

Développement de méthodes de caractérisation magnétique sous champs tournants et sous contrainte thermique

Clémentine Delaunay

2 mai 2024

Devant le jury composé de :

Benabou Abdelkader	Professeur des Universités, Université de Lille	Rapporteur
Soulard Juliette	Associate Professor, University of Warwick	Rapporteure
Daniel Laurent	Professeur des Universités, CentraleSupelec, Université Paris-Saclay	Examinateur
Raulet Marie-Ange	Maître de Conférence HDR, Université Claude Bernard Lyon 1	Examinatrice
Sixdenier Fabien	Maître de Conférence HDR, Université Claude Bernard Lyon 1	Directeur de thèse
Joubert Charles	Professeur des Universités. Université Claude Bernard Lvon 1	Co-directeur de thèse

Partie I

Introduction et contexte

. Delaunay 1/56

Objectifs de la thèse

Introduction

sous champs tournants

et sous contrainte thermique

... Delaunay 2/56

Objectifs de la thèse

Introduction

Développement de méthodes de caractérisation de matériaux magnétiques

sous champs tournants

et sous contrainte thermique

... Delaunay 2/56

Applications des aciers électriques

Objectifs de la thèse

Introduction

Développement de méthodes de caractérisation magnétique

et sous contrainte thermique

. Delaunay 4/56

Pourquoi 2D?

Champs tournants dans les applications

Transformateurs

Images issues de S. Zurek, Characterisation of Soft Magnetic Materials Under Rotational Magnetisation, 2019.

. Delaunay

Pourquoi 2D?

Champs tournants dans les applications

Transformateurs

Moteurs

Images issues de S. Zurek, Characterisation of Soft Magnetic Materials Under Rotational Magnetisation, 2019.

Delaunay

Pertes fer sous champs tournants

Champ 1D

- \blacklozenge $W \nearrow avec J$
- ♦ f(direction)

Introduction OOOO Pourquoi 2D

Pertes fer sous champs tournants

Champ 1D

- ♦ W / avec J
- ♦ f(direction)

Champ 2D

- W élevées à faible J
- \bullet $W \setminus a$ fort J

Et en température?

Non-Orienté

Non-Orienté

Non-Orienté

Lieux des champs & Fer-Silicium

Directions remarquables

♦ Direction de laminage DL

C. Delauna

Directions remarquables

Direction de laminage DL

Direction transverse DT

Non-Orienté

Directions remarquables

- Direction de laminage DL
- Direction transverse DT

Direction difficile DD (GO)

Introduction

Non-Orienté

Introduction

0000

Objectifs de la thèse

Développement de méthodes de caractérisation magnétique

sous champs tournants

et sous contrainte thermique

0000

Phénomènes magnétiques en T

F. Sixdenier & al., 2014,

Caractérisation et modélisation de matériaux et composants magnétiques.

Introduction

Objectifs de la thèse

. Delaunay 10/56

Introduction

Partie | Introduction et contexte

Partie II. Développement et présentation du banc de caractérisation magnétique sous champs tournants et sous contrainte thermique

Partie III. Comparaison du banc à ceux d'autres laboratoires

Partie IV. Caractérisations 2D en température

Partie V. Conclusions et perspectives

. Delaunay 11/56

Partie II

Développement et présentation du banc de caractérisation magnétique sous champs tournants et sous contrainte thermique

C. Delaunay

Abréviation

Système de caractérisation magnétique 2D

RSST

(Rotational Single-Sheet Tester)

Génération du char

Objectif

- Création d'un champ tournant
- ♦ Performance = homogénéité
- $f \approx 50 \,\mathrm{Hz}$
- \bullet $B \approx [1 \text{ T} 1.7 \text{ T}]$

 Différentes formes d'inducteur possibles

- Différentes formes d'inducteur possibles
- ♦ Choix : Stator

Choix d'un stator

Réalisation facile

Exemples récents

- Différentes formes d'inducteur possibles
- ♦ Choix : Stator
 - $D_i = 80 \, \text{mm}$
 - $h = 35 \, \text{mm}$

Choix d'un stator

- Réalisation facile

- Différentes formes d'inducteur possibles
- ♦ Choix : Stator diphasé
 - $D_i = 80 \, \text{mm}$
 - *h* = 35 mm

Choix d'un stator

• Réalisation facile

Exemples récents

Generation du chan

Échantillon

- ♦ Inducteur : Stator
 - $D_i = 80 \, \text{mm}$

Échantillon

- ♦ Inducteur : Stator
 - $D_i = 80 \, \text{mm}$
- Échantillon circulaire
 - $D_s = 78 \, \text{mm}$

Génération du chan

Échantillon

- ♦ Inducteur : Stator
 - $D_i = 80 \, \text{mm}$
- Échantillon circulaire
 - $D_s = 78 \, \text{mm}$
 - Zone de Mesure (ZM) de (20×20) mm²
 - $d_{min} \approx 25 \,\mathrm{mm}$

Generation du cham

Échantillon

- ♦ Inducteur : Stator
 - $D_i = 80 \, \text{mm}$
- Échantillon circulaire
 - $D_s = 78 \, \text{mm}$
 - Zone de Mesure (ZM) de $(20 \times 20) \text{ mm}^2$
 - $d_{min} \approx 25 \,\mathrm{mm}$

Encoches

- Objectif : position angulaire
- Validations en simulation

Generation du cham

Échantillon

- ♦ Inducteur : Stator
 - $D_i = 80 \, \text{mm}$
- Échantillon circulaire
 - $D_s = 78 \, \text{mm}$
 - Zone de Mesure (ZM) de (20×20) mm²
 - $d_{min} \approx 25 \,\mathrm{mm}$

Encoches

- Objectif : position angulaire
- Validations en simulation
 - Variations de B sur la ZM moindre avec encoches

Generation du cham

Échantillon

- ♦ Inducteur : Stator
 - $D_i = 80 \, \text{mm}$
- Échantillon circulaire
 - $D_s = 78 \, \text{mm}$
 - Zone de Mesure (ZM) de (20×20) mm²
 - $d_{min} \approx 25 \,\mathrm{mm}$

Encoches

- Objectif : position angulaire
- Validations en simulation
 - Variations de B sur la ZM moindre avec encoches

Objectif

- Mesure des champs \overrightarrow{H} et \overrightarrow{B}
- Deux composantes :

$$ec{H} = egin{pmatrix} H_x \ H_y \end{pmatrix} \quad ec{B} = egin{pmatrix} B_x \ B_y \end{pmatrix}$$

Delaunay 17/5

iviesure des champ

Mesure de B

- Flux φ défini dans la tôle
- ♦ Lenz-Faraday : tension e sur un contour

$$u_{ind} = -\frac{d\Phi}{dt}$$

- Mesure par bobine :
 - Perçages
 - Bobinages

Mesure de H

- Composante tangentielle de H conservée
- Capteur intégré (Hall, MR), Bobines...
- Bobine PCB
 - Faible sensibilité
 - Reproductible

Mesure de H

- Composante tangentielle de H conservée
- Capteur intégré (Hall, MR), Bobines...
- Bobine PCB
 - Faible sensibilité
 - Reproductible
- Extrapolation (linéaire)

Extrapolation de H

- Écart h_0 :
 - protection
- précision h 2 bobines/direction
 - - H_c H_f

Mesure des champ

Extrapolation de H

- Écart h_0 :
 - protection
 - précision h2 bobines/direction
 - *H_c*
 - H_f

$$H = H_c - \frac{H_c - H_f}{h_c - h_f} \times h_c$$

Objectif

- Entrée =
 Tensions numérisées des capteurs et générateurs
- Sortie =
 Motif périodique de tension

Asservissement de B(t)

- Fonctions de base :
 - Génération
 - Acquisition
 - Conversion
- Phénomènes magnétiques fonction des variations du champ
- Usage/norme :
 - ~ 1 D ightarrow B(t) sinusoïdal
 - \bigcirc 2D $\rightarrow \vec{B}(t)$ circulaire

Asservissement de B(t)

- Fonctions de base :
 - Génération
 - Acquisition
 - Conversion
- Phénomènes magnétiques fonction des variations du champ
- Usage/norme :
 - ~ 1 D ightarrow B(t) sinusoïdal
 - \bigcirc 2D $\rightarrow \vec{B}(t)$ circulaire
- Asservissement de la forme de $\overrightarrow{B}(t)$ via la tension v(t)

Asservissement de B

Problématique

- Comment calculer ΔV ?
- Pl itératif
- Méthodes originales inspirées d'algorithmes d'optimisation

Annulation $\{d'une \text{ fonction objectif}\}$ de l'erreur $\langle B, B_{ref} \rangle$

Unité central

Bilan des méthodes développées (1D)

- 2 Méthodes
 - Newton-Rhaphson (NR)
 - Bad-Broyden (BB)
- 💢 Peu de paramètres à régler :

ΡI

NR, BB

- Tension initiale
- 2 gains

Tours to totals

- Tension initiale
- Test : caractérisations 1D sur un système standard (Epstein).
 - BB satisfaisant sur un vaste domaine
 - O NR peu stable

 $PI \approx BB < NR$

- Prise en compte des couplages = adaptation de la fonction objectif
- ✓ Faible anisotropie : amélioration

- Prise en compte des couplages = adaptation de la fonction objectif
- ✓ Faible anisotropie : amélioration

- Prise en compte des couplages = adaptation de la fonction objectif
- ✓ Faible anisotropie : amélioration

- Prise en compte des couplages = adaptation de la fonction objectif
- ✓ Faible anisotropie : amélioration
- Forte anisotropie : nécessaire

Objectif

- *T_{sample}* ∈ [25; 200] °C
- T maintenue durant les expérimentations
 - Plusieurs heures
 - Interférences avec la mesure
 - Chauffe localisée

Méthodes de chauffe localisée

Méthode	Localisée	Interférences	Matériel	Analyse
Résistance	•	•	•	•
Air chaud	•	•	•	•
Infrarouge	•	•	• •	•
Induction	⊕ ⊕	• •	•	•

C. Delaunay

Méthodes de chauffe localisée

Méthode	Localisée	Interférences	Matériel	Analyse
Résistance	•	0		•
Air chaud	•	•	•	•
Infrarouge	•	•	0	•
Induction	0 0	0	0	•

. Delaunay 27/56

troduction Banc de caractérisation

nter-comparaison

Mesures en température 00**00**0 Conclusion 00**0**

Ampère

<4>

C. Delaunay 28/56

Chauffe par air chaud soufflé

Pompe à air chaud

28/56 C. Delaunay

Chauffe par air chaud soufflé

 Deux géométries étudiées

Pompe à air chaud

Chauffe par air chaud soufflé

Pompe à air chaud

- Deux géométries étudiées
 - Chambre avec évacuation par le haut
 - Buse divergenteconvergente 2

C. Delaunay

Chauffe par air chaud soufflé

Pompe à air chaud

- Deux géométries étudiées
 - Chambre avec évacuation par le haut
 - Buse divergenteconvergente 2

C. Delauna

Homogénéité de température

Conditions expérimentales

- Clichés thermiques
- ♦ Échantillon 0.5 mm

Homogénéité

95 % de la zone de mesure inclus dans :

$$T_{moy} \pm 5\%$$
 $T_{moy} \in [90, 185] ^{\circ}C$

C. Delaun

Bilan

Mise en place d'un banc de caractérisations 2D

Adaptation du RSST pour la mise en température

• Réalisation et analyse de caractérisations 2D en température

C. Delauna

Bilan

- Mise en place d'un banc de caractérisations 2D
 - RSST complet fonctionnel
 - Méthodes de contrôle originales

- Adaptation du RSST pour la mise en température
 - Chauffe par air chaud soufflé
 - Buse d'apport d'air sélectionnée
 - Homogénéité en température satisfaisante
- Réalisation et analyse de caractérisations 2D en température

Partie III

Comparaison du banc à ceux d'autres laboratoires

Contexte de l'étude

Plusieurs décennies d'expériences sur les caractérisations 2D Projet HEFMAG: point sur les caract. 2D dans le cadre des pbig. énergétiques

Projet inclus dans
European Metrology
Programme for
novation and Research

. Delaunay

Conditions de l'inter-comparaison

RSST impliqués

Labo	Ampère	INRIM	PoliTO
Inducteurs	2ϕ	30	2ϕ
Échantillons	20 mm 78 mm	20 mm	20 mm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mesures	x proche y proche x loin y loin	x/y	<u>x</u> ² y

C. Delaunay

Conditions de l'inter-comparaisor

RSST impliqués

Labo	Ampère	INRIM	PoliTO
Inducteurs	2ϕ	3 _{\phi}	2ϕ
Échantillons	20 mm 78 mm	20 mm	20 mm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mesures	x/y ► Adaptation ◄	×/y	<u> </u>

C. Delaunay

Conditions expérimentales

- Objectif:
 - Comparaison des pertes
 - Échantillon FeSi NO
 - $T = T_{amb}$
 - $B \in \{1; 1.5\}$ T

Comparaison 1D

- 3 RSST
- ♦ Standards 1D (Epstein, SST)

Comparaison 2D

3 RSST

Extrapolation (Amp.)

- ♦ Bobines PCB (×4) éloignées + extrapolation
- ♦ Bobines PCB (×2) collées
- ♦ Bobine enroulée (×1) collée

Mesures 1D

Comparaison au standard

- Moyenne des RSST : écart de 2 à 7 %
 - Écart individuel jusqu'à 15 %
- © Pas d'historique + quelques % attendus

Comparaison entre RSST

- Dispersion p.r.à la moyenne des RSST :
 - Maximale: ±7%
 - Moyenne : 2.5 %
- Historiquement, de 2 à 40 %

Mesures 2D

Pas de standard

Pas de valeur globalement acceptée

Comparaison entre RSST

- Dispersion p.r.à la moyenne des RSST :
 - Maximale : $\pm 5\%$ (1D: $\pm 7\%$)
 - Moyenne : 2.4 % (1D: ±2.5%)
- ightharpoonup Historiquement, de 2 à 40 %

Mesures 21

Bilan - Intercomparaison

- Ont été testés :
 - $\begin{array}{c} \textbf{matériau} \\ \textbf{méthode de mesure de } H \end{array}$
- Cohérence encore modérée...
- ...mais encourageante!

formes d'inducteurs

3 inducteurs systèmes d'acquisition

- C. Appino et al. Interlaboratory Comparison of Two-Dimensional Magnetic Measurements 26th SMM Sept. 2023
- Article de revue en cours d'écriture.

Extrapolation du champ l

Configurations de bobines utilisées

Bobine « INRIM » collée contre la surface

Bobines PCB collées contre la surface

Bobines PCB fixées à courte distance de la surface

$$H = H_c - \frac{H_c - H_f}{h_c - h_f} \times h_c$$

C. Delaunay

Extrapolation du champ l

Comparaison des mesures de H

Observations

◆ « INRIM » ≈ « Collées »

Comparaison des mesures de *H*

Observations

- ♦ « INRIM » ≈ « Collées »
- \bullet h $\nearrow \Rightarrow H \nearrow P \searrow$

Extrapolation du champ H

Comparaison des mesures de H

Observations

- ♦ « INRIM » ≈ « Collées »
- $h \nearrow \Rightarrow H \nearrow, P \searrow$
- ♦ Extrapolation = amélioration

du cas « fixées »

1 T	1.25 T	1.4 T	1.5 T	
Écart 🕰 vs. 🔼				
-17%	-14%	-9.1%	-8.1 %	

Bilan

- Mise en place d'un banc de caractérisations 2D
 - RSST complet fonctionnel
 - Méthodes de contrôle originales
 - Mesures 1D comparables avec d'autres laboratoires et des méthodes standards
 - Mesures 2D comparables avec d'autres laboratoires
- Adaptation du RSST pour la mise en température
 - Chauffe par air chaud soufflé
 - Buse d'apport d'air sélectionnée
 - O Homogénéité en température satisfaisante
- Réalisation et analyse de caractérisations 2D en température

. Delaunay 40/56

Partie IV

Caractérisations 2D en température

2. Delaunay 41/56

Conditions de test

Conditions de test

Échantillon NO

Échantillon GO

Échantillon NO

Observations

 \uparrow $T \nearrow \Rightarrow$ cycle s'élargit

- Surtout pour $||\vec{B}||$ faible
- \uparrow $T \nearrow \Rightarrow$ cycle s'arrondit

Zenanemon 14

Lorsque $T \nearrow$

- Cycles s'élargissent
- Surtout à faible $||\vec{B}||$
- Cycles s'arrondissent
- Variation de H_{DL} et H_{DT} entre T_{amb} et $195\,^{\circ}\mathrm{C}$:

	В	H_{DL}	H_{DT}
	1.25 T Var. max.	+500 %	+300 %
	1.5 T Typique	+130 %	+70 %

- Agitation thermique à compenser
- φ Constantes d'anisotropie 📐

Echantillon No

Observations

- φ Pertes \searrow avec T (sauf T_{amb})
- **?** Tendance pour $T = T_{amb}$?
- Variation entre T_{amb} et 195 °C :

В	Var.
1.0 T	+1.5%
1.5 T	-17%
1.7 T	-28 %

Échantillon GO

Difficile à lire

- Agrandissement conservé
- \bullet Tendances à T_{amb} ?

GO : Lieux de *H* (2)

Observations

Difficile à lire

- Agrandissement conservé
- Tendances à T_{amb} ?
- Variation de H_{DL} , H_{DT} et H_{DD} entre T_{amb} et $189\,^{\circ}\text{C}$:

В	DL	DT	DD
1 T	+140 %	+59 %	+64 %
1.15 T	+325 %	+95 %	+40 %

- Comparaison NO :
 - Champs croissants
- Surtout selon DL
- 🕴 Marqué à « fort » B

Observations

- φ Pertes \setminus avec T... HT?
- ♦ Variation entre T_{amb} et 189 °C :

Var.	
-41%	
−28 %	
-11%	

Variation moindres à « fort » B

Bilan

- Mise en place d'un banc de caractérisations 2D
 - RSST complet fonctionnel
 - Méthodes de contrôle originales
 - Mesures 1D comparables avec d'autres laboratoires et des méthodes standards
 - Mesures 2D comparables avec d'autres laboratoires
- Adaptation du RSST pour la mise en température
 - Chauffe par air chaud soufflé
 - Buse d'apport d'air sélectionnée
 - Homogénéité en température satisfaisante
- Réalisation et analyse de caractérisations 2D en température
 - Caractérisation de 2 échantillons de FeSi à différents T, B
 - Observation sur les pertes
 - Observation sur la forme des lieux

Partie V

Conclusions et perspectives

Bilan

- Mise en place d'un banc de caractérisations 2D
 - RSST complet fonctionnel
 - Méthodes de contrôle originales
 - Mesures 1D comparables avec d'autres laboratoires et des méthodes standards
 - Mesures 2D comparables avec d'autres laboratoires
- Adaptation du RSST pour la mise en température
 - Chauffe par air chaud soufflé
 - Buse d'apport d'air sélectionnée
 - Homogénéité en température satisfaisante
- Réalisation et analyse de caractérisations 2D en température
 - Caractérisation de 2 échantillons de FeSi à différents T. B
 - Observation sur les pertes
 - Observation sur la forme des lieux

Perspectives : banc

Perspectives : sujet

C. Delaunay 55/56

Merci pour votre attention!