
HAL Id: tel-04581830
https://hal.science/tel-04581830

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Industrial Internet of Things through
Software-Defined Networking: from building the

network to flow management
Farzad Veisi Goshtasb

To cite this version:
Farzad Veisi Goshtasb. Enhancing Industrial Internet of Things through Software-Defined Networking:
from building the network to flow management. Computer science. Strasbourg University, 2023.
English. �NNT : �. �tel-04581830�

https://hal.science/tel-04581830
https://hal.archives-ouvertes.fr

École doctorale MSII

Enhancing Industrial Internet of

Things through Software-Defined

Networking: from building the network

to flow management

THÈSE
pour obtenir le grade de

Doctorat de l’Université de Strasbourg

(mention informatique)

Defended on 20 November 2023

présentée par

Farzad VEISI GOSHTASB

Composition du jury

Directeurs de thèse: Dr. Fabrice THEOLEYRE, Directeur de recherche, CNRS, France

Dr. Julien MONTAVONT, Maitre de conférences HDR,

Université de Strasbourg, France

Rapporteurs: Prof. Alexandre GUITTON, Professeur, Universite Clermont Auvergne,

France

Dr. Valeria LOSCRI, Chargée de recherche HDR, Centre Inria de

l’Université de Lille, France

Examinateurs: Prof. Isabelle CHRISMENT, Professeur, Universite de Lorraine, France

Dr. Oana IOVA, Maitre de conférences, INSA Lyon, France

Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie

ICUBE — UMR 7357

Acknowledgments

I would like to express my deepest gratitude and appreciation to all those who have
contributed to the completion of this Ph.D. thesis. This journey, particularly start-
ing in the middle of the Covid-19 pandemic, has been challenging yet immensely
rewarding, and I owe my success to the support and encouragement of many indi-
viduals.

First and foremost, I extend my sincere thanks to my supervisors, Fabrice Theo-
leyre and Julien Montavont, for their unwavering guidance, insightful feedback, and
constant support throughout the research process. Their expertise and mentorship
have been invaluable in shaping the direction of my research.

I am grateful to the members of my doctoral committee, Alexandre Guitton,
Valeria Loscri, Isabelle Christment, and Oana Iova, for their constructive feedback
and valuable suggestions that significantly improved the quality of this work.

Not to forget my colleagues from the Network research group, including profes-
sors and students. A special thanks to the Ph.D. students who made my adaptation
to the new country much easier. Renato Caminha, for all the unforgettable sup-
port that enabled me to gather essential administrative information to adapt to the
conditions. Amaury Bruniaux, for all our discussions in the lab, and I remember
well the idea of the second contribution of my thesis sparked when we had been
discussing together about a research challenge. Jean Romain, for sharing his expe-
riences, particularly in the preparation before the defense. Thomas Alfroy, Thomas
Holterbach, Jean-Philippe Abegg, I wish the best for all of you. Also, for the new
members of the team, Samir Si-Mohammed and Ahmad Mahmod, I wish the best
for your research and future.

Special thanks to all of our dear friends with whom we have spent a very mem-
orable time together in Strasbourg, especially our beloved couple friends: Moham-
madReza (Zolala) and Nastaran, MohammadReza (Dolatpoor) and Isun, Amir and
Niloofar, Omid and Elnaz, Mohammad and Maliheh, Sina and Firoozeh, Daroush
and Solmaz.

i

ii

I extend my deepest gratitude to both my family and my wife’s family for their
unwavering support and encouragement throughout my Ph.D. journey. Their belief
in my abilities and shared joy in my accomplishments have been instrumental in my
success. I am truly fortunate to have such a supportive network of families, and I
am grateful for their enduring presence in my life.

Last but not least, I want to express my deepest appreciation to my wife, Sanaz.
Your unwavering support, encouragement, and enduring presence have been my
greatest strength throughout the highs and lows of my Ph.D. journey. Your belief
in me, coupled with your boundless support, has made all the difference. You
are the golden gift of my life, and I am profoundly grateful for all the love and
encouragement you have showered upon me. Thank you for being my rock and my
source of inspiration. I cherish the endless support you have provided, and I am
truly fortunate to have you by my side. I dedicate this thesis to her, with love and
gratitude. Thanks, my love.

Farzad Veisi Goshtasb,
November 2023

Abstract

Industry 4.0 represents a transformation in the way industries operate, making them
more efficient, adaptable, and responsive to application demands. It has the poten-
tial to drive significant advancements in manufacturing and industrial automation.
In this context, Industrial Wireless Sensor Networks (IWSNs) play a pivotal role in
enabling the Industry 4.0 revolution. The network infrastructure assumes a critical
role in interconnecting sensors and actuators while adhering to Service Level Agree-
ments (SLAs). Typically, each device hosts a critical application that generates
data packets, necessitating high Quality of Service (QoS) in terms of reliability and
latency.

Typically, IWSNs rely on deterministic protocols and mechanisms to minimize
uncertainties, ensuring predictability and reliability. In the Medium Access Control
(MAC) layer, time and frequency resources are dedicatedly allocated to devices for
accessing the generally shared medium and sending their data without contention.

However, a network scheduler is needed to carefully manage resource allocation
based on network demands. While distributed scheduling approaches fail to achieve
optimal performance due to their partial knowledge of the network, centralized
schedulings are able to define efficient schedules while considering applications’ QoS
requirements. Nevertheless, centralized scheduling approaches require a mechanism
to gather network information and push the defined schedule to the network, making
them challenging to implement practically.

Software Defined Network (SDN) presents high potential to enable centralized
scheduling in IWSNs by collecting network statistics in an intelligent SDN controller
and then pushing the defined scheduling rules to the devices. However, exploiting
SDN in wireless networks presents additional challenges due to the lossy nature of
wireless links, which can jeopardize communication between devices and the con-
troller.

In this thesis, we present an SDN solution for IWSNs. Firstly, we develop
a dedicated control plane configuration to ensure the reliability of control plane

iii

iv

communication. Then, we introduce a call admission system that enables devices to
communicate their QoS requirements to the SDN controller, which then configures
and allocates appropriate resources to each data plane flow.

Additionally, we propose an accurate and energy-efficient topology discovery and
Link Quality Estimation (LQE) method, allowing the controller to construct a pre-
cise network topology view. This precise LQE approach is crucial for our scheduling
algorithm, as it helps prevent overestimation or underestimation of resource provi-
sioning, thereby avoiding bandwidth wastage and SLA violations.

Finally, we introduce an efficient solution for maintaining scheduled SDN net-
works due to the time-varying nature of wireless links. The controller monitors link
quality changes and triggers reconfigurations when significant changes occur. This
process involves both control and data plane updates, impacting schedules on the
weak links. To tackle this, we propose an efficient mechanism that minimizes control
traffic and reconfiguration time while preserving SLAs for critical flows.

List of Publications

Journal paper

• Farzad Veisi, Julien Montavont, and Fabrice Theoleyre. “Enabling Centralized
Scheduling Using Software Defined Networking in Industrial Wireless Sensor
Networks”. In: IEEE Internet of Things Journal (2023).

Conference papers

• Farzad Veisi, Julien Montavont, and Fabrice Theoleyre. “SDN-TSCH: En-
abling Software Defined Networking for Scheduled Wireless Networks with
Traffic Isolation”. In: 2022 IEEE Symposium on Computers and Com- muni-
cations (ISCC). IEEE. 2022, pp. 1–7.

• Farzad Veisi, Julien Montavont, and Fabrice Theoleyre. “Link Quality Estima-
tion in Wireless Software Defined Network with a Reliable Control Plane”. In:
2023 IEEE 9th International Conference on Network Softwarization (NetSoft).
IEEE. 2023, pp. 10–18.

• Farzad Veisi, Julien Montavont, and Fabrice Theoleyre. “Efficient and Reliable
Maintenance for SDN-based Scheduled Wireless Networks”. In: 2024 IEEE
Consumer Communications & Networking Conference (CCNC). IEEE. 2024.

v

We live on an island surrounded by a sea of ignorance. As our island of knowledge
grows, so does the shore of our ignorance. (John Archibald Wheeler)

Contents

1 Introduction 1

1.1 Industrial Wireless Sensor Network Applications 2

1.2 Motivation and Contribution . 5

1.3 Structure of Thesis . 7

2 Background & State of the Art 9

2.1 Industrial Wireless Sensor Network 10

2.1.1 Industrial Networking Stack 10

2.1.2 Industrial Standard Technologies 12

2.2 IEEE 802.15.4-TSCH Background . 15

2.2.1 Medium Access . 15

2.2.2 Association to TSCH Network 16

2.2.3 Synchronization . 17

2.2.4 Frequency Hopping Mechanism 18

2.2.5 Scheduling . 19

2.3 Software Defined Networking for IWSN 24

2.3.1 SDN for Wireless Sensor Network (WSN): Limitations 25

2.3.2 SDN for Scheduling Management 28

2.3.3 Topology Discovery in Wireless SDN Networks 32

2.3.4 Link Quality Estimation in Wireless SDN Networks 32

2.4 Summary . 36

3 SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation 39

3.1 SDN-TSCH Overview . 40

3.2 Label Switching for SDN . 41

3.3 Slotframe and Schedule Organization 42

vii

viii Contents

3.4 Discovery Process . 43

3.5 Joining Process . 45

3.6 Resource Allocation for the Data Plane 47

3.7 Performance Evaluation . 49

3.7.1 Comparison of SDN-TSCH and SDNWISE-TSCH 50

3.7.2 Comparison of SDN-TSCH and MSF 53

3.8 Conclusion and Future Works . 57

4 SDN Architecture Improvements in Link Quality Estimation &

Control Plane 59

4.1 Discussion on Link Quality Estimation 60

4.2 Accurate Link Quality Estimation 61

4.3 Organization of the Shared Cells in the Control Plane 62

4.4 Schedule of EBs Shared Cells . 63

4.5 Numerical Estimation of Shared Cells for non-EB Traffic 64

4.6 Resource Allocation and Configuration of Control Plane 65

4.6.1 Dedicated Control Plane . 65

4.6.2 Shared Control Plane . 66

4.6.3 Hybrid Control Plane . 66

4.7 Performance Evaluation . 67

4.7.1 Accuracy of the Link Quality Estimation 67

4.7.2 Efficiency of Dedicated and Hybrid Control Planes 68

4.8 Conclusion and Future Works . 72

5 Maintenance of Software Defined IWSN 73

5.1 Scheduled SDN Reconfiguration Overview 74

5.2 Fault Detection & Parent Selection 74

5.3 Control and Data Planes Update . 76

5.4 (Re)-scheduling Algorithm . 77

5.5 Obsolete Cells Removal . 80

5.6 Performance Evaluation . 80

5.6.1 Results and Comments . 81

5.7 Conclusion and Future Works . 84

6 Conclusion and Future Research Directions 85

6.1 Short Term Research Direction . 87

6.1.1 Parent Selection Criteria . 87

ix

6.1.2 Centralized Channel Blacklisting 87

6.1.3 Exploration of Benchmark Scheduling Schemes 88

6.2 Long Term Research Direction . 89

List of Figures 93

List of Tables 95

Chapter 1
Introduction

Contents
1.1 Industrial Wireless Sensor Network Applications 2

1.2 Motivation and Contribution 5

1.3 Structure of Thesis . 7

Wireless Sensor Networks (WSNs) merge sensor technology with wireless com-
munication, creating a versatile platform with diverse applications [1]. They are
designed to autonomously gather data from physical environments through plenty
of sensor nodes, wirelessly transmitting this information to a central hub for more
advanced analysis. This concept has found compelling applications across various
domains. WSNs are used to monitor the environment for changes and hazards, in-
cluding temperature, humidity, air quality, and pollution levels [2]. In smart cities,
they enable tasks such as traffic management, waste management, energy efficiency,
and public safety by providing timely data for decision-making [3]. Within health-
care facilities, WSNs support remote patient monitoring and improve the quality of
life for the elderly people [4].

Relying on wireless communications as a key enabler brings a range of valuable
features. One of the key benefits is cost reduction, as they eliminate the need for
expensive wiring installation and maintenance [5]. Rapid installation, easy mainte-
nance, and system reconfigurations further contribute to saving time and lowering
operational costs. Additionally, wireless technologies provide a high level of flexibil-
ity, enabling easy addition and removal of sensor nodes and equipment [6].

WSNs are characterized by their resource limitations, including limited energy
sources, constrained communication ranges, limited available bandwidth, and re-
stricted processing and storage capabilities inherent to each sensor node [7]. These
constraints present substantial technical challenges in designing and optimizing
WSNs. Addressing these challenges involves innovative hardware design, energy-

1

2 Chapter 1. Introduction

efficient protocols, and advanced data management techniques to ensure optimal
network performance.

Moreover, the design constraints of WSNs depend on the specific application [8]
and the unique environment, influencing choices like communication protocols, node
placement, data strategies, and power management. Therefore, effective design
in WSNs requires a holistic understanding of both the resource constraints and
the application-specific requirements to ensure the network operates efficiently and
effectively.

1.1 Industrial Wireless Sensor Network Applications

Even more rigorously compared to the WSNs, Industrial Wireless Sensor Networks
(IWSNs) must also guarantee specific Service Level Agreements (SLAs) of industrial
applications. They demand specific characteristics in terms of reliability and la-
tency that differentiate IWSNs from conventional WSNs [9, 10]. Additionally, due
to longer operational periods between maintenance cycles and the potential lack of
nearby power sources, low-power consumption is imperative for industrial wireless
devices.

Industry 4.0 aims to enable automation and the employment of smart facto-
ries, thereby creating highly flexible and reconfigurable production lines [11]. By
systematically collecting extensive data from the factory floor, a smart factory can
achieve a high level of information transparency and enable more informed decision-
making through data analysis. The primary motivation behind this analysis is to
enhance industrial operations in several critical ways. Firstly, it enables predictive
maintenance, whereby historical and real-time sensor data is analyzed to predict
equipment failures or performance degradation before they occur. By proactively
scheduling maintenance only when needed, companies can reduce downtime, mini-
mize repair costs, and extend the lifespan of machinery [9]. Secondly, data analysis
aids in quality control by continuously monitoring sensor data for variations or
deviations in production processes [12]. Any anomalies detected can trigger immedi-
ate adjustments to maintain product consistency and quality. Lastly, operational
efficiency is improved as data analysis identifies inefficiencies or bottlenecks in in-
dustrial processes, allowing organizations to optimize their workflows and resource
allocation, leading to cost savings and increased productivity.

As illustrated in Figure 1.1, a set of sensors and actuators are disseminated
throughout the industrial environment to construct a wireless network [13]. Typ-
ically, multi-hop communication is essential in this context to overcome obstacles,
extend coverage, and ensure reliable data transmission [14]. In industrial environ-
ments, where sensors are often distributed across expansive areas and may encounter

1.1. Industrial Wireless Sensor Network Applications 3

Gateway

Internet

Control and Monitoring Unit

Sensor device

Actuator

Wireless link

Sensor (e.g., pressure sensor for water/oil
Model: ATO-BRW100-1102)

Actuator (e.g., for valve control)

Figure 1.1: Industrial Wireless Sensor Network scenario

physical obstacles such as machinery, walls, or metal structures, multi-hop commu-
nication enables data to navigate through a series of intermediate nodes, effectively
bypassing these obstacles. This capability not only extends the network’s coverage
to reach sensors in remote or obstructed locations but also ensures the reliabil-
ity of data transmission. By offering redundancy, energy-efficient data relay, and
adaptability to changing network conditions, multi-hop communication enhances
the resilience and performance of IWSNs in demanding industrial settings.

As defined by the ISA100 committee (Table 1.1), industrial process automation
applications are categorized into six classes, spanning from critical control to moni-
toring, each characterized by distinct latency and reliability requirements. Class 0 is
the most time-sensitive, demanding less than 10 ms latency. Consequently, this class
might not be suitable for transmission over a wireless multi-hop network [15]. Classes
1 to 3 are primarily designed for control loops, with required latencies ranging from
10 to 100 ms, depending on the specific application requirements. Monitoring ap-
plications are the least latency-sensitive, where data transmission delays can extend
to several thousand milliseconds.

4 Chapter 1. Introduction

Table 1.1: Classes of industrial process automation applications [15]

Category Class Application Latency Criticality

Safety 0 Emergency action: emergency shut-
down, automatic fire control, Leak
detection

10 ms
maximum

La
te

nc
y

an
d

re
lia

bl
y

re
qu

ir
em

en
ts

in
cr

ea
se

Control

1 Closed-loop regulatory control: di-
rect control of actuators, pumps, and
valves, automated shutdown

10 - 100
ms based
on
application2 Closed-loop supervisory control:

optimizing control loops, flow diversion

3 Open loop control: annual
adjustments

100 ms
average

Monitoring

4 Alerting: event-based maintenance,
vibration monitoring, motor tempera-
ture monitoring

5 Logging: history collection, preven-
tive maintenance record

The sensory device utilizes built-in sensors to measure parameters such as tem-
perature, humidity, pressure, and motion [16]. Adapting to different tasks in in-
dustrial automation, devices may generally employ different traffic generation be-
haviors. Periodic traffic is generated to ensure continuous machine health updates,
enhancing efficiency through predictive maintenance [17]. For instance, closed-loop
motion control for a conveyor belt uses position sensors to generate cyclical data,
allowing a controller to adjust motor actions like adjusting the motor’s speed and
direction. Conversely, event-driven traffic promptly alerts sudden equipment prob-
lems [18]. For example, in a bottle manufacturing plant’s closed-loop supervisory
system, event-based sensor feedback regulates critical processes like bottle filling,
capping, and defect detection, rather than relying on continuous monitoring.

Various traffic patterns can be explored within IWSNs, such as convergecast and
point-to-point [19]. In the convergecast pattern, sensors transmit their measure-
ments to a central computing control unit for subsequent processing. Point-to-point
traffic enables direct data exchange between two specific nodes. Also, the controller
can send a command to a sensor node or actuator to configure or trigger an action.
A gateway device serves as a bridge, connecting the wireless network to external
computing systems, typically through an IP network.

Achieving both high end-to-end reliability and bounded latency at the same time
is crucial in IWSNs. This means that a certain percentage of generated packets must
be received at the destination before a given deadline [20], enabling timely decisions
and reactions. However, meeting these strict requirements becomes challenging due
to the lossy and broadcast nature of wireless links, which can lead to packet failures

1.2. Motivation and Contribution 5

caused by various factors such as wireless channel conditions, collisions, or external
interference [21].

1.2 Motivation and Contribution

Deterministic Medium Access Control (MAC) protocols are well-suited for IWSNs
by minimizing uncertainties and providing predictable communication [22]. They
achieve this through techniques like timeslot allocation, and frequency hopping, en-
suring low-latency and reliable communication. However, a scheduler is essential
to carefully allocate time and frequency resources to each transmitter, ensuring ad-
herence to the defined SLAs (end-to-end Packet Delivery Ratio and latency require-
ments) of each application. Distributed schedulings cannot guarantee a collision-free
schedule due to the suboptimal view of the network [23]. Indeed, each pair of devices
has to locally negotiate the resources to use, which may create collisions with al-
ready established interfering flows. Alternatively, centralized scheduling algorithms
can provide stringent guarantees by utilizing graph-based and coloring approaches.
More precisely, thanks to the comprehensive knowledge of the network, determining
the optimal resources within a central entity is straightforward. However, gather-
ing the network information to define the schedule and pushing the schedule to the
network remain challenging tasks.

Software Defined Network (SDN) paradigm proposes significant potential for en-
abling efficient centralized network management [24]. SDN involves the separation
of the control plane (the intelligence part) and the data plane (the forwarding part)
in network devices, introducing centralized control and programmability to network
management. In this framework, SDN controller(s) (logically centralized) makes de-
cisions in terms of rules governing how data packets should be forwarded and then
pushes these rules to data plane devices. Forwarding devices only need to look up in
their flow table to handle data packets efficiently, simplifying packet processing and
eliminating the need for complex, distributed logic. The centralization empowers
the SDN controller with a comprehensive view of the network, allowing for precise
definition of forwarding rules. A southbound API serves as the communication in-
terface between the SDN controller and forwarding devices. Indeed, devices need to
regularly interact with the controller to inquire about new flows and share statistical
information. In response, the controller configures the devices with the appropriate
forwarding rules. The southbound API protocol should be reliable enough to ensure
a timely communication between SDN controller(s) and devices.

In particular, the SDN concept can be applied in IWSNs to enable precise cen-
tralized scheduling, ensuring flow guarantees for critical applications [25]. The con-
trol plane is responsible for gathering network information and pushing the defined

6 Chapter 1. Introduction

schedule in the form of rules. However, in wireless networks, an SDN controller
assumes more extensive role, which entails additional feature requirements com-
pared to its classical tasks in wired networks. The controller needs to accommodate
unreliable and shared wireless links, preventing collisions while establishing a ro-
bust control plane communication. It must also configure the data plane flows with
sufficient radio resources to meet the SLAs of applications. This entails reserving
extra radio resources for weak links, enabling nodes to retransmit packets in case of
transmission failures.

To define the forwarding rules and schedule radio resources, the SDN controller
relies on local information from neighboring nodes and the link qualities provided
by each node to the controller. However, this entails additional procedures for the
devices beyond their forwarding tasks to gather this information. They need to
effectively discover their neighbors through control traffic exchange. This proce-
dure must be energy-efficient to be compatible with battery-constrained devices in
IWSNs. Additionally, the gathered information must be accurate enough to avoid
misleading the controller’s decisions. Erroneous link quality can cause the controller
to either over-allocate or under-allocate resources, potentially resulting in bandwidth
wastage or SLA violations, respectively.

Furthermore, the SDN controller should incorporate fault tolerance mechanisms
for updating the network configuration when network conditions, such as link quality
and traffic load change. Since changing link quality can affect multiple flows, it
places a significant reconfiguration burden on the controller, necessitating updates
to the routing and scheduling of all the impacted flows. This issue can impact
both the reconfiguration time for critical flows and the energy consumption of the
network.

• How to establish a reliable control plane over multi-hop, lossy and
shared wireless links?

• How to enable centralized scheduling for flow guarantees in critical
IWSN applications?

• How to provide accurate and energy-efficient topology discovery and
link quality estimation in software defined IWSNs?

• How to enable cost-effective and continuous network reconfiguration
in software defined IWSNs?

Main Research Question

1.3. Structure of Thesis 7

We present three main contributions in this thesis to address those research gaps.

1.3 Structure of Thesis

In Chapter 2, we provide the essential background knowledge required to compre-
hend our contributions and provide insights into the state of the art solutions for
SDN in IWSNs.

In Chapter 3, we present our first contribution, an SDN architecture for IWSNs,
with a focus on ensuring flow guarantees. We provide a detailed explanation of how
a reliable control plane is configured for a new node when joining the network. Ad-
ditionally, we describe the process of admitting a data flow and configuring sufficient
resources for it.

In Chapter 4, we present our second contribution on accurate and energy-efficient
link quality estimation for software defined IWSNs. Additionally, we evaluate the
efficiency of different control plane approaches in terms of energy consumption and
reliability.

Chapter 5 extends the functionality of the SDN controller introduced in Chapter
3 to continuously update the network configuration as wireless link quality changes.
We detail how we minimize the reconfiguration cost in scheduled SDN networks.

Finally, in Chapter 6, we present our conclusions from the research conducted
during this doctoral program and discuss interesting research directions in the field
of SDN scheduled networks.

8 Chapter 1. Introduction

Chapter 2
Background & State of the Art

Contents
2.1 Industrial Wireless Sensor Network 10

2.1.1 Industrial Networking Stack 10

2.1.2 Industrial Standard Technologies 12

2.2 IEEE 802.15.4-TSCH Background 15

2.2.1 Medium Access . 15

2.2.2 Association to TSCH Network 16

2.2.3 Synchronization . 17

2.2.4 Frequency Hopping Mechanism 18

2.2.5 Scheduling . 19

2.3 Software Defined Networking for IWSN 24

2.3.1 SDN for WSN: Limitations 25

2.3.2 SDN for Scheduling Management 28

2.3.3 Topology Discovery in Wireless SDN Networks 32

2.3.4 Link Quality Estimation in Wireless SDN Networks . . . 32

2.4 Summary . 36

This chapter provides an overview of industrial applications and standard tech-
nologies, with a particular focus on IEEE 802.15.4-TSCH [26] protocol. It follows by
introducing the concept of Software Defined Network (SDN) and its exploration in
the context of wireless sensor networks, specifically Industrial Wireless Sensor Net-
work (IWSN). Furthermore, the chapter explores the discussion of state-of-the-art
solutions in this field. Additionally, the chapter investigates the crucial role of topol-
ogy discovery and link quality estimation in topology construction and influencing
resource allocation within wireless SDN networks.

9

10 Chapter 2. Background & State of the Art

2.1 Industrial Wireless Sensor Network

As applications require a high guaranteed delivery ratio and low latency in IWSNs,
they also encounter a critical challenge regarding their network lifespan. Due to the
limited resources and small size of wireless nodes, the implementation of a complex
and computationally exhaustive communication protocol becomes impractical [27].
So, to attain sufficient efficiency, multiple networking layers are engaged.

The growing number of industrial applications has led to the emergence of dif-
ferent wireless communication standard technologies, each designed to fulfill the
specific needs of industrial environments. These technologies differ in features such
as communication range, data rate, power consumption, and network reliability,
providing options to address different industrial requirements.

2.1.1 Industrial Networking Stack

Various mechanisms and features must be considered across the network layers to
overcome IWSN constraints and ensure efficient communication.

The Medium Access Control (MAC) layer plays a crucial role in managing ac-
cess to the shared wireless medium among sensor nodes. It can employ different
mechanisms, such as contention-based, contention-free approaches, and duty cy-
cling techniques [28]. In contention-based protocols, nodes compete for access to
the wireless channel when they have data to transmit. This competition is mainly
done using Carrier Sense Multiple Access (CSMA) [29], where nodes listen to the
channel before transmitting. If the channel is idle, they can transmit, else, they back
off and try again later. While contention-based protocols are simple and efficient
for low to moderate network loads, they can lead to collisions and increased energy
consumption in high-density networks [30]. Therefore, they are not recommended
for use in applications that require Service Level Agreements (SLAs) [31].

Contention-free protocols allocate dedicated resources such as timeslots or fre-
quencies to different nodes, allowing them to transmit without contention. Time
Division Multiple Access (TDMA) is a common example of contention-free MAC.
TDMA assigns non-overlapping timeslots to nodes, reducing collisions and ensuring
predictable access to the channel. However, contention-free MAC requires syn-
chronization between nodes and may not be as flexible in handling dynamic traffic
patterns [32].

Duty cycling is commonly used to conserve energy in Wireless Sensor Network
(WSN)s by periodically putting nodes into a low-power sleep state [33]. The duty
cycle is the ratio of time the node stays active to the total time. Instead of keeping
nodes active all the time, they alternate between active and sleep periods. During
the sleep period, a node turns off its radio and other power-consuming components,

2.1. Industrial Wireless Sensor Network 11

S

D
S

D

Source node

Destination node

Router node

Selected route

Figure 2.1: Routing scenario in wireless networks

which reduces energy consumption. When a node needs to transmit or receive data,
it wakes up from the sleep state and engages in the network operation. It is worth
noting that the duty cycle concept is applicable to both contention-based [34] and
contention-free [35] approaches. ContikiMAC [36] exploits duty cycling while relying
on a contention-based mechanism to access the channel. On the other hand, IEEE
802.15.4-TSCH [26] can allocate time-frequency blocks to different nodes, allowing
them to awaken solely during their designated slots.

The routing protocol (Figure 2.1) plays a significant role in finding the most
reliable path from the source to the destination in the multi-hop networks [37].
There are various routing protocols designed to meet the specific challenges and
characteristics of WSNs. LOADng [38] emphasizes on-demand path establishment,
DSDV [39] utilizes a table-driven approach, LEACH [40] focuses on energy efficiency
with clustering, while RPL [41] is designed to facilitate convergecast routing in low-
power and lossy networks. The choice of routing protocol depends on the application
requirements, network size, energy constraints, and the desired trade-offs between
factors like energy efficiency, latency, and reliability. For instance, energy-efficient
protocols (e.g., LEACH [40]) may prioritize energy consumption and residual en-
ergy [42], while real-time applications may emphasize low end-to-end delay and high
throughput [43] (e.g., RPL [41]).

Cross-layer network design plays a pivotal role in the realm of IWSN applications.
It empowers the configuration, optimization, and adaptability of network protocols
and functionalities to fulfill the stringent SLAs demanded by industrial applications.

12 Chapter 2. Background & State of the Art

2.1.2 Industrial Standard Technologies

Wireless standard technologies are purposefully designed with specific goals in mind
to effectively meet the requirements of industrial applications (Table 2.1). For ex-
ample, the Long Range Wide Area Network (LoRaWAN) is specifically designed for
long-range communication with low data rates and low-power applications such as
environmental monitoring, asset tracking, and smart agriculture. It follows a star
topology, where end devices communicate directly with the gateway [44]. Devices
exploit a random access method for upward data transmission, which can lead to
frequent collisions [45].

Bluetooth Low Energy (BLE) [46] targets short-range and low-power applica-
tions such as healthcare and smart house applications. It employs a star topology
where a central device, such as a smartphone or a computer, communicates with
peripheral devices, like sensors or wearable devices, using short data packets and effi-
cient power management mechanisms [47]. BLE utilizes Frequency Hopping Spread
Spectrum (FHSS) for data transmission, enhancing its robustness against noise and
interference. However, BLE’s star network topology has limitations in terms of scal-
ability and range. To address these challenges and enable larger-scale networks,
Bluetooth Mesh was introduced [48]. By designating certain nodes as relays, it
introduces a mesh networking topology that enables multi-hop communication, ef-
fectively extending range and coverage.

The IEEE 802.11 (WiFi) standard is commonly used for high-rate communi-
cation in enterprise and home networks. Its advanced version, IEEE 802.11ah, is
specifically designed for low-power, long-range applications in the Internet of Things
(IoT) domain. Unlike traditional Wi-Fi versions, IEEE 802.11ah operates in the
sub-1 GHz frequency band, such as 900 MHz, which allows it to achieve extended
coverage and better penetration through obstacles like walls and buildings, making
it suitable for large-scale and outdoor IoT deployments [49]. Additionally, 802.11ah
uses narrower channel bandwidths (1 MHz or 2 MHz) compared to regular Wi-Fi,
which contributes to its improved energy efficiency [50]. These narrower channels re-
duce power consumption, enabling devices to operate on battery power for extended
periods, making IEEE 802.11ah an excellent choice for energy-constrained IoT ap-
plications. Furthermore, 802.11ah supports a large number of nodes per network,
making it scalable for scenarios with thousands of connected devices [51].

IEEE 802.11ax (Wi-Fi 6) exploits the advancements of IEEE 802.11ah, utiliz-
ing features like Basic Service Sets (BSSs) coloring and Target Wake Time (TWT)
to enhance network efficiency and performance [52]. BSS coloring assigns distinct
"colors" to BSSs within a frequency spectrum, reducing interference from neighbor-
ing networks and enhancing overall network performance. TWT coordinates device
wake times, optimizing power efficiency by allowing devices to synchronize their

2.1. Industrial Wireless Sensor Network 13

Table 2.1: Comparison of different standard technologies for IWSN

MAC scheme Data rate Power con-
sumption
(mA)

Range Topology Frequency

LoRaWAN ALOHA 50 Kbps Tx:21-41
Rx:12

15 km Star Sub GHz
(ISM)

BLE TDMA 1 Mbps Tx:39 Rx:37 50 m Star, mesh 2.4 GHz
(ISM)

WiFi (802.11ah) CSMA/CA 150 Kbps Tx:100-300
Rx:50-150

1 km Star Sub GHz
(ISM)

WiFi6 (IEEE
802.11ax)

OFDMA 9.6 Gbps Tx:100-400
Rx:50-200

240 m Star 2.4/5/6 GHz
(ISM)

NB-IoT TDMA/FDMA 250 Kbps Tx:100-300
Rx:50-150

10 km Star Sub GHz
(LTE)

WirelessHART FTDMA 250 Kbps Tx:20 Rx:9 225 m Mesh 2.4 GHz
(ISM)

ISA100.11a FTDMA/CSMA-CA 250 Kbps Tx:27 Rx:15 100 m Star, mesh 2.4 GHz
(ISM)

TSCH FTDMA/CSMA-CA 250 Kbps Tx:18 Rx:20 100 m Star, mesh,
tree

Sub/2.4 GHz
(ISM)

communication with access points, crucial for battery-operated devices. Wi-Fi 6
extends the benefits of Multi-User, Multiple Input Multiple Output (MU-MIMO),
allowing both downlink and uplink MU-MIMO communication. This means the
access point can simultaneously communicate with multiple devices using multiple
spatial streams. By integrating these elements, Wi-Fi 6 effectively addresses the
challenges posed by increasing device densities and data demands, offering higher
performance, efficiency, and support for diverse environments such as stadiums, air-
ports, and smart homes.

Narrowband Internet of Things (NB-IoT) [53] is a low-power standard technology
enabling efficient and reliable communication in IoT devices via the existing Global
System for Mobile (GSM) network and utilizing the licensed cellular spectrum of
4G LTE networks. NB-IoT operates in the sub-1 GHz frequency band, providing
excellent coverage, range, and the ability to penetrate deep indoors and overcome
obstacles like walls and buildings [54]. This unique capability makes NB-IoT well-
suited for remote and hard-to-reach locations, offering reliable connectivity for IoT
applications in challenging environments. In a star topology, IoT devices (end nodes)
connect to and communicate with a central network element called the base station.
The base station acts as a gateway to the core network, enabling data exchange
between the IoT devices and the cloud or other servers.

WirelessHART [55], introduced by the HART (Highway Addressable Remote
Transducer) foundation, is a widely adopted standard technology for industrial pro-
cess automation, providing robust and secure communication. Its self-organizing
mesh topology enables large-scale networks with redundant communication paths,
enhancing reliability and fault tolerance [56]. To cope with the challenges of noisy
industrial environments, WirelessHART employs frequency hopping mechanisms,
dynamically changing channels to minimize interference and ensure consistent and

14 Chapter 2. Background & State of the Art

reliable data transmission across the network [57]. Additionally, it offers deter-
ministic and time-synchronized communication, making it suitable for critical real-
time applications in the industrial setting. The protocol’s emphasis on low-power
operation and extended battery life optimizes device performance and minimizes
maintenance efforts in harsh industrial conditions.

ISA100.11a [58], an industrial wireless communication standard developed by
ISA and sharing similarities to WirelessHART, aims to provide wireless communi-
cation for a broader range of industrial automation and control applications. This
includes applications in process industries, discrete manufacturing, and infrastruc-
ture [59]. Its PHY layer utilizes frequency hopping and adaptive channel black-
listing for interference mitigation [59]. The MAC sublayer combines TDMA and
CSMA/CA approaches, supporting mesh and star topologies. More precisely, the
system manager offers three operational alternatives: slotted hopping, slow hop-
ping, and hybrid slotted/slow hopping [60]. Slotted hopping employs equal-duration
channel-hopping timeslots for single transaction data exchange; slow hopping des-
ignates consecutive timeslots over 100-400 ms for a channel, intensifying power con-
sumption due to continuous listening; and hybrid hopping combines these, allowing
periodic data via slotted hopping and sporadic data on a contention basis through
slow hopping, addressing the needs of devices with imprecise timing or intermittent
network contact.

Finally, inspired by WirelessHART and ISA100.11a standard technologies, IEEE
802.15.4-TSCH stands out as a superior choice due to its adherence to an open
standard. This open standard promotes interoperability, allowing for seamless inte-
gration with various devices and systems, and provides a broader range of vendor
options. TSCH is specifically designed for low-power and constrained devices [61].
It offers high flexibility in defining an efficient communication schedule by leveraging
the TDMA and frequency hopping features. IEEE 802.15.4-TSCH allocates specific
timeslots to devices for data transmission, allowing for precise control over when and
how often devices can communicate. This flexibility enables efficient coordination
of communication and ensures deterministic and predictable data exchange.

In the realm of industrial automation applications, where short communication
ranges prove sufficient [62], the need arises for a standard technology that prioritizes
high reliability rather than high data rates (e.g., WiFi), particularly for transmitting
sensory data. Here, IEEE 802.15.4-TSCH emerges as a fitting candidate, presenting
adaptable scheduling and energy-efficient attributes. Furthermore, it delivers supe-
rior deployment efficiency compared to its predecessors, namely WirelessHART and
ISA100.11a.

2.2. IEEE 802.15.4-TSCH Background 15

2.2 IEEE 802.15.4-TSCH Background

IEEE 802.15.4 is a standard technology specifying the Physical Layer (PHY) and
MAC layer protocols for Low-Rate Wireless Personal Area Networks (LR-WPAN).
The initial release, IEEE 802.15.4-2003 [63], operates in 2.4 GHz and sub-GHz
frequency bands. The MAC layer adopts a flexible protocol with a superframe
structure containing an active and an inactive periods. Active period comprises the
Contention Access Period (CAP) and the Contention-Free Period (CFP). During
the CAP, nodes contend for channel access through Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA), while the CFP is dedicated to time-slotted,
deterministic, and contention-free data transmission for time-critical or guaranteed
delivery applications. However, operating on a single radio channel can jeopardize
the reliability of communication in interfering environments [64].

IEEE 802.15.4b-2006 [65] introduced enhancements, such as an optional PHY
in the 868/915 MHz band with higher data rates [66]. Many existing standards,
like ZigBee, WirelessHART, and ISA100.11a, build upon this standard with specific
upper layer adaptations. Despite its wide use, the original IEEE 802.15.4 standard
has limitations in supporting mission-critical applications in terms of high reliability
and bounded latency [67].

To address these requirements, IEEE released IEEE 802.15.4e [68] in 2012. This
enhanced version incorporates five improved MAC protocols, known as MAC behav-
ior modes, making it suitable for applications like smart healthcare and industrial
process automation and control [69]. Among these modes, Time Slotted Channel
Hopping (TSCH) focuses on enhancing reliability in industrial environments suscep-
tible to interference.

IEEE 802.15.4-TSCH [26] exploits a frequency-time division multiple access (FT-
DMA) MAC layer, with a channel hopping mechanism. Transmissions rely on an
FTDMA matrix, that defines when a transmitter can start a transmission, and
which channel it has to use. In the subsequent sections, we detail the key features
and mechanisms of the TSCH network.

2.2.1 Medium Access

TSCH relies on a slotframe structure that is repeated over time. A slotframe can be
represented as a scheduling matrix composed of cells (pairs of timeslots and channel
offsets). Each node is configured with the list of cells where it is authorized to
transmit or receive. Obviously, if no pair of transmitters is allocated to the same
cell, no collision occurs. The standard defines two types of cells in the scheduling
matrix:

a dedicated cell is allocated to one transmitter. The transmitter waits for a fixed

16 Chapter 2. Background & State of the Art

S

DC

BA

* * B S * *

A S

D A

C A C A

Slotframe
Timeslot

ch
an

ne
l o

ffs
et

s

Dedicated cellsShared cell

Sink

0 321 04 1

ASN: 0 2 43 51 6

...

0

1

2

3

TsTxOffset Tx Data Rx Ack

Rx Data Tx Ack

Node C (Tx)

Node A (Rx)

Guard timeTsRxOffset TsTXAckDelay

Figure 2.2: Simple TSCH schedule with shared and dedicated cells

offset from the beginning of the cell to accommodate clock drifts, and then
sends its frame. If the same dedicated cell is assigned to interfering transmit-
ters, collisions will be repetitive.

a shared cell can be allocated to more than one transmitter, so collision may
happen between two concurrent transmissions. Thus, a contention resolu-
tion mechanism is applied for acknowledged packets. If no ack is received, a
transmitter waits for a random number of shared cells to retransmit the same
packet. Thus, collisions may be quite frequent in shared cells [70].

Figure 2.2 illustrates a simple TSCH schedule, including both shared and dedi-
cated cells. Each node has a dedicated cell to communicate with its next hop toward
the final destination. Additionally, all nodes can use the shared cell for broadcast
traffic. For instance, nodes can transmit broadcast packets on the shared cell, allow-
ing all neighbors to receive them, while critical data packets are sent over dedicated
cells.

2.2.2 Association to TSCH Network

The association process begins with a new node entering an initial discovery phase.
The new node continuously scans the available channels and listens for Enhanced
Beacons (EBs) transmitted by already associated nodes in the TSCH network.
These EBs contain Information Elements (IEs) about the network’s parameters,

2.2. IEEE 802.15.4-TSCH Background 17

including the network’s PAN ID (Personal Area Network Identifier), the network
authentication information, and the TSCH schedule details.

TSCH utilizes Absolute Sequence Number (ASN) as a global clock within the
network. The ASN represents the count of timeslots that have elapsed since the
network bootstrapped. Extracting the ASN and schedule IEs (slotframe ID, size,
and timeslot type) lets a node to identify the start of the slotframe and wake up
during its designated timeslots and frequency channel.

The advertising policy of EBs is left unspecified by the standard. Balancing
synchronization needs with energy efficiency is important [71]. Too frequent EB
transmissions can lead to higher energy consumption, which might not be suitable
for battery-powered devices.

In an environment with potential interference, adjusting the beacon interval
can help mitigate collisions and enhance the reliability of communication in the
network [72]. Some TSCH networks dynamically adjust the beacon interval based
on network conditions [73]. If there are changes in network topology and traffic
load, the EB interval might be adapted accordingly.

2.2.3 Synchronization

Device-to-device synchronization is necessary in TDMA-based networks to prevent
collisions and ensure coordinated and efficient communication among devices sharing
the same channel. In IEEE 802.15.4-TSCH network, each node selects a neighbor as
time source to create globally a synchronization tree, rooted at the PAN coordinator.
During the joining process, a node chooses the sender of the EB packet as its time
source, thereby establishing a shared time reference for accessing its schedule within
the slotframe.

However, due to imperfections in the crystal oscillators of devices, there can be
slight variations in their frequencies. Over time, these variations can accumulate and
cause clock drift in the time synchronization between a node and its time source [71].
To compensate for this clock drift, the standard defines two mechanisms: data frame-
based resynchronization and acknowledgment-based resynchronization.

In data frame-based resynchronization (Figure 2.3), the transmitter serves as
the time source. As the transmitter sends its frames after a fixed offset from the
beginning of the timeslot, the receiver can identify the drift by subtracting the time
it receives the data packet from the expected reception time. This information helps
the receiver adjust its clock accordingly. On the other hand, in acknowledgment-
based resynchronization, the receiver calculates the clock drift and includes it in
the acknowledgment (ack) packet. The transmitter then utilizes this information
to resynchronize its time with the receiver. The TSCH standard incorporates a
keepalive mechanism to address situations where a node does not receive any packets

18 Chapter 2. Background & State of the Art

Packet

Packet

Transmitter
(time source)

Receiver

Star
t o

f ti
mes

lot

Start of timeslot

Pac
ke

t e
xp

ec
ted

 he
re

Pac
ke

t a
rriv

es
 he

re

δ

Packet

Packetδ

Exp
ec

ted
 st

art
 of

 tim
es

lot

Adju
ste

d s
tar

t o
f ti

mes
lot

Time

Time

Start of next timeslot

δ: clock drift

Figure 2.3: Frame-based synchronization schemes in TSCH network

from its time source for a while. This mechanism involves the periodic transmission
of small control packets by the node to request synchronization information from its
time source. The maximum period for these keepalive packets is determined by the
guard-time and the maximum clock drifts [74]. When a node cannot synchronize
itself with its time source after a given threshold time, it initiates disassociation. It
flushes its synchronization-related parameters and scans the network for potential
new time sources.

2.2.4 Frequency Hopping Mechanism

FTDMA helps to combat internal interference: when two transmitters may inter-
fere, the network schedules their transmissions at different instants or frequencies.
Frequency hopping mitigates multipath fading and external interference [75]. In-
deed, other networks may be colocated, using the same unlicensed band, adding
noise to some frequencies. Frequency hopping helps to reduce the probability of
repetitive packet losses: link-layer retransmissions will use a different frequency.
More precisely, the index of the channel to use is derived from its ASN as follows:

Channel = HSL [(ASN + CH_Off)mod |HSL|] (2.1)

The Hopping Sequence List (HSL) represents a sequence of |HSL| channels
available in the 2.4 GHz frequency band. As per the standard, there are 16 fre-
quency channels defined, allowing for a maximum of 16 collision-free concurrent
transmissions. The parameter CH_Off refers to the channel offset assigned to the
transmitter during the timeslot.

2.2. IEEE 802.15.4-TSCH Background 19

Supported by extensive experimental research in interfering environments, [64]
demonstrates how the channel hopping mechanism of TSCH can outperform the
basic operation of IEEE 802.15.4 technology over a single channel. Elsts et al. [76]
intend to enhance channel selection in the face of external interference. By com-
paring various methods, the authors highlight that utilizing Packet Reception Ratio
(PRR) based channel assessment yields superior results. This approach reduces
retransmissions, and maintains high Packet Delivery Ratio (PDR), even when in-
terference is heavy. Gomes et al. [77] introduce decentralized algorithms, where
receiver/transmitter pairs collaboratively establish a local blacklist (a list of cells
that are not allowed to be used) by evaluating PDRs. They formulate channel
quality assessment as a multi-armed bandit challenge, demonstrating that effective
blacklists can be created without a distinct learning phase, yielding outcomes close
to optimal performance.

2.2.5 Scheduling

The scheduling mechanism, i.e., how to allocate cells in the slotframe, is not defined
in the standard. This allows the network designers and implementers to tailor the
scheduling approach based on their specific applications’ requirements.

Different objective functions can be employed for scheduling tasks. Energy-
aware scheduling strategically allocates timeslots by effectively coordinating active
and passive timeslots, resulting in nodes with limited battery capacity being al-
located less active timeslots [78]. Scheduling can prioritize allocating timeslots to
nodes with higher data traffic demands, aiming to maximize total data throughput
and optimize available network resources [79, 80]. When low communication la-
tency is essential, scheduling can emphasize minimizing data traversal time within
the network, offering advantages to time-sensitive applications like real-time control
systems through reduced latency [81, 82]. More sensitively, within critical indus-
trial applications, an efficient scheduling approach is imperative to ensure both the
expected end-to-end reliability and bounded latency [83]. Specifically, a designated
percentage of packets must be successfully delivered to the destination before a given
deadline.

The 6TiSCH [84] protocol stack has standardized the 6P [85] protocol, which
facilitates scheduling negotiation in TSCH networks. 6P enables neighboring nodes
to add or delete TSCH cells on each other. A scheduling function in 6P deter-
mines cell additions and deletions, triggering 6P Transactions. The specification of
the scheduling function remains unspecified. Depending on whether the scheduling
function is performed in a distributed or centralized manner, we can achieve different
levels of efficiency. TSCH supports both distributed and centralized algorithms [86].
We delve into the specifics of each in subsequent discussions.

20 Chapter 2. Background & State of the Art

2.2.5.1 Distributed Scheduling

In a distributed scheduler, each node executes a distributed algorithm to dynam-
ically modify its local schedule. OST [87] presents an on-demand scheduling with
traffic-awareness technique, which allocates per-link cells based on average traffic
between nodes. It allocates some long-term cells based on average traffic between
the link nodes, while additional temporary cells are allocated for bursty traffic. This
approach uses existing data and ack packets for scheduling information exchange
to minimize overhead. Temporary cell allocation piggybacks information onto data
packets based on sender queue length. Successful packet reception allocates re-
sources for subsequent packets in the queue. However, unreliable links can impact
this technique, leading to increased packet losses and reduced reliability.

Numerous distributed algorithms have been proposed to function according to
a routing tree topology, mainly built by RPL [41]. In DeTAS [88] scheduler, the
network is organized as a tree in which every node knows the amount of traffic it
will generate and receive from its children (convergecast traffic). This information
is transmitted hop-by-hop to the root tree. The schedule is initiated by the root by
scheduling the timeslots to receive the aggregated traffic from each child. To mitigate
end-to-end delay and buffer overflows, DeTAS employs a strategy of alternating
reception/transmission slots along the path toward the sink. Indeed, when a slot
receives a packet, it is transmitted to the parent node in the subsequent slot. The
main drawback of DeTAS lies in its static schedule, which lacks the ability to be
updated in response to changing traffic conditions.

Wave [89] represents a distributed scheduling algorithm that exploits RPL in-
formation for its scheduling mechanism. It assumes that each node knows its set
of conflicting nodes, acknowledging that collisions may arise during simultaneous
transmissions. The protocol starts with the root node transmitting a start message
to its child nodes. Upon receiving this message, each node selects a cell (a times-
lot and a channel offset) for transmitting its initial packet. Then, it notifies this
assignment to its conflicting nodes. It is worth noting that this entails a notable
communication overhead resulting from the substantial number of exchanges for the
scheduling procedure.

LDSF [81] enhances communication efficiency by introducing a structured ap-
proach to slotframe organization. Nodes positioned at even and odd hop distances
from the border router (network gateway) are scheduled during alternating even and
odd blocks, thereby effectively minimizing end-to-end delay. Through a sequential
cell allocation strategy, nodes proactively anticipate packet arrival times, securing
cells in upcoming blocks to minimize buffering delay.

Orchestra [90] is a very efficient solution to construct the IEEE 802.15.4-TSCH
schedule in a distributed manner. Orchestra relies on RPL [41] to construct a route

2.2. IEEE 802.15.4-TSCH Background 21

toward the sink. Once RPL has converged, a device derives the cell used by each
of its neighbors, using their IDs. More precisely, a pseudo-random function derives
a cell coordinates (timeslot and channel offset) from the ID of each neighbor, in a
slotframe. Orchestra relies on three different slotframes, to handle TSCH EBs, RPL
packets, and data packets. Orchestra installs a dedicated broadcast slot from every
node to its children for TSCH EBs in the first slotframe. Then, it installs a slot
common for all nodes in the network for broadcast/unicast for RPL signaling in the
second slotframe. Finally, it installs a dedicated unicast slot from every node to
its RPL preferred parent in the third slotframe. Note that the slotframes possess
the same order of priority as presented, and in cases of overlapping cells between
two slotframes, the precedence is granted to the slotframe with the highest priority.
Within these slotframes, Orchestra defines three types of cells:

• shared: it is one shared slot used by all nodes in the network for both Rx and
Tx. The slot is installed at fixed coordinates, resulting in a behavior similar
to slotted ALOHA.

• receiver-based: the cell (shared) coordinates are driven by the ID of receiver
node, and all the neighbors use this cell to send packet to the receiver.

• sender-based: the cell (dedicated) coordinates are driven by the ID of sender
node, and all the neighbors maintain a Rx cell accordingly to listen the sender.

As the Orchestra does not scale the schedule with the volume of traffic forwarded
through a given radio link, it suffers from a poor network capacity, and most loaded
nodes fail to send their packets. Additionally, as cells are defined according to a
hash of the addresses, collisions may occur between some of the frames.

Minimal Scheduling Function (MSF) [91] is a popular standard that extends
Orchestra [90] to mix per link and per node cell allocation. Orchestra is exploited
for the control packet negotiation to reserve distributed cells on-demand with the
6P [85] protocol. This scheduling function provides a mechanism for each node
to adjust its schedule to traffic variations, routing changes, and collisions. MSF
operation relies on three types of cells:

• minimal cell: devices use a single shared cell to periodically send broadcast
packets (such as Enhanced Beacons and routing packets) to bootstrap the
network;

• autonomous cells: every node has a permanent receiver-based cell [90] used
to send 6P [85] protocol packets;

• negotiated cells are dedicated cells negotiated by a pair of nodes to exchange
traffic.

22 Chapter 2. Background & State of the Art

S

C D

A B

A > S
90%

C > A
45%

C > A
95%

C > A

B > S
90%

D > B
60%

A > S
95%

6P
 A

D
D

 (c
ol

l_
ce

ll:
 (3

, 0
),

ne
w

_c
el

l:
(6

, 1
))

0 54321 6

0

1

2

6P
 R

es
po

ns
e

(n
ew

_c
el

l:
(6

, 1
))

Scheduling table

Relocated cell

C > A
95%

Dedicated link from C to A,
PDR of link is 95%

Relocate_PDR_Threshold: 50%

Figure 2.4: Relocation of colliding cell in MSF

MSF generally relies on RPL to build the network topology and derive au-
tonomous cells. Upon RPL convergence, every node requests its parent for one
negotiated cell using an autonomous cell. Then, a node can request additional ne-
gotiated cells if its current schedule cannot handle its current traffic load. Similarly,
a node can remove negotiated cells in case of unused cells in its schedule. Also, MSF
can detect colliding cells if they present low reliability compared with the other ne-
gotiated cells with the same neighbor. In that case, a relocation procedure allows
the nodes to change the cell to use. Figure 2.4 illustrates an example in which node
C detects that the PDR of cell (3, 0) is lower than the Relocate_PDR_Threshold

(50%). Thus, node C initiates a 6P packet to negotiate with node A to replace cell
(3, 0) with (6, 1).

Distributed schedulings exhibit greater agility in responding to dynamic changes,
as they do not rely on presumptions about radio topology or traffic volume, which
allows schedules to be defined more promptly. In distributed schedulings, nodes
lack comprehensive information about the network’s status, traffic patterns, and
schedules of neighboring nodes. This absence of global view can lead to collisions,
interference, and suboptimal utilization of the available resources [23].

2.2. IEEE 802.15.4-TSCH Background 23

2.2.5.2 Centralized Scheduling

Centralized scheduling allows the scheduling algorithm to be executed on a central-
ized entity such as a Path Computation Element (PCE) [92]. A PCE has a complete
view of the network topology, as well as the traffic requirements of nodes. Therefore,
it can compute an efficient schedule while respecting guarantees (reliability and la-
tency). The need for nodes to communicate with the central scheduler for schedule
updates introduces significant communication overhead, consuming bandwidth and
potentially causing delays in multi-hop lossy wireless networks [93]. In environments
where network conditions change frequently, such as in mobile or highly dynamic
scenarios, centralized scheduling algorithms might struggle to quickly adapt to these
changes, leading to suboptimal performance [94].

AMUS [95] proposes a centralized scheduling scheme that allocates more cells to
nodes closer to the sink, assuming those nodes have more traffic to forward, hence
reducing the delay caused by interference or collisions.

TASA [96] aims to define a compact schedule. The algorithm prioritizes nodes
with higher traffic loads, aiming to allocate bandwidth primarily to nodes facing
greater limitations. This is achieved by employing distinct channels for conflicting
links. For this purpose, it uses a combination of matching and coloring algorithms
to build an appropriate scheduling.

Kausa [97] generates a schedule that adheres to the SLA. The allocation of slots
considers the packet error rate (PER) of each link, determining the number of cells
allocated. Moreover, the scheduling of transmissions follows the path while ensuring
both reliability and latency requirements are met.

MABO-TSCH [77] integrates centralized scheduling scheme with local channel
blacklisting. The scheduler, operating in a centralized manner, utilizes a coloring
problem to arrange nodes based on their degree in the graph. To be reactive, a pair
of nodes independently determines which physical channels to blacklist. To ensure
consistency between the receiver and transmitter, they include the blacklist in the
ACK frame along with a sequence number.

Choudhury et al. [98] introduce a centralized scheduling approach for TSCH at
the cluster level, focusing on energy efficiency. The proposed mechanism generates a
collision graph for each cluster in the network topology to arrange timeslots without
overlap.

While many centralized scheduling algorithms have been proposed, they have
been mostly evaluated with Monte-Carlo simulations, assuming that all the inputs
are known accurately. However, collecting inputs and pushing scheduling decisions
are challenging in wireless low-power networks: transmissions are unreliable. Soft-
ware Defined Network can serve as a practical solution for this task.

24 Chapter 2. Background & State of the Art

SDN Controller (logically centralized)

Forwarding Device

Southbound API

Network Application Network Application

Northbound APIApplication Plane

Control Plane

Data Plane Rule
(match field)

Stats
(Counters)

Action
(Instructions)

1

2

3

4

5

6

...

- Forward packet to port(s)
- Drop packet
- Encapsulate and forward to controller

VLAN
ID

MAC
Src

MAC
Dst

IP
Src

IP
Dst

Port
Src

Port
Dst

Packet + byte counter

Flow table

Figure 2.5: SDN architecture

2.3 Software Defined Networking for IWSN

SDN [99] decouples the intelligence part (control plane) of network devices from
the forwarding part (data plane). It logically centralizes the network intelligence in
the SDN controller, which has a complete view of the network, and makes optimal
decisions on networking datapaths. The devices are kept as simple as possible to
only perform the forwarding task.

Figure 2.5 illustrates the SDN architecture. Each forwarding device possesses a
flow table(s) serving as a repository of flow entries that define distinct traffic flows.
Flow entries, defined by SDN controller, dictate how these forwarding devices should
process traffic flows. Each flow entry in the flow table includes matching rules and
actions. When a packet arrives, the forwarding identifies the flow by matching
header information, such as source and destination IP addresses, port numbers, and
transport protocols, to flow entries. If a match is found, the corresponding action
specified in the flow entry is executed. Actions can include forwarding the packet
to a particular port, modifying packet headers, or sending the packet to an SDN
controller for further processing.

The controller exploits a so-called southbound API to collect information on the
network and push forwarding rules on the devices. OpenFlow [100] is a pioneering
solution that focuses on the separation of control plane and data plane in network
devices and provides a standardized way to manage and control the forwarding
behavior of forwarding devices. OpenFlow-supported devices consist of two logical

2.3. Software Defined Networking for IWSN 25

components: a flow table that determines the forwarding rules, and an OpenFlow
API responsible for managing communication between the OpenFlow switchs and
SDN controller [101].

The SDN controller necessarily relies on a topology discovery mechanism to ob-
tain comprehensive information about the link connectivity within the network and
to construct an accurate representation graph of the network. This allows for effi-
cient traffic routing, load balancing, fault detection, and overall network optimiza-
tion. In wired SDN networks, the process of topology discovery relies on protocols
like LLDP (Link Layer Discovery Protocol), OFDP (OpenFlow Discovery Protocol),
and CDP (Cisco Discovery Protocol) to identify established connections [102].

Application plane plays a pivotal role by providing explicit network requirements
and policies, which are subsequently translated into a set of forwarding rules [40].
These rules dictate the path and behavior of network traffic, effectively molding the
actions of the underlying network framework. This translation process serves as a
bridge between the high-level objectives set by the applications and the low-level
configuration of network devices.

Numerous diverse scenarios leverage this translation mechanism to customize the
network’s behavior in response to precise operational requirements. For instance,
dynamic traffic engineering optimizes network flows in real-time, Quality of Service
(QoS) management ensures differentiated treatment for diverse traffic types, secu-
rity and intrusion detection enforces comprehensive traffic controls, and network
slicing achieves isolated environments for multiple tenants. Additionally, load bal-
ancing and application delivery ensure efficient resource utilization, while network
monitoring and analytics provide insights into network performance and utilization
patterns.

A northbound API acts as the gateway through which network applications
establish communication with the SDN controller, enabling the exchange of com-
mands, requests, and information. In this regard, various approaches have emerged,
with many proposals advocating the utilization of RESTful APIs [103]. These APIs
adhere to the principles of Representational State Transfer (REST), offering a stan-
dardized and interoperable means of interaction. However, it is important to note
that while RESTful APIs provide a common foundation, the specifics of their imple-
mentation and design can vary based on the SDN architecture, controller platform,
and the requirements of the network applications.

2.3.1 SDN for WSN: Limitations

The use of SDN in WSNs has emerged as a promising solution to alleviate the pro-
cessing burden on constrained low-power devices and delegate it to a centralized
controller [104, 105]. In conventional distributed WSNs, sensor nodes are responsi-

26 Chapter 2. Background & State of the Art

ble for both processing tasks and data transmissions. However, due to their limited
computational capabilities, memory, and energy resources, efficiently handling com-
plex processing tasks becomes challenging [106]. The controller, with its higher
computational power, can effectively execute computationally intensive tasks, re-
lieving the sensor nodes of this responsibility [107].

Nevertheless, the integration of SDN in wireless networks does introduce certain
challenges, particularly related to communication overhead and latency [108]. In
SDN-enabled WSNs, the sensor nodes primarily focus on forwarding and continu-
ously communicate with the controller to access forwarding rules. This communica-
tion takes place over lossy wireless links, where successful transmission may require
packet retransmissions. Consequently, the latency of control packets and the time
required for flow rule configuration can be impacted.

While many related solutions adapt SDN for WSNs, the role of the SDN con-
troller is often limited to establishing data aggregation and forwarding rules for
devices, as well as determining the next hop. Consequently, the controller does not
actively govern the behavior of the MAC layer.

Luo et al. [109] acknowledge several challenges that SDN faces in constrained en-
vironments. Significantly, they propose a template that allows OpenFlow flow tables
to handle compact addressing schemes in non-IP WSNs. They suggest the inclusion
of new OpenFlow forwarding rules, such as data aggregation, to enhance network
performance. They highlight the potential overhead associated with the OpenFlow
protocol in a wireless mesh and propose a solution suppressing retransmissions of
SDN control messages from individual nodes. By providing sufficient time for the
controller to respond, this approach ensures that nodes abstain from repeating con-
trol signaling when a controller response is imminent. While presenting potential
solutions, this article is devoid of any supporting proof of concept.

SDWN (Software Defined Wireless Networks) [110] is developed to address the
limitations of the SDN architectural model when applied to low-power networks
(e.g., IEEE 802.15.4), characterized by low capabilities in terms of memory, pro-
cessing, and energy availability. The authors argue that certain fundamental as-
pects of the OpenFlow approach are incompatible with the diverse and intricate
requirements of low-power wireless networks: OpenFlow assumes a network of high-
speed Ethernet/MPLS switches and IP routers, primarily designed for reliable wired
communication. Specifically, SDWN introduces a lightweight SDN architecture for
IEEE 802.15.4 networks, enhancing performance and functionality while consider-
ing in-network data aggregation and adaptable rule definition. It incorporates a
customizable flow table for low-power hardware by employing rules within a specific
packet segment.

SDWN [110] led to the establishment of the widely recognized SDN-WISE [111].

2.3. Software Defined Networking for IWSN 27

This solution focuses on in-network data aggregation using a stateful flow table
to apply rules per packet based on node state. The flow table contains Matching
Rules, Actions, and Statistics. Matching Rules trigger Actions and update Statis-
tics based on conditions. SDN-WISE incorporates node state in the flow table to
reduce controller overhead, allowing nodes to make forwarding decisions based on
the state of other nodes. This limits unnecessary packet transmissions and frequent
controller consultation. The flow table deploys diverse actions depending on node
state, enabling forwarding, dropping, modification of packets, radio deactivation,
and in-network packet processing for data aggregation.

TinySDN [112] is an SDN architecture for low-power devices, utilizing TinyOS [113].
It introduces SDN-enabled sensor and controller nodes, where sensors serve as both
switches and devices, forwarding data to controllers managing network flows. Multi-
controller setup minimizes control latency, and sensors employ Collection Tree Pro-
tocol [114] to communicate with controllers via optimal link routes, forming collec-
tion trees for each root without needing awareness of multiple instances.

IT-SDN [115] enhances TinySDN with abstraction and separation, distinctively
outlining the southbound controller, neighbor discovery, and controller discovery
protocols. While it defines interfaces for neighbor and controller discovery, the spe-
cific protocols enabling these functionalities are not specified. Moreover, for address-
ing the overhead linked to flow installation, particularly in traditional OpenFlow
networks [116], IT-SDN presents two approaches: "source routed" and "multiple
flow." The former uses source-routed packets computed by the controller to avoid
address flow table overload. The latter extends this by enabling a single packet
to establish routes across multiple nodes simultaneously, eliminating the need for
address flow tables.

SD6WSN [117] introduces an SDN architecture for 6LoWPAN networks, aiming
to reduce latency by leveraging controller knowledge. It employs SDN-based agents
in nodes, utilizing RPL topology and Constrained Application Protocol (CoAP)
packets. SD6WSN achieves lower average latency than standard 6LoWPAN net-
works operating on RPL routing. The SDN controller employs a shortest path
algorithm, resulting in more efficient peer-to-peer routes compared to RPL’s sub-
optimal paths [118]. However, the article lacks detailed information on the exact
workings of the shortest path algorithm.

All the aforementioned solutions rely on shared mechanisms for accessing the
wireless medium, leading to potential issues such as collisions, interference, and
reduced overall network reliability. Given the inherent lossiness of wireless networks,
the controller should also manage the behavior of the MAC layer by allocating
sufficient resources for each hop along the path. Many existing schemes heavily rely
on retransmissions as a means to enhance reliability [119, 120].

28 Chapter 2. Background & State of the Art

2.3.2 SDN for Scheduling Management

Industrial Wireless Sensor Network (IWSN) applications commonly utilize scheduled
deterministic wireless networks to achieve high reliability and low latency. There-
fore, it becomes necessary to adapt the SDN architecture to allocate time-frequency
blocks as well [121].

uSDN [122] proposes a SDN architecture on TSCH networks with a primary
emphasis on optimizing the signalling overhead in flow installation. When a node
requests a flow, the controller installs the path (from the source and to the des-
tination) as a flowtable action on the source node. Any upcoming packets within
this flow are source-routed from the same source node. This approach allows the
controller to avoid individual hop-by-hop flow rule installations, thus reducing the
initial signalling overhead. Nonetheless, the overhead incurred by source routing pig-
gybacking for each packet raises questions about its cost-effectiveness in comparison
to the initial expense of flow installation. The control plane relies on autonomous
algorithms, and on RPL that has been proved to exhibit oscillations under realistic
conditions [123]. The authors of uSDN extend their work [122] to separate the radio
resources of control traffic from data traffic to mitigate the effect of control over-
head on normal network operation. For the control plane, a hop-by-hop scheduling
mechanism is used to distributedly reserve a bunch of cells for a node toward the
controller. However, the exact mec is worth noting that in their approach, the con-
troller does not manage the scheduling of the data plane, solely defining forwarding
rules for each flow.

Whisper [124] exploits a centralized controller that controls the behavior of RPL
and 6P protocols. Their goal is to create a centralized management system with
minimal modification in the network stack. The controller artificially manipulates
the RPL rank of a node to force parent changes, setting up new paths. The controller
also injects fake 6P commands to (de)allocate time-frequency blocks between two
nodes. However, Whisper can not manage the routing and scheduling at per-flow
level. It rather provides more flexibility for the RPL management system and is
better suited for best-effort trafic scheduling.

Bello et al. [125] propose to modify SDN-WISE to support mobility in scheduled
networks. In their scheme, the schedules of mobile nodes are already defined in
the slotframe, and each mobile node has two dedicated upward and downward cells
with each fixed neighbor. Depending on the network location of mobile nodes, the
controller sends novel forwarding rules to the mobile nodes to let them know to
which fixed node they should send data packets. The focus is rather on defining
forwarding rules specifically when a node roams from one parent to another.

SDN primarily aims to dynamically reconfigure the network in response to
changes [126, 127]. By continuously monitoring and analyzing network conditions,

2.3. Software Defined Networking for IWSN 29

such as traffic patterns, link quality, and topology changes, the SDN controller can
dynamically reconfigure the network to adapt to these fluctuations [128]. The con-
tinuous reconfiguration capability of SDN ensures that the network remains resilient,
and capable of meeting the evolving requirements of applications and services.

REACT [129] proposes a scheduling policy called gap-induced to reduce the
latency and energy cost of network reconfiguration in industrial WirelessHART [55]
networks. The policy introduces intentional gaps between transmissions of the same
flow. If the scheduler needs to update the schedule, this flexibility avoids a com-
plete reconfiguration. However, to push the new schedule, REACT uses individual
DELETE and ADD command packets, modifying the schedule one by one on
each device. Changes in link quality can impact multiple flows, leading to a storm
of control packets that may disrupt convergence.

SDSense [130] presents a dynamic reconfigurable framework with a hierarchical
controller architecture. This framework optimizes network components considering
their slow and fast requirements. It assigns fast-changing functions to programmable
sensors while maintaining slow-changing functions, like topology discovery, at the
controller. An algorithm enhances TDMA resource utilization across the network.
The architecture features a logically centralized controller handling topology control,
TDMA scheduling, and data-rate allocation, ensuring efficient management of static
or slow network elements from a global perspective. Additionally, modules for con-
gestion control and data-rate reallocation adapt to local controller states on SDSense
nodes, responding to network dynamics. Through simulations, the authors validate
dynamic network reconfiguration’s effectiveness, showcasing significant performance
improvements over alternatives. However, the lack of detailed implementation hin-
ders direct comparison with other SDN solutions.

SDNWISE-TSCH [131] extends SDN-WISE for scheduled TSCH networks, aim-
ing to perform both efficient routing and scheduling tasks by SDN controller. Each
flow has a specific priority and a deadline. The controller computes the shortest
path through the Dijkstra algorithm. Paths are computed using a pressure met-
ric defined as the amount of traffic scheduled for a link. The path that presents
the minimum pressure value is selected for a flow. Then, the controller starts to
define the schedule for the flow with the highest priority and the lowest deadline.
It allocates one cell per hop and arranges flow cells back to back to respect the
flow deadline. They enhance the OpenPath configuration packet of SDN-WISE to
enable it to accommodate the TSCH schedule. However, they do not consider the
actual quality of links in defining routes and schedules. Computed paths can have
very low reliability, assuming the link qualities are perfect. Also, they do not define
a flow isolation mechanism: a node may use any scheduled cell for any packet, im-
pacting the flow guarantee. In addition, the control plane relies on shared cells that

30 Chapter 2. Background & State of the Art

D

C E

A B

S

S > E S > C S > C

E > B C > A C > A

B > D A > D A > D

Flow 1 (deadline 80 ms, priority 1)

Flow 2 (deadline 140 ms, priority 2)

S > E S > C

E > B C > A

B > D A > D

shared shared

Slotframe n Slotframe n+1

...

70 ms
140 ms

70 ms

90%

85%

88%80%

92%

80%

Figure 2.6: Scheduling flows with different deadlines and priority in SDNWISE-
TSCH

can jeopardize the reliability of the contol traffic. Also, they extend this scheme to
support multicast traffic for mobile nodes [132].

Figure 2.6 illustrates the operation of the SDNWISE-TSCH scheduler. Node S

has two flows with different deadlines and priorities. The scheduler initially defines
a schedule for flow 1 that has a higher priority. It allocates one cell to each hop,
regardless of the PDR of the links, and repeats this schedule within the slotframe
to meet the deadline. For flow 2, the scheduler selects the shortest path with the
minimum scheduled flows, ensuring it does not choose a path through which flow 1

passes. Since the deadline of flow 2 equals the slotframe length, only one sequence
of cells is scheduled for it within the slotframe.

To the best of our knowledge, and as overviewed here, no SDN solution supports
per-flow guarantee in scheduled networks and allocates resources based on the link
reliability. Table 2.2 presents the summary of the SDN solutions existing in the
literature and their properties.

2.3. Software Defined Networking for IWSN 31

T
ab

le
2.

2:
Su

m
m

ar
y

of
re

la
te

d
w

or
ks

w
it

h
su

pp
or

te
d

fe
at

ur
es

T
op

ol
og

y
di

sc
ov

er
y

Li
nk

qu
al

it
y

es
ti

m
at

io
n

R
el

ia
bi

lit
y

of
th

e
co

nt
ro

l/
da

ta
pl

an
es

C
on

ti
nu

ou
s

re
co

nfi
gu

ra
ti

on
m

od
e

m
ec

ha
ni

sm
m

od
e

m
et

ri
c

da
ta

/c
on

tr
ol

se
pa

ra
ti

on
co

lli
si

on
-f
re

e
co

nt
ro

lp
la

ne
da

ta
flo

w
is

ol
at

io
n

Noscheduling

SD
6W

SN
[1

17
]

pa
ss

iv
e

R
P

L
D

IO
pa

ss
iv

e
E

T
X

no
no

no
no

SD
N

-W
IS

E
[1

11
]

ac
ti

ve
ex

tr
a

br
oa

dc
as

t
pr

ob
in

g
ac

ti
ve

R
SS

I
no

no
no

ye
s

T
in

yS
D

N
[1

12
]

ac
ti

ve
ex

tr
a

br
oa

dc
as

t
pr

ob
in

g
ac

ti
ve

E
T

X
no

no
no

ye
s

IT
-S

D
N

[1
15

]
ac

ti
ve

ex
tr

a
br

oa
dc

as
t

pr
ob

in
g

ac
ti

ve
E

T
X

no
no

no
no

Scheduling

SD
N

W
IS

E
-

T
SC

H
[1

31
]

ac
ti

ve
ex

tr
a

br
oa

dc
as

t
pr

ob
in

g
ac

ti
ve

R
SS

I
no

no
no

no

uS
D

N
[1

22
]

pa
ss

iv
e

R
P

L
D

IO
pa

ss
iv

e
E

T
X

ye
s

no
no

no

W
hi

sp
er

[1
24

]
pa

ss
iv

e
R

P
L

D
IO

pa
ss

iv
e

E
T

X
no

no
no

ye
s

R
E

A
C

T
[1

29
]

pa
ss

iv
e

ex
is

ti
ng

br
oa

dc
as

t
pr

ob
in

g
pa

ss
iv

e
P

R
R

no
no

no
ye

s

32 Chapter 2. Background & State of the Art

2.3.3 Topology Discovery in Wireless SDN Networks

Topology discovery in wireless networks systematically identifies neighboring nodes
and communication paths among nodes, forming a crucial foundation for network
planning, optimization, and management [133, 134]. Typically, topology discovery
can be achieved through active or passive schemes. In the active topology discovery
approach, each node generates additional probing packets to announce its presence
to neighbors and potentially receive responses in return. This method allows nodes
to actively probe and identify connections with their neighboring nodes. However,
this approach could result in elevated overhead due to the extra probing traffic,
potentially affecting the overall energy consumption of the network.

On the contrary, the passive approach leverages regular network traffic that al-
ready exists. Nodes continuously monitor incoming data, analyzing the source nodes
to identify their neighbors. This method avoids the overhead of generating probing
packets but relies on the assumption that there is consistent traffic to gather suffi-
cient information. However, it may not be as immediate in updating the neighbor
list compared to the active approach.

Unlike the discovery process in wired networks, wireless SDN networks employ
additional techniques like wireless signal analysis, neighbor discovery, and access
point monitoring due to the dynamic nature of wireless links. Wireless topology
discovery faces challenges stemming from mobility, signal interference, and the dy-
namic addition/removal of wireless nodes. On the other hand, wired networks of-
fer consistent and predictable connections, facilitating simpler topology mapping
through standard protocols.

SDN-WISE [111] and SDNWISE-TSCH [131] exploit extra beacon packets for
topology discovery. A broadcast packet is sufficient to be detected possibly by all
the neighbors, making this solution energy efficient. Nodes periodically send beacon
packets to announce their hop counts to the sink node. Upon receiving a beacon,
each node adds the sender of the beacon to its neighbor table and selects the neighbor
with the minimum hop count towards the sink node. Each node periodically sends
its neighbor table to the controller through the next hop. In TinySDN [112], each
node sends a probing packet to its neighbors. Several solutions [117, 122, 124]
exploit the RPL neighbor list instead of performing topology discovery. However, it
is proved that RPL has inconsistencies in its routing table [135].

2.3.4 Link Quality Estimation in Wireless SDN Networks

Link Quality Estimation (LQE) in wireless networks is the technical process of
evaluating the reliability and performance of communication links between wireless
devices. It involves assessing various metrics defined based on the received signal

2.3. Software Defined Networking for IWSN 33

or data packet characteristics. LQE is crucial for optimizing network performance,
efficient routing, and QoS provisioning. LQE facilitates adaptive behavior by en-
abling devices to dynamically adjust the allocation of radio resources based on the
assessed link quality. Additionally, it informs decisions regarding routing paths and
the prioritization of QoS.

2.3.4.1 Metrics

Link quality metrics are used to quantify the performance and reliability of wire-
less communication links in a network. These metrics provide critical insights into
the integrity of the wireless channel, guiding decisions related to data transmission,
routing, and network optimization. Link quality metrics have been broadly investi-
gated in the literature and can be categorized to hardware-based and software-based
metrics [136].

Hardware-Based metrics: these metrics are directly obtained from the radio
transceiver, eliminating the need for any additional computational processes.

• LQI (Link Quality Indicator): LQI is a value calculated by hardware in
wireless device systems. It may be implemented by means of receiver energy
detection, signal to-noise ratio estimation, or a combination of these meth-
ods [137]. LQI values range from 0 to a maximum value (often 255) and
indicate the assessed quality of the received signal. Higher LQI values typi-
cally correspond to better link quality. However, LQI’s accuracy diminishes
for intermediate link qualities, and its readings might vary across different
hardware implementations [138].

• RSSI (Received Signal Strength Indicator): RSSI is a simple metric that
measures the strength of the received signal. It indicates the power level of the
signal at the receiver. A higher RSSI value generally suggests a stronger signal,
which often correlates with better link quality. However, RSSI alone does not
provide a comprehensive picture of link quality since it does not account for
noise or interference [139]. Also, RSSI can be affected by factors like distance
and obstacles [140].

• SNR (Signal-to-Noise Ratio): SNR represents the ratio of measured
power between the received signal and the background noise level. A higher
SNR value indicates a higher quality signal, as the signal is stronger com-
pared to the noise. SNR can be a reliable indicator of link quality for both
high-quality and low-quality links. However, it might not be as accurate for
intermediate link qualities due to its sensitivity to hardware differences and
environmental factors [141].

34 Chapter 2. Background & State of the Art

Hardware-based LQE have limitations. They measure metrics only for success-
fully received packets, potentially causing an overestimation of link quality in the
presence of excessive packet losses. Additionally, while these metrics offer a quick
and cost-effective way to classify links as good or bad, they lack the ability to provide
detailed link quality assessments [142].

Software-based metrics provide a more precise insight into link behavior, which
is essential for applications requiring specific reliability insights into network perfor-
mance. Nevertheless, their advanced calculations might introduce processing over-
head.

• PRR (Packet Reception Ratio): is calculated by measuring the ratio of
successfully received packets to the total number of packets sent within a spe-
cific time frame or over a certain number of transmission attempts. Typically,
a Window Mean with Exponentially Weighted Moving Average (WMEWMA)
technique is employed to gain insights from historical PRR data, enabling the
estimation of link quality over time [143]. WMEWMA calculates a weighted
average of past PRR values, giving more weight to recent measurements. This
provides a balance between responsiveness to changing link conditions and
stability against fluctuations. Adjusting the time window size allows tuning
the estimator’s sensitivity.

• RNP (Required Number of Packet transmissions): metric quantifies
the reliability of a link by measuring how many times a packet needs to be
transmitted before it is successfully received. A higher RNP indicates lower
link quality and reliability. However, RNP exhibits the drawback of being
highly unstable and unable to provide a dependable estimation of link packet
delivery, primarily due to the presence of link asymmetry [144].

As one of the techniques aiming to approximate the RNP, the Expected Trans-
mission Count (ETX) [145] actively monitors link quality. The process entails
calculating the inverse of the product of forward (Packet Reception Ratio)
and backward delivery ratios (Acknowledgment Reception Ratio), while ac-
counting for link asymmetry. This renders the ETX metric highly effective for
optimizing high-throughput routing in multi-hop wireless networks. Passive
monitoring-based ETX encounters challenges in congested networks, causing
interruptions in routing due to restricted packet reception and leading to com-
promised network throughput.

Four-bit [146] is a versatile metric serving as a link quality estimator and aid-
ing routing protocols. It compiles information from different layers, swiftly
identifying high-quality links through its white bit, signaling acknowledgment
reception via the ack bit, and employing the pin and compare bits for net-

2.3. Software Defined Networking for IWSN 35

work layer tasks. Four-bit leverages a fusion of RNP and metrics derived
from WMEWMA to estimate link quality, serving both sender and receiver
sides, accounting for link asymmetry, and utilizing both passive and active
monitoring approaches.

• Score-Based: offers assessments that go beyond direct references to physical
phenomena like packet reception or retransmission. Instead, these LQEs pro-
vide scores or labels within a specific range, allowing for more abstract and
flexible link quality evaluations.

MetricMap [147] employs a classification approach to assess link quality. It
takes multiple metrics (e.g., RSSI, channel load, node depth) as inputs and
uses a classification algorithm to categorize links into different classes, such as
"Good," "Fair," or "Poor." The classification is usually performed during a
training phase, where the algorithm learns the relationships between metrics
and link quality classes. This approach provides more detailed insights into
link quality but may require significant computational resources.

F-LQE (Fuzzy Link Quality Estimator) [148] combines four link properties
(Smoothed Packet Reception Ratio (SPRR), link stability factor (SF), link
asymmetry level (ASL), and channel average signal-to-noise ratio (ASNR))
using fuzzy logic. Each property is assigned linguistic terms like "Very Low,"
"Low," "Medium," "High," and "Very High." Fuzzy logic rules then combine
these terms to generate a score representing the overall link quality.

Choosing a link quality metric in wireless networks should align precisely with
the application’s goals. This involves selecting a metric that suits the desired out-
comes, like reliable data transmission, energy efficiency, low latency, or scalability.

2.3.4.2 Measurement

Link quality measurement has been broadly investigated in the literature [141] with
active versus passive techniques. Active techniques involve sending extra packets,
which requires radio resources but can lead to energy wastage in scheduled networks.
Passive techniques estimate link quality using existing packets, yet unbalanced traffic
and collisions might reduce accuracy.

The SDN controller needs precise quality measurements for each link. Each node
estimates the link quality with its neighbors locally, collecting relevant metrics, and
subsequently reports these measurements to the SDN controller. The controller
possesses the flexibility to either directly employ the individual metrics or aggregate
them to formulate more sophisticated metrics. For instance, it could assimilate
unidirectional PRRs of a link to calculate a bidirectional PRR within the network’s

36 Chapter 2. Background & State of the Art

graph representation. In this context, the LQE value assumes the role of the edge
value in the constructed graph.

In [111, 131], the controller exploits the RSSI value of the last beacon reported
by each device. However, a high RSSI does not directly lead to a high packet
reception ratio [149]. TinySDN [112] uses probing packets. Each node transmits a
broadcast probing packet and waits for the unicast reply of its neighbors. In this
way, a node calculates the ETX toward each of its neighbors. The solution presented
in [117] relies on the routing protocol (RPL) and more specifically on the ETX
metric maintained by RPL. Each node periodically sends unicast probing packets to
neighbors and calculates the corresponding ETX. However, sending probing packet
increases the communication overhead. Also, in overloaded networks, many nodes
fail to compute the ETX because they cannot receive packets.

Different link quality schemes and metrics may serve well for routing decisions in
wireless networks, where a comparative assessment suffices to differentiate between
routes. However, precise PDR values become imperative for the controller to make
optimal scheduling decisions and efficiently manage radio resources. By considering
the PDR, the controller can allocate radio resources, such as time-frequency blocks,
based on the required QoS for each flow [83].

2.4 Summary

Scheduled standard technologies like IEEE 802.15.4-TSCH are designed for indus-
trial applications to provide reliable link layer communications. However, enabling a
flow guarantee necessitates a centralized scheduling system, as distributed solutions
alone fail to achieve this goal due to the lack of collision free schedule.

SDN offers a promising approach for implementing centralized management sys-
tems. Upon reviewing the literature, many solutions have been suggested to inte-
grate SDN into wireless networks. However, many of these solutions have focused
solely on efficient network layer forwarding rule definition. Only a limited number of
them have extended their scope to include centralized scheduling within scheduled
wireless networks. Despite the variety of objectives pursued by these solutions, such
as reducing control overhead or relying on non-realistic network conditions, none of
them have been able to ensure flow guarantees in IWSN, establishing stable SLAs.

Given the inherent lossiness of wireless links, the robustness of the control plane
remains relatively underexplored in existing literature. Control plane operations
typically rely on shared medium access, which can be susceptible to the high colli-
sions, particularly under high loads of control traffic.

To meet SLA requirements like reliability and latency, the controller must sched-
ule tasks according to real-time wireless link conditions. Existing SDN solutions lack

2.4. Summary 37

scheduling with LQE consideration, so accurate LQE information, like PDR per link,
is vital to prevent resource allocation errors. As link quality changes, the controller
continually updates forwarding and scheduling to maintain network performance.

Our work extensively investigates these areas to enable stable flow guarantees
in IWSNs. We compare our solution with the MSF IETF standard solution as it
proposes an adaptive distributed scheduler for managing traffic load and collisions.
Additionally, we compare our solution with SDNWISE-TSCH as the most advanced
and relative solution to illustrate per-flow scheduling in centralized scheduling and
the reliability of the control plane.

38 Chapter 2. Background & State of the Art

Chapter 3
SDN-TSCH: Enabling SDN for IWSN
with Traffic Isolation

Contents
3.1 SDN-TSCH Overview . 40

3.2 Label Switching for SDN 41

3.3 Slotframe and Schedule Organization 42

3.4 Discovery Process . 43

3.5 Joining Process . 45

3.6 Resource Allocation for the Data Plane 47

3.7 Performance Evaluation 49

3.7.1 Comparison of SDN-TSCH and SDNWISE-TSCH 50

3.7.2 Comparison of SDN-TSCH and MSF 53

3.8 Conclusion and Future Works 57

Industry 4.0 employs IWSN for automating industrial processes [150], with crit-
ical applications in each device demanding strong QoS in terms of high reliability
and bounded latency. As wireless links can be lossy, the communication network
must uphold these SLAs. IEEE 802.15.4-TSCH [26] stands out for industrial net-
works, utilizing a TDMA-based MAC layer and frequency hopping to ensure robust
communication. To meet application-defined SLAs, enough time-frequency blocks
must be allocated to each flow.

SDN represents a promising solution to enable centralized scheduling in IWSNs.
However, in wireless networks, the controller has a broader role and needs to i)
maintain the network synchronized to exploit the FTDMA matrix without collision,
ii) support unreliable links in the control and data planes to avoid communication
bottleneck, iii) admit data flows and install forwarding rules. SDNWISE-TSCH [131]

39

40 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

represents a pioneering piece of work to support a centralized controller. However,
it still suffers from collisions, as demonstrated in Section 6.2, resulting in packets
that exceed QoS limits which are unacceptable for most industrial applications.

We assume that each application possesses one or more critical flows that re-
quire specific end-to-end PDR and deadline parameters. By communicating their
QoS requirements to the SDN controller, it calculates efficient forwarding rules and
schedules resources for each flow, proceeding to install them in the network. While
the convergecast traffic pattern is the most commonly used case in IWSN, involving
the transmission of sensory data to a central control unit, we also consider the pos-
sibility of peer-to-peer communication in our deployment. We assume the presence
of a controller located outside the wireless network but in close proximity to manage
the network efficiently. However, before the configuration of the data plane, we need
a reliable control plane to secure the communication between the SDN controller
and wireless devices over lossy and multi-hop wireless links.

In this chapter, we propose a solution called SDN-TSCH to implement an SDN
architecture in IWSN, aiming to address the specified requirements.

3.1 SDN-TSCH Overview

SDN-TSCH enables SLAs in IWSNs. SDN-TSCH operates on top of IEEE 802.15.4-
TSCH scheduled MAC layer, separating clearly the control and the data planes with
dedicated radio resources. The SDN controller assigns radio resources to maintain
the control plane such that any device has a collision-free path from and to the
controller. Furthermore, the controller can allocate radio resources in the data plane
to ensure compliance with per-flow reliability and latency requirements. Packet
forwarding employs a label-switching approach to isolate per-flow resources, enabling
nodes to efficiently select suitable radio resources for forwarding using a simple table.

Through an efficient discovery process (Figure 3.1), new nodes identify their
neighbors by listing them and accurately estimating their link qualities. Following
that, a joining process begins, allowing new nodes to notify their presence to the SDN
controller through an already configured and reliable control plane. The controller
then proceeds to configure the control plane for the new nodes, allocating dedicated
radio resources. Once the control plane is configured, each node applies for admission
of its critical data flow by submitting its desired QoS requirements. If the necessary
resources are available, the controller orchestrates an end-to-end configuration for
the flow.

3.2. Label Switching for SDN 41

Discover good NBRs Topology discovery
&

link estimation

Data plane
configuration

Send flow Request to controllerControl plane
configuration

Send Report to controller

Joining Radio on

Figure 3.1: The configuration process of a new node in SDN-TSCH, (NBR = neigh-
bor)

3.2 Label Switching for SDN

SDN-TSCH exploits a label switching technique to simplify and to speed up the
packet forwarding and more importantly enable flow isolation in the network [151]:
each flow has its own distinct radio resources that are exclusively used for transmit-
ting its own packets, without being shared with other flows in the network. In fact,
the SDN controller defines a global flow-id for each flow and accordingly populates
the flow tables of all the nodes along the path to the destination. The flow-id is a
unique identifier that enables devices to differentiate and manage flows effectively.
More precisely, each Transmission (Tx) cell, associated with a particular flow in the
slotframe, is tagged with a corresponding flow-id. At the beginning of a Tx cell, a
node picks the first packet from the queue associated with the matching flow-id for
transmission. This mechanism provides flow isolation for data traffic because two
flows can not compete for the same cell if they are assigned to different flow-ids.
In Figure 3.2, while cells 3 and 5 are scheduled for transmission between A → S,
they are exclusively used for forwarding the packets associated with their respective
flow-ids.

We piggyback the flow-id, represented as a two-byte integer, in the packet header
as an IE. When receiving a packet, a device extracts the flow-id from the header
and looks up the flow table to find the matching rule to forward the packet. If there
is forwarding action, the packet is stored in the outbound queue corresponding to
the respective flow-id.

Particularly, two flow-ids are defined for the control plane:

"to-controller" for upward control packets generated by nodes;

"from-controller" for downward packets generated by a controller;

42 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

S

ED

CB

A
FlowD (flow-id = 10) FlowE (flow-id = 20)

* -> * D > B E > C

B > A C > A

A > S A > S

Flow-id TX cell

10

20

(3, 2)

(5, 2)

A > S

A > S

Tx cell for flow-id 10

Tx cell for flow-id 20

Flow table of node A

 A (Tx)

 S (Rx)

 A (Tx)

 S (Rx)
Flow-id = 10

Flow-id = 20

Outbound queue of node A

0 1 2 3 4 5 6

0

1

2

3

Figure 3.2: Label switching operation in SDN-TSCH

3.3 Slotframe and Schedule Organization

We isolate the radio resources for the control and data planes. More precisely, the
slotframe (e.g., Fig. 3.3) regroups:

shared cells are used for broadcast traffic e.g., EB transmissions and initial joining
request packets. They are installed as soon as a device is synchronized with
the network, using the information piggybacked in the EBs.

dedicated control cells are used for the control plane: one cell (in green) toward
the parent to reach the controller (report packets), and one cell (in yellow)
toward the children (config packets). It is worth noting that no collision can
arise: one single transmitter is active at a time;

dedicated data cells are assigned by the SDN controller for each data flow. For-
warding rules guarantee flow isolation. For the sake of conciseness, the data
cells were not depicted in Fig. 3.3.

3.4. Discovery Process 43

A

C

B S

C
B

C
>*

B
>*

A
B

CB

B
S

A
>*

A

A

for
joining nodes
EB cell

B
S

A
>*

Link B →S
(to parent)
Link A →*

(to children)

Dedicated
Cells

Shared
Cells

Radio link

Tree link

0 3 6 9 12 15 18
0

4

Timeslots
C

ha
nn

el
 O

ffs
et

s

Figure 3.3: Organization of the slotframe

3.4 Discovery Process

The discovery process enables a new node to identify its neighbors and obtain an
estimation of their link qualities. This process subsequently facilitates an efficient
configuration of the control plane for the new node by the controller, which associates
the new node with its optimal neighbor.

The estimation of link quality is accomplished through passive means, involving
the reception of EBs from neighbors during specific shared cells. Our approach
leverages a collision-free EB schedule, allowing us to determine the PDR of each link
by merely counting the EBs received from individual neighbor within a designated
time period.

Let us focus on the discovery process: a collection of nodes has already joined
the SDN-TSCH network, and the new node turns its radio on to join the network.
By engaging in continuous channel scanning, the node receives an EB and then
proceeds to synchronize its clock with the TSCH network. This synchronization
is primarily achieved by utilizing the source of the EB as a time synchronization
reference. The joining node also extracts the IEs from the EBs to acquire the TSCH
parameters (such as slotframe length, number of shared cells, etc.) and installs the
shared cells into its slotframe.

Then, by listening on the shared cells, the joining node discovers its neighbors
(senders of EBs) and computes the link PDR. If a neighbor presents a good link

44 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

NBR 1

NBR 2

NBR 3

NBR 4

Report period

90%

100%

95%

65%

Link quality Stop the discovery process
and send Report

TimeT1 T2 T3 T4 T5

Threshold ratio = 85%

Discovery time

Figure 3.4: Discovery time of a joining node

quality, it should be validated for a designated time window to ensure its stability.
Thus, the discovery process stops when all good neighbors (neighbors for which the
link quality is above a predefined threshold) have been seen for at least one Treport

period. More precisely, the process stops if Eq. 3.1 is satisfied:

∀n ∈ N|P̂DR(n) ≥ PDRmin, t0(n) + Treport ≥ t (3.1)

with t0(n) the receiving time of the first EB from n, N the set of neighbors,
P̂DR(n) the measured Packet Delivery Ratio (PDR) for n, and t the current time.

As illustrated in Figure 3.4, the joining node stops the discovery process only
when the link quality of all good neighbors (NBR1, NBR2, and NBR3) is mea-
sured for at least one report period. Namely, the process is not stopped at T4

because NBR2 and NBR3 are presenting good link quality, while they have not
been measured for a sufficient amount of time. This guarantees a stable margin in
the measured link quality. The joining node does not consider the discovery time of
NBR4 as it proposes a PDR lower than the threshold ratio.

It is worth noting that during the discovery period, the joining node consistently
adjusts its time source neighbor to the node presenting the best link quality. This
minimizes the probability of desynchronization.

The SDN controller needs real-time updates on the evolution of link qualities,
and hence, computed PDRs are continuously transmitted to the controller every

3.5. Joining Process 45

Treport once the discovery process is completed.

3.5 Joining Process

When a joining node has performed the discovery process, it needs to join the SDN
network. For this purpose, it creates a report packet including the list of neighbors
and their associated PDR. Then, it sends the packet in unicast to the neighbor with
the highest link quality to maximize the transmission success probability. Since the
joining node has no configured control plane, it must use a shared cell to transmit
its report packet. Then, the report packet traverses hop-by-hop the network to
reach the controller in a reliable manner using the "to-controller" flow-id.

When receiving a report packet, the controller verifies if the report packet comes
from a new node. In that case, the controller registers the node in the joined
list and selects the neighbor with the best link quality as the parent to maximize
the reliability of the control plane. We also employ the parent as the time source
in TSCH after the joining process. This approach minimizes the probability of
desynchronization due to the strong link quality.

Then, the controller selects randomly two dedicated cells in the slotframe for the
control plane: one for sending upward control packets to the parent node and one
for receiving downward control packets from the parent node. Obviously, allocated
cells must correspond to an unused timeslot for the parent (half-duplex condition)
and cannot be allocated to another interfering link (collision-free condition).

Finally, the controller constructs two config packets: one for the upward direc-
tion (to-controller) and one for the downward direction (from-controller). To
reach the joining node, the controller can use the flow-id from-controller already
configured in the rest of the network (except the last hop). However, several chil-
dren may exist at each hop, and the config packets should be routed in the correct
subtree. Hopefully, the controller knows the complete topology and can compute
a path to the joining node. Thus, we implement source-routing: the whole path is
piggybacked in each config packet.

It is worth noting that we always configure a flow from the destination toward
the source. This approach allows for a generic scheme that enables the configuration
of data flows in a reliable manner (see Section 6.2).

When a node n receives the config packet, it exploits the route and the schedule
to update its configuration:

1. it extracts the flow-id and looks for its position in the route. n searches for a
pair of nodes in the route that corresponds to the address of the transmitter
of the config packet, and its own address. We denote by i the position of

46 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

A

NC

B

Controller

* * A * B * N B B A

C B

* *

B A

A *

Shared cell

To-controller (from B to A)

From-controller (from A to children)3
2
1
0

60

Report
B, 90% C, 70%

NBR list

A-B-N 1 0:∅ 1:4,0

route flow-id To-controller

schedule

schedule

flow-id From-controller
Configs

2

Cell types

A-B-N-B 2 0:∅ 0:∅ 1:2,0

route

Figure 3.5: Dedicated control plane in SDN-TSCH

its address in the route (i ∈ [0, k[, k being the number of nodes in the source
routing path);

2. if i > 0, it installs the (i− 1)th element of the schedule as the TX cells in its
scheduling table. As the node with the position i = 0 can either have RX cells
to install or nothing in the case of a relay node;

3. if i < k − 1, it installs the ith element of the schedule as RX cells in its
scheduling table. As the node with the position i = k − 1 is the last node in
the route and the source of the flow, it only needs to install TX cells;

4. n forwards the config packet to the next hop following the source routing
path. If the config packet is for configuring the "to-controller" flow-id,
nodes use the "from-controller" flow-id if i < k − 2, or the next available
shared cell if i = k − 2. If the config packet is configuring the "from-
controller" flow-id, nodes use the "from-controller" flow-id if i < k − 3,
or the next available shared cell if i = k − 3, or the "to-controller" flow-id
if i = k − 2. Indeed, the "to-controller" flow-id is installed first.

Figure 3.5 illustrates this process. Node N needs to join the network and sends
a report packet to the controller through the neighbor B. Upon reception, the con-
troller selects node B as the parent of node N since it is the neighbor with the
highest link quality. It is worth noting that the controller can consider another met-
ric (e.g., load balancing) to select a parent, which is not the focus of our research.

3.6. Resource Allocation for the Data Plane 47

The controller creates two config packets including the addresses for source rout-
ing and the schedule. More specifically, we encode the schedule of each hop as
<number_of_cells:list_of_cells>. Notably, the first forwarding nodes (node A

in Figure 3.5) do not have any cell to install (number_of_cells = 0).

3.6 Resource Allocation for the Data Plane

Any critical application opens a socket connection, describing its QoS requirements
(i.e., end-to-end minimum reliability and maximum latency). The node engages
a call admission by sending a flow-request to the controller through the "to-
controller" flow-id. When receiving a flow-request, the controller constructs a
schedule that respects the QoS requirements:

1. the controller computes a path from the source to the destination using the
tree topology (through the node/parent links);

2. the controller allocates backup dedicated cells for retransmissions for weakest
links. Additional backup cells are assigned until the minimum end-to-end
reliability is respected [152];

3. the controller schedules cells back to back (or as close as possible) to minimize
the end-to-end delay.

If the schedule computation is impossible, the request is rejected, and the con-
troller sends a negative (empty) config packet to the source node. If the computa-
tion is successful, the controller defines a new flow-id for the flow and constructs a
config packet including the new schedule and the corresponding flow-id. The con-
troller uses a single config packet to configure the whole path, which is composed
of:

1. subpath from the root to the destination: the schedule of this part is empty,
and the node only forwards the config packet with the from-controller cells;

2. subpath from destination to source: the configuration starts from the destina-
tion node toward the source node. Each node in this part extracts and installs
the flow-id and the corresponding cells. When the source node receives the
config packet, the whole path is configured, and it starts sending packets
without delay.

Notably, the technique to identify the position of a forwarding node (cf. Sec-
tion 3.5) is still valid when a node is present in both subpaths. Indeed, we individ-
ually identify each link in the whole path when installing the schedule.

48 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

A

D

S

B

C
on

tro
lle

r

Request (QoS + Dest=D)

Config

* * A * B * E B D B B A C A

E * S E S E B D

S E E B E B

1 42

5

3

C

Hop number

Direction of tx

1

2

3

4

E

95%

85%
90%

D B

A *

To-controller

From-controller

Cell type

5

S E Data flow

End-to-end delay = 50 ms

Figure 3.6: Data flow Configuration in SDN-TSCH

For the second part of the path, each node has to select either the "to-controller"
or "from-controller" flow-ids to forward the config packet. To determine the di-
rection, each node checks if the address of the next hop is also present in the list of
nodes preceding its position in the source routing. If this is the case, the next hop
is an upper-hand node, and the config packet uses the "to-controller" flow-id.
Otherwise, the node uses the "from-controller" flow-id to forward the config

packet.

Figure 3.6 illustrates a scenario where S is the source node. The flow-request

packet describes the flow requirements (e.g., PDR = 90%, end-to-end delay = 70
ms) and the destination D. In return, the config packet uses source routing, first
from A to D and then from D to S. The controller allocates more cells to weak
links (2 cells for S→E and 2 cells for E→B) to meet the end-to-end PDR of flow
(90%). The controller allocates cells sequentially to consider the end-to-end delay
of flow (70 ms). The route A − B −D − B − E − S is piggybacked in the config

packet. Thus, D knows B is an upper-hand node since B is both present after and
before D: it has to use the "to-controller" flow-id to forward the config packet.

3.7. Performance Evaluation 49

Table 3.1: Simulation parameters

Simulation
environment

OS: Contiki-ng (version 4.7)
Simulator: Cooja
https://github.com/Farzadv/Contiki-ng-SDN-TSCH.git
Simulation time: 2.2h
Propagation model: Unit Disk Graph Medium (UDGM)2

Tx range = 100 m
Interference range = 150 m
Rx success = proportional to distance (100% - 0%)
Initial energy = 2400 mAH (AAA battery)
Energy consumption model = Energest tool in Contiki-ng
(tx_curr = 17.7mA, rx_curr = 20mA)

Topology Distribution: Random
Network sizes: 10, 20, 30, 40, and 50 nodes

SLAs
Number of data flow: 1 flow per node
Traffic pattern: Convergecast
Traffic rate: Constant Bitrate, 1 packet every 5s

Applications Requested PDR: 99%
Requested deadline: 2s

SDN-TSCH
TSCH EB period: 15s
SDN report period: 5 min
flow-request timeout: 50s

Inversely, S is a downward node for E since S is only present after E: it has to use
the "from-controller" flow-id.

It is important to note that our primary focus is not on the scheduling algorithm
itself, as we currently use a greedy approach. However, our architecture allows for
the integration of any centralized algorithm if desired.

3.7 Performance Evaluation

We implement SDN-TSCH in Contiki-ng and the Cooja simulator to assess its per-
formance. We compared SDN-TSCH with two state-of-the-art approaches:

SDNWISE-TSCH [131] is a variant of SDNWISE to cope with TSCH networks.
SDNWISE-TSCH enables the SDN architecture for Industrial Wireless Sensor
Networks. It computes a schedule taking into account the deadline of each
flow.

MSF [91] is the IETF standard for distributed scheduling1, combining autonomous
and negotiated cells to avoid collisions and allocate resources dynamically;

1https://github.com/alexrayne/contiki-ng.git

https://github.com/alexrayne/contiki-ng.git

50 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

We simulate networks with sizes of 10, 20, 30, 40, and 50 nodes. Each node
has a critical data flow to transmit to the sink node (i.e., convergecast traffic). We
consider critical applications that require an end-to-end PDR larger than 99% and
with a deadline of 2 seconds [153]. We use the default values for the parameters of
MSF [91]. A controller allocates a novel flow-id and a set of cells to each critical
flow to meet the requirements. Table 3.1 represents our different parameters.

3.7.1 Comparison of SDN-TSCH and SDNWISE-TSCH

We compare SDN-TSCH with SDNWISE-TSCH to compare two different SDN-
based approaches. More precisely, we i) evaluate the convergence time and energy
efficiency of the control plane, and ii) assess the performance of the flow guarantees
in the data plane.

SDNWISE-TSCH employs shared cells for both EBs and SDN control packets.
According to [131], a network of 10 nodes and slotframe size of 19 uses 2 shared
cells. To accommodate different network sizes without impacting the reliability of
the control plane of SDNWISE-TSCH, we propose to maintain constant the time
per node between two shared cells. Thus, we define the default number of shared
cells as follows:

Nshared−cells =
2 ∗ SFlength

19
∗ N

10
≈ N ∗ SFlength ∗ 0.01 (3.2)

with Nshared−cells the number of shared cells, N the number of nodes, and SFlength

the slotframe length.

3.7.1.1 Convergence time and energy efficiency of the control plane

Figure 3.7 shows the convergence time of each approach for different network sizes.
We define convergence as the duration from the network’s bootstrap until the last
node is admitted by the SDN controller. We test two ratios of shared cells in
the shared control plane: i) 15N (eq. 3.2) used by SDNWISE-TSCH and ii) 2N ,
which serves as a lower bound value. With 2N shared cells, the number of collisions
becomes very high for medium-sized networks. In the worst conditions, the network
never converges. With 15 shared cells per slotframe, SDNWISE-TSCH succeeds
to converge. However, the convergence time is still larger for SDNWISE-TSCH
compared with SDN-TSCH. Indeed, shared cells receive a peak of control traffic,
and the loss of control packets significantly impacts the convergence.

Using shared cells also impacts energy consumption, as illustrated in Figure 3.8.
We focus here on the power consumption of the network during the convergence

2https://github.com/contiki-ng/cooja/blob/06863708772e33504b3a397c225db9466082fcaf/
java/org/contikios/cooja/radiomediums/UDGM.java

https://github.com/contiki-ng/cooja/blob/06863708772e33504b3a397c225db9466082fcaf/java/org/contikios/cooja/radiomediums/UDGM.java
https://github.com/contiki-ng/cooja/blob/06863708772e33504b3a397c225db9466082fcaf/java/org/contikios/cooja/radiomediums/UDGM.java

3.7. Performance Evaluation 51

10 20 30 40 50
Network size

2000

4000

6000

8000
C

on
ve

rg
en

ce
 ti

m
e(

s)
SDN-TSCH SDNWISE-TSCH(2N) SDNWISE-TSCH(15N)

Figure 3.7: Network convergence time

period. This is calculated by dividing the energy consumed during the convergence
time by the convergence time. Using only 15N shared cells consumes much energy:
all the nodes wake up during these slots. On the contrary, using only 2N shared cells
is much more energy efficient (but with an impact on reliability). Only SDN-TSCH is
able to converge fast while providing a very reasonable energy consumption: using
dedicated cells is much more efficient, even for control traffic. Indeed, the nodes
have to wake up less frequently, and the transmissions are more reliable since we
cannot create collisions.

3.7.1.2 Data flow handling

We focus now on the scenario illustrated in Figure 3.9 to assess the performance
of the solution to identify good paths. Nodes A, B, C, and S host critical flows
to the destination node D, and node S has two possible paths to reach it. Path 1
has an end-to-end link quality of 45% (0.8× 0.7× 0.8 = 0.45), while path 2 has an
end-to-end link quality of 25% (0.5× 0.5 = 0.25).

To configure the flow of node S, the SDNWISE-TSCH controller selects path
2 based on the shortest path criteria. It only allocates one cell for each hop and
schedules cells back to back to respect the flow deadline. However, most of the
transmissions fail because of low link quality. Besides, buffering delays increase, and
a few packets that are successfully transmitted arrive after the deadline. Moreover,
due to the lack of flow isolation, node B uses any cell scheduled toward node D

to send its packets. While it allows using cells unused by the other flow, it also
impacts the reliability of the competing flows (from S). To sum up, 78% of packets

52 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

10 20 30 40 50
Network size

0

1

2

3

4
Po

w
er

 c
on

su
m

pt
io

n
(m

W
)

SDN-TSCH SDNWISE-TSCH(2N) SDNWISE-TSCH(15N)

Figure 3.8: Power consumption of nodes in joining period

D
S

C A

B

80%

70%
80%

50% 50%

Path #1

Path #2

Figure 3.9: Data flow handling in SDN-TSCH and SDNWISE-TSCH

are lost along the path, and 22% of packets are received at the destination after the
deadline.

Let us focus on the behavior of SDN-TSCH. The controller selects path 1 when it
admits the flow of S: the path uses links with better quality, and fewer retransmis-
sions would be required to reach the same level of reliability. Besides, the controller
allocates a sufficient number of cells (including the backup cells): 100% of the pack-
ets of node S are received by the destination before the deadline. SDN-TSCH selects
efficient data paths and allocates enough resources while guaranteeing flow isolation.

3.7. Performance Evaluation 53

10 20 30 40 50
Network size

0

20

40

60

80

100
PD

R
(%

) b
ef

or
e

de
ad

lin
e

SDN-TSCH MSF

Figure 3.10: PDR of flows before deadline

3.7.2 Comparison of SDN-TSCH and MSF

We compare SDN-TSCH with MSF to assess the differences between a centralized
solution and a distributed solution in terms of both reliability and energy efficiency,
with a specific emphasis on data plane efficiency. Figure 3.10 illustrates the end-
to-end PDR of each flow. Clearly, MSF provides very low reliability. With 20
nodes, the average end-to-end PDR is larger than 95%, but some flows exhibit a
PDR of only 50%. The reliability is even worse with 50 nodes: more flows are
forwarded, and the region around the sink becomes a bottleneck. Thus, MSF fails
to provision enough backup cells to provide high reliability. On the contrary, SDN-
TSCH achieves perfect end-to-end reliability, whatever the conditions. Even better:
the reliability is equal to 100% even in the worst case, which is an expected property
for industrial networks.

Figure 3.11 illustrates the end-to-end delay. We plot the 2s deadline (horizontal
line) to see its impact. MSF tends to deliver packets very close to the deadline, but
too many packets are received after the deadline, particularly for large networks.
On the contrary, the SDN controller provisions enough resources in SDN-TSCH.
While the latency increases because packets are forwarded through longer paths,
the deadline is still respected. The packet losses correspond mostly to statistical
outliers.

We compare the convergence of MSF and SDN-TSCH in Figure 3.12. We de-
fine the convergence time for a flow as the duration it takes for the flow’s Packet
Delivery Ratio (PDR) to reach the desired PDR. In MSF, increasing the network
size leads to longer convergence times: each hop of the path needs to negotiate cells

54 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

10 20 30 40 50
Network size

10 2

10 1

100

101

102

103
E

nd
-t

o-
E

nd
 d

el
ay

(s
)

Deadline = 2s

SDN-TSCH MSF

Figure 3.11: End-to-end delay

reactively. In addition, the arrival of new flows impacts the performance of the on-
going ones because MSF does not provide flow isolation. This observation is clearer
on Figure 3.13, which illustrates the instantaneous PDR of a given flow while MSF
converges. As we can see, the PDR value fluctuates significantly between 40% and
100% because a new flow is admitted in the network and competes for the same
resources, or when a collision arises temporarily and the corresponding cell has to
be relocated. As a result, relying on distributed algorithms, such as MSF, impacts
convergence and PDR. In SDN-TSCH, the flow convergence time is effectively re-
duced to zero because the controller pre-configures the entire path for a flow. Thus,
we have an efficient call admission scheme: the flow starts only when and if enough
resources can be scheduled all along the path.

3.7. Performance Evaluation 55

10 20 30 40 50
Network size

0

2000

4000

6000

Fl
ow

 c
on

ve
rg

en
ce

 ti
m

e(
s)

SDN-TSCH MSF

Figure 3.12: Data flow convergence time

0 20 40 60 80 100 120 140
Packet sequence

0

20

40

60

80

100

M
ov

in
g

PD
R

 (%
)

Figure 3.13: Instantaneous PDR of a given flow during a time interval using MSF

56 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

10 20 30 40 50
Network size

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 s
ch

ed
ul

ed
 c

el
ls

SDN-TSCH MSF

Figure 3.14: Ratio of scheduled cells

10 20 30 40 50
Network size

101

102

103

N
et

w
or

k
lif

et
im

e
(w

ee
k)

SDN-TSCH MSF

Figure 3.15: Network lifetime

3.8. Conclusion and Future Works 57

Figure 3.14 focuses on resource allocation efficiency. We measured the ratio of
the cells that are reserved for each link. To measure the efficiency, we normalize
this amount of cells by the required number of cells computed directly from the
parameters of the PHY layer. We can note that MSF is under-provisioning: the
ratio is smaller than 1.0, which means that the number of cells is insufficient to
provide the expected end-to-end reliability. In contrast, SDN-TSCH is based on
an accurate link quality estimation and allocates cells according to this estimation.
SDN-TSCH is over-provisioning, allocating more cells than the strict minimum.
However, this safety margin compensates for the possible over-estimation of the link
qualities, and SDN-TSCH finally provides the expected end-to-end reliability.

We finally measured the network lifetime (Figure 3.15), defined as the time
until the first node dies due to depleted energy. MSF provides the longest network
lifetime: since fewer cells are reserved, nodes have to wake up less frequently. Thus,
they maximize their sleeping time, but at the cost of poor reliability. SDN-TSCH
achieves a shorter but comparable lifetime and respects all the reliability and latency
constraints. Obviously, ensuring strong Service Level Agreements has an impact
on energy consumption. It corresponds to the price to pay for a communication
infrastructure dedicated to critical applications.

3.8 Conclusion and Future Works

We demonstrated in our work with SDNWISE-TSCH that the utilization of shared
cells significantly affects the reliability of control plane communication. Further-
more, we underscored the critical importance of incorporating link qualities into
the scheduling definition. Additionally, we emphasized the necessity of clearly seg-
regating radio resources designated for a specific flow from other flows, thereby
minimizing inter-flow resource contention. Given that SDNWISE-TSCH relies on
the shortest path approach and lacks per-flow resource isolation, it exhibits subop-
timal performance on links with low PDR, ultimately impacting overall PDR and
delay.

In this chapter, we introduced SDN-TSCH, an SDN-based solution tailored for
IWSNs to address these challenges. Our approach leverages a label switching tech-
nique to enable effective flow isolation. The SDN controller establishes a collision-
free control plane, allowing devices to reliably connect to the controller through lossy
wireless links. Each data flow is admitted into the network. The controller main-
tains complete control over the network and allocates sufficient dedicated resources
for critical flows. SDN-TSCH meets end-to-end flow requirements and converges
promptly for new flows. Our solution also outperforms MSF with faster conver-
gence, sustained flow constraints, improved stability, and consistent PDR for each

58 Chapter 3. SDN-TSCH: Enabling SDN for IWSN with Traffic Isolation

flow. However, this comes with higher energy consumption.
Our solution is also compatible with point-to-point traffic. As a future work,

it would be interesting to evaluate the efficiency of the data plane for this type
of traffic. Our frame formats and control plane structure allow us to configure the
data plane using various paths. By traversing the control plane topology, the config
packet may contain settings for a node or simply use a node as a relay, enabling the
configuration of the desired data flow path.

As our scheduler relies on link quality measurements to allocate resources, the ac-
curacy of link quality estimation becomes imperative to avoid over or under-resource
provisioning. In the next chapter, we present an accurate link quality estimation
scheme relying on shared cells while ensuring collision-free communication.

Moreover, since a dedicated control plane may raise questions about energy
consumption, as it requires nodes to wake up during timeslots labeled to-controller
and from-controller flow-ids even when there is no traffic. We have already shown
that a shared control plane is insufficient. However, a hybrid control plane may still
provide reliability but at a lower energy cost. Thus, in the next chapter, we will
also provide a more extensive investigation of this research question.

Chapter 4
SDN Architecture Improvements in
Link Quality Estimation & Control
Plane

Contents
4.1 Discussion on Link Quality Estimation 60

4.2 Accurate Link Quality Estimation 61

4.3 Organization of the Shared Cells in the Control Plane . 62

4.4 Schedule of EBs Shared Cells 63

4.5 Numerical Estimation of Shared Cells for non-EB Traffic 64

4.6 Resource Allocation and Configuration of Control Plane 65

4.6.1 Dedicated Control Plane 65

4.6.2 Shared Control Plane . 66

4.6.3 Hybrid Control Plane . 66

4.7 Performance Evaluation 67

4.7.1 Accuracy of the Link Quality Estimation 67

4.7.2 Efficiency of Dedicated and Hybrid Control Planes 68

4.8 Conclusion and Future Works 72

In lossy networks, the SDN controller can allocate additional radio resources
for retransmissions to compensate for packet loss. However, the controller may in-
accurately estimate the link qualities. Under-estimation leads to over-provisioning
(energy wastage), and over-estimation leads to under-provisioning (unreliability).
Active techniques rely on probes (aka control packets) transmitted regularly to es-
timate the link quality toward its neighbors [154]. However, a node must dedicate
resources for each neighbor, which represents an unacceptable amount of energy and

59

60Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

bandwidth, especially in a TDMA network. Passive techniques are less expensive
but may inaccurately estimate the link quality if packets collide [155]. Moreover,
the Link Quality Estimation must be measured for all neighbors without any bias
in measurements, necessitating regular traffic with each neighbor. This enables the
controller to apply various routing strategies.

As mentioned in the Chapter 6.2, our link quality estimation relies on EB trans-
missions in the shared cells, enabling the identification of all neighbors. In this
chapter, we provide detailed information about our LQE solution, presenting how
we prevent collisions in link quality measurements and offer an accurate and energy-
efficient scheme.

As also mentioned in Chapter 6.2, we have utilized a fully dedicated control
plane for SDN-TSCH. However, we measured that this strategy is energy-consuming.
Considering that devices are energy-constrained in IWSNs, a question may arise re-
garding the high energy cost associated with maintaining a fully dedicated control
plane. In this regard, this chapter also includes a broad evaluation of the perfor-
mance of shared, dedicated, and mixed control planes in the SDN-TSCH network.
This evaluation aims to quantify the impact of realistic conditions (such as lossy
links) on the SDN network. To the best of our knowledge, this issue has not been
addressed previously in scheduled wireless networks.

4.1 Discussion on Link Quality Estimation

We need to measure accurately the link quality to make the wireless SDN network
efficient. Basically, two different approaches may be applied to estimate the link
quality in wireless networks [141]:

active monitoring: it involves a node observing its neighboring links through the
dispatch of probe packets. These packets are transmitted using either broad-
cast or unicast methods. Unlike unicast probe packets, broadcasting probe
packets does not necessitate acknowledgments or retransmissions at the link
level. Those probes are typically sent at specific rates, introducing a tradeoff
between energy efficiency (at lower rates) and accuracy (at higher rates). An
adaptive beaconing rate could potentially achieve a favorable balance in this
aspect. Broadcast-based active link monitoring is relatively straightforward to
implement and introduces a minor additional load compared to unicast-based
approaches. This is why many network protocols and mechanisms choose to
utilize it. Conversely, unicast-based active link monitoring allows for more pre-
cise measurements due to its resemblance to actual data transmission across
the link. However, it remains a resource-intensive mechanism in WSNs due to
the communication overhead it introduces.

4.2. Accurate Link Quality Estimation 61

passive monitoring: is a technique that exploits the existing traffic of a network.
It can leverage common packets or their acknowledgments to estimate link
quality between nodes. This form of monitoring is widely adopted in low-
power wireless networks due to its energy efficiency, avoiding the need for
additional communication overhead. While passive link monitoring is energy-
efficient, its accuracy can be influenced by the irregularity and fluctuation of
network traffic patterns.

More particularly, we need to consider the following challenges that are specific
to scheduled wireless networks:

all-neighbors discovery: to build a complete routing topology, the SDN con-
troller should be aware of all good links and their qualities in the network.
Unfortunately, in scheduled networks, a node can only estimate the link qual-
ity of the neighbor with which it exchanges packets. Moreover, the utilization
of shared cells results in collisions, leading to both inaccurate link estimation
and neighbor detection failures.

accurate estimation: link quality misestimation has a severe impact on the net-
work capacity and on reliability. In the case of underestimation, a controller
will allocate more bandwidth for the link and waste both the network capac-
ity and the energy. By contrast, in the case of overestimation, not enough
bandwidth is allocated, and some packets will be dropped or received after
the deadline.

continuous estimation: due to the dynamic nature of wireless networks, link
qualities may change. Thus, the link estimation system should continuously
inform a controller of the last changes in the network.

energy efficiency: exploiting active monitoring in scheduled wireless network is
costly. Allocating one dedicated cell to each neighbor for probing consumes
high bandwidth and energy. To have an energy-efficient link estimation sys-
tem, Hermeto et al. [156] proved that accurate link quality estimation can be
achieved by regularly transmitting existing broadcast packets.

4.2 Accurate Link Quality Estimation

We propose a passive link monitoring scheme to fulfill the requirements outlined in
the preceding section. We leverage the EB packets of the TSCH network to estimate
the quality of the links. Each node counts the number of received EBs from each
neighbor in a given period of time. Because the EB packets are sent periodically, a

62Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

node knows how many EBs it should receive from a neighbor during a given amount
of time. A controller calculates the PDR of EB packets and uses it as a link quality
metric. More precisely, it is computed according to Eq. 2:

P̂DR(n) =
counter(n) ∗ TEB

Treport
(4.1)

with counter(n) the EB counter of neighbor n, TEB the period of EBs, P̂DR(n)

the measured PDR for n, and Treport the period of report.

Since EBs are periodically transmitted within the TSCH network, maintaining
a continuous link quality estimation is energy-efficient and eliminates the need for
generating new probing packets. This provides the controller with a consistently
updated estimation of link quality. Thus, if there is a change in link quality, the
controller can reconfigure the network by defining new rules.

Furthermore, since all neighbors of a node must be awake to receive an EB from
the node, we use shared cells for EB transmissions. More importantly, this allows
link quality to be calculated and updated for unused or undiscovered links.

Nonetheless, the problem of collisions can arise between two concurrent EB
transmissions or between EBs and other broadcast packets sent via shared cells. We
propose to solve this link quality misestimation by scheduling more appropriately
the EBs. We keep on exploiting shared cells to optimize the discovery process and
the continuous link quality re-estimation, while removing collisions.

4.3 Organization of the Shared Cells in the Control Plane

As described in Chapter 6.2, We need to send control packets in the control plane
(joining, configuration, etc.): Novel nodes cannot use dedicated cells for report

packets due to no reserved resources. Keep-alive packets are also needed initially to
synchronize with the parent if no data packet is forwarded.

EBs also use shared cells for the network discovery. Thus, to avoid collisions
among EBs, we propose that the SDN controller allocates cells for EBs. A controller
allocates a given shared cell to a single node for its EB transmissions. Thus, we
cannot have anymore EB collisions. Additionally, to prevent collisions between EBs
and non-EB control traffic, we establish a clear distinction between the shared cells
used for EB transmissions and those used for non-EB traffic.

More precisely, at the beginning of a shared cell, a node makes the following
verifications:

1. if the shared cell is the EB cell dedicated to the node, it engages the trans-
mission of its EB;

4.4. Schedule of EBs Shared Cells 63

2. if the shared cell is the EB cell of a neighbor node, the node keeps awake to
receive possibly its EB;

3. if the shared cell is not an EB cell, the node transmits the first control packet
in its queue. If none is present, it stays awake to receive possibly solicitations
from neighbors.

In any case, a node in listening mode can turn off its radio after a fixed offset if no
preamble is detected on the medium.

4.4 Schedule of EBs Shared Cells

We propose that each node uses a given shared cell in slotframe to transmit its EBs.
To enable this, we assign unique ID to each shared cell in the slotframe. In the
joining process, a controller specifies which shared ID must be used by a new node.
A controller allocates shared cell IDs sequentially, in the order of the arrival of the
nodes. The last joined node has the maximum shared cell id (slotEBmax). In that
way, we can make a distinction between the EB and non-EB parts of the slotframe.
Since the slotEBmax value is announced in the EBs, the novel value is pushed hop
by hop in the network, and after a given amount of time, all the nodes are aware of
the novel cells reserved for the EBs.

We allocate some of the shared cells for non-EB traffic, and also separate the
shared cells of EBs from non-EBs. To avoid collision with non-EB packets, nodes
should only use the shared cells that are not used for any EB: if the shared slot ID
is smaller than slotEBmax, the shared cell is reserved for EBs, else, the cell can be
used by any unassociated node.

Meanwhile, the distribution of non-EB shared cells can impact the amount of
collision in non-EB traffic. If the shared cells for non-EB traffic are grouped con-
tiguously in the slotframe, the nodes experience a high collision rate [157]. Indeed,
the nodes that generate their non-EB packets at the beginning of slotframe have to
wait until the end of slotframe to send their packets. Then, all the nodes try to use
the first coming non-EB shared cell which leads to a cumulative collision.

To minimize the collision probability, the EB cells should be distributed in the
slotframe. More precisely, we assign to each shared cell a unique ID (designated as
shared-id). Then, we use a recursive algorithm (Figure 4.1) to assign shared-ids
regularly in the slotframe. Recursively, the controller assigns the shared-ids to
split the remaining available space into two equal parts. For instance, in the first
step, the shared-id1 is located in the middle of the slotframe (between 0 and the
slotframe length). As illustrated in Figure 4.1, the shared-id1 corresponds to the
timeslot 30. Then, the subsequent shared-ids are positioned in the middle of their

64Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

...
0 504010 3020 60

Timeslot number

... 1

... 2 1 3

4 ... 2 ... 5 ... 1 ... 6 ... 3 ... 7 ...

non-EB cells

shared-ids:

slotEBmax EB cells

Figure 4.1: Shared cell ID allocation in slotframe for the control plane

respective halves. Each node can apply the same recursive algorithm to identify EB
and non-EB cells using slotEBmax.

4.5 Numerical Estimation of Shared Cells for non-EB
Traffic

We use the slotted Aloha model to estimate the number of shared cells in a slotframe
for both EB and non-EB traffic. We assume that for joining the SDN network, nodes
wake up at any time and generate a join request when they received a sufficient
amount of EBs from already attached neighbors. We assume the control traffic in
shared cells (keep-alive and report packets) follows a Poisson distribution with a
mean of λ. We calculate the collision probability through:

P (collision) = 1− P (idle)− P (success)

= 1− e−λ − λe−λ
(4.2)

P (idle) denotes the probability of zero transmission, and P (success) is the prob-
ability of one unique transmission in the timeslot. By fixing the maximum acceptable
value of P (collision), we obtain the λ value. With the number of generated packets
in the slotframe, we find the number of required shared cells:

Non_EB_cell = λ ·Num_packet (4.3)

Num_packet is the sum of all non-EB packets for all the nodes in the slotframe.

4.6. Resource Allocation and Configuration of Control Plane 65

Indeed, to provide a safety margin, we assume the worst-case situation in which all
the nodes are in the transmission range of each other, and a shared cell may be used
by any node in the network. Moreover, for EB transmissions, each node needs one
shared cell. Hence, the total number of shared cells is finally:

Num_shared_cell = Non_EB_cell +Node_number (4.4)

4.6 Resource Allocation and Configuration of Control
Plane

We may allocate a large number of dedicated cells to create a reliable control plane.
However, the more cells we allocate, the more we increase energy consumption.
Indeed, unused cells consume a fixed amount of energy [158]: a receiver has to stay
awake during a fixed offset from the beginning of the timeslot to accommodate clock
drifts.

We investigate here three different methods to implement the control plane:

shared: all the control packets use the shared cells, that are mutualized in the
network to reduce the amount of resource allocated to the control plane;

dedicated: each node maintains one dedicated cell to send control packets to its
parent, and another one to its children. While no collision can arise among
control packets, more resources are allocated to the control plane. We em-
ployed this strategy for SDN-TSCH in the previous chapter.

hybrid: each node maintains one dedicated cell to send control packets to its parent
and sends other control packets through shared cells. Downward transmissions
may be adjusted by a controller, and we may expect a low volume of collision
in downlink.

The cost of these different architectures for the control plane will be evaluated in
the following section.

4.6.1 Dedicated Control Plane

We propose in this variant to use only dedicated cells when the node has joined
the network. Thus, control packets are protected against collisions, and we can
upper-bound the delay to reconfigure a network (that depends on the size of each
subtree rooted at the sink). When admitting a novel node, a controller allocates
two dedicated cells:

dedicated-up: is reserved for the control traffic sent to the parent (for the flow-id
"to-controller");

66Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

dedicated-down: is reserved for the control traffic sent to any child (for the flow-id
"from-controller"). Practically, all the children have to stay awake for this
dedicated cell. Only the link-layer destination will acknowledge the control
packet.

However, exploiting dedicated cells has a cost: each node has to stay awake
during 4 dedicated cells (i.e., to and from children, to and from parent) per slotframe,
even if no control traffic is transmitted. In particular, the cells corresponding to
the flow-id "from controller" are uniquely used for config packets and are thus
unused after the network has converged.

4.6.2 Shared Control Plane

It may be energy efficient to exploit only the shared cells to handle all the control
traffic [159]. We face a burst of control packets when the network bootstraps, and
all the shared cells are mutualized to send all the control traffic. We could expect
statistical multiplexing to make the number of collisions reasonable. However, as
illustrated in the performance evaluation in the previous chapter (Figure 3.7), using
shared cells impacts the convergence time of the network: collisions may delay or
even prevent nodes to exchange admission request/response packets.

Moreover, a shared control plane may affect the recovery time of critical appli-
cations. In particular, an event may occur locally that triggers flow reconfiguration.
For instance, the decrease in the quality of a critical link may force a controller to
reconfigure all the flows that pass through this faulty link, changing the paths, or
rescheduling the whole flow to respect deadline constraints. A shared control plane
may jeopardize the re-convergence of the network. In conclusion, a shared control
plane is not agile enough to deliver traffic in a timely manner.

4.6.3 Hybrid Control Plane

We propose a hybrid variant to combine dedicated cells in uplink and shared cells
in downlink. Indeed, report packets are only transmitted uplink, through the "to
controller" flow-id. The rest of the control packets that may compete correspond
to i) config packets from a controller, ii) keep-alive packets to maintain the syn-
chronization, iii) report packets from novel nodes. It is worth noting that the
EBs cannot collide with other control packets, since shared cells are allocated by a
controller to EBs and separated from the non-EB cells.

Keepalive packets are only used when the network bootstraps. Indeed, nodes use
any packet (including the data ones) for re-synchronization. Thus, when the network
has converged and when each node forwards or generates data packets, the network

4.7. Performance Evaluation 67

10 20 30 40 50
Network size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 li
nk

 q
ua

lit
y

es
tim

at
io

n
Scheduled_EB Unscheduled_EB

Figure 4.2: Link quality estimation

is maintained synchronized. Keepalive packets are only required to maintain the
synchronization before the arrival of the config packet from a controller.

In conclusion, we would expect a lower amount of collisions compared with the
full shared control plane, but the convergence delay has to be finely measured to
quantify the cost of using shared cells in the downlink.

4.7 Performance Evaluation

We first assess the accuracy of our link quality estimation solution. Then, we eval-
uate the performance of our three different control plane architectures. We use the
same setup outlined in Table 3.1.

4.7.1 Accuracy of the Link Quality Estimation

We measure the accuracy of our link quality estimation for our scheduled EB ap-
proach and compare it with the non-scheduled EB approach. In the non-scheduled
EB approach, EB cells are not scheduled by the controller, allowing any node to
utilize any shared cell for transmitting its EBs. We measured in particular the
normalized link quality, which is the ratio between the PDR measured by the ap-
proach, and the actual PDR as modeled by the simulator (Figure 4.2). An ideal
estimation would always return quality of 1. Values below 1 mean that the PDR is
under-estimated, and values above 1 mean that the PDR is over-estimated.

68Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

1 2 3 4 5 6 7 8
Ratio of shared cell to network size

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 li

nk
 q

ua
lit

y
es

tim
at

io
n

Figure 4.3: Accuracy of link quality estimation in SDN-TSCH

We use the same number of shared cells for both scheduled EB and unscheduled
EB solutions. As shown in the scheduled EB approach, link qualities are estimated
with high accuracy regardless of the network size. The error seems following a
normal distribution centered on the real value. By contrast, the quality is highly
under-estimated when EBs are not scheduled: an EB may not be received because
of a low SNR value, or because of a collision. Even worse, the error increases for
larger network sizes, with a normalized quality tending toward zero for the largest
network sizes. This misestimation leads to high energy consumption: a controller
allocates too much resources for all the flows, wasting bandwidth and energy.

Figure 4.3 illustrates the collision rate of EBs in unscheduled mode, that mea-
sures the accuracy of the link quality when varying the ratio of the number of cells
and the number of nodes (network size). As shown, EBs still collide even when
allocating a large number of shared cells, resulting in an inaccurate link quality
estimation. It keeps on underestimating the link quality, biased by the collisions of
EBs. Thus, this can lead to significant overprovisioning in resource allocation.

Our scheduled-based solution is very efficient since we can estimate very accu-
rately the PDR of each link, that is reported in report packets. Thus, the controller
can allocate the radio resources accordingly.

4.7.2 Efficiency of Dedicated and Hybrid Control Planes

As the performance of the shared control plane has already been evaluated in a
previous chapter, we here compare the performance of dedicated and hybrid control

4.7. Performance Evaluation 69

10 20 30 40 50
Network size

1500

2000

2500

3000

3500
C

on
ve

rg
en

ce
 ti

m
e(

s)
Dedicated Hybrid

Figure 4.4: Network convergence time

planes. We consider a single controller that allocates all the resources. In light of
our previous results, we use the scheduled EB transmission on separated shared cells
for all approaches.

We first focus on the convergence (Figure 3). We define the convergence time as
the time required from the bootstrap of the network until the last node to join the
control plane (i.e., receives the config from a controller). Both the dedicated and
hybrid control planes maintain a reasonable convergence time, which appears to be
linear with the number of nodes Indeed, the density is kept constant, and a larger
network size means a larger mean hop distance from the sink. Thus, the nodes need
to wait longer that the previous hops synchronize and join the network.

Then, we measure in Figure 4.5 the time required to configure a novel data flow
in the network – the time between the transmission of the flow-request and the
reception of the corresponding config packet. The dedicated solutions provide the
lowest configuration time: resources are dedicated to send the flow-request and
the config packets without collisions. On average, less than 5 seconds are required
for the call-admission and the configuration of the whole path, even with 50 nodes.
The hybrid control plane provides also a very reasonable configuration time for any
network size. However, the worst-cases may exhibit a large configuration duration.
When many devices send their flow-request in a short time window, the sink is
unable to transmit the corresponding config packets in a timely fashion, due to the
collision happening between the config packets themselves or between the config

and keep-alive packets. Some nodes still have not been configured yet, and send
keep-alive packets to keep synchronized with their parents. Also, in the burst of

70Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

10 20 30 40 50
Network size

0

25

50

75

100

125

150
Fl

ow
 c

on
fig

ur
at

io
n

tim
e(

s)
Dedicated Hybrid

Figure 4.5: Data flow configuration time

collision, the sink node sometimes cannot dequeue all of its queued config packets
and drops some of them due to the queue size limitation. This forces the source nodes
to retransmit another flow-request after the timeout (50s in the simulations).

Then, we measure the power consumption of devices, focusing specifically on
the period before the network has converged (Figure 4). Thus, we report the power
consumption for this period – the energy consumed divided by the time elapsed
before receiving the first config packet. Dedicated and hybrid control planes have
the same level of power consumption. The power consumption linearly increases
with the network size. Indeed, based on the proposed model for the estimation of
shared cells, we increase the number of shared cells by increasing the network size
so that nodes wake up in more timeslots and consume more power.

Finally, we measure the network lifetime (Figure 4.7). We assume the lifetime is
given by the first death. To extrapolate our simulations, the lifetime is estimated as
the initial energy divided by the power consumption of the most constrained node.
Since the configuration is done once, we consider the power consumption after the
node has joined the network. Thanks to the use of shared cells for downward control
traffic, the hybrid control plane provides a higher lifetime than a dedicated control
plane. However, the difference is not substantial. For instance, in the network size
of 50, the hybrid control plane improves the lifetime by 7% on average.

4.7. Performance Evaluation 71

10 20 30 40 50
Network size

0.1

0.2

0.3

0.4
Po

w
er

 c
on

su
m

pt
io

n
(m

W
)

Dedicated Hybrid

Figure 4.6: Power consumption of nodes in joining period

10 20 30 40 50
Network size

102

103

N
et

w
or

k
lif

et
im

e
(w

ee
k)

Dedicated Hybrid

Figure 4.7: Network lifetime

While the hybrid control plane impacts the time of flow admission, it also does
not improve the lifetime impressively. Moreover, we may later need to extend the
control plane to support more functionalities. Thus, the controller has more control
packets to send. From our point of view, the dedicated control plane can provide a
higher reliability to handle control packets in a timely fashion, with a small increase
in energy consumption compared with the hybrid control plane.

72Chapter 4. SDN Architecture Improvements in Link Quality Estimation & Control Plane

4.8 Conclusion and Future Works

We have introduced an accurate and energy-efficient link quality estimation method
for scheduled SDN networks. Making use of Enhanced Beacons on the TSCH net-
work, we passively assess the quality of each link in terms of PDR. By exploiting
the global vision of the controller, we designate specific shared cells for collision-free
EB transmissions, while also inducing a separation between EB and non-EB shared
cells to avoid collisions EBs and non-EB traffic. Our simulation demonstrates the
highly accurate estimation of link qualities in different network sizes. Furthermore,
our detailed analysis of control plane systems highlights the advantages of using a
fully dedicated control plane to increase overall reliability. It is agile enough to con-
figure the network in a timely manner with only a slight increase in energy overhead
compared to the hybrid control plane.

As a prospective endeavor, validating our approach in a real-world setting will
provide insight into its effectiveness and potential challenges that may not be ap-
parent in simulation settings. Also, Since our LQE relies on periodic transmission
of EBs, it would be interesting to investigate situations in which EBs are sent in
dynamic period.

Given the dynamic nature of link quality in wireless networks, the SDN controller
must consistently reconfigure the network to update nodes routing and scheduling
rules. In the upcoming chapter, we further enhance the controller’s capabilities to
efficiently reconfigure the flows when needed.

Chapter 5
Maintenance of Software Defined IWSN

Contents
5.1 Scheduled SDN Reconfiguration Overview 74

5.2 Fault Detection & Parent Selection 74

5.3 Control and Data Planes Update 76

5.4 (Re)-scheduling Algorithm 77

5.5 Obsolete Cells Removal . 80

5.6 Performance Evaluation 80

5.6.1 Results and Comments 81

5.7 Conclusion and Future Works 84

SDN demonstrates its potential to efficiently manage routing and scheduling
parameters of wireless devices. However, it is important to acknowledge that the
quality of wireless links can change dynamically due to various factors like signal
interference and environmental channel conditions [160]. This can impact the relia-
bility of both the control and data planes in such networks. This challenge becomes
even more challenging in scenarios where IWSNs’ applications require high relia-
bility, as a specific number of time-frequency blocks (e.g., IEEE 802.15.4-TSCH
schedule) are allocated for a flow to achieve a certain delivery ratio and a latency
deadline. Thus, the SDN controller must continuously monitor changes in link qual-
ity for wireless connections and compute appropriate forwarding and scheduling
rules to address these variations effectively.

The SDN controller faces the substantial challenge of swiftly adapting to net-
work dynamics. It needs to gather device connectivity details and then establish
routing paths and a novel schedule [129]. Thus, this freshly computed schedule is
disseminated across the network using a multi-hop wireless mesh arrangement. This
process of updating the schedule can lead to considerable communication overhead,
particularly within networks characterized by numerous intermediary hops.

73

74 Chapter 5. Maintenance of Software Defined IWSN

In this chapter, we introduce mechanisms for the efficient maintenance and up-
date of wireless scheduled SDN networks. We present a method enabling a controller
to identify failing links by utilizing the link quality reports from individual nodes.
Additionally, we propose techniques to update both the control and data planes,
facilitating the redirection of flows through new subpaths when necessary.

5.1 Scheduled SDN Reconfiguration Overview

In the Chapter 6.2, we propose an architecture for admission of critical industrial
applications with a focus on fulfilling SLAs. We extend here SDN-TSCH to support
a real-time network reconfiguration whenever the conditions evolve. When the link
quality significantly deteriorates below a specified threshold, the controller initiates
reconfiguration. However, the reconfiguration process is not straightforward: the
control plane uses specific cells that have to be relocated if the topology changes.
Besides, all the flows have to be redirected in the data plane.

Our solution is:

energy efficient : we can readjust bandwidth while over-provisioning leads to en-
ergy inefficiency, and under-provisioning may result in SLA violations. Be-
sides, a config packet can configure a whole path: there is no need to send
an end-to-end config packet to each forwarding node.

reliable: we prevent any inconsistent state when the network is reconfigured. The
forwarding rules are consistent and no data packet is dropped in the data
plane, even if a SDN control packet needs to be retransmitted, or is dropped.

Let us consider the scenario illustrated in Fig. 5.1. If the quality of the link F →
B decreases from 95% to 40%, the network must be reconfigured. The controller
needs to i) detect the fault, ii) reconfigure the control plane so that F has dedicated
cells with its new next hop toward the border router (C), iii) redirect data flows
(e.g., FlowD) by allocating resources in the data plane for the new path.

5.2 Fault Detection & Parent Selection

As explained in Chapter 6.2, each node sends periodically report packets to the
controller, piggybacking the number of EBs received from its neighbors. This allows
the controller to estimate the PDR of each link. In particular, the link between any
node with its parent must present a sufficient link quality to limit the number of
retransmissions and packet drops. Thus, for each node, the controller continuously
compares the PDR of its current parent, and the PDR of its best neighbor which
could serve as new parent. Additionally, the controller verifies that the candidate

5.2. Fault Detection & Parent Selection 75

 BR

B

A

D

F

C

95% -> 40%

Controller

new parent

previous parent

90%

90%

90%

90%

LAN

90%

before after

90% Radio link with
 a PDR of 90%

Current parent

New parent

Data flow

Figure 5.1: A controller needs to reconfigure the control and data planes to redirect
the flows through the link (F→C) when the PDR of the link (F→B) decreases from
95% to 40%

for new parent is not a node within the subtree of the target node (indicating the
need for a parent change), thereby preventing loops in the network topology. Thus,
a new parent is selected if the following conditions hold:

Condition 1: PDR(current_parent) ≤ α ∗ PDR(best_parent)

Condition 2: best_parent /∈ subtree_nodes
(5.1)

where PDR() denotes the PDR value, best_parent is the neighbor with the largest
PDR and which is not a descendant (no-loop condition), and current_parent is
the current parent. 0 < α < 1 is the parameter defining the sensitivity of the
reconfiguration rule (a larger value means more oscillations). subtree_nodes is the
list of nodes in the subtree of the target node through which their control traffic
passes.

Before triggering the reconfiguration, the controller also verifies that there is no
active reconfiguration process in the network. This deterministic approach prevents
possible conflicts between the updating processes and ensures consistent reconfig-
uration. For example, if a reconfiguration process is active for the best_parent

and its parent when the best_parent is selected for the reconfiguration process of
the target node, the concurrent reconfiguration process is paused until the current
process is finished.

76 Chapter 5. Maintenance of Software Defined IWSN

source routing
n hops

FID SID addr1 addrn... #add1 #del1 cell1,1 cell1,2 cell1,x

list of cells to add and remove
hop 1

#add2 #del2 cell2,1 cell2,y

list of cells to add and remove
hop n

... ...

Figure 5.2: Enhanced format of config packet

5.3 Control and Data Planes Update

The controller needs first to reconfigure the control plane. More precisely, the path
between the target node and the border router has to be updated to pass through
the new parent. The controller has to allocate cells between the target node and its
new parent (respectively F and C in Fig. 5.1). More precisely:

to controller: a new dedicated cell has to be reserved between the target node and
its new parent. If the timeslot between the target node and its old parent is
free in the schedule of the new parent (half-duplex condition), the same cell is
reused. Else, another cell is selected randomly to avoid collisions;

from controller: the new parent has already a transmitting cell to its children.
Thus, the controller just needs to add the corresponding RX cell in the schedule
of the target node.

The controller forges two config packets to push the new configuration, one per
direction (to and from the controller). To route config packets to the target node,
we employ the same source-routing mechanism used to configure the flows in the
SDN-TSCH (Chapter 6.2). The config packet is forwarded through the dedicated
cells in the from controller direction. In particular, the new parent will receive
the packet to forward and will update its own schedule. For the last hop, a shared
cell is used to reach the target node since no dedicated cell is present in the control
plane for this specific (new) link.

To optimize the overhead of control packets, we enhance the config packet
format to use the same packet to both install and remove cells (Fig. 5.2). Basically,
the config packet piggybacks i) the route to follow (n nodes), ii) the list of cells to
insert and to remove for each hop.

When the target node finally receives the config packet, it sends an end-to-end
ack to the controller. It is worth noting that the target node stops using its previous
parent as soon as the cell is installed in its schedule.

After a timeout, the controller retransmits the config packet if no ack is re-
ceived. This way, we maintain the global consistency of the schedule of the control
plane.

5.4. (Re)-scheduling Algorithm 77

When the target node has dedicated cells to and from its new parent for the
control plane, the controller needs then to redirect the data flows through the new
parent. Thus, it needs to send one config packet for each of the data flows. A
config packet is forwarded through the control plane, which has already been re-
configured, using a similar method as before. The config packet follows the new
path from the destination toward the source and exploits only dedicated cells to
avoid collisions. As soon as the target node receives the config packet, data pack-
ets start to be transmitted through the new path for the corresponding data flow.
It is worth noting that we guarantee flow isolation even during the convergence.
We cannot have any inconsistent state since the path is configured up to the source
node (upstream).

5.4 (Re)-scheduling Algorithm

Computing a new schedule from scratch is expensive since we would have to remove
all the previous cells and to install a sequence of new cells all along the path.
We propose rather a rescheduling algorithm that tries to minimize the number of
schedule updates. Obviously, the problem is NP-complete, and we propose here a
heuristic.

To minimize the changes, we focus on the subset of the path which differs between
the previous and the new path. For instance, the subpath to update corresponds to
the links F → C and C → A in Fig. 5.1. To reduce the end-to-end delay, we need to
schedule the cells back-to-back, minimizing the buffering time. Moreover, it is more
costly to change the schedule of nodes farther from the border router: the config

packet has to be forwarded farther, possibly retransmitted, etc. Thus, we keep the
same schedule from the source node to the target node and update only the rest of
the schedule.

We adopt a greedy approach to compute a new schedule for the subpath to
minimize the end-to-end delay [152]. First, the controller computes the number of
cells to allocate for each hop, depending on the link quality. Similar to our approach
in Chapter 6.2, it greedily increases the number of cells on the weakest link in the
subpath until the minimum end-to-end reliability is respected. Then, it selects free
cells for each hop of the subpath. To minimize the forwarding delay, consecutive
cells are selected preferentially (else, the closest cell is selected).

When the schedule of the subpath is computed, the controller may encounter
two different cases:

valid: the last cell in the subpath is scheduled before the first cell of the rest of the
path. In that case, the schedule is valid and is applied without modification;

78 Chapter 5. Maintenance of Software Defined IWSN

Border router

B

C

D
BR

B-D

D-E

E-BR

E-BRC-D

D-EA-B

A-C

B-DS-AS-A

A-C C-D

E-BRD-E

A-C

A-B

Previous parent

AS

New parent

Target node

Subpath

Data flow

E

Timeslots: 1110987654321

X-Y X-Y X-YCells to add for the
subpath in blue

Cells to add for the
subpath in green Cells to remove

Figure 5.3: Schedule update when redirecting a data flow

overlap: the last cell of the subpath is scheduled after the first cell of the rest of
the path. In that case, the controller updates the rest of the schedule hop-by-
hop toward the border router. If the last cell of the current hop is scheduled
before the cells for the next hop, the controller stops the updates. In the
worst case, the schedule is updated up to the border router.

For the sake of clarity, we describe here only the case where the controller is the
destination. However, this approach is obviously generalizable to any destination in
the network.

Algorithm 1 presents the re-scheduling approach of the new path. Starting with
the schedule of the subpath, it updates only the parts of the schedule that need
to be changed to ensure that the end-to-end reliability and deadline are respected.
More specifically, in lines 1 to 8, the algorithm assigns cells to the subpath. In line
9, it verifies whether the last cell scheduled for the subpath is after the first cell of
the hop following the subpath. If this condition holds, it necessitates the relocation
of cells after the subpath. This relocation continues until the newly defined cell is
placed before the next already defined cell, and the condition of back-to-back is met.

Let us consider the scenario illustrated in Fig. 5.3. The first two cells correspond
to the path before the target node (A): they will not change. Then, the scheduler

5.4. (Re)-scheduling Algorithm 79

Algorithm 1: Re-scheduling of novel path
Data: prev_path_num_hops, prev_schedule,

prev_path_num_cells_hop, subpath_num_hops,
subpath_num_cells_hop, last_cell_of_hop_before_subpath,
first_cell_of_hop_after_subpath,
first_hop_index_after_subpath

Result: schedule

1 lastCell← last_cell_of_hop_before_subpath
2 for i = 1 to subpath_num_hops do // schedule cells for subpath

3 for j = 1 to subpath_num_cells_hop[i] do
4 cell← Pick first free cell after lastCell
5 schedule← cell
6 lastCell← cell

7 end
8 end

9 if lastCell > first_cell_of_hop_after_subpath then // back-to-back

condition is not met

10 for i = first_hop_index_after_subpath to
prev_path_num_hops do

11 for j = 1 to prev_path_num_cells_hop[i] do
12 cell← Pick first free cell after lastCell
13 schedule← cell
14 lastCell← cell
15 if lastCell < prev_schedule[i][j + 1] then
16 PushSchedule(schedule) // Condition is met: stop scheduling

17 end
18 end
19 end
20 end
21 else
22 PushSchedule(schedule) // Push the final schedule

23 end

assigns consecutive cells for the new subpath (A,C,D) in blue. It is worth noting
that the controller can assign the same timeslots through the old and new paths: it
is sufficient to use different channel offsets to avoid collisions during the convergence.

This example shows an overlapping schedule: the last cell for the link C → D

and the first cell of the link D → E are the same (timeslot 7). Thus, the controller
has to assign hop-by-hop new cells (the cells in green) to update the rest of the
schedule up to the border router. Symmetrically, the overlapping cells have to be
deallocated (with diagonal hatching).

80 Chapter 5. Maintenance of Software Defined IWSN

5.5 Obsolete Cells Removal

It is worth noting that some cells have been allocated and are not used anymore
through the previous path. However, the energy consumption of unused cells is quite
low [158]. Indeed, an unused TX cell has no cost: the transmitter does not wake
up when no packet in its buffer has to be forwarded through the corresponding cell.
Inversely, the receiver has to wake up, but it can turn its radio off after a fixed offset
if no activity is measured on the medium.

We argue that the cost of unused cells is much smaller than sending and forward-
ing explicit config packets that have to be acknowledged end-to-end, retransmitted,
etc. Thus, we propose a simple, timeout-based, schedule management. If no cell is
used for a particular flow for a certain period of time, the corresponding cells are
silently removed from the schedule. Each node maintains one timer per data flow,
rearming the timer when it forwards a packet corresponding to the flow. Typically,
the cells in red in Fig. 5.3 will be automatically removed from the schedule of B and
D after the timeout.

We need to ensure consistency between the view of the controller and the nodes
in the old path with obsolete cells. Thus, when the controller receives the ack of a
config for a flow-id on the new path, it sets a timer (with the same value as the
nodes with obsolete cells) to trigger the removal of the cells from old path in the
schedule. Obviously, the controller knows the timer value as it has already set it for
the nodes.

5.6 Performance Evaluation

We implement our solution in contiki-ng and Cooja and compare the following
solutions:

SDN-TSCH-orig is the original operation of SDN-TSCH that does not update
the schedule when a flow is configured;

SDN-TSCH-reconf is the extension of SDN-TSCH-orig that detects when a re-
configuration is required and which reconfiguration is needed;

MSF is the distributed scheduling function for TSCH3. It proposes an adaptive
solution for network changes;

We simulate the scenario illustrated in Fig. 5.1 representative of a topology with
changing conditions. This straightforward scenario allows us to verify that the re-
configuration process operates properly as intended. To more precisely analyze the

3https://github.com/alexrayne/contiki-ng.git

https://github.com/alexrayne/contiki-ng.git

5.6. Performance Evaluation 81

0 50 100 150 200 250
Packet sequence number

102

103

104
E

nd
-t

o-
en

d
de

la
y

(m
s)

D
ea

dl
in

e
=

 1
50

0m
s

SDN-TSCH-reconf
SDN-TSCH-orig
MSF

Figure 5.4: Per-packet end-to-end delay of FlowF in each solution

impact of a reconfiguration, we consider a single link change. A real deployment
may imply multiple reconfigurations by the controller but leading to the same con-
clusions. Each node hosts an application which requires an end-to-end PDR larger
than 99% and an end-to-end delay lower than 1500ms. For the remaining simulator
parameters, we use the same setup as presented in Table 3.1.

5.6.1 Results and Comments

We measure first the end-to-end delay of FlowF (Fig. 5.4). The quality of the
link F → B is manually changed when D generates the packet sequence number 90.
SDN-TSCH-orig is able to deliver only some of the packets before the deadline: many
of them require retransmissions or are dropped because of a buffer overflow. On the
contrary, SDN-TSCH-reconf is able to reconfigure the network very efficiently, and
all the packets are delivered before the deadline. It is worth noting that the delay
increases after sequence number 90 because more retransmitting cells are required
to compensate for the slightly lower PDR offered by the new path. Finally, MSF
cannot provide any delay guarantee since it has not been designed for this purpose.

Fig. 5.5 reports the PDR of two data flows (FlowF and FlowD) that have to
be redirected through the link (F → C). When the link quality degrades, SDN-
TSCH-orig is not able to reconfigure the network, causing the end-to-end PDR to
fall below the expected 99% level. The number of cells is not sufficient to cope
with the required number of retransmissions. By contrast, SDN-TSCH-reconf is

82 Chapter 5. Maintenance of Software Defined IWSN

MSF SDN-TSCH-orig SDN-TSCH-reconf
Network Solution

0

20

40

60

80

100
PD

R
(%

) b
ef

or
e

de
ad

lin
e

End-to-end PDR = 99%

Flow(F) Flow(D)

Figure 5.5: Per-flow PDR

able to update the schedule, and it keeps on providing ultra high-reliability after
the topology change. It is worth noting that MSF is not able to provision enough
resources quickly, since many oscillations may arise. Thus, it provides a very low
PDR after the quality of the link F → B is reduced.

We finally measure the reconfiguration time (Fig. 5.6) and the overhead during
the reconfiguration (Fig. 5.7). We define the reconfiguration time as the time it
takes to initiate the reconfiguration of a node and its subtree to adapt to the new
path and schedule. SDN-TSCH-reconf implements an average reconfiguration of 14s.
Indeed, one config packet is forwarded to or from the controller in one slotframe,
which lasts 2.5 seconds. Since the control and data planes have to be reconfigured
for two data flows (4 config packets), we need consequently several slotframes (at
least one slotframe per config packet if we consider possible retransmissions). MSF
needs on average 12 packets to readjust the bandwidth for the incriminated links,
which remains very reasonable. However, we need also to wait for the convergence of
RPL to have consistent routing tables and then update the local schedules. Possibly,
RPL may experience temporary oscillations during such a convergence. Thus, MSF
converges much slower than SDN-TSCH-reconf.

In addition to the reconfiguration time, the network should also detect when a
significant change occurs. MSF experiences very long detection times, ranging from
1.5 to 18 minutes. Considering SDN-TSCH-reconf, a reconfiguration is triggered
upon reception of a report packet. In the worst case, the change occurs just after
F sends its report, so the detection time is bounded by the report period set to
5min in our simulations.

5.6. Performance Evaluation 83

MSF SDN-TSCH-reconf
Network Solution

101

102

103

R
ec

on
fig

ur
at

io
n

tim
e

(s
)

Figure 5.6: Reconfiguration time

MSF SDN-TSCH-reconf
Network Solution

10

20

30

N
um

. c
on

tr
ol

 p
ac

ke
t

Figure 5.7: Control overhead for reconfiguration

84 Chapter 5. Maintenance of Software Defined IWSN

5.7 Conclusion and Future Works

We have presented here all the mechanisms to reconfigure a SDN scheduled wireless
network. We reduce the overhead, with a single control packet to configure a whole
path, and present how we can prevent any inconsistent state, even temporarily. We
also present a scheduling algorithm to minimize the amount of reconfiguration to
make the maintenance energy efficient, and to minimize the impact of unreliability.

As future work, it would be interesting to enhance fault detection for quicker
operation in various scenarios. Since the fault detection mechanism relies on report
packets, the reporting time can affect the speed of fault detection. This concern
becomes more significant in cases where the link between a node and its parent is
severely degraded, and the node cannot transmit its report packet. Therefore, it is
worth conducting a thorough investigation to address these concerns.

Moreover, it is worth investigating the network behavior in more advanced sce-
narios where several reconfigurations are needed simultaneously in the network.
Typically, before starting each reconfiguration, the controller must prioritize the
pending reconfiguration processes based on their dependencies and criticality. For
instance, if a node and one of its predecessors in a subtree need reconfiguration, it
is more reliable to handle the configuration of the predecessor node first, as it paves
the way for reconfiguring the grandchild node. Additionally, different metrics such
as convergence time and data flow distribution are interesting to measure.

Chapter 6
Conclusion and Future Research
Directions

This thesis has explored critical flow management in scheduled IWSNs through
the SDN paradigm. Since IWSN applications demand strong SLAs in end-to-end
PDR and latency, we have leveraged SDN as a centralized management system
to effectively control the packet forwarding and the scheduling of resources in the
network. However, exploiting SDN in wireless networks faces its own challenges due
to the lossy nature of wireless links. The following summarizes the key findings and
contributions of this research.

Our first contribution (Chapter 6.2): As we cannot adapt the classical
SDN protocols (e.g., OpenFlow) to wireless scheduled networks due to resource-
constrained devices and wireless links, we have firstly developed a robust control
plane communication for wireless scheduled networks. We configure each node with
dedicated resources for upward and downward control directions, which eliminates
collisions.

Unlike regular WSN applications with best-effort traffic, IWSN applications de-
mand end-to-end resource provisioning to fulfill strict SLAs. We have proposed a
call admission system that allows a device to submit its QoS requirements to the
SDN controller, and in return, the controller defines proper forwarding rules and
dedicates resources per each flow.

We advocate for the necessity of this centralized approach in meeting applica-
tion SLAs, whereas an adaptive state of the art distributed protocol fails to achieve
the same level of performance. In addition, we support the notion that resource
allocation for flows should be based on the quality of network links, ensuring that
sufficient resources are provisioned for each hop to meet the end-to-end SLAs. Fur-
thermore, allocated resources for each flow must be isolated from other flows to

85

86 Chapter 6. Conclusion and Future Research Directions

prevent inter-flow resource contentions.

Our simulation results illustrate that our solution can perfectly meet the SLA
requirements of the critical applications, whereas state-of-the-art solutions fail to
support them due to the lack of efficient schedule definition.

Our second contribution (Chapter 6.2): As the SDN controller relies on
the link quality measurements to perform the scheduling, we proposed an accurate
LQE approach for software-defined scheduled networks. This helps to avoid over-
provisioning (resource wastage) or underprovisioning (SLA violations) of resources
in the network. To be energy efficient, we exploit a passive technique by monitoring
the existing synchronization beacons of the network to calculate the delivery ratio
of links. We exploit the global knowledge of the SDN controller to manage the
beacons transmissions, providing a collision-free communication and allowing to es-
timate the link quality accurately. Hence, while it is possible to use existing metrics
to measure link quality, achieving high precision while maintaining energy efficiency
remains challenging without leveraging the complete view of the controller.

Also, we evaluated the efficiency of different variants of the control plane (ded-
icated, shared) in terms of reliability and energy efficiency. We have demonstrated
that a dedicated control plane provides high efficiency with only a slightly higher
energy consumption cost. In addition, it can secure the reliability of higher con-
trol plane traffic if we aim to extend the control plane to support more advanced
functionalities.

Our third contribution (Chapter 6.2): Due to the time-variant nature of
wireless link qualities, we introduce an efficient network maintenance solution tai-
lored for scheduled SDN networks. The controller continuously monitors changes in
link quality within the network. Whenever a significant change is detected between
a node and its next hop, it initiates the reconfiguration of both the control plane
and all data plane flows for the target node, establishing a new path.

Given our reliance on scheduled networks, the controller is also responsible for
reconfiguring schedules for all affected flows on the weak link, requiring a significant
exchange of control traffic. To address this challenge effectively, we have proposed
an efficient mechanism that minimizes both the volume and time required for recon-
figuration without compromising the SLAs of critical flows. Therefore, the initial
configuration of the SDN controller is insufficient, and there is a need for continu-
ous network maintenance. Additionally, our solutions should be energy-efficient and
compatible with constrained devices in IWSNs.

6.1. Short Term Research Direction 87

6.1 Short Term Research Direction

We propose several short term directions that can be directly taken from the work
in this thesis.

6.1.1 Parent Selection Criteria

The strategy of selecting a neighbor node as the next hop to reach the controller
can impact both the reliability and energy consumption of the network. However,
attaching a large number of nodes in a node’s subtree can significantly drain the
battery and, consequently, affect the overall lifetime of the network. Even more
challenging, to simplify data plane configuration and minimize overhead, the same
routes used in the control plane may be configured for data flows. Thus, these
factors emphasize the significance of carefully optimizing route selection strategies in
wireless SDN networks. In general, when the route selection mechanism is conducted
by the SDN controller, it becomes more straightforward to choose the best strategy
as it has complete knowledge.

In our proposition, we discussed the construction of the control plane, where
a routing parent is selected for a joining node by the controller. We utilize the
most reliable link quality as the metric for selecting a parent node for the joining
node. Nevertheless, since several neighbors of the joining node may offer a good
link quality, we also can apply different metrics, such as load balancing or battery
level, to select the parent node. In fact, the controller can choose the neighbor with
the lowest number of scheduled cells or flows among the list of good neighbors as
the parent. In this way, we can maximize the network lifetime while ensuring the
reliability of the control plane by selecting the parent among good neighbors.

Our framework can be easily expanded to implement and evaluate this approach.
The evaluation can demonstrate how extending the network’s lifetime can be im-
proved when applying a load balancing scheme.

6.1.2 Centralized Channel Blacklisting

An external transmitter may utilize the shared frequency spectrum, potentially caus-
ing interference with the operation of our nodes on certain channels. Channel black-
listing is a common approach to exclude interfering channels and improve network
performance. Many solutions have been proposed for enhancing channel usage, both
in centralized and distributed manners. In a distributed manner, pairs of nodes ne-
gotiate with each other to identify interfering channels and agree not to use them in
their operations. Conversely, in a centralized approach, a central entity is respon-
sible for identifying optimal channel usage based on the gathered channel quality
information and then pushing the list of blacklisted channels to devices. Based on

88 Chapter 6. Conclusion and Future Research Directions

the literature review, distributed solutions often fail to achieve optimal performance
due to the high complexity of finding a collision-free list of channels and negotiation
overhead [161]. On the other hand, centralized approaches are often considered im-
practical due to the lack of a mechanism to gather and push the list of interfering
channels to the network [77].

Our SDN solution addressed the lack of communication mechanism between
devices and the central controller, which can be exploited to efficiently optimize
channel usage in the network. Thereby, different centralized channel blacklisting
mechanisms can be integrated into the framework.

Also, we leverage the periodic transmissions of Enhanced Beacon packets in the
IEEE 802.15.4-TSCH network to calculate the PDR for each link. Specifically, in
each consecutive slotframe, a node utilizes different frequency channels to send its
EBs, and we compute the PDR based on all these transmissions combined. However,
having a per-channel frequency PDR allows the controller to implement channel
blacklisting and maximize capacity usage.

Additionally, this information can be beneficial in situations where link quality
degradation is detected, triggering network reconfiguration (as discussed in Chap-
ter 6.2). If the link quality degradation is attributed to low PDR in a specific
frequency channel colonized by an external interference, the controller can take a
more efficient approach. Instead of redirecting the entire control and data plane to
a new parent, the controller can block the list of interfering channels between the
node and its parent, resulting in lower reconfiguration costs and overhead.

Our work is flexible enough to be extended for this proposition. It is necessary to
adapt the frame formats to accommodate per channel PDR. The evaluation would
be even more valuable if the experiments are carried out in the presence of an
external interference source.

6.1.3 Exploration of Benchmark Scheduling Schemes

It would be interesting to incorporate a comprehensive analysis of the performance
exhibited by different scheduling approaches within our SDN-TSCH solution. Many
centralized scheduling approaches are proposed in the literature with specific goals.
Incorporating diverse scheduling strategies into the SDN controller is a straightfor-
ward process. The defined schedule can be installed in the network using SDN-TSCH
control plane. This analysis would encompass an evaluation of energy consumption
patterns and fault tolerance capabilities.

Also, our architecture also naturally supports multipath, since a given flow-id
may be associated with multiple TX cells, to different neighbors.

6.2. Long Term Research Direction 89

6.2 Long Term Research Direction

To efficiently organize, maintain, and optimize networking systems, increased intel-
ligence is required. However, due to the inherently distributed nature of traditional
networks, the application and deployment of Machine Learning (ML) techniques for
network control and operations have proven challenging. SDN presents new oppor-
tunities for embedding intelligence within networks [162]. SDN’s capabilities such
as high computational power, logically centralized control, a global network view,
software-based traffic analysis, and dynamic gathering the network statistics and
updating of forwarding rules, facilitate the application of ML techniques. Relying
on a proactive approach of ML equips the SDN controller with the capability to
take preemptive actions. More specifically, the ML can be employed for the tasks
of traffic classification, QoS prediction, resource management and security.

Traffic classification: it would be interesting to employ QoS-aware traffic
classification to optimize network resource allocation based on their desired QoS
parameters. Various metrics such as flow lifetime, delay sensitivity, reliability, and
traffic load can be employed to categorize flows and assign priority levels. Initially,
ML techniques are employed for traffic flow classification. Subsequently, the central-
ized SDN controller can leverage the classification results to configure the flows. This
approach aids the SDN controller in effectively managing resources and optimizing
the accommodation of critical flows within the network.

QoS prediction: SLA fulfillments are closely tied to various network Key Per-
formance Indicators (KPIs), including packet size, link quality, hop distance, queue
length, energy resources, etc. Uncovering the quantitative relationships between
these KPIs and SLA parameters can enable QoS management while extending net-
work lifetime. ML can forecast optimal network parameters, such as routing deci-
sions and resource requirements, enabling the controller to execute efficient config-
urations.

Security: is a fundamental concern for network operators, and intrusion de-
tection plays a critical role in protecting networks. An Intrusion Detection System
(IDS) is either a device or software application with the primary goal of monitoring
network events and identifying potential attacks [163]. IDS empowers network oper-
ators to take proactive measures to mitigate threats before they escalate. Anomaly-
based IDS often leverages machine learning techniques to differentiate normal net-
work activities from intrusions [164]. The capabilities of SDN facilitate ML-based
intrusion detection, thereby fortifying network security [165]. The SDN controller’s
global network perspective simplifies the collection and analysis of network traffic,
and SDN’s programmability enables rapid responses to detected network attacks.

By addressing the communication barriers between devices and the SDN con-

90 Chapter 6. Conclusion and Future Research Directions

troller, our deployments can be leveraged for extensive research on using ML poten-
tial with SDN controllers to optimize IWSN networks. In addition to our existing
data, we can also incorporate extra statistical information via the reliable con-
trol plane of SDN-TSCH, enriching the controller’s understanding of the network’s
state.

List of Abbreviations

ASN Absolute Sequence Number.
BLE Bluetooth Low Energy.
CoAP Constrained Application Protocol.
CSMA Carrier Sense Multiple Access.
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.
EB Enhanced Beacon.
IoT Internet of Things.
IWSN Industrial Wireless Sensor Network.
KPI Key Performance Indicator.
LoRaWAN Long Range Wide Area Network.
LQE Link Quality Estimation.
LR-WPAN Low-Rate Wireless Personal Area Networks.
MAC Medium Access Control.
ML Machine Learning.
MSF Minimal Scheduling Function.
PDR Packet Delivery Ratio.
PHY Physical Layer.
QoS Quality of Service.
SDN Software Defined Network.
SLA Service Level Agreement.
TDMA Time Division Multiple Access.
WSN Wireless Sensor Network.

91

92 List of Abbreviations

List of Figures

1.1 Industrial Wireless Sensor Network scenario 3

2.1 Routing scenario in wireless networks 11
2.2 Simple TSCH schedule with shared and dedicated cells 16
2.3 Frame-based synchronization schemes in TSCH network 18
2.4 Relocation of colliding cell in MSF 22
2.5 SDN architecture . 24
2.6 Scheduling flows with different deadlines and priority in SDNWISE-

TSCH . 30

3.1 The configuration process of a new node in SDN-TSCH, (NBR =
neighbor) . 41

3.2 Label switching operation in SDN-TSCH 42
3.3 Organization of the slotframe . 43
3.4 Discovery time of a joining node . 44
3.5 Dedicated control plane in SDN-TSCH 46
3.6 Data flow Configuration in SDN-TSCH 48
3.7 Network convergence time . 51
3.8 Power consumption of nodes in joining period 52
3.9 Data flow handling in SDN-TSCH and SDNWISE-TSCH 52
3.10 PDR of flows before deadline . 53
3.11 End-to-end delay . 54
3.12 Data flow convergence time . 55
3.13 Instantaneous PDR of a given flow during a time interval using MSF 55
3.14 Ratio of scheduled cells . 56
3.15 Network lifetime . 56

4.1 Shared cell ID allocation in slotframe for the control plane 64
4.2 Link quality estimation . 67

93

94 List of Figures

4.3 Accuracy of link quality estimation in SDN-TSCH 68
4.4 Network convergence time . 69
4.5 Data flow configuration time . 70
4.6 Power consumption of nodes in joining period 71
4.7 Network lifetime . 71

5.1 A controller needs to reconfigure the control and data planes to redi-
rect the flows through the link (F→C) when the PDR of the link
(F→B) decreases from 95% to 40% 75

5.2 Enhanced format of config packet 76
5.3 Schedule update when redirecting a data flow 78
5.4 Per-packet end-to-end delay of FlowF in each solution 81
5.5 Per-flow PDR . 82
5.6 Reconfiguration time . 83
5.7 Control overhead for reconfiguration 83

List of Tables

1.1 Classes of industrial process automation applications [15] 4

2.1 Comparison of different standard technologies for IWSN 13
2.2 Summary of related works with supported features 31

3.1 Simulation parameters . 49

95

96 List of Tables

Améliorer l’Internet industriel des
objets grâce à la mise en réseau définie
par logiciel : de la construction du
réseau à la gestion des flux

Les réseaux de capteurs sans fil (WSNs) intègrent la technologie des capteurs à
la communication sans fil, fournissant ainsi une plate-forme polyvalente pour des
applications telles que la surveillance environnementale, les villes intelligentes et
les soins de santé. Ils collectent de manière autonome les données des nœuds de
capteurs et les transmettent sans fil à un hub central pour analyse [1].

Les avantages de la communication sans fil dans WSNs incluent la réduction
des coûts, la flexibilité et la facilité de maintenance des nœuds. Cependant, ces
réseaux sont confrontés à des défis dus aux limitations des ressources, qui influen-
cent la conception du matériel, les protocoles économes en énergie et la gestion des
données [5].

Les réseaux de capteurs sans fil industriels (IWSNs) répondent à des SLAs spé-
cifiques aux applications industrielles de l’Industrie 4.0. Ils prennent en charge
la maintenance prédictive, le contrôle qualité et l’efficacité opérationnelle grâce à
l’analyse des données [9].

Dans les environnements industriels, la communication multi-sauts surmonte
les obstacles et garantit une transmission fiable des données dans IWSNs. Classés
selon les exigences de latence, les modèles de trafic incluent le trafic périodique et
déclenché par des événements pour les tâches d’automatisation industrielle [13].

Garantir la fiabilité et la latence limitée dans IWSNs est un défi en raison des
caractéristiques des liaisons sans fil. Des protocoles MAC déterministes et une
planification minutieuse sont essentiels pour répondre à SLAs [20].

97

98 List of Tables

Le paradigme SDN dans IWSNs sépare les plans de contrôle et de données,
offrant une gestion centralisée efficace du réseau. Les défis incluent des liaisons sans
fil peu fiables, la découverte de topologies économes en énergie et la tolérance aux
pannes pour la reconfiguration du réseau [24].

Le doctorat. la thèse aborde des questions clés :
Établir un plan de contrôle fiable sur les liaisons sans fil multi-sauts, avec perte

et partagées. Activation de la planification centralisée pour les garanties de flux
dans les applications IWSNs critiques. Fournir une découverte de topologie précise
et économe en énergie et une estimation de la qualité des liens dans IWSNs défini
par logiciel. Permettre une reconfiguration du réseau rentable et continue dans
IWSNs défini par logiciel. Les contributions incluent une architecture SDN pour
IWSNs axée sur les garanties de flux, l’estimation précise et économe en énergie de
la qualité des liens et la reconfiguration continue du réseau.

État de l’art

Cette section fournit un aperçu des applications industrielles, en se concentrant sur
le protocole IEEE 802.15.4-TSCH, présente le SDN dans le contexte de l’IWSN et
explore les solutions de pointe.

Contexte IEEE 802.15.4-TSCH

IEEE 802.15.4-TSCH est un mode opérationnel conçu pour les applications indus-
trielles de faible consommation. IEEE 802.15.4-TSCH combine l’accès multiple par
répartition dans le temps (TDMA) avec un mécanisme de saut de fréquence pour
fournir des communications fiables et économes en énergie. Un mécanisme de plan-
ification détermine quand un émetteur doit commencer sa transmission (créneau
horaire) et quelle fréquence utiliser (décalage de canal). Les transmissions sont or-
ganisées en slotframe, c’est-à-dire une matrice de cellules sous forme de paires de
tranches de temps et de décalages de canal. Chaque nœud possède dans son plan-
ning une liste de cellules TX (respectivement RX) pendant lesquelles il doit rester
éveillé pour transmettre (respectivement recevoir) des paquets.

IEEE 802.15.4-TSCH exploite deux types de cellules dans le slotframe :

une cellule dédiée est allouée à un seul émetteur et un ou plusieurs récepteurs.
Ainsi, l’émetteur peut engager sa transmission sans conflit ;

une cellule partagée est allouée à un ensemble d’émetteurs, ce qui entraîne des
collisions potentielles. Si ack est attendu mais n’est pas reçu, l’émetteur attend
un nombre aléatoire de cellules partagées pour retransmettre le paquet. Les
collisions peuvent être fréquentes même avec une faible intensité de trafic [70].

99

Dans IEEE 802.15.4-TSCH, les nœuds se synchronisent à l’aide de balises améliorées
(EB) périodiques. Le paquet s’appuie sur des éléments d’information (IE), qui sont
un mécanisme extensible pour échanger des informations au niveau de la sous-couche
MAC. En particulier, le numéro de séquence absolu (ASN) sert d’horloge globale
dans le réseau. Puisque le timing est fixe (pas d’intervalle) dans un intervalle de
temps, le récepteur peut ajuster son horloge après toute réception de paquet.

SDN pour la gestion de la planification dans les IWSN

L’intégration du SDN dans les WSNs émerge comme une stratégie prometteuse
pour soulager les contraintes de traitement sur les dispositifs à faible puissance en
centralisant le contrôle via un contrôleur dédié [104, 105]. Dans les WSNs distribués
classiques, où les nœuds capteurs gèrent à la fois le traitement et les transmissions de
données, les limitations en puissance de calcul posent des défis [106]. Les contrôleurs
centralisés, dotés de capacités de calcul plus élevées, exécutent efficacement des
tâches computationnelles intensives, allégeant la charge sur les nœuds capteurs [107].

Les applications des réseaux de capteurs sans fil industriels (IWSN) reposent
fréquemment sur des réseaux sans fil déterministes planifiés pour atteindre une
haute fiabilité et une faible latence. En conséquence, il devient impératif d’adapter
l’architecture SDN pour allouer des blocs temps-fréquence [121].

uSDN [122] propose une architecture SDN pour les réseaux TSCH, mettant
l’accent sur l’optimisation des frais généraux de signalisation lors de l’installation
des flux. En installant des chemins au niveau du nœud source, le contrôleur at-
ténue les installations individuelles de règles de flux hop-by-hop, réduisant les frais
généraux initiaux de signalisation. Cependant, des préoccupations surgissent quant
à la rentabilité du piggybacking du routage source, et la dépendance à des algo-
rithmes autonomes et à RPL, connu pour ses oscillations [123]. uSDN étend son
travail [122] pour séparer les ressources radio entre le trafic de contrôle et de données,
utilisant un mécanisme de planification hop-by-hop pour la réservation distribuée
de cellules vers le contrôleur. Notamment, le contrôleur définit uniquement des rè-
gles de transmission pour chaque flux, sans gestion de la planification du plan de
données.

Whisper [124] utilise un contrôleur centralisé pour gouverner les protocoles RPL
et 6P, aspirant à établir un système de gestion centralisé avec des modifications
minimales de la pile réseau. Cependant, Whisper manque de capacités de routage
et de planification par flux, le rendant mieux adapté aux scénarios de trafic best-
effort.

REACT [129] introduit une politique induite par des écarts pour réduire les coûts
de latence et d’énergie lors de la reconfiguration du réseau dans les réseaux Wire-
lessHART. Bien qu’offrant une flexibilité en évitant une reconfiguration complète,

100 List of Tables

des défis surgissent de modifications individuelles de paquets (commandes DELETE
et ADD), potentiellement causant des perturbations en raison des changements de
qualité de liaison.

SDSense [130] présente un cadre reconfigurable dynamique avec une architecture
de contrôleur hiérarchique, optimisant les composants du réseau pour les besoins
lents et rapides. Malgré des améliorations significatives des performances dans la
reconfiguration dynamique du réseau, le manque de mise en œuvre détaillée entrave
une comparaison directe avec d’autres solutions SDN.

SDNWISE-TSCH [131] étend SDN-WISE pour les réseaux TSCH planifiés, visant
une routage et une planification efficaces par le contrôleur SDN. Tout en priorisant
les flux selon des critères spécifiques, SDNWISE-TSCH néglige la considération de la
qualité réelle des liaisons dans la définition des itinéraires et des horaires, impactant
la fiabilité. De plus, l’absence d’un mécanisme d’isolation des flux et la dépendance
à des cellules partagées dans le plan de contrôle posent des défis potentiels.

En conclusion, la revue de littérature met en évidence une lacune dans les so-
lutions SDN pour la garantie par flux dans les réseaux planifiés et l’allocation de
ressources basée sur la fiabilité des liaisons. Les solutions SDN résumées et leurs
propriétés sont présentées dans le Tableau 2.2.

Découverte de topologie et estimation de la qualité des liaisons dans
les réseaux SDN sans fil

La découverte de la topologie dans les réseaux sans fil identifie systématiquement
les nœuds voisins et les chemins de communication, constituant une base cruciale
pour la planification, l’optimisation et la gestion du réseau [133, 134]. Elle peut être
réalisée de manière active ou passive.

Dans l’approche active, chaque nœud génère des paquets de sonde supplémen-
taires pour annoncer sa présence aux voisins et potentiellement recevoir des réponses
en retour. Bien que cette méthode permette une identification active des connex-
ions entre les nœuds voisins, elle peut entraîner une surcharge due au trafic de
sondage supplémentaire, affectant potentiellement la consommation d’énergie glob-
ale du réseau.

À l’inverse, l’approche passive exploite le trafic réseau existant. Les nœuds
surveillent en continu les données entrantes pour identifier leurs voisins. Cette méth-
ode évite la surcharge des paquets de sondage mais repose sur l’hypothèse d’un trafic
constant pour recueillir suffisamment d’informations.

Dans les réseaux SDN sans fil, la découverte de la topologie utilise des techniques
supplémentaires telles que l’analyse des signaux sans fil, la découverte des voisins
et la surveillance des points d’accès en raison de la nature dynamique des liaisons
sans fil. Contrairement aux réseaux câblés offrant des connexions constantes et

101

prévisibles, les réseaux sans fil font face à des défis liés à la mobilité, aux interférences
et à l’ajout/suppression dynamique de nœuds sans fil.

SDN-WISE [111] et SDNWISE-TSCH [131] utilisent des paquets de balises sup-
plémentaires pour la découverte de la topologie. Chaque nœud envoie périodique-
ment des paquets de balises pour annoncer son nombre de sauts au nœud puits.
Les nœuds mettent à jour leurs tables de voisins et envoient ces informations au
contrôleur. TinySDN [112] utilise des paquets de sondage où chaque nœud envoie
un paquet de sondage à ses voisins. Plusieurs solutions [117, 122, 124] exploitent la
liste des voisins RPL au lieu de la découverte de la topologie, bien que RPL puisse
présenter des incohérences dans sa table de routage.

L’évaluation de la qualité de liaison (LQE) dans les réseaux sans fil est le proces-
sus technique d’évaluation de la fiabilité et des performances des liaisons de commu-
nication entre les appareils sans fil. Elle est cruciale pour optimiser les performances
du réseau, le routage efficace et la fourniture de la qualité de service (QoS).

Les métriques matérielles telles que LQI (Link Quality Indicator), RSSI
(Received Signal Strength Indicator), et SNR (Signal-to-Noise Ratio) four-
nissent des informations sur la qualité de la liaison. Cependant, elles ont des limita-
tions. Les métriques basées sur le matériel mesurent uniquement les paquets reçus
avec succès, ce qui peut entraîner une surestimation de la qualité de la liaison en
cas de pertes excessives de paquets. D’autre part, les métriques basées sur le logiciel
offrent un aperçu plus précis du comportement de la liaison mais peuvent introduire
des coûts de traitement supplémentaires.

Le choix d’une métrique de qualité de liaison dans les réseaux sans fil doit être
aligné sur les objectifs de l’application, tels que la transmission fiable des données,
l’efficacité énergétique, la faible latence ou la scalabilité.

La mesure de la qualité de liaison est cruciale pour la prise de décision du con-
trôleur SDN. Les techniques actives impliquent l’envoi de paquets supplémentaires,
nécessitant des ressources radio, tandis que les techniques passives utilisent les pa-
quets existants mais peuvent manquer de précision en cas de trafic déséquilibré.

Le contrôleur SDN collecte les mesures de qualité de liaison de chaque nœud,
évaluant les métriques comme RSSI. Cependant, un RSSI élevé ne garantit pas
nécessairement un taux de réception de paquets élevé. D’autres solutions utilisent
des paquets de sondage ou exploitent les protocoles de routage comme RPL. Cepen-
dant, l’envoi de paquets de sondage peut augmenter la surcharge de communication.
La précision des protocoles comme RPL peut être limitée par des incohérences dans
leurs tables de routage.

Les technologies planifiées telles que IEEE 802.15.4-TSCH dans les IWSNs man-
quent d’une planification centralisée pour garantir les flux. Les solutions SDN exis-
tantes se concentrent sur les règles réseau, négligeant les plans de contrôle robustes

102 List of Tables

dans les liens sans fil. Notre travail comble cette lacune en mettant l’accent sur une
planification consciente de la qualité des liens, comparée à MSF et SDNWISE-TSCH
pour l’évaluation des performances.

SDN-TSCH : Permettre le SDN pour les IWSN avec Iso-
lation du Trafic

L’Industrie 4.0 utilise les IWSN pour automatiser les processus industriels [150], avec
des applications critiques exigeant un fort QoS en termes de fiabilité et de latence
bornée. IEEE 802.15.4-TSCH [26] est une solution privilégiée pour les réseaux
industriels, assurant une communication robuste via une couche MAC TDMA et
un saut de fréquence. Cependant, pour respecter les SLA, il est crucial d’allouer
suffisamment de blocs temps-fréquence à chaque flux.

SDN semble prometteur pour une planification centralisée dans les IWSN, mais
les solutions existantes présentent des lacunes, notamment en termes de collisions
et de garanties de flux dans IWSN. Notre proposition, SDN-TSCH, vise à combler
ces lacunes en offrant une architecture SDN dans les IWSN, avec une planification
centralisée, une gestion efficace des ressources radio, et une isolation de flux pour
des performances stables.

SDN-TSCH fonctionne avec IEEE 802.15.4-TSCH, séparant les plans de contrôle
et de données avec des ressources radio dédiées. Le contrôleur SDN assure un plan
de contrôle sans collision et alloue des ressources dans le plan de données pour
répondre aux exigences de fiabilité et de latence. Le transfert de paquets utilise
une approche d’étiquetage pour isoler les ressources par flux, facilitant la sélection
efficace des ressources radio.

Avec un processus de découverte efficace, les nouveaux nœuds notifient leur
présence au contrôleur SDN, qui configure ensuite les plans de contrôle et de données.
Chaque nœud peut demander l’admission de son flux critique, et si les ressources
sont disponibles, le contrôleur orchestre une configuration de bout en bout pour le
flux.

Notre solution SDN-TSCH se distingue par sa capacité à assurer des garanties
de flux dans les IWSN, surpassant les limitations des solutions existantes, et sert de
base pour des applications industrielles fiables et à faible latence.

Commutation d’étiquettes pour SDN

SDN-TSCH utilise la commutation d’étiquettes pour isoler les flux dans le réseau [151].
Chaque flux possède des ressources radio dédiées, marquées avec un identifiant de
flux (flow-id), garantissant une transmission exclusive. Le flow-id est ajouté à l’en-
tête des paquets, permettant une gestion efficace des flux. La figure 1 illustre cette

103

S

ED

CB

A
FlowD (flow-id = 10) FlowE (flow-id = 20)

* -> * D > B E > C

B > A C > A

A > S A > S

Flow-id TX cell

10

20

(3, 2)

(5, 2)

A > S

A > S

Tx cell for flow-id 10

Tx cell for flow-id 20

Flow table of node A

 A (Tx)

 S (Rx)

 A (Tx)

 S (Rx)
Flow-id = 10

Flow-id = 20

Outbound queue of node A

0 1 2 3 4 5 6

0

1

2

3

Figure 1: Label switching operation in SDN-TSCH

opération.
Deux flow-id sont définis pour le plan de contrôle : "to-controller" pour les

paquets montants et "from-controller" pour les paquets descendants. Cette approche
améliore l’efficacité du traitement des paquets, assure l’isolation des flux et alloue
des ressources en fonction des exigences de qualité de service (QoS).

Processus de Découverte

Le processus de découverte permet à un nouveau nœud d’identifier ses voisins et
d’estimer leurs qualités de lien, facilitant ainsi une configuration efficace du plan de
contrôle par le contrôleur.

L’estimation de la qualité des liens se fait passivement en recevant des EBs
pendant des créneaux spécifiques. Notre approche utilise un calendrier EB sans
collision pour déterminer le PDR de chaque lien en comptant simplement les EBs
reçus de chaque voisin dans une période définie.

Le processus commence lorsque le nouveau nœud reçoit un EB, synchronise son

104 List of Tables

horloge avec le réseau TSCH, extrait les IEs pour obtenir les paramètres TSCH, et
découvre ses voisins en écoutant sur les créneaux partagés.

La découverte s’arrête lorsque tous les bons voisins (avec une qualité de lien
supérieure à un seuil prédéfini) ont été détectés pendant au moins une période
Treport. Le nouveau nœud ajuste également sa source de temps au voisin présentant
la meilleure qualité de lien pour minimiser la désynchronisation. Les PDR calculés
sont ensuite continuellement transmis au contrôleur toutes les Treport une fois le
processus de découverte terminé.

Processus d’Adhésion

Une fois qu’un nœud nouvellement découvert a effectué le processus de découverte,
il doit rejoindre le réseau SDN. À cet effet, il crée un paquet report contenant la
liste des voisins et leur PDR associé, puis l’envoie en unicast au voisin présentant
la meilleure qualité de lien pour maximiser la probabilité de transmission réussie.
Comme le nœud n’a pas de plan de contrôle configuré, il doit utiliser une cellule
partagée pour transmettre son paquet report. Le paquet report traverse ensuite le
réseau de nœud en nœud pour atteindre le contrôleur de manière fiable en utilisant
l’identifiant de flux "to-controller".

À la réception d’un paquet report, le contrôleur vérifie si le paquet provient
d’un nouveau nœud. Dans ce cas, le contrôleur enregistre le nœud dans la liste
des membres et sélectionne le voisin présentant la meilleure qualité de lien comme
parent pour maximiser la fiabilité du plan de contrôle. Le parent est également utilisé
comme source de temps dans TSCH après le processus d’adhésion, minimisant ainsi
la probabilité de désynchronisation en raison de la forte qualité de lien.

Ensuite, le contrôleur sélectionne au hasard deux cellules dédiées dans le slot-
frame pour le plan de contrôle : une pour l’envoi de paquets de contrôle ascendante
au nœud parent et une pour la réception de paquets de contrôle descendant du nœud
parent. Les cellules allouées doivent correspondre à un créneau non utilisé pour le
parent (condition de demi-duplex) et ne peuvent pas être attribuées à un autre lien
interférant (condition sans collision).

Enfin, le contrôleur construit deux paquets config: un pour la direction as-
cendante (to-controller) et un pour la direction descendante (from-controller).
Pour atteindre le nœud rejoignant, le contrôleur peut utiliser l’identifiant de flux
from-controller déjà configuré dans le reste du réseau (sauf le dernier saut).
Cependant, plusieurs enfants peuvent exister à chaque saut, et les paquets config

doivent être routés dans le sous-arbre correct. Heureusement, le contrôleur connaît
la topologie complète et peut calculer un chemin jusqu’au nœud rejoignant. Ainsi,
nous implémentons une méthode de routage source : le chemin complet est intégré
dans chaque paquet config.

105

Il est à noter que nous configurons toujours un flux du destinataire vers la source.
Cette approche permet un schéma générique qui facilite la configuration des flux de
données de manière fiable.

Lorsqu’un nœud n reçoit le paquet config, il exploite le chemin et l’ordonnancement
pour mettre à jour sa configuration.

Allocation des Ressources pour le Plan de Données

Chaque application critique ouvre une connexion de socket, décrivant ses exigences
en matière de QoS (c.-à-d., fiabilité minimale de bout en bout et latence maximale).
Le nœud initie une admission d’appel en envoyant une flow-request au contrôleur
via l’identifiant de flux "to-controller". À la réception d’une flow-request, le
contrôleur élabore un emploi du temps respectant les exigences de la QoS :

1. le contrôleur calcule un chemin de la source à la destination en utilisant la
topologie en arbre (via les liens nœud/parent);

2. le contrôleur attribue des cellules dédiées de secours pour les retransmissions
des liens les plus faibles. Des cellules de secours supplémentaires sont assignées
jusqu’à ce que la fiabilité minimale de bout en bout soit respectée [152];

3. le contrôleur planifie des cellules dos à dos (ou aussi proches que possible)
pour minimiser le délai de bout en bout.

Si le calcul de l’emploi du temps est impossible, la demande est rejetée, et le
contrôleur envoie un paquet config négatif (vide) au nœud source. Si le calcul est
réussi, le contrôleur définit un nouvel identifiant de flux pour le flux et construit
un paquet config comprenant le nouvel emploi du temps et l’identifiant de flux
correspondant. Le contrôleur utilise un seul paquet config pour configurer tout le
chemin, qui se compose de :

1. sous-chemin de la racine à la destination : l’emploi du temps de cette partie
est vide, et le nœud ne fait que transmettre le paquet config avec les cellules
from-controller ;

2. sous-chemin de la destination à la source : la configuration commence du nœud
de destination vers le nœud source. Chaque nœud dans cette partie extrait et
installe l’identifiant de flux et les cellules correspondantes. Lorsque le nœud
source reçoit le paquet config, tout le chemin est configuré, et il commence à
envoyer des paquets sans délai.

Il est à noter que la technique pour identifier la position d’un nœud de trans-
mission est toujours valable lorsqu’un nœud est présent dans les deux sous-chemins.

106 List of Tables

En effet, nous identifions individuellement chaque lien dans tout le chemin lors de
l’installation de l’emploi du temps.

Pour la deuxième partie du chemin, chaque nœud doit sélectionner soit les iden-
tifiants de flux "to-controller" ou "from-controller" pour transmettre le paquet
config. Pour déterminer la direction, chaque nœud vérifie si l’adresse du prochain
saut est également présente dans la liste des nœuds précédant sa position dans le
routage source. Si c’est le cas, le prochain saut est un nœud amont, et le pa-
quet config utilise l’identifiant de flux "to-controller". Sinon, le nœud utilise
l’identifiant de flux "from-controller" pour transmettre le paquet config.

La Figure 2 illustre un scénario où S est le nœud source. Le paquet flow-request
décrit les exigences du flux (p.ex., PDR = 90%, délai de bout en bout = 70 ms) et la
destination D. En retour, le paquet config utilise le routage source, d’abord de A à
D, puis de D à S. Le contrôleur attribue plus de cellules aux liens faibles (2 cellules
pour S→E et 2 cellules pour E→B) pour atteindre le PDR de bout en bout du flux
(90%). Le contrôleur attribue des cellules séquentiellement pour tenir compte du
délai de bout en bout du flux (70 ms). Le chemin A−B−D−B−E−S est intégré
dans le paquet config. Ainsi, D sait que B est un nœud amont puisque B est à la
fois présent après et avant D : il doit utiliser l’identifiant de flux "to-controller"
pour transmettre le paquet config. Inversement, S est un nœud descendant pour
E puisque S est uniquement présent après E : il doit utiliser l’identifiant de flux
"from-controller".

Évaluation des performances

Nous avons implémenté SDN-TSCH dans Contiki-ng et le simulateur Cooja pour
évaluer ses performances, le comparant avec deux approches de pointe :

MSF [91] est la norme de l’IETF pour la planification distribuée4, combinant des
cellules autonomes et négociées pour éviter les collisions et allouer dynamique-
ment des ressources ;

SDNWISE-TSCH [131] est une variante de SDNWISE adaptée aux réseaux
TSCH. SDNWISE-TSCH permet l’architecture SDN pour les réseaux indus-
triels de capteurs sans fil. Il calcule un programme en tenant compte de la
date limite de chaque flux.

Nous avons simulé des réseaux de 10, 20, 30, 40 et 50 nœuds. Chaque nœud a un
flux de données critique à transmettre au nœud collecteur (trafic de convergence).
Nous considérons des applications critiques nécessitant un PDR de bout en bout
supérieur à 99% et avec une date limite de 2 secondes [153]. Nous utilisons les

4https://github.com/alexrayne/contiki-ng.git

https://github.com/alexrayne/contiki-ng.git

107

A

D

S

B
C

on
tro

lle
r

Request (QoS + Dest=D)

Config

* * A * B * E B D B B A C A

E * S E S E B D

S E E B E B

1 42

5

3

C

Hop number

Direction of tx

1

2

3

4

E

95%

85%
90%

D B

A *

To-controller

From-controller

Cell type

5

S E Data flow

End-to-end delay = 50 ms

Figure 2: Data flow Configuration in SDN-TSCH

valeurs par défaut pour les paramètres de MSF [91]. Un contrôleur alloue un nouvel
identifiant de flux et un ensemble de cellules à chaque flux critique pour répondre
aux exigences.

Comparaison de SDN-TSCH et SDNWISE-TSCH

Nous comparons SDN-TSCH avec SDNWISE-TSCH pour évaluer deux approches
SDN différentes. Plus précisément, nous i) évaluons la fiabilité et l’efficacité énergé-
tique du plan de contrôle, et ii) évaluons les performances des garanties de flux dans
le plan de données.

SDNWISE-TSCH utilise des cellules partagées pour les EB et les paquets de
contrôle SDN. Selon [131], un réseau de 10 nœuds avec une longueur de slotframe
de 19 utilise 2 cellules partagées. Pour accommoder différentes tailles de réseau sans
impact sur la fiabilité du plan de contrôle de SDNWISE-TSCH, nous proposons de
maintenir constant le temps par nœud entre deux cellules partagées. Ainsi, nous
définissons le nombre par défaut de cellules partagées comme suit :

Nshared−cells =
2 ∗ SFlength

19
∗ N

10
≈ N ∗ SFlength ∗ 0.01 (1)

avec Nshared−cells le nombre de cellules partagées, N le nombre de nœuds, et SFlength

la longueur de la slotframe.
La Figure 3 montre le temps de convergence de chaque approche pour différentes

108 List of Tables

10 20 30 40 50
Network size

2000

4000

6000

8000
C

on
ve

rg
en

ce
 ti

m
e(

s)
SDN-TSCH SDNWISE-TSCH(2N) SDNWISE-TSCH(15N)

Figure 3: Temps de convergence du réseau

tailles de réseau. Nous définissons la convergence comme le moment où le dernier
nœud du réseau est admis par le contrôleur SDN. Nous testons deux ratios de cellules
partagées dans le plan de contrôle partagé : i) 15N (éq. 1) utilisé par SDNWISE-
TSCH et ii) 2N , qui sert de valeur limite inférieure. Avec 2N cellules partagées, le
nombre de collisions devient très élevé pour les réseaux de taille moyenne. Dans les
pires conditions, le réseau ne converge jamais. Avec 15 cellules partagées par slot-
frame, SDNWISE-TSCH réussit à converger. Cependant, le temps de convergence
est encore plus long pour SDNWISE-TSCH comparé à SDN-TSCH. En effet, les
cellules partagées reçoivent un pic de trafic de contrôle, et la perte de paquets de
contrôle impacte significativement la convergence.

L’utilisation de cellules partagées impacte également la consommation d’énergie,
comme illustré dans la Figure 4. Nous nous concentrons ici sur la consommation
d’énergie du réseau pendant la période de convergence. L’utilisation de seulement
15N cellules partagées consomme beaucoup d’énergie : tous les nœuds se réveillent
pendant ces créneaux. Au contraire, l’utilisation de seulement 2N cellules partagées
est beaucoup plus économe en énergie (mais avec un impact sur la fiabilité). Seul
SDN-TSCH est capable de converger rapidement tout en offrant une consommation
d’énergie très raisonnable : l’utilisation de cellules dédiées est beaucoup plus efficace,
même pour le trafic de contrôle. En effet, les nœuds doivent se réveiller moins
fréquemment, et les transmissions sont plus fiables car nous ne pouvons pas créer
de collisions.

109

10 20 30 40 50
Network size

0

1

2

3

4
Po

w
er

 c
on

su
m

pt
io

n
(m

W
)

SDN-TSCH SDNWISE-TSCH(2N) SDNWISE-TSCH(15N)

Figure 4: Consommation d’énergie des nœuds pendant la période de convergence

Comparaison de SDN-TSCH et MSF

Nous comparons SDN-TSCH avec MSF pour évaluer les différences entre une so-
lution centralisée et une solution distribuée en termes de fiabilité et d’efficacité
énergétique. La Figure 5 illustre le taux de remise de bout en bout de chaque flux.
De manière évidente, MSF offre une fiabilité très faible. Avec 20 nœuds, le PDR
moyen de bout en bout est supérieur à 95%, mais certains flux présentent un PDR
de seulement 50%. La fiabilité est encore pire avec 50 nœuds : plus de flux sont
acheminés, et la région autour du puits devient un goulot d’étranglement. Ainsi,
MSF échoue à fournir suffisamment de cellules de secours pour garantir une fiabil-
ité élevée. Au contraire, SDN-TSCH atteint une fiabilité de bout en bout parfaite,
quelles que soient les conditions. Mieux encore : la fiabilité est égale à 100% même
dans le pire des cas, ce qui est une propriété attendue pour les réseaux industriels.

La Figure 6 illustre la latence de bout en bout. Nous traçons la date limite de
2 secondes (ligne horizontale) pour en voir l’impact. MSF a tendance à livrer les
paquets très près de la date limite, : il est très compliqué de respecter les délais
de manière distribuée. mais trop de paquets sont reçus après la date limite, en
particulier pour les grands réseaux. Au contraire, le contrôleur SDN provisionne
suffisamment de ressources dans SDN-TSCH. Bien que la latence augmente car les
paquets sont acheminés via des chemins plus longs, la date limite est toujours respec-
tée. Les pertes de paquets correspondent principalement à des valeurs aberrantes
statistiques.

110 List of Tables

10 20 30 40 50
Network size

0

20

40

60

80

100

PD
R

(%
) b

ef
or

e
de

ad
lin

e
SDN-TSCH MSF

Figure 5: Taux de remise de paquets (PDR) des flux avant la date limite

10 20 30 40 50
Network size

10 2

10 1

100

101

102

103

E
nd

-t
o-

E
nd

 d
el

ay
(s

)

Deadline = 2s

SDN-TSCH MSF

Figure 6: Latence de bout en bout

111

Estimation de la Qualité de Liaison dans les Réseaux SDN
sans Fil Planifiés

Dans les réseaux sujets aux pertes, le contrôleur SDN peut allouer des ressources ra-
dio supplémentaires pour les retransmissions afin de compenser la perte de paquets.
Cependant, le contrôleur peut estimer de manière incorrecte les qualités de liaison,
entraînant une surprovision (gaspillage d’énergie) ou une sous-provision (manque
de fiabilité). Les techniques actives nécessitent des sondes régulières, tandis que les
passives sont moins coûteuses mais peuvent être imprécises en cas de collisions.

Notre estimation de la qualité de liaison dans SDN-TSCH repose sur les transmis-
sions EB dans les cellules partagées, permettant l’identification de tous les voisins.
Ce chapitre détaille notre solution, expliquant comment nous évitons les collisions
pour une estimation précise et économe en énergie.

Nous avons utilisé un plan de contrôle entièrement dédié pour SDN-TSCH, mais
cette approche s’est avérée énergivore. Nous évaluons les performances des plans de
contrôle partagés, dédiés et mixtes dans SDN-TSCH, tenant compte des conditions
réalistes telles que les liaisons sujettes aux pertes.

Cette évaluation vise à quantifier l’impact sur le réseau SDN, une question peu
explorée dans les réseaux sans fil planifiés, où les dispositifs sont énergétiquement
contraints. Ce chapitre offre une compréhension approfondie des compromis entre
l’efficacité énergétique et la fiabilité dans un environnement de réseau sans fil planifié.

Estimation Précise de la Qualité de Liaison

Nous proposons un schéma passif de surveillance de liaison pour répondre aux ex-
igences énoncées dans la section précédente. Nous tirons parti des paquets EB du
réseau TSCH pour estimer la qualité des liaisons. Chaque nœud compte le nombre
de EB reçus de chaque voisin pendant une période donnée. Le contrôleur calcule
le taux de remise des paquets EB (PDR) et l’utilise comme métrique de qualité de
liaison, calculée selon l’équation 2 :

P̂DR(n) =
counter(n) ∗ TEB

Treport
(2)

Avec counter(n) le compteur EB du voisin n, TEB la période des EB, P̂DR(n)

le PDR mesuré pour n, et Treport la période de rapport.
Comme les EB sont envoyés périodiquement, une estimation continue de la qual-

ité de la liaison est écoénergétique et élimine le besoin de générer de nouveaux pa-
quets de sondage. Cela fournit au contrôleur une estimation constamment mise à
jour de la qualité de la liaison. Ainsi, en cas de changement, le contrôleur peut
reconfigurer le réseau en définissant de nouvelles règles.

112 List of Tables

De plus, comme tous les voisins d’un nœud doivent être éveillés pour recevoir un
EB du nœud, nous utilisons des cellules partagées pour les transmissions EB. Cela
permet de calculer et de mettre à jour la qualité de la liaison pour des liaisons non
utilisées ou non découvertes.

Cependant, des collisions peuvent survenir entre deux transmissions EB concur-
rentes ou entre les EB et d’autres paquets diffusés via des cellules partagées. Nous
proposons de résoudre ce problème de mauvaise estimation de la qualité de liaison en
planifiant de manière plus appropriée les EB. Nous continuons à exploiter les cellules
partagées pour optimiser le processus de découverte et la re-estimation continue de
la qualité de la liaison, tout en évitant les collisions.

Organisation des Cellules Partagées dans le Plan de Contrôle

Dans le plan de contrôle, divers paquets, notamment ceux de l’adhésion et de la
configuration, nécessitent des cellules partagées. Les nouveaux nœuds, dépourvus
de cellules dédiées pour les paquets report, requièrent des cellules partagées pour
les paquets de maintien de connexion afin de se synchroniser avec le parent.

Pour une découverte efficace du réseau, les EBs utilisent également des cellules
partagées. Pour éviter les collisions d’EB, nous proposons que le contrôleur SDN
attribue des cellules spécifiques pour les EBs, chacune étant assignée à un seul nœud.
Une distinction claire est établie entre les cellules partagées pour les transmissions
d’EB et celles pour le trafic de contrôle non-EB.

Chaque nœud vérifie les cellules partagées au début : 1. S’il s’agit de la cellule
EB dédiée, le nœud transmet son EB. 2. S’il s’agit de la cellule EB d’un voisin, le
nœud reste éveillé pour éventuellement recevoir l’EB. 3. Si ce n’est pas une cellule
EB, le nœud transmet le premier paquet de contrôle ou reste éveillé pour recevoir
des sollicitations.

Les nœuds utilisent des identifiants uniques pour les cellules partagées dans le
slotframe. Lors de l’adhésion, un contrôleur attribue séquentiellement un identifiant
partagé à un nouveau nœud. Le dernier nœud rejoint a le maximum d’identifiant
de cellule partagée (slotEBmax). Cette distinction aide à séparer les parties EB et
non-EB du slotframe, et slotEBmax est diffusé dans les EB, informant tous les nœuds
des cellules réservées aux EB.

Certaines cellules partagées sont allouées au trafic non-EB, et les cellules pour
les EB sont séparées. Pour éviter les collisions avec les paquets non-EB, les nœuds
n’utilisent que les cellules partagées non réservées pour les EB en fonction de l’identifiant
partagé.

La distribution des cellules partagées non-EB impacte les taux de collision. Des
cellules non-EB regroupées au début entraînent des collisions élevées, car les nœuds
attendent la fin pour envoyer des paquets, provoquant une collision cumulative.

113

10 20 30 40 50
Network size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 li
nk

 q
ua

lit
y

es
tim

at
io

n
Scheduled_EB Unscheduled_EB

Figure 7: Estimation de la qualité de liaison

Pour minimiser les collisions, nous distribuons les cellules EB dans le slotframe,
en attribuant des identifiants uniques (shared-id). Un algorithme récursif attribue
les shared-ids de manière équitable, minimisant la probabilité de collision. Les
nœuds peuvent appliquer le même algorithme pour identifier les cellules EB et non-
EB en utilisant slotEBmax.

Évaluation des Performances

Nous évaluons la précision de notre estimation de la qualité de liaison en comparant
notre approche basée sur les EB planifiés avec l’approche sans planification des EB.
Dans l’approche sans planification des EB, les cellules EB ne sont pas planifiées par
le contrôleur, permettant à chaque nœud d’utiliser n’importe quelle cellule partagée
pour transmettre ses EB. L’évaluation se concentre sur la qualité de liaison normal-
isée, calculée comme le rapport entre le taux de livraison de paquets estimé (PDR)
et le PDR réel modélisé par le simulateur (Figure 7).

En utilisant un nombre égal de cellules partagées pour les solutions EB planifiées
et non planifiées, l’approche EB planifiée démontre une estimation précise de la
qualité de liaison, indépendamment de la taille du réseau. Les erreurs d’estimation
semblent suivre une distribution normale centrée sur la valeur réelle. En revanche,
l’approche EB non planifiée sous-estime considérablement la qualité, surtout pour
les réseaux plus importants. La qualité normalisée tend vers zéro, indiquant une
sous-estimation importante entraînant une allocation inefficace des ressources et

114 List of Tables

une augmentation de la consommation d’énergie par le contrôleur.

Notre solution basée sur la planification se révèle très efficace, fournissant des
estimations précises de PDR rapportées dans les paquets report. Cela permet au
contrôleur d’optimiser efficacement l’allocation des ressources radio.

Maintenance des IWSN Définis par Logiciel

Le SDN gère efficacement les paramètres des périphériques sans fil, mais la qualité
des liens peut changer dynamiquement, affectant la fiabilité des plans de contrôle et
de données. Cela devient critique lorsque la fiabilité est essentielle, nécessitant une
surveillance constante par le contrôleur SDN et des règles adaptatives.

Le contrôleur SDN doit s’adapter rapidement aux dynamiques du réseau, ce
qui entraîne une communication accrue. Nous introduisons des mécanismes pour
maintenir et mettre à jour efficacement ces réseaux. Cela inclut l’identification des
liens défaillants grâce aux rapports de qualité des nœuds et des techniques pour
mettre à jour les plans de contrôle et de données, permettant la redirection des flux
lorsque nécessaire.

Nous présentons une architecture pour l’admission d’applications industrielles
critiques, étendant SDN-IEEE 802.15.4-TSCH pour une reconfiguration en temps
réel lorsque la qualité du lien diminue. Notre solution est économe en énergie et
fiable, évitant les pertes de données lors de la reconfiguration.

Détection de Défaillance & Sélection du Parent

Chaque nœud envoie périodiquement des paquets report au contrôleur, trans-
portant le nombre d’EB reçus de ses voisins. Pour garantir une qualité de lien
suffisante, le contrôleur compare régulièrement le PDR entre le parent actuel et le
meilleur voisin pouvant servir de nouveau parent. Le changement de parent est
déclenché si les conditions suivantes sont remplies :

Cond. 1: PDR(parent_actuel) ≤ α ∗ PDR(meilleur_parent)

Cond. 2: meilleur_parent /∈ noeuds_sous− arbre
(3)

0 < α < 1 est le paramètre définissant la sensibilité de la règle de reconfiguration.
Avant de déclencher la reconfiguration, le contrôleur vérifie également l’absence de
processus de reconfiguration actif, évitant ainsi les conflits potentiels entre les pro-
cessus de mise à jour.

115

Mise à Jour des Plans de Contrôle et de Données

Le contrôleur doit reconfigurer le plan de contrôle en allouant des cellules dédiées
entre le nœud cible et son nouveau parent. Pour cela :

vers le contrôleur : une nouvelle cellule dédiée est réservée, réutilisant si possible
la plage temporelle existante ou en en sélectionnant une nouvelle aléatoirement
;

du contrôleur : la cellule RX correspondante est ajoutée dans l’emploi du temps
du nœud cible.

Deux paquets config sont envoyés pour mettre à jour la configuration, un pour
chaque direction. Le contrôleur utilise un mécanisme de routage source pour achem-
iner les paquets config. Pour minimiser la surcharge, le format du paquet config

est optimisé, transportant le chemin à suivre et les cellules à insérer/supprimer.
Après réception, le nœud cible envoie un ack, assurant la cohérence globale. En

cas de non-réception, le contrôleur retransmet le paquet config.
Ensuite, le contrôleur redirige les flux de données vers le nouveau parent en

envoyant un paquet config dédié à chaque flux. Les paquets suivent le nouveau
chemin configuré, garantissant l’isolation des flux pendant la convergence.

(Re)-scheduling Algorithm

We propose a heuristic rescheduling algorithm to minimize updates when redirect-
ing data flows in SDN-enabled WSNs. Instead of computing a new schedule from
scratch, we focus on updating the subset of the path that differs between the old
and new paths, minimizing the end-to-end delay.

The algorithm follows a greedy approach, optimizing the schedule for the specific
subpath to minimize buffering time. It computes the number of cells needed for each
hop, considering link quality, and allocates cells accordingly. Consecutive cells are
preferentially selected to minimize forwarding delay.

In cases where the last cell of the subpath overlaps with the first cell of the
remaining path, the algorithm updates the rest of the schedule hop-by-hop toward
the border router. The update stops if the last cell of the current hop is scheduled
before the cells for the next hop. The schedule is valid when the last cell in the
subpath is scheduled before the first cell of the remaining path.

The algorithm allows for flexibility in reusing timeslots through old and new
paths, differentiating them with channel offsets to avoid collisions during conver-
gence. The example in Fig. 5.3 illustrates this process, showing consecutive cells
for the new subpath (A,C,D) in blue and hop-by-hop updates for the overlapping
schedule in green.

116 List of Tables

 BR

B

A

D

F

C

95% -> 40%

Controller

new parent

previous parent

90%

90%

90%

90%

LAN

90%

before after

90% Radio link with
 a PDR of 90%

Current parent

New parent

Data flow

Figure 8: Un contrôleur doit reconfigurer les plans de contrôle et de données pour
rediriger les flux à travers le lien (F→C) lorsque le PDR du lien (F→B) diminue de
95% à 40%

Évaluation des Performances

Dans cette évaluation, nous implémentons et comparons trois solutions : l’original
SDN-TSCH (SDN-TSCH-orig), notre version étendue (SDN-TSCH-reconf) et la
fonction de planification distribuée MSF pour TSCH. Le scénario de simulation
implique une topologie changeante, en mettant l’accent sur un seul changement de
lien, comme illustré dans la Fig. 8.

La Fig. 9 présente le PDR par flux pour FlowF et FlowD après la dégradation
de la qualité du lien. Alors que SDN-TSCH-orig a du mal à maintenir la fiabilité
en raison d’un nombre insuffisant de cellules, SDN-TSCH-reconf offre de manière
cohérente une fiabilité ultra-élevée même pendant les changements de topologie.
MSF est confronté à des défis pour une approvisionnement rapide en ressources,
entraînant un PDR plus faible.

La Fig. 10 illustre le temps de reconfiguration, avec SDN-TSCH-reconf en moyenne
à 14s. La surcharge de contrôle pendant la reconfiguration est représentée à la
Fig. 11, où SDN-TSCH-reconf utilise efficacement 4 paquets config par reconfig-
uration, tandis que MSF en nécessite 12. De plus, MSF connaît des temps de
détection plus longs (1.5 à 18 minutes).

Dans l’ensemble, SDN-TSCH-reconf démontre une reconfiguration efficace avec
un délai minimal et une fiabilité élevée par rapport à SDN-TSCH-orig et MSF,

117

MSF SDN-TSCH-orig SDN-TSCH-reconf
Network Solution

0

20

40

60

80

100
PD

R
(%

) b
ef

or
e

de
ad

lin
e

End-to-end PDR = 99%

Flow(F) Flow(D)

Figure 9: Taux de Livraison de Paquets par Flux

comme le montre l’évaluation des performances.

118 List of Tables

MSF SDN-TSCH-reconf
Network Solution

101

102

103

R
ec

on
fig

ur
at

io
n

tim
e

(s
)

Figure 10: Temps de Reconfiguration

MSF SDN-TSCH-reconf
Network Solution

10

20

30

N
um

. c
on

tr
ol

 p
ac

ke
t

Figure 11: Surcharge de Contrôle pour la Reconfiguration

119

Conclusion

Cette thèse explore la gestion cruciale des flux dans les réseaux de capteurs sans fil
industriels planifiés en utilisant le SDN. Les contributions clés incluent :

1. Communication du Plan de Contrôle : Développement d’une commu-
nication robuste pour les réseaux sans fil planifiés, avec la configuration de chaque
nœud possédant des ressources dédiées pour éliminer les collisions. Proposition
d’un système d’admission des appels pour définir des règles d’acheminement et des
ressources dédiées.

2. Estimation de la Qualité de Liens (QdL) : Proposition d’une approche
précise de QdL pour les réseaux SDN planifiés en utilisant une technique passive
pour surveiller les balises de synchronisation. Évaluation de l’efficacité des plans de
contrôle dédiés et partagés en termes de fiabilité et d’efficacité énergétique.

3. Maintenance Efficace du Réseau : Introduction d’une solution efficace
pour la maintenance de réseau dans les réseaux SDN planifiés. Surveillance continue
des changements de qualité des liens, avec une reconfiguration initiée lors de change-
ments significatifs. Proposition d’un mécanisme efficace pour minimiser le volume
et le temps de reconfiguration sans compromettre les SLAs des flux critiques.

Les résultats soulignent l’efficacité des solutions pour respecter les SLAs, assurer
une utilisation efficace des ressources et relever les défis dynamiques des réseaux
sans fil industriels.

120 List of Tables

Bibliography

[1] Bushra Rashid and Mubashir Husain Rehmani. “Applications of wireless sen-
sor networks for urban areas: A survey”. In: Journal of network and com-
puter applications 60 (2016), pp. 192–219.

[2] Mihai T Lazarescu. “Design of a WSN platform for long-term environmental
monitoring for IoT applications”. In: IEEE Journal on emerging and
selected topics in circuits and systems 3.1 (2013), pp. 45–54.

[3] Aditya Gaur, Bryan Scotney, Gerard Parr, and Sally McClean. “Smart city
architecture and its applications based on IoT”. In: Procedia computer
science 52 (2015), pp. 1089–1094.

[4] JeongGil Ko, Chenyang Lu, Mani B Srivastava, John A Stankovic, Andreas
Terzis, and Matt Welsh. “Wireless sensor networks for healthcare”. In: Pro-
ceedings of the IEEE 98.11 (2010), pp. 1947–1960.

[5] Dragan Peraković, Marko Periša, and Petra Zorić. “Challenges and Issues
of ICT in Industry 4.0”. In: Design, simulation, manufacturing: The
innovation exchange (2019), pp. 259–269.

[6] Aysegul Tuysuz Erman and Ozlem Durmaz Incel. “Medium access control
and routing in industrial wireless sensor networks”. In: Industrial Wireless
Sensor Networks. CRC Press, 2017, pp. 231–258.

[7] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. “Wireless sensor
network survey”. In: Computer networks 52.12 (2008), pp. 2292–2330.

[8] Carlos F García-Hernández, Pablo H Ibarguengoytia-Gonzalez, Joaquín García-
Hernández, and Jesús A Pérez-Díaz. “Wireless sensor networks and applica-
tions: a survey”. In: IJCSNS International Journal of Computer Sci-
ence and Network Security 7.3 (2007), pp. 264–273.

121

122 BIBLIOGRAPHY

[9] Johan Åkerberg, Mikael Gidlund, and Mats Björkman. “Future research chal-
lenges in wireless sensor and actuator networks targeting industrial automa-
tion”. In: 2011 9th IEEE International Conference on Industrial In-
formatics. IEEE. 2011, pp. 410–415.

[10] Mohsin Raza, Nauman Aslam, Hoa Le-Minh, Sajjad Hussain, Yue Cao, and
Noor Muhammad Khan. “A critical analysis of research potential, challenges,
and future directives in industrial wireless sensor networks”. In: IEEE Com-
munications Surveys & Tutorials 20.1 (2017), pp. 39–95.

[11] Li Da Xu, Eric L Xu, and Ling Li. “Industry 4.0: state of the art and future
trends”. In: International journal of production research 56.8 (2018),
pp. 2941–2962.

[12] Ondrej Kreibich, Jan Neuzil, and Radislav Smid. “Quality-based multiple-
sensor fusion in an industrial wireless sensor network for MCM”. In: IEEE
Transactions on Industrial Electronics 61.9 (2013), pp. 4903–4911.

[13] Mamoona Majid, Shaista Habib, Abdul Rehman Javed, Muhammad Rizwan,
Gautam Srivastava, Thippa Reddy Gadekallu, and Jerry Chun-Wei Lin. “Ap-
plications of wireless sensor networks and internet of things frameworks in
the industry revolution 4.0: A systematic literature review”. In: Sensors 22.6
(2022), p. 2087.

[14] Vehbi C Gungor and Gerhard P Hancke. “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches”. In: IEEE Trans-
actions on industrial electronics 56.10 (2009), pp. 4258–4265.

[15] Quan Wang and Jin Jiang. “Comparative examination on architecture and
protocol of industrial wireless sensor network standards”. In: IEEE Com-
munications Surveys & Tutorials 18.3 (2016), pp. 2197–2219.

[16] A Salleh, MK Ismail, NR Mohamad, MZ An Abd Aziz, MA Othman, and
MH Misran. “Development of greenhouse monitoring using wireless sensor
network through ZigBee technology”. In: International Journal of Engi-
neering Science Invention 2.7 (2013), pp. 6–12.

[17] Alparslan Sari, Alexios Lekidis, and Ismail Butun. “Industrial networks and
IIoT: Now and future trends”. In: Industrial IoT: Challenges, Design
Principles, Applications, and Security (2020), pp. 3–55.

[18] Marco Ehrlich, Lukasz Wisniewski, and Jürgen Jasperneite. “State of the
art and future applications of industrial wireless sensor networks”. In: Kom-
munikation und Bildverarbeitung in der Automation: Ausgewählte
Beiträge der Jahreskolloquien KommA und BVAu 2016 zum 10jähri-

BIBLIOGRAPHY 123

gen Jubiläum des inIT-Institut für industrielle Informationstech-
nik (2018), pp. 28–39.

[19] Andreas Ramstad Urke, Øivind Kure, and Knut Øvsthus. “A survey of 802.15.
4 TSCH schedulers for a standardized industrial Internet of Things”. In: Sen-
sors 22.1 (2021), p. 15.

[20] Seong-eun Yoo, Poh Kit Chong, Daeyoung Kim, Yoonmee Doh, Minh-Long
Pham, Eunchang Choi, and Jaedoo Huh. “Guaranteeing real-time services for
industrial wireless sensor networks with IEEE 802.15. 4”. In: IEEE Trans-
actions on Industrial Electronics 57.11 (2010), pp. 3868–3876.

[21] Fatma H El-Fouly and Rabie A Ramadan. “Real-time energy-efficient reli-
able traffic aware routing for industrial wireless sensor networks”. In: IEEE
Access 8 (2020), pp. 58130–58145.

[22] M Aykut Yigitel, Ozlem Durmaz Incel, and Cem Ersoy. “QoS-aware MAC
protocols for wireless sensor networks: A survey”. In: Computer Networks
55.8 (2011), pp. 1982–2004.

[23] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Theoleyre. “Schedul-
ing for IEEE802. 15.4-TSCH and slow channel hopping MAC in low power
industrial wireless networks: A survey”. In: Computer Communications
114 (2017), pp. 84–105.

[24] Nikos Bizanis et al. “SDN and virtualization solutions for the Internet of
Things: A survey”. In: IEEE Access 4 (2016), pp. 5591–5606.

[25] Dominik Henneke et al. “Analysis of realizing a future industrial network by
means of Software-Defined Networking (SDN)”. In: IEEE WFCS. 2016.

[26] IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-
2020 (Revision of IEEE Std 802.15.4-2015). 2020.

[27] Humaira Abdus Salam and Bilal Muhammad Khan. “IWSN-standards, chal-
lenges and future”. In: IEEE Potentials 35.2 (2016), pp. 9–16.

[28] Pei Huang, Li Xiao, Soroor Soltani, Matt W Mutka, and Ning Xi. “The
evolution of MAC protocols in wireless sensor networks: A survey”. In: IEEE
communications surveys & tutorials 15.1 (2012), pp. 101–120.

[29] Asis Nasipuri, Jun Zhuang, and Samir R Das. “A multichannel CSMA MAC
protocol for multihop wireless networks”. In: WCNC. 1999 IEEE Wire-
less Communications and Networking Conference (Cat. No. 99TH8466).
Vol. 3. IEEE. 1999, pp. 1402–1406.

[30] Shao-Cheng Wang and Ahmed Helmy. “Performance limits and analysis of
contention-based IEEE 802.11 MAC”. In: Proceedings. 2006 31st IEEE
Conference on Local Computer Networks. IEEE. 2006, pp. 418–425.

124 BIBLIOGRAPHY

[31] Jian Ma, Hongchao Wang, Dong Yang, and Yujun Cheng. “Challenges: from
standards to implementation for industrial wireless sensor networks”. In:
International Journal of Distributed Sensor Networks 12.2 (2016),
p. 3898535.

[32] Khaled Abid, Hicham Lakhlef, and Abdelmadjid Bouabdallah. “A survey on
recent contention-free MAC protocols for static and mobile wireless decen-
tralized networks in IoT”. In: Computer Networks 201 (2021), p. 108583.

[33] Ricardo C Carrano, Diego Passos, Luiz CS Magalhaes, and Celio VN Al-
buquerque. “Survey and taxonomy of duty cycling mechanisms in wireless
sensor networks”. In: IEEE Communications Surveys & Tutorials 16.1
(2013), pp. 181–194.

[34] Fayez Alfayez, Mohammad Hammoudeh, and Abdelrahman Abuarqoub. “A
survey on MAC protocols for duty-cycled wireless sensor networks”. In: Pro-
cedia Computer Science 73 (2015), pp. 482–489.

[35] Mohammed Zaki Hasan, Fadi Al-Turjman, and Hussain Al-Rizzo. “Evalua-
tion of a duty-cycled protocol for TDMA-based wireless sensor networks”.
In: 2016 International Wireless Communications and Mobile Com-
puting Conference (IWCMC). IEEE. 2016, pp. 964–969.

[36] Adam Dunkels. The contikimac radio duty cycling protocol. 2011.

[37] Gustavo Künzel, Gustavo Cainelli, Ivan Müller, Carlos Eduardo Pereira,
and Leandro Soares Indrusiak. “A reliable and low-latency graph-routing
approach for iwsn using q-routing”. In: 2020 X Brazilian Symposium on
Computing Systems Engineering (SBESC). IEEE. 2020, pp. 1–8.

[38] Thomas Clausen, Jiazi Yi, and Axel Colin De Verdiere. “Loadng: Towards
aodv version 2”. In: 2012 IEEE Vehicular Technology Conference (VTC
Fall). IEEE. 2012, pp. 1–5.

[39] Guoyou He. “Destination-sequenced distance vector (DSDV) protocol”. In:
Networking Laboratory, Helsinki University of Technology 135 (2002),
pp. 1–9.

[40] Sunil Kumar Singh, Prabhat Kumar, and Jyoti Prakash Singh. “A survey on
successors of LEACH protocol”. In: Ieee Access 5 (2017), pp. 4298–4328.

[41] T. Winter. Routing Protocol for Low-Power and Lossy Networks.
RFC 6550,6551,6552. IETF, 2012.

[42] Christos Nakas, Dionisis Kandris, and Georgios Visvardis. “Energy efficient
routing in wireless sensor networks: A comprehensive survey”. In: Algo-
rithms 13.3 (2020), p. 72.

BIBLIOGRAPHY 125

[43] George N Rouskas and Ilia Baldine. “Multicast routing with end-to-end de-
lay and delay variation constraints”. In: Proceedings of IEEE INFO-
COM’96. Conference on Computer Communications. Vol. 1. IEEE.
1996, pp. 353–360.

[44] Chékra El Fehri, Mohamed Kassab, Slim Abdellatif, Pascal Berthou, and
Abdelfettah Belghith. “LoRa technology MAC layer operations and Research
issues”. In: Procedia computer science 130 (2018), pp. 1096–1101.

[45] Andri Rahmadhani and Fernando Kuipers. “When lorawan frames collide”.
In: Proceedings of the 12th International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characterization.
2018, pp. 89–97.

[46] Bluetooth Special Interest Group (SIG). “Bluetooth Low Energy”. In: (2010).

[47] Seyed Mahdi Darroudi and Carles Gomez. “Bluetooth low energy mesh net-
works: A survey”. In: Sensors 17.7 (2017), p. 1467.

[48] Mathias Baert, Jen Rossey, Adnan Shahid, and Jeroen Hoebeke. “The Blue-
tooth mesh standard: An overview and experimental evaluation”. In: Sensors
18.8 (2018), p. 2409.

[49] Stefan Aust, R Venkatesha Prasad, and Ignas GMM Niemegeers. “Outdoor
long-range WLANs: A lesson for IEEE 802.11 ah”. In: IEEE Communica-
tions Surveys & Tutorials 17.3 (2015), pp. 1761–1775.

[50] Minyoung Park. “IEEE 802.11 ah: sub-1-GHz license-exempt operation for
the internet of things”. In: IEEE Communications Magazine 53.9 (2015),
pp. 145–151.

[51] Toni Adame, Albert Bel, Boris Bellalta, Jaume Barceló, Javier Gonzalez, and
Miquel Oliver. “Capacity analysis of IEEE 802.11 ah WLANs for M2M com-
munications”. In: Multiple Access Communcations: 6th International
Workshop, MACOM 2013, Vilnius, Lithuania, December 16-17,
2013. Proceedings 6. Springer. 2013, pp. 139–155.

[52] Erfan Mozaffariahrar, Fabrice Theoleyre, and Michael Menth. “A survey of
Wi-Fi 6: Technologies, advances, and challenges”. In: Future Internet 14.10
(2022), p. 293.

[53] Rapeepat Ratasuk, Nitin Mangalvedhe, Yanji Zhang, Michel Robert, and
Jussi-Pekka Koskinen. “Overview of narrowband IoT in LTE Rel-13”. In:
2016 IEEE conference on standards for communications and net-
working (CSCN). IEEE. 2016, pp. 1–7.

126 BIBLIOGRAPHY

[54] Rashmi Sharan Sinha, Yiqiao Wei, and Seung-Hoon Hwang. “A survey on
LPWA technology: LoRa and NB-IoT”. In: Ict Express 3.1 (2017), pp. 14–
21.

[55] Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon,
and Wally Pratt. “WirelessHART: Applying wireless technology in real-time
industrial process control”. In: 2008 IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE. 2008, pp. 377–386.

[56] Venkata Prashant Modekurthy, Abusayeed Saifullah, and Sanjay Madria.
“DistributedHART: A distributed real-time scheduling system for WirelessHART
networks”. In: 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE. 2019, pp. 216–227.

[57] Xi Jin, Fanxin Kong, Linghe Kong, Wei Liu, and Peng Zeng. “Reliability and
temporality optimization for multiple coexisting WirelessHART networks in
industrial environments”. In: IEEE Transactions on Industrial Elec-
tronics 64.8 (2017), pp. 6591–6602.

[58] ISA Standard. “Wireless systems for industrial automation: process control
and related applications”. In: ISA-100.11 a-2009 (2009), p. 30.

[59] Stig Petersen and Simon Carlsen. “WirelessHART versus ISA100. 11a: The
format war hits the factory floor”. In: IEEE Industrial Electronics Mag-
azine 5.4 (2011), pp. 23–34.

[60] Fadillah Purnama Rezha and Soo Young Shin. “Performance evaluation of
ISA100. 11A industrial wireless network”. In: IET International Confer-
ence on Information and Communications Technologies (IETICT
2013). IET. 2013, pp. 587–592.

[61] Xavier Vilajosana, Thomas Watteyne, Tengfei Chang, Mališa Vučinić, Si-
mon Duquennoy, and Pascal Thubert. “Ietf 6tisch: A tutorial”. In: IEEE
Communications Surveys & Tutorials 22.1 (2019), pp. 595–615.

[62] Jin-Shyan Lee, Chun-Chieh Chuang, and Chung-Chou Shen. “Applications
of short-range wireless technologies to industrial automation: A ZigBee ap-
proach”. In: 2009 Fifth Advanced International Conference on Telecom-
munications. IEEE. 2009, pp. 15–20.

[63] “IEEE Standard for Telecommunications and Information Exchange Between
Systems - LAN/MAN Specific Requirements - Part 15: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low
Rate Wireless Personal Area Networks (WPAN)”. In: IEEE Std 802.15.4-
2003 (2003), pp. 1–680. doi: 10.1109/IEEESTD.2003.94389.

https://doi.org/10.1109/IEEESTD.2003.94389

BIBLIOGRAPHY 127

[64] Farzad Veisi, Majid Nabi, and Hossein Saidi. “An Empirical Study of the
Performance of IEEE 802.15.4e TSCH for Wireless Body Area Networks”. In:
2019 IEEE Wireless Communications and Networking Conference
(WCNC). 2019, pp. 1–6. doi: 10.1109/WCNC.2019.8885743.

[65] “IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 15.4: Wireless Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (WPANs)”. In: IEEE Std 802.15.4-2006 (Re-
vision of IEEE Std 802.15.4-2003) (2006), pp. 1–320. doi: 10.1109/
IEEESTD.2006.232110.

[66] Naveed Salman, Imtiaz Rasool, and Andrew H Kemp. “Overview of the IEEE
802.15. 4 standards family for low rate wireless personal area networks”. In:
2010 7th international symposium on wireless communication sys-
tems. IEEE. 2010, pp. 701–705.

[67] Petcharat Suriyachai, Utz Roedig, and Andrew Scott. “A survey of MAC
protocols for mission-critical applications in wireless sensor networks”. In:
IEEE communications surveys & tutorials 14.2 (2011), pp. 240–264.

[68] “IEEE802.15.4-2015 - IEEE Standard for Low-Rate Wireless Networks”. In:
IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011)
(April 2016) (2016), pp. 1–709.

[69] Domenico De Guglielmo, Simone Brienza, and Giuseppe Anastasi. “IEEE
802.15. 4e: A survey”. In: Computer Communications 88 (2016), pp. 1–
24.

[70] Fabrice Theoleyre et al. “Experimental validation of a distributed self-configured
6TiSCH with traffic isolation in low power lossy networks”. In: ACM MSWiM.
2016.

[71] Tengfei Chang, Thomas Watteyne, Kris Pister, and Qin Wang. “Adaptive
synchronization in multi-hop TSCH networks”. In: Computer Networks
76 (2015), pp. 165–176.

[72] Ines Khoufi, Pascale Minet, and Badr Rmili. “Beacon advertising in an IEEE
802.15. 4e TSCH network for space launch vehicles”. In: Acta Astronautica
158 (2019), pp. 76–88.

[73] Thang Phan Duy and YoungHan Kim. “An efficient joining scheme in IEEE
802.15. 4e”. In: 2015 International Conference on Information and
Communication Technology Convergence (ICTC). IEEE. 2015, pp. 226–
229.

https://doi.org/10.1109/WCNC.2019.8885743
https://doi.org/10.1109/IEEESTD.2006.232110
https://doi.org/10.1109/IEEESTD.2006.232110

128 BIBLIOGRAPHY

[74] David Stanislowski, Xavier Vilajosana, Qin Wang, Thomas Watteyne, and
Kristofer SJ Pister. “Adaptive synchronization in IEEE802. 15.4 e networks”.
In: IEEE Transactions on Industrial Informatics 10.1 (2013), pp. 795–
802.

[75] Thomas Watteyne, Ankur Mehta, and Kris Pister. “Reliability Through Fre-
quency Diversity: Why Channel Hopping Makes Sense”. In: Symposium on
Performance evaluation of wireless ad hoc, sensor, and ubiquitous
networks (PE-WASUN). ACM. Tenerife, Spain, 2009, pp. 116–123. doi:
10.1145/1641876.1641898.

[76] Atis Elsts, Xenofon Fafoutis, Robert Piechocki, and Ian Craddock. “Adap-
tive channel selection in IEEE 802.15. 4 TSCH networks”. In: 2017 Global
Internet of Things Summit (GIoTS). IEEE. 2017, pp. 1–6.

[77] Pedro Henrique Gomes, Thomas Watteyne, and Bhaskar Krishnamachari.
“MABO-TSCH: multihop and blacklist-based optimized time synchronized
channel hopping”. In: Transactions on Emerging Telecommunications
Technologies 29.7 (2018), e3223.

[78] Gaurav Jolly and Mohamed Younis. “An energy-efficient, scalable and collision-
free MAC layer protocol for wireless sensor networks”. In: Wireless Com-
munications and Mobile Computing 5.3 (2005), pp. 285–304.

[79] Maria Rita Palattella, Nicola Accettura, Luigi Alfredo Grieco, Gennaro Bog-
gia, Mischa Dohler, and Thomas Engel. “On optimal scheduling in duty-
cycled industrial IoT applications using IEEE802. 15.4 e TSCH”. In: IEEE
Sensors Journal 13.10 (2013), pp. 3655–3666.

[80] Mohamed Osman and Frederic Nabki. “OSCAR: An optimized scheduling cell
allocation algorithm for convergecast in IEEE 802.15. 4e TSCH networks”.
In: Sensors 21.7 (2021), p. 2493.

[81] Vasileios Kotsiou, Georgios Z Papadopoulos, Periklis Chatzimisios, and Fab-
rice Theoleyre. “LDSF: Low-latency distributed scheduling function for in-
dustrial Internet of Things”. In: IEEE internet of things journal 7.9
(2020), pp. 8688–8699.

[82] Rasool Tavakoli, Majid Nabi, Twan Basten, and Kees Goossens. “Topology
management and TSCH scheduling for low-latency convergecast in in-vehicle
WSNs”. In: IEEE Transactions on Industrial Informatics 15.2 (2018),
pp. 1082–1093.

https://doi.org/10.1145/1641876.1641898

BIBLIOGRAPHY 129

[83] Masafumi Hashimoto, Naoki Wakamiya, Masayuki Murata, Yasutaka Kawamoto,
and Kiyoshi Fukui. “End-to-end reliability-and delay-aware scheduling with
slot sharing for wireless sensor networks”. In: 2016 8th International Con-
ference on Communication Systems and Networks (COMSNETS).
IEEE. 2016, pp. 1–8.

[84] IETF. IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch). https:
//datatracker.ietf.org/wg/6tisch. 2018.

[85] Q. Wang et al. 6top Protocol (6P). draft. draft-ietf-6tisch-6top-protocol-
11. IETF, 2018.

[86] Rodrigo Teles Hermeto et al. “Scheduling for IEEE802.15.4-TSCH and Slow
Channel Hopping MAC in Low Power Industrial Wireless Networks”. In:
Comput. Commun. 114.C (Dec. 2017), pp. 84–105. doi: 10 . 1016 / j .

comcom.2017.10.004.

[87] Seungbeom Jeong, Hyung-Sin Kim, Jeongyeup Paek, and Saewoong Bahk.
“OST: On-demand TSCH scheduling with traffic-awareness”. In: IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications.
IEEE. 2020, pp. 69–78.

[88] Nicola Accettura, Elvis Vogli, Maria Rita Palattella, Luigi Alfredo Grieco,
Gennaro Boggia, and Mischa Dohler. “Decentralized traffic aware schedul-
ing in 6TiSCH networks: Design and experimental evaluation”. In: IEEE
Internet of Things Journal 2.6 (2015), pp. 455–470.

[89] Ridha Soua, Pascale Minet, and Erwan Livolant. “Wave: a distributed schedul-
ing algorithm for convergecast in IEEE 802.15. 4e TSCH networks”. In:
Transactions on Emerging Telecommunications Technologies 27.4
(2016), pp. 557–575.

[90] Simon Duquennoy et al. “Orchestra: Robust Mesh Networks Through Au-
tonomously Scheduled TSCH”. In: SenSys. ACM. Seoul, South Korea, 2015,
pp. 337–350. isbn: 978-1-4503-3631-4. doi: 10.1145/2809695.2809714.

[91] Tengfei Chang, Mališa Vučinić, Xavier Vilajosana, Simon Duquennoy, and
Diego Roberto Dujovne. 6TiSCH Minimal Scheduling Function (MSF).
RFC 9033. IETF, 2021.

[92] Adrian Farrel et al. A path computation element (PCE)-based archi-
tecture. RFC 4655. IETF, 2006.

[93] Sana Rekik, Nouha Baccour, Mohamed Jmaiel, Khalil Drira, and Luigi Al-
fredo Grieco. “Autonomous and traffic-aware scheduling for TSCH networks”.
In: Computer Networks 135 (2018), pp. 201–212.

https://datatracker.ietf.org/wg/6tisch
https://datatracker.ietf.org/wg/6tisch
https://doi.org/10.1016/j.comcom.2017.10.004
https://doi.org/10.1016/j.comcom.2017.10.004
https://doi.org/10.1145/2809695.2809714

130 BIBLIOGRAPHY

[94] Seohyang Kim, Hyung-Sin Kim, and Chong-kwon Kim. “A3: Adaptive au-
tonomous allocation of TSCH slots”. In: Proceedings of the 20th Interna-
tional Conference on Information Processing in Sensor Networks
(co-located with CPS-IoT Week 2021). 2021, pp. 299–314.

[95] Yichao Jin et al. “A centralized scheduling algorithm for IEEE 802.15. 4e
TSCH based industrial low power wireless networks”. In: 2016 IEEE WCNC.
2016.

[96] M. R. Palattella et al. “On Optimal Scheduling in Duty-Cycled Industrial
IoT Applications Using IEEE802.15.4e TSCH”. In: IEEE Sensors Journal
13.10 (2013), pp. 3655–3666. doi: 10.1109/JSEN.2013.2266417.

[97] Guillaume Gaillard, Dominique Barthel, Fabrice Theoleyre, and Fabrice Val-
ois. “Kausa: KPI-aware scheduling algorithm for multi-flow in multi-hop IoT
networks”. In: Ad-hoc, Mobile, and Wireless Networks: 15th Inter-
national Conference, ADHOC-NOW 2016, Lille, France, July 4-6,
2016, Proceedings 15. Springer. 2016, pp. 47–61.

[98] Nikumani Choudhury, Moustafa M Nasralla, Prakhar Gupta, and Ikram Ur
Rehman. “Centralized graph based TSCH scheduling for IoT network applica-
tions”. In: 2021 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Com-
puting & Communications, Social Computing & Networking (IS-
PA/BDCloud/SocialCom/SustainCom). IEEE. 2021, pp. 1639–1644.

[99] Yosr Jarraya et al. “A survey and a layered taxonomy of software-defined
networking”. In: IEEE communications surveys & tutorials 16.4 (2014),
pp. 1955–1980.

[100] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow:
enabling innovation in campus networks”. In: ACM SIGCOMM computer
communication review 38.2 (2008), pp. 69–74.

[101] Fei Hu, Qi Hao, and Ke Bao. “A survey on software-defined network and
openflow: From concept to implementation”. In: IEEE Communications
Surveys & Tutorials 16.4 (2014), pp. 2181–2206.

[102] Isaias Martinez-Yelmo, Joaquin Alvarez-Horcajo, Juan Antonio Carral, and
Diego Lopez-Pajares. “eHDDP: Enhanced Hybrid Domain Discovery Pro-
tocol for network topologies with both wired/wireless and SDN/non-SDN
devices”. In: Computer Networks 191 (2021), p. 107983.

https://doi.org/10.1109/JSEN.2013.2266417

BIBLIOGRAPHY 131

[103] Wei Zhou, Li Li, Min Luo, and Wu Chou. “REST API design patterns for
SDN northbound API”. In: 2014 28th international conference on ad-
vanced information networking and applications workshops. IEEE.
2014, pp. 358–365.

[104] Musa Ndiaye, Gerhard P Hancke, and Adnan M Abu-Mahfouz. “Software
defined networking for improved wireless sensor network management: A sur-
vey”. In: Sensors 17.5 (2017), p. 1031.

[105] Muhammad Ali Hassan, Quoc-Tuan Vien, and Mahdi Aiash. “Software de-
fined networking for wireless sensor networks: a survey”. In: Advances in
Wireless Communications and Networks 3.2 (2017), pp. 10–22.

[106] Ngoc-Tu Nguyen, Bing-Hong Liu, Shao-I Chu, and Hao-Zhe Weng. “Chal-
lenges, designs, and performances of a distributed algorithm for minimum-
latency of data-aggregation in multi-channel WSNs”. In: IEEE Transac-
tions on Network and Service Management 16.1 (2018), pp. 192–205.

[107] Michael Baddeley, Reza Nejabati, George Oikonomou, Mahesh Sooriyaban-
dara, and Dimitra Simeonidou. “Evolving SDN for low-power IoT networks”.
In: 2018 4th IEEE Conference on Network Softwarization and Work-
shops (NetSoft). IEEE. 2018, pp. 71–79.

[108] Jetmir Haxhibeqiri, Pedro Heleno Isolani, Johann M Marquez-Barja, Ingrid
Moerman, and Jeroen Hoebeke. “In-band network monitoring technique to
support SDN-based wireless networks”. In: IEEE Transactions on Net-
work and Service Management 18.1 (2020), pp. 627–641.

[109] Tie Luo, Hwee-Pink Tan, and Tony QS Quek. “Sensor OpenFlow: Enabling
software-defined wireless sensor networks”. In: IEEE Communications let-
ters 16.11 (2012), pp. 1896–1899.

[110] Salvatore Costanzo, Laura Galluccio, Giacomo Morabito, and Sergio Palazzo.
“Software defined wireless networks: Unbridling SDNs”. In: 2012 European
Workshop on Software Defined Networking. IEEE. 2012, pp. 1–6.

[111] Laura Galluccio et al. “SDN-WISE: Design, prototyping and experimentation
of a stateful SDN solution for Wireless Sensor networks”. In: INFOCOM.
2015. doi: 10.1109/INFOCOM.2015.7218418.

[112] de Oliveira et al. “TinySDN: Enabling tinyOS to software-defined wireless
sensor networks”. In: XXXIV Simpósio Brasileiro de Redes de Com-
putadores. Bahia (2016), pp. 1229–1237.

https://doi.org/10.1109/INFOCOM.2015.7218418

132 BIBLIOGRAPHY

[113] Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
et al. “TinyOS: An operating system for sensor networks”. In: Ambient in-
telligence (2005), pp. 115–148.

[114] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and
Philip Levis. “Collection tree protocol”. In: Proceedings of the 7th ACM
conference on embedded networked sensor systems. 2009, pp. 1–14.

[115] Renan CA Alves et al. “It-sdn: Improved architecture for sdwsn”. In: SBRC.
2017.

[116] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula,
Puneet Sharma, and Sujata Banerjee. “DevoFlow: Scaling flow management
for high-performance networks”. In: Proceedings of the ACM SIGCOMM
2011 Conference. 2011, pp. 254–265.

[117] Marcio LF Miguel et al. “SDN architecture for 6LoWPAN wireless sensor
networks”. In: Sensors 18.11 (2018), p. 3738.

[118] Ahmad Shabani Baghani and Majid Khabbazian. “RPL Point-to-point com-
munication paths: analysis and enhancement”. In: IEEE Internet of Things
Journal 10.1 (2022), pp. 166–179.

[119] Remous-Aris Koutsiamanis, Georgios Z Papadopoulos, Xenofon Fafoutis, Julián
Martín Del Fiore, Pascal Thubert, and Nicolas Montavont. “From best ef-
fort to deterministic packet delivery for wireless industrial IoT networks”. In:
IEEE Transactions on Industrial Informatics 14.10 (2018), pp. 4468–
4480.

[120] Remous-Aris Koutsiamanis, Georgios Z Papadopoulos, Tomas Lagos Jen-
schke, Pascal Thubert, and Nicolas Montavont. “Meet the PAREO func-
tions: Towards reliable and available wireless networks”. In: ICC 2020-2020
IEEE International Conference on Communications (ICC). IEEE.
2020, pp. 1–7.

[121] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. “6TiSCH cen-
tralized scheduling: When SDN meet IoT”. In: 2015 IEEE conference on
standards for communications and networking (CSCN). IEEE. 2015,
pp. 42–47.

[122] Michael Baddeley et al. “Isolating SDN control traffic with layer-2 slicing in
6TiSCH industrial IoT networks”. In: IEEE NFV-SDN. 2017.

[123] O. Iova et al. “Stability and efficiency of RPL under realistic conditions in
Wireless Sensor Networks”. In: IEEE PIMRC. 2013. doi: 10.1109/PIMRC.
2013.6666490.

https://doi.org/10.1109/PIMRC.2013.6666490
https://doi.org/10.1109/PIMRC.2013.6666490

BIBLIOGRAPHY 133

[124] Esteban Municio et al. “Whisper: Programmable and flexible control on in-
dustrial IoT networks”. In: Sensors 18.11 (2018), p. 4048.

[125] Lucia Lo Bello, Alfio Lombardo, Sebastiano Milardo, Gaetano Patti, and
Marco Reno. “Experimental assessments and analysis of an SDN framework
to integrate mobility management in industrial wireless sensor networks”. In:
IEEE Transactions on Industrial Informatics 16.8 (2020), pp. 5586–
5595.

[126] Noa Zilberman, Philip M Watts, Charalampos Rotsos, and Andrew W Moore.
“Reconfigurable network systems and software-defined networking”. In: Pro-
ceedings of the IEEE 103.7 (2015), pp. 1102–1124.

[127] Stefano Paris, Georgios S Paschos, and Jérémie Leguay. “Dynamic control
for failure recovery and flow reconfiguration in SDN”. In: 2016 12th In-
ternational Conference on the Design of Reliable Communication
Networks (DRCN). IEEE. 2016, pp. 152–159.

[128] Nurefşan Sertbaş Bülbül, Doğanalp Ergenç, and Mathias Fischer. “Towards
sdn-based dynamic path reconfiguration for time sensitive networking”. In:
NOMS 2022-2022 IEEE/IFIP Network Operations and Manage-
ment Symposium. IEEE. 2022, pp. 1–9.

[129] Dolvara Gunatilaka et al. “REACT: An agile control plane for industrial
wireless sensor-actuator networks”. In: IoTDI. IEEE. 2020, pp. 53–65.

[130] Israat Haque, Mohammad Nurujjaman, Janelle Harms, and Nael Abu-Ghazaleh.
“SDSense: An agile and flexible SDN-based framework for wireless sensor net-
works”. In: IEEE Transactions on Vehicular Technology 68.2 (2018),
pp. 1866–1876.

[131] Federico Orozco-Santos, Víctor Sempere-Payá, Teresa Albero-Albero, and
Javier Silvestre-Blanes. “Enhancing SDN WISE with Slicing Over TSCH”.
In: Sensors 21.4 (2021). issn: 1424-8220. doi: 10.3390/s21041075.

[132] Federico Orozco-Santos, Víctor Sempere-Payá, Javier Silvestre-Blanes, and
Teresa Albero-Albero. “Multicast Scheduling in SDN WISE to Support Mo-
bile Nodes in Industrial Wireless Sensor Networks”. In: IEEE Access 9
(2021), pp. 141651–141666. doi: 10.1109/ACCESS.2021.3120917.

[133] Valerie Galluzzi and Ted Herman. “Survey: discovery in wireless sensor net-
works”. In: International Journal of Distributed Sensor Networks 8.1
(2012), p. 271860.

https://doi.org/10.3390/s21041075
https://doi.org/10.1109/ACCESS.2021.3120917

134 BIBLIOGRAPHY

[134] Wu Chenghai, Zhang Jianjun, Fan Xiquan, Qin Kaiyu, and Liu Xiangping.
“Research on dynamic routing algorithm of the combat collaboration com-
munication network”. In: The 27th Chinese Control and Decision Con-
ference (2015 CCDC). IEEE. 2015, pp. 4440–4445.

[135] Hyung-Sin Kim et al. “Challenging the IPv6 routing protocol for low-power
and lossy networks (RPL): A survey”. In: IEEE Communications Surveys
& Tutorials 19.4 (2017), pp. 2502–2525.

[136] Henry-Joseph Audéoud et al. “Single Reception Estimation of Wireless Link
Quality”. In: IEEE PIMRC. 2020.

[137] G Kirubasri and N Uma Maheswari. “A study on hardware and software link
quality metrics for wireless multimedia sensor networks”. In: International
Journal of Advanced Networking and Applications 8.3 (2016), p. 3103.

[138] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. “An
empirical study of low-power wireless”. In: ACM Transactions on Sensor
Networks (TOSN) 6.2 (2010), pp. 1–49.

[139] Fatima tu Zahra, Yavuz S Bostanci, and Mujdat Soyturk. “Real-Time Jam-
ming Detection in Wireless IoT Networks”. In: IEEE Access (2023).

[140] Mariusz Kaczmarek, Jacek Ruminski, and Adam Bujnowski. “Accuracy anal-
ysis of the RSSI BLE SensorTag signal for indoor localization purposes”. In:
2016 Federated Conference on Computer Science and Information
Systems (FedCSIS). IEEE. 2016, pp. 1413–1416.

[141] Nouha Baccour et al. “Radio link quality estimation in wireless sensor net-
works: A survey”. In: In ACM TOSN 8.4 (2012), pp. 1–33.

[142] Carles Gomez, Antoni Boix, and Josep Paradells. “Impact of LQI-based rout-
ing metrics on the performance of a one-to-one routing protocol for IEEE
802.15. 4 multihop networks”. In: EURASIP Journal on Wireless Com-
munications and Networking 2010 (2010), pp. 1–20.

[143] Nouha Baccour, Anis Koubâa, Maissa Ben Jamâa, Habib Youssef, Marco
Zuniga, and Mário Alves. “A comparative simulation study of link qual-
ity estimators in wireless sensor networks”. In: 2009 IEEE International
Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems. IEEE. 2009, pp. 1–10.

[144] Nouha Baccour, Anis Koubâa, Habib Youssef, and Mário Alves. “Reliable
link quality estimation in low-power wireless networks and its impact on
tree-routing”. In: Ad Hoc Networks 27 (2015), pp. 1–25.

BIBLIOGRAPHY 135

[145] Douglas SJ De Couto, Daniel Aguayo, John Bicket, and Robert Morris. “A
high-throughput path metric for multi-hop wireless routing”. In: Proceed-
ings of the 9th annual international conference on Mobile comput-
ing and networking. 2003, pp. 134–146.

[146] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip Alexander
Levis. “Four-bit wireless link estimation.” In: HotNets. 2007.

[147] Yong Wang, Margaret Martonosi, and Li-Shiuan Peh. “Predicting link quality
using supervised learning in wireless sensor networks”. In: ACM SIGMO-
BILE Mobile Computing and Communications Review 11.3 (2007),
pp. 71–83.

[148] Nouha Baccour, Anis Koubâa, Habib Youssef, Maissa Ben Jamâa, Denis Do
Rosario, Mário Alves, and Leandro B Becker. “F-lqe: A fuzzy link quality es-
timator for wireless sensor networks”. In: Wireless Sensor Networks: 7th
European Conference, EWSN 2010, Coimbra, Portugal, February
17-19, 2010. Proceedings 7. Springer. 2010, pp. 240–255.

[149] Michele Rondinone et al. “Designing a reliable and stable link quality metric
for wireless sensor networks”. In: Proceedings of the workshop on Real-
world wireless sensor networks. 2008, pp. 6–10.

[150] Xiaomin Li et al. “A review of industrial wireless networks in the context of
Industry 4.0”. In: Wireless networks 23 (2017), pp. 23–41.

[151] Antoni Morell, Xavier Vilajosana, José López Vicario, and Thomas Wat-
teyne. “Label switching over IEEE802. 15.4 e networks”. In: Transactions
on Emerging Telecommunications Technologies 24.5 (2013), pp. 458–
475.

[152] Guillaume Gaillard et al. “Kausa: KPI-aware Scheduling Algorithm for Multi-
flow in Multi-hop IoT Networks”. In: ADHOC-NOW. 2016.

[153] Adnan Aijaz and Mahesh Sooriyabandara. “The tactile internet for industries:
A review”. In: Proceedings of the IEEE 107.2 (2018), pp. 414–435.

[154] Emilio Ancillotti, Carlo Vallati, Raffaele Bruno, and Enzo Mingozzi. “A re-
inforcement learning-based link quality estimation strategy for RPL and its
impact on topology management”. In: Computer Communications 112
(2017), pp. 1–13. issn: 0140-3664.

[155] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Theoleyre. “Experimen-
tal in-depth study of the dynamics of an indoor industrial low power lossy
network”. In: Ad Hoc Networks 93 (2019), p. 101914.

136 BIBLIOGRAPHY

[156] Rodrigo Teles Hermeto, Antoine Gallais, Kristof Van Laerhoven, and Fabrice
Theoleyre. “Passive Link Quality Estimation for Accurate and Stable Parent
Selection in Dense 6TiSCH Networks”. In: EWSN. Madrid, Spain: Junction
Publishing, 2018, pp. 114–125. isbn: 978-0-9949886-2-1.

[157] Fabrice Theoleyre et al. “Experimental Validation of a Distributed Self-
Configured 6TiSCH with Traffic Isolation in Low Power Lossy Networks”.
In: ACM MSWiM. Malta, Malta, 2016. isbn: 9781450345026.

[158] Xavier Vilajosana et al. “A Realistic Energy Consumption Model for TSCH
Networks”. In: IEEE Sensors Journal 14.2 (2014), pp. 482–489. doi: 10.
1109/JSEN.2013.2285411.

[159] Baver Özceylan, Berk Ünlü, and Buyurman Baykal. “An energy efficient op-
timum shared cell scheduling for TSCH networks”. In: 2017 IEEE WiMob.
IEEE. 2017, pp. 1–8.

[160] Kihoon Jeon and Sanghwa Chung. “Adaptive channel quality estimation
method for enhanced time slotted channel hopping on wireless sensor net-
works”. In: 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN). IEEE. 2017, pp. 438–443.

[161] Dimitrios Zorbas, Georgios Z Papadopoulos, and Christos Douligeris. “Local
or global radio channel blacklisting for ieee 802.15. 4-tsch networks?” In:
2018 IEEE International Conference on Communications (ICC).
IEEE. 2018, pp. 1–6.

[162] Junfeng Xie, F Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng
Wang, and Yunjie Liu. “A survey of machine learning techniques applied
to software defined networking (SDN): Research issues and challenges”. In:
IEEE Communications Surveys & Tutorials 21.1 (2018), pp. 393–430.

[163] Karen Scarfone, Peter Mell, et al. “Guide to intrusion detection and preven-
tion systems (idps)”. In: NIST special publication 800.2007 (2007), p. 94.

[164] Nasrin Sultana, Naveen Chilamkurti, Wei Peng, and Rabei Alhadad. “Survey
on SDN based network intrusion detection system using machine learning
approaches”. In: Peer-to-Peer Networking and Applications 12 (2019),
pp. 493–501.

[165] Mutaz HH Khairi, Sharifah HS Ariffin, NM Latiff, AS Abdullah, and MK
Hassan. “A Review of Anomaly Detection Techniques and Distributed Denial
of Service (DDoS) on Software Defined Network (SDN).” In: Engineering,
Technology & Applied Science Research 8.2 (2018).

https://doi.org/10.1109/JSEN.2013.2285411
https://doi.org/10.1109/JSEN.2013.2285411

	Introduction
	Industrial Wireless Sensor Network Applications
	Motivation and Contribution
	Structure of Thesis

	Background & State of the Art
	Industrial Wireless Sensor Network
	Industrial Networking Stack
	Industrial Standard Technologies

	IEEE 802.15.4-TSCH Background
	Medium Access
	Association to TSCH Network
	Synchronization
	Frequency Hopping Mechanism
	Scheduling

	Software Defined Networking for iwsn
	sdn for wsn: Limitations
	sdn for Scheduling Management
	Topology Discovery in Wireless SDN Networks
	Link Quality Estimation in Wireless SDN Networks

	Summary

	SDN-TSCH: Enabling sdn for iwsn with Traffic Isolation
	SDN-TSCH Overview
	Label Switching for SDN
	Slotframe and Schedule Organization
	Discovery Process
	Joining Process
	Resource Allocation for the Data Plane
	Performance Evaluation
	Comparison of SDN-TSCH and SDNWISE-TSCH
	Comparison of SDN-TSCH and MSF

	Conclusion and Future Works

	SDN Architecture Improvements in Link Quality Estimation & Control Plane
	Discussion on Link Quality Estimation
	Accurate Link Quality Estimation
	Organization of the Shared Cells in the Control Plane
	Schedule of EBs Shared Cells
	Numerical Estimation of Shared Cells for non-EB Traffic
	Resource Allocation and Configuration of Control Plane
	Dedicated Control Plane
	Shared Control Plane
	Hybrid Control Plane

	Performance Evaluation
	Accuracy of the Link Quality Estimation
	Efficiency of Dedicated and Hybrid Control Planes

	Conclusion and Future Works

	Maintenance of Software Defined iwsn
	Scheduled sdn Reconfiguration Overview
	Fault Detection & Parent Selection
	Control and Data Planes Update
	(Re)-scheduling Algorithm
	Obsolete Cells Removal
	Performance Evaluation
	Results and Comments

	Conclusion and Future Works

	Conclusion and Future Research Directions
	Short Term Research Direction
	Parent Selection Criteria
	Centralized Channel Blacklisting
	Exploration of Benchmark Scheduling Schemes

	Long Term Research Direction

	List of Figures
	List of Tables

