and Ω is the
Rabi frequency of the field (which depends on the electric dipole transition, the field
intensity, and its polarization), then the probability of finding the atoms in F = 2,
starting from F = 1, after a field excitation of duration t, is given by:

P2(t) =
Ω2

δ2 +Ω2
sin2

(√
δ2 +Ω2

t

2

)
(1.1)

At resonance, δ = 0 and one can transfer all the atoms from F = 1 to F = 2
for a duration, called the “π pulse”, tπ = π

Ω . We will discuss in 1.4.2 how the two-
photon Raman transfer can be mapped to this one-photon formalism. In Figure 1.8,
we show examples of such sinusoidal oscillations of spin populations, also called Rabi
oscillations [82], both with a MW field and with the Raman beams.

1.4.1 Global control - MW transfers

First, let us briefly discuss how we manage to control the internal state of the whole
cloud. Remembering that the hyperfine splitting is in the MW domain (≃ 6.8GHz),
we use two MW antennas13 in order to flip the spin state of the cloud. This cannot
be a spatially selective transfer, since the wavelength of this MW field (a few cm) is

11Even though the stationary density profile in a box potential is obviously not discontinuous, the
characteristic decay length on the box borders, given by the healing length (see Chapter 2), is much
smaller than the effective pixel size of the camera (1.15µm).

12Actually, this number is a lower bound and the accessible levels are not discretized.
13Changing the frequency of the MW generators, done via GPIB control, takes several hundred

of ms. However, the lifetime of the F = 2 state, limited by 2-body losses, is less than 100ms, so
if several MW transfers are needed (for example, from |F = 1,mF = −1⟩ to |F = 1,mF = +1⟩,
through |F = 2,mF = 0⟩), we have to use the 2 MW antennas.
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Figure 1.8: Examples of Rabi oscillations between |F = 1,mF = −1⟩ and
|F = 2,mF = 0⟩. (a): With MW field illumination. (b): With Raman beams
illumination. The pattern on DMD3 is completely white and we choose a circle
with radius 5 µm to calculate the OD in the analysis. The damping of the oscilla-
tions is attributed to the intensity inhomogeneities in this region.

much larger than the size of the cloud (< 100 µm). Two MW chains are implemented,
connected to a horn antenna whose propagation axis is along x, and to a one-loop
antenna close to the atoms, respectively. The MW field from each chain comes from
a Rohde & Schwartz SMB100AV synthesizer and is amplified by a 10W amplifier
(Kuhne KU PA 700) and a 50W amplifier (RF Lambda RFLUPA05G08GA), respec-
tively. The resulting Rabi frequencies are on the order of Ω ≃ 2π × 10 kHz for most
of the transitions and the remaining magnetic field fluctuations on the order of 1mG
do not affect the MW transitions much. We emphasize that these synthesizers have
an extremely good precision and it allows to perform state of the art measurements
based on frequency measurements. More details can be found in [83].

We use this tool to accurately image the 2D cloud. We use absorption imaging
with a light pulse resonant with the F = 2 state to obtain the kind of images shown
in Figure 1.6 for example. One might think that applying a pulse of the Repumping
Laser is sufficient to transfer atoms from F = 1 to F = 2, which can then be imaged
with the resonant light. However, this is a not a quantitative method and we would
not be able to precisely determine the density of the cloud or distinguish between the
different Zeeman states of F = 1. Instead, we apply a MW pulse of duration tMW

from the desired occupied Zeeman state of F = 1 to F = 2 (transition of π-pulse
tπ). Its duration is chosen so that the fraction transferred to F = 2 is small enough.
More specifically, the Optical Depth (OD) of the cloud, defined as the attenuation of
the resonant light passing through the sample Iout = e−OD Iin

14, is kept below 1.2,
avoiding collective excitations of the gas [84, 85]. Using the following formula, we can
then safely calculate the 2D density of the cloud in the initial state F = 1:

n2D = F OD

σ sin2
(
π
2
tMW
tπ

) (1.2)

where σ = 7
15

3λ2D2
2π is the resonance scattering cross section of the Rb atoms and

F is a correction factor that takes into account the atomic transition involved, the

14It is assumed that the number of scattered photons is proportional to the light intensity and
that the Beer-Lambert law is valid. This is true in the limit of low light intensities.
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polarization of the imaging light and various effects of the atomic environment (e.g.
magnetic field) during absorption imaging. Its calibration is often done in our setup
by two independent and compatible measurements of the 2D density, relying on Tan’s
contact measurement [86] or a breather dynamic [27].

One can also use the MW tool to vary the 2D density of the cloud. After creating
the 2D gas, one can transfer part of the cloud to F = 2 with a MW pulse of duration
t < tπ and remove these selected atoms by applying a short pulse (40 µs) of resonant
light. This pulse does not affect the remaining atoms in F = 1, and the density of the
cloud is then reduced.

In summary, this extremely precise and versatile MW tool allows us to vary the
density of the cloud, transfer atoms into different, possibly mixed Zeeman states,
perform state of the art measurements (see [86, 87] and Chapter 2) and implement
partial transfer imaging.

1.4.2 Local control - Raman transfers

The MW tool is extremely useful, but it does not easily allow for spatially selec-
tive transfers between hyperfine states due to the associated wavelength being a few
centimeters. To achieve this, one possibility is to use a field with a lower wavelength.
However, it is important to consider how to match the resonant condition between
the hyperfine states, which lies in the MW domain. The trick is to use two-photon
transitions sufficiently detuned from any excited states, which are called in this con-
text Raman transitions. The frequency difference between the two beams must be
equal to the hyperfine splitting in order to perform the transfer successfully. This is
a well-known experimental tool which can be used in different situations. It is ex-
tensively discussed in the case of our setup in [71]. This section highlights the main
experimental requirements for Raman beams and their combination with a DMD to
perform local spin transfers.

When selecting the wavelengths for the two copropagating beams that perform the
two-photon transition, it is crucial to take into account the scalar light shift that the
cloud experiences due to the Raman beams. Indeed, finite light shifts cause dephasing
and decoherence within the cloud (Figure 1.8). They depend on light intensity and are
caused by non perfect Gaussian beam shapes and the finite waists of the Raman beams
on the atoms (≃ 40 µm). For certain wavelengths, known as tune-out wavelengths, the
atoms experience zero scalar light shift. For the F = 1 and F = 2 states of Rubidium,
λR = 790.0 nm is a tune-out wavelength. This choice also avoids overheating the cloud
while shining the Raman beams15. For λR = 790.0 nm, the effective Rabi frequency
of this two-photon transfer ΩR is large enough compared to the frequencies associated
to the spatial dynamics of the atoms (∼ 2π × 1 kHz) and of order 2π × 50 kHz.

For this choice of wavelength, we can describe the dynamics as if there were only
the two hyperfine levels involved and apply the formalism of a two-level system (1.1)
subjected to a one-photon transition of detuning δR and Rabi frequency ΩR, propor-
tional to the square root product of each beam intensity. Taking advantage of the
ability to modulate the amplitude of light thanks to a DMD, Raman beams can im-
print a specific spatial spin profile (i.e. control the density profile of the F = 2 spin
state within a remaining bath of F = 1 atoms). More precisely, let us imagine that
we want to imprint a density profile f(x, y) of F = 2 atoms in the center of the cloud.
The atoms, transferred to F = 2 by this two-photon coherent process, are located at

15The rate Γsc at which the atoms scatter photons from the Raman beams is on the order of 5 s−1

for this wavelength, which means that for a typical pulse of 20µs, one atom out of 104 will scatter a
photon, a negligible number compared to the total atom number ∼ 105.
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Chapter 1. Production of ultracold Bose gases in reduced dimensions

intensity maxima. Applying (1.1) at resonance with a Raman pulse of duration tR,
we can write:

f(x, y) = P2(x, y, tR) = sin2
(
ΩR(x, y)

tR
2

)
(1.3)

Remembering that ΩR is proportional to the total light intensity and that the
DMD is an electric field modulator, we obtain the following pattern to be placed
on the DMD (after dithering) in order to perform the spatial spin transfer of shape
f(x, y):

D(x, y) ∝
√

ΩR(x, y) ∝
√

2

tR
arcsin

(√
f(x, y)

)
(1.4)

This DMD, called DMD3, is imaged on the atoms with a demagnification of ∼ 30,
resulting in (at least) ∼ 9 grey levels. In Chapter 6, we will discuss how we take
advantage of the Raman beams in combination with DMD3 to realize a magnetic
soliton deterministically. In Figure 1.9, we show the preparation of the two Raman
beams with the appropriate frequencies and polarizations, along with a scheme of the
Raman setup near the atomic cell.

AOM1

EOM

AOM2

Main table

µm

µm

DMD3
(a) (b)

Figure 1.9: Raman beams setup. (a): Optical setup for preparing the Raman
beams. An EOM at fE = 6.8GHz produces 2 sidebands on one beam path. The
AOM1 has a fixed frequency f1 = 115MHz and the center frequency of AOM2 can
be tuned to match the transition between the desired Zeeman states (it is about
fE − 6.835 + f1 ≃ 80MHz). The setup was built in order to obtain an atomic
resonance for only one pair of frequencies (one sideband and the carrier of the
other beam [71, 88]). Each beam is intensity locked for reasons of reproducibility
[72] (to keep ΩR constant). They have orthogonal polarizations. (b): Scheme of the
setup on the main table where the Raman beams are sent to the atoms. A DMD
shapes the beam profiles of the two Raman beams. We have taken the example of
Gaussian spatial modulation: f(x, y) ∝ e−(x2+y2)/σ2

. The path is combined with
the DMD1, DMD2 and vertical imaging paths (not shown on the drawing) and the
beams reach the atomic cell after passing through the microscope objective. An
example of an absorption image is shown. Atoms in F = 1 are transparent to the
imaging light, but are present throughout the dashed square region.
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Finally, we note that we are discussing the relevant case of copropagating Raman
beams but the optical path can be modified in order to imprint a momentum transfer
to the F = 2 state (see [71]).

1.5 Conclusion

In this first chapter, we described the production of ultracold gases of reduced di-
mensions. We emphasized two main aspects of our experiment: the use of an accordion
lattice for the vertical confinement and different DMDs for the horizontal confinement
with box-like potentials. In Chapter 3, we will use our ability to imprint controlled
density modulations to investigate how the superfluidity of the gas is affected by the
presence of a spatial modulation. Then, we can control not only the external degrees
of freedom of the gas but also its internal states. We discussed the ability to globally
control the spin state with MW fields or locally with Raman beams. The MW tool,
in combination with high-precision synthesizers, enables the production of Rubidium
dimers and the resolution of frequency shifts as low as a few tens of Hz. This will be
further discussed in Chapter 2. Chapter 6 will provide an example of a recent study
on accessing the physics of immiscible mixtures using the Raman beams tool.
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Chapter 2

Mean-field description of a
weakly-interacting 2D Bose gas at
T = 0

In Chapter 1, we discussed the experimental production of an ultracold Bose gas in
reduced dimensions, specifically in two dimensions. Here, we will provide a theoretical
description of it, using some simplifications that we will explain. We will focus on
how to handle the weak interactions that the atoms undergo. We will introduce a key
quantity quantifying the strength of these interactions, the scattering length a, and
write the equation governing the mean-field dynamics of our experimental system at
T = 0, the Gross-Pitaevskii equation. After completing the aforementioned task, we
will discuss our recent work on producing dimers of Rubidium 87 and studying their
interactions with the rest of the cloud. Finally, we will introduce a fascinating prop-
erty of, among other systems, the weakly-interacting Bose gas at zero temperature,
which is superfluidity. Its survival in spatially modulated systems will be the focus of
Chapter 3.

2.1 Description of a weakly-interacting 2D Bose gas at
zero temperature

In this section, we simplify the general Hamiltonian of the system to write the
Gross-Pitaevskii equation, also known as the nonlinear Schrödinger equation.

2.1.1 The quantum hamiltonian

The objective is to describe a dilute quantum system of N bosons with mass m,
which are trapped in the potential V (r) and interact via a binary potential U(r−r′)1.
This approach is described in details in [89] for example. The Hamiltonian governing
the physics of the system can be naturally written in first quantization:

Ĥ =

N∑
i=1

[
p̂2
i

2m
+ V (r̂i)

]
+

1

2

∑
i ̸=j

U(r̂i − r̂j) (2.1)

where the first term is the kinetic energy of the system (p̂i is the momentum operator
acting on the particle i) summed with the trapping energy of the system (r̂i is the
position operator acting on the particle i) and the last term is the interaction energy
of the system.

1U depends solely on r−r′ and not on r and r′ independently due to the translational invariance
property of the interactions in the system.
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Chapter 2. Mean-field description of a weakly-interacting 2D Bose gas at T = 0

With respect to the field operator Ψ̂(r) (respectively Ψ̂†(r)), which describes the
annihilation (resp. creation) of a particle at position r, the Hamiltonian (2.1) is
expressed in the second quantization formalism as:

Ĥ =

∫
d3r

[
ℏ2

2m
∇Ψ̂†(r) ·∇Ψ̂(r) + V (r) Ψ̂†(r) Ψ̂(r)

]
+

1

2

∫∫
d3r d3r′ Ψ̂†(r) Ψ̂†(r′)U(r− r′) Ψ̂(r′) Ψ̂(r) (2.2)

Finding the many-body ground state of this Hamiltonian is highly complicated
due to the exponential growth of the Hilbert space with the number of particles
N . However, it is not necessary to do so to describe our system, as explained in
section 2.1.3. First, let us address the interaction energy term in (2.2).

2.1.2 Ultracold collisions

To continue the discussion, we must examine the two-body term U(r− r′), which
describes the interactions in the system. The interactions between atoms play a crucial
role in describing various physical phenomena, particularly in the scientific projects
discussed in this thesis, such as the formation of dimers, the existence of superfluidity,
the formation of a soliton. Describing the interactions between two atoms without
any assumptions is an extremely ambitious program. However, considering ultracold
atoms simplifies the problem, as we will see in the following.

Accurately representing the interactions between atoms relies on scattering theory
and requires the introduction of the scattering amplitude (see [90] and [91] for a
review). In this text, we will provide the main physical concepts that lead to the
scattering length quantity without going into mathematical details.

The scattering problem can be simplified by considering the rotational invariance
of the interaction potential. Indeed, for alkali atoms, such as Rubidium, the inter-
action potential U(r) is dominated by a repulsive term at short distances and an
attractive van der Waals potential at longer distances, both of which are isotropic.
As a consequence, we can search for a common eigenstate basis of the Hamiltonian
of the relative motion of two atoms p̂2

2mrel
+U(r) (mrel = m/2 for two identical atoms

of mass m), L̂2 the square of the kinetic moment and L̂z its projection along a given
axis z. We write ψ(r, θ, ϕ) this eigenstate in spherical coordinates. Since this is an
eigenstate of L̂2 and L̂z, we can express it as a product of a radial wavefunction ξ(r)
and a spherical harmonic Yl,mz(θ, ϕ) with:

L̂2 ψ = ℏ2l(l + 1)ψ, L̂z ψ = ℏmz ψ, l ∈ N∗, mz ∈ {−l,−l + 1, ..., l} (2.3)

The Schrödinger equation for the radial part u(r) = rξ(r), using the expression of
p̂2 in spherical coordinates2, writes:

− ℏ2

2mrel

d2

dr2
u(r) +

[
U(r) +

ℏ2l(l + 1)

2mrelr2

]
u(r) = E u(r), r ≥ 0, u(0) = 0 (2.4)

2p̂2ψ = − ℏ2
r
∂2(rψ)

∂r2
+ 1

r2
L̂2ψ
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where E is the energy of the system. Everything happens as if the effective potential
felt by the particle of mass mrel is:

Ueff(r) = U(r) +
ℏ2l(l + 1)

2mrelr2
(2.5)

In the description of the collision between two atoms, each scattering channel, i.e.
each value of l, can thus be treated independently, and this partial wave expansion
greatly simplifies the problem, which is now one-dimensional. In Figure 2.1, we show
the qualitative form of this potential for different values of l. In an ultracold quantum
gas, the energy associated with the relative motion of two atoms E is generally much
smaller than the centrifugal barrier term ℏ2l(l+1)

2mrelr2
3. For the channels corresponding to

l ̸= 0, atoms remain far apart, resulting in smaller scattering processes compared to
the l = 0 channel, also known as the s-wave channel. Therefore, when this scattering
channel is not prohibited, which is the case for bosons, we can disregard the l ̸= 0
channels at low temperatures.

In the context of low-energy collisions and s-wave scattering, only one relevant
quantity is necessary to describe the scattering process4. This quantity is defined
through a low-energy limit of the scattering amplitude and is known as the scattering
length a. It is a property of the (complicated) interatomic potential U(r). However,
simpler potentials can also yield the same scattering length. Using a different potential
with the same value of a should not hinder access to most of the physics, as this
quantity is sufficient to describe the interactions in the system.

For all these reasons, the interaction potential U(r−r′) in the context of ultracold
gases can usually be replaced by a contact potential5, which is a natural choice when
the range of the potential is small compared to the wavepacket size:

Ucontact(r− r′) = g δ(r− r′) (2.7)

For a three-dimensional gas, in order to recover the same scattering length as the
true interatomic potential U(r− r′), g must have a specific value: g = 4πℏ2

m a. In the
strictly 2D situation, the scattering problem is more complicated (see [93]), and the
scattering amplitude depends on the relative wave vector of the collision. However,
in the experimentally relevant case of a sample with a thickness lz =

√
ℏ

mωz
(see

Chapter 1) much larger than the scattering length a (quasi-2D regime) and at low
collisional wave vectors k (ka≪ 1), the collisions keep their 3D character and it leads
to an energy independent expression for the scattering amplitude [94, 95, 96]. It is
important to note that this development assumes sufficiently small scattering lengths
and cannot describe interactions near Feshbach resonances.

3For a van der Waals potential, we can typically calculate a centrifugal barrier of ∼ kB × 10µK
which is much larger than the typical thermal energies of ∼ kB×0.1µK. In other words, the thermal
wavelength λth, the typical size of the wavepacket of the atoms, is much larger than the potential
range.

4Actually, this is true for scattering lengths that are sufficiently small compared to the range of
the potential. When this is not the case, such as near a Feshbach resonance, higher terms in the
development of the scattering amplitude must be taken into account [92].

5Actually, due to the singularity of the Dirac distribution at r = 0, the contact potential is
mathematically ill-defined. Therefore, it is common to use another zero-range interaction potential,
known as the pseudo-potential:

Upp[ψ(r)] = g δ(r)
∂

∂r
[rψ(r)]

∣∣∣∣
r=0

(2.6)
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E

l = 0

l ̸= 0

∝ 1/r2

r

U
(r
)

Figure 2.1: Interatomic potential of type Lennard-Jones added with centrifugal
potentials (2.5). The dark blue curve is the case l = 0 and the light blue curve
is an example of the case l ̸= 0. Its asymptote, which behaves in r → +∞ as
1/r2, is drawn with a dashed blue line. For ultracold atoms, the energy involved
in a collision E is much smaller than the centrifugal barrier. The atoms do not
explore the regions where U(r) > E. As a consequence, for l ̸= 0 channels, the
atoms are kept far away from each other and the associated scattering processes
are negligible (violet horizontal curve). However, for the l = 0 scattering channel
(s-wave channel), the atoms can approach each other and the associated scattering
process dominates (dashed violet line).

In this subsection, we have shown why considering collisions at low energy allows
to simplify the description of the interactions between two atoms. In this context,
we introduced the only relevant quantity a, the scattering length, which quantifies
the strength of the interactions. The existence of Fano-Feshbach resonances for many
atomic species (see [97] for a review and [98] for the case of 87Rb) is an extremely
powerful tool to tune the interactions in the system (turn attractive to repulsive
interactions or enter the unitary regime a→ ∞). We emphasized that describing the
interactions with a unique parameter that can be tuned with a single knob on the
experiment (magnetic field) makes the ultracold gas platform unique and attractive.
Now that a simple model has been introduced to describe the interactions, we can
return to the expression of the Hamiltonian (2.2) to simplify it.

2.1.3 Hartree ansatz and the Gross-Pitaevskii equation

At T = 0, bosons accumulate in a single quantum state, described by a single-
particle wavefunction ϕ(r), and form a Bose-Einstein condensate6. As a reasonable
approximation, we can then search for the ground state |Φ⟩ as a product state:

6It occurs in 3D and 2D at T = 0 (see [99]) but not at finite temperature for 2D and 1D gases.
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⟨r1 , ... , rN|Φ⟩ ∝ ϕ(r1) ... ϕ(rN) (2.8)

This is the Hartree ansatz and it considerably simplifies the research of the ground
state by replacing the N body problem with a one body problem. This is valid when
the number of atoms in the condensate N is sufficiently large, and this method is
referred to as a mean-field description. This procedure is similar to the transition
from quantum electrodynamics to the classical description of electromagnetism when
the number of photons is large enough. Inserting the Hartree ansatz (2.8) into Ĥ (2.2)
and assuming a contact potential Ucontact(r−r′) of the form (2.7), we obtain the energy
functional associated with ϕ(r), which we choose to normalize to the atom number7:

E[ϕ] = ⟨Φ| Ĥ |Φ⟩ =
∫

d3r

[
ℏ2

2m
|∇ϕ|2 + V (r) |ϕ(r)|2 + g

2
|ϕ(r)|4

]
(2.9)

We insist that this is allowed for N large enough and for sufficiently weak in-
teractions. Otherwise, ignoring the operational nature of the field leads to incorrect
results. In this context, to obtain the equation satisfied by ϕ, we have to mini-
mize the energy of the system with respect to ϕ under the normalization constraint∫
d3r |ϕ(r)|2 = N . To do this, we introduce a Lagrange multiplier [100], µ, and min-

imize E[ϕ] − µ
∫
d3r |ϕ(r)|2. Since µ is the partial derivative of the modified energy

with respect to the atom number, it represents the chemical potential of the system
and tells us how much the energy is modified when the atom number is changed. Then
we reach the stationary nonlinear Schrödinger equation:

− ℏ2

2m
∇2ϕ(r) + V (r)ϕ(r) + g |ϕ(r)|2 ϕ(r) = µϕ(r) (2.10)

For the time-dependent problem, the variational method can be generalized and
we obtain:

− ℏ2

2m
∇2 ϕ(r, t) + V (r)ϕ(r, t) + g |ϕ(r, t)|2 ϕ(r, t) = iℏ

∂ϕ

∂t
(r, t) (2.11)

This equation was found by Gross [28] and Pitaevskii [29] and is named after
them. For the 3D weakly-interacting Bose gas or liquid helium, ϕ is called the order
parameter of the system, since its square modulus represents the condensed fraction
undergoing a phase transition from the BEC (non zero value) to the thermal phase
(zero value).

2.1.4 The quasi-2D regime

In quasi-2D systems, such as our experimental platform, the Gross-Pitaevskii equa-
tion is slightly modified. The Dirac potential that describes the 3D interactions can
be kept because collisions maintain their 3D character in the quasi-2D regime, as
explained above. Additionally, at sufficiently low scattering lengths, the scatter-
ing length is independent of energy. Therefore we can start with the energy func-
tional (2.9) and integrate out the frozen degree of freedom of the gas, which is denoted
as z. To accomplish this, the 3D wavefunction is expressed as the product of a 2D
wavefunction and a 1D wavefunction along the z axis. Since the confinement along z
is approximated as a harmonic confinement of angular frequency ωz, the wavefunction
along z is written as a Gaussian of width lz =

√
ℏ/(mωz), assuming the atoms are in

the ground state of the harmonic oscillator along z. Therefore we can write:

7Assuming that N is large, we take N − 1 ≃ N .
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ϕ(r) = φ(x, y)χ(z) with χ(z) =
1

(π l2z)
1/4

exp

(
− z2

2l2z

)
(2.12)

By inserting (2.12) into the energy functional (2.9) and minimizing it with respect
to φ under the normalization constraint, the 2D Gross-Pitaevskii equation is obtained:

− ℏ2

2m
∇2φ+ Ṽ φ+

ℏ2

m
g̃ |φ|2 φ = iℏ

∂φ

∂t
(2.13)

with g̃ =
√
8π a

lz
a non-dimensional parameter characterizing the interactions in two

dimensions8. Ṽ describes the 2D confinement and depends on the coordinates x and
y, as does φ. We could have written a time-independent equation for the 2D problem
similar to (2.10). The same procedure can be used to enter the 1D regime as we will
see in Chapter 4.

Finally, we insist on the fact that this discussion is valid for weakly-interacting
Bose gases. To be more quantitative, this limits the value of g̃ to typically g̃ ≪ 2π
[94]. For our 2D experiment we compute with a ≃ 100 aB (aB ≃ 0.05 nm is the Bohr
radius) and lz ≃ 180 nm, a value of g̃ ≃ 0.159. The use of the weakly-interacting
regime is thus legitimate in our case, and the mean-field description provides a good
approximation to the dynamics of the system at sufficiently low temperatures.

2.1.5 Connexion with hydrodynamics

In the previous subsection, we derived the Gross-Pitaevskii equation describing
the evolution of the field φ. To do this, we neglected the granularity of the atoms
and transformed the operators into wavefunctions. The original quantum problem is
transformed into a classical field formulation. Do we completely erase the quantum
nature of the problem? To answer this question, we reformulate the Gross-Pitaevskii
equation in the density-phase representation with φ =

√
n eiθ and introduce an irro-

tational velocity field v = ℏ
m∇θ where θ is well defined [89]. The equation (2.13) can

then be written as:{
∂n
∂t = −∇ · (nv)
∂v
∂t = ∇

[
−1

2v
2 − Ṽ (x, y)− ℏ2

m2 g̃ n+ ℏ2
2m2

∆
√
n√
n

] (2.14)

The first equation is a continuity equation that guarantees the conservation of the
atom number and the second equation is a modified Euler equation. Both equations
are also present in hydrodynamics. More precisely, if we neglect the last term of the
second equation, the so-called quantum pressure term, which is often small, partic-
ularly for uniform systems, we recover the Euler equation, governing the dynamics
of non-viscous fluids. Indeed, many phenomena at play in the ultracold atom plat-
form such as demixion, turbulence, vortices or superfluidity are also key words in the
hydrodynamic studies.

Since the velocity is proportional to the phase gradient, the circulation of the
velocity along any closed contour C is quantized:∮

C
v · dl = p

2πℏ
m

, p ∈ Z (2.15)

8The value given here is obtained for a harmonic confinement along z and its general definition
is g̃ = 4πa

∫
dz |χ(z)|4. By construction, we find the value given in [95] in the limit of a≪ lz.

9The fact that a > 0 and thus g̃ > 0, i.e. the presence of repulsive interactions, ensures the
stability of the cloud.
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This circulation does not change by a continuous deformation of C, except when
the contour intersects a point where the phase is ill-defined i.e. a zero of φ. These
points, where the density vanishes, are the quantum vortices mentioned above. When
a vortex is encountered, the circulation changes by steps of ±2πℏ

m . This quantization
of the circulation of the velocity field is one of the quantum aspects that persists in
the Gross-Pitaevskii theory [101].

In summary, we demonstrated that the Gross-Pitaevskii equation can be mapped,
under some approximations, to classical hydrodynamic equations. However, we em-
phasized the presence of a quantum pressure term and the complex nature of the field
φ, which in particular causes the circulation of the velocity field to be quantized.

2.1.6 Scale invariance of the 2D weakly-interacting Bose gas

We will now examine one of the main properties of the weakly-interacting 2D Bose
gas at zero temperature, its scale invariance. A system is said to be scale invariant if
the energy is modified in the following manner when the time and space coordinates
are dilated with a parameter λ:

t→ λ2 t
l → λ l

}
=⇒ E → 1

λ2
E (2.16)

We can explicitly check that the kinetic energy ∝
∫

ddr |∇φ|2 is always trans-
formed as Ekin → 1

λ2
Ekin regardless of the dimension of the system d. For the inter-

action energy of the weakly-interacting 2D Bose gas ∝ g̃
∫

d2r |φ|4, it also transforms
into Eint → 1

λ2
Eint because g̃ is dimensionless [101]. The weakly-interacting homoge-

neous 2D Bose gas is thus scale invariant, as is the 3D unitary Fermi gas for example
[102].

We now give some properties of scale invariant systems. The equation of state of
such a system depends only on the ratio µ/kBT and not on µ and kBT independently.
This has been verified experimentally for the weakly-interacting 2D Bose gas in [26,
103]. This scale invariance also has some consequences for the dynamical properties of
the system. Placed in a harmonic potential of frequency ω/2π, although the system is
no longer scale invariant, there exists a breathing mode that oscillates at 2ω regardless
of the value of the interactions. It was predicted for example by [104] and verified in
[105]. Recently, our team has shown that for certain wavepackets, not only the size
of the gas oscillates at 2ω, but also the wavepacket itself [27]. This is the case for the
equilateral triangle shown in Figure 2.2. A theoretical justification was provided in
[106] thanks to a mapping to hydrodynamical equations.

Finally, we emphasize that as soon as g̃ is no longer negligible compared to 2π, the
mean-field description fails to describe the interactions, a new length scale enters the
problem, and the scale invariance breaks down along with the properties described
above. We speak of quantum anomaly [107] and an example of a deviation from the
mean-field description can be found in [108].

2.1.7 Conclusion

In this section, we presented the derivation of the Gross-Pitaevskii equation, which
describes the dynamics of a 2D weakly-interacting Bose gas at zero temperature.
We explained the emergence of the scattering length and the different hypotheses
that allow for a mean-field description of the gas and its interactions. Finally, we
briefly discussed the remarkable properties of the 2D Bose gas resulting from the
scale invariance in the system. In the following section, we report how we are able to
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Figure 2.2: Breather of the 2D weakly-interacting Bose gas. Figure taken from
[27]. (a): A uniform gas is prepared inside an equilateral triangle and placed in
a harmonic trap of frequency 1/T . The wavepacket is inverted after a quarter of
the harmonic trap period T and close to the initial one at T/2. The black lines
represent 10 µm. (b): Evolution of the scalar product between the wavefunction
at time t and the initial one. The red dot is the initial point and the 3 arrows
represent the times t at which absorption images of the cloud are recorded in (a).
The wavefunction oscillates with a period of T/2.

produce dimers of 87Rb on our setup and measure their interactions with the rest of
the atomic cloud, relying on a mean-field description.

2.2 Precise measurement of atom-dimer interactions

This section presents our recent work on atom-dimer interactions. It has been
already extensively detailed in Chloé Maury’s thesis [83] and we will give here only
the main results. The description of the interaction between two atoms is extended
to explain how bound states can emerge. The creation of weakly-bound states is then
discussed, followed by a comparison of the spectroscopic measurements with a simple
model. Finally, the precise measurements of the frequency transfer used to create a
dimer are employed to extract an atom-dimer scattering length.

2.2.1 Production of dimers via MW photoassociation

As previously discussed in section 2.1.2, the interactions between two atoms are
attractive at long distances and are of the van der Waals type. At short distances, the
potential becomes repulsive, and between the two regimes, a minimum of the potential
is reached, as shown in Figure 2.1. This allows for the existence of several bound states
of two atoms with energy E < 0, known as dimers. For strongly bound states, the
dimer is often referred to as a molecule. Here, the study is limited to weakly bound
dimers.

Actually, in addition to the van der Waals interaction and the short-distance re-
pulsive interaction, two other interactions must also be considered. First, hyperfine
interactions ∝ ŝ · î for each atom, split the electronic ground level into two hyperfine
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It is important to distinguish between two different
kinds of collisions: elastic and inelastic. As mentioned
above, an elastic collision is one in which the quantum
states aa ,ab of each atom remain unchanged by the col-
lision. These collisions exchange momentum, thereby
aiding the thermalizing of the atomic sample. These are
‘‘good’’ collisions that do not destroy the trapped states,
and they are necessary for the process of evaporative
cooling we will describe later. An inelastic collision is
one in which one (or more) of these two quantum num-
bers changes in the collision. Most cold collision studies
have dealt with inelastic events instead of elastic ones,
that is, the collision results in hot atoms or untrapped
species or even ionic species. As we will see in the next
section, the quantum threshold properties of elastic and
inelastic collisions are very different.

The basic difference between collisions of different
atomic species and identical atomic species is the need
to symmetrize the wave function with respect to ex-
change of identical particles in the latter case. Other
than this symmetrization requirement, the theory is the
same for the two cases. Symmetrization has two effects:
the introduction of factors of two at various points in the
theory, and the exclusion of certain states since they vio-
late the exchange symmetry requirement. Such symme-
try restrictions are well known in the context of diatomic
molecular spectroscopy, leading to, for example,
orthospecies and paraspecies of molecular hydrogen and
to every other line being missing in the absorption spec-
trum of molecular oxygen, due to the zero nuclear spin
of the oxygen atom (Herzberg, 1950). In the case of
atomic collisions of identical species, if the two quantum
numbers are identical, aa5ab , only even partial waves l
are possible if the particles are composite bosons, and
only odd partial waves are possible if the particles are
composite fermions. If the two quantum numbers are
not identical, aaÞab , both even and odd partial waves
can contribute to collision rates. The effect of this sym-
metry is manifestly present in photoassociation spectra,
where for example, half the number of lines appear in a
doubly spin polarized gas (where all atoms are in the
same quantum state) as contrasted to an unpolarized gas
(where there is a distribution of quantum states). These
spectra will be described in Section VI below.

Stoof, Koelman, and Verhaar (1988) give a good dis-
cussion of how to modify the theory to account for ex-
change symmetry of identical particles. Essentially, they
set up the states describing the separated atoms, the so-
called channel states of scattering theory, as fully sym-
metrized states with respect to particle exchange.
T-matrix elements and event rate coefficients, defined as
in Eq. (17), are calculated conventionally for transitions
between such symmetrized states. The event rate coeffi-
cients are given by

K~$gd%→$ab%!

5K p\

mk (
l8m8

(
lm

uT~E ,$gd%l8m8,$ab%lm !u2L
(18)

where the braces $¯% signify symmetrized states, and the
T matrix as defined in this review is related to the uni-
tary S matrix by T512S. Then collision rates are un-
ambiguously given by

FIG. 3. Ground hyperfine levels of the 87Rb atom versus mag-
netic field strength. The Zeeman splitting of each manifold is
evident. The energy has been divided by the Boltzmann con-
stant in order to express it in temperature units.

FIG. 4. The ground-state potential energy curves of the Rb2
molecule. The potentials have been divided by the Boltzmann
constant in order to express them in units of temperature. The
full figure shows the short range potentials on the scale of
chemical bonding. The inset shows an enlargement at long
range, showing the separated atom hyperfine levels Fa1Fb

5111, 112, and 212. The upper two potentials in the inset
correlate adiabatically with the 3Su .
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FIG. 1. (a),(b) Clouds used for microwave spectroscopy with ei-
ther (a) a single component state | f = 1,mf = 0,±1 or (b) a binary
mixture of these hyperf ne states (bar length: 10 µm). (c) Relevant
levels for a pair of atoms occupying the f = 1 or f = 2 hyperf ne
sublevels of the electronic ground state of 87Rb. The dissociation
limits of molecular state manifolds, represented as dashed lines,
are separated by hνhf ≈ h× 6.8 GHz. The molecular potentials are
represented by thick continuous lines. The graph is limited to rel-
atively large interatomic distances where van der Waals interaction
dominates, hence the superposition of singlet and triplet potentials at
the scale of the f gure. We also indicate the values of the total spin an-
gular momentum F of the dimer. Here, we focus on the least-bound
vibrational levels n =−1 and n =−2 of the ( f = 1; f = 2) sub-
space, with zero orbital angular momentum. These levels are located
∼25 and 642 MHz below the dissociation energy, respectively. The
dimers are produced by microwave photoassociation of two atoms
either both in f = 1 (M1 and M2 lines) or both in f = 2 (M1 line).

Fig. 1(b). The 2D density na of the cloud is tuned from about
20 to 100 µm−2 by removing a controlled fraction of the atoms
from the large density conf guration [47].
In most experimental sequences, a magnetic f eld B0 in the

range 0.7–2 G, aligned along the z axis, def nes the quanti-
zation axis [48]. For photoassociation spectroscopy, we use
a microwave f eld of frequency ≈6–7 GHz and of amplitude
Bmw ≈ 30 mG, which has nonzero components in all π ,σ±
polarizations. We detect the formation of dimers by losses in
the gas and we identify for each target state the resonance
frequency at which these losses are maximal.
Atomic and molecular levels. For the 87Rb atom, the elec-

tronic ground level is split by the hyperf ne interaction into
two sublevels of spin angular momentum f = 1 and f = 2.
It results from the coupling Ĥhf ∝ ŝ · î between the electron
spin s = 1/2 and the nuclear spin i = 3/2, with f̂ = ŝ+ î.
The two sublevels are separated by an energy difference
hνhf ≈ h× 6.8 GHz. Atoms can be prepared in any of the

FIG. 2. Energy diagram of the ( f = 1; f = 2) subspace. The col-
ors of the experimental points encode the composition of the initial
atomic state. The set of solid lines is the result of the simple model
described in the text, with two adjustable parameters U and E0. The
state | (n=−1)

0 used for measuring the atom-dimer scattering length
is highlighted with a red solid line. The numbers on the right give, for
each state, the quantum numberMF associated with the z component
of the spin angular momentum F̂.

eight states | f ,mf , where mf is associated to the projection
along z of f̂ . In addition, any binary mixture of these atomic
states can be prepared using a series of suitable coherent
transfer pulses between these states.
The relevant energy levels for a pair of two atoms labeled

A and B are sketched in Fig. 1(c). The unbound states with
zero asymptotic kinetic energy are represented as dashed
lines. Three subspaces ( f = 1; f = 1), ( f = 1; f = 2), and
( f = 2; f = 2) separated by hνhf can be identif ed. For each
subspace, we indicate the possible values of the total spin
(nuclear + electron) angular momentum F (with F̂ = f̂ A +
f̂ B), taking into account the required exchange symmetry
for two bosonic atoms. Molecular states corresponding to
bound dimers are sketched with solid horizontal lines. We
have represented for each subspace the two least-bound vi-
brational levels n =−1 and n =−2 with zero orbital angular
momentum and binding energies ≈−25 and −600 MHz,
respectively.
Microwave photoassociation spectroscopy. In a f rst ex-

periment, we photoassociate pairs of atoms in | f = 1,mf =
0 ⊗ | f = 1,mf = 0 into weakly bound dimers in the ( f =
1, f = 2) subspace, on which we now focus. We target the
least-bound (n =−1) vibrational level with zero orbital an-
gular momentum and a binding energy ∼− h× 25 MHz
[49]. We show in Fig. 2 the measurement of the position of
three lines (blue circles) corresponding to the absorption of
a photon with a π or σ± polarization as a function of the
applied external magnetic f eld B0. The rest of the diagram
is obtained by preparing the initial atomic gas in other pure
hyperf ne states | f = 1,mf =±1 or in binary mixtures of
| f = 1,mf = 0,±1 . Experiments with mixtures require a
modif cation of the experimental protocol: as the two species
have different magnetic moments, residual magnetic f eld gra-
dients lead to spatial separation of the two components and
prevent the dimer formation. We circumvent this problem by
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(a) (b)

Figure 2.3: Molecular potentials. (a): Interatomic potentials between two atoms
of 87Rb. Figure taken from [91]. The two interaction potentials for the singlet
1Σg and the triplet potentials 3Σu are represented as a function of the interatomic
distance. For R > 20 aB the two potentials are similar and the hyperfine interaction
dominates. It leads to the three collision channels shown in the inset of the figure.
The bonding orbital (singlet potential) can host several bound states. (b): Zoom
on the large interatomic distance part (basically the interatomic distance range of
the inset of (a)). Figure extracted from [87]. The three subspaces, separated by the
hyperfine splitting, are shown. The dashed lines are the dissociation limits below
which bound states can exist. The thick lines are the molecular potentials. For each
subspace we present the two least bound states that split themselves into a group of
two or more states due to the singlet-triplet coupling. In the following we focus on
the subspace {f = 1, f = 2} and its least-bound states, shown in black. The dimers
are created by microwave photoassociation from the subspace {f = 1, f = 1} (wavy
line M1). The drawing is not to scale.

levels of total angular momentum f = 1 and f = 2 (s is the electron spin10 and
i is the nuclear spin). Thus, when dealing with dimers, we have to consider three
subspaces: {f = 1, f = 1}, {f = 1, f = 2}, and {f = 2, f = 2}. This interaction
causes the interatomic potential curve to split into three branches at large interatomic
distances (inset of Figure 2.3). At short distances, the interaction is dominated by
an effective one, resulting from the fact that the total spin of the pair S can take
two different values: S = 0 (1/2 − 1/2) or S = 1 (1/2 + 1/2), leading to two slightly
different scattering lengths. In chemical terms describing a covalent bond, the S = 0
potential, called the singlet potential, corresponds to a bonding orbital of lower en-
ergy than the S = 1 potential, called the triplet potential, which corresponds to an
antibonding orbital. A representation of these potentials is plotted in Figure 2.3.
The horizontal axis is the distance between the atoms in units of the Bohr radius
aB. In our dilute ultracold Bose gas, the typical distance between atoms is equal to
da ∼ n−1/3 ≃ 100 nm ≃ 200 aB. Naturally, when a bonded dimer is formed, this dis-
tance is reduced. However, the two atoms still remain at a distance ≳ 10 nm ≃ 20 aB
from each other when considering weakly bound dimers. In this regime, as we can see
in the figure, the difference between singlet and triplet potentials is small compared
to the hyperfine splitting effect (shown in the inset of Figure 2.3). Therefore, we treat
this effective interaction Ĥst = U ŝ1 · ŝ2 as a perturbation of the hyperfine interaction

10Contrary to Chapter 1, we do not use ĵ the total electronic angular momentum, because we
are only considering the electronic ground state for which l = 0 and thus ĵ = ŝ. Additionally,
unlike Chapter 1, individual momenta are denoted using lowercase letters, while uppercase letters
are reserved for the dimer momenta.
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(U ≪ ∆Ehf ≃ h × 6.8GHz). This will cause each subspace to split into different
states.
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FIG. 1. (a),(b) Clouds used for microwave spectroscopy with ei-
ther (a) a single component state | f = 1, mf = 0, ±1〉 or (b) a binary
mixture of these hyperfine states (bar length: 10 µm). (c) Relevant
levels for a pair of atoms occupying the f = 1 or f = 2 hyperfine
sublevels of the electronic ground state of 87Rb. The dissociation
limits of molecular state manifolds, represented as dashed lines,
are separated by hνhf ≈ h × 6.8 GHz. The molecular potentials are
represented by thick continuous lines. The graph is limited to rel-
atively large interatomic distances where van der Waals interaction
dominates, hence the superposition of singlet and triplet potentials at
the scale of the figure. We also indicate the values of the total spin an-
gular momentum F of the dimer. Here, we focus on the least-bound
vibrational levels n = −1 and n = −2 of the ( f = 1; f = 2) sub-
space, with zero orbital angular momentum. These levels are located
∼25 and 642 MHz below the dissociation energy, respectively. The
dimers are produced by microwave photoassociation of two atoms
either both in f = 1 (M1 and M2 lines) or both in f = 2 (M′

1 line).

Fig. 1(b). The 2D density na of the cloud is tuned from about
20 to 100 µm−2 by removing a controlled fraction of the atoms
from the large density configuration [47].

In most experimental sequences, a magnetic field B0 in the
range 0.7–2 G, aligned along the z axis, defines the quanti-
zation axis [48]. For photoassociation spectroscopy, we use
a microwave field of frequency ≈6–7 GHz and of amplitude
Bmw ≈ 30 mG, which has nonzero components in all π, σ±
polarizations. We detect the formation of dimers by losses in
the gas and we identify for each target state the resonance
frequency at which these losses are maximal.

Atomic and molecular levels. For the 87Rb atom, the elec-
tronic ground level is split by the hyperfine interaction into
two sublevels of spin angular momentum f = 1 and f = 2.
It results from the coupling Ĥhf ∝ ŝ · î between the electron
spin s = 1/2 and the nuclear spin i = 3/2, with f̂ = ŝ + î.
The two sublevels are separated by an energy difference
hνhf ≈ h × 6.8 GHz. Atoms can be prepared in any of the

FIG. 2. Energy diagram of the ( f = 1; f = 2) subspace. The col-
ors of the experimental points encode the composition of the initial
atomic state. The set of solid lines is the result of the simple model
described in the text, with two adjustable parameters U and E0. The
state |� (n=−1)

0 〉 used for measuring the atom-dimer scattering length
is highlighted with a red solid line. The numbers on the right give, for
each state, the quantum number MF associated with the z component
of the spin angular momentum F̂.

eight states | f , m f 〉, where m f is associated to the projection
along z of f̂ . In addition, any binary mixture of these atomic
states can be prepared using a series of suitable coherent
transfer pulses between these states.

The relevant energy levels for a pair of two atoms labeled
A and B are sketched in Fig. 1(c). The unbound states with
zero asymptotic kinetic energy are represented as dashed
lines. Three subspaces ( f = 1; f = 1), ( f = 1; f = 2), and
( f = 2; f = 2) separated by hνhf can be identified. For each
subspace, we indicate the possible values of the total spin
(nuclear + electron) angular momentum F (with F̂ = f̂ A +
f̂ B), taking into account the required exchange symmetry
for two bosonic atoms. Molecular states corresponding to
bound dimers are sketched with solid horizontal lines. We
have represented for each subspace the two least-bound vi-
brational levels n = −1 and n = −2 with zero orbital angular
momentum and binding energies ≈−25 and −600 MHz,
respectively.

Microwave photoassociation spectroscopy. In a first ex-
periment, we photoassociate pairs of atoms in | f = 1, m f =
0〉 ⊗ | f = 1, m f = 0〉 into weakly bound dimers in the ( f =
1, f = 2) subspace, on which we now focus. We target the
least-bound (n = −1) vibrational level with zero orbital an-
gular momentum and a binding energy ∼− h × 25 MHz
[49]. We show in Fig. 2 the measurement of the position of
three lines (blue circles) corresponding to the absorption of
a photon with a π or σ± polarization as a function of the
applied external magnetic field B0. The rest of the diagram
is obtained by preparing the initial atomic gas in other pure
hyperfine states | f = 1, m f = ±1〉 or in binary mixtures of
| f = 1, m f = 0,±1〉. Experiments with mixtures require a
modification of the experimental protocol: as the two species
have different magnetic moments, residual magnetic field gra-
dients lead to spatial separation of the two components and
prevent the dimer formation. We circumvent this problem by
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(a)
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Figure 2.4: Observation of dimers. (a): Loss signal at low densities. We detect
the formation of dimers by atomic losses δna after the application of the MW
field at frequency ν. The resonance frequency of the transfer ν0 is the frequency
at which the observed losses are maximal. (b): Energy diagram of the subspace
{f = 1, f = 2}. The circles represent the experimental points, their colors indicate
the initial spin composition of the cloud used to reach these lines. Black solid lines
are the result of the diagonalization of the full Hamiltonian with free parameters
E0, which is a global offset, and U the parameter describing the singlet/triplet
term. The discrepancy between the model and the experimental points is always
less than h × 3 kHz. The red line highlights a first-order magnetically insensitive
state. Figure taken from [87].

In the following, we consider only the first vibrational state (i.e. the least bound
state) of the subspace of one atom in f = 1 and one atom in f = 2. More details
about the other subspaces and the second vibrational state can be found in [87] and
[83]. At zero magnetic field, the Hamiltonian Ĥst results in a splitting of this subspace
into two branches. When a non-zero magnetic field is applied, the energy levels do not
vary linearly with the magnetic field due to the Zeeman Hamiltonian, which mixes
the different F states (Figure 2.4(b))11.

We now turn to the experimental realization of these dimers. In the subspaces
{f = 1, f = 1} and {f = 2, f = 2} the least bound dimers were obtained in the group
of D. J. Heinzen thanks to two-photon photoassociation [109]. Regarding the first
vibrational state of the subspace {f = 1, f = 2}, its bound energy, ∼ −h × 25MHz,
was already measured in Melbourne [110], where the dimers were produced by radio-
frequency association. Here, we use a microwave field, described in Chapter 1, to
create the dimers. It has a frequency ∼ 6.8GHz and an amplitude ∼ 30mG. We
shine this field on a homogeneous cloud of atoms in the state |f = 1,mf ⟩. We detect
dimer formation by atomic losses in the cloud. For each target state, we vary the
excitation field frequency, as can be seen in Figure 2.4(a), and we define the reso-
nance frequency as the frequency at which the losses are maximal. By varying the
magnetic field and the initial Zeeman state mf of the f = 1 bath, we identify the
15 lines of the {f = 1, f = 2} subspace12. The finite linewidth of the loss signals
(∼ 1 kHz) can be explained by the finite lifetime of the created dimers. To avoid

11For the {f = 1, f = 2} subspace, there are (2× 1 + 1)× (2× 2 + 1) = 15 states.
12For some of the lines, we prepare the initial cloud in a mixture of Zeeman states and we use

microtraps to prevent the mixture from demixing (see [83] for more details).
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additional broadening of the line, it is advantageous to work with homogeneous gases.
Figure 2.4(b) shows our measurements of the energy diagram of the dimer alongside
the curves obtained thanks to the diagonalization of the phenomenological Hamilto-
nian taking into account the hyperfine interaction, the singlet/triplet interaction Ĥst

and the Zeeman Hamiltonian. The model has only two free parameters: the bonding
energy ∼ −h × 25MHz and the phenomenological term that describes the difference
between singlet and triplet potentials U .

It should be emphasized that the observation of dimer formation is not guaranteed
even if the frequency is known. The field should indeed have the adequate amplitude
and polarization to induce photoassociation. The dimer lines targeted in this study
mostly exhibit weak coupling with the MW field. Therefore, a 50W amplifier and up
to 10 s of excitation were required to create the dimers.

2.2.2 Atom-dimer interactions

After creating the dimer, a natural question arises regarding its interaction with
the rest of the cloud of atoms in f = 1, called the bath.

Experimentally, we vary the initial density of the atomic cloud and aim for a dimer
state that is insensitive to magnetic field up to first order (red line in Figure 2.4(b)).
We find that this line is shifted to smaller resonance frequencies as the density is
increased (see Figure 2.5). The shift can go up to ≃ 800Hz, and can be measured
accurately using the high-precision MW chains described in Chapter 1.C. MAURY et al. PHYSICAL REVIEW RESEARCH 5, L012020 (2023)

FIG. 3. Frequency shift of the M1 line as a function of the 2D
density of the gas. The three different symbols correspond to a
measured relative depletion signal of 20% (square), 14% (diamond),
and 8% (circle). All data are adjusted by a common linear f t.
The left-hand inset shows the result of a similar measurement for
the second-to-least bound level (M2 line in Fig. 1). The right-hand
inset shows a typical microwave photoassociation signal for na =
95 µm−2. The variation of the width of the photoassociation signal
with density is reported in [53].

100 atoms/µm2. All data collapse on a single curve, which
conf rms that we operate in the weak excitation regime. We
f t a linear function to the data and obtain ν / na =−7.3(3)
Hz/µm2 [59].
In order to interpret this shift within a mean-f eld approach,

we introduce the interaction parameter gad = 2πaad h̄2/mr ,
where mr = 2ma/3 is the reduced mass of the atom-dimer
system. We assume that all interactions occur in the s-wave
regime, because of the very low relative momenta between the
unbound atoms and the dimer. The photoassociation process
must bring to the sample (i) the energy in the zero-density
limit hν0, (ii) the interaction energy between the dimer and
the atom bath, and (iii) the energy −2μa, since two atoms
are removed from the bath. Denoting ρa(z) the 3D density
prof le of the atom bath and fd (z) the distribution function
of the dimer [with the normalization dzρa(z) = na and
dz fd (z) = 1], we f nd using the mean-f eld value of μa in

the low-temperature limit [53]

hν = gad dzρa(z) fd (z)− 2μa =

√
3 aad
2a1

− 2 μa,

(2)

where a f (with f = 1, 2) denotes the s-wave scattering length
for the collision between two atoms in state | f ,mf = 0 . In
all cases the dimer density is low enough so that dimer-dimer
interactions can be safely neglected.
The atomic 2D density na, or equivalently the chemical

potential μa, are inferred via Ramsey spectroscopy following
the method used in Refs. [60,61], which probes the differ-
ence of mean-f eld interaction energies experienced by the
atoms in two different internal states. We measure the density-
dependent component ν of the microwave frequency that
allows a complete transfer, after the two Ramsey pulses, of the
gas from the | f = 1,mf = 0 to the | f = 2,mf = 0 atomic

state. It reads (see [60,61])

hν =
1

2

a2 − a1
a1

μa (3)

and it depends only on the knowledge of the aforementioned
atomic scattering lengths a f of states | f ,mf = 0 . Such a
measurement of this frequency shift thus provides a direct
calibration of the chemical potential of the gas. Preparing
the sample in the same experimental conditions as for the
measurement of the frequency shift of the dimer line, we
obtain ν /na =−0.52(2) Hz/µm2. Combining Eq. (2) with
Eq. (3) we obtain the atom-dimer scattering length:

aad =
4
√
3
a1 +

1
√
3

ν
ν

(a2 − a1), (4)

an expression which is immune to systematic errors in the
calibration of the density na. Using the known values of a1 =
100.9a0 and a2 − a1 =−6a0 with a0 the Bohr radius [62], we
obtain

a(n=−1)ad [bath in f = 1] = 184(2)a0, (5)

where the quoted error takes into account only the uncer-
tainties on ν and ν [63]. This value is notably different
from the result of the impulse approximation aimpulsead =
4(a1 + a12)/3 ≈ 261a0, where a12 is the interspecies scatter-
ing length describing the interaction between an f = 1 and
an f = 2 atom. This approximation consists in summing in-
dependently the scattering amplitudes of an atom of the bath
with each atom of the dimer [64].
Using the M2 line we have also determined the atom-dimer

scattering length of the | (n=−2)
0 with the same bath. We

obtain

a(n=−2)ad [bath in f = 1] = 21(7)a0 (6)

for the atom-dimer scattering length (see inset of Fig. 3). The
large difference between a(n=−1)ad and a(n=−2)ad for an identical
bath and identical spin states shows the key role of the dimer
radial wave function in the scattering process. We note that
a related work was performed with two-photon photoassocia-
tion of 87Rb atoms for a state in the n =−2, ( f = 1; f = 1)
subspace and trapped in a harmonic potential [65]. An atom-
dimer scattering length of −180(150)a0 was reported, where
the large uncertainty could be attributed to the diff culty of
accurately modeling the experimental signal in an inhomoge-
neous cloud.
Lastly, using the M1 line we measured the interaction of

the dimer state | (n=−1)
0 with a bath of atoms initially all in

state | f = 2,mf = 0 . The f tted slope is now 8.1(9) Hz/µm2,
leading to

a(n=−1)ad [bath in f = 2] = 165(7)a0, (7)

a value close to the result of an atom bath in state | f =
1,mf = 0 . The similarity between these two results, com-
bined with the small difference between the two bath
scattering lengths a1 and a2, is compatible with the existence
of a “van der Waals universality”, which may allow one to link
a and aad for the least-bound dimers.
Conclusions. We have presented a precise measurement

of the scattering length aad characterizing the interaction be-
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Figure 2.5: Measurement of the atom-dimer interaction for the magnetic field
insensitive least bound state of the subspace {f = 1, f = 2} and a bath of atoms
in f = 1. Increasing the density of the bath leads to a slightly lower resonance
frequency (the inset should be compared with Figure 2.4(a)). The different colors
and shapes of the points correspond to different maximum depletions of the bath:
circles (respectively squares, diamonds) are obtained for a depletion of 8% (resp.
20%, 14%). They fall on the same curve confirming that we are working in the low
excitation regime. Figure taken from [87].

We interpret the observed linear shift ∆ν in a mean-field approach, which we
introduced in section 2.1. Indeed, the interactions between the dimers and the atoms
are described using only the s-wave scattering channel, assuming that the relative
velocity of the dimer and the rest of the atomic cloud is sufficiently small. A scattering
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length for this process aad is introduced. A short calculation, which can be found in
[87], relates the shift of the line ∆ν to this scattering length, the interaction parameter
between two atoms in f = 1: g11 = 4πℏ2a11/m, and the density of the bath na:

h∆ν =

(√
3 aad
2a11

− 2

)
g11na (2.17)

Since a11 is independently well calibrated on our setup (see [86]), the slope of
the linear shift of the line gives a direct access to aad. For the interaction between
the first-order magnetically insensitive state of the least-bound state of the subspace
{f = 1, f = 2} and a bath of atoms in f = 1, we then get: aad = 184(2)aB.

2.2.3 Conclusion

In this section, we provided a brief description of our recent study of atom-dimer
interactions in a 87Rb cloud. The measurements were made possible by a mean-field
description of the gas. We emphasized the precision of our measurements, which were
made possible by our well-developed MW chains and the uniformity of the cloud,
which prevented inhomogeneous broadening of the lines. More details can be found
in [87, 83].

2.3 A striking property of the 2D weakly-interacting Bose
gas at zero temperature: superfluidity

This section briefly describes the property of superfluidity in our system and its
relation to the discussion on the Gross-Pitaevskii equation at T = 0 (section 2.1).
The question of superfluidity at finite temperature is postponed to the next section.

2.3.1 Features of superfluidity

One of the most well-known characteristics of a superfluid is the existence of a
dissipation-less flow for sufficiently slow flows. Superfluidity is then often described
as the absence of viscosity. This phenomenon was first observed in liquid 4He at low
temperatures by Kapitza [5] and independently by Allen [6].

Other important features of superfluids can be considered in a thought experiment
of a fluid in a rotating container [111]. Let us first imagine that we start with a
fluid at rest in a non-moving container and slowly begin to rotate it. A classical
fluid will immediately follow the movement of the container, while for a superfluid,
there is a critical rotating velocity below which the superfluid remains at rest. This
phenomenon was first observed in 1967 in the case of Helium 4 [7]. This property is
commonly referred to as phase stiffness. The superfluid does not follow the rotation
of the container, resulting in a reduced moment of inertia compared to the classical
value. Another key characteristic of a superfluid is its metastability. Let us consider
a scenario where we begin with a superfluid that rotates along with its container,
and then abruptly stop the container. A classical fluid will stop quickly due to its
viscosity, while in superfluids permanent currents can persist for a certain amount
of time, which can be exceptionally long13. Therefore, the superfluid is considered
metastable because the rotating state with the container at rest is not the ground
state of the system, but it still exists for a certain time. This criterion of metastability

13In supraconductors, which are also systems exhibiting superfluidity, this time could be several
tens of years [112].
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is crucial in defining superfluidity. Indeed, the ideal gas does not satisfy this criterion,
although it has the property of phase stiffness, which was discussed previously [111].
The controversial discussion of superfluidity in the ideal gas limit will be postponed
until Chapter 3.

Bose-Einstein condensates are systems that exhibit superfluidity, as we will see
in the next subsection. The ultracold atom platform is well-suited for the study of
superfluidity, notably because interactions between atoms can be controlled. Fig-
ure 2.6 displays some results obtained on superfluid ultracold gases, demonstrating
the absence of dissipation at low rotating velocities of a defect within the fluid and
the metastability of the system when attempting to rotate the fluid.

(a) (b)

Figure 2.6: Examples of superfluidity features in the ultracold atom platform. (a):
Experiment conducted at the LKB in Paris. A planar Bose gas (in red) is stirred
with a focused laser beam rotating at a constant velocity v (in blue). For low v the
cloud is not heated: the flow is dissipation-less, while for v ≳ 1mm/s the fluid is
heated. The authors also performed the experiment in a thermal gas and showed
that there is no dissipation-less zone. Figure taken from [23]. (b): Experience
performed in NIST. A repulsive weak link (in blue) is stirred at a velocity Ω2 for
2 s inside an annular dipole trap (in orange) of initial winding number ⟨n⟩ = 0 (red
triangle) or ⟨n⟩ = 1 (blue inverted triangle). Depending on the initial state, the
curve ⟨n⟩(Ω2) is not the same. This reveals the metastability of the superfluid gas.
Figure extracted from [113].

2.3.2 A link between mean-field description and superfluidity

In this section, we provide a justification for the superfluidity of the weakly-
interacting 2D Bose gas at zero temperature, which is described by a Gross-Pitaevskii
equation. As illustrated by its remarkable features, superfluidity is a transport prop-
erty. Indeed, the connection with the mean-field description is made through the
velocity of the fluid, v. More precisely, let us consider two reference frames R and
R′, the second one moving with velocity −vR with respect to the other one. In
the mean-field description, we are allowed to characterize the fluid by a unique com-
plex field φ. In R, where the fluid is supposed to be at rest, it can be written as:
φ(r) =

√
n0 e

−iµt/ℏ. In R′, it can be shown, using unitary transformations between
Galilean reference frames, that the wavefunction φ′ is modified as [111]:

φ′(r, t) = eim (r·vR−v2R t/2)/ℏ φ(r−vRt, t) =
√
n0 e

im (r·vR)/ℏ e−i (mv2R t/2ℏ+µt/ℏ) (2.18)
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We write it in the density-phase representation as φ′(r, t) =
√
n eiθ

′ . The superfluid
velocity in R′ is defined as the gradient of the phase of the wavefunction in R′, θ′,
multiplied by ℏ

m (we already introduced a velocity field in the same way in section 2.1.5,
but did not connect it to the superfluid velocity at that time). Here we get from (2.18):

vs ≡
ℏ
m
∇θ′ = vR (2.19)

We thus obtain that the superfluid velocity in R′ is equal to the opposite of the
velocity at which R′ moves with respect to R, as we expected for a superfluid at rest
in R. This calculation, also done for example in [89, 111], justifies the name of the
velocity field for the quantity vs. It also establishes the irrotational nature of the
superfluid. More details on the connection between superfluidity and Bose-Einstein
condensation can be found in [114].

In this subsection, the relationship between the condensation phenomenon, de-
scribed by an order parameter, and superfluidity through the superfluid velocity was
explored. However, it should not be concluded that a pure condensed gas is fully
superfluid or that a pure superfluid is completely condensed. In the following, the
concept of superfluid fraction will be introduced and counterexamples of strict coin-
cidence between condensation and superfluidity will be provided.

2.3.3 Theoretical description of a superfluid: Two-fluid model and
Landau criterion

Shortly after the discovery of superfluidity in liquid Helium films, Tisza in 1938
[115] and then Landau in 1941 [116] proposed a model to describe the physics of
superfluids. It is called the two-fluid model and consists in separating the whole fluid
into two interpenetrable parts:

➢ A normal part of density nn and velocity vn. In the thought experiment of a
container rotating at angular speed Ω, vn = Ω × r, and when the container is
stopped, vn = 0.

➢ A superfluid part with zero entropy, described by its density ns and velocity vs

as defined above.

The fluid as a whole has a density n = nn+ns. The superfluid fraction is naturally
defined as:

fs =
ns
n

(2.20)

This superfluid fraction does not coincide with the condensed fraction, defined as
the ratio of the number of condensed atoms to the total atom number. For example,
at zero temperature, liquid Helium is fully superfluid (i.e. fs = 1), but the condensed
fraction is less than 0.1 due to strong interactions.

From the two-fluid model, hydrodynamic equations for the evolution of the den-
sity and the velocity of the superfluid can be derived. These equations are formally
equivalent to the hydrodynamic formulation of the Gross-Pitaevskii equation, which
was discussed in section 2.1.5. The evolution of the two fluid densities with tem-
perature can also be obtained [89]. The two-fluid model also predicts an important
feature of superfluidity: the existence of two sound modes propagating in the super-
fluid. These two sound modes were first observed in liquid Helium in 1946 [117], and
more recently in a 2D weakly-interacting Bose gas [25] and in strongly interacting
Fermi gases (another superfluid system) [118].
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In his 1941 article, Landau also provided a condition for the existence of a Galilean
invariant superfluid (he was discussing liquid Helium at this time)14. He considers an
object moving at velocity v in a fluid at rest. The elementary excitations15 of the
fluid are characterized by their dispersion relation ϵ(p), where ϵ is an energy and p
a momentum. Landau introduced a velocity vc defined from the energy spectrum of
the excitations:

vc = min
p

ϵ(p)

||p|| (2.21)

and he showed that a fluid is superfluid if there exists such a velocity and if it is strictly
positive. Then, it can be demonstrated that for velocities of the object ||v|| < vc the
creation of elementary excitations in the fluid, causing dissipation, is not energetically
favorable (see for example [89]). In this case, the superfluid remains at rest in the
laboratory frame and the motion of the object does not cause heating. In the op-
posite case, for velocities ||v|| > vc, excitations spread out in the fluid and the flow
becomes unstable. This phenomenon is a characteristic of superfluidity, as described
in section 2.3.1. This criterion is called the Landau criterion for superfluidity that
emphasizes the importance of the spectrum of the fluid’s elementary excitations. To
conclude, it should be noted that the Landau criterion discussed above assumes ex-
citations above the stationary state that have a well-defined canonical momentum p,
i.e. plane waves created by point-like defects. However, other types of excitations of
the cloud, such as vortex pairs, could be created in the cloud for large enough mov-
ing objects [120, 111]. The formulation of Landau criterion as (2.21) should then be
modified.

2.3.4 Ground state and elementary excitations of the weakly-intera-
cting 2D Bose gas at T = 0

The preceding subsection emphasized the importance of elementary excitations in
describing superfluidity. We now return to the weakly-interacting 2D Bose gas and
present some properties regarding its ground state and elementary excitations above
this ground state, still at zero temperature. This will enable us to introduce key
physical quantities of the gas.

The 2D Gross-Pitaevskii (GP) equation (2.13) is generally difficult to solve analyt-
ically without relying on some approximations, even in the stationary case. Therefore,
numerical tools are often required. Appendix B discusses the GP simulations used in
this thesis.

A first approximation, called the Thomas-Fermi approximation, which is relevant
far from the edges of the gas where the density varies only slightly, is to neglect
the kinetic term compared to the interaction term in the GP equation16. Then, the

14For non-Galilean invariant systems, such as spin-orbit coupled BECs, the critical velocity of
superfluidity is dependent on the reference frame [119], and the Landau criterion given here cannot
be direcly applied.

15Landau introduced them as: “Every weakly excited state must be considered as a combination
of simple ‘elementary excitations’ ”.

16And this is true even when working in the weakly-interacting regime. Indeed, the ratio of the
interaction energy to the kinetic energy is roughly given by Ng̃, showing that it is not g̃ alone that
matters, but the product with the atom number. Since g̃ ≃ 0.15 and N ∼ 105 in our experiment,
we are deep in the Thomas-Fermi regime. This order of magnitude argument does not hold if the
wavefunction varies a lot, for example near the boundaries of the cloud or in spatially modulated
situations (Chapter 3).
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resolution of (2.13) is greatly simplified and in the so-called Thomas-Fermi regime,
we get:

µ =
ℏ2

m
g̃ n(r) + Ṽ (r) (2.22)

where µ is the chemical potential of the gas, n(r) = |φ(r)|2 is the 2D density, and
Ṽ (r) is the 2D potential.

For a uniform gas, we thus obtain a constant density deep in the bulk:
n(r) = n0 ≡ m

ℏ2g̃ µ, as expected.
For a non uniform gas, the density variations follow the potential variations, as

seen in (2.22). This is a specific case of the Local Density Approximation (LDA). This
approach states that for a potential profile that varies smoothly enough, the state of
the trapped gas of chemical potential µtrapped in Ṽ (r) is the same as the state of the
homogeneous gas of chemical potential µtrapped − Ṽ (r). In particular, for the local
density, it leads to:

n(r) = nhomo(µtrapped − Ṽ (r)) (2.23)

For the uniform gas, we have nhomo(µhomo) = m
ℏ2g̃ µhomo and the LDA regime

(2.23) gives the same equation as the one obtained with the Thomas-Fermi approxi-
mation (2.22).

The Local Density approximation is a more general method than the Thomas-
Fermi approximation because it can be applied beyond the mean-field regime and at
finite temperature [89]. This method allows for the analytical treatment of systems
subjected to a slowly varying potential by referring to the uniform gas up to a change
of chemical potential. In Chapter 3, we will utilize it to address sinusoidally spatially
modulated systems.

Returning to the uniform case, the evolution of the wavefunction near the bound-
aries of the system can be actually solved exactly. The gas density decreases from n0
in the bulk to zero at the borders in both directions of space on a characteristic length
scale known as the healing length. In 2D, the healing length is expressed as follows17:

ξ =
1√
g̃ n0

(2.24)

This is the characteristic length scale associated with the interactions. Wherever
the density goes to zero, for example near a vortex, the profile adapts on a length
scale given by ξ, hence the name healing length. Its value in our 2D experiment is a
fraction of µm, typically ξ ≃ 0.3 µm18 for n0 ≃ 80 atoms/µm2. We plot the evolution
of the wavefunction near a zero of density in Figure 2.7(a).

Above this ground state of momentum p = 0, we can consider elementary exci-
tations of momentum p and energy ϵ(p), which form a weakly excited state19. Their
dispersion relation can be determined by adding a small perturbation to the ground
state in the Gross-Pitaevskii equation and constitute the so-called Bogoliubov spec-
trum [121]:

ϵ(p) =
1

2m

[
p2
(
p2 + 4 g̃n0ℏ2

)] 1
2 (2.25)

17Other definitions that differ by a factor
√
2 can also be found.

18This is typically three times less than the resolution of our imaging system, hence the impossi-
bility of seeing vortices in situ in our setup.

19Once again, more complex excitations produced by non point-like defects could also be consid-
ered.
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Figure 2.7: Uniform weakly-interacting Bose gas properties. (a): Ground state
of the uniform weakly-interacting Bose gas (solid blue line) with strict boundary
conditions. The red dashed line is the non-interacting limit. The density goes from
0 at the border of the system to n0, the uniform value in the bulk, on a typical length
scale given by the healing length ξ. (b): Bogoliubov spectrum ϵ(p) represented with
the solid blue line. The dashed line is the large momentum asymptote (free particle
type spectrum) and the dotted line is the linear low momentum limit (phonon
excitations).

We can naturally identify two regimes in this dispersion relation shown in Fig-
ure 2.7(b):

➢ p≫ 2ℏ
√
g̃n0 where the dispersion relation is quadratic i.e. that of free particles

added to an offset: ϵ(p) = p2

2m + ℏ2
m g̃n0

➢ p ≪ 2ℏ
√
g̃n0 where the dispersion relation is linear: ϵ(p) = cB p = ℏ

√
g̃n0

m p,
hence the name of phonons for the elementary particles propagating in the sys-
tem. We introduce the so-called Bogoliubov speed of sound cB = ℏ

√
g̃n0

m = ℏ
mξ ,

which gives the typical speed at which phonons propagate in the system. Its
order of magnitude is cB ≃ 2mm/s in our experiment. Sound propagation has
been observed in 2D Bose gases, for example in [24], by looking at the response
to a weak perturbation of the gas. We will also probe sound propagation in a
modulated Bose gas to evaluate its superfluid fraction in Chapter 3.

Does the weakly-interacting Bose gas satisfy Landau criterion? The answer is pos-
itive, since minp

ϵ(p)
p = cB > 0: the gas satisfies the Landau criterion of superfluidity

and cB is the critical velocity of a moving point-like object below which flow can
occur without dissipation. We can also immediately see that the ideal gas does not
satisfy the Landau criterion, since minp

ϵ(p)
p = 0. Indeed, this criterion is related to

the metastability of the superfluid, and we have already said that the ideal gas is not
metastable under the rotation of a container in section 2.3.1.

2.3.5 Twisted boundary conditions

While the Landau criterion, also known as the metastability criterion, provides a
necessary condition for superfluidity, it is not a sufficient criterion. To fully describe
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this phenomenon, one must also consider the phase stiffness of the superfluid, as we
saw in section 2.3.1. How can this be quantitatively accounted for?

To describe phase stiffness, it is convenient to consider a fluid, that is decomposed
into normal and superfluid parts, rotating at an angular frequency Ω within an annu-
lus container of radius r0, and parametrize the problem with cylindrical coordinates
(r0, ϕ, z). To treat this problem, we can choose to work with the usual periodic bound-
ary condition for the wavefunction. In this case, a vector potential A(r) = mΩ× r is
added to the Hamiltonian (2.1) to account for the rotation of the container. A more
convenient choice is to keep the bare Hamiltonian (2.1) and incorporate the vector
potential into the boundary condition, which then writes [63, 111]:

φ(r0, ϕ+ 2π, z) = e−iΘφ(r0, ϕ, z) (2.26)

where Θ = 2πr0 A
ℏ and A = mΩ r0 is the norm of the vector potential. These boundary

conditions, which are associated with the bare Hamiltonian, are referred to as twisted
boundary conditions due to the inclusion of a phase factor in the boundary condition.

For low rotational velocities, the superfluid component of the fluid remains at rest
in the laboratory frame. In the rotating frame, there is an energy cost per surface S
that must be paid for not following the movement of the container. This cost can be
expressed as [111]:

∆E(Ω)

S
=
A2

2m
ns =

ℏ2Θ2

8mπ2r02
ns (2.27)

Therefore, by considering a twisted angle Θ on the boundary condition satisfied
by the wavefunction and evaluating the excess energy caused by the phase stiffness of
the superfluid, one can access the superfluid density of the gas.

Although we have assumed here an annular geometry, the discussion can be nat-
urally extended to linear geometries with dimensions Lx × Ly. When there is a per-
turbation of velocity vx along the x axis, the twisted boundary conditions are written
as follows: {

φ(x+ Lx, y) = e−iΘxφ(x, y) ,withΘx = mvxLx
ℏ

φ(x, y + Ly) = φ(x, y)
(2.28)

The energy cost in the moving frame is then: ∆E(vx) =
ℏ2Θ2

xN
2mL2

x
fs,x, where N is

the atom number and fs,x is the superfluid fraction along x20.
The excess in energy given by (2.27) can be seen as a rigorous definition of the

superfluid fraction and we will use it in Chapter 3 to calculate the superfluid fraction
in a spatially modulated system.

2.3.6 Conclusion

Superfluidity is a hallmark of quantum many-body systems, arising from the in-
teractions in the system. Cold atoms are an ideal platform for studying superfluidity
for both Bose and Fermi systems. In this section, we introduced the theoretical tools
necessary for discussing superfluidity. We also defined quantities associated with the
interactions that are essential for describing weakly-interacting Bose gases, such as
the healing length.

20In Chapter 3, we will explain in more details the notion of “superfluid fraction along an axis”
by describing the superfluid fraction as a rank-two tensor which can have different values along the
eigenaxes of the system x and y.

41



Chapter 2. Mean-field description of a weakly-interacting 2D Bose gas at T = 0

2.4 Is T = 0 a reasonable hypothesis?

Throughout this chapter, we deliberately did not discuss the effect of the finite tem-
perature of the system. In the following, we explain why a non-vanishing temperature
in a real experimental system does not hinder the application of the Gross-Pitaevskii
formalism with good approximation and does not destroy superfluidity.

2.4.1 BKT phase transition and the survival of superfluidity

One first consequence of finite temperature is the non-fully superfluid behavior of
the gas. Prokof’ev & Svistunov [122] calculated the decay of the superfluid fraction
with temperature for a 2D weakly-interacting Bose gas. The more general theory
describing the limitation of phase ordering in a 2D weakly-interacting Bose gas was
developed by Thouless, Kosterlitz and Berezinskii [19, 18]. It has been predicted
that the proliferation of individual vortices can destroy phase ordering at high tem-
peratures. However, for temperatures below a critical temperature Tc, the vortices
exist only in bond pairs of vortex/antivortex, which do not significantly perturb the
phase ordering but do reduce the superfluid fraction. The transition between the two
regimes is known as the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. This
transition is characterized as a topological phase transition, which was first observed
in 1980 with 2D liquid helium films [123] and more recently with cold atoms [20]. The
critical point where the superfluid fraction jumps from a non zero value for T < Tc to
0 for T > Tc is predicted to occur for a universal value of the superfluid phase space
density: nsλ2th = 4. Regarding the total phase space density, Prokof’ev & Svistunov
[122] numerically predicted that the phase transition arises at:

nλ2th ≃ ln

(
380

g̃

)
(2.29)

We can thus evaluate the critical temperature in our experiment for a density
n ≃ 80 atoms/µm2 and we get Tc ≃ 300 nK21. Since in the work discussed in this
thesis we work at temperature T ≲ 20 nK, the normal fraction is practically zero
(below 1%) and the system is in good approximation fully superfluid (at least when
working with homogeneous gases).

2.4.2 Loss of phase ordering and quasi-long range order

Does the mean-field approach we have used throughout this chapter hold for fi-
nite temperature? Indeed, a key hypothesis for applying the mean-field formalism is
to assume that all particles occupy the same quantum state and form a condensate.
However, the Mermin-Wagner-Hohenberg (MWH) [124, 125] theorem states that a
phase transition involving a spontaneous breaking of a continuous symmetry cannot
exist for a system of dimension d < 3 with short-range interactions. Since the transi-
tion to a Bose-Einstein condensate for the weakly-interacting 2D Bose gas meets the
aforementioned requirements, it is incorrect to speak of 2D Bose-Einstein condensa-
tion at T > 0. To be more quantitative, one must introduce the first-order correlation
function g1, which expresses the loss of coherence over a distance r in the gas:

g1(r) =
1

n
⟨φ∗(0)φ(r)⟩ (2.30)

21For this temperature, the superfluid fraction in our system is fs ≃ 1
2

[122].
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where ⟨·⟩ represents a spatial average. Berezinskii, Kosterlitz and Thouless demon-
strated that in 2D g1 decays with the distance r as a power law below the phase
transition [18, 19]:

g1(r) ∼
(
λth
r

) 1

nsλ
2
th (2.31)

This is consistent with the MWH theorem: the limit of g1 at large distances is 0
as soon as T > 022. However, the algebraic decay of g1 with r is much slower than
an exponential decay, such as the one present above the BKT transition. Evaluating
the loss of coherence over L = 40 µm, the typical size of our box, and using the result
ns ≃ n ≃ 80 atoms/µm2 justified in section 2.4.1 for T ≲ 20 nK, we get:
g1(L)/g1(0) ≳ 0.93. Therefore, the two sides of the box remain highly correlated,
maintaining a high spatial phase ordering. In a good approximation, the entire gas
can still be described by a single wavefunction. The slow decay of the first-order
correlation function is a characteristic of the 2D weakly-interacting Bose gas and is
related to the existence of a quasi-long range order. The measurement of g1 in a 2D
Bose gas was recently conducted using matter-wave interferometry [127].

A reasonable spatial phase coherence is maintained throughout the cloud without
violating the MWH theorem, justifying a mean-field description even at strictly non
zero temperatures.

2.4.3 Conclusion

The 2D weakly-interacting Bose gas at finite temperature constitutes an example
of a strictly non-condensed system with a finite superfluid fraction. We argued that,
despite not being a true Bose-Einstein condensate, the 2D ultracold gas exhibits a
quasi-long range order and can be effectively treated using a mean-field approach with
good approximation due to the practical use of finite size samples. We also briefly
discussed the effect of finite temperature on the superfluid fraction. Its decay has been
measured indirectly in [118] in the Fermi gas case and in [25] in the 2D Bose gas case.
The following chapter will present a direct measurement of the superfluid fraction and
its decrease, not due to the modification of the system’s temperature, but rather due
to the presence of a spatial modulation. In the rest of the manuscript, the temperature
used in the experiments is T ≲ 20 nK, and the system is well approximated by a zero-
temperature gas as described above. Therefore, we will refer to our system as “T = 0
gas”.

2.5 Summary

This chapter described the theoretical tools used to analyze a weakly-interacting
2D Bose gas at zero temperature. The fundamental Gross-Pitaevskii equation governs
the physics of the system under study, resulting from a mean-field treatment and the
presence of weak interactions. Additionally, we discussed a mean-field study on the
production of Rubidium dimers and the measurement of their interactions with the
atomic bath. Finally, we introduced the superfluid property of the weakly-interacting
2D Bose gas and debated the relevance of the zero temperature approximation in our
experimental system.

22A definition of Bose-Einstein condensation, which we owe to Penrose and Onsager [126], is the
existence of a finite limit for g1(r) as r goes to infinity. Bose-Einstein condensation is then seen as
the appearance of an off-diagonal long range order.
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Measurement of the
zero-temperature superfluid

fraction in a spatially modulated
Bose gas
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Chapter 3

Superfluid fraction in an
interacting 2D modulated Bose gas
at T = 0

The previous chapter presented a theoretical description of the weakly-interacting
uniform ultracold Bose gas and its superfluid property. We introduced the superfluid
fraction of the system as a physical quantity of interest. It provides the fraction of the
total fluid that is superfluid and determines superfluid transport phenomena. This
chapter presents a theoretical and experimental description of how spatial modulation,
rather than uniformity, affects the superfluid fraction. It is important to note that
we work at T = 0 in the following as justified in section 2.4. This study was begun
in the team at the end of Chloé Maury’s thesis and both theoretical and a first
analysis of experimental results can be found in her thesis [83]. The last version of the
experimental analysis taking into account the second harmonic in the density profiles
(see 3.4) was performed within the team afterwards and is detailed in this chapter.

3.1 Density modulated systems

A cold atom experiment is a simulation platform where one can adjust several
key experimental parameters, such as interaction strength, density, temperature, and
external potential, on a “simple” system. It consists of a dilute gas with a density
typically less than 1014 atoms/cm3, easily accessible, which can mimic, in certain
conditions, a denser (typically 1023 atoms/cm3 i.e. 10 orders of magnitude denser
than ultracold gases) and difficult to control bulk sample. This is the idea of quan-
tum simulation first introduced by Feynman in 1981 [128]. For instance, treating
the condensed matter problem of conduction in a bulk solid is challenging. However,
ultracold atoms trapped in optical lattices offer a fully controllable system that sim-
ulates the movement of electrons in solids. This topic is the focus of several cold
atom groups worldwide, and they have already demonstrated phenomena such as the
formation of antiferromagnetic states [129], the transition to a Mott insulator [130] or
the phenomenon of Bloch oscillations [131] (see [132] for a review).

Chapter 2 introduced a theoretical description of a weakly-interacting Bose gas
trapped in a flat potential. The Local Density Approximation (LDA) was mentioned
to generalize the physics when the potential is not flat but varies smoothly. Let us
imagine now that the atoms are localized around some lattice sites, similar to electrons
in a solid. The atomic density exhibits significant modulations around these sites,
and the LDA description of such a system is no longer valid. In a system that breaks
strongly translational invariance, such as an artificial crystal, it is therefore difficult to
see at first glance that the features described in the previous chapter, Bose-Einstein
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condensation and superfluidity, survive. Penrose and Onsager in 1956 [126] argued
that Bose-Einstein condensation may not occur in a solid, such as solid 4He, where the
long-range order condition they introduced for both interacting liquids and gases is
no longer expected to be present. In 1970, Chester [133] instead justified that systems
exhibiting long-range order can exist in the presence of crystalline order if there are a
finite number of vacancies in the solid. He also argued that the transport superfluid
properties would vanish in a crystalline ordered system1. Leggett [63] nuanced this
statement by showing that a finite superfluid fraction can still exist in a modulated
system. Therefore, he argued that a solid can be a superfluid. However, spatial
modulation reduces the superfluid fraction. Leggett quantified this decrease with the
following upper bound for the superfluid fraction:

fs ≤
1

⟨n⟩
〈
1
n

〉 (3.1)

where n represents the spatial density of the system and the brackets stand for a
spatial average.

A supersolid is a state of matter that exhibits both crystalline order and super-
fluidity. The spatial ordering, which breaks the translational invariance, should arise
spontaneously. In 2004, supersolidity was first claimed in solid Helium following an
experiment that observed a reduction of moment of inertia caused by phase stiffness
[134]. However, it was later shown that the observed phenomena could be explained
by changes in the elastic properties of the solid [135]. Kim et al. repeated the exper-
iment with a new apparatus and found no evidence of supersolidity in solid Helium
[136]. Regarding the ultracold atom platform, recent results have emerged. In 2017,
groups from Zurich [64] and the MIT [65] demonstrated the emergence of the super-
solid phase through an increase in interactions in a BEC placed inside two optical
cavities or by a spin-orbit coupling, respectively. Although spatial ordering appears
spontaneously in these experiments, an external lattice potential is used to pin the
atoms. In 2019, supersolid phases were observed on the platform of dipolar gases.
These phases emerge from the competition between contact and dipole-dipole inter-
actions, and they were demonstrated without any external lattice potential [137, 61,
62] (see also [138] for a recent review).

The existence of these supersolid phases illustrates the possiblity of having both
a crystalline and a superfluid order, a counter-intuitive and remarkable combination.
The results of Leggett’s original paper apply to other kinds of modulated systems2,
even when the breaking of translational invariance is not spontaneous but externally
imposed. The purpose of this chapter is to confirm the predictions of Leggett’s for-
mula and to explore its range of validity in the latter situation, which can be easily
implemented on our experimental platform. We begin by taking advantage of our
weakly-interacting Bose gas system to show that we can write an equality for (3.1)
instead of an inequality. This result links a transport quantity, which can also be
accessed through sound transport measurements, to the static density variations of
the spatially modulated system. It enables us to measure the superfluid fraction in
two different ways.

1He thus emphasized, as we did in the previous chapter, that Bose-Einstein condensation and
superfluidity are not equivalent phenomena.

2In section 3.6, we will explore the scope of application of Leggett’s formula in more details.
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3.2 Superfluid fraction in a weakly-interacting spatially
modulated Bose gas

This section discusses the survival of superfluidity in a density modulated weakly-
interacting Bose gas placed in a separable potential.

3.2.1 Saturation of Leggett’s inequality

We first rewrite Leggett’s original argument [63] about the superfluid fraction in
the case of a 2D weakly-interacting Bose gas. We assume here that the system remains
well described by the Gross-Pitaevskii theory even though density modulations occur.
We recall that all the physics discussed below assumes T = 0.

To evaluate the superfluid fraction of the modulated gas, we will use the definition
given in Chapter 2, which relies on twisted boundary conditions. We consider a 2D
system of size L × L of N bosons. It is placed in a separable potential V which is
homogeneous along y and inhomogeneous along x.

In 2D, the superfluid fraction is in general a rank-two tensor. We choose x and y
as the proper axes of this tensor i.e. the off-diagonal terms have been set to zero. We
want to evaluate the superfluid fraction along the modulated axis x, so the twisted
angle θx is included in the twisted boundary condition along x. Regarding the y
axis, the boundary condition is not affected because the superfluid fraction tensor is
diagonal in the (x,y) basis.

Therefore, we write the twisted boundary conditions for an angle θx on the wave-
function φθx as: {

φθx(x+ L, y) = exp(i θx)φθx(x, y)
φθx(x, y + L) = φθx(x, y)

(3.2)

For convenience, the state φθx is expressed using the density-phase representation,
introduced in section 2.1.5:

φθx(x, y) =
√
nθx(x, y) exp [iSθx(x, y)] (3.3)

The velocity field vθx = ℏ
m∇Sθx is directed here along the unitary vector ex,

because the boundary conditions are twisted along x. We note its norm vθx . The
energy of the system reads:

E[φθx ] =

∫ L

0

∫ L

0
dx dy

[
ℏ2

2m
|∇φθx |2 + V (x, y) |φθx(x, y)|2 +

ℏ2

2m
g̃ |φθx(x, y)|4

]
=

∫ L

0

∫ L

0
dx dy

[
ℏ2

2m

∣∣∇(√nθx)∣∣2 + m

2
nθxv

2
θx + V (x, y)nθx +

ℏ2

2m
g̃ n2θx

]
(3.4)

We used the expression of the gradient of the wavefunction written as:
∇φθx =

[
∇
(√
nθx
)
+ i

√
nθx ∇Sθx

]
exp(iSθx).

The ground state of the system with twisted boundary conditions can be found
by minimizing the energy functional (3.4) under different constraints. The first one is
the conservation of the atom number and we introduce the Lagrange parameter µ0,
the chemical potential of the system, to take it into account. The consideration of
twisted boundary conditions requires the introduction of another Lagrange multiplier,
which we call β. The associated constraint is imposed by the fact that the phase of
the wavefunction at the boundaries of the system must be single-valued. It is the
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following:
∫ L
0

∂Sθx
∂x dx = θx. Expressed in terms of the velocity field, the previous

constraint also writes: ∫ L

0
vθx · ex dx =

ℏ
m
θx (3.5)

Thus, the modified energy functional (3.4) of the twisted system, to be minimized
with respect to φθx , is the following (up to a constant):

Emodified[φθx ] =

∫ L

0

∫ L

0
dx dy

[
ℏ2

2m

∣∣∇(√nθx)∣∣2 + m

2
nθxv

2
θx + V nθx +

ℏ2

2m
g̃ n2θx

]
− µ0

∫ L

0

∫ L

0
dx dy nθx(x, y)− βL

∫ L

0
vθx dx (3.6)

Minimizing this energy with respect to both √
nθx = χθx and vθx gives access to

the ground state of the twisted system. For the amplitude of the order parameter χθx
we get a modified Gross-Pitaevskii equation:

− ℏ2

2m

∂2χθx
∂x2

+ V (x, y)χθ + g̃
ℏ2

m
χ3
θx +

m

2
v2θx χθx = µ0 χθx (3.7)

The minimization with respect to vθx leads to: vθx = β
mnθx

. Using the value of its
circulation (3.5), we obtain:

vθx =
ℏ θx
mnθx

1∫
1
nθx

dx
(3.8)

To go further, we recall that the superfluid fraction is defined by an expansion of
the energy excess due to the twisted boundary conditions (2.27) with respect to the
untwisted case (φ0(y) = χ0 =

√
n0) in powers of the twisted angle:

∆E ≡ E[nθx , vθx ]− E[n0, 0] =
ℏ2θ2xN
2mL2

fs,x +O(θ4x) (3.9)

So we consider the case of a small twisted angle and write the amplitude of the
wavefunction as χθx(x) = χ0(x) + δχθx(x). χ0 is the solution of (3.7) without the
term m

2 v
2
θx
χθx , which corresponds to the usual Gross-Pitaevskii equation.

Since the velocity vθx is at least of order θx (see (3.8)), adding the term m
2 v

2
θx
χθx

to the Gross-Pitaevskii equation will lead to a correction δχθx on the amplitude of
the wavefunction to be at least of order θ2x. Thus, at the lowest order in θx3, only the
term

∫ L
0

∫ L
0 dx dy m

2 v
2
θx
n0 enters the expression of the energy difference ∆E:

∆E =

∫ L

0

∫ L

0
dx dy

m

2
v2θx n0 +O(θ4x) =

ℏ2θ2xL
2m

1∫
1
n0

dx
+O(θ4x) (3.10)

where we also took the lowest order in θx in the expression of the velocity field (3.8)
(i.e. nθx ≃ n0).

3Obviously, the lowest order in θx of the energy difference is at least order 2, since twisting the
boundary conditions (or, more practically, trying to move a superfluid by moving the container)
should be a problem invariant to changing θx → −θx. Moreover, it should be a positive term,
regardless of θx, as this costs energy to the fluid.
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Identifying (3.10) with (3.9) thus gives an expression for the superfluid fraction
along the modulated axis as a function of the modulated density:

fs,x =
L3

N

1∫
1
n0

dx
=

1

⟨n0⟩
〈

1
n0

〉 (3.11)

with ⟨n0⟩ = N
L2 = 1

L

∫ L
0 n0(x) dx and

〈
1
n0

〉
= 1

L

∫ L
0

1
n0(x)

dx.
Therefore, we demonstrated that in the case of a 2D Bose gas described by Gross-

Pitaevskii theory, and for which the potential is separable, the superfluid fraction is
equal to the upper bound found by Leggett (3.1). This is a noteworthy outcome as
it connects a transport quantity, the superfluid fraction, to a purely static quantity,
which is the knowledge of the stationary modulated density profile.

The saturation of Leggett’s inequality in this context can also be derived through
an alternative definition of the superfluid fraction, which relies on the fluid’s mo-
mentum response to a linear perturbation [66]. This can also be obtained through
techniques of homogeneization applied to the GPE [139] or through sum-rules deriva-
tions [140].

The above calculation is based on the applicability of Gross-Pitaevskii theory and
the separability of the potential. A natural extension of this study involves a non
separable 2D modulated potential. Leggett also explored this problem in his paper of
1998 [66]. For a modulated system of density n(x, y), he showed that the superfluid
fraction is bounded not only from above by a quantity analogous to what was seen in
the 1D case, but also from below. The following inequalities were obtained:

f− =
1

n̄

∫
dy

[∫
dx

n(x, y)

]−1

≤ fs ≤
1

n̄

[∫
dx∫

dy n(x, y)

]−1

= f+ (3.12)

where n̄ =
∫
n(x, y) dx dy is the mean density. According to this work, this set of

inequalities is valid regardless of the statistics obeyed by the particles, bosons or
fermions, and regardless of the strength of the interactions4. The last section of this
chapter will also deal with a discussion of Leggett’s bounds in more details.

3.2.2 Sound propagation in a 2D modulated system

We will now discuss a method for describing the propagation of sound in a 2D
modulated system, which is a useful tool for assessing the superfluid fraction of a
sample.

As previously stated in Chapter 2, a unique feature of a superfluid is the existence
of two sound modes for the low energy elementary excitations. This is a consequence of
Landau’s two-fluid model, where the two degrees of freedom, related to the normal and
superfluid components of the gas, give rise to these two sound modes. Landau’s two
fluid model allows one to express their variations with temperature and, under certain
approximations (mainly a low value of the compressibility of the fluid [141, 89, 142]),
sound oscillations can be decoupled into isoentropic (first sound) and isobaric (second
sound) oscillations. However, in the case of dilute Bose gases, the assumption of low
compressibility is not valid and the two sound velocities hybridize at low temperature.
Moreover, for weakly-interacting Bose gases, the first sound (the one propagating at
the highest velocity) appears to be more difficult to access experimentally than the

4However, it seems that the applicability of Gross-Pitaevskii theory is a hidden assumption of
the lower-bound expression (see section 3.6).
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second sound, due to its weak coupling to density excitations in the system [142,
24]. Hadzibabic’s group in Cambridge managed to observe the two sound modes
[25] by looking at the absorptive response of the center of mass displacement after
driving the system with a weak sinusoidal force. From the second sound measurement,
they were able to deduce the superfluid fraction of their uniform system through the
thermodynamic formula c2 = fs

1
mκ , which gives, in good approximation for a 2D

weakly-interacting Bose gas, a connection between the superfluid fraction and the
second sound velocity c [89, 142], through κ = 1

n
(
∂µ0
∂n

) the compressibility of the gas.

It can be rigorously justified, by introducing the effective mass along the modulated
axis (see for example [143, 83]), that this formula can be extended to anisotropic
periodically modulated systems where the superfluid fraction is a tensor. The sound5

then propagates with different values along the two non-equivalent axes:{
c2x = fs,x

1
mκ

c2y =
1
mκ

(3.13)

where we used that along the unmodulated axis, the system is fully superfluid i.e.
fs,y = 1. Thus, the superfluid fraction along the modulated axis fs,x can be calculated
by taking the ratio of these two equations:

fs,x =
c2x
c2y

(3.14)

The result (3.14) for the superfluid fraction has the key advantage that it does not
depend on the compressibility of the gas, which can be difficult to access experimen-
tally. However, each individual sound velocity depends on the compressibility which
changes as the modulation depth of the potential is varied. Therefore, we predict that
the speed of sound along the unmodulated axis depends on the modulation through
the modification of the compressibility and that cx has two sources of variation, the
compressibility and the superfluid fraction, which also varies as the modulation is
changed. We will discuss these two sources of variation more quantitatively in the
next subsection.

The formula (3.14) provides a direct link between the sound velocities in the system
and the superfluid fraction along the modulated axis. It is valid as soon as the low
momentum excitation spectrum can be described by a single phononic branch. In
particular, this should be a valid way to measure the superfluid fraction in a superfluid
Fermi gas, while the Leggett’s bound may not be saturated for all values of momenta,
especially near unitarity (see [140] for a recent study). Conversely, the sound formula
written above does not directly apply to supersolids (especially dipolar supersolids)
where there is no single gapless sound branch at low momenta.

3.2.3 Limiting cases and analytical estimations

The results (3.11) and (3.14) are exact results in the case of a weakly-interacting
Bose gas described by a single wavefunction and placed in a separable potential. We
now consider some limiting cases in which we can estimate the superfluid fraction and
the compressibility in terms of the relevant energy scales of the problem. In the case
of a weakly-interacting Bose gas, we have already introduced the chemical potential
µ0, the energy scale associated with the interactions. The periodic potential

5In the following, when talking about sound, it will implicitly refer to the second sound.
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V (x) = V0 cos(qx) brings two other energy scales into the problem, namely its am-
plitude V0, which is also called the modulation depth, and the recoil energy associated
with the wavevector of the potential ϵq = ℏ2q2

2m .
According to Leggett’s formula (3.11), the spatial density is a crucial quantity for

determining the superfluid fraction. It can be expressed as a sum of its Fourier modes:

n(x) = n0 −
∑
i≥1

ni cos(iqx) (3.15)

n0 represents the mean density, while ni is the amplitude of the i-th harmonic.
Comparing ϵq with µ0 allows to write simplified equations for the relevant quan-

tities. First, when ϵq ≪ µ0, or in other words, when the period of the potential is
much larger than the healing length, the system can be described by the Local Density
Approximation, since the potential varies smoothly enough. In this regime the kinetic
energy is negligible and analytical estimations can be derived using the saturation of
Leggett’s formula:

n1
n0

=
V0
µ0
,

ni
n0

= 0 ∀i ≥ 2 (3.16)

 fs,x =
(
1− V 2

0

µ20

) 1
2

whenV0 < µ0

fs,x = 0 whenV0 ≥ µ0
(3.17)

Even though µ0 ≃ 7ϵq in our setup, we will see that these expressions are not
sufficient to explain our results for all values of V0. To go further, we examine the
case of small modulation depths, for which we can expand the solution of the Gross-
Pitaevskii equation

√
n(x) in powers of V0 (see Appendix C). It leads to the following

expressions for the first Fourier component and the compressibility at the lowest order
in V0: 

n1
n0

= 2V0
2µ0+ϵq

+O(V 3
0 )

κ = µ−1
0

[
1− 2V 2

0 ϵq
(2µ0+ϵq)3

]
+O(V 4

0 )
(3.18)

At lowest order in V0, the saturation of Leggett’s inequality then yields to:

fs,x = 1− 2V 2
0

(2µ0 + ϵq)2
+O(V 4

0 ) (3.19)

The only condition for these estimations to be relevant is that V0 should be suf-
ficiently small. In addition, if one takes the limit µ0 ≫ ϵq, one falls into the LDA
regime and the equations (3.16) and (3.17) are recovered in the limit of small V0.

From the expression of the compressibility (3.18) we can deduce that in the LDA
regime of small ϵq, the correction of κ is at least of order V 4

0 , while the correction of
the superfluid fraction is of order V 2

0 . Thus we predict from the sound velocities (3.13)
that c2y is at least of order V 4

0 , while c2x is of order V 2
0 and decreases with V0, varying

more rapidly with the modulation depth.
Finally, we mention the quasi non-interacting regime, the opposite regime com-

pared to the LDA, of ϵq ≫ µ0. From (3.19), we can get an estimate of the superfluid
fraction at small V0 in this case: fs,x = 1 − 2V 2

0
ϵ2q

+ O(V 4
0 ). Since in this regime

the Gross-Pitaevskii equation (which coincides with the Schrödinger equation in this
context) is linear, we can extract the evolution of the superfluid fraction over the
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whole range of V0 by a numerical diagonalization of the Hamiltonian and by using
the relation between the effective mass and the superfluid fraction (see [67]). The
result is plotted in Figure 3.1, together with the limits discussed earlier for two dif-
ferent lattice periods. The consideration of a modulation potential allows to discuss
the controversial question of superfluidity in the non-interacting regime. Indeed, we
already mentioned in Chapter 2 that Landau’s criterion (or metastability criterion)
predicts a non superfluid character for the ideal uniform gas, while it possesses the
phase stiffness characteristic. Depending on which limit V0 → 0 (cancellation of the
modulation) or µ0 → 0 (cancellation of the interactions) is taken first, this results in
respectively fs → 1 (see low expansion in V0 in (3.19)) or a zero superfluid fraction
for the ideal uniform gas (see Figure 3.1(b)). In our opinion, it is more legitimate to
take the limit µ0 → 0 first and then V0 → 0, as this allows to account for any residual
modulations in the gas.
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Figure 3.1: Superfluid fraction in the limiting regimes. The two plots are obtained
for a fixed value of µ0 ≃ kB × 50 nK, our experimental value, and correspond to
a lattice of period d = 4µm (a) and d = 0.25 µm (b), respectively. The former
corresponds to our experimental case where ϵq ≃ kB×7 nK ≃ µ0/7, while the latter
would correspond to a retroreflected lattice at 532 nm (as in the recent related work
performed in the group of Spielmann [144]6) yielding ϵq ≃ 37µ0. In both graphs,
we represent the LDA limit in blue (3.17), the non-interacting limit (which does
not change between the two plots since the horizontal axis is renormalized by ϵq)
in red, and the small V0 expansion at second order in V0 (3.19) in green. In our
work (a), where the LDA regime is more relevant than the non-interacting regime,
the small V0 limit coincides with the LDA. Conversely, in (b), the small V0 limit
approaches well the non-interacting regime, which is a good approximation in this
system. The inset of (b) is a zoom for V0/ϵq < 1. This figure emphasizes that
the presence of interactions in (a) allows one to have a smoother variation of fs
with respect to the modulation depth and is crucial to provide robustness of the
superfluid fraction under the effect of the external modulation potential.

In this section, we have shown how to describe the superfluidity in a 2D modulated
system. We demonstrated that for a weakly-interacting Bose gas in a separable po-
tential, Leggett’s inequality is saturated. We presented this remarkable result because
it opens up a static way to measure the superfluid fraction, provided that we have
accurate access to the density profile of the modulated gas. We will discuss it later

6Their definition of ϵq differs by a factor of 4 from ours.
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in this chapter. We have also obtained expressions for the sound velocities that we
can measure experimentally by exciting the phonons in the modulated system. This
is the subject of the next section.

3.3 Dynamical determination of the superfluid fraction

Numerical simulations and experiments are presented here to extract sound ve-
locities in the 2D Bose gas, spatially modulated along one direction, and deduce the
superfluid fraction using the formula (3.14).

The spatial modulation is fixed along the x axis and we vary the direction of
excitation (x or y) to extract the speed of sound along x or y. The excitation is done
by preparing the bidimensional cloud of size L×L, subjected to a uniform force along
x (resp. y) (in our case induced by a magnetic gradient) and removing the force at
time t = 0. It excites the longest wavelength sound mode with a wavelength of 2L
and after measuring the oscillation frequency of the sound mode νx (resp. νy), we can
deduce the sound velocity cx = 2L× νx (resp. cy = 2L× νy)7. This is similar to the
technique employed in [25] to measure the two sound velocities but here the system
is not driven by the force. Instead, we look at the impulse response after the force
is removed. This is a valid protocol to extract the excitation modes of the system as
long as the working regime is perturbative. Typically, the energy associated with the
magnetic gradient b′: Emag = gFmFµBb

′L should be small compared to the chemical
potential (gF is the hyperfine Landé factor, mF is the hyperfine magnetic moment
and µB is the Bohr magneton).

3.3.1 Numerical simulations

We first apply this protocol to the numerical resolution of the Gross-Pitaevskii
equation (see Appendix B for details). Despite the presence of modulation, we assume
that the condensate fraction remains unaltered, allowing for the description of the
many-body system in a mean-field regime with a single wavefunction at T = 0.

First, we compute the ground state (the initial state of the excitation protocol) of
the system in presence of a magnetic gradient b′ of order ≲ 10G/m remaining in the
regime Emag ≲ µ0/4, and a sinusoidal modulation of amplitude V0 and wavevector
q. In the LDA framework, we anticipate the stationary density profile to exhibit the
sinusoidal (due to the modulation) and the linear (due to the force) perturbations,
and to be expressed as follows:

n(x) = n0 +
V0
g

cos(qx) +
gFmFµBb

′

g
x (3.20)

where g = ℏ2
m g̃. We check that this is a good approximation for a lattice of period

4 µm, but no longer as the lattice period decreases or as the modulation depth increases
(Figure 3.2(b)). We will look at these deviations in more details in section 3.4 when
no force is applied.

In the LDA regime, we can compute the center of mass of the cloud. Since L is
commensurable with the lattice spacing, we found the following formula:

xCOM =
1

N

∫ L/2

−L/2

∫ L/2

−L/2
dx dy xn(x) =

gFmFµBb
′L4

12Ng
(3.21)

7This is valid because the phonon wavelength 2L is much larger than the other relevant length
scales of the problem, the healing length and the period of the lattice.
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where N is the atom number.
We check this formula in Figure 3.2 for the lattice spacing used in our experiment

d = 4 µm and with a small modulation. For b′ ≃ 10G/m, we calculate a center of mass
displacement of the order of 1 µm, which should be sufficiently high to be resolved on
the experiment.

When V0 is not negligible compared to µ0, the LDA formula (3.21) is no longer
valid. The evolution of the center of mass with the magnetic gradient remains linear,
but the slope given by the compressibility decreases (Figure 3.2(d)). We will discuss
this in more details in section 3.6.
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Figure 3.2: Numerical stationary state with linear and sinusoidal potentials. In
(a), we show an example of stationary state obtained with GP simulations for a
gradient of b′ = 10G/m, a lattice period d = 4µm and a modulation potential of
V0 = kB × 10 nK together with a cut along the modulated direction. The chemical
potential is µ0 ≃ kB×50 nK. The dashed blue line is the effect of the magnetic force,
which causes a variation of density ∆n across the cloud. The LDA result (3.20) is
the black dashed line. A zoom of this density cut is represented in Figure (b) top.
The other two cuts are obtained respectively for a shorter lattice spacing d = 1µm
but same modulation depth (orange curve) and for a potential V0 = kB×50 nK ≃ µ0

but same lattice period (green curve), showing in both cases deviations to the LDA
still plotted with a black dashed line (more details in section 3.4). In (c) and (d), we
vary the magnetic gradient and look respectively at ∆n and xCOM. For d = 4µm
and with a modulation V0 = kB×10 nK, the LDA results, still in black dashed lines,
are good approximations of the steady state. For d = 4 µm and V0 = kB × 50 nK,
the result is in green and for d = 1µm and V0 = kB × 10 nK the result is in orange
and we see some deviations from the LDA (more details in section 3.6).
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In this section, we investigate the dynamics of the spatially modulated Bose gas
after abruptly removing the force on the stationary state discussed just above. We
monitor the center of mass’s evolution over time for an excitation applied along the
modulated axis x (as shown in Figure 3.2) or the unmodulated axis y. The evolution
is sinusoidal and we extract a frequency νx (or νy). While the oscillations along the
two axes are identical when the modulation is turned off, we measure a significant
difference between them as soon as translational invariance is broken (Figure 3.3).

Figure 3.3: Numerical evolutions of the center of mass with and without a mod-
ulation potential for b′ = 8G/m and d = 4 µm. We excite the cloud along x (resp.
y) with a magnetic gradient and we look at the center of mass evolution along x
(resp. y) in blue (resp. black) after removing the gradient. We check that the cloud
does not move along the axis perpendicular to the excitation (insets). The graphs
for the excitations along y are shifted by 0.5 µm for clarity. Sinuosoidal damped fits
are shown as black dashed (or grey dashed) lines. (a): V0 = 0, the evolutions are
isotropic. (b): V0 = kB×40 nK. For an excitation along the modulation (blue curve
and lower panels), the oscillation frequency is lower than in the unmodulated case,
while for an excitation perpendicular to the modulation, the oscillation frequency
is slightly higher (black curve and upper panels). The colorbar is the same for all
density plots. We can hardly see the center of mass displacement on the density
plots, since its maximal value is ∼ 1 µm in the perturbative regime Emag ≲ µ0.

The oscillations are fitted8 with a sinusoidal damped function whose parameters
are defined as follows [24]:

x, yCOM = Ax,y exp

(
−Γx,yt

2

)(
Γx,y
4πνx,y

sin(2πνx,yt) + cos(2πνx,yt)

)
+ Cx,y (3.22)

From the frequency of the center of mass oscillations, triggered by the excitation of
the longest wavelength phonon modes, we derive the sound velocities: cx,y = 2Lνx,y.

8We check that a Fourier analysis gives the same results for the frequency extraction.
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We repeat the same procedure for different modulation depths and we summarize
the results in Figure 3.4. We also plot the lowest order development in V0 obtained
from the equations (3.18) and (3.19).

Figure 3.4: Simulations to extract sound frequencies. (a): We fix the magnetic
gradient b′ = 4G/m and we look at the influence of the lattice spacing d on the
sound velocities in the same direction as the modulation (x) or in the perpendicular
direction (y). The ratio (νx/νy)

2 is also plotted in the inset. The dashed colored
lines are the low V0 analytical limits obtained from (3.18) and (3.19), while the
dotted lines are the LDA limits (3.17). The dashed black line is the non-interacting
limit discussed in section 3.2.3. (b): We plot the damping evolution as a function of
the modulation depth for different excitation strengths b′ at a fixed lattice spacing:
d = 4 µm. The larger b′, the larger the damping. As a function of the modulation
depth V0, it increases (respectively decreases) when the excitation is parallel (resp.
perpendicular) to the modulation. We have to stop the simulations at a certain
value of V0, depending on b′, because beyond that the evolution of the center
of mass position can no longer be easily fitted with a damped sinusoid (refer to
the graph in the upper right part of the figure for an example of evolutions for
b′ = 4G/m: the evolution at V0 = kB × 65 nK, represented with a dashed red line,
is too damped to be considered). We check in the inset that the frequency values
do not depend on the excitation for the explored range of b′. This is an essential
requirement for this work performed in the perturbative regime.

In Figure 3.4(a), we vary the lattice spacing and see how it modifies the sound
velocities and the superfluid fraction. Along the modulated axis, increasing the lattice
spacing leads to a larger sound velocity for the same modulation depth. Along the non
modulated axis, the behaviour as a function of the lattice spacing is not monotonic.
Then we extract the superfluid fraction along the modulated axis fs,x from the ratio
squared of the sound velocities (inset of figure 3.4(a), note that the horizontal axis is
rescaled by ϵq). We see that working with a long wavelength lattice allows to maintain
a high superfluid fraction in the system for a same modulation depth. The case of
d = 2 µm approaches the non-interacting limit (ϵq ≫ µ0), while the superfluid fraction
evolution for the d = 10 µm lattice is well described by the LDA. For the
d = 4 µm lattice studied experimentally, the regime is intermediate: the presence of
weak interactions maintains a significant superfluid fraction in the system for
V0/ϵq ≲ 10, and the physics deviates quite rapidly from the LDA.

Finally, we briefly discuss the effect of the amplitude of the magnetic field gradient.
We see that the less important the magnetic gradient is, the less damping, which is
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quantified by the parameter Γx,y, we get (Figure 3.4(b)). There is no strong effect
on the sound velocities (the curves are superimposed in the inset) as long as we work
in the perturbative regime: Emag ≲ µ0. It seems that when the magnetic gradient is
increased, more than one phonon mode is excited and this can lead to decoherence
of the oscillations over time. At zero modulation (V0 = 0), we numerically found a
numerical scaling of the damping coefficient that is compatible with a power law of
exponent 2: Γ ∝ b′2. Since the phonon mode considered has the lowest energy (longest
wavelength), it is expected that the damping mechanism is not linear (not Beliaev-like
linear behaviour [145]). Recently, Zhang et al. [146] experimentally demonstrated a
non-linear damping mechanism in a BEC whereby two low-energy excitations merge
into a higher-energy one. The evolution with the modulation seems to be less trivial,
as the damping along the non modulated axis is predicted to decrease with V0.

3.3.2 Experimental implementation

This section presents our experimental study on sound propagation in a 2D mod-
ulated Bose gas. The protocol involves two key ingredients: spatial modulation, im-
printed with a DMD, and the application of a magnetic gradient for sound mea-
surement. Figure 3.5 illustrates the setup used. We first explain how we calibrate
the modulation depth and the magnetic gradient before discussing the experimental
procedure.

Calibration of the modulation depth

Regarding the presence of a modulated potential, we already discussed in Chap-
ter 1 our ability to precisely control the potential felt by the atoms with DMD1 and
DMD2, working with blue-detuned light. Here, we take advantage of this feature to
imprint on DMD2 the following pattern, which we dither9:

A(x, y) = A0

√
α+ β cos(qx) (3.23)

where we choose α = 0.5 and β = 0.4. With this choice, we avoid defects of impression
with the dithering technique at minima of the intensity profile, which would be more
important for a fully contrasted modulation. Having a non-vanishing intensity at
the minima of the profiles is not an issue, since spontaneous emission is negligible
for 532 nm light. The intensity modulation of the light send to the atoms is then
sinusoidal with an expected contrast of β/α = 0.8, as can be seen in Figure 3.6.

The modulation depth can be adjusted by changing the intensity of the 532 nm
light sent to the DMD. We could calibrate the resulting potential felt by the atoms
as a function of this light intensity, if the beam were perfectly Gaussian and provided
we could accurately measure its waist and power on the atoms, using the following
formula [147]:

V0 =
3πc2lightΓ

2ω3
0

(
1

ω − ω0
− 1

ω + ω0

)
I ≡ γI (3.24)

where clight is the speed of light, Γ is the natural linewidth of the first excited level
5P3/2, ω0 is the frequency of the D2 line, ω is the frequency of the green light, and I is
the intensity of the green Gaussian beam in the atomic plane. γ is the proportionality
factor between the modulation depth and the intensity that we want to calibrate.
With a power P ∼ 10mW and a waist w ≃ 85 µm in the atomic plane, we calculate

9We recall that the square root comes from the fact that the DMD is an amplitude modulator.
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DMD1

DMD2

Pixis 1024 BR Excelon

Chameleon CMLN-13S2M

OD

Figure 3.5: Scheme of the experimental setup to study the superfluid fraction in
a modulated system. The sinusoidal modulation of the light is shaped by shining
532 nm light on DMD2, which is then imaged onto the atoms through a microscope
objective, together with the light coming from DMD1, which provides the box
potential. An absorption imaging system with 780 nm light is used to image the
cloud and is captured on a Pixis camera. An auxiliary imaging system photographs
the green light sent to the atoms, and an example of the resulting image is shown
near the corresponding Chameleon camera. The diagonal fringes are defects from
the imaging setup, while the central fringes are those imprinted with the DMD2.
A cut and a sinusoidal fit are plotted. We also depict a MOT coil used in the
sound propagation measurement in order to apply a magnetic gradient (we have
not shown the bias coils that allow to shift the center of the quadrupolar field).

a potential V0 ∼ kB × 200 nK. We thus estimate that this order of magnitude should
allow us to explore the physics seen in the GP simulations (Figure 3.4). However, this
is obviously a rough estimate and we need a more precise calibration. For this we use
the atomic response directly.

We use long wavelength lattices for which we are confident that our finite resolution
imaging system, which acts as a filter for the fast spatial variations, does not have
any impact. We measure the relationship between the atomic density modulation n1
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at a certain wavevector of the lattice q10 and the light intensity. At low modulation
depths, the two quantities are proportional with a coefficient called α(q). This is also
the case for V0 and n1, as we demonstrated in section 3.2.3. The relation is given
by (3.18):

V0 =
(
µ0 +

ϵq
2

)n1
n0

= g l(q)n1 (3.25)

with l(q) = 1 +
ϵq
2µ0

. From the measurement of n1(I) (Figure 3.6(a)) and the for-
mula (3.25), we thus get the desired calibration V0 = γI. For long wavelength lat-
tices d ≥ 8 µm, the calibration is independent of the lattice spacing (proportionality
coefficient γ∞), which validates this procedure.
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Figure 3.6: Calibration of the modulation depth and contrast reduction due to
finite resolution imaging. (a): On the atomic signal. Amplitude of the first har-
monic, obtained by fitting a sinusoid to the absorption images as a function of the
light intensity sent to the DMD. For lattice spacings d ≥ 8 µm the curves overlap,
while the atomic modulation is reduced by ∼ 30% for d = 4 µm and by ∼ 90%
for d = 2µm. Dashed lines are linear fits for low light intensities. Inset: propor-
tionality coefficient obtained from the linear fits normalized by the long wavelength
lattice value. (b): On the light signal. The peak-to-peak amplitude 2A (respec-
tively minimum c) of the sinusoidal modulation of light seen on the control camera
is represented by circles (resp. squares) as a function of light intensity. Dashed lines
are linear fits at low light intensities. The contrast C, defined as 2A

2A+c , is plotted in
the inset. There is no decrease in contrast for the d = 4 µm lattice, while there is
a ∼ 50% drop for the d = 2µm lattice. The dashed horizontal black line represents
the desired imprinted contrast from (3.23).

For a lattice of period d = 4 µm, the modulation seen on the atoms is smaller for
the same intensity sent to the DMD (Figure 3.6(a)), so how can we be convinced that
the above calibration V0 = γI, determined for d ≥ 8 µm, still holds for the lattice
d = 4 µm? To do this, we use a side camera to control the intensity of the light sent
to the atoms, thus working at 532 nm. We measure the maxima and the minima of
the intensity profile for different lattice spacings and extract a contrast at low light
intensities where the counts are proportional to the light intensity. This contrast is
independent of the lattice spacing for d ≥ 4 µm, thus confirming that the decrease of

10The notation nmeas(q) is also used to distinguish between the expected and measured density
modulations for the small lattice spacings.
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the modulation depth seen on the atoms is due to a limitation in the detection of the
density modulation and not to the imprinting of the modulation potential.

To further explain the decrease in atomic contrast at low lattice periods, we de-
scribe the observed density modulation signal as a convolution between the true atomic
signal and a Gaussian of standard deviation σ ≃ 0.5 µm11, a value which is compat-
ible with the specifications of our microscope objective at 780 nm. This reduction,
combined with a further reduction in contrast due to a pixelization effect on the Pixis
camera, explains the measured density modulation at 4 µm.

The modulation depth is still calibrated with V0 = γ∞I at 4 µm but when we
will try to measure the density profile accurately, we will have to take into account
the observed difference between the measured and expected density modulation and
calibrate a correction factor (see section 3.4). We summarize the different sources
of contrast reduction with the diagram in Figure 3.7 for the 4 µm lattice where the
transfer function between the DMD and the atoms is unity (no contrast reduction
seen with the Chameleon camera). For the 2 µm lattice this last point is not verified
and the diagram is more complicated (see Appendix D).

DMD Atoms    PIXIS 
 camera

Chameleon

   camera

Wavevector q

Pixelization effect

Measured
density modulation

density modulation
Expected

Correction factor

Modulation potential
on the atoms

Light intensity

'LDA' formula

Figure 3.7: Contrast reduction for the 4µm lattice. The DMD shapes the 532 nm
light intensity with a sinusoidal intensity modulation of modulation depth V0 = γI.
The expected density modulation in the LDA regime at low modulation depths is
given by (3.25). However, the point spread function for the absorption imaging
scheme, modeled with a transfer function TA→C(q), and a pixelization effect on the
Pixis camera for the 4 µm lattice leads to a reduction of the atomic contrast for this
lattice spacing. The slope α(q) takes these two technical limitations into account.
The correction factors β(q) are used in section 3.4 to accurately calculate the density
modulation for the small lattice spacings. For the larger lattice spacings, we have
γ = gα∞, which we use for the calibration V0(I). This is true for three reasons:
l(q) ≃ 1 for the small q lattices, our imaging system does not filter out the slowly
varying lattices (i.e. the transfer function TA→C(q) = 1), and the pixelization effect
is negligible for the large lattice spacings.

Calibration of the magnetic field gradient

To introduce an excitation of the cloud, we use a quadrupolar magnetic field gen-
erated by the MOT coils, shown in Figure 3.5, on an atomic cloud polarized in the

11This Gaussian function, which describes the efficiency of our detection method, is called a point
spread function (PSF) in this context, and its convolution with a sinusoidal function n0+nexp cos(qx)
leads to:

n(x) = n0 + nexp exp

(
−q

2σ2

2

)
cos(qx) (3.26)

So in this simple model, the contrast reduction is the term exp
(
−q2σ2/2

)
.
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magnetically sensitive state |1,−1⟩ (the state in which we end up after the cooling
steps, see Chapter 1). It is superimposed upon a magnetic field directed along z of
≃ 3G, which sets the quantization axis. Near the center of the quadrupole trap,
the norm of the total magnetic field is at first order quadratic with respect to the
position coordinates, the curvature being determined by the current flowing in the
MOT coils. We might naively think that this is enough to apply a magnetic exci-
tation to the atomic cloud. This is incorrect for at least two reasons. First, the
excitation of the cloud depends on the difference in magnetic field norms across it:
Emag = mF gFµB∆||Btot||. However, with a cloud centered on the nearly harmonic
quadrupole trap, there is no magnetic field difference across the cloud and thus no
excitation. Secondly, it should not be forgotten that the quadrupolar field also pro-
duces a magnetic gradient along the other two axes, though twice smaller, while the
direction of the excitation should be controllable and alternatively directed only along
y (the strong axis of the MOT coils) or x.

In addition to this quadrupolar field centered in (x0,y0,z0), we thus add a small
static magnetic field along x (respectively y) to shift the mimimum of the magnetic
field curve along x (resp. y). We write the total magnetic field acting on the atoms
as:

Btot = B0ez︸ ︷︷ ︸
quantization field

+ b′0

(
−x− x0

2
ex + (y − y0)ey − z − z0

2
ez

)
︸ ︷︷ ︸

quadrupolar field, strong axis: y

+Bb,xex +Bb,yey︸ ︷︷ ︸
bias fields

(3.27)
DefiningBcent =

√
B2

0 +B2
b,x +B2

b,y the norm of the magnetic field at the positions
(x0,y0,z0), the norm Btot at order 2 in the coordinates positions can be written in the
more general case as:

||Btot|| = Bcent

[
1− b′0Bb,x

2B2
cent

(x− x0) +
b′0

2

8B2
cent

(
1−

B2
b,x

B2
cent

)
(x− x0)

2 +O(x− x0)
3

+
b′0Bb,y
B2

cent

(y − y0) +
b′0

2

2B2
cent

(
1−

B2
b,y

B2
cent

)
(y − y0)

2 +O(y − y0)
3

− b′0B0

2B2
cent

(z − z0) +
b′0

2

8B2
cent

(
1− B2

0

B2
cent

)
(z − z0)

2 +O(z − z0)
3

]
(3.28)

Thus, across the atomic cloud, which has not moved due to the box confinement,
there is a magnetic field difference along x (resp. y) as soon as Bb,x ̸= 0 (resp.
Bb,y ̸= 0). Strictly speaking, the difference of magnetic field norms has terms of order
3, 5, etc. in the position coordinates (see Figure 3.8(a)). Across the atomic cloud
of a few tens of µm, however, this curvature effect is negligible and the difference of
magnetic field norms evolves linearly, resulting in a uniform magnetic field gradient
b′ ≃ b′0Bb,x

2Bcent
(resp. b′ ≃ b′0Bb,y

Bcent
) of the order of a few G/m and an associated energy

difference across the cloud Emag ≃ mF gFµBb
′L (see Figure 3.8).

The natural question that arises is how to calibrate this (small) magnetic gradient
(0.03% of the gravity). To access it, we use Ramsey interferometry between the states
|1,−1⟩ and |2,−2⟩, for which the product gFmF is different. Indeed, the energy
difference associated with the magnetic excitation between two points separated by x
is linear in x at first order, as seen just above. Thus, the probability transfer to |2,−2⟩
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Figure 3.8: Magnetic gradient. Experimental implementation and measurement.
(a): Spatial variation of the norm of the total magnetic field Btot ≡ ||Btot|| given
by (3.28) with Bb,x = 0.25G and Bb,y = 0G. We use (x0,y0,z0)=(0,0,0),
b′0 = 100G/m, and B0 = 3G. The center of the quadrupole trap did not move along
the y axis (black curve), while it did move along the x axis (blue curve). The left
curve range is 1200L, while the right curve is a zoom on the box range L = 40µm.
These bias fields result in an almost linear gradient b′ along x (b′ ≃ 5G/m here),
while no gradient is observed along y. (b): Absorption image and central cuts
of the cloud when applying a magnetic gradient of 20G/m (in the experiment
we apply b′ ∼ 5G/m and the effect on the density variation over the cloud is
barely visible. We choose a higher gradient here for a clearer visualization). (c):
Measurement of the magnetic gradient amplitude and direction with a Ramsey
sequence, consisting of two π/2 MW pulses separated by tW ∼ 5ms. This leads to
interference fringes separated by a distance which is inversely proportional to the
magnetic gradient amplitude (3.29). The direction (towards negative x or positive
x) of the magnetic gradient is not accessible from this measurement, we infer it
here from the density variation of (b). We choose a different colormap from the
usual blue one to emphasize the difference between the Ramsey fringes and the
atomic profiles in presence of the periodic lattice of Figure 3.10. We can do the
same excitation protocol along the y axis by applying a bias field Bb,y ̸= 0 and
Bb,x = 0.

at position x, after two MW pulses, separated by an adjustable waiting time tW , can
be written as cos2(∆EmagtW /2ℏ) = cos2(∆(mF gF )µBb

′xtW /2ℏ) where ∆(mF gF ) is
the difference of the product gFmF of the two considered states. We then expect a
spatial sinusoidal interference pattern which, for a waiting time of tW ∼ 10ms and
b′ ∼ 10G/m, has typically a fringe spacing of ∼ 7 µm, accessible with our absorption
imaging system. Measuring the direction and the fringe spacing i of the sinusoidal
pattern gives access to the axis where there is a magnetic field difference across the
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atomic cloud (perpendicular to the fringes) and the magnitude of the magnetic field
gradient by the relation:

b′ =
h

∆(mF gF )µBtW i
(3.29)

The sensitivity of this result grows with the product ∆(mF gF ), hence the choice
to make this measurement for the states |1,−1⟩ and |2,−2⟩12. Figure 3.8 shows
an example of an atomic profile in the presence of a magnetic field gradient. Its
measurement by Ramsey interferometry is also depicted in this figure.

Experimental measurements of sound velocities

The following part describes the experimental protocol for measuring sound veloc-
ities in a density modulated gas. We prepare the atomic cloud in the state |1,−1⟩ in
the presence of the modulation potential of height V0 with a fixed mean atomic den-
sity n0 ≃ 60 atoms/µm2 (we discussed in Chapter 1 how to control the density of the
cloud) for all measurements. We then adiabatically turn on the coils in 100ms (MOT
coils and bias coils) to create the linear magnetic field difference along the desired
direction. After letting the cloud reach equilibrium in the presence of this gradient
(again during ≃ 100ms), we abruptly turn it off (via both the bias and MOT coils),
setting the time t = 0 of the experiment. We then record the triggered evolution of
the center of mass position up to times t ∼ 200ms. This gives access to the speed
at which phonons propagate in the system along the excited direction. For a given
modulation depth, we measure the center of mass displacements over time along the
two directions for an excitation along x. We repeat this procedure for an excitation
along y, but keeping the modulation potential along x. We check that when the cloud
is excited along x (respectively along y), the center of mass motion along y (resp. x)
is small (< 0.5 µm) and random, while it follows a sinusoidal damped function along
x (resp. y) (Figure 3.9).

As in the GP simulations, we interpret the finite damping to the finite magnetic
gradient required for this measurement13, even though we did not manage to extract
quantitative evolutions. The damping appears to depend significantly on the homo-
geneity of the cloud and thus varies from day to day. Additionally, the observed
damping is often stronger than the predictions from GP simulations. Still, we checked
that the sound frequencies do not depend on the excitation strength, which confirms
the validity of this protocol. Further experimental efforts would be required to study
the damping in triggered oscillations, which could be an interesting subject to explore.

Figure 3.9 shows the experimental evolution of the oscillation frequencies νx and
νy for an excitation of the system along x and y, respectively.

As predicted and as seen in the GP simulations, the sound velocity along the
non modulated axis varies less when changing the modulation depth compared to the
sound velocity along the modulated axis. This highlights the anisotropy of sound
propagation in the system and the decrease of the superfluid fraction. The variations
of these velocities are opposite with respect to the modulation depth: cy increases
due to the evolution of the compressibility, while cx diminishes due to the variation

12We do not need a precise calibration of the magnetic gradient in this project. We simply want
to check that we are working in the perturbative regime. However, for the project discussed in
Chapter 6, a precise calibration is crucial for the comparison with the theoretical predictions.

13The choice of this magnetic gradient b′ ≃ 8G/m results from a trade-off between a sufficient
signal-to-noise ratio for the center of mass evolution and the strength of the damping.
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Figure 3.9: Sound velocity measurements using center of mass (COM) excitations.
(a): COM motions in a uniform cloud (left panel) and modulated along x with
V0 = kB×40 nK (right panel). The square (respectively circle) points correspond to
the COM motions when exciting the cloud along y (resp. x). The blue (resp. black)
points correspond to the COM motion along x (resp. y). Solid lines are damped
sinusoidal fits. The insets show the COM motions in the direction perpendicular to
the excitation (along x we add an offset of 0.5 µm to make the data more visible).
(b): Frequencies and dampings extracted from the sinusoidally damped fits along
the x and y directions with the formula (3.22). The solid lines are the results of
GP simulations corresponding to the same parameters: b′ = 8G/m, d = 4 µm,
n = 60 atoms/µm2.

of the superfluid fraction. The agreement with the GP simulations is excellent over
the range of explored modulation depths.

In a recent work, Tao et al. [144] also measured an anisotropic speed of sound
in a 3D system by breaking the translational invariance along one axis. They used a
retroreflected optical lattice at 532 nm, which yielded a modulation potential of pe-
riod d = 256 nm, and confined their gas in a harmonic trap. The sound velocities in
their system were extracted via Bragg scattering. More precisely, they added a weak
sinusoidal lattice with a much larger period ≃ 5 µm using a DMD, similar to our exper-
iment. However, they made it move at a speed v in a specific direction. A resonance of
transferred atoms was observed after a time of flight when the speed v corresponded to
the speed of sound in the system. The study demonstrated an anisotropic variation in
the speed of sound when the excitation was applied along the modulated or unmodu-
lated axis. The results were compared with GP simulations. They then extracted the
superfluid fraction using the same hydrodynamic formula (3.14) as us. Because they
used a lattice of small period, the recoil energy associated to the wavevector q is much
larger than the chemical potential, the energy associated to the interactions. Thus,
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the interaction energy scale can be neglected compared to the other energy scales in
their system. As a result, the evolution of the superfluid fraction approaches that of
a non-interacting gas (see Figure 3.1). In addition to this measurement, the authors
also extracted a key quantity related to superfluids, which was briefly discussed in
Chapter 2: the moment of inertia in a scissors mode experiment.

In this experiment, the researchers checked that the superfluid fraction obtained
from the sound velocities was consistent with Leggett’s bound. However, due to the
small lattice spacing used, they were unable to extract an in situ density profile and
therefore could not calculate Leggett’s integral to obtain another measurement of the
superfluid fraction in their system. Our experiment will address this challenge using
a 4 µm lattice.

3.4 Static determination of the superfluid fraction

In this section, we present a static determination of the superfluid fraction in a
density modulated cloud. We take advantage of the saturation of Leggett’s inequality
in our separable system, which is well described by Gross-Pitaevskii physics. This
measurement of the superfluid fraction is unusual as it is directly obtained from the
density profiles, rather than through transport properties. We present the experimen-
tal results alongside GP simulations, as in the previous section.

How can we experimentally extract the density profile in our system? In an ideal
scenario, we could obtain an absorption image of the cloud and measure its various
harmonics (3.15). However, two main limitations prevent us from accessing all the
harmonics: our imaging system has a finite resolution, and the camera used for ab-
sorption imaging has a finite effective pixel size. We describe these effects as a filtering
of the harmonics. We introduce correction factors βi for the i-th harmonic and write
the measured density profile as:

nmeas(x, y) = n0 −
∑
i≥1

βini cos(iqx) (3.30)

As this is an ambitious project to measure the various harmonics, we will proceed
step by step by introducing the measurement of one harmonic at a time.

3.4.1 “Naive” measurements

First, let us consider only the first harmonic n1. This means that when a sinusoidal
modulation potential is applied, the gas is assumed to respond with a sinusoidal
modulation of the density. This corresponds to the LDA regime, which is a good
approximation of our system at low V0.

However, the LDA equation (3.16): n1
n0

= V0
µ0

does not give the correct slope
at the origin of the evolution of n1

n0
(V0). This is due to the non-negligible value of

ϵq/µ0 ≃ 0.14 in our system. The exact behavior at low V0 is given by the previously
discussed expansion (3.18): n1

n0
= 2V0

2µ0+ϵq
. We verify this statement in Figure 3.10(b).

Nevertheless, mainly due to the filtering of the harmonics by our imaging system of
optical resolution ≃ 1 µm, already seen in Figure 3.6, the measured density modulation
n1, with a sinusoidal fit to the atomic profiles, cannot be trusted for lattices of spacing
d < 8 µm. Indeed, we saw a significant reduction in the density modulation for
these short-spacing lattices. To account for this reduction in contrast, we correct the
measured n1 by the factor β1 ≡ β(q = 2π

4 µm−1) to obtain the data in Figure 3.10.
The calibration of β1 requires some care and a detailed explanation is given in

Appendix D. It takes into account not only the reduction in contrast due to the limited
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resolution of our imaging system, but also pixelization effects on the Pixis camera.
Indeed, the effective pixelsize on the atoms is 1.15 µm, and is thus not negligible in
front of the 4 µm lattice. It leads to a reduction of the measured modulation density
of ≃ 13% (see Appendix D).

These effects contribute to a filtering of the first harmonic and the evaluation of
their contributions allows to extract the coefficient β1: β1 = 0.73(2).
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Figure 3.10: Limitation to the first harmonic. (a): Experimental in situ absorp-
tion image for V0 = kB × 20 nK (V0/ϵq ≃ 3) together with a mean density profile
along the modulated axis (blue circles). A sinusoidal fit of amplitude n1 and mean
value n0 is represented by a blue solid line. (b): n1/n0 as a function of the mod-
ulation depth. n1 is corrected by β1. The dashed blue line is the GP simulation
prediction fitting the profiles with a sinusoid. The dotted blue line is the small
V0 expansion (3.18) and the black dash-dotted line is the LDA prediction (3.16).
(c): Superfluid fraction extracted from Leggett’s formula. Restricting to the first

harmonic, we have fs,x =

√
1−

(
n1

n0

)2
. The plotting conventions are the same as

in (b). For the values of V0/ϵq ≳ 8, the value of n1/n0 is greater than 1, and since
Leggett’s integral is ill-defined, we manually set the superfluid fraction points to
0. The solid black line is the GP prediction including all harmonics in the density
profile.

Once n1/n0 has been carefully evaluated, we can extract the superfluid fraction
using the saturation of Leggett’s formula. In this subsection, where the density is
assumed to be sinusoidal, the connection between the superfluid fraction and the

density modulation is simple and given by (3.17): fs,x =

√
1−

(
n1
n0

)2
. We obtain the

result shown in Figure 3.10(c). The comparison with the numerical results obtained
by limiting the knowledge of the density profile to its first harmonic is satisfactory.
The solid black line represents the numerical result obtained from the knowledge of the
full density profile. Not surprisingly, we see that the data deviate from the numerical
results as soon as V0/ϵq ≳ 6. Can we do a little bit better?

3.4.2 Going further

We now take into account the presence of a second harmonic in the Fourier ex-
pansion of the density (3.30), creating a modulation at 2 µm.

As with the first harmonic, the second Fourier mode is affected by the various
limitations of the measurement procedure. We extract β2 ≡ β(q = 2π

2 µm−1) from a
careful evaluation of these limitations at d = 2 µm14. We obtain a factor β2 = 0.27(6)
(see Appendix D). The amplitudes of the measured harmonics extracted from the two

14For the 2µm lattice, we must also take into account the filtering seen on the control camera (see
Figure 3.6 and Appendix D).

67



Chapter 3. Superfluid fraction in an interacting 2D modulated Bose gas at T = 0

harmonic fits15 are then corrected by the βi coefficients to obtain Figure 3.11(b). Since
the second harmonic tends to increase the density around minima compared to the
first harmonic (see Figure 3.11(a)), the sign of n2 is opposite to the sign of n1. Even
though the second harmonic is a small corrective effect around the density minima
(n2 ≪ n1), it is sufficient to modify significantly the derived value of the superfluid
fraction at large V0. Indeed, it affects the density minima and since Leggett’s integral
has a

〈
1
n0

〉
term, the second harmonic can play a non-negligible role. As with the first

harmonic in the previous subsection, the results are compatible with the GP prediction
restricting the density knowledge to the first two harmonics, and the points follow the
full GP numerical simulation up to V0/ϵq ≃ 8, a higher number compared to when we
fit the profiles with only the first harmonic.
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Figure 3.11: Superfluid fraction from the density profiles. For the figures in
the top row, we include the first two harmonics. (a): Absorption image for V0 =
kB × 72 nK (V0/ϵq ≃ 10) together with a mean profile along the modulated axis.
The red line represents a sinusoidal fit (only one harmonic), while the green line is a
fit that includes the first two harmonics. From these fits, we extract the amplitudes
of the first two harmonics, n1 and n2, which we then correct by the β1 and β2
factors (b). Once this is done, we can reconstruct the truncated density profile and
calculate the superfluid fraction using Leggett’s formula (red points in (c)). The
dashed lines are the predictions from GP simulations truncating the density to the
first two harmonics, while the dotted lines are the low V0 analytical expansions.
The black solid line is the full GP prediction. The second row of figures includes
the first three harmonics. These are numerical results only. The fit for the first
three (respectively two, first) harmonics is plotted in orange (resp. green, red) in
(d) in the case of V0 = kB × 80 nK (V0/ϵq ≃ 11). The dashed lines in (e) are the
GP predictions of the amplitude of the first three harmonics. When the density
signal is reconstructed, this leads to the superfluid fraction shown with the dashed
orange line in (f) using Leggett’s formula. The discrepancy with the full GP result
in black is now barely visible for the explored range of modulation depths.

15The fit of the two harmonics also requires some care. Indeed, naively attempting to fit the signal
by the sum of the two harmonics will give no signal for the second harmonic. Instead, we first fit only
the first harmonic with the amplitude and the phase ϕ as free parameters. We then fit the residue
of the previous fit with a sin(2qx+ 2ϕ) function where the only free parameter is the amplitude. An
example of fit is plotted in Figure 3.11(a).
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Can we do better than that? Numerically, of course, we can always go further by
including the third harmonic. This is the subject of the second row in Figure 3.11.
We see in Figure 3.11(f) that the superfluid fraction when including the first three
harmonics (orange dashed curve) is an extremely good approximation of the full result,
plotted in black, up to V0/ϵq ≃ 1016. Experimentally, however, the third harmonic,
which leads to a density modulation at 1.33 µm, is completely filtered out by our
imaging system (β3 ≃ 0 and βi≥3 ≃ 0). Therefore, we will limit our experimental
analysis to the second harmonic, knowing that we can obtain a reliable estimate of
the superfluid fraction from the density profile measurements within the explored
range of modulation depths of V0/ϵq ≲ 10.

3.5 Comparison of the two methods

In this section, we compare the two different methods for extracting the superfluid
fraction, both numerically and experimentally.

The first method exploiting the anisotropy of sound propagation when a modula-
tion is added, leads to the purple squares in Figure 3.12. These points are obtained
from the ratio squared of the sound velocities plotted in Figure 3.9. The correspond-
ing numerical results are represented by a blue dashed line (they were already shown
in the inset of Figure 3.4).

The second method uses the saturation of Leggett’s formula and the knowledge
of the in situ density profile. The resulting red circles should be compared to the GP
estimation shown as a black solid line.

Overall, the results are in good agreement in the range of V0/ϵq studied. The
choice of the lattice at d = 4 µm allows to measure the in situ profiles with good
accuracy, while the physics involved deviates significantly from the LDA regime at
sufficiently high modulation depths.

It can be seen that the vertical errorbars are similar between the two methods. The
sound velocity errorbars are obtained with a bootstrap analysis on the center of mass
fits. We are limited by the damping of the oscillations to achieve higher modulation
depths. For the stationary density profile measurements, the vertical errorbars take
into account the error in the calibration of the correction factors β1 and β2 and in the
fits of the density profiles. They increase with V0/ϵq.

In this work, which has been the subject of an article [67], we have shown two
different ways to measure the superfluid fraction in our density modulated gas. Apart
from the natural extension of this work to the study of the quenching of the superfluid
fraction in supersolids, Fermi gases or 2D modulated potentials, there is a connection
with astrophysics and neutron stars. Indeed, in neutron stars the periodic lattice of
the nuclei influences the superfluidity in the inner crust [148]. Despite the inevitable
quenching of the superfluid fraction, its value is kept high even for large density
modulations [149]. This is due to the strong interactions present in the inner crust of
these neutron stars. Similarly, when comparing the superfluid fraction value in our
system to that, for example, of Tao et al. [144], we can argue that our large period
lattice allows us to stay far away from the non-interacting regime and to maintain a
non-zero superfluid fraction over a wide range of modulation depths (see Figure 3.1).

16The relative error in the superfluid fraction estimation by taking only the first three harmonics
is ≃ 10% for V0/ϵq = 11.
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Figure 3.12: Comparison of the two methods for extracting the superfluid frac-
tion. The purple squares are obtained with sound velocity measurements, while the
red circles are extracted from the in situ density profiles and the Leggett’s formula.
The dashed blue line and the solid black line are the numerical predictions from the
sound measurements and from the application of the Leggett’s formula on the full
density profile, respectively. We stop the dashed blue line at V0/ϵq ≃ 10 because
further the damping is too large to accurately measure the oscillation frequency for
b′ = 8G/m.

3.6 Extension of this work to 2D modulated potentials

As previously mentioned, this work focused on studying the superfluid fraction in
a weakly-interacting Bose gas with a separable wavefunction. In this particular case,
the two Leggett’s bounds (3.12) are valid and coincide. We now extend the question
of superfluidity in modulated systems to more complicated 2D cases than the one
considered in this chapter.

3.6.1 A sufficient condition to saturate Leggett’s inequalities?

We start by exploring the possibility of identifying sufficient conditions for the two
bounds to be equal. We pick up the possible requirements among the two used in our
previous study i.e. the mean-field treatment and the separability of the wavefunction.

First, is the separability of the many-body wavefunction sufficient to saturate
Leggett’s inequalities? While Leggett gave a positive answer in his 1998 paper [66],
it seems that he had in mind the applicability of Gross-Pitaevskii theory. Indeed,
the example of a quasi-1D Bose gas, a separable system, placed in an optical lattice
of on-site interaction U and nearest-neighbor tunneling constant J , brought to the
Mott-insulator regime of U ∼ J , provides a counterexample. In the superfluid regime,
the bounds are saturated, but as U/J increases, the superfluid fraction decreases
until it reaches zero in the Mott-insulator phase. However, the written lower bound
predicts an increase in the superfluid fraction as the density contrast decreases and the
repulsive interactions increase. Therefore, in this beyond mean-field system, Leggett’s
lower bound is not valid and thus cannot be equal to Leggett’s upper bound.
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Then, what about the condition of applicability of Gross-Pitaevskii theory? In
a recent numerical study [150], the superfluid fraction tensor was investigated in a
2D dipolar supersolid gas described by an extended Gross-Pitaevskii theory. In most
lattice angle configurations, the superfluidity is anisotropic, with the exception of the
square and triangular lattices, which exhibit isotropic superfluidity. For a triangu-
lar lattice, the potential is non-separable. The (unique) superfluid fraction in the
system does not strictly coincide either with Leggett’s upper bound or lower bound.
Therefore, the applicability of Gross-Pitaevskii theory is not a sufficient condition
to saturate Leggett’s inequalities. Still, the bounds provide a useful estimate of the
superfluid fraction in the modulated system.

3.6.2 Calculation of the compressibility and the superfluid fraction
in 2D weakly-interacting modulated Bose gases

From the previous subsection, we argue that even when restricting ourselves to
mean-field systems in the general 2D modulation case, Leggett’s bounds are not sat-
urated. Therefore, we cannot generally use them to calculate the superfluid fraction
in the system. What are the other ways to calculate a superfluid fraction?

Blakie’s numerical study [150] extracted the superfluid fraction using twisted
boundary conditions and effective mass calculations in a unit cell. He also discussed
in another paper [151] the evolution of the different sound branches over the transi-
tion from a superfluid to a supersolid in the case of a 2D spatial confinement. At the
same time, Sindik and collaborators [152] studied the case of an annular spatial con-
finement and proposed an experimental protocol to excite the different sound modes.
As mentioned earlier in this chapter, the existence of multiple sound branches at low
momenta in a dipolar supersolid complicates the protocol to extract a superfluid frac-
tion compared to what we used in our experiment (3.14). Sindik et al. showed that
they could calculate the different sound velocities together with the compressibility
of the system after applying a periodic modulation proportional to cos(ϕ), where ϕ
is the azimuthal angle in the ring. Importantly, they related the sound velocities and
the compressibility to the superfluid fraction, whose calculated value coincides with
Leggett’s upper bound as expected (extended GP model and separable potential).

Following the study of Blakie [150], we adapt our Gross-Pitaevskii numerical sim-
ulations to the cases of a square or a triangular 2D lattice modulation. From the
ground states of the system, we compute upper and lower bounds for the superfluid
fraction with the equations (3.12). Furthermore, we calculate the sound frequencies
along the two directions x and y using the same protocol as in Figure 3.4. We compute
the initial state in the presence of a magnetic gradient either along x or y and turn
it off at time t = 0 of the evolution. It triggers the phonon modes in the system and
the resulting sound frequencies along x or y can be inferred. Once this is done, how
can we access the superfluid fraction in the system?

As in Blakie’s study, and given that there is no preferential axis in the square or
triangular lattices, we obtain identical sound velocities along the two directions of the
box (insets of Figure 3.15).

Therefore, in contrast to the case of a 1D modulation, where we were able to get
rid of the compressibility dependance, here we have no choice but to calculate the
compressibility in the system. Inspired by the works discussed previously [152, 151],
and [153], we measure it numerically from the initial state of the excitation protocol,
i.e. in the presence of the linear potential created by the magnetic gradient. More
specifically, we calculate the position of the center of mass of the initial state, shifted
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Figure 3.13: Compressibility calculation and range of application for the linear re-
lation between the gradient and the center of mass (3.31). We compute numerically
the center of mass of the gas under a linear potential (gradient b′) and a 2D square
potential V (x, y) = V0

2 [cos(qx) + cos(qy)] with q = (2π/4) µm−1. The dashed lines
are linear fits for b′ < 30G/m. The inset shows the evolution of the compressibility
extracted from the COM values. The dashed lines are the compressibility values
obtained from the linear fits.

with respect to the central position due to the magnetic gradient, and we assume that
the compressibility can be deduced with the following formula:

κ =
12

gFmFµBb′L2
× xCOM(t = 0) (3.31)

In the LDA regime, κ = 1
µ0

= 1
gn and the expression (3.31) is equivalent to that

already given in (3.21). When leaving the LDA regime, the compressibility diminishes
slightly causing the slope of the evolution xCOM versus b′ to decrease (see Figures 3.2
and 3.13)17. One can then derive the evolution of the superfluid fraction as a function
of the modulation depth by assuming the validity of the hydrodynamic formula:

c2x,y =
fs,(x,y)

mκ
(3.32)

In the simulations we first verify the range of application of the linear rela-
tion (3.31) for different modulation depths. Typically, the linearity is checked for
linear excitations of gradient b′ < 50G/m, i.e. as long as the magnetic excitation en-
ergy is smaller than the chemical potential: Emag ≲ µ (Figure 3.13). We then choose
b′ = 5G/m in the simulations, both for the calculation of the stationary profile and
the extraction of κ with (3.31), and for the measurement of the sound velocities with
the time-dependent simulation.

The validity of this protocol and the formula (3.31) are benchmarked in the 1D
modulated lattice used throughout this chapter, for which we have shown that the
hydrodynamic formula (3.32) is correct (see [67] and [83]) (Figure 3.14).

2D square or triangular lattices were then used as in Blakie’s study. The two
effects of decrease of the sound velocities and decrease of the compressibility go in
the same direction and result in an overall decrease of the superfluid fraction as the
modulation is increased (see (3.32)).

17This was also the case in the 1D modulation case: the sound velocity along the non modulated
direction increased due to the slight decrease in compressibility.
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Figure 3.14: Superfluid fraction from the compressibility calculation in the 1D
sinusoidal lattice case. (a): Example of profile for V0 = kB × 50 nK. We define it
as V (x, y) = V0 cos(qx) with q = (2π/4) µm−1. (b): 1D sinusoidal lattice case for
b′ = 5G/m. The dashed red line (respectively dotted green line) is the upper (resp.
lower) bound given by Leggett, which coincide in this separable system. The filled
blue circles (respectively black squares) are the superfluid fractions extracted from
the sound velocity and the compressibility calculation along the modulated axis
(resp. non modulated axis) (3.32). In contrast to what was plotted in Figure 3.12,
we emphasize that here the blue circles are not obtained by taking the squared ratio
of the sound velocities. The empty circles represent the case where the variation
of the compressibility is neglected and κ = 1/µ0 is taken. The black dashed line
corresponds to fs = 1. The insets show the variation of κ and the sound velocities
along both axes.

In the case of a square lattice, plotted in Figure 3.15(a), we found almost equal
upper and lower bounds for the superfluid fraction, as expected in this nearly sepa-
rable system18, and the superfluid fraction calculated with sound and compressibility
measurements is compatible with both bounds. Regarding the triangular lattice, the
bounds significantly deviate from each other, as also seen in Blakie’s study, and the
superfluid fraction extracted from the sound and compressibility measurements lies in
between the two bounds. It seems that the superfluid fraction is closer to the lower
bound than to the upper bound, as also calculated by Blakie in the dipolar supersolid
case.

The superfluid fraction can also be extracted numerically for other 2D lattice
arrangements, such as hexagonal, Kagomé, or checkerboard lattices.

The calculation of the superfluid fraction in this case relies on the hydrodynamic
formula (3.32) and on the compressibility formula (3.31). However, we are not aware
of any rigorous theoretical justification for these formula in 2D lattices. Another mea-
surement of the superfluid fraction, via the application of twisted boundary conditions
in an elementary cell of the lattice (method used by Blakie et al. [150] for instance),
could be performed to confirm these calculations.

Finally, the question of superfludity in modulated disordered systems is also of
interest. This topic was recently explored in Daniel Pérez Cruz’s master’s thesis [154],
where he studied the quench of the superfluid fraction in a 2D speckle potential. It is
also possible to consider an Aubry-André potential, which could simulate disorder.

18Even though the potential is separable, the density is not exactly separable, since the GP
equation is nonlinear.
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Figure 3.15: Numerical simulations of the superfluid fraction measurement in a
weakly-interacting Bose gas in a 2D square and triangular lattice via compress-
ibility calculations. (a): Ground state with a square lattice of V0 = kB × 100 nK.
The modulation depth is defined as the maximum value of the square potential
V (x, y) = V0

2 [cos(qx) + cos(qy)] with q = (2π/4) µm−1. (b): Evolution of the su-
perfluid fraction in a 2D square lattice. The dashed red line (respectively dotted
green line) is the upper (resp. lower) bound given by Leggett’s formula (3.12). The
black square points are obtained from the combination of the calculation of the com-
pressibility of the system and the sound velocity measurements (shown in the inset)
along the y axis. Since there is no preferential axis in the system, they are superim-
posed with the blue circle points obtained from the calculation of the compressibility
and the sound velocity along the x axis. (c): Ground state in a triangular lattice
of V0 = kB × 100 nK. The modulation depth is defined as the maximum value of
the triangular potential V (x, y) = V0
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with q = (2π/6) µm−1. (d): Superfluid fraction in the triangular lattice. The two
bounds do not coincide and the superfluid fraction extracted with sound measure-
ments and compressibility lies between the two curves. The conventions are the
same as for the square lattice.

In our experimental setup, we plan to measure the superfluid fraction in a previous
case of non-equality of Leggett’s bounds. We will measure the compressibility via
center of mass deviations for large gradients (but still remaining in the linear regime of
Figure 3.13) and sound velocities for reasonable gradients to determine the superfluid
fraction.
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3.7 Conclusion

In this chapter, we examined the modification of the notion of superfluidity in
a 2D density-modulated system at T = 0. First, we demonstrated analytically that
Leggett’s upper bound is saturated in a system described within mean-field theory and
separable along the two directions of space. This equality, rather than an inequality in
the general case, has significant implications. The knowledge of the stationary density
profile provides all the information on the superfluid fraction, an intrinsic transport
quantity. The properties of the stationary state can be used to predict the dynamics
of the superfluid system. Analytical expressions for low modulation depths were also
developed.

To explore the validity range of Leggett’s equality in our system, we then performed
two distinct numerical and experimental protocols. The first relied on anisotropic mea-
surements of sound modes propagating in the system after a weak excitation. Previous
studies have extracted sound velocities, particularly their temperature dependence, us-
ing Landau’s two-fluid model [25, 118, 24]. Our study revealed an anisotropic variation
of sound velocities at zero temperature, solely due to the presence of a one-dimensional
modulated potential.

Additionally, we described the first stationary determination of the superfluid frac-
tion using the saturation of Leggett’s inequality in the case of a weakly-interacting
Bose gas. The atomic density modulation was accurately measured. It was demon-
strated that the limitations of imaging fast-varying spatial modulations can be as-
sessed and overcome.

The agreement between both methods is satisfactory for the explored range of
modulation depths, both numerically and experimentally.

In the general 2D case, if either the validity of the GP treatment or the separa-
bility of the wavefunction, the two key ingredients for the use of Leggett’s equality,
do not hold, then Leggett’s bounds are not saturated. As a result, the superfluid
fraction cannot be measured using the stationary profile. Instead, one must rely on
other methods, such as compressibility calculation or twisted boundary conditions
consideration. In the last section, we presented a numerical analysis of the superfluid
fraction in 2D modulated lattices. Our findings suggest potential for future experi-
mental investigations in regimes where the two bounds can be distinguished.

This work is related to other spatially modulated systems, such as dipolar su-
persolids, where the density modulation occurs spontaneously. Recently, the group
of Giovanni Modugno in Florence conducted a remarkable study that quantitatively
measured the superfluid fraction in a quasi-1D dipolar Bose gas [155]. They obtained
this measurement via Josephson oscillations instead of sound oscillations. In addition
to the spontaneous spatial modulation that arises in the supersolid phase, a weak
optical lattice was introduced, which triggered a sinusoidal oscillation of the phase
difference between two adjacent clusters of the supersolid lattice. This work illus-
trates that the supersolid can be viewed as consisting of multiple lattice cells that
act as self-induced Josephson junctions. The measured superfluid fraction agrees well
with numerical results and falls between the two calculated Leggett’s bounds. These
bounds do not coincide in this non-perfectly separable system (density not separable
in the transverse directions).
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Part III

Magnetic solitons and Bloch-like
oscillations in a weakly immiscible

mixture
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Chapter 4

Introduction to the physics of 1D
magnetic solitons

This chapter and the two following ones discuss some properties of the magnetic
soliton. This soliton corresponds to the appearance of spatially localized magnetic ex-
citations in a 1D ferromagnetic spin chain, hence the name magnetic. The nonlinear
equation governing its dynamics is the Landau-Lifschitz equation (LLE). Remarkably,
in a specific limit, this soliton can be mapped to a vector soliton of the NonLinear
Schrödinger Equation (NLSE). As discussed in the previous chapters, the NLSE equa-
tion is commonly used to describe the mean-field physics of weakly-interacting Bose
gases, which are a priori fundamentally different systems compared to ferromagnetic
spin chains. We thus begin this chapter by introducing various types of solitons of
the NLSE encountered in different fields of physics. Then, the magnetic soliton is
introduced and its form is computed analytically. Finally, the connection between
the ferromagnetic spin chain and the immiscible mixture of BECs in a certain limit is
discussed. Conserved quantities associated with the magnetic soliton, which will play
a crucial role when a linear potential is added (Chapter 5), are then derived.

4.1 1D solitons of the Gross-Pitaevskii equation

Solitons are localized wavepackets that maintain their shape while propagating.
Their shape is also preserved in collisions with other solitons. They are present in phys-
ical systems that exhibit nonlinear phenomena. Therefore, they are found in various
fields, including fiber optics (see [156] for a recent review), hydrodynamics, condensed
matter and high-energy physics [30]. Solitons are also popular in mathematics as they
are solutions of partial differential nonlinear equations, such as the Korteweg-de Vries
equation, the sine-Gordon equation or the nonlinear Schrödinger equation (NLSE).
The solitons are said to be integrable objects. In other words, their dynamics are
confined to a small portion of the entire phase space due to the presence of certain
conserved quantities. As a result of these constraints, these non-ergodic systems never
reach thermal equilibrium. The integrability property provides them with a unique
stability against perturbations of the initial state, unlike chaotic systems. Their study
led to a fruitful approach to solve the dynamics of such integrable systems, namely
the inverse scattering method, discovered in 1967 [157], which generalises local linear
methods, such as Fourier transforms, to nonlocal linearisation1.

1A quantized (or discretized) version of the inverse scattering method is used to solve many-body
problems, such as spin chains. For instance, the Bethe ansatz is used to express the eigenstates of
the Lieb-Liniger model [158].
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4.1.1 The 1D regime

This chapter focuses on 1D physics and employs a mean-field approach, similar
to Chapter 2 when deriving the 2D Gross-Pitaevskii equation. The 3D wavefunc-
tion is written as a separable wavefunction: ϕ(r) = ψ(x)φ(y)χ(z). Assuming har-
monic confinements along the transverse directions y and z, we consider the states of
the atoms along these directions to be the ground states of the corresponding har-
monic oscillators with angular frequencies ωy,z, i.e. φ(y) =

(
πl2y
)−1/4

e−y
2/2l2y and

χ(z) =
(
πl2z
)−1/4

e−z
2/2l2z , with ly,z =

√
ℏ

mωy,z
.

As we did in the 2D case in Chapter 2, we insert this separable wavefunction into
the GP energy functional (2.9) where g = 4πℏ2

m a is the 3D interaction parameter:

E[ϕ] =

∫
d3r

[
ℏ2

2m
|∇ϕ|2 + V (r) |ϕ(r)|2 + g

2
|ϕ(r)|4

]
(4.1)

It yields the following 1D Gross-Pitaevskii equation for a homogeneous gas:

− ℏ2

2m

∂2ψ

∂x2
+ g1D |ψ|2 ψ = iℏ

∂ψ

∂t
(4.2)

The wavefunction ψ is normalized to the atom number. The parameter g1D is
the 1D interaction parameter and is related to the harmonic confinement parame-
ters by g1D = 2ℏω⊥a, where ω⊥ =

√
ωyωz is the geometric mean of the transverse

confinements.
We recall that this is a valid approach as long as we work in the mean-field regime

for a sample of density n = |ψ|2 and provided that the transverse confinement energy
scale is larger than the other relevant energy scales: ℏω⊥ ≫ kBT, µ. The Lieb-Liniger
parameter γ = g1Dm

nℏ2 quantifies the validity of this approach. It can also be written:
γ = 1

(nξ)2
, where ξ = ℏ√

ng1Dm
is the 1D healing length. The mean-field approach

gives a good approximation to the dynamics of the system if there are a sufficient
number of atoms per length scale ξ i.e. if γ ≪ 1 [159]. We note that unlike in 2D and
3D gases, the 1D Bose gas becomes more interacting as the density decreases [99].
A brief discussion of the non-weakly interacting 1D Bose gas will be deferred to the
section 5.2.1.

4.1.2 Soliton background

The 1D Gross-Pitaevskii equation (4.2), also called the nonlinear Schrödinger
equation, is an example of an equation that holds solitons. The discovery of solitons
is attributed to John Scott Russell in 1834. While he was conducting experiments on
the most efficient design for canal boats, he saw what he called a “wave of translation”
which “continued its course along the channel apparently without change of form or
diminution of speed” [31]. The existence of solitons was controversial at the time,
as Russell’s observations seemed to contradict established hydrodynamic theories. A
few years later, Korteweg and de Vries, following the work of Boussinesq, provided a
nonlinear wave equation describing the evolution of the height of the fluid on shallow
surfaces η(x, t) with respect to its resting value h [32]:

1

c

∂η

∂t
+
∂η

∂x
+

3

2h
η
∂η

∂x
+
h2

6

∂3η

∂x3
= 0 (4.3)

with c =
√
gh the celerity of gravity waves (g is the gravity acceleration). Remarkably,

the Korteweg-de Vries (KdV) equation (4.3) admits a solution that propagates with
a celerity (the soliton celerity) v = c

(
1 + η0

2h

)
greater than c:
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η(x, t) = η(x− vt) = η0
1

cosh2
(√

3η0
h

x−vt
2h

) (4.4)

with η0 the maximum height of the wave. This explained Russell’s observations. The
long wavelength tsunami waves are concrete examples of solitonic solutions of the
KdV equation, which are among the most deadly natural disasters. Zabusky and
Kruskal solved the KdV equation numerically in 1965 [33] and the term “soliton” was
coined by Gardner et al. [157], the inventors of the inverse scattering method, for
their particle-like behaviour in collisions of such solitary waves.

Since then, soliton theory has been further developed, particularly in the field of
photonics. A distinction is made between temporal and spatial solitons, depending on
whether the confinement of light during propagation occurs in time or in space: tem-
poral solitons are optical pulses that retain their shape in time, while spatial solitons
are self-guided beams that remain confined in the transverse directions (orthogonal
to the direction of propagation) during propagation. Temporal solitons result from a
balance between dispersion (the group velocity vg depends on the frequencies of the
beam ω) and a nonlinear term due to the Kerr effect2. Spatial solitons arise from
balancing diffraction and refractive index dependence. Figure 4.1 gives a summary of
how optical solitons can emerge in nonlinear media.

The possibility of observing them arose together with the invention of the lasers
in the 1960s. Hasegawa and Tapert showed in 1973 [160] that pulse propagation in an
optical fiber can be described by a nonlinear Schrödinger equation of the type (4.2),
predicting the existence of stable temporal solitons. Their first experimental realiza-
tion followed in 1980 [34]. Figure 4.1 also presents early experimental demonstrations
of optical solitons. Since then, proposals have been made to use optical solitons as
information carriers which would not be affected by dispersive broadening [161, 156].

Finally, it is worth mentioning that the NLSE can also be used to describe Lang-
muir waves of small amplitude in plasmas [30, 162].

We have described here how solitons arise as stationary solutions of nonlinear
equations. In the following, we will focus on the solitons of the 1D NLSE, which can
take various forms.

4.1.3 Various classes of solitons of the 1D NLSE

Bright solitons

The first natural class of solitons concerns the so-called bright solitons. They are
localized wavepackets solutions of (4.2) with a negative interaction parameter g1D. In
photonics, the bright temporal soliton is obtained in the anomalous dispersion regime
i.e. ∂(1/vg)

∂ω < 0 while the spatial bright soliton propagates in a self-focusing medium
i.e. the refractive index increases with light intensity. Zakharov and Shabat [164]
generalized the inverse scattering method3 to the case of the 1D attractive NLSE and
analytically expressed a family of solutions of (4.2), whose simplest representative is
the following bright soliton:

2The refractive index depends on the light intensity and thus the frequency of the pulse depends
on the time derivative of the light intensity. This is called the self-phase modulation effect.

3Introduced by Gardner et al. [157], this method provides a systematic procedure to obtain all
solutions of an integrable 1D nonlinear equation. It can be seen as a Fourier analysis for non-linear
problems, where the solitons play the role of normal modes [30].
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(a)

(b)

(c) (d)

Input

Output

waveguides is increased (Fig. 3), which leads to and leads to power transfer between the two other's induced waveguide. If the induced 
an increase in the refractive index in that region solitons. That is, one soliton grows in net ener- waveguide can guide only a single mode, the 
for n, > 0. This in turn attracts more light to the gy with respect to the other. The net energy outcome will resemble a collision in Kerr media 
center, moving the centroid of each soliton transfer is reversed in the relative phase regions (with some small energy loss to radiation). 
toward it, and hence the solitons appear to 0 5 A+ 5 1~12 and 1~12 5 A+ 5 IT. As the However, for an inducedmultimode waveguide, 
initially attract each other. Detailed analysis of 
the evolution shows that the force is indeed 
initially attractive and there is no energy ex- 
change between the solitons. This feature is 
universal for all coherently interacting solitons 
in isotropic nonlinear media. 

The behavior subsequent to the first merg- 
ing of the solitons depends on whether the 
nonlinear response is pure Kerr, or saturating. 
For two equivalent Kerr solitons on initially 
parallel trajectories, the resulting path of the 
centroid of each individual soliton is periodic 
with the solitons returning to their input condi- 
tion at the end of each cycle (Fig. 4A). For large 
enough divergent input angles, the solitons nev- 
er collide. For large enough converging angles, 
the solitons "pass through" each other with a 
slight lateral deflection and thereafter diverge 
(Fig. 4B). 

Interacting beams IT out of phase from 
each other interfere destructively, and the 
index in the central region is lowered by their 
overlap (Fig. 3). Therefore, the centroid of 
each soliton moves outward and the solitons 
appear to repel each other (Figs. 3 and 4C). 

The situation is more complex for other 
relative phases. If there were no power transfer 
between the solitons, the force between the 

amplitudes and relative phases of the solitons 
change with distance, their widths also change 
in keeping with the appropriate relation be- 
tween width and peak power for Kerr solitons. 
Consequently, the details of the trajectories can 
be quite complex (Fig. 4, D and E). 

The collision of nonequivalent coherent 
solitons always results in energy exchange 
and leads ultimately to a repulsive force that 
makes the beams diverge. 

Collisions in saturable nonlinear media are 
more diverse and interesting than those found in 
Kerr media, because saturable nonlinear media 
can support (2 + l)D solitons, allowing colli- 
sions in full 3D and new phenomena such as 
soliton fusion (49,50), fission (50), and annihi- 
lation to occur. Fusion (decrease in soliton num- 
ber on collision) occurs for parallel input soli- 
tons (or small enough relative angles), when the 
collision angle is less than the maximum total 
internal reflection angle (TIRA) in the induced 
waveguide (50). In terms of a "potential well," 
capture depends on whether the kinetic energy 
of the colliding wave-packets results in a veloc- 
ity that is smaller than the escape velocity. The 
solitons can fuse together either on the first 
merging (Fig. 4F) or after a finite number of 
oscillations of decreasing amplitude and period. 

higher modes can be excited, and in somecases 
the solitons hse  to form one soliton beam, 
accompanied by small energy loss to radiation, 
much like inelastic collisions between real par- 
ticles (50). This nayve picture of soliton interac- 
tions gives qualitative understanding of soliton 
collisions. In reality, the interacting solitons af- 
fect each other's induced waveguide, and the 
true collision process is much more complicat- 
ed. In summary, the new key features intro- 
duced by the saturating nature of the nonlinear- 
ity are full 3D interactions and the fact that the 
soliton number is not necessarily conserved. 

Because quadratic solitons do not involve 
any real index changes, one might expect that 
their interactions could exhibit different fea- 
tures. Here the interaction involves the different 
frequencies that generate the solitons through 
the quadratic parametric process. Although the 
interactions of quadratic solitons are different in 
the details of the physics, they are similar to 
those obtained in other saturable nonlinear me- 
dia (51). This highlights the universality of soli- 
ton phenomena that are largely independent of 
the actual physical mechanism that enables 
them. 

Soliton Collisions: Experiments 
solitons would vary smoothly from maximum For collision angles-larger than the %, Coherent collisions in Kerr slab waveguide me- 
attractive at A+ = 0 to maximum repulsive at the solitons simply go through each other unaf- dia have been demonstrated in carbon disulfide 
A+ = IT. However, there is a component to the fected, and for incidence angles less than the (52), glass (53), and AlGaAs (54). The attrac- 
interaction that varies approximately as sinA+ TIRA, the beams can couple light into each tion and repulsion for A+ = 0 and IT were 

Mutually coherent and in phase: Attraction between 2 solitons 

Amplitude Intensity Refractive 
lndex 

soliton A s~liton B 

Mutually coherent and out of phase: Repulsion 

Amplitude lntensity Refractive 

Fig. 2 (above). A top view photograph of a 10-pm-wide spatial soliton 
propagating in a strontium barium niobate photorefractive crystal (top), and, for 
comparison, the same beam diffracting naturally when the nonlinearity is 

V 
"turned off" (bottom). (23). Fig. 3 (right). schematic of the refractive iidex I spatial distribution for a collision between in-.haw and out-of-.hare coherent I ipatial solitons. 

Mutually Incoherent : Always Attractive 
Intensity Refractive 

A A Index 

soliton A soliton B 

19 NOVEMBER 1999 VOL 286 SCIENCE www.sciencemag.org 
Figure 4.1: Optical (bright) solitons. (a): A (bright) temporal soliton arises
in a nonlinear medium when the group velocity dispersion effect counteracts the
Kerr non-linearity effect. The former makes the higher frequencies propagate faster
in the anomalous dispersion regime (“chirp”) on top of a global spreading of the
wavepacket, while the latter causes the higher frequencies to propagate slower. The
adimensionalized equation for the envelope of the field is written with these two
terms. (b): The first realization of a temporal soliton. The figure is adapted from
[34]. The lower curves are autocorrelation curves of a beam at the output of a
fiber of length 700m, which should be compared with the one at the fiber input
(upper curve). If the power at the fiber input is too low, the diffraction dominates
(lower left curve) while if it is too high, non-linearity shortens the pulse. For inter-
mediate powers, a temporal soliton is obtained. Solitons of higher energies, called
higher-order solitons, were also observed but are not shown here. (c): A spatial
soliton results from the competition between the diffraction effect, which tends to
spread the initial wavepacket, and the self-phase modulation effect. Here we show
the example of a bright spatial soliton for which the self-focusing effect (negative
nonlinear term in the NLSE) allows a localized wavepacket. The adimensionalized
equation of the field amplitude evolution is also shown. (d): An example of a 2D
spatial soliton. Figure taken from [163]. Photographs of a beam propagating in a
photorefractive crystal over 6mm with the nonlinearity on (top) and off (bottom),
showing respectively the formation of a spatial soliton and a diffracted beam.

ψ(x, t) =
ψ0

cosh(κx)
eiΩt (4.5)

81



Chapter 4. Introduction to the physics of 1D magnetic solitons

with κ = mN |g1D|
2ℏ2 the typical inverse size of the localized wavepacket, ψ0 =

√
κN
2

its amplitude, N its norm, and ℏΩ =
mg21DN

2

8ℏ2 a quantity analogous to a chemical
potential. To describe moving bright solitons with velocity v, one can use Galilean
invariance in the system (see [111] and Chapter 2) and write the wavefunction in the
moving frame as:

ψv(x, t) = eim(xv−v2t/2)/ℏ ψ(x− vt, t) (4.6)

We note the strong similarity between the KdV soliton (4.4) and the bright soliton
of the NLSE (4.5). We emphasize that the family of solutions of the 1D attractive
NLSE is infinite and we can express higher-order solitons (also called multisolitons of
order p) whose shape is not constant but rather varies periodically during propaga-
tion [165] (see [166] for an experimental realization of a p = 13 optical multisoliton).

The first bright temporal soliton was obtained in 1980 [34], propagating light at
λ ≃ 1.55 µm in a silica-glass fiber for which the anomalous dispersion regime is reached
at this wavelength. Regarding the spatial soliton, the first experiment was performed
by Ashkin and Bjorkholm [167] in a sodium vapor cell. In a 1D configuration, their
first realization was made in Limoges using liquid carbon disulphide [35]. Because 1D
solitons are unstable in a 3D bulk, the inhibition of diffraction along the transverse
directions was needed to obtain a stable soliton.

In matter-wave solitons, where the nonlinearity arises from the interaction between
atoms, the first quasi-1D bright soliton was reported in [36]. The attractive interac-
tions were obtained thanks to the use of a Feshbach resonance on a BEC cloud of 7Li
atoms with initially repulsive interactions. Bright multisolitons propagating under a
force were reported shortly after in [168]4.

Dark solitons

The bright soliton is the most “natural” soliton that emerges from the nonlinear
Schrödinger equation as a localized pulse either in space or in time. However, there
are other types of solutions, such as the dark soliton. It is a solution of the repulsive
NLSE (4.2), i.e. with g1D > 0. At rest, it takes the following stationary form:

ψ(x, t) =

√
µ

g1D
tanh(κx) e−iµt/ℏ (4.7)

with κ = 1
ℏ
√
µ/m. This type of solution cannot be normalized but it still corresponds

to a localized excitation. To describe such a moving defect in a resting bath, we
cannot use the Galilean invariance as we did for the bright soliton because it would
not describe a bath at rest. The density minimum of the dark soliton moving at
velocity v is no longer zero. A moving dark soliton is thus called a grey soliton, which
takes the following form [171]:

ψv(x− vt, t) =

√
µ

g1D

[
i
v

cB
+

√
1− v2

c2B
tanh

(
κ

√
1− v2

c2B
(x− vt)

)]
e−iµt/ℏ (4.8)

4In contrast to the experiment of Khaykovic et al. [36], the atom number in the condensate is
an order of magnitude larger in Strecker et al.’s experiment, which triggers a so-called modulational
instability and leads to the formation and propagation of bright multisolitons of typical order
p = 4 [169].
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struction of the soliton. This instability is essentially sup-
pressed for solitons in cigar-shaped traps with a strong
radial confinement [9], such as in our experiment [15].
As can be seen from Eq.(1), the local phase of the dark

soliton wave function varies only in the vicinity of the DS-
plane, x ≈ xk, and is constant in the outer regions, with
a phase difference ∆φ between the parts left and right to
the DS-plane (see, e.g., Fig.1b).

FIG. 1. Density distribution (a) and phase distribution (b)
of a dark soliton state with ∆φ = π. The density minimum
has a width ∼ l0. The scheme for the generation of dark
solitons by phase imprinting is shown in (c), where le is the
width of the potential edge.

To generate dark solitons we apply the method of phase
imprinting [13], which allows one also to create vortices
and other textures in BEC’s. We apply a homogeneous
potential Uint, generated by the dipole potential of a far
detuned laser beam, to one half of the condensate wave-
function (Fig.1c). The potential is pulsed on for a time
tp, such that the wavefunction locally acquires an ad-
ditional phase factor e−i∆φ, with ∆φ = Uinttp/h̄ ∼ π.
The pulse duration is chosen to be short compared to
the correlation time of the condensate, tc = h̄/µ, where
µ is the chemical potential. This ensures that the effect
of the light pulse is mainly a change of the phase of the
BEC, whereas changes of the density during this time can
be neglected. Note, however, that due to the imprinted
phase, at larger times one expects an adjustment of the
phase and density distribution in the condensate. This
will lead to the formation of a dark soliton and also to
additional structures as discussed below.
In our experimental setup (see [16]), condensates con-

taining typically 1.5× 105 atoms in the (F=2, mF=+2)-
state, with less than 10% of the atoms being in the ther-
mal cloud, are produced every 20s. The fundamental fre-
quencies of our static magnetic trap are ωx = 2π× 14Hz
and ω⊥ = 2π × 425Hz along the axial and radial di-
rections, respectively. The condensates are cigar-shaped
with the long axis (x-axis) oriented horizontally.
For the phase imprinting potential Uint, a blue de-

tuned, far off resonant laser field (λ =532nm) of inten-
sity I ≈ 20W/mm2 pulsed for a time tp = 20µs results
in a phase shift ∆φ of the order of π [17]. Spontaneous

processes can be totally neglected. A high quality optical
system is used to image an intensity profile onto the BEC,
nearly corresponding to a step function with a width of
the edge, le, smaller than 3µm (see Fig.1c). The corre-
sponding potential gradient leads to a force transferring
momentum locally to the wave function and supporting
the creation of a density minimum at the position of the
DS-plane for the dark soliton. Note that also the velocity
of the soliton depends on le (see Fig.3c).
After applying the dipole potential we let the atoms

evolve within the magnetic trap for a variable time tev.
We then release the BEC from the trap (switched off
within 200µs) and take an absorption image of the den-
sity distribution after a time-of-flight tTOF = 4ms (re-
ducing the density in order to get a good signal-to-noise
ratio in the images).
In series of measurements we have studied the creation

and successive dynamics of dark solitons as a function of
the evolution time and the imprinted phase. Fig.2 shows
density profiles of the atomic clouds for different evolu-
tion times in the magnetic trap, tev. The potential Uint

has been applied to the part of the BEC with x < 0. For
this measurement the potential strength was estimated
to correspond to a phase shift of ∼ π.
For short evolution times the density profile of the BEC

shows a pronounced minimum (contrast about 40%). Af-
ter a time of typically tev ≈ 1.5ms a second minimum
appears. Both minima (contrast about 20% each) travel
in opposite directions and in general with different ve-
locities. Fig.3a) shows the evolution of these two minima
in comparison to theoretical results obtained numerically
from the 3D Gross-Pitaevskii equation.
One of the most important results of this work is that

both structures move with velocities which are smaller
than the speed of sound (cs ≈ 3.7mm/s for our parame-
ters) and depend on the applied phase shift. Therefore,
the observed structures are different from sound waves in
a condensate as first observed at MIT [18]. We identify
the minimum moving slowly in the negative x-direction
to be the DS-plane of a dark soliton.

FIG. 2. Absorption images of BEC’s with kink-wise struc-
tures propagating in the direction of the long condensate
axis, for different evolution times in the magnetic trap, tev.
(∆φ ∼ π, N ≈ 1.5 × 105, tTOF = 4ms).
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Figure 4.2: Different types of solitons of the 1D NLSE and examples from matter
wave experiments. (a): A sketch of a bright soliton. The density is localized and
the phase of the wavefunction is constant over the soliton. Experimental results
from Salomon’s group are reproduced [36]. Absorption images after removal of con-
finement are shown in a 1D waveguide. Top panel: ideal gas (interactions switched
off), the gas expands. Bottom image: attractive gas, the cloud keeps its shape over
time during propagation for a specific range of atom number in the condensate. It
is a bright soliton. (b): Dark/grey soliton. For a dark soliton, the density vanishes
and the phase undergoes a sharp π phase shift at the hole position while for a
grey soliton, the density is never zero and the phase evolution is smoother. Ex-
perimental absorption images of an elongated BEC from [170] are shown. A phase
imprinting method produces a dark soliton propagating along −x, accompanied by
a density wave propagating along +x. (c): Dark-bright soliton. A bright soliton is
trapped in the hole of a dark soliton. The total density is represented by a black
solid line. The bottom figure, taken from [40], shows experimental results (left)
compared with numerical simulations (right) of the generation and propagation of
dark-bright multisolitons trapped in a cigar-shaped potential. They are formed by
the counterpropagation of two superfluids.

cB is the Bogoliubov speed of sound (see Chapter 2). The velocity v of the grey
soliton cannot exceed cB, as we can see from its expression. On top of this density
hole, a dark soliton is associated with a phase jump, which is sharp for a stationary
dark soliton and smoother for a moving one (see Figure 4.2). We can then explain
the existence of a dark soliton: minimizing the 1D repulsive interparticle interaction
energy would tend to reduce the density minimum (see section 4.1.1) while the kinetic
energy associated to the phase gradient is minimized when the density minimum is
increased [170]. The balance between the two creates a dark/grey soliton5.

The first observations of (temporal) dark solitons in optical fibers are attributed to
Weiner et al. [173]. This required to be in the normal dispersion regime

(
∂(1/vg)
∂ω > 0

)
.

Regarding Bose-Einstein condensates, they were first demonstrated in [170] with a
phase imprinting method (quickly followed by [37]). A dipole potential created by a

5The higher-order dark solitons are not stable [172].
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blue-detuned beam is applied to half of the BEC for a duration corresponding to the
addition of a π phase shift. The density is initially unperturbed but after a certain
time, the potential gradient transfers momentum to the wavefunction and two density
minima travelling in opposite directions appear. The one that moves in the same
direction as the force created by flashing the dipolar potential (see Appendix E) is a
dark soliton. They verified that the speed of the soliton is significantly less than the
Bogoliubov speed of sound cB and therefore cannot be a density wave.

Vector solitons

Not only the scalar NLSE but also coupled NLSEs admit solitonic solutions, called
“vector” solitons, which are solitary waves consisting of two components. Depend-
ing on the nature of the scalar soliton components, bright or dark, the composite
object is called a bright-bright, a dark-dark, or a dark-bright soliton. In the pho-
tonic framework of light propagation in birefringent fibers, bright-bright, dark-dark
or dark-bright solitons can be formed due to cross-phase modulation coupling [174].
They have recently been observed experimentally [175, 176, 177]. In particular, dark-
bright solitons show enhanced dynamical stability compared to dark solitons. They
appear as a bright pulse in a system trapped within a copropagating dark soliton. In
the context of two-component BECs denoted by the states |1⟩ and |2⟩ of interaction
intra-component parameters g116 and g22 and inter-component parameter g12, the two
coupled equations for the wavefunctions ψ1 and ψ2 are written as follows:{

− ℏ2
2m∇2ψ1 + g11 |ψ1|2 ψ1 + g12 |ψ2|2 ψ1 = iℏ ∂ψ1

∂t

− ℏ2
2m∇2ψ2 + g22 |ψ2|2 ψ2 + g12 |ψ1|2 ψ2 = iℏ ∂ψ2

∂t

(4.9)

Even if all the interaction parameters gij are positive, a bright component can
exist if it is trapped within a dark component, forming a dark-bright soliton, which
can thus be seen as a “symbiotic” system.

The stationary dark-bright soliton emerges when one takes all the gij equal to a
value g (or sufficiently close to each other [38]). It is called the Manakov limit [178]7.
The stationary dark-bright soliton is obtained by imposing a dark soliton for ψ1 of
background density n0 and a bright soliton for ψ2 normalized to N2: ψ1(x) =

√
n0 tanh(κx) e

−iµ1t/ℏ

ψ2(x) =

√
κN2/2

cosh(κx) e
−iµ2t/ℏ

(4.10)

The verification of the coupled NLSEs (4.9) for this set of solutions links the parame-
ters as µ1 = gn0, µ2 = µ1 − ℏ2κ2

2m and ℏ2κ2
m = g (n0 − κN2/2). Note that depending on

the atom number chosen for the minority component, the total density |ψ1|2 + |ψ2|2
can vary significantly over the system size.

The expression for a moving dark-bright soliton with velocity v when the bright
component is subjected to a potential V2(x) can also be found in [38]: ψ1,v(x, t) =

√
n0 {i sin(α) + cos(α) tanh [κ(x− vt)]}

ψ2,v(x, t) =

√
κN2/2

cosh[κ(x−vt)] e
imvx/ℏ e−iωt e−iV2t/ℏ

(4.11)

6We will omit the “1D” indexes in the following.
7Deviations from the Manakov limit have been studied in [179, 180].
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The parameters are linked to the velocity v as: v
cB

= κξ tan(α) with ξ = ℏ/√mgn08.
Besides, we have ℏω = 1

2mv
2 − ℏ2κ2

2m .
The dark-bright matter-wave soliton was first demonstrated in 2001 by Anderson

et al. [181], where a bright soliton was trapped in a dark pulse. Becker et al. [39]
combined the use of a Spatial Light Modulator and Raman beams to first create a
dark soliton and then fill the density hole with atoms in a different hyperfine state.
They were also able to study the collision between a dark and a dark-bright soliton.
Dark-bright multisolitons emerging from the counterflow of two superfluids have been
observed in [40]. Dark-dark solitons were similarly identified in Engels’ group [182].

The list goes on

We continue this subsection by briefly mentioning other types of solitons of the
1D NLSE. This equation admits other classes of solutions, such as spatio-temporal
breather solutions, which undergo periodic evolution. Kuznetsov-Ma breathers [183]
are localized in space and are periodic in time. They were observed experimentally in
photonics in 2012 [184]. Conversely, Akhmediev breathers are localized in time and
periodic in space. The Peregrine soliton is a limit of this class of breather solitons, a
structure localized in both space and time, solution of the attractive (i.e. g1D < 0)
NLSE (4.2). It is reminiscent of the unpredictable and suddenly appearing rogue
waves. It was first observed in optical fibers [185], 25 years after it was predicted [186].
In a very recent work, Romero-Ros et al. [187] demonstrated a Peregrine soliton in an
immiscible repulsive two-component BEC, following a theoretical proposal [188]. The
emerging effective attractive dynamics for the minority component, studied in [189]
and first used experimentally in our group [190], and the seeding of its modulational
instability with a potential well, were the two key ingredients for the formation of this
soliton.

Finally, let us say a few words about higher-dimensional solitons. Actually, in
2D and 3D, the integrability and thus the stability properties of solitons are most
often lost. We therefore prefer to call the 2D and 3D stationary waves solitary waves,
which do not necessarily share the stability property of solitons. 1D solitons placed in a
higher dimensional geometry develop transverse instabilities, called snake instabilities.
Nevertheless, 2D solitary waves have been observed both in optical media [167] and
recently studied experimentally in our group [77, 190] in the case of the 2D attractive
NLSE, realizing the celebrated Townes soliton. A 3D solitary wave is expected to be
metastable from scale analysis (see for example [77]). Nevertheless, its dynamics have
been observed in [191]. Regarding 2D or 3D dark solitons, the so-called Jones-Roberts
solitons have been experimentally realized in BECs in [192]. Several ideas have been
proposed to stabilize 2D or 3D solitons. Among them, the addition of a spatial lattice
or the periodic modulation of the nonlinear term of the NLSE equation have been
shown to stabilize the so-called lattice soliton (see [193, 194, 195]).

Other categories of multidimensional self-bound states are quantum droplets [55].
Although the nature of droplets, resulting from a balance between a mean-field at-
tractive term and a beyond mean-field term, is fundamentally different from that of
solitons, stationary solutions of a mean-field equation, the equilibrium state, with a

8The verification of the coupled GPEs leads to:

κξ = − N̄2

4
+

√
cos2 α+

N̄2
2

16
(4.12)

with N̄2 = N2
n0ξ

.
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size that depends on the number of particles, is reminiscent of a soliton. Initially
proposed by Petrov [55], they were demonstrated shortly after [56, 57, 58]. The term
“droplet” comes from the liquid-like properties of these self-bound objects. The con-
nection between 3D droplets and 1D solitons has been studied experimentally in [59]
and a recent numerical exploration of the cross-over between Townes solitons and
droplets in a 2D Bose mixture can be found in [196].

4.2 Stationary magnetic solitons

In the previous section, we provided an overview of some classes of 1D solitons of
the NLSE. This section will focus on magnetic solitons, which will be experimentally
studied in Chapter 6. Although the magnetic soliton was not initially introduced as
a solution of the NLSE, we will connect it to the NLSE in a specific limit. We focus
first on stationary solitons, static or not, whose form does not evolve in time.

4.2.1 Magnetization vector in a ferromagnet

The term magnetic soliton first appeared in a 1990 paper by Kosevich et al. [43]. It
is a solution of the nonlinear Landau-Lifshitz equation (LLE) [197]. The system under
consideration is a 1D ferromagnetic spin chain in which each spin can be described
as a 3D vector (see Figure 4.3). From a quantum mechanical point of view, we
associate a spin operator Ŝi = ℏ

2 σ̂i to each spin i where σ̂i is the vector of the
Pauli matrices. The Heisenberg Hamiltonian is used to describe a 1D spin chain with
an exchange interaction quantity J , assumed constant and positive to describe an
isotropic ferromagnet. It is defined as follows:

Ĥ = −J
∑
i ̸=j

Ŝi · Ŝj (4.13)

where the sum over j accounts for the nearest neighbors of the spin i. For dimension-
ality reasons, we introduce a parameter γ (it does not have any connection with the
Lieb-Liniger parameter) and write the Heisenberg Hamiltonian as Ĥ = γ

∑
i Ŝi · Ĥeff,i

with Ĥeff,i the effective magnetic field created by the neighboring spins:
Ĥeff,i = −J

γ

(
Ŝi−1 + Ŝi+1

)
.

Using the Heisenberg equations of motion: iℏ∂Ŝ
k
i

∂t =
[
Ŝki , Ĥ

]
and the commutation

rules of the spin operators:
[
Ŝki , Ŝ

k′
j

]
= iℏ δi,jϵk,k′,k”Ŝk”i with k, k′, k” = x, y, z ; i, j

the spin indexes in the chain, δi,j the Kronecker symbol and ϵk,k′,k” the Levi-Civita
symbol, we obtain the equation of motion for the spin i:

∂Ŝi
∂t

= −γŜi × Ĥeff,i (4.14)

The LLE describes phenomenologically the evolution of the magnetization vector
M(x, t) which is defined as the magnetic moment per unit of volume of the spin chain.
Its value for the i-th site of the chain is proportional to the average of the spin operator
Ŝi. If the angle between the adjacent spin vectors is small, one can take a continuous
limit and ignore the discrete nature of the spin positions. The nonlinear equation
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obtained for the evolution of the magnetization vector, the so-called Landau-Lifshitz
equation, then takes the form9:

∂M

∂t
= −γM×Heff (4.16)

This equation describes a precessional motion of the magnetization vector around
the axis defined by the effective magnetic field. Thus, the notation for the parameter
γ is not fortuitous, it is the electron gyromagnetic ratio: γ = µB/ℏ10. From (4.16),
it can be seen that the norm of the magnetization vector is conserved during the
movement and is equal to its saturation value, as it should be in a ferromagnetic
material.

For the sake of simplicity, the previous link between the LLE and the Heisenberg
Hamiltonian was derived assuming an isotropic ferromagnet and an exchange inter-
action quantity J that does not depend on the spatial direction. Actually, this is not
general as there are several causes of anisotropy in a ferromagnet. The anisotropy may
be due to an intrinsic anisotropic crystalline order, or it may occur in an asymmetric
material where the demagnetizing field (the magnetic field generated by the magneti-
zation) is not the same in all directions. Anisotropy can also be externally imposed,
for example by a mechanical constraint. We now discuss different cases depending on
the relative values of Jx, Jy and Jz. We treat the case of weakly anisotropic ferromag-
nets for which the values of the exchange constants Jx, Jy and Jz are close to each
other [43]. We express the effective magnetic field as (minus) the functional derivative
of the magnetic energy with respect to the magnetization vector: Heff = − δE

δM . For
the moment, we do not consider an external magnetic field and the magnetic energy
has only two contributions: E = Eex+Eani. The first one is an exchange energy term
Eex which tends to align locally the different neighboring spins. It corresponds to
a continuous description of the exchange interaction of the Heisenberg Hamiltonian.
This term favors a uniform magnetization. The second term is an anisotropic energy
term Eani which accounts for the (small) differences between Jx, Jy and Jz. In a
1D ferromagnetic spin chain directed along x, we write them at lowest order in the
difference between the different exchange constants as: Eex = α

∫
dx
∣∣∂M
∂x

∣∣2
Eani = −1

2

∫
dx
(
JxM

2
x + JyM

2
y + JzM

2
z

) (4.17)

with α a positive (ferromagnet) constant and M = Mxux + Myuy + Mzuz de-
composed in an orthonormal basis. Because the magnetization vector M is a con-
stant of motion, we can express My as a function of Mx and Mz. Introducing the
βx ≡ Jx − Jy and βz ≡ Jz − Jy coefficients, we can express the anisotropic energy as
Eani = −1

2

∫
dx
(
βxM

2
x + βzM

2
z

)
up to a constant. Therefore, by taking (minus) the

functional derivative of the total energy with respect to the magnetization vector, we
obtain the expression for the effective magnetic field:

9A damping term is included in a more general form of this equation:

∂M

∂t
= −γM×Heff − λM× (M×Heff) (4.15)

taking into account dissipation phenomena with λ a phenomenological damping parameter. In the
following, we will consider the undamped Landau-Lifshitz equation.

10We neglect the orbital kinetic moment of the electrons. The magnetism involved here comes
only from the spin of the electrons. This equation can also be phenomenologically found by treating
the classical motion of an electron in a magnetic field and using the angular momentum theorem.
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Heff = α
∂2M

∂x2
+ βxMxux + βzMzuz (4.18)

Now let us explore various possibilities. When Jx ̸= Jy, the ferromagnet is called
biaxial [43]. In the following, we will assume Jx = Jy (i.e. βx = 0). The ferromagnet
is then referred to as uniaxial because the anisotropy axis aligns with the z axis. In
the uniaxial case, if Jz > Jy (βz > 0), the anisotropy is of the easy-axis type as the
magnetization vector of the ground state aligns with the z axis. On the contrary, if
Jz < Jy (i.e. βz < 0), the anisotropy is of the easy-plane type. The ground state
magnetization vector lies in the plane (x,y) with an arbitrary direction (as Jx = Jy).

(a) (b)

Figure 4.3: Magnetization vector in a 1D spin chain. (a): Parametrization of the
angles of the magnetization vector. (b): 1D spin chain. On each site, the mag-
netization vector is represented by an arrow. The direction of the vector provides
insight into the angles θ and ϕ as in (a). Its color also indicates the angle θ with
respect to the z axis. We plot the case of an easy-axis ferromagnet for which the
ground state magnetization vector is oriented along the z axis. Around the position
of the localized magnetic excitation, the magnetization vector is reversed to θ = π.

Plugging the expression of the effective magnetic field (4.18) into the LLE (4.16),
one obtains a nonlinear equation written for an uniaxial ferromagnet:

∂M

∂t
= −γM×

(
α
∂2M

∂x2
+ βzMzuz

)
(4.19)

In the description of the weakly-interacting Bose gas, we saw in Chapter 2 the
importance to consider its weakly-excited states, called elementary excitations. In
a ferromagnet, these excitations are characterized by a small deviation of the mag-
netization vector from its equilibrium value. In classical terms, the wave associated
to the small deviation is characterized by a wavevector k and a frequency ω, and is
called a spin wave. In quantum mechanical terms, these excitations are associated to
quasi-particles, called magnons, with an energy spectrum ℏω(k)11. It can be shown
[43] that the interactions between magnons in an easy-axis (respectively easy-plane)
ferromagnet are attractive (resp. repulsive). They are responsible for the appearance
of localized magnetic excitations, which we call magnetic solitons.

To parametrize the magnetization vector M, we only need two angles (θ,−ϕ), since
its amplitude is a constant of motion, which we set to 1 for simplicity (see Figure 4.3):

11It is reminiscent of the description of the elementary excitations of a 2D Bose gas, which propa-
gate as sound waves, and whose quasi-particles are called phonons in the low-k regime. In the same
way as the Bogoliubov spectrum (2.25), the energy spectrum of the magnons can be obtained with
a diagonalization of the Hamiltonian under some approximations [43].
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Mx = sin θ cosϕ
My = − sin θ sinϕ
Mz = cos θ

(4.20)

The amplitude of the magnetization vector in the plane
√
|Mx|2 + |My|2 is given

by | sin θ| while its projection along z is given by | cos θ|.
From the LLE equation (4.19), we identify a natural frequency scale ω0 = γβz

which is a Larmor precession frequency and a natural length scale as l0 =
√
α/|βz|, a

characteristic magnetic length. Plugging (4.20) into the LLE (4.19), we obtain (after
a few lines of calculation) the pair of equations for ϕ and θ:

∂θ
∂t = −l20ω0

[
sin θ

(
∂2ϕ
∂x2

)
+ 2 cos θ ∂θ∂x

∂ϕ
∂x

]
∂ϕ
∂t = ω0

[
− cos θ

(
1 + l20

(
∂ϕ
∂x

)2)
+

l20
sin θ

∂2θ
∂x2

] (4.21)

To pursue the resolution, we introduce adimensionalized variables: t′ = ω0t and
x′ = x/l0. Depending on whether we consider an easy-axis or an easy-plane ferro-
magnet, we obtain different sets of equations because the βz factor enters the adimen-
sionalization. Omitting the prime indexes, we write the adimensionalized equations
as: 

∂θ
∂t = −

[
sin θ

(
∂2ϕ
∂x2

)
+ 2 cos θ ∂θ∂x

∂ϕ
∂x

]
∂ϕ
∂t = − cos θ

(
±1 +

(
∂ϕ
∂x

)2)
+ 1

sin θ
∂2θ
∂x2

(4.22)

where the + sign represents the case of an easy-axis ferromagnet (βz > 0) and the
− sign accounts for the easy-plane ferromagnet (βz < 0). This sign change has a
significant impact on the observed physics as we will see in the following.

4.2.2 Stationary magnetic solitons - Easy-plane

We first consider the stationary solutions of (4.22) in the easy-plane case (sign −).
We look for travelling solitonic solutions and introduce the quantity v describing the
velocity of the soliton and Ω a pulsation. Therefore, we consider solutions written as
θ(x, t) = θ(x−vt) and ϕ(x, t) = ϕ̃(x−vt)+Ωt. In this chapter, we focus on stationary
solitons, meaning that the soliton’s form does not change over time. In other words,
v and Ω remain constant over time.

The equations (4.22) then write:{
−vθ′ = − sin θ ϕ̃′′ − 2 cos θ θ′ϕ̃′

Ω− vϕ̃′ = − cos θ(−1 + ϕ̃′2) + θ′′
sin θ

(4.23)

the symbol ′ meaning the derivative with respect to χ = x−vt. The first equation can
be written: d

dχ

(
v cos θ + sin2 θ ϕ̃′

)
= 0. We can integrate it assuming ϕ̃′(χ→ ∞) = 0

(see [41]). Because we are dealing with an easy-plane ferromagnet, the magnetization
vector at infinity lies in the plane i.e. θ → ±π/2 as χ → ∞. Thus the integration
constant is equal to zero and we obtain: ϕ̃′ = −v cos θ

sin2 θ
. Plugging this result into (4.23),

we get an equation that only involves θ:

θ′′ − v2
cos θ

sin3 θ
− Ωsin θ + cos θ sin θ = 0 (4.24)

We recognize a total derivative:
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d

dχ

(
θ′2

2
+
v2

2

1

sin2 θ
+Ωcos θ − 1

2
cos2 θ

)
= 0 (4.25)

We can integrate it by evaluating the integration constant in χ → ∞ (we assume
θ′(χ → ∞) = 0 and the integration constant is thus equal to v2/2). Introducing
C(χ) = cos [θ(χ)], the equation on θ simplifies to:

(C ′)2 = P (C) , withP (C) = −C
[
C3 − 2ΩC2 + (v2 − 1)C + 2Ω

]
(4.26)

The general solution of (4.26) can be expressed in terms of Jacobi elliptic functions
[42] and can be seen as a limited case of the biaxial ferromagnet [43]. Kosevich et al.
[43] give a restricted plane (v, Ω) for the possible solutions of (4.26).
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Figure 4.4: Example of stationary solutions of the LLE equation characterized
by the angles θ (upper panels)12 and ϕ (lower panels). We obtain them from the
formula (4.27) and (4.34). (a): Easy-plane ferromagnet case for Ω = 0 and v = 0.2.
At x → ∞, the magnetization vector lies in the plane, i.e. θ = π/2. The lower v
the thinner the localized magnetic excitation and the thinner the zone of relative
jump from 0 to π. The phase jump becomes a step function for the static soliton.
(b): Easy-axis ferromagnet ground state for Ω = −0.1 and v = 0.2. At x → ∞,
the magnetization vector lies along the vertical axis, i.e. θ = 0. The velocity has
two effects on the phase: the linear slope outside the central zone increases with v
and the lower the velocity the steeper the phase jump at the soliton position. The
larger Ω the thinner the soliton size and the larger the value of (1 + cos θ)/2 at
x = 0.

12The reason for plotting 1+cos θ
2

and 1−cos θ
2

instead of cos θ and sin θ will become clear after the
mapping with the coupled GPEs is accomplished.
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We particularize the set of solutions to the case Ω = 0 as considered in [41]13. In
this case, P (C) = −C2

[
C2 − (1− v2)

]
. We see that (4.26) admits solutions only if

|v| < 1. In this case, one can check that the solutions are as follows: C(x− vt, t) = cos [θ(x− vt, t)] =
√
1−v2

cosh[
√
1−v2(x−vt)]

cot [ϕ(x− vt, t)] = 1
v sinh

[√
1− v2(x− vt)

] (4.27)

C(x, t) gives the projection of the magnetization vector along the uniaxial axis z.
The velocity v influences the slope of the phase at the center: the slower the soliton,
the steeper the phase jump [41] (see Figure 4.4).

4.2.3 Stationary magnetic solitons - Easy-axis

We now turn to the case of an easy-axis ferromagnet which will be the focus
of the rest of this chapter and whose experimental realization will be the object of
Chapter 6. To find the stationary solution, we follow the same procedure as for the
easy-plane magnetic soliton: we search for solutions written as θ(x, t) = θ(x−vt) and
ϕ(x, t) = ϕ̃(x− vt) + Ωt. The equations (4.22) write:{

−vθ′ = − sin θ ϕ̃′′ − 2 cos θ θ′ϕ̃′

Ω− vϕ̃′ = − cos θ(1 + ϕ̃′2) + θ′′
sin θ

(4.28)

The first equation is identical to the easy-plane first equation and leads to
d
dχ

(
v cos θ + sin2 θ ϕ̃′

)
= 0. However, the difference will be the integration constant.

For the easy-axis ferromagnet, θ(χ → ∞) = 0 because the magnetization vector at
infinity is aligned along the z axis. Assuming that ϕ̃′(χ → ∞) remains finite, the
integration constant is equal to v and we get: ϕ̃′ = v 1−cos θ

sin2 θ
= v 1

1+cos θ . The strategy
is the same as for the easy-plane ferromagnet: plug this expression into the second
equation of (4.28) and identify a total derivative. The differential equation on θ is:

θ′′ + v2
sin θ

(1 + cos θ)2
− Ωsin θ − cos θ sin θ = 0 (4.29)

from which we identify:

d

dχ

(
θ′2

2
+ v2

1

1 + cos θ
+Ωcos θ +

1

2
cos2 θ

)
= 0 (4.30)

We still assume θ′(χ → ∞) = 0 and introduce C(χ) = cos [θ(χ)]. The integration
constant is v2/2+Ω+ 1/2 and multiplying both sides of the equation (4.30) by sin θ,
the equation is written in the form:

(C ′)2 = P (C) , withP (C) = −v2(1− C)2 + (1− C)(1− C2)(2Ω + 1 + C) (4.31)

As we consider an easy-axis soliton, the magnetization vector at infinity should
be aligned along the z axis, i.e. C(χ → ∞) = 1. Thus, a positive value of the
polynomial (4.31) near C = 1 is a necessary condition for identifying a magnetic
soliton. This requires14:

Ω >
v2

4
− 1 (4.32)

13Their definition of the relative phase is opposite to ours.
14It is the same condition as in [43] but their definition of Ω is opposite to ours.
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Figure 4.5: Map (v, Ω) for the easy-axis magnetic soliton. No solutions exist
for Ω < (v2/4 − 1) (4.32). The forbidden zone is represented with red hatches.
The point (0,0) should also be excluded because it does not represent a localized
magnetic excitation. A similar figure with the opposite definition for Ω is given in
[43]. Several (v, Ω) correspond to a same magnetization N . The curve N = const.
is an ellipse in the plane (v, Ω). It follows the equation cosh(N/2) = 2+Ω√

Ω2+v2
. With

a blue solid line, we represent the case N = 3 which is a typical number realized in
the experiment described in Chapter 6.

This defines the interior of a parabola in the plane (v, Ω) (Figure 4.5). The polynomial
P can be factorized into: P (C) = (1 − C)2

(
C2 + 2(Ω + 1)C − v2 + 1 + 2Ω

)
. We

identify C = 1 as a root of order 2 and denote C+ and C− the two other roots:
C± = −(Ω + 1) ±

√
Ω2 + v2. The condition (4.32) implies that the roots satisfy

C− < C+ < 1. We can therefore set κ = 1
2

√
(1− C+)(1− C−). One can check that

the following expression is a solution of (4.31) [198, 43]:

C(x− vt) = 1− (1− C+)(1− C−)

1− C++C−
2 + C+−C−

2 cosh [2κ(x− vt)]
(4.33)

Replacing the expressions of C+ and C− in (4.33), we can obtain the solution for
θ. The angle ϕ can then be calculated from the integration of the above formula:
ϕ̃′ = v 1

1+v cos θ . The solutions for the easy-axis soliton are:

 C(x− vt) = cos [θ(x− vt)] = 1− 4κ2

2+Ω+
√
Ω2+v2 cosh[2κ(x−vt)]

ϕ̃(x− vt, t) = 1
2v(x− vt) + arctan

{
2Ω−v2+2

√
Ω2+v2

2κv tanh [κ(x− vt)]
} (4.34)

with κ =
√
1 + Ω− v2/4. Note that, unlike the easy-plane ferromagnet, there is

no restriction on the absolute value of v. We show in Figure 4.4 an example of
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magnetization profile.
We see in Figure 4.4 that the density and phase profiles are reminiscent of those

discussed in section 4.1.3, especially that of the dark-bright soliton of the 1D NLSEs.
What is the exact connection between a vector soliton of the coupled NLSEs and the
magnetic soliton of the LLE?

4.2.4 Connection with BEC mixtures

We consider a mixture of two BECs fully described by the matter waves denoted
ψ1 and ψ2. As we did in 4.1.3, we write g12 the inter-component interaction parameter
and g11, g22 the intra-component interaction parameters. Let us take the symmetric
case and define g ≡ g11 = g22. We rewrite the equations (4.9) as:{

− ℏ2
2m∇2ψ1 + g n1 ψ1 + g12 n2 ψ1 = iℏ ∂ψ1

∂t

− ℏ2
2m∇2ψ2 + g n2 ψ2 + g12 n1 ψ2 = iℏ ∂ψ2

∂t

(4.35)

with n1,2 = |ψ1,2|2. The total density n = n1 + n2 depends a priori on the spatial
position and can vary significantly as we saw in Figure 4.2. However, in the exper-
imentally relevant case where |δg = g12 − g| ≪ g, one can assume (see for example
[42]) that the total density of the gas remains uniform across the soliton. This en-
sures that the spin dynamics are decoupled from the density dynamics [41, 42] and
is a crucial hypothesis for the following derivation15. The limit δg → 0 is called the
Manakov limit [178], which we encountered in section 4.1.3 in the dark-bright soliton
discussion. Since the total density, denoted n0, is constant over the size of the system,
the two complex numbers (ψ1,ψ2) can be parametrized with only three real numbers
called θ, ϕ and Ψ with the following definition:{

ψ1 =
√
n0 e

iΨ/2 cos(θ/2) e−iϕ/2

ψ2 =
√
n0 e

iΨ/2 sin(θ/2) e+iϕ/2 (4.36)

where Ψ, θ and ϕ depend implicitly on (x, t). The angle θ gives the relative density
weight of component 1 (or 2) with respect to the total density: n1/n0 = 1+cos θ

2 . The
angle ϕ represents the relative phase of the two component wavefunctions.

We now have two equations (4.35) for three variables. The variable Ψ can be
eliminated by considering the total particle flux:

J(x, t) =
ℏ
m

(
n1
∂ψ1

∂x
+ n2

∂ψ2

∂x

)
(4.37)

It is equal to: J(x, t) = ℏn0
2m

(
∂Ψ
∂x − cos θ ∂ϕ∂x

)
. Its spatial derivative is zero because n

is constant: ∂J
∂x = −∂n

∂t = 0. We now assume that we can find a Galilean reference
frame in which the particle flux is zero. If one works in this reference frame, one gets:

∂Ψ

∂x
= cos θ

∂ϕ

∂x
(4.38)

Once the variable Ψ is expressed as a function of the other two, we can write two
equations for the two variables θ and ϕ. After isolating real and imaginary terms in
the equations (4.35), and using (4.38), we obtain:

15More precisely, in this type of system, we usually call density waves the excitations propagating
at the velocity c =

√
n0g/(2m). The spin waves characterize the relative motion of the two compo-

nents and they propagate at the velocity cs =
√
n0|δg|/(2m). The characteristic time scale of the

spin dynamics is ℏ/(n0|δg|) while for the density dynamics it is ℏ/(n0g). When |δg| ≪ g, the two
dynamics are decoupled, the spin dynamics being much slower than the density dynamics.
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ℏ
2
∂θ
∂t = − ℏ2

4m

(
sin θ ∂

2ϕ
∂x2

+ 2 cos θ ∂θ∂x
∂ϕ
∂x

)
ℏ
2
∂ϕ
∂t = ℏ2

4m
1

sin θ
∂2θ
∂x2

− ℏ2
4m cos θ

(
∂ϕ
∂x

)2
− n0

δg
2 cos θ

(4.39)

The problem is now adimensionalized. A natural length scale in the problem,
which was not present in the dark-bright soliton case at δg = 0, is the spin healing
length defined as ξs = ℏ√

2mn0|δg|
. Concerning the time scale, we introduce τs = ℏ

n0|δg|
the time scale governing the spin dynamics. Defining x′ = x/ξs and t′ = t/τs, we get
(omitting the prime indexes):

∂θ
∂t = −

[
sin θ

(
∂2ϕ
∂x2

)
+ 2 cos θ ∂θ∂x

∂ϕ
∂x

]
∂ϕ
∂t = − cos θ

(
±1 +

(
∂ϕ
∂x

)2)
+ 1

sin θ
∂2θ
∂x2

(4.40)

the ± sign depends on the sign of δg: a + sign for δg > 0 and a − sign for δg < 0.
The equations (4.40) are identical to those obtained in the 1D ferromagnetic chain of
spins (4.22). The easy-plane ferromagnet is then equivalent to the miscible mixture
(δg < 0), while the easy-axis ferromagnet obeys the same equations as the immiscible
mixture (δg > 0)16.

Thus, the stationary solutions (4.27) (respectively (4.34)) of the easy-plane (resp.
easy-axis) ferromagnets are valid for the case of miscible (resp. immiscible) mixtures
close to the Manakov limit. In the following, we simulate the physics of magnetic
solitons with the immiscible mixture system and the coupled GPEs (Figure 4.6) but
we could also have studied the resolution of the LLE directly. Figure 4.6 confirms that
the numerical ground state given by the coupled GPEs for an immiscible mixture is
well approximated by the solution derived in the magnetic spin chain context (4.34),
close to the Manakov limit.

In the context of BEC mixtures, these equations have been derived and studied
in the miscible case in [42, 41, 200] (with an opposite definition for the sign of δg).
The immiscible case was studied in the special regime where g12 = g11+g22

2 in [46].
The general immiscible regime was treated in [47], however, they restricted the set of
solutions to Ω = 0.

In conclusion, we have shown here that the coupled NLSEs can be mapped onto
the LLE near the Manakov limit. This allowed us to identify a special class of dark-
bright solitons of the NLSE, the matter-wave magnetic solitons. We will discuss their
experimental realization in Chapter 6. The stability of the magnetic soliton, as of any
other solitary wave, is ensured by the existence of some conservation laws. Among
them, we will emphasize some conserved quantities during the motion.

4.2.5 Conserved quantities associated to the magnetic soliton

For now, we will focus on the easy-axis magnetic soliton (or immiscible mixture).
Discussions of the easy-plane magnetic soliton (or miscible mixture) can be found in
[43, 41, 48].

The first quantity of interest is linked to the magnetization vector whose conser-
vation over time under an evolution governed by the (4.19) was established. We will

16It can be rigorously justified that an immiscible mixture is characterized by g212 > g11g22 (see
[199]). Here we can simply say that if it costs the system more energy to have the components 1 and
2 together than apart, i.e. g12 > g, then the system will be immiscible.
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Figure 4.6: Numerical steady state solutions of the coupled GPEs for a 1D
immiscible mixture with strict boundary conditions. The parameters used are
n0 = 3.3 × 108 atoms/m; δg/g = 0.013; L = 150 µm and the plot is restricted
between −70 and +70 µm to exclude the borders of the box. The upper plots are
density graphs for the majority component (respectively the minority component)
in blue (resp. red). The green solid line is the total density of the mixture. The
lower plots are phase plots of each component with the same color convention. A
π/4 offset phase is added for the minority component for clearer visualization. We
plot a fit of the minority component density profile with a 1/ cosh2(κx) function
with a dashed black line. The anaytical expression of the easy-axis magnetic soliton
(1 + cos θ)/2 given by equation (4.34) with the parameters v = 0 (static soliton)
and Ω ≃ −0.84 (a), Ω ≃ −0.12 (b), is plotted with a dotted orange line. The Ω
values are obtained from the magnetization (4.42). (a): N2 = 500: the depletion is
∼ 20% and the 1/ cosh2 fit approximates the steady state well (see Chapter 6 for a
justification of this fit). (b): N2 = 2000: the depletion is ∼ 85%. The 1/ cosh2 fit
is not sufficient and the minority component density profite is well approximated
with the solution found in the easy-axis magnetic soliton case. The total density
is approximately constant regardless of the atom number, contrary to the general
dark-bright soliton study (see Figure 4.2). The phase of each component is mostly
zero over the box size.

consider the average over the spins of the deviation of its projection along the easy-
axis z (i.e. cos θ) from its rest value (θ = 0 in the easy-axis case). We denote it N
and call it magnetization. It is thus given by:

N =

∫ +∞

−∞
[1− cos θ(x)] dx (4.41)

It is also referred to as the number of spin deviations or, from the perspective of
elementary particles, as the number of magnons that constitute the localized magnetic
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excitation [43]. From the equations (4.40), one can check its conservation over time17.
Using the expression for the easy-axis magnetic soliton (4.34), we can calculate18 its
expression as a function of Ω and v:

N = 2 ln

(
2 + Ω + 2κ√

Ω2 + v2

)
(4.42)

It can also be written as tanh(N/4) = 2+Ω−
√
Ω2+v2

2κ . From the BEC mixture point
of view, we can relate N to the number of atoms in the minority component, which
we call component 2: N2. In fact, the definition of ψ2 (4.36) leads to: N2 =

1
2n0ξsN .

The total momentum P of the soliton is also a constant of motion when no external
force is applied. We expect it to be proportional to the phase gradient ∂ϕ

∂x (see 2.1.5)
and to the magnon density 1− cos θ. Indeed, the definition is:

P =

∫ +∞

−∞
[1− cos θ(x)]

∂ϕ

∂x
dx (4.43)

Again, its conservation over time can be checked with (4.40). We emphasize that
the conservation is obtained thanks to the following boundary conditions:
∂θ
∂x (±∞) = θ(±∞) = 0. If these conditions are not checked, the total momentum P
as defined here is not a conserved quantity.

P is directly related to the phase of the majority component. Indeed, the latter is
written (4.36): ϕ1 = 1

2 [Ψ(x)− ϕ(x)]. Therefore, using (4.38), we get:
∂ϕ1
∂x = −1

2(1− cos θ)∂ϕ∂x . An integration of this equation yields:

P = 2∆ϕ1 ≡ 2 [ϕ1(−∞)− ϕ1(+∞)] (4.44)

It is an important expression for interpreting the oscillations of the magnetic soli-
ton, which we will discuss in Chapter 5. From the analytical solutions (4.34), one can
calculate19:

P = 4arctan

(
κv√

Ω2 + v2 − Ω+ v2

2

)
(4.45)

This result can be written as sin(P/2) = v
2 sinh(N/2) or as

sin2(P/4) = 1
2

(
1 + Ω−v2/2√

Ω2+v2

)
. A soliton of momentum P = 0 is thus characterized by

v = 0, as expected, and Ω < 0 to satisfy the second equality.

Two key properties of the immobile magnetic soliton can be expressed solely as a
function of the magnetization N : the depletion n

(max)
2 /n0, which gives the maximal

density of the minority component (i.e. at the center of the minority wavepacket)
with respect to the total density n0, and the typical inverse size of the wavepacket κ.
Indeed, the magnetization expression (4.42) evaluated at P = 0 (and thus Ω < 0 as
justified above) gives:

κ = tanh(N/4) (4.46)

Furthermore, the expression (4.34) for v = 0 and Ω < 0 leads to:

17One uses ∂ϕ
∂x

(+∞) = ∂ϕ
∂x

(−∞) = 0 and θ(+∞) = θ(−∞) = 0 for an easy-axis ferromagnet.
18The value of the integral:

∫ +∞
−∞

dx
a+b cosh x

= 1√
a2−b2

ln

(
a+

√
a2−b2
b

)
if 0 < b < a is used [201].

19The integral
∫ +∞
−∞

dx
a+b cosh x

= 2√
b2−a2

arctan

(√
b2−a2
a+b

)
if a2 < b2 is used [201].
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Figure 4.7: Stationary immobile solitons: size and depletion. From the numerical
stationary solutions obtained from the coupled GPEs (see Appendix B) with δg/g =

0.013 and n0 = 3.3×108 atoms/m, we extract the depletion n(max)
2 /n0 at the center.

No linear potentials are applied on the mixture for the moment. From a fit to the
expected solution (4.34), as done in Figure 4.6, we calculate the typical inverse size
κ of the wavepacket. We plot it as a function of the atom number in the minority
component N2. These static solutions correspond to v = 0 and Ω < 0. In this case,
the links between these two quantities and N are given by (4.46) and (4.47). We
plot these two predictions with a black solid line. The numerical agreements are
convincing.

n
(max)
2

n0
= sin2

[
θ(x)

2

]
=

1− cos [θ(x)]

2
= κ2 = tanh2(N/4) (4.47)

The evolution of these two quantities as a function of the atom number in the
minority component N2 (proportional to N as we saw above) is verified numerically
in Figure 4.7. The agreements with the formula (4.46) and (4.47) are satisfactory,
confirming once again that the magnetic spin chain formalism is adequate to treat the
immiscible mixture close to the Manakov limit.

The soliton energy is another conserved quantity. Referring to the expressions
of the exchange and anisotropic energies (4.17) and the parametrization (4.20), it is
naturally defined as [49]:

E =

∫ +∞

−∞

1

2

{(
∂θ

∂x

)2

+ sin2 θ

[
1 +

(
∂ϕ

∂x

)2
]}

dx (4.48)

The expression of the stationary solution given in (4.34) leads to the simple equa-
tion: E = 4κ. In terms of the conserved quantities discussed above, one gets [43]:

E(N,P ) = 4 tanh(N/4) + 8
sin2(P/4)

sinh(N/2)
(4.49)

The energy E thus evolves periodically with P . This expression was also given in a
recent study [48], which inspired the experimental work described in Chapter 6.

The variables v and Ω, the rate of variation of the soliton position and a quantity
linked to the rate of variation of its phase, are related to partial derivatives of E with
respect to the conserved quantities as follows:
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{
Ω = −

(
∂E
∂N

)
P

v =
(
∂E
∂P

)
N

(4.50)

The problem of finding the solutions of the Landau-Lifshitz equation can be re-
formulated using a thermodynamic approach. The variables v and −Ω can be seen
as two conjugated variables associated with the thermodynamic variables P and N ,
respectively [49]. Minimizing the free energy state function: E + ΩN − vP over all
possible values of θ and ϕ leads to the equations (4.28).

4.3 Conclusion

In this chapter, we introduced the magnetic soliton within the rich nonlinear
physics of solitons that we briefly discussed. The magnetic soliton was first defined
as a stationary solution of the nonlinear Landau-Lifschitz equation. General solutions
for both the easy-plane and easy-axis magnetic solitons were distinguished and ex-
pressed following the work of Kosevich [43]. The link with binary Bose mixtures was
established close to the Manakov limit, where the spin and density degrees of freedom
separate, and the total density is consequently constant. The study then focused on
immiscible mixtures, or equivalently, the easy-axis magnetic solitons.

In the stationary case, with no external perturbations, three conserved quantities
were identified: the magnetization, the total momentum and the energy. A key feature
of the magnetic soliton was highlighted: the total momentum is purely a phase. Ac-
cording to Pitaevskii [202], it gives a “non trivial” character to the magnetic soliton.
Morevover, we have demonstrated the periodic dispersion relation of the magnetic
soliton.

This suggests that if the momentum evolves linearly in time under the action
of a constant force for example, one can obtain a sinusoidal motion, reminiscent of
the Bloch oscillation phenomena seen for electrons trapped in the periodic potential
created by a crystal and subjected to an electric field. This is the object of the next
chapter.
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Chapter 5

Magnetic solitons under a constant
force

The previous chapter introduced the magnetic soliton. It was shown how it could
be connected to the physics of mixtures of weakly-interacting Bose gases with nearly
equal interaction parameters. We analytically computed the dispersion relation of
the stationary magnetic soliton and linked the velocity of the soliton v to its total
momentum P as: v ∝ sin(P/2). If a constant force is applied to the wavepacket,
one can expect the momentum to evolve linearly in time. For a classical system, v
and P are usually proportional to each other, and the object’s position follows an
accelerated motion, as we are familiar with. However, in the case of a magnetic
soliton, the relationship between v and P suggests that the velocity and thus the
position of the soliton follow a periodic evolution over time in this case. After half
a period, the wavepacket is expected to propagate in the opposite direction of the
force, returning to its initial position! The object of this chapter is the analytical and
numerical discussion of these oscillations referred to as Bloch-like oscillations, since
they are reminiscent of the Bloch oscillations of electrons in the periodic potential
created by a crystal when an electric field is applied. The concept of “force” applied
on this system is first precised and analytically added to the model. Then the validity
of the previous reasoning is discussed. Numerical simulations are used to illustrate
this Bloch-like oscillation phenomenon. Finally, we will explain why this system can
be considered of broadband interest and how it relates to other striking phenomena
observed in physics.

5.1 Application of a constant force on the magnetic soli-
ton

The study aims to investigate the dynamics of an easy-axis magnetic soliton under
a constant force. In the 1D ferromagnetic spin chain, any non-homogeneous external
magnetic field, not accounted for in the equations for the moment, can result in a
small magnetic gradient felt by the spins. This small magnetic gradient acts as a
force on the spin chain. The focus of this thesis is on the case of a constant force,
or constant magnetic gradient (i.e. a linear potential). In the immiscible mixture
platform, this translates into a differential force acting on the two components rather
than a common force, as we will demonstrate.

5.1.1 Modification of the coupled nonlinear equations

First, let us examine the modifications of the equations of motion in the presence
of a force acting on one of the two components. It is assumed that this force acts
only on the minority component, which is localized in space, and is referred to as
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component 2. More precisely, we add the term V2(x)ψ2 to the left side of the second
equation of (4.35). We also introduce ω0(x), the adimensionalized version of the
potential V2: ω0(x) = V2(x)/

(
ℏ2

2mξ2s

)
. It can be shown that the equations (4.40) are

then modified in the following way:
∂θ
∂t = −

[
sin θ

(
∂2ϕ
∂x2

)
+ 2 cos θ ∂θ∂x

∂ϕ
∂x

]
∂ϕ
∂t = − cos θ

(
±1 +

(
∂ϕ
∂x

)2)
+ 1

sin θ
∂2θ
∂x2

− ω0(x)
(5.1)

The first equation is unchanged and the second equation has an additional term
−ω0(x). Regarding the study of the easy-axis ferromagnet, the equations (5.1) can be
written in a “LLE adimensionalized form” as:

∂M

∂t
= −M×H ,withH =

(
∂2M

∂x2
+ [Mz − ω0(x)]uz

)
(5.2)

In addition to the effective magnetic field created by the neighboring spins (see (4.18)):
Heff = ∂2M

∂x2
+Mzuz, an external magnetic field directed along the anisotropy axis

uz: Hext = −ω0(x)uz enters the equation. Thus, the addition of the term −ω0(x)
in the second equation of (5.1), i.e. the application of a potential ω0(x) on the
minority component but not on the majority component, accounts for the presence of
an external magnetic field applied to the spin chain, as intended.

If ω0 is spatially constant (constant external magnetic field), it can be reabsorbed
in the definition of the angular frequency Ω and the problem remains analytically
solvable with the solutions (4.34). If ω0 depends on x, then in general it is not
possible to find analytic solutions. However, in the next subsection, it will be shown
that, under certain assumptions, the equation of motion of the magnetic soliton can
be derived when a weak constant force, i.e. a weak constant magnetic gradient, is
considered.

5.1.2 Soliton oscillation

Under the action of a constant force, the equations of motion are modified and
written as (5.1). Therefore, it is necessary to re-evaluate the conservation of the
quantities, previously defined in sectoin 4.2.5.

Regarding the magnetization, since its knowledge only refers to θ, whose equation
of motion is unchanged (5.1), N is still conserved during the motion. However, P
is no longer conserved. Let us consider the case of a constant force (or constant
magnetic gradient) f . We write ω0(x) = −Fx where F is the adimensionalized force:
F = f/

(
ℏ2

2mξ3s

)
. From the definition of the momentum (4.43) and the equations (5.1),

the evolution of the momentum can be derived. We obtain:

dP

dt
= −

∫ +∞

−∞
(1− cos θ)

∂ω0

∂x
dx = NF (5.3)

The conservation of P is thus no longer applicable. Instead, considering the soliton as
a macro-object, it follows an intuitive equation that could have been written within
Newton’s formalism1. From this formula, it can be deduced that P evolves linearly
over time:

1For the bright or dark solitons submitted to a constant force, the term analogous to the mag-
netization which appears in front of the single-particle force is the atom number in the wavepacket
(see Appendix E).
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P (t) = P (0) +NFt (5.4)

This equation was originally derived by Kosevich et al. in 1998 [49].

Another important modified quantity to consider is the total energy of the soliton.
The addition of the term

∫
V2(x)n2(x) dx in the GP energy leads to the following

modification for the energy of the magnetic soliton:

Eω0 =

∫ +∞

−∞

1

2

{(
∂θ

∂x

)2

+ sin2 θ

[
1 +

(
∂ϕ

∂x

)2
]}

+

∫ +∞

−∞
ω0(x) (1− cos θ) dx (5.5)

The first term remains unchanged compared to (4.48). However, it is important to
note that the expressions of θ and ϕ have been altered by the presence of the force.
In general, it is not possible to express the energy analytically in terms of N and P
as we did in (4.49). However, if the force is sufficiently weak (to be precised later), its
presence can be seen as a small perturbation of the magnetic soliton in the absence of
the force. It is called the adiabatic approximation [49]. Then, the state of the moving
wavepacket under the force remains a magnetic soliton characterized by θ and ϕ which
follow the same equations as in the absence of a force (4.34). But now, the angles
θ and ϕ depend on the center of mass of the soliton X(t) as θ = θ [x−X(t)] and
ϕ = ϕ0(t)+ ϕ̃ [x−X(t)]. The parameters v = dX

dt and Ω = dϕ0
dt , linked to the soliton’s

shape, now vary with time. In other terms, the adiabatic approximation states that
the moving wavepacket can be described at any time as a solitonic wavepacket whose
form now evolves with time due to the force. Since in this case the functions of θ and
ϕ at any time are the same as without the force, the soliton energy can be written as
[49]:

Eω0(N,P, ω0) = E(N,P ) +

∫ +∞

−∞
ω0(x) (1− cos θ) dx (5.6)

with E(N,P ) the function of N and P given by (4.49). However, P must be taken as
a function linear in time (5.4).

The second integral takes non zero values over the extension size of the soliton
located at X(t). In the adiabatic approximation, the force is so weak such that
the variation of ω0(x) = −Fx over the size of the soliton can be neglected i.e.∫ +∞
−∞ ω0(x) (1− cos θ) dx ≃ ω0 [X(t)]×

∫ +∞
−∞ (1− cos θ) dx = ω0 [X(t)]N = −NFX(t).

Therefore, the energy expression for the magnetic soliton subjected to a constant force
within the adiabatic approximation is:

Eω0(N,P, ω0) ≃ 4 tanh(N/4) + 8
sin2(P (t)/4)

sinh(N/2)
−NFX(t) (5.7)

with P (t) = P (0) + FNt. In the adiabatic approximation, since the additional term
in the energy expression −NFX does not depend explicitly on the momentum P , v
is still a periodic function of the momentum: v(t) =

(
∂E
∂P

)
N

= 2
sinh(N/2) sin(P (t)/2)

and its integration over the spatial coordinate gives the center of mass evolution:

X(t) = X(0) + 4
cos [P (0)/2]− cos

[
1
2(P (0) + FNt)

]
FN sinh(N/2)

(5.8)

This result was first derived in 1998 by Kosevich et al. [49]. Recently, in the
context of quantum gases mixtures, the oscillation has been studied numerically in
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Figure 5.1: Numerical simulation of the magnetic soliton oscillation. We solve
numerically with imaginary time evolution the coupled GPEs with δg/g = 0.013,
N2 = 1500, n0 = 6× 108 atoms/m to find the ground state of the system. We then
abruptly apply a constant force directed along +x and corresponding to a magnetic
gradient b′ = 1G/m only to the minority component. We record the evolution of
the density profiles in a real time evolution simulation (the phase profiles, which are
also of interest, are discussed in section 5.2.2) for the majority component in blue
(a) and the minority component in red (b). We plot the profiles every t0 = 81.4ms.
The time grows from bottom to top and the darker the color the longer the time.
The i-th profile is shifted by i × n0 for more clarity. The profiles at t ≃ 3 t0 and
t ≃ 10 t0 are completely depleted while the profiles at t ≃ 7 t0 and t ≃ 14 t0 are
strongly similar to the initial profile.

the particular case of g12 = 1
2(g11 + g22) in [46] and in the general case by Bresolin et

al. [48]. In the following, we will describe numerical simulations of the coupled GPEs
which reproduce their results with a focus on the |1,−1⟩/|1,+1⟩ immiscible mixture
of Rubidium atoms.

To continue this subsection, we will precise the adiabaticity criterion to clarify the
statement of “low force” or weak magnetic gradient. We evaluate the work of the con-
stant force over the soliton size which is typically given by ξs: W = f × ξs. According
to a “basic” adiabatic criterion, this work must be significantly smaller than the other
relevant energy scales in the problem. In particular, it should be much smaller than
the spin interaction energy δg n0. Expressed in terms of the adimensionalized force,
this condition translates into [48]:

fξs ≪ δg n0 ⇐⇒ F ≪ 1 (5.9)

When this condition is fulfilled, the wavepacket remains a soliton during its motion
i.e. the variables θ and ϕ are still given by the stationary formula but v and Ω (i.e.
the shape of the magnetic soliton) change with time. More precisely, let us imagine
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Figure 5.2: Numerical evolution of the magnetic soliton characteristics over time
under the action of a constant force. The physical parameters are the same as in
Figure 5.1: δg/g = 0.013, N2 = 1500, n0 = 6 × 108 atoms/m and b′ = 1G/m.
(a): Center of mass evolution X(t) and its velocity v = dX

dt , normalized by the
spin sound velocity cs =

√
n0δg/(2m) in inset. The orange dashed line is the

analytical prediction (5.8). The black horizontal dashed line in the inset is the
predicted maximum velocity: v = 2

sinh(N/2) obtained by taking P = π in (4.45). (b):
Evolution of κ, the typical inverse size of the soliton, and the depletion of the bath
n
(max)
2 /n0 with time. The black dashed lines are the predicted maximum values

at the turning point: κ = 1/ tanh(N/4) and a full depletion: n(max)
2 /n0 = 1. The

evolution all follow a sinusoidal pattern and are in agreement with the analytical
predictions.

that one starts with a stationary magnetic soliton at rest i.e. v = 0 and Ω < 0 (point
(a) in Figure 5.3). After applying a force F > 0, the soliton will begin to move on
the ellipsis of constant magnetization N (as N was shown to remain constant) in the
same direction as the force (since v ∝ sin(P/2) > 0). Once the ellipsis crosses P = π
(point (b) in Figure 5.3), the velocity of the soliton decreases and reaches P = 2π,
where v = 0 (point (c) in Figure 5.3). The soliton then turns around (v < 0) and
returns to its starting point.

The evolution of the depletion and size of the wavepacket of the minority compo-
nent can also be deduced from the ellipsis of constant magnetization plotted in Fig-
ure 5.3. Indeed, the magnetization (4.42) can also be written as sinh(N/2) = 2κ√

Ω2+v2
.

Therefore, the initial κ, which is the typical inverse size of the soliton, is
κ0 = −Ω0/2 sinh(N/2), with Ω0 < 0 being the initial value of Ω. After a time t its

value is κ = 1
2 sinh(N/2)

√
Ω2 + v2. The ratio of the two gives: κ

κ0
=

√(
Ω
Ω0

)2
+
(
v
Ω0

)2
.

The equation 1 =

√(
Ω
Ω0

)2
+
(
v
Ω0

)2
defines a circle with radius Ω0 centered at (0,0)

in the plane (v, Ω). Since in Figure 5.3 this circle is always contained in the ellipsis,
we conclude that κ is always larger than its initial value during the evolution at con-
stant magnetization. The maximum is reached when P = 2π (point (c))2. Therefore,

2Actually, the extremal values of κ can be computed from the expression of the magnetization
(4.42). Calling κ0 = tanh(N/4) (see (4.46)) and κ1 > κ0 the points of v = 0, we have:

κ1 = κ0
1

tanh2(N/4)
=

1

tanh(N/4)
(5.10)

These values are given in [49] and we verify these results in Figures 4.7(a) and 5.2(b).
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Figure 5.3: Map (v, Ω) for the easy-axis soliton submitted to a linear potential.
We recall that no stationary solutions exist for Ω < (v2/4−1) (4.32). The forbidden
zone is represented with red hatches. The blue solid line still represents the points
corresponding to a magnetization N = 3 which is a typical number realized in
the experiment described in Chapter 6. We also plot a few curves of P = const.

following sin2(P/4) = 1
2

(
1 + Ω−v2/2√

Ω2+v2

)
: P = 0 in dashed pink, P = ±π in dashed

violet and P = ±2π in dashed green lines. We also labelled characteristic points of
a trajectory at fixed N . For F > 0, the ellipsis is followed in a counter-clockwise
direction. (a): starting point at P = 0 (0, Ω0); (b): P = π, the velocity starts to
decrease; (c): P = 2π, the velocity is zero, the soliton turns back; (d): P = 3π (or
−π if we take its value modulo 4π). The black dotted line is a circle of radius Ω0

centered on (0, 0).

the typical size of the wavepacket diminishes when the soliton propagates in the same
direction than the force.

In order to maintain a constant magnetization, and thus a constant number of
atoms in the minority component N2, we expect the depletion to increase as the
soliton shrinks and vice versa as the soliton turns back. Its initial value is determined
by N as n(max)

2 /n0 = tanh2(N/4) (see Figure 4.7) and its maximal value is 1 (for
example obtained after half a period for v = 0 and Ω > 0 in (4.34)).

We check these evolutions in Figure 5.2 for a low force, which allows us to perform
an adiabatic approximation, and interaction parameters that satisfy the condition
δg ≪ g.

We obtain the adimensionalized predicted values of the period and amplitude3 of
the motion from the equations (5.4) and (5.8):{

T = 4π
NF

A = 4
NF sinh(N/2)

(5.11)

3We will always call “amplitude” half of the peak-to-peak amplitude.
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Putting back the dimensional units (τs and ξs for T and A, respectively), the period
and amplitude are: 

T = 2πℏn0
N2f

A =
2n2

0 δg ξs

N2f sinh
(
N2
n0ξs

) (5.12)

In the context of BEC mixtures, these equations can be found in [48]. The period
expression is remarkably simple and does not depend on the mixture being considered.
The observed phenomenon and periodic relation are reminiscent of Bloch oscillations
in a lattice, which explains the analogous formula of a period inversely proportional
to the force. This similarity will be further discussed in section 5.2.1. The ampli-
tude expression is less universal and less simple, since it depends non-linearly on the
physical parameters.

5.1.3 Deviation from adiabaticity

The previous discussions assume the validity of the adiabaticity criterion (5.9).
However, what happens when this criterion is not fulfilled? To answer this question,
we conduct GP simulations using a wide range of parameters. We vary n0, f and N2

keeping fixed the choice of the mixture δg/g = 0.013. At first, two observables were
used to assess the deviation from adiabaticity: the “distance to prediction”, which
quantifies how far the center of mass evolution deviates from the prediction (5.8), and
the scalar product between the minority wavefunction after two periods of oscillations
and the initial minority wavefunction. But only the latter was retained as it was more
robust and does not depend on the amplitude of the oscillation. We limit the range of
parameters to maintain accessible experimental values for the amplitude and period
of the oscillation.

If the adiabaticity criterion is not well verified, we observe the emission of another
wavepacket after an odd number of turns, when the soliton moves in the same direction
as the force before the turning point and in the opposite direction afterwards. We
call this phenomenon the fragmentation of the soliton. The wavepacket does not
maintain its solitonic shape as it moves. Kosevich also referred to these emitted
waves as “a small-amplitude spin wave whose frequency corresponds to the frequency
of magnetization precession in the soliton” [49]. An example is shown in Figure 5.4(a).

In Figure 5.4, we also plot the value of the squared scalar product of the minor-
ity wavefunction at time t = 0 and time t = 2T . Typically, we consider that the
wavepacket oscillates properly, retaining its solitonic shape, when
|⟨ψ2(0)|ψ2(2T )⟩|2 ≳ 0.9. We verify that the adimensionalized force must indeed be
sufficiently small: F ≲ 0.3 to guarantee |⟨ψ2(0)|ψ2(2T )⟩|2 ≳ 0.9.

Moreover, it seems that the criterion on F is not sufficient to obtain scalar products
close to unity. Indeed, for F ≪ 1, but N ≲ 1, the soliton also fragments. Although
obtaining this regime experimentally can be complicated due to the large amplitude
and period of oscillation (see Figure 6.3), we have introduced a second criterion to ob-
tain a proper oscillation. It involves maintaining a sufficiently low maximum velocity
for the soliton. Typically, we say that the wavepacket retains its solitonic shape if its
maximum velocity (obtained when P = π in (4.45)) is less than the spin sound veloc-
ity cs. If this is not the case, the soliton will fragment by emitting a small amplitude
sound wave. In the plane (N , F ) it translates to a criterion on N :

vmax/cs =
2

sinh(N/2)
≲ 1 ⇐⇒ N ≳ 2.6 (5.13)
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Figure 5.4: Numerical study of the deviation from adiabaticity. We examine the
survival of the oscillation phenomenon when changing N = 2N2

n0ξs
and F = fξs

n0δg
.

(a): We show an example of the profile evolution of the minority component ev-
ery ti = iT5 , where T is the expected period (upper plot), for n0 = 108 atoms/m,
b′ = 2G/m and N2 = 100, corresponding to F ≃ 0.4 and N ≃ 0.7. The shape
of the soliton is approximately conserved during the first period of oscillation but
it deteriorates afterwards: a small amplitude wave is emitted at the turning point
position (when the amplitude is maximum) and the wavepacket gets fragmented.
This wave bounces off the wall and the oscillation is then blurred. On the bottom
graph, we show the center of mass evolution in blue and the analytical prediction
assuming an adiabatic evolution with a dashed orange line. (b): For each chosen
parameter set, we measure |⟨ψ2(0)|ψ2(2T )⟩|2 the scalar product between the wave-
function of the minority component at t = 0 and at t = 2T , where T is still the
analytical prediction of the period. We show examples of density profiles at t = 0
(light red) and t = 2T (dark red) at different positions in the 2D diagram. The
vertical dashed line represents the line where the maximum velocity of the magnetic
soliton is equal to the spin sound velocity i.e. vmax = 2

sinh(N/2) = 1. The horizontal
line separates the regions F < 1 and F > 1. Note that the chosen scale of the
color map is highly nonlinear in order to better assess the adiabaticity for scalar
products near unity.

The agreement between the simulations and the criteria on the chosen figure of merit is
only qualitative. However, they strongly suggest that the fragmentation phenomenon
can be avoided by aiming for high N and low F .
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The experimental requirements to keep in mind for Chapter 6 are thus a small
force, a large N2 and a large n04.

To conclude this section, it is important to note that the oscillation phenomenon
is nontrivial and is related to the periodic dispersion relation of the magnetic soliton,
a peculiarity of this soliton with respect to the dark or bright solitons for instance.
Additionally, the adiabatic assumption is crucial in maintaining the solitonic shape
during the motion and achieving sinusoidal oscillation. In the case of the dark-bright
soliton of δg = 0, adiabatic motion is not possible even if its dispersion relation is
periodic (see Appendix E). This is because the soliton shape cannot be maintained at
the turning point. In Appendix E, we provide numerical simulations of bright, dark,
and dark-bright solitons subjected to a constant force to highlight the differences with
the easy-axis magnetic soliton studied earlier. Regarding miscible mixtures or easy-
plane magnetic solitons close to the Manakov limit, where the mapping between the
two systems is applicable, the dispersion relation is also periodic. However, solitons
are often unstable under the presence of a constant force and may fragment. For
further details, we refer to Bresolin et al.’s study [48].

In the following, we will discuss two complementary interpretations of the observed
oscillations. The first interpretation relies on the evolution of the phase of the majority
component, which we have not yet discussed. The second interpretation is the link
with Bloch oscillations.

5.2 Interpretations of the observed oscillations

The physics discussed above is rich and connected to quantum phenomena in
various fields. The discussion begins with the phenomenon of Bloch oscillations.

5.2.1 Bloch oscillations and 1D dynamics

The Bloch oscillations were first predicted in the condensed matter context by
Zener in 1934 [50]. He showed that electrons in a crystal submitted to a constant
force (induced by an electric field) exhibit a periodic motion. A modern derivation
uses the Bloch theorem and can be found for example in [203]. Let us consider the
1D case of a periodic potential V (x) of period a. Félix Bloch, in a 1929 paper [204],
expressed the eigenstates of the Hamiltonian of the problem Ĥ = p̂2

2m + V (x̂) as a
product of a plane wave and a periodic function on the considered lattice.

More precisely, the sites of the lattice are given by am = ma, m ∈ Z. We introduce
the reciprocal lattice associated to the latter one: bm = 2π

a m, m ∈ Z. Since the
translational operator T̂a = e−iap̂/ℏ commutes with the Hamiltonian due to the spatial
periodicity of V , we can search a common basis of eigenfunctions. The complex
eigenvalues of T̂a are expressed as e−iθ, θ ∈ R, due to the unitary nature of the
operator. The associated eigenfunction is commonly called ψq(x) with q = θ/a.

The Bloch’s theorem states that for each eigenstate of the problem, denoted by
the real number q, one can find a periodic function uq(x) such that the wavefunction
ψq(x) can be written as:

ψq(x) = eixquq(x), withuq(x− a) = uq(x) (5.14)

Actually, the angle θ is defined modulo 2π and one does not expect the physics
to change by this arbitrary choice. In the reciprocal domain, one thus imposes

4Indeed, N ∼ 1√
n0

and F ∼ 1

n0
3/2 , so it is more favorable to have a larger density even if N is

slightly smaller.
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ψq+bm(x) = ψq(x) for any reciprocal vectors bm. We can thus restrict the varia-
tion zone of the quasi-momentum to ]−π/a, π/a], usually called the first Brillouin
zone.

For a given value of q, there are several solutions to the eigenvalue problem:
Ĥψq(x) = E(q)ψq(x) and thus we denote the different solutions by an integer n, called
the band index, as ψn,q(x) of eigenvalue En(q). Not only the eigenfunctions ψn,q(x)
are invariant with respect to the variation q → q+ 2π

a , but also the eigenvalues En(q),
which are thus periodic with respect to the quasi-momentum:

En

(
q +

2π

a

)
= En(q) (5.15)

This is the first requirement for obtaining Bloch oscillations in the presence of
a constant force. Under the application of this force, the Hamiltonian expression is
modified: ĤF = p̂2

2m + V (x̂) − Fx̂. We can recover the spatial periodicity of the
Hamiltonian by applying the unitary transform Û = exp (−ix̂Q(t)) to ĤF , with
Q(t) = 1

ℏ
∫
dt F = 1

ℏFt for a constant force. The Hamiltonian is then expressed as

Ĥ1 =
(p̂+ℏQ(t))2

2m + V (x̂).
If we know the eigenfunction of Ĥ1, ψ1, we can obtain the expression of the

eigenfunction ψF of ĤF with: ψF = Û †ψ1. We take ψ1(x, t = 0) as a Bloch wave
of quasi-momentum q0: ψ1(x, t = 0) = eiq0xu(x). Since the evolution operator of
the spatially periodic Hamiltonian Ĥ1 also commutes with the translation operator
T̂a = e−iap̂/ℏ, the Bloch form is preserved with a constant quasi-momentum q0. We
have ψ1(x, t) = eiq0xu(x, t). Therefore, we can write the eigenfunctions of ĤF as
ψF (x, t) = eiq0x × eiQ(t)xu(x, t). In other words, the Bloch form is preserved during
the application of the force, because u enters the equation, but its quasi-momentum
varies linearly with time:

q(t) = q0 +
1

ℏ
Ft (5.16)

For the moment, we have not specified the form of u. We now choose the initial
state (in the presence of the force) to be a Bloch function of the Hamiltonian corre-
sponding to no force ĤF=0: u(x, 0) = un,q0(x) (up to a phase). The last ingredient
to obtain Bloch oscillations is the adiabatic approximation. We assume that at any
time of the evolution, u(x, t) will be proportional to the Bloch function un,q(t)(x) with
the quasi-momentum q(t). In other words, the state in the presence of the force ψF
is written as:

ψF (x, t) ∝ eixq(t)un,q(t)(x) (5.17)

Therefore, we assume that energy bands other than the initial band denoted by
n are not populated. This statement is equivalent to the one in the previous section
regarding the preservation of the soliton wavepacket when a force is applied. The
Bloch function u of the band n plays the role of the angles θ and ϕ of the magnetic
soliton and the quasi-momentum q is reminiscent of the total momentum P .

A natural time scale in the problem is the time τB it takes the electron to cross a
Brillouin zone of length 2π/a at a constant velocity determined by (5.16). It writes
τB = 2πℏ

aF . Since ψq+2π/a(x) = ψq(x) (up to a phase) and q(t+ τb) = q(t) + 2π/a, the
wavefunction ψF is periodic in time (up to a phase5) with a period τB.

5The geometric phase accumulated during an oscillation is called the Zak phase [205] and plays
an important role in systems of non trivial topology.
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The first realizations of Bloch oscillations in cold atom platforms were made in
1996 and 1997 in the groups of Christophe Salomon in Paris and Mark Raizen in
Austin [131, 206] with a force generated by an accelerated optical lattice. Since then,
the Bloch oscillations have become an important tool for various applications, from
metrology to the study of collective phenomena. When the force is the gravity itself,
the precise measurement of the oscillation period provides direct access to the gravity
acceleration g. For example, in Syrte [207], sensitivities up to ∼ 10−4 g in 1 s have
been achieved in trapped interferometers. The measurement of weak forces, such
as the Casimir-Polder force, is an application of the Bloch oscillation phenomenon.
Proposals have been made in this direction [208].

Bloch oscillations in the absence of a lattice

F. Meinert,1 M. Knap,2 E. Kirilov,1 K. Jag-Lauber,1 M. B. Zvonarev,3 E. Demler,4 and H.-C. Nägerl1
1Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, 6020 Innsbruck, Austria

2Department of Physics, Walter Schottky Institute, and Institute for Advanced Study,
Technical University of Munich, 85748 Garching, Germany

3LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
4Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Dated: August 30, 2016)

We experimentally investigate the quantum motion of an impurity atom that is immersed in a strongly inter-
acting one-dimensional Bose liquid and is subject to an external force. We find that the momentum distribution
of the impurity exhibits characteristic Bragg reflections at the edge of an emergent Brillouin zone. While Bragg
reflections are typically associated with lattice structures, in our strongly correlated quantum liquid they re-
sult from the interplay of short-range crystalline order and kinematic constraints on the many-body scattering
processes in the one-dimensional system. As a consequence, the impurity exhibits periodic dynamics that we
interpret as Bloch oscillations, which arise even though the quantum liquid is translationally invariant. Our
observations are supported by large-scale numerical simulations.

A skydiver accelerated by the gravitational force ap-
proaches a constant drift velocity due to friction with the sur-
rounding medium. In the quantum realm, dynamics can be
significantly richer. For example, a quantum particle accel-
erated in a periodic crystal potential does not move at all
on average but rather undergoes a periodic motion known as
Bloch oscillations [1, 2]. Such an oscillatory motion is a di-
rect consequence of the periodic momentum-dependence of
the eigenstates in a lattice potential and arises from continu-
ous translational symmetry breaking. Bloch oscillations have
been observed for electrons in solid state systems [3] and have
been investigated in detail with ultracold atoms in optical lat-
tices [4–8]. One might expect that a quantum liquid, which is
fully translational invariant, or in other words does not have

an imprinted lattice structure, would preclude such striking
dynamics. However, recent theoretical studies [9, 10] sug-
gest that Bloch oscillations can emerge also in the presence
of a continuous translational symmetry. In particular, for im-
purity atoms immersed in one-dimensional (1D) quantum liq-
uids such dynamics is expected to arise due to strong quantum
correlations, which lead to effective crystal-like properties.
Yet, suitable conditions for that phenomenon are debated [11].
Ultracold quantum gases provide an ideal setting to experi-
mentally study the dynamics of impurity particles coupled to
host environments [12–16] due to excellent parameter control,
precise initial state preparation, and decoupling from the en-
vironment.

FIG. 1: Concept of the experiment. (A) We realize an ensemble of 1D Bose gases in tubes formed by two pairs of counter-propagating
and interfering laser beams. In each tube, a single strongly interacting impurity (green sphere) is immersed in the correlated host gas (black
spheres) and is accelerated by gravity (green arrow). Inset: Scattering length as for collisions between the atoms in the host gas (dashed line)
and between the impurity and the host atoms (solid line) as a function of the magnetic field B. (B) The excitation spectrum of the impurity
coupled to the 1D Bose liquid is a 2kF periodic function of the system’s total momentum p, bounded from below by a spectral edge (solid line).
For comparison, the dashed line indicates the lower bound of excitations in the background gas without impurity. A force acting on the impurity
gradually increases p and induces a population of the continuous many-body spectrum above the spectral edge due to non-adiabatic scattering
processes (green shading). When the impurity approaches the edge of the correlation-induced Brillouin zone (k = kF) the background gas
can absorb excitations with momentum 2kF without energy cost, which manifests itself in the impurity’s momentum distribution by Bragg
reflections. Inset: Numerical simulations of a Bragg reflection for infinitely strong background gas interactions γ = ∞, strong but finite
impurity-host interactions γi = 12, and a weak force F = 1.

ar
X

iv
:1

60
8.

08
20

0v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

9 
A

ug
 2

01
6

(a) (b)

Figure 5.5: Example of Bloch oscillations observed in the absence of a lattice.
Figures extracted from [54]. (a): Experimental realization of 1D Bose gases of
Cesium atoms with a 2D optical lattice. An impurity in the state |3, 3⟩ (green
dot) is created with a radio-frequency pulse while the bath is in the hyperfine state
|3, 2⟩ (A). The dispersion relation of an impurity in a 1D Bose gas is periodic.
In B, the black solid line is the lower bound of the excitation spectrum of the
system bath + impurity, while the dashed line represents the lower bound of the
excitation spectrum in the 1D gas without the impurity. The periodicity may result
in Bloch oscillations when the impurity is exposed to a constant force, which can
be interpreted as Bragg reflections at the edges of the Brillouin zone6. The inset
of B shows a numerical example of motion under a weak force and large γ (γ = ∞
for the background gas interactions and γ = 12 for the impurity-bath interactions).
However, in the presence of a finite force, the continuum spectrum is populated
and the Brillouin zone crossing is not completely adiabatic (shaded green area).
(b): Evolution of the mean impurity momentum (or mean velocity) as a function
of time for γ ∼ 5 in A and γ ∼ 20 in C. The dashed lines indicate the free falling
impurity case and the green solid line are numerical simulations using the Matrix
Product States technique. There is a clear deviation from the free falling case and
the results are well captured by the simulations.

The previous discussion outlined the requirements for observing Bloch oscillations:
a periodic dispersion relation, linear quasi-momentum evolution, and the ability to
adiabatically follow the lowest branch of the dispersion curve. These requirements
are naturally met in crystals, where the breaking of translational invariance is accom-
panied by periodicity in the dispersion relation. However, this periodicity occurs in
other systems, in particular 1D quantum liquids of background density n∞. These
1D systems, in the case of spinless bosonic gases, are described by the Lieb-Liniger

6It is an effective Brillouin zone since there is no underlying lattice in the longitudinal direction.
The Brillouin zone extends from −kF to kF where kF = πn∞ and n∞ is the 1D density.
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Hamiltonian [158] and a general solution can be found with a Bethe Ansatz. The
Lieb-Liniger parameter, γ, introduced in section 4.1.1, quantifies the strength of the
interactions in the 1D gas. For very large γ, the 1D hardcore bosonic gas can be
fermionalized, i.e. mapped onto a non-interacting fermionic system [209]. The gas
then realizes a model of a Luttinger liquid, which generalizes the notion of Fermi liquid
to the 1D case [52]. Its first experimental evidence in the ultracold atom plaform was
provided by Kinoshita et al. [210]. Thus, 1D confinement dramatically changes the
physics due to the strong correlations that occur in such systems. A moving impurity
in such a gas has specific dynamics. It tends to deplete the host fluid, called the bath,
as a consequence of the repulsive 1D interactions. The elementary excitations of the
fluid at low momenta are called polarons [211]. The excitation spectrum becomes
more complicated at large momenta or large impurity/bath interactions, giving rise
to a new quasiparticle called depleton in [51]. The dispersion relation of these quasi-
particles is determined by that of the collective excitations of the 1D Bose gas, which
is periodic. The argument, valid in the thermodynamic limit for a uniform gas with
periodic boundary conditions, states that in a ring of perimeter L with N = n∞L
atoms, the energy cost of a momentum increase of 2πℏ/L for each particle is equal to
N × (2π/L)2ℏ2/2m and tends to zero in the thermodynamic limit7. This is not the
case for the total momentum which is increased by N×2πℏ/L and thus remains finite
in the thermodynamic limit [51]. Thus, this simple argument leads to a periodic dis-
persion relation for the energy of period 2πℏn∞. Although the interactions between
particles were not considered in the previous reasoning, the final result of the peri-
odic dispersion relation for the collective excitations of the gapless system remains
valid in the limit where the bath can be treated as a Luttinger liquid [52]. Thus,
applying a force to the impurity may lead to the appearance of Bloch oscillations in
the 1D strongly-interacting Bose gas. The discussion of observing these oscillations is
presented in [53, 51].

In 2017, Meinert et al. managed to see Bloch oscillations without an underlying
lattice structure [54] (see Figure 5.5). Their system was a 1D Bose gas of Cesium
atoms in a given hyperfine state in which they transfer an impurity consisting of a
Cs atom in another hyperfine state. Their typical Tonks-Girardeau parameters for
both impurity-bath and bath-bath interactions are γ ∼ 10. The magnetic gradient
was tuned so that only the impurity was sensitive to gravity (differential force for the
system bath + impurity). After an adjustable time in the 1D trap, a time of flight was
performed, and the momentum distribution of the gas was reconstructed. The results
showed oscillations of this quantity as a function of time. The authors quantified
the finite dissipated energy resulting from the imperfect adiabatic following of the
lower sinusoidal branch of the dispersion curve. Additionally, their measurement of
the Bloch period is in good agreement with the prediction tB = 2πℏn∞

F .
There are similarities between this experiment and the magnetic soliton under

consideration, but there are also several differences. Firstly, our immiscible mixture
is well described by mean-field theory, whereas the Hamiltonian of the 1D strongly-
interacting Bose gas is the full Lieb-Liniger Hamiltonian. Secondly, unlike the single-
particle impurity behavior described in [54], the magnetic soliton undergoing the Bloch
oscillations is a macro-object with a potentially large value of the atom number in the
minority component (or magnetization in the spin chain language). Finally, achieving
an adiabatic motion appears to be less challenging in our system compared to the
Tonks-Girardeau gas.

7We recall that this limit takes N → ∞, L→ ∞, keeping n∞ = N/L constant.
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To conclude this subsection, we mention a recent numerical work on the dynamics
of polaron formation in a weakly-interacting Bose gas [212] with an approach based
on truncated Wigner simulations.

5.2.2 Analogy with Josephson physics

The solitonic oscillations can be interpreted as Bloch-like oscillations, which is
natural when considering the periodic dispersion relation of the immiscible mixture
near the Manakov limit. However, the existence of this dispersion relation is not
trivial, as discussed in this chapter. Is there an alternative interpretation to explain
these oscillations?

Bresolin et al.’s paper [48] discusses the Josephson effect as an alternative descrip-
tion. This effect was first discovered in 1962 by Brian Josephson [213] and studied
with superconductors separated by a thin weak link insulator, named Josephson junc-
tion. The DC Josephson effect describes the flow of an electrical current across an
insulating junction without the need for any external voltage. This current is carried
by Cooper pairs of the superconductors. The AC Josephson effect occurs when an ex-
ternal voltage is applied through the Josephson junction, causing the electrical current
to become a sinusoidal function of time. This effect is a remarkable macroscopic man-
ifestation of quantum physics with numerous applications. The existence of the AC
Josephson effect is crucial in describing the superconducting quantum interference de-
vice (SQUID), which is a highly sensitive detector of magnetic fields. The frequency
of the AC Josephson current is directly proportional to the voltage applied across
the junction, providing a precise method for voltage measurement. Additionally, the
Josephson effect is utilized in superconducting qubits for quantum computing [214].

More quantitatively, two equations describe the Josephson effect. They relate the
order parameter difference between the two superconductors φ, the voltage applied
across the junction V (t) and the electrical current I(t) as:{

dφ
dt = 2eV (t)

ℏ

I(t) = Ic sin [φ(t)]
(5.18)

where Ic is the maximal current amplitude and e is the elementary charge. For a
constant voltage V , we recover the sinusoidal variation of I(t) and the AC Josephson
effect.

The Josephson effect has been observed in other platforms described by an order
parameter that exhibit superfluidity or Bose-Einstein condensation, such as superfluid
4He [215] or ultracold gases [216, 217, 218], where the flow of electrons is replaced by
a flow of atoms8. A particular AC Josephson effect occurring between two weakly-
coupled ferromagnets is known as the spin Josephson effect [219] and was first observed
with the B phase (low temperature and pressure phase) of 3He in 1989 [220]. The
“phase difference” is replaced by the difference of the in plane magnetization angle
of the two ferromagnets (ϕ in Figure 4.3) and the current is a spin current related
the difference in vertical magnetization between the two ferromagnets and how it
changes over time [219]. The complementary picture of immiscible mixtures gives
the exact expression of these quantities. The phase difference is simply the difference
of the phase of the majority component order parameter between the two sides of
the barrier that we call x+ and x−: ϕ1(x+) − ϕ1(x−), and the spin current reads
Ispin = d

dt

∫∞
X dxn1(x, t) with X the position of the localized minority wavepacket. In

8Even though there is no true condensate in 1D, in accordance with the Mermin-Wagner theo-
rem [124], one assumes a local superfluid order to introduce an order parameter.
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Figure 5.6: Numerical phase evolution and AC Josephson effect. (a): Evolution of
the phase of the majority component as well as the density over a bit more than one
oscillation period for the same parameters as in Figure 5.1. There is a phase jump
at the soliton position which increases with time. At the turning point where the
bath is completely depleted, the phase difference between each side of the soliton
jumps from +π to −π. The phase difference then returns to 0 after one oscillation
period. The profiles are shown every dt = T/13. They are vertically shifted for
better visualization and should be read from bottom to top. (b): Phase difference
of the majority component across the soliton. It increases linearly with time and
jumps from +π to −π at T/2, 3T/2, 5T/2 and 7T/2. The dashed horizontal
lines represent ∆ϕ1 = π and ∆ϕ1 = −π. (c): Spin current evolution calculated
from the soliton velocity in blue: Ispin(t) = −n0Ẋ(t) and from the sinus of ∆ϕ1:
Ispin(t) = −Ic sin(∆ϕ1) in dashed orange. The two curves coincide.

our system, this wavepacket, playing the role of the barrier, moves in time. Therefore,
unlike usual fixed Josephson junction, the barrier separating the two “ferromagnets”
is mobile in the immiscible mixture system.

The equivalence between the spin-Josephson junction and the magnetic soliton in
an easy-axis ferromagnet is now justified in more detail. The key relation at play is
the simple proportionality relation between the total momentum of the soliton and the
phase difference of the majority component wavefunction across the soliton9 (4.44):
P = 2∆ϕ1. Thus, using the equation of motion: dP

dt = NF , we recover an equation
similar to the first one of (5.18):

dϕ1
dt

=
NF

2
(5.19)

where the force replaces the applied voltage and the magnetization is a substitute for

9When we consider open boundary conditions, ϕ1 is approximately constant outside the soliton
position (see Figure 5.6) so we can take the difference of phase between each side of the soliton x−
and x+ instead of between −∞ and +∞ [48].
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the elementary charge. Then, using that the spin current is proportional to the velocity
of the soliton which is expressed as v = 2

sinh(N/2) sin(P/2), we obtain a sinusoidal
evolution for the spin current:

Ispin(t) = −Ic sin(∆ϕ1) (5.20)

with Ic = 2/ sinh(N/2). We thus find the other key equation describing Josephson
effect (5.18).

Therefore, we showed that the equations obtained in the magnetic soliton case can
be mapped on Josephson-like equations, confirming the interpretation of the oscilla-
tions as an AC spin-Josephson effect.

We therefore make the following interpretation of the oscillation of the magnetic
soliton as a spin-Josephson effect for the majority component in the presence of a
constant force, as done in [48]. As the magnetic soliton moves under the action
of a constant force, its momentum, and thus the phase difference of the majority
component across the soliton, increases linearly with time. When P = 2π, the phase
difference is equal to π. This causes a change of sign for the spin current (5.20) and
thus for the velocity of the soliton. The velocity becomes negative and the soliton
moves in the opposite direction of the force, returning to its initial position. The phase
still increases with time and reaches 0 again at the initial position (see Figure 5.6).
This explains the periodic motion of the soliton position.

We mention that Schecter et al. [221] studied a similar analogy for the motion of
an impurity in a 1D Bose gas, which in this case plays the role of a mobile Josephson
barrier.

5.2.3 Change of sign for the effective mass

Another complementary description involves the effective mass of the magnetic
soliton.

Several definitions of the effective mass exist but we will use the one that relies on
the curvature of the dispersion relation in a lattice. We assimilate the total momentum
P to a quasi-momentum as we did in the Bloch-oscillations analogy, and write:

1

meff
=

(
∂2E

∂P 2

)
N

(5.21)

From the definition of v =
(
∂E
∂P

)
N

and the relation between P and v: v = 2 sin(P/2)
sinh(N/2) ,

we obtain:

1

meff
=

cos(P/2)

sinh(N/2)
=
v2 − 2Ω

4κ
(5.22)

The following equation of motion can be verified using the effective mass defined
above:

meff
dv

dt
= NF (5.23)

To obtain this equation, we use the conservation of the two quantities associated
with the soliton in the presence of the force, namely the magnetization and the total
energy, to connect the variation of Ω and v with time. We obtain in the adiabatic
approximation (see (4.42) and (5.5)):
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dN
dt = 0 ⇒ dΩ

dt = v dv
dt

Ω+2
v2−2Ω

dEω0
dt = 0 ⇒ ∂Eω0

∂Ω
dΩ
dt +

∂Eω0
∂v

dv
dt +N dX

dt
dω0
dx = 0

(5.24)

With the expression of Eω0(Ω, v,X) = 4κ + Nω0(X) = 4
√
1 + Ω− v2/4 + Nω0(X)

and the definition of the effective mass (5.22), we indeed obtain the equation of mo-
tion (5.23).

For the stationary easy-axis soliton of momentum P = 0, we obtain a positive
effective mass. The soliton propagates in the same direction as the force at the begin-
ning of the motion. This is the opposite case compared to the easy-plane magnetic
soliton which has a negative effective mass as shown in [41]. Therefore, we expect
the immiscible mixture to be stable against transverse instabilities (due to a non per-
fect 1D confinement), also known as snake instabilities [164, 222], in contrast to the
miscible mixture [41]10.

The calculation of the effective mass also gives a complementary interpretation of
the dynamics of the magnetic soliton under a constant force. At the beginning of the
motion, P > 0 for a force directed along +x and the effective mass is positive i.e.
the velocity of the soliton increases and is positive. However, when P reaches π and
continues to grow linearly with time, the effective mass becomes negative (see (5.22)),
the velocity decreases and reaches 0 at P = 2π. The velocity then becomes negative,
causing the soliton to turn back towards its initial position in the opposite direction
of the force. At P = 3π, meff becomes positive again and the velocity of the soliton
increases back to 0 at P = 4π where the soliton has come back to its initial position.

Similar interpretations have been made for magnetic solitons in immiscible mix-
tures in [46, 224]. Zhao et al. studied the case g12 = g11+g22

2 with a constant force
applied on the minority component. Even though g11 ̸= g22 ̸= g12 in this case, the ini-
tial bath was completely depleted in the center. Their soliton could thus be classified
as a dark-bright soliton. It should be recalled that we do not impose a fully initial
depleted bath in our system. They observed oscillations of the soliton position which
they interpreted as a consequence of a negative-positive effective mass transition. The
soliton started its motion by moving in the opposite direction of the force, as it is pre-
dicted for a dark-bright soliton [38] (see also Appendix E). Yu et al. studied the
case of a spin-1 BEC and demonstrated that transitions between two types of solitons
with opposite effective mass can occur. Additionally, the presence of a constant force
induces oscillations of the soliton center of mass.

5.3 Conclusion

5.3.1 Summary

Following Kosevich’s work in 1998 [49], we looked at the effect of a non uniform
magnetic field on the dynamics of a magnetic soliton in a spin chain. We showed
that in the complementary picture of immiscible mixtures close to the Manakov limit,
this corresponds to add a differential force between the minority and the majority
components. We demonstrated that in the presence of a constant force, the periodic
dispersion relation, coupled with a linear variation of P with time, could lead to

10The snake instability is expected to appear as soon as the transverse size of the cloud is larger
than the width of the soliton. The latter is given by the healing length for dark soliton (typically
∼ 0.1µm) or the spin healing length for easy-plane magnetic soliton (typically ∼ 1µm). Thus, the
latter is more robust to snake instabilities than the former. The snake instability together with the
decay of the dark soliton into a vortex ring was observed in [223] for a superfluid Fermi gas.
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Bloch-like oscillations of the soliton position. For that, an adiabatic approximation
was performed and we discussed numerically the regime of working parameters. In
Appendix E, we demonstrate that this is a specificity of the magnetic soliton and a
consequence of having an inter-component interaction parameter different from the
intra-component interaction parameters.

Finally, we interpreted this counter-intuitive phenomenon by taking a step back
from the analytical and numerical results. We deepened the link with Bloch oscilla-
tions, which are usually seen in periodic structures. Following the recent analysis by
Bresolin et al. [48], the oscillations were also interpreted as an AC Josephson effect
in the presence of a mobile barrier. The minority component plays the role of the
barrier. We also briefly provided a complementary description relying on the effective
mass evolution and its change of sign.

5.3.2 Outlook

The results presented in this chapter and the previous one (Chapter 4) were ob-
tained in the thermodynamic limit, where the system size is large enough to ensure
that the soliton propagation is not affected by the system’s borders. Additionally, we
utilized open boundary conditions. In particular, we assumed that the phase profile
was flat at infinity (i.e. ∂ϕ

∂x (±∞) = 0). When this is not the case, the backflow, or
counterflow, plays a more important role. This is a notion introduced by Pitaevskii
[225, 89] in the ring geometry. To maintain a single-valued majority component phase
at the system’s borders, it is necessary to compensate for the phase jump that occurs
at the soliton position by smoothly varying its phase outside the soliton. A backflow
propagating11 at the velocity vback = ℏ

m
|∆ϕ1|
2πR with R the ring radius thus takes place.

In the thermodynamic limit, the velocity associated with the backflow vanishes,
as well as its contribution to the energy. However, the momentum associated with the
backflow remains finite [225]. This situation is similar to the one discussed in the case
of an impurity propagating in a 1D strongly-interacting Bose gas (see section 5.2.1). In
the thermodynamic limit where the backflow contribution to the energy is negligible,
we recover Haldane’s prediction [52] of a periodic dispersion relation (4.49). However,
for finite size rings, the backflow contribution to the energy is expected to play an
important and interesting role. We expect the backflow contribution to also exist in a
linear geometry of finite size. However, its interpretation may be complicated by the
boundaries as the flow rebounds off the walls.

11The term “counterflow” is a bit misleading as the flow is always in the same direction as the
force. It first moves in the same direction as the minority component motion, then in the opposite
direction, then the same etc.
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Chapter 6

Realization of a magnetic soliton
and observation of Bloch-like
oscillations under a constant force

This chapter presents our experimental realization of a magnetic soliton within
an immiscible mixture. We describe the key experimental ingredients to probe their
physics as described in Chapter 4 and 5. Specifically, we demonstrate the emergence
of Bloch-like oscillations in the system when the immiscible mixture is subjected to
a small differential force. We compare our results with the analytical predictions
derived in Chapter 5. Finally, we measure the phase of the bath, a crucial quantity
for explaining the oscillation phenomenon. The experimental results presented here
were obtained in close collaboration with the other PhD students, Franco Rabec and
Guillaume Brochier.

6.1 Experiments on magnetic solitons in miscible mix-
tures

The chapter begins by providing context for the experimental work. In Chapter 4,
we discussed experimental realizations of various solitary waves of the 1D NLSE, in-
cluding dark, bright, dark-bright, Peregrine solitons, in different physical systems such
as optical waveguides, classical fluids, plasmas, and ultracold atomic gases. We em-
phasized that the latter platform was especially suitable for studying the physics of
multi-component (or vector) solitons with mixtures, which exhibit even richer under-
lying physics. We discussed the experimental realization of the dark-bright soliton,
which emerges when a bright soliton is trapped within a dark soliton. It was intro-
duced by Busch and Anglin [38] in 2001. However, if we do not impose an initial fully
depleted (“dark”) cloud and the π phase jump of the majority component at the po-
sition of the soliton, another type of soliton, known as the magnetic soliton, emerges
close to the Manakov limit. The excitation that gives rise to the magnetic soliton is
formed by a local population imbalance in the mixture (or magnetization in the spin
chain language). The total density of the mixture is conserved close to the Manakov
limit [41]. We then identified two types of magnetic solitons that arise in miscible or
immiscible mixtures close to the Manakov limit. To provide a comprehensive overview
of the realization of solitons in weakly-interacting BECs, we will briefly discuss two re-
cent experiments that successfully produced and studied magnetic solitons in miscible
mixtures.
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Observation of magnetic solitons in two-component Bose-Einstein condensates

A. Farolfi, D. Trypogeorgos, C. Mordini, G. Lamporesi,∗ and G. Ferrari
INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy and

Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy
(Dated: July 10, 2020)

We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a har-
monically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin
component and their relative local phase via an interferometric technique we developed, and as such,
fully characterise the magnetic solitons while they undergo oscillatory motion in the trap. Magnetic
solitons exhibit non-dispersive, dissipationless long-time dynamics. By imprinting multiple magnetic
solitons in our ultracold gas sample, we engineer binary collisions between solitons of either same
or opposite magnetisation and map out their trajectories.

Waves have the natural tendency to spread while prop-
agating. In nonlinear media, this tendency can be coun-
terbalanced through a self-focusing mechanism creating
localized and long-lived solitary waves, a.k.a. solitons.
Their dissipationless nature makes them invaluable tools
for technological applications and information transport
[1, 2]. They play a fundamental role across science, clas-
sical and quantum alike, and have been observed in dif-
ferent physical systems, such as classical fluids, liquid
He, plasmas, optical waveguides, polaritons, and ultra-
cold atomic gases [3–8]. The latter can be widely ma-
nipulated to explore soliton behaviour, by altering the
shape of the gas, the characteristic interactions among
particles, and their energy dispersion [9–18].

Two-component mixtures display an even richer ex-
citation spectrum, showing new types of solitons. These
solitons were long-sought in the liquid He community, but
were never observed due to the absence of an experimen-
tal realisation of interpenetrable superfluids. However,
mixtures of ultracold atomic gases can be used instead
[19–23]. A mixture can be perturbed from its ground
state by creating either excitations in the total density,
with an in-phase response of the two components, or ex-
citations in the population imbalance (magnetisation),
with an out-of-phase response. This implies the exis-
tence of both unmagnetised solitons, similar to those in
a single component superfluid, and magnetised ones [21].
Among the latter, magnetic solitons (MS) are denoted
by a localised population imbalance in an otherwise bal-
anced and symmetrically interacting mixture [24].

Atomic mixtures (superpositions) of 23Na lowest-
hyperfine-state atoms in the |F,mF〉 = |1,±1〉 are fully
miscible and not subject to buoyancy [25]. The two
ground-state components experience the same trapping
potential, show the same spatial profile, and occupy the
same volume [20, 22]. These are prerequisite conditions
for the excitation and characterisation of MSs [24], which
are fulfilled in our system [20]; however this is not the case
in other atomic species, such as 87Rb [21].

Here, we create MSs via spin-sensitive phase imprint-
ing. We characterize them in-situ using a fully to-
mographic method with quasi-concurrent density and

relative-phase measurements, that show a characteris-
tic π jump. The MSs perform oscillatory dynamics in
a harmonically confined BEC that show only minimal
dispersion and dissipation for times as long as 1 sec. In
addition, we engineer collisions between MSs with same
↑↑ and opposite ↑↓ magnetisation and monitor their be-
haviour close to the collision point.

FIG. 1. (a) A spin-selective optical potential generates a pair
of MSs that travel in opposite directions along y in our two-
component elongated BEC. The overall imparted phase of 2π
is dealt symmetrically on the two spin components. (b) Λ-
coupling scheme showing all the hyperfine transitions that are
used for preparation of the mixture and inducing an effective
quadratic shift. (c) Full tomography of a pair of MSs 15 ms
after their creation. Left column: Optical densities (OD) of
|1,−1〉 (red) and |1,+1〉 (blue), and relative phase (purple).
Right column: The measured apparent magnetisation (top)
is of the order of 0.5 and the expected relative-phase profile
(bottom) shows two π jumps at the soliton positions.
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Figure 6.1: Experiments on easy-plane magnetic solitons in the ultracold atoms
platform. Figures (a), (b), (c) and (d) adapted from [44] and (e) and (f) adapted
from [45]. (a): An optical potential, applied to half of the cloud, produces a relative
2π phase shift between the two components |1,−1⟩ and |1,+1⟩ of a miscible mixture
placed in an elongated BEC of Na atoms. (b): Scheme of the levels and the MW
fields used to create the mixture and image it1. (c): OD spatial map for mF = −1
atoms in red, mF = +1 atoms in blue and the relative phase in violet, 15ms after
the application of the pulse of far-off resonant light. Density holes and bumps
coincide with phase jump of ±π across them. The two magnetic solitons created
have opposite magnetization n|1,+1⟩ − n|1,−1⟩ (top right panel). (d): Out-of-phase
oscillations of the two magnetic solitons (blue one for the positive velocity and red
for the negative) in a harmonic trap. (e): Evolution of the magnetization over
time and space. The top panel is the experimental data, the middle panel is the
simulation data and the bottom panel compares the two. Two solitons of opposite
magnetization with an absolute value ≃ 0.2 propagate at a typical velocity of ≃
1mm/s. (f): Adapting the intensity mask used (left panel), two pairs of magnetic
solitons at ≃ ±50 µm were created and their collisions were studied. The two
solitons of equal and positive magnetization meet and exit practically undisturbed.

In 2020, Farolfi et al. [44] and Chai et al. [45] realized, almost simultaneously,
easy-plane magnetic solitons by using the miscible mixture |1,−1⟩/|1,+1⟩ of 23Na
atoms with a parameter δg/g ≃ −0.07 < 02. They used cigar-shaped BECs with
a transverse Thomas-Fermi radius sufficiently small compared to a few spin healing
lengths (typically ≲ 5ξs) so that the magnetic soliton does not suffer from snake
instability. A roughly balanced spin mixture of |1,−1⟩ and |1,+1⟩ atoms is generated.
Magnetic solitons are then produced by illuminating half of the cloud with a pulse

1A MW field, blue-detuned from the transition |1, 0⟩/|2, 0⟩ is also applied for stabilizing the
mixture against spin relaxation.

2We recall that our definition of δg is δg = g12 − g.
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of a far-off resonance light beam. The wavelength chosen is the tune-out wavelength
for which the scalar light shift for the 3S1/2 level is zero. The dominant term is thus
the vectorial light shift. With a circularly polarized beam, a symmetric differential
phase shift is obtained on the mixture |1,−1⟩/|1,+1⟩, because they have opposite
spin projections mF . The duration of the pulse, typically 100 µs, can be adjusted to
imprint a 2π relative phase shift between the components in the illuminated zone.
Since the duration of the excitation pulse is small compared to the characteristic time
scale of the spin dynamics τs = ℏ

n0|δg| ≃ 5ms, there is no additional density excitation
in the system. Thus, since the total magnetization is conserved by this method, the
generated magnetic solitons are formed by pairs of opposite magnetization. Changing
the intensity gradient of the light alters the relative phase at the center of the cloud,
thereby modifying the velocity of the magnetic solitons formed. In both experiments,
they access the populations in each hyperfine state. They showed that a density dip
(respectively density hole), together with a counterpropagating density hole (resp.
density dip) propagate through the BEC in the |1,−1⟩ (resp. |1,+1⟩) component.
Using a Ramsey interferometric scheme, the two teams measured the relative phase
and observed a constant relative π phase across each magnetic soliton propagating in
opposite directions. Additionally, they imprinted two pairs of magnetic solitons and
studied their collisions.

The detection of the solitons in these experiments was possible either directly in
situ3 or with a short time of flight thanks to the typical micrometer length scale of
the magnetic soliton, given by the spin healing length. We will also use this key point
to precisely measure the profiles of magnetic solitons in the following.

Trento’s group also studied the longitudinal motion of magnetic solitons in a har-
monic trap. The typical longitudinal confinement frequency in their cigar-shaped BEC
is fy ≃ 10Hz. They imposed a velocity on their magnetic solitons and observed that
they undergo oscillations inside the harmonic trap, as shown in Figure 6.1(d). This
was predicted for magnetic solitons in [41] and the observed oscillations agree with Qu
et al.’s prediction. No changes in the width of the oscillating magnetic soliton were
observed within their imaging resolution.

Dark and dark-bright solitons also exhibit an oscillatory motion in a harmonic
trap, as studied experimentally by Becker et al. [39]. The oscillation period of a
dark soliton does not depend on the interaction parameter and is equal to T =

√
2Ty

where Ty = 1/fy is the oscillation period associated with the harmonic trap [171, 39].
This period is smaller than the one observed for a magnetic soliton or a dark-bright
soliton [38, 39] (see also Appendix E). It should be noted that the observed oscillatory
motions were in a harmonic trap, where the force acting on the wavepacket is position-
dependent and changes sign at the center of the trap. The presence of oscillations
in this type of system is therefore expected treating the soliton as a macro object
following classical dynamics.

Magnetic solitons in miscible mixtures have thus been substantially studied ex-
perimentally. In the following section, we outline the experimental requirements for
creating magnetic solitons in immiscible mixtures in a flat potential. Submitting a dif-
ferential force between the minority and the majority components, as in the proposal
[48], is also considered.

3The profiles were broadened by the finite imaging resolution of ≃ 2µm.
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6.2 Experimental ingredients

6.2.1 The 1D regime for spin dynamics

A first ingredient to realize a magnetic soliton experimentally is a 1D confinement,
as it was the case in the experiments described in the previous section. In our current
experimental setup, as described in Chapter 1, the physics being studied is kinemat-
ically 2D. Without installing new experimental tools on the optical table, we cannot
enter the stricly thermodynamic 1D regime for a single component gas. Indeed, it
would require transverse confinement frequencies ω⊥ ≳ kBT

ℏ , µℏ ≃ 2π× 1 kHz where µ
is the chemical potential µ = gn.

However, when dealing with binary mixtures, the above condition is less restrictive.
Indeed, the spin dynamics introduce a new energy scale, which is δg×n. For a weakly
miscible (as in the Sodium experiments described in the previous section) or immiscible
mixture, the interaction parameters usually verify |δg/g| ≲ 0.05. This led us to say
that the magnetic solitons are easier to access experimentally than single-component
solitons, comparing the spin healing length to the healing length. Thus, the spin
dynamics are effectively 1D if ω⊥ ≳ δg n

ℏ ≳ 2π × 50Hz.
Experimentally, we confine the 2D gas inside a 1D tube thanks to a DMD, called

DMD1 in Chapter 1. If we were to load the tube geometry directly, the final atom
number would be extremely poor (< 5× 103 instead of 1× 105 usually). To improve
the loading, the condensate is first placed in a 2D rectangular shape 40 × 60 µm.
Within 500ms, we compress the gas into a tube of 3× 60 µm by displaying a “movie”
on DMD1 i.e. 50 images going continuously from the initial rectangle to the final one
(Figure 6.4). Once this is done, we evaporate the gas in the tube during 500ms by
lowering the power of the box confinement and letting it thermalize. It seems crucial
for the most efficient loading to evaporate in the tube and not in the initial rectangular
box. Still, we lose ∼ 30% of the atoms during the movie (from 1×105 to 6×104). We
did not see any further improvement by increasing the number of frames displayed or
the time between each image.

The decision to use a 3 µm tube size is a result of a trade-off. Larger tubes have a
transverse size that exceeds the spin healing length, making it unclear how to apply
the 1D physics of magnetic solitons discussed in the previous chapters. Smaller tubes
have lower loading efficiency in terms of density and our finite resolution imaging
begins to limit us.

In Figure 6.4, we plot a transverse cut of the gas profile in the 3 µm tube. We
assume that the transverse planar confinement due to the DMD can be approximated
by a harmonic confinement. In this case, a Gaussian fit yields a transverse har-
monic confinement length lx ≃ 1.5 µm (see section 4.1.1 for its definition)4. Thus,
the confinement angular frequency along the transverse planar direction of the tube
is approximately ωx ≃ 2π × 50Hz. Therefore, given the temperature energy scale
kBT
ℏ ≳ 2π × 400Hz, several excited states of the harmonic oscillator along x are pop-

ulated and the system is not thermodynamically 1D. We recall that the strong 2D
confinement gives an angular vertical frequency ωz ≃ 2π × 4 kHz.

The transverse confinement is quantified by the geometric mean of the two previous
quantities: ω⊥ =

√
ωzωx (see section 4.1.1) and we get an estimate of

ω⊥ ≃ 2π × 400Hz. This is an approximate guess, and we will compare it with
another estimate, which has been obtained by determining the stationary profile of
the magnetic soliton.

4This is a lower bound and our finite PSF would broaden the profile.
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Therefore, even though the system is not thermodynamically 1D, the effective spin
dynamics are in good approximation unidimensional since ℏωx,z ≳ δg n. This suggests
that using a transverse tube size of the same order of magnitude as the spin healing
length is suitable for studying the physics of 1D weakly-immiscible mixtures, where
the spin and density dynamics can be decoupled.

6.2.2 An immiscible and long-lived mixture

The various hyperfine states of Rubidium offer several options for selecting a
weakly immiscible mixture. However, certain requirements must be considered when
making this choice. Firstly, it is highly preferable to choose a long-lived mixture, keep-
ing in mind the adiabatic application of a constant force on the magnetic soliton (small
velocities for the soliton (5.13)). The dynamics depend crucially (and non-linearly)
on the atom number of the minority component and the density of the bath. We must
prevent the loss of atoms due to spin relaxation for times typically shorter than a few
hundred of ms. This argument excludes the clock state mixture |1, 0⟩/|2, 0⟩, within
which a Townes soliton was realized in the team [190]. More generally, it excludes
mixtures containing atoms in states F = 25, subjected to spin relaxation.
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Figure 6.2: The mixture |1,−1⟩/|1,+1⟩. (a): It is an immiscible mixture and is
thus subjected to demixing (see [72] for the description of demixing in the ultracold
atoms platform). We show absorption images of respectively the states |1,−1⟩ in
blue and |1,+1⟩ in red after 200ms of evolution for an initial 50/50 mixture with a
total density n = 300 atoms/µm. The chosen geometry is the tube geometry of size
3× 60 µm. The two images are not taken in a single sequence. (b): Lifetime of the
mixture. A loss graph of the mixture still in the tube geometry was performed with
an initial total density of 300 atoms/µm, split approximately in half between |1,−1⟩
and |1,+1⟩ atoms. The black points represent the total density of the gas. The
inset shows its distribution over time between the different spin states, which can
be accessed with a Stern-Gerlach experiment. Although 3-body losses are observed,
2/3 of the initial cloud remains after 1 s of hold time: the mixture is long-lived.

Therefore, there remain two possible choices for the mixture only involving F = 1
states: |1,−1⟩/|1, 0⟩ and |1,−1⟩/|1,+1⟩. Another task is to select two states with
different sensitivities to an external magnetic field. Indeed, when applying a constant
force through a magnetic gradient to investigate the physics discussed in the previous

5The stretched mixtures |1,−1⟩/|2,−2⟩ or |1,−1⟩/|2,+2⟩ are long-lived but we did not see any
demixing patterns experimentally.
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chapter, it is important that the minority and majority components do not respond
in the same manner. This requirement is satisfied bor both mixtures.

The miscibility parameter is used to quantify the difference between them. It is
written ∆ =

a212
a11a22

where 1 and 2 denote the 2 components of the mixture. The
scattering length values can be calculated by combining the bare scattering lengths
a0 and a2 weighted by Clebsch-Gordan coefficients [226, 227]. Without taking into
account magnetic dipole-dipole interactions for the moment, we obtain the following
values in units of the Bohr radius aB:

➢ |1,−1⟩/|1, 0⟩ mixture: a−1,−1 = a2 = 100.36 aB; a0,0 = 1
3a0 +

2
3a2 = 100.86 aB;

a−1,0 = a2 = 100.36 aB. The mixture is predicted to be weakly miscible:
∆ = 0.995 [228]. However, experimentally, patterns of demixion are seen in
[229] (and also in our setup).

➢ |1,−1⟩/|1,+1⟩ mixture: a−1,−1 = a2 = 100.36 aB; a+1,+1 = a−1,−1 = 100.36 aB;
a−1,+1 =

2
3a0 +

1
3a2 = 101.36 aB. The mixture is predicted to be weakly immis-

cible: ∆ = 1.02. In [230], the authors confirmed this statement by observing
the formation of spin domains after the system was quenched into an equal
superposition of the two immiscible states.

Therefore, we have decided not to use the mixture |1,−1⟩/|1, 0⟩ due to its proxim-
ity to the miscibility/immiscibility transition. Indeed, even though it is an immiscible
mixture, the small value of δg increases the characteristic time scale of the spin dy-
namics τs ∝ 1/δg.

The above predictions are slightly modified when considering an additional small
effect: the magnetic dipole-dipole interactions (MDDI). Indeed, the team demon-
strated in a recent study in 2D [231] that even in alkali Bose gases with small magnetic
moments, magnetic dipolar interactions affect the description of collisions between two
atoms in the clock hyperfine states |1, 0⟩ and |2, 0⟩. Their effect was absorbed in the
modification of the inter-component scattering length a12. The team demonstrated
the anisotropic nature of these interactions, which is in contrast to the s-wave con-
tact interactions. They were able to change the miscibility parameter of the mixture
between ∆ = 1.05 (for a magnetic field parallel to the vertical axis z) and ∆ = 1.007
(for a magnetic field in the horizontal plane).

For the |1,−1⟩/|1,+1⟩ mixture, the effect of the magnetic dipolar interactions is
smaller and affects the inter-component and intra-component scattering lengths. We
can calculate this effect following [231] and we get a variation of the miscibility param-
eter between ∆ = 1.006 (magnetic field parallel to z) and ∆ = 1.027 (magnetic field in
the horizontal plane). The values of the scattering lengths in the latter magnetic field
configuration are predicted to be: a−1,−1 = a+1,+1 = (100.36− 0.175) aB = 100.19 aB
and a−1,+1 = (101.36 + 0.175) aB = 101.54 aB. It yields a value of δg/g ≃ 0.013.

As a result, when the magnetic field is in the atomic plane, this mixture is suf-
ficiently on the immiscible side of the transition that the associated spin dynamics
are not too slow (see Figure 6.2). We recall that the associated characteristic time
scale for the spin dynamics is τs = ℏ

n0δg
. Furthermore, it still largely satisfies the

requirement δg/g ≪ 1, so that the mapping between the coupled GPEs and the LLE
is valid to a good approximation.

The expected period and amplitude of the oscillations can now be calculated once
the chosen mixture is known6. The adimensionalized quantities N and F introduced

6Actually, we did not need to know δg to calculate the oscillation period, since it does not depend
on the mixture under consideration.
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in the previous chapters are also used here. The density n0, the number of atoms in
the minority component N2, and the applied force f are varied. For each set of values,
denoted by a point (N,F ), the period and amplitude of the expected oscillations are
calculated. We recall that the simulations performed in the previous chapter agree
well with the calculations when the adiabatic condition F ≪ 1 and the condition on
the velocity of the soliton v < cs, corresponding to N ≳ 2.6, are fulfilled. In these
regions, there is a zone around F ≃ 0.1 and N ≃ 5 for which the period is of the
order of a few hundred of ms and the amplitude of the order of a few µm, which would
enable the experimental study of the oscillation phenomenon (Figure 6.3).
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Figure 6.3: Numerical map of the amplitude and the period of the oscillations
of the magnetic soliton as a function of the adimensionalized parameters N and
F defined in Chapter 4. The only fixed parameters are the ratio δg/g ≃ 0.013
corresponding to the chosen mixture and the total density n0 = 3.3×108 atoms/m.
We vary the atom number of the minority component N2 and the force f . The
dashed vertical line corresponds to the equation v = cs and the horizontal line
is the equation F = 1. The regime without fragmentation, where an adiabatic
approximation can be performed, is located in the lower right panel.

6.2.3 Imprinting a spin-selective spatial profile

To realize a magnetic soliton, it is necessary to control the spatial distribution
of the density of the two spin components. To achieve this, we utilize a DMD in
combination with Raman beams, as explained in Chapter 1. However, we cannot
control the phase distribution with the DMD and, therefore, cannot impart a velocity
to the soliton (v = 0).

It is recalled that the choice of the wavelength of the Raman beams is determined
by the cancellation of the scalar shifts acting on the states F = 1 and F = 2:
λR = 790.0 nm.

The Raman beams are detuned by ≃ 6.8GHz to perform a two-photon transfer
from a state in F = 1 to a state in F = 2. Thus, the obtention of a spatially-selective
spin mixture |1,−1⟩/|1,+1⟩ naturally passes through the state |F = 2,mF = 0⟩ whose
total spin projection is in between the other two states7.

The mixture is created in a two-step transfer process. Firstly, a two-photon Raman
transfer is used to transfer atoms from |1,−1⟩ to |2, 0⟩ in a spatially selective man-
ner, allowing for the shaping of the density profile of atoms in |F = 2,mF = 0⟩.
Immediately after, a MW pulse is applied to fully transfer the F = 2 atoms to

7In the following discussion of polarization of the two beams, it will become clear why we did not
remove the EOM to directly perform a two-photon transfer between the |1,−1⟩ and |1,+1⟩ states.
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|F = 1,mF = +1⟩. The atoms in |F = 1,mF = −1⟩ remain unaffected as there
is no one-photon resonant transfer possible with this MW field (see Figure 6.4(d)).
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Figure 6.4: Protocol for the realization of an easy-axis magnetic soliton. (a):
Sequence steps and illustration with absorption images. After loading the atoms
into a 2D rectangular box of size 60 × 40 µm, a movie of 50 images separated by
10ms is displayed on the DMD. The final image is a tube of size 60× 3µm. After
an evaporation step in the tube of 500ms, the bias fields are ramped during 200ms
to a chosen value in order to impose a magnetic gradient or not and to choose
the orientation of the magnetic field. A thermalization step of 500ms follows. A
pulse of Raman light is then applied to the |1,−1⟩ atoms to imprint a spatially
spin selective profile. The transferred atoms are in the |2, 0⟩ state and they are
all immediately flipped to the |1,+1⟩ state with a MW illumination. (b): Average
profile along the transverse direction of the tube. The blue solid line is a Gaussian
fit of standard deviation lx = 1.5 µm. (c): Light images of the DMD taken with a
control camera before and after the movie. (d): Scheme of the hyperfine ground
states of Rb. The double green arrow represents the two-photon Raman transfer
(here chosen with the polarizations π/σ−, but it also works with σ+/π). The red
arrow represents the MW transfer to |1,+1⟩.

The question of the polarization of the Raman beams should be asked when atoms
are transferred from |1,−1⟩ to |2, 0⟩. This is done by absorbing a σ+ photon and re-
emitting a π photon (or by absorbing a π photon and re-emitting a σ− photon). Thus,
the orientation axis of the magnetic field should be chosen carefully so that a Raman
beam can perform a π transfer. Since the propagation axis of the Raman beams
before the cell is the vertical axis z, it is not possible to transfer atoms from |1,−1⟩ to
|2, 0⟩ with a vertical magnetic field. Instead, the magnetic field direction is chosen to
be in the horizontal plane, along the x direction, perpendicular to the tube axis (see
Figure 6.4(a)). Its magnitude is Bx ≃ 1.3G. The linear and orthogonal polarizations
of the Raman beams lie in the horizontal plane (x,y) when propagating vertically to
the atoms. Thus, one of the two beams realizes the desired π-transfer. The other
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beam polarization, linear along the y axis, can be decomposed into a sum of left and
right circular polarizations. One of these polarizations provides the necessary σ+ or
σ− photon for the Raman transfer.

This selection of a magnetic field in the horizontal plane is good news, as we saw
earlier that it was also the optimal choice for maximizing the immiscibility parameter.
This choice does not allow for a direct transfer from |1,−1⟩ to |1,+1⟩8. Therefore, it
is necessary to pass through the state |2, 0⟩.

6.2.4 Imposing a constant differential force

The above ingredients are sufficient to realize a stationary magnetic soliton. To
conclude this section, we will recall how to impose a small differential constant force
on the mixture, under which the soliton is expected to undergo a periodic oscillation.

To achieve this, a magnetic gradient is applied (mainly) along the tube axis y. This
is accomplished by using a quadrupolar magnetic field created with the MOT coils and
adding a small bias field along y, following the same procedure as the one described in
Chapter 3. To cancel out the gradient along the x axis, which is perpendicular to the
tube, a coil is added near the cell with its main axis being the x axis (see Chapter 1).

The dynamics of the mixture under a constant force are slightly more complicated
than what was derived in the previous chapter due to the non-zero sensitivity to a
magnetic field gradient of the atoms in the state |1,−1⟩ (referred to as the majority
component and not affected by the coherent transfers). This was discussed in [48]
where it was shown that the tilted bath affects the motion of the soliton and results in
a high frequency component in the oscillations. However, this effect is only visible in
the oscillations when δg/g is sufficiently large. The simulations performed with the Rb
mixture |1,−1⟩/|1,+1⟩ show that the dynamics observed for a majority component
submitted to −f and a minority component submitted to +f are identical to those
of a minority component submitted to +2f . In other terms, the observed oscillations
are only sensitive to the relative difference of forces felt by the two components, for
sufficiently weakly immiscible mixtures.

6.3 Stationary magnetic soliton

In this section, we explain how to create a stationary magnetic soliton using the
tools described in the previous section. The scheme of the experiment is depicted in
Figure 6.5. The mixture is characterized by measuring the parameter δg.

6.3.1 Low depleted stationary soliton

One way to realize a magnetic soliton deterministically is to choose the appropriate
amplitude modulation on the DMD D(x, y) so that the transferred density in the
minority component is of the form given by the solution n2(y) = n0

1+C(y)
2 of (4.34).

In contrast to the experiments discussed in section 6.1, our method for imprinting a
magnetic soliton does not allow for the application of a velocity to the soliton. We
imprint solitons with zero velocity (v = 0). More precisely, using the equation (1.4)
given in Chapter 1, the modulation function on the DMD is chosen to be:

8We could think that this transfer could be done by removing the EOM and by directly absorbing
a σ+ photon and emiting a σ− photon. Indeed, when the two beams are polarized in the horizontal
plane but none of them along the magnetic field, each polarization has a σ+ and a σ− component (but
not pure σ+ and σ− components). However, a destructive interference effect between the exchange
of photons prevents from doing such a transfer, as it can be seen with a development of the spin
populations as a function of the Clebsch-Gordan coefficients, similar to what is done in [71].
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Pixis 1024 BR Excelon

Chameleon CMLN-13S2M

DMD3

Imaging beam

Raman beams

Figure 6.5: Optical table used for the magnetic soliton project. A tube pattern
is projected onto the atoms using DMD1 and is combined with the copropagating
Raman beams and the vertical imaging beam. DMD3 is used to shape the Raman
beams and thus the spatial profile transferred to |2, 0⟩. All of the beams are directed,
via a microscope objective, onto the atomic plane, which is marked with a horizontal
dashed line. An absorption image of the planar cloud is acquired through another
microscope objective on a Pixis camera. We have separate access (not on the same
run) to both hyperfine states of the mixture: |1,−1⟩ in blue and |1,+1⟩ in red. A
control camera images the plane of the DMD to monitor the green light sent to the
atoms. We present one of the MOT coils, which, together with the bias coils (not
shown), creates a magnetic gradient along the y axis of the tube.

D(x, y) ∝

√√√√√√arcsin

(√
n2(x,y)
n0

)
arcsin

(√
d
) , with

n2(x, y)

n0
=

2(1 + Ω)

2 + Ω− Ωcosh(2κy)
(6.1)
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and d ≡ n
(max)
2
n0

= κ2 = 1 + Ω is the targeted depletion. We used that for a magnetic
soliton at rest (P = 0), we have Ω < 0 (see (4.45)). The preservation of the shape of
the wavepacket over time would then be a criterion to confirm that we are effectively
creating a stationary soliton. This has been done, for example, for the deterministic
realization of a Townes soliton [190].

Let us first consider the case of low depleted clouds, i.e. for which the maximum
density of the minority component is small compared to n0 (d ≪ 1). In this case,
the quantity N = 2N2

n0ξs
is much smaller than 1 and the expression of the density

simplifies. Indeed, in this case, N/2 ≃ sinh(N/2) = −2
√
1+Ω
Ω . Therefore, the limit

N → 0 implies to take Ω → −1 for a soliton characterized by v = 0. Thus, we obtain:
N ≃ 4κ. The magnetization is equal to the energy of the soliton in this limit. Using
cosh(2κy) = 2 cosh2(κy)− 1 and the limit Ω → −1, we obtain:

n2(y)

n0
=

κ2

cosh2(κy)
(6.2)

with κ =
√
1 + Ω → 0 as N → 0.
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Figure 6.6: Experimental and numerical stationary magnetic soliton. (a): Ab-
sorption image of a magnetic soliton in a 1D tube geometry with N2 ≃ 350. We
imprint a cosh−1/2(y/σ) function on DMD3, with σ = 5µm and the feedback loop
was run in order to optimize the profile. A longitudinal average profile is shown on
the right along with a 1/ cosh2 fit with a solid line. A transverse average profile is
plotted above. We also draw a square of size 3 µm with a solid line9. (b): Numerical
RMS size (i.e.

∫
y2|ψ2(y)|2 dy) of the stationary minority wavepacket as a func-

tion of the atom number in the minority component N2 in blue. It is obtained by
analyzing the stationary profiles given by the GP simulations with δg/g ≃ 0.013.
The orange dashed line represents the hyperbolic single-component link between
the two quantities (6.5). At low depletions, the two curves coincide, and the ef-
fective single-component description of the mixture is a good approximation of the
stationary profile. In red dotted lines, we pinpoint the solution corresponding to
an RMS size of 5µm (case of (a)) and in green, the lowest N2 solution for 3µm.
The variation of the RMS size near the red circle is stronger than that around the
green circle.

9We choose to plot a square rather than a Gaussian as we did in Figure 6.4(b) because the atomic
profile is optimized with a feedback loop in order to obtain a flat density transverse profile.
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This expression should remind us of the bright soliton solution of the one-component
GP equation (4.5). Could we have guessed this connection at low depletion?

The answer is positive. It can be shown that in the low depletion regime, the
dynamics of the majority component, denoted 1, occurs on a short time scale (∝ 1/n∞)
compared to the minority dynamics (∝ 1/n2). Thus, one can assume that the bath is
always at equilibrium on the time scale of the minority dynamics [190]. This simplifies
the coupled 2D dynamics of the mixture. In the low depletion regime, the minority
component, denoted 2, follows an effective single-component GPE with an interaction
parameter geff = g22 − g212

g11
:

− ℏ2

2m

∂2ψ2

∂y2
+ geff |ψ2|2 ψ2 = iℏ

∂ψ2

∂t
(6.3)

For an immiscible symmetric mixture, such as |1,−1⟩/|1,+1⟩ for Rb atoms, geff <
0 and a stationary solution, normalized to N2, is given by a bright soliton form:

|ψ2(y)|2 ≡ n2(y) =
N2κ

′

2

1

cosh2(κ′y)
(6.4)

where we introduce κ′ the typical inverse size of this effective bright soliton. The
number of atoms N2 and the size of the soliton are not independent parameters. In
the low depletion limit, the minimization of the energy functional
E[ψ2] =

∫
dy
[

ℏ2
2m

∣∣∂ψ2

∂y

∣∣2 + geff
2 |ψ2|4

]
with the ansatz (6.4) connects the two parame-

ters as:

N2 = −2ℏ2κ′

mgeff
(6.5)

Furthermore, in the limit δg = g12 − g ≪ g, we have geff ≃ −2δg, so (6.5) is rewritten
as N2 = ℏ2κ′

mδg . To compare with the low depleted magnetic soliton solution (6.2), we
adimensionalize the position by the spin healing length ξs (and κ′ by 1/ξs). Introduc-
ing N = 2N2

n0ξs
, the condition (6.5) writes: N = 4κ′. For the effective attractive single

component picture (6.4), we thus get the following adimensionalized expression:

n2(y)

n0
=
κ′N
4

1

cosh2(κ′y)
= κ′2

1

cosh2(κ′y)
(6.6)

When considering the low depletion regime, the easy-axis magnetic soliton of the
immiscible mixture is thus recovered using the effective attractive single component
picture (κ′ = κ).

We check numerically the proportionality relation N2 ∝ κ ∝ 1/σRMS (6.5) at low
depletions (Figure 6.6(b)). For higher depletions, the variation of the RMS size with
N2 is smoother.

At low depletions d≪ 1, the profile put on DMD3 does not depend on the depletion
since the arcsine functions of (6.1) can be linearized10. We thus imprint

D(x, y) =
(

1
cosh2(κy)

)1/4
on DMD3 for a fixed value of κ and we vary the duration of

the Raman pulse until we reach a number of atoms in the minority component that
verifies (6.5). If d is not negligible compared to 1, the amplitude modulation function
on the DMD depends on the targeted depletion and a priori the DMD modulation
function should be changed each time a different depletion is targeted.

10For low depletions, we approximate arcsin
(√

n2/n0

)
by

√
n2/n0 =

√
d 1
cosh(κy)

.
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6.3.2 δg calibration

For low depletions and a fixed soliton size 1/κ, there is only one atom number
for which the wavepacket remains stationary (see Figure 6.6(b)). For a number of
atoms smaller than the one checking (6.5), the wavepacket expands due to the larger
kinetic energy compared to the interaction energy. Conversely, when the value of N2

is greater, the wavepacket contracts as a result of the effective attractive interaction
energy (see Figure 6.7).

Experimentally, we choose to realize a stationary magnetic soliton with
σ = 1/κ ≃ 5 µm (Figure 6.6(a)). This results from a trade-off. For larger sizes, the
stationary atom number (6.5) is < 200 and the atomic signals have to be averaged a
lot for a good signal-to-noise ratio. For smaller sizes, the evolution N(σ) is smoother
(Figure 6.6(b)) and we could not distinguish an expansion or a contraction of the
wavepacket when varying the atom number of the soliton. This is confirmed by
numerical simulations (Figure 6.7(d)).

To achieve the most accurate 1/ cosh2(κy) density profile on the atoms, we im-
plemented a feedback loop and adjusted the dithered profile on DMD3 until the dif-
ference between the targeted profile and the atomic one could no longer be improved
(see Chapter 1).

For σ = 5 µm, the evolution of the size for different N2 is clear and we can isolate
the atom number that leads to a stationary wavepacket up to a precision of ±50 atoms.
More precisely, we approximate the evolution of the RMS size of the wavepacket over
time with a parabolic law. In 2D homogeneous Bose gases, this is an exact result
from the Virial theorem [104]. In 1D, we also choose this form to fit the evolutions,
but only with a phenomenological motivation. The expansion coefficient Γ, defined as
σ = σ0 + Γt2, is then plotted as a function of the atom number N2. The stationary
soliton, characterized by an expansion coefficient Γ = 0, is then isolated. We get
N2,stat = 370± 50 with σ = 5.3± 0.3 µm.

At low depletions, the stationary atom number is directly proportional to the
interaction parameter δg as shown in (6.5). Therefore, we can calculate it based on
the previous measurement:

δg

2ℏ
= (1.9± 0.3)× 10−7m/s (6.7)

We can compare this value with the one obtained in the previous section: we
estimated ω⊥ ≃ 2π × 400Hz and calculated δa = 1.35 aB (with MDDI). This results
in δg

2ℏ = ω⊥δa = 1.7× 10−7m/s. The value obtained from the stationary low-depleted
magnetic soliton is thus compatible with this estimation.

6.3.3 Conclusion

In conclusion, we were able to deterministically create a stationary magnetic soli-
ton at low depletions. The evaluation of the stationary atom number resulted in a
value of the parameter δg that is in good agreement with the prediction.

For higher atom numbers, as mentioned above, we were not able to clearly prove
the stationarity of the wavepacket. For this, we tried to imprint the true solitonic
waveform at a given depletion, deviating from a 1/ cosh2(κy) (see Figure 4.6), but we
did not see a significant expansion or contraction when varying the atom number. This
is numerically justified in Figure 6.7. More precisely, let us imagine that N2 = 1000
corresponds to a soliton of RMS size ∼ 3 µm. Then, even if the depletion of the
magnetic soliton is different when changing N2 from 1000 to 1500, the RMS size
does not change significantly (Figure 6.6), unlike the case for lower atom numbers
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Figure 6.7: Experimental and numerical determinations of the stationary profile
without a force. Calibration of δg. (a): The amplitude modulation on DMD3
is chosen to be of the form 1/

√
cosh(y/σ) with σ = 5µm. The feedback loop is

utilized to optimize on the atomic profiles the dithered pattern put on DMD3. The
atom number in the minority component is varied (by varying the duration of the
Raman pulse) and the evolution of the wavepacket size σ over time is observed in
the regime of low depletions. In the case of small atom numbers, the wavepacket
expands (violet example), while in the case of large atom numbers, the wavepacket
shrinks (pink example). For intermediate atom numbers, the wavepacket undergoes
minimal evolution (as shown by the green example, which represents the average
longitudinal profile of Figure 6.6(a)). For the profiles, we show with a darker
color the wavepacket for t = 30ms and with a lighter color the initial wavepacket
at t = 1ms. The dashed line corresponds to the average value of the initial sizes:
σ0 = 5.3 µm. (b): From the previous evolutions, we extract an expansion coefficient
Γ fitting the RMS sizes as σ = σ0+Γt2. We plot the evolution of this coefficient as a
function of N2. The stationary atom number Ns corresponds to Γ = 0 and its value
is given by the vertical solid line. (c) and (d): We look numerically at the evolution
over time of an initial wavepacket of the form n2 ∝ 1/ cosh2(y/σ) with σ = 5µm
(c) and σ = 3 µm (d). The experimental evolutions seen in (a) are confirmed by
(c). In the case of (d), no clear contraction of the wavepacket is observed even
for large atom numbers. This observation is interpreted as a consequence of the
plateau seen in the evolution of N(σ) in Figure 6.6(b) near σ = 3 µm. Therefore,
for large depletions, it is difficult to experimentally isolate the stationary profile
within our spatial resolution.

when changing N2 from 300 to 600. Thus, the wavepacket at N2 = 1500 is a good
approximation of the stationary wavepacket with RMS size 3 µm and it does not
evolve significantly over time. In other words, the scalar product between the two
wavefunctions of N2 = 1000 and N2 = 1500 atoms is not significantly different from
1, unlike the scalar product between the two wavefunctions of N2 = 300 and N2 = 600
for example. The simulations indicate that a finer spatial resolution of the soliton size
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evolution is necessary to determine a stationary wavepacket for large depletions. This
smooth evolution of the stationary RMS size as a function of N2 for large N2 will
prove to be “advantageous” in the next section. Indeed, since the RMS size of the true
wavepacket is not far from 3 µm in the range N2 between 800 and 1500, we will imprint
the 1/ cosh2(y/σ) profile with σ = 3 µm for all atom numbers. We will discover that
the non-strict stationarity of this wavepacket does not perturb the soliton within our
spatial resolution. It will greatly simplify the recipe for observing the oscillations and
show that the phenomenon of Bloch-like oscillations is robust to the particular shape
of the initial wavepacket used [48].

6.4 Oscillation of magnetic oscillations under a constant
force

In Chapter 5, we demonstrated the peculiar response of an easy-axis magnetic
soliton under a constant force. We now describe experimentally what happens to the
soliton when it is submitted to such a linear potential. In practice, after preparing
the gas in the tube and evaporating it, we add a small current in the MOT coils
(∼ 100mA) and a bias field of ∼ 100mG along the y direction (longitudinal direction
of the tube) to apply a magnetic gradient to the cloud, which is composed of atoms in
the |1,−1⟩ state. We let it thermalize for ∼ 500ms in the presence of this gradient. We
then create the mixture with a Raman pulse followed by a MW pulse (see Figure 6.4).
This corresponds to a quench of the application of the differential force by changing
the internal state of part of the cloud. We then record the following dynamics.

6.4.1 Short times dynamics

First, it is natural to consider the beginning of the motion that could not be af-
fected by the boundary conditions, eventual inhomogeneities in the box potential or
atom number losses. We thus focus first on the short time dynamics of the wavepacket
motion. Under an external adimensionalized force F , the solitonic wavepacket of mag-
netization N undergoes a force NF since we showed that its total momentum evolves
as dP

dt = NF (5.3). The dimensional expression for the center of mass motion (5.8)
y(t) = A

[
1− cos

(
2π t

T

)]
+ y0 can be linearized for t≪ T :

y(t) = y0 +
1

2
A
(
2πt

T

)2

(6.8)

with A =
2n2

0 δg ξs

N2f sinh
(
N2
n0ξs

) the amplitude of the oscillation (half of the peak-to-peak

amplitude) and T = 2πℏn0
N2f

its period. Inserting the expressions of T and A in (6.8),
we can also write it as:

y(t) = y0 +
feff
2m

t2,with feff = 4π2m
A
T 2

=
N2f

n0ξs sinh
(
N2
n0ξs

) (6.9)

At low times, the solitonic wavepacket thus exhibits particle-like behavior, with its
dynamics governed by a Newtonian law of motion. However, the force in the expression
represents an effective force experienced by the wavepacket. In adimensionalized units,
the effective force writes: Feff = F N/2

sinh(N/2) . For low atom numbers in the minority
component: N2 ≪ n0ξs, the effective force coincides with the single-particle force
acting on the system: Feff ≃ F . It is reminiscent of the study of bright solitons under
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a constant force (see Appendix E). This finding is not surprising since we showed
in the section 6.3.1 that the dynamics of the magnetic soliton can be mapped onto
effective single-component bright soliton dynamics in the low depletion regime.
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Figure 6.8: Short time dynamics of the wavepacket under a constant force. We
apply a magnetic gradient b′ = 2.5G/m to a wavepacket of N2 ≃ 150 atoms in
|1,+1⟩ immersed in a bath of atoms in |1,−1⟩ of density n0 = 3 × 108 atoms/m.

The amplitude modulation on the DMD is
(

1
cosh2(κy)

)1/4
with κ = 1/(5 µm). The

dashed red line represents the initial position of the soliton wavepacket. The images
shown are absorption images of the |1,+1⟩ state only every 10ms. The solitonic
shape is lost during the evolution. The center of mass positions of the localized
wavepacket are represented by the red dots. These positions are recorded as a
function of the time spent by the mixture in the presence of the magnetic gradient.
The solid line is a parabolic fit (see main text for the values).

Moreover, the expression (6.9) can be obtained from the expression of the effective
mass of the magnetic soliton (5.22) at low velocities v, which is meff = sinh(N/2).

We examine the solution (6.9) experimentally. As in the previous section, we lo-
cally shape the density profile of the transferred atoms in |1,+1⟩ with a 1/ cosh2(y/σ)
function, σ = 5 µm. We operate at low depletions with atom numbers in the minority
component checking 100 ≲ N2 ≲ 200 and a background bath density n0 ≃ 3 × 108

atoms/m. With such numbers, the 1/ cosh2 form of the wavepacket is in good approx-
imation a stationary wavepacket. Moreover, with ξs ≃ 2 µm for this density, we have
N2
n0ξs

≲ 0.3 and the approximation of the effective force by the external force leads to
an error of only a few percent.

We apply a magnetic gradient directed mainly along the y direction given by
b′ ≃ (2.5 ± 0.1)G/m measured with Ramsey spectroscopy (see Chapter 3 for a de-
scription of the calibration of the magnetic field gradient). We record the motion
of the minority component wavepacket for times t < 50ms (the predicted period is
T ≳ 1 s for this small atom number). The result is shown in Figure 6.8. A parabolic
fit accurately models the motion when a force is applied. From the fit, we extract
a force f = (2.1 ± 0.2) × 10−27 N. We recall that this force is felt by the two com-
ponents of the mixture which have opposite spin projections mF and a Landé factor
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gF = 1/2. Thus, the magnetic gradient extracted from this low time dynamics expan-
sion is b′ = f

2gFµB
= (2.3 ± 0.2)G/m. This value is compatible within 10% with the

Ramsey spectroscopy calibration.
This study confirms the validity of the dynamical model for short time durations

and low atom numbers. The measurement can also be considered as a precise force
calibration when changing the point of view.

6.4.2 Bloch-like oscillations

The main experimental result of this chapter concerns the behavior of the magnetic
soliton under a small magnetic gradient and for large atom numbers in the minority
component.

More specifically, we vary the magnetic gradient between ≃ 0.5G/m and 2G/m.
The 1D background density in the tube is kept constant at ≃ 3.5 × 108 atoms/m.
The number of atoms in the minority component can be changed between ≃ 1000
and ≃ 180011. For the mixture |1,−1⟩/|1,+1⟩ of Rb, this leads to typical values of
N ≃ 5 and F ≃ 0.1. From Figure 6.3, we deduce that these numbers are in the
working regime identified in Chapter 5 from the adiabatic condition F ≪ 1 and the
low velocity condition vmax ≲ cs. Moreover, the orders of magnitude give a period of
∼ 100ms and an amplitude of a few µm, a regime accessible experimentally.

For these chosen atom numbers, we apply an amplitude modulation on DMD3 of
the form

(
1/ cosh2(y/σ)

)1/4 with σ = 3 µm. Ideally, if we want to imprint a stationary
highly depleted soliton, we would have to change the waveform of the modulation on
the DMD each time we vary N2. This is due to the fact that the general modulation
form depends on the depletion (6.1). However, experimentally, it is more convenient
to work with a fixed pattern on the DMD and vary the atom number without changing
the pattern’s family of functions. As previously stated, the wavepacket created should
not be significantly disturbed during evolution, even if it is not perfectly stationary and
a “true” soliton. Indeed, the 1/ cosh2 profile with σ = 3 µm only slightly deviates from
the true solitonic profile within the explored range of atom numbers (see Figures 4.6
and 6.6). However, it was not initially evident that the interpretation of Bloch-like
oscillations would persist prior to conducting the experiment with these initial profiles.

Figure 6.9 displays examples of absorption images of the |1,+1⟩ atomic density
distribution in the tube at different hold times in presence of the force. The |1,+1⟩
atoms are immersed in a bath of |1,−1⟩ atoms, which are not seen on these images12.
Under the influence of a constant force, the localized wavepacket initially moves in
the direction of the force +y. The wavepacket contracts (b) and then turns back after
≃ 100ms of evolution. It reaches the initial point after ≃ 200ms. For some atom
numbers, we observe up to four periods of oscillation. We cannot record further due
to the inevitable loss of atoms in the mixture (see Figure 6.2). The tube length is
60 µm and the wavepacket’s observed U-turn cannot be attributed to the borders of
the tube.

Furthermore, when varying the parameters, particularly N2 by changing the dura-
tion of the Raman pulse and the magnetic gradient, Figure 6.10 confirms a dependence
of the oscillation frequency ν on most of the points in the form of ν = N2f/(hn0).

11The atom number N2 and the bath density n0 are extracted by a pixel count in time-of-flight
measurements. In situ measurements lead to a slight (∼ 10%) underestimation of these quantities.

12We also imaged the |1,−1⟩ atoms separately, but it was experimentally difficult to resolve the
hole in their density profiles, even for large depletions. However, we confirmed that the total density
remains constant during the evolution.
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Figure 6.9: Bloch-like oscillations in a tube. We prepare an immiscible mixture
with a localized wavepacket in the center with a 1/ cosh2(y/σ) profile, with
σ = 3µm, and subject it to a constant force f = 9.2 × 10−28N (i.e. a magnetic
gradient b′ = 1G/m). We let it evolve for a certain time t in the presence of the
force. (a): Absorption images of the density profile of the |1,+1⟩ atoms for an atom
number N2 = 1329± 50. The time between each frame is 30ms. (b): Evolution of
the typical size σ of the wavepackets of (a). We obtain it with a fit of the density
profiles with a function 1/ cosh2(y/σ). The solid line is a sine fit for the time
evolution of the size. (c): The evolution of the wavepacket’s center of mass was
observed for different atom numbers N2 under the same force. The amplitude of the
oscillations decreased as the atom number increased, and the period of oscillation
decreased as well. The top curve corresponds to the soliton’s movement observed
in the absorption images in (a), as well as its size evolution in (b). Sinusoidal fits
were performed and are represented by the solid lines.

This phenomenon is interpreted as Bloch-like oscillations in this system that exhibits
a periodic dispersion relation, as seen in Chapter 4.

For the gradients between 0.5 and 1.5G/m, we observe a good agreement between
the expected period and the measurement over a range of frequencies between 3 and
7Hz. For larger magnetic gradients, our measurements deviate systematically from
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Figure 6.10: Experimental measurement of the period and amplitude of the Bloch
oscillations for different magnetic gradients. We extract them with sinusoidal fits to
the center of mass evolutions (examples were given in Figure 6.9). The horizontal
axes are rescaled so that the analytical predictions (5.12) are linear lines with slope
1 (black solid line). The points of Figure 6.9 are the red squares.

the predictions. It is not clear why this is the case. The GP simulations performed
still give a good agreement with the analytical predictions. Regarding the amplitude
of the oscillations, the agreement with the analytical prediction is only qualitative.
However, its expression as a function of the physical parameters is non-linear and less
fundamental than the period formula.

In conclusion, we were able to observe and characterize Bloch oscillations in an
immiscible mixture in the adiabatic regime. The agreement with analytical predictions
is satisfactory. The observed phenomenon appears to be robust with respect to the
initial wavepacket shape.

6.4.3 Beyond the adiabatic regime

F⃗

Figure 6.11: Fragmentation of the soliton. Absorption images of the |1,+1⟩
component are shown for an initial cloud ofN2 = 1300 atoms (same as in Figure 6.9)
and a force f = 3.7 × 10−27 N, corresponding to a gradient b′ = 4G/m applied
to the mixture (four times larger than the one of Figure 6.9). They are taken
every 10ms. The analytical prediction would give a period T ≃ 35ms and an
amplitude A ≃ 3 µm. However, we observe at t ≃ 20ms ≃ T/2 that the soliton
fragments into two wavepackets. One of them continues to move in the direction
of the force until it reaches the boundaries of the tube at t ∼ 60ms while the other
remains approximately at the same position. The wavepackets “meet” again at time
t ∼ 80ms.
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When the force, or more generally the adimensionalized parameter F = fξs/(n0δg),
is increased, the analysis of the wavepacket dynamics is more complex.

As demonstrated in the simulations, the wavepacket experiences dislocation during
propagation, resulting in the loss of the soliton’s particle-like nature. An example of
such a time evolution is presented in Figure 6.11.

6.4.4 Bath phase evolution

In Chapter 5 we saw the importance of the phase of the majority component in
interpreting this phenomenon. Following the work of Bresolin et al. [48], the observed
oscillations were explained as a consequence of an AC Josephson effect with a non-
standard barrier: the mobile minority component itself. It arises from a peculiarity
of the magnetic soliton: the majority component phase difference between each side
of the localized wavepacket is directly proportional to the total momentum of the
soliton.

To continue the experimental study of these oscillations, we thus measure the
phase of the majority component while applying a constant force.

To do this, we slightly modify the experimental procedure. We prepare the con-
densate in |1,−1⟩ in a two-tube geometry of 60 × 3 µm each, instead of one tube,
with DMD1 (still with 50 images separated by 10ms, see Figure 6.12). We then ap-
ply a magnetic gradient to the cloud and let it thermalize for ∼ 500ms. A localized
wavepacket is then formed only at the center of the right tube by adapting the DMD
pattern. The atoms in the left tube are not affected by the Raman pulse and serve as
a reference with a uniform matter-wave phase.

We then wait for a certain amount of time in presence of the constant force. The
soliton in the right tube experiences Bloch-like oscillations, while the (tilted) bath
remains stationary in the left tube.

The initial tubes are separated by dt = 4 µm. After a time of flight tTOF of a
few ms, we expect phase-coherent clouds to interfere. For linear tubes expanded in
the plane, we predict to see spatial fringes, parallel to the axis of the tubes, with a
period i given by i = 2πℏtTOF

mdt
(see for example the historical experiment [12]). For a

distance dt = 4 µm between the tubes and a TOF duration of tTOF = 4ms, we get an
interfringe of ≃ 5 µm, which is accessible with our imaging system. The g1 correlation
function, briefly introduced at the end of Chapter 2, reflects the spatial phase ordering
of a matter wave. When the gas is confined in 1D/2D, there is no true long range
order even at T = 0. At large distances, the phase coherence is lost, causing g1 to
decrease to zero. However, in these finite-sized systems, g1 remains sufficiently close to
1 throughout the tube, so that the phase coherence is maintained and the interference
of the two tubes can be observed with a good contrast.

If this is the case and if the left tube keeps the same uniform phase as before the
separation into two tubes, the measurement of the relative position of the fringes across
the soliton at positions y+ (above the soliton) and y− (below the soliton) provides
access to its momentum P (see (4.44)):

ϕ1,y− − ϕ1,y+ =
1

2
P (6.10)

In other words, this interference method translates the measurement of the spatial
phase of the interference pattern to the measurement of the phase of the wavefunction.

Experimentally, the procedure is more complex than it initially appears. Releasing
the strong confinement along the vertical direction causes the cloud to rapidly expand
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Figure 6.12: Bath phase difference across the soliton under the action of a con-
stant force. We prepare two tubes filled with atoms in |1,−1⟩ as described in the
main text with a density n0 = 3 × 108 atoms/m. A constant force is applied to
the cloud with a magnetic gradient of b′ = 1G/m. We spatially shape the density
profile of the atoms transferred in |2, 0⟩ with a 1/ cosh(y/σ)

1/4 function on DMD3
(σ = 3 µm) and Raman beams. The atom number in component 2 is N2 = 1200.
A mask is applied on the left tube so that only the right tube is populated with
atoms in |2, 0⟩. A MW pulse is then applied to create the immiscible mixture
|1,−1⟩/|1,+1⟩. Then, for each waiting time t in the presence of the force, we per-
form two different sequences. Either we image the |1,+1⟩ atoms and record the
position of the minority component wavepacket (which we call the soliton position)
as we did in Figure 6.9 (top panel), or we perform a phase measurement by turning
off the trap confinements and letting the two tubes interfere. We image the |1,−1⟩
atoms and get interference patterns like those represented in the bottom panel. An
analysis of the phase of the fringes above and below the soliton yields the phase
difference of the majority component matter-wave across the soliton and is plotted
in the middle panel. The vertical dashed lines represent integer multiples of T/2.
The blue dotted line marks ∆ϕ1 = ±π and the red horizontal dashed line shows
the position of the soliton as determined in the top panel.
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within the box, resulting in a noisy fringe signal. To mitigate this issue, the following
experimental steps are performed:

➢ After the mixture is held for a varied amount of time in the presence of the
magnetic gradient, we abruptly lower the power of the accordion beams by a
factor ∼ 7 and thus lower the accordion frequency by a factor

√
7 ∼ 2.6 ending

up at ωz ≃ 2π × 1.5 kHz.

➢ It triggers a horizontal plane breathing mode at the specific frequency 2ωz [104].
To be insensitive to this breathing mode, we thus wait half a period of this
oscillation: twait = π/ωz ≃ 150 µs before turning off the box potential.

➢ We then perform a 2D TOF (with the accordion still lowered) of 3ms.

➢ Finally, we switch off the accordion completely and perform a 3D TOF of 4ms.

With these experimental parameters, interference patterns similar to the ones
shown in Figure 6.12 were obtained. Solid black lines were added to the absorption
images to guide the reader, and were obtained by finding the extrema for each picture
line. Additionally, an oscillation run for the center of mass was interlaced with the
interference run. For a given waiting time in the presence of the force, we can thus
extract the center of mass position of the soliton (top panel) and the corresponding
map of the phase of the bath through the fringe images. A dashed red line indicates the
position of the soliton. The fringes are not perfectly parallel to the tube’s axis, which
is unexpected. This is likely due to slight spatial decoherence over time between the
two tubes. For a waiting time t ∼ 120ms, corresponding to the first wavepacket’s U-
turn, there is a noticeable dislocation of the fringes around the position of the soliton.
Maxima of the interference pattern above the soliton are prolonged with minima of the
interference pattern below the soliton, i.e. the difference of the majority component
matter-wave phases above the soliton and below ∆ϕ1 is close to π. This is what we
expect in the Josephson picture.

More quantitatively, we measure the phase difference of the bath across the soliton
for each waiting time. To do this, we take a region of 8 pixels (∼ 9 µm) above and
below the soliton13. For each of the two zones, we calculate the average phase of the
interference pattern over 4 fringes. ∆ϕ1 is then obtained by taking the difference of the
phase of the interference patterns above and below the soliton. However, this analysis
procedure resulted in blurred signals due to the tilt of some fringes. To address this
issue, we applied a high-pass filter to the phase difference signal. The resulting data
is shown in the middle panel of Figure 6.12.

We recall that since P is proportional to ∆ϕ1, and since P evolves linearly in time
due to the constant force, the evolution of ∆ϕ1 is predicted to be piecewise affine,
with phase jumps of 2π every t = (2k+1)T , where k is an integer and T is the period
of the oscillation. The π phase difference at t = T and t = 3T are well predicted.
However, there are some deviations from the piecewise affine evolution. To ensure
a better phase coherence of the tubes and reduce noise in the data, additional care
may be required in preparing the tubes. It is worth noting that this interference
experiment was repeated for other parameters, and π phase differences at the turning
point position of the soliton were also observed.

13Its position is determined in a juxtaposed run as we said above.
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6.5 Conclusion

In this chapter, we experimentally demonstrated the realization of an easy-axis
magnetic soliton within an immiscible mixture and analyzed its response to a constant
differential force, as proposed by Bresolin et al. [48].

First, we described two related experiments that also realized magnetic solitons,
but with miscible mixtures, known as easy-plane magnetic solitons. We then discussed
the necessary experimental ingredients to achieve our objective: a (quasi-)1D geometry
for the spin dynamics, an immiscible and long-lived mixture, a spatial control of
the spin density profile and the application of a small differential force. The first
realization (to the best of our knowledge) of a stationary easy-axis magnetic soliton
was described in the third section. It was demonstrated that the stability of the
magnetic soliton is maintained in this non-strictly one-dimensional geometry as long
as the spin healing length, which is the key length scale of the problem, is small or of
the same order of magnitude as the transverse size of the tube. We showed how to
calibrate the δg coefficient of the mixture in the low depletion regime.

In the last section, we experimentally demonstrated that a magnetic soliton reacts
to a constant force by exhibiting periodic oscillation, a quantum effect. Our results
are in agreement with the theoretical predictions for times up to 1 s. The period of
oscillations can be used to measure a small constant force with high precision, such
as in the case of Bloch oscillations in optical lattices and the measurement of the
gravity acceleration g [207]. It was found that as long as the adiabatic approximation
can be carried out, the observed oscillations remain robust even if the initial shape
of the wavepacket is not exact. Additionally, the description was extended to include
measurements not only of the position of the solitonX, but also its total momentum P .
Data for the bath phase during the evolution under the constant force were presented
using an interference method. We identified a π phase difference for the bath matter-
wave across the soliton for times t = (2k+1)T where k is an integer, as predicted. The
measurements of the two variables, namely the center of mass position of the soliton
and its momentum, are in good agreement with each other and with the theoretical
predictions in the adiabatic regime. Thus, we obtain a comprehensive understanding
of the dynamics of a magnetic soliton under a constant force.

To go further, we can consider the presence of a non-constant external magnetic
gradient, acting as a non-constant external force, which may modify the oscillatory
behavior. Furthermore, the tube’s geometry complicates the discussion of the back-
flow concept introduced at the end of Chapter 5, as the bath experiences multiple
reflections against the walls. To address these two topics, one approach is to keep a
constant applied force and examine a finite annular geometry with periodic boundary
conditions. This approach is suitable because the soliton movement can be described
using polar coordinates and the force remains unidirectional. As a result, the potential
seen by the soliton is sinusoidal instead of linear. Additionally, the periodic boundary
conditions provide a better framework for highlighting the backflow. This project is
ongoing within the team.

Can Bloch-like oscillations be observed in nonlinear systems other than the ul-
tracold atoms platform? Let us consider the photonics platform. Recently, temporal
vector solitons were demonstrated in single-mode birefringent fibers, where cross-
polarization phase modulation couples the two orthogonally polarized modes propa-
gating in the fiber. An example of this is the realization of a dark-bright soliton in
[177] and their analytical description can be found in [232]. However, it is unclear how
to apply a differential potential on the two polarization modes in this system. Other
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platforms, such as polaritons or quantum fluids, could be considered to observe this
phenomenon.
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Chapter 7

An all-optical Rubidium
Bose-Einstein Condensate for
Rydberg dressing

This chapter describes the construction of a new setup designed to address Rydberg
excitations in cold samples of Rubidium atoms in the near future. We obtain a Bose-
Einstein Condensate without a magnetic trap and with a sequence lasting under 10 s.
The laser and vacuum systems are similar to the ones of the setup already in place in
the team at Collège de France, which has been producing uniform atomic 2D samples
of Rubidium since 2016 (as detailed in Chapter 1), and with whom we discussed
scientific projects in Chapters 3 and 6. The main novelty is the implementation of
the painting technique to load more atoms from the molasses, without the need for
a magnetic trap. This technique may be useful in the future of the team and we
will report its principle and use. In the coming years, the two setups may be merged
to combine the specificities of the already running 2D experiment (accordion lattice,
DMDs, Raman beams, precise MW field generation) with this new one (painting,
Rydberg dressing) to study strongly interacting gases in reduced dimensions.

7.1 Design and goal of the setup

The design of this setup is now clarified, following a set of guiding principles.

7.1.1 Goal

Transferring atoms into a quadrupole trap, as described in Chapter 1, is a reliable
method to increase the density of the cloud before loading the atoms into an optical
dipole trap. However, it has some drawbacks. Firstly, the transfer to the quadrupole
magnetic trap and the subsequent evaporation step, which lasts about 12 s, are the
most-time consuming steps of the sequence, accounting for nearly half of the total
sequence duration. Secondly, the magnetic trap requires large coils around the cell to
create a gradient of approximately 200G/cm. To handle such high currents during
∼ 10 s, water-cooling of the coils is necessary. This introduces an additional compli-
cation that we aim to avoid. Additionally, thermalizing the quadrupole coils typically
takes one hour per day.

If no additional steps are included in the sequence, getting rid of the magnetic trap
step before going into a conservative optical trap obviously worsens the loading of very
dilute optical molasses (a volume of 1mm3 typically) into the dipole trap (a typical
volume of 100× 30× 30 µm3). Several optical techniques have been developed in the
community to obtain a large BEC (typically 106 atoms) without a quadrupole trap.
We can consider using an optical lattice to perform polarization gradient cooling [233],
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or cooling the sample via Raman beams [234]. Instead, in our case, we directly load
an optical dipole trap from the molasses using intermediary optical powers available
on the table. A high loading efficiency is achieved by using dynamically shaped dipole
beams via the painting technique. Further details on the process can be found in
section 7.3.4.

7.1.2 Design and vacuum system

With these ideas in mind, we began building a new setup in January 2021. In
March 2021, the system was put under high vacuum, and in May 2021, we obtained
the first signal of atoms trapped in a Magneto-Optical Trap. Together with Franco
Rabec, another PhD student, we optimized this signal and implemented the painting
technique to reach an optical dipole trap by the end of 2021. Guillaume Brochier
joined in April 2022, and we attained the first BEC in July 2022.

Our vacuum system operates on the following principle. We separate the atomic
source cell, where the atoms are realeased from a dispenser, and the science cell, where
we manipulate, cool and trap the cloud. To avoid collisions between the Rubidium
atoms and residual ones, which would decrease the cloud lifetime, extremely low pres-
sures are required in the science cell. To achieve this, we use two stages of differential
pumping to decrease the pressure between the atomic source cell and the science cell.
The vacuum system was designed to minimize the distance between the two cells,
resulting in negligible atom fall during propagation. This allows for the use of small
aperture connections to capture atoms from the atomic source cell and further reduce
pressure in the science cell.

Science cell

Ion pumps

Atomic source cell

Access for a turbo pump

Valve
Collimation tube

Custom 'T' crosses

Figure 7.1: Drawing of the vacuum system. On the right is the atom source cell
where the 2D MOT is performed. It is separated from the main vacuum system by
a valve. Two ion pumps together with a differential pumping tube allow to reach
< 1× 10−10 mbar in the science cell shown on the left of the drawing. We display a
zoom on the collimation tube carrying out one of the differential pumping stages.
There is also an access to a turbo pump near one of the ion pumps. The total
longitudinal distance of the vacuum system is ≃ 40 cm.

We use a commercial cold atom source of Rubidium provided by ColdQuanta. It
consists of a compact 25×15×15mm glass cell with metal dispensers, integrated into

145



Chapter 7. An all-optical Rubidium Bose-Einstein Condensate for Rydberg dressing

our vacuum system. A vapor source of Rubidium is released in the cell through Joule
heating of one of the dispensers. A typical electrical current of 3 A under a voltage
of 1.5 V is used. For a higher current, the number of atoms loaded is not increased
and for a lower current, the number of released atoms is poor.

A valve (VAT Mini UHV gate valve, Series 010, DN16) is positioned next to the
atom source cell to have the possibility to isolate it from the Ultra High Vacuum
system. Two stages of differential pumping are used in order to decrease the pressure
between the two cells. The two ingredients needed for differential pumping are a
difference of diameter in the vacuum connection and a pump on the side where the
vacuum is higher. The first stage is provided by a pinhole at the output of the 2D MOT
cell and a first ion pump. We use a differential pumping tube reducing the diameter of
the connection to the science cell from ≃ 5.2mm to ≃ 1.6mm and another ion pump
for the second stage. The two ion pumps (SAES NEXT Torr Z200) pump at a rate of
≃ 1L/s. They use the non-evaporable getter technology, which increases the pumping
rate up to ∼ 200L/s. It is composed of a film of an alloy of various elements, such
as Zirconium and Titanium, which captures and removes residual gases in the system
either through adsorption or chemical means.

When the system was placed under high-vacuum, we activated the ion pumps
once the pressure dropped below 10−5 mbar (obtained thanks to a turbo pump). The
getter was activated later once the pressure reached below 10−7 mbar. It was only
necessary to activate it once.

An exact measurement of the pressure in the vacuum system is not available. Only
typical pressures below 1 × 10−10mbar are given by the read-out of the ion pumps.
We had to bake out the atomic source cell for a few days at 200 ◦C in order to increase
desorption rates on the cell walls. The pressure next to this cell decreased from 10−8

to 1× 10−10mbar. Figure 7.1 provides an overview of the vacuum system.
The ion pumps are connected to the main axis of the vacuum system using custom

“T” crosses in order to minimize the distance between the atomic source cell and the
science cell. The remaining limiting factor if we were to do a more compact system is
probably the size of the science cell from Hellma, which is 15 cm long to optimize the
metal/glass contact.

7.2 Cooling and imaging: 780 nm lasers

We now detail the laser setup at 780 nm. This allows us to cool the cloud up to
the molasses step and image it.

7.2.1 Preparation of the beams

The light used for the cooling stages is provided by a 3W Toptica TA PRO laser
at 780 nm. The beams are prepared on a separate table using AOMs to precisely
control their frequencies and powers (Figure 7.2). The arrangement of the table is
similar to what is done on the already running experiment, described in Chapter 1,
and detailed in [68, 69]. The laser output frequency should be well-controlled to avoid
drifts over time caused by temperature, current variation of the diode or alignment
change of the grating. Implementing a feedback action on these parameters and using
an independent frequency reference are necessary. To accomplish this, a saturated
absorption setup with a Rb cell is used. The cell contains only the 87Rb isotope. The
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AOM Push/Imaging

AOM 2D MOT

AOM 3D MOT

AOM Lock
AOM Repump

EOM

AOM

PD

TA PRO 3 W

DL PRO 0.1 W

Repumper beam

Push beam

Imaging beam

2D MOT beam

3D MOT beam

Rb cell

Iris

Figure 7.2: Drawing of the 780 nm lasers preparation table. On the right, we use
light coming from a TA PRO 3W to provide the light needed for the 3D MOT,
2D MOT, push and imaging beams. We give the values of the detunings compared
to the F = 2 → F ′ = 3 line during the MOT loading in units of Γ ≃ 6MHz, the
natural line width of the first electronic excited level. A lock on a Rb cell is also
represented. On the left, we prepare the light needed for the repumper beam. It is
also locked on the same Rb cell.

targeted line is the crossover (CO) F ′ = 2 / F ′ = 3 line (Figure 1.1). A Qubig wedged1

EOM (PM7 - NIR), which generates sidebands at ±25MHz, modulates the laser light
which, after passing through the Rb cell twice, reaches a photodiode. Demodulation

1In principle, the wedged design allows the elimination of the interference between the carrier
and the two orthogonal sidebands and thus enables the reduction of noise in the modulated light
[235].
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within a Pound-Drever-Hall electronic scheme results in an antisymmetric error signal,
needed for the feedback action2 and locking of the laser on the atomic line.

The main output of the laser at 2.5W goes through an EOM (New Focus 4851)
which modulates the light at 6.58GHz3. The level of the created sidebands is ≃ 10%.
One of them is essential in the cooling process to pick up atoms that have accidentally
fallen into F = 1 and thus to have a cycling transition F = 2 → F ′ = 3.

After passing through the EOM, the beams carry the two sidebands. Their ampli-
tude can be controlled using a mixer4 and their relative position with respect to the
carrier can be adjusted with a VCO (Voltage Controlled Oscillator ZX95-6740C-S+
from Mini-Circuits).

The outgoing beam is then splitted into three different parts: Imaging/Push,
which should output a resonant light, 2D MOT and 3D MOT light which are typically
detuned by −20MHz with respect to the cooling transition. To precisely control the
power and frequency of these paths, we use AOMs (AA MT110-A1.5-IR) mounted in
a double-pass configuration [236] so that the alignment of the fiber is unchanged when
the frequency of the AOM is modified. They are aligned with a cat’s eye [237] lens
to further increase the frequency range of high diffraction efficiencies. We typically
reach 50% of efficiency for the combination of double-pass AOMs and fiber couplings.

The repumping light produced by the sidebands of the EOM is essential for the
cooling up to the molasses step. However, it is convenient to have another generation
of repumping light, independent of the 2D MOT and 3D MOT beams, for example
to bring atoms from the long-lived F = 1 state to the imaging light-sensitive F = 2
state. For this we use light from a diode laser DL PRO from Toptica5. It is locked on
the same Rb cell as the TA laser, but on a different line, the CO F ′ = 1 / F ′ = 26.
An AOM (AA MT80-A1.5-IR) allows to specifically target the repumping line (see
Figure 1.1).

7.2.2 2D MOT

We now return to the main table experiment and describe the various steps of
cooling.

The production of a cold atomic sample begins in the atomic source cell where
a dispenser of Rb is heated to ∼ 60 ◦C, releasing atoms into the cell. They are
captured in a 2D Magneto-Optical-Trap, the combination of two circularly polar-
ized retroreflected beams along two orthogonal directions and a magnetic gradient.
ColdQuanta provides the permanent magnets that generate a quadrupolar magnetic
field of ≃ 37G/cm needed to trap the atoms in the 2D MOT cell. The 2D MOT
beams are shaped with cylindrical lenses of aspect ratio 2:3 to fit the shape of the cell
so as to cool the largest possible number of atoms. The optical power per beam is
P ≃ 60mW and their waist is ≃ 8× 12mm. They are detuned by ≃ −20MHz from
the resonance.

Another light beam, linearly polarized and called the push beam, is switched on
simultaneously to transfer the trapped atoms into the main cell. It propagates in the

2The feedback acts on the diode current.
3The frequency is chosen so that atoms can be repumped from F = 1 to F ′ = 2 with this light

passing through the double-pass AOMs.
4We need for example to suppress them for the imaging step. Its reference is ZAD-1H+ from

Mini-Circuits.
5It would be difficult to use this laser for repumping atoms during the cooling steps because we

would have to overlap the beam with the 2D and 3D MOT beams.
6This is different from the choice of the Rb experiment already running at Collège de France,

used throughout this thesis, where the line chosen was the line F = 1 → F ′ = 2.
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Cylindrical lenses

Top and bottom beams

2D MOT fiber

Push fiber

Rb dispenser

Main cell

Magnetic rods

Figure 7.3: Drawing of the 2D MOT table. Two retroflected beams illuminate the
atomic source cell where a piece of Rb is heated. The required circularly polarized
beams are obtained with λ

4 waveplates. Permanent magnets (black rods) around
the cell furnish the proper magnetic field map (we draw two of them but there
are two others not shown here). Cylindrical lenses allow anisotropic shaping of
the beams. We have not shown the retroflected beams that cool the atoms in the
vertical direction. A push beam brings the cloud to the main cell where the other
cooling steps take place.

non-trapped direction, the longitudinal axis of the vacuum system. Its waist is ∼ 2mm
and its power is ∼ 2mW. It is resonant with the cycling transition F = 2 → F ′ = 3.

7.2.3 3D MOT

On the other side of the vacuum system, i.e. in what we call the science cell,
a 3D MOT is performed. We shine, during 3 s, six MOT beams at the center of a
quadrupole trap provided by two vertical circular coils. This is where the cold atomic
sample, pushed out of the 2D MOT cell, is further cooled along the three directions
and captured. There are four orthogonal beams in the plane, two of which form
an angle of 45◦ with respect to the push beam direction. The other two propagate
vertically and pass through the MOT coils. Each beam has a power of ≃ 40mW, a
detuning of −20MHz, and a waist of ≃ 6mm7.

The MOT coils are mounted on a 1 inch base circular plate. They are placed
vertically as close to the cell as possible and consist of 15 turns. A current of 5A
is sufficient to provide the required gradient of ≃ 30G/cm. Additional bias coils,
mounted in Helmholtz configuration, allow the magnetic field around the cell to be
controlled and thus the center of the quadrupole trap to be shifted.

Two imaging beams are used. One of them is located in the horizontal plane
and makes an angle of 60◦ with respect to the push beam. Its magnification can be
changed between the values 1.3 and 0.4. The other one is almost vertical (there is a
small angle with respect to one of the vertical MOT beams, so we can separate the two
beams under the table) and its magnification is 2.5. The camera used are Lumenera
Camera LM-135M.

7We are limited by the size of the optics used to bring the 3D MOT beams to the cell.
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3D MOT fiber

Horizontal imaging fiber2D MOT cell

Push beam

Repumper fiber

Dipole fiber 1

Dipole fiber 2

Top and bottom beams

Figure 7.4: Drawing of the 3D MOT table. Six MOT beams (only four of them
are shown propagating in the horizontal plane) are used to cool the atoms, coming
from the 2D MOT cell via the push beam, in a 3D MOT. λ

4 waveplates are re-
quired to circularly polarize the beams. A pair of vertical circular coils mounted in
an anti-Helmholtz configuration provides the quadrupole trap needed to trap the
cloud (only one of them is shown). Three pairs of rectangular coils (the bottom
vertical coil is not represented), mounted in Helmholtz configuration, provide con-
trol of the bias fields around the cell. Absorption imaging on this cloud can be
performed thanks to imaging beams (only the horizontal one is represented). The
two independent dipole beams are also shown. Each of them passes through an
AOM, which realizes time-averaged potentials. A telescope is also used to increase
the size of each beam before it is focused on the atomic plane. Their power is locked
via two photodiodes for each beam.

Thanks to absorption imaging, we extract information on the cloud8. After the
MOT step, the atom number is ∼ 109 at a temperature of ∼ 5× 102 µK. It is difficult

8We use a 50µs pulse of repumping light to transfer atoms to F = 2 before imaging them.
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to estimate a temperature with a time of flight (TOF) expansion due to the size of
the cloud. The loading rates in the science cell are typically 3× 108 atoms/s.

The next experimental steps will be used to further reduce the temperature of the
cloud below the Doppler limit and then to increase its density.

7.2.4 Compressed MOT and Molasses

After the MOT loading, during 20ms, we detune the MOT beams from −20MHz
to −40MHz and reduce the current in the MOT coils from 5 to 3A in the so-called
compressed MOT (cMOT) step. This cools the cloud by reducing light scattering.
Then a first molasses step of 10ms cools it further. The magnetic gradient is turned
off, the MOT beams are further red-detuned to end up at −50MHz from resonance,
and their power is reduced to 10mW per beam. The cloud then falls into the crossed
dipole trap that was turned on during the cMOT step. We use a second molasses
step during which the sidebands of the EOM are progressively turned off, so that at
the end of this timestep, the cloud is polarized in F = 1, with ≃ 6 × 108 atoms at a
temperature of 25 µK.

7.3 Production of a BEC in a cODT thanks to the paint-
ing technique

At the end of these steps, in the setup described in Chapter 1 and used through-
out this thesis, we loaded the cloud into a quadrupole trap that trapped only the
|F = 1,mF = −1⟩ atoms. Radio-frequency evaporation was then performed for
12 s to increase the density of the cloud. Afterwards, the cloud was loaded into the
crossed optical dipole trap (cODT). As previously mentioned, we aim to remove this
quadrupole magnetic trap step in this new setup. We now present various alternative
solutions to replace it while still reaching a BEC in the cODT. The final decision is
guided by the amount of optical power available on the table.

7.3.1 Direct loading in a crossed optical dipole trap

The direct loading of molasses inside a dipole trap has been used in the community.
However, without sufficient optical power, attempting to load large molasses into a
tightly confined trap of small volume would result in poor loading efficiency. The
addition of a dimple beam could increase the collision rate and potentially help reach
the BEC regime, although the resulting BEC would likely be small. For instance, a
BEC of 2× 104 Rubidium atoms has recently been reported in [238].

For non alkali atoms, alternative methods have been developed to reach a BEC by
directly loading the molasses into a dipole trap. Stellmer et al. [239] combined two
cooling transitions of Strontium atoms to achieve a high phase space density (PSD)
in the molasses. They then used several high-power red-detuned beams of different
waists to reach a BEC without evaporative cooling in a total time of 2 s.

7.3.2 All-optical cooling solutions

The direct loading of an ODT, even with the addition of a dimple, is thus not
sufficient for our goals in terms of condensed atom numbers (∼ 1 × 105) given the
optical power we choose to put on the optical table (∼ 10W). Still, other solutions
are possible, which involve intermediary optical powers. These solutions will be de-
tailed in the following lines. It is worth noting that we refer to them as “all-optical”
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solutions, although this term may be usually reserved for solutions that do not in-
volve evaporative cooling. Here, this term includes all solutions that do not utilize a
magnetic trap.

One of them uses the principle of Raman cooling [240], which consists in removing
excess in kinetic energy via two-photon Raman transitions inside a crossed ODT. It is
combined with optical pumping. For instance, using this technique, Urvoy et al. reach
a Rb BEC of 2.5× 104 atoms in less than 2 s without the need for evaporative cooling
[241]. Although this technique is initially quite efficient9 (γ ≃ 7), it was realized for
rather small clouds in ODTs of waists ≃ 10 µm and the performances of cooling to the
BEC is said to be density-limited.

Other approaches use an intermediate far-off-resonance optical lattice (FORL) as
an intermediate step to load the molasses into the ODT. It allows to limit the losses
by pinning the atoms to the lattice sites. A first idea is then to continue polarization
gradient cooling inside this lattice [233]. The phase space density at the end of this
step can be relatively high (∼ 0.002 in [233]) so that the loading and evaporation
steps inside the dipole trap are more efficient than without the FORL. In addition, a
moving lens was used in order to dynamically reduce the volume of the ODT. A final
BEC of 3.5× 105 atoms in 3 s was produced10.

A second idea is to use an optical lattice in combination with Raman beams
(which can also be the lattice beams) and repumper beams. This technique is called
degenerate Raman sideband cooling. At each lattice site, the atoms are cooled to the
lowest vibrational level of the site. The technique was pioneered in the group of Chu
[234] in the case of Cesium atoms and was recently applied to another alkali atom,
Potassium, in [243]. The temperatures obtained at the end of this step can reach
the sub µK regime. Loading and evaporation in the optical dipole trap can then be
performed efficiently.

Although these methods may be efficient, they require the addition of several
beams, which we would like to avoid in our compact setup.

Instead, the technique of dynamical loading into the ODT was chosen. The waist
of the dipole beams, which determines the trapping volume in the ODT, should ideally
be large during loading and small at the end of the evaporation step to achieve the
BEC. A dynamical change in the waist would allow for a connection between these
two regimes.

Instead of using a moving lens (as done in [233] or in Greiner’s team [244], where
they managed to produce a BEC of Erbium atoms in less than 1 s by carefully opti-
mizing the sequence), we use time-averaged potentials, obtained from rapidly moving
beams. More precisely, the angle of each dipolar beam is changed so rapidly that
an averaged trap is created with a volume determined by the extreme positions of
the laser beam [245]. This technique is often referred to as “painting” because it is
reminiscent of the way a painter would move a brush (the laser) on a canvas (the
trapping region). We will describe it in more details in the following, but first we
discuss the parameters that influence the loading and evaporation in the ODT. This

9The efficiency of the cooling is usually determined by the factor γ, which is defined as the gain
in PSD at the cost of losing atoms:

γ = −d ln(PSD)

d ln(N)
(7.1)

10The same procedure with a more complicated arrangement of the dipole traps was performed
in [242] for which they obtained a BEC of ∼ 106 atoms, still in 3 s.
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will further motivate the use of the painting technique by independently controlling
both the power and the waist of each beam.

7.3.3 A two-parameter control during the evaporation process

The parameters that determine both loading and evaporation efficiencies in an
optical dipole trap are the waists of the beams (mean waist w̄) and their powers P .
They affect the two following characteristics of the trap: its depth U and its frequency
ω̄.

The depth of the trap is given by U ∝ P
w̄2 (see [147] and Chapter 3). Concerning

the longitudinal trapping frequencies ω̄, the scaling for a Gaussian beam with fixed
waist is: ω̄ ∝

√
U
w̄ ∝

√
P
w̄2 . The scaling U/kBT ≃ 10 is typical for optical dipole traps

and thus a necessary condition for loading a cloud at temperature T is to have a
sufficiently profound trap with depth U ≳ 10 kBT . This is well verified with two
beams at λ = 1064 nm of power P ≃ 10W11 and waist on the atoms w̄ ≃ 50 µm.

For the loading step, the higher the optical power, the more atoms are loaded into
the trap. As mentioned above, the choice of the waist during the loading results from
a trade-off between the larger possible loaded volume (large w̄) and the larger possible
potential depth (small w̄). If it is possible to vary the waist dynamically during the
evaporation, the former solution will prevail and we will compensate for the decrease
in potential depth with a large optical power.

The evaporation step requires a lot of care to reach the BEC regime, because
simply doing it by lowering the trap depth leads to a lower collision rate and thus a
lower efficiency. Concerning the evaporation step, there is thus also a trade-off in the
choice of waist. In order to lower the temperature, a larger waist would contribute to
a decrease in trap depth. However, it would reduce the atomic density and the opti-
mization of the phase space density is not guaranteed. Moreover, the elastic collision
rate Γel is also a key quantity for an efficient evaporation and its maximization would
require small trapping volumes and thus small waists. Indeed, there are unavoidable
atomic losses in the optical trap that do not contribute to any gain in the phase space
density. Thus, the time scale of the “good collisions” that allow thermalization of the
cloud at a smaller temperature (∝ 1/Γel) must be smaller than the time scale of the
“bad collisions” that cause atomic losses without the thermalization effect (∝ 1/Γloss).
The competition between the two timescales is contained in the parameter:

R =
Γel

Γloss
(7.2)

A good evaporation ramp requires keeping this ratio R high while optimizing
the phase space density nλ3th ∝ Nw̄0

P 3/2 . Depending on the dominant loss process, the

scaling of R with the different parameters varies: it is ∝ Nω̄3

T ∝ N P 1/2

w̄4 when 1-body
losses dominate, while it is ∝ T 2

Nω̄3 ∝ 1
N w̄

2P 1/2 for 3-body losses12. At the beginning
of the evaporation ramp, one-body losses dominate and the evaporation efficiency
γ = −d ln(PSD)

d ln(N) and the collision rate can be optimized simultaneously with a small
waist. However, when 3-body losses become dominant, keeping a large value of R is
incompatible with a large atom number and a small waist.

Moreover, as Γel increases, the ideal regime of runaway evaporation can be ob-
tained: the cooler the cloud, the more efficient the evaporation. It was said to be

11The amount of heating, due to spontaneous scattering, remains negligible for this level of power
and detuning, a few nK/s.

12There are no 2-body losses in the F = 1 state.
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unattainable in the case of a single dipole beam [246] for the reason given above con-
cerning the dominance of 3-body losses. However, in the case of a tilted potential via
a magnetic gradient [247] or an off-centered crossed beam configuration [248], it has
been demonstrated that runaway evaporation is doable in an optical trap. In these
two realizations, the key point is the independent control of the trap confinement
given by ω̄ (via the waist of the smallest dipole beam in [248]) and the trap depth
U (via the power of the wide uncentered beam in [248]). The relation U ∝ ω̄2 is no
longer verified in either case (since w̄ is not kept constant), and the reasoning done
above about R is not so simple. In this case, the trade-off on w̄ can be (partially)
avoided: the lowering of the trap depth is not as simply related to the lowering of the
trap frequencies as before.

The painting technique, via time-averaged potentials, also decouples the degrees
of freedom of trap depth and trap confinement via a dynamic variation of the beam
waist, a key advantage for an efficient evaporative cooling, as we have seen here.

7.3.4 Time-averaged potentials

Principle

The following section describes the painting technique used in our setup to achieve
a BEC without the use of a magnetic trap.

Each high power dipole beam is sent through an AOM, and we will describe
what happens for only one of the two identical systems. The AOM is frequency
modulated at ωmod from −F to +F , which moves the angle the beam makes with
respect to the direction of propagation from −θmax to +θmax. The manner in which
the frequency is varied over time during each modulation period is controlled by an
Arbitrary Waveform Generator (AWG). After passing through a converging lens, the
angular variation of the beam is transformed into a transverse variation of the position
of the beam in the focal plane of the lens. The modulation with the AWG results
in a specific variation of this position called ξ(t), whose extrema are denoted as −h0
and +h0. If the modulation frequency is sufficiently high compared to the frequencies
of the trapped cloud, the atoms feel an effective potential, which is the average over
time of the potential created by the modulated dipole beam. Therefore, the average
intensity profile at position ξ′ results from the time that the laser beam spends at
that position.

More quantitatively, following [245], we note I [ξ(t)] = P0δ [ξ(t)] the unmodulated
(i.e. at a fixed time) beam intensity at the position on the atoms ξ(t), where δ is the
Dirac distribution. To simplify the calculations, we do not take I to be a Gaussian
function. This leads to small differences in the averaged time potential, especially for
large modulation frequencies F [245]. We now want to find the specific variation of
ξ(t) to obtain the following time-averaged intensity profile:

Ĩ(ξ′) = Ĩ0 f(ξ
′) (7.3)

where Ĩ0 = Ĩ(0) is the averaged central intensity and f is the desired variation of the
time-averaged intensity.

Since we assume a delta function for the unmodulated intensity, the time the beam
spends at the position ξ′ satisfies:

dt (ξ = ξ′)
dt (ξ = 0)

=
Ĩ(ξ′)

Ĩ(0)
= f(ξ′) (7.4)

154



Chapter 7. An all-optical Rubidium Bose-Einstein Condensate for Rydberg dressing

Writing dt as dξ

ξ̇
and v0 = ξ̇(ξ = 0), we get:

ξ̇(ξ = ξ′) =
v0
f(ξ′)

(7.5)

We thus see that at a maximum of the averaged intensity, the time variation
of the center position modulation should be minimal. This confirms our previous
statement that the laser beam “spends more time in the regions where the desired
average intensity profile is high”.

In the case of a harmonic time-averaged potential of the form: f(ξ′) = 1−
(
ξ′
h0

)2
,

which is a first simple choice for an average trapping intensity profile, the integration
of the differential equation involving ξ(t) (7.5) leads to the implicit equation:
ξ(t)3/3h20−ξ(t)+v0t = 0. One of the roots ξ0(t), centered at ξ′ = 0, will be the desired
center position modulation evolution to obtain an averaged intensity variation of the
form (7.3). It is represented in Figure 7.6 together with other types of modulation
shapes. The principle of the painting technique is summarized in Figure 7.5.

Experimental implementation

Frequency generator

AWG

AOM

Atomic plane

Figure 7.5: Description of the time-averaged potential technique. An arbitrary
waveform generator is used to modulate a Rigol frequency generator, which then
sends the RF signal to an AOM. This causes a time modulation of the angle δθ(t)
made by the first-order diffracted beam. After being focused by a converging lens,
the beam’s position in the atomic plane ξ(t) is modulated in time. The modulation
is fast enough to ensure that the potential felt by the atoms is averaged over time.
We present the case of an averaged harmonic potential felt by the atoms.

We now discuss the experimental implementation of the painting technique on our
setup. For each beam, a converging lens of focal length f ′3 = 100mm is used in order
to focus sharply the beam onto the atoms to create the dipole trap. The angle δθ(t)
made by the beam with respect to the unmodulated beam is related to the center
position modulation as δθ(t) ≃ ξ(t)

f ′3
in the limit of small modulation angles. Since

δθ(t) is itself proportional to the AOM frequency shift δfAOM(t) = c δθ(t)
λ (c is the

sound frequency in the AOM crystal and λ = 1064 nm is the wavelength of the dipole
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beams), we thus obtain the desired evolution of the AOM frequency when we know
ξ(t):

δfAOM(t) =
c ξ(t)

λf ′3
(7.6)

The expected average potential will be generated provided that the modulation
frequency of the AOM is high enough in front of the trapping frequencies of the cloud.
We typically use a frequency modulation ωmod = 2π × 200 kHz which is at least an
order of magnitude larger than the trapping frequencies (see section 7.3.6 for their
measurements). Another requirement is to place the AOM in the object-side focal
plane of the lens. This ensures that the outgoing modulated beams will exit the lens
parallel to each other, validating the above calculation.

Actually, we use two other lenses of focal lengths (f ′1, f ′2), forming a telescope 2:1
between the AOM and the last focusing lens. Indeed, to obtain an unmodulated beam
of waist w0 ≃ 30 µm, the waist of the beam before the last lens should typically be
1mm. For our AOM (MT80-A1.5-1064 from AA OptoElectronics)13, we have to limit
the waist of the beam before the AOM to 0.5mm, hence the need of a telescope after
the AOM. The AOM should be positioned in the focal plane of the optical system,
which is now composed of three lenses, to ensure proper operation of the time-averaged
potential technique. The formula (7.6) is modified to take this telescope into account
and reads:

ξ(t) =
f ′1f

′
3

f ′2

λ δfAOM(t)

c
(7.7)

Using the value of c = 4200m/s for the speed of sound in the TeO2 crystal of the
AOM, for a maximum deviation frequency of δfAOM = F = 20MHz we get a center
position variation h

(max)
0 of ± 250 µm ≃ 10×w0. This is the typical expected order

of magnitude for an efficient loading in the dipole trap for the intermediate power
(∼ 10W) used in our setup.

After discussing how the painting technique allows for precise control of the ef-
fective waist felt by the atoms, let us now briefly consider the other key parameter
in the dipole trap: optical power. We can control this parameter independently with
the same AOM via Voltage Variable Attenuators. The total optical power diffracted
by the AOM and directed to the atoms is ∼ 10W (per arm) during the loading step.
We use high-power fibers to transport the light from a side table to the main table.
We first tried using 2m Shäfter-Kirchhoff end cap fibers to get the highest coupling
efficiencies. However, they broke very quickly, so we switched to Thorlabs fibers (P3-
1064PM-FC-2-PM), which seem to be more robust, although the coupling efficiency is
slightly lower. In addition, rotating waveplates are utilized on the side table and con-
trolled by a computer through RS232 communication to prevent continuous excessive
heating of the fibers and degradation.

13We initially used Gooch and Housego (model I-M080-2C10G-4-AM3) AOMs, but they were
more sensitive to thermal effects. As the RF power was varied, we observed a shift in focus position
up to 300 µm. We still saw a bit this shift with the AA OptoElectronics AOMs but we corrected it
by tilting the second lens of the telescope by ∼ 5◦ (inspired by [249]).
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Figure 7.6: Waveform variation effect. We vary the waveform modulating the
frequency generator at 1/Tmod = 200 kHz. The first column represents the center
position modulation, which is directly proportional to the frequency modulation
waveform via (7.7). The second column contains the resulting average intensity
profile Ĩ(ξ). The third column shows 2D intensity profiles obtained by modulating
only one dipole arm. The fourth column presents atomic absorption images taken
with vertical imaging. The corresponding modulation is switched on along the two
arms forming an angle of 60 ◦. (a): Triangular modulation. The derivative of ξ(t) is
discontinuous at h0 and −h0 and constant otherwise, resulting in flat intensity and
atomic profiles. (b): Square modulation. The beam will “spend time” at h0 and
−h0 due to the square shape and no time everywhere else, leading to the bimodal
intensity distribution. Crossing the two modulated dipole beams, we obtain a 2×2
lattice. (c): Solution of ξ(t)3/3h20 − ξ(t) + v0t = 0 equation. The derivative is
discontinuous in −h0 and h0 and varies smoothly otherwise. The beam spends
more time around ξ = 0. It leads to an averaged parabolic intensity profile on the
camera and to a Gaussian atomic density profile. We use h0 ≃ 250 µm for both the
light and absorption images.

To verify the proper functioning of the painting, we measure the number of atoms
loaded in the crossed dipole trap as a function of the modulation amplitude, while
keeping the optical power coming into the AOMs constant. Without painting, the
atom number is < 106 atoms, while it reaches more than 1 × 107 atoms with the
maximum amplitude of painting (h(max)

0 = 250 µm). After a holding time of 0.5 s, the
number of atoms decreases to ∼ 6× 106. The temperature after the loading is similar
to what we get at the end of the molasses step ≃ 30 µK, confirming that the trap
depth is adapted to the loading of the molasses.

Since the atom number loaded does not increase for h0 ≳ 200 µm, we conclude
that we load the maximum atom number with the available optical power and our
molasses. The atom number loaded in the dipole trap is the chosen figure of merit at
this stage, but this choice could be debated.

We thus have two degrees of freedom: painting amplitude and optical power, which
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Figure 7.7: Variation of the painting amplitude. We change the painting am-
plitude along the right arm during the loading of the dipole trap and we look at
the number of atoms obtained in the BEC after a TOF of 15ms with a maximum
painting amplitude along the left arm during the loading (h0/h

(max)
0 (left) = 1). We

also vary the painting amplitudes of both arms in the inset. The two arms are
nearly symmetrical to each other. The end points of the painting amplitudes after
the evaporation ramp are kept fixed at h0 = 0 (no more painting). The colormap
for the BEC absorption images is kept fixed. To get a more complete description
of the painting effect, we could have looked at the temperature of the cloud as a
function of the painting amplitude.

can be used to differentially affect trap depth and trap frequencies, making them useful
tools for an evaporation ramp.

7.3.5 Evaporation

PID control of the dipole beam power is essential to properly control the evap-
oration ramps. For this we use photodiodes (PD) in combination with an analog
PID controller from Stanford Research (SRS) and a VVA for each AOM. Actually,
the large power range (from 10W to ≃ 10mW) requires a pair of photodiodes with
different gains for each dipole arm. At the beginning of the first evaporation ramp,
which is chosen to be linear, we intentionnaly saturate one PD and when the power
becomes so low that we are limited by noise on the other PD, the one that was sat-
urated takes over and locks the power that we ramp exponentially to its final value.
A beam sampler separates the optical path to the two PDs for each arm, as shown in
Figure 7.4.

The evaporation time step is divided into two distinct steps. During the first one,
which lasts 0.9 s, we linearly decrease the deviation frequency of each AOM in 0.5 s
from F = ±20MHz to F = 0, thus decreasing the trapping region. Each beam at the
end of this step is no longer modulated and has a waist w0 ≃ 30 µm on the atoms. The
power of the dipole beams is also ramped linearly from 10W to 1W. Then, during
the second evaporation ramp, the optical power is ramped down exponentially in 3 s
from 1W to 25mW.
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In addition, during the second evaporation ramp, we perform spin distillation
[250, 251]. Indeed, since there is no quadrupole trap in this setup, the atoms are
not polarized in a particular spin state when they are in the dipole trap. To have
a single spin state BEC, we add a vertical magnetic field gradient with the MOT
coils of ≃ 10G/cm and shift the zero of magnetic field above the initial position by
∼ 50 µm by adding a bias field along the vertical direction. This allows us to vertically
trap the low-field seeker state i.e. the mF = −1 state which is also trapped in the
plane directions (see Figure 7.8). We turn on this magnetic gradient only during the
second step of evaporation, when the trap is no longer deep enough to hold the cloud
against gravity. We verify that this magnetic gradient is adequate to distill the cloud
(Figure 7.8).
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Figure 7.8: Spin distillation. We apply a magnetic gradient and a bias field to the
cloud to distill it into one mF state. The displacement of the magnetic field center
above the cloud allows to trap the mF = −1 state, as confirmed by the simulation
of the trap depth performed in our team by Guillaume Brochier (b). The simulation
parameters are those of the end of evaporation. To properly resolve the evolution of
the spin populations in (a), we start the spin distillation 0.5 s after the beginning of
the second evaporation ramp14. The absorption images are obtained after a TOF
of 30ms, for which we compensate the gravity (Stern-Gerlach sequence).

We measure the different spin populations at different points of the evaporation
ramp by switching off the trap for a time of flight of ∼ 30ms while applying a magnetic
gradient that separates the different spin populations. The magnetic gradient used
for this measurement is larger than the one used for the spin distillation in order to
compensate for gravity for the mF = −1 state (30G/cm).

14In the sequence that maximizes the number of atoms in the BEC, the spin distillation is started
at the same time as the second evaporation ramp. Here, we delay the beginning of the spin distillation
step by 0.5 s for better visualization.
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Figure 7.9: Transition to the BEC. We vary the end power of the evaporation
ramp. (a): Pf = 45mW, (b): Pf = 30mW, and (c): Pf = 20mW. For each of
them, we plot the corresponding absorption images after a time of flight of 15ms,
taken with horizontal imaging, together with cuts along the two directions. A
Gaussian fit is plotted with a black solid line while a sum of two Gaussian fits15,
representing the condensed and thermal fractions, respectively, is depicted with a
green solid line. The associated three-dimensional images are shown. The colorbar
is fixed for all the plots.

By using all the tools described above, we manage to reach the BEC regime ∼ 5 s
after loading the dipole trap. We look at the evolution of the atom number and
temperature (measured with a ballistic expansion) during the evaporation ramps.
Then, thanks to the knowledge of the size of the cloud, we calculate the phase space
density and the efficiency of the evaporation, shown in Figure 7.10. It should be
noted that as soon as a condensate fraction appears, the measurement of the cloud
temperature by ballistic expansion is no longer valid. However, it gives a rough
estimate. We reach the BEC phase with N ∼ 1.5 × 105 atoms and a temperature
of ∼ 30 nK with a total sequence time of just under 10 s (Figure 7.9). The average
efficiency during the evaporation γ ∼ 3.5 is typical (see for example [252]), though
far from the highest reached in the community. Nevertheless, the numbers obtained,
together with the sequence time, are satisfactory. It seems that we are not limited
by the painting amplitude during the loading of the dipole trap (see Figure 7.7), but
rather by the amount of optical power on the table. The painting technique allows to
gain at least a factor ∼ 3 on the atom number obtained in the BEC.

7.3.6 Frequencies of the ODT

To fully characterize the BEC, we can extract the trap frequencies in the optical
dipole trap. Several techniques exist, but in this case, the painting technique is used
to observe the cloud’s response to a perturbation. More precisely, after obtaining the
BEC, we re-activate the center position modulation on one of the dipole arms using
a different waveform (square shape (b) in Figure 7.6) for 0.3ms. This abrupt trigger

15Ideally, the condensed fraction should be modeled using a Thomas-Fermi fit. However, due to
our low imaging resolution, we use the sum of two Gaussian fits.
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Figure 7.10: Efficiency of the evaporation in the dipole trap. (a): We plot the
evolution of the atom number (blue circles) and the temperature (red squares) as
a function of the evaporation time. The dashed vertical line separates the two
evaporation steps: the first one is mainly a compression of the cloud (reduction of
the painting) and the second one corresponds to a typical exponential evaporation
ramp of the optical power. The evolution of the phase space density is shown in the
inset with violet diamonds. The grey area indicates the moment when a condensed
fraction becomes visible on the absorption images. The last point is displayed in
Figure 7.9(c). (b): The evolution of the PSD is plotted as a function of N using a
log-log scale. This allows for the extraction of an efficiency γ ∼ 3.4 for the second
evaporation ramp by linearly fitting the points (black dashed line).

causes a left-right movement of the cloud16. We record the following evolution of the
center of mass position of the cloud and extract one of the trapping frequencies (see
Figure 7.11).
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Figure 7.11: Trap frequency measurement by the painting technique. We trigger
a transverse atomic motion in the plane by changing the modulation waveform on
one of the two AOMs. The result is an oscillation of the center of mass position of
the cloud around its equilibrium position. A sinusoidal fit allows us to access the
frequency of the trap along the Push direction: fx = (123± 5)Hz.

16This is for the highest in-plane frequency (along the Push direction). For the other one (in plane
perpendicular to the Push direction), which we expect to be twice smaller due to the orientation of
the arms, we quench both arms in opposite directions. Regarding the vertical frequency, we quench
the power of the dipole arms.
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In summary, the measured trapping frequencies along the (x,y,z) directions are
(123± 5, 63± 8, 130± 18) Hz, consistent with the team’s numerical simulations:
(143, 72, 170) Hz.

In this section, we demonstrated how a cloud can be cooled to the BEC regime
solely through optical techniques. The importance of the painting technique to reach
the BEC regime with more than 105 atoms was emphasized. Optimizing the evolution
of the two degrees of freedom, namely painting amplitude and power, enabled us to
reach the degenerate regime in less than 10 s. The obtained numbers are adequate for
further exploration on this setup.

For larger BECs, higher power dipole beams are probably necessary. One possible
upgrade, without changing the lasers, would be to eliminate the fibers, resulting in an
optical power increase of ∼ 40%.

7.4 Outlook

To conclude this chapter, we present the future scientific directions that are avail-
able after obtaining a degenerate cloud in this compact setup. We will not delve too
deeply into the details.

7.4.1 The versatily of the painting technique

The spatial modulation tool offers various possibilities. As previously mentioned,
the choice of the modulation waveform allows for the manipulation of the dipole
trap’s geometry. In the previous section, a waveform resulting in a harmonic averaged
intensity profile was utilized. However, other types of modulation waveforms, such
as a step function, could be considered. This would result in several clouds, each
separated by ∼ 100 µm and containing ∼ 105 atoms (see Figure 7.12(a)).

Figure 7.12: Illustration of the versatility of the painting technique. (a): the
optical dipole trap is loaded with a step function instead of a modulation resulting
in an averaged harmonic intensity profile. This modulation on the two arms leads
to a lattice of 3 × 3 sites on the atoms. An absorption image taken with vertical
imaging is shown. (b): the BEC is split by switching on the modulation again after
obtaining the BEC. A 4-step function is utilized to divide the BEC into 4 distinct
BECs, separated by a few tens of microns, each containing ∼ 2×104 atoms. Before
horizontally imaging the cloud, a time of flight of 15ms is used to reduce its optical
depth.

More importantly, this type of step-modulated waveform can be used to split a
BEC into several BECs (Figure 7.12(b)) after it has been obtained. To achieve an
equivalent splitting of the BEC, the bias fields must be adjusted to eliminate any
magnetic gradient that would favor one trap over the others during the splitting
process. Additionally, the step function should be made asymmetrical. Taking a
symmetric step function results in deeper central traps compared to the side ones due
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to the Gaussian intensity profile of the beams. To address this, we slightly increase
the length of the side “plateaus” of the modulation waveform compared to the central
ones. Additionally, we multiply the power of each arm by 4 to maintain the same
potential depth per site as the single BEC.

We mention that Direct Digital Synthesis (DDS) could be used to manually shape
the modulation instead of changing the waveform on the AWGs.

7.4.2 Future of the setup

As stated in the introduction, this setup was constructed to investigate Rydberg
excitations on small ensembles of cold atoms. This can include resonant or off-resonant
Rydberg excitations, resulting in dressed interactions for the ground state atoms in
the latter case.

The former approach has successfully simulated Ising Hamiltonians [253], observed
Rydberg blockade [254], and realized a one-dimensional topological lattice system
[255]. This topic is being studied by several cold atom groups worldwide. The latter
approach of Rydberg dressing partially circumvents the problem of the short lifetime
(a few tens of µs) of Rydberg atoms by weakly admixing the Rydberg excitation on
ground state atoms. A wealth of proposals have been put forward to realize many-body
phases of matter (see for example [256, 257]) through the use of Rydberg dressing.

The team purchased a UV laser from LEOS that lases ≃ 200mW at λ ≃ 297 nm
after a two-stage frequency doubling scheme. This laser enables switching from reso-
nant to off-resonant interactions. This single-photon excitation approach, previously
developed in Munich [258], avoids the constraint of phase-locking the two lasers re-
quired for a double-photon excitation scheme and eliminates the scattering on the
intermediate level.

A first scientific project could be to create a global Rydberg excitation that would
be shared by small ensembles of atoms. This raises the question of how to create such
small ensembles. One might think that the tool described in section 7.4.1 would be
sufficient to create the ensembles. However, using light at λ = 1064 nm, red-detuned
compared to the D2 line of Rubidium, photoionizes the Rydberg atoms and further
limits their lifetimes. Instead, the use of blue-detuned beams allows to trap both
ground state and Rydberg excited state atoms [259], an important advantage for their
study. It is thus more suitable for a longer-lived ensemble to trap atoms at intensity
minima and image them by fluorescence imaging. To do this, the team is currently
working on creating arrays of green microtraps, obtained by imaging a dark spot on
the cloud, where both the ground state and Rydberg excited state atoms would be
trapped.

Combined with the painting technique using an AOM, this should allow the cre-
ation of an array of mesoscopic ensembles (a few units, each containing ∼ 100 atoms),
from 3 to ≃ 15 µm apart, that can be addressed with the UV laser.

Once this is mastered, a plan would be to combine the specificities of the 2D
setup (accordion lattice, DMDs, Raman beams...) and the new tools developed on
this side setup (painting, Rydberg dressing). For this new setup, a science chamber
with aspherical lenses and electrodes under vacuum will be considered in order to
properly control the electric field near the atoms and tune it, for example, near Förster
resonances [260]. The future scientific projects could then be the Rydberg dressing of
reduced dimensional gases, especially 1D, which are expected to be longer lived [261]
compared to 2D and 3D Rydberg excited gases, and the study of quantum transport
in them.
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7.5 Conclusion

This chapter described the construction of a new Rubidium ultracold platform and
the achievement of a high repetition rate BEC by replacing the quadrupole trap with
a more sophisticated dipole trap compared to the experiment described in Chapter 1.
Time-averaged potentials were utilized to dynamically reduce the waist of the dipole
beams between the loading and the evaporation steps. This control, combined with
the optical power control, allowed for the attainment of the BEC state with over
1× 105 atoms in under 10 s. Finally, we briefly discussed future directions offered by
this setup, including the study of Rydberg excitations on small ensembles.
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This thesis reported on various studies related to dynamics of weakly-interacting
Bose gases at zero temperature. The main scientific projects focused on investigating
superfluidity in a 2D density-modulated system and observing Bloch-like oscillations
of magnetic solitons within an immiscible mixture cold atom platform.

Chapter 1 presented a cold atom experimental platform that produces reduced
dimension samples of Rubidium 87 atoms with controllable geometry. The chapter
highlighted the key experimental tools used to produce and study these 2D samples,
including an accordion lattice, three DMDs, Raman beams, and MW antennas. Chap-
ter 2 provided key theoretical ingredients for describing the mean-field physics of these
weakly-interacting samples. The derivation of the Gross-Pitaevskii equation, which
governs the dynamics of our gases at zero temperature, was detailed. A recent mean-
field study [87] related to weakly-bound dimers and their interactions with a bath of
atoms was briefly discussed. The focus then shifted to the superfluidity property. The
emergence of this property in weakly-interacting uniform Bose gases was justified at
the end of Chapter 2.

In Chapter 3, we examined the survival of superfluidity in a spatially modulated
Bose gas. We first investigated the case of a 2D Bose gas modulated along one
direction, using analytical, numerical and experimental methods, as described in our
recent work [67]. In this particular case, we were able to measure the superfluid
fraction of the modulated gas using two different methods. The first method relied on
the anisotropic nature of the sound spectra along two perpendicular directions of the
gas. Sound propagated more slowly along the modulated direction compared to the
orthogonal direction to the lattice. The superfluid fraction of the gas was calculated
by taking the squared ratio of these sound velocities. The second method relied on
Leggett’s formula, which connects the superfluid fraction to the knowledge of the
density profile. The direct relationship between the superfluid fraction, a dynamical
quantity, and the static density profile is remarkable and valid as long as the system is
well-approximated by a mean-field approach and is separable along the two orthogonal
directions. Our precise measurement of the gas density profiles allowed us to extract
the superfluid fraction. As a future outlook, we numerically studied mean-field systems
with non-separable geometries for which Leggett provided bounds on the superfluid
fraction [66]. Since Leggett’s inequalities are no longer saturated and sound velocities
are not always anisotropic, it was necessary to find an alternative method to measure
the superfluid fraction. We relied on the numerical compressibility determination. Our
research suggested that it may be possible to experimentally investigate deviations
from Leggett’s bounds in 2D modulated systems. Our findings provided a foundation
for studying superfluidity in other density modulated systems, including supersolids.

Chapters 4 and 5 dealt with the main study of this thesis: the magnetic soliton
and its response to a linear potential. The magnetic soliton was introduced as a sta-
tionary solution of the non-linear Landau-Lifschitz equation (LLE), which governs the
dynamics of the magnetization vector of a ferromagnetic spin chain placed in a mag-
netic field. We demonstrated that by considering a mixture of two 1D Bose-Einstein
Condensates with similar but not equal interaction parameters, the two coupled GP
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equations could be mapped onto the LLE. Following Kosevich’s work [43], we then
established the existence of a periodic dispersion relation for the magnetic soliton.
By adding a linear potential to the problem, we demonstrated that the momentum
of the soliton evolved linearly with time. This, under the adiabatic approximation,
caused the soliton’s position to vary periodically with time. Therefore, we proved the
existence of Bloch oscillations without a lattice in this system. We developed this
analogy and also interpreted it as an AC Josephson effect. The observed oscillations
could then be explained by the phase difference of the majority component across the
soliton being equal to its total momentum.

Chapter 6 was dedicated to the experimental observation of the Bloch-like oscil-
lations of magnetic solitons. The realization of a stationary magnetic soliton was
discussed, followed by its response to a linear potential, interpreted as a constant
force, in a linear geometry. The two conjugated variables, the center of mass position
of the soliton and its momentum, were examined. The measured periods of the mo-
tion were shown to be in good agreement with the predicted values. Additionally, we
extracted the phase of the bath using an interference measurement. In the future, it
may be fruitful to explore non-rectilinear geometries in which the same system would
be subjected to non-constant forces. Furthermore, a ring geometry could be used to
investigate the impact of the backflow on the soliton motion.

Finally, in Chapter 7, we discussed the building of a new setup aimed at inducing
Rydberg excitations on small ensembles of Rubidium atoms. We described the produc-
tion of a Bose-Einstein condensate without the use of magnetic traps. We introduced
the painting technique, which is efficient for loading the molasses inside the dipole trap
and offers various trapping possibilities. In the near future, we plan to address Ryd-
berg excitations and study strongly-correlated phases of reduced-dimensional systems,
going beyond the mean-field description used throughout this thesis.
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Appendix A

List of publications

During my thesis, I participated in several projects that were discussed in the
manuscript and resulted in the following publications:

➢ Optical control of the density and spin spatial profiles of a planar Bose gas,
Y.-Q. Zou, É. Le Cerf, B. Bakkali-Hassani, C. Maury, G. Chauveau, P. C. M.
Castilho, R. Saint-Jalm, S. Nascimbene, J. Dalibard and J. Beugnon, Journal
of Physics B: Atomic, Molecular, and Optical Physics 54, 08LT01 (2021).

➢ Precision measurement of atom-dimer interaction in a uniform planar Bose gas,
C. Maury, B. Bakkali-Hassani, G. Chauveau, F. Rabec, S. Nascimbene, J. Dal-
ibard and J. Beugnon, Physical Review Research 5, L012020 (2023).

➢ Superfluid fraction in an interacting spatially modulated Bose-Einstein conden-
sate, G. Chauveau, C. Maury, F. Rabec, C. Heintze, G. Brochier, S. Nascimbene,
J. Dalibard and J. Beugnon, Physical Review Letters 130, 226003 (2023).

An article is being prepared on the experimental demonstration of Bloch oscilla-
tions of magnetic solitons, which was the subject of the project described in Chapters
4, 5 and 6.
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Appendix B

Numerical simulations of the
Gross-Pitaevskii equation

This appendix briefly describes the numerical methods used in the two science
projects of this thesis to solve the Gross-Pitaevskii equation. The split-step algorithm
is employed for both the 2D case in the presence of a sinusoidal potential (Chapter 3)
and the 1D case with an immiscible mixture and a linear potential (Chapters 4 and 5).
The chosen adimensionalized variables and numerical parameters are also discussed.

B.1 Split-step method

The general Hamiltonian of the system is decomposed into its different contribu-
tions Ĥ = Ĥkin + Ĥint + Ĥpot and we write the order parameter of the system, which
we want to access, as φ. Let us imagine that we have written an adimensionalized
form of the Gross-Pitaevskii equation as i∂φ∂t = Ĥ φ. Extracting φ or the energy struc-
ture of the system (eigenvalues of Ĥ) can be a complex task without simplifications.
This is due to the presence of the nonlinear term describing the interactions in the
GP equation.

To go further, we introduce the evolution operator Û(t) = exp
(
−iĤt

)
so that we

can write the GP equation in the form:

φ(t) = Û(t)φ(0) (B.1)

We now discretize the problem in time and introduce a small timestep dt and
write the time t as t = p dt where p is an integer. Since the evolution operator
satisfies Û(t) =

(
Û(dt)

)p
, we can evaluate φ(t+ dt) knowing φ(t) using Û(dt):

φ(t+ dt) = Û(dt)φ(t) (B.2)

This evaluation of φ, timestep by timestep, gives part of the name to this numerical
method [262, 263]. The other part “split” comes from the next assumption that we
make to calculate φ(t + dt) in practice. Indeed, the direct evaluation of the effect
of the total Hamiltonian on the wavefunction can be difficult to compute because of
the different characteristics of the terms entering Ĥ (e.g. momentum operator for
the kinetic term while position operator for the potential term). In order to proceed,
we ignore the non-commutativity of the different terms of the Hamiltonian and split
(B.2) as:

φ(t+ dt) ≃ exp
(
−iĤkin dt

)
× exp

(
−iĤint dt

)
× exp

(
−iĤpot dt

)
φ(t) (B.3)
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The errors made by doing this appoximation involve the commutators between the
different terms of the Hamiltonian and are thus terms scaling in (dt)2. Therefore, we
understand that (B.3) gives a good approximation of the order parameter if dt is suf-
ficiently small. More precisely, for this development to be valid, what should be small
is instead each of the arguments inside the exponentials. We will give numbers in the
next sections when we will have an expression for the adimensionalized Hamiltonians.

Let us imagine that we know how to evaluate the action of each hamiltonian on
a wavefunction φ, then we are able to calculate φ at time t+ dt knowing φ(t). If we
repeat that a certain number of time p, we are able to calculate it at any desired time
t = p dt. This is called real-time propagation.

A significant advantage of the split-step method is the ability not only to extract
real-time dynamics, but also to calculate the ground state of the system. This numeri-
cal method is known as imaginary-time propagation in contrast to the former method.
Indeed, if we take t̃ = −it in the expression (B.1), we obtain:

φ
(
t̃
)
= exp

(
−Ĥt̃

)
φ(0) (B.4)

This equation has no physical meaning because it deals with imaginary time.
However, it allows us to obtain the stationary state of the system for sufficiently long
computational imaginary times. Indeed, if we write φj and Ej as the eigenstates and
eigenvalues of the Hamiltonian Ĥ, each eigenstate will evolve in imaginary time as
φj
(
t̃
)
= exp

(
−Ej t̃

)
φj(0). The imaginary time evolution starts with a wavefunction

φ(0), which can be decomposed on the eigenbasis {φj}j . After a long enough imagi-
nary time, only the state of minimal energy will remain, while the other eigenstates
will decrease exponentially faster (see (B.4)). Therefore, this method gives us the
ground state of the system. In practice, we also need a similar splitting of the total
Hamiltonian, as in (B.3), to calculate the wavefunction at the next imaginary time.
The number of timesteps required to reach the stationary state depends on the desired
level of precision1. Additionally, the convergence speed is affected by the initial state
chosen, specifically its proximity to the ground state of the system. Furthermore, the
convergence speed differs depending on the distance between the first excited state
and the ground state.

B.2 2D GPE numerical resolution

In this section, we will demonstrate how to handle the various terms in the Hamil-
tonian. We will start with the 2D equation, which was used in Chapter 3, and include
a linear potential term in addition to a sinusoidal potential. The dimensional equation,
with φ normalized to the number of atoms N , writes:

iℏ
∂φ

∂t
= − ℏ2

2m
∆φ+

ℏ2

m
g̃|φ|2φ+ V φ (B.5)

with V (x) = V0 cos(qx) + gFmFµBb
′x the total potential, which depends only on the

position coordinates x and y.
To adimensionalize this equation, we introduce an arbitrary length scale l, a cor-

responding pulsation scale ω = ℏ/(ml2) and define new adimensionalized variables:
x̄, ȳ = x, y/l, t̄ = ωt and φ̄ = φ× l. The equation (B.5) then transforms into:

1We usually stop the loop when the relative difference of wavefunction at time t and at time
t+ dt is less than 10−5.
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i
∂φ̄

∂t̄
= − 1

2
∆̄φ̄︸ ︷︷ ︸

Ĥkinφ̄

+ g̃|φ̄|2φ̄︸ ︷︷ ︸
Ĥintφ̄

+
V (x)

ℏω
φ̄︸ ︷︷ ︸

Ĥpotφ̄

(B.6)

We will omit the bars on the variables in the following, but the problem is now
adimensionalized. How can we evaluate the effects of the different Hamiltonians on
the wavefunction φ? For this, we have to discretize the problem not only in time
variables, as we already did, but also in space variables. We introduce a spacestep
dx, a number of spacesteps nx and the grid size is then Lx = nx × dx. The list of
the position coordinates is chosen to be symmetric around 0 and goes from −Lx/2 to
Lx/2 in steps of dx. The 2D wavefunction φ̄ is then a matrix nx × nx. The action of
Ĥint and Ĥpot are natural to evaluate in the position basis, since these two operators
are diagonal in it. Their results at the discretized position x is simply to multiply the
wavefunction at the previous timestep φ by g̃|φ(x)|2 and by V (x)/ℏω, respectively.
However, assessing the action of Ĥkin in the position basis is not straightforward since
this operator is diagonal in the Fourier basis but not in the position basis. This is
why we needed to split the Hamiltonian into its different parts. Nevertheless, one
can still Fourier transform φ(x) into φ̃(qx), and the action of the kinetic Hamiltonian
will simply be the transformation: φ̃(qx) → q2x/2 × φ̃(qx), where qx are the spatial
frequencies associated with the discretized x list. Then, after this evaluation, we
compute an inverse Fourier transform of the modified wavefunction to come back in
the position space and start the next timestep.

Having described the numerical protocol, how do we choose the values of nx,
dx, dt? We want to simulate our experiment which takes place in a box of typical
size L ≃ 40 µm. In the numerics, we choose for example a dimensional grid size
Lx = 50 µm. Then we need the space discretization dx to be small compared to
all the characteristic length scales of the problem and especially the healing length,
which for us is typically in 2D: ξ ≃ 0.25 µm. In practice, we take dx = 0.097 µm so
that dx ≤ ξ/2 and such that the number of points is nx = 512 a power of 2, which
allows a faster computation of the Fourier transforms. Then, the time discretization
is chosen such that the conditions of the split-step method are satisfied: all arguments
of the exponential terms should be small compared to 12 . We take dt = 10−3 along
with the length for adimensionalization l = 1 µm to satisfy these equations. With
these numbers, we verify that the total energy of the system is conserved up to the
10−5 level during real-time propagation. This level of precision is sufficient for our
purposes.

B.3 1D coupled GPEs numerical resolution

Chapters 4, 5 and 6 discuss the physics of magnetic solitons. These solitons were
initially introduced as stationary solutions of the Landau-Lifschitz Equation in a 1D
ferromagnetic spin chain. A mapping was demonstrated between this system and
weakly-interacting mixtures following coupled GPEs in certain conditions [42]. The
mixture under consideration must be weakly miscible or immiscible to maintain a
constant total density. The numerical resolution of the coupled GPEs, leading near
the Manakov regime to the emergence of magnetic solitons, is described below.

2The various conditions can be roughly summarized as follows:

dt×
( π

dx

)2

≪ 1, V0 × dt≪ 1, dt× Ng̃

n2
x

≪ 1 (B.7)

174



Appendix B. Numerical simulations of the Gross-Pitaevskii equation

The 1D dimensional equations for the order parameters ψ1, ψ2 of the states 1 and
2 with the 1D interaction parameters gij = 2ℏω⊥aij (ω⊥ is the angular frequency
characterizing the transverse confinement) are: iℏ∂ψ1

∂t = − ℏ2
2m

∂2ψ1

∂x2
+ g11|ψ1|2ψ1 + g12|ψ2|2ψ1 + V1ψ1

iℏ∂ψ2

∂t = − ℏ2
2m

∂2ψ2

∂x2
+ g22|ψ2|2ψ2 + g12|ψ1|2ψ2 + V2ψ1

(B.8)

where ψ1 (respectively ψ2) is normalized to N1 (resp. N2) and where V1 and V2 are
the potentials felt by the states 1 and 2. In the following, we consider the case of linear
potentials due to an external magnetic gradient b′ and states of opposite hyperfine
spin projection mF = ±1: V1(x) = −V2(x) = gFµBb

′x.
As in the 2D case, we introduce an arbitrary length scale l and a corresponding

frequency scale ω = ℏ/(ml2). The equations can be adimensionalized for the order
parameters ψ̄1,2 = ψ1,2 ×

√
l: i∂ψ̄1

∂t̄ = −1
2
∂2ψ̄1

∂x̄2
+ 2ω⊥

ω
a11
l |ψ̄1|2ψ̄1 + 2ω⊥

ω
a12
l |ψ̄2|2ψ̄1 +

V1(x)
ℏω ψ̄1

i∂ψ̄2

∂t̄ = −1
2
∂2ψ̄2

∂x̄2
+ 2ω⊥

ω
a22
l |ψ̄2|2ψ̄2 + 2ω⊥

ω
a12
l |ψ̄1|2ψ̄2 +

V2(x)
ℏω ψ̄2

(B.9)

The bars will be omitted in the following. The numerical recipe for solving the
coupled GPEs in mixtures is similar to that of a single-component state. A split-step
method is used, and at each time step (imaginary or real), the two wavefunctions
are calculated by evaluating the actions of the kinetic Hamiltonian in the Fourier
basis. Then, the potential and interaction Hamiltonians are assessed in the direct
basis. We write the interaction Hamiltonians that have been modified by the presence
of the mixture as: Ĥint,1 ψ1 = 2ω⊥

ω

(
a11
l |ψ1|2 + a12

l |ψ2|2
)
ψ1 and similarly Ĥint,2 ψ2 =

2ω⊥
ω

(
a22
l |ψ2|2 + a12

l |ψ1|2
)
ψ2 where ψ1 and ψ2 are evaluated at the previous timesteps

in the right expressions.
The split-step method relies on the approximation of the non-commutativity of the

incremental terms of the Hamiltonian and it gives a good estimate of the stationary
state or the real-time evolution if all the arguments within the exponentials of (B.3)
are small compared to 1. To fulfill these conditions with a longer 1D tube, we use a
larger grid compared to the 2D case. Otherwise we use similar parameters3:

➢ nx = 1024, dx = 0.097µm ≤ ξ/2, Lx = nx dx = 100 µm, l = 1 µm

➢ dt = 10−3

➢ ω⊥ = 2π × 400Hz, gF = 1/2, a11 = a22 = 100.19 aB and a12 = 101.54 aB where
aB is the Bohr radius. These numbers are the one measured in our experiment
for the |1,−1⟩/|1,+1⟩ mixture.

Starting from a Gaussian wavepacket for the minority component and the com-
plementary shape for the majority one, these numbers lead to the formation of a
magnetic soliton through imaginary time evolution. When a differential linear gra-
dient is applied, the position of the magnetic soliton oscillates over time, as seen in
Chapter 5.

3This is because the new length scale introduced by the mixture, ξs, the spin healing length, is
much larger than the healing length (ξs ∼ 10ξ in our case). The latter thus remains the smaller
relevant length scale in the problem compared to which the space discretization should be small.
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Appendix C

Analytical expressions of the
density modulation under a
sinusoidal potential at low
modulation depths

This appendix aims to describe the procedure by which we obtain analytical ex-
pressions for the amplitudes of the harmonics and the compressibility at low modula-
tion depths in Chapter 3.

We write the 2D stationary GP equation for the order parameter φ in the potential
V (x) = V0 cos(qx) with an interaction parameter g and a chemical potential µ as:

µφ = gφ3 + V (x)φ− ℏ2

2m

∂2φ

∂x2
(C.1)

We now expand the order parameter and the chemical potential in powers of V0
(the index i means an expansion of the quantity at order i in V0):

φ(x) = φ0 + φ1(x) + φ2(x) + ..., µ = µ0 + µ1 + µ2 + ... (C.2)

which results in the following expansion for the density:

n(x) = φ2 = φ2
0︸︷︷︸

n0

+2φ0φ1(x)︸ ︷︷ ︸
n1(x)

+2φ2φ0 + φ2
1︸ ︷︷ ︸

n2(x)

(C.3)

C.1 Order 0 in V0

At order 0, the chemical potential is fixed by the mean density in the system:

µ0 = gφ2
0 (C.4)

C.2 Order 1 in V0

The first order terms in the equation (C.1) satisfy:

µ0φ1 + µ1φ0 = 3gφ2
0φ1 + V0 cos(qx)φ0 −

ℏ2

2m

∂2φ1

∂x2
(C.5)

Guided by the expression of the potential, we write φ1(x) = A1 cos(qx). Since n1
is direcly proportional to φ1, and the spatial average of n1 should be zero, we have
⟨φ1⟩ = 0, where ⟨·⟩ means a spatial average. In (C.5), it translates into:
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µ1 = 0 (C.6)

We now plug the expression of φ1 into (C.5) to get the equation satisfied by A1:

A1 = − V0
ϵq + 2µ0

φ0 (C.7)

where ϵq = ℏ2q2
2m is the recoil energy associated with the wavevector of the lattice q.

From the development of the density in powers of V0, we thus find n1(x) = n1 cos(qx)
with:

n1
n0

= − 2V0
ϵq + 2µ0

(C.8)

C.3 Order 2 in V0

The GP equation for the second order terms writes:

µ0φ2 + µ2φ0 = 3gφ2
0φ2 + 3gφ0φ

2
1 + V0φ1 cos(qx)−

ℏ2

2m

∂2φ2

∂x2
(C.9)

From the expression of n2(x) in (C.3) and since we impose its spatial average to
be zero, we obtain: ⟨φ2⟩ ≡ B2 = − A2

1
4φ0

. We then write φ2 = B2+A2 cos(2qx). Taking
the spatial mean in (C.9) and using the previously derived expression of A1, we obtain
an expression for the chemical potential at second order in V0:

µ2 = gA2
1 + V0

A1

2
= − ϵq

2(ϵq + 2µ0)2
V 2
0 (C.10)

We can then extract the first non-zero term in the expansion of the compressibility

in powers of V0 κ =
(
n0

∂µ
∂n0

)−1
with µ = µ0 + µ2:

κ = µ−1
0

(
1− 2ϵqV

2
0

(ϵq + 2µ0)3

)
(C.11)

When we identify the terms in cos(2qx) in (C.9), we extract the expression of A2:

A2 =
ϵq − µ0

2(ϵq + 2µ0)2(2µ0 + 4ϵq)
V 2
0 φ0 (C.12)

Finally, with the definition of the second harmonic n2(x) = n2 cos(2qx), we express
it as:

n2 =
A2

1

2
+ 2A2ϕ0 =

3ϵq
(ϵq + 2µ0)2(2µ0 + 4ϵq)

(C.13)

The expansion can be continued to the next order (order 3 in V0). However, for
the range of explored values of V0/ϵq ≲ 10, expanding up to order 2 is sufficient to
capture most of the physics.
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Appendix D

Evaluation of the correcting factors
in the in situ density
measurements

This appendix provides a detailed description of how we access the density profiles
of our density-modulated cloud and overcome the filtering of the atomic contrast
caused by the finite resolution of our imaging system.

D.1 Notations

For a lattice with wavevector q, several effects can reduce the contrast of the atomic
density modulation on the Princeton camera used for absorption imaging:

➢ a non perfect transfer function from the DMD to the atoms, labeled TD→A(q).
The potential depth V0 felt by the atoms is then V0 = TD→A(q)× γ × I with γ
the ideal link between the potential and the light intensity I.

➢ a non perfect transfer function from the atoms to the Princeton camera, labelled
TA→C(q).

➢ a pixelization effect on the Princeton camera due to the finite effective pixelsize
of the atoms on the Princeton camera (1.15 µm). We write the loss of contrast
caused by this pixelization effect p(q).

They are summarized in Figure D.1.

DMD Atoms    PIXIS 
 camera

Chameleon

   camera

Wavevector q

Pixelization effect

Measured
density modulation

density modulation
Expected

Correction factor

Modulation potential
on the atoms

Light intensity

'LDA' formula

Figure D.1: Explanation of the different notations and factors which provok a
reduction of the density contrast.

At low modulation depths, the connection between the potential depth and the
density modulation has been written in Chapter 3 and Appendix C, and reads:
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V0 = g

(
1 +

ϵq
2µ0

)
n1 (D.1)

We rewrite it as: V0 = gl(q)n1, with l(q) = 1 +
ϵq
2µ0

.
Thus, taking all these effects into account, we write the measured density as:

nmeas(q) = p(q)× TD→A(q)× TA→C(q)×
1

gl(q)
× γ × I = α(q)× I (D.2)

where α(q) are the linear slopes of the density modulations at low intensities, deter-
mined on Figure 3.6. What we would expect if detection were perfect is:

nexp(q) = TD→A(q)×
1

gl(q)
× γ × I (D.3)

Thus, with the definition of the β factor used in the text: β(q) = nmeas(q)/nexp(q),
we write it as:

β(q) = p(q)× TA→C(q) (D.4)

D.2 Pixelization effect
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Figure D.2: Reduction of the atomic contrast due to the finite effective pixelsize
of the absorption imaging camera. (a): the 2 µm lattice case. (b): the 4 µm lattice
case. The circles represent points spaced at 1.15 µm intervals, with their ordinate
calculated as the integral of the ideal sinusoid (shown as a dashed line) between
the preceding pixel and the current one. The solid lines are sinusoidal fits of these
discretized signals and the dashed lines are the desired density evolutions. The ratio
of the fitted amplitude to the desired amplitude is used to determine the effect of
pixelization. We extract respectively p = 0.55 and p = 0.87 for the 2 µm and the
4µm lattices.

To compute the impact of the pixelization effect on the reduction of contrast
observed on the Princeton camera1, we construct a numerical ideal sinusoidal function.
At intervals of 1.15 µm (the effective pixelsize of the Princeton camera), we integrate
this function from the previous pixel to the current one, simulating the operation of

1The pixelization effect on the control camera has been disregarded due to the effective pixel size
being 0.1µm.
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a camera. A sinusoidal function was fitted to the pixelized signal, resulting in the
graphs shown in Figure D.2, for the lattices at 4 µm and 2 µm. A reduction in the
atomic contrast is oberved and accounted for in the p(q) factor (Figure D.2).

D.3 Determination of the β(q) coefficients

For the β coefficients, we now only need to compute the transfer function from
the atoms to the camera TA→C(q). Since the transfer function between the DMD
and the atoms also enters the expression of the measured density (D.2), we can only
determine the value of TA→C(q) by taking the ratio of equation (D.2) evaluated at
different lattice wavevectors q and q′:

TA→C(q)

TA→C(q′)
=

α(q)l(q)

p(q)TD→A(q)
× p(q′)TD→A(q

′)
α(q′)l(q′)

(D.5)

The transfer function from the DMD to the atoms is directly proportional to the
light contrast C(q), plotted in Figure 3.6, and observed on the control camera2:

TD→A(q)

TD→A(q′)
=

C(q)
C(q′) (D.6)

All quantities can now be evaluated, assuming that TD→A(q) = TA→C(q) = 1 for
the lattices of spacings d ≥ 8 µm (see Figure 3.6). The results are summarized in the
following table:

Lattice period d (µm) C(q) TD→A(q) TA→C(q) l(q) p(q) α(q) (a.u.) β(q)

≥ 8 0.75 1 1 1 1 54.4 1

4 0.75 1 0.85 1.07 0.87 37.3 0.73

2 0.51 0.6 0.4 1.28 0.55 6.1 0.21

2We assume that the transfer function from the atoms to the control camera imaging system is
equal to 1 regardless of the wavevector q.
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Appendix E

Dynamics of solitons of the 1D
NLSE under a linear potential

This appendix examines the effect of a constant force on various types of solitons
of the 1D NLSE introduced in Chapter 4. It will emphasize the peculiar periodic
oscillation seen in the case of easy-axis magnetic solitons and discussed in Chapter 5.

E.1 Bright soliton of the 1D NLSE

We recall the mathematical expression of a bright soliton moving at velocity v
given in (4.6):

ψv(x, t) =

√
κN/2

cosh [κ(x− vt)]
e−iΩt eim(xv−v2t/2)/ℏ (E.1)

with N the atom number in the wavepacket, κ = mN |g|
2ℏ2 and ℏΩ = −mg2N2

8ℏ2 . The
energy can be computed as

E =
∫

dx

[
ℏ2
2m

(
∂ψv
∂x

)2
− g

2 |ψv|4
]
. We obtain:

E(N, v) = − 1

24
mg2N3 +

1

2
Nmv2 (E.2)

The momentum of the bright soliton is defined as follows:

p = −iℏ
∫
ψ∗
v

∂ψv
∂x

dx = Nmv (E.3)

Under the action of a constant force f , the momentum follows dp
dt = Nf and the

momentum expression (E.3) leads to a linear variation of the velocity in time, thus a
classical equation of motion for the position of the soliton:

x =
f

2m
t2 (E.4)

The equation of motion is a single-particle equation, and remarkably the dynam-
ics are not affected by the number of atoms in the wavepacket. This is verified in
Figure E.1.

E.2 Dark soliton of the 1D NLSE

We now discuss the case of a moving dark soliton for which we recall the expression
of the wavefunction:
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Figure E.1: Numerical simulation of a bright soliton under a constant force
directed along +x. The GP simulation is run for a negative scattering length
a = −100aB , N = 2000 atoms, a magnetic force gFµBb

′ ≃ 5 × 10−8mg (g is the
gravity acceleration here). (a): Profiles every ∆t = 3 s. The darker the color the
longer the time. The profiles are not distorted. (b): Center of mass evolution with
the blue solid line. The orange dashed line is the prediction (E.4).

ψv(x, t) =

√
µ

g

{
i
v

cB
+

√
1− v2

c2B
tanh

[
κ

√
1− v2

c2B
(x− vt)

]}
e−iµt/ℏ (E.5)

with κ = 1
ℏ
√
mµ. A π phase jump at the soliton position is associated. It is important

to note that this is a crucial requirement for obtaining a stabilized wavepacket.
The grand canonical energy of the dark soliton is the quantity adapted to the

problem [264]:

EGC(µ, v) =
ℏ2

2m

∫ ∣∣∣∣∂ψv∂x

∣∣∣∣2 dx+
g

2

∫
|ψv|4 dx− µ

∫
|ψv|2 dx (E.6)

Konotop et al. (see also [89]) then write it as a contribution of two terms: the grand
canonical energy present without the soliton and an additional term due only to the
dark soliton:

EGC(µ, v) = E′
0(µ) + E′

g(µ, v) ,withE
′
g(µ, v) =

4

3
ℏ
µ3/2

g
√
m

(
1− v2

c2B

)3/2

(E.7)

To describe the motion under the force derived from the potential Vext(x), i.e.
f = −dVext

dx , one uses the local density approximation for a weakly non uniform trap
[265, 202], which states that E′

g(µ, v) = E′
g(µ−Vext(x), v) and its conservation in time

to write:

dE′
g

dt
= 0 ⇒ −

(
∂E′

g

∂µ

)
v

dVext
dx

dx

dt
+

(
∂E′

g

∂v

)
µ

dv

dt
= 0 (E.8)

From the expression of the energy (E.7) and the energy conservation (E.8) we
obtain the equation of motion:
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2m
dv

dt
= f (E.9)

As for the bright soliton, we obtain a single-particle behaviour. The dark soliton
propagates in the direction of the applied force with an acceleration which is twice
smaller compared to the “naive” expectation [171, 264, 265]:

x(t) =
f

4m
t2 (E.10)
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Figure E.2: Numerical simulation of a dark soliton under a constant force directed
along +x⃗. The GP simulation is run for a positive scattering length a = 2.63aB ,
N = 10000 atoms, a magnetic force gFµBb ≃ 3× 10−5mg (g is the gravity acceler-
ation here). The force is applied on a condensate already at equilibrium with the
force. (a): Profiles every ∆t = 0.3 s. The darker the color the longer the time. The
background density is tilted due to the force. (b): The position of the density hole
of the wavepacket as a function of time is represented with a blue solid line. The
orange dashed line is the prediction (E.10).

The density hole as well as its size are constant during the propagation as we can
verify numerically in Figure E.2.

Finally, we mention that even if the dark soliton equation of motion is “natural”,
expect for the factor 2, it is misleading because the negative effective mass of the dark
soliton does not appear in this formula. The latter can be defined as [202]:

meff =
1

v

(
∂E′

g

∂v

)
µ

= −4 (n0ξ)

√
1−

(
v

cB

)2

m (E.11)

where n0 =
√
µ/g is the background density and ξ = ℏ/√mgn0 is the healing length.

We recall that the velocity of a dark soliton cannot exceed the Bogoliubov speed
of sound cB, and that the mean-field approximation used here requires the product of
the background density n0 multiplied by the healing length ξ to be much larger than
1 in order to have many atoms in the hole wavepacket. This negative effective mass
is consistent with the picture of the dark soliton as a quasi-particle acting as a hole
in the system, which is not stable against snake instabilities as briefly discussed in
Chapter 4 [164, 222]. We can reconcile the equation of motion (E.9) with the negative
effective mass of the soliton by introducing an effective number of atoms [202], the
conjugate variable associated with the chemical potential:
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Ns =
(
∂E′

g

∂µ

)
v
= −2(n0ξ)

√
1−

(
v
cB

)2
, which is also negative. One can indeed show

that the equation of motion (E.9) can be written:

meff
dv

dt
= Nsf (E.12)

Therefore, the negative effective mass of the dark soliton is not inconsistent with
the motion of the wavepacket towards the direction of the force.

E.3 Dark-bright soliton of the 1D NLSE

The following section examines the behavior of a vector soliton, which is made up
of a bright soliton trapped in a dark soliton, under a constant force. The analytical
case, in which all interaction parameters are equal, is the first to be considered. We
recall the expression of a dark-bright soliton moving at velocity v [38] and for which
the bright component is submitted to a uniform potential V2: ψ1,v(x) =

√
n0 {i sin(α) + cos(α) tanh [κ(x− vt)]}

ψ2,v(x) =

√
κN2/2

cosh[κ(x−vt)] e
imvx/ℏ e−iωt e−iV2t/ℏ

(E.13)

The parameters are connected to the velocity v as: v
cB

= κξ = − N̄2
4 +

√
cos2 α+

N̄2
2

16

with N̄2 =
N2
n0ξ

and ξ = ℏ√
mgn0

. Besides, we have ℏω = 1
2mv

2 − ℏ2κ2
2m .

As for the dark soliton study, we calculate the excess in the grand canonical energy
caused by the presence of the dark-bright soliton1. We obtain:

E′
g(µ, v,N2, V2) =

4

3

ℏ4κ3

m2g
+

(
ℏ2κ2

2m
+

1

2
mv2

)
N2 + V2N2 (E.14)

We now use the same argument as for the dark soliton. We assume the conservation
of the energy (E.14) throughout the evolution (adiabatic invariant):

dE′
g

dt
= 0 ⇒

(
∂E′

g

∂v

)
µ

dv

dt
+

dVext
dx

dx

dt
= 0 (E.15)

Defining the effective mass as meff = 1
v

(
∂E′

g

∂v

)
µ,N2,V2

[202], we get the equation of

motion:

meff
dv

dt
= N2f2 (E.16)

where f2 = −dV2
dx is the constant force applied on the component 2. With the definition

of the momentum: p(v)− p(0) =
∫ v
0

1
v′

(
∂E′

g

∂v′

)
µ,N2,V2

dv′, it can also be written:
dp
dt = N2f2. In the presence of a constant force, p thus evolves linearly with time.

1Unlike the dark soliton, the energy written here includes already the effect of the force.
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Figure E.3: Numerical simulation of a dark-bright soliton under a constant force
directed along +x. The number of atoms in the minority component N2 = 10000,
the background density is n0 = 6 × 108atoms/m and the scattering lengths were
chosen all equal to 1 aB . A force is applied on the bright component only and its
value is f2 = gFµBb ≃ 3 × 10−5mg. (a): Dark component density evolution. (b):
Bright component density evolution. (c): Dark component phase evolution. We
shift the profiles for better clarity. We display them every ∆t = 0.8 s. They should
be viewed from bottom to top: the darker the color, the longer the time. The
wavepacket continuously expands, making it impossible to adiabatically follow the
periodic dispersion curve shown in (d). The graphs in (d) are obtained from (E.14)
and a numerical integration to calculate p with the parameters V2 = 0 and N̄2 = 1.
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The behavior of the soliton in the presence of the force is determined by its effec-
tive mass. The general calculation of the effective mass is complicated because the
dependance of the energy (E.14) on v is not trivial. However, we can consider a low
velocity expansion of the energy (E.14) to obtain the sign of the effective mass at
the beginning of the motion [38]. The relevant adimensional small parameter of this
expansion is α. It can be shown that up to order 2 in α, the expression of the excess
of grand canonical energy due to the soliton is:

E′
g(µ, v,N2, V2) = E′

g(µ, 0, N2, V2)− 2(n0ξ)mv
2

√
1 +

N̄2
2

16
+O(α3) (E.17)

Therefore, the effective mass for low velocities is [38]:

meff = −4(n0ξ)

√
1 +

N̄2
2

16
m+O(α2) (E.18)

A sanity check is the examination of the limiting case where the atom number in
the bright component N2 is small. Indeed, when N̄2 ≪ 1, we recover the effective
mass of the dark soliton (E.11) in the low velocity limit: meff ≃ −4(n0ξ)m. In the
opposite limiting case of N̄2 ≫ 1, we get: meff = −N2m. The effective mass remains
negative and is the opposite of the result for the bright component alone, which may
have been naively expected in this limiting case.

As the effective mass is negative at low velocities, regardless of the parameter
values, we expect the dark-bright matter wave to propagate in the opposite direction
of the applied force at the beginning of the movement. This is confirmed numerically
in Figure E.3.

For longer times, we rely on a numerical integration to calculate the evolution of
p, v and the energy E′

g as a function of the parameter α. We can obtain the dispersion
relation by eliminating α: E′

g(p) (or E′
g(v)) are plotted in Figure E.3(d) for a fixed

value of V2 = 0 and N̄2. We observe a periodic relationship for E′
g(p). This result,

combined with the linear time variation of the momentum p, could lead to Bloch-like
oscillations, as we discussed in Chapter 5 and 6. However, an adiabatic approximation
should also be made to observe the oscillations as we emphasized in those chapters.
Here, the trajectories at the turning point cross the point α = π/2, where v = 0.
α = π/2 means an extension of the wavepacket which diverges: 1/κ→ ∞. Thus, the
work of the force over the size of the soliton becomes obligatory large in front of the
chemical potential: f2/κ≫ µ even for extremely small external force.

We numerically confirm that Bloch-like oscillations are not seen for dark-bright
solitons in the case of equal interaction parameters. The wavepacket extends over the
whole box when the momentum reaches p ≃ 0 starting from p = πℏn0cB.

The magnetic soliton did not exhibit the infinite extension of the wavepacket at
the turning point. Instead, the wavepacket was observed to shrink as it moved.

We now explore the relaxation of the constraint on equal interaction parameters.
If a dark-bright soliton is prepared, i.e. a fully depleted bath accompanied with a π
phase jump is imposed for the starting position, Bloch-like oscillations are observed in
the adiabatic regime. Unlike the easy-axis magnetic soliton, the wavepacket begins its
motion by propagating in the opposite direction of the constant force. Although, its
depletion diminishes, it does not reach zero as it did for equal interaction parameters.
This allows the soliton to return to its initial position without collapsing. In this
case, why do we observe Bloch oscillations? At the turning point where the bath is
fully depleted, the state of the easy-axis magnetic soliton, described in Chapter 5, is
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equivalent to a dark-bright soliton (phase jump of π for the majority component).
Therefore, it is not surprising to observe Bloch-like oscillations in the case of a dark-
bright soliton with non equal interaction parameters, which start in the opposite
direction to the force. This is because its dynamics are the same as those of an
easy-axis magnetic soliton during the second half of one period of motion.

In this appendix, we observed the movement of various solitons of the 1D NLSE
under a constant force. The magnetic soliton, described in this thesis, exhibits Bloch-
like oscillations, which are a specific feature. However, it is important to note its
connection with a dark-bright soliton that has unequal interaction parameters.

190



Appendix E. Dynamics of solitons of the 1D NLSE under a linear potential

191



Bibliography

[1] M. Planck. “Über das Gesetz der Energieverteilung im Normalspectrum”. In:
Annalen der Physik 309.3 (1901), pp. 553–563 (Cited on page 1).

[2] N. Bohr. “Discussion with Einstein on Epistemological Problems in Atomic
Physics”. Cambridge University Press (1949) (Cited on page 1).

[3] M. Schlosshauer, J. Kofler, and A. Zeilinger. “A snapshot of foundational at-
titudes toward quantum mechanics”. In: Studies in History and Philosophy of
Science Part B: Studies in History and Philosophy of Modern Physics 44.3
(2013), pp. 222–230 (Cited on page 1).

[4] S. Frabboni, G. C. Gazzadi, and G. Pozzi. “Young’s double-slit interference
experiment with electrons”. In: American Journal of Physics 75.11 (2007),
pp. 1053–1055 (Cited on page 1).

[5] P. Kapitza. “Viscosity of Liquid Helium below the λ-Point”. In: Nature 141.3558
(1938), p. 74 (Cited on pages 1, 35).

[6] J. F. Allen and A. D. Misener. “Flow of Liquid Helium II”. In: Nature 141.3558
(1938), p. 75 (Cited on pages 1, 35).

[7] G. B. Hess and W. M. Fairbank. “Measurements of Angular Momentum in
Superfluid Helium”. In: Physical Review Letters 19.5 (1967), pp. 216–218 (Cited
on pages 2, 35).

[8] M. M. Salomaa and G. E. Volovik. “Quantized vortices in superfluid 3He”. In:
Review Modern Physics 59.3 (1987), pp. 533–613 (Cited on page 2).

[9] A. Einstein. “Quantentheorie des einatomigen idealen Gases”. Sitzungsberichte
der Preussischen Akademie der Wissenschaften (1924), pp. 261–267 (Cited on
page 2).

[10] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor-
nell. “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”.
In: Science 269.5221 (1995), pp. 198–201 (Cited on pages 2, 9).

[11] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D.
M. Kurn, and W. Ketterle. “Bose-Einstein Condensation in a Gas of Sodium
Atoms”. In: Physical Review Letters 75.22 (1995), pp. 3969–3973 (Cited on
page 2).

[12] I. Bloch, T. W. Hänsch, and T. Esslinger. “Measurement of the spatial coher-
ence of a trapped Bose gas at the phase transition”. In: Nature 403.6766 (2000),
pp. 166–170 (Cited on pages 2, 137).

[13] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J.
R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W.
Ketterle. “Realization of Bose-Einstein Condensates in Lower Dimensions”. In:
Physical Review Letters 87.13 (2001), p. 130402 (Cited on page 2).

192



Bibliography

[14] K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier. “Experimental
demonstration of painting arbitrary and dynamic potentials for Bose–Einstein
condensates”. In: New Journal of Physics 11.4 (2009), p. 043030 (Cited on
page 2).

[15] I. Bloch. “Ultracold quantum gases in optical lattices”. In: Nature Physics 1.1
(2005), pp. 23–30 (Cited on page 2).

[16] N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier. “Sub-poissonian load-
ing of single atoms in a microscopic dipole trap”. In: Nature 411.6841 (2001),
pp. 1024–1027 (Cited on page 2).

[17] Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J.
Verhaar. “Observation of a Feshbach Resonance in Cold Atom Scattering”. In:
Physical Review Letters 81.1 (1998), pp. 69–72 (Cited on page 2).

[18] V. L. Berezinskii. “Destruction of long-range order in one-dimensional and two-
dimensional systems possessing a continuous symmetry group. II. Quantum
systems”. In: Soviet Physics Journal of Experimental and Theoretical Physics
34.3 (1972), pp. 610–616 (Cited on pages 2, 42, 43).

[19] J. M. Kosterlitz and D. J. Thouless. “Ordering, metastability and phase transi-
tions in two-dimensional systems”. In: Journal of Physics C: Solid State Physics
6.7 (1973), pp. 1181–1203 (Cited on pages 2, 42, 43).

[20] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard. “Bere-
zinskii-Kosterlitz-Thouless crossover in a trapped atomic gas”. In:
Nature 441.7097 (2006), pp. 1118–1121 (Cited on pages 2, 42).

[21] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. “Vortex Formation
in a Stirred Bose-Einstein Condensate”. In: Physical Review Letters 84.5 (2000),
pp. 806–809 (Cited on page 2).

[22] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. “Observation of
Vortex Lattices in Bose-Einstein Condensates”. In: Science 292.5516 (2001),
pp. 476–479 (Cited on page 2).

[23] R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg,
and J. Dalibard. “Superfluid behaviour of a two-dimensional Bose gas”. In:
Nature Physics 8.9 (2012), pp. 645–648 (Cited on pages 2, 36).

[24] J. L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger, S. Nascimbène, J.
Dalibard, and J. Beugnon. “Sound Propagation in a Uniform Superfluid Two-
Dimensional Bose Gas”. In: Physical Review Letters 121.14 (2018), p. 145301
(Cited on pages 2, 40, 51, 56, 75).

[25] P. Christodoulou, M. Gałka, N. Dogra, R. Lopes, J. Schmitt, and Z. Hadz-
ibabic. “Observation of first and second sound in a BKT superfluid”. In: Nature
594.7862 (2021), pp. 191–194 (Cited on pages 2, 37, 43, 51, 54, 75).

[26] T. Yefsah, R. Desbuquois, L. Chomaz, K. J. Günter, and J. Dalibard. “Explor-
ing the Thermodynamics of a Two-Dimensional Bose Gas”. In: Physical Review
Letters 107.13 (2011), p. 130401 (Cited on pages 2, 30).

[27] R. Saint-Jalm, P. C. M. Castilho, É. Le Cerf, B. Bakkali-Hassani, J.-L. Ville, S.
Nascimbene, J. Beugnon, and J. Dalibard. “Dynamical Symmetry and Breathers
in a Two-Dimensional Bose Gas”. In: Physical Review X 9.2 (2019), p. 021035
(Cited on pages 2, 20, 30, 31).

[28] E. P. Gross. “Structure of a quantized vortex in boson systems”. In: Il Nuovo
Cimento (1955-1965) 20.3 (1961), pp. 454–477 (Cited on pages 2, 28).

193



Bibliography

[29] L. P. Pitaevskii. “Vortex Lines in an imperfect Bose gas”. In: Soviet Physics
Journal of Experimental and Theoretical Physics 13.2 (1961), pp. 451–454
(Cited on pages 2, 28).

[30] T. Dauxois and M. Peyrard. “Physics of Solitons”. Cambridge University Press
(2006) (Cited on pages 3, 78, 80).

[31] J. S. Russell. “Report on Waves”. British Association for the Advancement of
Science (1845) (Cited on pages 3, 79).

[32] D. J. Korteweg and G. de Vries. “XLI. On the change of form of long waves
advancing in a rectangular canal, and on a new type of long stationary waves”.
In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 39.240 (1895), pp. 422–443 (Cited on pages 3, 79).

[33] N. J. Zabusky and M. D. Kruskal. “Interaction of "Solitons" in a Collisionless
Plasma and the Recurrence of Initial States”. In: Physical Review Letters 15.6
(1965), pp. 240–243 (Cited on pages 3, 80).

[34] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon. “Experimental Observation
of Picosecond Pulse Narrowing and Solitons in Optical Fibers”. In: Physical
Review Letters 45.13 (1980), pp. 1095–1098 (Cited on pages 3, 80–82).

[35] A. Barthelemy, S. Maneuf, and C. Froehly. “Propagation soliton et auto-
confinement de faisceaux laser par non linearité optique de kerr”. In: Optics
Communications 55.3 (1985), pp. 201–206 (Cited on pages 3, 82).

[36] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr,
Y. Castin, and C. Salomon. “Formation of a Matter-Wave Bright Soliton”. In:
Science 296.5571 (2002), pp. 1290–1293 (Cited on pages 3, 82, 83).

[37] J. Denschlag, J. E. Simsarian, D. L. Feder, Charles W. Clark, L. A. Collins,
J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, S. L.
Rolston, B. I. Schneider, and W. D. Phillips. “Generating Solitons by Phase En-
gineering of a Bose-Einstein Condensate”. In: Science 287.5450 (2000), pp. 97–
101 (Cited on pages 3, 83).

[38] Th. Busch and J. R. Anglin. “Dark-Bright Solitons in Inhomogeneous Bose-
Einstein Condensates”. In: Physical Review Letters 87.1 (2001), p. 010401
(Cited on pages 3, 84, 115, 118, 120, 187, 189).

[39] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M.
Richter, J. Kronjäger, K. Bongs, and K. Sengstock. “Oscillations and inter-
actions of dark and dark–bright solitons in Bose–Einstein condensates”. In:
Nature Physics 4.6 (2008), pp. 496–501 (Cited on pages 3, 85, 120).

[40] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer. “Generation of Dark-
Bright Soliton Trains in Superfluid-Superfluid Counterflow”. In: Physical Re-
view Letters 106.6 (2011), p. 065302 (Cited on pages 3, 83, 85).

[41] C. Qu, L. P. Pitaevskii, and S. Stringari. “Magnetic Solitons in a Binary Bose-
Einstein Condensate”. In: Physical Review Letters 116.16 (2016), p. 160402
(Cited on pages 3, 89, 91, 93, 94, 115, 118, 120).

[42] T. Congy, A. M. Kamchatnov, and N. Pavloff. “Dispersive hydrodynamics of
nonlinear polarization waves in two-component Bose-Einstein condensates”. In:
SciPost Physics 1.1 (2016), p. 006 (Cited on pages 3, 90, 93, 94, 174).

[43] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev. “Magnetic Solitons”. In:
Physics Reports 194.3 (1990), pp. 117–238 (Cited on pages 4, 86–88, 90–92, 94,
96–98, 167).

194



Bibliography

[44] A. Farolfi, D. Trypogeorgos, C. Mordini, G. Lamporesi, and G. Ferrari. “Ob-
servation of Magnetic Solitons in Two-Component Bose-Einstein Condensates”.
In: Physical Review Letters 125.3 (2020), p. 030401 (Cited on pages 4, 119).

[45] X. Chai, D. Lao, K. Fujimoto, R. Hamazaki, M. Ueda, and C. Raman. “Mag-
netic Solitons in a Spin-1 Bose-Einstein Condensate”. In: Physical Review Let-
ters 125.3 (2020), p. 030402 (Cited on pages 4, 119).

[46] L.-C. Zhao, W. Wang, Q. Tang, Z.-Y. Yang, W.-L. Yang, and J. Liu. “Spin
soliton with a negative-positive mass transition”. In: Physical Review A 101.4
(2020), p. 043621 (Cited on pages 4, 94, 103, 115).

[47] X. Chai, L. You, and C. Raman. “Magnetic solitons in an immiscible two-
component Bose-Einstein condensate”. In: Physical Review A 105.1 (2022),
p. 013313 (Cited on pages 4, 94).

[48] S. Bresolin, A. Roy, G. Ferrari, A. Recati, and N. Pavloff. “Oscillating Solitons
and ac Josephson Effect in Ferromagnetic Bose-Bose Mixtures”. In: Physical
Review Letters 130.22 (2023), p. 220403 (Cited on pages 4, 94, 97, 103, 106,
108, 112–114, 116, 120, 126, 132, 137, 140).

[49] A. M. Kosevich, V. V. Gann, A. I. Zhukov, and V. P. Voronov. “Magnetic
soliton motion in a nonuniform magnetic field”. In: Journal of Experimental
and Theoretical Physics 87.2 (1998), pp. 401–407 (Cited on pages 4, 97, 98,
102, 104, 106, 115).

[50] C. Zener. “A Theory of the Electrical Breakdown of Solid Dielectrics”. In:
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 145.855 (1934), pp. 523–529 (Cited on
pages 4, 108).

[51] M. Schecter, D. M. Gangardt, and A. Kamenev. “Dynamics and Bloch oscilla-
tions of mobile impurities in one-dimensional quantum liquids”. In: Annals of
Physics 327.3 (2012), pp. 639–670 (Cited on pages 4, 111).

[52] F. D. M. Haldane. “"Luttinger liquid theory" of one-dimensional quantum
fluids. I. Properties of the Luttinger model and their extension to the general
1D interacting spinless Fermi gas”. In: Journal of Physics C: Solid State Physics
14.19 (1981), p. 2585 (Cited on pages 4, 111, 116).

[53] D. M. Gangardt and A. Kamenev. “Bloch Oscillations in a One-Dimensional
Spinor Gas”. In: Physical Review Letters 102.7 (2009), p. 070402 (Cited on
pages 4, 111).

[54] F. Meinert, M. Knap, E. Kirilov, K. Jag-Lauber, M. B. Zvonarev, E. Demler,
and H.-C. Nägerl. “Bloch oscillations in the absence of a lattice”. In: Science
356.6341 (2017), pp. 945–948 (Cited on pages 4, 110, 111).

[55] D. S. Petrov. “Quantum Mechanical Stabilization of a Collapsing Bose-Bose
Mixture”. In: Physical Review Letters 115.15 (2015), p. 155302 (Cited on pages 4,
85, 86).

[56] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L.
Tarruell. “Quantum liquid droplets in a mixture of Bose-Einstein condensates”.
In: Science 359.6373 (2018), pp. 301–304 (Cited on pages 4, 86).

[57] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M.
Modugno, G. Modugno, M. Inguscio, and M. Fattori. “Self-Bound Quantum
Droplets of Atomic Mixtures in Free Space”. In: Physical Review Letters 120.23
(2018), p. 235301 (Cited on pages 4, 86).

195



Bibliography

[58] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau. “Observation
of Quantum Droplets in a Strongly Dipolar Bose Gas”. In: Physical Review
Letters 116.21 (2016), p. 215301 (Cited on pages 4, 86).

[59] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell.
“Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein
Condensates”. In: Physical Review Letters 120.13 (2018), p. 135301 (Cited on
pages 4, 86).

[60] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and
T. Pfau. “Transient Supersolid Properties in an Array of Dipolar Quantum
Droplets”. In: Physical Review X 9.1 (2019), p. 011051 (Cited on page 4).

[61] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bis-
set, L. Santos, and G. Modugno. “Observation of a Dipolar Quantum Gas with
Metastable Supersolid Properties”. In: Physical Review Letters 122.13 (2019),
p. 130405 (Cited on pages 4, 47).

[62] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G.
Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, and
F. Ferlaino. “Long-Lived and Transient Supersolid Behaviors in Dipolar Quan-
tum Gases”. In: Physical Review X 9.2 (2019), p. 021012 (Cited on pages 4,
47).

[63] A. J. Leggett. “Can a Solid Be "Superfluid"?” In: Physical Review Letters 25.22
(1970), pp. 1543–1546 (Cited on pages 4, 5, 41, 47, 48).

[64] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner. “Supersolid
formation in a quantum gas breaking a continuous translational symmetry”.
In: Nature 543.7643 (2017), pp. 87–90 (Cited on pages 4, 47).

[65] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç. Top, A. O.
Jamison, and W. Ketterle. “A stripe phase with supersolid properties in spin–
orbit-coupled Bose–Einstein condensates”. In: Nature 543.7643 (2017), pp. 91–
94 (Cited on pages 4, 47).

[66] A. J. Leggett. “On the superfluid fraction of an arbitrary many-body system
at T = 0”. In: Journal of Statistical Physics 93.3-4 (1998), pp. 927–941 (Cited
on pages 4, 50, 70, 166).

[67] G. Chauveau, C. Maury, F. Rabec, C. Heintze, G. Brochier, S. Nascimbene, J.
Dalibard, J. Beugnon, S. M. Roccuzzo, and S. Stringari. “Superfluid Fraction
in an Interacting Spatially Modulated Bose-Einstein Condensate”. In: Physical
Review Letters 130.22 (2023), p. 226003 (Cited on pages 5, 53, 69, 72, 166).

[68] K. Kleinlein. “Setting up a new experiment for investigating artificial mag-
netism of two-dimensional Bose gases”. MA thesis. Ludwig Maximilians Uni-
versität München (2014) (Cited on pages 8, 146).

[69] L. Corman. “The two-dimensional Bose Gas in box potentials”. PhD thesis.
Université Paris Sciences et Lettres (2016) (Cited on pages 8, 11, 146).

[70] J.-L. Ville. “Quantum gases in box potentials : sound and light in bosonic
Flatland”. PhD thesis. Université Paris Sciences et Lettres (2018) (Cited on
pages 8, 13).

[71] R. Saint-Jalm. “Exploring two-dimensional physics with Bose gases in box po-
tentials : phase ordering and dynamical symmetry”. PhD thesis. Université
Paris Sciences et Lettres (2019) (Cited on pages 8, 13, 14, 20–22, 126).

196



Bibliography

[72] É. Le Cerf. “Demixing phenomena in 2D bose gases”. PhD thesis. Sorbonne
Université (2020) (Cited on pages 8, 18, 21, 122).

[73] D. A. Steck. “Rubidium 87 D Line Data” (2003) (Cited on page 10).

[74] A. Keshet and W. Ketterle. “A distributed, graphical user interface based, com-
puter control system for atomic physics experiments”. In: Review of Scientific
Instruments 84.1 (2013) (Cited on page 10).

[75] J. Li, K. Lim, S. Das, T. Zanon-Willette, C.-H. Feng, P. Robert, A. Bertoldi,
P. Bouyer, C. C. Kwong, S.-Y. Lan, and D. Wilkowski. “Bi-color atomic beam
slower and magnetic field compensation for ultracold gases”. In: AVS Quantum
Science 4.4 (2022) (Cited on page 13).

[76] T. C. Li, H. Kelkar, D. Medellin, and M. G. Raizen. “Real-time control of the
periodicity of a standing wave: an optical accordion”. In: Optics Express 16.8
(2008), pp. 5465–5470 (Cited on page 13).

[77] B. Bakkali-Hassani. “Testing scale invariance in a two-dimensional Bose gas
: preparation and characterization of solitary waves”. PhD thesis. Sorbonne
Université (2021) (Cited on pages 14, 85).

[78] C. Dorrer and J. D. Zuegel. “Design and analysis of binary beam shapers using
error diffusion”. In: Journal of the Optical Society of America B 24.6 (2007),
pp. 1268–1275 (Cited on pages 14, 16).

[79] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H. Moritz. “Two-
Dimensional Homogeneous Fermi Gases”. In: Physical Review Letters 120.6
(2018), p. 060402 (Cited on page 16).

[80] R. W. Floyd and L. Steinberg. “An adaptive algorithm for spatial gray scale”.
In: Proceedings of the Society for Information Display 17 (1975) (Cited on
page 16).

[81] Y.-Q. Zou, É. Le Cerf, B. Bakkali-Hassani, C. Maury, G. Chauveau, P. C. M.
Castilho, R. Saint-Jalm, S. Nascimbene, J. Dalibard, and J. Beugnon. “Optical
control of the density and spin spatial profiles of a planar Bose gas”. In: Journal
of Physics B: Atomic, Molecular and Optical Physics 54.8 (2021), p. 08LT01
(Cited on page 18).

[82] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch. “A New Method of Mea-
suring Nuclear Magnetic Moment”. In: Physical Review 53.4 (1938), pp. 318–
318 (Cited on page 18).

[83] C. Maury. “Probing few and many-body physics in a planar Bose gas : Atom-
dimer interactions and zero-temperature superfluid fraction”. PhD thesis. Sor-
bonne Université (2023) (Cited on pages 19, 31, 33, 35, 46, 51, 72).

[84] L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascim-
bène, J. Dalibard, and J. Beugnon. “Transmission of near-resonant light through
a dense slab of cold atoms”. In: Physical Review A 96.5 (2017), p. 053629 (Cited
on page 19).

[85] R. Saint-Jalm, M. Aidelsburger, J. L. Ville, L. Corman, Z. Hadzibabic, D. De-
lande, S. Nascimbene, N. Cherroret, J. Dalibard, and J. Beugnon. “Resonant-
light diffusion in a disordered atomic layer”. In: Physical Review A 97.6 (2018),
p. 061801 (Cited on page 19).

197



Bibliography

[86] Y.-Q. Zou, B. Bakkali-Hassani, C. Maury, É. Le Cerf, S. Nascimbene, J. Dal-
ibard, and J. Beugnon. “Tan’s two-body contact across the superfluid transition
of a planar Bose gas”. In: Nature Communications 12.1 (2021), p. 760 (Cited
on pages 20, 35).

[87] C. Maury, B. Bakkali-Hassani, G. Chauveau, F. Rabec, S. Nascimbene, J. Dal-
ibard, and J. Beugnon. “Precision measurement of atom-dimer interaction in a
uniform planar Bose gas”. In: Physical Review Research 5.1 (2023), p. L012020
(Cited on pages 20, 32–35, 166).

[88] I. Dotsenko, W. Alt, S. Kuhr, D. Schrader, M. Müller, Y. Miroshnychenko, V.
Gomer, A. Rauschenbeutel, and D. Meschede. “Application of electro-optically
generated light fields for Raman spectroscopy of trapped cesium atoms”. In:
Applied Physics B 78.6 (2004), pp. 711–717 (Cited on page 21).

[89] L. P. Pitaevskii and S. Stringari. “Bose-Einstein Condensation and Superflu-
idity”. Oxford University Press (2016) (Cited on pages 24, 29, 37–39, 50, 51,
116, 185).

[90] B. A. Lippmann and J. Schwinger. “Variational Principles for Scattering Pro-
cesses. I”. In: Physical Review 79.3 (1950), pp. 469–480 (Cited on page 25).

[91] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne. “Experiments and theory
in cold and ultracold collisions”. In: Review Modern Physics 71.1 (1999), pp. 1–
85 (Cited on pages 25, 32).

[92] A. Messiah. “Mécanique quantique”. Dunod (2003) (Cited on page 26).

[93] S. K. Adhikari. “Quantum scattering in two dimensions”. In: American Journal
of Physics 54.4 (1986), pp. 362–367 (Cited on page 26).

[94] Z. Hadzibabic and J. Dalibard. “Two-dimensional Bose fluids: An atomic physics
perspective”. In: La Rivista del Nuovo Cimento 34.6 (2011), pp. 389–434 (Cited
on pages 26, 29).

[95] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov. “Bose-Einstein Conden-
sation in Quasi-2D Trapped Gases”. In: Physical Review Letters 84.12 (2000),
pp. 2551–2555 (Cited on pages 26, 29).

[96] D. S. Petrov and G. V. Shlyapnikov. “Interatomic collisions in a tightly confined
Bose gas”. In: Physical Review A 64.1 (2001), p. 012706 (Cited on page 26).

[97] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga. “Feshbach resonances in
ultracold gases”. In: Review Modern Physics 82.2 (2010), pp. 1225–1286 (Cited
on page 27).

[98] A. Marte, T. Volz, J. Schuster, S. Dürr, G. Rempe, E. G. M. van Kempen, and
B. J. Verhaar. “Feshbach Resonances in Rubidium 87: Precision Measurement
and Analysis”. In: Physical Review Letters 89.28 (2002), p. 283202 (Cited on
page 27).

[99] D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov. “Low-dimensional
trapped gases”. In: Journal Physics IV France 116 (2004), pp. 5–44 (Cited
on pages 27, 79).

[100] J.-L. Lagrange. “Mécanique Analytique”. Cambridge University Press (2009)
(Cited on page 28).

[101] J. Dalibard. “Fluides quantiques de basse dimension et transition de Kosterlitz-
Thouless”. Collège de France lectures (2017) (Cited on page 30).

198



Bibliography

[102] W. Zwerger. “The BCS-BEC crossover and the unitary Fermi gas”. Springer
Science & Business Media (2011) (Cited on page 30).

[103] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin. “Observation of scale in-
variance and universality in two-dimensional Bose gases”. In: Nature 470.7333
(2011), pp. 236–239 (Cited on page 30).

[104] L. P. Pitaevskii and A. Rosch. “Breathing modes and hidden symmetry of
trapped atoms in two dimensions”. In: Physical Review A 55.2 (1997), R853–
R856 (Cited on pages 30, 130, 139).

[105] F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison, and J. Dalibard. “Trans-
verse Breathing Mode of an Elongated Bose-Einstein Condensate”. In: Physical
Review Letters 88.25 (2002), p. 250402 (Cited on page 30).

[106] Z.-Y. Shi, C. Gao, and H. Zhai. “Ideal-Gas Approach to Hydrodynamics”. In:
Physical Review X 11.4 (2021), p. 041031 (Cited on page 30).

[107] M. Olshanii, H. Perrin, and V. Lorent. “Example of a Quantum Anomaly in the
Physics of Ultracold Gases”. In: Physical Review Letters 105.9 (2010), p. 095302
(Cited on page 30).

[108] L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung, and C. Chin.
“Strongly interacting two-dimensional Bose gases”. In: Physical Review Letters
110.14 (2013), p. 145302 (Cited on page 30).

[109] R. Freeland. “Photoassociation spectroscopy of ultracold and Bose-condensed
atomic gases”. PhD thesis. University of Texas, Austin (2001) (Cited on page 33).

[110] I. Mordovin. “Radio-frequency induced association of molecules in 87Rb”. PhD
thesis. Swinburne University of Technology (2015) (Cited on page 33).

[111] J. Dalibard. “Cohérence et superfluidité dans les gaz atomiques”. Collège de
France lectures (2016) (Cited on pages 35–38, 41, 82).

[112] T. Mori. “Electronic Properties of Organic Conductors”. Springer Japan (2016),
pp. 227–252 (Cited on page 35).

[113] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W.
D. Phillips, M. Edwards, and G. K. Campbell. “Hysteresis in a quantized su-
perfluid "atomtronic" circuit”. In: Nature 506.7487 (2014), pp. 200–203 (Cited
on page 36).

[114] A. Griffin. “Excitations in a Bose–Condensed Liquid”. Cambridge University
Press (1993) (Cited on page 37).

[115] L. Tisza. “Transport Phenomena in Helium II”. In: Nature 141.3577 (1938),
pp. 913–913 (Cited on page 37).

[116] L. Landau. “Theory of the Superfluidity of Helium II”. In: Physical Review 60.4
(1941), pp. 356–358 (Cited on page 37).

[117] V. Peshkov. “Determination of the velocity of propagation of the second sound
in helium II”. In: Soviet Journal of Experimental and Theoretical Physics 10.1
(1946), pp. 389–398 (Cited on page 37).

[118] L. A. Sidorenkov, M. K. Tey, R. Grimm, Y.-H. Hou, L. P. Pitaevskii, and S.
Stringari. “Second sound and the superfluid fraction in a Fermi gas with reso-
nant interactions”. In: Nature 498.7452 (2013), pp. 78–81 (Cited on pages 37,
43, 75).

199



Bibliography

[119] Q. Zhu, C. Zhang, and B. Wu. “Exotic superfluidity in spin-orbit coupled Bose-
Einstein condensates”. In: Europhysics Letters 100.5 (2012), p. 50003 (Cited on
page 38).

[120] J. S. Stießberger and W. Zwerger. “Critcal velocity of superfluid flow past large
obstacles in Bose-Einstein condensates”. In: Physical Review A 62.6 (2000),
p. 061601 (Cited on page 38).

[121] N. N. Bogoliubov. “On the theory of superfluidity”. In: Soviet Journal of Ex-
perimental and Theoretical Physics 11.1 (1947), p. 23 (Cited on page 39).

[122] N. Prokof’ev, O. Ruebenacker, and B. Svistunov. “Critical Point of a Weakly In-
teracting Two-Dimensional Bose Gas”. In: Physical Review Letters 87.27 (2001),
p. 270402 (Cited on page 42).

[123] D. J. Bishop and J. D. Reppy. “Study of the superfluid transition in two-
dimensional 4He films”. In: Physical Review B 22.11 (1980), pp. 5171–5185
(Cited on page 42).

[124] N. D. Mermin and H. Wagner. “Absence of Ferromagnetism or Antiferromag-
netism in One- or Two-Dimensional Isotropic Heisenberg Models”. In: Physical
Review Letters 17.22 (1966), pp. 1133–1136 (Cited on pages 42, 112).

[125] P. C. Hohenberg. “Existence of Long-Range Order in One and Two Dimen-
sions”. In: Physical Review 158.2 (1967), pp. 383–386 (Cited on page 42).

[126] O. Penrose and L. Onsager. “Bose-Einstein Condensation and Liquid Helium”.
In: Physical Review 104.3 (1956), pp. 576–584 (Cited on pages 43, 47).

[127] S. Sunami, V. P. Singh, D. Garrick, A. Beregi, A. J. Barker, K. Luksch, E.
Bentine, L. Mathey, and C. J. Foot. “Observation of the Berezinskii-Kosterlitz-
Thouless Transition in a Two-Dimensional Bose Gas via Matter-Wave Inter-
ferometry”. In: Physical Review Letters 128.25 (2022), p. 250402 (Cited on
page 43).

[128] R. P. Feynman. “Simulating physics with computers”. In: International Journal
of Theoretical Physics 21.6 (1982), pp. 467–488 (Cited on page 46).

[129] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt,
F. Grusdt, E. Demler, D. Greif, and M. Greiner. “A cold-atom Fermi–Hubbard
antiferromagnet”. In: Nature 545.7655 (2017), pp. 462–466 (Cited on page 46).

[130] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. “Quantum
phase transition from a superfluid to a Mott insulator in a gas of ultracold
atoms”. In: Nature 415.6867 (2002), pp. 39–44 (Cited on page 46).

[131] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon. “Bloch Os-
cillations of Atoms in an Optical Potential”. In: Physical Review Letters 76.24
(1996), pp. 4508–4511 (Cited on pages 46, 110).

[132] C. Gross and I. Bloch. “Quantum simulations with ultracold atoms in optical
lattices”. In: Science 357.6355 (2017), pp. 995–1001 (Cited on page 46).

[133] G. V. Chester. “Speculations on Bose-Einstein Condensation and Quantum
Crystals”. In: Physical Review A 2.1 (1970), pp. 256–258 (Cited on page 47).

[134] E. Kim and M. H. W. Chan. “Observation of Superflow in Solid Helium”. In:
Science 305.5692 (2004), pp. 1941–1944 (Cited on page 47).

[135] J. Day and J. Beamish. “Low-temperature shear modulus changes in solid
4He and connection to supersolidity”. In: Nature 450.7171 (2007), pp. 853–856
(Cited on page 47).

200



Bibliography

[136] D. Y. Kim and M. H. W. Chan. “Absence of Supersolidity in Solid Helium
in Porous Vycor Glass”. In: Physical Review Letters 109.15 (2012), p. 155301
(Cited on page 47).

[137] M. Guo, F. Böttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel, H. P. Büchler,
T. Langen, and T. Pfau. “The low-energy Goldstone mode in a trapped dipolar
supersolid”. In: Nature 574.7778 (2019), pp. 386–389 (Cited on page 47).

[138] A. Recati and S. Stringari. “Supersolidity in ultracold dipolar gases”. In: Nature
Reviews Physics 5.12 (2023), pp. 1–9 (Cited on page 47).

[139] N. Sepúlveda, C. Josserand, and S. Rica. “Nonclassical rotational inertia frac-
tion in a one-dimensional model of a supersolid”. In: Physical Review B 77.5
(2008), p. 054513 (Cited on page 50).

[140] G. Orso and S. Stringari. “Superfluid Fraction and Leggett Bound in a Den-
sity Modulated Strongly Interacting Fermi Gas at Zero Temperature”. In:
arXiv:2311.16709 (2023) (Cited on pages 50, 51).

[141] A. Griffin and E. Zaremba. “First and second sound in a uniform Bose gas”.
In: Physical Review A 56.6 (1997), pp. 4839–4844 (Cited on page 50).

[142] T. Ozawa and S. Stringari. “Discontinuities in the First and Second Sound Ve-
locities at the Berezinskii-Kosterlitz-Thouless Transition”. In: Physical Review
Letters 112.2 (2014), p. 025302 (Cited on pages 50, 51).

[143] M. Krämer, L. P. Pitaevskii, and S. Stringari. “Macroscopic Dynamics of a
Trapped Bose-Einstein Condensate in the Presence of 1D and 2D Optical Lat-
tices”. In: Physical Review Letters 88.18 (2002), p. 180404 (Cited on page 51).

[144] J. Tao, M. Zhao, and I. B. Spielman. “Observation of Anisotropic Superfluid
Density in an Artificial Crystal”. In: Physical Review Letters 131.16 (2023),
p. 163401 (Cited on pages 53, 65, 69).

[145] S. T. Beliaev. “Energy spectrum of a non-ideal Bose gas”. In: Soviet Journal of
Experimental and Theoretical Physics 34.299 (1958) (Cited on page 58).

[146] J. Zhang, C. Eigen, W. Zheng, J. A. P. Glidden, T. A. Hilker, S. J. Garratt,
R. Lopes, N. R. Cooper, Z. Hadzibabic, and N. Navon. “Many-Body Decay
of the Gapped Lowest Excitation of a Bose-Einstein Condensate”. In: Physical
Review Letters 126.6 (2021), p. 060402 (Cited on page 58).

[147] R. Grimm, M. Weidemüller, and Y. Ovchinnikov. “Optical Dipole Traps for
Neutral Atoms”. In: Advances in Atomic, Molecular, and Optical Physics 42
(2000), p. 95 (Cited on pages 58, 153).

[148] N. Chamel. “Neutron conduction in the inner crust of a neutron star in the
framework of the band theory of solids”. In: Physical Review C 85.3 (2012),
p. 035801 (Cited on page 69).

[149] G. Watanabe and C. J. Pethick. “Superfluid Density of Neutrons in the Inner
Crust of Neutron Stars: New Life for Pulsar Glitch Models”. In: Physical Review
Letters 119.6 (2017), p. 062701 (Cited on page 69).

[150] P. B. Blakie. “Superfluid fraction tensor of a two-dimensional supersolid”. In:
arXiv:2308.14001 (2023) (Cited on pages 71, 73).

[151] P. B. Blakie, L. Chomaz, D. Baillie, and F. Ferlaino. “Compressibility and
speeds of sound across the superfluid-to-supersolid phase transition of an elon-
gated dipolar gas”. In: Physical Review Research 5.3 (2023), p. 033161 (Cited
on page 71).

201



Bibliography

[152] M. Šindik, T. Zawiślak, A. Recati, and S. Stringari. “Sound, superfluidity and
layer compressibility in a ring dipolar supersolid”. In: arXiv:2308.05981 (2023)
(Cited on page 71).

[153] E. Busley, L. E. Miranda, A. Redmann, C. Kurtscheid, K. K. Umesh, F.
Vewinger, M. Weitz, and J. Schmitt. “Compressibility and the equation of state
of an optical quantum gas in a box”. In: Science 375.6587 (2022), pp. 1403–
1406 (Cited on page 71).

[154] D. Pérez Cruz. “Superfluid fraction in disordered bosonic gases”. MA thesis.
Universitat Politècnica de Catalunya, Barcelona (2023) (Cited on page 73).

[155] G. Biagioni, N. Antolini, B. Donelli, L. Pezzè, A. Smerzi, M. Fattori, A. Fioretti,
C. Gabbanini, M. Inguscio, L. Tanzi, and G. Modugno. “Sub-unity superfluid
fraction of a supersolid from self-induced Josephson effect”. In:
arXiv:2311.04757 (2023) (Cited on page 75).

[156] J. M. Dudley, C. Finot, G. Genty, and R. Taylor. “Fifty Years of Fiber Solitons”.
In: Optics and Photonics News 34.5 (2023), pp. 26–33 (Cited on pages 78, 80).

[157] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. “Method
for Solving the Korteweg-deVries Equation”. In: Physical Review Letters 19.19
(1967), pp. 1095–1097 (Cited on pages 78, 80).

[158] E. H. Lieb and W. Liniger. “Exact Analysis of an Interacting Bose Gas. I. The
General Solution and the Ground State”. In: Physical Review 130.4 (1963),
pp. 1605–1616 (Cited on pages 78, 111).

[159] J. N. Fuchs, D. M. Gangardt, T. Keilmann, and G. V. Shlyapnikov. “Spin
Waves in a One-Dimensional Spinor Bose Gas”. In: Physical Review Letters
95.15 (2005), p. 150402 (Cited on page 79).

[160] A. Hasegawa and F. Tappert. “Transmission of stationary nonlinear optical
pulses in dispersive dielectric fibers. I. Anomalous dispersion”. In: Applied
Physics Letters 23.3 (1973), pp. 142–144 (Cited on page 80).

[161] V. E. Zakharov and S. Wabnitz. “Optical Solitons: Theoretical Challenges and
Industrial Perspectives”. Springer-Verlag Berlin Heidelberg (1998) (Cited on
page 80).

[162] E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov. “Soliton stability in
plasmas and hydrodynamics”. In: Physics Reports 142.3 (1986), pp. 103–165
(Cited on page 80).

[163] M.-F. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley.
“Two-dimensional steady-state photorefractive screening solitons”. In: Optics
Letters 21.5 (1996), pp. 324–326 (Cited on page 81).

[164] V. E. Zakharov and A. B. Shabat. “Exact Theory of Two-dimensional Self-
focusing and One-dimensional Self-modulation of Waves in Nonlinear Media”.
In: Soviet Journal of Experimental and Theoretical Physics 34.1 (1970), pp. 62–
69 (Cited on pages 80, 115, 186).

[165] J. Satsuma and N. Yajima. “B. Initial Value Problems of One-Dimensional
Self-Modulation of Nonlinear Waves in Dispersive Media”. In: Progress of The-
oretical Physics Supplement 55 (1974), pp. 284–306 (Cited on page 82).

[166] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson. “Extreme
picosecond pulse narrowing by means of soliton effect in single-mode optical
fibers”. In: Optics Letters 8.5 (1983), pp. 289–291 (Cited on page 82).

202



Bibliography

[167] J. E. Bjorkholm and A. A. Ashkin. “cw Self-Focusing and Self-Trapping of
Light in Sodium Vapor”. In: Physical Review Letters 32.4 (1974), pp. 129–132
(Cited on pages 82, 85).

[168] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet. “Formation
and propagation of matter-wave soliton trains”. In: Nature 417.6885 (2002),
pp. 150–153 (Cited on page 82).

[169] L. Salasnich, A. Parola, and L. Reatto. “Modulational Instability and Complex
Dynamics of Confined Matter-Wave Solitons”. In: Physical Review Letters 91.8
(2003), p. 080405 (Cited on page 82).

[170] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.
V. Shlyapnikov, and M. Lewenstein. “Dark Solitons in Bose-Einstein Con-
densates”. In: Physical Review Letters 83.25 (1999), pp. 5198–5201 (Cited on
page 83).

[171] Th. Busch and J. R. Anglin. “Motion of Dark Solitons in Trapped Bose-Einstein
Condensates”. In: Physical Review Letters 84.11 (2000), pp. 2298–2301 (Cited
on pages 82, 120, 186).

[172] T. Marest. “Solitons sombres et ondes dispersives dans les fibres optiques”.
PhD thesis. Université de Lille (2018) (Cited on page 83).

[173] A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner,
D. E. Leaird, and W. J. Tomlinson. “Experimental Observation of the Fun-
damental Dark Soliton in Optical Fibers”. In: Physical Review Letters 61.21
(1988), pp. 2445–2448 (Cited on page 83).

[174] S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman. “Optical solitary waves
induced by cross-phase modulation”. In: Optics Letters 13.10 (1988), pp. 871–
873 (Cited on page 84).

[175] S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman,
and W. H. Knox. “Observation of Polarization-Locked Vector Solitons in an
Optical Fiber”. In: Physical Review Letters 82.20 (1999), pp. 3988–3991 (Cited
on page 84).

[176] G. D. Shao, J. Guo, X. Hu, Y. F. Song, L. M. Zhao, and D. Y. Tang. “Vector
dark solitons in a single mode fibre laser”. In: Laser Physics Letters 16.8 (2019),
p. 085110 (Cited on page 84).

[177] J. Ma, G. D. Shao, Y. F. Song, L. M. Zhao, Y. J. Xiang, D. Y. Shen, M.
Richardson, and D. Y. Tang. “Observation of dark-bright vector solitons in
fiber lasers”. In: Optics Letters 44.9 (2019), pp. 2185–2188 (Cited on pages 84,
140).

[178] S. V. Manakov. “On the theory of two-dimensional stationary self-focusing of
electromagnetic waves”. In: Soviet Physics Journal of Experimental and Theo-
retical Physics 38.2 (1974), pp. 248–253 (Cited on pages 84, 93).

[179] G. C. Katsimiga, J. Stockhofe, P. G. Kevrekidis, and P. Schmelcher. “Dark-
bright soliton interactions beyond the integrable limit”. In: Physical Review A
95.1 (2017), p. 013621 (Cited on page 84).

[180] M. O. D. Alotaibi and L. D. Carr. “Dynamics of dark-bright vector solitons
in Bose-Einstein condensates”. In: Physical Review A 96.1 (2017), p. 013601
(Cited on page 84).

203



Bibliography

[181] B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W.
Clark, and E. A. Cornell. “Watching Dark Solitons Decay into Vortex Rings in a
Bose-Einstein Condensate”. In: Physical Review Letters 86.14 (2001), pp. 2926–
2929 (Cited on page 85).

[182] M. A. Hoefer, J. J. Chang, C. Hamner, and P. Engels. “Dark-dark solitons
and modulational instability in miscible two-component Bose-Einstein conden-
sates”. In: Physical Review A 84.4 (2011), p. 041605 (Cited on page 85).

[183] E. A. Kuznetsov. “Solitons in a parametrically unstable plasma”. Akademiia
Nauk SSSR Doklady (1977), pp. 575–577 (Cited on page 85).

[184] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev,
F. Dias, and J. M. Dudley. “Observation of Kuznetsov-Ma soliton dynamics in
optical fibre”. In: Scientific Reports 2.1 (2012), p. 463 (Cited on page 85).

[185] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev,
and J. M. Dudley. “The Peregrine soliton in nonlinear fibre optics”. In: Nature
Physics 6.10 (2010), pp. 790–795 (Cited on page 85).

[186] D. H. Peregrine. “Water waves, nonlinear Schrödinger equations and their so-
lutions”. In: The ANZIAM Journal 25.1 (1983), pp. 16–43 (Cited on page 85).

[187] A. Romero-Ros, G. C. Katsimiga, S. I. Mistakidis, S. Mossman, G. Biondini,
P. Schmelcher, P. Engels, and P. G. Kevrekidis. “Experimental realization of
the Peregrine soliton in repulsive two-component Bose-Einstein condensates”.
In: arXiv:2304.05951 (2023) (Cited on page 85).

[188] A. Romero-Ros, G. C. Katsimiga, S. I. Mistakidis, B. Prinari, G. Biondini, P.
Schmelcher, and P. G. Kevrekidis. “Theoretical and numerical evidence for the
potential realization of the Peregrine soliton in repulsive two-component Bose-
Einstein condensates”. In: Physical Review A 105.5 (2022), p. 053306 (Cited on
page 85).

[189] Z. Dutton and C. W. Clark. “Effective one-component description of two-
component Bose-Einstein condensate dynamics”. In: Physical Review A 71.6
(2005), p. 063618 (Cited on page 85).

[190] B. Bakkali-Hassani, C. Maury, Y.-Q. Zou, É. Le Cerf, R. Saint-Jalm, P. C.
M. Castilho, S. Nascimbene, J. Dalibard, and J. Beugnon. “Realization of a
Townes Soliton in a Two-Component Planar Bose Gas”. In: Physical Review
Letters 127.2 (2021), p. 023603 (Cited on pages 85, 122, 128, 129).

[191] S. L. Cornish, S. T. Thompson, and C. E. Wieman. “Formation of Bright
Matter-Wave Solitons during the Collapse of Attractive Bose-Einstein Conden-
sates”. In: Physical Review Letters 96.17 (2006), p. 170401 (Cited on page 85).

[192] N. Meyer, H. Proud, M. Perea-Ortiz, C. O’Neale, M. Baumert, M. Holynski,
J. Kronjäger, G. Barontini, and K. Bongs. “Observation of Two-Dimensional
Localized Jones-Roberts Solitons in Bose-Einstein Condensates”. In: Physical
Review Letters 119.15 (2017), p. 150403 (Cited on page 85).

[193] J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides. “Ob-
servation of two-dimensional discrete solitons in optically induced nonlinear
photonic lattices”. In: Nature 422.6928 (2003), pp. 147–150 (Cited on page 85).

[194] J. Yang and Z. H. Musslimani. “Fundamental and vortex solitons in a two-
dimensional optical lattice”. In: Optics Letters 28.21 (2003), pp. 2094–2096
(Cited on page 85).

204



Bibliography

[195] Y. V. Kartashov, B. A. Malomed, and L. Torner. “Solitons in nonlinear lattices”.
In: Review Modern Physics 83.1 (2011), pp. 247–305 (Cited on page 85).

[196] B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, and
J. Beugnon. “The cross-over from Townes solitons to droplets in a 2D Bose
mixture”. In: New Journal of Physics 25.1 (2023), p. 013007 (Cited on page 86).

[197] L. D. Landau and E. Lifshitz. “On the theory of the dispersion of magnetic
permeability in ferromagnetic bodies”. In: Physikalische Zeitschrift der Sowje-
tunion 8 (1935), p. 153 (Cited on page 86).

[198] K. A. Long and A. R. Bishop. “Nonlinear excitations in classical ferromag-
netic chains”. In: Journal of Physics A: Mathematical and General 12.8 (1979),
p. 1325 (Cited on page 92).

[199] E. Timmermans. “Phase Separation of Bose-Einstein Condensates”. In: Physical
Review Letters 81.26 (1998), pp. 5718–5721 (Cited on page 94).

[200] A. Gallemí, L. P. Pitaevskii, S. Stringari, and A. Recati. “Magnetic defects in
an unbalanced mixture of two Bose-Einstein condensates”. In: Physical Review
A 97.6 (2018) (Cited on page 94).

[201] I. S. Gradshteyn and I. M. Ryzhik. “Table of integrals, series, and products”.
Academic press (2014) (Cited on page 96).

[202] L. P. Pitaevskii. “Dynamics of solitary waves in ultracold gases in terms of
observable quantities”. In: Physics-Uspekhi 59.10 (2016), p. 1028 (Cited on
pages 98, 185–187).

[203] N. W. Ashcroft and N. D. Mermin. “Solid state physics”. Saunders College
Publishing (1976) (Cited on page 108).

[204] F. Bloch. “Über die Quantenmechanik der Elektronen in Kristallgittern”. In:
Zeitschrift für Physik 52.7 (1929), pp. 555–600 (Cited on page 108).

[205] J. Zak. “Berry’s phase for energy bands in solids”. In: Physical Review Letters
62.23 (1989), pp. 2747–2750 (Cited on page 109).

[206] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen.
“Observation of Atomic Wannier-Stark Ladders in an Accelerating Optical Po-
tential”. In: Physical Review Letters 76.24 (1996), pp. 4512–4515 (Cited on
page 110).

[207] B. Pelle, A. Hilico, G. Tackmann, Q. Beaufils, and F. Pereira dos Santos.
“State-labeling Wannier-Stark atomic interferometers”. In: Physical Review A
87.2 (2013), p. 023601 (Cited on pages 110, 140).

[208] I. Carusotto, L. P. Pitaevskii, S. Stringari, G. Modugno, and M. Inguscio.
“Sensitive Measurement of Forces at the Micron Scale Using Bloch Oscillations
of Ultracold Atoms”. In: Physical Review Letters 95.9 (2005), p. 093202 (Cited
on page 110).

[209] M. D. Girardeau. “Relationship between Systems of Impenetrable Bosons and
Fermions in One Dimension”. In: Journal of Mathematical Physics 1.6 (1960),
pp. 516–523 (Cited on page 111).

[210] T. Kinoshita, T. Wenger, and D. S. Weiss. “Observation of a One-Dimensional
Tonks-Girardeau Gas”. In: Science 305.5687 (2004), pp. 1125–1128 (Cited on
page 111).

[211] D. K. K. Lee and J. M. F. Gunn. “Polarons and Bose decondensation: A self-
trapping approach”. In: Physical Review B 46.1 (1992), pp. 301–307 (Cited on
page 111).

205



Bibliography

[212] M. Will and M. Fleischhauer. “Dynamics of polaron formation in 1D Bose
gases in the strong-coupling regime”. In: New Journal of Physics 25.8 (2023),
p. 083043 (Cited on page 112).

[213] B. D. Josephson. “Possible new effects in superconductive tunnelling”. In: Phy-
sics Letters 1.7 (1962), pp. 251–253 (Cited on page 112).

[214] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B.
Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M.
J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov,
E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh,
S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Ru-
bin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H.
Neven, and J. M. Martinis. “Quantum supremacy using a programmable su-
perconducting processor”. In: Nature 574.7779 (2019), pp. 505–510 (Cited on
page 112).

[215] K. Sukhatme, Y. Mukharsky, T. Chui, and D. Pearson. “Observation of the
ideal Josephson effect in superfluid 4He”. In: Nature 411.6835 (2001), pp. 280–
283 (Cited on page 112).

[216] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni,
A. Smerzi, and M. Inguscio. “Josephson Junction Arrays with Bose-Einstein
Condensates”. In: Science 293.5531 (2001), pp. 843–846 (Cited on page 112).

[217] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler.
“Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single
Bosonic Josephson Junction”. In: Physical Review Letters 95.1 (2005), p. 010402
(Cited on page 112).

[218] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer. “The a.c. and d.c. Joseph-
son effects in a Bose–Einstein condensate”. In: Nature 449.7162 (2007), pp. 579–
583 (Cited on page 112).

[219] F. S. Nogueira and K.-H. Bennemann. “Spin Josephson effect in ferromag-
net/ferromagnet tunnel junctions”. In: Europhysics Letters 67.4 (2004), p. 620
(Cited on page 112).

[220] A. S. Borovik-Romanov, Y. M. Bunkov, V. V. Dmitriev, Y. M. Mukharskiy,
and D. A. Sergatskov. “Investigation of spin supercurrents in 3B ”. In: Physical
Review Letters 62.14 (1989), pp. 1631–1634 (Cited on page 112).

[221] M. Schecter, D. M. Gangardt, and A. Kamenev. “Quantum impurities: from
mobile Josephson junctions to depletons”. In: New Journal of Physics 18.6
(2016), p. 065002 (Cited on page 114).

[222] Y. S. Kivshar and D. E. Pelinovsky. “Self-focusing and transverse instabilities
of solitary waves”. In: Physics Reports 331.4 (2000), pp. 117–195 (Cited on
pages 115, 186).

206



Bibliography

[223] M. J. H. Ku, B. Mukherjee, T. Yefsah, and M. W. Zwierlein. “Cascade of
Solitonic Excitations in a Superfluid Fermi gas: From Planar Solitons to Vortex
Rings and Lines”. In: Physical Review Letters 116.4 (2016), p. 045304 (Cited
on page 115).

[224] X. Yu and P. B. Blakie. “Propagating Ferrodark Solitons in a Superfluid: Ex-
act Solutions and Anomalous Dynamics”. In: Physical Review Letters 128.12
(2022), p. 125301 (Cited on page 115).

[225] L. P. Pitaevskii. “On the momentum of solitons and vortex rings in a su-
perfluid”. In: Journal of Experimental and Theoretical Physics 119.6 (2014),
pp. 1097–1101 (Cited on page 116).

[226] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel, and I. Bloch. “Preci-
sion measurement of spin-dependent interaction strengths for spin-1 and spin-2
87Rb atoms”. In: New Journal of Physics 8.8 (2006), p. 152 (Cited on page 123).

[227] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J.
Verhaar. “Interisotope Determination of Ultracold Rubidium Interactions from
Three High-Precision Experiments”. In: Physical Review Letters 88.9 (2002),
p. 093201 (Cited on page 123).

[228] Y. Eto, M. Takahashi, M. Kunimi, H. Saito, and T. Hirano. “Corrigendum:
Non-equilibrium dynamics induced by miscible–immiscible transition in binary
Bose–Einstein condensates (2016 New J. Phys. 18 073029)”. In: New Journal
of Physics 20.1 (2018), p. 019501 (Cited on page 123).

[229] Y. Eto, M. Takahashi, M. Kunimi, H. Saito, and T. Hirano. “Nonequilibrium
dynamics induced by miscible–immiscible transition in binary Bose–Einstein
condensates”. In: New Journal of Physics 18.7 (2016), p. 073029 (Cited on
page 123).

[230] S. De, D. L. Campbell, R. M. Price, A. Putra, B. M. Anderson, and I. B.
Spielman. “Quenched binary Bose-Einstein condensates: Spin-domain forma-
tion and coarsening”. In: Physical Review A 89.3 (2014), p. 033631 (Cited on
page 123).

[231] Y.-Q. Zou, B. Bakkali-Hassani, C. Maury, É. Le Cerf, S. Nascimbene, J. Dal-
ibard, and J. Beugnon. “Magnetic Dipolar Interaction between Hyperfine Clock
States in a Planar Alkali Bose Gas”. In: Physical Review Letters 125.23 (2020),
p. 233604 (Cited on page 123).

[232] D. N. Christodoulides. “Black and white vector solitons in weakly birefrin-
gent optical fibers”. In: Physics Letters A 132.8 (1988), pp. 451–452 (Cited on
page 140).

[233] T. Kinoshita, T. Wenger, and D. S. Weiss. “All-optical Bose-Einstein conden-
sation using a compressible crossed dipole trap”. In: Physical Review A 71.1
(2005), p. 011602 (Cited on pages 144, 152).

[234] V. Vuletic, C. Chin, A. J. Kerman, and S. Chu. “Degenerate Raman Sideband
Cooling of Trapped Cesium Atoms at Very High Atomic Densities”. In: Physical
Review Letters 81.26 (1998), pp. 5768–5771 (Cited on pages 145, 152).

[235] Z. Li, W. Ma, W. Yang, Y. Wang, and Y. Zheng. “Reduction of zero baseline
drift of the Pound–Drever–Hall error signal with a wedged electro-optical crys-
tal for squeezed state generation”. In: Optics Letters 41.14 (2016), pp. 3331–
3334 (Cited on page 147).

207



Bibliography

[236] E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts. “Double-
pass acousto-optic modulator system”. In: Review of Scientific Instruments 76.6
(2005), p. 063112 (Cited on page 148).

[237] J. J. Snyder. “Paraxial ray analysis of a cat’s-eye retroreflector”. In: Applied
Optics 14.8 (1975), pp. 1825–1828 (Cited on page 148).

[238] M. Bordoux. “Développement d’une source de condensats de Bose-Einstein
pour l’interférométrie atomique”. PhD thesis. Université Toulouse III - Paul
Sabatier (2019) (Cited on page 151).

[239] S. Stellmer, R. Grimm, and F. Schreck. “Production of quantum-degenerate
strontium gases”. In: Physical Review A 87.1 (2013), p. 013611 (Cited on
page 151).

[240] H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu. “Raman Cooling of Atoms
in an Optical Dipole Trap”. In: Physical Review Letters 76.15 (1996), pp. 2658–
2661 (Cited on page 152).

[241] A. Urvoy, Z. Vendeiro, J. Ramette, A. Adiyatullin, and V. Vuletic. “Direct
Laser Cooling to Bose-Einstein Condensation in a Dipole Trap”. In: Physical
Review Letters 122.20 (2019), p. 203202 (Cited on page 152).

[242] K. Yamashita, K. Hanasaki, A. Ando, M. Takahama, and T. Kinoshita. “All-
optical production of a large Bose-Einstein condensate in a double compressible
crossed dipole trap”. In: Physical Review A 95.1 (2017), p. 013609 (Cited on
page 152).

[243] M. Gröbner, P. Weinmann, E. Kirilov, and H.-C. Nägerl. “Degenerate Raman
sideband cooling of 39K”. In: Physical Review A 95.3 (2017), p. 033412 (Cited
on page 152).

[244] G. A. Phelps, A. Hébert, A. Krahn, S. Dickerson, F. Öztürk, S. Ebadi, L. Su,
and M. Greiner. “Sub-second production of a quantum degenerate gas”. In:
arXiv:2007.10807 (2020) (Cited on page 152).

[245] R. Roy, A. Green, R. Bowler, and S. Gupta. “Rapid cooling to quantum degen-
eracy in dynamically shaped atom traps”. In: Physical Review A 93.4 (2016),
p. 043403 (Cited on pages 152, 154).

[246] K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas. “Scaling laws
for evaporative cooling in time-dependent optical traps”. In: Physical Review
A 64.5 (2001), p. 051403 (Cited on page 154).

[247] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin. “Accelerating evaporative
cooling of atoms into Bose-Einstein condensation in optical traps”. In: Physical
Review A 78.1 (2008), p. 011604 (Cited on page 154).

[248] J.-F. Clément, J.-P. Brantut, M. Robert-De-Saint-Vincent, R. A. Nyman, A.
Aspect, T. Bourdel, and P. Bouyer. “All-optical runaway evaporation to Bose-
Einstein condensation”. In: Physical Review A 79.6 (2009), p. 061406 (Cited on
page 154).

[249] H. Albers. “Time-averaged optical potentials for creating and shaping Bose-
Einstein condensates”. PhD thesis. Gottfried Wilhelm Leibniz Univer-
sität (2020) (Cited on page 156).

[250] G. Cennini, G. Ritt, C. Geckeler, and M. Weitz. “All-Optical Realization of
an Atom Laser”. In: Physical Review Letters 91.24 (2003), p. 240408 (Cited on
page 159).

208



Bibliography

[251] A. Couvert. “Production et étude de lasers à atomes guidés, et de leur interac-
tion avec des défauts contrôlés”. PhD thesis. Université Pierre et Marie Curie
- Paris VI (2009) (Cited on page 159).

[252] A. Évrard. “Non Gaussian Spin States of Ultracold Dysprosium Atoms”. PhD
thesis. Université Paris Sciences Lettres (2020) (Cited on page 160).

[253] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, and
A. Browaeys. “Tunable two-dimensional arrays of single Rydberg atoms for re-
alizing quantum Ising models”. In: Nature 534.7609 (2016), pp. 667–670 (Cited
on page 163).

[254] D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T.
Lahaye, and A. Browaeys. “Demonstration of a Strong Rydberg Blockade in
Three-Atom Systems with Anisotropic Interactions”. In: Physical Review Let-
ters 112.18 (2014), p. 183002 (Cited on page 163).

[255] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H. P.
Büchler, T. Lahaye, and A. Browaeys. “Observation of a symmetry-protected
topological phase of interacting bosons with Rydberg atoms”. In:
Science 365.6455 (2019), pp. 775–780 (Cited on page 163).

[256] A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and P. Zoller.
“Designing Frustrated Quantum Magnets with Laser-Dressed Rydberg Atoms”.
In: Physical Review Letters 114.17 (2015), p. 173002 (Cited on page 163).

[257] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller. “Strongly
Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynam-
ics”. In: Physical Review Letters 104.22 (2010), p. 223002 (Cited on page 163).

[258] J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J. Choi, T. Pohl, I. Bloch, and
C. Gross. “Many-body interferometry of a Rydberg-dressed spin lattice”. In:
Nature Physics 12.12 (2016), pp. 1095–1099 (Cited on page 163).

[259] S. Zhang, F. Robicheaux, and M. Saffman. “Magic-wavelength optical traps
for Rydberg atoms”. In: Physical Review A 84.4 (2011), p. 043408 (Cited on
page 163).

[260] T. Förster. “Zwischenmolekulare Energiewanderung und Fluoreszenz”. In: An-
nalen der Physik 437.1 (1948), pp. 55–75 (Cited on page 163).

[261] M. Plodzień, G. Lochead, J. de Hond, N. J. van Druten, and S. Kokkelmans.
“Rydberg dressing of a one-dimensional Bose-Einstein condensate”. In: Physical
Review A 95.4 (2017), p. 043606 (Cited on page 163).

[262] W. Bao, D. Jaksch, and P. A. Markowich. “Numerical solution of the Gross–Pi-
taevskii equation for Bose–Einstein condensation”. In: Journal of Computa-
tional Physics 187.1 (2003), pp. 318–342 (Cited on page 172).

[263] J. Javanainen and J. Ruostekoski. “Symbolic calculation in development of
algorithms: split-step methods for the Gross–Pitaevskii equation”. In: Jour-
nal of Physics A: Mathematical and General 39.12 (2006), p. L179 (Cited on
page 172).

[264] V. V. Konotop and L. P. Pitaevskii. “Landau Dynamics of a Grey Soliton in
a Trapped Condensate”. In: Physical Review Letters 93.24 (2004), p. 240403
(Cited on pages 185, 186).

[265] V. A. Brazhnyi, V. V. Konotop, and L. P. Pitaevskii. “Dark solitons as quasi-
particles in trapped condensates”. In: Physical Review A 73.5 (2006), p. 053601
(Cited on pages 185, 186).

209


	Abstract/Résumé
	Remerciements
	Contents
	Introduction
	I Production and characterization of low-dimensional Bose gases
	Production of ultracold Bose gases in reduced dimensions
	Preparation of a 3D ultracold gas
	87Rb atom and its structure
	From a Rb vapour to a 3D BEC
	Magnetic field and magnetic field gradient controls

	Reaching the 2D regime
	Tunable shaping of the in-plane potential
	Tailoring box potentials with DMD1
	Precise control of the in-plane potential with DMD2

	Control of the internal state of the cloud
	Global control - MW transfers
	Local control - Raman transfers

	Conclusion

	Mean-field description of a weakly-interacting 2D Bose gas at T = 0
	Description of a weakly-interacting 2D Bose gas at zero temperature
	The quantum hamiltonian
	Ultracold collisions
	Hartree ansatz and the Gross-Pitaevskii equation
	The quasi-2D regime
	Connexion with hydrodynamics
	Scale invariance of the 2D weakly-interacting Bose gas
	Conclusion

	Precise measurement of atom-dimer interactions
	Production of dimers via MW photoassociation
	Atom-dimer interactions
	Conclusion

	A striking property of the 2D weakly-interacting Bose gas at zero temperature: superfluidity
	Features of superfluidity
	A link between mean-field description and superfluidity
	Theoretical description of a superfluid: Two-fluid model and Landau criterion
	Ground state and elementary excitations of the weakly-intera-cting 2D Bose gas at T = 0
	Twisted boundary conditions
	Conclusion

	Is T = 0 a reasonable hypothesis?
	BKT phase transition and the survival of superfluidity
	Loss of phase ordering and quasi-long range order
	Conclusion

	Summary


	II Measurement of the zero-temperature superfluid fraction in a spatially modulated Bose gas
	Superfluid fraction in an interacting 2D modulated Bose gas at T = 0
	Density modulated systems
	Superfluid fraction in a weakly-interacting spatially modulated Bose gas
	Saturation of Leggett's inequality
	Sound propagation in a 2D modulated system
	Limiting cases and analytical estimations

	Dynamical determination of the superfluid fraction
	Numerical simulations
	Experimental implementation
	Calibration of the modulation depth
	Calibration of the magnetic field gradient
	Experimental measurements of sound velocities


	Static determination of the superfluid fraction
	“Naive” measurements
	Going further

	Comparison of the two methods
	Extension of this work to 2D modulated potentials
	A sufficient condition to saturate Leggett's inequalities?
	Calculation of the compressibility and the superfluid fraction in 2D weakly-interacting modulated Bose gases

	Conclusion


	III Magnetic solitons and Bloch-like oscillations in a weakly immiscible mixture
	Introduction to the physics of 1D magnetic solitons
	1D solitons of the Gross-Pitaevskii equation
	The 1D regime
	Soliton background
	Various classes of solitons of the 1D NLSE
	Bright solitons
	Dark solitons
	Vector solitons
	The list goes on


	Stationary magnetic solitons
	Magnetization vector in a ferromagnet
	Stationary magnetic solitons - Easy-plane
	Stationary magnetic solitons - Easy-axis
	Connection with BEC mixtures
	Conserved quantities associated to the magnetic soliton

	Conclusion

	Magnetic solitons under a constant force
	Application of a constant force on the magnetic soliton
	Modification of the coupled nonlinear equations
	Soliton oscillation
	Deviation from adiabaticity

	Interpretations of the observed oscillations
	Bloch oscillations and 1D dynamics
	Analogy with Josephson physics
	Change of sign for the effective mass

	Conclusion
	Summary
	Outlook


	Realization of a magnetic soliton and observation of Bloch-like oscillations under a constant force
	Experiments on magnetic solitons in miscible mixtures
	Experimental ingredients
	The 1D regime for spin dynamics
	An immiscible and long-lived mixture
	Imprinting a spin-selective spatial profile
	Imposing a constant differential force

	Stationary magnetic soliton
	Low depleted stationary soliton
	g calibration
	Conclusion

	Oscillation of magnetic oscillations under a constant force
	Short times dynamics
	Bloch-like oscillations
	Beyond the adiabatic regime
	Bath phase evolution

	Conclusion


	IV Production of an all-optical Rb BEC for a new generation of experiments
	An all-optical Rubidium Bose-Einstein Condensate for Rydberg dressing
	Design and goal of the setup
	Goal
	Design and vacuum system

	Cooling and imaging: 780  nm lasers
	Preparation of the beams
	2D MOT
	3D MOT
	Compressed MOT and Molasses

	Production of a BEC in a cODT thanks to the painting technique
	Direct loading in a crossed optical dipole trap
	All-optical cooling solutions
	A two-parameter control during the evaporation process
	Time-averaged potentials
	Principle
	Experimental implementation

	Evaporation
	Frequencies of the ODT

	Outlook
	The versatily of the painting technique
	Future of the setup

	Conclusion


	Conclusion
	Appendices
	List of publications
	Numerical simulations of the Gross-Pitaevskii equation
	Split-step method
	2D GPE numerical resolution
	1D coupled GPEs numerical resolution

	Analytical expressions of the density modulation under a sinusoidal potential at low modulation depths
	Order 0 in V0
	Order 1 in V0
	Order 2 in V0

	Evaluation of the correcting factors in the in situ density measurements
	Notations
	Pixelization effect
	Determination of the (q) coefficients

	Dynamics of solitons of the 1D NLSE under a linear potential
	Bright soliton of the 1D NLSE
	Dark soliton of the 1D NLSE
	Dark-bright soliton of the 1D NLSE


	Bibliography

