

Développement de méthodes de caractérisation magnétique sous champs tournants et sous contrainte thermique

Clémentine Delaunay

2 mai 2024

Devant le jury composé de :

Benabou Abdelkader	Professeur des Universités, Université de Lille	Rapporteur
Soulard Juliette	Associate Professor, University of Warwick	Rapporteure
Daniel Laurent	Professeur des Universités, CentraleSupelec, Université Paris-Saclay	Examinateur
Raulet Marie-Ange	Maître de Conférence HDR, Université Claude Bernard Lyon 1	Examinatrice
Sixdenier Fabien	Maître de Conférence HDR, Université Claude Bernard Lyon 1	Directeur de thèse
Joubert Charles	Professeur des Universités, Université Claude Bernard Lyon 1	Co-directeur de thèse

Introduction ●○○○			
Partie I			Ampère

Partie I

Introduction et contexte

Développement de méthodes de caractérisation magnétique

sous champs tournants

Développement de méthodes de caractérisation de matériaux magnétiques

sous champs tournants

Développement de méthodes de caractérisation magnétique

sous champs tournants

Images issues de S. Zurek, Characterisation of Soft Magnetic Materials Under Rotational Magnetisation, 2019.

C. Delaunay

Images issues de S. Zurek, Characterisation of Soft Magnetic Materials Under Rotational Magnetisation, 2019.

C. Delaunay

Introduction				Conclusion 000
				Fuchan
Pertes fer	sous champs tou 7×10^{-4} Image ac	rnants Iaptée de R. M. Bozorth, Ferrom	agnetism, 1993	,
			Champ 1D	

♦ W ≯ avec J

f(direction)

B(t)

B(t)

Polarisation magnétique J(T)

Introduction			Conclusion 000	λ
Pourquoi 2I)?			Amiere
Non-Orienté	des champs & Fer-S	Silicium	,	Ampère Grains-Orientés
H_{I}	10	В		

Introduction ○○●○			
Pourquoi 2D?			Ampere

Lieux des champs & Fer-Silicium

						Conclusion 000	Λ
Pourquoi 2D?						1	mière
Lieux des	champs &	Fer-Silic Orientation cristalline favorisée par la fabrication	ium Official official	Orientation cristalline <i>imposée</i> par la fabrication	H _{GO}		Grains-Orientés

.

Directions remarquables

• Direction de laminage DL

Directions remarquables

- Direction de laminage DL
- Direction transverse DT

Introduction				Conclusion 000	<u>/</u>
Pourquoi 2D?					mpère
Lieux des	champs & Fer-	Silicium	Orientation cristalline <i>imposée</i> par la fabrication H _{GO}		Grains-Orientés
Directions	remarquables				
• Direction	de laminage DL	• Direction transverse D	T Direction di 	ifficile DD (GO)	

Développement de méthodes de caractérisation magnétique

sous champs tournants

C. Delaunay

Partie I. Introduction et contexte

Partie II. Développement et présentation du banc de caractérisation magnétique sous champs tournants et sous contrainte thermique

Partie III. Comparaison du banc à ceux d'autres laboratoires

Partie IV. Caractérisations 2D en température

Partie V. Conclusions et perspectives

Banc de caractérisation • 00000		Conclusion 000	
			Autore

Partie II

Développement et présentation du banc de caractérisation magnétique sous champs tournants et sous contrainte thermique

	Banc de caractérisation ●00000		Conclusion 000	
Partie II			Truck	
			- Fimpe	\mathcal{M}

Abréviation

Système de caractérisation magnétique 2D ↓ **RSST** (Rotational Single-Sheet Tester)

Banc de caractérisation ○●○○○○		

Objectif

- Création d'un champ tournant
- Performance = homogénéité
- $f \approx 50 \, \text{Hz}$

•
$$B \approx [1 \mathrm{T} - 1.7 \mathrm{T}]$$

Ampère

	Banc de caractérisation 00000		Conclusion 000	A	(
Génération du champ				In	here
				1 (11	7~1

 Différentes formes d'inducteur possibles

Banc de caractérisation		Conclusion 000		
			1	1.1.000
			1 m	men

- Différentes formes d'inducteur possibles
- Choix : Stator

Choix d'un stator

• Réalisation facile

• Exemples récents

Banc de caractérisation		Conclusion 000

- Différentes formes d'inducteur possibles
- Choix : Stator
 - D_i = $80 \, \text{mm}$
 - *h* = 35 mm

Choix d'un stator

Réalisation facile

• Exemples récents

Ampere

	Banc de caractérisation		Conclusion 000
Génération du champ			Fuch
			1 Ange

- Différentes formes d'inducteur possibles
- Choix : Stator diphasé
 - D_i = $80 \, \text{mm}$
 - *h* = 35 mm

Choix d'un stator

Réalisation facile

• Exemples récents

	Banc de caractérisation ○●○○○○		
Génération du champ			The line
			- Finger

Échantillon

Inducteur : Stator

 $D_i = 80 \, \text{mm}$

	Banc de caractérisation ○●○○○○		Conclusion 000	λ
Génération du champ				Luitere
				mpere

Échantillon

- Inducteur : Stator
 - D_i = 80 mm
- Échantillon circulaire
 - $D_s = 78 \,\mathrm{mm}$

Introduction Banc de caractérisation Inter-comparaison Mesures en température Conclusion 00000 Cénération du champ

Échantillon

- Inducteur : Stator
 - D_i = 80 mm
- Échantillon circulaire
 - D_s = 78 mm
 - Zone de Mesure (ZM) de (20×20) mm²
 - $d_{min} \approx 25 \,\mathrm{mm}$

Introduction Banc de caractérisation Inter-comparaison Mesures en température Conclusion 00000 Génération du champ

Échantillon

- Inducteur : Stator
 - D_i = 80 mm

Échantillon circulaire

- D_s = 78 mm
- Zone de Mesure (ZM) de (20×20) mm²
- d_{min} $\approx 25 \,\mathrm{mm}$

Encoches

- Objectif : position angulaire
- Validations en simulation

Introduction Banc de caractérisation Inter-comparaison Mesures en température Conclusion 00000 Conclusion 000000 Cénération du champ

Échantillon

- Inducteur : Stator
 - D_i = 80 mm

Échantillon circulaire

- D_s = 78 mm
- Zone de Mesure (ZM) de (20×20) mm²
- $d_{min} \approx 25 \,\mathrm{mm}$

Encoches

- Objectif : position angulaire
- Validations en simulation
 - Variations de *B* sur la ZM moindre avec encoches

Introduction Banc de caractérisation Inter-comparaison Mesures en température Conclusion 00000 Conclusion 000000 Cénération du champ

Échantillon

- Inducteur : Stator
 - D_i = 80 mm

Échantillon circulaire

- D_s = 78 mm
- Zone de Mesure (ZM) de (20×20) mm²
- $d_{min} \approx 25 \,\mathrm{mm}$

Encoches

- Objectif : position angulaire
- Validations en simulation
 - Variations de *B* sur la ZM moindre avec encoches

	Banc de caractérisation		Conclusion 000	
Mesure des champs			The second second	
			- mp	ew

Objectif

• Mesure des champs \vec{H} et \vec{B}

Deux composantes :
$$\vec{H} = \begin{pmatrix} H_x \\ H_y \end{pmatrix} \quad \vec{B} = \begin{pmatrix} B_x \\ B_y \end{pmatrix}$$

	Banc de caractérisation ○0●000		Conclusion 000	λ
Mesure des champs			· · · · · · · · · · · · · · · · · · ·	Turkene
				Finper

Mesure de B

- Flux ϕ défini dans la tôle
- Lenz-Faraday : tension *e* sur un contour $u_{ind} = -\frac{d\Phi}{dt}$
- Mesure par bobine :
 - 🛕 Perçages
 - Bobinages

	Banc de caractérisation		Conclusion 000	λ
Mesure des champs				Amplene
			2	2 0119000

Mesure de H

- Composante tangentielle de H conservée
- Capteur intégré (Hall, MR), Bobines...
- Bobine PCB
 - 🗢 Faible sensibilité
 - Reproductible

	Banc de caractérisation		Conclusion 000	Γ Λ
Mesure des champs				The base
				Imper

Mesure de H

- Composante tangentielle de H conservée
- Capteur intégré (Hall, MR), Bobines...
- Bobine PCB
 - 😑 Faible sensibilité
 - Reproductible
- Extrapolation (linéaire)

Banc de caractérisation		Conclusion 000	λ
			Luipene
		1	mpere

Extrapolation de H

- Écart h_0 :
 - protection
 - précision h
- 2 bobines/direction
 - *H_c H_f*

Banc de caractérisation ○○●○○○		Conclusion 000	λ
			Amplene
			2 angula

Extrapolation de H

- Écart h_0 :
 - protection
 - précision h
- 2 bobines/direction
 - *H_c H_f*

$$H = H_c - \frac{H_c - H_f}{h_c - h_f} \times h_c$$

Banc de caractérisation		

Objectif

 Entrée = Tensions numérisées des capteurs et générateurs

• Sortie
$$=$$

Motif périodique de tension

Ampère

	Banc de caractérisation			e Conclusion
				Amiliene
Asservisse	ment de <i>B</i>	V(t)	B(t)	3 (onfecte
Problémat Comment	ique t calculer ΔV ?			$\sum_{AV} = f(B, B, z)$
📒 PI itératif	f			
Méthodes inspirées d'activities	s originales d'algorithmes			
a optimis Anr	ation Ulation	$\bigvee_{V_2} = V_1 + \Delta V$	B ₂ B ₁	

 $\begin{cases} d'une \text{ fonction objectif} \\ de l'erreur \langle B, B_{ref} \rangle \end{cases}$

C. Delaunay

Banc de caractérisation

C. Delaunay

Banc de caractérisation

C. Delaunay

25/56

C. Delaunay

Banc de caractérisation

Banc de caractérisation

Inter-comparaison 000000 Mesures en température

Ampère

Mise en température de l'échantillon

Objectif

- $\bullet \ \ \textit{T_{sample}} \in [25;200] \ ^{\circ}\text{C}$
- T maintenue durant les expérimentations
 - O Plusieurs heures
 - Interférences avec la mesure
 - Chauffe localisée

	Banc de caractérisation		Conclusion 000	λ
Mise en température de l'éc	chantillon			Ampere

Méthodes de chauffe localisée

Méthode	Localisée	Interférences	Matériel	Analyse
Résistance	Ð	•		O
Air chaud	•	0	•	•
Infrarouge	•	Đ	00	•
Induction	00	• •	•	•

	Banc de caractérisation		Conclusion 000	λ
Mise en température de l'é	chantillon		4	Amples
				1 011900

Méthodes de chauffe localisée

Méthode	Localisée	Interférences	Matériel	Analyse
Résistance	¢	0	•	C
Air chaud	•	•	•	•
Infrarouge	•	÷	0	•
Induction	•••	0	0	¢

	Banc de caractérisation		
Mise en température de l'é	chantillon		Ampere

	Banc de caractérisation		
Mise en température de l'é	échantillon		Ampere

Pompe à air chaud

Introduction E	Sanc de caractérisation		Conclusion 000
Mise en température de l'éch	antillon		Ambe

Pompe à air chaud

 Deux géométries étudiées

Pompe à air chaud

 Deux géométries étudiées

- Chambre avec évacuation par le haut 1
- Buse divergenteconvergente (2)

	Banc de caractérisation			Conclusion 000	λ
Mise en température de l'échantillon					Luciene.
				1	rapere

Pompe à air chaud

- Deux géométries étudiées
 - Chambre avec évacuation par le haut 1
 - Buse divergenteconvergente 2

	Banc de caractérisation			Conclusion 000	λ
Mise en température de l'échantillon					
					Ampere

Homogénéité de température

Conditions expérimentales

- Clichés thermiques
- Échantillon 0.5 mm

Homogénéité

 $95\,\%$ de la zone de mesure inclus dans :

$$T_{moy} \pm 8\%$$

Banc de caractérisation ○○○○○●		Conclusion 000	λ
			The bane
			F mpet

Bilan

Mise en place d'un banc de caractérisations 2D

• Adaptation du RSST pour la mise en température

• Réalisation et analyse de caractérisations 2D en température

Banc de caractérisation		Conclusion 000
		Trucker
		- Myci

Bilan

• Mise en place d'un banc de caractérisations 2D

- S RSST complet fonctionnel
- Méthodes de contrôle originales

• Adaptation du RSST pour la mise en température

- Chauffe par air chaud soufflé
- Buse d'apport d'air sélectionnée
- Homogénéité en température satisfaisante

Réalisation et analyse de caractérisations 2D en température

	Inter-comparaison	Conclusion 000		
			Amples	2
			2 ange	n

Partie III

Comparaison du banc à ceux d'autres laboratoires

Contexte de l'étude

Projet inclus dans European Metrology Programme for Innovation and Research

		Inter-comparaison			
Conditions de l'inter-comparaison					

RSST impliqués

Labo	Ampère	INRIM	PoliTO
Inducteurs		July 30	
Échantillons	20 mm 18 mm	20 mm 80 mm	20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 240 mm € 0 0
Mesures	x proche y proche x loin y loin	x/y	x/y

		Inter-comparaison			
Conditions de l'inter-comparaison					

RSST impliqués

Labo	Ampère	INRIM	PoliTO
Inducteurs		3¢	
Échantillons	20 mm 18 mm	20 mm 80 mm	20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 240 mm € 0 0
Mesures	x/y ► Adaptation ◄	x/y	x/y

Conditions do Vinter companying			Inter-comparaison		
Conditions de l'inter-comparaison	Ampere				

Conditions expérimentales

- Objectif :
 - Comparaison des pertes
 - Échantillon FeSi NO
 - $\bullet T = T_{amb}$
 - $B \in \{1; 1.5\}$ T

		Inter-comparaison	Conclusion 000	Y
			1	mpere
Mocuroc 1	D	· · · · · •	 SST Ampère RSST	PoliTO

Wesures 1D

Comparaison au standard

- Moyenne des RSST : écart de 2 à 7 % \odot
 - Écart individuel jusqu'à 15 %
- Pas d'historique + quelques % attendus

Comparaison entre RSST

- Dispersion p.r.à la moyenne des RSST : (:)
 - Maximale : $\pm 7\%$
 - Moyenne : 2.5 %
- Historiquement, de 2 à 40 % \odot

 \odot

200 \odot

B = 1.5 T

100

50

—— B = 1.4 T

Fréquence (Hz)

Comparaison entre RSST

• Maximale : $\pm 5\%$ (1D : $\pm 7\%$)

Moyenne : 2.4 % (1D : ±2.5%)

Historiquement. de 2 à 40%

Dispersion p.r.à la moyenne des RSST :

50

-40

30

10

-B = 1 T

20

- → - · RSST INRIM - - - - - · · RSST Ampère - · - - · · RSST PoliTO

-B = 1.25 T

	Inter-comparaison	Conclusion 000	λ
			Amples
			1 ange

Bilan - Intercomparaison

- Ont été testés :
 - 1 matériau méthode de mesure de *H*
- Cohérence encore modérée...
- ...mais encourageante!

3 inducteurs systèmes d'acquisition

- C. Appino et al. Interlaboratory Comparison of Two-Dimensional Magnetic Measurements 26th SMM Sept. 2023
- Article de revue en cours d'écriture.

Inter-com
000000

Mesures en température

\$ 0.94 mm

Extrapolation du champ |

Configurations de bobines utilisées

Bobine « INRIM » collée contre la surface

Bobines PCB collées contre la surface

y proche x proche

0.7 mm

Bobines PCB fixées à courte distance de la surface

$$H = H_c - \frac{H_c - H_f}{h_c - h_f} \times h_c$$

Ampere

	Inter-comparaison ○○○○●○		
			Turkene
			- Maper

Comparaison des mesures de H

Inter-comparaison

Mesures en température

Extrapolation du cham

Comparaison des mesures de H

Observations

 \bullet « INRIM » \approx « Collées »

$$\bullet \ h \nearrow \Rightarrow H \nearrow, P \searrow$$

Ampere

Inter-comparaison

Mesures en température

nclusion O

Ampere

Extrapolation du champ H

Comparaison des mesures de H

Observations

- ◆ « INRIM » ≈ « Collées »
- $h \nearrow H \nearrow, P \searrow$
- Extrapolation = amélioration

🛕 du cas « fixées »

	Inter-comparaison ○○○○○●	Conclusion 000	λ
			Turiore
			Fingen

Bilan

Solution Mise en place d'un banc de caractérisations 2D

- SST complet fonctionnel
- Méthodes de contrôle originales
- O Mesures 1D comparables avec d'autres laboratoires et des méthodes standards
- Mesures 2D comparables avec d'autres laboratoires

• Adaptation du RSST pour la mise en température

- Chauffe par air chaud soufflé
- Buse d'apport d'air sélectionnée
- Homogénéité en température satisfaisante

S Réalisation et analyse de caractérisations 2D en température
		Mesures en température ●○○○○	Conclusion 000	
Partie IV				Furliene
				Impou

Partie IV

Caractérisations 2D en température

		Mesures en température •••••	Conclusion 000
Conditions	de test		1

Échantillon GO

		Mesures en température	Conclusion 000	(
Échantillon NO			An	npère

		Mesures en température 00 0 00	
			Turkene
NO : P	ertes		Ampere

Observations

- φ Pertes \searrow avec T (sauf T_{amb})
- **6** Tendance pour $T = T_{amb}$?

• Variation entre T_{amb} et 195 °C :

В	Var.
1.0 T	+1.5%
1.5 T	-17%
1.7 T	-28%

		Mesures en température	
Échantillon GO			Ampere
			2 (119010

		Mesures en température ○○○●○	λ
			And in a
GO · Pe	ortes		- Ampere

Observations

- φ Pertes \searrow avec T... HT?
- Variation entre T_{amb} et 189 °C :

В	Var.
0.75 T	-41%
1.0 T	-28%
$1.15\mathrm{T}$	-11%

Variation moindres à « fort » B

		Mesures en température ○○○○●	
Résumé de la section			Ampere
			1000

Bilan

Solution Mise en place d'un banc de caractérisations 2D

- SST complet fonctionnel
- O Méthodes de contrôle originales
- Mesures 1D comparables avec d'autres laboratoires et des méthodes standards
- Mesures 2D comparables avec d'autres laboratoires

• Adaptation du RSST pour la mise en température

- Chauffe par air chaud soufflé
- Buse d'apport d'air sélectionnée
- Homogénéité en température satisfaisante

Réalisation et analyse de caractérisations 2D en température

- Caractérisation de 2 échantillons de FeSi à différents T, B
- Observation sur les pertes
- Observation sur la forme des lieux

		Conclusion ●○○	λ
Partie V			- Line
			Timper

Partie V

Conclusions et perspectives

		Conclusion ○●○	λ	
Conclusions			Furth	ene.
			2017	010

Bilan

• Mise en place d'un banc de caractérisations 2D

- S RSST complet fonctionnel
- Méthodes de contrôle originales
- O Mesures 1D comparables avec d'autres laboratoires et des méthodes standards
- Mesures 2D comparables avec d'autres laboratoires

• Adaptation du RSST pour la mise en température

- Chauffe par air chaud soufflé
- Buse d'apport d'air sélectionnée
- Homogénéité en température satisfaisante

Réalisation et analyse de caractérisations 2D en température

- Caractérisation de 2 échantillons de FeSi à différents T, B
- Observation sur les pertes
- Observation sur la forme des lieux

Caract. 2D en T

2

Rapprochement avec les

domaines applicatifs

Couplage contraintes

thermiques et mécaniques

Merci pour votre attention !