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Abstract

The Casimir-Polder interaction between atoms and macroscopic surfaces is a fundamental
prediction of quantum electrodynamics of importance for precision measurements, quan-
tum technologies and our understanding of the electromagnetic properties of materials. In
the near field, Casimir-Polder interactions are described as the interaction of the fluctuat-
ing atomic dipole with its surface-induced image, which evolves as −C3/z

3 where z is the
atom-surface distance and C3 is the van der Waals coefficient. In this thesis, we study both
theoretically and experimentally the Casimir-Polder interaction between a highly excited
caesium atom (Rydberg atom) and a dielectric surface. Our theoretical study extends pre-
vious studies to include higher-order terms in the atom-surface interaction, beyond the
dipole-dipole interaction term investigated in the seminal work of Casimir and Polder.
In particular, we include quadrupole-quadrupole and dipole-octupole interaction terms
with a distance dependence of −C5/z

5 giving explicit calculations of the C5 coefficients
for most common alkali atoms. We also describe a new selective reflection experiment
probing Cs Rydberg atoms (15− 17D3/2 and 16− 17S1/2) at nanometric distances away
from a sapphire surface. The experiment is performed in an all-sapphire vapour cell using
stepwise excitation spectroscopy that includes a pumping step at 6S1/2 → 6P1/2 (894nm)
and a selective reflection probing step at 6P1/2 → nS1/2, nD3/2 with n = 15 - 17 (∼ 510
nm). To analyze our experimental spectra, we extend selective reflection theory beyond
the infinite Doppler approximation, including in our analysis the Maxwell-Boltzmann dis-
tribution of atomic velocities. Fitting our theoretical lineshape model to our experimental
spectra allows us to extract the C3 van der Waals coefficient for the probed caesium ex-
cited states. This C3 measurement exceeds the theoretical predictions of Casimir-Polder
theory by a factor of about 1.5 - 2, depending on the probed state. Finally, we describe a
new thin-cell experiment that aims to illuminate the reported disagreement between the-
ory and experiment for the C3 coefficient and provide a first experimental measurement
of the C5 coefficient (experimental study of higher-order interactions).
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Résumé

L’interaction Casimir-Polder entre un atome et une surface macroscopique est une pré-
diction fondamentale de l’électrodynamique quantique, importante pour les mesures de
précision, les technologies quantiques et notre compréhension des propriétés électromag-
nétiques des matériaux. En champ proche, les interactions Casimir-Polder sont décrites
comme l’interaction du dipôle atomique fluctuant avec son image induite par la surface,
qui évolue comme −C3/z

3, où z est la distance atome-surface et C3 le coefficient de van der
Waals. Dans cette thèse, nous étudions théoriquement et expérimentalement l’interaction
Casimir-Polder entre un atome de césium fortement excité (atome de Rydberg) et une
surface diélectrique. Notre théorie étend les études précédentes pour inclure des termes
d’ordre supérieur dans l’interaction atome-surface, au-delà du terme d’interaction dipôle-
dipôle étudié dans le travail de Casimir et Polder. En particulier, nous incluons des termes
d’interaction quadrupôle-quadrupôle et dipôle-octupôle avec une dépendance en distance
de −C5/z

5. Nous fournissions également des calculs explicites des coefficients C5 pour la
plupart des atomes alcalins courants. Nous décrivons également une nouvelle expérience
de réflexion sélective sondant des atomes de Rydberg de Cs (15− 17D3/2 et 16− 17S1/2)
à des distances nanométriques d’une surface de saphir. L’expérience est réalisée dans
une cellule à vapeur entièrement en saphir en utilisant une spectroscopie d’excitation par
étapes qui comprend une étape de pompage à 6S1/2 → 6P1/2 (894nm) et une étape de
sondage par réflexion sélective à 6P1/2 → nS1/2, nD3/2 avec n = 15 - 17 (∼ 510 nm). Afin
d’analyser nos spectres expérimentaux, nous étendons la théorie de la réflexion sélective
au-delà de l’approximation Doppler infinie, en incluant dans notre analyse la distribution
Maxwell-Boltzmann des vitesses atomiques. L’ajustement de nos spectres expérimentaux
avec nos modèles théoriques nous permet d’extraire le coefficient de van der Waals C3 pour
les états excités du césium sondés. Les résultats expérimentaux dépassent nos prédictions
théoriques (d’un facteur d’environ 1,5 à 2, selon l’état sondé). Enfin, nous décrivons une
nouvelle expérience en cellule mince qui vise à éclaircir le désaccord signalé entre la théorie
et l’expérience pour le coefficient C3 et à fournir une première mesure expérimentale du
coefficient C5 (étude expérimentale des interactions d’ordre supérieur).
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Chapter 1

Introduction

The interaction between atoms and macroscopic surfaces is a fundamental prediction of

quantum electrodynamics of importance for precision measurements, quantum technolo-

gies and our understanding of the electromagnetic properties of materials. Atom-surface

interactions were studied from the early 20th century in the works of Lennard-Jones [1],

described as the interaction between the fluctuating atomic dipole and its surface-induced

image. In this case, the interaction energy is equal to −C3/z
3, where z is the atom-surface

separation and C3 is the dipole-dipole interaction coefficient (also called the van der Waals

coefficient) that depends on the atomic state as well as the dielectric properties of the

surface. This description is only valid in the electrostatic limit when field propagation

effects can be ignored (i.e. when z << λ/4π, where λ is the relevant atomic transition

wavelength)

In their seminal work, Casimir and D. Polder [2] examined the atom-surface interaction

in a different way, taking into account the effects of propagation. In their interpretation,

the atom interacts with the vacuum fluctuations modified by the presence of a surface.

For ground-state atoms, they calculated the atom-surface interaction energy for arbitrary

atom-surface separations, demonstrating that in the far-field limit the energy scales as

−α/z4, where α is the atomic polarizability. Naturally, in the near field (z << λ/4π) the
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interaction energy converges to the electrostatic limit. The predictions of Casimir and

Polder were experimentally confirmed in the group of E. A Hinds [3] and subsequently by

a number of other experiments. For this reason, the term "Casimir-Polder" has become

a generic term for atom-surface interactions.

The fluctuations of the atomic dipole (quantum mechanical average over the atomic state)

scale very rapidly with the atomic excitation. In the case of alkali atoms (with one exter-

nal electron), the spread of the atomic wavefunction scales as n∗2, where n∗ = n − δ is

the effective quantum number (n is the principal quantum number and δ is the quantum

defect), suggesting that dipole moment fluctuation scale as n∗4. For this reason, highly

excited atoms (Rydberg atoms) are expected to present huge atom-surface interactions

making them very good candidates for experimental atom-surface measurements (and

measurements of dispersion forces in general).

Due to their strong interactions with their surrounding environment, Rydberg atoms

also present strong collective effects [4][5], the most emblematic of which is the Ryd-

berg blockade. For this reason, Rydberg atoms now find a renewed interest in quantum

technology applications based on thin-cell devices [6]. Additionally, Rydberg states can

be used for precision electrometry and imaging in the microwave [7][8] and terahertz [9]

range. Hybridization of Rydberg atoms with photonic platforms [10][11] for technological

applications requires a good understanding of their interactions with dielectric surfaces.

Previous studies of the Casimir-Polder effect have focused on the interaction of fluctuat-

ing dipoles, ignoring higher-order multipole terms. This is well justified for experiments

involving ground state or low-lying excited atoms since the atomic size (smaller than 1

nm) is negligible compared to the probed atom-surface distances (typically 100nm for

more). In the case of Rydberg atoms, the dipole approximation should be put into ques-

tion, because the spread of the electron wavefunction, scaling as n∗2, can be as large

as 100nm for relatively modest excitations with a principal quantum number n ∼ 35.
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Rydberg atoms are therefore an excellent system for studying higher-order interactions

(quadrupole-quadrupole and octupole-dipole). Although some theoretical treatment of

this subject already exist [12] [13], there is so far no experimental demonstration of mul-

tipole effects in Casimir-Polder interactions.

Rydberg-surface Casimir-Polder (CP) interaction was first measured with sodium atomic

beams flying through a metallic cavity demonstrating the van der Waals law of interaction

[14]. More recently, thin atomic vapour cells [15] or hollow fibre [16] have been used as

platforms to probe Rydberg atoms close to the surface. However, experiments with high-

lying rubidium Rydbergs (n= 32 - 43) [15] were not in agreement with Casimir-Polder

theory, sparking closer theoretical studies of Rydberg-surface interactions.

In our group SAI (Spectroscopie Atomique aux Interfaces), we use a technique which is

called selective reflection spectroscopy (SR) that probes atoms at a typical distance of

about λ/2π (here λ is the excitation wavelength) and allows the measurement of Casimir-

Polder interactions of excited atoms using atomic vapour cells [17][18]. This technique

has been extensively used to probe low-lying excited states at a nanometric distance

from dielectric windows, measuring C3 coefficients [19][20], as well as exploring the cou-

pling of atoms with surface polaritons [21][22]. Previously in our group, nanometric thin

cells (TC) [23] having a thickness ranging from 30 nm to 1µm have also been used to

measure atom-surface interactions by confining atoms very close (∼ 50 nm) to the surface.

This thesis aimed to probe Rydberg atoms close to a sapphire surface using both of these

techniques. The caesium atoms are first excited by a strong pump laser to the first caesium

resonance (6P1/2) with a DBR laser at λ = 894 nm (pump laser) and subsequently the

6P1/2 → nS1/2, nD3/2 (n = 15 - 17) transition are probed with a tunable extended cavity

laser at λ = 512 nm - 508 nm (probe). The setup is similar to the one described in [22].

The outline of this thesis is as follows:

• In the second chapter, we deal with the non-retarded Casimir-Polder interaction
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between highly excited atoms and dielectric surfaces. In an electrostatic framework,

we expand the calculation of the atom-surface energy beyond the dipole-dipole

approximation calculating quadrupole-quadrupole and octupole-dipole terms that

scale as −C5/z
5. In this chapter, we provide explicit calculations of the C3 and C5

coefficients.

• In the third chapter, we present numerical calculations of selective reflection and

thin cell spectra, accounting for the Maxwell-Boltzmann velocity distribution, by-

passing the infinite Doppler approximation that was used up to now for calculating

SR spectra. We subsequently use our numerical models in order to explore the

effects of higher-order interactions in thin-cell and SR spectra.

• In the fourth chapter, we describe the experimental techniques (selective reflection

and thin cell) used for measuring Rydberg-surface interactions.

• In the fifth chapter, we present the results of our SR experiment on 6P1/2 →

nS1/2, nD3/2 (n = 15 - 17) transitions. A detailed analysis of the experimental

spectra allows us to measure the Rydberg-surface interactions. We find that the

experimental value of the C3 coefficient exceeds theoretical predictions (by a factor

of 1.5 or 2, depending on the probed state). We propose further experiments that

could be performed in order to illuminate this disagreement.

• In the sixth chapter, we present our preliminary work on thin cell spectroscopy on

Rydberg states.
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Chapter 2

Non-retarded Casimir-Polder

interactions between highly excited

atom and dielectric surface

In this chapter, we describe the non-retarded Casimir-Polder interaction between a Ry-

dberg atom and a dielectric surface at distances for which the atomic structure of the

surface is negligible. The interaction between an atom and a surface perturbs the free

atom Hamiltonian and shifts the atomic energy levels. In the non-retarded limit, these

energy shifts are mostly governed by dipole-dipole (image) interaction which goes as 1/z3,

where z is the distance between the atom and the surface. Highly excited atoms such as

the Rydberg atoms undergo stronger interaction as the dipole moment fluctuations evolve

as (n∗)4 (n∗ = n− δl, n is the principal quantum number and δl is the quantum defected

for given angular momentum quantum number l). On the other hand as the spread of

the atomic wavefunction which evolves as (n∗)2, becomes comparable to the atom surface

separation (z), the contribution of higher-order terms (such as quadrupole-quadruple,

dipole-octupole interaction and so on) starts to be non-negligible. Thus, corrections be-

yond the dipole-dipole approximation become important for predicting Rydberg atom-

surface interactions.
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In section 2.1, we build the theoretical framework for calculating the atom-surface interac-

tion energies (for a perfect reflector) beyond the dipole-dipole approximation assuming an

instantaneous correlation between the atom and its surface-induced image (electrostatic

approximation). This approach allows us to quantify for the first time quadrupole-image

quadrupole and dipole-image octopole atom-surface interactions.

In section 2.2, we calculate the external electron wavefunction for Rydberg atoms, consid-

ering an effective central potential. Using first-order perturbation theory, we subsequently

calculate the energy shift of Rydberg states due to the atom-surface interactions.

In Section 2.3, we estimate the C3 and C5 coefficients for the caesium Rydberg states

(nS1/2, nD3/2 n = 15 - 18) that are relevant in our experiments for an ideal reflecting

surface. These results can be very easily extended to other alkali atoms.

In section 2.4, we briefly describe the QED calculation of dipole-dipole Casimir-Polder

(CP) interactions in the near-field limit that allows us to account for the effects of surface

dispersion (frequency-dependent dielectric constant). We compute the C3 coefficient of

Rydberg-surface interactions by decomposition in a sum of all allowed dipole couplings

(from a given state). We demonstrate that for Rydberg atoms, whose major couplings lie

in the far-infrared or microwave range, it is only the static value of the dielectric constant

that plays a role in Casimir-Polder calculations and the effects of dispersion are negligible.

Used Symbols and Abbreviation:

Symbols

(Atom)
Abbreviation

Symbols

(Image)

ρ(r) Charge distribution ρim(r′)

q Electric charge qim

pi Electric dipole moment pimi

Qij Electric quadrupole moment Qim
ij

Tijk Electric octupole moment T im
ijk
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2.1 Method of Images: Interaction between a Rydberg

atom and its surface-induced image

We consider that a Rydberg atom consists of only one outermost external electron orbiting

around a positively charged core which includes the atomic nucleus and the electron cloud.

In the electrostatic limit, the atom-surface interaction is then an electrostatic interaction

between the atom and its surface-induced image. We represent the atom as a charge

distribution ρ(r) and the surface-induced image as ρim(r′). The surface is taken as a

perfect reflector (ε → −∞, where ε is relative permittivity), infinitely extended in x - y

plane while z is the atom-surface separation and r is the separation between the atom

and its image (Figure 2.1).

Figure 2.1: A Rydberg atom represented as a charge distribution ρ(r) and its surface
induced image ρim(r′). The surface is on the x - y plane while z is the atom-surface
separation and r is the separation between the atom and its image.

2.1.1 Multipole expansion of the potential

The interaction energy between the atom and the reflecting surface can be developed by

considering the atom being placed in the external potential Φim(r) created by its surface-

induced image. Performing a multipole expansion of the potential Φim(r) [24] and rewrite

the potential in a compact format (using Einstein’s summation notation and Gauss units),

23



we get:

Φim(r) =
qim

r
+ pimi

ri
r3

+
1

2
Qim

ij

rirj
r5

+
1

6
T im
ijk

rirjrk
r7

+ . . .

where,

• qim =
∫
ρim(r′)d3r′ is the image monopole moment (total charge).

• pimi =
∫
ri

′ρim(r′)d3r′ is the image dipole moment.

• Qim
ij =

∫ (
3r′ir

′
j − r

′2δij
)
ρim(r′)d3r′ is the image quadrupole moment.

• T im
ijk =

∫ [
15r′ir

′
jr

′
k − 3(δijr

′
k + δikr

′
j + δjkr

′
i)r

′2
]
ρim(r′)d3r′ is the image octupole mo-

ment.

Here, we limit ourselves to the octupole term. Keeping in mind that the atom is neutral,

we can omit the monopole term and write:

Φim(r) = pimi
ri
r3

+
1

2
Qim

ij

rirj
r5

+
1

6
T im
ijk

rirjrk
r7

+ . . .

= Φim
p (r) + Φim

Q (r) + Φim
T (r) + . . .

(2.1)

(for details see appendix, equation 7.1)

where Φim
p (r), Φim

Q (r) and Φim
T (r) are the potential due to image dipole, quadrupole and

octupole moment respectively.

2.1.2 Interaction energy between an atomic and its image (W )

The electrostatic interaction energy between the atom and the surface W can be calcu-

lated in the following form :

W =
1

2

∫
ρ(r)Φim(r)d3r

As we consider the interaction between an atom and its surface-induced image, our cal-

culation is only true in the region z > 0 i.e. the integration is only on half space. So we

must multiply the interaction energy by a factor of 1/2. If Φim(r) is a smooth (slowly

varying) function over the region where ρ(r) is non-negligible, we can expand this poten-

tial in the Taylor series by considering a suitably chosen origin (in our case it’s around
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the atomic itself) [24]. Restricting ourselves to the octupole term, the interaction energy

can be decomposed as:

W = Wppim︸ ︷︷ ︸
∼1/r3

+WpQim +WQpim︸ ︷︷ ︸
∼1/r4

+WQQim +WpT im +WTpim︸ ︷︷ ︸
∼1/r5

(2.2)

(for details see appendix, equation 7.11)

where Wppim , WpQim , WQpim , WQQim , WpT im , WTpim correspond to the interaction energy

between atom-image: dipole-dipole, dipole-quadrupole, quadrupole-dipole, quadrupole-

quadrupole, octupole-quadrupole, octupole-octupole respectively (batched together with

their dependence over r). The atomic moments (dipole pi, quadrupole Qij and octupole

Tijk moments) are linked to those of the image (pimi , Qim
ij , T im

ijk) by simple symmetry con-

siderations that are illustrated in Figure 2.2.

Figure 2.2: Elements of the electric dipole, quadrupole and octupole moment tensors of
the atom and its surface induced image.

2.1.2.1 Interaction energy between an atomic dipole and an image dipole

(Wppim)

We assume an atomic dipole p is placed in the field generated by its image dipole moment

pim. The interaction energy Wppim can be obtained from equation 2.2, as (in vectorial
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form):

Wppim =
1

2

p · pim

r3
− 3

2

(p · r)(pim · r)
r5

(2.3)

(for details see appendix, equation 7.4)

where p and pim are the atomic dipole moment and its image dipole moment respectively.

We can further simplify the expression, using the properties of symmetry described in

figure 2.2 that links the elements of the image dipole moments (pimi ) to the atomic dipole

moment (pi), as:

W total
pp = Wppim = − 1

16z3
[
p2 + p2z

]
(2.4)

where p2 = p2x + p2y + p2z.

Equation 2.4 gives the interaction energy between an atomic dipole and its image which

evolves by 1/z3, where z is the atom surface separation.

2.1.2.2 Interaction energy between an atomic dipole and an image quadrupole

(WpQim)

Similarly, the interaction energy WpQim for placing an atomic dipole p in a field generated

by its image quadrupole moment Qim can be obtained as:

WpQim = −5

4

(p · r)(r ·Qim · r)
r7

+
1

2

p ·Qim · r
r5

(2.5)

(for details see appendix, equation 7.5)

where p and Qim are the atomic dipole and the image quadrupole tensor respectively.

Using the symmetry properties we rewrite the interaction terms in a Cartesian coordinate

system :

WpQim =
1

64z4
[3pzQzz + 2pyQyz + 2pxQxz] (2.6)

where Qxz, Qyz, Qzz, ... are the components of the atomic quadrupole moment tensor.
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2.1.2.3 Interaction energy between an atomic quadrupole and an image dipole

(WQpim)

The interaction energy for placing atomic quadrupole Q in a field of the image dipole

pim can be given by:

WQpim = −1

2

pim ·Q · r
r5

+
5

4

(pim · r)(r ·Q · r)
r7

(2.7)

(for details see appendix, equation 7.7)

The terms involving the interaction between an atomic dipole-image quadrupole moment

(WpQim) and the atomic quadrupole-image dipole moment (WQpim) are the same due to the

symmetry properties between the atom and image. Thus we add these two interactions:

W total
pQ = WpQim +WQpim

=
1

32z4
[3pzQzz + 2pyQyz + 2pxQxz]

(2.8)

2.1.2.4 Interaction energy between an atomic quadrupole and an image quadrupole

(WQQim)

For an atomic quadrupole Q placed in the field of its image quadrupole Qim, the inter-

action energy WQQim can be expressed as:

WQQim =
1

12

[
Tr (Qim ·Q)

r5
− 10

r ·Q ·Qim · r
r7

+
35

2

(r ·Qim · r)(r ·Q · r)
r9

]
(2.9)

(for details see appendix, equation 7.9)

Simplifying and rewriting the interaction in a Cartesian coordinate system we get:

W total
QQ = WQQim = − 1

768z5
[
17Q2

zz + 16Q2
zy + 16Q2

zx + 2Q2
xx + 4Q2

yx + 2Q2
yy

]
(2.10)

Equation 2.10 shows us the interaction energy between an atomic quadrupole and its

image which evolves by 1/z5.
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2.1.2.5 Interaction energy between an atomic dipole and an image octupole

(WpT im)

The interaction energy WpT im , between an atomic dipole Pp and the image octupole Tim

is given by:

WpT im =
1

12

[
3pi(r · Tim

i · r)
2r7

− 7
(p · r)(r · Tim

i · r)ri
2r9

]
(2.11)

where the matrices Tim
i are defined as (Tim

i )jk = T im
ijk .

The interaction in the Cartesian coordinate system can be described as:

WpT im = − 1

384z5
[3pxTxzz + 3pyTyzz + pzTzzz] (2.12)

where

px,py, and pz are the components of the atomic dipole moment.

Tzxz,Tyzz,Tzzz, ... are the components of the octupole moment tensor.

Equation 2.12 shows the interaction energy between a dipole and its image octupole also

goes by 1/z5 similar to the quadrupole-quadrupole interaction term.

2.1.2.6 Interaction energy between an atomic octupole and an image dipole

(WTpim)

Similarly, the interaction energy WTpim between an atomic octupole T and the image

dipole pim is given by:

WTpim =
1

12

[
3(r · Ti · r)pimi

2r7
− 7

ri(r · Ti · r)(pim · r)
2r9

]
(2.13)

Due to symmetry properties, the terms involved in the interaction between dipole-image

octupole and octupole-image dipole terms are similar (in cartesian coordinates). Thus,

we add these interactions, as:

W total
pT = WpT im +WTpim

= − 1

192z5
[3pxTxzz + 3pyTyzz + pzTzzz]

(2.14)

28



2.2 Calculation of the atom-surface interaction coeffi-

cients (C3,C4,C5)

The atom-surface interaction perturbs the free atom Hamiltonian and induces an energy

shift that can be calculated using first-order perturbation theory. Using the interaction

energies that we calculated in the previous section (Equations 2.2), we can express the

frequency shift of an atomic level ∆f in terms of the interaction coefficients as:

∆f =
1

h
⟨ψn,j,mj

|W |ψn,j,mj
⟩ = −C3

z3
− C4

z4
− C5

z5
(2.15)

where C3, C4 and C5 are the interaction coefficients for dipole-image dipole, dipole-

image quadrupole and quadrupole-image quadrupole or dipole-image octupole interaction

coefficients.

The quantum state of the electron is expressed as:

|ψn,j,mj
⟩ ≡

∑
ml,ms

cl,s,jml,ms,mj

un,l(r)

r
Yl,ml

(θ, ϕ)χ(s)

where

un,l(r) represents the radial wavefunction

Yl,ml
(θ, ϕ) represents spherical harmonics

cl,s,jml,ms,mj
are the corresponding Clebsch–Gordan coefficients

χ(s) represents the wavefunction for spin

For the solution of the radial part of the wavefunction, we use the Numerov method

[25][26]. The radial wavefunction of the Rydberg atom is represented with the time-

independent Schrodinger’s equation for a hydrogen-like atom assuming that there is only

one outermost electron which orbits around a positively charged core consisting of the

nucleus and negatively charged electron cloud. The Coulomb interactions between the
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electrons are also neglected. In this context, Schrodinger’s equation can be expressed as:

− ℏ
2me

d2

d2r
un,l(r) +

[
ℏ2

2me

l(l + 1)

r2
− e2

r
Vl(r)− E

]
un,l(r) = 0 (2.16)

where
me is the mass of the electron.
ℏ is the reduced planks constant.
l is the orbital quantum number.
E = h.RH/n

∗2, the energy of the state taking into account the quantum defect (n∗ = n−δl
is the effective quantum number, RH is Rydberg constant) [27].
Vl(r) is the modified central potential, which depends on the orbital angular momentum
of the valence electron and also takes into account the effect of the static polarizability
of the core electron cloud [28].

Figure 2.3 shows the square of radial wavefunction |u(r/a0)|2 as a function of the (r/a0),

where a0 is the Bohr radius (in SI) for the 16S1/2 (solid line) and 18D3/2 (dash line)

states.

Figure 2.3: |u(r/ao)n,l|2 (in arbitrary units) as function of r/ao, where [u(r/ao)n,l] is the
radial wavefunction and ao is the Bohr radius (in m−1).

For the solution of the angular part of the wavefunction, we decompose the an-

gular part of the wavefunction in the linear combination of the spherical harmonics with

their corresponding Clebsch–Gordan coefficients. Below we show the decomposition of

S1/2, P1/2 and, D3/2 levels for all the possible degenerated states [29]:

• For state S1/2
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Yl=0,s=1/2,j=1/2(θ, ϕ) : C
0,1/2,1/2
0,1/2,1/2Y0,0(θ, ϕ)χ(s+)︸ ︷︷ ︸

mj=1/2

: C
0,1/2,1/2
0,−1/2,−1/2Y0,0(θ, ϕ)χ(s−)︸ ︷︷ ︸

mj=−1/2

• For state P1/2

YL=1,S=1/2,j=1/2(θ, ϕ) : C
1,1/2,1/2
0,1/2,1/2Y1,0(θ, ϕ)χ(s+) + C

1,1/2,1/2
1,−1/2,1/2Y1,1(θ, ϕ)χ(s−)︸ ︷︷ ︸

mj=1/2

: C
1,1/2,1/2
−1,1/2,−1/2Y1,−1(θ, ϕ)χ(s+) + C

1,1/2,1/2
0,−1/2,−1/2Y1,0(θ, ϕ)χ(s−)︸ ︷︷ ︸

mj=−1/2

• For state D3/2

Yl=2,s=1/2,j=3/2(θ, ϕ) : C
2,1/2,3/2
2,−1/2,3/2Y2,2(θ, ϕ)χ(s−) + C

2,1/2,3/2
1,1/2,3/2Y2,1(θ, ϕ)χ(s+︸ ︷︷ ︸

mj=3/2

)

: C
2,1/2,3/2
1,−1/2,1/2Y2,1(θ, ϕ)χ(s−) + C

2,1/2,3/2
0,1/2,1/2Y2,0(θ, ϕ)χ(s+︸ ︷︷ ︸

mj=1/2

)

: C
2,1/2,3/2
0,−1/2,−1/2Y2,0(θ, ϕ)χ(s−) + C

2,1/2,3/2
−1,1/2,−1/2Y2,−1(θ, ϕ)χ(s+︸ ︷︷ ︸

mj=−1/2

)

: C
2,1/2,3/2
−1,−1/2,−3/2Y2,−1(θ, ϕ)χ(s−) + C

2,1/2,3/2
−2,1/2,−3/2Y2,−2(θ, ϕ)χ(s+︸ ︷︷ ︸

mj=−3/2

)

The separation between these magnetic sub-levels of the excited Rydberg states is very

small in the order of a few MHz [30][31][32][33]. Thus, considering a spherical symmetry,

we perform an averaging over all the mj sub-levels of a given state and estimate the

expectation value of ⟨ψn,J,mJ
|W |ψn,J,mJ

⟩.

2.2.1 Dipole-dipole (image) interactions coefficient (C3)

The frequency shift due to the dipole-dipole (image) interaction for a given atomic state
|ψn,J,mJ

⟩ can be calculated as:

∆fpp = − 1

z3
⟨ψn,J,mJ

|p2|ψn,J,mJ
⟩+ ⟨ψn,J,mJ

|p2z|ψn,J,mJ
⟩

16h

∆fpp = −C3

z3
(2.17)
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where C3 is the coefficient of dipole-dipole interaction (van der Waals coefficient).

From equation 2.17, the coefficient of dipole-dipole (image) interaction, C3 can be given

as :

C3 =
⟨ψn,J,mJ

|p2|ψn,J,mJ
⟩+ ⟨ψn,J,mJ

|p2z|ψn,J,mJ
⟩

16h
(2.18)

To separate the contribution of the radial and angular parts of the wave function, we

rewrite the dipole-dipole (image) interaction terms (equation 2.4) in spherical coordinates

using x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ, as:

p2 + p2z = e2r2(1 + cos2 θ)

where e is the electric charge.

Separating the radial and angular parts of the wavefunction, the dipole-dipole (image)

interaction coefficient is given by:

C3 =
e2

16

(
Cradial

3 Cangular
3

)
(2.19)

where

Cradial
3 =

∫∞
0
r2|R(r)|2r2dr =

∫∞
0
r2|u(r)|2dr is the contribution for the radial part of the

wavefunction.

Cangular
3 =

∫ π

0

∫ 2π

0
[1+cos2(θ)] sin(θ)|Yl,s,j,mj

(θ, ϕ)|2dθdϕ is the contribution for the angular

part of the wavefunction.

2.2.2 Dipole-quadrupole (image) interactions coefficient (C4)

Using Equation 2.8, the frequency shift due to dipole-quadrupole (image) interactions

can be written as follows:

∆fpQ = − 1

z4
⟨ψn,J,mJ

|3pzQzz + 2pyQyz + 2pxQxz|ψn,J,mJ
⟩

32h

∆fpQ = −C4

z4
(2.20)
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where C4 is the coefficient of dipole-quadrupole interaction.

Separating the contribution of the radial and angular parts, we can write:

C4 =
e2

32

(
Cradial

4 Cangular
4

)
(2.21)

where

Cradial
4 =

∫∞
0
r3|R(r)|2r2dr =

∫∞
0
r3|u(r)|2dr is the contribution for the radial part of the

wavefunction.

Cangular
4 = 3

128

∫ π

0

∫ 2π

0
[7 cos(θ)+3 cos(3θ)] sin(θ)|Yl,s,j,mj

(θ, ϕ)|2dθdϕ is the contribution for

the angular part of the wavefunction.

Due to the symmetries of sin(θ) and cos(θ) functions the Cangular
4 coefficient is zero for all

|ψn,J,mJ
⟩ atomic states. The selection rule for an electric dipole transition is ∆l = ±1 (l is

an orbital quantum number) and for an electric quadrupole transition is ∆l = 0,±2. There

is no possibility of overlap for an excitation channel between a dipole and quadrupole

transition. So, without any further development, we say:

C4 = 0

2.2.3 Quadrupole-quadrupole (image) and dipole-octupole (im-

age) interactions coefficient (C5)

The quadrupole-quadrupole (image) and dipole-octupole (image) interactions have the

same z dependence, therefore, we put both of these interactions under the umbrella of

the same coefficient C5.

Using equation 2.10, the energy shift due to quadrupole-quadrupole (image) interaction

can be obtained as:

∆fQQ = − 1

z5
⟨ψn,J,mJ

|17Q2
zz + 16Q2

zy + 16Q2
zx + 2Q2

xx + 4Q2
yx + 2Q2

yy|ψn,J,mJ
⟩

768h

∆fQQ = −CQQ
5

z5
(2.22)
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where CQQ
5 is the coefficient of quadrupole-quadrupole (image) interaction.

The radial and angular contributions can be separated in a spherical coordinate as:

CQQ
5 =

e2

768

(
Cradial

5,QQ Cangular
5,QQ

)
(2.23)

where

Cradial
5,QQ =

∫∞
0
r4|u(r)|2dr is the contribution for the radial part of the wave function.

Cangular
5,QQ = 3

2048

∫ π

0

∫ 2π

0
[(41 + 20 cos(2θ) + 3 cos(4θ))] sin(θ)Yl,s,j,mj

(θ, ϕ)|2dθdϕ is the con-

tribution for the angular part of the wavefunction.

Similarly, from equation 3.14 and 2.22 the coefficient of dipole-octupole (image) interac-

tion can be expressed as:

CpT
5 =

⟨ψn,J,mJ
|3pxTxzz + 3pyTyzz + pzTzzz|ψn,J,mJ

⟩
192h

(2.24)

where Tzzz,Txzz,Tyzz are the components of the octupole moment operator.

After separating the radial and angular contributions, the dipole-image octupole inter-

action coefficient is given by:

CpT
5 =

e2

512

(
Cradial

5,pT Cangular
5,pT

)
(2.25)

where

Cradial
5,pT =

∫∞
0
r4|u(r)|2dr is the contribution for the radial part of the wave function.

Cangular
5,pT = 1

512

∫ π

0

∫ 2π

0
[44 cos(2θ) + 5(3 + cos(4θ))] sin(θ)|Yl,s,j,mj

(θ, ϕ)|2dθdϕ is the contri-

bution for the angular part of the wavefunction.

2.3 Evaluation of the interaction coefficient for relevant

Rydberg states

Experimentally we probe Cs(nS1/2, nD3/2) states with set-wise excitation, pumping for
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ground Cs(6S1/2 → 6P1/2) with 894 nm laser and subsequently probing form Cs(6P1/2 →

nS1/2, nD3/2) with an extended cavity laser 507 - 513 nm laser (shown in figure 2.4).

Figure 2.4: Accessible Rydberg states Cs(nS1/2, nD3/2) from the first excited state
Cs(6P1/2).

2.3.1 Evaluation of dipole-dipole (image) interaction coefficient

(C3)

Using equation 2.19, the radial and angular contributions of C3 are calculated indepen-

dently for all the degenerate mj states and subsequently an isotropic averaging is per-

formed (table 2.1 and 2.2).

Atomic

State
mj sub levels Cangular

3 /16 Cradial
3 (m3) C3 (MHz µm3)

C3 value

Avg. overall mj

(in MHz µm3)

15D3/2 3/2 3/40 1.68× 10−16 4.39 4.88

1/2 11/120 5.37

-1/2 11/120 5.37

-3/2 3/40 4.39

16S1/2 1/2 1/12 1.45× 10−16 4.14 4.14

-1/2 1/12 4.14

Table 2.1: C3 coefficient (in MHz µm3) for 15D3/2 and 16S1/2 states.
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Atomic

state

Effective principal

quantum number

n∗ = n− δ

Transition

wavelength

from 6P1/2

λif in µm

Value of

C3 for

ideal reflector

in MHz µm3

16S1/2 11.95 0.513884 4.14

15D3/2 12.52 0.512068 4.88

17S1/2 12.95 0.510887 5.71

16D3/2 13.52 0.509469 6.66

18S1/2 13.95 0.508537 7.69

17D3/2 14.52 0.507407 8.88

Table 2.2: C3 (in MHz µm3) coefficient for nS1/2 and nD3/2 states where n = 15 - 18
along with transition wavelength from 6P 1/2 level.

Figure 2.5 shows the expected linear growth of C3 values over n∗4. nS, nP and nD states

are indicated with square, circle and triangle markers respectively. C3 coefficient has an

exclusively dependence on n∗ and can be approximated as C3 ∼ α × (n∗)4 MHz µm3,

where α ≈ 2.08× 10−4

Figure 2.5: C3 (in MHz µm3) as function of n∗4. nS, nP and nD states are indicated by
square, circle and triangle respectively (n is the principal quantum number).
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2.3.2 Evaluation of quadrupole-quadrupole (image) interaction

coefficient (CQQ
5 )

Similarly, using equation 2.23, the radial and angular parts contributions CQQ
5 for all mj

sub-levels are calculated followed by an isotopic averaging (table 2.3 and 2.4).

State mj sub levels Cangular
5 /768 Cradial

5 (m5) CQQ
5 (kHz µm5)

Avg. over

all mj

sub levels

(in kHz µm5)

15D3/2 3/2 3/70 3.620× 10−32 0.5389 0.6303

1/2 2/35 0.7185

-1/2 2/35 0.7185

-3/2 3/70 0.5389

16S1/2 1/2 1/20 2.5970× 10−32 0.4510 0.4510

-1/2 1/20 0.4521

17P 1/2 1/2 1/20 6.4261× 10−32 1.1160 1.1160

-1/2 1/20 1.1187

Table 2.3: C5 (in kHz µm5) coefficient for for 15D3/2, 16S1/2 and 17P1/2 states.

Atomic

State

Effective principal

quantum number

n∗ = n− δ

Value of

CQQ
5 for

an ideal reflector

in kHz µm5

Atomic

State

Effective principal

quantum number

n∗ = n− δ

Value of

CQQ
5 for

a ideal reflector

in kHz µm5

15D3/2 12.52 0.6303 15S1/2 10.95 0.2252

16D3/2 13.52 1.1707 16S1/2 11.95 0.4521

17D3/2 14.52 2.0791 17S1/2 12.95 0.8586

18D3/2 15.52 3.5523 18S1/2 13.95 1.5548

Table 2.4: C5 (in kHz µm5) coefficient for nS1/2 and nD3/2 states where n = 15 - 18.

Figure 2.6 shows the linear growth of C5 with n∗8. nS, nP, and nD states are indicated
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with square, circle, and triangle markers respectively with different colours for different

n quantum numbers. C5 coefficient also has an exclusive dependence over n∗ and can be

can approximate as C5 ∼ β × n∗8 kHz µm5 where β ≈ 1.08× 10−9. A rigorous analytical

solution considering not only the principal quantum number (n) but also the angular

quantum number (l) for estimating the C5 has been calculated but this is excluded from

the extent of this thesis.

Figure 2.6: C5 as a function of (n∗)8. (a) nS, nP , and nD states are indicated by square,
circle, and triangle respectively and different colours for different n quantum numbers.
(b) enlarged plot for n = 15 and 20 (n is the principal quantum number).
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2.3.3 Evaluation of dipole-octupole (image) interaction coeffi-

cient (C5,pT )

Using equation 2.25, we calculate the dipole-octupole interaction coefficient, C5,pT (table

2.5).

State mj sub levels Cangular
5 /512 Cradial

5 (m5) CpT
5 (kHz µm5)

Avg. over

all mj

sub levels

15D3/2 3/2 -3/140 3.620× 10−32 -0.2694 0.0

1/2 3/140 0.2694

-1/2 3/140 0.2694

-3/2 -3/140 -0.2694

16S1/2 1/2 0 2.5970× 10−32 0.0 0.0

-1/2 0 0.0

17P1/2 1/2 0 6.4261× 10−32 0.0 0.0

-1/2 0 0.0

Table 2.5: C5,pT coefficients for 15D3/2, 16S1/2 and 17P1/2 states.

The selection rule for an electric dipole-dipole transition is ∆l = ±1 and for an octupole-

octupole transition, it is ∆l = ±1,±3. Thus, there exist possible excitation channels

through which an atom can be excited with a quadrupole transition and relaxation can

occur through a dipole transition. In table 2.5, we see that the contribution of the dipole-

octupole interaction term is non-zero for individual magnetic sub-levels for an anisotropic

state such as D3/2 but averages to zero for an isotropic averaging. Decomposing the states

to their hyperfine structure can provide us with further information (not included here)

about the anisotropic behaviour of dipole-octupole interactions and it is a matter of fur-

ther investigation.

Up to this point, we have only considered a perfect reflector, whereas, in our experiments,

we typically probe atoms close to dielectric windows, such as sapphire or glass. In this case,
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the dielectric constant becomes a function of frequency (material dispersion). Therefore,

to include the effect of a dispersive surface, atom-surface interactions should be calculated

using the QED description. In the following section, we utilize the Casimir-Polder (CP)

formulation (within the near-field approximation) to calculate the dipole-dipole (image)

interaction C3 coefficient for Rydberg atoms interacting with dielectric surfaces.

2.4 Casimir-Polder (CP) formulation in the non-retared

limit to estimate the dipole-dipole (image) interac-

tion coefficient

2.4.1 For an ideal reflector

The Casimir-Polder formulation for calculating the atom-surface induced energy shift is

well established and has been used in numerous works [14][34][35][2][36][37]. We therefore

skip the discussion on the specific details of the calculations. We consider an isotropic

atomic state for which p2x = p2y = p2z = p/3. The induced shift in the energy level due to

dipole-image dipole interaction for a perfect reflector can be expressed as (in S.I. unit):

∆fa = − 1

(2πℏ)
1

12z3
⟨ψni,j,mj

|p2|ψni,j,mj
⟩ (2.26)

where ℏ is the reduced Planck’s constant.

With the expansion I =
∑

f |ψnf ,jf ,mj
⟩⟨ψnf ,jf ,mj

|, ( I is the identity operator), we can

write:

⟨ψni,j,mj
|p2|ψni,j,mj

⟩ =
∑
f

⟨ψni
|p2|ψnf

⟩⟨ψnf
|p2|ψni

⟩ =
∑
f

|⟨ψni
|p|ψnf

⟩|2 (2.27)

where

⟨ψni
|p|ψnf

⟩ = ⟨ψni,ji,mj
|p|ψnf ,jf ,mj

⟩ is the reduced dipole matrix element.

40



|ψni,ji,mj
⟩ is the initial atomic state.

|ψnf ,jf ,mj
⟩ is the final atomic state.

Using the Wigner–Eckart theorem and the property of the Clebsch–Gordan coefficients,

the average shift for the mJ sub-levels can be expressed as [29][38]:

∆fi = − 1

(2πℏ)12z3
· 1

2ji + 1

∑
f

|⟨ψni
|p|ψnf

⟩|2 (2.28)

∆fi = −C3

z3

By knowing the atomic transition probability for ni → nf transition, we can obtain the

matrix element ⟨ψni
|p|ψnf

⟩ or vise-versa:

Ai→f =
4

3ℏ
k3if

2j> + 1
|⟨ψni

|p|ψnf
⟩|2 (2.29)

where

kif = 2π
λi→f

and λi→f is the transition wavelength for the transition |ψni
⟩ → |ψnf

⟩.

Ai→f is the spontaneous emission rate.

j> = jf if Enf
> Eni

, or else j> = ji. Comparing Equations 2.28 and 2.29, we define the

dipole-dipole interaction the coefficient, Ci
3 as:

Ci
3 =

∑
j

(
2j> + 1

2ji + 1

)
Ai→fλ

3
if

256π4
(2.30)

For example, the spectroscopic shifts of the atomic resonance for probing the 6P1/2 →

153/2 transition will be related to the difference between the CP shifts between the initial

and probed states:

∆f6P1/2→15D3/2
=
C

15D3/2

3

z3
− C

6P1/2

3

z3
(2.31)

Tables 2.6, 2.7 and 2.8 below show the most influential virtual couplings for the 6P1/2,
16S1/2 and 15D3/2 atomic states respectively with their individual contributions to the
overall C3 coefficient for a perfect reflecting surface. The transition probabilities of the
individual couplings and the dipole matrix elements are sourced from [39] [40][41].
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6P1/2

Wavelength
λij in µm

Transition rate
Aif 106 in s−1

2J>+1
2Ji+1

Value C3

for ideal reflector
in kHz µm3

6S1/2 (-)0.895 28.514 1.0 0.82
7S1/2 1.359 7.263 1.0 0.73
8S1/2 0.761 2.508 1.0 0.04
9S1/2 0.636 1.223 1.0 0.01
5D3/2 3.011 0.935 2.0 2.05
6D3/2 0.876 13.465 2.0 0.73
7D3/2 0.673 6.999 2.0 0.17
8D3/2 0.601 4.051 2.0 0.07
9D3/2 0.567 2.466 2.0 0.04
Total 4.66

Table 2.6: Contribution to the C3 coefficient (in kHz µm3) of 6P1/2 from dipole virtual
couplings considering a perfect reflector. The sign (-) signifies the coupling in emission.
This calculation excludes the virtual couplings for which the contribution is less than 0.03
kHz µm3.

16S1/2

Wavelength
λij in µm

Transition
Frequency
in THz

Transition
Rate, A
in s−1

2J>+1
2Ji+1

Value C3

for ideal reflector
in kHz µm3

14P1/2 -40.815 -7.345 3730.176 1.0 10.170
14P3/2 -41.890 -7.157 6238.389 1.0 18.389
15P1/2 -133.380 -2.248 5247.558 1.0 499.331
15P3/2 -142.465 -2.104 9527.528 1.0 1104.743
16P1/2 179.884 1.667 3680.162 1.0 859.023
16P3/2 168.606 1.778 4177.396 2.0 1605.884
17P1/2 63.281 4.737 985.310 1.0 10.0129
17P3/2 62.122 4.826 1349.249 2.0 25.943
18P1/2 41.2 7.262 786.670 2.0 4.438
Total 4137.9

Table 2.7: Contribution to the C3 coefficient (in kHz µm3) of 16S1/2 from dipole virtual
couplings considering a perfect reflector. The sign (-) signifies the coupling in emission.
This calculation excludes the virtual couplings for which the contribution is less than 4
kHz µm3.
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15D3/2

Wavelength
λij in µm

Transition
Frequency
in THz

Transition
Rate, A
in s−1

2J>+1
2Ji+1

Value C3

for ideal reflector
in kHz µm3

14P1/2 -31.845 -9.414 3397.807 1.0 4.400
11F5/2 -47.035 -6.374 4578.761 1.0 19.105
15P1/2 -69.450 -4.317 2199.182 1.0 29.542
15P3/2 -71.835 -4.173 569.304 1.0 8.462
12F5/2 -150.203 -1.996 6173.220 1.0 838.888
16P1/2 -744.997 -0.402 86.513 1.0 1434.528
16P3/2 -1030.467 -0.291 6.616 1.0 290.324
13F5/2 212.734 1.409 3558.962 1.5 2061.028
17P1/2 112.347 2.668 4881.957 0.5 138.80
17P3/2 108.744 2.757 427.250 1.0 22.032
14F5/2 72.946 4.110 498.280 1.5 11.633
18P1/2 58.531 5.122 3367.401 0.5 13.538
19P1/2 42.146 7.113 2501.206 0.5 3.754
Total 4876.034

Table 2.8: Contribution to the C3 coefficient (in kHz µm3) of 15D3/2 from dipole virtual
couplings considering a perfect reflector. The sign (-) signifies the coupling in emission.
This calculation excludes the virtual couplings for which the contribution is less than 4
kHz µm3.

The prediction of the dipole-dipole interaction coefficient (vdW coefficient), C3 for 6P1/2 →
15D3/2 transition, can be estimated as:

C
6P1/2→15D3/2

3 = C
15D3/2

3 − C
6P1/2

3 ≈ 4.8 MHzµm3

Table 2.9, shows us the prediction on C3 for transition between 6P1/2 → nD3/2, nS3/2

where n= 15 - 18 considering a perfect reflecting surface:

Transition between
6P1/2

Wavelength
λif in µm

Value C3

for ideal reflector
in MHz · µm3

16S1/2 0.513884 4.1
15D3/2 0.512068 4.9
17S1/2 0.510887 5.7
16D3/2 0.509469 6.6
18S1/2 0.508537 7.6
17D3/2 0.507407 8.8

Table 2.9: C3 coefficients for nD3/2, nS3/2 states where n = 15 - 18 considering a perfect
reflecting surface.
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Comparing the tables 2.6 - 2.8, we see that the dipole-surface interaction coefficient is
about 1000 times stronger (in the order of a few MHz µm3) for the Rydberg states com-
pared to that of the low lying state, 6P1/2 (in the order of a few kHz µm3) and would
mostly overshadow any effects of low lying states. On the other hand table 2.2 and table
2.9 demonstrate that both of our approaches, electrostatic and QED, give identical re-
sults for a perfectly reflecting surface. An inspection of Tables 2.7 and 2.8 also shows that
the main dipole couplings contributing to Casimir-Polder interactions of Rydberg atoms
are in the far-infrared regime, suggesting that retardation effect can safely be ignored [42].

2.4.2 For a dielectric surface

The interaction between an excited atom and a sapphire surface has already been studied
theoretically and experimentally in our group [43][44][45][46] exploring the resonant cou-
pling between atoms and surface polaritons and the temperature dependence of Casimir-
Polder interaction. For a real surface (in our case, sapphire), the dielectric constant is a
function of frequency. To include the effects of dispersion on Casimir-Polder interactions
we adopt the Wylie and Sipe formalism [41][40] (at zero temperature) that has also been
extended to include temperature effects [47]. According to [47] the C3 contribution of a
given i-f coupling at zero temperature is given by:

C3(|i >) =
1

12h

∑
f

r(ωif )|⟨ψni
|p|ψnf

⟩|2 (2.32)

with:
r(ωif ) =

2

π

∫ ∞

0

ωif

ω2
if + u2

ϵ(iu)− 1

ϵ(iu) + 1
du+ 2ℜ[S(ωif )]Θ(−ωif ) (2.33)

Here, ωif is the transition frequency that can be negative for downwards (emission) cou-
plings and Θ is the Heaviside function. Θ(−ωif ) takes the value of unity when ωif < 0

(downward coupling) and becomes zero when ωif > 0 (upward coupling). ϵ(ω) is the
frequency-dependent dielectric constant of the medium, also extended to the complex
frequency plane and S is the surface response defined as:

S(ω) =
ϵ(ω)− 1

ϵ(ω) + 1
(2.34)

The dielectric constant of sapphire has been measured in many previous works [48][49].
Here we use the works of Barker [48] that provide simple analytical expressions (sum of
Lorentzian resonances) for the dielectric constant of sapphire for both ordinary (ϵord) and
extraordinary (ϵord) axes.
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Figure 2.7: Real part of the sapphire surface response Re[S(ω)] as funtion of frequency (in
cm−1). Here, we use the geometric mean (ϵord ϵext)

1/2 of the dielectric constants, which
is the relevant parameter for Casimir-Polder calculations when the extraordinary axis is
perpendicular to the sapphire window. The dotted lines show the positions of the virtual
couplings from the 15D3/2 state.

Figure 2.7 shows the real part of the sapphire surface response, Re[S(ω)], as a function of
frequency. We see that all influential couplings from the 15D3/2 state are far away from
any surface resonances and the dielectric constant at these frequencies is essentially equal
to its static value which we call ϵst. This suggests that for most Rydberg atoms the effects
of the dielectric can simply and straightforwardly be accounted for by multiplying the C3

coefficient calculated for a perfect reflector by the static surface response Sst =
ϵst−1
ϵst+1

. For
the same reasons, CP temperature effects can be safely ignored in the case of Rydberg
atoms [Casimir-Polder effect with thermally excited surfaces] . We note that the value of
Sst varies very little between reported experiments. In Table 2.10 we show the predicted
C3 coefficient of the Rydberg-sapphire interaction for the atomic states relevant to our
experiments. For all states, the full QED approach agrees with the electrostatic calcula-
tion (performed for perfect conductors) multiplied by Sst.

Transition between
6P1/2

Value C3

for Sapphire
in MHz µm3

Value C3

for perfect reflector
in MHz µm3

16S1/2 3.5 4.1
15D3/2 4.1 4.9
17S1/2 4.8 5.7
16D3/2 5.6 6.6
18S1/2 6.4 7.6
17D3/2 7.4 8.8

Table 2.10: C3 coefficient for nD3/2, nS3/2 states where n = 15 - 18.
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Chapter 3

Spectroscopy of Casimir-Polder
Interaction: Selective Reflection (SR)
Spectroscopy and Thin Cell (TC)
Spectroscopy

To probe the Casimir-Polder interaction of a Rydberg atom with a dielectric surface, we

have used two techniques: selective reflection (SR) spectroscopy and thin cell (TC) spec-

troscopy. SR spectroscopy consists of measuring the change of the reflection coefficient at

the interface between a dielectric surface and the resonant atomic vapour [45][38] as the

laser frequency is scanned around the atomic resonance. With a nanometric thin vapour

cell (TC), the spatial dependence of the Casimir-Polder interaction can also be explored

by confining atoms close to a surface with reflection or transmission spectroscopy (re-

flection and transmission spectroscopy are complementary). In this following chapter, we

briefly discuss both of these techniques in the context of strong Rydberg surface interac-

tion.

In section 3.1, we introduce the theoretical framework for Selective Reflection (SR) spec-

troscopy followed by a brief discussion on the general solution of SR lineshape (section

3.1.1). In section 3.1.2 we present the SR lineshapes in the absence of atom-surface in-

teraction and subsequently in section 3.1.3 we briefly discuss the frequency-modulated
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Selective Reflection spectroscopy (FMSR). In section 3.1.4 we present the solution FMSR

lineshape in the presence of atom-surface interactions under infinite Doppler (γ« ku,

Doppler width) and motionless atom (vz = 0) approximation [18]. This approximation

has extensively been used to measure atom surface interactions [38] [22] [50] for low-lying

atomic states. However, this approximation breaks down on interpreting highly excited

Rydberg surface interactions, such as the ones performed during this thesis.

Therefore, section 3.2 presents a novel numerical development for simulating SR line-

shapes (section 3.2.1) accounting for the Maxwell-Boltzmann atomic velocity distribution.

We further discuss the evolution of SR lineshape for different velocity distributions (sec-

tion 3.2.2) in the presence of weak and strong atom surface interactions (section 3.2.3).

We will subsequently use this model (using the full atomic velocity distribution) to fit

our experimental spectra and measure the C3 coefficient of Rydberg-surface interactions

in Chapter 5.

In section 3.3, we briefly discuss thin cell (TC) spectroscopy. Nanometric thin cells (TC)

with varying thicknesses were already used by our group for probing atoms at a nano-

metric distance from the surface [23]. Here we present the necessary theoretical overview

(section 3.3.1) for simulating TC lineshapes [51][52] and our numerical adoption for sim-

ulating TC lineshapes under the influence of strong atom surface interactions. Finally, in

section 3.3.2, we present thin cell (TC) lineshapes taking into account higher-order in-

teraction (quadrupole interaction) and examine the conditions under which higher-order

interactions can be experimentally observable.

3.1 Selective reflection (SR) spectroscopy

For the theoretical framework, we follow the notations and the formalism already de-

scribed in [18]. We take an interface (infinitely extended in x− y plane) between atomic

vapour filling z>0 and a dielectric surface (z<0) having refractive index n (Figure 3.1)

where z is the atom-surface separation (an atom-surface separation for which the atomic
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structure of the surface is insignificant). A plane wave Ei having wavevector k incident

on the interface (from the dielectric side) is partly reflected Er into the dielectric surface

and partly refracted Et in the atomic vapour (as the incident angle is near normal to the

interface plane and the field propagation is only along z, the fields are represented in

scalar form).

Figure 3.1: Geometry of incident Ei, refracted Et and reflected Er waves. The x− y plane
is the interface between the atomic vapour and the surface. n is the refractive index of the
surface and nv(ω) is the effective refractive index of the atomic vapour. θ0 is the incident
angle (θ0«1). z is atom surface separation.

For a normal incident beam, the field transmitted into the vapour can be expressed as:

Et(r, t) = Ete(kz−ωt) + c.c (complex conjugate) (3.1)

where Et is the amplitude and ω is the frequency of the transmitted field. The incident

electric field tuned close to the atomic resonance ω0 polarizes the atomic medium which

re-emits a field that propagates in the direction of the reflected field Er. Thus the field

reflected at the interface is the sum of the non-resonant contribution reflected from the

interface and a resonant contribution emitted in the backward direction from the atomic

vapour. We assume that the resonant contribution is much smaller than the non-resonant

contribution, i.e. the vapour effective refractive index deviates negligibly from unity.

The induced macroscopic vapour polarization P may be spatially in-homogeneous due to

the motion-induced spatial dispersion and surface-induced atomic resonance shifts. We

consider that the surface is smooth enough so that the atomic structure of the surface is

insignificant. We also suppose that atoms get de-excited upon colliding with the surface

losing their phase coherence with the excitation field. Considering translational invariance
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along the x − y plane (plane parallel to the surface), the slowly varying amplitude of P

may depend only on z. The induced macroscopic electric polarization can be written as:

P (z, t) = p(z)ei(kz−ωt) + c.c. (3.2)

where z is the atom-surface separation, p(z) is the amplitude of the induced atomic dipole

at position z.

This macroscopic polarization can be related to the change in the reflected field by

introducing an effective atomic vapour susceptibility χ̄ with an oscillating phase factor

"exp(2ikz)". This "phase factor" yields the round-trip accumulated phase appearing in

the reflected field radiated by the atom at the position z. The effective atomic vapour

susceptibility can be expressed as [53][54][55]:

χ̄ = − 2ik
ϵ0Et

∫ +∞

0

dz · p(z)e2ikz (3.3)

where ϵ0 is the vacuum permittivity, k is the wavevector in vacuum.
Considering the modification of the resonant reflectivity to be much smaller than unity,
the effective refractive index of the vapour nv can be introduced in the Fresnel reflection
formula as:

nv =
√

1 + χ̄ = 1 + χ̄/2 (3.4)

(when χ̄ << 1)

The e.m. field reflected into the dielectric can be written as Er = r(ω − ω0)Ei, where

Ei is the incident field and r(ω − ω0) is the reflection coefficient. For normal incident

irradiation, using the Fresnel reflection formula, the reflection coefficient becomes:

r(ω − ω0) =
n− (1 + χ̄/2)

n+ (1 + χ̄/2)

≈ n− 1

n+ 1
− n

(n+ 1)2
χ̄(ω − ω0)

≈ r0 + ρχ̄(ω − ω0)

(3.5)

(as χ̄ << 1)
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Where r0 is the dielectric-vacuum reflection coefficient (non-resonance reflection co-

efficient) and ρχ̄ is vapour-induced reflectivity change.

The change of reflectivity at the interface between the atomic vapour and dielectric can

be given as:

R(ω − ω0) = |r(ω − ω0)|2

= |r0 + ρχ̄(ω − ω0)|2

≈ r20 + 2r0ρ · ℜ [χ̄(ω − ω0)]

(3.6)

The selective reflection (SR) signal can thus be expressed as:

ISR(ω − ω0) = 2r0ρ · ℜ [χ̄(ω − ω0)] (3.7)

3.1.1 A general solution to selective reflection (SR) spectroscopy

To evaluate the effective atomic vapour susceptibility (equation 3.3), first the induced

atomic vapour polarization P (z) (equation 3.2) needs to be calculated. The driving field

(Et) frequency (equation 3.1) tuned close to the atomic resonance (ω0), the atomic vapour

can be considered as a collection of two-level atomic systems (ground state |g⟩; excited

state |e⟩) whose density matrix is governed by the Bloch equations. The macroscopic

dipole polarization can be determined by:

p(z) = Nµ

∫ +∞

−∞
dvzW (vz)σeg(z, vz) (3.8)

where µ is the e-g electric dipole moment,N is the atomic density,W (vz) is the normalized

velocity distribution along the z-direction. σeg is the off-diagonal density matrix element

which measures the amount of the optical coherence between the states |e⟩ and |g⟩.

The incident field is supposed to be weak enough so that the atomic response is linear

and the time evolution of σeg can be obtained from the Bloch equations using the rotating
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wave approximation [56]:

d

dt
σeg = −

[γ
2
− i(ω − ω0 − kvz)

]
σeg + i

Ω

2
(3.9)

where

• ω0 is the atomic resonance frequency and ω is the frequency of the driving field.

• Ω = 2µEt/ℏ is the Rabi frequency. We consider that in the SR technique, the atten-
uation of the field over the probing region is so weak that the driving (transmitted)
field Et remains constant.

• γ is the optical transition linewidth, taking into account the natural transition
linewidth as well as collisional broadening.

• kvz is the Doppler shift for a normal incident.

Using the hydrodynamic conservation, the time evolution of optical coherence transforms

into:
dσeg
dt

=
∂σeg
∂t

+ vz
∂σeg
∂z

Apart from the straightforward assumptions like negligible change in the refractive index

(|χ| << 1) and linearity with driving field (Rabi Frequency, Ω << γ), we also assume

that the atomic trajectories are rectilinear and atoms travel at a constant speed neglecting

changes in the curvature of trajectories due to surface-induced forces or due to velocity

changing inter-atomic collisions.

For the steady-state regime σeg is only a function of z and can be expressed as:

vz
dσeg(z)

dz
= −

[γ
2
− i(ω − ω0 − k · vz)

]
σeg +

iΩ

2
(3.10)

A general solution of equation 3.10 can be obtained by integration for a given position z

knowing the solution at z0, where z0 is the atom-surface separation for which the optical

coherence vanishes (i.e. σeg = 0 at z0 = 0 or +∞) and is given by:

σeg(vz, z) =
iΩ

2vz

∫ z

z0

dz′e[L(z
′)−L(z)]/vz (3.11)
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with L(z) being the ’lineshape function’ given by:

L(z) = L0(z) + izkvz (3.12)

where

L0(z) =

∫ z

z0

dz
[γ
2
− i(ω − ω0)

]
(3.13)

Subsequently, a general solution of equation 3.11 can be obtained considering the follow-
ing three cases:

• For vz > 0 i.e. the atoms going away from the surface. Due to the collision with the
wall, the light-atom interaction is disrupted. In this case σeg = 0 at z0 = 0.

σeg(vz > 0, z) =
iΩ

2vz

∫ z

0

dz′e[L(z
′)−L(z)]/vz (3.14)

• For vz < 0 i.e. the atoms coming towards the surface from far z = +∞ side. We
consider that atoms are not exited as the excitation fields get fully absorbed while
travelling along z. In this case σeg = 0 for z0 = +∞.

σeg(vz < 0, z) =
iΩ

2vz

∫ z

+∞
dz′e[L(z

′)−L(z)]/vz (3.15)

• For vz = 0 i.e. atoms are moving parallel to the interaction plane XY. For this
special case, we can obtain a semi-analytical solution from equation 3.10, given by:

σeg(vz = 0, z) = i
Ω

2

1

(γ/2)− i [ω − ω0 − kvz]
(3.16)

Substituting equation 3.11-3.16 in equation 3.8, the atomic vapour polarization can be
expressed as:

• For vz > 0:

p(vz > 0, z) =
iΩ

2
Nµ

∫ +∞

−∞
dvz

W (vz)

vz

∫ z

0

dz′e[L(z
′)−L(z)]/vz (3.17)

• For vz < 0:

p(vz < 0, z) =
iΩ

2
Nµ

∫ +∞

−∞
dvz

W (vz)

vz

∫ z

+∞
dz′e[L(z

′)−L(z)]/vz (3.18)

Substituting the equations 3.17-3.18 in equation 3.3 allows us to obtain a general expres-
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sion of the effective atomic vapour susceptibility as:

χ̄(vz > 0) =
2Nµ2k
ϵ0ℏ

∫ +∞

0

dvz
vz

[W (vz)]

∫ +∞

0

dz

∫ z

0

dz′e2ikze[L(z
′)−L(z)]/vz (3.19)

and

χ̄(vz < 0) =
2Nµ2k
ϵ0ℏ

∫ 0

−∞

dvz
vz

[W (vz)]

∫ +∞

0

dz

∫ z

+∞
dz′e2ikze[L(z

′)−L(z)]/vz (3.20)

The corresponding selective reflection signal ISR can expressed as:

ISR = ISR,vz>0 + ISR,vz<0

= r0ρ · ℜ [χ̄(vz > 0) + χ̄(vz < 0)]

(3.21)

It is noteworthy to mention that χ̄(vz) is an even function of vz, i.e. χ̄(vz > 0)=χ̄(vz < 0).
For a linear reflection signal, (+vz) and (−vz) atomic velocity group has identical contri-
butions [57][56]. This remarkable behaviour is valid irrespective of whether we consider
the atom surface interaction or not. Therefore, the integration over velocity for the atoms
which arrive towards the surface and the atoms which leave it, are identical and eventually
double. Now, the integration limits of z and z′ can be interchanged as:∫ +∞

0

dz

∫ +∞

z

dz′ =

∫ +∞

0

dz′
∫ z

0

dz

and a general solution of the SR signal for all velocity classes can be given by:

ISR = ηr0ρℜ
[∫ +∞

0

dvz
vz

[W (vz)]

∫ +∞

0

dz

∫ z

0

dz′e2ikze[L(z
′)−L(z)]/vz

]
(3.22)

where η = 8Nµ2k
ϵ0ℏ .

3.1.2 Selective reflection signal in the absence of atom surface

interaction

For a freely-processing atomic polarization not affected by the atom surface interaction,

γ and ω0 are independent of z. The lineshape function of equation 3.12 simply becomes :

L = [γ/2− i(ω − ω0 − k · vz)] z (3.23)
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Using equation 3.23 in 3.22 and performing integration along z and z′ we can express the

SR signal as [38]:

ISR =
ηr0ρ

k
ℜ
[∫ +∞

0

W (vz)
ω − ω0 + kvz

(γ/2)2 + (ω − ω0 + kvz)2
dvz

]
(3.24)

(ℜ is the real part of the complex function)

where, W (vz) = (vp
√
π)−1e−(v2z/v

2
p) is the Maxwell-Boltzmann velocity distribution with

vp being the most probable velocity.

Equation 3.24 can be simplified using the reduced variable as ∆ = ω − ω0/kvp, Λ =

(kvz)/(kvp) and Γ = γ/(2kvp).

ISR(∆) =
ηr0ρ

k
ℜ
[∫ +∞

0

W (Λ)
∆ + Λ

(∆ + Λ)2 + Γ2
dΛ

]
(3.25)

Equation 3.25 is a product of Maxwell velocity distribution (W (Λ)) and a dispersive

Lorentzian ([∆+Λ]/[(∆+Λ)2+Γ2]) of width Γ whose amplitude will be greater from the

smaller value of Γ and presents a divergence as Γ → 0. Figure 3.2 shows the SR signal

lineshape in the absence of atom surface interaction for different values of Γ.

Figure 3.2: Selective reflection lineshape in the absence of atom-surface interaction for
different values of homogeneous linewidth. ∆ = ω − ω0/kvp where vp is the most probable
velocity.
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The SR lineshape free from atom surface interaction resembles a Doppler broadened

dispersion lineshape and amplitude of dispersive Lorentzian ([∆ + Λ]/[(∆ + Λ)2 + Γ2])

increases as Γ decreases and it posses a logarithmic singularity as Γ → 0. The selective

reflection lineshape has the contribution of all velocity groups with a weight factor of 1/Λ

but with a greater contribution for vz = 0. i.e. the contribution of the atoms that move

parallel to the interaction plane. For these atoms, the interaction is less affected by the

collision, and the major changes in the lineshape are observed as ∆ → 0. For the most

practical cases, we are mostly interested in this region (∆ → 0) rather than the Doppler

broaden profile. One of the most common ways to eliminate this broad Doppler profile is

to perform a frequency-modulated selective reflection spectroscopy.

3.1.3 Frequency modulated selective reflection signal (FMSR)

To monitor the weak resonant change in the reflection coefficient relative to a strong

non-resonant reflected background, most of the time SR spectroscopy is carried out with

small frequency modulation (FM) on the incident field and a phase-sensitive heterodyne

detection is performed to retrieve the FMSR signal. This also provides a convenient means

to observe the narrow lineshape of the SR signal while effectively suppressing the Doppler

response.

A general expression of the incident field taking into account FM can be written as:

Ei = |Ei|e−i(Msin ωmt) = |Ei|
∑
N

JN(M)e−iNωmt

where M and ωm are the modulation index and frequency respectively. JN is the Bessel

function of order N . A corresponding reflected field can be also expressed as:

Er =
∑
N

r(ω +Nωm)|Ei|JN(M)e−iNωmt

where r(ω + Nωm) is the reflection coefficient at (ω + Nωm) given by : r(ω + Nωm) =

r0 + ρχ̄(ω +Nωm). r0 is the non-resonant reflection coefficient.
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The resonant change of the reflectivity at the interface R = |Er/Ei|2 can given by [18]:

δR(ωm) = r0ρ
∑
N

[χ̄(ω +Nωm) + χ̄∗(ω +Nωm − ωm)]JNJN−1e
−iωmt + c.c (3.26)

For a small value of modulation frequency and index, the FMSR signal (after demodula-

tion at ωm) can be approximated as:

IFMSR =M · r0ρℜ
[
dχ̄(ω)

dω

]
(3.27)

Figure 3.3 shows the FMSR (solid line) signal along with the SR signal (dashed line).

The slowly varying broad Doppler "wings" of SR spectra get flattened for the FMSR

spectra whereas the fast variation close to logarithmic singularity around vz=0 becomes

prominent which helps to obtain a better contrast over the region of interest.

Figure 3.3: Selective reflection lineshape in the absence of atom surface interaction: SR
signal (Dash line), FMSR signal (solid line) in normalized frequency scale i.e ∆/Γ.

Up to this point, we have excluded the atom-surface interaction. In the following sections,

we present the formalism of the selective reflection spectroscopy in the presence of atom

surface interaction.
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3.1.4 Selective reflection signal in the presence of atom surface

interaction

In the presence of atom-surface interactions, the lineshape function (equation 3.12) is

modified (here limiting to dipole-image dipole interaction term) and can be expressed as:

L(z) = (γ/2)z − i(δ − kvz)z +
[
i(C3/2z

2)
]

(3.28)

where δ = ω − ω0 and C3 is the van der Waals coefficient.

Subsequently, the SR signal in the presence of dipole-image dipole interaction can be

obtained by substituting this modified lineshape function (equation 3.28) in equation

3.22, given by:

ISR = ηr0ρℜ
[∫ +∞

0

dvz
vz

[W (+vz) +W (−vz)]
∫ +∞

0

dz

∫ +∞

0

dz′e2ikze[L(z
′)−L(z)]/vz

]
(3.29)

The numerical approach to solve the general expression of SR lineshape in the presence

of atom surface interaction (equation 3.30) is computationally intensive and complicated

mainly because:

• it involves the computation of a triple integral.

• the oscillatory behaviour of the exp (L(z′)− L(z)) function.

• the (1/vz) term diverges when vz → 0.

Before going into the details of the numerical procedure for solving the general solution

of SR lineshape, we briefly present some of the pre-existing solutions for SR lineshapes

in some limiting cases. For some well-chosen approximations, the calculation can be sim-

plified and has been successfully used previously [58][46][45] on predicting weak atom

surface interaction.
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3.1.4.1 Selective reflection signal with infinite Doppler approximation

In the infinite Doppler approximation i.e. when the homogeneous transition linewidth (γ)

and the atom-surface shifts are much smaller than the Doppler width (kv), we can assume

that the major contribution to the FMSR signal comes from slow atoms (in the direction

of the beam). In this case (ku >> γ) we can simply assume that W (±vz) = W (0) and

the FMSR signal (equation 3.27) becomes [18]:

IFMSR =M · ηr0ρ[W (0)] · ℜ
[
d

dω

(∫ +∞

0

dz

∫ +∞

0

dz′e2ik(z+z′) z − z′

L(z′)− L(z)

)]
(3.30)

On the other hand, in the case of strong Rydberg-surface interactions, the atom-surface

shifts can be huge and can exceed the Doppler width, especially for small atom-surface

separations. For example, when C3 =5 MHz µm3 and atom surface separation is z=200

nm (typical probing depth), the atom-surface shift is about 600 MHz, which is larger

than the typical Doppler width of FWHM 500 MHz. In this case, the infinite Doppler

approximation is no longer valid.

3.1.4.2 Selective Reflection signal with motionless atom approximation

When the homogeneous transition linewidth γ and the atom-surface interaction shifts

become much larger than the Doppler shift, the effects of atomic motion can be ignored.

In this case of motionless atoms, the SR signal can have a semi-analytical solution as:

ISR =
2Nkµ2

ℏϵ0

∫ +∞

0

dz
e2ikz

1
2
γ − i(ω − ω0 − C3

z3
)

(3.31)

For our Rydberg atom interactions, neither of these two approximations is fully valid as

the homogeneous transition linewidth (∼ 100MHz), as well as the atom-surface interaction

shifts (∼ 600MHz), are comparable to the Doppler width (∼ 500MHz). So it was necessary

to obtain a numerical solution of the general SR lineshape (equation 3.30). During this

thesis, we overcame the numerical limitations and developed a novel numerical model that

takes into account the atom surface interaction as well as the effect of atomic velocity
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distribution (Maxwell-Boltzmann velocity distribution).

3.2 A numerical approach on solving selective reflec-

tion spectroscopy

Our experiment is a collaborative project between the SAI (Spectroscopie Atomique

aux Interfaces) group, Université Sorbonne Paris Nord, France and QMS (Quantenoptik

makroskopischer Systeme) group, Universität Rostock, Germany under ANR funding

(SQUAT project). During this thesis, Chris Boldt a PhD student of the QMS group visited

our SAI group and we developed a numerical method for simulating the selective reflection

lineshape (equation 3.30). The numerical simulation was carried out in MATLAB software

utilizing a parallel computing toolbox and the integration time was optimized by using

the cumulative summing method [59].

3.2.1 Numerical approach to solve the z and z′ integral

Separating z and z′ variable, the general solution of the FMSR signal (equation 3.30) can

be rewritten in the following form:

IFMSR =M · ηr0ρℜ
[∫ +∞

0

dvz
W (vz)

vz

∫ +∞

0

dz · e2ikze−[L(z,vz)]
∫ z

0

dz′ · e[L(z′,vz)]
]

= ηr0ρ · ℜ
[∫ +∞

0

dvz
W (vz)

vz
· I

] (3.32)

where

• I consists the z and z′ integral:

I =

∫ +∞

0

dz · e2ikze−[L(z,vz)]
∫ z

0

dz′ · e[L(z′,vz)] =
∫ +∞

0

dz · H(z) (3.33)

• H(z) is a function that includes all the integrand of z integral, given by:

H(z) = e2ikze−[L(z,vz)]
∫ z

0

dz′ · e[L(z′,vz)]
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• L(z, vz) is the predefined lineshape function including the 1/vz factor.

L(z, vz) = − γ

2vz
z + i

δ − kvz
vz

z −
[
i
C3

2vz

1

z2

]
= −Az + iBz − i(C/z2)

(3.34)

where A = (γ/2vz), B = (δ − kvz)/vz and C = C3/2vz.

To solve the integral I, we need to study the evolution of H(z) as a function of γ, vz,

and C3.

Figure 3.4 shows the real part of H(z) in terms of atom surface separation z for C3 = 1

MHz µm3, γ = 25 MHz, δ= -50 MHz and vz = 100 m/s. For relevant Rydberg-surface

interaction, C3 typically lies in the order of few MHz µm3 and detuning δ and velocity

vz are chosen thoughtfully so that variation of H(z) are easily visible as the different

variables are changed.

Figure 3.4: Real part of H(z) as a function of z (in micron) for C3 = 1 MHz µm3, γ =
25 MHz, δ = - 50 MHz and vz = 100 m/s.

The response of H(z) can be crudely divided into two parts:

• Approaching towards the wall, i.e. z → 0 (referring as the "transient regime"): the
response consists of non-periodic oscillation, as the "exp(iC/z2)" term, oscillates
rapidly and overshadows other terms of H(z) as z → 0.

• Approaching towards infinity, i.e. z → +∞ (referring as "steady-state regime"): the
response consists of periodical oscillation, as "exp(iC/z2)" term dies off quickly as
z → +∞.

Observing the response of H(z) (figure 3.4), one can say that the major contribution

to the integral I comes from the small value of z (transient regime). Furthermore, the
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integral will only converge if we assume "losses" that suppress the periodical oscillations

evident for large values of z (steady-state regime). In the following, we present two possible

losses to the H(z) to ensure convergence of integral I.

3.2.1.1 Truncation of H(z) with a damping function

First, we use the "Logistic function" [60][61] (i.e. sigmoid curve) as a dampening function,

given by:

f(z) =
fc

1 + ek[z−z0]

where

z0, the value of the sigmoid’s midpoint.

fc, the supremum of the values of the function.

k, the logistic decay rate or steepness of the curve.

For instance to truncate H(z) at a distance ’L’ (cut-off point) where L corresponds to

a large value of z (lies in the so-called steady-state regime). It is also preferred that the

amplitude of H(z) "smoothly" go down to a small value like 1% of the initial value at

L (i.e. fc = 10−2). ’z0’ is the point where the logistic function goes to half of its initial

value and to make it smoother, the midpoint can be shifted to 3/4 of the cut-off point

i.e. z0 = 3L/4. Satisfying these conditions, the k value can be calculated as:

k =
4

L
ln
1− fc
fc

(3.35)

Thus the logistic function f(z) becomes:

f(z) =
1

1 + ek[z−(3L/4)]
(3.36)

Figure 3.5 shows the Logistic function as a function of z for different L values. For a

larger value of the L, the steepness of the function decreases (becomes smoother) which

is desirable as this slow decay would encounter more oscillations before reaching 1%.
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Figure 3.5: Logistic function f(z) as a function of z (in µm) for different L values (in
µm).

Applying the logistic function f(z) for L=15 µm to H(z) (Figure 3.4), we get:

Figure 3.6: Real part of H(z)× f(z) (for L = 15 µm) as a function of z (in µm).

It is evident that the logistic function with a cutoff point L = 15µm is more than

sufficient for ensuring the convergence of the integral I without truncating the essential

portions of the integral. The selection of this cutoff point is subjective to the variable of

H(z) (i.e. C3,Γ and vz). It is worth noting that an excessively large value of L can lead

to prolonged numerical simulation time, while an overly small value of L may truncate

essential portions of the integral leading to inaccurate integral values.

One approach to determining an appropriate value of L involves systematically testing

a range of L values, spanning from very small to large values with small increments

(≤ 0.005nm) and evaluate the impact on the amplitude of the integral I. This process was

carried out for different combinations of C3, Γ, and vz. Figure 3.7 depicts the amplitude
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variation of the real part of I for different values of (a) γ, (b) vz and (c) C3 (while keeping

other variables constant) as the value of L is systematically adjusted. This testing aids

to identify the optimal value of L at which the amplitude of integral I converges to a

stable value.

Figure 3.7: The amplitude variation of the real part of integral I for different cut-off
points L for different combination of (a) γ, (b) vz and (c) C3 while keeping other two
variables as constant.
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For small values of L (cut-off points resemble a small atom surface separation z), the val-

ues of I exhibit considerable variation. This is expected as the logistic function truncates

essential portions of I before it can reach a steady state. However, as the cutoff point is

carefully adjusted to an optimal length, the amplitude of I stabilizes, ultimately yielding

a consistent value. During this calculation, the convergence of I is accepted when the

amplitude variation is well below 0.00001%.

In figure 3.7 (a), we see that the integral I converges faster for a larger value of γ

(convergence is achieved at L ∼ 4.5 µm when γ = 100 MHz and at L ∼ 6 µm for γ =

25 MHz). As the decay lifetime of the atomic dipole is longer for smaller linewidth, the

atom can explore more depth along z. Hence I converges at larger values of L for smaller

values of γ.

In Figure 3.7 (b), we explore the convergence of I for two different velocities, vz (100

m/s and 10 m/s), while maintaining C3 = 1 MHz µm3 and γ = 25 MHz. An atom

travelling at a higher velocity explores greater depths along the z compared to a slower

one. Consequently, I converges faster for lower velocities (for vz = 100 m/s, convergence

occurs around L ∼ 6.5 µm, whereas for vz = 10 m/s, convergence is achieved at L ∼ 4.5

µm).

Finally, in Figure 3.7 (c), we explore the convergence of I for two different values of the

C3 coefficient (1 MHz µm3 and 5 MHz µm3). A higher C3 coefficient signifies a more

pronounced atom-surface shift, allowing the atom to explore greater depths along the

z and I convergences at larger values of L. It’s worth noting that the term exp(iC/z2)

diminishes rapidly with increasing z. Consequently, the impact of C3 on the convergence

of I becomes relatively minor especially with chosen C3 variation.

Most importantly, I tends to converge to a stable value when an appropriate cutoff

point L is chosen. For this numerical approach, we have used the appropriate L values

for a broad spectrum of γ, δ, vz, and C3 combinations to ensure the convergence of I

(amplitude variation of I < 0.00001%).
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3.2.1.2 Truncation of H(z) with an analytical function

As mentioned previously, H(z) varies rapidly for small values of z (transient regime) and
eventually reaches a periodic oscillatory (steady-state) regime as z increases. In the steady
state regime the influence of atom-surface interactions (exp(iC/z2) term) is negligible.
For this solution, we assume that H(z) represents the response in the presence of atom-
surface interaction, while H0(z) represents the response in the absence of atom-surface
interaction. By subtracting the response with atom-surface interaction from the response
without atom-surface interaction, we introduce what we refer to as "natural losses" to
the function. In the steady-state regime, these two functions will overlap and cancel each
other perfectly, ensuring the convergence of the integral I (figure 3.8). Recalling equation
3.33, we have:

I =

∫ +∞

0

dz [H(z)−H0(z)] +

∫ +∞

0

dzH0(z) (3.37)

where H0(z) is given by:

H0(z) = e(2ikz) · e[−Az+iBz)]
∫ z

0

dz′ · e[Az−iBz′] (3.38)

where A = (γ/2vz), B = (δ − kvz)/vz.

Figure 3.8: ℜ[H(z)] and ℜ[H(z)−H0(z)] as a function of z (in µm).

Similarly, we define Ith which refers to I in the absence of atom-surface interaction, given
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by:

Ith =

∫ +∞

0

dzH0(z)

= lim
A→0

∫ +∞

0

dz · e2ikz 1− e−(A−iB)z

A− iB︸ ︷︷ ︸
H0(z)

eAz

=
i

2k(−2ik +A− iB)

(3.39)

Finally, substituting 3.39 into 3.37, we can obtain the integral I as:

I =

∫ +∞

0

dz [H(z)−H0(z)] +
i

2k(−2ik +A− iB)
(3.40)

The convergence of I with these natural losses was also examined in the same systemic

way as discussed in the previous section. With this method, for a well-chosen upper

boundary in z, the convergence of I was well within 0.00001%, resulting in identical

values. The determining factor in choosing between these two methods boils down to

computational speed. For cumulative summing, Matlab was more suitable for predefined

integration limits and coding complexity was a bit simpler with the Logistic function.

Thus the integration time was a bit faster for the Logistic function. For the results

presented in this thesis, the logistic function was chosen to introduce losses.

3.2.2 Selective reflection lineshapes for different atomic velocities

After solving the z and z′ integrals, it is rather straightforward to perform the integration

over velocities vz with the appropriate weight factors defined by the Maxwell-Boltzmann

distribution. It is noteworthy to mention that the validity of the Maxwell-Boltzmann

atomic velocity distribution in the vicinity of a reflecting surface is an ongoing subject of

research [62].

Figure 3.9 presents the SR lineshape (excluding the weight factors) for C3 = 1 MHz µm3,

γ = 100 MHz showcasing the influence of different atomic velocities vz. As the velocity

vz approaches zero, the SR signal reassuringly converges towards the curve at vz = 0

(equation 3.31). With increasing velocity, the atoms explore larger depths along z. Si-
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multaneously, the resonance shifts to a higher red detuning. At these greater depths, the

term exp(iC/z3) diminishes rapidly and the atom starts to experience the phase of the

driving field exp(2ikz), which in turn, leads to a modification in the phase of the SR signal.

Figure 3.9: Selective reflection lineshape with C3 = 1 MHz µm3, γ = 100 MHz for different
atomic velocities (vz).

3.2.3 Selective reflection lineshape for different atomic velocity

distribution and atom-surface interactions

3.2.3.1 For weak dipole-dipole interaction

In figure 3.10, we present normalized FMSR lineshapes (normalized to maximum am-

plitude) for C3 =10 kHz µm3 and γ = 15MHz with different velocity distributions: the

infinite Doppler and motionless atom approximation (marked with arrows) and Maxwell-

Boltzmann distribution for different thermal velocities (marked with different markers).

With a temperature of T = 0.002 K, it is reasonable to assume that the Maxwell-

Boltzmann distribution is sufficiently narrow and most of the atoms are moving very

slowly simulating the condition for vz → 0. The simulated FMSR lineshape for T =

0.002 K, converges nicely to the analytical solution for vz = 0 (equation 3.31, indicated
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by arrow). With increasing temperatures to higher values, MB distributions practically

broaden, simulating the conditions for which the infinite Doppler approximation is valid.

The convergence of the simulated SR lineshape for T = 500 K (the usual operating

temperature of the surface) to the infinite Doppler approximation (equation 3.30) is ac-

ceptable especially close to δ → 0. However, a small divergence can be observed on the

"wings" (for higher negative detuning). This can be attributed to the fact that the in-

finite Doppler condition might not be fully valid (with γ = 15 MHz, Doppler FWHM

600 MHz). On increasing the temperature to T = 8000 K where the Doppler width is

about 2.5 GHz » the linewidth, γ = 15 MHz, the simulated SR lineshape converges to

the Doppler limited solution almost perfectly.

Figure 3.10: Normalized FMSR lineshapes (normalized to maximum amplitude) for dif-
ferent thermal velocity distributions. The infinite Doppler and motionless atom approxi-
mations are marked with arrows. Here, C3 = 10 kHz µm3 and γ = 15 MHz.

3.2.3.2 For strong dipole-dipole interaction

Figure 3.11 shows the normalized FMSR lineshape (normalized to the maximum ampli-

tude) for C3(17D3/2) = 8.8 MHz µm3 and γ = 50 MHz (most excited relevant Rydberg
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state) considering different velocity distributions: the motionless atom approximation (in

dotted line), infinite Doppler approximation (in dashed line) and Maxwell Boltzmann

(MB) distribution at T=500 K (in solid line). Close to resonance (δ → 0) where the atom

surface shifts are small (∼ -100 MHz) compared to the Doppler width (about ∼ 600

MHz), the divergence between MB (in solid line) and Doppler-limited (in dashed line)

FMSR lineshape is negligible. But for higher negative detuning, especially in the ’wing’ of

the FMSR lineshape where the atom surface shift (more than -500 MHz) becomes com-

parable to the Doppler width, Doppler-limited approximation is no longer valid and we

observe a strong divergence between the MB and the Doppler-limited FMSR lineshapes.

Meanwhile, the SR lineshape due to motionless approximation (in dotted line) appears

narrower than the other two lineshapes, since we have excluded the effect of atomic mo-

tion. Nevertheless, neither the Doppler-limited approximation nor the motionless atom

approximation is adequate for explaining Rydberg atom-surface interactions.

Figure 3.11: Normalized FMSR lineshape (normalized to the maximum amplitude) for
C3(17D3/2) = 8.8 MHz µm3 and γ = 50 MHz considering the motionless atom approxima-
tion (dotted line), infinite Doppler approximation (dashed line) and Maxwell Boltzmann
(MB) distribution with T = 500 K (in solid line).
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3.2.3.3 For strong atom surface interaction including quadrupole interac-

tions term

The addition of the quadrupole interaction term in the numerical solution is a relatively

straightforward process with introducing a newly defined lineshape function L(z, vz) that

includes both the dipole-dipole(image) and quadrupole-quadrupole (image) interaction

terms, given by:

L(z, vz) = − γ

2vz
z + i

δ − kvz
vz

z −
[
i
C3

2vz

1

z2

]
−
[
i
C5

4vz

1

z4

]
= −Az + iBz − i(C/z2)− i(D/z4)

(3.41)

where A = (γ/2vz), B = (δ − kvz)/vz, C = C3/2vz and D = C5/4vz.

Figure 3.12 shows the normalized SR lineshape (normalized to the maximum ampli-

tude) for C3(17D3/2) ∼ 8.8 MHz µm3 (in solid line) and C3(17D3/2) ∼ 8.8 MHz µm3 &

C5(17D3/2) & 2.07 kHz µm5 (in dashed line) having a homogeneous linewidth, γ = 50

MHz.

Figure 3.12: Normalized SR lineshape (normalized to the maximum amplitude) for
C3(17D3/2) (solid line: ∼ 8.8 MHz µm3) and C3(17D3/2) & C5(17D3/2) (grey dashed
line: ∼ 8.8 MHz µm3 & 2.07 kHz µm5) having a homogeneous linewidth, γ = 50 MHz.
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The introduction of the quadrupole term has a negligible effect on the SR lineshape. The

strongest contrast of SR lineshape corresponds to larger atom surface separations (z)

where the atom-surface shifts are relatively large. For these large atom surface separa-

tions, the influence of the quadrupole term C5 (which scales as 1/z5) diminishes rapidly

when compared to the dominant C3 term (which scales as 1/z3). To explore higher-order

interaction effects, it becomes necessary to probe atoms at much shorter atom-surface

separations. However, in the SR technique, the probing depth is inherently defined by

the atom-surface shifts, which limits its appropriateness for observing higher-order inter-

action terms.

One possible approach to probe atoms even closer to the surface would be using a nano-

metric cell with varying thicknesses giving us an effective control over the probing depth.

This was one of the key motivations behind our decision to perform experiments in such

a cell. In the following sections, we briefly discuss thin-cell (TC) spectroscopy and our

numerical approach for simulating TC lineshapes.
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3.3 Nanometric thin cell spectroscopy (TC)

Nanometric thin cell spectroscopy is a well-established method of probing Casimir Polder

interactions [23][63]. The thin cell, we use consists of two dielectric surfaces (made of YAG)

separated by a nanometric spacer [64][65] (figure 3.13). The two surfaces buckle under

atmospheric pressure giving rise to a thickness gradient of 50 nm - 1000 nm.

Figure 3.13: Transmission path of a near normal incident beam Ein through the thin
cell which acts as a low finesse Fabry–Pérot interferometer. ER, and ET is the reflected
and transmitted field respectively. α«1 is the incident angle which has been deliberately
upscaled in the figure for convenience. z > 0 is the direction of propagation.

Ein is the incident beam (α=0, coming from the surface 1 side) and ER and ET are the

reflected and transmitted fields respectively. Due to the parallelism of our cell, Only one

reflected beam (ER) can be observed from the vapour-surface interface. The cell acts

as a low finesse Fabry–Pérot (FP) micro-cavity of cavity length L and any thickness

gradient effects are also neglected. Throughout this calculation, a diluted atomic vapour

is considered for which the optically thin medium approximation is valid [51] i.e. the

absorption of the incident field is negligible.
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3.3.1 Nanometric thincell as Fabry–Pérot (FP) cavity

3.3.1.1 Mixing of reflection and transmission response

The incident field Ein (tuned to the atomic resonance) introduces macroscopic polarization

in the atomic vapour. In the limit of a dilute medium (i.e. the absorption is negligible

compared to Ein), the field E ′
o(z) that drives the atomic polarization P (z) in the medium

is essentially the field of an empty FP, given by [52][51]:

E ′
o(z) = Ein ·

2n

n+ 1
· [1− r · exp(2ik(z − L))]/F (3.42)

where

• k = 2π/λ is the wavevector where λ is the incident wavelength.

• r = (n− 1)/(n+1) is the reflectivity of the surface (both surfaces possess identical
reflectivity).

• F = 1− [r2 · exp(2ikL)] is the complex finesse of the cavity.

In the limit of optically thin medium approximation [51] (atomic response remains linear

to the excitation field), the linear reflection (I linR ) and transmission (I linT ) signal neglecting

any internal reflections inside the cell can be obtained as:

I linR =
ηr0ρ

F
·
[∫ +∞

0

dvz
vz

[W (vz) + w(−vz)]
∫ L

0

dz

∫ z

0

dz′e2ikze[L(z
′)−L(z)]/vz

]
(3.43)

I linT =
ηr0ρ

F
·
[∫ +∞

0

dvz
vz

[W (vz) + w(−vz)]
∫ L

0

dz

∫ z

0

dz′e[L(z
′)−L(z)]/vz

]
(3.44)

where, the lineshape function, L(z) is given as:

L(z) = γ

2vz
z + i

δ − kvz
vz

− i
C3

2vz

[
1

z2
− 1

(L− z)2

]
− i

C5

2vz

(
1

z4
− 1

(L− z)4

)
(3.45)

Here, we consider that the Casimir-Polder interaction in the cavity is simply the sum

of the interactions of the atom with two walls (the effects of multiple images will be

discussed later).

If we take into account the internal reflection due to the FP structure of the cell, it mixes
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the reflection and transmission response (Equation 3.43 and 3.44) and these mixed signal

can be given as [51]:

If =
[
I linT − r · I linR

]
(3.46)

Ib =
[
I linR −

(
r · I linT · e2ikL

)]
(3.47)

For a dilute atomic vapour, the atomic medium becomes transparent for most of the

incident field and this field will propagate back and forth through the cell length (L).

The respective resonant transmission and reflection signals given by ST and SR can be

interpreted as a homodyne beating between the mixed signals (If and Ib) and the trans-

mitted (reflected) field of an empty FP cavity of length, L. The mixed transmission (ST )

and reflection signal (SR) are expressed as [51]:

ST = ℜ[If − 2 · r · Ib]/|F|2 (3.48)

SR = ℜ[r · (1− e−2ikL)× (Ib − r · If · e2ikL)]/|F|2 (3.49)

3.3.1.2 Effect of multiple images

Due to the good parallelisms of two reflecting surfaces, we can introduce a minor adjust-

ment to our lineshape function (equation 3.45) to account for the formation of multiple

images [52] (figure 3.14).

We assume that the atom is placed at a distance z from surface 1 and L−z from surface 2

(figure 3.14). The surface-induced images: image (1) and image (2) will be at a distance

2z and 2(L − z) with respect to (w.r.t) the position of the atom. The image (1) will

produce an image of itself (1’) with the far side surface (i.e. surface 2) at a distance 2L

w.r.t to the position of the atom. Similarly, the image (2) will also create an image of

itself (2’) with the far side surface (now i.e. surface 1) at a distance 2(L− z) and so on.

The position of the images w.r.t the position of the atom will evolve as:

• For Image (1) the next images will be positioned at : 2z, 2L, 2L+2z, 4L, 4L+2z,

. . .

• For Image (2) the next images will be positioned at: 2(L-z), 2L, 2L+2(L-z), 4L,
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4L+2(L-z) ,. . .

Figure 3.14: Thin cell with multiple images where the atom is placed at a distance z from
surface 1 and L− z from surface 2.

This evolution of the position of the images can be put in an analytical form, such as :

∑
n

1

[z + nL]2
−

∑
n

1

[(L− z) + nL]2
=

1

L2

[∑
n

1

[z/L+ nL]2
−
∑
n

1

[(L− z)/L+ nL]2

]

= Ψ(1)
( z
L

)
−Ψ(1)

(
L− z

L

)
(3.50)

where Ψ(1) = d2

dz2
ln(Γ(z)) is the tri-gamma function [66].

Subsequently, the modified lineshape function in the presence of multiple images can be

given as (considering only dipole-dipole (image) interaction):

L(z) = γ

2vz
z + i

δ − kvz
vz

− i
C3

2vz

[
Ψ(1)

( z
L

)
−Ψ(1)

(
L− z

L

)]
(3.51)

The modification introduced by second-order images (1’,2’) is negligible (< 5%) com-

pared to the response due to first-order images (1,2). With the increasing order of the

images (1”,2”,..), the atom surface separation also increases and its corresponding response

becomes even more insignificant compared to the first-order images.

3.3.2 Thin cell (TC) lineshape in the presence of strong atom

surface interactions

The numerical solution to thin-cell lineshape is less complicated than the SR lineshape,

because, unlike the SR case, the integrals I linR and I linT naturally converge as they are

bound between the cell walls [0, L].
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I linR =
ηr0ρ

F
·
[∫ +∞

0

dvz
vz

[W (vz) + w(−vz)]
∫ L

0

dz

∫ z

0

dz′e2ikze[L(z
′)−L(z)]/vz

]

I linT =
ηr0ρ

F
·
[∫ +∞

0

dvz
vz

[W (vz) + w(−vz)]
∫ L

0

dz

∫ z

0

dz′e[L(z
′)−L(z)]/vz

]
Simulation of the TC lineshape by mixing reflection and transmission signal and homo-

dyne beating becomes somewhat trivial, which is given by:

ST = ℜ
[(
I linT − r · I linR

)
− 2 · r ·

(
I linR − r · I linT · e2ikL

)]
/|F|2

SR = ℜ
[
r · (1− e−2ikL)×

{(
I linR − r · I linT · e2ikL

)
− r ·

(
I linT − r · I linR

)
· e2ikL

}]
/|F|2

So instead of going into the details of the numerical procedure, we present the TC line-

shapes for different cell thicknesses and examine the conditions under which higher-order

interactions can be experimentally observable.

In figure 3.15 and 3.16, we present simulated 6P1/2 → 16S1/2 TC lineshapes (transmis-

sion (TS) and reflection (RS) spectra) for different cell thicknesses with C3(16S1/2) ∼ 4.1

MHz µm3 (in dashed lines) and C3(16S1/2) ∼ 4.1 MHz µm3 & C5(16S1/2) ∼ 0.45 kHz

µm5 (in solid line) considering a Maxwell-Boltzmann (MB) distribution with a probable

velocity of vp = 250 m/s. For simulating TC lineshapes, we have taken the reflection

coefficient of both windows to be r = 0.29. We have also considered the internal mixing

of the transmission I linT and reflection signal I linR as well as the homodyne beating of the

mixed signal with the empty FP but we have excluded the effects of multiple images.

We show transmission (TS) and reflection signals (RS), normalized to their maximum

amplitude, for two different homogeneous linewidths marked as A (∼ 200 MHz) and B

(∼ 1000 MHz). We have also divided the lineshape into two parts depending on the cell

thickness: cell thickness bigger than λ/2 (figure 3.15) where λ is the transition wavelength

(∼ 514 nm) and cell thickness smaller than λ/2 (figure 3.16).
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Figure 3.15: Normalized transmission (TS) and reflection (RS) spectra as a function of
cell thickness (L>λ/2 where λ = 514 nm) with C3(16S1/2) (dashed lines: ∼ 4.1 MHz
µm3) and C3(16S1/2) & C5(16S1/2) (solid line: ∼ 4.1 MHz µm3 & 0.45 kHz µm5). Signal
amplitude is normalized to the maximum amplitude of the signal. A and B correspond to
γ = 200, 1000 MHz respectively. When the thickness is an integral multiple of λ/2 (514
nm and 771 nm) the reflection signal (RS) becomes zero.
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Figure 3.16: Normalized transmission (TS) and reflection (RS) spectra as a function of cell
thickness (L>λ/2 where λ = 514 nm) with C3(16S1/2) ∼ 4.1 MHz µm3 (dashed lines) and
C3(16S1/2) ∼ 4.1 MHz µm3 & C5(16S1/2) ∼ 0.45 kHz µm5 (solid line). Signal amplitude
is normalized to the maximum amplitude of the signal. ∆ = ∆1(C3 + C5) − ∆2(C3),
additional redshift of the dip for considering quadrupole interactions.
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For large cell thicknesses L>λ/2 where λ = 514 nm (figure 3.16) the dipole interaction is

the dominating term and quadrupole interactions are irrelevant (dashed and solid lines

almost overlap). However, it is interesting to notice that, for some specific cell thick-

nesses, like 514 or 643, some narrow features can be observed for a smaller γ value (A)

and diminish for a larger value of γ (B). In our initial, investigation we found that these

narrow features depend on C3, γ and also on cell thickness L. In our preliminary exper-

iment on TC spectroscopy (chapter 6), we observed some reminiscence of these narrow

features. An intuitive hypothesis for these narrow features would be the mixing of the

transmission and reflection signal or related to the mixing of "the CP interactions" with

the "Dicke effects" [67] as it depends on C3 and as well as on L. This behaviour is yet to

be understood and warns further investigation.

For small cell thickness L<λ/2 (figure 3.15), we have compared TC Transmission (TS)

and Reflection (RS) spectra as a function of cell thickness with C3(16S1/2) ∼ 4.1 MHz

µm3 (dashed lines) and C3(16S1/2) ∼ 4.1 MHz µm3 & C5(16S1/2) ∼ 0.45 kHz µm5 (solid

line) having γ = 1000 MHz. With decreasing cell thickness, increasing discrepancies can

be observed between the two lineshapes. An additional redshift of the lineshape can be

observed by taking into account the quadrupole interaction (solid line) compared to the

lineshape only considering dipole interaction (dashed line). This additional shift becomes

more prominent for smaller cell thickness (i.e. at smaller atom-surface separations). Most

importantly, by tracking this additional shift (denoted as ∆ in figure 3.16), we can estab-

lish a method to estimate the cell thickness at which the manifestation of higher-order

interactions becomes experimentally observable. For instance, with the presence of the

quadrupole interaction, one can expect an additional redshift of approximately 2 GHz

of the resonance for a cell thickness of 125 nm which is about half of the FWHM of

the linewidth. This information can be crucial for designing experiments and optimizing

conditions to probe higher-order interactions effectively.

Figure 3.17 shows the trace of the additional redshift in TC transmission lineshapes
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due to the presence of the quadrupole interactions as a function of cell thickness for

some relevant Rydberg states. With higher Rydberg states, the influence of higher-order

interactions becomes discernible even at larger atom surface separations, necessitating

corrections beyond the dipole approximation.

Figure 3.17: Additional redshift of the atomic resonance as a function of cell thickness in
the presence of the quadrupole-quadrupole interactions for some relevant Rydberg states.
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Chapter 4

Description of the atomic system and

experimental setup

This chapter focuses on the experimental setup used for measuring the Casimir Polder

interactions between Rydberg states [6P1/2 → nS1/2, nD3/2(n = 15− 18)] using selective

reflection (SR) and thin cell (TC) spectroscopy. The experimental setup can be divided

into two main parts. The first part involves conducting absorption spectroscopy in a

microscopic cell (where spectroscopic measurements are not influenced by atom-surface

interaction) which acts as a frequency reference. In conjunction with absorption spec-

troscopy we have measured the Casimir-Polder interaction with an independent setup

using selective reflection or thin cell spectroscopy.

In Section 4.1, we introduce the general spectroscopic scheme which involves a step-wise

excitation process to probe the Rydberg States. The initial step consists of optically ex-

citing atoms from 6S1/2 → 6P1/2 using an 894 nm laser. Subsequently, we probe the atoms

to 6P1/2 → nS1/2, nD3/2 states using an extended cavity laser having a wavelength range

of 510 - 514 nm. In Section 4.2, we provide a comprehensive description of the experimen-

tal setup highlighting key components such as the lasers, vapour cells, data acquisition

and detection system. Section 4.3 provides a brief overview of the volume experiment
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(sub-Doppler velocity-selective 6P1/2 → nS1/2, nD3/2 absorption spectra) which acts as

frequency references in volume. Additionally, we present our experimental measurements

of homogeneous linewidth broadening for the 6P1/2 → 15D3/2 transition as a function of

Caesium vapour pressure.

4.1 Caesium atomic levels and spectroscopic scheme

Figure 4.1 shows the Caesium energy levels relevant to our experiments: the fundamen-

tal state Cs(6S1/2), the first excited state Cs(6P1/2) and all accessible Rydberg states

Cs(nS1/2, nD3/2).

Figure 4.1: Step-wise excitation scheme for probing Rydberg state. Pumping from
6S1/2(F = 3) → 6P1/2(F = 4) at 894 nm and probing 6P1/2(F = 4, 3) → nS1/2, nD3/2 (n
= 15 - 18) at 507 - 513 nm.

To reach the relevant Rydberg state, we use a step-wise excitation, firstly pumping the
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atoms from any of the hyperfine components of the ground state Cs(6S1/2) to any of the

hyperfine components of the first excited state Cs(6P1/2) (D1 line) with an 894 nm laser

and subsequently probing on the 6P1/2 → nS1/2, nD3/2 transitions (for n = 15 - 18) with

a green laser emitting at 507 - 513 nm.

Caesium ground state Cs(6S1/2) has two hyperfine components (F=4, 3) separated by ∼

9.19 GHz. Atoms are pumped from one of the hyperfine states of Cs(6S1/2) to the first

excited state Cs(6P1/2) (in the figure 6S1/2(F = 3) → 6P1/2(F
′ = 4)). Due to collisions,

the excitations are redistributed among both hyperfine components 6P1/2 state which

are separated by 1.17 GHz. So, on probing the Rydberg states from 6P1/2, we obtain

responses for the both hyperfine components of 6P1/2(F=4,3). Similar configurations have

been used in previous studies to measure CP interaction of low-lying states using selective

reflection (SR) spectroscopy [45][38][68] where this collisional redistribution was exploited

by assuming a quasi-thermal velocity distribution. The separation between the hyperfine

components of the nS1/2 and nD3/2 levels are within a few MHz [69][31][30], making

it impossible to resolve in our experimental conditions. Table 4.1, shows the accessible

Rydberg states and their transition wavelength from 6P1/2 state.

Probing states

from 6P1/2

Transition wavelength

(nm)

15D3/2 512.06871

16S1/2 513.88478

16D3/2 509.46958

17S1/2 510.88788

17D3/2 507.40752

18S1/2 508.35371

Table 4.1: Accessible Rydberg states and their transition wavelength from 6P1/2 state.

On the next page, we provide a schematic of our experimental setup highlighting some

of the key components of the setup.
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Figure 4.2: A schematic of the experimental setup highlighting some of the key compo-
nents.
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4.2 Experimental setup

Figure 4.2 shows a schematic of the key elements of our experimental setup. The setup can

be divided into four primary sections (depicted within a dashed rectangle in Figure 4.2):

the laser (consisting of the locks, scanning of the laser, AM, FM), the experiment in

volume (step-wise absorption spectroscopy), the experiment close to surface (Selective

refection or Thin-cell spectroscopy) and the data acquisition.

We apply amplitude modulation (AM) to the pump laser (indicated by the red line) and

frequency modulation (FM) (only for selective reflection experiment) to the probe laser

(indicated by the green line). Our main experiment consists of selective reflection (SR)

or thin cell (TC) spectroscopy allowing us to probe Rydberg atoms close to a surface and

measure CP interactions. Using flip-flop mirrors (Figure 4.2), we channel the lasers to ei-

ther of these setups (SR or TC). In both cases, we ensure that the incident angle is close to

normal with the interacting surfaces. For SR spectroscopy, we perform our measurements

on the beam reflected from the atomic vapour-surface interface. For TC spectroscopy,

we measure simultaneously the transmitted beam through the thin cell and the reflected

beam from the atom vapour-surface interface. The spectroscopic signal is obtained by

phase-sensitive detection using lock-in amplifiers. An auxiliary step-wise absorption or

saturated absorption spectroscopy experiment is performed in a macroscopic vapour cell

to obtain a frequency reference in the volume (not affected by the atom-surface interac-

tions). This provides frequency markers allowing us to calibrate the frequency scale of

our laser scans.

4.2.1 Lasers

4.2.1.1 Pump laser

To attain a high population of 6P1/2 atoms, we adopt a pump and re-pump configuration

employing two 894 nm lasers detuned by 9.19 GHz (separation between the hyperfine
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components of the ground state F = 4 and F = 3). One of the lasers is a DBR laser

(pump laser 1) with an output power of 50 mW and a linewidth of about 1-2 MHz

(as measured in [50]) while the other (pump laser 2) is an extended cavity laser from

TOPTICA DL 100 with an output power of 15 mW (linewidth of ≈ 200 kHz at time

scales of ≈ 5µs as mentioned by the manufacturer). The two pump lasers are orthogonally

polarized and overlapped on a polarising beam splitter. Figure 4.3 shows the typical

pumping configuration. The lasers are tuned to the same hyperfine component of the

excited (6P1/2) level, starting from different components of the ground state (6S1/2) (most

commonly, pump laser 1 is tuned on the 6S1/2(F = 3) → 6P1/2(F = 4) and pump laser

2 on the 6S1/2(F = 4) → 6P1/2(F = 4) transition).

Figure 4.3: Pump and re-pump configuration on 6S1/2 → 6P1/2 transition.

• Frequency Stabilization

Frequency drifts of the pump laser from the D1 resonance could result in loss of pop-

ulation in the 6P1/2 state and consequently, this could result in a decline in the signal

amplitude probing 6P1/2 → nS1/2, nD3/2 transition. To avoid this, we stabilize the pump

frequency by locking both pump lasers (1 and 2) on a Doppler-free 6S1/2 → 6P1/2 satu-

rated absorption signal obtained in two small auxiliary setups.

• Amplitude Modulation

An optical chopper manufactured by Thorlabs was employed to introduce amplitude

modulation at 4.7 kHz on both of the pump lasers. The two (aligned) pump lasers are

focused on the plane of the chopper to impose the same amplitude modulation for both

lasers. The selection of this modulation frequency was based on measuring the probe laser
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noise (standard deviation) at different frequencies, as depicted in figure 4.4. Notably, we

observed a fast reduction in noise levels when increasing the modulation frequency from 1

kHz to 5 kHz. However, a further increase in the modulation frequency didn’t significantly

reduce the noise level. For frequencies higher than 4 - 5 kHz the noise (standard deviation)

is proportional to the square root of the incident optical power of the probe laser. The

optical chopper can modulate the beam with a maximum frequency of 8 kHz but, at such

frequencies, it induces an important mechanical vibration of the optical table exacerbating

the noise of the system. We therefore used an AM frequency of 4.7 kHz.

Figure 4.4: Standard deviation of the probe laser intensity at different frequencies. The
input power is about 10 mW.

• Spatial filtering

To obtain a uniform beam profile and a better overlap of both pump beams, we inject

them through a polarization-maintaining single-mode fibre. This allows us to control the

pump beam size and obtain a homogeneous pumping over the entire area of the probe

beam (about 4 mm diameter).

4.2.1.2 Probe laser

We have used an extended cavity diode laser from TOPTICA as the probe laser having

a wavelength range of 507-514 nm and an output power of 25 mW at 512 nm. The laser
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linewidth, as provided by the manufacturer is ≈ 200 KHz for timescales shorter than 5

µs. However, it is important to note that we were unable to obtain spectroscopic signals

with a frequency resolution better than ≈ 15 MHz at time scales around 1s (relevant for

our experiment).

Figure 4.5 shows the frequency drift of the free-running probe laser as a function of time

when positioning the laser frequency on the slope of the absorption line, which acts as

a frequency discriminator. The amplitude noise is insignificant in this measurement, as

verified by tuning the laser frequency away from the atomic resonance.

Figure 4.5: Frequency deviation of free-running probe laser as a function of integration
time (in sec).

• Scanning of the laser

The probe laser frequency scan is performed by applying a voltage on the piezoelectric

actuator of the grating. A feed-forward technique (simultaneous scan of the laser current)

is also applied to extend the single mode-hop-free scanning range of the laser to about

20 GHz. The Stanford Research lock-in amplifiers used in our experiment are equipped

with low-noise voltage sources. We use this source to perform the probe laser scan which

is controlled by a custom-built Labwindows program.

• Frequency modulation (FM)

For the selective reflection experiment, a frequency modulation (FM) is also applied to
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the probe laser. This is achieved by adding an external voltage (generated by a func-

tion generator) on the piezoelectric element of the grating. Typically the peak-to-peak

modulation depth is 56 MHz (peak to peak) and the modulation frequency is 233 Hz.

• Fabry–Pérot interferometer and Wavemeter

The probe laser frequency scan is always monitored with a Thorlabs Fabry–Pérot inter-

ferometer having a free spectral range of 1.5 GHz and a resolution of 7.5 MHz (finesse of

about 200). This allows us to monitor the single-mode scan of the probe laser. Addition-

ally, we have also installed a Burleigh wavemeter (accuracy of ± 0.0002 nm at 1000 nm)

to monitor the frequency of the probe laser.

4.2.2 A brief discussion of the cells

4.2.2.1 Selective reflection (SR) Cell

We performed SR spectroscopy on a Caesium vapour cell manufactured in Armenia by D.

Sarkisyan’s group and had been previously employed to investigate the Casimir-Polder

(CP) interaction of Cs(7D3/2) [22] and Cs(7P1/2) states [50] in the presence of thermally

excited surface modes. A photograph of the cell (taken from [50]) is displayed in figure

4.6.

Figure 4.6: A photo of the SR cell.

The main body of the cell is an 8 cm long alumina cylinder onto which two sapphire

windows are glued. The first window (where selective reflection measurements are per-
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formed) is a super-polished sapphire window (diameter of about 2 cm) with a roughness

of 0.3 nm as measured by atomic force microscopy. This window is glued on the main

body of the cell using a high-temperature mineral glue able to withstand temperatures

up to 900° C. The second window (intermediate window) is also made of sapphire with a

lower surface quality. The 8 cm long sidearm parallel to the cell’s main body is glued to a

small hole drilled into the intermediate window. The cell is put inside three independent

ovens which are screwed on a platform that is securely placed on our optical table. These

ovens precisely regulate the temperature of the cell.

• The heating system

The heating system of the cell consists of three independent ovens (figure 4.7): oven (1)

heats the main sapphire window, oven (3) controls the heating of the Cs reservoir and

oven (2) heats the middle part of the cell and maintains the thermal gradient between the

surface and the reservoir (figure 4.7). Oven (1) is sealed with a glass window that allows

optical access while thermally insulating the oven. The cell temperature is measured using

three thermocouples: one is touching the front face of the sapphire window, another is

in contact with the Caesium reservoir and a third one is placed in contact with the

intermediate window. The three ovens are identical having tungsten filaments as heating

elements. The filaments are consistently looped in forward and backward directions to

minimize the induced magnetic field on passing current through them.

Figure 4.7: Selective reflection cell with the ovens and the thermocouples.

• Control for heating system
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The cell temperature is controlled using a "Labwindows" program which regulates the

power supplied to each of the three independent ovens (surface, middle, and reservoir).

The program ensures that all parts of the cell quickly reach the desired temperature and

maintains a difference of at least 50◦C between the reservoir (oven 3) and the main body

of the cell (ovens 1 and 2) to avoid Caesium condensation on the main body of the cell.

To prevent thermal stress, the temperature rise and fall are not allowed to exceed 15◦

C/min. The maximum allowed temperatures defined by the manufacturer for oven (1),

oven (2), and oven (3) are 900◦C, 350◦C, and 200◦C, respectively. The temperature is

measured every 5 seconds. The temperature stabilization accuracy is very good, within

fluctuations of only about 2◦C, which can result in a 5% variation in the vapour pressure.

If a thermocouple disconnects from the control system, the program shuts down all the

ovens. In the case of a blackout, Backup batteries are installed so that the program has

enough time to bring the cell to room temperature.

We assume that the vapour pressure close to the surface remains approximately the

same as that of the reservoir. The Caesium (Cs) pressure in the cell can be obtained by

employing the following equation [70]:

P = 10(7.046−3830T−1
r ) (4.1)

where P is the vapour pressure (Torr) and Tr is the reservoir temperature (K).

Subsequently one can also obtain the relative atomic density as:

n = (P/KBTs)

where KB is the Boltzmann constant and Ts is the surface temperature (K).

Figure 4.8 shows Caesium density and pressure as a function of Temperature (we assume

that Ts = Tr = T ).
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Figure 4.8: Ground state Caesium (6S1/2) vapour pressure (in Torr) and atomic density
(in atom cm−3) as a function of temperature T (in °C) (where we assume Ts = Tr = T ).

4.2.2.2 Thin cell (TC)

The thin-cell (TC) used in our TC experiment is also manufactured in Armenia by D.

Sarkisyan’s group and was previously used to measure the CP interaction of the Caesium

6D3/2 state at nanometric atom-surface separations (130 - 40 nm) [23]. A detailed study

of this cell (like mapping of the cell thickness) has already been conducted within our

research group [52]. The cell is ovoid-shaped with YAG windows of ≈ 20 mm in diameter

and 2.5 mm in thickness (figure 4.9, taken from [52]). An Al2O3 ring of ≈ 10 - 15 mm

diameter acts as a spacer between the two YAG windows which are attached with mineral

glue. After pumping the cell, the YAG windows buckle under atmospheric pressure. This

creates a thickness gradient inside the cell ranging from ≈ 40 nm at the centre, up to ≈

1000 nm towards the edges of the cell. Different thicknesses can be explored by translating

the cell along the X-Y plane. Figure 4.9 shows a photograph of the cell (front view, taken

from [52]).
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Figure 4.9: A Photo of the thin cell with a coin for reference.

• The heating system

Figure 4.10: Schematic of thin cell (side
view) indicating the ovens and thermocou-
ples.

The heating system of the cell consists of

two independent ovens (figure 4.10): oven

(1) controls the temperature of the YAG

surface while oven (2) controls the tem-

perature of the Cs reservoir. Oven (1) is

sealed with an AR-coated (894 nm) silica

entrance window of 20 mm diameter that

allows optical access to the cell. The cell

temperature is measured using thermocou-

ples with one touching the front face of the

YAG window and another in contact with

the Caesium reservoir (figure 4.10). Ovens

are enclosed in a ceramic shell inside a black housing which provides thermal insulation.

The maximum operating temperature defined by the manufacturer for the oven (1) is

about 300°C and for the oven (2) is about 270°C. The ovens are mounted on a transi-

tional platform that can move in X-Y-Z direction allowing us to easily explore different

cell thicknesses.
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• Thickness measurement

The thickness of the thin cell is measured by Fabry-Pérot interferometry. Figure 4.11

illustrates the path of a laser beam (1) passing through the cell at near normal incidence.

The thin-cell reflection is indicated as (3) (only one reflection beam is observed due to

the good parallelism between the two interfaces forming the thin-cell cavity) while the

reflection from the first window is indicated as (2).

Figure 4.11: Transmission path of a near normal incident beam (1) through the thin cell
which acts as a low finesse Fabry–Pérot interferometer. Beams indicated by (2) and (3)
are the reflected beams from the first window and the thin cell respectively. α«1 is the
incident angle which has been deliberately upscaled in the figure for convenience.

Correcting for the losses induced by the first window, the experimentally determined thin

cell reflectance (Rc) is given by:

RC =
P3

P1T2
W

(4.2)

where Tw=1-(P2/P1) is the transmittance of the windows/air interface and P1, P2 P3

is the power of the incident (1) and reflected beams (2,3) respectively.

Using Fabry–Pérot theory, the thin cell reflectance for an incident beam having wave-

length λ is given by:

RC =
F sin2

(
2πd cos(α)

λ

)
1 + F sin2

(
2πd cos(α)

λ

) (4.3)

where d is the thin cell thickness, λ is the wavelength of the incident beam, α is the

incident angle and F = 4RW/(1 − R2
W ). RW is the reflectivity of the YAG-air interface,

94



which is also a function of wavelengths.

Equation 4.3 is a periodical function of cell thickness d (figure 4.12). Therefore, an exper-

imental measurement using a single wavelength does not allow us to uniquely determine

the cell thickness [52]. For this purpose, we use 2 or more lasers of different wavelengths

for our thickness measurement. In figure 4.12, we show a typical cell thickness measure-

ment using two lasers (894 nm and 512 nm). The two lasers overlap and hit the same

point on the cell. By using two different wavelengths, we obtain an overlap between the

two reflectances for a particular cell thickness of 477 ± 5 nm (marked as black cross).

Figure 4.12: Reflectance (Rc) as a function of cell thickness (d) (red line: 894 nm, green
line: 512 nm). The straight line shows the value of measured reflectance. By using two
different wavelengths, we can pinpoint the cell thickness to be 477 ± 5 nm.

4.2.2.3 The macroscopic cells

• For locking the pump laser

For locking the pump lasers (894 nm) on the slope of D1 saturated absorption line, we

have used a Thorlabs Caesium vapour reference cell, kept at ambient temperature. The

cell is made from quartz and has a cylindrical shape with a length of about 80 mm and

a diameter of 25 mm with a sidearm of about 100 mm.

• Cells used for frequency reference
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To obtain frequency references and calibrate the frequency scale of our probe laser, we

perform a two-step absorption spectroscopy on (6P1/2 → nS1/2, nD3/2) line in the mi-

croscopic cell [section 4.3]. The cell body is an approximately 1 cm long copper cylinder

having sapphire windows on either side and an extended forearm in the middle containing

Cs reservoir [71]. The cell is inserted in a system of two metal boxes, one containing the

body of the cell and the other containing the Cs reservoir. Each box is independently

heated up, hence two independent temperature regions are defined and we ensure over-

heating of the windows (Ts ∼ 100◦C) relative to the Cs reservoir (Tr ∼ 70◦C). The

temperature was measured by two thermocouples, one touching the cell’s main body and

the other is on contact with the cell reservoir.

4.2.3 Data acquisition unit and automation of the experimental

setup

Data acquisition processes are controlled by custom-built Labwindows software. The com-

puter controls a voltage ramp that is applied to the piezoelectric actuator of the laser

grating to scan the laser’s frequency. For each frequency scan point, the input signals

from the photodetectors and the lock-in amplifiers are digitized by a DAQ and recorded

in the computer. Next, these signals are treated in a Matlab program that uses the step-

wise (6P1/2 → nS1/2, nD3/2) absorption signal to calibrate the frequency scale of each

scan. The time difference between two successive frequency point measurements is about

200 ms and the lock-in amplifier time constant is set to 300 ms. A typical scan with

a frequency resolution of 3 MHz over a span of 3 GHz takes about 5 minutes. Finally,

we average approximately 150 scans to acquire an acceptable signal-to-noise ratio which

takes around 10 hours of integration time. During this long integration time, we verify

that the experimental conditions remain unchanged by simultaneously checking the fre-

quency stabilization of the pump lasers, the temperature of the cell and the scan of the

probe laser.
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4.3 Absorption spectroscopy in a volumetric cell

4.3.1 Two-step absorption spectroscopy

Two-step absorption spectra were also obtained by pumping the atoms from 6S1/2 →

6P1/2 at 894 nm (pump laser) and subsequently performing absorption spectroscopy on

6P1/2 → nS1/2, nD1/2 (n = 15 - 17) line with the 507 - 514 nm laser (probe laser).

The pump and probe lasers co-propagate in a 1 cm Caesium vapour cell (spectroscopic

measurements are not influenced by the atom-surface interactions). An amplitude mod-

ulation (AM) of 1.9 kHz is applied to the pump laser with an optical chopper. Pump

and probe laser intensities were kept fixed at 3.5 mW/cm2 and 2.5 mW/cm2 respec-

tively and the Cs vapour pressure around ∼ 0.1 mTorr. For this discussion, we will

consider the 6P 1/2 → 15D3/2 transition (512 nm) with the pump laser locked on the

6S1/2(F = 3) → 6P 1/2(F = 4) transition. Figure 4.13 shows the normalized two-step

6P1/2 → 15D3/2 absorption spectrum (signal amplitude is normalized to the off-resonant

transmission probe power).

Figure 4.13: Normalized 6P1/2 → 15D3/2 absorption spectrum with the pump laser locked
on 6S1/2(F = 3) → 6P1/2(F = 4) transition. Signal amplitude normalized to off-resonant
transmission probe powers. Laser intensities: pump ∼ 3.5 mW/cm2, probe ∼ 2.5 mW/cm2.
Cs vapor pressure: ∼ 0.1 mTorr. Horizontal dashed line: the zero level and vertical dashed
lines: 6PF=4,3 → 15D3/2 transition in volume.
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The sub-Doppler peak over a broad (Doppler broadened) pedestal corresponds to a ve-

locity selection by the infrared pump laser when the probe (green) laser is tuned on the

6P1/2(F = 4) → 15D3/2 resonance. The existence of the broad pedestal is attributed

to a redistribution of the atomic excitation to all velocity groups by either collisions or

radiation trapping [72][73].

Firstly, we obtained normalized 6P1/2 → 15D3/2 absorption spectra by increasing pump

intensity from 3.5 mW/cm2 to 50 mW/cm2 keeping the vapour pressure at 0.1 mTorr (fig-

ure 4.14). Signal amplitudes are normalized to the maximum amplitude of each absorption

line. We observe two distinct absorption lines for the two hyperfine components of 6P1/2

and a significant broadening of the lineshape, suggesting a strong contribution coming

from collisions among excited 6P1/2 state atoms in the excitation redistribution process.

It is interesting to notice that the initial velocity selective excitation (sub-Doppler sig-

nals separated by exactly 1.167 GHz) can be observed for both hyperfine components of

6P1/2. This is a new observation and in the following section, we present some preliminary

investigations on these sub-Doppler signals.

Figure 4.14: Normalized 6P1/2 → 15D3/2 absorption spectrum with the pump laser locked
on 6S1/2(F = 3) → 6P1/2(F = 4) transition. Signal amplitudes: normalized to the max-
imum amplitude of each absorption line. Laser intensities: pump ∼ 3.5 mW/cm2, probe
∼ 2.5 mW/cm2. Cs vapor pressure: ∼ 0.1 mTorr. Horizontal dashed line: the zero level
and vertical dashed lines: 6PF=4,3 → 15D3/2 transition in volume.
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Subsequently, 6P1/2 → 15D3/2 absorption spectra were also obtained for different vapour

densities with high pump intensities ∼ 50 mW/cm2 (figure 4.15). With increasing vapour

density the redistribution of the excitation becomes more efficient for both hyperfine

components for a given pump intensity, suggesting an increase in the collision rate be-

tween the ground state Cs(6S1/2) atoms and excited Cs (6P1/2) state. Like the previous

case, we can also observe a significant broadening of the lineshape. However, despite the

broadening, a sub-Doppler signal due to the initial velocity selective excitation is still

distinguishable over the broad lineshape.

Figure 4.15: Normalized 6P1/2 → 15D3/2 absorption spectra with pump intensities of ∼ 50
mW/cm2 for different ground state (6S1/2) vapour pressure. Signal amplitudes are normal-
ized to off-resonant transmission probe powers. Probe laser intensities ∼ 2.5 mW/cm2.
A horizontal dashed line indicates the zero level and two vertical dashed lines mark
6PF=4,3 → 15D3/2 transition in volume.

4.3.1.1 Sub-Doppler peaks of 6P1/2 → 15D1/2 absorption spectra

To investigate the effects of pump laser frequency on step-wise 6P1/2 → 15D3/2 absorption,

the frequency of the infrared pump laser was detuned slightly from the D1 resonance

(detuned by 150 MHz about half of the Doppler width). Absorption spectra were obtained

with the vapour pressure fixed at approximately 0.1 mTorr with pump and probe laser

intensities set at 50 mW/cm2 and 2.5 mW/cm2, respectively. Figure 4.16 shows normalized

6P1/2 → 15D3/2 absorption spectra (signal amplitudes are normalized to the amplitude
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of each absorption line) as a function of frequency detuning of pump laser: (a) Pump

frequency, ωIR = ω (on 6S1/2(F = 3) → 6P1/2(F = 4) resonance) (b) Pump frequency,

ωIR= ω − δ (c) Pump frequency, ωIR = ω + δ .

Figure 4.16: Normalized 6P1/2 → 15D3/2 absorption spectra for Pump frequency : (a)
pump frequency on resonance, ωIR = ω0 (b) pump frequency, ωIR= ω0 − δ (c) pump
frequency, ωIR = ω0+δ. Signal amplitudes are normalized to the maximum amplitude of
each absorption line. The pump frequency detuning is δ ≈ 150 MHz leading to a ≈ 260
MHz shift of the sub-Doppler peaks in the probe absorption spectrum. A horizontal
dashed line indicates the zero level and two vertical dashed lines mark 6PF=4,3 → 15D3/2

transition in volume.

For these three cases, it is evident that the sub-Doppler signals for both hyperfine com-

ponents follow the detuning of the pump laser. The underlying mechanism behind this

phenomenon is not yet fully understood and warrants further investigation. Nevertheless,

we present an intuitive hypothesis for this observed behaviour.

If we consider the case of figure 4.17 where the pump laser (894 nm) is locked on the

6S1/2(F = 4) → 6P1/2(F = 4). The pump interacts with vz atoms exciting them to the

6P1/2(F = 4) level. Due to spontaneous emission, some slow atoms (vz) will be optically

pumped to the 6S1/2(F = 3) state. This process burns a hole on the 6S1/2(F = 4) popula-

tion while adding a peak on the 6S1/2(F = 3) population at vz. At low densities (without
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any active redistribution mechanisms), the excited state population consists entirely of

vz atoms at the 6P1/2(F = 4) state, whereas the 6P1/2(F = 3) is not populated.

At higher densities, the excitation is also redistributed to the 6P1/2(F = 3) level mostly

by resonance exchange collisions of the following type [72]:

Cs(6P, u1) + Cs(6S, u2) → Cs(6s, v1) + Cs(6P, v2) (4.4)

where u1, u2, v1, v2 represent different velocity classes. In the above collisional mechanism,

a velocity-selected excited atom is replaced by a non-velocity selected one with a colli-

sional cross-section that depends on the transition dipole matrix element. The effects of

resonance transfer collisions are thus dominant for Cs(6P1/2) atoms, while their effect

is shown to be considerably diminished for highly excited states (see reference [72] for

a study on Cs(7P ) collisions). Radiation trapping has also been considered as an im-

portant redistribution mechanism within different velocity classes of the same hyperfine

component. However, radiation trapping is probably less efficient for redistributing the

excitation between the two hyperfine components of the excited state whose frequency

separation (1.1 GHz) is much larger than the Doppler width (FWHM about 400 MHz).

Figure 4.17: An example of 6S1/2 → 6P1/2 pumping configuration.

Having established that the population on the excited 6P1/2(F = 3) originates from

the resonant exchange with ground state atoms the following question arises: Are atoms
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mostly transferred from the 6S1/2(F = 4) state (whose velocity dependence has a dip

at vz) or from the 6S1/2(F = 3) state (whose velocity dependence has a peak at vz)? If

our previous hypotheses (about redistribution mechanism) are correct, this would suggest

that the 6S1/2(F = 4) → 6P1/2(F = 3) should be more favourable due to its higher tran-

sition dipole moment element (see Table 4.2). Therefore, the 6P1/2(F = 3) population

should also be expected to present a small dip at vz.

Relative Hyperfine Transition Strength Factors SFF

Transition Strength Transition Strength

S44′ 5/12 S34′ 3/4

S43′ 7/12 S33′ 1/4

Table 4.2: Relative 6S1/2 → 6p1/2 hyperfine transition strength factor SFF .

To test the above hypothesis, we measure the green laser absorption on the Cs(6P1/2) →

Cs(15D1/2) channel for all 4 possible pumping configurations (figure 4.18). We note that

in our case, the weak non-saturating green laser simply probes the velocity-dependent

population of the Caesium excited state without affecting it. In Figure 4.18 we can see

that when the pump laser addresses the same hyperfine component for both ground

Cs(6S1/2) and excited Cs(6P1/2) states i.e. either 6S1/2(F = 4) → 6P1/2(F = 4) or

6S1/2(F = 3) → 6P1/2(F = 3), the population of the excited state hyperfine component

that is not directly pumped presents a dip at vz. In the opposite case when the pump laser

addresses the different hyperfine components i.e. either 6S1/2(F = 4) → 6P1/2(F = 3) or

6S1/2(F = 3) → 6P1/2(F = 4), the population of the excited hyperfine component that

is not directly pumped presents a peak at vz. This experimental result is qualitatively

consistent with our tentative explanation for the origin of the sub-Doppler peaks on the

Cs(6P1/2) → Cs(15D1/2) absorption spectrum.
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Figure 4.18: (a) Normalized 6P1/2 → 15D3/2 absorption spectra (b) normalized FM
6P1/2 → 15D3/2 absorption spectra for all 4 possible pumping configurations on the
6S1/2 → 6P1/2 line. The signal amplitude is normalized to the maximum amplitude.
Pump laser: on resonance (addressing vz = 0 atoms) with AM modulated at 1.7 kHz.
Probe laser: FM modulated with 23 MHz peak-to-peak excursion at 233 kHz. The directly
pumped hyperfine component always presents a peak at vz = 0 due to the velocity selec-
tion of the pump. The hyperfine component that is not directly pumped presents either
a peak (for 6S1/2(F = 4) → 6P1/2(F = 4) or 6S1/2(F = 3) → 6P1/2(F = 3) pumping)
or a dip (for 6S1/2(F = 4) → 6P1/2(F = 3) or 6S1/2(F = 3) → 6P1/2(F = 4) pumping).
Horizontal dashed line indicates the zero level.
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Nevertheless, this unexpected sub-Doppler (high-resolution) spectroscopic signal allows

us to calibrate the frequency scale of the green (probe) laser without resorting to a more

complicated and optical power-demanding saturated absorption technique.

4.3.2 Saturated absorption Spectroscopy

To estimate the pressure broadening for these highly excited states, we have also per-

formed step-wise saturated absorption 6P1/2 → 15D3/2 line in a 100-micron Cs vapour

cell. The IR pump (894 nm) ∼ 3 W/cm2 and green probe (512 nm) ∼ 0.06 W/cm2

co-propagate while the green pump (512 nm) ∼ 2 W/cm2 is in counter-propagating con-

figuration (Figure 4.19). The laser beams were tightly focused and overlapped at the

centre of the cell. The amplitude of the IR pump and green pump were modulated at 233

Hz and 1.7 KHz respectively with two optical choppers and the 6P1/2 → 15D3/2 saturated

absorption was obtained by performing cascaded lock-in detection. Figure 4.19 shows the

schematic of the experimental setup.

Figure 4.19: Schematic of the experimental setup for the 6P1/2 → nS1/2, nD3/2 saturated
absorption spectroscopy.
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Figure 4.20 shows the normalized 6P1/2 → 15D3/2 experimental saturated absorption

spectrum (for pump laser tuned on 6S1/2(F = 4) → 6P1/2(F = 3) transition) (black line)

with Lorentzian fitted line (red line) having linewidth ∼ 26 MHz for a Cs vapour pressure

7 mTorr. The amplitude of the saturated absorption spectrum is normalized to the non-

resonant transmission probe power. To estimate the pressure broadening, we carried out

linewidth measurements for different vapour pressures.

Figure 4.20: Normalized 6P1/2 → 15D3/2 saturated absorption spectrum (black line) with
Lorentzian fitted with linewidth ∼ 26 MHz (red line). Signal amplitude is normalized to
the non-resonant transmission probe power. Pump laser intensities: IR ∼ 3 W/cm2 and
green ∼ 2 W/cm2, Green Probe intensity : 0.06 mW/cm2. Cs vapor pressure ∼ 7 mTorr.

Figure 4.21 shows the linear evolution of homogeneous linewidth with Caesium vapour

pressure. The minimum resolvable linewidth is approximately 15 ± 2 MHz at 0.3 mTorr.

Lowering the vapour pressure even more resulted in a very weak signal with a very

high error bar. The pressure broadening (collisional broadening) for 6P1/2 → 15D3/2 is

estimated to be ∼ 2 GHz/Torr. Due to the step-wise excitation, we were heavily limited by

the broadening of the D1 line, which is around 1 GHz/Torr [70]. Previously, similar results

were obtained on 6P1/2 → 6D3/2 line in the same cell [38] where 6P1/2 → 6D3/2 saturated

absorption linewidth was also limited to ∼ 15 MHz with the pressure broadening of 1.6
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GHz/Torr justifying our measurements.

Figure 4.21: Homogeneous linewidth measurement of 6P1/2 → 15D3/2 saturated absorp-
tion spectra as a function of Caesium vapour pressure. The linear fit (dotted line) to the
measurement values shows a linear growth of the homogeneous linewidth with Caesium
vapour pressure and presents a slop of 2 GHz/Torr.
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Chapter 5

Experimental results of Casimir Polder

interaction on nS1/2 and nD3/2 (where

n = 15, 16, 17) using selective

reflection spectroscopy

In this chapter, we present the analysis of 6P1/2 → nS1/2 and 6P1/2 → nD3/2 frequency-

modulated selective reflection (FMSR) spectra (where n = 15 - 17). Due to the weak

probability of the above transitions achieving a good signal-to-noise ratio for our record-

ings presents an important challenge. In section 5.1 we briefly discuss, the procedure for

averaging multiple scans that allow us to obtain reliable FMSR spectra. In section 5.2, we

discuss the fitting process of theoretical lineshapes to the experimental signal to extract

the atom-surface coefficient C3 and the homogeneous broadening γ. The process is then

implemented to measure the atom-surface interaction of the probed (16S1/2, 17S1/2), and

(15D3/2, 16D3/2, 17D3/2) states in sections 5.2 and 5.3 respectively.
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5.1 Recording the FMSR spectra

In figure 5.1, we show a single normalized 6P1/2 → 16S1/2 FMSR spectrum (black line)

obtained in experimentally optimal conditions. The signal amplitudes are normalized to

the off-resonant reflected powers. Caesium vapour pressure is kept moderately high (∼

25 mTorr) with a maximum available probe and pump laser intensity (Laser intensities:

pump ∼ 35 mW/cm2 and probe 100 mW/cm2). The figure also shows FM of the velocity

selective 6P1/2 → 16S1/2 absorption spectral (grey line) as a frequency reference in the

volume.

Figure 5.1: Normalized FMSR spectrum (black line) and velocity-selective absorption
spectrum (grey line) for 6P1/2 → 16S1/2 transition at vapour pressures of ∼ 25 mTorr
and ∼ 0.075 mTorr respectively. Signal amplitudes are normalized to off-resonant reflected
probe powers. Laser intensities: pump ∼ 35 mW/cm2, probe ∼ 100 mW/cm2. Scan:
time constant 300 ms. Horizontal dashed line: zero references for each spectrum. Vertical
dashed lines: frequency reference from 6P1/2 → 16S1/2 absorption in volume.

The scan presented in figure 5.1 is extremely noisy (the FMSR lineshapes are barely

observable) making it impossible to obtain any reliable data exploitation. In principle,

increasing the vapour density or the pump power can increase the 6P1/2 population and

consequently lead to a larger signal amplitude. But for the scans presented in Figure 5.1,

the Caesium (Cs) reservoir was close to the maximum operation temperature (200°C)
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with a maximum available pump power (as aforementioned). A practical solution for

enhancing the signal-to-noise ratio is to average multiple spectra by performing rapid

successive laser scans. As the probe laser frequency drift is around 100 MHz/hr and

the pump laser frequency drift is around a few tens of MHz/hr, the averaging process

requires good calibration of the scan frequency scale. We locked the 894 nm pump laser at

6S1/2(F = 4) → 6P1/2(F = 3) transition and multiple successive frequency scans of 512

nm probe laser were obtained at every ∼ 5 min over a frequency span of ∼ 3 GHz. The

drift of the probe laser frequency was corrected using the two frequency markers of the

absorption curve (dashed lines). Usually, averaging of about 150-170 spectra was needed

to obtain an acceptable signal-to-noise ratio. Figure 5.2 shows the comparison between

the average of 170 spectra and a single FMSR spectrum.

Figure 5.2: Comparison between a single 6P1/2 → 16S1/2 FMSR spectrum (grey line) and
FMSR spectra after averaging 170 scans (black line).Cs vapour pressure: ∼ 25 mTorr. Sig-
nal amplitudes are normalized to off-resonant reflected probe powers. Horizontal dashed
line: zero references for each spectrum. Vertical dashed lines: frequency reference from
6P1/2 → 16S1/2 absorption in volume.

After averaging about 170 spectra, we obtain an FMSR signal with an acceptable signal-

to-noise ratio (SNR improved by
√
n=13). Multiple sets of scans confirm the repro-

ducibility of the experimentally obtained signal. We can observe the two contributions
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for the two hyperfine components of 6P1/2 separated by 1.168 GHz. For convenience from

now, 6P1/2(F = 3) → 16S1/2 transition will be referred to as the large component (as

6P1/2(F = 3) component is directly pumped) while the 6P1/2(F = 4) → 16S1/2 will be

referred to the small component (because 6P1/2(F = 4) component is indirectly popu-

lated by collisional redistribution).

In figure 5.3, we compare the theoretical FMSR lineshape (black line) in the absence

of atom-surface interaction (C3 = 0) having a natural linewidth (γ) of the 4.5 MHz

(D1 line) with experimentally obtained 6P1/2 → 16S1/2 FMSR spectrum (Grey line).

In contrast to the theoretical spectrum for C3 = 0, the experimentally obtained FMSR

signal exhibits a noticeable broadening and strong red-detuning, which demonstrates the

expected behaviour of FMSR lineshapes under strong Rydberg-surface interactions.

Figure 5.3: Comparison between FMSR lineshape in the absence of atom surface inter-
action i.e. C3 = 0 and γ = natural linewidth of the D1 (black line) and experimentally
obtained 6P1/2 → 16S1/2 FMSR spectrum (Grey line). Signal amplitudes are normalized
to off-resonant reflected power. Horizontal dashed line: zero references for each spectrum.
Vertical dashed lines: frequency reference from 6P1/2 → 16S1/2 absorption in volume.
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5.2 Frequency modulated selective reflection spectroscopy

on 6P1/2 → 16S1/2, 17S1/2 transition

5.2.1 Effect of pump and probe laser intensity

Before interpreting the experimental results, it is important to check the effect of pump

and probe laser intensity on the FMSR lineshape. The pump and probe lasers are colli-

mated and overlapped having relatively big beam areas of about 0.2 cm2 and 0.125 cm2

respectively measured using an Iris diaphragm. The normalized amplitudes of 6P1/2 →

16S1/2 FMSR signal (normalized to the off-resonance reflected probe powers) remain

constant on increasing the probe power without any noticeable effect on the lineshape,

suggesting that the probe transition is not saturated (probe laser intensity increased up

to 100 mW/cm2). We subsequently explored the effect of pump power on our FMSR

spectra. Figure 5.4 shows the normalized 6P1/2 → 16S1/2 FMSR spectra at Cs vapour

pressure of 10 mTorr for pump power intensities: 17 and 35 mW/cm2.

Figure 5.4: Normalized 6P1/2 → 15D3/2 FMSR spectra for two pump intensities: 17
mW/cm2 (black line, multiplied by 1.5 times) and 35 W/cm2 (grey line) at a vapour
pressure of 10 mTorr. Signal amplitudes are normalized to the off-resonant reflected probe
powers. Horizontal dashed line: zero references for each spectrum. Vertical dashed lines:
frequency reference from 6P1/2 → 16S1/2 absorption in volume.

Doubling the pump intensity from 17 - 35 mW/cm2 results in an increase of signal ampli-

tude by approximately 1.5 times, indicating some saturation effect on the 6S1/2 → 6P1/2
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transition. Further increasing pump power while keeping the same vapour pressure would

not result in a significant increase of the 6P1/2 population and thus the FMSR signal am-

plitude. Most importantly, no distortion of the lineshape was detected (increasing pump

power affects only signal amplitude). Similar behaviour was observed for all the explored

vapour pressures and other S states.

5.2.2 Fitting procedure of the FMSR spectra

Before proceeding with the details of the fitting procedure, we present a comparison

between infinite Doppler approximation (black line) which assumes that γ << kvp (a flat

velocity distribution W (v) = 1/
√
πvp) and the Maxwell-Boltzmann velocity distribution

(a numerically challenging model developed during this thesis) model with experimentally

obtained 6P1/2 → 16S1/2 FMSR spectrum (grey line) at a vapour pressure of 10 mTorr

(figure 5.5).

Figure 5.5: Fitting of normalized 6P1/2 → 16S1/2 FMSR spectrum (grey line) at a vapour
pressure of 10 mTorr with infinite Doppler approximation model (black line) and Maxwell
Boltzmann velocity distribution model (dash line). Signal amplitude is normalized to
the off-resonant reflected probe power. Horizontal dashed line: zero references for each
spectrum. Vertical dashed lines: frequency reference from 6P1/2 → 16S1/2 absorption in
volume.

The experimental signal deviates significantly from the infinite Doppler approximation
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model, primarily for the large red detuning part of the spectra. This is to be expected since

the induced shift due to the Rydberg-surface interaction (∼ 600 MHz at 200 nm atom

surface separation) is comparable to or even larger than the Doppler width (∼ 500 MHz

FWHM). On the other hand, the novel model which incorporates the Maxwell-Boltzmann

velocity distribution is more accurate in describing the experimental conditions. Hence-

forth, we employ this model for the interpretation of our experimental data.

Subsequently, we briefly discuss the effect of C3 and Γ on the spread and asymmetry of

the lineshape and how one can perform a visual inspection of the experimental curves

compared to the theoretical curves for the first estimation of C3 and γ.

Figure 5.6: Normalized theoretical lineshape for different combination of C3 and γ values
(a) different C3 having same γ (b) same C3 with different γ (c) two different combination
of C3 and γ having same C3/γ ratio (0.08). The amplitude is normalized to the maximum
amplitude of the signal. Horizontal dashed line: zero references for each spectrum. The
vertical zero line indicates the atomic resonance frequency.

Figure 5.6(a) shows the effects of C3 on the lineshape while keeping γ constant. A larger C3

coefficient shifts the curve further to the red side inducing an in-homogeneous broadening
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(characteristic of Casimir-Polder interactions) [18]. Figure 5.6(b) shows that increasing γ

while keeping the C3 constant slightly broadens the curve and changes its symmetry (the

ratio between successive peaks and dips in the curve). The zero crossing points (indicated

in the figure) do not depend on γ and are essentially a measure of C3. In figure 5.6(c),

we plot two curves that have the same ratio C3/γ ∼ 0.08. The symmetry of the curve

(ratio of amplitudes between successive peaks and dips) depends predominantly on the

C3/γ ratio. This is reminiscent of the dimensionless parameter A = (2C3/γ) [18] that

universally defines the lineshapes in the case of the infinite Doppler approximation.

A simple inspection of the spread and asymmetry of the lineshape is therefore sufficient

to extract a first estimate of the C3 and γ parameters that best fit the experimental curve.

We use this ’visual fit’ to determine the starting points of our numerical fitting procedure

that subsequently compares the experimental lineshapes with a library of theoretical

FMSR lineshapes to extract the values of C3 and γ that best fit our data. The best

fit is here chosen by minimizing the Least Square Error. The fitting is performed using

MATLAB code having 3 degrees of freedom:

• Amplitude : determines the magnitude of the predicted signal.

• Shift: adjusts the horizontal position along the frequency axis (X-axis).

• Offset: adjusts the vertical position along the Y axis.

By adjusting these 3 parameters, the MATLAB code optimizes the fit of the theoretical

curve to the experimental signal by minimizing the least square error. We point out

that in our spectra the offset is usually very small and bears no real significance in our

spectra.

The two components of our FMSR signal (large and small) are sufficiently separated

(spacing of 1.168 GHz) to be treated almost independently. First, we optimize the fit for

the large component (that is almost completely independent of the small component).

Then we fix the parameters of the large component and optimize the fit to find the

parameters of the small component (including a small influence from the wings of the

large component). Finally, the best-fitted curves for both components are combined for
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a global fit.

Figure (5.7) shows fits for the normalized 6P1/2 → 16S1/2 FMSR spectra obtained at a

vapour pressure of 25 mTorr with the theoretical lineshapes having different combinations

of C3 and γ values. The best fit is achieved for C3 = 5 MHz µm3 with a γ = 70 MHz

and γ = 50 MHz for the small and large components respectively (red curve). The

theoretical lineshape converges closely with the experimental curve, yet a notable visual

discrepancy arises in the fitting for C3 values of 4 and 6 MHz µm3 (the blue and green

curves respectively). These fits are deemed unacceptable and offer an estimation of the

error bars associated with our measurement of C3.

Figure 5.7: Fits of normalized 6P1/2 → 16S1/2 FMSR spectra (obtained at Cs vapour
pressure of ∼ 25 mTorr) with the theoretical lineshapes having different combinations of
C3 and γ values. FMSR signal amplitude is normalized to the off-resonant reflected probe
power. Horizontal dashed line: zero references for each spectrum. Vertical dashed lines:
frequency reference from 6P1/2 → 16S1/2 absorption in volume.

A more comprehensive visual presentation of the fitting process would be a 3D surface
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plot where the X-axis is C3 (with a variation of 0.5 MHz µm3), the Y-axis is linewidth,

γ (with a variation of 10 MHz ) and Z-axis being the least square error.

Figure 5.8 shows such surface plots for the big (a) and small (b) components of the

FMSR spectra. These 3D representations provide a global view of the overall fitting

results, making it easy to find the regions (marked with a circle in figure 5.7) for which

the fits are acceptable, as well as the areas where the fit deviates from the experimental

signal. For the large component (figure 5.8(a)), the optimal fit found is around C3 = 5.1 ±

0.6 MHz µm3 and γ = 50 ± 15 MHz (when the error bars are asymmetric, we have taken

the biggest value). For the small component (figure 5.8(b)), the optimal fit lies around

C3 = 5.5 ± 1.2 MHz µm3 and γ = 70 ± 20 MHz. A detailed analysis of the experiment

FMSR signal will be provided in the next section.

Figure 5.8: 3D contour plot of the least square error (Z-axis) mapped with colours with
X-axis being C3 (MHz µm3) and Y-axis being γ (MHz) for (a) large component i.e.
6P1/2(F = 3) → 16S1/2) and (b) small component i.e. 6P1/2(F = 4) → 16S1/2).
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5.2.3 C3 and γ measurement from 6P1/2 → 16S1/2, 17S1/2 FMSR

spectra

In figure 5.9 and 5.10, we show the best fit for the normalized 6P1/2 → 16S1/2, 17S1/2

FMSR signal (signal amplitudes are normalized to the off-resonant reflected powers) at

different caesium vapour pressures.

Figure 5.9: Best fit (black line) for 6P1/2 → 16S1/2 FMSR signal (grey line) for different
caesium vapour pressure. FMSR signal amplitude is normalized to the off-resonant re-
flected probe powers. Horizontal dashed line: zero references for each spectrum. Vertical
dashed lines: frequency reference from 6P1/2 → 16S1/2 absorption in volume.
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Figure 5.10: Best fit (black line) for 6P1/2 → 17S1/2 FMSR signal (grey line) for different
caesium vapour pressure. FMSR signal amplitude is normalized to the off-resonant re-
flected probe powers. Horizontal dashed line: zero references for each spectrum. Vertical
dashed lines: frequency reference from 6P1/2 → 17S1/2 absorption in volume.
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The measured C3 (in MHz µm3) values for both 16S1/2 and 17S1/2 states are shown in

figure 5.11 as a function of caesium vapour pressure (mTorr). As expected, increasing the

vapour pressure does not influence the strength of Casimir-Polder interactions. We find

that C3(16S1/2) = 5.1 ± 1 MHz µm3, (with a theoretical prediction of ∼ 3.5 MHz µm3)

and C3(17S1/2) = 7.35 ± 1.2 MHz µm3 (with a theoretical prediction of ∼ 4.7 MHz µm3).

Although the measured C3 remains about 1.5 times bigger than theoretical predictions

for both states, it is interesting to notice that it scales as n⋆4 (theoretically predicted

scaling law, see section 2.3).

Figure 5.11: Extracted C3 values (in MHz µm3) as a function of Cs vapour pressure
(in mTorr) for 16S1/2 (left) and 17S1/2 (right) states. Grey dashed line: predicted C3

value for a sapphire surface. Square marker: larger transition (6P1/2(F = 3) → nS1/2).
Triangle marker: small transition (6P1/2(F = 4) → nS1/2). The grey-shaded area shows
the uncertainty in C3 measurements.

Figure 5.12 shows the extracted γ values as a function of Cs vapour pressure. The homo-

geneous linewidth evolves linearly with vapour pressure with a slope of about 1GHz/Torr,

a value not incompatible with expected values for pressure broadening for the 16S1/2 and

17S1/2 states (see discussion in the previous chapter and [74]). However, a systematic dif-

ference in the extracted value γ is observed between the small and large components. This

discrepancy could be because the velocity distribution of excited atoms in the directly

pumped hyperfine state could deviate significantly from a thermal Maxwell-Boltzmann

distribution assumed in our model. We should note that in previous works [38], utilis-

ing the same two-step excitation steps for selective reflection spectroscopy the directly

pumped component was discarded (for the above reason) and only the small component

119



(pumped via collisions) was analysed for a C3 measurement. This represents the first at-

tempt to perform such analysis, motivated partly by the small signal-to-noise ratio of our

measurements. The influence of direct two-photon excitation could also be a reason for

discrepancies between the two extracted linewidths. Nevertheless, it is interesting to note

again that besides this discrepancy, the theoretical model fits the experiment very well

and the extracted C3 value (the main goal of this experiment) is compatible with both

hyperfine (small and large) components. An analysis of FMSR lineshapes using a com-

bination of Gaussian (representing the thermal part of the distribution) and Lorentzian

(representing the directly pumped atoms) distributions would be interesting for further

investigation (not included in this thesis statement).

Figure 5.12: Extracted homogeneous linewidth γ (in MHz) for 16S1/2 and 17S1/2 states
as a function of Cs vapour pressure. The dashed lines show the linear growth of the ho-
mogeneous linewidth. Triangle marker : small transition (6P1/2(F = 4) → nS1/2),square
marker: the larger transition (6P1/2(F = 3) → nS1/2).

5.3 Frequency modulated selective reflection spectroscopy

of 15D3/2 17D3/2 and 18D3/2

5.3.1 Effect of pump and probe laser intensity

Similarly, to the nS1/2 states, the normalised amplitude of the 6P1/2 → nD3/2 transitions

(normalized to the off-resonant reflected probe powers) remains independent of probe

power, suggesting that the probe transition is not saturated. However, nD3/2 states were
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not so well behaved as the nS1/2 states for high pump laser powers. This is illustrated in

Figure 5.13 where the normalized 6P1/2 → 15D3/2 FMSR spectra are shown for different

pump intensities (12, 17, 25, and 35 mW/cm2) for Cs vapour pressure of 25 mTorr. High

pump intensity induces a distortion (changes in the symmetries i.e. the ratio between the

successive peaks and dips) and an overall blue shift in the FMSR lineshapes, that only

disappears for pump intensities below 17 mW/cm2. For lower vapour pressure (figure

5.14) further decrease of pump intensity is required to avoid the reported blue shift

FMSR signal. This behaviour is consistently observed for all the probed nD3/2 lines. This

behaviour new observation and is not yet well understood.

One intuitive hypothesis revolves around the fact that the large electric dipole moments

associated with Rydberg states are particularly sensitive to stray fields. The Stark shift

of these Rydberg states due to these stray electric fields can induce either blue or red

shifts, contingent upon the atomic state. To have a concrete understanding, further mea-

surements are needed to measure the possible effects of stray fields. But for now, to avoid

any lineshape distortions, we performed the FMSR experiment for the nD3/2 lines with

low pump intensity of ∼ 17 mW/cm2.

Figure 5.13: 6P1/2 → 15D3/2 FMSR spectra for pump intensities: 12, 17, 25, and 35
mW/cm2 & Cs vapour pressure: ∼ 25 mTorr. Signal amplitudes are normalized to off-
resonant reflected probe powers. Horizontal dashed line: zero reference. Vertical dashed
lines: frequency reference from 6P1/2 → 15D3/2 absorption in volume.
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Figure 5.14: 6P1/2 → 15D3/2 FMSR spectra for pump intensities: 12, 17 and 25 mW/cm2

& Cs vapour pressure: ∼ 10 mTorr. Signal amplitudes are normalized to off-resonant
reflected probe powers. Horizontal dashed line: zero reference. Vertical dashed lines: fre-
quency reference from 6P1/2 → 15D3/2 absorption in volume.

5.3.2 Relative amplitude of 6P1/2 → nS1/2, nD3/2 (n = 15 - 17)

FMSR spectra

Assuming all experimental conditions remain unchanged (caesium density, pump and

probe power), the relative amplitude of 6P1/2 → nS1/2 and 6P1/2 → nS1/2 transitions

should depend exclusively on the square of the dipole matrix element, shown in table 5.1.

The above statement should hold for any linear spectroscopy technique (both selective

reflection and linear absorption).

In figure 5.15, we present the normalized 6P1/2 → nS1/2, nD3/2 (n=15-17) absorption

spectra obtained in the volume of 1 cm long vapour cell (section 4.2.2.3, the transition are

not influenced by atom surface interaction) at a relatively low caesium vapour pressure

of 0.08 mTorr. The amplitudes of the signals are first normalized to the off-resonant

transmitted probe powers and then to the amplitude of the 6P1/2 → 15D3/2 transition

with appropriate multiplication factors. These multiplication factors (shown in figure

5.15) are in good accordance with the expected ratios given by Table 5.1 (theoretical

predictions).
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6P1/2 →

|⟨j1|p|j2⟩|2

normalized to

|⟨6P1/2|p|15D3/2⟩|2

15D3/2 1

16D3/2 1.2

17D3/2 1.5

16S1/2 8.3

17S1/2 10.2

Table 5.1: Square of reduced dipole matrix elements |⟨6P1/2|p|nS1/2, nD3/2⟩|2 transition
where n= 15 - 17 normalized |⟨6P1/2|p|15D3/2⟩|2.

Figure 5.15: Velocity-selective 6P1/2 → nS1/2, nD3/2 (n = 15 - 17) absorption spectra in
a 1 cm cell at ∼ 0.08 mTorr Cs vapor pressure. The amplitudes of absorption signals are
first normalized to off-resonant transmitted probe powers and then to the maximum
amplitude of the 6P1/2 → 15D3/2 transition with appropriate multiplication factors.
Horizontal dashed line: zero reference. Vertical dashed lines: frequency reference from
6P1/2 → nS1/2, nD3/2 absorption in volume.

In figure 5.16 we compare the relative amplitude of 6P1/2 → 15D3/2 and 6P1/2 → 16S1/2

FMSR spectra at Cs vapour pressure of ∼ 20 mTorr for pump laser intensity of 35

mW/cm2. The amplitudes of the FMSR signals are normalized to the off-resonant probe

power. Contrary to linear absorption, the amplitude of FMSR signals on the D3/2 line is
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less than the theoretically expected value (around 8). A quick inspection of figure 5.16

suggests that the two signals have roughly the same amplitude. However, a proper com-

parison of the experimental signals with the theoretical predictions, taking into account

the linewidth of the signals, suggests that the 6P1/2 → 15D3/2 signal is about 2 times

larger than the 6P1/2 → 16S1/2 signal. The apparent reduction of signal amplitude when

probing D states is an experimental observation for which we have not as of yet a clear

explanation.

Figure 5.16: FMSR spectra for 6P1/2 → 15D3/2, 16S1/2 (black and red line respectively)
at Cs vapour pressure: ∼ 20 mTorr & pump laser intensity: 35 mW/cm2. FMSR signal
amplitudes are normalized to the off-resonant reflected probe powers. Horizontal dashed
line: zero references for each spectrum. Vertical dashed lines: frequency reference from
6P1/2 → 15D3/2, 16S1/2 absorption in volume.

5.3.3 C3 and γ measurement from 6P1/2 → 15D3/2, 16D3/2 and 17D3/2

FMSR spectra

In figure 5.17 - 5.20, we show the experimental FMSR spectra along with the best fits

obtained on the 6P1/2 → 15D3/2, 16D3/2 and 17D3/2 transitions. Figures 5.17 and 5.18

show the 6P1/2 → 15D3/2 FMSR spectra obtained at different caesium vapour pressures

for 17 (black line) and 12 (red line) mW/cm2 pump intensities respectively. At these low

pump intensities, no distortion of the lineshape was detected when probing theD3/2 states.

However, due to the smaller signal amplitude, it was challenging to obtain a respectable
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signal-to-noise ratio for probing higher states such as 16D3/2 and 17D3/2. Figure 5.19 and

5.20 show the normalized FMSR lineshapes on the 6P1/2 → 16D3/2, 17D3/2 transitions

for different caesium vapour pressure for a pump intensity of 17 mW/cm2. The signal

amplitudes are normalized to the off-resonant probe powers.

Figure 5.17: Best fit (black line) for 6P1/2 → 15D3/2 FMSR signal (grey line) for different
caesium vapour pressure. FMSR signal amplitudes are normalized to the off-resonant
reflected probe powers. Pump laser intensity: 17 mW/cm2. Horizontal dashed line: zero
references for each spectrum. Vertical dashed lines: frequency reference from 6P1/2 →
15D3/2 absorption in volume.
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Figure 5.18: Best fit (red line) for 6P1/2 → 15D3/2 FMSR signal (grey line) for different
caesium vapour pressure. FMSR signal amplitudes are normalized to the off-resonant
reflected probe powers. Pump laser intensity: 12 mW/cm2. Horizontal dashed line: zero
references for each spectrum. Vertical dashed lines: frequency reference from 6P1/2 →
15D3/2 absorption in volume.
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Figure 5.19: Best fit (black line) for 6P1/2 → 16D3/2 FMSR signal (grey line) for different
caesium vapour pressure. FMSR signal amplitudes are normalized to the off-resonant
reflected probe powers. Pump laser intensity: 17 mW/cm2. Horizontal dashed line: zero
references for each spectrum. Vertical dashed lines: frequency reference from 6P1/2 →
16D3/2 absorption in volume.
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Figure 5.20: Best fit (black line) for 6P1/2 → 17D3/2 FMSR signal (grey line) for different
caesium vapour pressure. FMSR signal amplitudes are normalized to the off-resonant
reflected probe powers. Pump laser intensity: 17 mW/cm2. Horizontal dashed line: zero
references for each spectrum. Vertical dashed lines: frequency reference from 6P1/2 →
17D3/2 absorption in volume.
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Figure 5.21: Extracted C3 values (in MHz µm3) as a function of Cs vapour pressure (in
mTorr) for 15D3/2 state (left) for pump intensities: 17 (black marker), 12 (red marker)
mW/cm2 and 16D3/2 (right) states for pump intensity 17 mW/cm2 (black marker). Grey
dashed line: predicted C3 value for a sapphire surface. Triangle marker: small transition
(6P1/2(F = 4) → nD3/2). Square marker: larger transition (6P1/2(F = 3) → nD3/2). The
grey-shaded area shows the uncertainty in C3 measurements.

Figure 5.21 shows the extracted C3 (in MHz µm3) values as a function of caesium vapour

pressure (mTorr) for both the 15D3/2 and 16D3/2 states. The extracted values are inde-

pendent of vapour pressure giving: C3(15D3/2) = 8.1 ± 1 MHz µm3 (with a prediction of

∼ 4.1 MHz µm3), C3(16D3/2) = 11.3 ± 1.3 MHz µm3 (with a prediction of ∼ 5.7 MHz

µm3) and C3(17D3/2) = 15 ± 2 MHz µm3 (with a prediction of ∼ 8.9 MHz µm3). It can

be seen that the experimental measurements exceed the theoretical predictions, in this

case by a factor of 2, larger than the 1.5 factor observed for the S states (section 5.2).

We should note that the extracted C3 value for the 17D3/2 state slightly deviates from

the (n∗)4 scaling. However, this could be attributed to the relatively large uncertainty of

this measurement (the signal-to-noise ratio degrades significantly for this transition).

Figure 5.22 shows the extracted linewidth, γ values as a function of vapour pressure for

the 6P1/2 → 15D3/2, 16D3/2 transitions. The homogeneous linewidth, γ evolves linearly

with vapour pressure with a slope of about 2 GHz/Torr, which is compatible with the

measurement we obtained in the volume experiment (as discussed in section 4.3.2 pres-

sure broadening ∼ 2 GHz/Torr for 6P1/2 → 15D3/2 transition). Similar to the S states,

a systematic difference in homogeneous linewidth for the small and large components

can be also observed for the D3/2 line which can be again attributed to the fact that
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the directly pumped component of 6P1/2 state can significantly deviate from a thermal

Maxwell- Boltzmann distribution that we have considered in our theoretical model. Nev-

ertheless, like the S1/2 states, the extracted C3 value for D3/2 remains consistent with

caesium vapour pressure.

Figure 5.22: Measured homogeneous linewidth, γ (in MHz) as a function of Cs vapour
pressure for 15D3/2 and 16D3/2. Red and black marker indicates the measurement for
a pump power of 12 and 17 mW/cm2 respectively. Triangle marker indicates the small
transition (6P1/2(F = 4) → nD3/2) and square marker indicates the larger transition
(6P1/2(F = 3) → nD3/2).

5.3.4 Remarks

The novel numerical model that we have developed in the course of this thesis (chapter 3)

reproduces our experimental spectra nicely and allows us to extract the C3 and γ values.

For 6P1/2 → nS1/2, nD3/2, we have observed that the extracted C3 values remain consis-

tent with caesium vapour pressure but exceed the theoretical predictions (by a factor of

1.5 or 2, see chapter 2). This inconsistency with theory is more pronounced when probing

the nD3/2 lines. This discrepancy between theory and experiment is larger than in pre-

viously reported FMSR measurements [43][45][38]. We also found that the homogeneous

linewidth, γ also remains linear with the caesium vapour pressure and the value remains

slightly larger for the large components (directly pumped) than the small component

(indirectly pumped). This can be attributed to the fact that the directly pumped 6P1/2

component can have a velocity distribution different from Maxwell Boltzmann (some
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combination of Maxwell Boltzmann and Lorentzian). We are currently pushing our ex-

periments further, by performing thin-cell spectroscopy on the same Rydberg states. The

use of thin cells could illuminate the observed discrepancy between theory and experiment

and also hold the potential for uncovering the influence of higher-order interactions. It is

important to note that the thin cell spectroscopy work is still in its preliminary stages

and further measurement and analysis are ongoing. The numerical model for thin-cell

spectroscopy accounting for highly excited atom surface interaction developed during

the thesis can act as an essential tool for the analysis of the thin-cell spectra in future.

In the concluding chapter of this thesis, we offer a comprehensive summary of the en-

tire work and present initial findings from thin cell spectroscopy along with some future

perspectives.
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Chapter 6

Conclusion and Perspectives

6.1 Overview of this thesis

In this thesis, we revisited the formalism for calculating atom-surface interactions in the

non retarded limit incorporating higher-order interaction energy terms (quadrupole and

octupole). Using the electrostatic approach, we provided explicit calculations for predict-

ing the dipole interaction coefficient C3 as well as the quadrupole interaction coefficient

C5 for highly excited Rydberg states.

We also developed a numerical method to simulate selective reflection and thin cell spec-

troscopy accounting for all velocity components (Maxwell velocity distribution) of the

atomic vapour. We showed the necessity of the new model for predicting SR lineshapes

in the presence of strong atom-surface interactions. With our calculations of C3 and C5

coefficients and our model for calculating selective reflection and thin cell spectra, we

examine the conditions under which higher-order interactions could be experimentally

observable.

Finally, we presented our frequency-modulated selective reflection (FMSR) experiment

on 6P1/2 → nS1/2, nD3/2 transitions (n = 15 - 17). Detailed analysis of the experimental

spectra allowed us to measure the C3 coefficients of the Cs(nS1/2) and Cs(nD3/2) states
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interacting with a sapphire surface. Surprisingly, we observe that the C3 coefficients of

the nS1/2 states are about 1.5 times larger than theoretically predicted, while C3 coef-

ficients of the nD3/2 states are about 2 times larger. Even more surprisingly, we have

observed that the experimentally measured amplitude ratio between the 6P1/2 → 15D3/2

and the 6P1/2 → 16S1/2 FMSR signals is smaller than the ratio of probabilities of the two

transitions. This is the first observed linearity breakdown in FMSR spectroscopy which

remains for the moment without explanation. We are conducting a comprehensive inves-

tigation into other S and D states on various surfaces (such as glass and YAG), as well as

examining the potential impact of stray fields. which can offer a meaningful explanation

in the near future.

6.2 Preliminary work on probing Rydberg atoms in

nanometric thin cell

Given the discrepancies between the predicted and extracted C3 values, we are currently

exploring these Rydberg transitions in a nanometric cell having a thickness ranging from

30 nm to 1µm [23]. Thin cell (TC) spectroscopy offers a promising opportunity to validate

the discrepancies observed in the case of SR spectroscopy. Furthermore, it may serve

as a valuable method for probing higher-order transitions (as discussed in Chapter 3).

The experimental configuration is similar to the SR spectroscopy (figure 4.2) and we

perform our spectroscopic measurement simultaneously on the transmitted and reflected

beam from the thin cell. Our first measurements focused on probing the 6P1/2 → 16S1/2

transition (at 513nm). The pump laser is amplitude modulated (AM) and locked on the

6S1/2(F = 3, 4) → 6P1/2(F = 4) transition. In thin-cell experiments we did not deploy

frequency modulations on the probe laser as we were expecting a huge broadening of

the lineshape due to the interaction with two surfaces and the probe signal was only

demodulated at the AM (pump) frequency.

In Figure 6.1, we present preliminary normalized 6P1/2 → 16S1/2 thin-cell transmission

spectra for different cell thicknesses L (signal amplitudes are firstly normalized to off-
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resonance transmission probe powers and then normalized to the maximum amplitude of

transmission spectra at 640 nm for Cs vapour pressure of ∼ 0.27 Torr). With decreasing

cell thickness L, increasing redshift of atomic resonance and homogeneous broadening

of the lineshapes are nicely visible. This is a clear demonstration of strong Rydberg-

atom surface interactions. The contribution of the second hyperfine component (small

component) is strongly suppressed and is only visible for large cell thicknesses. This

is probably because collisions with the cell walls dominate over inter-atomic collisional

redistribution.

Figure 6.1: Normalized 6P1/2 → 16S1/2 thin cell transmission spectra for various cell
thicknesses L at two caesium vapour pressures: ∼ 0.27 Torr (red line) and ∼ 0.025 Torr
(blue line). Signal amplitudes are normalized to off-resonance probe powers and further
normalized to the maximum amplitude of transmission spectra at 640 nm for ∼ 0.27 Torr
Cs vapour pressure, the normalization factors are indicated with their respective colours.
∆ω represents the redshift from the frequency reference (marked as 0). Horizontal lines
indicate the zero level of each spectrum.
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For a preliminary analysis of the thin cell spectra, we can suppose that the major con-

tribution to the absorption signal comes from atoms that are in the middle of the cell at

equidistant from the two reflecting surfaces [23][75] (positioned at z = L/2 distance from

each of the cell walls). The CP frequency shift (∆ω) at this distance can be roughly esti-

mated from the dip (minimum) of the transmission curves. Under these oversimplifying

assumptions, we can make a first estimate of the C3 coefficient (C3 ∼ ∆ωL3/16).

Figure 6.2: Tracing the shift (only the dip) of the 6P1/2 → 16S1/2 thin cell transmission
spectra as a function of cell thickness (L). The colour lines are C3 predictions assuming
the atom is placed in the middle of the cell (C3 ∼ ∆ωL3/16).

In figure 6.2, we trace the shift of the dip of the transmission signal as a function of cell

thickness (L) which broadly follows the 1/z3 law for these thicknesses. The apparent C3

coefficient is here around 7 - 8 MHz µm3 which is even larger than the value obtained by

FMSR spectroscopy ∼ 5 MHz µm3. One can nevertheless notice, that this preliminary

set of measurements and a more rigorous presentation of thin cell experiments (exploring

even smaller cell thickness) along with an analysis of transmission and reflection spectra

with a more appropriate theoretical model will be the subject of the ongoing thesis of

Esther Butery in the same group.

A possible reason for the discrepancies between theory and experiment could be an ad-

ditional electrostatic interaction due to a charge build-up or adsorbed caesium atoms

on the dielectric windows. To investigate this hypothesis further, we plan on performing

FMSR measurements on a cell with fused silica (or quartz) or glass windows. Previous
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studies in different vapour cells have shown that the conductivity of a glass surface in

contact with a cesium vapour is more than an order of magnitude higher than that of

sapphire [76]. This phenomenon that prevents the application of DC electric fields inside

a glass vapour cell using external electrodes, could suggest that glass surfaces are better

suited for avoiding charge build-ups and measuring Rydberg-surface interactions without

the influence of external parasitic electric fields.

In our analysis of the experimental data, we have adopted an approach that assumes the

interaction between Rydberg atom and surfaces occurs solely through CP interactions.

Nevertheless, it is essential to acknowledge that the Stark shifts due to adsorbed atoms

or parasitic electric field in the surface of the dielectric windows are known to be an

important problem in precision atom-surface experiments [77][78][79][80]. In particular,

high-lying states become extremely sensitive to electric fields [81][82] as their polarisabil-

ity scales more rapidly (α ∝ n⋆7) than the C3 coefficient (∝ n⋆4). A possible solution

to this problem involves conducting measurements of the Stark shift for higher nD3/2 or

nS1/2 states where the Stark shift tends to supersede the atom-surface shift. Extrapo-

lating these findings can offer valuable insights into estimating the impact on relevant

Rydberg states. It is worth noting that D states are much more sensitive to electric fields

than S states. Moreover, the polarisabilities of the two states have often opposing signs

(a blue Stark shift is expected for the cesium D states used in this experiment) [39]. This

suggests that D states can be used to probe parasitic electric fields whose value can be

subsequently used as a correction to the CP measurement of S states.

Utilizing our newly developed numerical model, we can readily adjust the potential, such

as implementing a 1/z2 potential to simulate atom-charge interaction, or modifying ve-

locity distributions by combining Maxwell-Boltzmann and Lorentzian distributions to

emulate a velocity-selective Doppler-broadened velocity distribution. By analyzing the

resulting FMSR spectra under these multifaceted approach, we aim to gain a more com-

prehensive understanding of the observed spectra.

Moreover, our ongoing nanometric thin-cell spectroscopy on these Rydberg transitions

will offer additional insights into Rydberg-surface interactions, particularly at shorter
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atom-surface separations (shorter then λ/2, approximately 250-150 nm), where the atom-

surface interaction supposedly remains the predominant factor.
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Chapter 7

Appendix A

7.1 Interaction between atom and its surface induced

image: method of images

We treat the atom as a charge distribution ρ(r) in the vicinity of a perfectly reflecting

surface. The surface extends in the x-y plane and the atom is situated at z>0 (figure

2.1 same as chapter 2). In this calculation, we only consider the interaction between the

atom and its surface-induced image and the interaction potential is given by:

Φim(r) =

∫
ρim(r′)

|r− r′|
d3r′

where Φim(r) is the potential due to image charge distribution ρim(r′).

We take f(r′) = 1/ |r − r′| where

f |r′=0 =
1

r

∂f

∂r′i

∣∣∣∣
r′=0

=
ri
r3
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∂2f

∂r′i∂r
′
j

∣∣∣∣
r′=0

=
3rirj
r5

− δij
r3

∂3f

∂r′i∂r
′
j∂r

′
k

∣∣∣∣
r′=0

= 15
rirjrk
r7

− 3
δijrk + δikrj + δjkri

r5

and so on.

Subsequently, the potential can be expended as (using Einstein’s summation notation):

Φim(r) =
∫

ρim(r′)
[
1

r
+

ri
r3

r′i +
3rirj − r2δij

r5
r′ir

′
j +

15rirjrk − 3r2(δijrk + δikrj + δjkri)

r7
r′ir

′
jr

′
k + . . .

]
d3r′

Using the fact that r2 = δijrirj and r′2 = δijr
′
ir

′
j, we can write

Φim(r) =
1

r

∫
ρim(r′)d3r′ +

1

r3
ri

∫
r′iρ

im(r′)d3r′ +
1

2r5
rirj

∫ (
3r′ir

′
j − r′2δij

)
ρim(r′)d3r′

+
1

6r7
rirjrk

∫ [
15r′ir

′
jr

′
k − 3(δijr

′
k + δikr

′
j + δjkr

′
i)
]
ρim(r′)d3r′ + . . .

As mentioned previously we denote the monopole, dipole, quadrupole and octupole mo-

ment as:

• qim =
∫
ρim(r′)d3r′ is the image monopole moment (total charge).

• pimi =
∫
ri

′ρim(r′)d3r′ is the image dipole moment.

• Qim
ij =

∫ (
3r′ir

′
j − r

′2δij
)
ρim(r′)d3r′ is the image quadrupole moment.

• T im
ijk =

∫ [
15r′ir

′
jr

′
k − 3(r′)2(δijr

′
k + δikr

′
j + δjkr

′
i)
]
ρim(r′)d3r′ is the image octupole

moment.

Rewriting the potential in a compact format (using Einstein’s summation notation and

neglecting the monopole term as an atom is neutral), we get:

Φim(r) = pimi
ri
r3

+
1

2
Qim

ij

rirj
r5

+
1

6
T im
ijk

rirjrk
r7

+ . . .

= Φim
p (r) + Φim

Q (r) + Φim
T (r) + . . .

(7.1)

where Φim
p (r),Φim

q (r),Φim
t (r) are the potentials due to dipole, quadrupole and octupole

moments.

139



7.2 Interaction energy between atom and its surface

induced image

The electrostatic interaction energy (W ) between the atom and image can be calculated

in the following form:

W =
1

2

∫
ρ(r)Φim(r+ r0)d

3r (7.2)

In this expression, the origin is situated on the atom and the vector r0 represents the

distance of the atom from its image. If Φim(r) is a smooth (slowly varying) function over

the region where ρ(r) is non-negligible, we perform a Taylor expansion of this potential

[24] given by:

Φim(r+ r0) = Φim|r=0 + ri
∂Φim

∂ri

∣∣∣∣
r=0

+
1

2
rirj

∂2Φim

∂ri∂rj

∣∣∣∣
r=0

+
1

6
rirjrk

∂3Φim

∂ri∂rj∂rk

∣∣∣∣
r=0

+ . . .

Since
∫
ρ(r)Φim(0)d3r = 0, the interaction energy can also be expended as:

W =
1

2

∫
ρ(r)

(
ri
∂Φim

∂ri

∣∣∣∣
r=0

+
1

2
rirj

∂2Φim

∂ri∂rj

∣∣∣∣
r=0

+
1

6
rirjrk

∂3Φim

∂ri∂rj∂rk

∣∣∣∣
r=0

+ . . .

)
d3r

For an external field (for the image), we know that δij
∂Φ

∂ri∂rj
= 0, we can rewrite the

interaction energy as:

W =
1

2
pi
∂Φ

∂ri

∣∣∣∣
r=0︸ ︷︷ ︸

W1

+
1

12
Qij

∂2Φ

∂ri∂rj

∣∣∣∣
r=0︸ ︷︷ ︸

W2

+
1

24
Tijk

∂3Φ

∂ri∂rj∂rk

∣∣∣∣
r=0︸ ︷︷ ︸

W3

+ . . . (7.3)

where

W1 =Wppim+WpQim+WpT im+. . .,Wppim ,WpQim ,WpT im are dipole-dipole,dipole-quadrupole,

dipole-octupole atom-image interaction energies.

W2 = WQpim +WQQim + . . ., WQpim ,WQQim are quadruple-dipole, quadruple-quadruple
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atom-image interaction energies. To calculate interaction energies (equation 7.3), it be-

comes imperative to compute the derivatives of the potential to higher orders. The pre-

vious expression depends on the distance between the atom and its image r0. In the

following, to simplify the notation, we replace r0 with r. To calculate interaction ener-

gies (equation 7.3), it becomes imperative to compute the derivatives of the potential to

higher orders.

7.2.1 Derivatives of the dipole moment

The potential due to dipole is (in index notation):

Φim
p (r) =

pimi ri
r3

The first derivative of this potential is:

∂Φim
p (r)

∂rj
= −3

(pimi ri)rj
r5

+
pimi
r3
δij

The second derivative of the dipole potential would be:

∂2Φim
p (r)

∂rj∂rk
= −3pimi rj

r5
δik −

3(pimi ri)

r5
δjk −

3pimi rk
r5

δij +
15(pimi ri)rjrk

r7

7.2.2 Derivatives of the quadruple moment

The potential due to quadruple moment is (in index notation):

Φim
Q (r) =

1

2

riQ
im
ij rj

r5

The field due quadruple moment can be obtained as:

∂Φim
Q (r)

∂rk
= −5

2

(riQ
im
ij rj)rk

r7
+
Qim

ij ri

r5
δjk
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where we consider that Qij = Qji the quadruple tensor is symmetric than we can write
∂(riQijrj)

∂rk
= 2Qijriδjk

The second derivative of the quadrupole moment would be:

∂2Φim
Q (r)

∂rk∂rl
=
Qim

ij

r5
δjkδil − 5

Qim
ij rirl

r7
δjk − 5

Qim
ij rirk

r7
δjl −

5

2

(riQ
im
ij rj)

r7
δkl +

35

2

(riQ
im
ij rj)rkrl

r9

Subsequently, the other higher-order terms were also obtained ( not shown here as the

calculation of the higher-order terms is straightforward but tedious.)

7.2.3 Interaction energy between dipole and image dipole (Wppim)

The interaction energy between the atomic dipole (p) and the field generated by its

induced image on the wall is as follows:

Wppim =
1

2
pi
∂Φim

p (r)

∂ri

= −3

2

(pimi ri)(piri)

r5
+

1

2

pimi pi
r3

In vector notation,

Wppim =
1

2

p · pim

r3
− 3

2

(p · r)(pim · r)
r5

(7.4)

In our case, the atomic dipole and image dipole are linked by the symmetry properties,

given by: 

px = −pimx

py = −pimy

pz = pimz

r = 2z

The interaction energy in the cartesian coordinate system becomes:

Wppim = − 1

16z3
[
p2 + p2z

]
where p2 = p2x + p2y + p2z.
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7.2.4 Interaction energy between dipole and quadrupole image

(WpQim)

The interaction energy between the dipole (p) and image quadrupole field is given by:

WpQim = pk
∂Φim

Q (r)

∂rk

= pk

[
−5

4

(riQ
im
ij rj)rk

r7
+

1

2

Qim
ij riδjk

r5

]

In vector notation:

WpQim = −5

4

(p · r)(r ·Qim · r)
r7

+
1

2

p ·Qim · r
r5

(7.5)

Similar to the previous case, the atomic quadrupole and image quadrupole moments are

linked by the symmetry properties:

Qim =


−Qxx −Qxy Qxz

−Qyx −Qyy Qyz

Qzx Qzy −Qzz


The dipole and image quadrupole interaction energy becomes:

WpQim =
1

64z4
[3pzQzz + 2pyQyz + 2pxQxz] (7.6)

7.2.5 Interaction energy between quadrupole and image dipole

(WQpim)

The interaction energy between the atomic quadrupole and the image dipole can be

obtained as:

WQpim =
1

12
Qjk

∂2Φim
p (r)

∂rj∂rk

=
1

12
Qjk

[
−3pimi rj

r5
δik −

3(pimi ri)

r5
δjk −

3pimi rk
r5

δij +
15(pimi ri)rjrk

r7

]
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In vector notation:

WQpim =
1

4

[
−2

pim ·Q · r
r5

− pim · r
r5

Tr (Q) + 5
(pim · r)(r ·Q · r)

r7

]

Knowing that Qijδij = Tr (Q) = 0, we have:

WQpim = −1

2

pim ·Q · r
r5

+
5

4

(pim · r)(r ·Q · r)
r7

(7.7)

By making the same assumptions as before, the quadrupole-dipole interaction energy

would be (in cartesian coordinates):

WQpim =
1

64z4
[3pzQzz + 2pyQyz + 2pxQxz] (7.8)

7.2.6 Interaction energy between quadrupole and image quadrupole

(WQQim)

The atomic quadrupole and image quadruple interaction energy can be calculated as:

WQQim =
1

12
Qkl

∂2Φim
Q

∂rk∂rl

=
1

12
Qkl

[
Qim

ij

r5
δjkδil − 5

Qim
ij rirl

r7
δjk − 5

Qim
ij rirk

r7
δjl −

5

2

(riQ
im
ij rj)

r7
δkl +

35

2

(riQ
im
ij rj)rkrl

r9

]

In vector notation, we have:

WQQim =
1

12

[
Tr (Qim ·Q)

r5
− 10

r ·Q ·Qim · r
r7

+
35

2

(r ·Qim · r)(r ·Q · r)
r9

]
(7.9)

Using the symmetry properties and expressing the interaction terms in cartesian coordi-

nates:

WQQim = − 1

768z5
[
17Q2

zz + 16Q2
zy + 16Q2

zx + 2Q2
xx + 4Q2

yx + 2Q2
yy

]
(7.10)

Similarly, one can calculate the atomic dipole and image octupole interaction energy
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(W im
pT ) and atomic dipole and image octupole interaction energy (WTp

im) which goes by

1/r5. As mentioned before, arranging the interaction energies by their dependence over

r, we can write:

W = Wppim︸ ︷︷ ︸
∼1/r3

+WpQim +WQpim︸ ︷︷ ︸
∼1/r4

+WQQim +WpT im +WTpim︸ ︷︷ ︸
∼1/r5

. (7.11)

where Wppim , WpQim , WQpim , WQQim , WpT im , WTpim correspond to the interaction energy

between atom-image: dipole-dipole, dipole-quadrupole, quadrupole-dipole, quadrupole-

quadrupole, octupole-quadrupole, octupole-octupole respectively (batched together with

their dependence over r).
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