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Titre : Les Défis des Applications Concrètes de la Classification d’Images à partir de Peu d’Exemples
Mots clés : vision automatique, apprentissage machine, apprentissage profond, apprentissage avec peu d’exemples

Résumé : En 2015, alors que les réseaux de neurones convolu-
tionnels atteignaient des performances sur-humaines en recon-
naissance d’image à grande échelle, la communauté a commencé
à observer que ces performances peinaient à se reproduire avec
de petits volumes de données. Les algorithmes d’apprentissage
profond présentaient de faibles résultats lorsqu’on leur deman-
dait de classifier des images parmi des classes pour lesquelles
on ne leur fournissait qu’une poignée d’exemples. À l’inverse,
la capacité à reconnaître de nouveaux concepts à partir de très
peu d’exemples est considérée comme une capacité naturelle des
humains. Ces observations ont donné lieu à l’apparition, dans le
paysage de l’apprentissage machine, du Few-Shot Learning, ou
apprentissage à partir de peu de données (peu de shots). Au sein
de ce nouveau domaine, nous avons rapidement développé des
algorithmes dédiés, construit des jeux de données et établi de
nombreuses règles et configurations restrictives pour évaluer les
modèles d’apprentissage à partir de peu de données.

Si ce procédé s’est montré très propice à des itérations ra-
pides, et a mené à des découvertes intéressantes, il a également
restreint la recherche en apprentissage à partir de peu d’exemples
à la résolution d’un problème hypothétique. Nous observons que
ce problème, créé artificiellement, est, par de nombreux aspects,
non représentatif des problèmes industriels réels que nous avons
rencontrés à Sicara. Dans cette thèse, nous mettons en évidence
plusieurs divergences entre les hypothèses utilisées en recherche
académique et les applications réelles de l’apprentissage à partir
de peu d’exemples. Nous proposons des contre-mesures pour
réduire cet écart.

Tout d’abord, la configuration standard de la classification
d’images à partir de peu d’exemples suppose que les quelques
exemples d’images disponibles (l’ensemble support) sont issues
de la même distribution que les images à classifier (l’ensemble des
requêtes). En réalité, cette hypothèse est souvent non vérifiée,
par exemple lorsque l’ensemble support correspond à des images
acquises dans un environnement contrôlé (e.g ., le catalogue d’un

site d’e-commerce) tandis que les images requêtes sont plus
chaotiques (e.g ., des photographies prises par des utilisateurs in-
dividuels). Nous formalisons ce problème sous la dénomination de
Few-Shot Learning under Support-Query Shift, ou apprentissage
à partir de peu d’exemples avec changement de distribution entre
le support et les requêtes. Nous proposons des jeux de données et
des procédés d’évaluation dédiés, ainsi qu’une première méthode
pour faciliter les efforts de recherche consacrés à ce problème.

Par ailleurs, dans de nombreuses applications de l’appren-
tissage à partir de peu de données, nous ne pouvons pas assurer
que les images requêtes appartiennent effectivement aux classes
définies dans l’ensemble support. Ce problème, connu dans la
littérature sous le nom de Few-Shot Open-Set Recognition, ou
reconnaissance à partir de peu d’exemples dans un ensemble
ouvert, était déjà abordé dans des précédents travaux. Cepen-
dant, les méthodes complexes développées pour ce problème ne
montraient pas d’incrément notable par rapport à des méthodes
naïves. Dans cette thèse, nous mettons à profit l’ensemble des
requêtes par une approche simple et raisonnée pour atteindre
des performances utilisables en reconnaissance à partir de peu
d’exemples dans un ensemble ouvert.

Enfin, nous avons observé que les bancs de test les plus
populaires dans la recherche académique présentaient un biais
important. Ainsi, les modèles étaient évalués sur des tâches de
classification à partir de peu d’exemples non représentatives d’ap-
plications réelles. En effet, dans ces bancs de test, nous avions
tendances à demander aux modèles de classifier parmi des classes
correspondant à des concepts très distants e.g ., distinguer une
tarte d’un serpent. À l’inverse, la plupart des applications du
monde réel impliquent une distinction entre des concepts très
proches e.g ., des bactéries d’autres bactéries, des outils d’autres
outils, ou des composants électroniques d’autres composants
électroniques. Dans cette thèse, nous proposons une nouvelle
méthode d’évaluation pour résoudre ces biais.

Title : Challenges of Real-Life Few-Shot Image Classification
Keywords : computer vision, machine learning, deep learning, few-shot learning

Abstract : In 2015, while deep neural networks achieved super-
human performance in large-scale image recognition, we started
observing that this performance could not be reproduced with
small volumes of data. Deep learning algorithms showed weak
results when asked to classify images among classes for which
there were given only a handful of examples. In contrast, the
ability to recognize new concepts from very few examples was
deemed to be a signature ability of human beings. As a result, a
new field emerged in the Machine Learning landscape : Few-Shot
Learning i.e., the ability to learn from a few examples, or shots. In
this new field, we rapidly developed specific algorithms, designed
specific benchmarks, and drew many rules and restrictive settings
to evaluate Few-Shot Learning methods.

While this abstraction process was very useful for easy com-
parison and rapid iterations and led to many interesting findings,
it also restricted Few-Shot Learning research to the resolution of
a toy problem. We find that this artificially created problem is,
in many ways, not representative of the real industrial use cases
that we encountered at Sicara. In this thesis, we highlight several
divergences between academic research and the real use cases for
Few-Shot Learning and propose counter-measures to bridge this
gap.

Firstly, the standard Few-Shot Image Classification setting
uses the assumption that the few available example images (the
support set) are drawn from the same distribution as the images
we intend to classify (the query set). In reality, this assump-
tion often breaks, when the support set corresponds to images

acquired in a controlled environment (e.g ., the catalog of an on-
line marketplace) while query images are taken more chaotically
(e.g ., photos uploaded by individual users). We formalize this
problem as Few-Shot Learning under Support-Query Shift and
provide specific benchmarks, evaluation processes, and a baseline
to quickstart the efforts towards its solving.

Secondly, in many applications of Few-Shot Learning, we
cannot enforce that query images do indeed belong to the classes
defined in the support set. This problem, known in the literature
as Few-Shot Open-Set Recognition, was already addressed by
a handful of previous works. However, the convoluted methods
that were designed for this specific problem fail to improve on
naive baselines. In this thesis, we leverage the query set through
a simple and principled solution to achieve usable performance in
Few-Shot Open-Set Recognition.

Finally, we observed that the most popular academic bench-
marks presented an important bias, resulting in models being
evaluated on few-shot classification tasks that are not representa-
tive of real-life applications. Indeed, with those benchmarks, we
tend to ask the model to classify between classes that correspond
to very distant concepts e.g ., distinguishing a pie from a snake.
In contrast, most applications involve a distinction between very
similar concepts e.g ., bacteria from bacteria, tools from tools,
food from food, or electronic parts from electronic parts. In this
thesis, we propose a new benchmarking method to combat this
bias in our evaluation process.
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Résumé
En 2015, alors que les réseaux de neurones convolutionnels atteignaient des performances sur-

humaines en reconnaissance d’image à grande échelle, la communauté a commencé à observer que
ces performances peinaient à se reproduire avec de petits volumes de données. Les algorithmes
d’apprentissage profond présentaient de faibles résultats lorsqu’on leur demandait de classifier
des images parmi des classes pour lesquelles on ne leur fournissait qu’une poignée d’exemples. À
l’inverse, la capacité à reconnaître de nouveaux concepts à partir de très peu d’exemples est considérée
comme une capacité naturelle des humains. Ces observations ont donné lieu à l’apparition, dans
le paysage de l’apprentissage machine, du Few-Shot Learning, ou apprentissage à partir de peu de
données (peu de shots). Au sein de ce nouveau domaine, nous avons rapidement développé des
algorithmes dédiés, construit des jeux de données et établi de nombreuses règles et configurations
restrictives pour évaluer les modèles d’apprentissage à partir de peu de données.

Si ce procédé s’est montré très propice à des itérations rapides, et a mené à des découvertes
intéressantes, il a également restreint la recherche en apprentissage à partir de peu d’exemples à la
résolution d’un problème hypothétique. Nous observons que ce problème, créé artificiellement,
est, par de nombreux aspects, non représentatif des problèmes industriels réels que nous avons
rencontrés à Sicara. Dans cette thèse, nous mettons en évidence plusieurs divergences entre les
hypothèses utilisées en recherche académique et les applications réelles de l’apprentissage à partir
de peu d’exemples. Nous proposons des contre-mesures pour réduire cet écart.

Tout d’abord, la configuration standard de la classification d’images à partir de peu d’exemples
suppose que les quelques exemples d’images disponibles (l’ensemble support) sont issues de la même
distribution que les images à classifier (l’ensemble des requêtes). En réalité, cette hypothèse est
souvent non vérifiée, par exemple lorsque l’ensemble support correspond à des images acquises
dans un environnement contrôlé (e.g., le catalogue d’un site d’e-commerce) tandis que les images
requêtes sont plus chaotiques (e.g., des photographies prises par des utilisateurs individuels). Nous
formalisons ce problème sous la dénomination de Few-Shot Learning under Support-Query Shift,
ou apprentissage à partir de peu d’exemples avec changement de distribution entre le support et les
requêtes. Nous proposons des jeux de données et des procédés d’évaluation dédiés, ainsi qu’une
première méthode pour faciliter les efforts de recherche consacrés à ce problème.

Par ailleurs, dans de nombreuses applications de l’apprentissage à partir de peu de données, nous
ne pouvons pas assurer que les images requêtes appartiennent effectivement aux classes définies
dans l’ensemble support. Ce problème, connu dans la littérature sous le nom de Few-Shot Open-Set
Recognition, ou reconnaissance à partir de peu d’exemples dans un ensemble ouvert, était déjà abordé
dans des précédents travaux. Cependant, les méthodes complexes développées pour ce problème
ne montraient pas d’incrément notable par rapport à des méthodes naïves. Dans cette thèse, nous
mettons à profit l’ensemble des requêtes par une approche simple et raisonnée pour atteindre des
performances utilisables en reconnaissance à partir de peu d’exemples dans un ensemble ouvert.

Enfin, nous avons observé que les bancs de test les plus populaires dans la recherche académique
présentaient un biais important. Ainsi, les modèles étaient évalués sur des tâches de classification
à partir de peu d’exemples non représentatives d’applications réelles. En effet, dans ces bancs de
test, nous avions tendances à demander aux modèles de classifier parmi des classes correspondant
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à des concepts très distants e.g., distinguer une tarte d’un serpent. À l’inverse, la plupart des
applications du monde réel impliquent une distinction entre des concepts très proches e.g., des
bactéries d’autres bactéries, des outils d’autres outils, ou des composants électroniques d’autres
composants électroniques. Dans cette thèse, nous proposons une nouvelle méthode d’évaluation
pour résoudre ces biais.

Abstract
In 2015, while deep neural networks achieved super-human performance in large-scale image

recognition, we started observing that this performance could not be reproduced with small
volumes of data. Deep learning algorithms showed weak results when asked to classify images
among classes for which there were given only a handful of examples. In contrast, the ability to
recognize new concepts from very few examples was deemed to be a signature ability of human
beings. As a result, a new field emerged in the Machine Learning landscape: Few-Shot Learning i.e.,
the ability to learn from a few examples, or shots. In this new field, we rapidly developed specific
algorithms, designed specific benchmarks, and drew many rules and restrictive settings to evaluate
Few-Shot Learning methods.

While this abstraction process was very useful for easy comparison and rapid iterations and led
to many interesting findings, it also restricted Few-Shot Learning research to the resolution of a
toy problem. We find that this artificially created problem is, in many ways, not representative
of the real industrial use cases that we encountered at Sicara. In this thesis, we highlight several
divergences between academic research and the real use cases for Few-Shot Learning and propose
counter-measures to bridge this gap.

Firstly, the standard Few-Shot Image Classification setting uses the assumption that the few
available example images (the support set) are drawn from the same distribution as the images
we intend to classify (the query set). In reality, this assumption often breaks, when the support
set corresponds to images acquired in a controlled environment (e.g., the catalog of an online
marketplace) while query images are taken more chaotically (e.g., photos uploaded by individual
users). We formalize this problem as Few-Shot Learning under Support-Query Shift and provide
specific benchmarks, evaluation processes, and a baseline to quickstart the efforts towards its
solving.

Secondly, in many applications of Few-Shot Learning, we cannot enforce that query images do
indeed belong to the classes defined in the support set. This problem, known in the literature as
Few-Shot Open-Set Recognition, was already addressed by a handful of previous works. However,
the convoluted methods that were designed for this specific problem fail to improve on naive
baselines. In this thesis, we leverage the query set through a simple and principled solution to
achieve usable performance in Few-Shot Open-Set Recognition.

Finally, we observed that the most popular academic benchmarks presented an important bias,
resulting in models being evaluated on few-shot classification tasks that are not representative
of real-life applications. Indeed, with those benchmarks, we tend to ask the model to classify
between classes that correspond to very distant concepts e.g., distinguishing a pie from a snake. In
contrast, most applications involve a distinction between very similar concepts e.g., bacteria from
bacteria, tools from tools, food from food, or electronic parts from electronic parts. In this thesis,
we propose a new benchmarking method to combat this bias in our evaluation process.
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1 Introduction: The Gap between
Few-Shot Learning Research and its
Real Applications

1.1 The Few-Shot Learning Problem

The Deep Learning Revolution in Computer Vision Computer Vision is an immense
area of research and applications. It regroups many tasks: classifying images, localizing and/or
classifying objects in an image, segmenting objects in an image, grouping similar images, editing
images, or generating them from scratch... All these tasks present a similar challenge: we need to
recognize and harness visual patterns in images. Deep learning algorithms showed a lot of promise,
especially the convolutional neural networks (CNN) introduced by Fukushima 1980. Indeed, their
architecture based on convolutional kernels allows them to capture both local and global, low-level
and high-level patterns.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) from Russakovsky et al.
2015, since it was launched in 2010, is the most widely used benchmark for image recognition.
It consists in classifying images among the thousand classes of the popular ImageNet dataset. In
2012, the first convolutional neural network to achieve state-of-the-art on ImageNet was proposed
in Krizhevsky, Sutskever, et al. 2012. The error rate of their model AlexNet was still three times
higher than that of a human agent. Year after year, new convolutional networks achieved new
state-of-the-art on ImageNet, and in 2015, just five years after the first edition of the challenge,
He et al. 2016 obtained super-human results on ImageNet. Their proposed architecture, based
on residual blocks, contained 152 layers (seven times more than its predecessor). By scaling up
convolutional networks, He et al. cut the error rate in half. After this, we could think that the
image recognition problem was solved. All we had to do was to tune the millions of parameters of
a deep neural network using a million images.

TheneedforFew-ShotLearning. However, this outstanding performance of deep learning
in the very specific of the ILSVRC did not generalize well when confronted with other image
recognition problems. Indeed, the models used by He et al. rely on millions of parameters, which
need to be optimized on a large number of examples. To get an idea of the scale, ImageNet’s
training set contains 1.4 million images. However, the very same year as He et al.’s ground-breaking
work, B. M. Lake et al. 2015 showed that deep learning methods still performed way worse than
humans when only one example is available for each concept.

What if we do not have a million images to train a deep neural network? What if we want our
model to recognize concepts for which we only have five, or even one, example? The deep learning
models that achieved such outstanding results in large-scale recognition would be rendered useless,

1



1 Introduction: The Gap between Few-Shot Learning Research and its Real Applications

as it would be impossible to train them with such few images. We would thus need new ideas, new
algorithms, and new benchmarks.

This is the displayed goal of a recent sub-field of Machine Learning: Few-Shot Learning i.e.,
making models able to learn from only a few examples. In this context, the number of shots
is the number of available examples for each concept or class. Specifically, in Few-Shot Image
Classification, we want to use those few shots to learn as much as we can about the targeted
concepts.

Thevalueof Few-ShotLearning. This problem rapidly drew the attention of an increasing
research community, and many novel and imaginative methods were proposed to address the Few-
Shot Learning1 problem. It is, perhaps, too early in this thesis to deep dive into these methods (we
kindly ask the reader to wait patiently for Chapter 2). We will, however, state the value that the
majority of these methods provide.

1. The first point comes very naturally: these methods are able to adapt to new concepts
(or classes) from just a few examples. Therefore, they alleviate the need for extensive data
acquisition for each and every new object that we need to recognize. Few-Shot Learning
methods are designed to learn a representation i.e., a on a base dataset for which there are
plenty of available data, and then adapt to new classes for which the data is scarce. This
representation is typically a projection of the image into a lower-dimensional space that
captures desirable features to perform computer vision tasks.

2. The second point is not inherent to the few-data regime but rather can be seen as a valuable
side effect of most strategies that were designed to address it: class-agnostic deployment.
Indeed, most Few-Shot learning methods avoid any re-training on the few examples provided
for the new classes. Instead, they provide a way to leverage these new images without any
update of the parameters of the deep-learning models. As it is, the whole support set (the set
of images provided to recognize the target classes) can be seen as an input of the model at
inference time. Therefore, any change to this support set e.g., the addition of an extra class,
removal of an existing one, or modification of the example images, can be done seamlessly.
It will not require any re-training or recalibration of the model or any other intervention of
a Machine Learning expert. The model deployed in production is class-agnostic.

Once we have stated the value of Few-Shot Learning methods, the question that naturally comes
next is: how do we measure it?

The thoroughly standardized Few-Shot setting. At this point, the Few-Shot Learn-
ing problem seems very broad: how many are "few"? how many classes are there? do we need to
start from scratch or are we allowed to use previous knowledge about other concepts? are all classes
"few-shot" or is it a mix-up between few-shot and large-scale classes?

All these questions were answered rather quickly since we needed standard benchmarks to com-
pare between methods. In fact, the vast majority of contributions in Few-Shot Image Classification
follow the setting standardized by Vinyals et al. 2016 and represented in Figure 1.1 i.e., :

1Few-Shot Image Classification in most cases.
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1.1 The Few-Shot Learning Problem

Figure 1.1: The standard Few-Shot Image Classification setting.

1. we assume a large-scale vision dataset (e.g., ImageNet) and we construct a training, a valida-
tion, and a test set by splitting the datasets classes: we define specific training, validation,
and test classes;

2. the model is allowed to train on all images from the training set and validate on all images
from the validation set: this is a large-scale pre-training;

3. to evaluate the Few-Shot Learning ability of the model, we sample a large number of artificial
few-shot tasks from the test set:

• they are 5-way tasks, which means that each task involves 5 classes, sampled uniformly
at random from the set of test classes;

• for each class, we sample a predefined number n of examples images (or shots) uni-
formly at random from the set of test images belonging to this class; these examples
constitute the support set; in the literature, we almost always consider the cases n = 1
and n = 5;

• we then sample query images uniformly at random from the remaining images of
these classes, typically 15 for each class; these instances form the query set;

• the model is asked to classify each query among the 5 classes using the information
given by the 5n images in the support set;

4. we report the average accuracy over all test tasks.

While source datasets may vary, these four steps remain roughly the same.

3
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Figure 1.2: Extreme example of domain shift between a catalog image (left) and a query image (right).
We notice differences in background, context, and angles, as well as different expositions and
colorimetry coming from different acquisition devices.

1.2 Constraints in Real-Life Applications

The context of this thesis is a CIFRE collaboration between the MICS laboratory at Centrale-
Supélec and the French company Sicara. As a service company helping businesses develop their own
custom-made computer vision solutions, Sicara has faced numerous problems involving Few-Shot
Learning. Unsurprisingly, we found that real-life use cases of Few-Shot Learning do not always
fit the very specific setting considered in the Few-Shot Learning literature. Let us review some of
those use cases, which motivated the work presented in this thesis.

1.2.1 Use Case 1: EnablingMaintenance at a Factory

The hassle of identifying specific parts of a machine. When an industry is dealing
with many different machines, each composed of many different parts and sparsely located in
numerous factories, maintenance can become a hassle. Once the defective part is identified, the
operator on site is likely not to know exactly what this part is, and will therefore not be able to
repair it or order a new one.

Recognizing the part in a wide database. To solve this problem, our Sicara team chose
to develop a mobile app allowing the operator to take a picture of the defective part and receive
its identification from the catalog of existing parts. From this, they can download the reparation
instructions, or order a replacement. This use case presents two main challenges:

1. Most items in the database only have one example image;

2. As the industry is evolving, the set of existing parts is expected to change. The manager of
the database needs a way to add, remove, or change parts in the catalog, on the fly.

The reader will surely notice that these challenges perfectly correspond to the valuable characteris-
tics of Few-Shot Learning methods that we stated in Section 1.1. Therefore, we naturally resolved
to Few-Shot Learning methods.
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Figure 1.3: Illustration of the challenges of product retrieval for an online hardware store. (i) The query
image is a picture of a watering can taken in its natural environment, while all catalog images are
taken on a clean white background. (ii) The class "watering can" does not appear in the catalog.

The reality of the deployed model. We found, however, that our setting presented many
differences from the standard academic setting presented in Section 1.1. The first difference with
the standard academic Few-Shot Learning problem is that in this case, we are facing a domain shift
between the catalog of parts (most likely composed of pictures taken just after leaving the factory)
and the query images, which are pictures of parts after years of use, taken with a mobile phone in
an uncontrolled environment, as shown in Figure 1.2. The second problem that we identified is
that we could not rely at all on academic benchmarks to identify the best algorithm for our needs,
because:

• Academic benchmarks are limited to 5-way classification tasks, but our problem involved
thousands of classes;

• All academic benchmarks report only top-1 accuracy i.e., the proportion of instances for
which the model predicted the ground truth class; yet we allowed the operator to retrieve
their target between several propositions, therefore our main metric was top-5 accuracy i.e.,
the proportion of instances for which the ground truth class belongs to the 5 most likely
classes according to the model’s prediction.

1.2.2 Use Case 2: Retrieving relevant Items in aMarketplace

A picturemakes a sale. An important issue for many online marketplaces is to make the user
journey to the product that they want to buy2 as easy as possible. To that end, the idea that the
customer would need to navigate through wide and deep menus to find a product is unbearable.
Instead, our client, an online hardware store, intended their users to be able to simply take a picture
of their tools at home and be recommended similar tools.

2Or that you want them to buy.
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Figure 1.4: Illustration of the problem of meal tray recognition. Items on the tray must be classified among
the items on the current menu. Some classes come with many examples while others come with
very few examples.

Few-Shot Tool Classification. There are many similarities between this use case and the
use case from Section 1.2.1 that made Few-Shot Learning methods an obvious candidate for a
solution. Indeed, the marketplace’s catalog also contains just a few examples for each product and
is subject to evolution in time. Just as before, we do not want to re-train our model each time the
marketplace releases a new land-mower.

A non-exhaustive catalog. Then again, this Few-Shot setting presents some differences
from the standardized academic setting, which we show in Figure 1.3. Naturally, there is a domain
shift: the images in the catalog are most often fashion shots on a clean white background, which is
very different from the photos taken by the end user. Just as before, the catalogs involve thousands
of classes, and top-1 accuracy is not the most relevant metric. Additionally, this problem is by
nature open-set i.e., query images are not guaranteed to belong to any of the known classes. When
it is the case, we do not want to falsely label them as the closest entry in the catalog. Instead, we
want to recognize that the item does not appear in the catalog and flag it as such.

1.2.3 Use Case 3: Daily Food Recognition

Recognizing new plateswithout retraining. A rich applicative area of Machine Learn-
ing is to automate repetitive tasks previously handled by human workers3. Our third use case lies
in this area. The role of the cashier in cafeterias (i.e., listing the items on a meal tray and editing
the corresponding bill) has been seen as a promising terrain for automation. As it happens, it is

3The societal impact of such applications will not be discussed here.
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also a very interesting playground for Few-Shot Learning. Indeed, each new service comes with
its particular set of items on the menu, some of which may not have appeared on any previous
menu. For instance, when a cafeteria chef decides to add mushroom lasagnas to the menu (even
though it has never appeared on the menu before), we cannot expect to acquire sufficient data on
mushroom lasagna before the day’s service to fine-tune a standard classification model on this new
class. Instead, we need a system that can take only one example plate prepared by the chef at the
beginning of the service, and then recognize new instances of mushroom lasagna accurately. This
is where Few-Shot Learning methods can add substantial value.

Popular and unknown dishes. After a few years of processing millions of meal trays, the
resulting dataset would not intuitively be considered a "Few-Shot Learning" dataset. Indeed, some
classes such as roast pork have thousands of aggregated examples, while many classes (such as the
new dishes appearing on a daily basis) have only one example. This problem is illustrated in Figure
1.4. How does this mix between large-scale and few-shot classes fit into the standard academic
Few-Shot Learning setting?

1.2.4 Use Case 4: Classification fromMicroscopic Images

Bridging geographical inequalities in micro-organism recognition. A Canadian
start-up in biotechnologies came to Sicara with a fascinating and intensely "tech-for-good" use case.
From their experience as biology teachers and practitioners, many hospitals (especially in remote
regions or emerging countries) could not always guarantee students and practitioners access to
some specific expertise. In that context, they could well benefit from intelligent tools to perform
certain high-value tasks, such as recognizing micro-organisms (bacteria, viruses, or fungi) from
microscopic images.

Few-Shot Classification ofMicroscopic Images. The use case was then to design a
mobile application that would, from a picture taken through a microscope, automatically recognize
the micro-organism, and provide an experimental process to validate the prediction using internal
documentation. Our role was to design the image classification algorithm. We found that several
characteristics of this problem made it an ideal use case for Few-Shot Learning:

• A specific scientific expertise is needed for both data collection and annotation. Indeed,
examples of micro-organisms’ images are obtained through a delicate experimental process.
For instance, depending on the reactants applied to the micro-organism and the order in
which they are used, it will not have the same aspects. These reactants, as well as other
information such as the type of microscope or the magnification rate, must be thoroughly
noted and joined to the image’s annotation. This makes data collection in our context
difficult and expensive, and therefore motivates the need for a model able to recognize
micro-organisms from a few examples.

• As one might imagine, our classification problem is one of many classes. Additionally, this
set of classes is subject to change, both in time with the collection of data for more and more
micro-organisms and at the session level: indeed, based on additional information provided
by the user, only a subset of classes may be considered. Few-Shot Learning algorithms are
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Real-World Problem Exists in the use case... Addressed
in...

Maintenance e-Shopping Food Recognition Microscopic FSL
Support / Query Domain Shift Chapter 3
Open-Set Recognition Chapter 4
Fine-grained tasks + Chapter 5
Different shapes of Few-Shot tasks Chapter 5
Other metrics than top-1 accuracy Chapter 5
Mix large-scale & few-shot classes -
Intra-class variability Chapter 6

Table 1.1: Summary of the observed differences between each use case encountered at Sicara and the stan-
dardized academic setting. The rightmost column indicates the chapter of this thesis in which
this difference is addressed, if any.

by nature well adapted to a changing set of classes, as they can adapt to a new set of classes
without the need for re-training.

Granular yet variable classes. As in all previous use cases, our classification problem is
obviously fine-grained. Indeed, we would need to distinguish between organisms from the same
domain of living entities, and further on from the same kingdom, phylum, class, order, family,
and even genus, making it one of the most fine-grained classification tasks. Also, as stated before,
our problem involves tens of thousands of classes. Therefore, we cannot rely on benchmarks that
compare Few-Shot Learning models on 5-way tasks to select the best model. Furthermore, each
micro-organism presents a high intra-class variability, as its appearance depends on the type of
microscope, magnification, and series of used reactants. Finally, as in most previous use cases, it
is of prior importance to recognize when the query image does not belong to any of the known
classes, in order not to provide falsely confident predictions.

1.2.5 Limitations of the standardized Few-Shot setting

We just learned that the challenges presented by real industrial use cases unveil many shortcomings
of the standardized Few-Shot Learning setting, which are summarized in Table 1.1.

From just four use cases, we identified seven challenges of industrial applications that are not
tackled by current Few-Shot Learning academic research.

• Domain shift between query and support images;

• Recognition of query instances which class does not appear in the support set;

• Fine-grained classification tasks;

• Variability of the evaluation setup, for instance in the shape of the few-shot classification
tasks on which the models are tested;

• Other metrics than top-1 accuracy;

• Mix between large-scale and few-shot classes;
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• Huge variability in the images that belong to each class.
Note that a common factor in all of these use cases is that the classes present a very fine granu-

larity i.e., they correspond to concepts that are very close to each other. This contrasts with the
most popular benchmarks in Few-Shot Learning: all few-shot tasks sampled from the test set for
evaluation involve 5 classes sampled uniformly at random among the many classes composing the
test set. In practice, this sampling method generates almost exclusively few-shot tasks composed of
concepts that are very distant from each other, as we show in Chapter 5.

These observations motivated our research team at Sicara and CentraleSupélec to focus on
narrowing the gap between the hypothesis used in academic research and industrial applications of
Few-Shot Learning.

1.3 Narrowing the Gap

The three years of work leading to this thesis have been directed at mitigating the limitations
identified in Section 1.2 in order to make Few-Shot Learning research more directly applicable to
industrial use cases. Our contributions can be organized into two main blocks:

1. Opening Few-Shot Learning to the challenges of real-world applications, by confronting
Few-Shot Learning with other known problems in Machine Learning literature;

2. Understanding and improving Few-Shot Image Classification benchmarks.

1.3.1 Opening Few-Shot Learning to the Challenges of Real-World
Applications

Contribution 1: Few-Shot Learning under Support-Query Shift

In Chapter 3, we address the problem of domain shift between support examples and
query images. We formalize this problem as Few-Shot Learning under Support-Query Shift
(FSQS), propose a standard evaluation protocol along with a testbed of three challenging
benchmarks, introduce a novel method to solve this problem, and conduct extensive
experimentation on several representative few-shot algorithms. Specifically:

1. We introduce FewShiftBed: a testbed for FSQS available at https://github.com/
ebennequin/meta-domain-shift. The testbed includes 3 challenging benchmarks
along with a protocol for fair and rigorous comparison across methods as well as an
implementation of relevant baselines, and an interface to facilitate the implementa-
tion of new methods.

2. We conduct extensive experimentation using several representative few-shot algo-
rithms. We empirically show that Transductive Batch-Normalization (Bronskill et al.
2020) mitigates an important part of the inopportune effect of FSQS.

3. We bridge Unsupervised Domain Adaptation (UDA) with FSL to address FSQS. We
introduce Transported Prototypes, an efficient transductive algorithm that couples
Optimal Transport (OT) from Peyré et al. 2019 with the celebrated Prototypical
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Networks (Snell et al. 2017). The use of OT follows a long-standing history in UDA
for aligning representations between distributions (Ben-David et al. 2007; Ganin and
Lempitsky 2015). Our experiments demonstrate that OT shows a remarkable ability
to perform this alignment even with only a few samples to compare distributions
and provide a simple but strong baseline.

Contribution 2: Transductive Few-Shot Open-Set Recognition

In Chapter 4, we address a second relaxation of the assumptions made in the standardized
Few-Shot Learning setting, namely the assumption that query images belong to the classes
defined in the support set. This novel problem exists in the literature under the name of
Few-Shot Open-Set Recognition (FSOSR).

1. We expose the specific difficulty of the FSOSR problem when using off-the-shelf pre-
trained models, on a wide range of benchmarks and architectures, using our novel
Mean Imposture Factor metric which measures how much the classes’ distributions
in a dataset are perturbed by instances from other classes.

2. To the best of our knowledge, we realize the first study and benchmarking of trans-
ductive methods for the Few-Shot Open-Set Recognition setting. We reproduce
and benchmark five state-of-the-art transductive methods.

3. We introduce Open-Set Transductive Information Maximization (Ostim), an in-
tuitive modification of the TIM method that provides an additional prototype for
outliers.

4. We introduce Open-Set Likelihood Optimization (Oslo), a principled extension
of the Maximum Likelihood framework that explicitly models and handles the
presence of outliers. Ostim and Oslo are interpretable and modular i.e., can be
applied on top of any pre-trained model seamlessly.

5. Through extensive experiments spanning five datasets and a dozen of pre-trained
models, we show that our methods consistently surpass all existing methods in de-
tecting open-set instances while competing with the strongest methods in classifying
closed-set instances. Our empirical studies include long-overdue experiments on the
performance of transductive methods with various sizes and shapes of the query set.

1.3.2 Challenges in Benchmarking Few-Shot Image Classification models

Contribution 3: Semantic Similarity in Few-Shot Learning Benchmarks

Following our observations on the shift between how we evaluate Few-Shot Learning
methods in academic benchmarks and what we need them to do in real use cases, we
provide in Chapter 5 an in-depth study focused on the similarity between the classes

10



1.3 Narrowing the Gap

appearing in a test task sampled from current benchmarks. We expose the limitations of
current task sampling strategies and propose a step towards more realistic benchmarks.
More specifically:

1. We use the WordNet taxonomy (Miller 1995) to evaluate semantic distances between
classes of the popular Few-Shot Classification benchmark tieredImageNet. Based
on these semantic distances we put forward the concept of coarsity of an image
classification task, which quantifies how semantically close are the classes of the task.

2. We conduct both quantitative and qualitative studies of the tasks generated from
the test set of tieredImageNet i.e., the tasks composing the benchmark on which
most papers evaluate different methods. We show that this benchmark is heavily
biased towards tasks composed of semantically unrelated classes.

3. We harness the semantic distances between classes to generate the improved bench-
mark better-tieredImageNet reestablishing the balance between fine-grained and
coarse tasks. We compare state-of-the-art Few-Shot Classification methods on this
new benchmark and bring out the relation between the coarsity of a task and its
difficulty.

4. We put forward the Danish Fungi 2020 dataset (Picek et al. 2022) for evaluating Few-
Shot Classification models. This dataset offers a wide range of fine-grained classes
and therefore allows the sampling of tasks that we deem to be more representative of
industrial applications of Few-Shot Learning. We compare state-of-the-art methods
on both 5-way and 100-way tasks generated from this dataset. To the best of our
knowledge, these are the first published results of few-shot methods on such wide
tasks.

Perspective: Observations on Support Set Quality

Data quality is universally known as a critical factor for performance in Machine Learning
problems. Intuitively, the quality of individual samples is even more decisive when only
a handful of labeled instances are available. Let us recall the context of Few-Shot Image
Classification, with only one available sample per class (i.e., one-shot classification). If the
only example that we give an agent to define a class is of bad quality, we cannot hope for a
good performance in recognizing this class. In Chapter 6, we report our investigations and
present what we deem to be interesting perspectives for future works on the support set’s
quality. More precisely, we focused on the two following questions:

1. How can we characterize the quality of an example in a support set?

2. What is the impact of the selection of support set instances on the performance of
Few-Shot Learning models?
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1.4 Content’s summary

In Part I, we provide the necessary background on Few-Shot Learning and Few-Shot Image Clas-
sification and draw the landscape of Few-Shot Learning’s state of the art, both addressing the
standardized setting and its relaxations.

In Part II, we expose our contributions towards opening Few-Shot Learning research by relaxing
unrealistic assumptions and introducing:

1. Domain Shift between the support and query sets (Chapter 3);

2. Open-Set Recognition (Chapter 4).

Finally, in Part III, we expose our contribution towards improving Few-Shot Learning bench-
marks using the semantic relations between classes (Chapter 5) and present promising perspectives
related to the quality of the support set (Chapter 6).
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Part I

The Foundations of Few-Shot Learning

13





2 Overview: Learning from a Few
Examples

2.1 The many Paradigms on Learningwith Limited Data

In this thesis, we focus on the paradigm of Few-Shot Learning i.e., learning from few labeled
samples. It is crucial to understand that this is just one of many paradigms around the vast problem
of learning with limited data. In this section, we provide an overview of this family of problems
and showcase their similarities and differences.

2.1.1 WhenData is not Limited: standard Supervised Learning

Supervised Learning (SL) is a learning framework in which we assume access to the target prediction
for each input example. When considering a classification task, it means that for each input x ∈ X
with X a given input space, a ground truth label y ∈ C is provided. A classification model is
typically a mapping ψθ : X −→ [0, 1]|C| with a set of parameters θ, that predicts for each input
the probability that it belongs to each of the classes in C.

Training a model ψθ using Supervised Learning consists in:

1. sampling a batch of input-target pairs {(xi, yi) ∈ X × C}i;

2. using the model’s current parameters θ, predicting for each input x a prediction pi =
{pik}k∈C with pik = P(yi = k|xi);

3. comparing the predicted labels with the ground truth, typically using the cross-entropy loss
defined for a prediction pi and a label yi as

LCE = −
|C|∑
k=1

1(yi = k) log pik

with 1 the indicator function;

4. updating the parameters θ using the computed loss;

5. repeat.

It is to this day the most commonly studied scenario, especially for Image Classification. There
we assume access to a large dataset of (image, label) tuples. Here, we mean by "large" that we not
only have many images but also many images corresponding to each existing label.

Supervised Learning allowed many breakthroughs in Image Recognition and He et al. 2016 even
achieved super-human performance on the ImageNet Large Scale Visual Recognition Challenge.
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However, the assumptions behind Supervised Learning were found to rarely hold in practice (see
Section 1.2). The overall volume of data may be small, or it may be large but partially or fully
unlabeled.

2.1.2 Learningwith Limited Labels

Semi-Supervised Learning. In Semi-Supervised Learning (SSL), we assume access to a large
dataset, but only a small (e.g., 1% to 10%) proportion of labeled instances. The goal is to leverage
this large body of unlabeled data to improve classification, using relevant assumptions on the
structure of the data (Chapelle et al. 2009). There are many families of approaches to solving
this problem, including pseudo-labeling of unlabeled instances (Lee et al. 2013; Sohn et al. 2020),
consistency training (Laine and Aila 2017; Miyato et al. 2018), and generative models (Kingma
et al. 2014; Odena 2016).

UnsupervisedLearning. Going further into relaxing the labeling assumptions is the paradigm
of Unsupervised Learning (UL). Here, we consider only unlabeled data. In the field of Image
Recognition, this means that the model can only train on images, without any further informa-
tion. An increasingly popular objective that can be achieved through Unsupervised Learning is
Representation Learning (Bengio, Courville, et al. 2013; T. Chen et al. 2020; Oord et al. 2018; Wu
et al. 2018). It consists in training a model not to output a prediction linked to a specific task (like
predicting the class in Supervised Learning), but rather to map each data point (e.g., an image)
into a general feature space in which only the useful concepts and patterns are represented. The
quality of the representation can then be measured on a variety of downstream tasks e.g., image
classification, object detection, instance segmentation, or even few-shot image classification.

Unsupervised Domain Adaptation. Another well-established paradigm of limited labels
is Unsupervised Domain Adaptation (UDA). Domain Adaptation consists in adapting a model
that was trained on data sampled from a source distribution so that it can perform accurately on
data sampled from a different target distribution. In Image Recognition, many parameters can
cause such a distribution shift, such as a change in the acquisition process, the lighting conditions,
or simply because of a switch in the context in which source and target data are provided (see
Figure 1.3). UDA has a long-standing story (Pan and Q. Yang 2009; Quionero-Candela et al.
2009). The analysis of the role of representations from Ben-David et al. 2007 has led to wide
literature based on domain invariant representations (Ganin and Lempitsky 2015; Long, Y. Cao,
et al. 2015). Outstanding progress has been made toward learning more domain transferable
representations by looking for domain invariance. The tensorial product between representations
and prediction promotes conditional domain invariance (Long, Z. Cao, et al. 2018), the use of
weights (Bouvier et al. 2020; Z. Cao et al. 2018; Tachet des Combes et al. 2020; You et al. 2019)
has dramatically improved the problem of label shift theoretically described in Y. Zhang, T. Liu,
et al. 2019, hallucinating consistent target samples (H. Liu et al. 2019), penalizing high singular
values of a batch of representations (X. Chen, S. Wang, et al. 2019) or by enforcing the favorable
inductive bias of consistency through various data augmentation in the target domain (Ouali,
Bouvier, et al. 2020). Recent works address the problem of adaptation without source data (Liang
et al. 2020; Yeh et al. 2021). The seminal work by Courty, Flamary, Tuia, et al. 2016, followed

16



2.1 The many Paradigms on Learning with Limited Data

Paradigm Data volume Labels Domain Shift

Supervised Learning Large All No
Semi-supervised Learning Large Few No
Unsupervised Learning Large None No
Unsupervised Domain Adaptation Large Only in source domain Yes
Transfer Learning Large in source, no assumption in target All Yes
Test-Time Adaptation Large in source domain, small in target domain Only in source domain Yes
Few-Shot Learning Small All No assumption

Table 2.1: Overview of the differences between the learning paradigms.

by Courty, Flamary, Habrard, et al. 2017 and Bhushan Damodaran et al. 2018, brings Optimal
Transport (OT) to UDA by transporting source samples in the target domain.

Transfer Learning. In UDA, we assumed that the task to be solved in the target domain was
identical to the task to be solved in the source domain. When the assumption break, we talk about
Transfer Learning (Pan and Q. Yang 2009). For instance, in image classification, the set of classes
in which images are to be classified can be different in the target domain, resulting in a new target
task. In this case, we require labeled data in the target domain as well.

Test-Time Adaptation. Test-time Adaptation (TTA) goes one step further by adapting to
the target domain at test-time. In Y. Sun et al. 2020, adaptation is performed by test-time training
of representations through a self-supervision task which consists in predicting the rotation of
an image. This leads to a successful adaptation when the gradient of the fine-tuning procedure
is correlated with the gradient of the cross-entropy between the prediction and the label of the
target sample, which is not available. Inspired by UDA methods based on domain invariance of
representations, a line of works (Nado et al. 2020; Schneider et al. 2020) aims to align the mean
and the variance of train and test distribution of representations. This is simply done by updating
statistics of the batch-normalization layer. In a similar spirit of leveraging the batch-normalization
layer for adaptation, D. Wang et al. 2021 suggest minimizing prediction entropy on a batch of test
samples, as suggested in semi-supervised learning (Grandvalet and Bengio 2005). As pointed out
by authors of D. Wang et al. 2021, updating the whole network is inefficient and raises a risk of
overfitting on the test batch. To address this problem, the authors suggest only updating batch-
normalization parameters for minimizing the prediction’s entropy. The paradigm of Adaptative
Risk Minimization (ARM) is introduced in M. Zhang et al. 2021. ARM aims to adapt a classifier
at test time by conditioning its prediction on the whole batch of test samples (not only one sample).
Authors demonstrate that such a classifier is meta-trainable as long as the training data exposes a
structure of group.

2.1.3 Few-Shot Learning: Fully Labeled but Limited Data

Now how does Few-Shot Learning fit into this landscape?
A Few-Shot Classification Task consists in recognizing images among a set of classes, given only

a few labeled samples for these classes. To do so, we allow access to a large base dataset for training,
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2 Overview: Learning from a Few Examples

Figure 2.1: The Few-Shot Image Classification problem illustrated with images from the popular
tieredImageNet benchmark. To classify query images among the few-shot task’s set of classes, we
only have access to one example per class (this is the particular case of a 1-shot task). The model
is allowed to leverage information from a base set, with the requirement that its set of classes is
disjoint from those at test time.

with the only requirement that the classes involved in the few-shot task at test time do not appear
in this base dataset. This problem is represented in Figure 2.1.

This differs from the previously introduced "few-labels" paradigms, as each data point involved
in this problem is associated with a ground-truth label1. On the other hand, the volume of data
is way smaller than the volumes considered in semi-supervised and unsupervised learning. This
problem can also be compared with Test-Time Adaptation since we need to adapt to new data at
test time. The difference is that we do not necessarily need to adapt to a new domain, but rather
new classes. There is no assumption in the Few-Shot setting about domain shift, and models are
usually evaluated on both in-domain and cross-domain benchmarks (see Section 2.2.4).

2.2 Background on Few-Shot Image Classification

We can now dive into the Few-Shot Image Classification problem, its definition, its specifics, and
the vast landscape of methods designed to solve this problem.

1Although it is allowed to consider unsupervised training on the base set, as we do in Chapter 4.
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2.2 Background on Few-Shot Image Classification

2.2.1 Problem formalization

Basics In the following, we consider an input spaceX and a label spaceY . A representation is
a learnable function ϕθ : X 7→ Z withZ a feature space and θ a set of learnable parameters.

A Few-Shot Classification Task Given a set of classes C ⊂ Y with |C| = K , a K-
way Few-Shot Classification task2 TS,Q is formed by a small support set of labeled instances
S = {(xs

i , y
s
i ) ∈ X × C}i=1...|S| and a query set Q = {xq

i ∈ X}i=1...|Q|. In the standard
few-shot setting, the unknown ground-truth query labels {yqi }i=1...|Q| are assumed to be restricted
to closed-set classes i.e., ∀i, yqi ∈ C. When S contains exactly n instances for each class k ∈ C,
TS,Q is called aK-way n-shot classification task. The goal of Few-Shot Classification is to assign to
each query instance xq

i a prediction pq
i = {pqik}k∈C with pqik = P(yqi = k|xq

i ), with no prior
knowledge about the classes in C except for the information in S.

Evaluation Consider a base setDbase = {(x, y) | x ∈ X , y ∈ Cbase} and a test setDtest =
{(x, y) | x ∈ X , y ∈ Ctest} where Cbase ⊂ Y and Ctest ⊂ Y are their respective class sets, with
Cbase ∩ Ctest = ∅. The standard formulation of the Few-Shot Classification problem consists
in learning onDbase a classification model that can generalize to the unseen classes in Ctest with
only a few training examples per class. This is evaluated by sampling fromDtest a large number
of Few-Shot tasks. To do so, we define Etest(K) (and similarly Ebase(K)) as the set of K-way
classification tasks that can be sampled fromDtest i.e.,

Etest(K) := {TS,Q | S = {(xs
i , y

s
i ) ∈ X × C}i=1...|S| ⊂ Dtest, (2.1)

Q = {xq
i ∈ X}i=1...|Q| ⊂ Dtest,

S ∩Q = ∅, C ⊂ Ctest and |Ctest| = K}

In practice, most benchmarks are limited toEtest(5), and further limited to tasks with 1 or 5 support
images per class, and 10 query images per class. The number of possible tasks is still untractable
on most datasets. Therefore we most often evaluate few-shot classification models on a subset
Ẽtest = {T ∈ Etest|T ∼ U}with U the uniform distribution.

Episodic training A large body of Few-Shot Learning methods trains on the base setDbase
using episodic training. It consists in mimicking the evaluation process. Given an arbitrarily chosen
K , episodic training minimizes over Ebase(K) the cross-entropy loss on query instances:

LCE = ETS,Q∈Ebase(K)

− 1

|Q|

|Q|∑
i=1

K∑
k=1

yqik log(p
q
ik)

 (2.2)

with yq
i ∈ {0, 1}|C| the one-hot encoding of the ground truth label associated to xq

i .
Following Vinyals et al. 2016, many contributions to Few-Shot Learning (Finn et al. 2017; Snell

et al. 2017; Sung et al. 2018) considered that episodic training was an essential part of the problem.
It followed the very popular and exciting idea of "learning to learn", or "meta-learning", in which

2We may also write TC when the study focuses on the classes rather than the images composing the task.
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2 Overview: Learning from a Few Examples

the model is supposed to learn across tasks to better adapt to new tasks. "Meta-learning algorithms
for few-shot computer vision" was even the topic of the preliminary work Bennequin 2019 to this
thesis. In the next section, after a thorough review of the various techniques developed to solve
Few-Shot Learning, we will discuss the relevance of the episodic training strategy.

2.2.2 Few-Shot Learning methods

It is commonly assumed, following a classification proposed in W.-Y. Chen et al. 2019, to categorize
Few-Shot algorithms into three categories: metric-based, optimization-based, and hallucination-
based. In the following, we describe the principle and the main contributions of each of these
families.

Metric-based. Metric-based methods consist in casting both support and query images to
a representation space, and then classifying query instances based on some distance to support
instances in this space. Most metric-learning methods are built on the principle of the seminal
work around Siamese Networks by Koch et al. 2015, which proposes a solution to the few-shot
image classification problem on the Omniglot dataset3 by using a neural network as a feature
extractor for images. The model is trained on the base set using contrastive loss (Hadsell et al.
2006). Then, at inference time, query images are classified by comparison to all support images,
with cosine distance. Later contributions build upon Siamese Networks, while also exploiting the
episodic training paradigm: they learn a feature extractor across training tasks sampled from the
base set (Vinyals et al. 2016). Prototypical Networks (Snell et al. 2017) follow the same idea but
compare queries only to one prototype per class (computed as the mean of all feature vectors of
the instances of this class in the support set). They choose Euclidean distance instead of cosine
distance and show better results. Relation Networks (Sung et al. 2018) add another deep network
on top of Prototypical Networks to compute similarities between query instances and prototypes,
thus replacing the Euclidean distance. Z. Jiang et al. 2020 add an attention module to refine query
embeddings using information from the support set. Ouali, Hudelot, et al. 2021 show that training
with a contrastive loss can improve the generalization capabilities of few-shot methods. Laenen
and Bertinetto 2021 suggest that Prototypical networks perform better without episodic training.
They replace the support-query splitting of each training batch with a Neighboring Component
Analysis based on all pairs of images. S. Yang et al. 2021 propagate the statistics of base classes
to similar support classes to improve cluster definition. The same idea is followed by Roy et al.
2020 to augment few-shot classes in a context where some classes have few examples and others are
large-scale.

To sum up, there are three degrees of liberty in the space of metric-based methods for few-shot
classification:

• Training strategy: episodic training or contrastive loss. Note that it is also possible to train
the feature extractor on the base set by training a classifier between all base classes, and simply
removing the head.

• Comparison strategy: compare queries to every image, or simply to one prototype per class.
3Presented in Section 2.2.4.
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2.2 Background on Few-Shot Image Classification

• Distance: cosine, euclidean, or parameterized with a neural network.

Optimization-based. These methods usually learn to fine-tune a model on a small support set.
The MAML method (Finn et al. 2017) uses episodic training to learn a good model initialization i.e.,
model parameters that can adapt to a new task with novel classes in a small number of gradient steps.
Their experiments are extended in Nichol et al. 2018, with a focus on first-order approximations.
Triantafillou et al. 2020 propose an iteration named ProtoMAML, which consists in initializing
the last layer of the model with the prototypes computed from the support set as in Snell et al. 2017.
Meta-LSTM (Ravi and Larochelle 2017) meta-train an LSTM to perform gradient descent on
new few-shot tasks. Meta-Networks (Munkhdalai and H. Yu 2017) also replaces standard gradient
descent with a meta-learned optimizer. These methods are widely used in few-shot reinforcement
learning, but often appear too complex for computer vision tasks, compared to metric-based
methods. MAML, for instance, uses a back-propagation through a back-propagation, which
makes the computation time prohibitive even with first-order approximations and makes the
hyper-parameter tuning very difficult (Antoniou, Edwards, et al. 2019).

Hallucination-based. This third family of methods consists in augmenting the small sup-
port set with artificially generated samples. Hariharan and Girshick 2017 train a network to take
support features as input and generate new "hallucinated" features to augment the support set.
Y.-X. Wang et al. 2018 follow this idea and incorporate meta-learning to train the "hallucinator",
while Antoniou, A. Storkey, et al. 2017 use Generative Adversarial Networks to augment the
support set.

Discussions on episodic training. A large part of the methods presented above involve
episodic training, in which a neural network acting as a feature extractor is trained on artificial tasks
sampled from the training set. This replication of the inference scenario during training is intended
to make the learned representation more robust to new classes. It has become a prominent part of
the Few-Shot Learning literature, as many methods (some metric-based, and all optimization-based
and hallucination-based methods) included architectures specifically designed to be trained at
the task level. However, several recent works indicate that the results of these methods can be
matched by simple fine-tuning algorithms e.g., W.-Y. Chen et al. 2019 and Dhillon et al. 2020
show results indicating that simple methods based on fine-tuning can perform reasonably well on
few-shot tasks. They implement a baseline where a pre-trained network’s head is initialized on a new
support set simply by using the class prototypes extracted from the pre-trained network. Goldblum,
Reich, et al. 2020 show that metric-based methods usually provide better class-wise clustering on
novel classes than classically trained networks, which could explain their good performance on
comparison tasks. They show that adding a simple regularizing term in the loss when training a
standard classifier can achieve the same results.

2.2.3 Transductive Few-Shot Image Classification

We distinguish transductive classification from inductive classification. Transductive is when we
assume that we have access to the whole query set, so we can use query images as unlabeled data to
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2 Overview: Learning from a Few Examples

Figure 2.2: Distinction between inductive and transductive classification as defined in the Few-Shot Classi-
fication literature, illustrated with images from the Digital Image of Bacterial Species (DIBaS)
dataset provided in Zieliński et al. 2017. Inductive classification is performed on each query
independently, while transductive classification is performed on a batch, allowing the use of
other queries as additional unlabeled data.

improve the classification. It has recently become a popular relaxation of the classical Few-Shot
Classification problem. The distinction is illustrated in Figure 2.2.

Transductive Propagation Networks (Y. Liu et al. 2019) meta-learn label propagation from
support to query set concurrently with the feature extractor. Antoniou and A. J. Storkey 2019
proposed to use a meta-learned critic network to further adapt a classifier on the query set in an
unsupervised setting. Ren et al. 2019 extend Prototypical Networks in order to use the query set
in the prototype computation. L. Liu et al. 2019 use the confidently predicted queries to refine the
prototype computation, in an attempt to reduce the bias in prototype computation. Transductive
Information Maximization (Boudiaf, Ziko, et al. 2020) aims at maximizing the mutual information
between the features extracted from the query set and their predicted labels while also minimizing
the cross-entropy loss on the support set. Transductive Fine-Tuning (Dhillon et al. 2020) consists in
initializing the last layer of a pre-trained network on a few-shot task with the prototypes computed
from the support set and performing fine-tuning on the support set. In this fine-tuning, they use
as a regularizer the classification entropy of query set instances. Finally, PT-MAP and Transported
Prototypes (Bennequin 2019; Hu et al. 2021) use Optimal Transport to align query and support
sets.

The idea of maximizing the likelihood of both support and query samples under a model
parameterized by class prototypes is proposed by B. Yang et al. 2020 for few-shot segmentation.
However, their method relies on the closed-set assumption. Differing from previous works, the
novel framework presented in Chapter 4 leverages an additional latent variable, the inlierness score.
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2.2 Background on Few-Shot Image Classification

2.2.4 Benchmarks

In the following, we describe the usual benchmarks used to assess the performance of Few-Shot
Image Classification models.

Omniglot. The first and most simple few-shot classification benchmark is based on the Om-
niglot dataset of handwritten characters (B. Lake et al. 2011). The dataset contains 1623 handwrit-
ten characters drawn by 20 different people. Each image is associated with the sequence of strokes
that were used to write the character, although most benchmarks only use the images. Models
evaluated on Omniglot usually use four different settings corresponding to four shapes of the
randomly sampled few-shot tasks: 1 and 5-shot, 5 and 20-way. It has been used as an MNIST-like
benchmark at the early stages of Few-Shot Learning research but has recently fallen out of fashion
as the classification accuracy of most methods approached 100% on the most challenging 1-shot
20-way benchmarks.

miniImageNet. Rather quickly, miniImageNet (Vinyals et al. 2016) became the reference
dataset for Few-Shot Learning. It is a small subset of ImageNet (Deng et al. 2009) containing 60k
images in 100 classes, split across classes as train/val/test. Since it was first introduced in Vinyals
et al. 2016, miniImageNet has only been used in the 5-way 1-shot and 5-way 5-shot settings.

tieredImageNet. Later, Ren et al. 2019 introduced the larger dataset tieredImageNet, also
built from ImageNet but with 608 classes, which are split in a way that preserves the super-category
structure of the classes. Ren et al. also upscaled in terms of the number of images per class by using
all the available images in ImageNet for each class (∼ 1300 images per class). Like miniImageNet,
tieredImageNet has almost always been used in the 5-way setting with either 1 or 5 shots.

CIFAR-FS. The exact same strategy was used by Bertinetto et al. 2019 to build a benchmark
sampled from the CIFAR-100 dataset (Krizhevsky, Hinton, et al. 2009), which is a dataset of 60k
three-channel square images of size 32× 32, evenly distributed in 100 classes. Classes are evenly
distributed in 20 superclasses. CIFAR-FS is not as popular in the Few-Shot Learning community
as its ImageNet counterparts4.

CU-Bird. The classification benchmark CU-Birds 200 (Welinder et al. 2010), which happens
to be a fine-grained benchmark, is now also used for Few-Shot Image Classification, especially to
study cross-domain robustness (W.-Y. Chen et al. 2019). It is used in the same fashion as previous
benchmarks i.e., to build 5-way tasks with 1 or 5 shots.

Meta-Dataset. We established that all these benchmarks roughly follow the same process
to generate few-shot classification tasks i.e., we sample 5 classes 5 uniformly at random from the
test set, then sample a fixed number of images per class for the support set and for the query set.
However, more recently, Triantafillou et al. 2020 merged 10 computer vision datasets to build a

445 usages of CIFAR-FS in 2022 according to PapersWithCode, versus 60 for tieredImageNet and 213 for
miniImageNet.

5Rarely 10, or 20 for Omniglot
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2 Overview: Learning from a Few Examples

gigantic benchmark for few-shot classification methods: Meta-Dataset. They introduced some
randomness in the shape of the tasks (number of ways, shots, and queries) and proposed to study
the hierarchy of the methods depending on the number of ways and shots. Despite its ability to
benchmark methods on incredibly diverse datasets and tasks, Meta-Dataset remains underused by
the community compared to a simpler and more lightweight benchmark like miniImageNet6. In
Chapter 5, we mitigate the biases of current benchmarks while avoiding additional engineering
challenges that would make it harder to adopt our novel benchmarks.

2.3 Thinking about the Few-Shot Classification Tasks in
detail

2.3.1 Sampling of Few-Shot Tasks

Curriculum Learning. Bengio, Louradour, et al. 2009’s pioneering work on Curriculum
Learning shows that the order in which training samples are shown to the model influences both
convergence speed and the quality of the found local minimum. Q. Sun et al. 2019 propose to
generate "hard" examples by biasing the sampling towards classes on which the model has shown
the greatest loss during previous epochs. With the same objective but for the specific problem of
episode sampling in the context of Few-Shot Learning, C. Liu et al. 2020 condition the probability
of co-sampling two classes in one training episode on the average confusion between those classes.
Still on the sampling of few-shot tasks, Triantafillou et al. 2020 incorporate to their benchmark
the notion of task fine-graininess, i.e., how "close" classes are to each other, following a predefined
semantic. Sbai et al. 2020 show a correlation between the granularity of the classes in which the
base set is split and the final accuracy on the test set. They show that classes can be artificially
merged or further split to reach an optimum. Kaddour, Sæmundsson, et al. 2020 propose an
algorithm to select the next task during episodic training for meta-reinforcement learning.

Characterizing classification tasks. Some recent works try and find a way to represent
classification tasks so that they can be compared with one another (Achille et al. 2019; Nguyen
et al. 2021). Here we focus on characterizing tasks using class semantics. Deselaers and Ferrari 2011
show that on ImageNet, visual and semantic similarities between classes are linked. They measure
the semantic similarity with the Jiang & Conrath pseudo-distance (J. J. Jiang and Conrath 1997).
It depends on the WordNet Directed Acyclic Graph, a semantic hierarchy spanning (among many
other concepts) all classes in ImageNet, and on the number of images in each class. Other methods
to evaluate the similarity between categories can be found in Alves et al. 2020.

2.3.2 Quality of the support set

To the best of our knowledge, only a handful of works address the issue of the quality of the
support set. These contributions can be split into two categories.

The first category is that of methods that aim at mitigating an assumed global, not precisely
defined bad quality of support sets, through the use of an additional module acting at the feature

622 usages of Meta-Dataset in 2022 according to PapersWithCode.
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level i.e., on the embeddings outputted by the feature extractor. MELR (Fei et al. 2020) adds
a consistency regularization to the meta-training loss to encourage the model’s prediction to be
independent of the sampling of support examples. Lu et al. 2020 tackle the problem of outliers
in the support set by adding an extra module in the feature space to mitigate their impact on the
prototype computation (and therefore on the model’s performance on the query set).

The second categories of contributions involve more in-depth studies of frequent flaws in
support sets. Luo et al. 2021 postulate that the propensity of large-scale image recognition training
strategies to use background information as a shortcut for classification arms the performance
when the representations are applied to novel classes. Other works such as Bendou et al. 2022 and
Hiller et al. 2022 focus on the issue of locating the object of interest in an image, which is even more
important in the context of single-label images. Finally, J. Li et al. 2021 use an erasing-inpainting
module during training to force the embeddings to store information from all regions of target
objects.

Note that none of these studies propose a way to measure the quality of a support set. In Section
6.2, we draw what we deem to be useful perspectives toward quantifying the quality of support
examples.

2.4 Opening the Few-Shot Image Classification Problem

As we established in Chapter 1, the standardized Few-Shot Image Classification setting that we
described so far in this chapter does not always hold in real use cases. In particular, this standardized
setting ignores very common issues like distributional shift and open-set recognition. The present
thesis makes substantial contributions to these issues. However, we do not claim to be the very
first to study Few-Shot Learning under Distributional Shift or Few-Shot Open-Set Recognition.
In this section, we review the previous efforts made in these areas and provide useful context to
understand the positioning of our contributions.

2.4.1 Few-Shot Classification under Distributional Shift

Recent works on few-shot classification tackle the problem of distributional shift between the base
set and the test set. W.-Y. Chen et al. 2019 compare the performance of state-of-the-art solutions to
few-shot classification on a cross-domain setting (training on miniImageNet (Vinyals et al. 2016)
and testing on Caltech-UCSD Birds 200 (Welinder et al. 2010)). A. Zhao et al. 2021 propose a
Domain-Adversarial Prototypical Network in order to both align source and target domains in
the feature space and maintain discriminativeness between classes. Following the "meta-learning"
paradigm and considering the problem as a shift in the distribution of tasks (i.e. training and
testing tasks are drawn from two distinct distributions), Sahoo et al. 2019 combine Prototypical
Networks with adversarial domain adaptation at the task level. Goldblum, Fowl, et al. 2020 also
propose adversarial data augmentation for the cross-domain scenario. While these works address
the key issue of the distributional shift between the base and test set, they assume that for each
task, the support set and query set are always drawn from the same distribution. We find that
this assumption rarely holds in practice7. In Chapter 3 we consider a distributional shift both

7In the use cases 1.2.1 and 1.2.2, support and query images come from different distributions.

25
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between base and test set and inside a task i.e., between support and query set. Later on, Du et al.
2021 address the support-query shift problem with a multi-layer perceptron applied at each batch
normalization layer of the network in order to predict relevant batch statistics. Building on the
Support-Query Shift problem defined in Chapter 3, Aimen et al. 2023 propose to use adversarial
projections to solve inductive Support-Query Shift, while S. Jiang et al. 2022 improve on our
proposed Transported Prototypes approach to make it more robust to small perturbations in
images.

2.4.2 Few-Shot Open-Set Recognition

Open-set recognition (OSR). The standard classification setting uses the assumption that
all images indeed belong to the known classes. However, this assumption, while convenient, rarely
holds in real-world applications. This motivated the need for Open-Set Recognition (OSR). OSR
aims to enable classifiers to detect instances from unknown classes (Scheirer et al. 2012). Prior works
address this problem in the large-scale setting by augmenting the SoftMax activation to account for
the possibility of unseen classes (Bendale and Boult 2016), generating artificial outliers (Ge et al.
2017; Neal et al. 2018), improving closed-set accuracy (Vaze et al. 2022), or using placeholders
to anticipate novel classes’ distributions with adaptive decision boundaries (Zhou et al. 2021).
All these methods involve the training of deep neural networks on a specific class set. Therefore,
they are not fully fit for the few-shot setting. In Chapter 4, we use simple yet effective adaptations
of OpenMax (Bendale and Boult 2016) and PROSER (Zhou et al. 2021) as strong baselines for
FSOSR.

Few-shot open-set recognition (FSOSR). In the few-shot setting, methods must detect
open-set instances while only a few closed-set instances are available. B. Liu et al. 2020 use meta-
learning on pseudo-open-set tasks to train a model to maximize the classification entropy of
open-set instances. Jeong et al. 2021 use transformation consistency to measure the divergence
between a query image and the set of class prototypes. S. Huang et al. 2022 use an attention
mechanism to generate a negative prototype for outliers. These methods require the optimization
of a separate model with a specific episodic training strategy.

Nonetheless, as we show in Section 4.5, they bring marginal improvement over simple adapta-
tions of standard OSR methods to the few-shot setting. In comparison, our methods presented in
Chapter 4 don’t require any specific training and can be plugged into any feature extractor without
further optimization.
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Opening Few-Shot Learning to
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3 Contribution 1: Few-Shot Learning
under Support-Query Shift

This chapter replicates our paper Bridging Few-Shot Learning and Adaptation: New Challenges of
Support-Query Shift, by Etienne Bennequin, Victor Bouvier, Myriam Tami, Antoine Toubhans, and
Céline Hudelot, produced in equal contribution with Victor Bouvier from the MICS laboratory,
and published at ECML-PKDD 2021 (Bennequin, Bouvier, et al. 2021).

3.1 Introduction

The standard Few-Shot Learning setting detailed in Section 2.2.1 does not rely on any assumption
about the distributions from which base instances, support instances, and query instances are
sampled. However, well-adopted FSL benchmarks detailed in Section 2.2.4 (Ren et al. 2019;
Triantafillou et al. 2020; Vinyals et al. 2016) commonly sample the support and query sets from the
same distribution. We stress that this assumption does not hold in most use cases. When deployed
in the real world, we expect an algorithm to infer on data that may shift, resulting in an acquisition
system that deteriorates, lighting conditions that vary, or real-world objects evolving (Amodei et al.
2016). This is, for instance, one of the problems occurring in the use-case presented in Section
1.2.1.

The situation of Distribution Shift (DS) i.e., when training and testing distributions differ, is
ubiquitous and has dramatic effects on deep models (Hendrycks and Dietterich 2019), motivating
works in Unsupervised Domain Adaptation (Pan and Q. Yang 2009), Domain Generalization
(Gulrajani and Lopez-Paz 2021) or Test-Time Adaptation (D. Wang et al. 2021). However, the state
of the art brings insufficient knowledge on few-shot learners’ behaviors when facing distribution
shift. Some pioneering works demonstrate that advanced FSL algorithms do not handle cross-
domain generalization better than more naive approaches (W.-Y. Chen et al. 2019). Despite its great
practical interest, FSL under distribution shift between the support and query sets is an under-
investigated problem and attracts very recent attention (Du et al. 2021). We refer to it as Few-Shot
Learning under Support/Query Shift (FSQS) and provide an illustration in Figure 3.1. It reflects a
more realistic situation where the algorithm is fed with a support set at the time of deployment and
infers continuously on data subject to shift. The first solution is to re-acquire a support set that
follows the data’s evolution. Nevertheless, it implies human intervention to select and annotate
data to update an already deployed model, reacting to a potential drop in performance. The second
solution consists in designing an algorithm that is robust to the distribution shift encountered
during inference. This is the subject of this chapter.
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Figure 3.1: Illustration of the FSQS problem with a 5-way 1-shot classification task sampled from the mini-
ImageNet dataset (Vinyals et al. 2016). In (a), a standard FSL setting where support and query
sets are sampled from the same distribution. In (b), the same task but with shot-noise and
contrast perturbations from Hendrycks and Dietterich 2019 applied on support and query sets
(respectively) that results in a support-query shift. In the latter case, a similarity measure based
on the Euclidean metric (Snell et al. 2017) may become inadequate.

Chapter’s Contributions

1. We introduce FewShiftBed: a testbed for FSQS available at https://github.com/
ebennequin/meta-domain-shift. The testbed includes 3 challenging benchmarks
along with a protocol for fair and rigorous comparison across methods as well as an
implementation of relevant baselines, and an interface to facilitate the implementa-
tion of new methods.

2. We conduct extensive experimentation of a representative set of few-shot algorithms.
We empirically show that Transductive Batch-Normalization (Bronskill et al. 2020)
mitigates an important part of the inopportune effect of FSQS.

3. We bridge Unsupervised Domain Adaptation (UDA) with FSL to address FSQS. We
introduce Transported Prototypes, an efficient transductive algorithm that couples
Optimal Transport (OT) from Peyré et al. 2019 with the celebrated Prototypical
Networks (Snell et al. 2017). The use of OT follows a long-standing history in UDA
for aligning representations between distributions (Ben-David et al. 2007; Ganin and
Lempitsky 2015). Our experiments demonstrate that OT shows a remarkable ability
to perform this alignment even with only a few samples to compare distributions
and provide a simple but strong baseline.

In Section 3.2 we provide a formal statement of FSQS, and we position this new problem among
existing learning paradigms. In Section 3.3, we present FewShiftBed. We detail the datasets,
the chosen baselines, and a protocol that guarantees a rigorous and reproducible evaluation. In
Section 3.4, we present a method that couples Optimal Transport with Prototypical Networks
(Snell et al. 2017). Finally, in Section 3.5, we conduct an extensive evaluation of baselines and our
proposed method using the testbed.
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3.2 The Support-Query Shift problem

Figure 3.2: A Few-Shot Learning algorithm is trained on a base set Dbase made of images from a set of
domains ∆base and labels from a set of classes Cbase. At test-time, the trained model is fed with a
support set sampled from a new (source) domain Υs ∈ ∆test and new classes C ⊂ Ctest and is
asked to classify query samples from another (target) domain Υt with pΥt ̸= pΥs . Importantly,
both classes and domain shifts are not seen during training (Cbase ∩ Ctest = ∆base ∩ ∆test = ∅),
making Few-Shot Learning under Support-Query Shift a challenging problem of generalization.

3.2 The Support-Query Shift problem

3.2.1 Statement

Domain Shift. Similarly to the definition of Cbase and Ctest in Section 2.2.1, we define ∆base
(resp. ∆test) the set of domains represented in the base set (resp. the test set), with∆base∩∆test = ∅.
A domain Υ ⊂ X is a set of Independent and Identically Distributed (IID) realizations from a
distribution noted pΥ. Following this formalization, for this chapter we expand the definition of
Dbase andDtest to account for domain shift between the base and test set:

Dbase = {(x, y) | x ∈ Υ, y ∈ Cbase, Υ ∈ ∆base}
Dtest = {(x, y) | x ∈ Υ, y ∈ Ctest, Υ ∈ ∆test}

For two domains Υ,Υ′ ⊂ X , the distribution shift is characterized by pΥ ̸= pΥ′ . For instance, if
the data consists of images of letters handwritten by several users, Υ can consist of samples from a
specific user. Referring to the well-known Unsupervised Domain Adaptation (UDA) terminology
of source/target (Pan and Q. Yang 2009), we define a couple of source-target domains as a couple
(Υs,Υt) with pΥs ̸= pΥt , thus presenting a distribution shift.

Few-Shot Classification under Support-Query Shift (FSQS). We expand the defini-
tion of a Few-Shot Classification task given in Section 2.2.1 to define the FSQS task. Given a set of
classes C ⊂ Y with |C| = K , a source domain Υs ⊂ X and a target domain Υt ⊂ X , aK-way
FSQS task TFSQS

S,Q is defined with a small source support set of labeled instances S = {(xs
i , y

s
i ) ∈

Υs×C}i=1...|S| and a target query setQ = {xq
i ∈ Υt}i=1...|Q|. Note that this paradigm provides

an additional challenge compared to classical Few-Shot Classification tasks since at test time, the
model is expected to generalize to both new classes and new domains while the support set and
query set are sampled from different distributions. This paradigm is illustrated in Figure 3.2.
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3 Contribution 1: Few-Shot Learning under Support-Query Shift

Evaluation and episodic training. We follow the same logic to expand the definition of
the sets ofK-way Few-Shot Classification tasks to FSQS tasks Etest(K).

Etest(K) = {TFSQS
S,Q | S = {(xs

i , y
s
i ) ∈ Υs × C}i=1...|S|,

Q = {xq
i ∈ Υt}i=1...|Q|,

S ∩Q = ∅,
C ⊂ Ctest, and |Ctest| = K,

{Υs,Υt} ∈ ∆test, and pΥs ̸= pΥt}

In this chapter, we use the episodic training strategy described in Section 2.2.1, which means that
at train time, we useDbase to sample tasks that are meant to replicate the tasks from Etest(K) and
train the model to minimize its loss on each task’s query set based on the information from the
task’s support set. Therefore, we define Ebase(K) similarly to Etest(K):

Ebase(K) = {TFSQS
S,Q | S = {(xs

i , y
s
i ) ∈ Υs × C}i=1...|S|,

Q = {xq
i ∈ Υt}i=1...|Q|,

S ∩Q = ∅,
C ⊂ Cbase, and |Cbase| = K,

{Υs,Υt} ∈ ∆base, and pΥs ̸= pΥt}

Note that since base and test domains are disjoint, we ensure that the model will be tested to adapt
to domain shifts that were not seen during training.

3.2.2 Positioning FSQS among Support-Query problems

To highlight FSQS’s novelty, our discussion revolves around the problem of inferring on a given
Query Set provided with the knowledge of a Support Set. We refer to this class of problems as SQ
problems. Intrinsically, FSL falls into the category of SQ problems. Interestingly, Unsupervised
Domain Adaptation (Pan and Q. Yang 2009) (UDA), defined as labeling a dataset sampled from a
target domain based on labeled data sampled from a source domain (see Section 2.4.1), is also an
SQ problem. Indeed, in this case, the source domain plays the role of support, while the target
domain plays the query’s role. Notably, an essential line of study in UDA leverages the target data
distribution for aligning source and target domains, reflecting the importance of transduction
in a context of adaptation (Ben-David et al. 2007; Ganin and Lempitsky 2015) i.e., performing
prediction by considering all target samples together. Transductive algorithms also have a special
place in FSL (Dhillon et al. 2020; Y. Liu et al. 2019; Ren et al. 2019) and show that leveraging a
query set as a whole brings a significant boost in performance (see Section 2.2.3). Nevertheless,
UDA and FSL exhibit fundamental differences. UDA addresses the problem of distribution shift
using important source data and target data (typically thousands of instances) to align distributions.
In contrast, FSL focuses on the difficulty of learning from a few samples. To this purpose, we frame
UDA as both an SQ problem with large transductivity and Support / Query Shift, while Few-Shot
Learning is an SQ problem, eventually with small transductivity for transductive FSL. Thus, FSQS
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3.3 FewShiftBed: A PyTorch testbed for FSQS

Support-Query Problems

Train-Time Test-Time

Support Query Support Query New
classes

New
domains

Size Labels Size Labels Size Labels Transductivity

N
o

S
Q

S Few-Shot Learning (FSL)1 Few Few Few Point-wise ✗
Transductive FSL2 Few Few Few Small ✗
Cross-Domain FSL3 Few Few Few Point-wise

S
Q

S

Unsupervised Domain Adaptation4 Large Large
Test-Time Adaptation5 Large Small
Adaptive Risk Minimization6 Large Few Small
Inductive FSQS Few Few Few Point-wise
Transductive FSQS Few Few Few Small

Table 3.1: An overview of SQ problems. We divide SQ problems into two categories, presence or not of
Support-Q uery shift; No SQS vs SQS. We consider three classes of transductivity: point-wise
transductivity that is equivalent to inductive inference, small transductivity when inference is
performed at batch level (typically in D. Wang et al. 2021; M. Zhang et al. 2021), and large
transductivity when inference is performed at dataset level (typically in UDA). New classes (resp.
new domains) describe if the model is evaluated at test-time on novel classes (resp. novel domains).
Note that we frame UDA as a fully test-time algorithm. Notably, Cross-Domain FSL (CDFSL)
(W.-Y. Chen et al. 2019) assumes that the support set and query set are drawn from the same
distribution, thus No SQS.

combines both challenges: distribution shift and small transductivity. This new perspective allows
us to establish fruitful connections with related learning paradigms, presented in Table 3.1.

3.3 FewShiftBed: A PyTorch testbed for FSQS

3.3.1 Datasets

We designed three new image classification datasets adapted to the FSQS problem. These datasets
have two specificities.

1. They are dividable into groups of images, assuming that each group corresponds to a distinct
domain. A key challenge is that each group must contain enough images with a sufficient
variety of class labels so that it is possible to sample FSQS episodes.

2. They are delivered with a train/val/test split (Dbase,Dval,Dtest), along both the class and
the domain axis. This split is performed following the principles detailed in Section 3.2.
Therefore, these datasets provide true few-shot tasks at test time, in the sense that the model
will not have seen any instances of test classes and domains during training. Note that since

1 Finn et al. 2017; Snell et al. 2017.
2 Y. Liu et al. 2019; Ren et al. 2019.
3 W.-Y. Chen et al. 2019.
4 Pan and Q. Yang 2009; Quionero-Candela et al. 2009.
5 Schneider et al. 2020; Y. Sun et al. 2020; D. Wang et al. 2021.
6 M. Zhang et al. 2021.
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3 Contribution 1: Few-Shot Learning under Support-Query Shift

(a) Benchmarking standard FSL (b) Benchmarking FSQS

Figure 3.3: Comparison between benchmarks for standard Few-Shot Learning (FSL) and for Few-Shot
Learning under Support-Query Shift (FSQS). In standard FSL, we ensure that base and test
classes are disjoint. At test time, to sample an FSL task, we sample a subset of classes, and from
these classes, we sample some images for the support set and some others for the query set. FSQS
adds a third dimension which represents the variety of domains. We must ensure that both the
sets of classes and domains for base and test sets are disjoint. At test time, to sample an FSQS
class, we also sample a subset of classes, but also a source and target domain. From these classes,
we sample some images from the source domain for the support set and some images from the
target domain for the query set. For simplicity, we only represented the split between base and
test sets, not including a potential validation set.

we split along two axes, some data may be discarded (for instance images from a domain in
∆base with a label in Ctest). Therefore it is crucial to find a split that minimizes this loss of
data.

The differences between a benchmark for standard Few-Shot Learning and for Few-Shot Learn-
ing under Support-Query Shift are highlighted in Figure 3.3.

Meta-CIFAR100-Corrupted (MC100-C). CIFAR-100 (Krizhevsky, Hinton, et al. 2009) is a
dataset of 60k three-channel square images of size 32×32, evenly distributed in 100 classes. Classes
are evenly distributed in 20 superclasses. We use the same method used to build CIFAR-100-C
(Hendrycks and Dietterich 2019), which makes use of 19 image perturbations, each one being
applied with 5 different levels of intensity, to evaluate the robustness of a model to domain shift.
We modify their protocol to adapt it to the FSQS problem: (i) we split the classes with respect to
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3.3 FewShiftBed: A PyTorch testbed for FSQS

Figure 3.4: Common perturbations from Hendrycks and Dietterich 2019 applied to a drill image. These
perturbations are used in our benchmarks MC100-C and mIN-C to simulate a large variety of
domains.

the superclass structure, and assign 13 superclasses (65 classes) to the training set, 2 superclasses
(10 classes) to the validation set, and 5 superclasses (25 classes) to the testing set; (ii) we also split
image perturbations (acting as domains), following the split of M. Zhang et al. 2021. We obtain
2,184k transformed images for training, 114k for validation, and 330k for testing.

miniImageNet-Corrupted (mIN-C). miniImageNet (Vinyals et al. 2016) is a popular bench-
mark for few-shot image classification. It contains 60k images from 100 classes from the ImageNet
dataset. 64 classes are assigned to the training set, 16 to the validation set, and 20 to the test set. Like
MC100-C, we build mIN-C using the image perturbations proposed by Hendrycks and Dietterich
2019 to simulate different domains. We use the original split from Vinyals et al. 2016 for classes,
and use the same domain split as for MC100-C. Although the original miniImageNet uses 84×84
images, we use 224× 224 images. This allows us to re-use the perturbation parameters calibrated
in Hendrycks and Dietterich 2019 for ImageNet. Finally, we discard the 5 most time-consuming
perturbations. We obtain a total of 1.2M transformed images for training, 182k for validation,
and 228k for testing. The detailed split for mIN-C, as well as MC100-C, are available in the
documentation of our code repository7.

FEMNIST-FewShot (FEMNIST-FS). EMNIST (Cohen et al. 2017) is a dataset of images of
handwritten digits and uppercase and lowercase characters. Federated-EMNIST (Caldas et al.
2018) is a version of EMNIST where images are sorted by writer (or user). FEMNIST-FS consists
of a split of the FEMNIST dataset adapted to few-shot classification. We separate both users and
classes between training, validation, and test sets. We build each group as the set of images written
by one user. The detailed split is available in the code. Note that in FEMNIST, many users provide
several instances for each digit, but less than two instances for most letters. Therefore it is hard to
find enough samples from a user to build a support set or a query set. As a result, our experiments
are limited to classification tasks with only one sample per class in both the support and query sets.

7https://github.com/ebennequin/meta-domain-shift
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3 Contribution 1: Few-Shot Learning under Support-Query Shift

3.3.2 Protocol

To prevent the pitfall of misinterpreting a performance boost, we draw three recommendations to
isolate the causes of improvement rigorously.

• How important is episodic training? Despite its wide adoption in meta-learning for FSL,
in some situations episodic training does not perform better than more naive approaches
(W.-Y. Chen et al. 2019). Therefore we recommend reporting both the result obtained using
episodic training and standard Empirical Risk Minimization (see the documentation of our
code repository).

• How does the algorithm behave in the absence of Support-Query Shift? In order to as-
sess that an algorithm designed for distribution shift does not provide degraded performance
in an ordinary concept, and to provide a top-performing baseline, we recommend reporting
the model’s performance when we do not observe, at test-time, a support-query shift. Note
that it is equivalent to evaluating the performance in cross-domain generalization, as firstly
described in W.-Y. Chen et al. 2019.

• Is the algorithm transductive? The assumption of transductivity has been responsible
for several improvements in FSL (Bronskill et al. 2020; Ren et al. 2019) while it has been
demonstrated in Bronskill et al. 2020 that MAML (Finn et al. 2017) benefits strongly
from the Transductive Batch-Normalization (TBN). Thus, we recommend specifying if
the method is transductive and adapting the choice of the batch-normalization accordingly
(Conventional Batch Normalization (Ioffe and Szegedy 2015) and Transductive Batch
Normalization for inductive and transductive methods, respectively) since transductive
batch normalization brings a significant boost in performance (Bronskill et al. 2020).

3.4 Transported Prototypes: A baseline for FSQS

3.4.1 Overall idea

We present a novel method that brings UDA to FSQS. As aforementioned, FSQS presents new
challenges since we no longer assume that we sample the support set and the query set from the
same distribution. As a result, it is unlikely that the support set and query sets share the same
representation space region (non-overlap). In particular, the Euclidean distance, adopted in the
celebrated Prototypical Network (Snell et al. 2017), may not be relevant for measuring similarity
between query and support instances, as presented in Figure 3.1. To overcome this issue, we develop
a two-phase approach that combines Optimal Transport (Transportation Phase) and the celebrated
Prototypical Network (Prototype Phase). We give some background about Optimal Transport
(OT) in Section 3.4.2 and the whole procedure is presented in Algorithm 1.

3.4.2 Background onOptimal Transport

Definition. We provide some basics about Optimal Transport (OT). A thorough presentation
of OT is available at Peyré et al. 2019. Let ps and pt be two distributions onX , we note Π(ps, pt)
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Figure 3.5: Overview of Transported Prototypes. (1) A support set and a query set are fed to a trained backbone
that embeds images into a feature space. (2) Due to the shift between distributions, support, and
query instances are embedded in non-overlapping areas. (3) We compute the Optimal Transport
from support instances to query instances to build the transported support set. Note that we
represent the transport plan only for one instance per class to preserve clarity in the schema. (4)
Provided with the transported support, we apply the Prototypical Network (Snell et al. 2017)
i.e.,L2 similarity between transported support and query instances.

the set of joint probability with marginal ps and pt i.e., ∀π ∈ Π(ps, pt),∀x ∈ X , π(·,x) = ps
and π(x, ·) = pt. The Optimal Transport, associated to cost c, between ps and pt is defined as:

Wc(ps, pt) := min
π∈Π(ps,pt)

E(xs,xt)∼π[c(xs,xt)] (3.1)

with c(·, ·) any metric. We note π⋆(ps, pt) the joint distribution that achieves the minimum in
equation 3.1. It is named the transportation plan from ps to pt. When there is no confusion, we sim-
ply note π⋆. For our applications, we will use as metric the Euclidean distance in the representation
spaceZ obtained from a representation ϕθ i.e., cθ(xs,xt) := ∥ϕθ(xs)− ϕθ(xt)∥2.

Discrete OT. When ps and pt are only accessible through a finite set of samples, respectively
(xs

1, ...,x
s
|S|) and (xt

1, ...,x
t
|Q|) we introduce the empirical distributions

p̂s :=

|S|∑
i=1

ws
i δxs

i

p̂t :=

|Q|∑
j=1

wt
jδxt

j
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3 Contribution 1: Few-Shot Learning under Support-Query Shift

Algorithm 1 Transported Prototypes. Blue lines highlight the OT’s contribution in the computa-
tional graph of an episode compared to the standard Prototypical Network (Snell et al. 2017).
Input: Support set S := (xs

i , y
s
i )1≤i≤|S|, query set Q := (xq

j , y
q
j )1≤j≤|Q|, classes C, backbone

ϕθ .
Output: LossL(θ) for a randomly sampled episode.

1: zs
i , z

q
j ← ϕθ(x

s
i ), ϕθ(x

q
j), ∀i, j ▷Get representations.

2: Cθ(i, j)←
∥∥∥zs

i − zq
j

∥∥∥2, ∀i, j ▷Cost-matrix.
3: π⋆

θ ← Solve Equation 3.2 ▷Transportation plan.
4: π̂⋆

θ(i, j)← π⋆
θ(i, j)/

∑
j π

⋆
θ(i, j), ∀i, j ▷Normalization.

5: ŜZ = (ẑs
i )i ←Given by Equation 3.4 ▷Get transported support set.

6: µ̂k ← 1
|ŜZk |

∑
ẑs∈ŜZk

ẑs, for k ∈ C. ▷Get transported prototypes.

7: pq
j ← From Equation 3.6, ∀j ≤ |Q|

8: Return: L(θ) := − 1
|Q|
∑|Q|

i=1

∑K
k=1 y

q
ik log(p

q
ik).

wherews
i (resp. wt

j) is the mass probability put in sample xs
i (resp. xt

j) i.e.,
∑|S|

i=1w
s
i = 1 (resp.∑|Q|

j=1w
t
j = 1) and δx is the Dirac distribution in x. The discrete version of the OT is derived by

introducing the set of couplings

Π(ps, pt) :=
{
π ∈ R|S|×|Q||π1|S| = ps,π

⊤1|Q| = pt

}
where ps := (ws

1, · · · , ws
|S|), pt := (wt

1, · · · , wt
|Q|), and 1|S| (respectively 1|Q|) is the unit

vector with dimension |S| (respectively |Q|). The discrete transportation plan π⋆
θ is then defined

as:
π⋆
θ := argmin

π∈Π(ps,pt)
⟨π,Cθ⟩F (3.2)

where Cθ(i, j) := cθ(x
s
i ,x

t
j) and ⟨·, ·⟩F is the Frobenius dot product. Note that π⋆

θ depends
on both ps and pt, and θ since Cθ depends on θ. In practice, we use Entropic regularization
(Cuturi 2013) that makes OT easier to solve by promoting a smoother transportation plan with a
computationally efficient algorithm, based on Sinkhorn-Knopp’s scaling matrix approach (Knight
2008). It is defined as

π⋆
θ(p̂s, p̂t) := arg min

π∈Π
⟨π,Cθ⟩F + εH(π) (3.3)

with ε > 0 andH(π) =∑|S|,|Q|
i,j=1 π(i, j) logπ(i, j) is the negative entropy. In our experiments,

we set ε = 0.05.

3.4.3 Method

Transportation Phase. At each episode, we are provided with a source support set S and
a target query set Q. We work on top of extracted features i.e., z = ϕθ(x). We note SZ ⊂ Z
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(resp. QZ ⊂ Z) the set of representations extracted from instances in S (resp. Q). As these two
sets are sampled from different distributions, SZ and QZ are likely to lie in different regions of
the representation spaceZ . In order to adapt the source support set S to the target domain Υt,
which is only represented by the target query set Q, we follow Courty, Flamary, Tuia, et al. 2016 to
compute ŜZ the barycenter mapping of SZ , that we refer to as the transported support set, defined
as follows:

ŜZ := π̂⋆
θQZ (3.4)

where π⋆
θ is the transportation plan from SZ to QZ and π̂⋆

θ(i, j) := π⋆
θ(i, j)/

∑|Q|
j=1 π

⋆
θ(i, j).

The transported support set ŜZ estimates labeled examples in the target domain using labeled
examples in the source domain. The success relies on the fact that transportation preserves labels,
i.e., a query instance close to ẑs ∈ ŜZ should share the same label with xs, where ẑs is the
barycenter mapping of zs = ϕθ(x

s) ∈ SZ . See step (3) of Figure 3.5 for a visualization of the
transportation phase.

Prototype Phase. For each class k ∈ C, we compute the transported prototypes

µ̂k :=
1

|ŜZk |
∑

ẑs∈ŜZk

ẑs (3.5)

(where ŜZk = {(ẑ, y) ∈ ŜZ | y = k} is the subset of the transported support set composed of
instances with label k ∈ C and C are classes of the current task). We classify each query xq

j with
representation zq

j = ϕθ(x
q
j) using its euclidean distance to each transported prototypes:

pqjk = P(yqj = k|xq
j) ∝ exp

(
−
∥∥∥zqj − µ̂k

∥∥∥2
2

)
(3.6)

Crucially, the standard Prototypical Networks (Snell et al. 2017) computes Euclidean distance to
each prototype while we compute the Euclidean to each transported prototype, as presented in
step (4) of Figure 3.5. Note that our formulation involves the query set in the computation of
(µ̂k)k∈C, which means that our method is transductive.

Genericity of OT. FewShiftBed implements OT as a stand-alone module that can be easily
plugged into any FSL algorithm. We report additional baselines in Appendix 7.3 where other
FSL algorithms are equipped with OT. This technical choice reflects our insight that OT may be
ubiquitous for addressing FSQS and makes its usage in the testbed straightforward.

3.5 Experiments

8 Snell et al. 2017.
9 Vinyals et al. 2016.

10 Y. Liu et al. 2019.
11 Dhillon et al. 2020.
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Strategy Meta-CIFAR100-C miniImageNet-C FEMNIST-FS

1-shot 5-shot 1-shot 5-shot 1-shot

ProtoNet8 30.02± 0.40 42.77± 0.47 36.37± 0.50 47.58± 0.57 84.31± 0.73
MatchingNet9 30.71± 0.38 41.15± 0.45 35.26± 0.50 44.75± 0.55 84.25± 0.71

TransPropNet†10
34.15 ± 0.39 47.39± 0.42 24.10± 0.27 27.24± 0.33 86.42± 0.76

FTNet†11 28.91± 0.37 37.28± 0.40 39.02± 0.46 51.27± 0.45 86.13± 0.71
TP† (ours) 34.00 ± 0.46 49.71 ± 0.47 40.49 ± 0.54 59.85 ± 0.49 93.63 ± 0.63

TP w/o OT † 32.47± 0.41 48.00± 0.44 40.43± 0.49 53.71± 0.50 90.36± 0.58
TP w/o TBN † 33.74± 0.46 49.18± 0.49 37.32± 0.55 55.16± 0.54 92.31± 0.73
TP w. OT-TT † 32.81± 0.46 48.62± 0.48 44.77 ± 0.57 60.46 ± 0.49 94.92 ± 0.55

TP w/o ET † 35.94 ± 0.45 48.66± 0.46 42.46± 0.53 54.67± 0.48 94.22± 0.70

TP w/o SQS † 85.67± 0.26 88.52± 0.17 64.27± 0.39 75.22± 0.30 99.72± 0.07

Table 3.2: Top-1 accuracy of few-shot learning models in various datasets and numbers of shots with 8
instances per class in the query set (except for FEMNIST-FS: 1 instance per class in the query set),
with 95% confidence intervals. The top half of the table is a comparison between existing few-shot
learning methods and Transported Prototypes (TP). The bottom half is an ablation study of
TP. OT denotes Optimal Transport, TBN is Transductive Batch-Normalization, OT-TT refers
to the setting where Optimal Transport is applied at test time but not during episodic training,
and ET means episodic training i.e., w/o ET refers to the setting where training is performed
through standard Empirical Risk Minimization. TP w/o SQS reports the model’s performance
in the absence of support-query shift. † flags if the method is transductive. For each setting, the
best accuracy among existing methods is shown in bold, as well as the accuracy of an ablation if it
improves TP.

We compare the performance of baseline algorithms with Transported Prototypes on various datasets
and settings. We also offer an ablation study in order to isolate the source to the success of Trans-
ported Prototypes. Extensive results are detailed in Appendix 7.3. Instructions to reproduce these
results can be found in the code’s documentation.

Setting and details. We conduct experiments on all methods and datasets implemented in
FewShiftBed. We use a standard 4-layer convolutional network for our experiments on Meta-
CIFAR100-C and FEMNIST-FewShot, and a ResNet18 for our experiments on miniImageNet.
Transductive methods are equipped with a Transductive Batch-Normalization. All episodic train-
ing runs contain 40k episodes, after which we retrieve the model state with the best validation
accuracy. We run each individual experiment on three different random seeds. All results presented
in this paper are the average accuracies obtained with these random seeds.

Analysis. The top half of Table 3.2 reveals that Transported Prototypes (TP) outperform all
baselines by a strong margin on all datasets and settings. Importantly, baselines perform poorly on
FSQS, demonstrating they are not equipped to address this challenging problem, stressing our
study’s significance. It is also interesting to note that the performance of transductive approaches,
which is significantly better in a standard FSL setting (Dhillon et al. 2020; Y. Liu et al. 2019), is
here similar to inductive methods (notably, TransPropNet (Y. Liu et al. 2019) fails loudly without

40



3.5 Experiments

Meta-CIFAR100-C miniImageNet-C FEMNIST-FS

Training 1-shot 5-shot 1-shot 5-shot 1-shot

TP Standard ERM 36.17± 0.47 50.45± 0.47 45.41± 0.54 57.82± 0.48 93.60± 0.68
MAP Standard ERM 35.96± 0.44 49.55± 0.45 43.51± 0.47 56.10± 0.43 92.86± 0.67

TP Episodic 32.13± 0.45 46.19± 0.47 45.77± 0.58 59.91± 0.48 94.92± 0.56
MAP Episodic 32.38± 0.41 45.96± 0.43 43.81± 0.47 57.70± 0.43 87.15± 0.66

Table 3.3: Top-1 accuracy with 8 instances per class in the query set when applying Transported Prototypes
and MAP with or without episodic training. Transported Prototypes perform equally or better
than MAP (Hu et al. 2021). Here TP includes power transform in the feature space.

Transductive Batch-Normalization showing that propagating label with non-overlapping sup-
port/query can have a dramatic impact, see Appendix 7.3). Thus, FSQS deserves a fresher look
to be solved. Transported Prototypes mitigate a significant part of the performance drop caused
by support-query shift while benefiting from the simplicity of combining a popular FSL method
with a time-tested UDA method. This gives us strong hopes for future works in this direction.

Ablation study. Transported Prototypes (TP) combine three components: Optimal Trans-
port (OT), Transductive Batch-Normalization (TBN), and episode training (ET). Which of these
components are responsible for the observed gain? Following recommendations from Section
3.3.2, we ablate those components in the bottom half of Table 3.2. We observe that both OT and
TBN individually improve the performance of ProtoNet for FSQS and that the best results are
obtained when the two of them are combined. Importantly, OT without TBN performs better
than TBN without OT (except for 1-shot mIN-C), demonstrating the superiority of OT compared
to TBN for aligning distributions in the few samples regime. Note that the use of TaskNorm
(Bronskill et al. 2020) is beyond the scope of the paper12; we encourage future work to dig into
that direction and we refer the reader to the very recent work Du et al. 2021. We observe that there
is no clear evidence that using OT at train time is better than simply applying it at test time on a
ProtoNet trained without OT. Additionally, the value of Episodic Training (ET) compared to
standard Empirical Risk Minimization (ERM) is not obvious. For instance, simply training with
ERM and applying TP at test time is better than adding ET on 1-shot MC100-C, 1-shot mIN-C,
and FEMNIST-FS, making it another element to add to the study from Laenen and Bertinetto
2021 who put into question the value of ET. Understanding why and when we should use ET
or only OT at test time is interesting for future works. Additionally, we compare TP with MAP
(Hu et al. 2021) which implements an OT-based approach for transductive FSL. Their approach
includes a power transform to reduce the skew in the distribution, so for fair comparison, we
also implemented it into Transported Prototypes for these experiments13. We also used the OT
module only at test time and compared with two backbones, respectively trained with ET and
ERM. Interestingly, our experiments in Table 3.3 show that MAP is able to handle SQS. Finally, in
order to evaluate the performance drop related to Support-Query Shift compared to a setting with
support and query instances sampled from the same distribution, we test Transported Prototypes

12These normalizations are implemented in FewShiftBed for future works.
13Therefore results in Table 3.3 differ from results in Table 3.2.

41



3 Contribution 1: Few-Shot Learning under Support-Query Shift

on few-shot classification tasks without SQS (TP w/o SQS in Table 3.2), making a setup equivalent
to CDFSL. Note that in both cases, the model is trained in an episodic fashion on tasks presenting
a Support-Query Shift. These results show that SQS presents a significantly harder challenge than
CDFSL, while there is considerable room for improvement.

3.6 Conclusion

We release FewShiftBed, a testbed for the under-investigated and crucial problem of Few-Shot
Learning when the support and query sets are sampled from related but different distributions,
named FSQS. FewShiftBed includes three datasets, relevant baselines, and a protocol for repro-
ducible research. Inspired by the recent progress of Optimal Transport (OT) to address Unsuper-
vised Domain Adaptation, we propose a method that efficiently combines OT with the celebrated
Prototypical Network (Snell et al. 2017). Following the protocol of FewShiftBed, we bring
compelling experiments demonstrating the advantage of our proposal compared to transductive
counterparts. We also isolate factors responsible for improvements. Our findings suggest that
Batch-Normalization is ubiquitous, as described in related works Bronskill et al. 2020; Du et al.
2021, while episodic training, even if promising on paper, is questionable.

Perspectives. As a lead for future works, FewShiftBed could be improved by using different
datasets to model different domains, instead of using artificial transformations. Since we are talking
about domain adaptation, we also encourage the study of accuracy as a function of the size of the
target domain, i.e., the size of the query set. Moving beyond the transductive algorithm, as well as
understanding when meta-learning brings a clear advantage to address FSQS remains an open and
exciting problem. FewShiftBed brings the first step towards its progress.

Where are they now? Following the original publication of this work in 2021, several works
addressed our proposed FSQS problem. Du et al. 2021 predict relevant batch statistics by applying
a multi-layer perceptron at each batch normalization. Our call for moving beyond transductive
methods was heard by Aimen et al. 2023 who propose to use adversarial projections to solve
inductive Support-Query Shift. Finally, S. Jiang et al. 2022 improve on our proposed Transported
Prototypes approach to make it more robust to small perturbations in images.
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4 Contribution 2: Transductive Few-Shot
Open-Set Recognition

This chapter is an aggregation of two closely linked works, delivered in equal contribution with
Malik Boudiaf from the LIVIA laboratory:

1. Model-Agnostic Few-Shot Open-Set Recognition, by Malik Boudiaf, Etienne Bennequin,
Myriam Tami, Celine Hudelot, Antoine Toubhans, Pablo Piantanida, and Ismail Ben Ayed
(Boudiaf, Bennequin, Tami, Hudelot, et al. 2022), made available as an arxiv Preprint;

2. Open-Set Likelihood Maximization for Few-Shot Learning, by Malik Boudiaf, Etienne
Bennequin, Myriam Tami, Celine Hudelot, Antoine Toubhans, Pablo Piantanida, and
Ismail Ben Ayed (Boudiaf, Bennequin, Tami, Toubhans, et al. 2023), published in CVPR
2023.

These two works are motivated by common observations on the necessity of an open-set trans-
ductive method for Few-Shot Learning and the desirable features of such a method. However,
each one proposed a different solution to the problem.

4.1 Introduction

Most few-shot methods listed in Section 2.2.2 classify the unlabeled query samples of a given task
based on their similarity to the support instances in the feature space. This implicitly assumes a
closed-set setting for each task, i.e. query instances are supposed to be constrained to the set of classes
explicitly defined by the support set, as described in Section 2.2.1. However, the real world is open
and this closed-set assumption may not hold in practice, especially for limited support sets. In fact,
two of the real use cases described in Section 1.2 (i.e., e-shopping and bacteria recognition) involve
open-set instances i.e., query instances which belong to none of the support classes. A closed-set
classifier will falsely label these open-set instances as the closest known class.

This drove the research community toward open-set recognition i.e., recognizing instances with
the awareness that they may belong to unknown classes, as described in Section 2.4.2. In large-scale
settings, the literature abounds of methods designed specifically to detect open-set instances while
maintaining good accuracy on closed-set instances (Bendale and Boult 2016; Scheirer et al. 2012;
Zhou et al. 2021). However, recent studies of the Few-Shot Open-Set Recognition (FSOSR)
setting (S. Huang et al. 2022; Jeong et al. 2021; B. Liu et al. 2020) expose it to be a difficult task in
the inductive setting. Indeed, their reported results, which we reproduced and expose in Table 4.2,
indicate that sophisticated inductive methods specialized for FSOSR do not show any improvement
with respect to simple baselines such as k nearest neighbors (Ramaswamy et al. 2000). In Section
4.2, we explore potential causes for the specific difficulty of FSOSR.
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4 Contribution 2: Transductive Few-Shot Open-Set Recognition

To help alleviate the scarcity of labeled data, transduction (Vapnik 2013) was recently explored
for few-shot classification (Y. Liu et al. 2019), and has since become a prominent research direction,
fueling a large body of works described in Section 2.2.3. In this chapter, we seek to explore
transduction for the FSOSR setting. We argue that theoretically, transduction has the potential to
enable both classification and outlier detection (OD) modules to act symbiotically. Indeed, the
classification module can reveal valuable structure of the inlier’s marginal distribution that the OD
module seeks to estimate, such as the number of modes or conditional distributions, while the OD
part indicates the “usability” of each unlabelled sample. However, transductive principles currently
adopted for few-shot learning heavily rely on the closed-set assumption in the unlabelled data,
leading them to match the classification confidence for open-set instances with that of closed-set
instances. In the presence of outliers, this not only harms their predictive performance on closed-set
instances, but also makes prediction-based outlier detection substantially harder than with simple
inductive baselines.

In this chapter, we propose two simple yet powerful methods to reconcile transduction with
the open nature of the FSOSR problem. Both methods are fully model-agnostic, in the sense that
they can be applied on top of any pre-trained model seamlessly. We argue that this is an important
feature for a few-shot method, because 1) such a method can be seamlessly integrated into an
existing pipeline without the need to re-train the model; 2) it can scale up to the latest and most
significant advances in representation learning (e.g., ViTs or self-supervised learning) without any
additional effort; and 3) the difficult reproduction of episodic training has been shown to be an
obstacle to the fair comparison between methods (Antoniou, Edwards, et al. 2019; Bennequin
2019), while this is not an issue when comparing methods using the same trained parameters.

Open-Set Transductive InformationMaximization (Ostim). Our diagnostic of the
InfoMax principle at the core of the TIM method (Boudiaf, Ziko, et al. 2020) indicates that
this state-of-the-art transductive method tends to enforce confident predictions for all samples,
regardless of whether they are closed-set or open-set. We, therefore, propose a modification to the
original method using an additional outlier prototypes. This additional prototype allows predictions
to be confident towards a new implicitly defined outlier class. We name this simple method Open-
Set Transductive Information Maximization (Ostim).

Open-Set Likelihood Optimization (Oslo). Instead of finding heuristics to assess the
outlierness of each unlabelled query sample, we treat this score as a latent variable of the problem.
Based on this idea, we propose a generalization of the maximum likelihood principle, in which
the introduced latent scores weigh potential outliers down, thereby preventing the parametric
model from fitting those samples. Our generalization embeds additional supervision constraints
from the support set and penalties discouraging overconfident predictions. We proceed with
a block-coordinate descent optimization of our objective, with the closed-set soft assignments,
outlierness scores, and parametric models co-optimized alternately, thereby benefiting from each
other. We call our resulting formulation Open-Set Likelihood Optimization (Oslo). Oslo provides
highly interpretable and closed-form solutions within each iteration for both the soft assignments,
outlierness variables, and the parametric model.

Empirically, we show that both methods significantly surpass their inductive and transductive
competitors alike for both outlier detection and closed-set prediction. Applied on a wide variety of
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4.2 Few-Shot Open-Set Recognition

architectures and training strategies and without any re-optimization of their parameters, Ostim
and Oslo’s improvements over a strong baseline remain large and consistent. This modularity
allows our methods to fully benefit from the latest advances in standard image recognition.

Chapter’s Contributions

1. We expose the specific difficulty of the FSOSR problem when using off-the-shelf pre-
trained models, on a wide range of benchmarks and architectures, using our novel
Mean Imposture Factor metric which measures how much the classes’ distributions
in a dataset are perturbed by instances from other classes.

2. To the best of our knowledge, we realize the first study and benchmarking of trans-
ductive methods for the Few-Shot Open-Set Recognition setting. We reproduce
and benchmark five state-of-the-art transductive methods.

3. We introduce Open-Set Transductive Information Maximization (Ostim), an in-
tuitive modification of the TIM method that provides an additional prototype for
outliers.

4. We introduce Open-Set Likelihood Optimization (Oslo), a principled extension
of the Maximum Likelihood framework that explicitly models and handles the
presence of outliers. Ostim and Oslo are interpretable and modular i.e., can be
applied on top of any pre-trained model seamlessly.

5. Through extensive experiments spanning five datasets and a dozen of pre-trained
models, we show that our methods consistently surpass both inductive and exist-
ing transductive methods in detecting open-set instances while competing with
the strongest transductive methods in classifying closed-set instances. Our empiri-
cal studies include long-overdue experiments on the performance of transductive
methods with various sizes and shapes of the query set.

4.2 Few-Shot Open-Set Recognition

Setup and formalization. The standard Few-Shot Classification task described in Section
2.2.1 is under the closed-set assumption, which means that the unknown ground-truth query labels
{yqi }i=1...|Q| are assumed to be restricted to closed-set classes i.e., ∀i, yqi ∈ CCS with CCS = C is
the set of classes represented in the support set S. In FSOSR, however, query labels may also belong
to an additional set COS of open-set classes i.e., ∀i, yqi ∈ CCS ∪ COS with CCS ∩ COS = ∅. For
easy referencing, we refer to query samples from the closed-set classes CCS as inliers and to query
samples from open-set classes COS as outliers. For each query image xq

i , the goal of FSOSR is to
simultaneously assign a closed-set prediction pqik = P(yqi = k|xq

i ), k ∈ CCS and an outlierness
scoreP(yqi ̸∈ CCS|xq

i ).

Measuring the difficulty of outlier detection on novel classes. As an anomaly
detection problem, open-set recognition consists in detecting samples that differ from the popula-
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4 Contribution 2: Transductive Few-Shot Open-Set Recognition

Figure 4.1: 2-dimensional reduction with T-SNE of feature extracted from ImageNet’s validation set us-
ing a ResNet12 trained on miniImageNet. (Left): images from 20 randomly selected classes
represented in miniImageNet’s base set. (Right): Images from the 20 classes represented in
miniImageNet’s test set. Each color corresponds to a distinct class.

tion that is known by the classification model. However, in FSOSR, neither closed-set classes nor
open-set classes have been seen during the training of the feature extractor i.e.,

Cbase ∩ CCS = Cbase ∩ COS = ∅

In that sense, both the inliers and the outliers of our problem can be considered outliers from the
perspective of the feature extractor. Intuitively, this makes it harder to detect open-set instances,
since the model doesn’t know well the distribution from which they are supposed to diverge.
Here we empirically demonstrate and quantify the difficulty of OSR in a setting where closed-set
classes have not been represented in the training set. Specifically, we estimate the gap in terms of
the quality of the classes’ definition in the feature space, between classes that were represented
during the training of the feature extractor i.e., Cbase, and the classes of the test set, which were not
represented in the training set. To do so, we introduce the novel Mean Imposture Factor measure
and use the intra-class to inter-class variance ratio ρ as a complementary measure. Note that the
following study is performed on whole datasets, not few-shot tasks.

Mean Imposture Factor (MIF). LetDϕθ
⊂ Z × C be a labeled dataset of extracted feature

vectors, with ϕθ a fixed feature extractor and C a finite set of classes. For any feature vector z and a
class k to which z does not belong, we define the Imposture Factor IFz|k as the proportion of the
instances of class k inDϕθ

that are further than z from their class centroid µk. Then the MIF is
the average IF over all instances inDϕθ

.

MIF =
1

|C|
∑
k

1

|Dϕθ
\Dk|

∑
z/∈Dk

IFz|k with IFz|k =
1

|Dk|
∑

z′∈Dk

1∥z′−µk∥2>∥z−µk∥2

(4.1)
with Dk the set of instances in Dϕθ

with label k, and 1 the indicator function. The MIF is a
measure of how perturbed the clusters corresponding to the ground truth classes are. A MIF
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4.3 Open-Set Transductive Information Maximization

Table 4.1: Contrast between datasets made of images from classes represented (base) or not represented (test)
in the feature extractor’s training set, on three benchmarks and with several backbones (RN12:
ResNet12, WRN: WideResNet1810, ViT, RN50: ResNet50, and MX: MLP-Mixer), following
the MIF (in percents) and the variance ratio (ρ). Best result for each column is shown in bold.

Classes
miniImageNet tieredImageNet ImageNet→Aircraft

ρ MIF (%) ρ MIF (%) ρ MIF (%)

RN12 WRN RN12 WRN RN12 WRN RN12 WRN ViT RN50 MX ViT RN50 MX

base 0.93 0.84 0.89 1.03 1.09 0.78 0.78 0.81 0.96 1.36 2.54 0.09 0.29 0.31

test 2.10 2.07 5.56 7.36 2.10 1.54 4.39 5.18 3.20 4.88 5.35 18.08 21.58 17.27

of zero means that all instances are closer to their class centroid than any outsider. Note that
MIF = 1 − AUROC(ψ) where AUROC(ψ) is the area under the ROC curve for an outlier
detector ψ that would assign to each instance an outlier score equal to the distance to the ground
truth class centroid. To the best of our knowledge, the MIF is the first tool allowing the measure
of the class-wise integrity of a projection in the feature space. As a sanity check for MIF, we also
report the intra-class to inter-class variance ratio ρ, used in the previous work Goldblum, Reich,
et al. 2020, to measure the compactness of a clustering solution.

Base classes are better defined than test classes. We experiment on three widely
used Few-Shot Learning benchmarks: miniImageNet (Vinyals et al. 2016), tieredImageNet (Ren
et al. 2019), and ImageNet→Aircraft (Maji et al. 2013). We use the validation set of ImageNet in
order to obtain novel instances for ImageNet, miniImageNet, and tieredImageNet’s base classes.
We also use it for test classes for consistency. In Figure 4.1, we present a visualization of the ability of
a ResNet12 trained on miniImageNet to project images of both base and test classes into clusters.
While we are able to obtain well-separated clusters for base classes after the 2-dimensional T-SNE
reduction, this is clearly not the case for test classes, which are more scattered and overlapping.
Such results are quantitatively corroborated by Table 4.1, which shows that both MIF and ρ are
systematically lower for base classes across 3 benchmarks and 5 feature extractors. This demonstrates
the difficulty of defining in the feature space the distribution of a class that was not seen during the
training of the feature extractor, and therefore the difficulty of defining clear boundaries between
inliers and outliers i.e., closed-set images and open-set images, all the more when only a few samples
are available.

4.3 Open-Set Transductive InformationMaximization

As a growing part of the Few-Shot literature, Transductive Few-Shot Learning assumes that un-
labelled samples from the query set are observed at once, such that the structure of unlabelled
data can be leveraged to help constrain ambiguous few-shot tasks. In practice, transductive meth-
ods have achieved impressive improvements over inductive methods in standard closed-set FSC
(Boudiaf, Ziko, et al. 2020; Dhillon et al. 2020; Hu et al. 2021; Ziko et al. 2020). Considering
the difficulty posed by the FSOSR problem, detailed in Section 4.2, we expect that transductive
methods can help us improve outlier detection while still achieving super-inductive closed-set
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4 Contribution 2: Transductive Few-Shot Open-Set Recognition
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Figure 4.2: Closed v.s. Open-Set InfoMax. (Left) Minimizing closed-set entropy (Boudiaf, Ziko, et al.
2020) on all samples degrades prediction-based outlier detection. (Right) Ostim tends to bin
outliers in a (K + 1)th category. Therefore, their open-set conditional entropy in Eq. (4.4)
decreases while their closed-set entropy increases.

predictive performance. Unfortunately, we empirically show in Sec. 4.5 that significant accuracy
gains systematically come along with significant outlier detection degradation.

Diagnosing the InfoMax transduction. Among the 5 transductive methods evaluated,
we find TIM (Boudiaf, Ziko, et al. 2020) offers the best trade-off between performances in closed-
set classification and outlier detection, although the latter still falls far below inductive alternatives.
Indeed, as part of the InfoMax principle, TIM (Boudiaf, Ziko, et al. 2020) systematically enforces
confident predictions on each query sample through conditional entropy minimization, whether
this sample is an outlier or not. To make things worse, outliers’ initial predictions typically fall in the
region of the simplex where the magnitude of entropy’s gradients is the highest (Veilleux et al. 2021),
meaning the model prioritizes minimizing the entropy of outliers over inliers. Altogether, those
ingredients lead to a degradation of the discriminability between inliers’ and outliers’ predictions
during inference. This situation is depicted in the left plot of Fig. 4.2, where we observe the
entropy histogram of outliers (purple) shifting significantly towards the left (low-entropy) after
inference. Following these observations, we seek to instantiate the InfoMax principle in a way that
simultaneously benefits closed-set predictive performance and outlier detection.

IntroducingOSTIM. To help remediate the issue, we propose a simple yet highly effective
modification to the original closed-set TIM (Boudiaf, Ziko, et al. 2020) method, that retains
TIM’s high closed-set accuracy while drastically improving outlier detection. Importantly, it does
not introduce any computational overhead or tunable hyperparameter. Relaxing the closed-set
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4.3 Open-Set Transductive Information Maximization

 Unit sphere
 Support set
 Query inliers
 Query outliers

 Outlier prototype

Normalized instance

Figure 4.3: Geometric intuition behind Ostim. The CE term encourages colored arrows to align with
support samples, while Iα encourages grey arrows to either align with a colored arrow (inlier
prototypes) or with the black arrow (outlier prototype).

assumption, we consider aK + 1-way classification problem, where the added class represents the
broad outlier category. We observe in Sec. 4.5.2 that introducing additional learnable parameters,
e.g. a new prototype as in Zhou et al. 2021 to represent the outlier class in such low-data regimes
yields poor performances. Consequently, we propose an implicit definition of the outlier class that
reuses existing parameters and remains differentiable. We name our method Ostim for Open Set
Transductive Information Maximization.

Implicit outlier prototype. As part of the model-agnostic setting, we abstract the base
model and work directly on top of extracted features z = ϕθ(x) with θ considered frozen.
Additionally, we center-normalize all features and prototypes such that all operations are performed
on the unit sphere. This choice of center-normalization is developed in Section 4.5. We define the
similarity lik between a sample zi and a class prototype µk as their dot product:

lik = ⟨zi, µk⟩ (4.2)

We now define the outlier logit as the negative average of inliers class logits (withK the number of
classes):

li,K+1 = −
1

K

K∑
k=1

lik = ⟨zi, − 1

K

K∑
k=1

µk︸ ︷︷ ︸
implicit outlier prototype

⟩. (4.3)

The outlier logit can be interpreted as the similarity between some point and an outlier prototype
corresponding to the diametrical opposite of the average of inlier prototypes. To clarify this intu-
ition, a geometrical description of the problem is provided in Figure 4.3. For a center-normalized
query point represented by a gray arrow, inlier logits {lk}Kk=1 correspond to measuring the an-
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4 Contribution 2: Transductive Few-Shot Open-Set Recognition

gles between respective colored arrows and the gray arrow, while lK+1 measures the similarity
with the black arrow. The concatenation of inlier logits and the outlier logit forms the final logit
vector li = [li1, . . . , li,K+1]

T , which is translated into a probability vector pi over the K + 1
outcomes through a standard softmax operation. The first K components of this probability
vector {pik}Kk=1 are used for closed-set classification, while the last pi,K+1 is used as the outlierness
score.

Prototype refinement. The prototypes {µk}Kk=1 are initialized as the class-centroids us-
ing labeled samples from S, and further refined by minimizing an open-set version of TIM’s
transductive loss:

min
µ

CE− Îα with CE := − 1

|S|

|S|∑
i=1

K+1∑
k=1

ysik log(p
s
ik),

−Îα :=

K+1∑
k=1

p̂k log p̂k︸ ︷︷ ︸
marginal entropy

prevents trivial solutions

− α

|Q|

|Q|∑
i=1

K+1∑
k=1

pqik log(p
q
ik),︸ ︷︷ ︸

conditional entropy
forces query samples into

inlier category or outlier group

(4.4)

where ysik = 1[ysi = k], k ∈ [1,K] is a one-hot encoded version of the ground-truth label,
complemented with a last outlier component ysi,K+1 = 0, and p̂k = 1

|Q|
∑

i p
q
ik denotes the

marginal prediction for class k. Following Boudiaf, Ziko, et al. 2020, α ∈ R is found through
validation. Note that unlike in the standard TIM, the introduction of an additional (K + 1)th

class, represented by the implicit prototype, makes it possible to minimize the entropy of all samples
without losing discriminability between inliers and outliers. In other words, outliers can simply
be predicted in the (K + 1)th category with high confidence, and inliers in their associated inlier
category. As a matter of fact, Fig. 4.2 shows that inliers’ closed-set entropy decreases, indicating
that they tend to get closer to some inlier prototype, while outliers’ closed-set entropy increases,
indicating that they are on average moving away from their closest inlier prototype. We emphasize
that closed-set entropy is simply used for diagnosis, and neither corresponds to the outlierness
score used by TIM (Boudiaf, Ziko, et al. 2020) nor Ostim in Sec. 4.5.

4.4 Open-Set Likelihood

In Section 4.3, we introduced Ostim i.e., a first method to address Few-Shot Open-Set Recogni-
tion in a transductive fashion, by leveraging an implicit outlier prototype to mitigate the closed-set
bias of standard transductive methods. In this section, we go one step further we introduce Oslo,
a novel extension of the standard likelihood designed for transductive FSOSR. Unlike existing
transductive methods including Ostim, Oslo explicitly models and handles the potential pres-
ence of outliers, which allows it to outperform inductive baselines on both aspects of the open-set
scenario.
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4.4 Open-Set Likelihood

Standard Likelihood OSLO
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⇠

Figure 4.4: Intuition behind Oslo. Standard transductive likelihood (left) tries to enforce high likelihood
for all points, including outliers. Oslo (right) instead treats the outlierness of each sample
as a latent variable to be solved alongside the parametric model. Besides yielding a principled
outlierness score for open-set detection, it also allows the fitted parametric model to effectively
disregard samples deemed outliers, and therefore provide a better approximation of underlying
class-conditional distributions.

Observed variables. We start by establishing the observed variables of the problem. As per
the traditional setting, we observe images from the support set {xi}|S|i=1 and their associated labels
{yi}|S|i=1. The transductive setting also allows us to observe images from the query set. For notation
convenience, we concatenate all images in X = {xi}|S|+|Q|

i=1 .

Latent variables. Our goal is to predict the class of each sample in the query set Q, as well
as their inlierness, i.e. the model’s belief in a sample being an inlier or not. This naturally leads
us to consider latent class assignments ζi ∈ ∆K describing the membership of sample i to each
closed-set class1, with∆K = {ζ ∈ [0, 1]K : ζT1 = 1} theK-dimensional simplex. Additionally,
we consider latent inlierness scores ξi ∈ [0, 1] close to 1 if the model considers sample i as an inlier.
For notation convenience, we consider latent assignments and inlierness scores for all samples,
including those from the support, and group everything in ζ = {ζi}|S|+|Q|

i=1 and ξ = {ξi}|S|+|Q|
i=1 .

Note that support samples are inliers, and we know their class. Therefore ∀i ≤ |S|, the constraints
ζi = yi and ξi = 1 will be imposed, where yi is the one-hot encoded version of yi

Parametricmodel. The final ingredient we need to formulate is a parametric joint model over
observed features and assignments. Following standard practice, we model the joint distribution
as a balanced mixture of standard Gaussian distributions, parameterized by the centroids µ =
{µ1, . . . ,µK}:

p(x, k;µ) = p(k)p(x|k) ∝ exp(−∥ϕθ(x)− µk∥2
2

) (4.5)

As mentioned in section 4.2, the feature extractor’s parameters θ are kept frozen, and only µ will
be optimized.

1In the original paper, latent class assignments are noted z. Here we changed the notation to ζ to avoid any conflict
with the notation of feature vectors.
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Objective. Using the i.i.d. assumption, we start by writing the standard likelihood objective:

p(X, ζ;µ) =

|S|+|Q|∏
i=1

K∏
k=1

p(xi, k;µ)
ζik (4.6)

Without loss of generality, we consider the log-likelihood:

log(p(X, ζ;µ)) =

|S|+|Q|∑
i=1

K∑
k=1

ζik log(p(xi, k;µ)) (4.7)

Eq. (4.7) tries to enforce a high likelihood of all samples under our parametric model p. This
becomes sub-optimal in the presence of outliers, which should ideally be disregarded. Figure 4.4
illustrates this phenomenon on a toy 2D drawing. To downplay this issue, we introduce Open-Set
Likelihood Optimization (Oslo), a generalization of the standard likelihood framework, which
leverages latent inlierness scores to weigh samples:

LO(X, ζ, ξ;µ) =

|S|+|Q|∑
i=1

ξi

K∑
k=1

ζik log(p(xi, k;µ)) (4.8)

Eq (4.8) can be interpreted as follows: samples believed to be inliers i.e., ξi ≈ 1 will be required to
have high likelihood under our model p, whereas outliers won’t. Note that ξ is treated as a variable
of optimization, and is co-optimized alongside µ and ζ. Finally, to prevent overconfident latent
scores, we consider a penalty term on both ζ and ξ:

Lsoft =

|S|+|Q|∑
i=|S|+1

λzH(ζi) + λξH(ξi) (4.9)

where ξi = [1 − ξi, ξi], and H(p) = −p⊤ log(p) denotes the entropy, which encourages
smoother assignments.

Optimization. We are now ready to formulate OSLO’s optimization problem:

max
µ,ζ,ξ

LO(ζ, ξ,µ) + Lsoft(ζ, ξ)

s.t ζi ∈ ∆K , ξi ∈ [0, 1] ∀ i (4.10)
ζi = yi, ξi = 1, i ≤ |S|

Problem (4.10) is strictly convex with respect to each variable when the other variables are fixed.
Therefore, we proceed with a block-coordinate ascent, which alternates three iterative steps, each
corresponding to a closed-form solution for one of the variables.
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4.4 Open-Set Likelihood

Proposition 4.4.0.1. OSLO’s optimization problem (4.10) can be minimized by alternating the
following updates, with σ denoting the sigmoid operation:

ξ
(t+1)
i =


1 if i ≤ |S|

σ

(
1

λξ

K∑
k=1

ζ
(t)
ik log p(xi, k;µ

(t)))

)
else

ζ
(t+1)
i ∝


yi if i ≤ |S|

exp

(
ξ
(t+1)
i

λz
log p(xi, · ;µ(t))

)
else

µ
(t+1)
k =

1
|S|+|Q|∑
i=1

ξ
(t+1)
i ζ

(t+1)
ik

|S|+|Q|∑
i=1

ξ
(t+1)
i ζ

(t+1)
ik ϕθ(xi)

Proof. We denote by∇·(LO + Lsoft) the partial derivative of Oslo’s optimization problem. We
calculate the updates of ξi and ζik for i > |S|, and of µk, by finding the annulation point of their
partial derivative.

∇ξi(LO + Lsoft) = 0

⇔
K∑
k=1

ζik log(p(xi, k;µ)) = λξ((log ξi + 1)− (log(1− ξi) + 1))

⇔ 1

λξ

K∑
k=1

ζik log(p(xi, k;µ)) = log

(
ξi

1− ξi

)

⇔ ξi = σ

(
1

λξ

K∑
k=1

ζik log(p(xi, k;µ))

)

∇ζik(LO + Lsoft) = 0

⇔ ξi log(p(xi, k;µ)) = λz(log ζik + 1)

⇒ ζik ∝ exp

(
ξi
λz

log(p(xi, k;µ))

)
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∇µk
(LO + Lsoft) = 0

⇔
|S|+|Q|∑
i=1

ξiζik(ϕθ(xi)− µk) = 0

⇔ µk =

∑|S|+|Q|
i=1 ξiζikϕθ(xi)∑|S|+|Q|

i=1 ξiζik

The optimal solution for the inlierness score ξi appears very intuitive and essentially conveys
that samples with high likelihood under the current parametric model should be considered inliers.
We emphasize that beyond providing a principled outlierness score, as 1− ξi, the presence

of ξi allows to refine and improve the closed-set parametric model. In particular, ξi acts as
a sample-wise temperature in the update of ζi, encouraging outliers (ξi ≈ 0) to have a uniform
distribution over closed-set classes. Additionally, those samples contribute less to the update of
closed-set prototypes µ, as each sample’s contribution is weighted by ξi.

4.5 Experiments

4.5.1 Experimental setup

Baselines. One goal of this work is to fairly evaluate different strategies to address the FSOSR
problem. In particular, we benchmark 4 families of methods: (i) popular Outlier Detection
methods, e.g. Nearest-Neighbor (Ramaswamy et al. 2000), (ii) Inductive Few-Shot classifiers, e.g.
SimpleShot (Y. Wang, Chao, et al. 2019) (iii) Inductive Open-Set methods formed by standard
methods such as OpenMax (Bendale and Boult 2016) and Few-Shot methods such as Snatcher
(Jeong et al. 2021) (iv) Transductive classifiers, e.g. TIM (Boudiaf, Ziko, et al. 2020), that implicitly
rely on the closed-set assumption, and finally (v) Transductive Open-Set introduced in this work
through Ostim and Oslo. Following Jeong et al. 2021, closed-set few-shot classifiers are turned
into open-set classifiers by considering the negative of the maximum probability as a measure of
outlierness. Furthermore, we found that applying a center-normalize transformation ψυ : x 7→
(x− υ)/||x− υ||2 on the features extracted by ϕθ benefited all methods. Therefore, we apply it
to the features before applying any method, using

• an inductive Base centering (Y. Wang, Chao, et al. 2019) for inductive methods υBase =
1

|Dbase|
∑

x∈Dbase
ϕθ(x),

• and a transductive Task centering (Hu et al. 2021) υTask = 1
|S∪Q|

∑
x∈S∪Q ϕθ(x) for all

transductive methods.

Since features are normalized, we empirically found it beneficial to re-normalize centroids µk ←
µk/||µk||2 after each update from Prop. 4.4.0.1 for Oslo, which we show in Appendix 1 remains
a valid minimizer of Eq. (4.10) when adding the constraint ||µk||2 = 1.
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4.5 Experiments

Hyperparameters. For all methods, we define a grid over salient hyper-parameters and tune
over the validation split of mini-ImageNet. To avoid cumbersome per-dataset tuning, and evaluate
the generalizability of methods, we then keep hyper-parameters fixed across all other experiments.

Architecturesandcheckpoints. To provide the fairest comparison, all non-episodic meth-
ods are tuned and tested using off-the-shelf pre-trained checkpoints. All results except Figure 4.6
are produced using the pre-trained ResNet-12 and Wide-ResNet 28-10 checkpoints provided by
the authors from Ye et al. 2020. As for episodically-finetuned models required by Snatcher (Jeong
et al. 2021) and FEAT (Ye et al. 2020), checkpoints are obtained from the authors’ respective
repositories. Finally, to challenge the model-agnosticity of our methods, we resort to an additional
set of 10 ImageNet pre-trained models covering three distinct architectures: ResNet-50 (He et al.
2016) for CNNs, ViT-B/16 (Dosovitskiy et al. 2021) for vision transformers, and Mixer-B/16
(Tolstikhin et al. 2021) for MLP-Mixer. These models are taken from the excellent TIMM library
(Wightman 2019).

Datasets and tasks. We experiment with a total of 5 vision datasets. As standard FSC
benchmarks, we use the mini-ImageNet (Vinyals et al. 2016) dataset with 100 classes and the
larger tiered-ImageNet (Ren et al. 2019) dataset with 608 classes. We also experiment on more
challenging cross-domain tasks formed by using 3 finer-grained datasets: the Caltech-UCSD Birds
200 (Welinder et al. 2010) (CUB) dataset, with 200 classes, the FGVC-Aircraft dataset (Maji et al.
2013) with 100 classes, and the Fungi classification challenge (Schroeder and Cui 2018) with 1394
classes. Following standard FSOSR protocol, support sets contain |CCS| = 5 closed-set classes
with 1 or 5 instances, or shots, per class, and query sets are formed by sampling 15 instances per class,
from a total of ten classes: the five closed-set classes and an additional set of |COS| = 5 open-set
classes. We follow this setting for a fair comparison with previous works Jeong et al. 2021 B. Liu
et al. 2020 which sample open-set query instances from only 5 classes. We also report results in
supplementary materials for a more general setting in which open-set query instances are sampled
indifferently from all remaining classes in the test set.

4.5.2 Results

Benchmarking the state of the art.

Simplest inductive methods are competitive. The first surprising result comes from
analyzing the performances of standard OOD detectors on the FSOSR problem. Fig. 4.2 shows
that k-NN and PCA outperform, by far, arguably more advanced methods that are OCVSM and
Isolation Forest. This result contrasts with standard high-dimensional benchmarks (Y. Zhao et al.
2019) where k-NN falls typically short of the latter, indicating that the very difficult challenge
posed by FSOSR may lead advanced methods to overfit. In fact, Fig. 4.5 shows that across 5
scenarios, the combination SimpleShot (Y. Wang, Chao, et al. 2019)+ k-NN (Ramaswamy et al.
2000) formed by the simplest FS-inductive classifier and the simplest inductive OOD detector is a
strong baseline that outperforms all specialized open-set methods. We refer to this combination as
Strong baseline in Figures 4.5 and 4.6. Additional results for the Wide-ResNet architecture are
provided in Appendix 3.
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Table 4.2: Standard Benchmarking. Evaluating different families of methods on the FSOSR problem on
mini-ImageNet and tiered-ImageNet using a ResNet-12. For each column, a light-gray standard
deviation is indicated, corresponding to the maximum deviation observed across methods for
that metric. Best methods are shown in bold. Results marked with ⋆ are reported from their
original paper.

mini-ImageNet

Strategy Method
1-shot 5-shot

Acc AUROC AUPR Prec@0.9 Acc AUROC AUPR Prec@0.9
±0.72 ±0.79 ±0.69 ±0.47 ±0.44 ±0.73 ±0.61 ±0.56

OOD detection

k-NN (Ramaswamy et al. 2000) - 70.86 70.43 58.23 - 76.22 76.36 61.48
IForest (F. T. Liu et al. 2008) - 55.59 55.24 52.18 - 62.80 61.62 54.77

OCVSM (Schölkopf et al. 2001) - 69.67 69.71 57.35 - 68.49 65.60 59.24
PCA (Shyu et al. 2003) - 67.23 66.50 56.67 - 75.24 75.53 60.73

COPOD (Z. Li et al. 2020) - 50.60 51.85 50.92 - 51.63 52.65 51.31
HBOS - 58.26 57.41 53.06 - 61.11 60.18 54.30

Inductive classifiers
SimpleShot (Y. Wang, Chao, et al. 2019) 65.90 64.99 63.78 55.77 81.72 70.61 70.06 57.91

Baseline ++ (W.-Y. Chen et al. 2019) 65.81 65.15 63.85 55.87 81.86 66.37 65.58 56.33
FEAT (Ye et al. 2020) 67.23 52.45 54.44 50.00 82.00 53.25 56.48 50.00

Inductive Open-Set

PEELER⋆ (B. Liu et al. 2020) 65.86 60.57 - - 80.61 67.35 - -
TANE-G⋆ (S. Huang et al. 2022) 68.11 72.41 - - 83.12 79.85 - -

SnatcherF (Jeong et al. 2021) 67.23 70.10 69.74 58.02 82.00 76.57 76.97 61.64
OpenMax (Bendale and Boult 2016) 65.90 71.34 70.86 58.67 82.23 77.42 77.63 62.35

PROSER (Zhou et al. 2021) 65.00 68.93 68.84 57.03 80.08 74.98 75.58 60.11

Transductive classifiers

LaplacianShot (Ziko et al. 2020) 70.59 53.13 54.59 52.06 82.94 57.17 57.90 52.56
BDCSPN (J. Liu et al. 2020) 69.35 57.95 58.58 52.71 82.66 61.27 62.17 53.26

TIM-GD (Boudiaf, Ziko, et al. 2020) 67.53 62.46 61.05 54.83 82.49 67.19 66.15 56.70
PT-MAP (Hu et al. 2021) 66.32 59.05 58.67 53.74 78.12 62.78 62.48 54.67

LR-ICI (Y. Wang, C. Xu, et al. 2020) 68.24 49.96 51.61 50.45 81.77 51.82 53.49 50.80

Transductive Open-Set Ostim (ours) 69.36 74.57 75.24 60.13 82.62 83.76 84.10 67.64

Oslo (ours) 71.73 74.92 74.61 60.95 83.40 82.59 82.34 66.98

tiered-ImageNet

±0.74 ±0.76 ±0.71 ±0.52 ±0.52 ±0.68 ±0.75 ±0.57

OOD detection

k-NN (Ramaswamy et al. 2000) - 73.97 73.15 60.74 - 80.22 80.06 65.47
IForest (F. T. Liu et al. 2008) - 54.57 54.24 51.85 - 62.31 60.82 54.72

OCVSM (Schölkopf et al. 2001) - 71.22 71.17 58.81 - 71.20 68.23 61.09
PCA (Shyu et al. 2003) - 68.30 67.02 57.66 - 76.26 76.41 61.81

COPOD (Z. Li et al. 2020) - 50.87 51.95 51.07 - 52.62 53.48 51.44
HBOS - 57.54 56.67 52.98 - 60.91 59.95 54.15

Inductive classifiers
SimpleShot (Y. Wang, Chao, et al. 2019) 70.27 69.78 67.89 58.54 84.94 77.38 76.28 63.21

Baseline ++ (W.-Y. Chen et al. 2019) 70.21 69.73 67.80 58.50 85.10 73.77 72.39 61.05
FEAT (Ye et al. 2020) 69.94 52.49 56.74 50.00 83.96 53.30 59.81 50.00

Inductive Open-Set

PEELER⋆ (B. Liu et al. 2020) 69.51 65.20 - - 84.10 73.27 - -
TANE-G⋆ (S. Huang et al. 2022) 70.58 73.53 - - 85.38 81.54 - -

SnatcherF (Jeong et al. 2021) 69.94 74.02 73.33 60.79 83.96 81.90 81.67 66.89
OpenMax (Bendale and Boult 2016) 70.27 72.40 71.91 59.91 85.79 77.91 78.42 63.07

PROSER (Zhou et al. 2021) 68.48 70.07 69.87 57.99 83.34 75.84 76.56 61.12

Transductive classifiers

LaplacianShot (Ziko et al. 2020) 75.66 57.82 58.41 53.67 86.23 63.75 63.65 55.36
BDCSPN (J. Liu et al. 2020) 74.07 62.13 61.84 54.53 85.65 67.41 67.57 56.30

TIM-GD (Boudiaf, Ziko, et al. 2020) 72.56 68.08 65.97 57.84 85.70 74.67 73.06 61.59
PT-MAP (Hu et al. 2021) 71.13 64.48 62.94 56.25 82.81 71.08 69.89 59.11

LR-ICI (Y. Wang, C. Xu, et al. 2020) 73.80 49.32 51.41 50.35 85.21 51.65 53.85 50.79

Transductive Open-Set Ostim (ours) 73.77 78.86 78.99 63.96 85.73 87.62 87.95 72.81

Oslo (ours) 76.64 79.06 79.07 64.36 86.35 86.92 87.28 71.98

Transductive methods still improve accuracy but degrade outlier detection.
As shown in Table 4.2, most transductive classifiers still offer a significant boost in closed-set
accuracy, even in the presence of outliers in the query set. Note that this contrasts with findings from
the semi-supervised literature, where standard methods drop below the baseline in the presence
of even a small fraction of outliers (Y. Chen et al. 2020; Killamsetty et al. 2021; Saito et al. 2021;
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Figure 4.5: Oslo improves open-set performances on a wide variety of tasks. Relative 1-shot perfor-
mance of the best methods of each family w.r.t the Strong baseline using a ResNet-12, across
a set of 5 scenarios, including 3 with domain-shift. Each vertex represents one scenario, e.g.
tiered→Fungi (x) means the feature extractor was pre-trained on tiered-ImageNet, test tasks are
sampled from Fungi, and the Strong Baseline performance is x. For each method, the average
relative improvement across the 5 scenarios is reported in parenthesis in the legend. The same
charts are provided in the supplementary materials for the 5-shot setting and using a WideResNet
backbone.

Q. Yu et al. 2020). We hypothesize that the deliberate under-parametrization of few-shot methods
–typically only training a linear classifier–, required to avoid overfitting the support set, partly
explains such robustness. However, transductive methods still largely underperform in outlier
detection, with AUROCs as low as 52 % (50% being a random detector) for LaplacianShot. Note
that the outlierness score for these methods is based on the negative of the maximum probability,
therefore this result can be interpreted as transductive methods having artificially matched the
prediction confidence for outliers with the confidence for inliers.

Outstanding performance of Transductive Open-Set methods.

Ostim andOslo above all. Benchmark results in Fig. 4.2 show that both Oslo and Ostim
propose a trade-off between closed-set accuracy and outlier detection performance which cannot
be achieved with existing methods. Ostim competes and Oslo surpasses the best transductive
methods in terms of closed-set accuracy, while both methods consistently outperform existing
out-of-distribution and open-set detection competitors on outlier detection ability. Interestingly,
while the gap between closed-set accuracy of transductive methods and inductive ones typically
contracts with more shots, the outlier detection performance of Ostim and Oslo remain largely
superior to their inductive competitors even in the 5-shot scenario, where a consistent 3-7% gap in
AUROC and AUPR with the third-best method can be observed. We accumulate further evidence
of Ostim and Oslo’s superiority by introducing 3 additional cross-domain scenarios in Fig. 4.5,
corresponding to a base model pre-trained on tiered-ImageNet, but tested on CUB, Aircraft, and
Fungi datasets. In such challenging scenarios, where both feature and class distributions shift, both
methods remain competitive in closed-set classification and maintain consistent improvements in
outlier detection. They even widen the gap in the tiered CUB setting, achieving a strong AUPR
improvement (more than 7%) over the Strong Baseline.
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Accuracy or Auroc? Interestingly, while both methods present similar improvements to the
state-of-the-art, they propose a different trade-off between closed-set accuracy and outlier detection.
Ostim slightly outperforms Oslo in OOD metrics in the 5-shot scenarios but presents similar
results in the 1-shot scenarios. The main difference between both methods resides in the closed-set
performance: Oslo significantly outperforms Ostim in closed-set accuracy on both mini and
tieredImageNet in the 1 and 5-shot scenarios. However, Oslo’s closed-set performance drops in
the cross-domain scenarios shown in Figure 4.5, falling below Ostim’s and even classical TIM’s
performance. These results indicate that the choice of the ideal method between Ostim and Oslo
strongly depends on the specifics of the problem.

We step toward model-agnosticity. We evaluate our methods’ model-agnosticity by their
ability to maintain consistent improvement over the Strong Baseline, regardless of the model used,
and without hyperparameter adjustment. In that regard, we depart from the standard ResNet-12
and cover 3 largely distinct architectures, each encoding different inductive biases. To further
strengthen the empirical demonstration of our methods’ model-agnosticity, for each architecture,
we consider several training strategies spanning different paradigms – unsupervised, supervised,
semi and semi-weakly supervised – and using different types of data –image, text–. Results in
Figure 4.6 show the relative improvement of Ostim and Oslo with respect to the strong baseline
in the 1-shot scenario on the ∗ → Fungi benchmark2. Without any tuning, both our methods
remain able to leverage the strong expressive power of large-scale models, and even consistently
widen the gap with the strong baseline, achieving remarkable performance with the ViT-B/16
trained in a supervised fashion. This set of results testifies to how easy obtaining highly competitive
results on difficult specialized tasks can be by combining transductive open-set methods with the
latest models.

Robustness to the shape of the query set.

The benefits of more query samples. A critical question for transductive methods is the
dependency of their performance on the size of the query set. Intuitively, a larger query set will
provide more unlabeled data and thus lead to better results. We exhibit this relation in Figure 4.7
by spanning the number of queries per class from 1 to 30. We observe that the closed-set accuracy
of most transductive methods is stable across this span in the 5-shot scenario. In the 1-shot scenario,
Ostim and Oslo gain from additional queries but stays above the baseline even with a small
number of queries. Interestingly enough, all closed-set transductive methods present a drop in
outlier detection performance when the number of queries increases. Our proposed open-set
transductive methods are the only transductive methods to improve their outlier detection ability
when the number of queries increases.

BroadOpen-Set. In the standard FSOSR setting (Jeong et al. 2021; B. Liu et al. 2020):

• support sets contain |CCS| = 5 closed-set classes with 1 or 5 instances, or shots, per class;

2Some experiments were re-run after the publication of the original paper and thus may marginally differ from the
original results. They still systematically lie in the original confidence intervals.
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Figure 4.6: Ostim and Oslo’s improvement are consistent across many architectures and training

strategies. To evaluate model-agnosticity, we compare our methods to the Strong baseline on
challenging 1-shot Fungi tasks. We experiment across 3 largely distinct architectures: ResNet-50
(CNN) (He et al. 2016), ViT-B/16 (Vision Transformer) (Dosovitskiy et al. 2021), and Mixer-
B/16 (MLP-Mixer) (Tolstikhin et al. 2021). For each architecture, we include different types
of pre-training, including Supervised (Sup.), Semi-Supervised, Semi-Weakly Supervised (SW
Sup.) (Yalniz et al. 2019), DINO (Caron et al. 2021), SAM (X. Chen, Hsieh, et al. 2022), MIIL
(Ridnik et al. 2021). Improvements over the baseline are consistently significant and generally
higher than those observed with the ResNet-12 in Figure 4.5.
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Figure 4.7: Transductive Open-Set improves performance even with few queries. We study the closed-
set (accuracy) and open-set (AUROC) performance of transductive methods depending on the
size of the query set on tiered-ImageNet in the 1-shot and 5-shot settings. The total size |Q| of
the query set is obtained by multiplying the number of queries per class NQ by the number
of classes in the task (i.e., 5) and adding as many outlier queries e.g., NQ = 1 corresponds to
1 query per class and 5 open-set queries i.e., |Q| = 10. We add the inductive method k-NN +
SimpleShot to compare with a method that is by nature independent of the number of queries.
The results for mini-ImageNet are provided in Appendix 3.

• query sets are formed by sampling 15 instances per class, from a total of ten classes: the five
closed-set classes CCS and an additional set of |COS| = 5 open-set classes.

This is a very strong assumption on the distribution of open-set samples. While this will not
affect an inductive method, it is likely to impact the performance of both closed-set and open-set
transductive methods. In this section, we provide additional results in a more realistic setting. In
this new setting, the query set is formed by sampling 15 instances for each of the 5 closed-set classes,
plus 5× 15 = 75 open-set instances, which are sampled indifferently from all remaining classes in
the test set. Results in Figure 4.8 show that the distribution of open-set queries is indeed a major
factor in both closed-set and open-set performances for most transductive methods. Interestingly
enough, some methods like Laplacian Shot (Ziko et al. 2020) or BDCSPN (J. Liu et al. 2020)
benefit from this relaxation of the previous open-set assumption. However, while the closed-set
accuracy of open-set transductive methods (Oslo and Ostim) increases in the new setting, their
open-set recognition ability decreases (while still achieving the best results across the benchmark).

Ablations.

Ostim takes the best of bothworlds. We refer to the results in Figure 4.9 to motivate
the design choices of Ostim: (i) Even at initialization, Ostim achieves high outlier detection
performances but requires prototype refinement through the mutual information maximization
in Eq. (4.4) to improve its closed-set accuracy. (ii) The inductive bias that consists in implicitly
defining the outlier prototype as the diametrically opposite of the average of support prototypes
is crucial. Introducing and optimizing an independent prototype as in the large-scale open-set
PROSER (Zhou et al. 2021) only adds up to the ambiguity of the few-shot problem and ends up
achieving poor outlier detection performances.
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Figure 4.8: Performance of transductive methods in the broad open-set setting. We study the closed-
set (accuracy) and open-set (AUROC) performance of transductive methods depending on the
size of the query set on mini-ImageNet in the 1-shot and 5-shot settings. We add the inductive
method k-NN + SimpleShot to compare with a method that is by nature independent of the
number of queries.
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Figure 4.9: Ostim’s ablation study. Effects of optimizing the prototypes with Information Maximization
(Eq. (4.7)) and using an implicit outlier prototype (Eq (4.2)) on the closed-set accuracy and the
open-set performance measured with the AUROC. We compare the full Ostim method to a
version of Eq. (4.7) with an explicit dummy prototype and to the model at initialization (before
information maximization). This figure follows the same logic as Figure 4.5.
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Figure 4.10: Oslo’s ablation study. Effects of leveraging the inlier latent ξ on the quality of the model’s
both closed-set parameters Z (measured with the accuracy) and µ (measured with the cosine
similarity between µ and the ground truth prototypes computed as the average of all sup-
port and query embeddings for each class) and the open-set performance measured with the
AUROC. We compare the full Oslo method from Eq. (4.8) (Leverage ξ) with the standard
likelihood objective from Eq. (4.7) (Ignore ξ) and no optimization (At initialization). This
figure follows the same logic as Figure 4.5.
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4.6 Discussion and Limitations

The inlier latent is essential to Oslo. We perform an ablation study on the important
ingredients of Oslo. As a core contribution of our work, we show in Figure 4.10 that the presence
and optimization of the latent inlierness scores is crucial. In particular, the closed-form latent
score ξ yields strong outlier recognition performance, even at initialization (i.e. after the very first
update from Prop. 4.4.0.1). Interestingly, refining the parametric model without accounting for ξ
in Z and µ’s updates (i.e. standard likelihood) allows the model to fit those outliers, leading to
significantly worse outlier detection, from 72% to 65% on 1-shot miniImageNet. On the other
hand, accounting for ξ, as proposed inOslo, improves the outlier detection by more than 3% over
the initial state, and closed-set accuracy by more than 5%. In the end, in a fully apples-to-apples
comparison, Oslo outperforms its standard likelihood counterpart in both accuracy and outlier
detection across all in-domain benchmarks. However, we note that the optimization of the inlier
latent, while still improving the parameters µ of the closed-set parametric model, does not benefit
the closed-set accuracy in cross-domain scenarios, accrediting the idea that such scenarios would
need specifically tuned hyperparameters of the optimization model.

4.6 Discussion and Limitations

In this study, we advocate for Transduction as a promising avenue to address the difficult FSOSR
problem. Through the proposed implicit prototype idea, we show that the InfoMax method
TIM can be successfully opened. Going further, we show that a simple principle optimization
framework can just be just as effective for Few-Shot Open-Set Recognition. We further insist
that the proposed techniques do not necessitate any particular training process or model-specific
parameter optimization, and can therefore be plugged effortlessly into the most expressive feature
extractors. We hope that the promising results we obtained in this setting, using the latest advances
in representation learning, will encourage the community to go beyond small residual networks
and leverage these advances in our methods more often than we do today.

In this chapter, we also provided some long-overdue experiments about a widely anticipated
limitation of transductive methods: the potential performance drop in the context of few queries.
Our experiments show that most transductive methods still perform better than the inductive
baseline in terms of closed-set accuracy, even in a 1-query regime.

Taking a step back, we showed that transductive methods which achieved outstanding results in
the closed-set scenario suffer a serious drop in performance when faced with open-set instances.
Therefore, we argue that the open-set scenario should be included in the standard benchmarks
for few-shot transductive methods, and hope that our findings will encourage the community to
follow this practice.
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Part III

Challenges in Benchmarking Few-Shot
Image Classification models
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5 Contribution 3: Semantic Similarity in
Few-Shot Learning Benchmarks

This chapter replicates our paper Few-Shot Image Classification Benchmarks are Too Far From Real-
ity: Build Back Better with Semantic Task Sampling, by Etienne Bennequin, Myriam Tami, Antoine
Toubhans, and Céline Hudelot, published in the Workshop on Vision Datasets Understanding at
CVPR 2022 (Bennequin, Tami, et al. 2022).

5.1 Introduction

In the last four years, our Sicara team has been involved in a variety of industrial use cases for
Few-Shot Learning. In Section 1.2, we observed that all of these use cases (namely industrial
part recognition, retrieval in a marketplace’s catalog, daily food recognition, and microorganisms
recognition) are semantic fine-grained classification tasks: they all consisted in recognizing an object
among many classes that were semantically similar to one another.

On the contrary, standardized academic benchmarks generate tasks using uniform random
sampling from a wide range of semantically dissimilar or unrelated classes (e.g., tieredImageNet),
which leads to evaluating our models mostly on tasks composed of objects that we would never
need to distinguish in real-life use cases. In Figure 5.1a, we show an example of a task representative
of the tieredImageNet benchmark. This task obviously cannot be related to any real-life use case.
More specifically, compared to the use cases presented in Section 1.2, we notice that the compared
classes are much more semantically distant from one another. In Figure 5.2 (resp. 5.3), we show
four more tasks representative of miniImageNet (resp. tieredImageNet) that share this same
drawback. To allow the reader to verify these observations by themself, we provide in this project’s
webpage1 a tool to manually sample tasks from miniImageNet and tieredImageNet.

Additionally, the Few-Shot Learning community has chosen to formalize the Few-Shot Image
classification problem as an accumulation ofK-wayn-shot classification tasks i.e., classifying query
images, assuming that they belong to one ofK classes for which we have n labeled examples each.
In practice, most works compared their methods on benchmarks for which they fixed K = 5
(sometimes K = 10) and n = 1 or n = 52. To the best of our knowledge, only one method
for Few-Shot Image Classification was evaluated with K > 50 (Ramalho and Garnelo 2019).
The choice made by the community, while relevant to facilitate experiments in the early stages of
Few-Shot Learning research, casts a dark shadow on the robustness of state-of-the-art few-shot
learning methods when discriminating between a large number of classes.

1https://semantic-task-sampling.streamlit.app/
2https://paperswithcode.com/task/few-shot-image-classification
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5 Contribution 3: Semantic Similarity in Few-Shot Learning Benchmarks

(a) Coarsity histogram (top) and an example of task (bot-
tom) of a testbed designed from tieredImageNet with
uniform class sampling. This task presents a coarsity
of 85.1, which is the median coarsity for this testbed.
"We really need a machine to distinguish bathroom tubs
from cabbage, pizzas, cardoon, and some very specific
kind of dog!" said no one in the history of humankind.

(b) Coarsity histogram (top) and an example of task (bot-
tom) of our testbed better-tieredImageNet. This task
presents a coarsity of15.8. Tasks with this coarsity never
occur in the uniformly sampled testbed, although they
are more representative of real few-shot classification
use cases.

Figure 5.1: Comparison, in terms of our coarsity measure defined in Section 5.4.1, between a testbed designed
with uniform class sampling (left) and a testbed designed with semantic awareness (right, ours).
Our testbed gives a better representativity to tasks with low coarsity i.e., composed of classes
semantically relevant to one another.

Because of these limitations, we could not rely on the most popular Few-Shot Classification
benchmarks to identify the most appropriate method for our use cases. How can we improve our
current evaluation processes to better fit real-life use cases?

Chapter’s Contributions

In this chapter, we bring out some limitations of current Few-Shot Classification bench-
marks with both quantitative and qualitative studies and propose new benchmarks to get
past these limitations. More specifically:

1. We use the WordNet taxonomy (Miller 1995) to evaluate semantic distances between
classes of the popular Few-Shot Classification benchmark tieredImageNet. Based
on these semantic distances we put forward the concept of coarsity of an image
classification task, which quantifies how semantically close are the classes of the task.

2. We conduct both quantitative and qualitative studies of the tasks generated from
the test set of tieredImageNet i.e., the tasks composing the benchmark on which
most papers evaluate different methods. We show that this benchmark is heavily
biased towards tasks composed of semantically unrelated classes.
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5.1 Introduction

Figure 5.2: Four tasks sampled uniformly at random
from the miniImageNet benchmark.

Figure 5.3: Four tasks sampled uniformly at random
from the tieredImageNet benchmark.

3. We harness the semantic distances between classes to generate the improved bench-
mark better-tieredImageNet reestablishing the balance between fine-grained and
coarse tasks. We compare state-of-the-art Few-Shot Classification methods on this
new benchmark and bring out the relation between the coarsity of a task and its
difficulty.

4. We put forward the Danish Fungi 2020 dataset (Picek et al. 2022) for evaluating Few-
Shot Classification models. This dataset offers a wide range of fine-grained classes
and therefore allows the sampling of tasks that we deem to be more representative of
industrial applications of Few-Shot Learning. We compare state-of-the-art methods
on both 5-way and 100-way tasks generated from this dataset. To the best of our
knowledge, these are the first published results of few-shot methods on such wide
tasks.

All our implementations, datasets, and experiments are publicly available3. We hope that our
work will drive the research community towards a better awareness of the biases in few-shot
evaluation processes and that the new benchmarks that we propose to counterbalance some of
these biases will find echoes in the community and be further improved in future works.

3https://github.com/sicara/semantic-task-sampling
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5.2 Positioningwith respect to fine-graininess in Few-Shot
Learning

Recent works proposed specific methods for Fine-Grained Few-Shot Image Classification (Ruan
et al. 2021; Tang et al. 2020; J. Xu et al. 2021; Y. Zhu et al. 2020). These methods are typically
compared on CU-Birds (Welinder et al. 2010) or FGVC Aircraft (Maji et al. 2013). These datasets
propose respectively 50 and 25 test classes. In this work, we propose to use Danish Fungi 2020
(Picek et al. 2022), a fine-grained image classification dataset equipped with 1604 classes, which
allows us to compare methods on tasks composed of a large number of classes. Also note that
among many other contributions, the original paper for Meta-Dataset (Triantafillou et al. 2020)
proposed a small study of the performance of state-of-the-art few-shot classifiers depending on
a measure of task fine-graininess on ImageNet, as pointed out in Section 2.3.1. However, they
failed to highlight any correlation between the fine-graininess and difficulty of a task, leaving it
for future works. We claim to be this future work: compared to (Triantafillou et al. 2020), we use
more precise tools to define the fine-graininess of a task and decorrelate the fine-graininess from
the shape of the task (i.e., the number of ways). Thereby we successfully show in Section 5.6.2 the
correlation between fine-graininess and difficulty on tieredImageNet.

5.3 Problem formalization

We follow the formalization defined in Section 2.2.1. Since it is of the utmost importance in this
section, here we rewrite the definition of the set ofK-way classification tasks that can be sampled
from the test setDtest:

Etest(K) = {TS,Q | S = {(xs
i , y

s
i ) ∈ X × C}i=1...|S| ⊂ Dtest,

Q = {xq
i ∈ X}i=1...|Q| ⊂ Dtest,

S ∩Q = ∅, C ⊂ Ctest and |Ctest| = K}

withDtest the test dataset, Ctest its set of classes, and S and Q respectively the support and query set
for a particular task T with classes C.

As we established in Section 2.2.1, even though most benchmarks are limited to Etest(5) (which
we will note Etest when there is no ambiguity), and further limited to tasks with 1 or 5 support
images per class (|S| = 5 or 25) and 10 query images per class (|Q| = 50), the number of possible
tasks is still untractable (∼10173 on tieredImageNet). For this reason, it is common practice in
the community to evaluate few-shot classification models on a subset Ẽtest = {T ∈ Etest|T ∼ U}
with U the uniform distribution. This design choice gives the same weight to all tasks from Etest,
regardless of how informative they are on a model’s ability to perform on real-life few-shot learning
problems. In this chapter, we study alternative distributions for Ẽtest.

Class sampling and instance sampling Here we limit ourselves to the sampling of the
classes that constitute each episode. We iterate only on the probability distribution over classes
that constitute a task. Once the classes are sampled, we use uniform sampling over all instances for
each class to constitute the support and query sets.
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5.4 Building the better-tieredImagenet benchmark

Figure 5.4: Directed acyclic subgraph of WordNet spanning the 160 classes of tieredImageNet’s test set,
which are shown in red. The root (in green) corresponds to the concept of “entity".

5.4 Building the better-tieredImagenet benchmark

5.4.1 Measuring task coarsity withWordNet taxonomy

Since tieredImageNet is a subset of ImageNet, its classes are the leaves of a directed acyclic graph
which is a subgraph of the WordNet graph (Miller 1995). This graph is represented in Figure 5.4.
Using this graph, it is possible to establish a semantic similarity between classes. We use the Jiang &
Conrath pseudo-distance between classes (J. J. Jiang and Conrath 1997), which is defined for two
classes k1 and k2 as:

DJC(k1, k2) = 2 log |lso(k1, k2)| − (log |k1|+ log |k2|) (5.1)

where we note |k| the number of instances of the dataset with class k, and lso(k1, k2) is the lowest
superordinate, i.e., the most specific common ancestor of k1 and k2 in the directed acyclic graph.
Our choice of pseudo-distance4 was motivated by the results of Deselaers and Ferrari 2011, who
showed that this semantic pseudo-distance between classes is correlated with the visual similarity
between images of these classes on ImageNet. We insist, however, that the definition of the coarsity
and the subsequent sampling strategy are agnostic of the choice of the distance, and that other
semantic distances may be used in future works.

From this pseudo-distance, we define the coarsity κ of a task TC constituted of instances from a
set of classes C as the mean square distance between all pairs of classes in C i.e.,

4We call it a pseudo-distance since it is positive, symmetric and separated. However, due to the weak assumption on the
directed acyclic graph, it is possible to find k1, k2, k3 such that DJC(k1, k3) > DJC(k1, k2) +DJC(k2, k3).
In practice, our datasets are sufficiently balanced for this case not to occur.
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κ(TC) = mean
ki,kj∈C, ki ̸=kj

DJC(ki, kj)
2 (5.2)

This coarsity is an indicator of how semantically close are the classes that constitute a task. As
shown in Deselaers and Ferrari 2011, on datasets derived from ImageNet, the semantic distance is
closely linked to the visual similarity between items of these classes, and therefore the coarsity of a
task is closely linked to the average visual similarity between the classes that compose this task.

Note that since we use the mean of square distances, a task with one class very distant from the
others will have a higher coarsity than a task composed of 5 reasonably distant classes.

5.4.2 Generating a more informative benchmark using class semantics

As discussed in Section 5.3, finding an appropriate subset of Etest is a key point to ensure that we
provide an accurate evaluation of a model. In the literature, testing tasks are sampled uniformly at
random from Etest (Vinyals et al. 2016). However, we observed that the resulting testbeds are biased
towards tasks with high coarsity i.e., composed of classes semantically far from each other with
respect to the Jiang & Conrath pseudo-distance (see Figure 5.1a). We argue that in practice, few-shot
learning models are often used to distinguish between similar objects rather than distinguishing
between objects that have nothing to do with one another (e.g., circuit boards from circuit boards,
carpets from carpets, or people from people). This is, in fact, the case of all the real use cases that
we presented in Section 1.2. A testbed presenting this type of bias is therefore irrelevant to evaluate
a model’s ability to solve this family of problems.

In this work, we define a unique, reproducible set of testing tasks to evaluate all models. This
testbed is built with a dual objective:

• We want tasks with a smooth repartition in terms of coarsity to ensure that the testbed also
evaluates the ability of a model to distinguish between classes close to each other. Providing
a good span of coarsities also allows to compare models on different types of tasks: a model
might be better for coarse tasks but not for fine-grained tasks.

• This first objective inherently creates a bias towards classes with many neighboring classes.
However we want our testbed to be balanced, i.e., all images must be sampled roughly as
many times as the others5.

To achieve these goals, we define a semantic task sampler based on the Jiang & Conrath pseudo-
distance. As presented in Section 2.3.1, C. Liu et al. 2020 propose to condition the probability
of co-sampling two classes in one training episode using a potential matrix for pairs of classes.
Building on their framework, we build an initial potential matrix P0 such that

P0
i,j = exp(−αDJC(ki, kj)) (5.3)

with α ∈ R+ an arbitrary scalar. For the first task, the probability for a pair of classes (ki, kj)
to be sampled together is proportional to P0

i,j . To enforce that the testbed is balanced, once the

5In the case of tieredImageNet, which presents as many images for each class, this is equivalent to ensuring the balance
between classes.
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5.5 Fungi: a large fine-grained dataset for Few-Shot Image Classification

t− 1th task is sampled we update the number νti of occurrences of class ki in previous tasks. Then
we update the potential matrix to penalize classes with higher values of νt:

P t
i,j = P0

i,j × exp(−β
νti + νtj

maxk(ν
t
k)
) (5.4)

with β ∈ R+ an arbitrary scalar. Intuitively, a larger α gives more weight to pairs of semantically
close classes, while a larger β forces a stricter balance between classes. The class sampling process is
detailed in Algorithm 2.

We then sample instances from these classes uniformly at random. As shown in Figure 5.1b, our
5000-tasks testbed gives far greater representation to fine-grained tasks compared to a uniformly
sampled testbed. Our testbed offers a wide range and balance of task coarsities, allowing to test
models on both coarse and fine-grained tasks, while the uniformly sampled testbed only allows
the evaluation on coarse tasks. Figure 5.5 shows that the occurrences-based penalty successfully
enforces the balance between classes in our testbed.

Algorithm 2 How classes of a task are sampled using the potential matrix, following C. Liu et al.
2020
Input: potential matrix P0, number of tasks T , number of classes per taskK
Output: set of sampled tasks Ẽtest

1: Ẽtest ←− {}
2: ν ←− 1
3: for t < T do

4: p←− exp(−β ν
max(ν))

5: C←− {k0}with k0 sampled according to a distribution of probability proportional to
p

6: p←− p⊙P0
k0

7: while |C| < K do

8: C←− C∪{k}withk sampled according to a distribution of probability proportional
to p

9: p←− p⊙P0
k

10: end while

11: Ẽtest ←− Ẽtest ∪ {C}
12: ∀i ∈ C, νi ←− νi + 1
13: end for

5.5 Fungi: a large fine-grained dataset for Few-Shot Image
Classification

5.5.1 Danish Fungi 2020

Danish Fungi 2020 (DF20) (Picek et al. 2022) is an image recognition dataset of 295 938 images of
fungi distributed in 1604 fine-grained classes, with no overlap with ImageNet. The dataset offers
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5 Contribution 3: Semantic Similarity in Few-Shot Learning Benchmarks

Figure 5.5: Comparison of class imbalance in testbeds. We show the proportion of tasks containing each
one of the 160 classes of tieredImageNet’s test set, with uniform task sampling (blue) and our
semantic task sampling (red). A perfectly balanced testbed will show a flat line i.e., each class
is equally represented in the testbed. We see that our sampling does not raise class imbalance
compared to uniform sampling.

insightful metadata, such as the object’s geographical location, habitat, and substrate. DF20’s
classes are equipped with a seven-level hierarchical structure. Note that Meta-Dataset (Triantafillou
et al. 2020) also includes a Fungi dataset, from the FGVCx 2018 Fungi classification challenge6.
This Fungi dataset comes from the same source as DF20 but offers fewer images, fewer classes, no
metadata, and no taxonomy, which convinced us to push forward DF20. The semantic tree of
DF20 is shown in Figure 5.6.

5.5.2 DF20 for Few-Shot Image Classification Benchmark

Why dowe use it? Following our observations on the high coarsity of tasks sampled from
tieredImageNet, we propose to use DF20 as a test set for few-shot image classification models.
This dataset allows sampling a wide variety of fine-grained few-shot classification tasks, which are
to our experience more representative of real-world applications. It also offers a taxonomy allowing
to further study the performance of few-shot models depending on the coarsity of the task. Since
we consider the whole dataset as a test set, we allow the comparison of methods with parameters
optimized on various training sets, provided that they do not overlap with DF20. This brings
the few-shot learning methodology closer to the neighboring field of transfer learning, in which
training data is not part of the benchmark (Dumoulin et al. 2021). This can also be considered as a
generalization of the cross-domain few-shot learning setting (W.-Y. Chen et al. 2019), in which
we train a model on the training set of one benchmark (e.g., miniImageNet) and test it on the
testing set of another benchmark (e.g., CUB). Note that in this work, compared methods all share
the same backbone with parameters classically trained on ImageNet’s training set. This was a

6https://github.com/visipedia/fgvcx_fungi_comp
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5.5 Fungi: a large fine-grained dataset for Few-Shot Image Classification

Figure 5.6: Semantic tree spanning the 1604 classes of DF20 (in red). The root is shown in green. DF20
contains images of species that belong to three kingdoms: Chromista (purple), Protozoa (cyan),
and Fungi (orange). As we can see from the tree, the vast majority of classes are spanned from
the Fungi kingdom.
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1-shot

better-tieredImageNet Uniform testbed
Whole testbed 1st. Qtl 2nd. Qtl 3rd Qtl 4th Qtl

ProtoNet (Snell et al. 2017) 53.10± 0.40 42.01 51.11 56.35 62.88 65.24± 0.35
Finetune (W.-Y. Chen et al. 2019) 56.60± 0.41 44.56 54.29 60.12 67.43 69.96± 0.35

BD-CSPN (J. Liu et al. 2020) 59.99 ± 0.45 46.69 57.50 63.80 71.95 74.55 ± 0.37

TIM (Boudiaf, Ziko, et al. 2020) 59.19 ± 0.43 46.74 56.76 63.03 70.21 73.09± 0.35
Transductive Finetuning (Dhillon et al. 2020) 53.01± 0.40 41.98 51.74 56.31 62.82 65.27± 0.35
PT MAP (Hu et al. 2021) 56.74± 0.38 45.81 54.38 59.76 66.96 69.58± 0.37

5-shot

ProtoNet (Snell et al. 2017) 70.77± 0.37 59.72 68.95 74.05 80.41 82.79± 0.25
Finetune (W.-Y. Chen et al. 2019) 71.60± 0.37 60.63 69.68 74.86 81.26 83.66± 0.25

BD-CSPN (J. Liu et al. 2020) 72.50± 0.37 61.23 70.47 75.94 82.38 84.70± 0.25
TIM (Boudiaf, Ziko, et al. 2020) 73.32 ± 0.37 62.40 71.48 76.53 82.92 85.49 ± 0.24

Transductive Finetuning (Dhillon et al. 2020) 70.79± 0.37 59.73 68.98 74.08 80.43 82.79± 0.25
PT MAP (Hu et al. 2021) 69.45± 0.36 58.97 67.40 72.36 79.09 81.54± 0.26

Table 5.1: Top-1 accuracy of various few-shot learning methods on 1 and 5-shot tasks sampled from the
tieredImageNet test set with uniform and semantic sampling strategies. For better-tieredImageNet,
we show the average accuracy on the whole testbed, along with the average accuracy on the four
quartiles of the testbed, when sorted by coarsity of the task (1st quartile contains the tasks with the
smallest coarsity). For the testbed of uniformly sampled tasks, we only show the average accuracy
on the whole testbed, as the results on each quartile are very similar to one another. For each
setting, we separate inductive (top) from transductive (bottom) methods. Best method(s) in each
column is shown in bold.

convenient baseline, but we insist that this does not make it mandatory for future work to train on
ImageNet. In fact, we believe that it is of prior importance to study the effect of the choice of the
training data on the few-shot classification model’s performance.

How do we use it? We sampled four benchmarks: 5-way 1-shot, 5-way 5-shot, 100-way 1-
shot, and 100-way 5-shot. The 5-way settings are very common in the few-shot learning literature
(Triantafillou et al. 2020). However, to the best of our knowledge, very few works evaluate their
method on wide (i.e., more than 10-way) few-shot classification tasks7. We believe that such tasks
are at least equally interesting as 5-way tasks. We assume that this setting was avoided by early
works because GPU memory limitations made it very hard to use back-propagation on batches
mimicking 100-way tasks during episodic training. We claim that these constraints do not justify
overlooking such an interesting problem. Specifically for DF20, the task of recognizing an image
among a wide variety of fungi makes way more sense than recognizing an image among 5 random
species8.
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5.6 Experiments on new benchmarks

5.6.1 Implementation details

We conducted the necessary experiments to bring out the need for novel few-shot classification
benchmarks and showcase the limitations of state-of-the-art methods on more challenging settings.
We restricted the comparison to methods allowing classical training (i.e., non episodic) and to a
unique set of hyper-parameters. All parameters of our experiments can be found on our publicly
available code 9.

tieredImageNet We followed the original split of Ren et al. 2019. All methods tested in our
benchmark use a common ResNet12 with parameters trained for 500 epochs with classical cross-
entropy among the 351 classes of the train set using stochastic gradient descent with a batch size of
512 and learning rate of 0.1 with a decreasing factor of 0.1 after 350, 450 and 480 epochs. The
trained weights are directly downloadable from our code. We built two testbeds with uniform class
sampling (1-shot and 5-shot), and two testbeds (1-shot and 5-shot) with semantic task sampling (see
Section 5.4.2) with α = 0.383 and β = 100.0. These hyperparameters were selected to enforce
the sampling of tasks with small coarsity while ensuring that all classes were equally represented in
the testbed (with a small margin). This selection was monitored with visual observations shown
in Figures 5.1b and 5.5. We upsampled 10000 tasks, then we removed all duplicate tasks and
downsampled them to 5000 tasks. All tasks present 10 queries per class.

Danish Fungi 2020 All methods tested in our benchmark use the built-in ResNet18 from
PyTorch with weights trained on ImageNet. Since DF20 is already fine-grained, we built four
5000-task testbeds (5-way 1-shot, 5-way 5-shot, 100-way 1-shot, and 100-way 5-shot) with uniform
class sampling. All tasks present 10 queries per class.

Methods For Finetune (W.-Y. Chen et al. 2019) we use 10 fine-tuning steps with a learning
rate of 10−3. For Transductive Information Maximization (TIM) (Boudiaf, Ziko, et al. 2020) we
use 100 fine-tuning steps with a learning rate of 10−3 and put a 0.1 weight on the conditional
entropy term of the loss. For Transductive Finetuning (Dhillon et al. 2020) we use 25 inference
steps with a learning rate of 5 × 10−5. These hyperparameters were selected to fit the original
implementations of these methods. Following the discussion on the value of model-agnosticity for
Few-Shot Learning methods in Chapter 4, we insist that we didn’t put any additional effort into
further optimizing any few-shot method on our benchmarks.

5.6.2 Results

tieredImageNet Results for tieredImageNet are shown in Table 5.1. The immediate observa-
tion that we can make is that our benchmark better-tieredImageNet is much more challenging than
uniform task sampling, with a performance drop of 12 to 15% in top-1 accuracy for all settings and
methods. For further details, we sorted all 5000 tasks with respect to their coarsity and grouped

7https://paperswithcode.com/task/few-shot-image-classification
8As of 2020, experts have identified ∼148 000 species of fungi (Cheek et al. 2020).
9https://github.com/sicara/semantic-task-sampling
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5 Contribution 3: Semantic Similarity in Few-Shot Learning Benchmarks

5-way 100-way

1-shot 5-shot 1-shot 5-shot

Top-1 Top-1 Top-5 Top-1 Top-5

ProtoNet (Snell et al. 2017) 37.55± 0.25 60.53± 0.27 7.81± 0.08 20.12± 0.13 17.69± 0.12 40.20± 0.16
Finetune (W.-Y. Chen et al. 2019) 47.00± 0.30 65.06± 0.29 9.70 ± 0.09 25.94± 0.15 19.60 ± 0.12 44.25 ± 0.17

BD-CSPN (J. Liu et al. 2020) 47.81± 0.33 66.32 ± 0.30 9.75 ± 0.09 24.11± 0.15 19.52 ± 0.13 41.79± 0.17
TIM (Boudiaf, Ziko, et al. 2020) 40.73± 0.28 62.89± 0.28 8.36± 0.09 21.30± 0.14 18.53± 0.12 41.47± 0.17
Trans. Finetuning (Dhillon et al. 2020) 37.54± 0.25 60.54± 0.27 7.71± 0.08 20.13± 0.13 17.69± 0.12 40.21± 0.16
PT MAP (Hu et al. 2021) 52.08 ± 0.35 66.78 ± 0.29 9.54± 0.09 26.37 ± 0.15 18.50± 0.12 43.36± 0.16

Table 5.2: Accuracy of various few-shot learning methods on DF20. For 100-way tasks, we report both
top-1 and top-5 accuracy. For 5-way tasks, we do not report top-5 accuracy as we found that it
was always 100%. Best method(s) in each column is shown in bold.

them into four quartiles. The 1st quartile contains the most fine-grained tasks, and the 4th quartile
contains the coarsest tasks. From these results, we can confirm that coarsity is indeed correlated
to the difficulty of the task since the performance consistently improves when moving towards
coarser tasks. We finally observed that even the 4th quartile seems to be more challenging than
the uniform benchmark. This is consistent with the demography of tasks shown in Figure 5.1,
since the tasks constituting the 4th quartile of our testbed show a smaller average coarsity than the
uniform testbed.

We observed that transductive methods (Boudiaf, Ziko, et al. 2020; Dhillon et al. 2020; Hu et al.
2021; J. Liu et al. 2020), which use the unlabeled information from the query set, unsurprisingly
show the best results on both set-ups but especially in 1-shot classification. The leaderboard seems
to be consistent on all quartiles, suggesting that none of these methods are "specialized" towards a
particular demographic of tasks.

Danish Fungi 2020 Results for DF20 are shown in Table 5.2. They show that while being
more challenging than tieredImageNet and better-tieredImageNet, our DF20 benchmark still
constitutes an achievable task. We also report results showing that all methods struggle in the
more challenging problem of 100-way classification, especially in the 1-shot setting (less than 10%
top-1 accuracy for the best model, less than 20% in the 5-shot setting). We believe that this should
stand as a red flag regarding the ability of state-of-the-art few-shot classification methods to scale to
real-life use cases.

To complete the study, we show in Figure 5.7 the correlation between the coarsity of a task
(based on the taxonomy of DF20) and the accuracy of the PT-MAP (Hu et al. 2021) method. We
observe that, as was the case for better-tieredImageNet, the closest the classes sampled from Fungi
are from one another, the harder the task composed of these classes.

5.7 Conclusion

We showed that the widely used tieredImageNet benchmark with a uniform sampling of classes led
to evaluating few-shot learning models on disproportionately coarse tasks. We used semantic task
sampling to generate a more informative testbed from tieredImageNet’s test set. We also pushed
forward as a new benchmark for Few-shot Image Classification models the Danish Fungi 2020
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5.7 Conclusion

Figure 5.7: Correlation between the coarsity of the 5000 tasks sampled from DF20 for our 5-way 5-shot
testbed and the accuracy of the PT-MAP (Hu et al. 2021) method. The plot is smoothed using
the rolling average over a window of 200 tasks.

dataset, which we believe to be an incredibly promising playing field for future research in Few-Shot
Learning. Finally, we showed that state-of-the-art methods dramatically fail when confronted with
many-way classification (here many is 100) of fine-grained objects. We insist that this setting is not

far-fetched and fits tangible industrial use cases. We believe that these results should push us to
take a step back and re-assess the way we currently think about Few-Shot Image Classification.

We used to define a few-shot classification task by its number of ways and its number of shots,
addressing n-way k-shot classification as an indivisible problem. What we did here can be seen as a
novel framework, in which the number of classes is not sufficient to define a task: we need to know
what these classes are. To go further, we would need to go beyond defining tasks by their number
of shots and consider which images are chosen for the support set. This is the source motivation
for the perspectives drawn in Chapter 6.

In this work, we addressed what we believe to be a very limiting bias of current Few-Shot Learning
benchmarks i.e., a bias towards coarse tasks. We chose to tackle this particular shortcoming because
we observed that it was the main difference between academic benchmarks and the industrial
applications of Few-Shot Learning that we encountered. However, many more limitations of
few-shot learning benchmarks are yet to address: the fixed shape of the tasks, the strict balance in
both support and query sets, the empty overlap between large-scale classes (currently only used for
base training) and few-shot classes, no prior in the choice of support instances, and many other of
which we did not think yet. We believe that addressing these shortcomings must be considered a
priority in our field, and we encourage any and all who agree to join us in this effort.
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Where are they now? Very recently, the problem of sampling "hard" tasks to evaluate few-
shot image classification was discussed by Basu et al. 2023 in building a new benchmark called
Hard-Meta-Dataset++. They propose a model-based method to sample "difficult support sets",
and find that the combination of their method with the semantic task sampling proposed in our
contribution gives the most "difficult" tasks.
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6 Perspective: Observations on Support
Set Quality

In the previous chapters, we presented what we believe to be necessary steps to bridge the gap
between Few-Shot Learning research and its application to industrial use cases. However, a lot
remains to be done, especially in the way that we evaluate the methods. In Chapter 5, we limited
our study to the relation between classes and did not consider the individual images forming the
support set. We believe however that the selection of these images is crucial to achieving high
performance in a Few-Shot setting. In this chapter, we report some experiments that we performed
on this issue and draw some perspectives for future work that may focus on support set quality.

6.1 Motivation

In the last ten years, we counted thousands of iterations on Few-Shot Learning models: architec-
tures (Koch et al. 2015), additional modules (Z. Jiang et al. 2020; Sung et al. 2018), comparison
strategies (Snell et al. 2017), feature hallucination (Hariharan and Girshick 2017; Y.-X. Wang
et al. 2018), transductive assumptions (Boudiaf, Ziko, et al. 2020; Dhillon et al. 2020; Y. Liu et al.
2019), learning schemes (Laenen and Bertinetto 2021; Ouali, Hudelot, et al. 2021), "meta-learning"
schemes (Finn et al. 2017; Vinyals et al. 2016)... While this drove interesting theoretical discoveries
and considerably improved performance on many specialized benchmarks, we argue that this race
toward better models leaves an obvious blind spot: the quality of available data.

Data quality is universally known as a critical factor for performance in Machine Learning
problems. Intuitively, the quality of individual samples is even more decisive when only a handful
of labeled instances are available. Let us recall the context of Few-Shot Image Classification, with
only one available sample per class (i.e., one-shot classification). If the only example that we give an
agent to define a class is of bad quality, we cannot hope for a good performance in recognizing this
class.

We were able to verify this intuition through observations on the widely used tiered-ImageNet
benchmark. Figure 6.1 shows two of the worst-performing tasks using a variety of Few-Shot
Learning models. We can understand that our algorithms were struggling to accurately classify
query images based only on the represented support examples.

Nonetheless, the issue of the quality of the support set has been understudied in the Few-Shot
Learning literature (see Section 2.3.2). In fact, there is no definition or measure for the quality of a
support set. This motivated us to explore this issue.
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(a) A model would have to recognize a great white shark based on this small stain in the water, and would understand
that a tub contains feet.

(b) A model would probably recognize a wine bottle based on the presence of a shirtless man smashing something by
seaside.

Figure 6.1: The support sets for two 1-shot 5-way classification tasks sampled from tiered-ImageNet.

Chapter’s Summary

In this chapter, we report our investigations and present what we deem to be interesting
perspectives for future works on the support set’s quality. More precisely, we focused on
the two following questions:

1. How can we characterize the quality of an example in a support set?

2. What is the impact of the selection of support set instances on the performance of
Few-Shot Learning models?

6.2 Assessing the quality of the support set

6.2.1 Problem statement

In order to measure the quality of a support set, we first need to define the purpose of a support set
in the context of Few-Shot Classification: in this chapter, we will assume that a Few-Shot Learning
model takes as argument both the query instance and the support set, to output a prediction. In
other words, given a set of classes C, we define a few-shot learning model ψθ : (xq

i ,S) 7→ pq
i =

(P(yqi = k|xq
i ))k∈C. For instance, when we are using prototypical classification (Snell et al. 2017)

without any normalization and a given distance || · ||, the kth element of the prediction is obtained
from the following, using a feature extractor ϕθ with parameters θ:

ψθ(x
q
i ,S)k =

e−||ϕθ(x
q
i )−µk||2∑|C|

k′=1 e
−||ϕθ(x

q
i )−µk′ ||2

with µk = mean
(xs,ys)∈S

ys=k

ϕθ(x
s) (6.1)

Then, the quality of the support set S can be considered a function of the correlation between
ψθ(·,S) and the ground truth distribution. From this definition, it follows that the quality of
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6.2 Assessing the quality of the support set

S depends on the Few-Shot Learning model ψθ . Therefore, in this work, we limit ourselves to
definitions of the support set’s quality inside of the feature space determined by the model’s
parameters θ. This choice and its consequences are discussed in Section 6.4.

6.2.2 Representativeness by distance to the class centroid

In the context of a dataset Dtest = {(xi, yi) | x ∈ X , y ∈ Ctest}, and a feature extractor
ϕθ : X −→ Z , we define the representativenessρθ(x) (or simplyρ(x)when there is no ambiguity)
of an instance x with label y = k ∈ Ctest from its distance to its class centroid weighted by the
class’s standard deviation, in the feature space i.e.,

ρθ(x) = ||
σk

ϕθ(x)− µk

||22 (6.2)

with σk =

√∑
yi=k

(ϕθ(xi)− µk)
2

From this, we define the representativeness of a support set S as the average representativeness of
its instances i.e.,

ρθ(S) = mean
(x,y)∈S

ρθ(x) (6.3)

Note that this definition of representativeness does not take into account the relationship between
different instances and classes composing the support set. Once again, we refer to Section 6.4 for a
discussion on this choice and its consequences.

We considered two other definitions of representativeness, that we report for completeness.
They reported similar results as the representativeness by distance to the class centroid, but their
computation time was several orders of magnitudes longer, which motivated our choice for the
representativeness by distance to the class centroid.

• Representativity by average distance to other instances of the same class i.e., ρθ(x) =
1

|k|−1

∑
yi=k

||ϕθ(xi)−ϕθ(x)||22
σk2

, with |k| the number of instances with label k inDtest.

• Representativity as the proportion of other instances of the same class lying in a neighbor-
hood ησk of the considered instances.

6.2.3 Observations on tiered-ImageNet

We computed all representativeness for the test set of tiered-ImageNet, using the features extracted
by a ResNet12 with checkpoints provided by the authors from Ye et al. 2020. Figure 6.2 shows all
representativeness as a histogram to provide an idea of admissible values. In Figure 6.3 we provide
some examples of strawberry-picked images with their representativeness, showing that images
with low representativeness overall correspond to images that would be considered "bad examples"
by human standards.
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Figure 6.2: Histogram of representativeness in tiered-ImageNet’s test set with features extracted by a
ResNet12. Ordinate values correspond to the percentage of the dataset’s population lying
in each bin. The average representativeness is 0.0408. All values are contained in the range
[0.0175, 0.0653]. 90% of images have a representativeness between 0.0313 and 0.0497.

(a) ρ = 0.0230 (b) ρ = 0.0271 (c) ρ = 0.0360 (d) ρ = 0.0473 (e) ρ = 0.0578

Figure 6.3: Examples of images of the class strawberry with increasing scores of representativeness ρ. Images
with low representativeness may be considered as worst examples of strawberries than images
with higher representativeness.
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6.3 Correlation between support set quality and models’ performance

What are the causes for bad representativeness? In Figure 6.4, we display some of
the images with the worst representativeness and expose four common causes for low representa-
tiveness:

1. A distracting object catches the "eye" (or attention of the model) at the expense of the
object responsible for the image’s label. This is a consequence of the single-label pattern of
ImageNet: when labeling images, annotators are solely asked whether a label is present in
the image, not whether it is the main object in the image. This, however, seems to be fixable
with a simple re-cropping around the object of interest, as proposed in Bendou et al. 2022.

2. Re-cropping would not solve this issue in all instances, because some images suffer from the
sliding-door effect: there is, as before, a distracting object, but it is "inside" of the object of
interest.

3. The object, albeit being without question what is described in the label, is very different
from what we would expect for an image with this label (e.g., chocolate sauce is usually
presented in a bowl or a plate, in the context of a desert).

4. The last cause is a very specific one. It is, in fact, most likely too specific to occur outside
of ImageNet, but we report it for completeness: a fairly large number of images with low
representativeness correspond to some kind of grid in the foreground partially hiding the
object of interest.

6.3 Correlation between support set quality and models’
performance

The natural next step would be to exhibit a correlation between the quality of the support examples
in a few-shot task and the performance of Few-Shot Learning models on this task.

Methodology We consider three standard Few-Shot Learning methods: Prototypical Net-
works (Snell et al. 2017), Transductive Information Maximization (TIM) (Boudiaf, Ziko, et al.
2020), and BD-CSPN (J. Liu et al. 2020). We apply these methods on L2-normalized features
extracted with the ResNet12 described in Section 6.2.3, and observe the results on a testbed Ẽtest(1)
of 5000 5-way 1-shot tasks sampled uniformly at random from the tiered-ImageNet benchmark.
This gives us a series {Ai}50001 of observed accuracies. On the other hand, we observe for each task
Ti with a support set Si its representativenessRi = meanx∈S ρθ(x), where θ are the parameters
of the aforementioned ResNet12. In the following, we exhibit a correlation between the seriesA
andR. To do so, we use Pearson’s correlation which is defined as the following:

r(A,R) = cov(A,R)
σ(A)σ(R)

with cov the covariance and σ the standard deviation. Pearson’s correlation coefficient takes values
between−1 and 1. r = 0 means that the two variables are independent, while r = 1 means full
correlation between them.
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(a) beer bottle (b) orange (c) pill bottle (d) lemon (e) bad lemon

(f) sliding door (g) sliding door (h) washbasin (i) orange (j) coffeemug

(k) chocolate
sauce (l) beer bottle

(m) cheese-
burger (n) bull mastiff

(o) Bernese
mountain
dog

(p) Bouvier des
Flandres

(q) old English
sheepdog (r) grasshopper

Figure 6.4: Examples of images taken among the 100 images with worst representativeness (out of more than
200k images in tiered-ImageNet). Images are arranged by likely cause of their low representative-
ness, such that the first row (a-e) corresponds to images with a distracting object catching the eye
at the expense of the object responsible for the image’s label. The second row (f-j) corresponds
to what we would call the sliding-door effect, as not only is there a distracting object, but also the
image could not be cropped to focus on the object of interest. The third row (k-n) corresponds to
a different likely cause for low representativeness: the object, albeit being without question what
is described in the label, is very different from what we would expect for an image with this label
(e.g., chocolate sauce is usually presented in a bowl or a plate, in the context of a desert). Finally,
the fourth row (o-r) corresponds to the very specific but oddly frequent issue of the object of
interest being partially hidden behind a grid, which seems to distract the feature extractor.
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6.4 Conclusion and Limitations

r(A,R) r(A, {κ})
ProtoNet (Snell et al. 2017) 0.40 0.15
BD-CSPN (J. Liu et al. 2020) 0.34 0.20
TIM (Boudiaf, Ziko, et al. 2020) 0.39 0.18

Table 6.1: Pearson’s correlation coefficient r(A,R) between accuracy and representativeness on 5000 5-way
1-shot tasks sampled uniformly at random from tiered-ImageNet. For comparison, we show
the Pearson’s correlation coefficient r(A, {κ}) between accuracies and the series formed by the
coarsities of the tasks, as defined in Equation 5.2.

Strong correlation between representativeness and accuracy Our experiments
show that following the aforementioned methodology, we obtain a strong correlation between
A and R. This is exhibited in Table 6.1, as the correlation between accuracy and representa-
tiveness exceeds the correlation between accuracy and task coarsity which was proven in Section
5.6.2. To support these findings, we show in Figure 6.5 a visualization of the correlation between
representativeness and accuracy.

Ideal support sets decisively improve performance Going further, we wanted to
measure the upper bound of the improvement potential of improving the quality of the support
set. To do so, we constituted an ideal testbed ẼItest(1) replicating the same tasks of the original 1-shot
testbed Ẽtest(1), but in each support set, for each class, the original support image is replaced by
the image with the highest representativeness, among all images in the dataset with the same label
and that do not appear in the corresponding query set. In doing so, we ensure that for each task,
we provide, according to our representativeness criteria, the best available support set. In Figure
6.6, we show the consistent and decisive gain in accuracy provided by these ideal support sets.

6.4 Conclusion and Limitations

Of course, there is a tremendous bias in this study of the correlation between accuracy and repre-
sentativeness, as both are based on the same feature extractor. A deeper study of these phenomena
will need to consider measures of representativeness that are agnostic of the feature extractor. This
is expected to be a very hard task since we are terribly dependent on learned representation models
for computer vision tasks.

Another drawback of the chosen measure of representativeness is that it does not take into
account the relationship between the instances and classes composing the support set. In Chapter
5, we exhibited that the similarity between the classes composing a task is of prior importance to
the performance of Few-Shot Learning models. Intuitively, it would also factor in the optimal
choice for support examples. In Figure 6.1a, in addition to the terrible example for the great white
shark class, we notice that there are two very similar classes: bathtub and tub. It is understandable
that based on the two available examples for these classes, it would be hard to properly define the
frontier between them (it would probably be strongly biased towards the presence of feet). In this
situation, the best examples would not necessarily be those that lie at the center of their respective
class’s cluster, but rather examples that draw the decision frontier that is closest to the ground
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6 Perspective: Observations on Support Set Quality

Figure 6.5: Representativeness (left axis) versus accuracies of three Few-Shot Learning models in percents
(right axis). The 5000 tasks of the benchmarks are sorted by order of increasing representativeness.
The accuracies are smoothed over a rolling window of 100 tasks.

(a) ProtoNet (Snell et al. 2017).
Average accuracy gain: 18%

(b) BD-CSPN (J. Liu et al. 2020).
Average accuracy gain: 15%

(c) TIM (Boudiaf, Ziko, et al.
2020).
Average accuracy gain: 17%

Figure 6.6: Histogram of accuracies on the original testbed Ẽtest(1) and the ideal testbed ẼItest(1) for three
distinct methods, using a ResNet12. For all methods, switching to the ideal testbed mitigates
the error rate by more than 40%.
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6.4 Conclusion and Limitations

truth. Therefore, we postulate that future works focusing on the quality of the support set will
need to provide a measure of representativeness in the context of a given support set.

Nevertheless, this study shows that the selection of support examples is a decisive factor in the
performance of Few-Shot Learning models. Even though the ideal support examples were selected
through a highly illegal process, we cannot ignore that selecting the right examples can mitigate the
error rate of Few-Shot Learning models by more than 40% in the 1-shot scenario.
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7 Conclusion and perspectives

7.1 Looking back at the contributions

In this thesis, we identified limitations in the current formulation and evaluation processes in
Few-Shot Image Classification and proposed countermeasures to mitigate these limitations. Let us
review these contributions chronologically:

1. In 2021, we introduced the problem of Few-Shot Learning under Support-Query Shift. We
proposed FewShiftBed, a novel benchmark to evaluate Few-Shot Learning methods under
Support-Query Shift. We offered a first solution to the problem by combining Prototypical
Networks with Optimal Transport. This contribution was reported in Chapter 3. Note
that FewShiftBed was built for episodic training. Indeed, we put a lot of effort into building
benchmarks that offered a wide variety of classes and domains both in the test set, training
set, and validation set, which is necessary to learn to learn on new domains on the training
set. However, we did not find any evidence that episodic training improved the models’
performance compared to standard empirical risk minimization.

2. Then in 2022, we provided a quantitative and qualitative study of the test tasks generated
from ImageNet-derived benchmarks and showed that these benchmarks are heavily biased
towards tasks composed of semantically unrelated classes. We harnessed the WordNet
taxonomy to enforce the sampling of fine-grained tasks from tieredImageNet in order to
re-balance this benchmark. This contribution was reported in Chapter 5. It is worth
mentioning that the strategy we exposed in this chapter to sample semantically fine-grained
tasks was originally meant to be used during episodic training, with the intuition that
training on finer-grained tasks would improve predictions. However, the performance only
improved marginally compared to either standard episodic training or standard empirical
risk minimization, and therefore this did not lead to a contribution.

3. In 2023, we tackled the recent Few-Shot Open-Set Recognition problem using pre-trained
models and transductive inference. Both our solutions set a new milestone in model-agnostic
Few-Shot Learning. Indeed, we did not make any assumption on the backbone, its archi-
tecture, or its training process, and focus on the inference strategy. In doing so, we were
able to report a large and steady improvement over the baselines on a wide variety of base
models, without any re-training or re-tuning of the hyperparameters. This last published
contribution was reported in Chapter 4.

4. Finally, in the winter of 2022-23, we pursued investigations on what makes the quality of a
support set. In this study, we assume representations extracted by a given pre-trained model,
without any assumption on its architecture and training procedure. These investigations
are detailed in Chapter 6.
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7 Conclusion and perspectives

As such, the story of this thesis can be seen as the story of the transition, from a Few-Shot
Learning research limited to the scope of "meta-learning", towards a Few-Shot Learning research
focusing on the inference, leaving the base training to the neighboring field of representation
learning. This corresponds to an emerging trend, following an increasing number of studies that
raise concern about the theoretical foundations of episodic training for classification tasks and
question its empirical validation (Antoniou, Edwards, et al. 2019; Bennequin 2019; Laenen and
Bertinetto 2021).

7.2 Whatwe did not do

Mix between large-scale and few-shot classes Looking back at the use cases presented
in Section 1.2, we addressed, be it partially, all the gaps that we observed between those use cases
and the standardized academic setting for Few-Shot Learning. Except for one: the mix between
large-scale and few-shot classes i.e., the possibility that some classes may have a large number of
labeled examples. This is close to a problem addressed, with different perspectives and hypotheses,
in Generalized Few-Shot Learning and Long-Tail Recognition.

• Generalized Few-Shot Learning (Ye et al. 2020) is, quite transparently, a generalization of
the Few-Shot Learning setting. In this generalization, we break the assumption that the
classes of a few-shot task are entirely disjoint from the classes in the base set: some base
classes may come back. Depending on the chosen setting, we may or may not assume that
we still have access to the entire base set.

• Long-Tail Recognition (Y. Zhang, Kang, et al. 2023) studies a specification of the standard
visual recognition problems in which the number of images in the classes follows a long-
tailed distribution i.e., some classes have many examples and many classes have very few
examples.

The prison of transductivity The advertised goal of this thesis was to move Few-Shot
Learning research towards more realistic settings, in order to make it more relevant to industrial
applications. However, in doing so, we had to resolve to a very strong assumption: transduction. In
both Chapters 3 and 4, our proposed methods rely on transduction i.e., performing prediction
on batches of queries at a time. The reader might notice that this assumption holds in exactly
zero of the use cases for few-shot image classification presented in Section 1.2. Revisiting our
contributions, we motivated this choice by the increased complexity resulting from the relaxation
of other assumptions. Indeed, in the context of Support-Query Shift, it seems delusive to try and
adapt to a target distribution empirically defined by one point. The same problem arises in Few-
Shot Open-Set Recognition: it would be very hard (and has been confirmed as such by previous
studies) to detect that a single point deviates from class distributions empirically defined by only
one example each. We were evidently unable to solve these difficult problems in an inductive
fashion. We believe that this motivates very challenging future research. In Section 4.2, we linked
the difficulty of Few-Shot Open-Set Recognition to the poor "quality" of the class distributions
in the representation space (considered through the proxy of the integrity of class clusters) in a
few-shot scenario. We believe that improving this representation space is of prior importance to
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7.3 The future of Few-Shot Learning

the success of Few-Shot Learning models, especially in the more challenging scenarios considered
in this thesis.

Thorough study of relevant metrics In Chapter 5, we started to reflect on the metrics
used to evaluate Few-Shot Learning models, departing from the current idea that the top-1 accuracy
on uniformly sampled 1-shot and 5-shot 5-way tasks gives a good enough measure of the value of a
model. In addition to a new way of sampling test tasks, we propose a first benchmark including
100-way tasks, for which we report both the top-1 and top-5 accuracy. The results shown in Table
5.2 raise strong concerns about the ability of current Few-Shot Learning models to solve tasks that
are harder than discriminating between 5 classes. However, we believe this study is insufficient, and
that a lot remains to be done to standardize more relevant benchmarks and metrics for Few-Shot
Learning. Indeed, not only is this study incomplete (why 100 classes? why still 1 and 5 shots?
couldn’t we replace these arbitrary settings with aggregated benchmarks?), it failed to arouse the
interest of the community and convince our fellow researchers of the need for more realistic
benchmarks.

Breaking thewalls between sub-domains A persistent theme of this thesis is the study of
settings made by the combination of constraints, such as Few-Shot Learning under Support-Query
Shift, or Few-Shot Open-Set Recognition. Our next study could very well be about Few-Shot
Open-Set Recognition under Support-Query Shift. It would be relevant to the e-shopping use case
described in Section 1.2. Real-world use cases are not limited to one such constraint, nor are they
limited to two. All the combinations of such constraints can be thought of, and it is likely that there
currently is a real industrial use case for many of them. Should it motivate us to build a specific
area of research for each of them, with a siloed research community, specific benchmarks, and
convoluted methods? Should there be a thesis titled Semi-Supervised Fine-Grained Incremental
Few-Shot Open-Set Recognition under Three Out of Four Possible Kinds of Distribution Shift?

In this thesis, we studied interesting openings of the Few-Shot Learning assumptions but
mostly stayed inside of the Few-Shot Learning landscape, comparing to its specific methods on
its homemade benchmarks. Yet our main finding seems to be that the convoluted methods and
training schemes designed specifically for Few-Shot Learning do not provide much value, and
we ended up focusing on the best way to harness a pre-trained feature extractor. In the end, we
consider Few-Shot Learning, as well as Few-Shot Open-Set Recognition, as a downstream task of
representation learning. This being said it would seem more relevant to join our efforts with the
communities that currently study the neighboring few-data and few-label problems.

7.3 The future of Few-Shot Learning

As we reach the end of this thesis, our strong intuition is that future works in Few-Shot Learning
need to study more general problems than Few-Shot Learning. Our findings in Chapter 4 left us
with the impression that the specific methods designed for Few-Shot Learning brought little value,
compared to the performance that can be achieved by plugging simple, principled models on top
of the best foundation models obtained through the latest advances in representation learning.
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7 Conclusion and perspectives

We believe that the natural next step would be a thorough empirical study evaluating the
respective importance of the feature extractor compared to the chosen Few-Shot Learning method.
This study would surely be a very difficult one, as for fair comparison one would need to scale
up all Few-Shot Learning methods, including those based on episodic training, to combine them
with very large models, even though we know episodic training to be very hard to tune, even on
small models. We still believe that this study is necessary to rid the Few-Shot Learning research
community of its misconception and allow us to move forward.

We would then be able to leverage all the latest advances in representation learning to improve
performance on a wide variety of small-data tasks, including the current Few-Shot Learning
setting. Free from the burden of large-scale training of foundations models, we could focus on
the development of simple, principled methods to solve some or all of the small-data tasks, given a
pre-trained feature extractor.
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Extended experimental results on
FewShiftBed

In this section we present the extended results of our experiments. Prototypical Networks, Match-
ing Networks and Transductive Propagation Networks have been declined in 10 distinct versions:

• Original algorithms: episodic training, with Conventional Batch-Normalization (CBN)
and not Optimal Transport (Vanilla);

• Episodic training and CBN, with Optimal Transport applied at test time (OT-TT);

• Episodic training and CBN, with Optimal Transport integrated into the algorithm both
during training and testing (OT);

• Episodic training, with Transductive Batch-Normalization (TBN) and not Optimal
Transport (Vanilla);

• Episodic training and TBN, with OT-TT;

• Episodic training and TBN, with OT;

• Standard Empirical Risk Minimization (ERM) instead of episodic training, with CBN and
not Optimal Transport (Vanilla);

• ERM with CBN and OT;

• ERM with TBN and no Optimal Transport (Vanilla);

• ERM with TBN and OT.

Transductive Fine-Tuning (FTNet) is not compatible with episodic training. Also the integra-
tion of Optimal Transport into this algorithm is non trivial. Therefore we only applied FTNet
with ERM and without OT.

Every result presented in the following tables is the average over three runs with three random
seeds (1, 2 and 3). For clarity, we do not report the 95% confidence interval for each result. Keep in
mind that this interval is different for each result, but we found that it is always greater than±
0.2% and smaller than± 0.8%.

Details of the experiments and instructions to reproduce them are available in the code.
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Meta-CIFAR100-C 1-shot 8-target

Episodic training Standard ERM

CBN TBN CBN TBN

Vanilla w. OT-TT w. OT Vanilla w. OT-TT w. OT Vanilla w. OT Vanilla w. OT

ProtoNet (Snell et al. 2017) 30.02 32.11 33.74 32.47 32.81 34.00 29.10 35.48 29.79 35.4
MatchingNet (Vinyals et al. 2016) 30.71 32.85 34.48 32.97 32.78 35.11 33.50 36.13 33.67 35.87

TransPropNet (Y. Liu et al. 2019) 30.26 28.70 26.87 34.15 29.48 27.68 23.33 31.08 22.55 31.20
FTNet (Dhillon et al. 2020) - - - - - - 28.91 - 28.75 -

Meta-CIFAR100-C 1-shot 16-target

ProtoNet (Snell et al. 2017) 29.98 32.24 35.63 32.52 31.72 36.20 29.02 35.89 29.61 35.94
MatchingNet (Vinyals et al. 2016) 31.1 30.94 35.53 33.08 33.28 36.36 33.49 36.61 33.64 36.54

TransPropNet (Y. Liu et al. 2019) 30.82 32.39 31.15 34.83 33.53 31.33 26.81 33.9 27.92 34.10
FTNet (Dhillon et al. 2020) - - - - - - 29.01 - 28.86 -

Meta-CIFAR100-C 5-shot 8-target

ProtoNet (Snell et al. 2017) 42.77 47.54 48.37 48.00 48.62 49.71 44.89 48.61 46.59 48.66
MatchingNet (Vinyals et al. 2016) 41.15 43.90 44.55 45.05 44.86 45.78 43.00 45.35 43.51 45.10
TransPropNet (Y. Liu et al. 2019) 39.13 40.60 25.68 47.39 40.47 27.29 29.32 39.82 29.50 29.82
FTNet (Dhillon et al. 2020) - - - - - - 37.28 - 37.40 -

Meta-CIFAR100-C 5-shot 16-target

ProtoNet (Snell et al. 2017) 42.07 48.26 48.25 46.49 48.71 49.94 44.67 48.61 46.48 48.89
MatchingNet (Vinyals et al. 2016) 41.74 44.51 45.71 44.91 44.71 47.37 42.97 46.06 46.22 46.37
TransPropNet (Y. Liu et al. 2019) 38.73 39.25 37.22 43.91 40.62 40.02 33.06 40.03 33.93 40.03
FTNet (Dhillon et al. 2020) - - - - - - 37.51 - 37.66 -

FEMNIST-FewShot 1-shot 1-target

ProtoNet (Snell et al. 2017) 84.31 94.00 92.31 90.36 94.92 93.63 80.20 94.30 86.22 94.22
MatchingNet (Vinyals et al. 2016) 84.25 93.66 92.73 91.05 95.37 93.62 85.04 94.34 87.19 94.26
TransPropNet (Y. Liu et al. 2019) 31.30 40.60 79.30 86.42 93.08 87.52 45.36 73.64 47.34 79.50
FTNet (Dhillon et al. 2020) - - - - - - 86.13 - 85.92 -

Table 1: Ablation study for all compared state-of-the-art methods on MC100-C and FEMNIST.
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Extended results for Open-Set Few-Shot
Image Classification

1 Normalizing centroids

Because we work with normalized features, we state in our implementation details that we found
normalizing ||µ|| after each update helps. Here we show that this "projected step" is actually the
exact solution to the optimization problem Eq. (4.10) when adding the constraint µ ∈ B2, where
B2 = {x : ||x||2 = 1} is the unit hypersphere.

Specifically, adding the constraint µ ∈ B2 modifies the Lagrangian by infinitely penalizing µk

for being outside the unit hypersphere. Without loss of generality, we only consider the part of the
Lagrangian pertaining to µk for some k ∈ [1,K], which we refer to asLk:

Lk(µk) =

|S|+|Q|∑
i=1

ξizik||µk − ϕθ(xi)||2 + LB2(µk)

whereLB2(µk) equals 0 if µk ∈ B2 and∞ otherwise. BecauseLk is no longer differentiable, we
introduce the subdifferential operator ∂·(·), which generalizes the standard notion of differentia-
bility. Akin to the standard case, we look for µk such that:

0 ∈ ∂µk
Lk(µk),
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which amounts to:

⇔ 0 ∈ {∇µk

|S|+|Q|∑
i=1

ξizik||µk − ϕθ(xi)||2}+ ∂µk
LB2(µk)

⇔
|S|+|Q|∑
i=1

ξizik ϕθ(xi)− µk(

|S|+|Q|∑
i=1

ξizik) ∈ ∂µk
LB2(µk)

⇔
∑|S|+|Q|

i=1 ξizik ϕθ(xi)∑|S|+|Q|
i=1 ξizik

− µk ∈ ∂µk

1∑|S|+|Q|
i=1 ξizik

LB2(µk)

⇔
∑|S|+|Q|

i=1 ξizik ϕθ(xi)∑|S|+|Q|
i=1 ξizik

− µk ∈ ∂µk
LB2(µk)

⇔ µk = ProjB2
(

∑|S|+|Q|
i=1 ξizik ϕθ(xi)∑|S|+|Q|

i=1 ξizik
)

where the penultimate step holds because λLB2(µk) = LB2(µk) by definition ofLB2(µk), and
the last step holds because the projection operator ProjB2

(µk) =
µk

||µk||
is the proximity operator

of the constraint functionLB2(µk).

2 Detailed metrics

Here we provide some details about the metrics used in Section 4.5
Acc: the classification accuracy on the closed-set instances of the query set (i.e., yq ∈ CS).
AUROC: the area under the ROC curve is an almost mandatory metric for any OOD detection

task. For a set of outlier predictions in [O, 1] and their ground truth (0 for inliers, 1 for outliers),
any threshold γ ∈ [O, 1] gives a true positive rate TP(γ) (i.e., recall) and a false positive rate FP(γ).
By rolling this threshold, we obtain a plot of TP as a function of FP i.e., the ROC curve. The
area under this curve is a measure of the discrimination ability of the outlier detector. Random
predictions lead to an AUROC of 50%.

AUPR: the area under the precision-recall (PR) curve is also a common metric in OOD detec-
tion. With the same principle as the ROC curve, the PR curve plots the precision as a function of
the recall. Random predictions lead to an AUPR equal to the proportion of outliers in the query
set i.e., 50% in our set-up.

Prec@0.9: the precision at 90% recall is the achievable precision on the few-shot open-set
recognition task when setting the threshold allowing a recall of 90% for the same task. While
AUROC and AUPR are global metrics, Prec@0.9 measures the ability of the detector to solve a
specific problem, which is the detection of almost all outliers (e.g., for raising an alert when open-set
instances appear so a human operator can create appropriate new classes). Since all detectors are
able to achieve high recall with a sufficiently permissive threshold γ, an excellent way to compare
them is to measure the precision of the predictor at a given level of recall (i.e., the proportion of
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3 Additional results

false alarms that the human operator will have to handle). Random predictions lead to a Prec@0.9
equal to the proportion of outliers in the query set i.e., 50% in our set-up.

3 Additional results

We provide a more complete version of Fig. 4.5 in Fig. 1 and 2, showing the additional Prec@0.9
metric, along with the results on the WRN2810 provided by Ye et al. 2020.

In Figure 3, we propose additional results on miniImageNet to show the impact of the size of
the query set on the performance of various methods.
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Figure 1: Complete version of Fig. 4.5 with a ResNet-12. (Left column): 1-shot. (Right column): 5-shot.
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Figure 2: Complete version of Fig. 4.5 with a WideResNet 28-10. (Left column): 1-shot. (Right column):
5-shot.
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Figure 3: Oslo improves performance even with few queries. We study the closed-set (accuracy) and
open-set (AUROC) performance of transductive methods depending on the size of the query set
on mini-ImageNet in the 1-shot and 5-shot settings. The total size |Q| of the query set is obtained
by multiplying the number of queries per classNQ by the number of classes in the task (i.e., 5)
and adding as many outlier queries e.g.,NQ = 1 corresponds to 1 query per class and 5 open-set
queries i.e., |Q| = 10. We add the inductive method k-NN + SimpleShot to compare with a
method that is by nature independent of the number of queries. This extends the results of Figure
4.7.
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