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for entangled linear polymers under flow"

Leygue, Adrien

ABSTRACT

In this thesis, we propose a new microstructural model to describe the rheology of entangled linear
polymers. In order to reduce the number of non-linear adjustable parameters, we develop a model capable
of predicting both the linear and the non-linear response, using a single set of material parameters. In
a first step, a linear differential formulation of the thermal constraint release mechanism is introduced
and validated against experimental results for linear polystyrene melts. In a second step, we extend the
linear model to the non-linear regime by generalizing the state variables to conformation tensors and
accounting for the relevant non-linear relaxation phenomena. The numerical predictions of the resulting
model are then compared to experimental data for entangled polymer melts and solutions in different flow
regimes. Finally, we show, on a simple reptation model, how the single generator bracket formalism of
non-equilibrium thermodynamics can be used for the phenomenological improvement of microstructural
constitutive models.
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Introduction

It is known to most of us that many of the fluids we encounter, even on a daily basis,
cannot be described neither as simple liquids nor as solids. These so-called complex
fluids exhibit a complex rheological behaviour. The understanding and the prediction
of their flow properties often require understanding the physics of the material at a
scale smaller than the one of macroscopic interest.
Polymeric materials belong to the large class of viscoelastic materials. At short time
scales, their behaviour is solid-like while their long time behaviour is more liquid-
like. The understanding and the prediction, at the size scale of continuum mechanics,
of the rheological properties of polymers are a longstanding scientific challenge of
the greatest interest for the polymer industry. The processing conditions of e.g. a
polymer melt as well as the final properties of the product are deeply influenced by the
rheological properties of the material.

In this manuscript, we focus on the microstructural constitutive modelling of topo-
logically linear entangled polymers.

Microstructural modelling is the process in which one tries to predict and un-
derstand macroscopic properties of a material, based on its local microstructure. It
is aimed at understanding the factors that govern the material behaviour at the size
scales at which they are utilized. In this work, the macroscopic level is that of contin-
uum mechanics, while the microscopic level is the molecular scale or an intermediate
mesoscopic level. A model consists therefore of two main building blocks:

1. an expression for computing the macroscopic properties from the parameters
and variables describing the microstructure.

2. An expression for computing the evolution of the microstructural variables due
to the macroscopic strain, the relaxation dynamics of the microstructure and
other relevant external driving forces.
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Despite the tremendous increase in available computing power, the most promising
atomistic simulations are still orders of magnitude below the macroscopic scale in the
molecular weight, number of molecules and timescales they can reach [1; 2]. To model
the macroscopic behaviour of entangled polymers, it is still necessary to transfer the
information from micro-scale models to coarser meso-scale models, keeping only the
essence of molecular dynamics. This process often involves averaging some quantities
over the set of microscopic variables, and using some closure approximations with
sometime uncontrolled consequences [3]. A key issue when dealing simultaneously
with two levels of description such as the macroscopic continuum and the atomistic
details is to be able to transfer information between those levels and create a coupling
dynamics occurring at different size- and time-scales.

Continuum mechanics models for entangled polymers focus on the polymeric con-
tribution to the stress tensor found in the conservation equation of momentum. In mi-
crostructural models, one assumes that, at each material point, there is a microstructure
which can be characterized by a set of identifiable constants and variables. Further-
more, the mathematical expressions for the stresses induced by the microstructure
and the dynamics of the microstructural variables are derived from assumptions on
the physical processes found within the microstructure. Apart from the stresses, mi-
crostructural models can provide additional information on the state of the microstruc-
ture such as its average orientation. This extends the scope of the model and allows
for its validation through the comparison with experimental measurements other than
the stress.

Microstructural models used to model entangled polymers are often opposed to so-
called phenomenological models that do not try to bridge length scales. Phenomeno-
logical models are often simply considered as black-box models, with enough ad-
justable parameters, that only focus on relating the stresses to the strain history. The
faint connection between model and the physics of the material only allows the model
to be used as a predictive tool whose parameters are not a priori connected to any spe-
cific physical property. Such phenomenological models are nevertheless useful when
the investigated system is too complex to model from first principles.
The line between microstructural and phenomenological models is actually thinner
that one would tend to believe, and many models with microstructural foundations are
used as phenomenological models with adjustable parameters.

In this thesis, we build a differential microstructural constitutive model for poly-
disperse entangled linear polymers. In order to reduce the number of non-linear ad-
justable parameters, the model should aim at predicting both the linear and the non-
linear response of entangled linear polymers with the same parameters. This would
allow most of the parameters to be identified on the linear response for which both
experiments and theory are more reliable. The relevance of the linear parameters in
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non-linear flows could also be evaluated.

We take the first step towards this constitutive model by constructing a mathemati-
cally linear model that can quantitatively predict the linear response of linear entangled
polymers. The most critical part actually is to derive a general linear differential ex-
pression for the thermal constraint release mechanism. In a second step, we extend
the linear model to the non-linear regime by generalizing the state variables to confor-
mation tensors and accounting for the relevant non-linear relaxation phenomena. The
numerical predictions of the resulting model are then compared to experimental data
for entangled polymer melts and solutions in different flow regimes.

This manuscript is structured as follows: chapters 1 to 4 focus on the construction
and the evaluation of the model. They correspond to published or submitted pub-
lications to referred scientific journals. There is a strong continuity between those
chapters, as each of them presents an extension or an application of the previous ones.
Chapter 5 presents some early work on reptation models. Beside the scientific results,
this chapter is meant to propose a path for the possible extension of the model built in
the previous chapters. In a last section namedRelated Contributionswe present some
additional doctoral research carried out in the frame of this thesis.

In chapter 1, we present a new differential formulation of the thermal constraint
release phenomenon for linear entangled polymers. This new formulation predicts
a relaxation modulus identical to that predicted by the double reptation theory of
Tsenoglou [4] or Des Cloizeaux [5] for both monodisperse and polydisperse systems.
Additionally, we discuss a simple approximation of our approach as well as its possi-
ble use for building simple constitutive equations that account for constraint release in
a polydisperse environment.

This chapter has been the subject of the following publication:
A. Leygue, C. Bailly, R. Keunings. A differential formulation of thermal constraint
release for entangled polymers.J. Non Newtonian Fluid Mech., In press, 2005.

The following communication is also based on this work:

• A. Leygue, C. Bailly, R. Keunings. A New Formulation of the Double Reptation
Theory, Proc 6th Nat. Congress on Theoretical and Applied Mechanics, E. Dick
et al. (Eds), paper #121 in edited CD-ROM (2003).

In chapter 2, we present a simple tube theory for linear entangled polymers that
accounts for reptation, contour-length fluctuations and thermal constraint release. This
theory is based on a new differential formulation of the thermal constraint release phe-
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nomenon presented in chapter 1 which is extended here to account for contour-length
fluctuations. We apply the theory to mono- and poly-disperse polystyrene melts and
demonstrate its ability to produce quantitative predictions. Additionally, we discuss a
linear approximation of our approach that preserves the structure of the model. While
most quantitative tube theories for predicting the linear viscoelasticity are mathemat-
ically non-linear, our approach allows one to address the linear viscoelastic response
of a polydisperse entangled system with a linear theory.

This chapter has been the subject of the following publication:
A. Leygue, C. Bailly, R. Keunings. A differential tube-based model for predicting the
linear viscoelastic moduli of polydisperse entangled linear polymers.J. Non Newto-
nian Fluid Mech., Submitted 2005.

In chapter 3, we present a tube-based constitutive model for polydisperse entan-
gled linear polymers. The model is constructed as the non-linear extension of the
linear model presented in chapter 2, which is capable of predicting quantitatively the
linear viscoelasticity of polydisperse linear systems. The constitutive equation ac-
counts for the major linear and non-linear phenomena thought to be important in the
description of entangled linear polymers: reptation, contour-length fluctuations, ther-
mal constraint release, convective constraint release and chain stretch effects. In the
non-linear regime convective constraint release couples the relaxation of the different
masses and provides a non-linear mixing rule for the model. The predictive capabili-
ties of the model are tested on published results for mono- and bi-disperse entangled
solutions [6; 7], both in shear and extension.

This chapter has been the subject of the following publication:
A. Leygue, C. Bailly, R. Keunings. A tube-based constitutive equation for polydis-
perse entangled linear polymers.J. Non Newtonian Fluid Mech., Submitted 2005.

The following communications are also based on this work:

• A. Leygue, C.Y. Liu, N. Coppin, H. Burhin, C. Bailly, R. Keunings, Evaluation
of a new constitutive equation for mixtures of entangled linear polymers and ap-
plication to the study of LAOS flow of polystyrene melts, 76th Annual Meeting
of the American Society of Rheology, Lubbock, Texas, USA (February 2005).

• A. Leygue, C. Bailly, R. Keunings. Evaluation of a new constitutive equation
for blends of entangled linear polymers, Proc. 14th Int. Congress on Rheology,
Korean Society of Rheology, Seoul, paper #280 in edited CD-ROM (2004).

• A. Leygue, C. Bailly, R. Keunings, A Constitutive Equation for Blends of En-
tangled Linear Polymers, 1st Ann. European Rheology Conf. (AERC 2003),
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Guimarães, Portugal (September 2003).

In chapter 4, we discuss the predictive capabilities of the CRAFT model derived
in chapter 3. Numerical predictions of the model are compared to experimental data
of Large Amplitude Oscillatory Shear (LAOS) flows and uniaxial extension of well
characterized polystyrene samples. All the parameters of the CRAFT model are iden-
tified from the linear viscoelastic moduli of a subset of the samples or derived from
microstructural knowledge.
We find that for monodisperse systems, the CRAFT model can quantitatively repro-
duce the experimental LAOS data. For polydisperse systems, discrepancies appear as
high mass chains show some anomalous stretch in shear. In extension, the model can
predict quantitatively the unique experimental data of Bach et al. [8] provided that
finite extensibility is reduced to very low values.

This chapter will be the subject of a publication which is currently in preparation.

The following communication is also based on this work:

• A. Leygue, C.Y. Liu, N. Coppin, H. Burhin, C. Bailly, R. Keunings, Investiga-
tion of LAOS flow of polydisperse polystyrene melts using a new constitutive
equation for mixtures of entangled linear polymers, 2nd Ann. European Rheol-
ogy Conf. (AERC 2005), Grenoble, France (April 2005).

• A. Leygue, C. Bailly, R. Keunings, A Differential Constitutive Equation for the
Simulation of Linear Polydisperse Entangled Systems: Evaluation for Not So
Simple Flows, XIVth Int. Workshop on Numerical Methods for Non-Newtonian
Flows, Santa Fe, New Mexico, USA (June 2005).

In chapter 5, using the single generator bracket formalism of non-equilibrium ther-
modynamics, we build a thermodynamically consistent constitutive equation of the
differential type for linear entangled polymers. The starting point of our develop-
ments is the MGI rheological model proposed by Marrucci et al. [9] , which can be
viewed as a modification of the classical Doi-Edwards reptation theory that includes
convective constraint release and a modified strain measure. The proposed constitutive
equation has an additional parameter which governs the dissipative part of the model.
The MGI model is recovered as a particular case, but with a stress-conformation re-
lationship which contains an additional term suggested by non-equilibrium thermo-
dynamics. Predictions of the proposed model in steady and transient shear flows are
shown to be in qualitative agreement with experimental observations.

This work has been the subject of the following publication:
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A. Leygue, A.N. Beris, R. Keunings. A constitutive equation for entangled linear
polymers inspired by reptation theory and consistent with non-equilibrium thermody-
namics.J. Non Newtonian Fluid Mech., 101:95–111, 2001.

The following communications are also based on this work:

• A. Leygue, A.N. Beris, R. Keunings, A Constitutive Equation for Entangled
Linear Polymers Inspired by Reptation Theory and Consistent with Non-Equilibrium
Thermodynamics, XIIth Int. Workshop on Numerical Methods for Non-Newtonian
Flows, Monterey, California, USA (July 2001).

• A. Leygue, A.N. Beris, R. Keunings, Constitutive Equations for Linear Polymer
Melts Inspired by Reptation Theory and Non-Equilibrium Thermodynamics,
72nd Annual Meeting of the American Society of Rheology, Hilton Head Island,
South Carolina, USA (February 2001).

• A. Leygue, A.N. Beris, R. Keunings, Modelling the Flow of Linear Polymer
Melts Using a Modified Version of the MGI Model, 4th EUROMECH Fluid
Mechanics Conference, Eindhoven, The Netherlands (November 2000).

• A. Leygue, A.N. Beris, R. Keunings, Thermodynamical Considerations on Con-
stitutive Equations for Entangled Polymer Melts. Proc. 13th Int. Congress on
Rheology, D.M. Binding et al. (Eds), British Society of Rheology, Glasgow,
Vol. 2, 111-113 (2000).

• A. Leygue, A.N. Beris, R. Keunings, Using Non-Equilibrium Thermodynamics
to Improve the Modelling of Linear Polymer Melts, with Convective Constraint
Release and Force Balance on Entanglements, Workshop on Non-Equilibrium
Thermodynamics and Complex Fluids, Oxford, UK (August 2000).

In section Related Contributions A, we study the flow response in large amplitude
oscillatory shear of the molecular stress function (MSF) model that has recently been
proposed by Wagneret al. [10]. The MSF model is derived from molecular theory
and has only two parameters to describe the nonlinear material response. The model
predictions are analysed in both the frequency and time domain. It shows good agree-
ment with experimental data for a linear high density polyethylene melt. At low and
medium strains, MSF model predictions are in excellent agreement with experimen-
tal data and predictions of a six-mode Giesekus model which has six parameters to
describe the nonlinear material response. At medium strains, the basic Doi–Edwards
model, which has no nonlinear parameters, already underpredicts the data. At high
strains, the MSF model predictions agree slightly better with the experimental data
than the Giesekus model. Surprisingly, however, it is the Doi–Edwards model that
shows excellent agreement with experimental data at high strains. For the linear melt
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we consider, it outperforms the models that have nonlinear parameters, both in the
time and frequency domain.

This work has been the subject of the following publication:
P. Wapperom, A. Leygue, R. Keunings. Numerical simulation of large amplitude
oscillatory shear of a high-density polyethylene melt using the MSF model.J. Non
Newtonian Fluid Mech., Accepted for publication.





Chapter 1

A differential formulation of
thermal constraint release for
entangled linear polymers

1.1 Introduction

Following the introduction on the reptation picture by de Gennes [11], Doi and Ed-
wards [12] proposed a tube-based theory to explain the linear rheology of linear en-
tangled polymers. The numerous variations of the tube model have now reached a
high level of maturity and are now capable of a quantitative description of the linear
viscoelastic properties of linear entangled polymers ( see e.g. [13; 14; 15; 16; 17]).
The success of these theories is such that the focus is now on the prediction of the
linear viscoelastic response of systems with a much more complex architecture, e.g.
symmetric [18] or asymmetric stars [19], and mixtures of star and linear polymers
[20; 21]. The key of these successes essentially is an accurate description of: (i) the
reptation dynamics (if present), (ii) the fluctuations of the length of the tube [12], and
(iii) thermal constraint release phenomena [22], which is a closure to the mean field
approximation of the tube. Accounting for the coupling between those effects is of
critical importance. For linear polymers, the distinction made between reptation and
contour length fluctuations is somehow arbitrary as these are only different modes of
a one-dimensional Rouse chain escaping a tube. This distinction has recently been
made thinner by Graham and co-workers [23] who proposed to model the relaxation
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through reptation and contour length fluctuations using a modified diffusion process,
where diffusivity is position-dependent along the primitive path. Thermal constraint
release is today handled efficiently either through dynamic dilution or through dou-
ble reptation [5; 4]. The latter theory can actually be viewed as an approximation of
Rouse tube motion induced by constraint release events. In the monodisperse case,
Likhtman et al. [16] have showed how double reptation is a good approximation of
Rouse tube motion. The mixing rule induced by double reptation has also been recov-
ered within the implementation of constraint release found in a stochastic full chain
reptation model developed by Hua et al. [24].
A more complete theory of constraint release involving both tube dilation and rouse
tube motion has been proposed by Viovy et al. [25].

In the present text, we present a new mathematical formulation of the thermal con-
straint release phenomenon for monodisperse systems, which we prove to be equiv-
alent to the double reptation theory of Des Cloizeaux [5] and Tsenoglou [4]. This
new formulation is then extended to the case of polydisperse systems where it yields
a mixing rule identical to the one of double reptation. In parallel, we propose a simple
approximation of our theory, which can easily be used as a starting point for building
non-linear constitutive equations of the differential type. Finally, we show that our
approach to constraint release can simplify integral non-linear integral constitutive
equations of polydisperse systems such as the extension proposed by Pattamaprom et
al. [6] of the so-called MLD model of Mead et al. [26].

1.2 Classical double reptation

In this section, we first recall basic elements of reptation theory and its extension to
double reptation. In a fixed network of entanglements, reptation theory [11; 12] sug-
gests that a polymeric chain is constrained in a tube-like region and therefore can only
relax through curvilinear diffusion along its primitive path. Neglecting length fluctua-
tions of the primitive path, one can describe the relaxation of the chain (or equivalently
the destruction/renewal of the tube) through the following diffusion equation [12]:

∂P0

∂ t
= αd

∂ 2P0

∂s2 , (1.1)

P0(t,−1) = 0 ,

P0(t,1) = 0 for t > 0 ,

P0(0,s) = 1 for −1 < s< 1 ,

where the equilibrium length of the primitive chain has been normalized to 2 andαd is
a characteristic diffusion constant scaling like the inverse of the cube of the molecular
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mass. The subscript·0 indicates that we do not consider any constraint release yet.

The quantityP0(t∗,s) is the probability for a tube segment with curvilinear position
s along the primitive chain of not having relaxed betweent = 0 andt = t∗.

FromP0, we define the relaxation kernelK0 as:

K0(t) =
1
2

∫ 1

−1
P0(t,s) ds , (1.2)

which is but the average ofP0 overs. Using the analytical solution of (1.1), the relax-
ation kernelK0(t) can be found to be [12]:

K0(t) =
8

π2 ∑
podd

1
p2 exp

(
− p2 t

τd

)
, (1.3)

where the longest relaxation timeτd is defined as:

τd =
4

π2 αd
. (1.4)

Under simple reptation the relaxation modulusG0(t) is proportional to the relaxation
kernel:

G0(t) = G0
NK0(t) , (1.5)

whereG0
N is the plateau modulus.

Introduced by Tsenoglou [4] and Des Cloizeaux [5], double reptation takes into
account the mutual interactions of relaxing chains. In a sense, it is a closure to the
mean field approximation of the tube. If one assumes that chains interact in a bi-
nary fashion (through entanglements), then whenever a chain segment relaxes through
reptation, another segment must also relax through thermal constraint release. For
mono-disperse linear entangled polymers, this simply gives the following relaxation
modulus [5]:

G?(t) = G0
N (K0(t))

1+γ , (1.6)

whereγ should be equal to unity, but is often left as an adjustable parameter. A clas-
sical choice is to takeγ slightly above unity (γ = 4/3)[27].

Except for the factorG0
N, G?(t) is the power(1+ γ) of G0(t). As G0(t) is often

approximated by its dominant exponential, a crude approximation of double reptation
is therefore to simply divide the characteristic relaxation timeτd by (1+ γ).
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In a polydisperse system, double reptation provides a mixing rule for predicting
the relaxation modulus based on the relaxation kernel of all the present species:

G?(t) = G0
N

(
∑
i=1

φ (i)K(i)
0 (t)

)1+γ

, (1.7)

whereφ (i) is the volume fraction of speciesi, andK(i)
0 its relaxation kernel. The

disengagement timeτ(i)
d of species(i) is then assumed to be proportional to a particular

power of the molecular weightM(i) of the species. This use of double reptation as a
mixing rule is quite common and has been proved to give good predictions of the
relaxation modulus as a function of the molecular weight distribution of the sample
(see e.g. [14; 15]).

1.3 Constraint release in monodisperse systems

In this section, we propose a modification to Eq. (1.1) in order to simultaneously
account for reptation and constraint release through double reptation. We will not ad-
dress the issue of contour length fluctuations in this work as we wish to focus on the
thermal constraint release phenomenon only. The incorporation of contour length fluc-
tuations might indeed lead us to modify the typical diffusion operator of the reptation
theory.

The classical approach of double reptation is based on the principle of first com-
puting the relaxation kernel of a chain relaxing in a fixed network, and then modifying
it in order to take into account the effect of the surrounding relaxing chains. This
two-step method is not suited for the construction of non-linear constitutive equations,
as the mixing rule is nonlinear, and does not offer a dynamical description of the
processes involved. Instead, we would like to find a differential problem, similar to
Eq.(1.1), such that it would describe the relaxation dynamics of the different segments
of the primitive chain under reptation and thermal constraint release.

As any segment of the primitive chain can relax either through reptation or con-
straint release, we choose to add a second term on the right hand side of Eq.(1.1) to
account for the latter phenomena. This new term is constructed as follows: Assuming
that thermal constraint release can occur with the same probability on any unrelaxed
segment [22], it must have an intensity, along the chain, proportional to the fraction of
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locally unrelaxed segments. This leads to the following differential problem:

∂Pγ

∂ t
= αd

∂ 2Pγ

∂s2 +βPγ , (1.8)

Pγ(t,−1) = 0 ,

Pγ(t,1) = 0 for t > 0 ,

Pγ(0,s) = 1 for −1 < s< 1 ,

whereβ is the rate of thermal constraint release. Following the concept of double
reptation, we make this rate proportional to the rate of relaxation through reptation:

β (t) = γ
∫ 1
−1 αd

∂ 2Pγ
∂s2 ds

∫ 1
−1Pγ ds

, (1.9)

where the parameterγ describes the fact that the relaxation of one chain segment
through reptation might induce the relaxation of more than one other segment (γ ≥ 1).
We will prove later thatγ actually is the same as is Eq. (1.6). It is worth noticing
that due to the sign and concavity ofPγ(t,s), we haveβ (t) <= 0. This is consistent
with the plus-sign found on the right-hand-side of Eq. (1.8). Asβ (t) is not constant in
time, the relaxation due to constraint release does not obey a simple first order decay.

Another interpretation of Eqs. (1.8,1.9) is the following: For any tube segment
that relaxes on a given chain through reptation, there is another tube segment that will
relax. While the first disappearing segment will be located at a chain end, the second
has to be picked randomly among all the unrelaxed tube segments. The expression∫ 1

−1
αd

∂ 2Pγ

∂s2 ds simply measures the rate of relaxation through reptation, while the

function
Pγ∫ 1

−1Pγ ds
describes how this rate of relaxation should be redistributed along

the chain; i.e. proportionally to the local fraction of unrelaxed chain segments (or
surviving tube segments).

It can be verified by simple substitution that Eqs. (1.8-1.9) have the following
analytical solution:

Pγ(t,s) = P0(t,s)
(

1
2

∫ 1

−1
P0(t,s′)ds′

)γ
= P0(t,s)(K0(t))

γ , (1.10)

which is a product of two factors where the first one can be interpreted as account-
ing for the relaxation of a chain in a fixed environment, while the second one would
account for the relaxation of the environment.

Finally, we define the relaxation modulusGγ(t) as proportional to the fraction of
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unrelaxed chain segments:

Gγ(t) = G0
N

1
2

∫ 1

−1
Pγ(t,s) ds . (1.11)

This approach to constraint release predicts exactly the same relaxation modulus as
double reptation. The equivalence of both formulations is easily seen through the
comparison of Eqs. (1.6) and (1.11), wherePγ has been substituted by its analytical
expression (1.10). We also see that the parameterγ has the same meaning in both
formulas and that the expression (1.9) forβ can be simplified as:

β (t) = γ
∂K0(t)

∂ t
K0(t)

. (1.12)

In describing the relaxation of a polymeric system one might not only be inter-
ested in the relaxation modulusGγ(t) but also in the dynamics of relaxation through
reptation and constraint release along the chain. Such information is needed, for ex-
ample, in the full contour-variable reptation model proposed by Mead and coworkers
[26]. Under simple reptation, tube segments are renewed at the chain’s ends only,
while thermal constraint release allows the renewal of the orientation of internal tube
segments. If one neglects constraint release (γ = 0), the variation ofP0(t,s) is only
due to a flux from the inside of the chain towards the chain’s ends, where all the actual
relaxation occurs. Whenγ is not zero,Pγ(t,s) also decreases due to a local relaxation,
and the total loss along the chain isγ times the loss at the chain’s ends. This difference
in the dynamics of internal segments can be best observed at early times when looking
at the relaxation of the segments at the center of the chain. On Fig. 1.1, we compare
P0(t,s) andPγ(t,s) at the center of the chain; i.e.s= 0 and forγ = 1. At early times,
P0(t,0) exhibits a plateau which comes from the fact that inner segments can only re-
lax through reptation and must therefore wait for the chain to reptate far enough before
having the opportunity to relax. On the other hand, we see thatPγ(t,0) does not have
that feature, as some inner segments can relax through thermal constraint release as
soon as the outer segments relax through reptation.

1.4 Construction of a simple linear viscoelastic model

From the partial differential equation (PDE) (1.8) we proposed for the evolution ofPγ ,
it is possible to build a linear viscoelastic model that accounts for both reptation and
constraint release in simple shear flows. Let us defineσ(t,s) as the non-dimensional
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Figure 1.1: Comparison of the relaxation dynamics at the center of the primitive chain
with (P1(t,0): ·− ) and without (P0(t,0): − ) constraint release.

stress carried at timet by tube segments at positionsalong the primitive path.

σ(t,s) =
∫ t

−∞
Pγ(t− t ′,s)γ̇xy(t ′)dt ′, (1.13)

whereγ̇xy(t ′) is the shear rate at timet ′. This simple linear model reads:

∂σ
∂ t

= γ̇ +αd
∂ 2σ
∂s2 +

∫ t

−∞
β (t− t ′)Pγ(t− t ′,s)γ̇xy(t ′)dt ′ , (1.14)

σ(t,−1) = 0 ,

σ(t,1) = 0 for t > 0 ,

σ(0,s) = 0 for −1 < s< 1 ,

β (t) = γ
∂K0(t)

∂ t

K0(t)
, (1.15)

τxy(t) = G0
N

1
2

∫ 1

−1
σ(t,s)ds ,

whereτxy is the shear stress.

In order to obtain from (1.14-1.15) a simple differential linear model we approxi-
mate the relaxation kernelK0(t) appearing in Eq. (1.15) by a single decreasing expo-
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nential with characteristic timeγτcr. The new model simply reads:

∂σ
∂ t

= γ̇ +αd
∂ 2σ
∂s2 −

σ
τcr

, (1.16)

σ(t,−1) = 0 ,

σ(t,1) = 0 for t > 0 ,

σ(0,s) = 0 for −1 < s< 1 ,

τxy = G0
N

1
2

∫ 1

−1
σ ds .

The response of this simplified model after a unit step strain is:

σ(t,s) = P0(t,s)exp

(
− t

τcr

)
. (1.17)

The scalarτcr is of the order ofτd and represents the average disentanglement
time through thermal constraint release phenomena. Its value is chosen such that Eqs.
(1.14) and (1.16) yield the same zero-shear viscosity. From the analytical solution of
(1.16), we find thatτcr is the solution of the following equation:

∫ +∞

0
(K0(t))

(1+γ) dt =
∫ +∞

0

(
K0(t)exp

(
− t

τcr

))
dt . (1.18)

The approximate model (1.16) is of little use by itself, but it is a first step towards a
more realistic non-linear differential constitutive equation which would have the same
structure in terms of differential operators along thescoordinate.

The zero-shear viscosityη0 predicted by these models is a function ofαd andγ. It
can easily be proved thatη0 scales likeα−1

d , but does not scale exactly like(1+ γ)−1.

For γ = 0 we can prove thatη0 =
G0

N

3αd
, but for higher values ofγ we have to compute

η0 numerically. Defining the effective relaxation timeτeff asτeff =
η0

G0
N

, we illustrate

on Fig. (1.2) how this quantity changes with respect toγ. Whenγ = 1, the effective
relaxation time is less than half (≈ 0.42) the relaxation time when double reptation
is ignored. Thermal constraint release is traditionally accounted for in constitutive
equations simply by dividing the relaxation time by 2, which is apparently not enough
when one considers the full spectrum of relaxation times instead of the dominant one
only.
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Figure 1.2: Normalized effective relaxation time as a function ofγ

1.5 Constraint release in polydisperse systems

Using the same approach, the above formulation of constraint release can easily be
extended to polydisperse systems.

In the absence of thermal constraint release, we can consider that all species reptate
independently. From a modeling point of view, this would lead to a set of uncoupled
partial differential equations (PDEs), where each PDE describes a particular species.
As soon as constraint release comes into play, the relaxation of the species is coupled
because they are each other’s environment (including themselves). The key issue is
therefore to compute consistently the rateβ of relaxation of the environment.

Assuming that the polydisperse system is made of molecules with a discrete distri-

bution ofN masses, let us defineP(i)
γ (t,s) as the tube survival probability for molecules
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of massM(i). The time evolution ofP(i)
γ (t,s) is described by the following PDE:

∂P(i)
γ

∂ t
= α(i)

d

∂ 2P(i)
γ

∂s2 +βP(i)
γ , (1.19)

P(i)
γ (t,−1) = 0 ,

P(i)
γ (t,1) = 0 for t > 0 ,

P(i)
γ (0,s) = 1 for −1 < s< 1 .

In view of Eq. (1.9), the rate of constraint releaseβ is consistently defined as:

β = γ
∑i φ (i) ∫ 1

−1 α(i)
d

∂ 2P(i)
γ

∂s2 ds

∑i φ (i)
∫ 1
−1P(i)

γ ds
, (1.20)

whereφ (i) is the volume fraction of species(i) andγ keeps the same meaning as in

the monodisperse case. The diffusion coefficientα(i)
d has the form:

α(i)
d =

4

π2Kd
(
M(i)

)3 , (1.21)

whereKd is an adjustable material parameter and the exponent3 accounts for the
scaling of the disengagement timeτd with respect to the molecular mass.

When γ = 0, all PDEs (1.19)are decoupled and their solutionsP(i)
0 (t,s) can be

computed easily as each equation describes the relaxation through simple reptation of
a particular species. Whenγ 6= 0, Eq.(1.19) has the following solution:

P(i)
γ (t,s) = P(i)

0 (t,s)

(
∑

j

1
2

∫ 1

−1
φ ( j)P( j)

0 (t,s′)ds′
)γ

, (1.22)

andP(i)
0 (t,s) is the tube survival probability under simple reptation. In the previous

expression, the first term accounts for the relaxation of the chains through reptation
only, while the second accounts for the relaxation of the environment. Finally, we
define the relaxation modulus as:

Gγ(t) = G0
N ∑

i

φ (i)

2

∫ 1

−1
P(i)

γ (t,s)ds . (1.23)

It is straightforward to check that the resulting modulus is identical to the modulus one
would obtain with the mixing rule (1.7) of double reptation.

Similarly to what we did for monodisperse systems, it is possible to build upon this
approach a linear viscoelastic model for polydisperse systems. Definingσ (i)(t,s) as
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the stress carried by chain segments of species(i) and coordinatesalong the primitive
path, we obtain the following model:

∂σ (i)

∂ t
= γ̇ +αd

∂ 2σ (i)

∂s2 +
∫ t

−∞
β (t− t ′)P(i)

γ (t− t ′,s)γ̇xy(t ′)dt ′ , (1.24)

σ (i)(t,−1) = 0 ,

σ (i)(t,1) = 0 for t > 0 ,

σ (i)(0,s) = 0 for −1 < s< 1 ,

β (t) = γ
∑i φ (i) ∂K0((i)t)

∂ t

∑i φ (i)K(i)
0 (t)

, (1.25)

τxy(t) = G0
N ∑

i

φ (i)

2

∫ 1

−1
σ (i)(t,s)ds . (1.26)

This linear viscoelastic model only needsN objects, namely theN functionsσ (i) to re-
produce the full complexity of thermal constraint release within a polydisperse system
of N masses. It is also capable of accounting for an arbitrary mixing exponentγ. This
new formulation of constraint release could therefore be used as a starting point for the
implementation of complex integral constitutive equations for polydisperse systems.

The classical way to implement double reptation in a constitutive equation is to
make the assumption of binary interactions between chains (i.e.γ = 1), and to have an
equation for each possible interaction between allN masses. As many asN2 modes
(all M(i) M( j) pairs) are therefore required to fully model double reptation.
Such a constitutive equation has been proposed by Pattamaprom and Larson [6], as
an extension of the so-called toy-MLD model by Mead and coworkers [26]. The
implementation of thermal constraint release (or reptative constraint release, following
the authors) within the polydisperse version of the toy-MLD model accounts for all
possible interactions (N2) between allN polymeric masses. This high algorithmic
complexity can dramatically increase the computational simulation cost when dealing
with polymeric systems composed of many different masses.

Using Eqs. (1.24-1.26) to implement thermal constraint release removes the con-
straint on the value ofγ and reduces the algorithmic complexity of the resulting model.

1.6 Conclusions

We have proposed a new differential formulation of thermal constraint release in
monodisperse and polydisperse entangled polymeric systems. The core of our ap-
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proach is a differential problem that allows the direct computation of the tube survival
probability when both reptation and thermal constraint release are active. Although
this theory predicts a relaxation modulus mathematically equivalent to the one pre-
dicted by the double reptation theory of Tsenoglou [4] and Des Cloizeaux [5], it does
not use a nonlinear mixing rule, and thus is easier to extend to a full constitutive equa-
tion.



Chapter 2

A differential tube-based model
for predicting the linear
viscoelastic moduli of
polydisperse entangled linear
polymers

2.1 Introduction

Tube theories addressing the quantitative prediction of the linear viscoelastic proper-
ties of entangled systems based on their microstructure have now reached a high level
of maturity. Following the pioneering work of de Gennes [11] on reptation, numerous
tube models are now capable of a quantitative description of the linear viscoelastic
properties of linear entangled polymers ( see e.g. [13; 14; 15; 16; 17]). The success of
these theories is such that the focus is now on the prediction of the linear viscoelastic
response of systems with a much more complex architecture such as mixtures of star
and linear polymers [20; 28; 29]. A striking fact about all those theories is that they
are highly non-linear, despite their focus on the linear rheology of entangled systems.

In order to predict the relaxation modulus of an entangled polymer, one must de-
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scribe how the polymeric chains escape from their constraining tubes and how this
relaxation process affects the tubes themselves. For linear polymers, the escape of a
chain can occur through reptation or contour-length fluctuations [12]. Although they
are often addressed separately, these two phenomena can be viewed as different modes
of a Rouse chain trapped in a tube potential. For example, the stochastic description
of linear chains [24; 30; 16] does not consider reptation and fluctuations separately as
fluctuations correspond to the breathing modes of a one-dimensional Rouse chain es-
caping from a tube. Different authors have proposed coupled descriptions of reptation
and contour-length fluctuations either considering a position-dependent [31; 23] or a
time-dependent [32] diffusion process along the primitive path.

Thermal Constraint Release [22] theories address the effects, on the tube, of the
relaxation of the surrounding chains. In a sense, constraint release is a closure to the
tube potential. A rigorous description of constraint release proposed by Viovy et al.
[25] results in a potential increase in the effective tube diameter and a Rouse motion
of the tube itself. The double reptation picture [4; 5] provides a simple and successful
alternative to complex constraint release theories. Double reptation actually is a fair
approximation of Rouse tube motion induced by constraint release events. Likthman
and Mc Leish have recently shown that generalized double reptation is essentially
correct up to the Rouse time of the chain [16]. For polydisperse systems, double
reptation induces a non-linear mixing rule which has actually been recovered in the
stochastic reptation model proposed by Hua et al. [24].

In this chapter, we present a simple tube model for mixtures of linear polymers.
This theory, valid in the linear regime only, proposes a coupled description of repta-
tion, contour-length fluctuations and constraint release. Reptation and contour-length
fluctuations are accounted for through a position dependent diffusion mechanism pro-
posed by Graham et al. [23], while thermal constraint release is introduced using an
extension of a new differential formulation of double reptation [33]. Our theory al-
lows one to compute directly the tube survival probability along the primitive path.
Furthermore, the extension to the polydisperse case yields a perfectly linear mixing
rule. Then we demonstrate the predictive capabilities of our approach on a large set of
polystyrene samples. Finally, we show how it is possible to build a linear approxima-
tion of our theory that retains both the structure of the model and the physical meaning
of the variables. The resulting model is therefore a fully linear model (linear equations
and mixing rule) that can predict the linear viscoelastic properties of entangled linear
polymers.
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2.2 Tube theory for a monodisperse system

In this section we present a tube theory for entangled linear systems. We first consider
the monodisperse case and then extend the theory to account for polydispersity.

Let s(−1≤ s≤ 1) be a parametric coordinate along the primitive path of a polymer
chain in a monodisperse environment. Let us definePf

γ (t,s) the probability for a tube
segment with positions to survive between the arbitrary initial time0 and timet. The
superscriptf denotes that we do account for contour-length fluctuations, while the
parameterγ is representative of the effectiveness of constraint release. Two limiting
cases arePf

0 (t,s) andPγ(t,s). The quantityPf
0 (t,s) is representative of a chain relaxing

in a fixed network of entanglements where no constraint release occurs, whilePγ(t,s)
properly describes a very long chain where the length-fluctuations become negligible.
Reptation theory [11; 12] suggests that the time evolution ofPf

0 (t,s) is governed by
a diffusion operator along the coordinates. This operator represents the diffusive
motion of the chain inside its tube that yields the destruction/renewal of a tube segment
that reaches the chain ends. Following Des Cloizeaux [31] and Graham [23], we
consider that the effect of contour-length fluctuations can be accounted for through a
position-dependent diffusion constant. The simplest form for the evolution ofPf

0 (t,s)
is therefore [12]:

∂
∂ t

Pf
0 =

∂
∂s

(
α f

d (s)
∂
∂s

Pf
0

)
, (2.1)

Pf
0 (t,−1) = 0 , (2.2)

Pf
0 (t,1) = 0 for t > 0 , (2.3)

Pf
0 (0,s) = 1 for −1 < s< 1 ,

where Eqs. (2.2-2.3) come from the assumption that chain ends are fully relaxed.

As suggested in [23] we considerα f
d (s) to be constant along the primitive path,

except at the chain end in two regions of size proportional to
√

M/Me, whereM is
the molecular weight of the polymeric chain andMe is the molecular weight between
entanglements. In those regions, where contour-length fluctuations allow for a faster
renewal of the tube segments, the diffusion coefficient is proportional to the inverse
of the quadratic distance to the chain end. As the molecular weight of the polymer
increases, the influence of contour-length fluctuations becomes more and more negli-
gible. In that limiting case, the reptation picture [11] tells us that the diffusion constant
should scale like the inverse of the cube of the molecular weight of the polymer. The
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full expression forα f
d (s) becomes:

α f
d (s) =

4
Kdπ2M3

K f
2Me

M (1−s)2 if s>

(
1−K f

√
Me

M

)
, (2.4)

4
Kdπ2M3

K f
2Me

M (1−s)2 if s<

(
K f

√
Me

M
−1

)
, (2.5)

4
Kdπ2M3 otherwise, (2.6)

whereKd is a material parameter. The adjustable parameterK f is close to unity and
controls the depth of the contour-length fluctuations within the model. We do not claim
any universal value forK f and consider it as a parameter that has to be identified
for each material. This is similar to the parameterM? of Des Cloizeaux [32] that
also controls fluctuations. TakingK f = 0 actually suppresses the fluctuations as the
diffusion constant becomes constant along the chain. In that special case, one recovers
the simple reptation picture of Doi and Edwards [12].

At this point, it is worth noticing that the simple scaling we adopt for the width
of the fluctuation zone cannot be valid for poorly entangled systems. WhenM is only
a few timesMe, the reptation picture tends to break down as fluctuations become the
dominant relaxation mechanism.

Finally we account for constraint release using the approach we developed in [33].
This is done by adding a local relaxation term to Eq. (2.1) representative of relaxation
through constraint release. Following the double reptation picture, we postulate that
the rate of constraint release is proportional to the rate of relaxation through reptation
and contour-length fluctuations, and that constraint release events occur with the same
probability on all unrelaxed segments. The first assumption translates the fact that
constraint release is actually driven by the other relaxation mechanisms. The second
one states that the probability for a segment to relax through constraint release does
not depend on its position along the chain. At a given position along the primitive
path, the rate of relaxation through constraint release must therefore be proportional
to the local tube survival probability. The resulting differential problem forPf

γ (t,s)
reads:

∂Pf
γ

∂ t
=

∂
∂s

(
α f

d (s)
∂
∂s

Pf
γ

)
+βPf

γ , (2.7)

Pf
γ (t,−1) = 0 ,

Pf
γ (t,1) = 0 for t > 0 ,

Pf
γ (0,s) = 1 for −1 < s< 1 ,
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whereβ is the rate of thermal constraint release. We now extend the expression forβ
proposed in [33] to account for both reptation and contour-length fluctuations:

β = γ

∫ 1
−1

∂
∂s

(
α f

d (s) ∂
∂sPf

γ

)
ds

∫ 1
−1Pγ ds

, (2.8)

whereγ is an adjustable parameter of order unity that controls the amount of constraint
release in the system. It is important to notice thatβ is not constant in time and
therefore the local relaxation does not obey a simple first-order decay.

The relaxation modulusG(t) is simply defined as being proportional to the average
tube survival probability along the chain:

G(t) = G0
N

1
2

∫ 1

−1
Pf

γ (t,s) ds , (2.9)

G0
N being the plateau modulus.

In order to predict the high frequency response, the expression (2.9) for the re-
laxation modulus has to be modified to account for the Rouse modes of the chain.
In practice, this is simply done by superposing a Rouse relaxation modulusGr(t) on
the relaxation modulus coming from reptation. Following [15], the expression for the
Rouse relaxation modulus for a chain of massM writes:

Gr(t) = G0
N

(
∞

∑
p=Z+1

1
Z

exp

(
− p2

τr

)
+

1
3

Z

∑
p=1

1
Z

exp

(
− p2

τr

))
, (2.10)

whereτr = KrM2 andKr is an additional linear material parameter. The integerZ is
defined as the closest integer to the ratioM/Me. AlthoughKd, Kr , M andMe are linked
through the underlying segmental dynamics and should not be specified independently,
they are considered as independent parameters in this chapter. In chapter 4, we make
use of the relations summarized in [34] to reduce the number of independent linear
parameters.

2.3 Extension to the polydisperse case

We now extend the theory presented in the previous section to the polydisperse case,
without adding any adjustable parameter. The extension procedure is similar to the we
proposed in [33], where contour-length fluctuations were neglected. Let us consider a

polydisperse system of polymers withN different massesM(i). Let Pf (i)
γ (t,s) be the
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tube survival probability at timet and parametric positions for the chains of massM(i).
We assume that all chains reptate and fluctuate independently of the polydispersity of
the system. The rate of constraint release is however the same for all chains and is
computed from the relaxation of all masses. The differential problem governing the

evolution ofPf (i)
γ reads:

∂Pf (i)
γ

∂ t
=

∂
∂s

(
α f (i)

d (s)
∂
∂s

Pf (i)
γ

)
+βPf (i)

γ , (2.11)

Pf (i)
γ (t,−1) = 0 ,

Pf (i)
γ (t,1) = 0 for t > 0 ,

Pf (i)
γ (0,s) = 1 for −1 < s< 1 .

In view of Eq. (2.8), the rate of constraint releaseβ is consistently defined as:

β = γ
∑i φ (i) ∫ 1

−1
∂
∂s

(
α f (i)

d (s) ∂
∂sPf (i)

γ

)
ds

∑i φ (i)
∫ 1
−1Pf (i)

γ ds
, (2.12)

whereφ (i) is the volume fraction of species(i) andγ keeps the same meaning as in

the monodisperse case. The diffusion coefficientα f (i)
d (s) is computed from Eq. (2.4),

whereM(i) is substituted forM. Similarly to Eq. (2.9), we define the relaxation mod-
ulus as the volume average over the different species of the tube survival probability:

G(t) = G0
N

N

∑
i=1

φ (i)

2

∫ 1

−1
Pf (i)

γ (t,s) ds . (2.13)

By directly computing the relevant quantity i.e. the tube survival probability under
reptation, contour-length fluctuations and thermal constraint release, we alleviate the
need for a non-linear mixing rule.
In order to correctly model the short-time behaviour, the Rouse relaxation modulus
(2.10) can be added for each species using a linear mixing rule.

2.4 Numerical solution of the model

Although the above theory is quite simple from a mathematical point of view, a closer
look at Eq. (2.11) shows that the differential problems for all masses are coupled
through the constraint release term. This in numerically expensive for a large number
of masses. The numerical cost can however be reduced dramatically through the use
of a semi-analytical solution that decouples the different masses.
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In the absence of constraint release, i.e. whenγ = 0, the partial differential equa-

tions (2.11) become decoupled. The functionsPf (i)
0 (t,s) can therefore be computed

numerically at a reasonable cost using a finite difference scheme. Through direct

substitution, one can verify that the following expression forPf (i)
γ (t,s) satisfies Eq.

(2.11):

Pf (i)
γ (t,s) = Pf (i)

0 (t,s)

(
N

∑
i=1

φ (i)

2

∫ 1

−1
Pf (i)

0 (t,s) ds

)γ

. (2.14)

The computation ofPf (i)
γ with this method has a truly negligible numerical cost as,

for a large number of masses, the algorithmic complexity is reduced from quadratic to
linear inN.

2.5 Model predictions

We now present predictions of the model in the monodisperse case. Next, we apply
the model for the prediction of linear viscoelastic moduli of different samples of poly-
disperse polystyrene melts. For all predictions, a Rouse spectrum described by Eq.
(2.10) has been superposed using a linear mixing rule.

In Fig. 2.1, we show the molecular weight dependence of the zero-shear viscosity
of a monodisperse system. In the limit of highly entangled chains, the viscosity scales
like the cube of the molecular mass. As the number of entanglements gets lower, this
scaling gradually changes to an exponent3.4. In this example we chose to setγ = 1
andK f = 0.6. The value of the other parameters does not change the shape of the
viscosity curve but merely translates it vertically and horizontally.

To evaluate the model, we test its ability to correctly predict the linear viscoelas-
tic properties of six polydisperse polystyrene samples. The parameters of the model
are estimated using the molecular weight distribution and the viscoelastic moduli of
a single sample. The value of the parameters is then frozen for the subsequent pre-
dictions on the remaining five samples. The data of the six samples named PS1, PS2,
PS3, PS60, PS275 and PS330 were kindly provided to us by BASF. We also received
the molecular weight distribution and the viscoelastic moduli at170 C̊from BASF.
The characteristics of the various samples are provided in Table 2.5. Samples PS1,
PS60 and PS275 are quite monodisperse, while PS2 and PS330 have a much broader
molecular weight distribution. PS3 is a trimodal sample with a fraction of very high
masses. The parameter estimation is actually quite a delicate task for two reasons.
In the first place, the sensitivity of the model to the different parameters can be very
uneven. Second, not all samples are suited to perform this estimation, if they only
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Figure 2.1: Dependence of the zero-shear viscosityη0 with the molecular mass for a
strictly monodisperse sample.

provide information in a narrow molecular weight range which is not representative
of the physics built in the theory. Therefore, we chose to use the broad sample PS3 to
fit the parameters of the model. In order to account for the whole molecular weight
distribution, we discretize it with a small fixed step in logarithmic space. The efficient
semi-analytical method described in Section 2.4 still allows us to compute quickly the
model predictions. The parameters resulting from the fitting procedure are reported in
Table 2.2. The molecular weight distribution as well as the measured and predicted
viscoelastic moduli for PS3 are reported in Fig. 2.2(a,b). We see there a good quantita-
tive agreement between the data and the predictions, over a wide range of frequencies.

Name Mw (kD) Mn (kD) Mw/Mn

PS1 320 270 1.18
PS2 274 101 2.72
PS3 407 143 2.83
PS60 69.6 62.7 1.11
PS275 290 253 1.07
PS330 324 112 2.89

Table 2.1: Characteristics of the six PS samples provided by BASF.
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Figure 2.2: Molecular weight distribution and linear viscoelastic moduli of PS3 (a,b)
and PS1 (c,d). Plain lines are the model’s output, while the dots are the experimental
data.

In Fig. 2.2 to 2.4 we show, for a wide range of molecular weight distributions, the
quantitative agreement between experimentally measured viscoelastic moduli and the
model’s predictions. All these predictions were obtained using the single set of param-
eters from Table 2.2. The main discrepancies between predictions and measurements
are found at low and high frequencies.
At low frequency, the model sometimes fails to correctly predict the storage modu-
lus. In this frequency range the dominating mechanisms are reptation and constraint

G0
N Kd Kr K f γ

2.1105 5.010−16 2.010−12 0.6 1.15

Table 2.2: Parameters resulting from the fitting of the model on the PS3 data.
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Figure 2.3: Molecular weight distribution and linear viscoelastic moduli of PS2 (a,b)
and PS60 (c,d). Plain lines are the model’s output, while the dots are the experimental
data.

release. Furthermore, the parameterγ, which controls constraint release, has the main
influence on the slope of the storage modulus in this region. We would therefore
suggest that a more accurate treatment of constraint release would help resolve these
discrepancies.
At intermediate and high frequencies the loss modulus tends to be underestimated. We
connect this feature to the crude description of contour-length fluctuations we imple-
mented.
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Figure 2.4: Molecular weight distribution and linear viscoelastic moduli of PS275
(a,b) and PS330 (c,d). Plain lines are the model’s output, while the dots are the exper-
imental data.

2.6 Linear approximation of the theory

Despite the relative simplicity of our theory, it remains non-linear due to the time
dependence of the rate of constraint releaseβ . This non-linearity is not a problemper
sebut having to rely on a non-linear theory to describe linear properties of a system
prevents us from building a theory for the non-linear regime on top of the previous
one. In the present section we propose a simple linear approximation of our theory
that preserves its general mathematical structure.

The non-linearity of our theory comes from the time-dependent relaxation induced
by constraint release. Therefore, we propose to approximate constraint release through
a superposition of few linear modes. Let us callQCR(t) or constraint release kernel the
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second factor of the right-hand-side of Eq. (2.14). This factor represents the effects of

constraint release onPf (i)
0 (t,s):

QCR(t) =

(
N

∑
i=1

φ (i)

2

∫ 1

−1
Pf (i)

0 (t,s) ds

)γ

. (2.15)

Let us assume that the constraint release kernelQCR(t) can be approximated by a finite
sum of decreasing time-exponentials:

QCR(t)≈
NCR

∑
j=0

w j exp(−t/τ j) , (2.16)

wherew j andτ j are adjustable parameters. For a given ofN, we computew j andτ j

using a minimisation procedure for the the quadratic error between the exact constraint

release kernel (2.15) and its approximation (2.16). We can now definePf (i, j)
γ (t,s) as

the solution of the following linear differential problem:

∂Pf (i, j)
γ

∂ t
=

∂
∂s

(
α f (i)

d (s)
∂
∂s

Pf (i, j)
γ

)
− 1

τ j
Pf (i, j)

γ , (2.17)

Pf (i, j)
γ (t,−1) = 0 ,

Pf (i, j)
γ (t,1) = 0 for t > 0 ,

Pf (i, j)
γ (0,s) = 1 for −1 < s< 1 .

As for Eq. (2.11), the analytical solution of Eq. (2.17) can be expressed as a function

of Pf (i)
0 :

Pf (i, j)
γ (t,s) = Pf (i)

0 (t,s)exp(−t/τ j) . (2.18)

Making use of Eq. (2.16), one can verify that the following expression for the relax-
ation modulus correctly approximates Eq. (2.13) of the original theory:

G(t) = G0
N

N

∑
i=0

(
φ (i)

2

∫ 1

−1

(
NCR

∑
j=1

Pf (i, j)
γ (t,s)

)
ds

)
. (2.19)

In the previous expression, the sub-expression contained within the innermost paren-

thesis actually is an approximation ofPf (i)
γ (t,s). The quality of this linear approxima-

tion depends only on the quality of the approximation of the constraint release kernel
(2.15) by a sum of decreasing exponentials. In Fig. (2.5) we show for sample PS2
that, with seven modes, the linear approximation is almost indistinguishable from the
original model.
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Figure 2.5: Comparison between the viscoelastic moduli of the full model (-) and its
linear approximation(-.). Seven modes were used to approximate the constraint release
kernel of the full model.

2.7 Conclusions

We have presented a simple tube theory for linear entangled systems. The specificity
of this theory is that, for a monodisperse system, a single partial differential equation
is used to compute the tube survival probability under reptation, contour-length fluc-
tuations and thermal constraint release. Reptation and contour-length fluctuations are
modelled simultaneously by position-dependent diffusion along the primitive path.
Thermal constraint release is introduced through a time dependent relaxation term.
The intensity of the thermal constraint release is controlled by reptation and contour-
length fluctuations. In a polydisperse environment, we directly compute the tube
survival probability under the influence of all masses with a set of coupled partial
differential equations. Additionally, we proposed a semi-analytical method for the nu-
merical solution of our model. This method reduces the algorithmic complexity from
quadratic to linear in terms of the number of masses, thus making the computational
cost negligible even for a broad molecular weight distribution.
Although some discrepancies remain, we have shown the good predictive properties
of our theory on a wide range of molten polystyrene samples.
Finally, we have proposed a linear approximation of our theory, that enables us to
address the linear viscoelastic properties of entangled linear polymers with a linear
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theory. As shown in the next chapter, this approximation is suited as a starting point
for building constitutive equations for the non-linear regime.



Chapter 3

A tube-based constitutive
equation for polydisperse
entangled linear polymers

3.1 Introduction

Following the introduction on the reptation picture by de Gennes [11], Doi and Ed-
wards [12] proposed a first tube-based theory to explain the linear rheology of linear
entangled polymers. Variations of the tube model have reached a very high level of
maturity and are capable of a quantitative description of the linear viscoelastic proper-
ties of linear entangled polymers [15; 16; 17]. The key of these successes essentially
is an accurate description of the reptation dynamics (if present), the fluctuations of
the length of the tube and thermal constraint release phenomena, which is a closure
to the tube mean field approach. Accounting for coupling between those effects is of
critical importance. For linear polymers, the distinction made between reptation and
contour-length fluctuations is somehow arbitrary as they represent different modes of
the dynamics of a one-dimensional Rouse chain escaping a tube. This distinction is
not found in stochastic tube theories where the full chain is modelled [24; 30; 16].
Contour-length fluctuations and reptation have been accounted for by using a modi-
fied diffusion process along the primitive path. In those theories, one either considers a
time dependent [31] or a position dependent [32; 23; 35] diffusivity along the primitive
path. Thermal constraint release is today well understood through dynamic dilution
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[22] and Rouse motion of the tube. The complex interplay between those phenomena
has been thoroughly investigated [25; 29]. Double reptation [4; 5] provides a sim-
ple and efficient method to account for constraint release. It essentially provides a
reasonable approximation to Rouse tube motion, especially at early times [16]. The
essence of Double reptation has actually been recovered within the implementation of
constraint release found in a stochastic full chain reptation model developed by Hua
and Schieber [24].

The development of theories for the non-linear response of entangled polymers
is much more limited and even in the case of monodisperse linear chains, additional
phenomena are still proposed as being important in the description of the flow proper-
ties of some systems [36]. The Doi-Edwards (D-E) model [12] was a first attempt to
build a tube-based constitutive equation. Despite the many assumptions found within
the D-E model, mostly for mathematical convenience, the predictions of the model
are in very good agreement with experimental data for step deformations. For other
types of flow the D-E model fails even in the prediction of qualitative features of the
non-linear rheology of entangled systems. Among the failures of the D-E model, the
most noticeable is the prediction of a shear banding instability in weakly non-linear
flows which has never been observed in experiments. This instability is a direct conse-
quence of the non-monotonic curve one can observe when the steady state shear stress
is plotted versus the shear rate. Because reptation is the only relaxation mechanism of
the D-E model, all tube segments become fully aligned in the shear direction when the
shear ratėγ is larger than the inverse reptation time1/τd, which causes the decrease
of the shear stress. The excessive shear thinning of the D-E model prevents it from
being used in complex flow simulations without considering an additional Newtonian
contribution to the viscosity.

In a first attempt to improve the theory, Marrucci and Grizzuti [37] proposed a con-
stitutive model known as the Doi-Edwards-Marrucci-Grizzuti (DEMG) model which,
unlike the original D-E theory, did not assume the instantaneous retraction of the chain
inside the tube. This incorporation of tube stretching effects at a timescaleτr , much
smaller than the timescaleτd of reptation, led to improved predictions of the transient
response of the model. In particular, it showed overshoots in both shear stress and
first normal stress difference upon startup of shear. Although the inclusion of stretch
effects might smear out the shear instability of the D-E model for moderately entan-
gled systems, this approach will inevitably fail as one increases the molecular mass
M of the entangled species. Indeed, as the time scale of the one dimensional Rouse
relaxation associated with stretch scales likeM2, an increase inM can renderτr arbi-
trarily small with respect toτd which scales likeM3. For highly entangled species, the
approximation of instantaneous chain retraction is therefore valid and cannot be held
responsible for the shear banding instability of the D-E model.
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Finally, in 1996, Marrucci [38] successfully pointed out constraint release as the
key to overcome the problem. Although constraint release may be considered to play
only a mild role in describing the linear viscoelastic behaviour of a monodisperse ma-
terial, it has a much greater influence in the non-linear regime where constraint release
events may not only be triggered by reptation but also by chain retraction. For flows
where the deformation ratėγ lies between1/τd and1/τr the rate of constraint release
would then be proportional tȯγ, which is the rate of retraction necessary to maintain
the chain at its equilibrium length. This type of constraint release is called Convective
Constraint Release (CCR) as, from the point of view of the chain, constraints are con-
vected by the flow along the tube. The first attempts by Ianniruberto and co-workers
[39] and Marrucci et al. [9] to incorporate CCR into a constitutive equation were fo-
cusing on flow regimes wherėγ ≤ 1/τr and assumed complete chain retraction. As the
rate of CCR has then to be computed from the relative alignment of the microstructure
with the flow field, it is difficult to obtain a general CCR formulation that does not rely
on a switch function to turn CCR off when it would yield unrealistic predictions. The
thermodynamical validity of such formulations of CCR for differential constitutive
equations has been discussed by Leygue et al. [40].

More successful constitutive equations account explicitly for chain stretch and
compute the rate of CCR directly from the rate of chain retraction. Using a very de-
tailed integral model, Mead et al. [26] showed how CCR, combined with tube length
fluctuations and stretch effects, could prevent the excessive shear thinning and solve
other problems of the D-E model. Their approach however relied on a separate rep-
resentation of the average stretch and orientation of the tube and still needed a switch
function to balance CCR between the relaxation of stretch and orientation.

Recently, Marrucci and Ianniruberto [41] proposed a promising single segment
model that incorporates both chain stretch and CCR in a coupled representation. This
new model is simple enough to be easily used for complex flow simulations [42] but
yet retains the necessary physics.

The construction of microstructural constitutive models for entangled systems is
a process in which many mathematical approximations have to be made in order to
obtain a closed set of partial differential equations. From this angle, stochastic models
offer an attractive approach, where the mathematical complexity of the approxima-
tions is partially replaced by the numerical complexity and cost of stochastic differ-
ential equations. Based on microstructural mechanical models, successful full chain
stochastic reptation models have been proposed by Hua et al. [24] and Masubuchi et
al. [30]. These models are very useful to understand the influence of some physical
effects but their numerical complexity still prevents them from being used in complex
flow simulations.
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In the present text, we present the CRAFT model; a new tube-based constitutive
equation for entangled linear polymers. We first recall a simple linear theory for the
prediction of the linear viscoelastic properties of polydisperse systems [35]. Then, we
extend this theory to a full constitutive equation for entangled linear polymers. This
constitutive model incorporates, in a full chain approach, the major molecular mech-
anisms thought to be important to describe the flow of entangled polymers: reptation,
contour-length fluctuations, thermal and convective constraint release, chain stretch
and finite extensibility of the polymeric chains. The central point of this new model is
that thermal and convective constraint release are modeled in a unified fashion where
the latter appears as a nonlinear addition to the former. Additionally, the lineariza-
tion of our model is equivalent to the original linear theory. Most of the parameters
of the constitutive model can therefore be identified and understood from the linear
viscoelastic response. For polydisperse systems, constraint release actually provides
the mixing rule in both the linear and nonlinear regimes, with no additional parameter.
The acronym CRAFT stands for Constraint Release on Average Full Tensorial chain,
the main feature of our model is its implementation of constraint release, on a tensorial
representation of the averaged primitive chains. Finally, we analyse the predictions of
the CRAFT constitutive equation and compare them with recently published experi-
mental data for concentrated polystyrene solutions in various rheometrical flows.

3.2 A linear model for linear entangled polymers

Most of today’s quantitative theories [17; 14; 13; 15; 16; 21] that predict the relax-
ation modulus as a function of the molecular weight distribution and a few material
parameters are mathematically non-linear. This feature does not allow for their direct
extension to a full constitutive equation for predicting the non-linear rheology. Starting
from a mathematically linear model for predicting the linear viscoelasticity of linear
polymers [35], we build the CRAFT constitutive equation as a non-linear extension.
As non-linear relaxation phenomena are incorporated into the constitutive equation
we always require that they do not change its linear response. The model is therefore
able to describe both the linear and non-linear rheology of entangled systems. In this
section, we briefly recall the simple linear model in the polydisperse case.

In a polydisperse mixture of entangled linear polymers, let us consider the chains
of a given massM(i) among theN masses. Lets be a curvilinear coordinate along
the primitive path. For simplicity, all lengths are made non-dimensional with respect
to half the equilibrium length of the primitive path. Therefore we have−1≤ s≤ 1.

We then definePf (i)
γ (t,s) as the probability for a chain segment of coordinates of

being in a tube segment that is older thant. This tube survival probability decreases
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in time under the combined effects of reptation, contour-length fluctuations and ther-
mal constraint release. Although the spectrum of relaxation times due to reptation
and contour-length fluctuations is relatively narrow for a given mass, a polydisperse

environment will yield a broad spectrum of relaxation times forPf (i)
γ (t,s). The tube

survival probability is therefore approximated by a sum of modes corresponding to the
dominant relaxation times induced by thermal constraint release:

Pf (i)
γ (t,s)≈

NCR

∑
j=1

w jP
f (i, j)

γ (t,s) , (3.1)

whereNCR is representative of the number of characteristic relaxation timesτ j induced
by thermal constraint release andw j represent the relative weights of those times. This
description in terms of modes of constraint release implies that, for a fixed(i), the

contribution of reptation and contour-length fluctuations to the dynamics ofPf (i, j)
γ (t,s)

is identical for all( j).

Let us now focus on the dynamics ofPf (i, j)
γ (t,s). Following [23], reptation and

fluctuations are modelled together by a diffusion operator with a variable diffusivity
along the coordinates. Additionally, thermal constraint release is introduced through a
linear relaxation term with a characteristic timeτ j . The resulting differential problem

for Pf (i, j)
γ (t,s) reads:

∂Pf (i, j)
γ

∂ t
=

∂
∂s

(
α f (i)

d (s)
∂
∂s

Pf (i, j)
γ

)
− 1

τ j
Pf (i, j)

γ , (3.2)

Pf (i, j)
γ (t,−1) = 0 ,

Pf (i, j)
γ (t,1) = 0 for t > 0 ,

Pf (i, j)
γ (0,s) = 1 for −1 < s< 1 .

Contour-length fluctuations are assumed to modify the diffusion coefficientα f (i)
d (s)

up to a depth of order
√

M(i)/Me, whereMe is the entanglement molecular weight.

The expression forα f (i)
d (s) reads:

α f (i)
d (s) =

4

Kdπ2M(i)3

K f
2Me

M(i) (1−s)2 if s>

(
1−K f

√
Me

M(i)

)
(3.3)

4

Kdπ2M(i)3

K f
2Me

M(i) (1−s)2 if s<

(
K f

√
Me

M(i) −1

)
(3.4)

4

Kdπ2M(i)3 otherwise, (3.5)
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whereKd is a material parameter. The adjustable parameterK f is close to unity and
controls the depth of the contour-length fluctuations within the model.

The relaxation timesτ j , induced by thermal constraint release, and their associated
weightsw j are such that they yield a constraint release kernel as close as possible to
the constraint release kernel that double reptation would induce:

NCR

∑
j=0

w j exp(−t/τ j)≈
(

N

∑
i=1

φ (i)

2

∫ 1

−1
Pf (i)

0 (t,s) ds

)γ

. (3.6)

The parameterγ is a mixing exponent of order unity and the functionsPf (i)
0 (t,s) are

the tube survival probabilities with thermal constraint release neglected. They are
computed from the following differential problem:

∂
∂ t

Pf (i)
0 =

∂
∂s

(
α f (i)

d (s)
∂
∂s

Pf (i)
0

)
, (3.7)

Pf (i)
0 (t,−1) = 0 ,

Pf (i)
0 (t,1) = 0 for t > 0 ,

Pf (i)
0 (0,s) = 1 for −1 < s< 1 .

The relaxation modulus is proportional to the average tube survival probability
over all masses:

G(t) = G0
N

N

∑
i=1

NCR

∑
j=1

φ (i)w j
1
2

∫ 1

−1
Pf (i, j)

γ (t,s)ds , (3.8)

whereG0
N is the plateau modulus, andφ (i) is the volume fraction of massM(i). In order

to make quantitative predictions of the linear viscoelastic moduli at high frequencies,
one should also account for the Rouse relaxation modes of the chains. The Rouse
relaxation timeτr of an unentangled chain is given by:

τr = KrM
2 , (3.9)

whereKr is a linear material parameter. Following van Ruymbeke et al. [15], the
Rouse spectrumGr(t) for that entangled chain writes:

Gr(t) = G0
N

(
∞

∑
p=Z+1

1
Z

exp

(
− p2

τr

)
+

1
3

Z

∑
p=1

1
Z

exp

(
− p2

τr

))
. (3.10)

The integerZ is defined as the closest integer to the ratioM/Me. The Rouse modulus
of each massM(i) is to be superposed to the reptation relaxation modulus using a linear
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mixing rule.
AlthoughKd, Kr , M andMe are linked through the underlying segmental dynamics and
should not be specified independently, they are considered as independent parameters
in this chapter.

The set of equations presented in this section is closed and forms a mathematically
linear model that can predict quantitatively the linear viscoelastic response of entan-
gled linear polymers. In the following sections, we will extend this model to a full
constitutive equations for non-linear flow regimes.

3.3 Construction of the CRAFT constitutive equation

For the sake of simplicity we will present the construction of the CRAFT model for the
monodisperse case only and for only one characteristic time of thermal constraint re-
lease. This simplification allows us to discard the(i, j) superscripts we had to consider
in the previous section. The polydisperse case with a full thermal constraint release
spectrum will be presented as a natural extension in a latter section.

The variables of the CRAFT model are the components of a second order confor-
mation tensorc(t,s) defined along the coordinatesof the primitive path. The dynamics
of this tensor are controlled by a PDE which accounts for the following phenomena:

• affine deformation of the micro-structure,

• reptation of the primitive chain,

• contour-length fluctuations,

• relaxation of tube stretch,

• thermal and convective constraint release,

• finite extensibility of the polymeric chain.

In the next sections, we will first define some additional notations and then consider
the contribution of each phenomenon to the evolution ofc(t,s).
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3.3.1 Variables and notations

Let us consider a single polymeric chain, trapped in a fixed tube, as shown in Fig. 3.1.
Both the primitive chain and the tube exist in real space (3-D), but can be referenced
through a single parametric coordinates. For simplicity, all lengths in real space are
made non-dimensional with respect to half of the equilibrium length of the primitive
path. At equilibrium, the non-dimensional length of the primitive path is therefore2.
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r(x(si))

positionsi

x = 0

arbitrary origin x(si)

Figure 3.1: Illustration of the notations used to build the CRAFT model.

Let x(t,s) be the position of the primitive chain along the tube, wheres (−1≤
s≤ 1) is a Lagrangian coordinate along the chain. At equilibrium,s is a curvilinear
coordinate which implies that(x−s) is a constant. The position of the originx = 0 is
actually arbitrary. The position of the tube in real space is defined by the vectorr(x),
and by definition ofx andr we have:

∥∥∥∥
∂ r
∂x

∥∥∥∥ = 1 . (3.11)

For a system composed of many chains, let us define the second-order conformation
tensorc(t,s) as:

c(t,s) = 3

〈
∂ r
∂s

∂ r
∂s

〉
, (3.12)
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where〈·〉 is the statistical ensemble average over all chains. This definition ofc yields:

trc = 3

〈(
∂x
∂s

)2
〉

, (3.13)

which is the average local stretch along the primitive path. We now have to propose an
evolution equation for the set of tensorsc(t,s) as well as a way to compute the stress
tensor.

3.3.2 Affine deformation

We decide to couple the dynamicsc(t,s) to the velocity field with the assumption of
affine deformation of the micro-structure. The induced strain measure is therefore the
classical affine strain measure. At the microstructural level, this yields the following
evolution equation for the tangent vector∂ r

∂s:

D
Dt

∂ r
∂s

= κ · ∂ r
∂s

, (3.14)

whereκ is the velocity gradient. Through direct substitution of Eq. (3.14) in Eq.
(3.12), we find the following evolution equation forc(t,s):

Dc
Dt

(t,s) = κ ·c+c·κT , (3.15)

or
5
c (t,s) = 0 . (3.16)

When all relaxation phenomena can be neglected (e.g. in a step deformation) the
evolution ofc(t,s) is governed by the upper convected time derivative andc(t,s) is
therefore equal to the Finger strain tensor.

3.3.3 Reptation and fluctuations dynamics

To incorporate reptation within the model, we postulate that the dissipative dynamics
of reptation is governed by the same operator that governs the relaxation ofPf

γ (t,s):

∂
∂s

(
αd(s)

∂ ·
∂s

)
. (3.17)

Through this differential operator, we explicitly take into account the connectivity of
the chain and the physical process of reptation. Hence, we build a full chain model
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rather than a single segment model. As reptation is a diffusion process in real space
which we solve in parametric spaces, the onset of chain stretch should be accounted
for in the change of variable fromx to s. To ensure a constant rate of diffusion in real
space, Graham et al. [23] modify the diffusion operator as the stretch increases. We
do agree with the physics and the mathematics behind this proposal, but we choose
not to incorporate it in our model. The reason is twofold. In the first place, Marrucci
has showed [38] that Convective Constraint Release (CCR) becomes the dominant
relaxation mechanism as soon as the rate of deformation is greater than the inverse
reptation time. As the stretch relaxation time is smaller than the reptation time, this
occurs even before the onset on chain stretch. The renormalisation of the diffusion
operator due to chain stretch will therefore be significant for flow regimes where rep-
tation has already been superseded by CCR. Second, we believe that even before the
onset of chain stretch, anisotropy effects within the entangled network are likely to
appear and modify the diffusion process in a more significant way.

At the chain ends, we assume that the primitive chain is always fully relaxed in

both stretch and orientation. Fors= ±1, the vectors
∂ r
∂s

are therefore uniformly dis-

tributed on the unit sphere, which yields:

c(t,±1) = δ . (3.18)

The validity of this assumption can be questioned as it implies that no matter the
strength of the flow, the chain ends will always be fully relaxed. Ignoring anisotropy
effects, we can nevertheless assume that this assumption is valid for flow rates up to
the inverse of the segmental timeτe.

3.3.4 Chain stretch dynamics

In this section, we address the problem of describing the relaxation of chain stretch
and its coupling with orientation.

Let us model the retraction of the chain as due to a one-dimensional Rouse motion
of the chain inside the tube. The projection along the primitive path of the microscopic
force balance at positionsyields the following evolution equation forx(t,s):

∂x
∂ t

= αr
∂ 2x
∂s2 , (3.19)

∂
∂s

x(t,±1) = 1 , (3.20)

wheres is the Lagrangian coordinate along the chain,x(t,s) is the curvilinear position
for the chain along the tube andαr is a characteristic diffusion constant, scaling like
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the inverse of the square of the molecular mass. Eq. (3.20) is a boundary condition
expressing that chain ends are always fully relaxed in stretch. The steady state solution
of (3.19) is linear ins and the equilibrium length of the chain is2.

Under the assumption that the tube is a fixed object, i.e. reptation phenomena are
slow compared to the relaxation of stretch along the primitive path, we would like to
find the contribution of the chain dynamics (3.19) to the evolution ofc. Considering
the definition ofc, let us first try to obtain a tractable expression for the following
quantity:

∂
∂ t

(
∂ r(x(t,s))

∂s
∂ r(x(t,s))

∂s

)
. (3.21)

From (3.19), applying chain differentiation we can approximate (3.21) as:

∂
∂ t

(
∂ r
∂s

∂ r
∂s

)
≈ αr

2
∂
∂s

(
∂x
∂s

)2 ∂
∂s

(
∂ r
∂x

∂ r
∂x

)
+αr

(
∂ r
∂x

∂ r
∂x

)
∂ 2

∂s2

(
∂x
∂s

)2

. (3.22)

The only approximation made to obtain the previous expression is:

∂ 2

∂s2

(
∂x
∂s

)2

= 2
∂x
∂s

∂ 2

∂s2

∂x
∂s

+2

(
∂ 2x
∂s2

)2

≈ 2
∂x
∂s

∂ 2

∂s2

∂x
∂s

.

The purpose of this approximation is to obtain a closed form for the evolution equation

of

(
∂ r
∂s

∂ r
∂s

)
. The term which is neglected is the square of a curvature term and

the approximation can therefore be interpreted as a mild curvature assumption. The
validity of this approximation has been successfully tested for a single chain relaxing
in a tube after a step strain in shear or extension [43].

To go from the relaxation of a single chain to the relaxation ofc, we need to aver-
age (3.22) over the ensemble of chains. In this process, we approximate the average
of products/ratios by the products/ratios of the averaged quantities. These closure ap-
proximations are required in order to obtain a closed set of equations for the averaged
stretch dynamics. The resulting evolution equation forc is the following:

∂c
∂ t

=
αr

2
∂ trc
∂s

∂
∂s

c
trc

+αr
c

trc
∂ 2trc
∂s2 . (3.23)

As taking the trace of the previous expression makes the first term of the right-hand
side disappear, we see that the second term alone governs the relaxation of stretch
along the chain. More specifically, stretch relaxes through a diffusion process with a
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time scale of order
1
αr

. This term also couples the relaxation of the diagonal and non-

diagonal components ofc in such a way that it does not modify the purely orientational

part:
c

trc
. Indeed, if

∂c
∂ t

= αr
c

trc
∂ 2trc
∂s2 then

∂
∂ t

( c
trc

)
= 0.

The first term on the right-hand side of (3.23) influences the local orientation only.
It can be interpreted as a transport term along thescoordinate, wherein the velocity is
proportional to the stretch gradient and the transported quantity is purely orientational:
c

trc
. As chain retraction occurs, it slows down the overall relaxation as the orientation

of the chain is transfered from the inner segments to the outer, and more relaxed,
segments.

In view of the many approximations needed to obtain Eq. (3.23), one might rely
on the bracket formalism of non-equilibrium thermodynamics [44] to obtain an alter-
native phenomenological expression for the evolution ofc induced by the chain stretch
dynamics. The form of Eq. (3.23) provides however a guide to build the appropriate
dissipation bracket. A simple expression for the dissipation bracket [45] yields the
following expression:

∂c
∂ t

= αrc
∂
∂s

1
trc

∂ trc
∂s

+αr
c

trc
∂ 2trc
∂s2 . (3.24)

This expression is very close to Eq. (3.23) and is compatible with the bracket formal-
ism of non-equilibrium thermodynamics. Future work should focus on its evaluation
and its comparison with Eq. (3.23) in different flow regimes.

3.3.5 Constraint Release

Generalising our approach of thermal constraint release from section (3.2), we assume
it is possible to model both thermal and convective constraint release phenomena as a
local relaxation process where the rate of relaxation due to CCR is computed from the
dynamics of stretch relaxation. Furthermore, we assume that thermal and convective
constraint release are independent allowing us to sum their rates.

The procedure to compute the rate of thermal constraint release has been detailed
in section 3.2. For the sake of clarity, we will assume here that thermal constraint
release can be described with a single relaxation timeτcr. The remaining issue is
therefore to give a valid expression of the rate of constraint releasefccr under the
following constraints:
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• As the constitutive equation must be applicable in any type of flow and in any
coordinate system, only the invariants ofc can be used for expressingfccr.

• The velocity gradient cannot be used explicitly for computingfccr without spe-
cial attention. From a thermodynamical point of view, this would bring an addi-
tional coupling between the velocity and the variables describing the microstruc-
ture, which has to be accounted for in the stress tensor [44]. Furthermore, such
a coupling might lead to a negative rate of entropy production in some flows and
a switch function is therefore needed to prevent this [40].

• In the linear regime, the expression forfccr must vanish.

• In the non-linear regime,fccr should account for CCR. Its value has then to
governed by stretch relaxation.

A first possibility to compute the rate of CCR would be to follow Mead et al. [26]
and simply take the rate of convection of mesh of entanglements, relative to the rate
at which the chain is stretched. Neglecting some pre-factors of order unity, this would
yield the following expression:

fccr(t) =−

∫ 1

−1
αr

∂ 2

∂s2 trc(t,s)ds
∫ 1

−1
trc(t,s)ds

. (3.25)

Although this expression is quite appealing, it can lead to negative rates of CCR in
some reversing flows such as Large Amplitude Oscillatory Shear (LAOS) flows. For
well entangled systems, the reptation timeτd and stretch relaxation timeτr can be
well separated. If the characteristic time of the LAOS flowν−1 is such thatτr <<
ν−1 << τd, the microstructure can be fully oriented but not stretched at all when the
maximum strain is reached. When the flow starts to reverse, the flow kinematics will
tend to compress the chains below their equilibrium length. The stretch relaxation
processes will therefore tend to increase the length of the chains to preserve their
length, leading to a negative value forfccr(t). Therefore we propose the following
more general expression for the rate of CCR:

fccr(t) =−

∫ 1

−1

D
Dt

a(c(t,s))
∣∣∣∣
stretch

ds

∫ 1

−1
a(c(t,s))ds

, (3.26)

wherea(c(s)) is the contribution from the chain segments with positions to the local
free energy density. The notationD·Dt

∣∣
stretch represents the Lagrangian variation of a
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quantity due to the relaxation of stretch. Under the hypothesis that sub-chains are
Gaussian,a(c) takes the form [44]:

a(c) = G0
N (tr(c)− lndet(c)) , (3.27)

which is the free energy one would use ifc was describing Hookean dumbbells. Finite
extensibility issues have also been neglected in the definition ofa(c). In the next
section, when finite extensibility will be taken into account, we will use the free energy
corresponding to FENE-P dumbbells. In appendix 3.10, we show that Eq. (3.26)
always yields a positive rate of constraint release. Except for reversing flows where
the flow might tend to compress the polymeric coils, the first term of Eq. (3.27) is
always dominant and the rate of CCR (3.26) actually reduces to Eq. (3.25).

Finally we want to account for chain stretch effects, which locally reduce the rate
of relaxation through CCR. Indeed, if one assumes that the tube persistence length
is fixed, a stretched portion of the chain will have more constraint release sites than
under equilibrium condition. Consequently, we define the local rate of relaxation due
to constraint releasef loc

cr as the sum of the rates of thermal and convective constraint
release divided by the local stretch ratio:

f loc
cr (t,s) =

(
1

τcr
+ fccr(t)

)
3

trc(t,s)
. (3.28)

A more detailed discussion of this modification of the rate of CCR can be found in
[23].

3.3.6 The CRAFT model for monodisperse systems

In this section, we propose a model containing all the elements we presented so far
plus finite extensibility effects. Additionally, we provide an expression for the stress
tensorτ p. Based on the assumption that one can simply add all the terms we proposed
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for the time evolution ofc, we propose the following constitutive equation:

5
c (t,s) =

∂
∂s

(
α f

d (s)
∂
∂s

( f c)
)

+αr
c

trc
∂ 2

∂s2 ( f trc) (3.29)

+
αr

2
∂ ( f trc)

∂s
∂
∂s

(
c

trc
)

−
(

1
τcr

+ fccr

)
3

trc
( f c−δ )

with,

c(t,±1) = δ (3.30)

fccr = −

∫ 1

−1

Da(c)
Dt

∣∣∣∣
stretch

ds

∫ 1

−1
a(c) ds

, (3.31)

f (c) =
b−3

b− trc
(3.32)

a(c) =
(

(b−3) ln(1− trc
b

)− lndet(c)
)

(3.33)

τ p = G0
N

1
2

∫ 1

−1
( f c−δ )ds . (3.34)

In the previous set of equations,α f
d (s) is defined from Eq. (3.3), whileαr is defined

as:

αr =
4

π2KrM2 , (3.35)

where M is the molar mass of the polymeric chains. For both the linear and non-linear
rheology the model has seven parameters:Kd, Kr , K f , Me, G0

N, b andγ. Out of those
seven, onlyb actually is a truly non-linear parameter.

The parameterb is called the finite extensibility parameter and is such thattrc< b.
Defining Leq as the equilibrium length of the primitive chain andLmax its maximum
length, we have:

b = 3
L2

max

L2
eq

= 3Nk , (3.36)

whereNk is the number of Kuhn steps between entanglements at equilibrium.

The parameterKr is the scaling parameter for the Rouse timeτr , which controls
both the high frequency regime of the linear viscoelastic moduli and the stretch re-
laxation dynamics. Consequently, this parameter can be identified either on the linear
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or on the non-linear response of the system. In this chapter we considerKr as inde-
pendent fromKd andMe, and we will preferably identify its value on some non-linear
experiment.

3.4 Computing numerical predictions

The CRAFT model has the form of a set of non-linear coupled PDEs along thes
coordinate. The equations are coupled through the trace ofc which appears in the
stretch relaxation and constraint release terms, but also through the determinant ofc
which is found in the expression forfccr.

Before trying to solve these equations numerically, one can use the symmetry of
the problem to reduce thesdomain to the interval]0, 1[. Zero flux boundary conditions
are then imposed ats= 0. To solve the resulting PDEs on the reduced domain, we
chose to discretize them along thes coordinate using a finite difference scheme. The
discretization has to be fine enough to capture the boundary layer that appears at the
chain ends for high deformation rates. Integration in time of the discretized system
is then performed using an adaptive Runge-Kutta or Gear ODE solver. This last step
should be performed with care, as the simulation of high molecular masses or very
polydisperse systems is very likely to induce many different time-scales in the ODE,
that may differ by orders of magnitude. The use of an ODE solver for stiff problems
is therefore highly recommended, especially at high deformation rates.

In its discretized form, the model can be interpreted as a coupled multi-segment
constitutive equation where the coupling between the modes is naturally imposed
through the discretized differential operators along the primitive path.

3.5 Predictions in simple shear flow

In this section, we present the steady state and transient responses of the CRAFT
model for simple shear flows. For all the figures, we set the value ofγ to 1.15 and we
defineMe asMe = 3Mτr

τd
.

In Fig. 3.2, we report the steady shear stress of the CRAFT model as a function
of the Deborah numberDe = γ̇τeff, whereγ̇ is the shear rate andτeff = η0

G0
N

. Finite

extensibility has been neglected asb→ ∞. We see that when the ratioτd/τr is small
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enough, the curve is monotonic, but as this ratio gets bigger a shallow maximum
appears in the curve. This feature is however smeared out as soon as polydispersity
comes into play.
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Figure 3.2: Steady state shear stress as a function of the Deborah number. The four
curves correspond to differentτd/τr ratios (−: ratio= 10, −−: ratio= 30, −·: ratio=
100, · · · : ratio= 300).

Fig. 3.3 shows the transient shear viscosity for various shear rates forτd/τr = 100
and no finite exensibility effects. We observe that as the shear rate increases, an over-
shoot appears in the viscosity curve due to the transient stretching of the chain. At
high shear rates the model also predicts a slight undershoot following the undershoot.
In a following section we will see that these over- and under-shoots are observed ex-
perimentally and can be predicted quantitatively.

In Fig.3.4, we show the effects of finite extensibility on the predictions of the
steady state shear stress. The parameters are identical to those used for Fig. 3.2 except
for the finite extensibility parameter which we set tob = 100. Accounting for finite
extensibility only changes the results at high shear rates, where it leads to reduced
levels of stress.

In Fig. 3.5, we show the transient shear viscosity for different Deborah numbers.
The ratioτd/τr is set to30 while the finite extensibility parameter is set to100. Ac-
counting for finite extensibility can eventually lead, in the transient regime of very fast
flows, to stress levels corresponding, at first sight, to more than affine deformations.
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Figure 3.3: Transient shear viscosity for four different Deborah numbers. From the
top, the respective Deborah numbers are0.01, 1, 10 and100. Finite extensibility has
been neglected andτd/τr = 30.

This behaviour can nevertheless be expected as we are dealing with non-Gaussian
chains. .

3.6 Predictions in uniaxial extension

As seen in recent publications [46; 7; 8; 36], there is a growing interest in measuring,
predicting and understanding extensional flows of entangled systems. Fig. 3.6 shows
the steady state Trouton ratio as predicted by the CRAFT model for different values
of the finite extensibility parameterb and a ratioτd/τr of 100. As the extension rate
increases we clearly see four different regimes:

1. The first regime corresponds to slow flows, where the material can relax suffi-
ciently fast in order to maintain its equilibrium structure. Its response is there-
fore linear and the Trouton ratio is constant. As the flow rate increases, the
microstructure begins to align in the flow direction. At the onset of this phe-
nomenon, the additional stress, only due to orientation, actually grows faster
that the flow rate. This is why one can observe a shallow maximum of the
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Figure 3.4: Steady state shear stress as a function of a Deborah number. The four
curves correspond to differentτd/τr ratios (−: ratio= 10, −−: ratio= 30, −·: ratio=
100, · · · : ratio= 300). The parameterb is set tob = 100.

Trouton ratio wheṅετd is of order unity.

2. For increasing flow rates, reptation cannot prevent the microstructure from reach-
ing a full orientation, but stretch relaxation is still fast enough to maintain the
chains unstretched. As the stress saturates, we observe a decrease of the Trouton
ratio. In this regime, the slope of the curve can reach a value of−1, if the rep-
tation and stretch relaxation times are well separated. Even for a monodisperse
system, the transition to this regime can actually be quite slow as our model
exhibits the full spectrum of reptation coupled with constraint release.

3. When the flow is fast enough to stretch the chain, the extensional stress grows
again beyond the value corresponding to full orientation of the microstructure in
the flow direction. The stress growth is stopped when the chain reaches its full
extension, and that is why this growth is not seen at all if the finite extensibility
parameterb is small enough.

4. In the fourth regime, the Trouton ratio is a decreasing function of the extension
rate. In this regime constraint release is the dominant mechanism and, as the
chain is fully stretched, it has to retract as fast as it is stretched by the flow in
order to remain below its maximum length. The induced rates of CCR are there-
fore of the order of the extension rate, which explains the decreasing Trouton
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Figure 3.5: Transient shear viscosity for four different Deborah numbers. From the
top, the respective Deborah numbers are0.01, 1, 10 and100. The finite extensibility
parameterb is set to100andτd/τr = 30.

ratio. The exact shape of the curve actually depends on the non-linear expres-
sions involved in the implementation of finite extensibility.

In Fig. 3.6, we see that for low values of the parameterb, the third regime is suppressed
and the extensional viscosity is a monotonously decreasing function. Indeed, as the
extensibility of the chains is very small they are almost instantaneously stretched to
their maximum length once the flow rate is high enough. This instantaneous transi-
tion from unstretched to stretched corresponds to the instantaneous transition from the
second to the fourth regime. .

3.7 The CRAFT constitutive equation for polydisperse
systems

So far, we have focused on monodisperse systems, where all molecules have the same
mass. In this section, we present the extension of the CRAFT constitutive equation to
the polydisperse case. Going from the monodisperse to the polydisperse case with the
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Figure 3.6: Steady state Trouton ratio forτd/τr = 30 and different values of the finite
extensibility parameterb. From the top, the respective values ofb are1000, 300, 100,
30and10.

CRAFT model is actually very similar to what we did for linear visco-elasticity: the
key issue is to find a consistent expression for the rate of constraint releasefccr which
couples the relaxation of all masses.

Let us consider a polymeric system withN different molecular massesM(i), each
of them having a volume fractionφ (i). The polydisperse CRAFT constitutive equation
assumes that all masses relax independently except for the constraint release term.
Indeed, as the chains all relax within the same environment, the rate of relaxationfccr

must be the same for all masses and must be computed from the rate of relaxation
of all masses. Furthermore, a polydisperse environment yields a broad spectrum of
relaxation times, and we cannot further assume a single relaxation timeτcr for thermal
constraint release but a spectrum ofNCR characteristic timesτ j . These timesτ j and
their respective weightsw j are computed as described in section 3.2 and ensure the
correct linear viscoelastic limit of the model.

The polydisperse CRAFT constitutive is expressed as a set ofN timesNCR partial
differential equations (one per mass fraction and one per thermal constraint release
mode) which are coupled only through the single term of convective constraint re-
lease. The variables of the model are the set of conformation tensorsc(i)(t,s), which
describes the conformation of all masses along the primitive path. The equations for
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the polydisperse CRAFT model read:

5
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(i, j)
(t,s) =

∂
∂s

(
α f (i)

d (s)
∂
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( f (i, j)c(i, j))
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(3.37)
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∂
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with,

c(i, j)(t,±1) = δ (3.38)

fccr = −
∑
i, j

w jφ (i)
∫ 1

−1

Da(c(i, j))
Dt

∣∣∣∣∣
stretch

ds

∑
i, j

w jφ (i)
∫ 1

−1
a(c(i, j)) ds

, (3.39)

f (c) =
b−3

b− trc
(3.40)

a(c) = G0
N

(
(b−3) ln(1− trc

b
)− lndet(c)

)
(3.41)

τ p = G0
N

N

∑
i=1

NCR

∑
j=1

w jφ (i) 1
2

∫ 1

−1
( f c−δ )ds . (3.42)

In the linear limit, this set of equations actually reduces to the linear model recalled
in section 3.2. In the non-linear regime, the CRAFT constitutive equation provides a
mixing rule where the coupling mechanism gradually switches from thermal to con-
vective constraint release. The definition of the rate of convective constraint release
fccr (3.39) is a natural extension of the monodisperse case that still ensures a positive
instantaneous relaxation time.

3.8 Comparison with experimental data

In two successive publications, Pattamaprom et al. [6] and Ye et al. [7] presented
a complete set of experimental data for mono and bi-disperse entangled polystyrene
solutions. The features of the six solutions, named S1 to S6 are reported in Table
3.1. From the linear viscoelastic moduli of S6 shown in Fig. 3.11, one sees that it
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contains a significant fraction of smaller masses. We will nevertheless assume that S6
is monodisperse and consider S2 to S5 as strictly bidisperse samples.

For all solutions, the authors reported the linear viscoelastic moduli, the steady
shear viscosity and first normal stress difference as well as the steady uniaxial ex-
tensional stresses. For some solutions, transient shear and extensional data were also
reported. As different reference temperatures were used for the experiments presented
in [6] and [7], we shifted the timescales of the extensional stress measurements to have
a reference temperature of 40°C.

This set of data allows us to specifically test the various components of the CRAFT
constitutive equation. In a first step, we evaluate the ability of the CRAFT model to fit
the experimental results for the monodisperse system S1. Then we validate the ability
to predict the response for the other monodisperse system S6 through the two scaling
laws of Eqs. (3.3,3.35). Finally we test the mixing rule in the non-linear regime on the
solutions S2 to S5.

The procedure we used to adjust the parameters of the CRAFT model is the fol-
lowing:

• We adjusted the parametersKd, G0
N andγ in order to quantitatively predict the

low and intermediate frequencies of the viscoelastic moduli of S1. In this pro-
cess, we assumedK f = 1.

• Using the transient shear viscosity data for S1, we adjusted the parameterKr .
Only the data for the highest extension rate was used.

• The finite extensibility parameter, derived on a micro-structural basis, was taken
from [7].

Table 3.2 summarizes the values of the parameters.

Name features
S1 7 % vol. PSMw = 2.9106Dalton, Mw/Mn = 1.09
S6 7 % vol. PSMw = 8.4106Dalton, Mw/Mn = 1.17
S2 80% S1, 20% S6
S3 60% S1, 40% S6
S4 40% S1, 60% S6
S5 20% S1, 80% S6

Table 3.1: Description of the six entangled polystyrene solutions S1 to S6 [6]



58 A constitutive equation for polydisperse entangled linear polymers

In Fig. 3.7, we see the comparison between the experimental viscoelastic moduli
of S1, and the predictions of the constitutive equation. At high frequencies, a Rouse
spectrum contribution was added to the predictions. The Rouse time for the linear re-
sponse was computed asτr = KrM2 and is therefore identical to the characteristic time
of stretch relaxation. From the comparison with the experimental data, it seems that a
longer Rouse time should have been used in order to have quantitative predictions in
the whole frequency range.
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Figure 3.7: Linear viscoelastic moduli for S1. Comparison between experimental
results [6](o) and the CRAFT model (−). The dashed lines are the predictions of the
model forKr = 3.410−12[sDalton−2].

In Fig. 3.8, we report the experimental transient shear viscosityη+ for S1, which
we used for adjusting the stretch relaxation time of the model, together with the model
predictions. We see that, with the appropriate stretch relaxation time, the CRAFT
model predicts the steady state values and the transient behaviour. At high shear rates,
the CRAFT model quantitatively predicts the large overshoot in viscosity followed by
a shallow undershoot. At intermediate shear rates however, the model fails to quanti-

Kd Kr K f G0
N γ b

2.4310−19[sDalton−3] 1.010−14[sDalton−2] 1 465[Pa] 1.0 942

Table 3.2: Parameters of the CRAFT model used for comparison with solutions S1 to
S6 at 40°C.
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tatively predict the overshoot in shear viscosity: stress built up during the overshoot
relaxes too quickly. This failure is actually consistent with our observations for the
linear response. In Figures 3.7 and 3.8, the dashed lines are the predictions of the
model with the Rouse time increased by a factor3.4. We see that this yields simul-
taneously better quantitative predictions both for the linear moduli and the transient
shear viscosity at low deformation rates.
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Figure 3.8: Transient shear viscosity for S1. Comparison between experimental results
[6] (symbols) and the CRAFT model (−). From top to bottom, the curves correspond
to the following flow rates:0.01[s−1], 0.1[s−1], 1[s−1], 10[s−1] and 100[s−1]. The
dashed lines is the prediction of the model forKr = 3.410−12[sDalton−2], at a flow
rate of10[s−1].

This closes the first step of parameters adjustment: the parameters are now frozen
and we can examine the predictions of the models in shear for S1 and S6, and in shear
and extension for the blends S2 to S5.

As foreseen in Fig. 3.8, Fig. 3.9 shows the excellent agreement of the steady shear
viscosity of S1 with the model predictions. The steady state first normal stress differ-
ence is predicted quantitatively as well. The main difference between the data and the
predictions is the “kink” one observes on the predicted curves at shear rates for which
the chain becomes significantly stretched. These are not observed experimentally and
suggest that the model predicts too much chain stretch in shear.
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Figure 3.9: Steady state shear viscosityη and first normal stress differenceN1 for S1.
Comparison between experimental results [6] (o) and the CRAFT model (−).

In Fig. 3.10, the experimental steady extensional viscosity is compared to the
model predictions. The rise of the extensional viscosity due to the onset of chain
stretch is well described, qualitatively and quantitatively, which tends to confirm the
value we selected for the Rouse time. The viscosity decay observed at lower extension
rates is overestimated by the model. Similar predictions have been obtained by Bhat-
tacharjee et al. [46] in comparing similar entangled solutions with the predictions of
different constitutive models. Further modelling efforts need to be spent to describe
these deviations from the theoretical−1 slope. The fourth regime (see section 3.6) of
the extensional viscosity is unfortunately out of the range of the experiments and the
validity of the CRAFT predictions at high extension rates cannot be assessed.

Fig. 3.11 offers the same comparison as Fig. 3.7 but for the solution S6. Looking
at the experimental loss modulus for intermediate frequencies clearly shows that the
sample is not monodisperse as we are assuming. Nevertheless, we are able to correctly
predict the low frequency range of the loss modulus, which ensures good predictions
of the zero-shear viscosityη0. As for solution S1, the Rouse time of the model is again
too high to describe well the high frequency regime ofG′ andG′′.

In Fig. 3.12, we show that the scaling law forαr allows the CRAFT model to
make good predictions of the extensional viscosity of solution S6. The onset of chain
stretch is well predicted, but the sparsity of the data prevents any further analysis. The
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Figure 3.10: Steady extensional viscosity for S1. Comparison between experimental
results [7] (o) and the CRAFT model (−).
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Figure 3.11: Linear viscoelastic moduli for S6. Comparison between experimental
results [6] (o) and the CRAFT model (−).
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presence of shorter chains in the sample is likely to explain the somewhat delayed
hardening observed in the experimental data.
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Figure 3.12: Steady extensional viscosity for S6. Comparison between experimental
results [7] (o) and the CRAFT model (−).

In Fig. 3.13, we see that the model correctly predicts the steady shear viscosity
and first normal stress difference of S6 over a wide range of shear rates. Discrepancies
between predictions and experiments only occur at high shear rates, where the model
predicts that the flow starts stretching the chains, leading to a change of slope of the
curves. The kink in the predictions occurring at high shear rates is more visible for
S6 than it is for S1, as the increase in molecular weight yields a greater separation
betweenτd andτr .

Fig. 3.14 shows the predictions of the steady shear viscosity and first normal stress
difference for the solutions S2 to S5. One should remember that the predictions for
solutions S2 to S5 did not require any additional material parameter. From a global
point of view, one can say that the agreement between predictions and experiments is
quite good, but several comments arise from a closer look at the curves:

• the model is able to give a reasonable prediction of the zero shear rate viscosity
η0 for all solutions. This linear limit can be expected from the linear theory
behind the CRAFT model.



Comparison with experimental data 63

10
−3

10
−2

10
−1

10
0

10
1

10
1

10
2

10
3

10
4

γ̇
[
s−1

]

N1 [Pa]

η [Pas]

Figure 3.13: Steady state shear viscosityη and first normal stress differenceN1 for
S6. Comparison between experimental results [6] (o) and the CRAFT model (−).

• For CCR dominated shear rates, the predictions of the CRAFT are in very good
agreement with experiments. The non-linear mixing rule coming from our gen-
eralized convective constraint release seems quite efficient in this regime.

• As for the monodisperse samples, the CRAFT model predicts a transition to a
“stretched regime” at high shear rates, which is not seen in the experiments.

Fig. 3.15 shows the predictions of the steady extensional viscosity together with
experimental measurements for solutions S2 to S5. Because only few experimental
points are available, we can only observe that the model is able to predict the exten-
sional viscosity growth at about the right extension rate. Additionally, we still observe
a too strong extensional thinning of the model. The experimental extension rates are
too small in order to validate the behaviour of the CRAFT model in the last regime of
the viscosity curve.

In Fig. 3.16, we show both the transient shear viscosity and first normal stress
difference for S3. The ability of the CRAFT model to predict the transient response
of bi-disperse samples actually is a strong test for its mixing rule. We see that for low
and medium shear rates, the predictions are in excellent agreement with the data. At
high shear rates, the occurence of high levels of stretch ruins the transient predictions.
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Figure 3.14: Steady state shear viscosityη and first normal stress differenceN1 for S2
(a), S3 (b), S4 (c) and S5 (d). Comparison between experimental results [6] (o)and the
CRAFT model (−).

3.9 Conclusions

We have proposed a new tube-based constitutive equation named CRAFT for polydis-
perse linear entangled polymers. The model has the form of a set of coupled partial
differential equations for a configuration tensor defined along the primitive chain co-
ordinate.

In addition to reptation, contour-length fluctuations and thermal constraint release,
CRAFT accounts for the coupled relaxation of stretch and orientation along the prim-
itive chain. Convective Constraint Release (CCR) appears naturally in the model, as a
non-linear correction to thermal constraint release.
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Figure 3.15: Steady extensional viscosity for S2 (a), S3 (b), S4 (c) and S5 (d). Com-
parison between experimental results [7] (o) and the CRAFT model (−).

The description of polydisperse systems with the CRAFT model requires no addi-
tional material parameter and the coupling between the different masses is provided by
constraint release effects. In the linear regime the CRAFT model reduces to a simple
theory [35] capable of quantitative predictions, even for polydisperse systems. The
deep connection of the CRAFT model with a linear theory allows the identification of
most of the parameters on linear viscoelastic data only.

The preliminary comparison of the CRAFT predictions with experimental data is
very promising. On mono- and bi-disperse entangled polystyrene solutions, we have
show that the CRAFT model is able to correctly predict the steady shear viscosity and
first normal stress difference over a wide range of shear rates. Additionally, the onset
of extensional strain hardening is well predicted for steady state flows. Transient ex-
periments can be quantitatively predicted as well. The lesser quality of the predictions
at high shear rates and the excessive extensional thinning of the model tend to indicate
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Figure 3.16: Transient shear viscosity (a) and transient first normal stress difference
for S3. Comparison between experimental results [6] (symbols) and the CRAFT
model (−). From top to bottom (a) and bottom to top (b), the curves correspond
to the following flow rates:0.01[s−1], 0.1[s−1], 1[s−1], 10[s−1] and100[s−1]

that additional stretch relaxation mechanisms should be accounted for.

3.10 Appendix: On the rate of CCR

In this appendix, we prove that under certain conditions and assumptions, the rate of
convective constraint release defined through Eq. (3.26) is always positive. For clarity,
we will restrict ourselves to the monodisperse case.

From the definition of the tensorc(t,s) we see that its equilibrium value is the
identity tensor. Furthermore, the evolution equation forc(t,s), is such thatc(t,s)
always remains symmetrical. We now assume that the tensorc(t,s) always remains
strictly positive definite. We do not prove this assumption but if, for an arbitrary flow
history, one of the eigenvalues ofc(t,s) was to become negative it would have to
become null, as a result of continuity. As the logarithm of the determinant ofc(t,s)
enters the evolution equation, we see that the differential equation would not be defined
in such case.

When finite extensibility is not accounted for,a(c) is defined as:

a(c) = tr(c)− lndet(c) ,
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and is equal to3 at equilibrium. The gradient ofa(c) with respect toc is:

∂a
∂c

=
(
δ −c−1) .

The functiona(c) is strictly positive whenc is positive definite. This can be proved
by noticing that the gradient ofa(c) with respect toc only vanishes at equilibrium and
that the Hessian is positive definite as well. The denominator on the right hand side
of Eq. (3.26) is therefore always strictly greater than zero. Let us now prove that the
numerator (without the minus sign) is strictly negative.

The expression inside the integral of the numerator of Eq. (3.26) can be written as
follows:

D
Dt
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trc
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trc
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∂ 2

∂s2 (trc)
(

1− 3
trc

)
. (3.43)

The numerator of Eq. (3.26) is therefore equal to:

∫ 1

−1
αr

∂ 2

∂s2 (trc)
(

1− 3
trc

)
ds .

We will now conclude the proof by showing that the previous expression is always
strictly negative.
Let g(s) be a continuous and sufficiently smooth function on the interval[−11]. If g(s)
is strictly positive and is such thatg(1) = g(−1) = 3, we have the following result:

∫ 1

−1

∂ 2

∂s2 g(s′)
(

1− 3
g(s′)

)
ds′ ≤ 0 .

The proof of this inequality only requires basic calculus and one integration by parts.
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ds′

=
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3
g(s′)

∂ 2
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The first term is simply integrated, while the second is integrated by parts:

=
[
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∂s
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]1
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3
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= −
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−1

3
g(s′)2

(
∂
∂s

g(s′)
)2

︸ ︷︷ ︸
≥0

ds′ ≤ 0 .

The two first terms of Eq. 3.44 cancel each other asg(−1) = g(1) = 3, while the last
term is non-negative. This concludes the proof that our definition of the rate of CCR
always yields a non-negative value, even when the flow tends to drive the chain below
its equilibrium length.



Chapter 4

Non-linear flows of well
characterized polystyrene
melts, simulation and
comparison with experiments

4.1 Introduction

The description and the prediction of the rheology of linear entangled polymers rely
nowadays more and more on microstructural models. A first breakthrough in mod-
elling entangled systems came with the Doi and Edwards (DE) model [12]. Although
the DE model can predict the damping function constructed from step strain experi-
ments, the model does not account for chain stretch effects and is too shear thinning.
Following the DE model, many tube-based models have been proposed to improve
the predictions of the DE model while retaining its relative simplicity. Among the re-
cent constitutive equations, the CRAFT is a constitutive model [47], which can make
quantitative predictions in both the linear [35] and the non-linear [47] regimes. A par-
ticularity of the CRAFT model is that all of its parameters but one can be identified
from the linear spectrum of the polymeric system. The only truly non-linear parameter
controls finite extensibility and can be deduced from microstructural knowledge.
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The non-linear response of entangled polymers can be probed through a variety of
rheometrical shear and extensional flows, each of them providing different information
on the tested material. The quality of a constitutive model is often established through
the ability of the model to predict the response of the material under different flow
regimes. Large Amplitude Oscillatory Shear flows (LAOS) and uniaxial extension
provide tough test for constitutive equations.

At small amplitudes, oscillatory shear flows are used to measure the linear re-
sponse of the material. Large amplitude oscillatory shear flows offer the opportunity
to study the non-linear response of a material with a smooth flow where both the
strain and the rate of strain are well controlled. The experimental methods and the
data analysis associated with LAOS flows have been reviewed in detail by Giacomin
and Dealy [48]. The spectral analysis of the response to LAOS flow, often referred
at as Fourier-transform rheology, has been addressed by Wilhelm et al. [49; 50].
Although LAOS experimental data can be represented in the time and frequency do-
mains, the interpretation of the non-linear response remains a challenge. The variety
of non-linear responses observed under LAOS indicates that it might be used as a
classification tool for the qualitative characterization of materials [51]. In a recent
work, Debbaut and Burhin [52] have investigated the LAOS response of a commer-
cial high density polyethylene melt. Up to moderate strains, the experimental results
agreed with the predictions of a multi-mode Giesekus model. The comparison of
LAOS data with the predictions of a constitutive model might offer the only way to a
non-phenomenological interpretation of the measured non-linear response.

Extensional flows orient and stretch the polymeric chains to a large extent, and
provide information on the branching structure, which cannot easily be inferred from
the linear response. Bach et al. [8] have recently published unique experimental data
on the extensional viscosity of monodisperse linear polystyrene melts. Marrucci and
Ianniruberto [36] have shown how this set of data contradicts the predictions of most of
todays constitutive equations. Moreover, they have suggested an additional relaxation
phenomenon to account for the observed discrepancies.

In this work, we investigate linear polystyrene melts under LAOS and uniaxial ex-
tension using the CRAFT model. We first identify the linear parameters of the model
from the linear response of two linear polystyrene samples. The only non-linear pa-
rameter, related to finite extensibility, is obtained from microstrutural knowledge. We
show that as long as the chains are not stretched, the CRAFT model predicts quanti-
tatively the LAOS response of mono- and poly-disperse polystyrene melts. In order
to improve the predictions of the model for LAOS regimes where the chains become
stretched, we introduce a phenomenological modification of the finite extensibility pa-
rameter. Finally, we show how this modification yields to predictions that qualitatively
agree with the data of Bach et al. [8] in uniaxial extension.
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4.2 The CRAFT model

The CRAFT model is a full chain microstructural constitutive equation for polydis-
perse entangled linear polymers. Details on the CRAFT model can be found else-
where [47]. We will only recall the equations of the model and its structure. The
model accounts, in a coupled description, for reptation contour-length fluctuations,
chain stretch relaxation, thermal and convective constraint release. In order to model
the connectivity of the polymeric chains, a lagrangian parametric coordinates is de-
fined along the primitive path. The variables of the model are the conformation ten-
sorsc(i, j)(t,s) describing both the orientation and stretch of the microstructure along
the primitive path. The superscript(i) corresponds to theith massM(i) of a polydis-
perse system, while the superscript( j) corresponds to a multimode decomposition of
the dynamics of thermal constraint release [35]. The evolution equation forc(i, j)(t,s)
reads:

5
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f (c) =
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NCR
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w jφ (i) 1
2

∫ 1

−1
( f c−δ )ds . (4.6)

The first term on the right hand side of Eq. 4.1 accounts for the reptation of the prim-
itive chain and contour-length fluctuations. The position dependent diffusion process
models the enhanced relaxation observed at chain ends due to contour-length fluctua-
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tions. The expression for the diffusion coefficientα f (i)
d reads:

α f (i)
d (s) =

4

Kdπ2M(i)3

K f
2Me

M(i) (1−s)2 if s>

(
1−K f

√
Me

M(i)

)
(4.7)

4

Kdπ2M(i)3

K f
2Me

M(i) (1−s)2 if s<

(
K f

√
Me

M(i) −1

)
(4.8)

4

Kdπ2M(i)3 otherwise, (4.9)

whereKd is a material parameter. The adjustable parameterK f is close to unity and
controls the depth of the contour-length fluctuations within the model. The mass de-
pendent reptation disengagement time is defined as:

τd(M) = KdM3 . (4.10)

The second and third terms account for the stretch dynamics, coupled with the

orientation of the microstructure. The coefficientα(i)
r is defined as:

α(i)
r =

4

π2KrM(i)2 , (4.11)

whereKr is a material parameter. The Rouse time is defined as:

τr(M) = KrM
2 . (4.12)

The last term of Eq. 4.1 accounts for thermal and convective constraint release.

The rate of constraint release is defined as the sum of a constant contribution
1
τ j

from

thermal constraint release and a time dependent contributionfccr from convective con-
straint release. The thermal constraint release timesτ j are such that they provide a
good approximation of the double reptation [5] approach to constraint release. For a
given numberNCR of modes, the characteristic timesτ j and their respective weights
w j are such that they minimize the following expression:

∫ ∞

0

(
KCR(t)−

NCR

∑
j=1

w j exp

(−t
τ j

))2

dt , (4.13)

under the constraint that:

∫ ∞

0
KCR(t)1/γ

(
KCR(t)−

NCR

∑
j=1

w j exp

(−t
τ j

))
dt . (4.14)
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The constraint release kernel of double reptationKCR(t) is computed as:

KCR(t) =

(
N

∑
i=1

∫ 1

−1
φ (i)Pf

0 (t,s)ds

)γ

, (4.15)

whereN is the number of masses in the system,φ (i) is the volume fraction of mass
M(i) andγ is an adjustable parameter of order unity, representative of the effectiveness
of thermal constraint release. The functionsPf

0 (t,s) are the solutions of the following
differential problem:

∂
∂ t

Pf (i)
0 =

∂
∂s

(
α f (i)

d (s)
∂
∂s

Pf (i)
0

)
, (4.16)

Pf (i)
0 (t,−1) = 0 ,

Pf (i)
0 (t,1) = 0 for t > 0 ,

Pf (i)
0 (0,s) = 1 for −1 < s< 1 .

The constraint (4.14) actually ensures that the zero-shear viscosity predicted by the
model is not perturbed by the multi-mode approximation of thermal constraint release.
To ensure that bothτ j andw j are positive, the minimization procedure is carried out
in logarithmic space.
The definition (4.3) of the rate of convective constraint releasefccr is an ansatz that
is equivalent e.g. to the expression proposed by Marrucci et al. [41] when stretch
relaxation is the dominant relaxation mechanism and stretch levels are moderate. This
particular expression has, however, the advantage of always predicting a positive rate
of convective constraint release, even in reversing flows where other models [26; 41]
would predict a negative value.

Finally, Eq. (4.6) for the stress tensorτ p is nothing but a weighted average of the
contributions from all segments of all masses and modes.
When predicting the linear viscoelastic moduli of an entangled system, we superpose
a Rouse contribution to the predictions of the model using the expression found in
[15].

The CRAFT model has been successfully validated [33] on a very complete set of
published [6; 7] experimental data of concentrated polystyrene solutions.
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4.3 Large Amplitude Oscillatory Shear Flows

Among the different flows used to study the rheological response of a material, the
small amplitude oscillatory shear flow (SAOS) is the most widely used. It allows the
measure of the linear elastic and loss moduli (G′ andG′′) which respectively character-
ize the in-phase and out-of-phase response of a material subject to a small amplitude
periodic strain. On the other hand, a wide variety of shear and extensional flows are
used to characterize the non-linear response of complex fluids. Among those tech-
niques, Large Amplitude Oscillatory Shear flow (LAOS) can be seen as a non-linear,
continuous, extension of small amplitude oscillatory shear flows.

In a LAOS flow, the deformation imposed on the material is of the form:

γ(t) = γ0sin(ωt) , (4.17)

whereγ0 is the maximum strain andω is the angular frequency. The time frequencyν
is defined asν = ω

2π . Unlike SAOS, LAOS experiments reach shear strains of several
strain units. From Eq. (4.17), we see that the rate of strain is:

γ̇(t) = ωγ0cos(ωt) . (4.18)

The two independent parameters of a LAOS flow, the angular frequency and the max-
imum strain, allow one to define a Deborah and a Weissenberg number which can be
controlled independently:

De = λω , (4.19)

We = λωγ0 . (4.20)

The Deborah number is the ratio of the characteristic relaxation timeλ of the material
to the characteristic timeω−1 of the deformation. An increase in the Deborah number
represents a transition from a viscous to a more elastic response of the material. The
Weissenberg number involves the maximum deformation and measures the amount of
material non-linearity involved in the experiment. The linear regime probed by SAOS
experiments is that of small Weissenberg numbers and arbitrary Deborah numbers.
LAOS flows provide a tough test for constitutive models as this is one of the only
rheometrical flows where the Deborah and the Weissenberg numbers can be tuned
independently. In this work, we define the characteristic timeλ from the ratio of the
zero shear viscosityη0 to the plateau modulusG0

N.

Upon startup of a LAOS flow, a dynamic regime is established once the initial
conditions have been “forgotten”. In this dynamical regime, the shear stressσ is a
periodic function of time with a zero mean. Consequently, the shear stress can be
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decomposed in the following sum of harmonics:

σ =
∞

∑
i=1

Ansin(nωt)+Bncos(nωt) , (4.21)

whereAn and Bn are the Fourier coefficients. The amplitudeCn of the harmonics

is defined asCn =
√

A2
n +B2

n and the phase angleδn asδn = arctan
(

An
Bn

)
. In these

definitions, we explicitly assume that the applied deformation follows Eq. (4.17) and
has therefore a zero phase angle. In the case of a perfect viscometric flow where inertia
and wall slip effects are absent, the spectrum ofσ only contains odd harmonics. For a
more comprehensive analysis of Fourier-transform rheology, see Wilhelm et al. [49].

Fourier-transform rheology is a sensitive tool that can follow the transition from
a linear to a non-linear response. Furthermore, fine details in the non-linear response
can be identified from the higher harmonics. The analysis of the non-linear frequency
response lies, however, only at the phenomenological level as long as it cannot be
compared to the predictions of a constitutive model. OnlyB1 can be related to the lost
work per cycle and unit volumeWC:

WC =
∮

σdγ = πγ0B1 [J/m3] . (4.22)

4.4 Materials and parameters identification

We have access to the linear viscoelastic moduli and the LAOS data of four polystyrene
samples: PS140, PS1, PS2 and PS3. The three samples PS1, PS2 and PS3 were pro-
vided by BASF, while PS140 is a well known calibration sample provided by Prof. C.
Friedrich (Freiburger Materialforschungszentrum, Albert-Ludwigs-Universität). Sam-
ples PS140 and PS1 have a narrow molecular weight distribution and will be consid-
ered monodisperse for this work. On the other hand, PS2 shows a very broad molec-
ular weight distribution, while PS3 is trimodal and has a significant amount of very
high molecular weight chains. The molecular weight distributions of PS2 and PS3 are
reported in Figures 4.4-b and 4.2-b. Details on the moments of the molecular weight
distributions are reported in Table 4.4.

The linear moduli and molecular weight distribution of PS1, PS2 and PS3 have
been measured by BASF, who also kindly provided samples for the experiments which
were carried out in our facilities. All the data relative to PS140 have been produced
by H. Burhin (Dynisco). The large amplitude oscillatory shear experiments were per-
formed at 170° C in a closed pressurized chamber on a RPA2000 from Alpha Tech-
nologies, using closed bi-conical grooved plates. This same device has recently been



76 Non-linear flows of well characterized polystyrene melts

used by Debbaut and Burhin [52] to study the response of high density polyethylene
under large amplitude oscillatory shear flows.

We now turn to the delicate task of identifying the parameters of the CRAFT
model. From section 4.2, we see that there are seven parameters to identify:G0

N,
Kd, Kr , K f , Me, γ andb. Out of those seven parameters, the six first are related to
the linear viscoelastic response, while the last one can be inferred from the number
of Kuhn steps between entanglements. In order to reduce the uncertainty on the iden-
tified values of the linear parameters, we take advantage of the theoretical relations
betweenKd, Kr andMe to eliminate one of the parameters. The six parameters to
identify become:G0

N, Me, τe, K f , γ andb. The new parameterτe, is the Rouse time of
an entangled segment. The values ofKd andKr are recovered fromMe andτe through
the following expressions:

Kd = 3
τe

M3
e

Kr =
τe

M2
e

.

When dealing with samples having a broad molecular weight distributionw(M),
we have to discretize it into a finite number of representative molecular weights and
volume fractions. For this work, we selected equally spaced (in logarithmic scale)
molecular weightsM(i) between the bounds of the molecular weight distribution. The
volume fractionsφ (i) associated with theM(i)s are proportional tow(M(i)) and nor-
malized to a unit sum. This procedure is quite simple and works well when a fine
discretization can be achieved. To compute the linear response of the CRAFT model,
we use a numerically fast semi-analytical method [35] which allows us to use very fine
discretizations of the molecular weight distributions. This semi-analytical method is,
however, irrelevant to compute the non-linear response, and we have to rely on a finite
difference procedure coupled to a stiff ODE solver to solve the equations of the model
for a given flow. The discretizations of the molecular weight distributions that are nu-
merically feasible are therefore much coarser in the non-linear case than for the linear
case. All the parameters of the model have been identified for fine discretizations of

Name Mw (kD) Mn (kD) Mw/Mn

PS1 320 270 1.18
PS2 274 101 2.72
PS3 407 143 2.83

PS140 145 141 1.03

Table 4.1: Characteristics of the four PS samples.
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the molecular weight distributions. In the non-linear regime, we use coarser discretiza-
tions that maintain low computational costs, but still predict reasonably well the linear
response of the system. Among the investigated samples, we assumed PS140 and PS1
to be monodisperse atMw, but considered the full molecular weight distribution for
PS2 and PS3. We chose to useNCR = 3 for the monodisperse samples andNCR = 5
for PS2 and PS3.

Liu et al. [53] have shown that modern tube theories tend to underestimate the
linear moduli of poorly entangled systems. The predicted plateau modulus decreases
with the molecular weight, while a careful analysis of experimental data from various
sources and for different materials shows a constant value. Although our model of
linear viscoelasticity has not been considered by Liu et al., we have checked that it
predicts the same molecular weight dependence of the moduli. In order to avoid this
limitation of the model, we use in this work the value ofG0

N identified by Liu et al.
(200kPa) without trying to adjust it. As the sensitivity of the linear response of the
model to the remaining four parameters is still very uneven, we adjusted the linear
parameters using the linear moduli of PS140 and PS3. The number of Kuhn steps for
polystyrene has been taken from [8] asNK = 22, giving b = 66.

The full set of parameters we will be using for the CRAFT model is reported in
Table 4.2. The predictions of the linear moduli of PS140 with the experimental data
are reported in Fig. 4.1.

G0
N τe Me K f γ b

2.0102 [kPa] 5.010−4 [s] 15700[Dalton] 0.6 1.0 66

Table 4.2: Parameters resulting from the fitting of the model on the PS140 and PS3
data.

At first sight, we see that the linear response of PS140 is poorly predicted and that
a better fit could be achieved with a higher value ofG0

N. But as PS140 only has a few
number of entanglements, this sample is precisely in the regime where the model un-
derestimates the linear moduli. The observed discrepancies are therefore to be related
to the underlying linear theory of the CRAFT. Nevertheless, the LAOS experiments on
PS140 have been carried out at frequencies between0.05Hz and0.2Hz, for which the
linear moduli are well predicted. In Fig. 4.2(a), we show the experimental viscoelastic
moduli for PS3 together with the model predictions for a coarse discretization of the
molecular weight distribution. The coarse discretization of the molecular weight dis-
tribution is reported in Fig. 4.2(b). Looking at the linear predictions for PS3, we see
that the moduli are very well reproduced by the model, excepted for high frequencies
where the Rouse time seems to be underestimated. The high frequency regime of the
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Figure 4.1: Linear viscoelastic moduli of PS140. Plain lines are the fit of the model,
while the symbols are the experimental data.

loss modulus is underestimated as well.
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Figure 4.2: (a) Linear viscoelastic moduli of PS3. Plain lines are the fit of the model,
while the symbols are the experimental data. (b) Molecular weight distribution of PS3
and the discretization used for this work.

This concludes the first step of parameters identification. In Fig. 4.3, we report the
predictions of the linear moduli for PS1 and PS2. The molecular weight distributions
and their discretizations are shown in Fig. 4.4. For both samples, the predictions in
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the high frequency regime are “wavy” but fall in the right range. These predictions
could be improved by increasing the number of modesNCR in the approximation of
the constraint release kernel. The low frequency regime is well predicted for both
samples, excepted for the storage modulusG′ of PS1 which is underestimated. We
believe that an accurate treatment of the high molecular weight shoulder found in the
molecular weight distribution of PS1 might solve this discrepancy.
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Figure 4.3: Linear viscoelastic moduli of PS1 (a) and PS2 (b). Plain lines are the
model predictions, while the symbols are the experimental data.
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Figure 4.4: Molecular weight distributions of PS1 (a) and PS2 (b) and their discrete
approximations.
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4.5 LAOS predictions of PS140

In this section, we present the numerical predictions of the CRAFT model and experi-
mental results for large amplitude oscillatory shear flows of the PS140 sample. All the
predictions of the CRAFT model were computed using the parameters identified in
the previous section. The only non-linear parameter is the finite extensibility param-
eter which has been deduced from the number of Kuhn steps between entanglements
for polystyrene. We investigated LAOS flows at frequencies of0.05Hz, 0.1Hz and
0.2Hz and maximum strains between1 and10. From the linear response of the model
for PS140, we find the characteristic relaxation time to beλ = 0.21s. In terms of
Deborah and Weissenberg numbers, we get the following bounds:

0.07≤ De ≤ 0.27 ,

0.07≤ We ≤ 2.7 .

In Fig. 4.5, we compare the predictions and experimental data at the frequency of
0.05Hz (De = 0.07) for four different strains. The Lissajous figures show the shear
stress versus the shear rate. In those figures, the non-linearity embodied by the higher
harmonics can be seen as the deviation of the shape of the loop from an ellipse. In
the comparison between experiments and predictions of the model, one should keep
in mind that a linear scale is used for the plots. Globally, the shape of the Lissajous
loops is well predicted for all strains. From the shape of the loop in Fig. 4.5(a), we
see that at this small frequency and for a maximum strain ofγ0 = 2.5 (We = 0.17) the
responses of the model and of the material are already well in the non-linear regime.
At the highest strain ofγ0 = 10, the experimental Lissajous figure exhibits secondary
loops, as seen in Fig. 4.5(c). The CRAFT model is able to predict both the onset and
the shape of these secondary loops but, nevertheless, slightly overpredicts the shear
stress.

Fig. 4.6 shows the transition from the linear to the non-linear regime as the max-
imum strainγ0 increases from1 to 10 at a frequency of0.1Hz. In Fig. 4.6(a), the
Lissajous loops for both the predictions and the experiments are very close to an ellip-
tical shape. As the strain amplitude increases, we see how the loops deform and how
secondary loops appear. Here again, the CRAFT model is able to predict very well the
onset and the shape of the secondary loops.

The transition to the non-linear regime can be best observed in Fig. 4.7 where we
show the relative magnitude of the third to the first harmonicC3/C1 vs. the Weis-
senberg number. Over one decade ofWe, we see how the ratio increases from a few
percents to more than ten percents where it seems to saturate.



LAOS predictions of PS140 81

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

20

30

40

σ
[k

P
a]

γ̇ [s−1]

(a) γ0 = 2.5 ν = 0.05Hz

−2 −1 0 1 2
−60

−40

−20

0

20

40

60

σ
[k

P
a]

γ̇ [s−1]

(b) γ0 = 5 ν = 0.05Hz

−4 −2 0 2 4
−80

−60

−40

−20

0

20

40

60

80

σ
[k

P
a]

γ̇ [s−1]

(c) γ0 = 10 ν = 0.05Hz

Figure 4.5: Experimental results and model predictions for PS140 at0.05Hz, for
different strains. Plain lines are the experimental results, dash-dotted lines are the
model predictions.
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Figure 4.6: Experimental results and model predictions for PS140 at0.1Hz, for dif-
ferent strains. Plain lines are the experimental results, dash-dotted lines are the model
predictions.
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Figure 4.7: Relative magnitude of the third harmonic to the first versus the Weis-
senberg number for PS140 at0.1Hz. Comparison of the experimental data (o) with
the model predictions (+).

The accurate description of the global shape of the loops tells us that not only the
magnitude of the higher harmonics is well predicted but their phase as well. Table 4.3
shows the value of the three first non-zero harmonics for the experimental data and the
predictions. Although we do not show the even harmonics, they are found both in the
experimental and numerical data. However, their value is in both cases of the order of
0.01kPaand they belong to the experimental or numerical noise. All the components
of the fundamental and of the higher harmonics are reasonably well predicted for all
strains. One can, however, notice a systematic over-prediction of the magnitude ofAn,
Bn andCn at high strains. An interesting feature that is observed both numerically and
experimentally is that forγ0 = 10, the absolute value ofA3 becomes greater thanA1.

We conclude the analysis of PS140 with Fig. 4.8 where we plot the Lissajous
loops for a frequency of0.2Hz and differentγ0. Once more, we see the ability of the
CRAFT model to quantitatively predict details of the response such as the secondary
loops. We do not show the details of the harmonics for this set of predictions, as the
conclusions would be similar to the ones for a frequency of0.1Hz.
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Figure 4.8: Experimental results and model predictions for PS140 at0.2Hz, for dif-
ferent strains. Plain lines are the experimental results, dash-dotted lines are the model
predictions.
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An[kPa] Bn[kPa] Cn[kPa]
γ0 n Exp. CRAFT Exp. CRAFT Exp. CRAFT
1 1 5.78 5.50 23.81 23.94 24.50 24.57

3 -0.61 -0.22 0.37 -0.05 0.71 0.22
5 -0.12 0.00 -0.24 0.00 0.27 0.01

2.5 1 9.28 10.15 48.82 51.89 49.69 52.87
3 -3.18 -2.53 -0.73 -1.07 3.26 2.75
5 0.25 0.07 -0.51 -0.20 0.57 0.21

5 1 9.76 11.38 71.91 76.69 72.57 77.53
3 -7.28 -7.33 -4.97 -6.28 8.81 9.65
5 1.66 1.47 -1.00 -0.91 1.94 1.73

10 1 7.98 9.66 92.51 94.11 92.85 94.60
3 -10.19 -11.61 -13.61 -16.51 17.00 20.18
5 5.43 6.52 0.56 1.32 5.46 6.65

Table 4.3: AmplitudesAn andBn of the odd harmonics (kPa) forν = 0.1 Hz. Com-
parison of experimental data and CRAFT predictions.
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4.6 LAOS predictions of polydisperse PS samples

We now turn to the comparison between experimental data and numerical predictions
of more polydisperse systems: PS1, PS2, PS3. As in section 4.4, we assume that PS1
is monodisperse and consider the discretized molecular weight distributions of Figs.
4.4 and 4.2 for PS2 and PS3. In the polydisperse case, the difficulty in analysing the
results is increased by an order of magnitude as not only the non-linear relaxation
mechanisms have to be understood, but the coupling between the different masses
as well. We restrict therefore ourselves to the presentation of the data and of the
predictions, leaving the door open for further analysis in future work.

In Fig. 4.9, we show the Lissajous figures for PS1 at0.1Hz and for different
maximum strains. Although PS1 has a broader molecular weight distribution than
PS140, it is nevertheless still quite monodisperse. As for the PS140, the CRAFT
model correctly predicts the response of the sample for allγ0. The secondary loops are
well predicted and the predictions might be improved through a better discretization
of the molecular weight distribution.

We now look at the ability of the CRAFT model to predict the response of polydis-
perse systems. In Fig. 4.10, we show the experimental data for PS2, together with the
model predictions. The frequency of the LAOS flow is0.1Hz and we consider three
values forγ0: 1, 3 and 6. For all strains, the model predicts the shape of the loops but
fails to predict the secondary loops at the highest strain ofγ0 = 6.

The Lissajous figures for PS3 at a frequency of0.1Hz are shown in Fig. 4.11.
For the two lower strains, the model correctly predicts the shape of the loop but at
high strain, the stress is well overestimated by the model. This overestimation ac-
tually comes from the excessive stretch levels that the model predicts. A similar
behaviour of the CRAFT model has been observed earlier [47] for bidisperse con-
centrated polystyrene solutions.

In Table 4.4, we compare the frequency content of the experimental data with the
model predictions forγ0 = 6 andν = 0.1Hz. We see that all the experimental and
predicted quantities agree surprisingly well, except forA1 which seems to be the main
source of discrepancies. The non-linear elastic modulusA1 is overestimated by the
model by more than a factor 2. This is again the sign of too strong an elastic response
of the model, compared to the experiments.

In order to reduce the too strong elasticity of the model and the associated stretch
levels, we propose to modify the finite extensibility parameterb of the CRAFT model.
This parameter appears in the model in a quite arbitrary fashion through a Peterlin-like
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Figure 4.9: Experimental results and model predictions for PS1 at0.1Hz, for differ-
ent strains. Plain lines are the experimental results, dash-dotted lines are the model
predictions.

An[kPa] Bn[kPa] Cn[kPa]
γ0 n Exp. CRAFT Exp. CRAFT Exp. CRAFT
6 1 21.17 50.80 86.96 105.33 89.50 116.94

3 -10.25 -8.28 -3.65 -6.94 10.88 10.80
5 1.82 1.66 -1.59 -1.54 2.42 2.27

Table 4.4: AmplitudesAn andBn of the odd harmonics (kPa) forγ0 = 6andν = 0.1 Hz.
Comparison of experimental data and CRAFT predictions for PS3.
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Figure 4.10: Experimental results and model predictions for PS2 at0.1Hz, for differ-
ent strains. Plain lines are the experimental results, dash-dotted lines are the model
predictions.
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Figure 4.11: Experimental results and model predictions for PS3 at0.1Hz, for differ-
ent strains. Plain lines are the experimental results, dash-dotted lines are the model
predictions.
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approximation similar to that of the FENE-P model. In the case of the FENE-P model,
the Peterlin approximation has been studied at length (see [3] and references therein).
It has been found that the Peterlin approximation does not prevent individual chains
from being stretched beyond their theoretical maximum length, therefore changing
the physical meaning of theb parameter. In Fig. 4.12, we show the predictions of
the CRAFT model with a finite extensibility ofb = 12. The predictions compare
somewhat better with the experiments using a smallb. We do not claim that this
modification provides the answer to the excessive stretch issue but it provides at least
a lead for further refinements of the CRAFT model.
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Figure 4.12: Experimental results and model predictions for PS3 at0.1Hz and a max-
imum strain ofγ0 = 6. The finite extensibility parameter has been reduced tob = 12.
Plain line is the experimental results, the dash-dotted line is the model predictions.

4.7 Predictions in uniaxial extension

Recently, Bach et al. published [8] unique experimental data for almost monodisperse
polystyrene melts. For two different masses (200k Daltons and 390k Daltons), the au-
thors have measured the linear viscoelastic moduli, as well as the extensional stresses
using a filament stretching rheometer. For both samples the data show a monotonous
decrease of the Trouton ratioTr (or equivalently the extensional viscosity) for in-
creasing strain rates. This behaviour is even observed at strain rates greater than the
reciprocal Rouse time. Moreover, the author have shown that the Trouton ratio seems
to scale roughly likėε−1/2. Marrucci and Ianniruberto have explained [36] how these
finding contradict most of the constitutive equations for entangled polymers. They
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have suggested an additional relaxation mechanism involving an interchain repulsive
mechanism to explain the observedε̇−1/2 dependence of the Trouton ratio.

We have shown [47] that when the finite extensibility is small enough, the CRAFT
model predicts the Trouton ratio to be a monotonously decreasing function of the ex-
tension rate. In this regime, the Trouton ratio does not exactly scale likeε̇−1/2 as
the predicted curve exhibits some kinks. The average scaling is nevertheless close to
−1/2.
Using the parameters identified in Sec. 4.4, we wish to predict the linear viscoelastic
moduli and the Trouton ratio of PS200 and PS300, as measured by Bach et al. [8]. As
the experiments of Bach et al. were performed at 130°C, we need to shift the param-
eters of the CRAFT from 170°C to 130°C. We consider here a shift of the elementary
time scaleτe only and ignore any scaling of the modulusG0

N. The temperature shift
factorsaT are computed from the WLF equation exactly as reported by Bach et al. :

logaT =
−c0

1 (T−T0)
c0

2 +(T−T0)
, (4.23)

wherec0
1 = 8.86, c0

2 = 101.6K, T0 = 136.5°C, andT is the temperature in°C. We find
that, at 130°C, we have to useτe = 0.317.

In Fig. 4.13, we compare the linear viscoelastic moduli predicted by the CRAFT
model at 130°C to the experimental data [8]. For both samples, the agreement is very
good, except at intermediate frequencies, where the CRAFT model predicts too deep
a local minimum of the loss modulus.

For predicting the Trouton ratio, we consider two different values for the finite
extensibility parameter:

• b = 66as derived from the number of Kuhn steps between entanglements,

• b= 12as we know that small values ofb yield an ever decreasing Trouton ratio.

Fig. 4.14 compares the predictions of the CRAFT model for both values ofb with
the experimental data. At low strain rates, the CRAFT model predicts the theoretical
asymptotic value of 3 for the Trouton ratio. Forb= 66, the data agree with the predic-
tions up to moderate extension rates. At higher strain rates, where the chains become
stretched, we observe a deviation of the predictions from the data as the stress rises un-
til full extension is reached. On the other hand, we see that forb = 12, the predictions
agree with the data for all extension rates. The only discrepancy is found at inter-
mediate extension rates, where the predictions for PS200 are too extension thinning.
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Figure 4.13: Comparison of the measured and predicted linear moduli for PS200 and
PS390 at 130° C. Plain lines are the model predictions, symbols are the experimental
results [8].
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Figure 4.14: Comparison of the measured and predicted Trouton ratio for PS200 and
PS390 at 130° C. Plain lines are the model predictions forb = 12, dash-dotted lines
are the model predictions forb = 66, symbols are the experimental results [8].
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4.8 Conclusions

We have shown that the CRAFT model can quantitatively predict the LAOS response
of mono- and poly-disperse polystyrene samples using only a single set of parameters
identified from the linear viscoelastic response of a subset of the samples. For the
monodisperse samples, the agreement between the data and the predictions is very
good, and highly non-linear features can be quantitatively described. These include the
higher harmonics of the spectral decomposition of the shear stress and the occurence
of secondary loops in the shear stress versus shear rate Lissajous plots. We believe
that the CRAFT model is highly appropriate to study the LAOS response of linear
entangled polymers, as non-linear features can be related to the linear parameters of
the model and to the built-in relaxation mechanisms.

The LAOS response of the polydisperse samples, which contain a fraction of high
molecular weight chains, is well described at low and moderate Weissenberg numbers.
At high Weissenberg numbers, the model exhibits too strong an elastic response, which
we connect to chain stretch effects. By artificially decreasing the finite extensibility
parameter of the CRAFT model, we somewhat improve the predictions in this highly
non-linear regime.

In the case of uniaxial extension, we find that when finite extensibility is reduced,
the CRAFT model can predict, using the same parameters, the extensional viscosity
data of Bach et al. [8] without any modification to the constitutive equation.



Chapter 5

A constitutive equation for
entangled linear polymers
inspired by reptation theory
and consistent with
non-equilibrium
thermodynamics

5.1 Foreword

In this chapter, we present some early contribution in which we show how a constitu-
tive equation can be analyzed and then phenomenologically improved using the single
generator bracket formalism of non-equilibrium thermodynamics [44]. Although the
investigated model has been supersed by newer ones, we believe that a similar work
could be carried on the CRAFT model, yielding improved predictions in the non-linear
regime. This chapter might therefore be considered as a source of inspiration for those
interested in further improving the CRAFT model.
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5.2 Introduction

Since the introduction by de Gennes [11] of the reptation picture, a number of success-
ful molecular theories have been able to describe with increasing accuracy the linear
rheology of entangled linear polymers. The original idea is to consider the polymer
chain confined in a tube formed by the topological constraints, or entanglements, be-
tween the chain and the surrounding polymer chains. The dominant relaxation mech-
anism comes from the reptation of the chain out of the confining tube. Considering
chain length fluctuations, it is possible to predict with reasonable accuracy the linear
viscoelastic properties of linear monodisperse polymers. The prediction of non-linear
rheological properties is far less accurate however. In the classical Doi-Edwards (DE)
theory [12], the tube is deformed affinely by the flow and its segments are gradually
destroyed and renewed as the chain slowly reptates out of the tube. It is also assumed
that the chain-retraction mechanisms are so fast that the chain always has its equilib-
rium length. Among the successes of the classical DE theory, we find the prediction of
the plateau modulus and of the damping function in response to a step strain. The DE
model also predicts a non-zero second normal stress difference in shear flows. There
are nevertheless major features that the DE model fails to predict, even qualitatively
[26]:

1. The transient response of DE in startup of shear flow has an overshoot in the
shear stress but none for the first normal stress difference, while large overshoots
both in shear and normal stresses are observed experimentally. Furthermore, DE
predicts the overshoot in shear stress to occur at a strain which is independent
of the shear rate, which is again incompatible with experimental observations.

2. For steady-state shear flows, DE predicts the shear stress to be a non-monotonic
function of the shear rate, which is a constitutive instability. It also predicts
the first normal stress to approach a constant value as the shear rate increases.
Experimental data seem to show an almost constant but slowly increasing shear
stress and an ever-increasing first normal stress difference.

3. For small shear deformations, DE underestimates the value of the normal stress
ratio −N2/N1: its zero-strain limit is1/7 = 0.142, while experiments show
values around0.25 [54].

It has been shown [26] that the first discrepancy can be removed at high shear rates
by consideration of chain stretch effects. Several models including this feature have
been proposed. Recently, Ianniruberto and Marrucci [39] suggested that a mechanism
called Convective Constraint Release (CCR) might explain the observed monotonic
growth of the shear stress. This mechanism takes into account the convection of the
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entanglements along the polymer chain due to the flow. At high flow rate (τdγ̇ > 1,
whereτd is the reptation time constant), the convective removal of entanglements in-
duces a faster relaxation of the chain at increasing shear rates, thus explaining the
observed growth of the shear stress. Marrucci et al. [55] also suggested that the dis-
crepancy concerning the normal stress ratio might come from an inappropriate strain
measure in the basic DE theory. They showed that a new strain measure, derived from
force balance requirements at the nodes of a simple 3-chain network, correctly pre-
dicts the correct value for the normal stress ratio in a step strain experiment. The CCR
mechanism and the new strain measure have both been implemented recently by Mar-
rucci et al. [9] in the so-called MGI constitutive equation. The latter has an integral
form which is very well approximated by a differential constitutive equation. The be-
haviour of the MGI model in complex flows has been studied recently by Wapperom
and Keunings [56].

Recent constitutive equations such as the MGI model introduce an additional cou-
pling between the velocity gradient and the conformation variables, whose thermody-
namic consistency needs to be verified. In the present work, using the single generator
bracket formalism of non-equilibrium thermodynamics [44], we build a thermody-
namically consistent constitutive equation of the differential type for linear entangled
polymers. The starting point of our developments is the MGI differential model. We
show that non-equilibrium thermodynamics suggests the introduction of an additional
term in the relation between the stress and the conformation variables of the MGI
model. The proposed constitutive equation has an additional parameter and contains
the consistent MGI model as a particular case. Its behaviour in steady and transient
shear flow is shown to be in qualitative agreement with experimental observations.

5.3 Non-equilibrium thermodynamics

The compatibility of constitutive equations with non-equilibrium thermodynamics, as
developed through the single generator bracket [44] or the two generator GENERIC
[57] formalisms, ensures the satisfaction of symmetry constraints for the coupling
parameters describing the dissipation in the linear limit (Onsager/Casimir reciprocal
relation [58]). It also ensures a non-negative entropy production.

We consider differential constitutive equations for incompressible isothermal flows
in the context of the single generator bracket formalism [44] of non-equilibrium ther-
modynamics. In order to describe the behaviour of a fluid with an internal microstruc-
ture, one has few but important choices to make:
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• The variables of the problem. In addition to the velocityvα , we shall consider
here a single second-order conformation tensorcαβ as an internal parameter de-
scribing the microstructure of the fluid. The physical meaning of the selected
variables alone dictates the conservative convective component of the constitu-
tive equation. In this case, the conservative part of the system follows Euler’s
equations of hydrodynamics with an additional component depending onc, and
an evolution equation given in the form:

5
c= 0 ,

where (
5· ) is the upper-convected time derivative [59]. Therefore, in the absence

of dissipation,c can be interpreted as the Finger strain tensor, the governing
equations reducing to those for large deformation elasticity [60].

• The extended Helmholtz free energy densitya of the system as a function of
the selected variables and possibly their gradients. Here, we consider that the
gradient of the conformation tensor does not influence the free energy. At equi-
librium, a reduces to the thermodynamic free energy, which is obtained whena
is minimised with respect to the internal parameters. Away from equilibrium,
the gradient ofa is, in general, non-zero and acts like a thermodynamic driving
force.

• The structure of dissipative phenomena, related for example to CCR and the
relaxation of the microstructure.

For a viscoelastic constitutive model described by a single second order internal tensor
parameter, the addition of dissipative phenomena described by the lowest possible
order (quadratic) interaction terms yields the following general constitutive equation
[44]:

∂cαβ

∂ t
= −vγ ∇γcαβ +cαγ ∇γvβ +cγβ ∇γvα (5.1)

−Λαβγε
∂a

∂cγε
+Lαβγε∇γvε ,

σαβ = 2cβγ
∂a

∂cαγ
+Lαβγε

∂a
∂cγε

+Qαβγε∇γvε . (5.2)

Equation (5.1) describes the time evolution of the conformation tensor (cαβ ), while eq.
(5.2) expresses the stress as a function of the system’s variables and of the derivative of
the extended free energy with respect to these variables. On the first line of eq. (5.1),
we recognise the upper-convected time derivative of the conformation tensor, while
on the second line we find two dissipative terms. The first accounts for relaxation
phenomena, while the second is a mixed term leading e.g. to the mixed convected time
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derivative in the Johnson/Segalman fluid model [44]. The three terms on the right-
hand side of eq. (5.2) can be respectively interpreted as a conservative term, similar
to what is obtained in non-linear elasticity, a mixed correction term, and a viscous
dissipation term. The fourth-order tensorsΛαβγε , Lαβγε andQαβγε arise in the limit of
linear irreversible thermodynamics [61] and come from a first-order approximation of
general dissipative phenomena. These tensors are phenomenological and can depend
upon the variables of the problem butnot their derivatives. They also need to be
invariant to the following permutations of indices:

αβγε ↔ βαγε ↔ αβεγ ↔ βαεγ . (5.3)

Appropriate choices for the extended free energy and the dissipative structure yield
well known constitutive equations such as the UCM, Johnson/Segalman or Giesekus
models [44].

At this point, it should be noticed that eqs. (5.1) and (5.2), as presented in [44],
were obtained for a tensorLαβγε symmetric with respect to an exchange of the first two
by the last two indices,αβ ↔ γε. In appendix 1, we show that these equations remain
valid for a general tensorLαβγε where this symmetry is not obeyed.

In the following sections, we shall first present the physical phenomena we wish
to include in the constitutive equation, and then we shall consider the way to express
these in a form compatible with the single generator bracket formalism.

5.4 Convective constraint release and force balance

It is not a surprise that constitutive equations that consider reptation as the only source
of dissipation are unable to predict a monotonic growth of the steady-state shear stress
as a function of shear rate. Indeed, at increasing flow rates, the thermal relaxation
terms of these equations can be considered frozen, compared to the convective part.
The relatively slow relaxation of the tube segments cannot counteract alignment in
the shear direction. This explains why one observes a decrease of the shear stress at
increasing shear rates greater than1/τd [39].

Convective Constraint Release (CCR) takes into account the removal of entangle-
ments due to their convection by the flow along the polymer chain. In this fashion,
entanglements are destroyed once they are convected past the end of the chain. Con-
sidering that classical relaxation and flow-induced CCR operate in parallel, it is pos-
sible to sum their frequencies. With the assumption that the tube renewal frequency
caused by CCR is proportional to the rate of convection along the tube, Ianniruberto
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and Marrucci [39] obtained a modified relaxation timeτ, defined as:

1
τ

=
1
τd

+βk : 〈uu〉, (5.4)

whereτd is the DE disengagement time,〈uu〉 the orientation tensor,k is the transpose
of the velocity gradient andβ denotes an adjustable scalar parameter. Although a value
for β of unity seems more natural, it has been argued [39] thatβ should be somewhat
greater than unity. One should also notice thatk : 〈uu〉 is very similar to the rate of
tube stretch found in models like those presented in [26]. Ianniruberto and Marrucci
showed [39] that the CCR relaxation mechanism induces a monotonic growth of the
shear stress and improves the agreement of the model with the Cox-Merz rule.

In order to correct the step strain predictions of DE, Marrucci et al. [55] suggested
that a strain measure taking into account some requirement of force balance at the
node of the entangled network should be adopted. Using a simple three-chain cubic
network, they proposed a new strain measure that automatically fulfils the force bal-
ance at the entanglements of the network. For an elastic (non-relaxing) network, the
new measure is:

Q̃ =
C1/2

tr
(
C1/2

) , (5.5)

whereC is the Finger tensor. For step strain deformations, just after the deformation,
and before relaxation starts, the stress tensor is then given by:

σ = 6G(0)
N

(
Q̃− 1

3
δ
)

, (5.6)

whereG(0)
N is the plateau modulus andδ is the unit tensor.

5.5 Constructing the model

Relating the concepts of force balance and CCR to the bracket formalism is not straight-
forward and requires some insight. In this section, we present this process in a top-
down approach.

Having selected a non-negative definite, symmetric second-order tensorc as an
additional internal variable, we see from equations (5.1) and (5.2) that the remaining
building blocks are:

1. The specification of the extended Helmoltz free energy densitya,
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2. The development of the three fourth-order tensorsΛ, L andQ.

Since the tensorQ accounts for viscous dissipation, its contribution will be neglected
as we are interested in microstructure-induced stress. From eq. (5.1), we find that the
CCR mechanism described earlier can only be incorporated in the model through the
mixed termLαβγε∇γvε . Indeed, in the lowest order expansion for the dissipation, only
this term can provide a coupling between the velocity and the conformation tensor
other than the upper-convected time derivative. Additional constraints betweenΛ and
L will also appear from eq. (5.4). In the absence of dissipative phenomena, the only
degrees of freedom lie in the free energy density. This is where we incorporate the
new strain measure (5.5).

5.5.1 Conservative part

In the absence of dissipative phenomena, the constitutive equation is uniquely deter-
mined by the form of the free energy density. From eq. (5.1) we see that the evolution
equation of the conformation tensorc is compatible with its interpretation as the Fin-
ger strain tensor. In the absence of dissipation (Λ = L = 0), equating the remaining
non-vanishing parts of the right-hand side of eqs.(5.2) and (5.6) implies that the free
energy densitya satisfies:

6G(0)
N

(
c1/2

trc1/2
− 1

3
δ

)
= 2c

∂a
∂c

, (5.7)

or

∂a
∂c

= 3G(0)
N

(
c−1/2

trc1/2
− 1

3
c−1

)
. (5.8)

This expression allows us to use the thermodynamic formalism in order to describe
the same strain measure as proposed by Marrucci et al. Integrating eq. (5.8), we find
the following expression for the extended free energy density:

a(c) = 6G(0)
N

{
ln(trc1/2)− 1

6
ln(detc)

}
. (5.9)
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A closer look at this expression shows that it is independent of the magnitude ofc.
Indeed, if we substitutec for γc in eq. (5.9),γ being a positive scalar, we get:

a(γc) = 6G(0)
N

{
ln(γ1/2trc1/2)− 1

6
ln(γ3detc)

}

= 6G(0)
N

{
1
2

lnγ + ln(trc1/2)− 1
2

lnγ− 1
6

ln(detc)
}

= a(c) .

As a is independent of the magnitude ofc, and asc is by definition equal to the
unit tensor at equilibrium,a should be minimised forc = γδ . For these values indeed,
the gradient∂a

∂c vanishes, while the second-order derivative ofa reduces to:

∂ 2a
∂c2 eq

=
G(0)

N

3γ4 δδ ,

which is a positive definite fourth-order tensor. Equation (5.9) describes therefore a
thermodynamically valid free energy.

We can better understand the meaning of this free energy density if we rewrite it
as:

a(c) =−G(0)
N lndet

(
c1/2

trc1/2

)2

. (5.10)

This shows that all stretching effects have been neglected through the scaling with the
trace ofc1/2, and only an entropic orientational contribution remains (See Eq. 13C.7-7
p.209 in [62], withα = 3 c

trc). The modelling assumption is thus that the orientational
distribution of the tube segments is described byc1/2 rather than byc. As taking the
square root ofc only changes the eigenvalues of the tensor, this can be interpreted as
a reweighting of the eigenvectors of the conformation tensor.

5.5.2 Dissipative part

In the modelling of dissipative phenomena, we shall first focus on the relaxation tensor
Λ of eq. (5.1). Since the extended free energy density (5.9) is independent of the
magnitude ofc, it is also most natural to keep this feature here and obtain an evolution
equation forc that would also be independent of its magnitude. Therefore, comparing
equations (5.1) and (5.8), we find thatΛ should scale likec2. We shall then define two
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different relaxation tensors that satisfy the symmetry relations (5.3):

Λ(1)
αβγε =

c1/2
δδ

6τdG(0)
N

(
c1/2

αγ cβε +c1/2
αε cβγ +c1/2

βγ cαε +c1/2
βε cαγ

)
, (5.11)

Λ(2)
αβγε =

3

6τdG(0)
N

(cαγcβε +cαεcβγ +cβγcαε +cβεcαγ) . (5.12)

The tensorΛ(1) has been constructed to obtain a constitutive equation as close as
possible to the MGI differential model proposed in [9] (see appendix 2). On the other
hand, the tensorΛ(2) can be seen in a naive way as the most natural tensor expression
with a scaling likec2. This relaxation tensor is actually identical to the one found in the
Giesekus model with the mobility factor equal to unity (see [44] p.265 withα = 1). It

is obtained fromΛ(1) using a mobility tensor equal to3c1/2

trc1/2 (see [44], pp 252-256). The
pre-factors in eqs. (5.11-5.12) are such as to obtain the right linear viscoelastic limit

and to keep the physical meaning of the parametersτd andG(0)
N unchanged. Finally,

we propose the relaxation tensorΛ to be a linear combination ofΛ(1) andΛ(2):

Λαβγε = (1−α)Λ(1)
αβγε +αΛ(2)

αβγε . (5.13)

The phenomenological parameterα plays a role similar to that of the mobility factor
in the Giesekus model [44].

5.5.3 Introducing convective constraint release

The dissipative term induced in eq. (5.1) by theΛ tensor is independent of the velocity
gradientkT . The CCR mechanism (5.4), however, introduces an additional linear
dependence onk. The only way that this can originate within the quadratic dissipation
formalism is from a non-vanishingL tensor in (5.1). Moreover, by comparing eqs.
(5.1) and (5.4), we find thatL must have the following form:

Lαβγε =−J(c,k)τdβΛαβδφ
∂a

∂cδφ

c1/2
γε

c1/2
θθ

≡ J(c,k)L?
αβγε , (5.14)

whereJ(c,k) is an appropriateswitchfunction which is equal either to 1 or zero (see
appendix 1).

At this time, we have to remark that, in contrast to the original quadratic dissipa-
tion theory (as described by equations (5.1) and (5.2)),L is found here to be a function
of the Volterra derivative of the Hamiltonian with respect to the internal parameterc.
Indeed, this is the only way through which the CCR mechanism can be introduced into
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the non-equilibrium formalism, i.e. by requiring a higher order non-linearity in the dis-
sipation mechanism introduced byL . What we therefore propose here is an “ansatz”,
sort of a mean field theory approach, with the form forL being suggested by rather
than dictated from non-equilibrium thermodynamics (since the Onsager-Casimir rela-
tions from which the original term introduced byL in the dissipation originates are
strictly applicable only for a quadratic dissipation close to the equilibrium limit). On
the other hand, what non-equilibrium thermodynamics requires is that the overall rate
of entropy production be non-negative. Since a non-symmetricL contributes to the
entropy production (see appendix 1) and this contribution can be either positive or
negative, and since it is not in general easy to a-priori tailor the other contributions to
guarantee in all cases an overall positive entropy production, we take the further step
here to also propose a corrective multiplicative factorJ(c,k) which acts as a "switch
function" selectively turning theL term off when its individual contribution to the rate
of entropy production is negative (see appendix 1 for a full expression). This is cer-
tainly allowed, sinceL corresponds to a higher non-linearity anyhow. It only risks to
be too conservative (eliminating CCR under conditions under which it may have been
thermodynamically admissible), but we propose it anyhow for two reasons:

1. it is a thermodynamically-induced correction that it is relatively easy to imple-
ment and when implemented guarantees the thermodynamic consistency of the
model,

2. it is a correction that is applicable only rarely (most notably: during flow rever-
sal) since in most flows, and certainly all the simple shear flows examined in the
present work, this correction is not necessary as the corresponding rate for the
entropy production term is positive (and thusJ(c,k) = 1) .

Finally, we note that a similar correction was found necessary to be introduced in
the original MGI model [63] in connection to the physical interpretation of the CCR
as a correction to the relaxation time—for consistency, such a correction needs to be
taken into account only when it is positive; if negative, it risks to make the overall
relaxation time negative which is aphysical. However, note that here, and in contrast
to the original MGI model, we have this on-off switch affecting both the stress and the
evolution equation forc in a concerted fashion.

A consequence of the introduction of a non-vanishing tensorL is that it brings an
additional term in the stress equation (5.2). This term is of similar nature to the one
that has to be introduced in the Johnson/Segalman model when a mixed time derivative
is used instead of the upper-convected derivative. The presence of this term introduces
significant changes in predictions for the extra-stress tensor.
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5.6 Completed model

Combining all the building blocks presented above, we can derive a full model, which
is thermodynamically-consistent and involves both the new strain measure and the
Convective Constraint Release mechanism of the MGI model.

After substitution of eq. (5.14) into eqs. (5.1) and (5.2), the model reads:

∂cαβ

∂ t
= −vγ ∇γcαβ +cαγ∇γvβ +cγβ ∇γvα (5.15)

−
(

1+J(c,k)τdβ
c1/2

δφ

c1/2
θθ

∇δ vφ

)
Λαβγε

∂a
∂cγε

,

σαβ = 2cβγ
∂a

∂cαγ
−J(c,k)τdβΛαβδφ

∂a
∂cδφ

c1/2
γε

c1/2
θθ

∂a
∂cγε

, (5.16)

with a, Λ andJ(c,k) defined respectively by eqs. (5.9), (5.13) and (5.23). On the
second line of eq. (5.15), we clearly see that all dissipative phenomena will occur
with an apparent relaxation time corresponding to CCR, while the new strain measure
appears in the first term of eq. (5.16).

In the sequel, we focus on two limiting cases of the proposed model, obtained for
α = 0 and1. Forα = 0, the model reads:

5
c = −2

(
1
τd

+J(c,k)βk :
c1/2

trc1/2

)
trc1/2

(
c

trc1/2
− 1

3
c1/2

)
, (5.17)

σ = 6G(0)
N

(
c1/2

trc1/2
− 1

3
δ

)

·
(

δ −J(c,k)β
(

3− 1
3

trc1/2trc−1/2
)

c1/2

trc1/2

)
. (5.18)

It can be proved (see appendix 2) that this model is almost equivalent to the MGI
differential model proposed by Marrucci Greco and Ianniruberto in [9]. The evolution
equation for the conformation tensorc is identical. The MGI model, however, lacks
the last factor in the expression of the extra stress tensor (5.18), which comes from the
introduction of CCR into the model. Close to equilibrium, both models are very close
as the missing term in the stress equation is only a high-order term. Forα = 0, the
proposed model is thus a thermodynamically-consistent version of the MGI model.
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For α = 1, the model reads:

5
c = −6

(
1
τd

+J(c,k)βk :
c1/2

trc1/2

)(
c3/2

trc1/2
− 1

3
c

)
, (5.19)

σ = 6G(0)
N

(
c1/2

trc1/2
− 1

3
δ

)

·

δ −3J(c,k)β

(
3− 1

3
trc1/2trc−1/2

)(
c1/2

trc1/2

)2

 . (5.20)

This new model incorporates both CCR and the new strain measure as in the MGI
model, but the structure of dissipative phenomena away from equilibrium, as shown
in the next section, is quite different.

5.7 Model predictions

In this section, we compare the above models in various transient and steady state
shear flows. In all cases, the adjustable parameterβ has been set to unity as suggested
in [39].

5.7.1 Step strain in shear

The normal stress ratio is an inherent feature of a model which, for step strain exper-
iments, cannot be adjusted through a superposition of several modes; its value repre-
sents therefore a good test. Figure 5.1 shows the normal stress ratio−N2

N1
after a step

strain in shear, as a function of the applied strain. These results were obtained numer-
ically by applying a shear rate of large magnitude over a small time interval∆t, until
a limit was reached for∆t → 0. The experimental data are taken from Olson et al.
[54]. As imposed by the strain measure (5.6) through the free energy (5.9), all three
models predict a limit−N2

N1
= 0.25 for small strains. At higher strains, however, the

MGI model does seem to reach a plateau at a somewhat too large value. The proposed
model, on the other hand, exhibits too strong a decrease as the strain increases. A cri-
terion for choosing between the models would be the value of the normal stress ratio
at high strains, if such data were available experimentally.
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Figure 5.1: Normal stress ratio as a function of strain. Experimental data for a
polystyrene solution and a poly-isoprene melt are reported from [54].

5.7.2 Steady state shear flow

As shown in Fig.5.2, the new model displays a monotonic increase of the shear stress
a a function of the shear rate, with a unit value forβ . On the other hand, it has been
shown [9] thatβ needs to be greater than3.8 in order to obtain the same feature with
the MGI model. Moreover, it should be noted that, at high shear rates, the proposed

model displays shear stresses approaching a plateau value very close toG(0)
N , which is

in good agreement with the Cox-Merz rule.

The steady state values of the first normal stress, shown in Fig.5.3, show a major
difference between the models. While the new model withα = 0 and MGI predict the
first normal stress difference to reach a plateau, the new model withα = 1 predicts an
ever-increasing curve. Such a behaviour is in agreement with experimental data [26].
Moreover, it should be recalled that no chain stretching effects have been introduced
in any of these models.

In Fig.5.4, we report the predictions of the various models as well as the exper-
imental data for the normal stress ratio obtained by Kalogrianitis and Van Egmond
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Figure 5.2: Dimensionless shear stress as a function of the Deborah number.

[64] in steady shear flow. Even though the MGI model predicts values which seem to
fall in the right range, it does not predict the right slope, as the shear rate increases.
The proposed model predictions forα = 0 and1 however provide an envelope for the
experimental data. Interestingly the asymptotic limit of the normal stress ratio is a
function of theα parameter. Forα = 1, the limiting ratio is1/2 in shear flow, while
it is 0.25 in step strain (Fig.5.1). These numerical predictions have also been checked
with an asymptotic analytical solution of the governing equations at smallDe.

5.7.3 Startup and cessation of shear flow

In this section, we consider a non-trivial transient flow, namely the startup of shear
flow followed by its sudden cessation. The simulation results should be compared
qualitatively with the extensive set of experiments carried out by Kalogrianitis and
Van Egmond [64] on an entangled semi-dilute high molecular weight polystyrene so-
lution. Among the features reported by these authors, we note an overshoot in the
first normal stress difference upon inception of the flow, as well as an overshoot in the
second normal stress difference both upon inception and cessation of the flow. An-
other important observation is that the relaxation of the normal stress ratio follows a
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Figure 5.3: Dimensionless first normal stress difference as a function of the Deborah
number.

single curve, independent of the shear rate previously applied. Also, the relaxation is
non-exponential and the normal stress ratio approaches a constant value of about 0.9
at long times.

As shown in Fig.5.5, all models display an overshoot in the first normal stress
difference upon inception of the flow, but it is only significant for the new model with
α = 1.

Predictions of the second normal stress difference (Fig.5.6) also show that the
best behaviour is provided by the new model withα = 1. Indeed, only this model
predicts an overshoot upon cessation of the shear flow, in agreement with experimental
observations [64].

The evolution of the normal stress ratio is shown in Fig. 5.7. First, we see that all
the models predict the same limit at small deformations but reach different steady-state
values. Upon cessation of the flow, only the new model withα = 1 does predict the
normal stress ratio to relax towards a value of0.9, as observed experimentally. Also,
the normal stress ratio predicted by the MGI model is unaffected by the cessation of
the flow, in contrast with its thermodynamically-consistent version (proposed model,
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Figure 5.4: Normal stress ratio as a function of the Deborah number. Experimental
data for a polystyrene solution are reported from [64].

α = 0). Of course these two models have the same response at large times.

In Fig.5.8, we compare the transient predictions for the ratio−N2
N1

obtained with
the proposed model against the experimental data of Kalogrianitis and Van Egmond
[64]. We see from there that the new model withα = 1 predicts the normal stress ratio
to relax towards a high value of0.9, independently of the magnitude of the previously-
applied shear rate. The very fast response upon inception of the flow is caused by the
selected strain measure which enforces a value of0.25 for small deformations.

5.8 Conclusions

Using the single generator bracket formalism of non-equilibrium thermodynamics,
we propose here a new constitutive equation for linear entangled polymers that incor-
porates a simple version of the convective constraint release as well as a new strain
measure proposed by Marrucci et al. [55]. This new model reproduces the conser-
vative behaviour of the MGI differential model also proposed by Marrucci et al. [9]
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Figure 5.5: Transient first normal stress difference as a function of time. As reported
in [64], a strain rate of20s−1 is applied between time0sand2.7s. , andτd = 0.25s.

but has additional dissipative terms, in order to incorporate in a thermodynamically
consistent fashion the convective constraint release mechanism. In steady shear flow,
the new model predicts shear and normal stresses in good qualitative agreement with
available experimental data. In transient shear flow, the proposed model is able to pre-
dict the qualitative behaviour of the normal stresses, especially during relaxation, after
cessation of the flow.

Since these results were achieved using a single conformation tensor and with
relatively simple expressions for relaxation and convective constraint release, the use
of the single generator bracket formalism is considered quite encouraging for further
refinements which could make the model more quantitatively correct.

Appendix 1

In this work, we considered an extended dissipative bracket, with respect to the one
presented in [44]. For two arbitrary functionalsF andG, the new dissipative bracket
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Figure 5.6: Transient second normal stress difference as a function of time. As re-
ported in [64], a strain rate of20s−1 is applied between time0s and 2.7s. , and
τd = 0.25s.

based on general quadratic contributions in terms of the Volterra derivatives ofF and
G with respect toc andM reads:

[F,G] = −
∫

Ω
Λαβγε

δF
δcαβ

δG
δcγε

d3x (5.21)

−
∫

Ω
Qαβγε ∇α

δF
δMβ

∇γ
δG

δMε
d3x

−
∫

Ω
Lαβγε ∇α

δF
δMβ

δG
δcγε

−Lγεαβ ∇α
δG

δMβ

δF
δcγε

d3x

+entropy correction ,

where δ ·
δ · is the Volterra derivative,M is the momentum andΩ is the flow domain.

In this new expression, only the last term changes from eq. (8.1-5) in [44]. When
the tensorLαβγε , is symmetric upon exchange ofαβ with γε , both expressions are
identical. However, this new bracket allows the incorporation of a more generalc-
velocity coupling which, in the linear regime, leads to flux-potential relations that
remain compatible with the extended Onsager/Casimir reciprocal relations. Direct
identification leads to the dissipative terms of eqs. (5.1) and (5.2).
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Figure 5.7: Transient normal stress ratio as a function of time. As reported in [64], a
strain rate of20s−1 is applied between time0s and2.7s. , andτd = 0.25s.

It is interesting to note here that in the last term of (5.21), only the anti-symmetric
part ofLαβγε (w.r.t. αβ ↔ γε) brings a contribution to the entropy production, while
its corresponding term in the bracket (8.1-5) of [44] was not producing any entropy.
The magnitude of theL term needs therefore to be tailored so that it always leads
to a non-negative entropy production. This is achieved by making it proportional to
a switch functionJ(c,k), which turns it off as soon as its rate of entropy production
becomes negative. From [44], we know that the entropy production is given by:

∂s
∂ t

=− 1
T

[H,H]wec , (5.22)

wheres is the entropy functional,T is the temperature,H is the Hamiltonian of the
system, and the subscriptwecmeans “without entropy correction”. This immediately
yields the following expression forJ(c,k):

J(c,k) =
1
2


1+

L?
αβγε(∇αvβ

∂a
∂cγε

−∇γvε
∂a

∂cαβ
)

∣∣∣L?
αβγε(∇αvβ

∂a
∂cγε

−∇γvε
∂a

∂cαβ
)
∣∣∣


 , (5.23)

which is either equal to 1 or 0.
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Figure 5.8: Transient first normal stress ratio as a function of time for the proposed
model withα = 1. Corresponding experimental data taken from [64].

We believe however that further developments of the convective constraint release
theory might lead to a formulation of a new dissipation bracket where phenomenolog-
ical corrections such as this would not be necessary anymore.
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Appendix 2

The differential MGI model proposed by Marrucci et al. [9] has the following form:

T · DT
Dt

+
DT
Dt

·T = k ·T2 +T2 ·kT (5.24)

−2T2
(

k :
T
G

)

−2
T
τ
·
(

T− G
3

δ
)

,

σ = T− G
3

δ , (5.25)

1
τ

=
1
τd

+βk :
T
G

, (5.26)

wherek is the transpose of the velocity gradient,D·
Dt is the material derivative and

G = 6G(0)
N . In the absence of dissipative phenomena,T is linked to the Finger strain

tensorC by the following relation:

T = G
C1/2

trC1/2
. (5.27)

In order to relate this constitutive equation to the proposed model withα = 0, we
shall start from the evolution equation (5.1) of the conformation tensorc:

Dc
Dt

= k ·c+c·kT +Ω , (5.28)

whereΩ represents the dissipative terms. WhenΩ can be neglected,c becomes the
Finger strain tensor. Definingq as:

q = c1/2 , (5.29)

we find the equation describing the evolution of the trace ofq by taking the contraction
of eq. (5.28) withq−1:

Dtrq
Dt

= k : q+
1
2

q−1 : Ω . (5.30)

Writing T asT = G q
trq , we have:

DT
Dt

=
G

trq
Dq
Dt

− G

(trq)2

Dtrq
Dt

q . (5.31)
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Making use of eqs. (5.30) and (5.31), we obtain an evolution equation forT:

T · DT
Dt

+
DT
Dt

·T = k ·T2 +T2 ·kT (5.32)

−2T2
(

k :
T
G

)

−q−1 : Ω
trq

T2

−
(

G
trq

)2

Ω .

Identifying terms between eqs. (5.24) and (5.32), we obtain the following expression
for Ω:

Ω =−2

(
trq
τd

+βk : q
)(

q2

trq
− 1

3
q
)

. (5.33)

The two dissipative contributions of eq. (5.32) indeed reduce to:

q−1 : Ω
trq

T2 = 0 ,

(
G

trq

)2

Ω = −2
T
τ
·
(

T− G
3

δ
)

.

The exact form ofΛ(1) is then obtained by comparing eqs. (5.1), (5.8), (5.14) and
(5.33).

The expression (5.18) for the stress equation of the proposed model withα = 0
differs however from eq. (5.25) as we are using a non-zeroL tensor in the modelling
of dissipation. Combining eq. (5.2) with eqs. (5.8), (5.11) and (5.14) we obtain the
following stress equation for the new model (α = 0):

σ =
(

T− G
3

δ
)
·
(

δ −β
T
G

(
3− G

3
trT−1

))
. (5.34)

This expression clearly shows that the new term in the stress equation (compared with
equation (5.25)) is a higher order term (orderT2), which vanishes close to equilibrium.
It should also be noticed that

3− G
3

trT−1 = 0 ,

at equilibrium.
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Throughout this thesis, we have investigated the modelling of entangled polymers with
a clear focus on the non-linear rheology of linear polymers. We have studied both the
linear and the non-linear regimes, trying to model the latter as a continuous extension
of the former.

We first proposed a differential formulation of thermal constraint release for mono-
and poly-disperse systems of entangled linear polymers. This formulation allows one
to compute in a self consistent way the tube survival probability of linear chains sub-
ject to reptation and thermal constraint release. Although the involved equations are
highly non-linear, an analytical solution has been proposed. This allowed us to prove
that our approach to thermal constraint release yields results that are mathematically
equivalent to the double reptation theory, as formulated by Des Cloizeaux [5]. The
phenomenological mixing exponent found in double reptation appears naturally in the
differential formulation, as a parameter controlling the effectiveness of thermal con-
straint release. When the rate of constraint release can be approximated by a constant,
we show that the tube survival probability is governed by a linear equation.

The differential formulation of the tube survival probability equation under rep-
tation and thermal constraint release has then been extended to account for contour-
length fluctuations as well. We used the position-dependent diffusion approach imple-
mented by Graham et al. [23] to model the enhanced relaxation due to the fluctuation
of the chain ends. We showed the ability of the resulting model to quantitatively
predict, with a single set of parameters, the linear viscoelastic moduli of different
polystyrene samples having very different molecular weight distributions. Using a
simple multi-mode decomposition of the constraint release dynamics, we proposed a
mathematically linear model to compute the tube survival probability of a polydis-
perse system of chains subject to reptation, contour-length fluctuations and thermal
constraint release.
Only a mathematically linear theory of the linear viscoelasticity may be extended to a
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full non-linear constitutive equation that would predict both the linear and non-linear
rheology.

The CRAFT model is built as a non-linear extension of our mathematically lin-
ear model of linear viscoelasticity. The model uses an internal parametric coordinate
to model the conformation of the entangled segments along the primitive path. The
dynamics of the chain is described through partial differential operators along this
coordinate. The physical phenomena accounted for are reptation and contour-length
fluctuation, chain stretch relaxation and thermal as well as convective constraint re-
lease. Due to the deep roots of the model in the linear regime, most of the material
parameters can be identified from the linear response of an entangled linear polymer.
The only truly non-linear parameter is related to the finite extensibility of the chains
and can be inferred from the number of Kuhn steps between entanglements. Never-
theless, we tend to consider this parameter as a fully adjustable parameter. Indeed,
a number of mathematical approximations found between the microstructural picture
and the final model actually degrades the physical meaning of the parameter. Poly-
dispersity can be accounted for without any additional parameter but the molecular
weight distribution of the system. Convective constraint release provides the neces-
sary coupling between the dynamics of all masses.

The predictions of the CRAFT model have been validated with experimental data
for polystyrene melts [8] and concentrated solutions [6; 7]. We found that the CRAFT
model is capable of predicting quantitatively both the linear and non-linear rheology
of entangled linear polymers in a wide variety of shear and extensional flows. The
most stringent tests involved large amplitude oscillatory shear flows of mono- and
poly-disperse samples. For these tests, the CRAFT model is capable of quantitatively
predicting highly non-linear features such as secondary loops in the Lissajous figures,
or the magnitude of high harmonics of the shear stress. Furthermore, the CRAFT
model is, today, among of the few constitutive equations that can predict the rare
extensional viscosity data measured by Bach et al. [8].

The CRAFT model shows that much of the non-linear rheology of entangled sys-
tems can be predicted quantitatively using a combination of few linear parameters and
some linear and non-linear relaxation mechanism. The non-linear constitutive model
has, however, to be built carefully in order to preserve the quantitative physical mean-
ing of the linear parameters.

Despite the successes of the CRAFT model, many issues remain open in the more
general field of constitutive equations for entangled systems. We mention here some
of those which could be addressed in future work or that we find of particular interest.

In the case of polymer melts, we have shown the excessive elastic behaviour of
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the CRAFT model, characterized by too high stretch levels. In a first attempt to solve
this issue, we tried to arbitrarily reduce the maximum extensibility parameter. This
approach has proved to be successful, especially in extensional flows, but its impact
in other types of flows should be addressed. Another option might be to consider
inter-chain pressure effects as suggested by Marrucci and Ianniruberto [36]. As the
non-linear rheology of entangled systems is still a very active field of research, new
relaxation phenomena will be identified and will have to be accounted for in future
constitutive models.

In the case of concentrated entangled polymer solutions, we have shown that there
are some differences between the Rouse time needed to fit the experimental linear
moduli and the Rouse time needed to fit non-linear features such as overshoots in the
transient response or strain hardening in extensional flows. Some additional mod-
elling efforts on entangled polymer solutions might help reduce these differences in
the Rouse time.

We have studied the compatibility of constitutive equations with the single-generator
bracket formalism of non-equilibrium thermodynamics [44], and showed how this tool
could provide consistency checks for a model and improve the predictions of a model.
The compatibility of the CRAFT model with the bracket formalism, or any similar for-
malism such as GENERIC [57], has not been established yet but we believe that the
task should not be too complicated. Most of the work should actually be devoted to the
proper description of the chain stretch dynamics. Furthermore, these frameworks are
powerful tools to phenomenologically modify constitutive models in order to improve
their predictions in the non-linear regime.

Due to the crude approximations made in the description of the stretch dynamics,
the CRAFT model does not predict a second normal stress difference. Is there an easy
way to correct this while preserving the simple structure of the model? The single-
generator bracket formalism might provide an easy way to alleviate this shortcoming
of the model using a consistent Giesekus-like modification of the dissipative terms.

Can the CRAFT model be extended to more complex architectures such as star
polymers?

Although the mechanism of convective constraint release is today better under-
stood in steady flows, most of its implementations yield a negative rate of constraint
release in reversing flows such as LAOS. We believe that additional efforts should be
spent to come with a description of convective constraint release that would be valid
for all kind of flows. Stochastic full-chain models can provide a strong lead in this
specific issue. The study of other reversing deformations such as double step shear
strain provides a tough test for the model.
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As research goes on in the field of constitutive models for entangled polymers,
as more and more models are developed, it is always possible to take another step
forward and further push the limitations of the existing models. As the available com-
puting power increases, mesoscopic stochastic models and atomistic models become
the tools of choice for a deeper investigation. We nevertheless believe that robust
micro-structural models at the level of continuum mechanics still have a bright future
in the field of complex flow simulation or numerical rheometry.



Related Contributions A

Numerical simulation of large
amplitude oscillatory shear of a
high-density polyethylene melt
using the MSF model

A.1 Introduction

Molecular models have become increasingly popular to describe the complex rheo-
logical behavior of entangled polymeric liquids. Practically all recently developed
molecular models are extensions of the Doi–Edwards theory. Although the basic
Doi–Edwards (DE) model [12] can successfully predict the damping function and the
plateau modulus of linear viscosity, it has some important deficiencies like excessive
shear thinning in fast shearing flows. Recent extensions of the Doi–Edwards theory
have alleviated these shortcomings. We consider one of such extensions, the molec-
ular stress function (MSF) model which has recently been proposed by Wagneret al.
[10]. The nonlinear response is captured through the introduction of an extra evolu-
tion equation for the molecular stress function. The model has two additional material
parameters, one to describe extensional and one to describe shear flows. With only
two nonlinear parameters, the MSF model is able to accurately predict the nonlinear
response in start up of shear and extension for a commercial linear high-density and
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branched low-density polyethylene [10].

The linear spectrum of polymer melts is normally determined in small amplitude
oscillatory shear flow. At low strains, the material response is approximately linear.
At larger strains, however, nonlinear effects do play an important role. Early large
amplitude oscillatory shear (LAOS) experiments date already from almost 50 years
ago [65]. A recent overview of LAOS has been given by Giacomin and Dealy [48].
Wilhelm et al. [49; 50] introduced high sensitivity Fourier-transform rheology and
analyzed large amplitude step shear oscillations of polymer melts [66]. Very recently,
Debbaut and Burhin [52] performed LAOS experiments on a commercial high density
polyethylene melt up to high strains of 10. Their simulations with a Giesekus model
showed good agreement for moderate non-linear regimes and larger deviations for the
most non-linear regimes that were experimentally achievable.

In this paper, we study the rheometrical response of the MSF model in large ampli-
tude oscillatory shear flow. In particular, we investigate whether such models derived
from molecular theory are able to accurately predict experimental data of a commercial
linear polymer melts. In order to perform the simulations in an efficient and accurate
manner, we modify the deformation field method of Hulsenet al. [67] (Sec. A.4).
After validation of the numerical technique in Sec. A.6, we show that the MSF model,
having only one relevant material parameter in LAOS, can accurately predict experi-
mental results for a linear high-density polyethylene melt [52]. At medium strains, the
performance is comparable to that of a six-mode Giesekus fluid having six material
parameters to describe the nonlinear regime. At these strains the basic Doi–Edwards
model already underpredicts the experimental data. At the higher strains, both the
MSF and Giesekus model overpredict the experimental data, although the MSF model
renders slightly to significantly better predictions depending on the value of the non-
linear material parameter. Completely unexpectedly, it is the Doi–Edwards model that
shows excellent agreement with the experimental data at the high strains. Then the DE
model, having no nonlinear material parameters, outperforms both nonlinear models.

A.2 Governing equations

For the MSF model the stress is related to the deformation history by

T(t) = 5
∫ t

−∞
m(t− t ′) f 2

t ′ (t)Q[Bt ′(t)] dt ′, (A.1)

whereBt ′(t) is the Finger tensor which measures the deformation of a fluid particle at
the current timet with respect to a reference timet ′. The memory functionmassumes



Governing equations 123

the classical multimode Maxwell form

m(t− t ′) = ∑
i

Gi

λi

∫ t

−∞
e−(t−t ′)/λi , (A.2)

whereGi are the moduli andλi are the relaxation times of the fluid.

The tensorQ is the strain measure for which the independent alignment approxi-
mation was used in the original derivation in [10]. Instead, we use the Currie approxi-
mation to the Doi–Edwards deformation tensor [68]. The orientation tensorQ is then
directly related to the Finger strainBt ′ and the Cauchy strainB−1

t ′ by

Q =
1

J−1
Bt ′ −

1

(J−1)(I2 +3.25)1/2
B−1

t ′ . (A.3)

Here,J = I1 + 2(I2 + 3.25)1/2 and I1 and I2 are the first and second invariant ofBt ′ ,
respectively. For large amplitude oscillatory shear flow this is a very good approxi-
mation to the Doi–Edwards tensor using the independent alignment approximation, as
we show in Sec. A.7.

The MSF model is completed by an evolution equation for the Finger tensor and
the molecular stress functionft ′ . The Finger tensor is governed by

DBt ′

Dt
= κ ·Bt ′ +Bt ′ ·κT , (A.4)

whereκ is the transpose of the velocity gradient. For the MSF model, the evolution
equation for square of the molecular stress function takes different forms for linear
and branched polymers. For linear polymers we have

D f 2
t ′

Dt
= f 2

t ′

[
κ : Q− 1

f 2
t ′ −1

CR

]
(A.5)

while for branched polymers the right-hand side is slightly modified [10; 69]. The
dissipative constraint releaseCR is expressed as

CR=
1
2
( f 2

t ′ −1)2
[
a1

√
A2

1 : Q+a2

√
|A2 : Q−A2

1 : Q|
]
, (A.6)

whereA2
1 andA2 are second-order Rivlin–Erickson tensors which are related to the

rate-of-deformation tensord = (κ +κT)/2 and rate-of-rotation tensorw= (κ−κT)/2
by

A2
1 = 4d2,

A2 =
DA1

Dt
+A2

1 +2w ·d+2d ·wT . (A.7)
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The parametersa1 anda2 in Eq. (A.6) are the only two nonlinear parameters in the
MSF model. The only parameter that is relevant in steady non-rotational flows isa1,
sinceA2 : Q−A2

1 : Q vanishes in that case. The value ofa1 can be determined by fitting
extensional flow data. Next,a2 can be obtained from shear viscosity and first normal
stress data.

The MSF theory is an extension of the basic Doi–Edwards tube theory [12]. The
difference between the models is the inclusion of the molecular stress function for the
MSF model. To evaluate the improvement of this model in large amplitude oscillatory
shear, we use the Doi–Edwards (DE) model for comparison. The governing equations
are then Eqs. (A.1-A.4) withf 2

t ′ = 1 in the expression for the polymer stress. The DE
model has no nonlinear parameters and is fully characterized by the linear spectrum.

A.3 Large amplitude oscillatory shear flow

In large amplitude oscillatory shear flow a fluid is subject to a periodic shear deforma-
tion γ with amplitudeγ0 and frequencyν ,

γ(t) = γ0sin(2πνt). (A.8)

The deformation is applied fort > 0 and up tot = 0 the fluid is assumed at rest. The
corresponding periodic shear rateγ̇ equals

γ̇(t) = 2πνγ0cos(2πνt). (A.9)

With this shear rate, the polymeric stress is obtained as a function of time from the con-
stitutive equations Eqs. (A.1,A.2,A.3,A.4) and the evolution equation for the molecular
stress function for linear polymers, Eq. (A.5,A.6,A.7). Since the stress response attains
a steady periodic state, a Fourier transform facilitates a detailed quantitative analysis.
The shear stress is decomposed into an infinite sum of trigonometric functions,

Txy(t) =
A0

2
+

∞

∑
n=1

Ansin(2nπνt)+
∞

∑
n=1

Bncos(2nπνt), (A.10)

whereAn andBn are the Fourier coefficients. For a real signal, these coefficients are
given by

An = 2ν
∫ c+1/ν

c
Txysin(2nπνt) dt, Bn = 2ν

∫ c+1/ν

c
Txycos(2nπνt) dt (A.11)

for an arbitrary period ranging fromc to c+ 1/ν . The Fourier coefficientA0 van-
ishes in view of the two-fold symmetry of the periodic shear stress signal. Standard
numerical integration has been used to evaluate the integrals in Eq. (A.11).



Numerical method for simulation in LAOS 125

Recently, Debbaut and Burhin [52] have described a new viscometric device to
characterize polymer melts in large amplitude oscillatory shear flows. The experi-
mental equipment consisted of an oscillatory device with a closed chamber to allow
for higher frequencies. At a temperature of 170°C, LAOS experiments have been
performed at various frequencies and amplitudes for the commercially available high
density polyethylene melt Finathene®3802 YCF. Experimental data are available for
the frequenciesν = 0.1 Hz, ν = 0.3 Hz, ν = 1 Hz, andν = 3 Hz and for the ampli-
tudesγ0 = 0.5, γ0 = 1, γ0 = 2.5, γ0 = 5, andγ0 = 10. For the higher frequencies, not
all amplitudes can be achieved experimentally. Forν = 1 Hz the highest achievable
amplitude isγ0 = 5 while for ν = 3 Hz this isγ0 = 1. For further reference, we note
that the maximum shear rates that occur at the highest amplitude for each frequency
are γ̇max≈ 6.28 s−1 for ν = 0.1 Hz, γ̇max≈ 18.85 s−1 for ν = 0.3 Hz andν = 3 Hz,
andγ̇max≈ 31.42 s−1 for ν = 1 Hz.

A.4 Numerical method for simulation in LAOS

The evolution equations for the Finger tensorBt ′ are easily integrated analytically for
large amplitude oscillatory shear, i.e. for the shear rate specified by Eq. (A.9). We
obtain for the non-constant components of the Finger tensor

Bxy
t ′ (t) =

{
γ0sin(2πνt) t ′ ≤ 0
−γ0sin(2πνt ′)+ γ0sin(2πνt) t ′ > 0

Bxx
t ′ (t) = 1+

(
Bxy

t ′
)2 (t). (A.12)

The strain measureQ can thus be obtained analytically and the only evolution
equation that remains to be solved numerically in LAOS is the evolution equation for
f 2
t ′ , Eq. (A.5) for linear polymers. To solve the evolution equation forf 2

t ′ , we follow
the idea of Hulsenet al. [67], who used the ageτ = t − t ′ as independent variable
instead oft ′ to solve the evolution equation for the Finger tensorB(t,τ) = Bt ′(t).
The introduction ofτ as an independent variable modifies the time derivative in the
evolution equation, but leaves the right-hand side unaltered. The proper equation for
f 2(t,τ) = f 2

t ′ (t) involves a derivative with respect tot andτ resulting from the material
derivative while leaving the right-hand side of an evolution equation unaltered. For the
molecular stress function describing linear polymers, Eq. (A.5), we obtain

D f 2

Dt
+

∂ f 2

∂τ
= f 2

[
κ : Q− 1

( f 2−1)
CR

]
(A.13)

subject to the boundary conditionf 2(t,0) = 1 and the initial conditionf 2(0,τ) = 1,
since the fluid is assumed to be at rest fort < 0.
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In [67], the Discontinuous Galerkin (DG) method is used for the discretization of
the differential equation for the Finger tensor in theτ direction. For transient flow
problems involving large and small time scales, the DG discretization inτ is not very
appealing. Large relaxation times imply a long time before a steady periodic state has
been reached. For the simulations in Sec. A.7 we used200 s. The small relaxation
times on the other hand require a fine discretization for smallτ. The DG method re-
quires a time step of∆t < ∆τ/6 for reasons of stability. For our simulations in Sec. A.7
we use 1520τ intervals which have a minimum length of9.69 10−6 s. For the Discon-
tinuous Galerkin method to remain stable, the maximum time step is approximately
1.6 10−6. To avoid very long computation times, we proceed differently.

Discretization of the ageτ is performed in a similar way as in [67]. We replace the
semi-infinite age intervalτ ∈ [0,∞) by a finite interval[0,τc] with τc the cut-off age.
This value has to be large compared to the largest relaxation timeλmax of the fluid.
For the LAOS simulations in Sec. A.7 we have usedτc = 20λmax, which is a rather
conservative value. The interval[0,τc] is divided intoN subintervals[τ j ,τ j+1] for each
j = 0, . . . ,N−1. These subintervals are of increasing size to take advantage of the fast
decaying memory function for large values ofτ/λi . For a one mode upper-convected
Maxwell integral model, Hulsenet al. [67] used a stretched mesh and determined
an optimal stretching factor. We found that this was not the optimalτ discretization
for our multimode MSF model. To determine the mesh for the age discretization, we
define a cut-off timeτc,i = 20λi for every relaxation time. For the interval[0,τc,1], we
compute theτ discretization exactly as in [67]. For other intervals[τc,i ,τc,i+1], we use
less subintervals since the region up toτc,i has already been discretized based on the
smaller relaxation times.

In view of the evaluation of the stress integral Eq. (A.1), solutions to Eq. (A.13)
are computed in the two-point Gauss points on each subinterval. The2N Gauss points
τG

k for eachk = 1, . . . ,2N define the mesh on which we compute the molecular stress
function. To include the end points of theτ domain we defineτG

0 = 0 andτG
2N+1 = τc.

At each Gauss pointτG
k for k = 1, . . . ,2N+1, we need to solve Eq. (A.13). Note that

for LAOS, the Finger tensor and thus the deformation tensor is known as a function of
time andτ via Eq. (A.12).

Integration of Eq. (A.13) from timeti to ti+1 and over aτ interval between two
Gauss points[τG

k ,τG
k+1] is performed using a trapezoidal rule for the time andτ direc-

tion. This results, for eachk = 0, . . . ,2N, in a difference equation for the molecular
stress function at the new time leveli +1,

f 2
i+1,k+1 = f 2

i,k +
∆t−∆τ
∆t +∆τ

(
f 2
i+1,k− f 2

i,k+1

)

+
1
2

∆t∆τ
∆t +∆τ

(
r i+1,k+1 + r i,k+1 + r i+1,k + r i,k

)
, (A.14)
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where∆t = ti+1− ti , ∆τ = τG
k+1− τG

k , andr denotes the right-hand side of Eq. (A.13).
All quantities f 2

i,∗ andr i,∗ are at the previous time level and are known at the start of a
new time step. The quantitiesf 2

i+1,0 andr i+1,0 are known from the boundary condition
at τ = 0, f 2

i+1,0 = 1. For the firstτ interval[0,τ1], only the quantitiesf 2
i+1,1 andr i+1,1,

which is a nonlinear function off 2, are unknown. To handle the non-linearity of the
right-hand side, we use a predictor-corrector scheme, for which we usef 2

i, j+1 as a

predictor. Oncef 2
i+1,1 is known, we can apply the same procedure to obtainf 2

i+1,2 and
so on, till we have computedf 2

i+1,2N+1 at the cut-off age of the largest relaxation time.

The molecular stress function for a linear polymer melt has to remain in the range
(0, f 2

max). When we use Eq. (A.14) in LAOS simulations, we found thatf 2 can easily
exceed the lower and upper bound under strongly nonlinear flow conditions, particu-
larly at large agesτ where the difference between two consecutive ages is large. This
makes the method unstable. For example, oncef 2 becomes negative for some value of
τ it remains negative and rapidly increases in magnitude. The instability disappeared
when we applied a transformation that ensures that the molecular stress function al-
ways remains between its lower and upper bound. For all our computations we used
the transformation

h = ln
f 2

f 2
max− f 2

which maps(0, f 2
max) to (−∞,∞). Instead of solving the differential equation forf 2,

we solve the corresponding differential equation forh. Since−∞ < h< ∞, we can not
violate any constraints. After obtaining the value ofh at a new time level, the value of
f 2 is recovered using the inverse mapping

f 2 =
eh f 2

max

1+eh

which indeed ensures that0 < f 2 < f 2
max.

In terms of timet and ageτ, the integral for the stress, Eq. (A.1), becomes

T(t) = 5
∫ ∞

0
m(τ) f 2(t,τ)Q[B(t,τ)] dτ. (A.15)

Once the molecular stress function is computed at the new time level, the polymer
stressT(ti+1) can be computed by integrating overτ. On the interval[0,τc], the inte-
gral is approximated by a finite sum and on[τc,∞) we assumef 2(t,τ) = f 2(t,τc) and
B(t,τ) = B(t,τc), so that the integral can be integrated exactly. The resulting stress at
the new time level is of the form

T(ti+1) = 5
2N

∑
k=1

wkm(τG
k ) f 2(ti+1,τG

k )Q
[
B(ti+1,τG

k )
]

+5M(τc) f 2(ti+1,τc)Q[B(ti+1,τc)], (A.16)
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wherewk, k = 1, . . . ,2N are the weights corresponding to a 2-point Gauss quadrature
rule andM(τc) = ∑i Gi exp(−τc/λi).

The numerical simulation of the Doi–Edwards model in LAOS is more straightfor-
ward since no evolution equation needs to be solved forf 2. For every time step, only
the stress needs to be computed using Eq. (A.16) withf 2 = 1 and the analytic solution
for the Finger tensor Eq. (A.12). For this we use exactly the same age discretization
as for the MSF model.

A.5 Melt properties

The linear spectrum of the Finathene melt that we use in all our viscoelastic simula-
tions is the six-mode spectrum identified in [52] where it was used for LAOS simula-
tions with the Giesekus model.

In addition to the linear spectrum, the MSF model only contains two nonlinear
parameters for the molecular stress function,a1 anda2. The parametera1 describes
the melt rheology in nonrotational flows and its value can be obtained from fitting
elongational data. Next, the value ofa2, which is relevant for rotational flows, can
be determined from the shear viscosity and first normal stress difference. For the
Finathene melt, however, only shear data are available. This is not a major limitation
since the impact of the parametera1 in large amplitude oscillatory shear flows is very
small as we show in Sec. A.7. In this section, we use the valuea1 = 0.02 which was
identified in [10] for another high-density polyethylene melt.

The second parametera2 is identified using steady shear viscosity data. These
shear data were obtained from small amplitude oscillatory shear measurements and
the Cox–Merz rule which is valid for the Finathene fluid [52]. For another high density
polyethylene melt, the value ofa2 = 2.3 was identified in [10]. Using this parameter
value, steady shear viscosity predictions also agree well with experimental data of the
Finathene fluid as can be observed from Fig. A.1. At shear rates of order unity, the
experimental data are slightly overpredicted while forγ̇ > 10 s−1 a slight underpredic-
tion is apparent. Increasing the value ofa2 leads to better agreement with experimental
data at shear rates aroundγ̇ ≈ 1 s−1. The underprediction of the data forγ̇ > 10 s−1,
however, persists and even slightly increases whena2 is increased. We conclude from
Fig. A.1 that the steady shear viscosity predictions are not very sensitive to changes
in a2 and that a rather wide range of parameter valuesa2 fits the data equally well.
For this reason, we will consider botha2 = 2.3, 4, and8 in the LAOS simulations in
Sec. A.7.
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Figure A.1: Steady shear viscosity of the Finathene melt: experimental data of [52]
and model predictions of the MSF model using various values ofa2 (a1 = 0.02).
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Results of the MSF model in large amplitude oscillatory shear will be compared
with the basic Doi–Edwards model, the Giesekus model, and the inelastic Carreau–
Yasuda model [70]. For both viscoelastic models, we use the same linear spectrum
as for the MSF model. For the Giesekus model we use in addition the nonlinear
parameter values identified in [52]. The viscosity of the Carreau–Yasuda model is
given by

η = η0 (1+[λ I2]
a)(n−1)/a , (A.17)

where I2 is the second invariant of the rate-of-strain tensord. The four adjustable
parameters in the model are the zero-shear viscosityη0, a time constantλ , the power-
law indexn and a numerical parametera. The parameters are obtained from fitting the
shear viscosity. We found a good fit usingη0 = 8.66×104 Pa s, λ = 18 s, n = 0.5,
anda = 0.85

The steady shear viscosity predictions of the Doi–Edwards and Carreau–Yasuda
models are displayed in Fig. A.2. Surprisingly, the predictions of the Doi–Edwards
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Figure A.2: Steady shear viscosity of the Finathene melt: experimental data of [52]
and model predictions of the Doi–Edwards, Carreau–Yasuda and Giesekus model.

model, which has no adjustable parameters, agree well with the data up to moderate
shear rates. At higher shear rates,γ̇ > 10 s−1, the Doi–Edwards model underpredicts
the experimental data. Up to shear rates that can be reached in the LAOS experiments
(γ̇ < 32 s−1), however, differences are relatively small. In fact, the predictions of the
DE model are only slightly lower than those of the MSF model witha2 = 8 as can be
observed by comparing Fig. A.1 and Fig. A.2. The Carreau-Yasuda fit overpredicts
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the viscosity at large shear rates. However, for the range of shear rates in the LAOS
experiments,̇γ ≤ 32 s−1, the purely viscous model shows good agreement. For further
reference, we have also included in Fig. A.2 the steady shear viscosity predictions of
the Giesekus model. The Giesekus model shows excellent agreement up to the largest
experimental shear rate.

To analyse shear predictions for a transient flow like LAOS, it is also important to
know the response in transient rheometrical flows. Figure A.3 displays the viscosity
in start up of shear and start up of uniaxial elongation at various deformation rates.
The differences between the results of the MSF models with different values of the
nonlinear parametera2 are small. Botha2 = 2.3, 4, and8 show small time overshoots
at moderate shear rates. The magnitudes of these overshoots and the steady viscosity
slightly decrease with increasing value ofa2. For the largest value ofa2 = 8, the
predictions lie only just above those of the Doi–Edwards model. For further reference,
we also include in Fig. A.3(a) the model predictions of the Giesekus model. There
are two differences with the molecular models. First, the larger time overshoots. This
becomes apparent at relatively low shear rates ofγ̇ = 1 and becomes more pronounced
when the shear rate is increased. Second, the Giesekus has a higher steady shear
viscosity at high shear rates. This is in better agreement with the data in Fig. A.1. For
the LAOS experiments, however, such high rates can not be achieved experimentally.

Figure A.3(b) shows that the differences between the models is much more pro-
nounced in start up of uniaxial extension, at significantly large values of the extension
rateε̇. The MSF model shows considerable strain hardening which increases whena1

is increased. This behaviour is absent for the Doi–Edwards model.

A.6 Validation of the numerical results

For the validation of the numerical technique and various numerical parameters, we
use the MSF model for linear polymers with parameter valuesa1 = 0.02anda2 = 2.3.
Other parameter settings, not shown in this section, gave identical results.

We first validate our numerical technique described in Sec. A.4, by comparing
with the deformation field method using the discontinuous Galerkin method to discre-
tise theτ direction in the equation governing the molecular stress function. This is
exactly the same approach as discussed in [67] for the Finger tensor. For both tech-
niques we take the sameτ discretization using 1520τ subintervals. Figure A.4(a)
shows the results of both techniques in LAOS withν = 1 Hzandγ0 = 5 which has the
highest achievable shear rate in the experiments. At the scale of the plot the methods
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Figure A.3: Transient viscosity of MSF model for various parameter settings. The
Doi–Edwards and Giesekus model are included for comparison. Deformation rates
(s−1) are indicated in the figures. (a) start up of shear fora1 = 0.02 and values of
a2 indicated in the legend, and (b) start up of uniaxial elongation for values ofa1

indicated in the legend (a2 irrelevant).



Validation of the numerical results 133

-120

-80

-40

0

40

80

120

0 0.5 1 1.5 2

T
xy

(k
Pa

)

t(s)

DG
new

(a)

-120

-80

-40

0

40

80

120

0 0.5 1 1.5 2

T
xy

(k
Pa

)

t(s)

1520
3040

(b)

Figure A.4: Validation of the numerical technique a) Comparison of new method with
the DG method of [67] b) Comparison of variousτ discretizations.
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are indistinguishable. The main difference lies in the time step employed. For the new
method we have used a time step of∆t = 2.5 10−4 s while for the DG method a time
step of∆t = ∆τ/6 is necessary for reasons of stability [67]. For aτ discretization us-
ing 1520 subintervals, the minimum length of a subinterval equals∆τmin = 9.6 10−6 s.
This requires a time step smaller than∆t = 1.6 10−6 s. In combination with the long
time required to reach a periodic steady state, such small time steps lead to long simu-
lation times for the DG method. The new technique, however, remains stable for much
larger time steps leading to substantially smaller computation times.

Second, it needs to be checked whether the discretization inτ usingN = 1520
subintervals is sufficient to capture the steady periodic stress response. In order to
verify this, we compare with aτ discretization that has twice as many subintervals,
N = 3040, which implies a smallestτ subinterval which is halved,τmin = 4.8 10−6 s.
For both computations we used a time step of∆t = 2.5 10−4 s. The steady periodic
shear stress for bothτ discretizations is displayed in Fig. A.4(b). On the scale of
the figure there are no differences between the twoτ discretizations. Henceforth, we
use the smallest number of subintervals,N = 1520, for all simulations with the MSF
model.

A time step of∆t = 2.5 10−4 s is sufficiently small to capture the steady periodic
regime as can be observed from Fig. A.5(a). When the time step is halved to∆t =
1.25 10−4 s, both time steps produce identical results on the scale of the figure. For
both simulations we usedN = 1520subintervals for theτ discretization. Henceforth,
we use∆t = 2.5 10−4 s for all LAOS simulations.

In Section A.7, LAOS simulations are performed for a time ofts = 200 s. Fig. A.5(b)
compares shear stresses usingts = 200 sandts = 1000 sfor the highest experimen-
tally achievable amplitudes at a low frequency (ν = 0.1 Hz) and a high frequency
(ν = 1 Hz). For both calculations we used∆t = 2.5 10−4 s andN = 1520. We con-
clude from Fig. A.5(b) thatts = 200 sis sufficiently large to reach the steady periodic
regime. This value ofts is a rather conservative choice. The stress maxima only differ
0.1%from the steady periodic value after 3 and 15 cycles forν = 0.1 Hzandν = 1 Hz,
respectively.

A.7 Large amplitude oscillatory shear results

The MSF theory uses the strain measure based on the independent alignment approx-
imation. In view of the large number of time steps that have to be performed, it is
advantageous to use the computationally much more efficient Currie approximation
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instead. This is a good approximation in steady and start-up of shear for the Doi–
Edwards model [68]. It is, however, a priori not clear how well both strain measures
correspond in large amplitude oscillatory shear flows of an MSF fluid. For this we
compared the steady periodic shear stress at a low (ν = 0.1 Hz) and high frequency
(ν = 1 Hz) for the two highest amplitudesγ0 that are experimentally achievable for
each frequency. As can be seen from Fig. A.6, the flow curves of the Currie and inde-
pendent alignment approximation agree very well. Only near the minima and maxima
we observe that the Currie approximation slightly overpredicts the independent align-
ment approximation. This is, however, negligible compared to the differences between
the various model predictions and the experimental data as we discuss shortly. The ap-
proximation is equally good for the other two frequencies,ν = 0.3 Hz andν = 3 Hz,
which are not shown in Fig. A.6. We conclude from Fig. A.6 that in large amplitude
oscillatory shear simulations of an MSF fluid, the Currie approximation is a very good
approximation to the independent alignment approximation of the Doi–Edwards strain
measure. Henceforth, we use the Currie approximation in all LAOS simulations.

To accurately determine the parametera1 of the MSF model for a polymeric fluid,
extensional data are required. For the Finathene melt, however, only shear data are
available. Therefore, we first compare the periodic steady shear response for two re-
alistic values ofa1. For the first value, we takea1 = 0.02 ( f 2

max = 51) as identified in
[10] for another high density polyethylene melt. The linear polymers considered in
[71] have a lowerf 2

max. For the second value, we takef 2
max = 11 which corresponds

to a1 = 0.1. Figure A.7 shows the impact ofa1 on the periodic steady shear response
for ν = 1 Hz at the two highest experimentally achievable amplitudesγ0 = 2.5 and5.
At the scale of the figure, both parameter values ofa1 result in identical model predic-
tions. We conclude that the only relevant MSF model parameter for large amplitude
oscillatory shear flow of linear polymers isa2 and henceforth we usea1 = 0.02 for all
simulations.

The LAOS experiments have been performed at various frequencies and ampli-
tudes. At low values ofν andγ0, the flow doesn’t deviate much from low amplitude
oscillatory shear. It is therefore not surprising that all viscoelastic models predict sim-
ilar results that do not differ much from the experimental data. As an example, we
display forγ0 = 1 the steady periodic response forν = 0.1 Hz and forν = 1 Hz in
Fig. A.8. All viscoelastic models considered predict the correct phase shift of the pe-
riodic shear stress. The MSF model, for all parameter values ofa2 considered, also
correctly predict the amplitude. The Doi–Edwards model, however, clearly under-
predicts the amplitude in the mildly nonlinear regime. To investigate the impact of
viscoelasticity we also display results of an inelastic model possessing only shear-
thinning behaviour. This model is only able to predict the correct amplitude and fails
to predict the phase shift. Atν = 1 Hz andγ0 = 1, which corresponds to a maximum
shear rate oḟγ ≈ 6.3, the inelastic model also significantly overpredicts the amplitude
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Figure A.6: Comparison of the steady periodic shear stress prediction of the MSF
model using the Currie and independent alignment approximation at amplitudesγ0

indicated in the figures; (a)ν = 0.1 Hzand (b)ν = 1 Hz.
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Figure A.7: Steady periodic shear stress atν = 1 Hzfor the MSF model usinga2 = 2.3
and values ofa1 indicated in the legend.

of the periodic shear stress signal.

At larger values ofγ0, differences between the various parameter settings in the
MSF model and the Doi–Edwards model become more apparent. In Figs. A.9 and
A.10we display for each frequency the steady periodic shear stress for the two largest
experimentally achievable values ofγ0.

At the lowest strains, the Doi–Edwards model consistently underpredicts the ex-
perimental data, while the MSF predictions still show good agreement for all values
of a2 considered, particularlya2 = 4. For the largerγ0 (and thus larger shear rates) the
Doi–Edwards predictions are again fairly close to the experimental data. Surprisingly,
the results are in better agreement with the experiments than most of the predictions
of the MSF model which has two extra parameters to capture the non-linear behavior.
The best MSF parameter for the largest strains seems to bea2 = 8. The parameter
valuesa2 = 4 and particularlya2 = 2.3 overpredict the shear response. This is most
apparent atν = 1 Hz, γ0 = 5 which has the highest maximum shear rate. We note
in passing that the Giesekus model also overpredicts the experimental signal at more
nonlinear flow conditions [52]. Atν = 1 Hz, γ0 = 5 the predicted shear stress ampli-
tude is for example117 kPafor the Giesekus model, while the largest amplitude that
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Figure A.8: Periodic shear stress at moderate shear rates predicted by the viscous
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indicated in the figures.
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occurs for the MSF model is113.5 kPafor a2 = 2.3. At this amplitude and frequency,
the amplitude of the experimental signal106 kPais best predicted bya2 = 8 which
gives an amplitude of106.8 kPa. The Doi–Edwards model slightly underpredicts the
amplitude,101.8 kPa. Similar trends are visible at the lower frequenciesν = 0.1 Hz
andν = 0.3 Hz. At ν = 3 Hz no data are available at high enoughγ0 to confirm the
counter intuitive result that the Doi–Edwards model gives better predictions at large
strains (large shear rates). It is remarkable that at corresponding values of the shear
rate, the steady shear viscosity data in Fig. A.1 are better predicted by the MSF and
Giesekus model than by the Doi–Edwards model which shows a stronger underpre-
diction of the shear viscosity at high shear rates. We also observe that the LAOS
simulations are more sensitive to changes in the parametera2 than steady shear flow at
corresponding shear rates. This indicates that large oscillatory shear might be a better
flow to determine the nonlinear parameters that are important for shearing flows.

The Lissajous plot for a frequencyν = 1 Hz and all experimentally available
strain amplitudes are depicted in Fig. A.11. All viscoelastic models predict the de-
viation from an ellipsoidal shape that is characteristic for the nonlinear response at
large strains. Quantitative differences are observed at the largest strainγ0 = 5 for
the Giesekus model and the MSF model, particularly witha2 = 2.3 and to a lesser
extent witha2 = 4. At this strain, predictions of the MSF model witha2 = 8 and Doi–
Edwards model are in good agreement with the experimental data. At lower strains,
however, some discrepancies are noticeable for the Doi–Edwards model. For all vis-
coelastic models, deviations are in accordance with the over and underprediction of the
amplitude of the periodic shear stress signal as a function of time observed in Fig. A.9.

For the first normal stress differenceN1, no experimental data are available. For
completeness, we have included the model predictions at experimentally achievable
strains forν = 1 Hz in Fig. A.12. The periodicN1 response has a period that is half of
the corresponding shear stress signal and has a non-zero average. All models predict
the same phase shift for all strains and nearly the same minimum value ofN1. The
difference between the models lie in the maxima of the amplitudes. Similar to the
periodic shear stress, the Doi–Edwards model predicts the lowest and the MSF model
with smallest value ofa2 the largest amplitude. Different magnitudes of the ampli-
tudes become already apparent at relatively low strains ofγ = 1 where the shear stress
predictions are still very similar, particularly for the various values ofa2 of the MSF
model (Fig. A.8). The periodic normal stress, however, can clearly be distinguished
and differences between the models continue to grow when the strain is increased.
It would be interesting to compare these results with experimental data to establish
whether the Doi–Edwards model also better predicts the first normal stress difference
at high strains.

Differences between the model predictions are better quantified in the frequency
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domain than in the time domain. Under more non-linear flow conditions, the higher
odd harmonics become more significant. The even harmonics should vanish except
for some numerical noise. For the following computations the order of magnitude of
the even harmonics was at least 6 orders lower than that of the largest odd harmonics.
We focus on the two highest experimentally achievable amplitudes at a low frequency
of ν = 0.1 Hzand a high frequency ofν = 1 Hz.

We first consider the two highest experimentally achievable strains at the lowest
frequencyν = 0.1 Hz. Table A.1 shows the Fourier coefficientsAn andBn for the MSF
model using various values ofa2. At this low frequency the response in phase with

An(kPa) Bn(kPa)
γ0 n Exp. a2 = 2.3 a2 = 4 a2 = 8 Exp. a2 = 2.3 a2 = 4 a2 = 8
5 1 10.9 9.07 8.69 8.39 38.8 39.7 38.9 38.1

3 -2.84 -3.32 -3.25 -3.13 -0.34 -0.598 -0.761 -0.847
5 0.259 0.146 0.199 0.231 -0.534 -0.499 -0.499 -0.487
7 0.027 0.139 0.159 0.160 0.116 0.001 0.029 0.068

10 1 8.44 7.41 7.14 6.94 55.3 58.7 57.5 56.4
3 -4.15 -4.92 -4.70 -4.51 -3.43 -3.75 -3.83 -3.85
5 1.38 1.48 1.47 1.43 -0.219 -0.505 -0.391 -0.311
7 -0.295 -0.030 -0.073 -0.096 0.37 0.435 0.431 0.419

Table A.1: AmplitudesAn andBn of the odd harmonics (kPa) forν = 0.1 Hz. Com-
parison of experimental data and MSF results using various values ofa2.

the shear rate is dominating and becomes more dominant when the strain is increased.
This is correctly predicted by the MSF model for all parameter values considered. Fur-
thermore, the MSF model predicts the signs of all Fourier coefficients correctly. There
are only small quantitative differences. At the low strainγ0 = 5, the low harmonics
agree best fora2 = 4, particularly the dominating amplitudeB1 which corresponds to
the lost work per cycle [48]. At the high straina2 = 8 gives the best agreement for the
dominating amplitudeB1. This explains the better agreement ofa2 = 4 at γ0 = 5 and
of a2 = 8 at γ0 = 10 in Fig. A.9.

The amplitudes of the first four non-zero harmonics for the Doi–Edwards, Carreau–
Yasuda, and Giesekus model are tabulated in Table A.2. The amplitudes of the Doi–
Edwards model closely follow the MSF results witha2 = 8, with the exception ofB1

which is somewhat lower. Atγ0 = 5, the underprediction of the amplitude of the ex-
perimental shear stress signal in Fig. A.9 is caused by an underprediction of the first
harmonicsA1 andB1. The higher harmonics of the Doi–Edwards model are, however,
in good agreement with the experimental data, while the Giesekus model predicts the
signs of some higher harmonics incorrectly. It is remarkable that at the larger strain
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An(kPa) Bn(kPa)
γ0 n Exp. DE CY G Exp. DE CY G
5 1 10.9 8.06 - 8.19 38.8 36.6 39.3 39.2

3 -2.84 -3.02 - -2.90 -0.34 -0.799 -5.29 -0.163
5 0.259 0.297 - -0.124 -0.534 -0.499 2.30 -0.704
7 0.027 0.103 - 0.151 0.116 0.106 -1.32 -0.062

10 1 8.44 6.70 - 6.51 55.3 54.1 56.2 59.4
3 -4.15 -4.34 - -4.34 -3.43 -3.71 -7.76 -3.27
5 1.38 1.42 - 1.20 -0.219 -0.284 3.43 -1.11
7 -0.295 -0.152 - 0.388 0.37 0.411 -2.01 0.419

Table A.2: AmplitudesAn andBn of the odd harmonics (kPa) forν = 0.1 Hz. Com-
parison of experimental data, Doi–Edwards, inelastic Carreau–Yasuda model, and
Giesekus model. Data for the Giesekus model are from [52].

of γ0 = 10, the differences with the experimentalA1 andB1 are considerably smaller,
resulting in a slightly better agreement with the experimental data than the best MSF
model at thisγ0. Furthermore, the higher harmonics of the Doi–Edwards model are
in excellent agreement with the experimental data while the Giesekus model shows
again much larger deviations and predicts some signs incorrectly.

At the frequencyν = 0.1 Hz and at the strain values in Table A.2, the Carreau–
Yasuda model is still able to predict correctly the coefficientB1, i.e. the lost work per
cycle. The amplitudesB3, B5, andB7, however, are off by a factor 2 to 10 and these
might have the wrong sign. Furthermore, the inelastic model only predicts non-zero
values for the coefficientsBn and is therefore incapable to predict the phase shift in
the shear stress response.

At the frequencyν = 1 Hz, the response in phase with the strain is much larger than
for the low frequency ofν = 0.1 Hz. This is correctly predicted by the MSF model.
The deviations between the experiments and the MSF results are caused by an over-
prediction ofB1, as can be observed from Table A.3. For the parameter valuea2 = 2.3,
the value ofB1 is overpredicted by at least5%and deviations become larger when the
strain increases. For larger values ofa2, the deviations from the experimentally ob-
tainedB1 become smaller. Particularlya2 = 8 agrees well with the experimental data.
For some other amplitudes likeA3 andB3, however, we then find larger differences
with the experiments. These amplitudes are off by at least25%.

Table A.4 shows the corresponding results for the Doi–Edwards, Giesekus, and
Carreau–Yasuda model. In this more non-linear regime, the purely viscous model is
not capable to predict any of the amplitudes correctly. AlsoB1 is now overpredicted
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An(kPa) Bn(kPa)
γ0 n Exp. a2 = 2.3 a2 = 4 a2 = 8 Exp. a2 = 2.3 a2 = 4 a2 = 8
2.5 1 38.0 38.6 37.0 35.6 74.6 79.2 77.7 75.7

3 -2.92 -4.09 -4.38 -4.44 2.40 1.53 1.26 0.977
5 -0.04 -0.458 -0.550 -0.576 -0.512 -0.082 -0.178 -0.346
7 0.098 0.100 0.128 0.161 0.296 -0.083 -0.073 -0.029

5 1 33.1 34.5 33.0 31.9 108 117 114 111
3 -9.66 -12.4 -12.1 -11.7 -1.23 -1.79 -2.43 -2.75
5 0.817 0.467 0.670 0.785 -1.62 -1.84 -1.83 -1.77
7 0.075 0.519 0.595 0.599 0.412 -0.008 0.095 0.238

Table A.3: AmplitudesAn andBn of the odd harmonics (kPa) forν = 1 Hz. Compari-
son of experimental data and MSF results using various values ofa2.

An(kPa) Bn(kPa)
γ0 n Exp. DE CY G Exp. DE CY G
2.5 1 38.0 34.1 - 38.2 74.6 71.6 89.5 77.8

3 -2.92 -4.52 - -3.45 2.40 1.14 -12.6 2.31
5 -0.04 -0.274 - -0.474 -0.512 -0.538 5.65 -0.227
7 0.098 0.063 - -0.008 0.296 -0.025 -3.35 -0.059

5 1 33.1 30.7 - 35.1 108 106 127 119
3 -9.66 -11.2 - -10.2 -1.23 -2.46 -18.0 -0.211
5 0.817 0.996 - -0.492 -1.62 -1.85 8.11 -2.42
7 0.075 0.391 - 0.492 0.412 0.385 4.83 -0.242

Table A.4: AmplitudesAn andBn of the odd harmonics (kPa) forν = 1 Hz. Com-
parison of experimental data, Doi–Edwards, inelastic Carreau–Yasuda model, and
Giesekus model. Data for the Giesekus model are from [52].
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considerably. The Doi–Edwards model underpredicts bothA1 and B1 at the lower
strainγ0 = 2.5. For this strain, the amplitudes of the low harmonics are better predicted
by the Giesekus and MSF model. The higher harmonics, which arise due to non-linear
effects, are again much better predicted by the Doi–Edwards than by the Giesekus
model. For the more non-linear regime at the higher strain, the Doi–Edwards model
does not only show better agreement with experimental data for the higher harmonics.
Also the dominating termB1 is much better predicted than the Giesekus model does.
This confirms the counter intuitive result found for the lower frequency ofν = 0.1 Hz
that the Doi–Edwards model, which has no nonlinear parameters and underpredicts the
steady shear viscosities at high rates, is more accurate in the more nonlinear regimes.

Figure A.13 shows the model predictions of the MSF and Doi–Edwards model
outside the experimental window. To compare the model predictions with a macro-
scopic stress model, results for the Giesekus model have been included as well. All
models predict the same trends at large strains, for example, the same sign is predicted
for all Fourier coefficientsBn andAn at large strains. The dominating amplitude isB1,
while the magnitude ofA1 decreases at large strains and reaches a plateau. For the
higher harmonics, all amplitudesBn in phase with the shear seem to reach a higher
magnitude at large strains than the corresponding amplitudesAn that are in phase with
the strain. The Fourier coefficientBn seems to continue to increase in magnitude for a
much longer range of strains than the correspondingAn, which reaches a plateau value.
For the two lowest harmonics, the plateau is reached at medium strains of 10. For the
higher harmonics much higher strains are necessary. Quantitatively, however, there are
differences between the models. Only forA1, all models predict the same values. For
all other Fourier coefficients, the Doi–Edwards model predicts the lowest magnitudes.
At large strains, the amplitudes are considerably lower than those of the MSF model
with a2 = 8. For the MSF model, the magnitudes of the odd harmonics increase when
the parametera2 is decreased. The magnitudes predicted by the MSF model with
a2 = 2.3 are, however, still considerably lower than those predicted by the Giesekus
model. Particularly for the dominant amplitudeB1 the molecular models predict sig-
nificantly lower magnitudes at large strains. This is consistent with the smaller time
overshoots for these models in the transient shear viscosity in Fig. A.3(a). Whether
the trends at large strains are correct and whether the Doi–Edwards predictions are
still more accurate than those of the nonlinear models remains to be established.

A.8 Concluding remarks

We have evaluated the rheometrical response of the integral molecular stress function
model in large amplitude oscillatory shear. For reasons of efficiency, we modified the
deformation field method to avoid the restrictive time step constraint resulting from
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Figure A.13: AmplitudesAn andBn of the odd harmonics (kPa) outside the experimen-
tal window for MSF model using values ofa2 as in the legends. The Doi–Edwards
and Giesekus model are included for comparison.
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the discontinuous Galerkin method used in [67]. The new technique is both accurate
and efficient for the LAOS computations we performed.

In LAOS, the MSF model only has one relevant material parameter to describe
the nonlinear material response. By fitting this parameter to steady shear data of a
linear high-density polyethylene melt, the MSF model is able to predict qualitatively
and quantitatively the response in large amplitude oscillatory shear. Up to medium
strains, results agree very well with experimental data and are comparable with those
of a six-mode Giesekus fluid, having six parameters to describe the nonlinear material
response. At medium strains the nonlinear response becomes important. As expected,
the introduction of the molecular stress function results in better predictions than the
basic Doi–Edwards theory which has no material parameters to describe the nonlinear
response. Although correctly predicting the phase shift, the DE model underpredicts
the amplitude of the experimental signal. This is caused by an underprediction of the
amplitude of the most dominant odd harmonics.

At the highest experimentally achievable strains both the MSF and Giesekus model
overpredict the amplitude of the periodic shear stress, although this is more significant
for the Giesekus model. At these strains, however, it is the Doi–Edwards model that
shows excellent agreement with the experimental data. In the time domain it only
slightly underpredicts the amplitude of the periodic shear stress. In the frequency do-
main the correspondence of both the dominant harmonic and the higher odd harmonics
is striking. We recall that the DE model does not have any nonlinear parameters and
underpredicts the steady shear stress at high shear rates. This is a remarkable and un-
expected result indeed. Whether this trend continues at higher strains remains to be
established. Since the Doi–Edwards model is well known to underpredict experimen-
tal data in start-up of shear and steady shear flows, this also raises the question whether
the experimental data are somewhat inaccurate at high strains. Further experimental
results are clearly needed to confirm our counter intuitive findings at high strains.
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