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A B S T R A C T

Recent advancements in AI, and specifically Machine Learning, are enabling
robots to more seamlessly integrate into our everyday routines. The objective
of this thesis is to take a further step towards the development of intelligent
autonomous agents that can be embedded in our daily environment, such as
houses, hospitals, shopping malls, and so forth. These agents ought to possess
the capability to effectively navigate their surroundings to achieve a certain target,
such as reaching a certain place in the environment or finding a certain object.
Therefore, we examine a wide range of existing techniques for building an embod-
ied navigation agent. These techniques can be fully learned by neural networks
(learned-based techniques) or they can be based on geometry techniques that rely
on explicit modeling of the agent and its environment. In this thesis, we build
hybrid approaches that use both techniques in such a way that they can work not
only in a simulation but also in a real physical environment. This is a common
goal for all the contributions to this thesis.

In the first part of this manuscript, we study the generalization capacities of dif-
ferent variants of an agent trained in simulation and deployed directly in physical
environments. Our results demonstrate that, for a point-to-point navigation task,
an agent trained on a wide range of scenes and fine-tuned on a simulation twin
of the targeted scene can reach a high performance and reduce the simulation-
to-real gap. Furthermore, we scrutinize the reasoning and perception abilities
of the agent by analyzing its use of sensors to execute a specific behavior. We
demonstrate that the agent pays close attention to visual cues when necessary to
steer clear of the surrounding obstacles.

In the second, we go a step further by tackling the more advanced task of find-
ing a set of objects sequentially, which requires more reasoning and memorization
capacities. We introduce a novel hybrid modular agent through the combination
of the SLAM technique and learned components. We show that the performance
of our agent has the best results in real environments compared to state-of-the-art
agents on the same task. The results show the robustness of using hybrid agents.

Finally, we focus on enhancing the decision-making capacity of navigation
agents by introducing another hybrid agent with a hierarchical approach. We pro-
pose a high-level meta-planner that dynamically switches between both decision-
making approaches: the classical symbolic planner and the neural-based planner.
We demonstrate that the hybrid solution can perform efficiently in real environ-
ments by combining both approaches.
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R É S U M É

Les progrès récents de l’IA, et plus particulièrement de l’apprentissage automa-
tique, permettent aux robots de s’intégrer de manière plus transparente dans nos
habitudes quotidiennes. L’objectif de cette thèse est de faire un pas de plus vers le
développement d’agents autonomes intelligents qui peuvent être intégrés dans
notre environnement quotidien, comme les maisons, les hôpitaux, les centres com-
merciaux, etc. Ces agents devraient posséder la capacité de naviguer efficacement
dans leur environnement pour atteindre un certain objectif, comme atteindre une
certaine zone de l’environnement ou trouver un certain objet. C’est pourquoi nous
examinons le large éventail de techniques existantes pour la construction d’un
agent de navigation incarné. Ces techniques peuvent entièrement être apprises par
des réseaux neuronaux (techniques basées sur l’apprentissage) ou elles peuvent
être des techniques fondées sur la géométrie qui reposent sur une modélisation
explicite de l’agent et de son environnement. Dans cette thèse, nous construisons
des approches hybrides qui utilisent les deux techniques afin de pouvoir fonction-
ner, non seulement dans une simulation, mais également dans un environnement
physique réel. Il s’agit d’un objectif commun dans toutes les contributions de cette
thèse.

Dans la première partie de ce manuscrit, nous étudions les potentialités de gé-
néralisation de différentes variantes d’agents entraînés en simulation et déployés
directement dans des environnements physiques pour une tâche de navigation
point à point. Nos résultats démontrent qu’un agent entraîné sur une large gamme
de scènes et ajusté dans la simulation par la scène ciblée peut atteindre une per-
formance élevée et réduire l’écart entre la simulation et la réalité. En outre, nous
examinons les capacités de raisonnement et de perception de l’agent en analysant
son utilisation des capteurs pour exécuter un comportement spécifique. Nous
démontrons que l’agent prête effectivement une attention particulière aux indices
visuels lorsque cela est nécessaire pour éviter les obstacles environnants.

Dans la seconde partie, nous allons plus loin en se concentrant sur la tâche plus
avancée qui consiste à trouver un ensemble d’objets de manière séquentielle, ce
qui nécessite davantage de capacités de raisonnement et de mémorisation. Nous
introduisons un nouvel agent modulaire hybride en combinant la technique SLAM
et des composants appris, tels qu’une nouvelle politique d’exploration entraînée
par l’apprentissage par renforcement. Nous comparons les performances de notre
agent à celles d’agents de pointe. En outre, nous montrons que notre agent ob-
tient les meilleurs résultats dans des environnements réels, ce qui démontre sa
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vi résumé

robustesse.

Enfin, nous nous concentrons sur l’amélioration de la capacité de prise de
décision des agents de navigation en introduisant un autre agent hybride avec
une approche hiérarchique. Alors, nous proposons un méta-planificateur de haut
niveau qui passe dynamiquement d’une approche décisionnelle à l’autre : le
planificateur symbolique classique et le planificateur à base de neurones. Nous
démontrons que la solution hybride peut efficacement fonctionner dans des
environnements réels en combinant les deux approches.
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1.1 Motivation and Context

Over the last few decades, automation has become a part of many human activ-
ities. Humans began to increasingly rely on machines to perform autonomously
more complex tasks that required reasoning and a deep decision-making process.
With the recent breakthrough in Artificial Intelligence (AI), (more precisely Deep
Learning (DL)), the opportunity for machines to reason is boosted enormously.
Machines can now recognize complex patterns in collected data of independent
samples of the world using non-linear function approximation models, called
Deep Neural Networks (Goodfellow et al. 2016). The large-scale training of such
models with available big data, opens the door for machines to achieve state-of-
the-art results on many digital tasks. Such as image classification (Krizhevsky et al.
2012; He et al. 2016; Chen et al. 2023), object detection & segmentation (Girshick
et al. 2014; Li et al. 2022b; Jain et al. 2023), and machine translation (Sutskever
et al. 2014; Liu et al. 2020). Moreover, with the recent advances in generative AI,
machines have the potential to generate new data from the patterns detected by
neural networks. They can generate new texts from context (OpenAI 2023), new
art from description (Ramesh et al. 2022), new captions for images (Li et al. 2022a).

Toward Embodied AI The progress of Machine Learning (ML) in such complex
tasks from the digital world of Computer Vision (CV) and Natural Language Pro-
cessing (NLP), has been obtained in Digital AI, i.e. non-embodied AI (Figure 1.1).
Machines perform their predictions without interacting with the surrounding
environment. On the other side, Embodied AI, assumes the existence of an active
artificial agent (e.g., robot, AR glasses) that are embodied inside an environment.
This agent is not limited to perceiving the environment passively. It should inter-
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Figure 1.1 – Passive Vs Embodied In Passive AI tasks (Top), they doesn’t interact
with the environment, its predictions from the input is usually inde-
pendent of its current state in the environment. Embodied AI tasks
assume the existence of an artificial agent that perceives and interacts
with the environment in a close-loop way to achieve a certain goal.
The current state (or observations) of the agent inside is important to
guide its prediction. Reproduced from (Deitke et al. 2022)

act intentionally with the environment in a close-loop way to achieve a certain
goal inside the same environment for a given task. Examples of such embodied AI
tasks are robot navigation, obstacle avoidance, object manipulation and arrange-
ment. These tasks require from the agent to detect more than patterns only. The
agent should also understand the geometry and dynamics of the environment to
be able to interact wisely and strategically, and is required to plan.

Robot Navigation In this thesis, we focus our work on tackling the robot
navigation tasks in indoor environments. Navigating inside an environment
to perform a specific mission seems to be a daily, natural task that humans
do. Humans navigate daily between rooms in their houses, office rooms in
workplaces or stores in shopping malls. With time, they build a solid experience
of the different environments they visit. Somehow, they succeed in building
an “internal” map of environments. In addition, they recognize patterns and
correlate between them, they exploit the layout regularities in seen environments
to enable generalization to novel unseen environments. Taking a frequent example
of restaurants, the task of finding your way to a specific room (or area) like the
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restroom, humans solve such task efficiently in newly visited restaurants. A sense
of patterns arises because of past similar experiences. We tend to favor the back of
the restaurant and areas away from seating (Figure 1.2). While we start navigating,
we are also open to correcting our decisions and for new exploration. We keep
looking right and left, searching for signs of direction to guide and refine our
choices of trajectory. From our experiences, our strategy will differ enormously in
shopping centers where a restroom is probably located on any side of corridors
between stores. Another common example is the arrangement of rooms in big
houses. Humans capture the common layout such that on ground floor we find a
kitchen, living room and dinning room. The bedrooms and bathroom are found
upstairs.

Different navigation setups The complexity of reasoning required by a robot
asked to navigate depends on the specific configuration and the task. A simpler
version of the navigation task is waypoint navigation (e.g., Go to 5m north and
7m west). The agent can be equipped with or without means of localization and
the live goal direction which impacts the difficulty of the task. Tasks can be more
complex, like object searching (e.g., Go and find my pair of shoes) that require
multi-reasoning such as object detection, object mapping and memorization. In
some other task configurations, agent can be asked questions and the answer
requires navigation and exploration inside the environment (e.g., What is the food
left on the dinning table?). This task extends the Visual Question Answering (VQA)
(Antol et al. 2015) task to the Embodied Question Answering (EQA) task (Das et al.
2018). The agent is required to process, map and correlate the input text to not a
single visual observation but to the full 3D environment and by incorporating the
past and future environment observations.

Depending on the task, a robot requires different capabilities, but a commonly
required capability is "situation awareness": it needs to understand the spatial
structure of its surroundings in order to find navigable space, avoid obstacles,
identify key objects and places, and eventually anticipate the key actors (if required
by the task) that contribute to achieve the main goal. Moreover, the agent needs
at the end to correlate all elements of its acquired knowledge to take decisions to
reach the main goal of the navigation task.

Analytical robotics as solid foundation Classically, the essential part of these
capabilities have been addressed through combinations of reconstruction and
planning. A large body of work is based on Simultaneous Localization and
Mapping (SLAM) algorithms (Section 2.2.2), often with probabilistic models. It
reconstructs the scene in the form of an actionable map (Section 2.2.1), followed
by cost-based planning algorithms (Dijkstra 1959; Sethian 1996a). In another
word, a classical agent solves the navigation problem by building a map and
localize itself inside the map (Smith et al. 1987; Moutarlier et al. 1989). Then, it
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Figure 1.2 – Indoor Navigation: Navigation to a certain goal (e.g. restroom)
inside a restaurant, when no signs point directly to the restroom. In
the left image scenario, humans tend to favor to go straight at the
end of main seats. While in the right image scenario, going straight
between tables is not likely to find the restroom. Humans learn
some layout regularities that they can generalize in novel restaurants
environments. Reproduced from (Chang et al. 2020)

performs planning (Dijkstra 1959; Ferguson et al. 2005) and controls (Chen et al.
2022b) to navigate efficiently toward the target. These methods have proved over
the years their solid foundation and robustness in some real scenarios and are
easy to interpret since they are based on first principles. We can trace back and
know clearly why the agent took a specific action at a specific moment. However,
they lack the understanding of semantics and regularities inside an environment.
On the other hand, these agents can’t exploit new regularities and generalize to
unseen situations (e.g., getting stuck in a corridor with no new extra information
to replan for an “escape” path).

End-to-end learning-based agents As an alternative, navigation can be cast
as a sequential decision taking problem (Bellman 1957) and fully dealt with in
a data-driven way with learning-based techniques in an end-to-end manner. By
today, end-to-end neural networks are capable of delivering state-of-the-art perfor-
mance with high-quality results in many CV (He et al. 2016; Chen et al. 2017) tasks.
The main "motors" that contributed to these advancements are the availability of
large-scale diverse datasets (Deng et al. 2009; Lin et al. 2015). Similarly, in robot
navigation, neural agents can be trained in an end-to-end manner. Agents take
as input the current observations (possibly, visual observations) of the environ-
ments and directly predict a motion action such as moving forward or rotating
left and right (Savva et al. 2019; Chen et al. 2019). The main building blocks
are Convolutional Neural Network (CNN) architectures (Lecun et al. 1998) for
perception. In addition, they can rely on recurrent neural networks (Hochreiter
et al. 1997; Cho et al. 2014) or transformer-based architectures (Vaswani et al.
2017; Dosovitskiy et al. 2021) to attend the history of observations. These types of
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agents have been shown to generalize and exploit the semantic layout regularities
in a scene (Chang et al. 2020).

With the current advancement in photorealistic simulators (Xia et al. 2018; Savva
et al. 2019), supplied with physics engines (Coumans et al. 2016), these agents
can be trained with Supervised Learning (SL) or Reinforcement Learning (RL)
on hundreds of scenes and billions of frames. Zhu et al. (2016) shows an RL-
based end-to-end learned navigation policy for image-goal navigation task. Zhao
et al. (2021) uses an image-based model-free policy trained to map the input
image directly to the continuous actuator control command for Unmanned Aerial
Vehicle (UAV). Levine et al. (2015) used an end-to-end learning for grasping
policy for a robotic arm. On the same path, Toromanoff et al. (2020) uses a fully
end-to-end policy trained with RL for urban driving where the agent needs to
handle scenario such as pedestrians and vehicles affordance and lane keeping.

Despite the promising results in some navigation tasks (Ramrakhya et al. 2022;
Majumdar et al. 2022; Marza et al. 2022), a common challenge is the lack of
interpretability of neural networks. End-to-end approaches treat neural models
as a black-box. There is an active line of research that aims to understand and
interpret the reasoning behavior of machine learning models (Lipton 2016) and
some works already focus on the interpretability of embodied agents (Jaunet
et al. 2020; Jaunet et al. 2021). We believe that end-to-end approaches are still far
from being a trustful standalone system. Especially, in the case of real embodied
agents, where the agent has to interact with humans and navigate the surrounding
environments with safety guarantees. We need to understand how such a system
works, and the reason behind its choices and steps. Failures or unsafe behavior in
real environments can be damaging and costly. For these reasons, such situations
and behaviors need to be understood, and we should have a clear interpretation
of what leads the agent to these undesired scenarios.

Another challenge is the sample inefficiency of state-of-art training approaches
such as Deep RL (Henderson et al. 2019). The agent needs billions of interactions
to obtain state-of-the-art performance in the simplest navigation tasks such as
PointNav (Section 2.1.2). Distributed RL (Espeholt et al. 2018; OpenAI 2018)
can improve on wall-clock training time but with a huge cost in hardware. In
navigation, Wijmans et al. (2019) propose a decentralized and distributed way
to training agents on large-scale data in simulation. Although, this work shows
that generalization is possible in the simulated world of high photo-realism,
the transfer to the real world doesn’t happen smoothly. We notice a drop in
performance between simulation and real due to the gap between both setups
(Sim2Real gap). Training in simulation and deploying in real is another challenge
open for research (Sim2Real Transfer). Some techniques like domain adaptation
(Li et al. 2020), domain randomization (Anderson et al. 2020) across different
simulation domains are used to minimize the gap. Another common technique
is to minimize the gap by applying domain adaptation between simulation and
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Figure 1.3 – Statistical noises Vs Real - Different noises applied on visual ob-
servations in simulator: RGB images (b to e) and on depth map (h).
Noises are still far from the real twin in pair (f & i).

noisy simulation during training (Truong et al. 2021a). This is done by introducing
some statistical noise models. As shown in figure 1.3, noises are still far from
being realistic, specially in the case of a navigation agent that relies on visual
input as main sensor. In the thesis, we tackled these two challenges of sample
inefficiency and minimizing the gap between simulation and real to solve complex
navigation tasks in real environments (Chapter 4).

Toward Hybrid Modular agents There is a of another family of embodied
agents that adopt a modular approach. The idea is inspired by classical robotics
on dividing the navigation task into sub-tasks such as exploration, object detection,
localization, mapping, planning and control. Multiple modules are responsible for
each or group of sub-tasks and during navigation, these modules communicate
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with each other to achieve the main goal of navigation. Each of the learned
modules can be trained separately (if trainable) (Chaplot et al. 2020a) or jointly
(Chaplot et al. 2020d). Moreover, the design of such modular agents can be
considered hybrid approach, where not all modules are based on end-to-end
learning that maps inputs to outputs directly. Some modules can adopt a classical
symbolic algorithm or partially introduce inductive biases in the design. We call
such an agent, a hybrid agent.

Hybrid modular agents tend to have multiple advantages. First, the inter-
pretability of the agent is higher due its modularity and a clear definition of the
interfaces between modules. Second, the sample efficiency during training is
possibly increased due to simplifying from one single module trained end-to-end
to multiple submodules. Third, delegation of low-level decision-making parts
such as planning and control to the existing solid well-founded symbolic algo-
rithms in robotics, geometry and automation. Hence, acceptable performance on
low-level actions could be guaranteed and leave the high-level reasoning parts
to neural modules where they can understand the regularities and semantics of
the environment. Therefore, many recent works focused on building hierarchical
hybrid planners where a high-level planner understands the environment and
proposes a way-point for low-level symbolic planners.

Objectives of the thesis The main objective of this thesis is to explore the usage
of efficient hybrid navigation agents inside indoor real environments. During our
study, we tried to answer the following questions:

• Is navigating in a real environment with end-to-end neural agents possible? On
which navigation tasks? Do we need any adaptation from simulated training
environments?

• Can we interpret End-to-End agents? How do they use their sensors? Do some
sensors have more important roles than others? In which situation?

• Can hybrid modular agents, simply designed, beat End-to-End neural agents trained
with privileged information? Does the performance hold in both setups: simulated
and real environments?

• Can we benefit simultaneously from two different planners: analytical planner
and neural planner? Doesn’t this put the agent in risk of a confusion that could
imply longer and inefficient goal-navigation? Can a meta-planner learn an efficient
dynamic switching strategy?
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Figure 1.4 – NAVER 1784 - Naver new building (a and b) in Seoul, South Korea.
Considered as the first fully robotic friendly workplace building
(b) with robots equipped with specific lifters for robots (c). Robots
navigate and interact with humans (d to f) to achieve daily tasks such
as bringing coffee and parcels.

1.2 Industrial Context

This thesis is a part of a collaboration between the academic institution INSA
Lyon and the industrial partner Naver Labs Europe (NLE), an R&D center of Naver
Company. Naver is known to be specialized in many Digital AI products such
as the Naver Search Engine and the Papago Translator. Currently, Naver focuses
on contributing to the Embodied AI industry. It is highly interested in emerging
robots in the daily life of humans, including different environments. In figure 1.4,
we show Naver 1784 building in Seoul, the first ever robotic-friendly workplace
building in the world. It’s optimized for robots navigating and interacting with
workers. In this context, NLE devotes its effort to conduct research toward
enhancing robotic systems to perform embodied tasks such as robot navigation,
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manipulation, and interaction with humans over voice. In particular, the thesis
was started inside the 3D Vision team of NLE, working on various vision-related
topics such as 3D scene understanding and robot localization. Then, the thesis
joined the newly founded Spatial AI team, which focuses on robotics-related topics
such as applying large-scale learning for robot navigation and manipulation.

1.3 Outline

The thesis is composed of six chapters including this introduction.

Literature review. In Chapter 2, we review previous work in classical robotics
and DL most related to this thesis. In the first part (Section 2.1), we give an
overview of the robot navigation problem and presenting different concepts
and ongoing embodied AI tasks. Then in the second part (Section 2.2), we
give a background of classical techniques in robotics that rely on symbolic and
probabilistic approaches to solve the navigation tasks. Third, we present how
learning-based techniques were used to build a neural agent that is able to reason
and solve the task in an end-to-end manner (Section 2.3). Finally, we discuss how
hybrid modular agents have been designed to solve navigation tasks (Section 2.4).

Experimental study on End-to-End agents in real environments. In Chap-
ter 3, we present our first contribution, an in-depth experimental study of the
performance of end-to-end neural agents. We study the generalization capacities
of agents trained in simulation and deployed directly on physical environments.
Alongside, we analyze the reasoning capacities of the agent for their sensor usages
and the importance of different types of sensor signals.

Hybrid agent for Multi-Object Navigation. In Chapter 4, we introduce a new
hybrid modular agent, through the combination of SLAM and learned components
by RL and SL. A hybrid agent that leverages a novel stand-alone exploration policy.
We compare the performance of our agent with the state-of-the-art agents on the
task of MultiON (Wani et al. 2020). In addition, we show the performance of
the same agents in real environments after we deployed directly on real physical
robot.

Meta-agent for hybrid planning. In Chapter 5, we introduce another hybrid
agent with a hierarchical approach. We propose a high level meta-planner that
dynamically switches between both decision-making approaches: classical sym-
bolic planner and end-to-end neural planner. We hypothesize that we can increase
the navigation performance by leveraging both at the same time. In addition, we
evaluate the agent in both simulation and real environments.
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Discussion. Finally, in Chapter 6, we conclude this thesis by giving a bigger
picture on the summary of the contributions and discuss the limitations of this
work and what are the potential future directions for hybrid approaches.

1.4 Contributions

Publications This thesis is based on the material published in the following
papers:

• Assem Sadek, Guillaume Bono, Boris Chidlovskii, and Christian Wolf (2022b).
“An in-depth experimental study of sensor usage and visual reasoning of
robots navigating in real environments”. In: ICRA 2022 - Chapter 3;

• Assem Sadek, Guillaume Bono, Boris Chidlovskii, Atilla Baskurt, and Chris-
tian Wolf (2022a). “Multi-Object Navigation in real environments using
hybrid policies”. In: ICRA 2023 - Chapter 4;

• Sombit Dey, Assem Sadek, Gianluca Monaci, Boris Chidlovskii, and Chris-
tian Wolf (2022). “Learning whom to trust in navigation: dynamically
switching between classical and neural planning”. In: IROS 2023 - Chap-
ter 5;
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In this thesis, we are interested in building hybrid models for visual naviga-
tion in real environments. These hybrid models will benefit from two known
types of approaches in navigation: classical approaches based on geometry and
optimization and learning-based approaches. Therefore, we give an overview
in Section 2.1 on the navigation problem: the main concepts and the different
variations of navigation tasks that currently exist and which are known in the
embodied AI community. Second, we present the two aforementioned types of
approaches that tackle the navigation task in Section 2.2 and Section 2.3. At the
end, we describe the currently existing methods that combine the two families in
Section 2.4.

2.1 Overview

The navigation task is a sequential decision-taking problem of an embodied
agent in a simulated or physical environment (e.g. Video game, indoor building,

11
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Figure 2.1 – Agent Interaction: In visual navigation, the agent needs to interact
with the environment. The agent observes the environment using its
sensors and processes the observations to turn it into knowledge as an
internal representation of the environment. The agent takes a decision
based on this knowledge in order to in order to achieve a certain
given target (different modalities of goals are shown for illustration).
Then, the agent applies these decisions toward the environment by
performing specific actions using its actuators. For simplicity, we
show the final actions conceptually, but in reality they are velocity
commands transformed into motor velocities

outdoor area ... etc.). At each time step, an embodied agent (e.g., a robot -
section 2.1.1), supplied with sensory inputs, must decide an action to take to
reach a certain target (e.g. a location, an object) effectively and efficiently inside
its environment (Section 2.1.3) to achieve a certain target. In this work, we focus
on navigation tasks where the agent is embodied inside an indoor environment
such as houses and offices. The sensory inputs, such as inputs from the camera
and accelerometers, are used by the agent to decide (or predict) the optimal
strategy and actions to optimize for its current target. The navigation depends
on the sensor modalities and the specific type of navigation task. Therefore,
in the following, we present a selected set of predefined navigation tasks and
their setups: the definition of the problem, inputs and outputs of the embodied
agent, the metrics used to measure the performance of a navigation agent. These
navigation tasks are the current focus of the embodied AI community, and they
are often presented as scientific competitions (Embodied Artificial Intelligence (AI)
challenges Deitke et al. (2022)).
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(a)

(b)

(c)

Figure 2.2 – The LoCoBot, a mobile robot (a) used for indoor navigation. It’s
equipped with LIght Detection And Ranging (LIDAR) (b), Kobuki
mobile base (c) and RealSense camera for RGB and depth inputs (2.3b).
The Kobuki base is equipped with wheels motors, an accelerometer,
calibrated gyroscope and a bumper for collision detection.

2.1.1 The Embodied Agent

In this thesis, we focus on real-world indoor navigation. Moreover, the agent is
a mobile robot (Figure 2.2a) in a physical indoor environment (e.g., house, hotel,
hospital). Since the robot has to interact with the environment (Figure 2.1) to
perform a specific task autonomously, it needs to be equipped with sensors and
actuators. Sensors help the robot to get observations related to the current state of
the physical environment (e.g., camera, LIDAR and accelerometer). Furthermore,
actuators help the robot perform a certain action in the environment (e.g., wheel
motors, servo motors and robotic arms). Depending on available sensors and
actuators, we can define the observation space and the action space of the agent,
respectively. In this section, we define possible observation space and action space
of an embodied agent, and we describe how the physical sensors and actuators of
common mobile robotic navigation platform works in the real-world.

Observation spaces The observations related to the state of the environment are
presented to the robot as tensors. The observations are provided to the robot to
process them and take actions based on them. When it comes to visual navigation,
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(a) (b)

Figure 2.3 – RealSense Depth Camera: (a) Intel RealSense Depth Camera
mounted on LoCoBot (Figure 2.2a). It’s composed of four main
modules (from left to right): Right Imager, IR Projector, Left Imager
and RGB Module.

robots typically have access, at time t, to the current 3D RGB tensor It 2 R3⇥H⇥W

of the egocentric front view of the scene. Along with the current image, they
should have a sense of depth, and this can be provided as a 2D depth map
Dt 2 R1⇥H⇥W tensor, often aligned with the RGB tensor. They should be able
to estimate the change in their position and orientation over time (Odometry)
relative to a starting location. The robot movement state can be represented as
a 1D tensor Pt 2 R6 of the change in displacement (in x, y and z directions) and
rotation angle (roll, pitch and yaw) in the 3D space over time.

Sensors With the recent advancements in technology, most of the current mobile
robotic platforms can be equipped with a depth camera (Figure 2.3a) easily.
Such cameras, like the Intel RealSense depth camera series, are composed of
multiple modules: RGB camera, Left Imager, Right Imager and Infrared Projector
(Figure 2.3b). In a stereo setup, the left and right Imagers get the current left
and right front images, respectively. The depth map is then calculated using
epipolar geometry, which estimates the 3D position of the corresponding pixels
by performing triangulation (Hartley et al. 2004). Since all four modules are
calibrated together on the RealSense, the RGB image and depth map can be
aligned together. The IR projector is used to detect the depth of the smooth
surface, such as walls, by projecting Infrared rays. Usually, accelerometer and
calibrated gyroscope sensors are provided. The accelerometer detects the change
in linear motion (displacement), while the gyroscope detects the change in angular
motion (orientation). By keeping integrating the displacement and orientation
information with the initial position of the robot, the robot can keep track of its
current position and orientation with respect to a reference point. This process is
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called dead reckoning and is subject to drift and accumulates error in estimating
odometry.

Action spaces A typical robot with a differential drive system can perform vari-
ous fundamental actions by rotating their base’s wheels (moving forward/backward
and turning left/right) or moving their camera (looking up/down/left/right).
In the physical environment, defining the embodied actions space in navigation
depends mainly on the available motors on the deployment robot. Motors can
give the robot the access to greater degrees of freedom in the space: e.g. a moving
forward/backward action with a specific speed on the up-front-axis of the robot.
Therefore, the robot sets the rotation velocity of the motors to a specific value
which is continuous. In order to specify the motor speed, we need to map it from
desired linear and angular velocities. These velocities are calculated or estimated
using the navigation algorithm and they mapped and maintained by a low-level
control algorithm. When designing a navigation algorithm, an embodied agent
might want to make predictions in a different action space. For example, in recent
learning-based algorithms, training a navigation agent that regresses continuous
action values (velocity values) tends to result in poor performance or leads to
instability and random behavior (Seyde et al. 2021). Therefore, most of the existing
approaches discretize the action spaces by defining a set of possible actions than
can be conducted in the environment (e.g. move forward 25cm, turn left 25deg)
and turn the problem to a classification problem (Tang et al. 2020).

Real-world challenges From the above description if how sensors and actua-
tors work, we can deduce that robot interactions are prone to various incorrect
behaviors. The erroneous behaviors are possibly due to errors in sensor readings
(e.g. incorrect triangulation for depth - inaccurate accelerometer and gyroscope),
obstructions on actuators (e.g. floor friction on wheels) or an unexpected latency
in communication, specially in asynchronous communication between sending
robot actions and receiving observations.

2.1.2 Navigation Tasks

2.1.2.1 Point-Goal Navigation

Definition This is a point-to-point navigation where the agent’s goal is to nav-
igate to target coordinates in the environment. The point coordinate can be
presented as input in many coordinate frames. It can be given with respect to the
agent’s starting position, to a global frame in the environment or to the agent’s
current position. We focus on a specific Point-Goal task which is known under the
name PointNav (Anderson et al. 2018a) on which most of the current benchmarks
are evaluated. The agent starts in a specific position and orientation. It’s given a
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Figure 2.4 – Agent Reasoning: Conceptually, an embodied agent processes the
given observations of the environment in three steps: (1) Perception,
where the agent understands what is inside the observations and
how they can be used. (2) Mapping, where the agent maps the
perceived information into an internal representation. (3) Decision
making, in this step, the agent uses the current knowledge (internal
representation) to plan for the best strategic action to reach its goal.

point target which is a position relative to its starting position (e.g. Go to 3m South,
7m west) and then the target gets updated with respect to agent’s current position.
We assume in this task that the agent doesn’t have access to the ground-truth
map of the environment, otherwise, the task will be effortless to be optimally
solved. Instead of a predefined map, the agent has access to current egocentric
observations of the environment (RGB and depth observations). Initially, the
target sensor in PointNav input was defined in the community (Deitke et al. 2022)
as the current relative 2D polar vector of the goal (distance and Azimuth direction
to the goal) with respect to the current position of the agent (usually, referred
to as PointGoal GPS+Compass Sensor). But recently, the target input has been
changed to be always a polar vector with respect to the starting position of the
agent. This change raises the need of performing visual-based localization only
and also removed the strong assumption made previously that the integrated
odometry of the current position of the agent is perfect, which is not the case in
the real environment.

Evaluation Setup In order to evaluate and benchmark the performance of
different agents on PointNav, the community has provided multiple datasets
which consist of PointNav episodes that can be run in simulators. An episode is
defined by a starting position of the agent and a fixed PointGoal position: the
agent will then have a fixed budget of 500 action steps to execute. The action
space of the agent is discrete and consists of: Move Forward 0.25m, Rotate Right
30�, Rotate Left 30�, STOP (no move). The episode is considered terminated when
the agent executes the action STOP or the time step budget is reached. There are
three main metrics to evaluate the performance of an agent on a given dataset of
predefined PointNav episode (Anderson et al. 2018a):
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• Success Rate (SR) is the binary indicator of an episode to be successful. The
agent must call STOP with the final distance dk to the goal being lower than
a predefined threshold dsuccess which is twice the radius of the agent:

SR = 1ddsuccess (2.1)

• Success weighted by Path Length (SPL) is the SR with each success weighted
by the ratio between the optimal path length l⇤ and the distance travelled by
the agent l (Zhu et al. 2016):

SPL = SR ·
l⇤

max{l, l⇤}
(2.2)

• Soft SPL (sSPL) is a softer version of SPL where the boolean success value is
replaced by a continuous measure of the progress made towards the goal:

sSPL = max
⇢

0, 1 �
d
l⇤

�
l⇤

max{l, l⇤}
. (2.3)

In the community, this task is now considered solved in simulation, but, in
real environments the results are still far from being solved due to the sim2real
gap. This gap comes from multiple sources: visual input from the camera, the
actuation noise from the robot’s base and the noise on the agent’s current position
estimate.

2.1.2.2 Object-Goal Navigation

Definition The task is also known under the name ObjectNav (Batra et al. 2020).
In this task, the agent is asked to navigate to one of a fixed set object categories in
the scene (e.g., find a bed in the house). The agent doesn’t have any knowledge
about its location, it only has access to the goal class label. Similar to PointNav,
ObjectNav shares the same evaluation metrics. This task is considered being
harder than PointNav, therefore, dsuccess is tolerated with a larger threshold on the
distance to the goal compared to PointNav. In addition, it makes sense that the
agent is supplied with two more discrete actions (Look Up 30�, Look Down 30�)
which correspond to a change in the camera tilt to help the agent observe all the
scenes. Unlike PointNav, in order to consider the episode successful, one extra
condition needs to be satisfied: the target object must be visible to the agent in
the last frame when the agent executed STOP. In other words, the object needs to
be in the field of view of the camera at the end of the episode. This condition is
significant because it ensures that the agent understands exactly what the object
is and that it does not confuse it with another object that was by chance next to
the target object.
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Figure 2.5 – ObjectNav Task The agent starts the episode in the living room and
has 500 steps to find the bed. This figure is reproduced from (Deitke
et al. 2022).

2.1.2.3 Multi-Object-Goal Navigation

Definition Multi-Object-goal Navigation, also known as MultiON (Wani et al.
2020), is an extended version of ObjectNav. Concretely, the agent is asked to find
multiple objects in a predefined ordered sequence. The agent doesn’t have access
to the whole sequence of requested objects from the beginning of the episode.
Therefore, each time the agent finds an object, a new object is requested and so on.
Principally, the task’s main goal is to evaluate the location-based memorization
capacity of the agent. The task requires the agent to learn memorization and
mapping of the location of previously potential seen objects in case it was asked
to navigate to them in a future request. Like PointNav, the action space of the
agent includes the same four discrete actions, except that action STOP is renamed
to FOUND. FOUND is used when the agent reached a target.

Evolution of the task in the community Similar tasks have been introduced
in the community. At the beginning, the target objects sequence was fixed
and predetermined (Fang et al. 2019; Beeching et al. 2020a). Wani et al. (2020)
introduced the task in a photo-realistic 3D simulator with a different target
sequence per episode. In addition, the task doesn’t rely on regularities between
object semantics and scene semantics, as ObjectNav does (e.g. in ObjectNav, bed
is associated with bedroom, and TV with living rooms). This addition is an
important aspect to decouple objects from rooms, which makes the task a realistic
and practical real-world scenario to find missing objects (e.g.keys, knife and
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(a) (b)

Figure 2.6 – MultiON Task: (a) Episode with 5 target cylinder objects in a specific
order (Red ! Black ! Blue ! Pink ! Yellow). Some unneeded
cylidners exist as distractors (Cyan, White, and Green).
(b) Episode with 5 target real objects in a specific order (Guitar !

Horse Toy ! Travel Bag ! Basket ball ! Piano). Some unneeded
objects exist as distractors (Train Toy, Teddy Bear and Backpack). This
figure is reproduced from (Deitke et al. 2022).

toys). While in ObjectNav the agent exploits regularities in environment layouts, in
MultiON the agent needs to learn to map regardless of any structure or regularities
in the environment. In 2020, the task was introduced with abstract target objects
(Figure 2.6a) and realistic objects were introduced later to make the task closer
to real scenarios (Figure 2.6b). The task was evaluated in various N objects
scenarios, called N-ON (e.g. 1-ON is equivalent to one object in an episode as
ObjectNav). This task is still challenging in simulation setups, but we are interested
in identifying its limitations in real-world setups. To our best knowledge, in this
thesis, we are the first to evaluate this task in a real environment.

Evaluation Setup The agent is evaluated using similar metrics to PointNav and
ObjectNav. The metrics are extended to consider partially successful episodes,
when the agent navigates to a subset of the required targets.

• Success Rate (SR). The episode is successful (SR = 1) if the agent navigates to
all goals in correct order, calling FOUND at each goal, within the budget of
allowed steps. During the search for any goal, if FOUND is called at a wrong
goal (not the current goal to find) or at a distance higher than a predefined
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threshold dsuccess to the current goal, the episode terminates immediately
with SR = 0.

• Progress Rate (PR) is the percentage of objects that are successfully FOUND.
This metric is equal to Success Rate for one-goal scenario.

• Success weighted by Path Length (SPL) is the extended version of SPL in Point-
Nav and ObjectNav tasks that takes into consideration multiple sequential
goals:

l⇤ =
n

Â
i=1

l⇤i�1,i (2.4)

SPL = SR ·
l⇤

max{l, l⇤}
(2.5)

Here, l is the total distance traveled by the agent, l⇤ is the total geodesic
shortest path distance from the agent’s starting point through each goal
position in order with l⇤i�1,i indicating shortest geodesic distance from goal
i � 1 to goal i, and i = 0 being the starting point.

• Progress weighted by Path Length (PPL) is a partial version of SPL based on
progress instead of success. PPL is equal to SPL for a one-goal scenario:

l̄ =
k

Â
i=1

l⇤i�1,i (2.6)

SPL = PR ·
l̄

max{l, l̄}
; (2.7)

with k being the number of objects found, and l and l⇤i�1,i are defined as
before.

2.1.2.4 Exploration

Definition & Motivation Navigate to explore can be a principal objective in its
own right, for instance for a robot performing autonomous mapping, or it can be
considered as an auxiliary task for target-driven navigation tasks (PointNav . . . etc.).
An agent can learn to explore while the target is not yet observed. The main
goal of the agent is to explore the surrounding environment efficiently. In other
words, the agent has to observe a maximum area of the environment in a given
budget of steps. A second objective is that when an agent has already explored
the environment, it can perform downstream tasks for goal-specific navigation
in a more efficient way. A concrete example can in be found in classical robotics
(Section 2.2), when an agent is asked first to do a fast scan of an environment and
map it (Section 2.2.1). This agent can reach upcoming goals more efficiently than
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a map-less agent. On the other side, for learning-based agents (Section 2.3), we
conjecture that pretraining an agent on an exploration task and then fine-tuning
on a downstream task can boost the performance of the agent (Chen et al. 2019).

Evaluation metrics A common metric for the exploration task is coverage,
which measures the maximum area explored by the agent. Coverage can be
expressed in m2 or as a ratio between the explored area and the total ground-truth
explorable area in the environment. The total explorable area in the environment
map is known to be traversable or non-traversable one. We consider an area to
be explored if it’s in the current field of view of the agent and within a certain
predefined frontward distance range.

After we presented the common tasks in embodied navigation, we focus in this
thesis on three tasks: PointNav, MultiON and exploration tasks. We are interested
in evaluating and contributing to these tasks in real-world scenarios instead of
focusing on simulation evaluation only (Section 2.3.1).

2.1.3 Decision Making

After the agent processes the different observations from the environment
and maps them into an internal presentation (Figure2.4), the agent uses this
representation as knowledge in order to make decisions toward the environment
to reach its goal. The process of decision making can be tackled by leveraging
classical planning algorithms (Section 2.1.3.1) or by formulating the decision-
making problem as a learning problem (Section 2.1.3.2).

2.1.3.1 Analytical planning

Motivation and definition Given an existing map of the environment (Sec-
tion 2.2.1), a robot should be able to exploit this map effectively in order to identify
an efficient path to navigate from a starting point to a destination point. We con-
sider a path efficient when it is collision-free and has the minimum travelling-cost
(e.g. minimum distance). The time complexity to find the shortest-path increases
with the increase in the size of the environment (map) and with the degrees of
freedom of the robot/agent (e.g. In a maze, an agent that can move vertically,
horizontally and diagonally has a larger pool of paths to explore than an agent
with vertical and horizontal moves only). Moreover, an effective path planning
algorithm must consider two criteria: (1) the algorithm should always find the
optimal path in realistic static environments but should also be extendable to
dynamic environments. (2) It must aim to minimize the memory and time com-
plexity. In this section, we show the fundamental algorithm of analytical planning
and its variants. For the rest of the section, we will assume that an environment
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topological map G is provided. It consists of N nodes (vertices) and V weighted
edges. The goal for each planning algorithm is to find a path to follow on the
map. The path starts from a source node ns (which is the agent’s current position,
in our navigation context) to a goal node ng, the goal node can be the final target
navigation goal or intermediate sub-goals.

Dijkstra The fundamental algorithm (Dijkstra 1959) relies on a greedy approach
for path planning. The common version finds the shortest path from a source
node ns to all other nodes by building and storing a shortest-path tree. This
tree is then used to find the shortest path to a specific given goal node. Dijkstra
maintains a cost function g(n) that represents bounds on the cost of navigating
from the source node ns to every other node n. The core building block of the
algorithm is to take the greedy decision on the sub-problems between a node ni
to all its nodes nj where nj 2 Neighbors(ni). The goal is to find the weights g(nj)
for all the neighbors by following the bound update equation:

g(nj) = min(g(nj), g(ni) + di,j) (2.8)

where dij is the travelling cost from ni to nj. The pseudo-code algorithm of dijsktra
is provided below.

In order to guarantee optimality, the bound updates need to be performed in
the right order, selecting node ni with minimum current bound. This is usually
done with a priority queue.

Dijkstra works on graphs of static environments and assumes that all node
edges are positively weighted. An improved algorithm is introduced: The Floyd
algorithm (Kang et al. 2008). Floyd is known to find the shortest path in a
generic graph that can be weighted positively or negatively, but it provides only a
point-to-point shortest path and not like the traditional Dijkstra that can provide
a point-to-all shortest path tree. More generally, Dijkstra can be considered
as a reliable algorithm although it heavily consumes memory for larger maps.
Also, since it relies on computing all the path possibility in order to get the
shortest path, its computation complexity is O(n2) slightly lower with a priority
queue. To overcome the memory limitations, Fadzli et al. (2015) introduced a new
memory scheme, the multilayer dictionary. The latter was also used for dynamic
environments (Silva et al. 2010)

Dijkstra extension - A* The A⇤ algorithm (Ferguson et al. 2005) can be con-
sidered as an enhanced version of Dijkstra since it functions similarly to Dijkstra.
It potentially can save the amount of computation time. Similar to Dijkstra, A⇤

traverses the graph to find the minimum-cost path tree from the starting point,
ns except that it adds a heuristic-based function to guide its search. The main
advantage of using heuristic is that it can quickly converge the algorithm toward
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the expected results (Zhang et al. 2014). Therefore, the final cost function f (n) is
represented as follows:

f (n) = g(n) + h(n) (2.9)

Where g(n) is the same cost from node n to the starting node ns, as in Dijkstra.
and h(n) is the heuristic cost of the optimal path from n to the goal node ng.
An appropriate heuristic functions h(n) need to be decided. An appropriate
heuristic function should be consistent. Moreover, h(n) = 0 if n is the targeted
node (n = ng), and for a given node n, and all its successors n0 , the heuristic cost
from node n to target node ng is not greater than the cost of moving from n to
node n0 plus the heuristic cost from n0 to ng, in other word can be represented in
the following inequality:

h(n)  c(n, n
0

) + h(n
0

) (2.10)

Furthermore, the real cost from a node n to goal node ng, h⇤(n) should be an
upper bound of the chosen h(n). Some common heuristic functions are used, such
as Manhattan distance, Euclidean distance and Octile distance (Yao et al. 2010;
Chen et al. 2018). In some real applications, the number of steerings (turnings)
should be minimized as much as possible and to avoid sudden turns and improve
the smoothness of the final path. Hence, a penalty factor p(n) is added to the
final cost f (n) (Yijing et al. 2018). Cheng et al. (2014) introduced a weighted-sum
on the cost terms in f (n).

2.1.3.2 Learning

Similar to the definition of embodied agent in section 2.1.1, a learning-based
agent interacts with an environment by following a learned policy p(a|s). Given a
current state st, it takes an action at based on the policy prediction and as a result,
the agent transits to a new state st+1. Generally, this sequential decision-making
process can be formulated as a Markov Decision Process (MDP) (Bellman 1957)
(Figure 2.7). Formally, MDP are defined as a 5-tuple hS, A, T , R, gi where:

• S : state space, all possible states in the environment.

• A: action space, all possible actions that the agent can perform.

• T : conditional state transition model (T(s0|s, a)).

• R: reward model (R(s, a)).

• g 2 (0, 1]: a discount factor.

From their name, MDPs satisfy the Markov property: the transition to the next
state s0 depends on the current state s and the action a only and is conditionally
independent of all previous states and actions. In another word, a given state
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Figure 2.7 – Markov decision process: Similar to the agent interaction in (figure
2.1), The agent interacts with an environment by performing an
action at that transitions its state in the environment from st to st+1.
Additionally, the agent receives a reward rt+1 as feedback of its
interaction with the environment. In Markov Decision Processes
(MDP), the agent has access to the full state of the environment and
not just to observations of the current environment state.

s contains all the information about the environment, thus, the agent can act
optimally. In real-world problems, this assumption can hold in some scenarios,
like playing a Chess game. In the game, a player has full access on the board,
and he knows the full state of the environment. It doesn’t matter what were
the previous states in order to take a decision. Now, he should think about the
current state to choose the best move in order to transit to a better state with a
higher reward. On the other hand, in embodied navigation, the agent doesn’t
have access to the full state of the environment. As shown in figure 2.1, the agent
can partially observe the environment through sensor inputs. It has access only
to a 2D projection of the current egocentric view of the 3D environment with
the addition of extra sensors’ information. Therefore, unlike a chess game, the
MDP formulation of navigation problem can’t hold, because the agent’s current
observations do not contain all the current information about the environment.
In that case, Partially Observable Markov Decision Processes (POMDP) come to
place. POMDPs are a generalization of MDPs, where it is assumed that the agent
cannot directly access the full state of the environment. The agent has to maintain
a sensor model of the probability of observations given a state. Hence, POMDPs
are described as a 7-tuple hS, A, T , R, gi: In addition to the description of MDP,
two more attributes are added:

• W: Observation space

• O: Observation model (P(o | s, a))



2.1 overview 25

As previously mentioned, in navigation, we have access to observations only ot
instead of the full state st. Therefore, in order to apply an estimation technique we
need our agent to incorporate the different observations seen to store important
information about the environment. This can help to expand increase and its
understanding about the current full state of the environment. Usually, this is
incorporated by explicit memories as maps (see sections 2.2.1 and 2.3.3) or implicit
memories learned with Recurrent Neural Networks (RNN) (Hochreiter et al. 1997;
Cho et al. 2014) (see section 2.3.2), or more recently with self-attention over time.

Reinforcement Learning In the Reinforcement Learning (RL) framework, the
goal is to make the agent learn a good strategy by performing trials with feedback
(rewards). In other words, the main objective is to learn a policy p that maps the
observations ot to actions at to maximize the cumulative reward received during a
horizon T of interactions between the agent and the environment (Figures 2.1 and
2.7). Learning is easier when dense rewards are chosen (see section 2.3.2 for details
on reward shaping in navigation) and not sparse ones (which means the agent is
able to receive a reward after each step), which decreases the Credit Assignment
Problem (CAP). This problem refers to the problem that measure the impact of an
action on the future outcomes (Minsky 1961). It arises when an agent receives a
reward for a particular action, but the agent must determine which of its previous
actions led to the reward. The problem arises when an agent must determine
which of its previous actions led to the current received reward. Is it the last chess
move or the group of k last moves? Ideally, when reaching an optimal strategy, the
agent has an optimal policy p⇤ that maximizes the expected sum of cumulative
rewards from an initial state s0 to sT: E = [ÂT

t=0 rt]. We focus during this thesis
on finite horizon interactions, where we expect a given interaction episode to
end if one of the termination condition occurs: The episode reached a success
state (robot reached its target) or the maximum allowed budget of interactions
(maximum number of actions) is reached by the agent.

For the optimization problem in RL, under a particular policy p(a|s), we sample
a trajectory t of experience (from a given step t for a length of T). The objective is
to optimize the discounted reward criterion Gt, for each trajectory independently:

Gt =
T

Â
k=t

gk�tr(st, at) (2.11)

Gt can be described as the sum of all rewards received from the step t over a
horizon of size T discounted by the g factor. The role of the discount factor is
to penalize the future rewards and favor immediate rewards over the long-term
rewards besides that long-term rewards may have higher uncertainty (In real life,
we value more the immediate certain benefits than the long-term uncertain bene-
fits). Also, in case we tackle the problem in infinite-horizon setting, the discount
factor limits the effect of long-term rewards when calculating Gt. Algorithms in
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Figure 2.8 – Actor-Critic Network: A concept of an actor critic network. A sub-
network, the Actor, receives the observations and predict an action,
while the other sub-network, the Critic simultaneously receives the
same input and predicts a value estimate for the action taken. In
this illustration, each network has its unique parameters but they can
share parameters in different configurations.

RL aim to optimize for Gt. In order to show some of these algorithms, we first
explain two key functions:

Vp(s) = Ep[Gt|s] (2.12)
Qp(s, a) = Ep[Gt|s, a] (2.13)

The state-value function, Vp(s), estimates the expected return to receive if we
follow a certain policy p, and we are at a state s. Similarly, the action-value
function, Qp(s, a) (known also as Q-value) tells what can be the return if we
perform action a at state s. We can see that both functions are related. We
can recover the state-value function by aggregating the probability distribution
over all possible actions and Qp(s, a). In that sense, an optimal policy would
be the one that achieves the optimal value functions. Some techniques focus on
approximating one of the two functions by learning it. Therefore, these function
can then be used to sample the best action that maximizes Qp(s, a). Another
derived function that provides an estimate of the relative improvement of an
action in a given state is the advantage function (known also as A-value):

Ap(s, a) = Qp(s, a) � Vp(s) (2.14)

It quantifies how much better (or worse) an action is compared to the average
expected reward the agent would receive if it followed its current policy.

RL optimization algorithms Many algorithms exist for RL. Some of them
are model-based, where a model of the environment is provided or learned
simultaneously with our target policy. Other algorithms are model-free, where we
focus on learning a policy under the absence of the environment model. In this
thesis, we focused on using algorithms in the model-free category, in particular
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the policy gradient variants. These algorithms target modeling and optimizing
the policy directly with a parameterized function pq(a|st). We describe three core
algorithms that show some variations and tricks used to learn p.

One of the first algorithms in policy optimization is REINFORCE (Williams
2004), also known as Monte Carlo policy gradient. The algorithm updates a
parameterized policy distribution using full sample trajectories. Simply, the
algorithm samples a trajectory and performs a gradient ascent update step using
the current loss function:

LREINFORCE =
T

Â
t=0

Gt log(p(at|st)) (2.15)

The algorithm is simple and easy to understand. It directly estimates the
gradients of the expected cumulative reward with respect to the policy parameters.
A main drawback of REINFORCE is that it can have high variance and slow
convergence, especially in environments with sparse or delayed rewards. To
minimize the effect of variance in gradient estimate, a widely used variation in
LREINFORCE is to subtract a baseline value b (it can be calculated as the average of
the current discounted rewards) from the return Gt:

LREINFORCE =
T

Â
t=0

(Gt � b) log(p(at|st)) (2.16)

A second algorithm is Advantage Actor Critic (Mnih et al. 2016), also known
as A2C or its asynchronous version A3C that focus on parallel training. In,
the Actor-Critic approach, the algorithm focuses on learning two parameterized
components: the policy (Actor) and the value function (Critic). These models can
have separate parameters (figure 2.8) or optionally share some. Depending on
the algorithm, the modeling of the value function could be the Q-value or the
state-value function. The objective for the critic would be:

Lcritic =
1

|Dk| T Â
t2Dk

T

Â
t=0

(Vp
f (s) � Gt)

2. (2.17)

As shown in the above equation, the algorithm collected first a batch of trajecto-
ries Dk before the update k on the network, which is not the case in REINFORCE
that samples one trajectory per update. The actor is updated in the direction
suggested by the critic using the following equation:

Lactor =
1

|Dk| T Â
t2Dk

T

Â
t=0

Ap
f (s, a) log(pq(at|st)). (2.18)

To avoid high variance, the advantage function could be a good option instead
of subtracting an average baseline b as in REINFORCE. It forces the update to
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go in the direction suggested by the value function (the critic). At the end, the
two losses are combined, and we can backpropagate the gradients over the two
networks. Optionally, a third loss, the entropy can be added next to the two losses.
It helps to limit high drift of the newly updated policy with respect to the old
policy:

Lentropy = �
1

|Dk| T Â
t2Dk

T

Â
t=0

n

Â
i=0

pq(ai|st) log(pq(ai|st)). (2.19)

Lactor�critic = lactorLactor + lcriticLcritic + lentropyLentropy (2.20)

Here, l coefficients are hyper-paremeters. Since, by default, we perform a
gradient ascent update on Lactor, usually we attribute negative value to lactor to
perform a single gradient descent using the total loss Lactor�critic.

Another variant is Proximal Policy Optimization (PPO) (Schulman et al. 2017b).
It seeks to mitigate some issues in basic policy gradient methods. It tries to avoid
parameter updates that change the policy too much at one step. PPO introduces
the "proximal" zone for updates. A previous algorithm by Schulman et al. (2017a)
has already introduced a similar concept of "Trust Region" for policy optimization
(TRPO). The drawback with TRPO is its computationally complexity. It needs
to solve constrained second-order optimization problems in each iteration by
enforcing a KL divergence constraint on the size of the policy update at each
iteration. PPO provides a simpler alternative to this step. It applies a clipping
function to Lactor (equation 2.21) as shown in algorithm 2.1 - line 6. In addition,
PPO uses the same batch of trajectories to make several updates. This improves
the sample efficiency while empirically demonstrating policy stability and better
performing compared to the former policy gradient algorithms. A decentralized
and distributed version of PPO has been proposed under Wijmans et al. (2019)
called DD-PPO to solve the task of PointNav, which leads to our knowledge to
state-of-the art performance in this task in simulation-only benchmarks.

Imitation Learning is a framework of learning a policy pq from demonstrations
of an expert policy p⇤. Most of the time, the demonstrations are presented in
the form of sequence of state-action pairs (ot, at) for every episode trajectory
t. Each pair indicates the action at to take when observations ot are received.
One simple form of imitation learning is to use supervised learning. This is
known as Behavior Cloning (BC). Given the expert’s demonstrations, we treat
all pairs as i.i.d (Independent and Identical Distribution) and we try to learn
in a supervised manner a generalized function that maps a given observation
ot to its corresponding action at. Therefore, we treat the action as the target
label for each state (observation). Hence, for a given dataset of demonstrations
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Algorithm 2.1 Proximal Policy Optimization PPO
1: Input: initial policy p0 (actor) with parameters q0 and intial value function V0

(critic) with parameters f0.
2: for k = 0, 1, 2,... do
3: Run actor pk in the environment to collect dataset of N trajectories Dk =

{t1, t2, ...tN}.
4: Compute cumulative rewards Gt.
5: Based on the value function Vk, compute advantage estimates bAt.
6: Calculate PPO-Clip objective (actor loss):

Lactor =
1

|Dk| T Â
t2Dk

T

Â
t=0

⇥
min

�
rt(q)Ât, C(rt(q), e)Ât

�⇤
. (2.21)

where C(rt(q), e) = clip (rt(q), 1 � e, 1 + e), rt(q) = pk(at|st)
pk�1(at|st)

. st and at are,
respectively the state and action at time t within the trajectory.

7: Calculate the value regression objective (critic loss):

Lcritic =
1

|Dk| T Â
t2Dk

T

Â
t=0

(Vk(st) � Gt)
2. (2.22)

8: Update actor by Lactor using gradient ascent and critic by Lcritic using gradient
descent

9: end for

Figure 2.9 – Direct Policy learning At training time, an interactive demonstrator
that can provide training data from the expert policy feedbacks (de-
cisions) on the rollout trajectory done by the learning policy in the
environment. This loop continues until the learning policy converges.

T = {t(i)}N
i=1, the optimal parameters q⇤ should minimize a cross-entropy loss as

in the following equation:

q⇤ = arg minq

N

Â
i=1

Â
(st ,at)2t(i)

log(pq(at|st)) (2.23)
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Although, the vanilla BC framework is simple, it can still be quite problematic,
specially for applications that require long-term planning and in long-horizon
tasks. The main reason for that is the i.i.d assumption breaks the assumption
of MDP that a next state is the result of a previous state given a certain action.
Moreover, if an error is made at a certain state, it will add up. An agent can
easily put itself into a state that it has never been visited by the expert, in another
word, the agent’s policy has never seen this example during training. In such
situation, the behaviour is considered unknown and can accumulate with time
which can lead to catastrophic behavior. An improved version of BC is called
Direct Policy Learning (DPL) (Figure 2.9) where an interactive method is used
for generating the demonstration. At the beginning an initial policy based on
the expert is used to collect the demonstrations. This dataset is used to train
the policy pq using supervised learning, then at each iteration, we collect new
trajectories by rolling out the current version of the policy pq and collecting the
feedbacks from the expert to know what would be the optimal action to take in
the same state and we train with this new dataset. Some known variation is used
as Data Aggregation (DAgger) (Ross et al. 2010), where at each iteration the policy
is trained on the new dataset in addition to all the previous dataset.

Another possible way to leverage the training from demonstrations is to com-
bine both frameworks. One option can be done by pretraining the policy using
demonstrations and finetuning it using a reinforcement learning algorithm (Ram-
rakhya et al. 2023). Another option can be to reward-labelling the transition action
of successful demonstrations and use them in an RL training (Martin et al. 2022).

Inverse Reinforcement Learning Another form of Imitation Learning (IL), is
Inverse Reinforcement Learning (IRL). It treats the expert’s demonstrated actions
as a sequence of decisions, hence, it drops the i.i.d strong assumption. The main
idea is to learn an optimal parameterized reward function rf of the environment
under which the demonstrated actions are optimal. Then, this reward is used to
learn a policy using RL. The process of tuning the parameters f of the reward
function stops when reaching a satisfactory policy p that has a close behavior to
the expert policy p⇤.

2.2 Classical robotics in Navigation

Classical robotics techniques tend to adopt a modular approach by dividing
the task of autonomously navigating an environment into sub-skills: Perception,
Mapping, Localization and Planning. They try to solve for these skills individually.
The underlying algorithms are often based on explicit models and representations
as well as optimization algorithms. A large body of work is based on probabilistic
models (Thrun et al. 2005) in an analytical and probabilistic way. In this thesis,
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Figure 2.10 – Map representations Two widely used representations: Metric (left)
and Topological (right) maps. The metric variant has a unique
structured representation, as a grid, where each pair of nodes are
distant by a predefined distance. Nodes are commonly named "grid
cells" in that case. While, in topological representation is more
sparse where each pair of nodes can have a unique distance between
each other, or they may not be connected at all.

we are interested in the classical algorithms that perform mapping and planning
for a navigation agent in order to reach a certain target. Therefore, in this section
we describe first how, classically, the robot represents the environment as map.
Second, how the map is built and finally leveraging this map, how the robot uses
it to reach a certain goal by planning.

2.2.1 Maps

Mapping the surrounding world for an embodied agent is crucial for an efficient
navigation. Hence, predefining the map representation and storage can lead to
performance increase on the task level and computation level. Therefore, in order
to define a map, we need to define its representation (how the map is presented
and stored) and its storage (what information stored inside the map).

Map representation Two widely used variants to represent the environment
are metric and topological representations (Figure 2.10). Metric maps can be
presented as a 2D or 3D tensor of grid cells, M 2 RH⇥W . Every element (cell)
in the matrix represents a precise location in the environment. The precision
of the map (map resolution) corresponds to the size (in m2) of a single cell on
the grid (a node). The map resolution is inversely proportional to the cell size.
A low-resolution map is presented by less cells because each cell represent a
bigger area in the real environment. In that sense, the choice of map resolution
affects the robot navigation while planning (Section 2.1.3.1). Higher resolution
offers better paths, at a cost of a higher computation complexity. On the other
side, in order to tackle the problem of computation time, topological maps were
proposed. Topological maps are presented as graphs G = (V , E) where V is the set
of chosen nodes representing specific locations of the environment and E is the set
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of valid connections (valid movement/straight-path) between nodes. Topological
maps define a set of distinct places and a set of quantitative relations between
them. A common claim states that humans often use topological information for
navigation. For large environments, topological maps tend to be the best option,
since they limit the computation time for planning to a specific set of locations.
Since topological maps don’t represent the whole environment location, they
don’t guarantee that the planned path is the optimal path for the given explored
area, comparing to the grid maps representation for the same area. But, with the
rise of high computing resources, the metric map are also being used.

Map storage Whether the map is grid-based (metric) or node-based (topologi-
cal), the data saved inside the grid/node can vary. It depends on the available
inputs from the environment, the required data to be stored and the current
limitations of storage and computation capabilities. Information can be raw data
or processed data, also it can be geometrical or visual. Spatial coordinates in the
environment are considered as raw geometrical data. By definition, a grid-based
map implicitly contains the coordinates of the location while in node-based repre-
sentations, positional/metrical information should be stored inside the node if
needed (Angeli et al. 2009). One frequent and important information that is stored
inside grid-based map is occupancy: in every cell, a boolean or a probability is
assigned to specify whether a location is free or occupied. In the case of a boolean
occupancy map, the map can be visualized as a gray scale image M 2 R1⇥H⇥W

and the occupancy information can be processed from the input sensory data from
depth camera (Figure 2.3a) or LIDAR (Figure 2.2b). Additionally, featured-based in-
formation such as SIFT features (Lowe 2004) or neural embeddings (learned-based)
(Beeching et al. 2020a; Wani et al. 2020) can be stored.

2.2.2 Simultaneous Localization and Mapping (SLAM)

Motivation The SLAM problem (Figure 2.11) addresses a main challenge of a
robot navigating in an unknown environment. The robots need to build a map
for this environment, while at the same time it needs to localize itself on the
built map. Although the pose estimate of the robot can be maintained through
dead reckoning (see sensors description in section 2.1.1), SLAM techniques can
offer a more robust estimate of the current pose of the robot. Over the years,
various SLAM variants have been developed to address different challenges and
requirements. First, we roughly present the different categories and assumptions
taken in order to build a SLAM system. Then we present two predominant
categories in SLAM: Feature-based and Dense SLAM. Then, we provide a more
detailed description of widely used probabilistic formulations with different
variants.
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Figure 2.11 – SLAM - foundation problem: A SLAM algorithm estimates simul-
taneously the position of landmark locations (Mapping) and the
robot’s position (localization). The true locations (in white) are not
measured directly, and the robot can’t have access to them. The
figure is reproduced from Durrant-Whyte et al. (2006).

Different assumptions Some assumptions are underlined explicitly when de-
signing a SLAM algorithm. Dense Versus Feature-Based: some algorithms sample the
map in a high resolution to enable a photorealistic reconstruction of the environ-
ment, requiring higher computational complexity. On the other side, feature-based
techniques are more efficient since they rely on sparser features from the sensors.
Static Versus Dynamic: Static methods assume that the environment doesn’t change
over time, while dynamic methods accept changes in the environment. The latters
don’t treat the dynamic effects as outliers and tend to be more robust. Active Versus
Passive: In passive algorithms, an external module is responsible for controlling
the robot to explore and observe the scene. In active algorithms, the robot tries
to explore the environment efficiently to map the environment. Such algorithms
are harder to design, but yield more accurate maps in less time. Topological Versus
Metric: This assumption is related to the map representation (discussed in section
2.2.1). Another assumption about the way of processing of the stream of inputs:
full versus online. Full SLAM version estimates the robot poses for the entire robot
path along with the map. On the other side, online version focuses on recovering
the current robot location and updating the map. Online algorithms are usually
incremental and can process one data item at a time.

Feature-based SLAM These methods operate by detecting and tracking distinc-
tive features or keypoints in the environment, such as corners, edges, or distinctive
points. These features are typically extracted from sensor data like images or
laser scans. One of the well-known feature-based SLAM systems is ORB-SLAM
(Mur-Artal et al. 2015; Mur-Artal et al. 2017), which stands for Oriented FAST
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Figure 2.12 – Feature-Based Vs Direct SLAM: Differences between both meth-
ods. Feature-based techniques add an extra step of extracting and
matching features. Also, they use difference tracking and mapping
techniques. The figure is reproduced from Schöps et al. (2014).

and Rotated BRIEF SLAM. ORB-SLAM starts by extracting distinctive features,
also known as keypoints, from the camera images. These keypoints are chosen
based on their high repeatability and distinctiveness across frames. The system
employs the FAST feature detector (Rosten et al. 2005), which identifies potential
keypoints based on pixel intensity differences in corners. It also uses the BRIEF
descriptors (Calonder et al. 2010) to track keypoints in the camera images. BRIEF
are binary descriptors that capture the appearance and geometry of the keypoints.
Therefore, the SLAM system initializes itself by detecting enough keypoints in the
initial frames and identifying their corresponding matches. It estimates the initial
camera pose and starts building a sparse map. As the camera moves, ORB-SLAM
continues to track keypoints and estimates camera poses relative to the initial
frame using bundle adjustment (Triggs et al. 1999). In addition, ORB-SLAM has
the ability to detect loop closures. A loop closure occurs when the camera captures
a previously visited location. The system detects loop closures by recognizing
that previously observed keypoints reappear in the current frame. This step helps
correct accumulated errors in the map and the poses trajectory and improves
accuracy.

Dense SLAM aims, on the other hand, to create a dense representation of
the environment by estimating the depth or distance values for every pixel or
point in the sensor data. Their optimization techniques rely on minimizing the
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photometric error per pixel. Unlike feature-based methods that focus on distinct
keypoints, dense SLAM methods operate on a per-pixel basis, providing a more
detailed map of the environment. Dense methods typically appear in applications
where accurate geometric information is required, such as augmented reality,
virtual reality, and 3D reconstruction. In this category we can find systems like
KinectFusion (Newcombe et al. 2011a) and DTAM (Dense Tracking and Mapping)
of Newcombe et al. (2011b).

Problem formulation Based on the handbook of robotics (Siciliano et al. 2007),
the problem is best described in probabilistic terminology. Let the robot pose
be denoted as xt at a time t. xt is usually a three-dimensional vector in R3. It
contains the two-dimensional coordinates of the robot’s plane, in addition to an
angle value for the robot’s orientation. Then, the whole sequence of poses (path)
in a horizon of length T (T might be •) can be given as:

XT = x0, x1, x2, ..., xT. (2.24)

where x0 is often referring to an initial reference point for the estimation of
subsequent unknown poses. One of the goal of SLAM algorithms is to estimate
them.

Let ut denote the odometry that represents the relative motion between time
t � 1 and time t. As mentioned before, such information can be obtained from the
robot’s motion sensors or the input control given to the wheels’ motors. Therefore,
the odometry sequence for T steps, is given as:

UT = u1, u2, ..., uT. (2.25)

In a perfect world, with noiseless motion, having UT should be sufficient to
recover the sequence XT. However, measuring odometry is usually imperfect and
leads to drift.

The second subproblem, is to map the environment. Therefore, let M denote
the map of the environment. Different representations of the map are possible (see
section 2.2.1). The robot gets sensory information at each xt. These measurements
can be denoted as zt, they represent the information between features in M and
the current pose xt. As before, the sequence of measurements is given as:

ZT = z1, z2, ..., zT. (2.26)

Now, the SLAM problem is to recover the map M of the environment (M can be
represented as a graph of landmarks or a metric representation – see section 2.2.1),
and the sequence of robot poses XT using the two available readings: Odometry
UT and sensory measurements ZT. Therefore, we can now model the recovering
problem as a problem of estimation of the posterior probability over the robot
path together with the map

p(XT , M|ZT , UT) (2.27)
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By writing the posterior probability in this way, we target the full SLAM problem,
which estimates the entire path. In this case, the proposed approach often processes
the data by batching (all data available at the same time). As previously discussed,
the alternative problem, is the online version of SLAM. It seeks to recover the
current robot pose instead of the entire path. In this setup, the algorithms are
usually incremental and process the data readings one by one at a time. Therefore,
the posterior probability is modeled as follows:

p(xt, M|Zt, Ut) (2.28)

In both cases, whether full or online setup, we can notice that the condition
variables are all directly observable to the robot, which facilitates the estimation of
the targeted variables on the left. But, in order to solve the problem using Bayes
rule, we need to have two more mathematical models:

p(xt|xt�1, ut) = g(xt�1, ut) + ex (2.29)

p(zt|xt, M) = h(xt, M) + ez (2.30)

The first model (equation 2.29) is called the motion model that relates to ut,
the previous pose xt and current robot poses xt. The model is derived from a
kinematic model g of robot motion. The second model (equation 2.30) relates zt
to the environment M and the current robot pose xt. The model is derived from a
certain measurement function h that relies on sensor readings. Both probability
distributions peak at the noise-free case when the noise models, ex and ez are
equal to zero.

Every SLAM algorithm can model the problem differently while keeping the
same relations between observable variables and estimated variables. The main
target remains the estimation of noises e in order to correct the final estimated
values for the robot poses and the map.

Different optimization approaches Historically, there are three basic SLAM lines
of work that try to solve the problem (solve for 2.27 or 2.28). Most of the works
done are derived from these approaches:

1. Extended Kalman Filters (EKF) SLAM: It was introduced in (Smith et al.
1987; Moutarlier et al. 1989). EKF formulation is the earliest and most
influential in the problem. Basically, it proposes the use of a single state
vector to estimate robot poses and a set of N representative features of the
environment (N observable landmarks in the map), with an associated error
covariance matrix St. The covariance matrix represents the uncertainty in
the estimation, alongside the correlations between the features and the robot
poses. During the navigation of the robot in the environment, the robot takes
the measurements and the system state vector with the covariance matrix
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are being updated using the extended version of the Kalman filter (Kálmán
1960; Jazwinski 1970) by performing a single linearization step on the g and
h functions (equations 2.29 and 2.30) using Taylor series expansion. This is a
strong assumption. Moreover, the robot estimation can be represented as a
multivariate Gaussian:

p(xt, M|Zt, Ut) = N (ut, St) (2.31)

where the vector ut is the robot’s best estimation of its current pose xt and
the location of the features in the environment. The dimension of ut is
3 + 2N (3 for robot pose and 2N for the features locations in the 2D map).
Hence, St should be of size (3 + 2N)x(3 + 2N). One main limitation of the
EKF technique comes from the approximation to a linear model (linearization
step), but another concern is related to the computation complexity as the
size of St grows quadratically as new features are observed. Follow-up
works proposed some extensions to enhance the vanilla EKF. One way to
tackle the quadratic growth nature of the covariance matrix is through a
submap decomposition of the environment (Leonard et al. 2000; Williams
et al. 2002). Other work (Thrun et al. 2004; Walter et al. 2007) involves the
Extended Information Filter, which deals with the inverse of St. The key
motivation is that St is a dense matrix, while the information matrix is
sparse when the full robot has the trajectory maintained. This modification
leads to more efficient algorithms.

2. Particle Methods SLAM: This line of work is based on particle filters
(Metropolis et al. 1949). The basic idea behind the particle filters is to
represent a posterior estimation through a set of guesses (particles). Each
particle k can be thought as a concrete guess to what is the value of a specific
state uk

t . In perfect conditions, if the number of particles tends to infinity, the
particle filter approaches the true posterior distribution for state estimation
by representing a weighted multimodal distribution. Doucet et al. (2000)
were the first to introduce particle filters into SLAM followed by FastSLAM
(Montemerlo et al. 2002). FastSLAM maintains K particles, each particle
contains an estimate for the robot pose X[k]

t and a set of N 2-D Gaussians,
one for each environment feature (landmark):

X[k]
t , u[k]

t,1 , ..., u[k]
t,N, S

[k]
t,1 , ..., S

[k]
t,N (2.32)

When a new odometry measurement is received, FastSLAM generates new
pose variables stochastically for each particle using the distribution based
on the motion model. This step called transition.

x[k]t ⇡ p(xt|x
[k]
t , ut) (2.33)
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The next step is the evidence step. After a new measurement zt is received
(new evidence), the importance of particles needs to be adjusted. A weight
w[k]

t is assigned to each particle to measure its importance. Hence, w[k]
t is

called importance weight.

w[k]
t = N (zt|x

[k]
t , u[k]

t,N, S
[k]
t,N) (2.34)

where w[k]
t represents the importance of a particle k at time t in the presence

of a new measurement. All importance weights are then normalized to
sum to 1. Then, FastSLAM proceeds in a new step (the resampling step),
by replacing from the set of existing particles with new particles using the
importance weights. Finally, the mean u[k]

t,n and covariance S
[k]
t,n for the new

set of particles are updated using the standard EKF updates.
FastSLAM approximately solves the full SLAM posterior. It applies the
Rao-Blackwellization technique Blackwell (1947). It samples from the poses
posterior p(Xk

t |Ut, Zt) and represents the map posterior as p(M|Xk
t , Ut, Zt)

in Gaussian form.
3. Graph-Based SLAM: Graph-based techniques are based on solving the

problem using nonlinear sparse optimization. They represent the robot
poses as nodes in a graph. Edges between a pair of robot poses xt�1 and
xt represent the odometry readings ut. On the other hand, landmarks mi
can be represented as nodes with an estimated pose that depends on sensed
measurements zt at xt, in that case an edge is added between mi and xt.
Most of the graph-based methods are offline methods. Therefore, once a
graph is constructed, an optimization technique is applied to find the best
X⇤

T and m⇤ that maximize log p(XT , m|ZT , UT). Under the Gaussian noise
assumption, this logarithm can be represented in a system of equations:

log p(XT , m|ZT , UT) = const + Â
t

log p(xt|xt�1, ut) + Â
t

log p(zt|xt, m)

� const + Â
t
[xt � g(xt�1, ut)]

TR�1
t [xt � g(xt�1, ut)]

+ Â
t
[zt � h(xt, m)]TQ�1

t [zt � h(xt, m)] (2.35)

In this quadratic form, the first sum of squares error term represents the
error in odometry readings, while the second term represents the error in
measurements readings. The quadratic form can be solved using multi-
ple optimization techniques such as iterative methods as gradient descent,
conjugate gradients or direct methods as QR decomposition and sparse
Cholesky. Graphical-based methods show advantage over EKF. In EKF the
covariance matrix consumes space and time quadratically given the size of
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the map, while in graphical methods, the memory size is linear and the
updating the graph is constant. This advantages yield to scale graphical to
high-dimensional maps. Historically, the graph-based method has generated
some of the largest SLAM maps ever built in big outdoor environments.

2.3 End-to-End Neural Agents

The navigation task can be framed as a learning problem. Using a large amount
of data, a learning-based agent leverages the pattern recognition and correlation
abilities of deep neural networks to extract knowledge and regularities that can
help the agent to take optimal decisions toward optimizing for a certain goal in
certain environments. Formulating the navigation task as a learning problem
can be done through IL or RL. Both settings require access to large scale data.
Therefore, in this section, we introduce first the different types of existing datasets
(Section 2.3.1). Second, we present how learning-based techniques are used to
train navigation agents (Section 2.3.2). Third, we show how maps can boost the
performance of End-to-End agents (Section 2.3.3). Forth, we present different
extensions to improve the training strategies (Section 2.3.4).

2.3.1 Training Data

Training and testing robots in real environments is not cost-efficient or even
quite expensive, dangerous (robots can be broken or injure others in some sce-
narios), time-consuming (it cannot be faster than real-time and impossible to
parallelize) and hard to reproduce (hard to replicate exactly specific conditions,
hence hard to conduct fair comparisons). In addition, collecting data from real
environments and using it offline, despite that it doesn’t solve always the slowness
problem, is nor practical neither scalable for generalization and cannot cover all
the various downstream tasks in navigation. Hence, existing work tries to leverage
data from two main sources. Data rendered in simulators, especially photorealistic
simulators (Savva et al. 2019; Xia et al. 2018) that are visually close to the real
setup, and real egocentric videos that are available on the internet (Chang et al.
2020).

Photorealistic simulators A simulator consists of (1) a Rendering engine (e.g.
Magnum (Vondrus et al. 2020), PyRender (Matl 2020)) that generates observations
ot from a current states st in an environment and (2) a Physics engine (e.g. PyBullet
(Coumans et al. 2016), MuJoCo (Todorov et al. 2012))that simulates the physical
evolution of objects from an environment state st to st+1. Some simulators
integrate the existing rendering and physics libraries (Xia et al. 2020; Xiang et al.
2020; Shen et al. 2020) or are built on top of game engines (Kolve et al. 2017; Yan
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et al. 2018; Puig et al. 2018). Relying on game engines is not necessarily an optimal
solution since they are more optimized for human usage that requires low frames
per second (=60 FPS), display dependent and high image-resolution. On the other
hand, in Embodied AI, the needs (Choi et al. 2020) tend to favor high FPS (10k+
FPS), headless deployment (for training and evaluation on remote clusters), and
relatively low-resolution images. In indoor navigation, we focus on photorealistic
simulators that render indoor environments from large-scale 3D scene datasets
of meshes (Armeni et al. 2016; Chang et al. 2018; Xia et al. 2018; Yan et al. 2018).
Such high-speed photorealistic simulators can help to solve the challenges of
training mentioned above. They can run by high order of magnitude faster than
real-time, up to 10k times faster for some simulators (Szot et al. 2021). They can
be parallelized over clusters. In addition, resource-wise, training in simulation
is cheap and safe. Also, it can enable reproducibility where we can conduct
benchmarking and fair comparison among different navigation algorithms.

Habitat Simulator Habitat AI (Savva et al. 2019) is currently one of the most
widely used simulators for the introduced navigation tasks (Section 2.1). It is
used in most of the recent work that relies on learning-based modules due to its
high frame rate, which can go up to 1k FPS. Habitat excels also in its flexibility
and modularity. The simulator decouples tasks, simulation, and task/episode
management, making it agnostic to 3D scene datasets and tasks. Therefore, agents
can be transferred from one task to the other easily and to switch seamlessly
between different datasets on the same training and evaluation procedure. It gives
a parameterized flexible control on the agent configurations and environment
states allowing the users to specify specific embodied agent characteristics (ge-
ometry, physics and actuation) and apply changes in the environment state. For
example, in the simulator level, noises can be applied on the environment and
agent actuators.

2.3.2 End-to-End Training

Navigation agents can be trained end-to-end by optimizing a neural policy p
that takes the observations ot and predicts the best current action to perform at
in order to reach its current target. For our visual navigation problem, a typical
end-to-end action prediction can be described as follows:

p(at) = pq(vg(ot), gt, at�1) (2.36)

Where vg is the visual encoder the agent’s observations, gt is the current target and
at�1 the previous action. This is a typical configuration for a reactive (memory-
less) agent. The agent doesn’t store any information related to the history of its
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current episode. In order to add memorization capacity to the agent, a recurrent
neural network frecurrent can be added as follows:

ht = frecurrent(ht�1, vg(ot), gt, at�1) (2.37)
p(at) = pq(ht) (2.38)

where ht is the current hidden state of the recurrent neural network. Another
alternative is to apply transformers as a self-attention module over time on the
history of observations (Pashevich et al. 2021). The end-to-end policies can be
trained with reinforcement learning (Zhu et al. 2016). In that case a good reward
function has to be designed. Also, the policy can be trained using imitation
learning by collecting expert shortest-path demonstrations for every training
episodes using rollouts inside the simulator.

Reward shaping for RL is the design of a reward function that provides a
representative and frequent feedback signal on agent behavior. Reward shaping
is crucial for RL training to converge. A noisy reward signal can destabilize
training. Also, a sparse signal can make the training longer because the agent
receives its signal after a potentially long sequence of actions (usually, when the
episode terminates) therefore the agent needs more training time to explore the
best strategies to reach its goal. In the context of navigation, a common reward
function is shown in eq. 2.39

rt = 1reached
t · rgoal + rgeo-dist

t + rtime-penalty (2.39)

where rgoal is a constant reward that is gained if and only if the agent reached
the navigation target, it’s obviously a sparse reward that the agent received once
at the end of the episode. The dense reward rgeo-dist

t = dt � dt�1 represents the
difference in reward on approaching the goal, by calculating the difference in
geodesic distance to the goal d between step t � 1 and t. rtime-penalty is a negative
slack reward that encourages the agent to reach the goal faster.

Another reward shaping is done in exploration task (Chen et al. 2019; Chaplot
et al. 2020b; Beeching et al. 2020c) to represent the explored area of the scene at
given step t:

rt = rcov
t + rcol

t (2.40)

where rcol
t = �Bump(t + 1) and Bump(t + 1) denotes if a collision occurred

while executing action at. rcov
t = C(Mt+1) � C(Mt) denotes the coverage reward

where the coverage C(Mt) is defined as the total area in the map that is explored
at time t and currently known as traversable or non-traversable. The difference in
coverage is the actual reward we gain, since it measures how much we gain in
coverage after each action taken for exploration.
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Leverage IL with human demonstrations Prior works explored the usage
of IL (specifically BC) from expert demonstrations in multiple interactive tasks
such as videos games (Kanervisto et al. 2020b; Kanervisto et al. 2020a) and
autonomous driving (Samak et al. 2021; Codevilla et al. 2019; Bojarski et al.
2017). In ObjectNav navigation, the Habitat-Web initiative from Ramrakhya et
al. (2022) performs large scale training from human demonstrations instead of
shortest-path expert navigators. In this work, they develop the Habitat-WebGL
infrastructure. A virtual tele-operation data-collection infrastructure that connects
Habitat simulator (Section 2.3.1) running in a web browser to Amazon Mechanical
Turk (a crowdsourcing website). The infrastructure allows remote users to tele-
operate virtual agents at scale. They were able to collect 80k demonstrations
for the ObjectNav task (to our knowledge, the largest human demonstrations’
dataset for robot navigation tasks with 29.3M actions). As a result, the Habitat-
Web IL agent trained with 70k demonstrations outperforms the RL agent trained
on 240k trajectories. Although the average of the human demonstrations has
lower performance than the shortest-path expert (they perform longer episode
steps, and eventually lower SPL results), they show some advantages since the
human navigation experiences leverage more exploration skills than shortest-path
experts. Moreover, the statistics from Habitat-Web dataset show that the human
demonstrations tend to have a more uniform action distribution and navigability
coverage and sight coverage are respectively 3-4x and 3x higher than the one
obtained by shortest-path experts.

In follow-up work, Ramrakhya et al. (2023) investigate the possibility of using
both frameworks: IL and RL during training. They present a two-stage fine-
tuning scheme of using BC pretraining on human demonstrations followed by
RL-finetuning (BC ! RL). The End-to-End agent is taken from (Yadav et al. 2022)
and has an actor-critic architecture (Section 2.1.3.2). After the actor branch is
trained using BC, the two-stage fine-tuning starts. In the first phase (Critic Learn-
ing phase), they focus on training the critic branch only. Since the critic wasn’t
trained in BC as the actor branch was, training the critic on successful episodes of
human demonstrations would be overly optimistic. Another reason to train first
the critic before jumping to full actor-critic training with a random weights for the
critic, would potentially lead to drop in performance because of the poor value
estimates that can affect the actor weights updates. Therefore, their solution was
to provide rollouts of the BC pretrained agent to train the critic-head only until
the loss plateaus. In the second phase (Interactive Learning phase), both,actor and
critic, are trained. They adapted a specific learning rate schedule: decaying the
critic learning rate while increasing the actor learning rate (starting from zero),
both with the same rate until they reach the same value. Then, they keep both
at this value until the end of the training. The key findings of their fine-tuning
curriculum (BC ! RL) is that applying BC ! RL using human demonstrations
outperforms BC ! RL using generated shortest-path demonstrations and task-
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Figure 2.13 – End-to-End training with mapping During training with PPO, at
each time step t, the agent encodes visual observation ot, an ego-
centric view mt of a global map Mt, the current goal gt and the
previous action at and concatenate the embeddings to be passed to
a recurrent layer Gated Recurrent Unit (GRU). The output recurrent
state is the passed to actor-critic architecture for action prediction
and value prediction. The figure is reproduced from Wani et al.
(2020).
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Figure 2.14 – Features projection & registration module RGB-D observation
ot(i, j) are encoded into neural images features it(i, j, .) which are
then projected using the depth input dt(i, j) into an egocentric map
mt. mt (agent is at the mid-bottom) is then registered onto the
global map Mt via registration function R(mt, Mt, pt), where pt is
the agent’s episodic position and orientation. The neural features
are integrated into the map cells using element-wise max-pooling.
The figure is reproduced from Wani et al. (2020).

agnostic frontier exploration demonstrations. Also, they found that increasing the
size of the dataset used in BC-only phase doesn’t have the same improvements
on BC ! RL fine-tuning. 90% of the best performance finetuned policy can be
reached with less of 50% of the existing demonstrations in the experiments. The
effect of using more demonstrations is not linear to the final performance of BC
! RL finetuned policy.

2.3.3 Training with mapping

As shown in equation 2.37, the RL agent can be supplied with a recurrent mem-
ory that acts as an implicit memory. But, this example of recurrent memory has
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no structure so far, and doesn’t provide any spatial structure of the environment
other than the one that automatically emerges from training. Therefore, on way is
to provide a map mt (e.g. ego-centric metric map) as a spatial cumulative memory
of the current observed environment so far. This can be done by projecting the
observed first person view and keep tracking of the motion of the agent in the
environment:

mt = Tut�1(mt�1) + P�1(vg(ot)) (2.41)
ht = frecurrent(ht�1, vg(ot), gt, at�1, ff(mt)) (2.42)

p(at) = pq(ht) (2.43)

where mt being an ago-centric map of the environment, Tut�1 is the transfor-
mation of the previous map mt�1 from the agent motion ut�1, P�1 is an inverse
projection function of image pixels or pixels features and ff is a learned function
with parameters f. By providing such a map, there’s a possible that the perfor-
mance can be increased since it stores more information about the environment
and about its motion. These maps can be precomputed as this example, or it can
be learned end-to-end as well. In the neural/latent form, map entries are latent
states similar to the state of a recurrent network, but spatially organized. In this
subsection, we will focus on showing both possibilities and how different setup
of maps played a role in the agent performance.

Maps as memory Multiple works for embodied navigation have leveraged from
building maps during an episode during RL training. The maps represent an
form of explicit episodic memory. The episodic map can be spatial (Gupta et al.
2017a; Haarnoja et al. 2018) and topological (Chaplot et al. 2020d; Savinov et al.
2018). The spatial maps can be built as egocentric maps (Beeching et al. 2020a;
Gupta et al. 2017a) or allocentric maps (Gupta et al. 2017b). Spatial maps (whether
egocentric or allocentric) have been used in multiple navigation tasks. For task
like exploration, Zhang et al. (2020) trained a deep RL model using prebuilt map
with SLAM, while Chaplot et al. (2020b) worked on building a neural mapper
for egocentric maps through mapping visual observations (first person view)
directly by end-2-end neural module using superised learning. The output of
the neural module is then integrated in an allocentric map for training an RL
exploration agent. In object-related tasks like ObjectNav, Chaplot et al. (2020a)
uses differentiable mapping module for semantic segmentation of a first person
view and projecting the segmentation on a bird-eye-view map. On the other side,
topological maps has been used in (Beeching et al. 2020c; Chaplot et al. 2020d;
Kwon et al. 2021; Savinov et al. 2018) for ImageNav task where the agent provided
the goal as an image (view or specific object), most of the works store landmark
nodes that correspond to an input frame and connect the nodes with edges to
the closest nodes (under a certain threshold). Every node stores its episodic
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position and a unique representative embedding from visual input frame features.
The visual embeddings are then compared with the visual goal embeddings
(query embeddings). As a similarity function for comparing embeddings, cosine
similarity function is a common choice. Once a close node to the goal is localized,
the agent navigates directly to the goal using the nodes edges.

Study on Spatial Maps Wani et al. (2020) conducted an interesting and extensive
benchmark with a systematic investigation of what beneficial information from
spatial maps can boost the performance on navigation tasks. The MultiON task
was a good candidate to test the memorizaton capacity of agents in a long-horizon
task: the navigation agent were tested on 1-ON, 2-ON and 3-ON variants 2.6.
Multiple RL recurrent agent (figure 2.13) were trained end-to-end with PPO using
the Habitat simulator with a budget of 40M training steps. The benchmarked
agents fall under three main categories of agents: NoMap, OracleMap and
LearnedMap. Each agent differs in the type of map input. (1) NoMap refers,
explicitly, to an agent that does not use explicit map information. This agent
corresponds to a baseline recurrent agent that relies on the memory capacity
of recurrent network (GRU). (2) OracleMap agents refer to agents that have
access ground-truth from the scene, whether objects location (OracleObjMap
agent), occupancy (OracleOccMap agent) or both (OracleObjOccMap agent). An
egocentric perceptive version of the latter was provided (OracleEgoMap agent)
where an explored area in the global map is progressively increased as the agent’s
exploration of the environment increases. (3) The LearnedMap agents use maps
that are fully learned. Learned maps can be divided into two categories: maps that
store neural image features (referred as ProjNeuralMap - figure 2.14) and maps
that stores the predicted categories of the current visible goals by a classification
network ObjReconMap.

The benchmark shows multiple interesting findings on maps: (1) The spatial
maps are indeed useful for an end-to-end RL agent. Providing ground-truth
maps helps significantly OracleMap agents over NoMap agent, especially, in
longer-horizon tasks. Maps are more useful in 2-ON and 3-ON than for 1-
ON. (2) Considering the OracleMap setup, it’s much more useful to provide
the object category information in the map than the occupancy information.
One possible interpretation behind the usefulness of occupancy information is
that the same information is already embedded in the depth sensor or in the
additionally provided recurrent state. Also, by just adding the two informations
(Object + occupancy) concurrently to the map, the training budget (40M steps)
was not enough for a full convergence. (3) Regarding the LearnedMap agents,
simply providing the recognized goal from visual features and integrating this
information directly into a map can be more effective than accumulating images
features into the map. (4) Obviously, in egocentric views (EgoMap), OracleMap
agents are significantly better in performance compared to LearnedMap ones.
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(5) Independently of the map used, the performance drops dramatically when
increasing the number of goals. This observation raises the question of building
new architecture of mapping agents that are agnostic and robust to the complexity
of the visual reasoning required.

2.3.4 Extensions to End-to-End Training

3D photorealistic simulators open the door for end-to-end agents to be trained
on auxiliary tasks, irrespective to the main navigation task. These tasks aim
to focus on 3D visual understanding of the targeted environments. They can
possibly enhance the final performance of the agent on the desired navigation
task. Accessing the ground truth information in simulators helps in supervising
these tasks without the need of external manual annotation of data. In this section,
we focus on showing different approaches to extend the end-to-end training with
extra self-supervised auxiliary losses.

2.3.4.1 Training with privileged Information

Auxiliary tasks Navigation agents can combine auxiliary tasks with the main
downstream navigation objective. This combination extends the knowledge of
the learning model by extracting useful representations of the scenes (Mirowski
et al. 2016; Jaderberg et al. 2016a). In Mirowski et al. (2016), they extended the
baseline End-2-End Neural agent (Section 2.1.3.2) with two geometric losses: a
depth prediction loss LD that aims to learn representations that help in obstacle
avoidance and a loop closure loss Lloop from SLAM that supervises if the current
location has been previously visited within a local trajectory. In photorealistic
environments (Savva et al. 2019), Ye et al. (2020) a set of self-supervised auxiliary
tasks have been proposed to significantly improve sample efficiency in learning
PointNav, which sped up the training of DD-PPO (Wijmans et al. 2019) by 5.5x
times. Distributed RL training is combined with three self-supervised auxiliary
tasks: (1) the action-conditional contrastive predictive coding task (CPC|A) (Guo
et al. 2018): by using a secondary GRU, future observation embeddings are
contrasted from other observation embeddings at every timestep. (2) inverse
dynamics estimation (Pathak et al. 2017) where the model uses the belief ht
(Section 2.1.3.2) and two egocentric observations embeddings to predict the action
between them; and similarly, (3) the temporal distance estimation task where
the model predicts the distance between two observations from a trajectory. In
ObjectNav task, Ye et al. (2021) use the same configurations of (CPC|A) as in
Ye et al. (2020). In addition, three auxiliary tasks are introduced. The first two
are general-purpose inverse tasks - action distribution prediction (ADP) and
general inverse dynamics (GID). Both tasks predict actions taken between two
observations apart by k frames. ADP evaluates the KL-divergence between a
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Figure 2.15 – Learn to map with auxiliary tasks The figure is reproduced from
Marza et al. (2022). During RL training (with PPO), the MultiON
agents (Figure 2.13) are extended with three auxiliary cross-entropy
losses: Direction, Distance, Observed target (shown in the green
rectangle on the right).

predicted action distribution and the empirical distribution of the next k actions
while GID uses an extra GRU to estimate the individual action between the two
observations. The third task is exploration-specific coverage prediction (CP) where
the agent predicts the change in coverage at the next k frames using GPS sensor
and the number of steps taken by the agent.

Spatial losses For more complex tasks such as MultiON, Marza et al. (2022)
improved the training of the MultiON agents (Figure 2.13) with three auxiliary
tasks (Figure 2.15) with the goal to encourage spatial reasoning. The three tasks
are represented in the form of three spatial cross-entropy losses. We explain the
three losses in detail since we will compare to this work in Chapter 4.

• Observed target loss Lobs:

Lobs =
1

|Dk| T Â
t2Dk

T�1

Â
t=0

�(1obs
t log p( ˆobst)+

(1 � 1obs
t ) log(1 � p( ˆobst))) (2.44)

This binary cross-entropy loss favors learning whether the agent has pre-
viously seen the target object (1obs

t =1) or not (1obs
t =0) during the current

episode. In another word, at time t, whether the target object has been
observed within the agent’s field of view for at least once or not yet. The
model predicts the probability distribution over two classes ˆobst given the



48 related works

hidden GRU state ht through an Multi-layers perceptron (MLP) (Figure 2.15)
as p( ˆobst) = fobs(ht; qobs) with parameters qobs.

• Direction loss Lf:

Lf =
1

|Dk| T Â
t2Dk

T�1

Â
t=0

"
�1obs

t

K

Â
c=1

f⇤
t,c log p(f̂t,c)

#
(2.45)

Similarly, the agent predicts the relative direction of the target object, only if it
has been observed within its field of view during the episode (1obs

t =1) using
the hidden GRU state ht through an MLP (Figure 2.15) as p(f̂t) = ff(ht; qf)
with parameters qf. f⇤

t denotes the ground-truth direction one-hot vector
and the current ground-truth direction towards the goal is computed as,

ft = ^(ot, e) = � atan2(ot,x � ex, ot,y � ey) (2.46)

where e = [ex ey] and o = [ot,x ot,y] are the coordinates of the agent (fixed
coordinate at the center box) and the target object at time t, respectively.
The angles are kept in the interval [0, 2p] and then discretized into K bins
(Figure 2.16 left), giving the angle class.

• Distance loss Ld:

Ld =
1

|Dk| T Â
t2Dk

T�1

Â
t=0

"
�1obs

t

L

Â
c=1

d⇤
t,c log p(d̂t,c)

#
(2.47)

In addition, the agent predicts the Euclidean distance in the egocentric map
between the position of the agent, and the position of target object that
was observed during the episode (1obs

t =1) using the hidden GRU state ht
through an MLP (Figure 2.15) as p(d̂t) = fd(ht; qd) with parameters qd. d⇤

t
denotes the ground-truth distance one-hot vector and the current ground-
truth Euclidean distance towards the goal is computed as,

dt = ||ot � e||2. (2.48)

Again, distances are discretized into L bins (Figure 2.16 right), giving the
distance label.

They three auxiliary losses are added to the main PPO loss (Section 2.1.3.2) as
follows,

Ltot = LPPO + lobsLobs + lfLf + ldLd (2.49)

where the hyperparameters lobs, lf and ld weight the relative importance of
auxiliary losses. To summarize, each auxiliary task is responsible for increasing
a specific sub-skill. The observed target prediction task increases memorization
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Figure 2.16 – Auxiliary losses for MultiON agents: For the MultiON navigation
problem, two auxiliary tasks are visualized. One task is to predict,
the direction ft (left) and the other task is to predict the distance
dt (right). Both predictions are with respect to the current target
object (the green object), if it has been observed within the agent’s
field of view (green lines) at least once. Both values, ft and dt are
discretized with respect to the center of the egocentric map (i.e. with
respect to the agent position). The figure is reproduced from Marza
et al. (2022).

capacity of the agent, the Direction prediction increases the sense of direction,
and the Distance prediction increases the sense of judgement of relative distance.
By adding the three spatial losses, the performance is boosted for all MultiON
agents. Even NoMap agent trained with the additional losses outperforms the
OracleEgoMap agent. In that sense, the ProjNeuralMap agent trained with the
additional losses becomes the state-of-the-art agent on the task.

2.3.4.2 Auxiliary losses to improve perception

Self-Supervised losses (SSL) with data augmentation During training, aux-
iliary tasks can be self-supervised by accessing privileged information from the
simulator or by using contrastive learning with data augmentation techniques.
The latter technique has been well studied in 2D computer vision (Chen et al.
2020a; Misra et al. 2019; He et al. 2019) and has been introduced in RL settings
(Laskin et al. 2020) by combining both objectives: Contrastive and Reinforcement
learning. Hansen et al. (2020a) use self-supervised representation learning to
adapt RL policies during deployment only, while Stooke et al. (2020) decouple
the RL training from representation learning. Hansen et al. (2020b) jointly train
the RL policy with representation learning by applying data augmentation on
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Figure 2.17 – SSL with data augmentation: a training framework that combines
RL training of ImageNav agent using weak data augmentation (left)
with SSL contrastive learning, using strong augmentation (right).
The agent receives 4 observations xt of the panoramic view and goal
panoramic view x⇤ to be processed with a shared visual encoder
and then fed to an actor-critic policy to estimate the current action.
Using the same visual encoder, the panoramic view x is processed,
average-pooled and projected to produce ez1. Similarly, the view is
processed with the same momentum encoder of (Chen et al. 2020b)
(with parameters, updated as an exponential moving average (EMA)
of the parameters from the visual encoder). The two models are
trained jointly with the two objectives (RL and LSSL). The figure is
reproduced from Majumdar et al. (2022).

the representation learning part. Mezghani et al. (2021) apply data augmentation
the End-to-End RL policy for ImageNav visual navigation with panoramic view.
A more recent work (Majumdar et al. 2022) extends (Mezghani et al. 2021) by
studying the effect of applying different techniques of data augmentation during
RL training to increase the variations seen during training. In addition, they jointly
train two losses: the PPO base loss LPPO (Section 2.1.3.2) and the self-supervised
contrastive loss LSSL from the InfoNCE work (Oord et al. 2018):

LSSL = � log(
exp(ez1 · ez2/t)

exp(ez1 · ez2/t) + Âz exp(ez1 · ezn/t)
) (2.50)

As shown in figure 2.17, ez1 and ez2 represented the average-pooled and projected
features of independent sampled strong augmentations. ezn are sampled from
other panoramas in the training batch and t is a temperature parameter (Hinton
et al. 2015).

During this study, they also conduct some experiments by dropping the dense
reward rgeo-dist

t from the reward equation (Section 2.3.2). They argue the dense
reward shaping can lead to memorizing training environments as demonstrated
in (Maksymets et al. 2021). Thus, it can penalize exploration and hinder gener-
alization to new scenes. This study comes with important findings: (1) Training
without dense reward dramatically decreases the performance of baseline training
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but when SSL training is added to the sparse-reward-only solution, it outperforms
the dense reward variants. (2) Surprisingly, SSL + dense reward shaping does not
lead to similar gain if compared to sparse-reward-only solution. (3) Applying
strong data augmentation directly within RL training decreases enormously the
performance. (4) In previous works (Mezghani et al. 2021), data augmentation
is applied independently to each instant of the episode to increase the varia-
tions seen during training. However, in the case of episodic data (navigation
episode), they observe that using different inconsistent augmentation over time
leads to unrealistic changes that do not reflect realistic conditions (e.g. changes
in wall painting from one frame to the other). Therefore, by simply applying
episodic-aware data augmentation during training, such agents outperforms the
inconsistent data augmentation variant.

2.4 Hybrid Modular Agents

In this section, we visit the different approaches used to build a modular agent
that can leverage multiple modules. Each module focuses on solving a sub-task
in the main navigation task. A modular agent can have only learnable Neural
modules or a mix of Neural and Analytical modules, which we call Hybrid Agent.
During training, Neural modules can be learnt separately (Beeching et al. 2020c;
Hahn et al. 2021), jointly (Chaplot et al. 2020d), and in end-to-end (Gupta et al.
2017a) by optimizing the same criterion or with the support of (Chaplot et al.
2020b).

We focus on presenting the different techniques used to achieve the reasoning
steps (Figure 2.4). First, we present how the environment is perceived and mapped
with various modules. Second, we show the decision making modules used by
the agent to plan.

2.4.1 Perceive and Map

Occupancy Mapping A common module is to map directly the RGB observation
of first-person view to a top-down map. One common way is to predict a 2D-
map directly using an Encoder-Decoder (Gupta et al. 2017a; Chaplot et al. 2020b).
Gupta et al. (2017a) (known as CMP) propose an ego-centric mapping module that
predicts a 2-channel map to represent confidence channel c0

t and belief channel f 0

t
about the navigability of each grid position of the current ego-centric top-down
view of the scene. CMP maintains an egocentric top-down map (EgoMap) of the
current state ft which is the combination of the estimated f 0

t and the previous
map f t�1 using an update function U. First, the current EgoMap is estimated
using a function approximator f that takes as input the current ego-centric image
It. In order to perform the combination steps in Equation 2.51:
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Figure 2.18 – Active Neural SLAM - Overview: From the current sensor readings,
Neural SLAM fSLAM predicts a map mt and agent pose xt. Then, a
Global Policy pG uses the map and the pose and predicts a long-term
goal gl

t which is converted to a short-term goal gs
t by an analytical

planner fPlan. A local neural policy pL (trained for PointNav task) is
used to navigate to gs

t .
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where the previous EgoMap of t � 1 should be in the same coordinate as the
current one. Therefore, a differentiable module W is used that applies a warping
operation. To ensure that this step is differentiable, a bi-linear sampling is applied
in W to allow the backpropagation of gradients from ft�1 to ft (Jaderberg et al.
2016b). This sampling technique has been used in optimization of neural networks
in the context of view synthesis problems (Zhu et al. 2017). The only learnable
function in this module is f. The training is done using DAgger (Section 2.1.3.2), at
each step the U function provides the map to a learnable planner based on Value
Iteration Networks (Tamar et al. 2017). The planner predicts the next action to
take which will be supervised by the optimal action on the corresponding ground-
truth trajectory. The mapper part is not supervised explicitly or directly from
ground-truth map. It has more freedom to write any information useful for the
purpose of navigation, which is learned by directly optimizing the downstream
navigation loss.

Following CMP, Chaplot et al. (2020b) extended CMP by proposing a Neural
SLAM module, fSLAM, which simultenously acts as mapper and localizer (Figure
2.19) inspired from classical SLAM (Section 2.2). fSLAM is part of their modular
agent (Figure 2.18), named Active Neural SLAM (ANS). fSLAM takes the current
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Figure 2.19 – Neural SLAM Module: As shown in figure 2.18, fSLAM estimates
simulatenously a map mt and pose xt. It consists of two trained
modules, fmap (Mapper) and fPE (Pose Estimator). The "ST" module
represents a spatial transformation of the map given a pose change.
The figure is reproduced from Chaplot et al. 2020b.

observation st, the current noisy pose x0

t, the previous geocentric map mt�1 and
the estimated pose x̂t�1. In return, it outputs an updated spatial map mt and a
new estimate of the pose bxt. It consists of two learned function approximators, a
Mapper fMap and a Pose Estimator fPE. fMap, designed as an Encoder-Decoder
network, predicts a Spatial EgoMap pego

t which presents the explored area and
obstacles in the field of view of the agent. Using the pair of prediction and
pego

t�1 and pego
t , the Pose Estimator fPE predicts the correct relative pose bdxt. The

intuition is that the estimator can learn the small transformation that align the
two estimated EgoMaps. Then, the new x̂t is equal to x̂t�1 + bdxt. Like CMP, ANS
uses the same differentiable module W (named ST in figure 2.19) to align maps.
On the other hand, it combines previous and current maps using channel-wise
addition and not on weighted average as in U (equation 2.51). Moreover, the full
fSLAM module is trained using supervised learning independently of the planning
module.

Semantic Mapping ANS targets the exploration or PointNav tasks and does
not perform object searching tasks. fSLAM only maps the explored area and not
the detected objects. In a follow-up work (Chaplot et al. 2020a), the mapping is
extended to map the semantics in the first-person view (Figure 2.20). They adopted
a hybrid approach. First, a pretrained segmentation model (MASK-RCNN is used)
predicts a semantic segmentation from the first person RGB view. Second, the
depth observation is used to compute a point cloud. The point cloud is associated
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Figure 2.20 – Semantic Mapping. A semantic segmentation module (MASK
RCNN in this example) takes an RGB observation It and predicts
semantic mask for which is projected into voxels using the depth
readings Dt. The voxels are reduced by summing across the hight
to get a semantic top down map, aligned with an occupancy map.
The figure is reproduced from Chaplot et al. 2020a.

Table 2.1 – The table is reproduced from (Luo et al. 2022). A description of the 7-channel
map maintained by the agent in this work. The first three channels of the
map are used to record obstacle-related information, while the rest of the
channels are used to record goal-object-related information.

Channel Description

Obstacle
Map

1 Obstacle Map Using Depth Input
2 Pessimistic Obstacle Map using Collision Information
3 Optimistic Obstacle Map using Collision Information

Object
Identification

Map

4 Total Number of Frames Appeared in View
5 Sum of Confidence Score of Target Object
6 Maximum Confidence Score of Target Object
7 Maximum Confidence Score of Non-Target Object

with the segmentation mask. Using a differentiable geometric projection module,
the point cloud is projected in the 3D space to a voxel representation. The semantic
map is created by summing over the height dimension of the voxel presentation.
The segmentation model can produce some errors in the segmentation which
can lead to larger errors in the map after projection. To overcome this limitation,
another learned module is added. A Denoising Network receives the projected
semantic map and outputs a final denoised version. Therefore, the full semantic
module is trained using supervised learning with two losses: a cross entropy
loss on the semantic segmentation and a loss in the map space on the semantic
map prediction. The ground-truth semantic map is generated from ground-truth
semantic annotation in the simulation environment.
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The semantic module is adopted in other hybrid agents (Ramakrishnan et
al. 2022; Zhai et al. 2022; Luo et al. 2022). However, the final semantic map
representation can differ, which can reflect on the decision-making part while
planning using the map (Section 2.4.2). In the initial work by (Chaplot et al. 2020a),
the final map is presented as an allocentric map with C + 2 channels. Each of
the C channels represents an object category and the first two channels represent
obstacle and explored area. On the other side, Luo et al. (2022) used a different
representation in their hybrid agent (named STUBBORN). As shown in table 2.1,
they used fixed 7 channels, independent of the number of categories C. The first
channel is as in (Chaplot et al. 2020a), it stores the obstacle map from the depth
information. The second and third represent any occurrence of "physical" collision
that maybe not be represented in the depth observation (due to noises or artifacts
in the simulator). The exact collision location cannot be observed, and the agent
location is discretized, hence, it’s impossible to exactly construct an occupancy
map from collisions. They tackle this problem by maintaining two multi-scale
channels. One channel represents a "pessimistic" map where collided region is
marked with larger areas (25x25 cm2) while an "optimistic" map marks smaller
areas (15x15 cm2). Alongside, they applied another rule to always mark areas
along visited path as free. These manipulations reduce the chance that the agent
trapped due to incorrectly marked obstacles.

2.4.2 Planning

Hierarchical Planning Many hybrid modular agents use a hierarchical planning
approach for navigation. A Global Policy (High-Level Planner) proposes a waypoint.
Then, a Local Policy (Low-Level Planner) performs point-to-point navigation to
reach the waypoint. The Global Policy acts at a coarse timescale while the Local
Policy acts a a fine time scale. At each time step, the Low-Level policy should
replan to reach the waypoint. Global Policies can be learned (Chaplot et al. 2020b;
Ramakrishnan et al. 2022; Zhai et al. 2022) or be analytical such as the classical
algorithm of Frontier-Based Exploration (Yamauchi 1997).

In ANS (Chaplot et al. 2020b), the Global Policy is presented as a convolutional
neural network that regresses the waypoint gl

t (Figure 2.18). The policy takes
as input the estimated allocentric map from the fSLAM in addition to two extra
channels concatenated on the map mt. The third channel represents the current
agent position and the fourth channel represented all visited locations until step t.
In order to reach the gl

t, ANS relies on two-staged Low-Level Planner: an analytical
planner (The Fast Marching Method - FFM from Sethian (1996b)) that takes the
goal gl

t with the spatial map and plans the shortest-path. It proposes a shorter
goal gl

t on the planned path. Then an End-to-End Neural policy represented
as visual-based Policy as in Savva et al. (2019), at = pL(st, gs

t). Experimentally,
they show that using the two policies doesn’t add a significant gain to the global
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Figure 2.21 – Potential Functions for navigation. The figure of the architecture for
PONI is reproduced from Ramakrishnan et al. (2022). It consists of a
semantic mapper (similar to figure 2.20 version). The produced map
is used by a potential function pPF. First, the map is encoded into a
vector et and then used with the current object goal category ot to
predict the area and object potential functions. The two potentials are
averaged. A long-term goal gt is sampled by taking the maximum
location on the final potential area. The agent navigates toward gt
using a analytical path-planning Local Policy pL.

performance of the modular agent. In future works (Chaplot et al. 2020a), FFM is
used as a stand-alone Low Policy. The Global Policy is trained using RL to optimize
the coverage of the scene (equation 2.40).

In ObjectNav task, a semantic Goal-Oriented policies (Chaplot et al. 2020a;
Zhai et al. 2022; Ramakrishnan et al. 2022) are implemented similarly where an
additional input is provided in order to represent the current target category.
Intuitively, once the corresponding channel to the target has a non-zero element
(which means the goal is segmented and mapped), it chooses the location as
the current waypoint target for the Local Policy. If the goal is not observed, the
policy needs to propose a long-term goal where the current target object is likely
to be in the area. Therefore, the semantic-aware Global Policy differs from the
Goal-Agnostic Global Policy of ANS on its target to learn semantic priors on the
correlation and arrangement of objects and areas. One way of training is to use
RL to optimize the geodesic distance reward to the nearest goal object (equation
2.39).

Potential regions Another approach to build a Global Policy is to train an
Encoder-Decoder network that takes an incomplete map and generates proposal
regions (areas) that are potentials for area exploration or goal finding. Ramakr-
ishnan et al. (2022) build a hybrid agent (named PONI - Figure 2.21) with two
U-shaped networks that share the same semantic map encoder (E) and predict
two types of potential regions: the area potential Ua

t and the object potential Uo
t .

Both regions are linearly combined and then a potential way-point is sampled.
They illustrate that area potential is useful and has higher values at the beginning
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Figure 2.22 – Optimal Control and Learning: The approach consists of a percep-
tion module trained to predict waypoint ŵt using the first-person
RGB observation. A dynamic-based planning module uses ŵt to
control smoothly and regulates the robot until it reaches the way-
point. The figure is reproduced from Bansal et al. (2019).

of the episode, while the object potential starts to have more importance when
the agent discovers more semantics in the scene. Thus, it is more able to estimate
the potential regions of the target object. A follow-up work (Zhai et al. 2022)
simplified the same potential regions Global Policy in their agent (named PEANUT)
to train one single decoder for potential regions. This simple version surprisingly
outperforms the PONI agent.

Combining with Control Optimization Most previous works abstract out the
dynamics and work with set of discrete actions. Such neglection of dynamics
produces a stop-and-go jerky behavior when deployed on a real robot. Therefore,
another line of research builds hybrid planners that combine learned components
with optimal control which is studied in multiple scenarios. In high-speed racing,
Drews et al. (2017) introduce a vision-based model predictive control (MPC) for
the task of aggressive autonomous driving. The goal is to learn cost functions
(cost maps) from monocular video frames using convolutional neural networks.
The cost functions are then used for online trajectory optimizations with MPC. In
follow-up work (Drews et al. 2018), the hybrid approach is extended to combine
learning-based road detections and particle filters (Section 2.2) with MPC. The
neural network predicts local cost maps of the track in front of the vehicle. Particle
filters are then used for state estimation while driving using MPC. In drone racing,
Kaufmann et al. (2018) and Kaufmann et al. (2019) designed a hybrid drone agent
that combines a learned global planner with a path-planning and control system.
A Neural network directly estimates a waypoint and desired speed from raw
images. This information is then used by the planner to generate a short trajectory
(Mueller et al. 2013) that is tracked by a low-level controller (Faessler et al. 2015).
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For indoor navigation, Bansal et al. (2019) (Figure 2.22) rely on building two
submodules: perception and planning. The perception module acts as a Global
Policy that predicts a waypoint based on the current First-Person-View observation.
A planner with a feedback controller acts as a Local Policy. The process is shown
in equations 2.55 to 2.58.

p⇤
t = (x⇤

t , y⇤
t ) (2.55)

ŵt = y(It, ut, p⇤
t ) (2.56)

{z⇤, u⇤
}t:t+H = FitSpline(ŵt, ut) (2.57)

{k, K}t:t+H = LQR(z⇤
t:t+H , u⇤

t:t+H) (2.58)

At every H steps, the waypoint is predicted using the current position p⇤
t , speed

ut and image It. Then, a trajectory spline-based planner (FitSpline) provides a
desired state and control trajectories on a horizon of H steps. In order to track
the generated trajectory, a Linear Feedback Controller (LQR) (Bender et al. 1987) is
put in place to generate control commands. The control commands are executed
over the horizon and then a new image is observed, and the process is repeated
until the robot reaches the target position.

Similar approaches have been used in autonomous driving. Müller et al. (2018)
designed a hybrid modular approach with end-to-end trained components. First,
a segmentation model is used to generate segmentation from raw images. Another
learned component is used to generate waypoints from segmentations. A PID
controller used the waypoint to generate controll commands. Although these
approaches, that rely on First-Person-View Global policies (ANS - Figure 2.18
or PONI - Figure 2.21), proved their capacity in their experimental setups, they
are limited to proposing waypoints that are in the Field-Of-View of the agent.
This lacks exploration capacity if deployed in such a setup. On the other side,
Map-Based Global Policies can propose way-points out of the Field-of-View and
potentially in an explored area.

2.5 Conclusion

In this section, we have visited the different concepts needed to understand the
navigation problem and the different approaches used to tackle the problem. In
the upcoming sections, we focus first on studying the end-to-end learning-based
agents in real environments and to interpret the sensor usages by such agents
in PointNav. Second, we present a new hybrid agent for complex tasks such as
MultiON, also, in real environments. Third, we try to leverage both decision-
making approaches, analytical and learned-based ones to build a new hybrid
agent for PointNav in real environments.
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Chapter abstract
Visual navigation by mobile robots is classically tackled through SLAM plus
optimal planning, and more recently through end-to-end training of policies
implemented as deep networks. While the former are often limited to waypoint
planning, but have proven their efficiency even on real physical environments,
the latter solutions are most frequently employed in simulation, but have been
shown to be able learn more complex visual reasoning, involving complex se-
mantic regularities. Navigation by real robots in physical environments is still
an open problem. End-to-end training approaches have been thoroughly tested
in simulation only, with experiments involving real robots being restricted to
rare performance evaluations in simplified laboratory conditions.
In this work we present an in-depth study of the performance and reasoning
capacities of real physical agents, trained in simulation and deployed to two
different physical environments. Beyond benchmarking, we provide insights
into the generalization capabilities of different agents training in different
conditions. We visualize sensor usage and the importance of the different
types of signals. We show, that for the PointGoal task, an agent pre-trained
on wide variety of tasks and fine-tuned on a simulated version of the target
environment can reach competitive performance without modelling any
sim2real transfer, i.e. by deploying the trained agent directly from simulation
to a real physical robot.
The work in this chapter has led to the publication of a conference
paper:

59
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• Assem Sadek, Guillaume Bono, Boris Chidlovskii, and Christian Wolf
(2022b). “An in-depth experimental study of sensor usage and visual
reasoning of robots navigating in real environments”. In: ICRA 2022;

3.1 Introduction

The design of mobile robots capable of performing visual navigation tasks in real
physical environments has been classically addressed with geometric pipelines cre-
ating maps from LIght Detection And Ranging (LIDAR) or visual input, localizing
themselves on these maps (often simultaneously — SLAM), and using symbolic
planners to navigate to a specified target position. In recent years, machine learn-
ing has had a deep impact on these problems either by extending the classical
pipelines with semantic information of the scene, complementary to geometry, or
through end-to-end learning of navigation policies directly mapping observations
to actions and usually trained in simulation by Reinforcement Learning (RL),
Inverse RL, Imitation Learning, or a combination of objectives.

While classical tasks focus on waypoint navigation (PointGoal), which essen-
tially requires the estimation of free navigational space and the computation of
shortest paths, large-scale training in simulation has opened the door to more
complex problems, which require more advanced visual and spatial reasoning. Ex-
amples are ObjectNav (Batra et al. 2020), which requires finding and recognizing
objects, whereas Multi-ON (Wani et al. 2020) and the K-item scenario (Beeching
et al. 2020b; Beeching et al. 2020a) require mapping objects in some form of latent
memory, allowing the agent to find them quickly when needed. This sub-field,
Embodied Computer Vision, is heavily dominated by training and evaluation in
simulated photo-realistic 3D environments like Habitat (Savva et al. 2019), AI-
Thor (Kolve et al. 2017) etc. The transfer from simulation to real environments
(“sim2real”) is one of the main current challenges in robot learning and as such
widely studied. However, thorough evaluations of navigation capabilities in real
environments are rare, compared to other robotic tasks like grasping and object
manipulations. Experiments with mobile robots are time-consuming, as they need
to be monitored by human operators and the reproduction of identical or similar
evaluation conditions is difficult.

In this work we describe an in-depth study evaluating the performance of
agents trained in simulation on two different physical environments. We chose
the PointGoal task with GPS pointer estimated from a SLAM algorithm, which
allows to compare the trained agents to classical algorithms based on SLAM and
optimal planning. In our scenario, absolutely no adaptation is done for sim2real
transfer: the agents are trained in simulation, and evaluated on real robots strictly
as they are, delegating the lower level continuous controls to preserve the discrete
simulated action-space. Compared to existing reports, e.g. (Kadian et al. 2020), we
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Figure 3.1 – We present a deep experimental study of navigation capabilities of
mobile robots in two different real physical (top) indoor environments:
“NLE” (= "Naver Labs Europe"), a French 19th century furnished
castle (left) and “INSAL”(= "INSA de Lyon"), modern office spaces
(right). The agents have been trained in different sets of simulated
environments, which may contain, or not, 3D-scans of the evaluation
environments (bottom: 2D observations from the simulator), targeting
the evaluation of different generalization scenarios.

did not produce common laboratory conditions — our agents had to fight with
challenging settings like sensor failures due to glass fronts and mirrors, wheels
sliding on slippery floors or bumping into thick carpets.

Our main objectives were the study of internal visual reasoning learned and
performed by the agent for this task, which requires to attain a target position
given a (noisy) GPS signal and RGB-D observations. The agent can not blindly
follow the direction indicated by the GPS signal and needs to use the RGB-D
observations to estimate the geodesic path, which can significantly differ from the
Euclidean path because of walls, narrow corridors and other obstacles.
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Classical planning vs. ML while we also evaluate performance of classical plan-
ners on this task for comparison, the goal of our work is not to claim superiority of
end-to-end training over the classics. We currently know that the PointGoal task
can be addressed, “solved” with sufficient robustness by using symbolic planners,
but they have a hard time to scale up to complex visual reasoning. The main
question we explore here is whether end-to-end learning can work in general. In
cases where end-to-end training is required, do we need to combine ML methods
with classical low level planning when we target real physical environments,
or can end-to-end training perform in its own right? In what follows we will
show that low-level waypoint navigation in physical environments can indeed be
addressed by a trained planner.

In our study, we try to answer the following questions:

• Is PointGoal navigation in real environments possible without any adaptation
from simulated training environments?

• How are the different sensors used? When does the agent use visual observa-
tions and how? What are the regions attended to by the agent and in which
situation?

• How do the trained agents generalize to unseen conditions? Is successful
navigation conditioned on memorization on a trajectory level, or do the
agents learn some form of spatial reasoning transferable from simulation to
the real environment?

After a description of the related work (Section 3.2 on robot navigation and
sim2real transfer), the following sections will describe the experimental setup
(environments, agents, and evaluation protocol, Section 3.3), followed by a detailed
analysis of the performance of the agents in real and simulated environments and
visualizations of their sensor usage (Section 3.4).

3.2 Related work

Simulators and indoor navigation. Research on robot-inspired agents that
perceive, navigate, and interact with their environment is currently carried out
in simulation rather than in real physical environments, at least when based on
machine learning (Savva et al. 2019; Xia et al. 2018; Kolve et al. 2017). Simulators
can run experiments much faster than real-time due to high parallelization, and
can deliver decades of simulated agent experience to in only days of wall-clock
time (Gupta et al. 2017a). Moreover, evaluating agents in simulation is safer
and cheaper and allows for easier automatic benchmarking of new techniques
compared to handling physical robots in the real-world (Choi et al. 2020).
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Simulators serve as a testbed for developing increasingly realistic indoor envi-
ronments (Savva et al. 2019; Kolve et al. 2017; Shen et al. 2020) and navigational
tasks (Gupta et al. 2017a; Anderson et al. 2018b), as well as running navigation
challenges (Habitat Challenge 2020; Embodied AI Workshop, CVPR 2021 Challenge
2021). Massive synthetic data in simulators enables learning perception and
control policies end-to-end (Gupta et al. 2017a).

Simulation-to-real gap. No simulation can perfectly replicate reality. Despite
the tremendous progress in computer graphics and game engine technology,
highly used in robot learning, the sim2real gap can compromise any strong
performance achieved in simulation when agents are tested in the real-world.

Perception and control policies learned in simulation often do not generalize
well to real robots due to inaccuracies in modelling, simplifications and biases. To
close the gap, domain randomization methods (Tan et al. 2018; Peng et al. 2018)
assume that the real world distribution is a randomized instance of the simulation
environment; they treat the discrepancy between the domains as variability in the
simulation parameters.

Alternatively, domain adaptation methods learn an invariant mapping function
for matching distributions between the simulator and the robot environment. Re-
lated examples to the work presented here include sim2real transfer of visuo-motor
policies for goal-directed reaching movement by adversarial learning (Zhang et al.
2019), adapting dynamics in reinforcement learning (Eysenbach et al. 2021), and
adapting object recognition model in new domains (Zhu et al. 2019). Kadian et
al. (Kadian et al. 2020) investigated the sim2real predictivity of Habitat-Sim (Savva
et al. 2019) for PointGoal navigation and proposed a new metric to quantify
predictivity, called Sim-vs-Real Correlation Coefficient (SRCC). Recently, Chat-
topadhyay et al. (Chattopadhyay et al. 2021) benchmarked the robustness of
embodied agents to visual and dynamics corruptions, finding that agents trained
in simulation severely under-perform when evaluated in corrupted target envi-
ronments. They show that although standard data-augmentation techniques and
self-supervised adaptation strategies offer some improvement, much remains to
be done in terms of fully recovering lost performance. In (Truong et al. 2021b), a
bi-directional method adapts the sensor gap from real2sim and the dynamics gap
from sim2real.

Interpretability in RL and Computer Vision. Understanding and interpreting
deep neural networks is an ongoing effort and research domain, and work has
targeted different applications and tasks, including image classification (Zeiler
et al. 2013; Selvaraju et al. 2020), but also gathering tasks in Video games sim-
ulators (Jaunet et al. 2020). The latter is close to robotics, sharing navigation
components and even the general meta-architecture of the agent with a recurrent
memory. The authors developed a data visualization interface allowing to inspect
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Figure 3.2 – The architecture of the baseline RL-agent trained with PPO, taking
as input visual observations, a noisy GPS signal, and the previous
action.

the usage of sensors and recurrent memory, helping to understand the agent’s
decision making process.

3.3 Experimental setup

In our experiments we train a neural policy, which is able to act in two different
environments:

• a virtual environment through the Habitat simulator (Savva et al. 2019) with
discrete actions (MOVE_FORWARD, TURN_LEFT, TURN_RIGHT) and STOP), and

• a real physical robot, a LoCoBot (LoCoBot: An Open Source Low Cost Robot
2017) [ ].

All training is done in the simulated environment only, we deploy the trained agent
directly to the physical robot without any adaptation in perception. The translation
of discrete actions to the continuous actions of the LoCoBot is performed by the
standard move_base navigation stack of ROS, which also handles the navigation
towards the starting position of each episode, and the evaluation of geodesic
distances. To this end, it builds on a position estimation provided by the default
ROS implementation of the Adaptive Monte-Carlo Localization algorithm (Thrun
et al. 2005). Instead of creating a map dynamically with SLAM, we export a map
from the Habitat simulator to share the coordinate system, which allows us to
execute the same episode in the simulator and in the real world, thus ensuring a
fair comparison.
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(a) NLE -
50,000 training episodes

(b) NLE -
11 evaluation episodes

(c) INSAL -
50,000 training episodes

(d) INSAL -
10 evaluation episodes

Figure 3.3 – Overview of the 50,000 training episodes used to train the Targeted
and Finetuned agents for both the NLE (3.3a) and the INSAL (3.3c)
scenes. Parts of the scenes (appearing in gray) were kept out of the
training set, in order to have “seen” (yellow) and “unseen” (blue)
episodes in our evaluation sets (3.3b, 3.3d). Note that for the Gibson
agent, all episodes are unseen.

The neural RL-agent policy architecture is based on a ResNet module for
perception and recurrent GRU memory, as shown in Fig. 3.2. This agent, trained
with the PPO algorithm, is the base implementation provided in the Habitat
simulator (Savva et al. 2019). At each step, the agent receives a 160⇥120 pixels
RGB-D observation, matching the extrinsic and intrinsic parameters of the Intel
RealSense camera installed on the LoCoBot, in particular, its position, the field
of view and aspect ratio. It also receives a GPS vector (Euclidean distance and
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direction), describing the position of the goal relative to its current position,
provided by the robot’s position estimation system.

Generalization over ... what? the PointGoal task requires an agent to navi-
gation from a start position to a target position, receiving at each instant a GPS
direction pointing towards the goal; in the real environment this direction is esti-
mated by the positioning system and is often noisy. In general, naively following
the GPS direction does not solve the task, as the presence of walls and obstacles
requires the agent to avoid them and to find the shortest geodesic path, using the
RGB-D input in addition to the GPS.

We evaluate two different generalization scenarios, both requiring to generalize
from simulation to the real world:

¿ Generalization to unseen environments — an agent is trained on a set of
environments and at test time needs to navigate in an unknown environment.
This corresponds to a situation where a robot is operating “out of the box”,
with no possibility to retrain.

¡ Generalization to unseen trajectories — an agent is trained on a set of
environments and at test time needs to navigate in a physical environment
it has been trained on, i.e. in its simulated variant. It will not necessarily
navigate the same trajectories, but eventually similar ones — we push this
further by excluding regions from the environment when training (“unseen”).
This use case is commercially feasible, but requires more effort at deployment,
as the agent needs to be retrained on a virtual environment created from a
3D scan of the target building.

We performed experiments in two different physical environments: the NLE
building, a French classical castle and INSAL, modern office space (Fig. 3.1). Both
buildings were 3D scanned with a professional Matterport system (Matterport
2020) and loaded into the Habitat simulator, resulting in two novel simulated
environments suitable for training navigation agents. We then generated 50,000
training episodes for both scenes, controlling for the distribution of episode
difficulties by constraining the geodesic distances between start and goal and the
ratio of Euclidean to geodesic distances. In both scenes, we isolate an “unseen”
region, which is excluded from the training set and reserved for evaluation (cf.
Fig. 3.3). This split between “seen” and “unseen” regions is meaningless in the
case when the whole test environment is excluded from training (case ¿ above),
since then all evaluation episodes are unseen.

Eleven evaluation episodes in NLE and ten episodes in INSAL cross both “seen”
and “unseen” regions of the scenes. It is important to note that both INSAL and
NLE scenes underwent changes between the digitization and the agents evaluation
phase. Therefore, even the “seen” parts of the scenes contain some discrepancies
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between simulation and real, such as moved pieces of furniture or absent/new
objects. This contributes to the sim2real gap, alongside the rendering difference
between real sensors and simulated ones.

Additionally, for certain agents we also use the standard Gibson dataset (Xia
et al. 2018) for pre-training, which contains 3,600,000 episodes over 72 different
scenes.

We deploy three variants of the ResNet+GRU agent:

• The Gibson agent, trained solely on Gibson scenes (generalization case ¿).

• The Targeted agents (one per scene), trained on the seen region of their
respective scenes (generalization case ¡).

• The Finetuned agents (one per scene), first pre-trained on the Gibson dataset,
then fine-tuned to their respective scenes (generalization case ¡).

As a baseline, we also provide an evaluation of the standard ROS navigation stack
using the same metrics.

Evaluation metrics We used three standard metrics from the field:

• Success Rate (SR) is the percentage of the episodes where the agent called
STOP with the final distance dk to the goal being lower than a predefined
threshold dsuccess:

SR =
1
N

N

Â
k=1

1dkdsuccess (3.1)

• Success weighted by Path Length (SPL) is the SR with each success weighted
by the ratio between the optimal path length l⇤k and the distance travelled by
the agent lk:

SPL =
1
N

N

Â
k=1

1dkdsuccess

l⇤k
max{lk, l⇤k }

(3.2)

• Soft SPL (sSPL) is a softer version of SPL where the Boolean success value is
replaced by a continuous measure of the progress made towards the goal:

sSPL =
1
N

N

Â
k=1

max
⇢

0, 1 �
dk
l⇤k

�
l⇤k

max{lk, l⇤k }
. (3.3)

Implementation We developed our own interface, publicly available online 1,
which makes the real robot and its entire ROS stack appear as a “Simulator” in the
habitat-lab framework. This allows to transparently switch from a simulation
evaluation to real world one by changing a single line in the configuration file. This

1. https://github.com/wgw101/habitat_sim2real

https://github.com/wgw101/habitat_sim2real
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Seen Unseen Overall
Scene Agent SR SPL sSPL SR SPL sSPL SR SPL sSPL

Gibson 75.0 60.3 65.1 66.7 53.2 52.5 72.7 58.3 61.7
Targeted 100 94.4 93.2 100 72.9 72.2 100 88.6 87.5sim

Finetuned 100 93.8 92.7 100 83.7 82.8 100 91.1 90.0
Gibson 100 73.0 71.1 100 85.0 84.3 100 76.2 74.7

Targeted 87.5 61.9 62.5 33.3 22.7 26.8 72.7 51.2 52.7

NLE

real
Finetuned 100 88.7 86.3 66.7 55.6 54.6 90.9 79.7 77.6

Gibson 100 89.4 87.9 100 78.4 76.5 100 83.9 82.2
Targeted 100 91.3 88.8 40.0 26.0 26.0 70.0 58.6 67.0sim

Finetuned 100 93.6 92.2 100 94.5 92.2 100 94.1 92.2
Gibson 20.0 16.9 16.9 80.0 46.4 45.4 50.0 31.7 31.2

Targeted 80.0 43.6 42.5 80.0 50.6 49.4 80.0 47.1 45.9

INSAL

real
Finetuned 100 92.8 90.6 100 91.6 89.1 100 92.2 89.8

Table 3.1 – Quantitative results for experiments in simulation and real physical
robots. We report the average SR, SPL and sSPL on seen, unseen and
all episodes. Bold font highlights best values on the corresponding set
of episodes. Gray font denotes that the Gibson agent has not really seen
any part of the scenes during training.

allows us to re-use all the metrics and features already present in habitat-lab for
the PointNav task, and to deploy the same agent in simulation and on the LoCoBot.
We rely on ROS to provide the position estimation we need, which affects the GPS
vector given to the agent, but more importantly the precision of our evaluation
metrics.

3.4 Experimental Results

Quantitative performance analysis Table 3.1 shows the agent performance on
real robot and in simulation, in both environments. We observe a performance
drop between simulation and real, but also that this gap is quite low for the
Finetuned agent. We conjecture that pre-training on a large number of additional
simulated environments drastically reduces the sim2real gap.

Complete generalization to unseen environments (generalization case ¿) is
possible but not universal, as shows the poor performance of the Gibson agent
in the INSAL environment. Deployment of a robot to real environment after
pre-training on a 3D scanned variant (case ¡), however, leads to surprisingly good
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(a) Episode (b) Depth Saliency over time step

(c) Step 18 (d) Step 22 (e) Step 23

Figure 3.4 – Impact of obstacles on visual attention: obstacles (boxes) are close
and on the path to target, the robot pays the main attention to them.
Black dots on the saliency curve indicate the steps shown.

performance. For the Targeted and Finetuned agents (case ¡), the performance
gap between seen and unseen episodes is low — training on an environment
benefits performance even on the unseen parts, which, unsurprisingly, suggests the
existence of factors of variation common to the trajectories of a given environment
(and thus particular to the environment).

Visualization and interpretation We have explored different ways to increase
interpretability of the neural model and to visualize parts of its sensor usage. We
ask the following questions: (a) what type of sensor is important at what time in
an episode (RGB-D or GPS), (b) which region is attended to in an observed image,
and ultimately, (c) why does an agent take a certain action at a certain moment?

We use the visualization procedure grad-CAM (Selvaraju et al. 2020), which
computes a measure of attention or importance, by, written in simplified terms,
calculating the gradients of the output layer of the policy corresponding to the
taken action w.r.t. to the inputs or an intermediate neural unit. A high derivative
for a pixel, value or unit value suggests a high impact on the decision. We chose
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(a) Episode (b) Depth Saliency over time step

(c) Step 9 (d) Step 16 (e) Step 19

Figure 3.5 – The same boxes in figure 3.4 are still visible in the scene, but do not
block the navigation towards target. Black dots on the saliency curve
indicate the steps shown.

the last convolutional layer in the feature extractor of the RGB-D observation and
overlay its gradient on the input image in pseudo colors, c.f. Figuress. 3.4, 3.5, 3.6
and 3.7. In these figures we also provide an indication of the importance of the
visual input, which corresponds to the accumulated gradients. We saw that the
importance of the GPS sensor stayed relatively flat.

In Figure 3.4, we visualize the impact of blocking obstacles (boxes) placed in
front of the goal, on sensor usage. This obstacle should in principle require the
agent to use the visual observation, as the GPS direction does not point towards a
feasible path. The agent indeed focuses on the obstacles as they appear in front
of the camera, verified in the Grad-CAM heatmap. In the selected three steps
shown in the Figure we can see that, when the agent was fully blocked by the
obstacles, the saliency value of the depth image peaks, indicating its influence
on the chosen avoidance actions: TURN_LEFT in step 22 and TURN_RIGHT in step
23 as counter-action. After the peak is reached, the agent had to navigate a
half-circle around the obstacle, during which the importance of the depth input
started to decreases until the goal was reached. To check whether attention is
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(a) Episode (b) Depth Saliency over time step

(c) Step 9 (d) Step 53 (e) Step 69

Figure 3.6 – Impact of navigation in a non-straight L-shape line on visual attention.
The agent pays attention to visual input when it considers a direction
change.

caused by visual saliency of the cardboard boxes, we created a “control episode”
where these boxes are in a non-blocking placement (figure 3.5) — the agent had a
significantly decreased (or no) focus on the depth, except when it needed to verify
that blockage might happen, in step 16.

In Figure 3.6 we visualize an episode with an L-shaped trajectory, thus different
from a straight path, which would have otherwise allowed to plainly follow the
GPS directions. The depth input was ignored in the first part of the episode
consisting mostly of forwards moves. However, once the agent needs to find the
turning point, requiring to differentiate between MOVE_FORWARD and TURN_RIGHT,
depth usage jumps up and the heatmap indicates that the action taken at each
time step is strongly related to the regions where the agent looks at (left region for
left turns etc.). We have cross checked several episodes to confirm this tendency,
shown in Figure 3.7 — the agent has a strong tendency to look at the region
towards which it will navigate with a turning action. Not surprisingly, the visual
input is unused when the goal is reached and STOP is called, as this can be decided
from the distance value.
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(a) MOVE_FORWARD (b) TURN_LEFT (c) TURN_RIGHT

(d) MOVE_FORWARD (e) STOP (f) STOP

Figure 3.7 – Visual attention and motion: the agent has a strong tendency to
attend to regions it will navigate to through turns.

Seen Unseen Overall
Scene Agent SR SPL sSPL SR SPL sSPL SR SPL sSPL

Finetuned 100 88.7 86.3 66.7 55.6 54.6 90.9 79.7 77.6NLE real
ROS 100 79.7 78.3 100 96.5 95.4 100 84.3 83.0

Finetuned 100 92.8 90.6 100 91.6 89.1 100 92.2 89.8INSAL real
ROS 100 93.9 92.8 100 91.6 90.4 100 92.8 90.4

Table 3.2 – Quantitative results for experiments on real physical robots comparing
the classical planner (ROS) to the best trained agent. Gray font denotes
that the ROS agent was given the full map of the scenes, not just the
seen regions.

Classical vs. ML Table 3.2 compares the best trained agent to the classical
baselines from the ROS navigation stack. As expected, the classical baselines
slightly outperform the trained agent, but their performance is quite comparable.
We insist again, that this comparison was not the goal, we report it for the sake of
completeness.

Comparison Real vs. Noisy Sim The evaluation of a physical robot in the real
world is a time-consuming exercise, we therefore provide a comparison to another
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Figure 3.8 – Performance on noisy sim (Targeted agent), compared to sim and
real (blue). Noise variants are (cyan):
(1-4): have Redwood Depth noise of intensity 6 and RGB noises based on different
distributions: 1: Gaussian, 2: Speckle, 3: Salt & Pepper, 4: Poisson;
(5-6): applied Gaussian noises with different Redwood Depth Noises (intensity 3
and 9 respectively).
(7-9): Gaussian noises simulated on actuators based on three common controllers
described by (Murali et al. 2019): 7: Proportional Controller (P), 8: Dynamic
Window Approach Controller from Movebase (MB), 9: Linear Quadratic Regulator
(ILQR).
(10): noise settings of CVPR Habitat challenge 2021 (Gaussian, Redwood with
Intensity 1 and Proportional Controller noises).

Figure 3.9 – Error in position (left) and angle (right) between the controller target
and the actual motion done by the robot, on the two scenes: “NLE”
(green) and “INSAL” (blue). Errors are w.r.t. to the estimate obtained
by the ROS-NavStack.

common practice in embodied computer vision and robotics, evaluation in noisy
simulated environments. The goal is to evaluate whether “noisy sim” can and
should be chosen as a proxy for real experiments, and which types of noise should
be chosen.
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We evaluated the agent on the same evaluation episodes (“NLE” environment)
on different environment variants, which differ in noise configurations, as shown
in Figure 3.8. We can see that most of the noise techniques on the visual sensors
are not representative and do not strongly impact performance. However, noise
on the actuators does have a strong impact and can show similar or even worse
performance than in the real environment.

We investigate actuator noise further by measuring the difference between
the position difference planned by a single control step and the actual position
difference performed by the robot, shown in Figure 3.9. We found that the physical
agents need to perform far more actions for the same trajectory than the simulated
one. The gap in error is also partly due to difficult floor conditions — the “NLE”
scene was furnished with thick carpets, which created more challenges to the
robot than the more modern “INSAL” scene.

3.5 Conclusion

We have evaluated three variants of agents on two different real physical envi-
ronments to benchmark the generalization capabilities of physical robots agent in
the real world. We showed that for the PointGoal task, an agent pre-trained on
wide range of scenes and finetuned on a targeted scene in simulation can reach a
high performance and reduce the sim2real gap without the need of any sim2real
transfer technique. We also conducted in depth visualization for the sensor usage
in the neural network to understand the visual reasoning of the agent, showing
that the agent indeed puts a attention on the visual information when needed.

In this chapter, we have illustrated the agent reasoning and generalization
capacity in real environment on the fundamental task of PointNav. In the next
chapter, we want to move a step further by exploring and evaluating a more
complex task in real environment that involves the semantics awareness of the
agent and its memorization capacity. Therefore, we next focus on the MultiON
task (Section 2.1.2). For such a task, we want to build a novel hybrid agent with a
modular design that disentangles the multi-objects navigation task into sub-tasks
(sub-skills). By this disentanglement, we believe that hybrid agent would perform
better than other approaches who tackle the task in an end-to-end manner. Pos-
sibly, this can reduce the challenge of the sim2real gap that can encounter the
hybrid agent without the need of any sim2real transfer technique.
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Chapter abstract
Navigation has been classically solved in robotics through the combination of
SLAM and planning. More recently, beyond waypoint planning, problems
involving significant components of (visual) high-level reasoning have been
explored in simulated environments, mostly addressed with large-scale machine
learning, in particular RL, offline-RL or imitation learning. These methods
require the agent to learn various skills like local planning, mapping objects
and querying the learned spatial representations. In contrast to simpler tasks
like waypoint planning (PointGoal), for these more complex tasks the current
state-of-the-art models have been thoroughly evaluated in simulation but, to
our best knowledge, not yet in real environments.
In this work we focus on sim2real transfer. We target the challenging Multi-
Object Navigation (Multi-ON) task (Wani et al. 2020) and port it to a
physical environment containing real replicas of the originally virtual Multi-
ON objects. We introduce a hybrid navigation method, which decomposes the
problem into two different skills: (1) waypoint navigation is addressed with
classical SLAM combined with a symbolic planner, whereas (2) exploration,
semantic mapping and goal retrieval are dealt with deep neural networks
trained with a combination of supervised learning and RL. We show the
advantages of this approach compared to end-to-end methods both in simulation
and a real environment and outperform the SOTA for this task (Marza et al.
2022).
The work in this chapter has led to the publication of a conference
paper:

75
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• Assem Sadek, Guillaume Bono, Boris Chidlovskii, Atilla Baskurt, and
Christian Wolf (2022a). “Multi-Object Navigation in real environments
using hybrid policies”. In: ICRA 2023;

4.1 Introduction

Robot navigation has progressed from simple waypoint navigation problems in
richly prepared environments, for which robustly working systems are now used
in production, to complex tasks involving high-level reasoning with visual and
semantic concepts. This has been made possible through large-scale machine
learning, mostly in photo-realistic simulators and reinforcement learning from
billions of interactions. The resulting robotic agents, implemented as high-capacity
neural networks, which are however subject to performance drop and lack of
robustness when the policies are transferred from simulation to real environments
with physical robots. This is mostly due to the gap in realism between simulation
and reality ("sim2real gap") which we studied in Chapter 3, as well as the difficulty
to explore a large amount of variation factors inherent in navigation problems,
such as room layouts, furniture, textures and other room details, rare local scene
geometries etc.

There is a recent trend towards modular approaches which decompose the
problem into hierarchical parts (Chaplot et al. 2020b; Beeching et al. 2020c) and
hybrid approaches, which combine a shortest path planner (symbolic or trained)
with a trained policy. While these approaches have been shown to be more sample
efficient (Ramakrishnan et al. 2022), state-of-the-art methods are still evaluated in
simulation and lack thorough tests on real robots.

In this work we address the challenging problem of Multi-Object Naviga-
tion (Wani et al. 2020), which, similarly to the K-items scenario (Beeching et al.
2020b), requires an agent to sequentially navigate through a set of objects in an
imposed order. This task definition favors agents capable of learning to map seen
objects in an internal spatial representation, as navigating to them later in the
episode can increase reward. This makes it stand out with respect to simpler tasks
like ObjectNav, where the combined capacities of exploration and reactive local
planning from the current observation are sufficient to solve the task 1.

As in the last chapter, we target sim2real transfer and to our best knowledge,
are the first to perform a thorough performance evaluation of a method on Multi-
Object Navigation in a real physical environment, see Figure4.1. While simpler
tasks, such as PointGoal, have been evaluated on real robots (Kadian et al. 2020;
Sadek et al. 2022b), evaluation of trained models on more complex tasks has

1. Regularities in spatial layouts may be exploited with an additional form of higher reasoning,
for instance with potential fields (Ramakrishnan et al. 2022), but we do not focus on these aspects
in this work.
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b

c

a

Figure 4.1 – We perform Multi-Object Navigation (Wani et al. 2020), i.e. the
sequential visual search of multiple object in a given order, and are
the first do this in real physical environments (a) characterized by a
large sim2real gap. This is illustrated by two first-person views (b),
real and (c), simulation. We propose a hybrid method combining
classical mapping and deep learning, and compare to the SOTA
methods on this task using end-to-end RL training and auxiliary
losses (Marza et al. 2022).

been sparse or nonexistent. We present a new method for navigation, whose
design choices have been driven by the objective of optimizing performance in
real environments. We propose a new hybrid method which decomposes the
problem into two parts:

¿ “Good Old Fashioned Robotics”(GOFR), that deals with classical navigation
aspects not related to semantics, such as detection of navigable space and
localization (geometric SLAM) combined with waypoint navigation on this
map.

¡ Semantics through Machine Learning, i.e. mapping semantic concepts
required for visual reasoning and exploiting them; exploration of the most
promising areas of the environment exploiting layout regularities.

During navigation, a classical SLAM algorithm (Labbé et al. 2019) creates and
maintains a 2D metric representation in the form of a tensor/map and localizes the
robot on it using LIght Detection And Ranging (LIDAR) input. High-level features,
extracted from visual RGB-D observations with a deep neural network, form a
spatial and semantic point cloud, whose spatial coordinates are aligned with the
metric representation, see Figure 4.2. The combined hybrid representation satisfies
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Exploration
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Figure 4.2 – An agent for multi-object navigation maintains a hybrid represen-
tation consisting of a metric bird’s eye view map combined with a
semantic point cloud. The agent switches between a trained explo-
ration policy and symbolic waypoint selection, deferring low-level
actions to a symbolic planner.

the needs of relevant sub-skills the agent requires: (i) to determine whether a
target object has been observed in the past, (ii) to plan optimal trajectories between
the agent and explored areas, and (iii) to determine the frontiers of unexplored
areas in the environment and thus the next intermediate sub-goals in case the
environment needs to explore to find the next goal. All these sub-skills are
designed and trained separately, which allows to limit sample complexity of
training.

The contributions of this work are the following: (i) we introduce a hybrid
method for Multi-Object navigation combining classical metric SLAM and path
planning with learned components trained with supervised learning and RL; (ii)
we reproduce the Multi-ON benchmark (Wani et al. 2020) in a real environment,
where we place manufactured reproductions of the goal objects, used in originally
simulated target environment; (iii) we compare the proposed method to end-to-
end trained methods in this real environment, in particular with the winning
entry of the CVPR 2021 Multi-ON competition (Marza et al. 2022), which we
outperform in both real and simulated environments.

4.2 Related work

Modular Embodied Navigation Casting a task as an end-to-end learning prob-
lem is widely used in CV and NLP. Navigation has been addressed through
this lens early on, e.g. for exploration (Chen et al. 2019), where a neural policy
processes raw sensory observations and directly predicts agent actions. However,
jointly learning mapping, state-estimation and path-planning purely from data has
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been shown to be expensive (Chaplot et al. 2020b). An alternative are hierarchical
and hybrid architectures (Beeching et al. 2020c; Chaplot et al. 2020b; Chaplot
et al. 2020a; Chaplot et al. 2020c) that compose a learned mapper with global and
local policies, where all components interface via the map and an analytical path
planner. Pushing modularity further, Ramakrishnan et al. (Ramakrishnan et al.
2022) propose to disentangle the skills of ‘where to look?’ from navigation itself.
The network predicts potential functions conditioned on a semantic map and uses
them to decide where to look for an unseen object.

Sim2Real The sim2real gap can compromise strong performance achieved
in simulation when agents are tested in the real-world (Höfer et al. 2020), as
perception and control policies often do not generalize well to real robots due to
inaccuracies in modelling, simplifications and biases. To close the gap, domain
randomization methods (Peng et al. 2018; Tan et al. 2018) treat the discrepancy
between the domains as variability in the simulation parameters. Alternatively,
domain adaptation methods learn an invariant mapping for matching distributions
between the simulator and the robot environment. Examples include transfer
of visuo-motor policies by adversarial learning (Zhang et al. 2019), adapting
dynamics in RL (Eysenbach et al. 2021), and adapting object recognition to new
domains (Zhu et al. 2019). Bi-directional adaptation is proposed in (Truong et al.
2021b); Recently, Chattopadhyay et al. (Chattopadhyay et al. 2021) benchmarked
the robustness of embodied agents to visual and dynamics corruptions. Kadian et
al. (Kadian et al. 2020) investigated sim2real predictability of Habitat-Sim (Savva
et al. 2019) for PointGoal navigation and proposed a new metric to quantify it,
called Sim-vs-Real Correlation Coefficient (SRCC). The PointGoal task on real
robots is also evaluated in (Sadek et al. 2022b). To reach competitive performance
without modelling any sim2real transfer, the agent is pre-trained on a wide
variety of environments and then fine-tuned on a simulated version of the target
environment.

Memory and Maps (Inductive Bias) Memory is a crucial aspect of an intelligent
agent’s ability to reason about 3D space and geometry. Neural memories like
NeuralMap (Haarnoja et al. 2018), MapNet (Henriques et al. 2018) and propose
latent metric maps, which are updated incrementally from the camera observations
and odometry and act as inductive bias for end-to-end training. EgoMap (Beeching
et al. 2020c) augments these maps with multi-step objectives and attention reads,
trained with RL. Alternative neural maps are topological maps (Savinov et al.
2018; Chaplot et al. 2020d; Beeching et al. 2020c), transformers (Pashevich et al.
2021; Fang et al. 2019; Chen et al. 2021; Janner et al. 2021; Chen et al. 2022a; Reed
et al. 2022), which break the Markovian assumption and attend to a large temporal
horizon and implicit representations (Li et al. 2022c; Adamkiewicz et al. 2022).
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Exploration is at the core of all navigation tasks (Chaplot et al. 2020b) and is
in itself studied and evaluated (Anderson et al. 2018a). Efficiently visiting the
environment is useful for solving tasks in known environments and pre-mapping
in unknown ones. Chen et al. (Chen et al. 2019) explored policies with spatial mem-
ory that are bootstrapped with imitation learning and finetuned with coverage
reward. In (Chaplot et al. 2020c), an exploration policy is trained by introducing
semantic curiosity based on observation consistency. SEAL (Chaplot et al. 2021)
trains perception models on internet images to learn an active exploration policy.
They build 3D semantic maps to learn both action and perception models, and
integrate intrinsic motivation. Episodic semantic maps are proposed in (Chaplot
et al. 2020a).

4.3 Hybrid planning and navigation

We target the task of Multi Object Navigation (Multi-ON) introduced by Wani et
al. (Wani et al. 2020), in particular the 3 object variant: during each episode, the
agent has to find 3 cylindrical objects Gn, n = 1, 2, 3, in a pre-defined order, where
Gn is the nth object to find, and is required to call the Found action at each goal.
The episode duration is limited to 2,500 environment steps. At each step t, the
agent receives an egocentric RGB-D observation Ot 2 Rh⇥w⇥4, a Lidar frame, and
the class label of the current target object taken from 8 classes. All training was
performed in simulation only with the Habitat simulator (Savva et al. 2019), but
the system was evaluated, both, in simulation and on a real Locobot robot in a
real environment, more details are given in Section4.4.

With operations on robots in real environment and conditions in mind, we
follow a modular approach, outlined in Figure4.2. The method is hybrid; it lever-
ages both trained neural modules for perception and exploration, and classical
algorithms for occupancy mapping, localization and waypoint navigation. The
main motivation behind this approach is a maximum reduction of the sim2real
gap, avoiding the main pitfalls of end-to-end training of navigation in simulation
followed by a transfer of neural models to the real environment. We explore an
approach that prefers classical methods based on sensor models and optimization,
motivated by their robustness, and employ machine learning in a targeted way for
parts of the system where its use is both necessary and beneficial. We also limit
input to trained models to representations with a potentially low sim2real gap. For
this reason, during navigation the agent builds a metric bird’s eye view occupancy
map from the Lidar input and localizes itself on it using metric SLAM (Thrun
et al. 2005). This binary map is combined with an overlaid semantic point cloud,
which contains the positions of key objects and their semantic classes, which are
detected from the RGB input with an object detector. Detection and mapping are
aligned through the SLAM algorithm’s localization module.
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Navigation is performed hierarchically on two different levels. On a higher
level (outer loop in Figure4.2), 2D waypoint coordinates pt=(x, y) are produced
and provided to the lower level controller (inner loop), whose task is to navigate
to the waypoint using the maintained occupancy map. The high-level controller
switches between two different strategies:

¿ Exploration — when the target object has not yet been observed, i.e. the robot
explores the environment, maximizing coverage. This is done with a learned
policy trained with RL, see below.

¡ Exploitation — when the target object has been observed and thus is part of
the semantic point cloud, its location is taken as a new waypoint and given to
the local planner.

Metric EgoMap To gather navigability information along its path and more
efficiently revisit previously seen areas, the agent builds what is called an EgoMap,
an occupancy grid of fixed spatial resolution centered on its current position and
aligned with its heading direction.

On the real robot, this map is obtained using the RTABMap (Labbé et al. 2019)
library. It uses a graph-based SLAM algorithm with loop closure, a flexible design
taking advantage of RGB-D, Lidar and odometry sensor data. Lidar and/or depth
are used to create a 2D/3D local occupancy grid, associated to a node whose
initial position relies on odometry integration. Descriptors are then created from
keypoints extracted from RGB frames in order to facilitate node comparison and
loop closure detection. RTABMap also includes short- and long-term memory
management, global map compression and multi-session mapping.

In simulation, we take advantage of privileged information to retrieve a com-
plete top-down view of the scene navigability, through a projection of the NavMesh
generated by the Recast&Detour (Recast & Detour library 2016) library in Habitat-
Sim. A fog-of-war mask is then built by ray-tracing in the agent’s field of view
directly on this top-down view using perfect localization.

Both real and sim approaches generate a global map on which we apply a
simple affine transformation parameterized by the agent’s current pose to get the
EgoMap.

Exploration is the main module based on machine learning. In contrast to most
recent work in embodied AI (Beeching et al. 2020c; Chaplot et al. 2020b), the
policy does not take the first person RGB input, but the EgoMap Mt produced by
the metric SLAM algorithm. This leads to a significant simplification of the task
and increased sample efficiency, and it minimizes the sim2real gap, as changes
in lightning, color and texture are avoided. The policy is a part of the outer loop
and predicts 2D waypoint coordinates pt. The problem is partially observable for
multiple reasons: (i) not all areas of the scene have been observed at any point
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Figure 4.3 – The exploration policy takes as input EgoMaps Mt and predicts a
heatmap, which is limited/masked (�) to unexplored areas. The next
waypoint pt is sampled (⇠) from the resulting map Ht.

in time; (ii) for efficiency reasons, the EgoMap Mt does not cover the full scene,
observed areas can therefore be forgotten when the agent navigates sufficiently far
away from them; (iii) even theoretically fully observable problems (MDPs) can be
transformed into POMDPs (“Epistemic POMDPs”) in the presence of uncertainty in
the environment, which is a standard case in robotics, as has recently been shown
in (Ghosh et al. 2021). We therefore imbued the policy with hidden memory ht
and made it recurrent.

The policy p needs to be able to predict multi-modal distributions, as there are
multiple valid trajectories exploring an environment efficiently. We baked this into
the policy through an inductive bias, which forces prediction to pass through a
spatial heatmap Ht, from which the chosen waypoint location is sampled. Before
sampling, we restrict the heatmap to unexplored areas through masking. This
choice also leads to a more interpretable model, as the distribution of targeted
exploration points can be visualized (see Section4.4). This can be formalized as
follows (see also Figure 4.3):

ht = f(Mt, ht�1; qf) (4.1)
H0

t = p(ht; qp), Ht = H0
t � [Mt == “Unexplored00]) (4.2)

pt =⇠ (Ht), (4.3)

where qp and qf are trainable parameters and f is the update recurrent function
of an LSTM with hidden state ht; gates have been omitted in the notation for
simplicity. Here, pt=(xt, yt) is 2D coordinates of the point sampled in the spatial
heatmap Ht, ‘⇠’ is the sampling operator.

We train the exploration policy with RL to maximize coverage and use the
following reward function rt:

rt = arde, rde = et � et�1, (4.4)

where et denotes the explored area at step t, l is the number of inner environment
steps necessary to navigate to the coordinates (x, y) predicted by the policy, a is a
scaling hyper-parameter set to 0.01.
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Local navigation to the waypoint pt is performed by an analytical planner that
computes the shortest path on the current occupancy EgoMap Mt. This is not
necessarily the optimal path, as the map is not equal to the (unobserved) GT map
and the intermediate regions to be traversed (and even the waypoint pt) might
be unexplored. We employ a dynamic planner D* which calculates the shortest
path under classical assumptions and replans when new information is available.
Since we optimize our method to be robust and efficient in real environments,
unlike recent work (Ramakrishnan et al. 2022; Chaplot et al. 2020a) we choose a
D* planner over the commonly used Fast Marching Method (Sethian 1996b). The
path feasibility in real and the speed of planning are the two main reasons behind
this design choice.

Stabilizing training The potential failures and sub-optimal trajectories produced
by local planning in uncertain conditions using D*, as described above, also
negatively impact the training process of the exploration policy. This policy is a
part of the outer loop and predicts waypoints pt, receiving a reward only upon
completion of the full local navigation process. Noise in local planning impacts
the stability of the RL training process and leads to lack of convergence.

We solved this by training the exploration policy interfacing a local policy on
which we imposed a length limit. The full trajectory from the current position to
the next waypoint pt predicted by the exploration policy is split into a sequence of
small sub goals distanced by 0.3m, and the local policy is limited to 5 of these sub
goals. Control is given back to the outer loop if the waypoint pt has been reached,
or the limit of 5 subgoals is reached. This choice lead to stable training and the
trained policy transferred well to the targeted exploration task, without changes.
The same limitation on the length of local planning is also applied at deployment,
which led to improved robustness in real conditions and makes complex recovery
behavior obsolete.

Object Detection and Mapping is framed as a semantic segmentation task
from the current RGB-D frame ot, which we supervise from GT masks calculated
from privileged information in the simulator. The predictor is a DeepLab v3
network (Chen et al. 2017), detected objects in the mask are inversely projected
and aligned with the EgoMap using depth information and the episodic odometry.
Note that both, depth and odometry, are noisy in the real robot / real environment
evaluation settings.

High-level decisions are fully handcrafted, as this leads to a robust and transfer-
able decision process where learning is arguably not required. Given our decision
choices, only one type of decision is required, whether to perform exploration
or exploitation (i.e. navigation towards the goal). This is taken on the basis
whether the current target object has been observed at mapped, or not. If multiple
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Method — LIDAR Usage — Aux Obj.
Map Low-lev cntrl losses(Marza et al. 2022) Segm.

ProjNMap+AUX (Marza et al. 2022) � X X �

Ours X X � X

Table 4.1 – Comparability of the different methods in terms of sensor and infor-
mation availability. Both methods use LIDAR.

objects of the same class have been detected, the location with the most probably
detection (in terms of segmented object pixels) is chosen. A minimum number of
pixels is required for an object to be mapped.

4.4 Experimental Results

Simulation for training in simulation and for additional evaluation (comple-
mentary to experiments on the real platform) we used the photo-realistic Habitat
simulator (Savva et al. 2019) and two datasets with 3D scanned environments,
each with the standard train/validation/test split: (i) the Gibson dataset (120
scenes) and the Matterport 3D dataset (90 scenes).

Real environment To evaluate the method in a real environment, we used the
same platform also employed during the work described in the last chapter: a
LoCoBot robot (LoCoBot: An Open Source Low Cost Robot 2017) [ ] equipped
with an Intel RealSense RGB-D camera and a single-ray Lidar of type RPLIDAR
A2M8 (see Figure 4.1), which we restrict to Field-Of-View equivalent to the RGB
camera. We used the publicly available habitat_sim2real library (Habitat Sim2real
2021), which allows to connect a real robot under ROS to the Habitat simulator as
an agent. We perform tests in a building with classical architecture covering one
large conference room and several adjoining rooms, cf. Figure 4.1, and for a map,
Figure 4.5. The environment features difficult conditions including windows and
glass panels, thick carpets, textureless walls, etc.

Baselines We compared with two end-to-end methods:

• ProjNMap (Projective Neural Map) is based on projective neural memory
as inductive bias for neural networks (Henriques et al. 2018) and has been
explored for the specific task of Multi-ON in (Wani et al. 2020), providing the
best results in the original experiments when the task was introduced.

• ProjNMap+AUX combines the original ProjNMap model with auxiliary losses
on an additional head, which predicts the direction and distance to the current
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———— M-ON Setup ————
Dataset Agent Progress PPL Success SPL
MP3D ProjNMap 41.63 21.81 23.10 14.41

ProjNMap+AUX 62.47 35.21 48.20 62.47
Hybrid (Ours) 55.23 12.41 41.80 11.72

10 episodes ProjNMap 23.33 14.39 10.00 9.21
ProjNMap+AUX 43.33 28.19 30.00 24.88

Hybrid (Ours) 50.00 9.20 50.00 9.20

“M-ON”: CVPR 2021 Multi-ON challenge sensor settings.

(a)

———— LoCo Setup ————
Dataset Agent Progress PPL Success SPL
MP3D ProjNMap 35.47 23.97 19.10 15.49

ProjNMap+AUX 59.97 23.29 33.40 19.75
Hybrid (Ours) 63.37 19.72 50.80 18.44

10 episodes ProjNMap 16.67 13.63 10.00 9.52
ProjNMap+AUX 40.00 12.77 30.00 10.65

Hybrid (Ours) 56.67 12.09 50.00 11.99

“LoCo”: Sensor settings equivalent to the physical robot: FoV=56°, RGB size=160⇥120.

(b)

Table 4.2 – Performance in Simulation (Habitat) for two different environments:
the Matterport 3D validation set (comparable with the CVPR 2021
Multi-ON challenge), and 10 test episodes of the simulated version
of our real environment. The agent sensor configurations used are
compatible with CVPR21 challenge (Table a) and the physical robot
(Table c) used in real environment evaluation (Table 4.3)

target during training (Marza et al. 2022). This method achieved the winning
performance in the CVPR 2021 M-ON Challenge (The CVPR 2021 Multi-Object
Navigation Challenge 2021) and is the current state-of-the-art on this task.

Table 4.1 summarizes sensor usage and information availability of the main
baseline (Marza et al. 2022) compared to our method. All methods use Lidar: ours
- to maintain a metric map, the baseline (Marza et al. 2022) - for a localization step
necessary to perform closed-loop low-level control, mapping the discrete action
space of the neural agent to the continuous motor space of the robot. All methods
use information on object positions during training: ours - in the pre-training step
of the visual encoder, the baseline (Marza et al. 2022) - through auxiliary losses.
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Agent Progress PPL Success SPL

ProjNMap 3.00 0.85 0.00 0.00
ProjNMap+AUX 0.00 0.00 0.00 0.00

Hybrid (Ours) 43.10 6.02 20.00 4.99

Table 4.3 – Performance in the real environment by the physical Locobot on 10
test episodes. We compare with the CVPR 2021 Multi-ON Challenge
winner (Marza et al. 2022) (current SOTA).

Ours

Ours

Figure 4.4 – Coverage (%) obtained by the exploration policy as a function of
episode length (the number of simulation steps), compared to ANS
(Chaplot et al. 2020b) and end-to-end RL baselines using egocentric
input taken from (Chaplot et al. 2020b) on Gibson/Val.

Configurations With different evaluation goals in mind, we created two config-
urations of the agent:

• Locobot: this configuration corresponds to the physical robot (Locobot) and
its sensors. We also created a corresponding Habitat simulator configuration,
which is equal to these settings: FOV of 56° (camera+Lidar), frame size
of 160⇥120 and a compatible camera position. This configuration is of
double use, i.e. can be used for evaluation in both simulation and the real
environment.

• Multi-ON-Compat: we also reused the settings of the Multi-ON benchmark,
making this configuration compatible with prior work like (Marza et al. 2022;
Wani et al. 2020). This includes a FOV of 79° and camera frames of size
256⇥256. This configuration can be used in simulation only.
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——— Coverage (%) ———
Agent Gibson MP3D (domain generaliz.)

RL+3LConv+GRU 73.7 33.2
RL+Res18+GRU 74.7 34.1

RL+Res18+GRU+AuxDepth 77.9 35.6
RL+Res18+GRU+ProjDepth 78.9 37.8
ANS (Chaplot et al. 2020b) 94.8 52.1

Ours 88.4 67.14

Table 4.4 – Coverage obtained by different exploration policies on Gibson and
MP3D. All agents were trained on the Gibson train split (Results on
competing methods taken from (Chaplot et al. 2020b)).

Setup and hyper-parameters decision thresholds are set as follows: at least
0.7% of detected pixels is required for an object to be placed on a map; 5% or
more of detected pixels is required for an object to trigger the Found action.

Results in Simulation are shown in Table4.2. They have been obtained on
two different datasets: (i) on the validation split of the Matterport 3D dataset,
making these runs comparable to the validation entries of the CVPR 2021 Multi-
ON competition, and (ii) on 10 episodes in a 3D scanned version of our real
environment, shown in Figure4.2. These 10 episodes correspond to simulated
versions of the episodes tested in the real environment, see further below. This
simulated environment has not been used for training.

While our main design choices are biased toward a robust performance in real
environments, we can see that it is also highly performant in simulation. In the
LoCo Setup, where the (virtual) sensor configuration mirrors real sensors, the
method outperforms the state of the art on the Progress and Success metrics and is
competitive in the others.

Results in the real environment are shown in Table4.3, on the same 10 episodes
that we tested in simulation. Our hybrid agent was able to collect 43% of the
targets successfully and even finished 2 out of 10 episodes retrieving all 3 required
items. We conjecture that this is due to the strategy to disentangle perception,
exploration, and waypoint navigation, which allows for keeping the sim2real gap
lower than what can be done for the end-to-end (E2E) trained methods.

On the other hand, the performance of the baselines can be considered a failure.
While it has been reported, that end-to-end training of the simpler PointGoal task
in similar conditions can be successful (Sadek et al. 2022b), this did not apply to
our experiences on the much more complex Multi-ON task. While (Marza et al.
2022) obtained the state of the art in the official benchmark, i.e. in simulation, not
a single episode was successful in the real environment. Most failure cases were
related to the poor exploration of the scene and high uncertainty in detecting
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Mt + ptOt (Observation) GT Map, GT objects, waypoint (EgoMap), detected obj., local path

t=6

23

t=6

t=6

17

6

Figure 4.5 – A rollout of an episode with the hybrid model. From left to right:
(1) RGB observation; (2) GT map with the GT goal positions ,
the current agent position , the current waypoint pt ; (3) EgoMap
Mt with the planned local path and (4) a zoomed version. The initial
goal is blue. At t=6, an exploration goal is predicted. The agent
enters a new room, and at t=17 it detects the blue goal and switches
to exploitation mode advancing towards it. At t=23, it observes the
very dark green goal and maps it for future use. A false positive
example (white cylinder) was also detected.

the targets. The agent had a hard time changing rooms and repeatedly failed to
apply ’Found’ when the object is closely upfront. We conjecture that the high
impact of the sim2real gap on raw sensor data(cf Figure 4.1) requires to adapt the
E2E methods on real data for such complex tasks. Although training with real
data is time-consuming, we believe that finetuning the E2E agents on offline real
data with behavioral cloning is possible and would enhance the performance in
upcoming real experiments.

Exploration performance is provided as complementary information in Fig-
ure4.4. On this task, we compare with Active Neural SLAM by Chaplot et al. (Chap-
lot et al. 2020b). We outperform it on the first 200 steps, making our method more



4.5 conclusion 89

!" #"

0 1 2 5 10

Figure 4.6 – For a given time step, we plot the predicted spatial heatmaps Ht for
different training checkpoints, after 0,1,2,5 and 10 million updates.
The lowest and highest probabilities are in dark blue and red, respec-
tively.

robust for limited time-budget exploration. More importantly, given our main
objective of optimizing sim2real performance, we outperform the state-of-the-art
on domain generalization by +15% margin, as shown in Table4.4.

Qualitative results are given in Figure4.5, which shows a rollout for a single
episode. We see that the agent first explores the scene, observes the goal quickly,
and switches to exploitation mode. While navigating to the first goal, it observes
a potential future goal and correctly maps it. Some drawbacks of the hybrid agent
are presented in the detection of false positives such as the white cylinder.

In Figure4.6, we visualize, for a chosen episode in a given environment step,
the evolution of the predicted heatmaps Ht as training evolves (hence, different
checkpoints). Heatmaps correspond to high-entropy distributions at the beginning,
with high uncertainty on exploration targets. As training goes on, the distribution
gets narrower and peaky, making the predictions more and more certain.

4.5 Conclusion

We have extended the Multi-ON task to real environments and up to our knowl-
edge we present the first experimental evaluation of this task in these settings.
We have introduced a hybrid model, which disentangles waypoint planning and
semantics, significantly decreases the sim2real gap, and outperforms E2E trained
models which were the current SOTA in simulation. Future work can focus on
the enhancement of the handcrafted high-level strategy, which needs to be robust
to the false positive detections, a common challenge also in other navigation tasks
(e.g. ObjectNav).

Another enhancement can be done on the reasoning of the high-level planner
(Global Policy) by not limiting to only choosing the next way-point. We can
extend its decision capacity to choose the navigation behavior that suits the
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current situation. Moving toward this direction, in the next chapter, we will
design another hybrid agent that leverages two local planners: a neural End-to-
End planner (Reinforcement Learning (RL) recurrent agent as in chapter 3) and a
classical planner that is commonly used as local analytical planner in the literature
(Sethian 1996a). The planners will be ruled by a high-level policy that dynamically
switches between the two planners depending on the actual situation in the real
environments in order to reach the assigned target.
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Chapter abstract
Navigation of terrestrial robots is typically addressed either with localization
and mapping (SLAM) followed by classical planning on the dynamically
created maps, or by machine learning (ML), often through end-to-end training
with reinforcement learning (RL) or imitation learning (IL). Recently, modular
designs have achieved promising results, and hybrid algorithms that combine
ML with classical planning have been proposed. Existing methods implement
these combinations with hand-crafted functions, which cannot fully exploit
the complementary nature of the policies and the complex regularities between
scene structure and planning performance.
Our work builds on the hypothesis that the strengths and weaknesses of
neural planners and classical planners follow some regularities, which can be
learned from training data, in particular from interactions. This is grounded
on the assumption that, both, trained planners and the mapping algorithms
underlying classical planning are subject to failure cases depending on the
semantics of the scene and that this dependence is learnable: for instance,
certain areas, objects or scene structures can be reconstructed easier than
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others. We propose a hierarchical method composed of a high-level planner
dynamically switching between a classical and a neural planner. We fully train
all neural policies in simulation and evaluate the method in both simulation
and real experiments with a LoCoBot robot, showing significant gains in
performance, in particular in the real environment. We also qualitatively
conjecture on the nature of data regularities exploited by the high-level planner.
The work of this chapter is the result of the internship done by Sombit
Dey at Naver Labs Europe and co-supervised by Assem Sadek. It’s
an extension (in idea and codebase) of the work described in the last
chapter. Apart from close supervision and providing conceptual input,
Assem Sadek also executed the experiments with the real robot. This
work has led to the following publication:

• Sombit Dey, Assem Sadek, Gianluca Monaci, Boris Chidlovskii, and Chris-
tian Wolf (2022). “Learning whom to trust in navigation: dynamically
switching between classical and neural planning”. In: IROS 2023;

5.1 Introduction

Large-scale machine learning has had a significant impact on robotics, and in
particular on navigation of mobile robots, where end-to-end training in simulated
3D environments like Habitat Savva et al. 2019 and AI-Thor Kolve et al. 2017
has been proposed as an alternative to classical map and plan baselines. The
potential advantages of learning to plan with high-capacity deep neural networks
are the promise of complex decision functions, able to cope with large amounts
of noise, sensor failure and unmodeled disturbances, and complex dependencies
on scene semantics, which are difficult to design with handcrafted algorithms.
This complexity comes with a price, the dependency on massive amounts of
training data in the form of 3D scene models loaded into simulators. While the
amount of data seen during training can be almost unlimited (modern models are
trained on typically 100M — up to 7B environment steps (Partsey et al. 2022)), the
main factors of variation are the number of scenes, which are limited due to the
required effort of scanning physical buildings. Current datasets contain dozens or
hundreds of scenes (Xia et al. 2018; Chang et al. 2018), with up to 1000 scenes for
the latest HM3D dataset (Ramakrishnan et al. 2021). Lack of sufficient diversity
in scenes and the sim2real gap — the difference between simulation and real
environment — limit the transfer of navigation performance to real environments.

For these reasons, classical map and plan baselines (Marder-Eppstein et al. 2010;
Macenski et al. 2020) are still competitive in many situations where the navigation
task itself does not depend on complex high-level visual reasoning, and where
maps can be estimated with sufficient reliability. In this work we ask two scientific
questions: (1) are trained and classical planning strategies complementary and
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Figure 5.1 – In indoor navigation problems, we present an agent which can resort
to two different strategies, a trained neural planner and a classical
planner based on occupancy maps. An additional high-level governor
is trained to switch between the two strategies based on learned
regularities between planning performance and scene semantics, for
instance that high chairs are not well reconstructed and lead to
bad performance of a classical map-and-plan solution. We train in
simulation and evaluate in, both, simulation and an office building
using a real robot.

excel in different situations, and (2) can these different types of situations be
clearly distinguished from visual observations, making it possible to exploit these
regularities?

We explore these questions in a series of experiments and propose a new
hybrid method combining classical and neural planning. Compared to existing
hybrid solutions in the literature (Dashora et al. 2021; K. Weerakoon and A.J.
Sathyamoorthy and D. Manocha 2022; A. Faust and O. Ramirez and M. Fiser and
K. Oslund and A. Francis and J. Davidson and L. Tapia 2018), our method is based
on a trained combination. A high-level planner, trained with RL, dynamically
switches between the two alternative planning methods and learns to adapts to
the situation at hand, as shown in Fig. 5.2. To this end, it receives as input features
extracted from first-person images, which may be useful to exploit correlations
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between scene semantics and planning performance. We also experiment with
a variant which takes the high-level decision on, both, the first person input
and occupancy map. The exact regularities picked up by the high-level planner
may be complex, and we attempt to answer this question in the experimental
part of this paper. To further motivate this approach beforehand, we mention
possible scenarios: 3D scene structures difficult to reconstruct and to project into
an occupancy map might be recognizable from their first person depth input, or
linked to their semantic class and recognizable from the first person RGB input;
2D structures in the occupancy map harmful to classical or neural planning could
be detectable directly; the trained low-level planner might be subject to biases
picked up in simulation from spurious correlations, and these biases might be
learnable by the high-level planner, switching over to classical planner when
needed.

We claim the following contributions:

• a hybrid method switching between complementary navigation strategies
based on a high-level planner trained with reinforcement learning on dense
reward (geodesic distance to the goal).

• Large-scale training in 3D photorealistic simulation using complex first person
RGB-D input.

• Transfer from simulation to a real environment and extensive experiments
with a LoCoBot mobile robot.

5.2 Related work

Navigation with mapping and planing is the core capability of service robots
since their introduction (Burgard et al. 1998). Classic navigation stacks often
assume access to a pre-scanned map of the environment (Burgard et al. 1998;
Marder-Eppstein et al. 2010; Macenski et al. 2020) and are composed of three
main modules: mapping and localization using visual or Lidar SLAM (Thrun
et al. 2005; Labbé et al. 2019), global planning with, for example, A* (Konolige
2000) or Fast Marching Method (FMM) (Sethian 1996a), and low-level local path
planning to reach intermediate waypoints (Fox et al. 1997; Rösmann et al. 2015).
The classical planner used in this work does not have access to the environment
map where it is deployed. It uses depth images and odometry to incrementally
build a 2D egocentric occupancy map and localize the agent on it, while planning
is done using FMM.

End-to-End navigation directly trains an agent to predict actions from observed
input, either with reinforcement learning (RL) or imitation learning (IL). Given the
partial observable nature of the problem, the agent keeps latent memory, typically
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through a recurrent neural network. Additional structured neural memory has
been proposed, e.g. neural metric maps (Henriques et al. 2018; Beeching et al.
2020b), semantic maps (Chaplot et al. 2020a), neural topological maps (Chaplot
et al. 2020d; Savinov et al. 2018; Shah et al. 2022; Beeching et al. 2020c) or implicit
representations (Li et al. 2022c; Marza et al. 2023b). Recently, it has also been
proposed to replace recurrence by Transformers (Vaswani et al. 2017) with self-
attention over the history of observations (Fang et al. 2019; Du et al. 2021; Chen
et al. 2022a; Reed et al. 2022).

Modular and hybrid navigation Modular approaches decompose planning
hierarchically. While the option framework R.S. Sutton 1999 provides a generic
solution in the context of planning with RL, specific solutions have been proposed
for navigation. Typically, waypoints are proposed by a high-level (HL) planner,
and then followed by a low-level (LL) planner. In one line of work, the HL planner
is a trained model, which triggers actions by the LL planner, which is either also
trained (Chaplot et al. 2020b) or classically based on shortest path calculations on
a map (Chaplot et al. 2020a; Sadek et al. 2022a) or optimal control (Bansal et al.
2019). In the complementary line of work, the HL planner is based on classical
optimization based algorithms, e.g. Probabilistic Roadmaps (A. Faust and O.
Ramirez and M. Fiser and K. Oslund and A. Francis and J. Davidson and L. Tapia
2018) or shortest-path calculations in a high-level graph (Beeching et al. 2022).
Both of these solutions defer point-to-point navigation to a LL planner trained
with RL.

Hybrid methods combine classical planning with learned planning. Some of
the modular approaches mentioned above can be considered to be hybrid, but
there exist hybrid approaches in the literature which combine different planners
more tightly and in a less modular way. In K. Weerakoon and A.J. Sathyamoorthy
and D. Manocha 2022 and similarly in Dashora et al. 2021, a planner trained
with RL generates trajectories, which are used to generate a cost-map used by a
classical planner. In Zeng et al. 2020, a neural planner generates UAV trajectories
which are then used by a model-predictive control as support for optimization.
Neural-A* learns a model predicting a cost-map for planning with a differentiable
version of A*, backpropagating a supervised loss through it (Yonetani et al. 2021).
Similarly, Cognitive Mapping and Planning (Gupta et al. 2017a) learns a mapping
function by backpropagating through a differentiable planner, in the form of Value
Iteration Networks (Tamar et al. 2017). In Beeching et al. 2020c, a graph-network is
imbued with inductive bias for planning with the Bellman-Ford algorithm.

All these existing solutions combine planners with different but handcrafted
designs. In contrast, our method dynamically switches between types of planners
with a trained model. Similar to our approach, in Kastner et al. 2022, a HL planner
is trained on a schematic simulation to switch between a classic model-based
planner and a learned planner for dynamic obstacle avoidance. However, this
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Figure 5.2 – We distribute navigation decisions over two different planners: a
trained low-level planner pn takes RGB-D first-person input, and a
classical planner pc takes a metric occupancy map Mt as input. A
high-level planner ph exploits regularities between scene elements
and planning performance and learns to take a binary decision be-
tween these two planners, based only on first person inputs. The
hidden state of the recurrent policy pn is updated even when the
classical planner is used.

work considers a simple 2D set-up where all planners have access to the full map
of the environment, perfect 360� Lidar scans and exact obstacle positions, while
our methods only access noisy first-person images in a realistic 3D simulator and
a real robot. Also, the HL planner in (Kastner et al. 2022) tackles the considerably
simpler task of selecting one of two options tailored to two different situations:
efficiently navigate to a goal or avoid dynamic obstacles. In contrast, our HL
planner has to learn to exploit subtle correlations between scene structure and
semantics and planning performance to combine LL algorithms that are designed
for the same task with comparable performance.

5.3 Learning to choose planners

We address the PointGoal task where an agent receives a visual observation
ot 2 R4⇥H⇥W (an RGB-D image) and a Euclidean goal compass vector Gt at each
time step t and must take actions at in a discrete action space L = {MOVE_FORWARD
25cm, TURN_LEFT 10�, TURN_RIGHT 10� and STOP}. The STOP action terminates the
episode successfully if the agent is within 0.2m of the goal, or unsuccessfully if
not.

As shown in Fig. 5.2, our method takes decisions at each time t on whether to
choose an action predicted by a neural planner pn or a classical planner pc. We
will first introduce each low-level planner and then the high-level governor ph.
In what follows, superscripts .n, .c and .h do not take numerical values but rather
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denote choices between the neural, classical, or high-level planner, respectively.
Network architectures of all trainable functions will be provided in section 5.3.4.

5.3.1 The neural planner

The neural planner pn is trained in simulation to directly predict navigation
actions an

t 2 L from visual input ot. It sequentially builds a representation ht
from the sequence {ot0}t0<t of visual first-person observations, and then predicts
a distribution over actions,

ht = f n(ht�1, v(ot), an
t�1), (5.1)

p(an
t ) = pn(ht, Gt), (5.2)

where f n is the update function of a recurrent GRU network, with gates omitted
from the notation for convenience; v is a visual encoder, i.e. a trained ResNet
extracting features from observations.

We train this planner end-to-end with PPO (Schulman et al. 2017b) with the
reward definition from (Chattopadhyay et al. 2021),

rt = K · Isuccess � DGeo
t � l, (5.3)

where K=2.5, DGeo
t is the gain in geodesic distance to the goal, and slack cost

l=0.01 encourages efficiency.

5.3.2 The classical planner

Numerous algorithms and implementations exist for planning based on dynam-
ically estimated maps. We use the map and plan baseline approach proposed
in Gupta et al. 2017a, which maintains an egocentric metric occupancy map
Mt 2 [0, 1]N⇥M, called “Egomap”, over time by first inversely projecting the depth
channel of the visual observation ot (using intrinsics of the calibrated camera)
and then pooling the resulting point cloud to the ground, resulting in a local
bird’s-eye-view map for this observation. Consecutive maps are aligned with
odometry and integrated with max pooling, as in Chaplot et al. 2020a. Planning
is performed on this map using FMM (Sethian 1996a).

The action space of a planner based on shortest path calculations is inherently
tied to the underlying representation it uses for planning, which in our case
is the resolution of the metric map Mt: a navigation action is a part of a path
in the graph structure of the map Mt, i.e. the choice of an edge between two
nodes. However, to align the action spaces of the two complementary navigation
strategies, we chose to translate these predictions into actions taken from the
discrete alphabet L of the downstream navigation task. This not only facilitates
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the design of the high-level planner, but also allows to run both low-level planners
simultaneously and maintain their respective states, as will be discussed in the
next section. This translation is done with a well-known, publicly available map
and plan baseline 1.

5.3.3 The high-level planner

The high-level planner ph takes a binary decision dt 2 {0, 1} on the choice of
planners, such that the final navigation action at is given as

at = dtan
t + (1�dt)ac

t . (5.4)

The planner is implemented as a recurrent policy, which maintains a hidden state
rt with a GRU, denoted as f h, and which takes as input features extracted from
the first person input ot,

rt = f h(rt�1, v0(ot), dt�1), (5.5)

p(dt) = ph(rt, Gt). (5.6)

The feature extractor v0 has the same architecture as v in Eq. (5.1), see Section 5.3.4,
and it is fine-tuned from the trained version of v.

The high-level planner is trained with PPO end-to-end, jointly with the encoder
v0, with a reward used for the neural low-level planner in Eq. (5.3). We train
with vectorized environments and maintain 12 agents per batch. The neural
planner pn is operated in parallel to the classical one pc, and its hidden state ht is
updated with Eq. (5.1), even if it has not been chosen by the high-level planner,
by providing it with the action taken by pc. This allows the neural planner to
maintain a spatial internal representation during navigation consistent with what
it experienced during training, regardless of its actual use in the hybrid setting.
Two key design choices were necessary to make this possible: the alignment of
the action spaces of the two planners (see Section 5.3.2), and the possibility of
updating the internal state h with an action different from the one predicted by the
agent pn itself. The latter is enabled through sampling actions stochastically from
the predicted discrete distribution p(an

t ) during training; this leads the agent to
update its internal (spatial) representation of the scene not based on its previously
predicted action, but on the effectively performed previous action at�1 input to
the policy in Eq. (5.1).

We add two remarks here. First, during training, we sample from the predicted
distribution p(an

t ), which is different from the distribution of frequent action
choices by the competing classical planner pc — we chose to ignore this difference.
Second, as in large part of the literature, we train without actuation noise, i.e. the

1. https://github.com/s-gupta/map-plan-baseline

https://github.com/s-gupta/map-plan-baseline
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Figure 5.3 – Training pipeline and data splits: training the hybrid planner ph

requires a custom data split, as training needs to be performed on
data which have not been seen during training of the low-level neural
planner pn. !q indicates training network parameters with SGD
training; !A indicates architecture optimization (manual, through
“grad student descent”). We accepted some overlap in optimizing
hyper-parameters, see the text. However, evaluation was performed only
on scenes unseen during training and hyper-parameter optimization.

previous action at�1 provides the exact odometry information during training.
Previous work (Kadian et al. 2020) shows that doing so improves performance in
real-world experiments. At testing the learned policy is directly transferred to the
noisy setting.

5.3.4 Network architectures

The visual encoders v and v0 are ResNet18 (He et al. 2016) architectures. The
recurrent policies are composed of GRUs f n and f h with 2 layers and hidden
states of size 512. Previous actions an

t�1 and goal compass vector Gt are encoded
with learned embeddings of size 32.

5.4 Experimental Results

Experimental setup all training was performed in simulation only with the
Habitat simulator (Savva et al. 2019) and scenes from the Gibson dataset (Xia
et al. 2018), which contains 3.6M episodes over 72 different scenes for training,
and 994 navigation episodes over 14 scenes for validation. We test the system in
both simulation, with additional noise, and a real physical robot, in particular a
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LoCoBot robot (LoCoBot: An Open Source Low Cost Robot 2017) [ ] equipped with
an Intel RealSense D435i RGB-D camera and a single-ray Lidar of type RPLIDAR
A2M8.

The agent receives an RGB-D observation of size 160⇥120 pixels at each step,
which in simulation matches the extrinsic and intrinsic parameters (position, the
field of view and aspect ratio) of the onboard camera on the LoCoBot. It also gets a
goal compass vector in the form of the Euclidean distance and direction, provided
as privileged information in the simulator, and by the robot’s position estimation
system in experiments with the real physical robot. In the robot experiments
this is done using the default ROS implementation of the Adaptive Monte-Carlo
Localization algorithm (Thrun et al. 2005), which is based on RTAB-Map, a 2D
metric representation (Labbé et al. 2019) generated from Lidar input. The Lidar is
only used to localize the robot, while sensing, mapping and planning are based
solely on RGB-D camera input.

Simulator settings we removed the possibility of the robot to slide across the
walls (sliding OFF). This makes the PointGoal navigation task more challenging
for both low-level planners, and previous work (Kadian et al. 2020) finds this
setting crucial for real-world deployment. We configure the Habitat simulator and
adjusted it to the properties of the physical robot (LoCoBot) and its sensors: FOV
of 56° camera, frame size of 160⇥120 and a compatible camera position. For the
experiments which involved evaluation in simulation, i.e. Tables 5.1, 5.2 and 5.3,
we used a second simulator configuration which is compatible with the prior
work (Wani et al. 2020; Marza et al. 2022). It includes a FOV of 79° and camera
frames of size 256⇥256.

Data splits and training pipeline as usually done in the relevant literature, we
report results on the validation set of the Gibson dataset, as the test set is not
available. However, to obtain optimal performance, this requires additional splits
for validating the different models (hyperparameter optimization). In our case,
differently from the classical settings, we require additional splits due to the fact
that the high-level planner is trained on output of the neural low-level planner.
Therefore, the high-level planner ph needs to be trained on data different from
training pn, in order to avoid a potential bias of ph trained on an overconfident
pn overfitting on its training environment and leading to skewed decisions. We
therefore introduced an additional dataset split called Gibson-custom which consists
of 1036 episodes over 14 unused scenes selected from the full Gibson dataset.

Figure 5.3 illustrates the training pipeline. The neural low-level planner pn is
trained on the Gibson training set. The high-level planner is trained on the custom
split, and the Gibson validation set is used to report results. The hyper-parameters
(network architectures A) of the low-level planner pn have been optimized on
Gibson-custom. In other words, we accepted a small possibility of training ph on
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Agent Input Train-N Test-N Succ. SPL
Neural RGB-D 7 7 90.94 77.14
Neural RGB-D 7 Redwood+ 87.87 74.21
Neural RGB-D Redwood+ Redwood+ 89.24 75.92

Classical Egomap N/A 7 87.93 79.69
Classical Egomap N/A Redwood 78.67 72.17

Table 5.1 – Performance of different low-level planners in simulation (Gibson-val),
where N is the noise model. The table shows how the difference
between Redwood and Redwood+ impacts the neural planner.

Agent Success SPL
Classical only (pc) 78.67 72.17
Neural only (pn) 89.24 75.92

Random HL-decisions 88.88±1.4 73.78±1.1

Hybrid (Ours) 90.64 75.62

Table 5.2 – Performance of the hybrid method in simulation, tested with Red-
wood+ Noise.

— Input to ph — Success SPL
1st person Egomap⇤

RGB-D 7 90.64 75.62
RGB-D X 90.85 75.78

7 X 89.03 74.87

Table 5.3 – Impact of the privileged map information on the high-level planner:
simulation with Noise on Gibson-val.

overconfident decisions based on validation overfit, but we judged this risk to be
small. To work around the requirement of one more data split to optimize the
hyper-parameters of the high-level planner, we optimized them using a proxy
task, namely exploration. More precisely, we use the network architecture of the
high-level planner introduced in Chapter 4 (Sadek et al. 2022a). This planner
provides high-level decisions of different nature, waypoint coordinates followed by
a low-level planner, and we adapted its later layers to take binary decisions instead.
These decisions did not interfere with the soundness of the evaluation protocol:
all evaluation was performed only on scenes unseen during training or hyper-parameter
optimization.
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Agent Success SPL SPLSucc

Classical only (pc) 33.33 27.19 81.57
Neural only (pn) 100.00 58.55 58.55

Hybrid (Ours) 100.00 72.50 72.50

Table 5.4 – Performance of the hybrid method in the real environment: A Lo-
CoBot in a real classical European office building (the "Chateau" of
Naver Labs Europe), on 12 test episodes. SPLSucc indicates the SPL
metric only for the episodes which were succeeded.

5.4.1 Quantitative Results

Performance of the low-level planners we evaluated the two low-level planners
in simulation and report results in Table 5.1. We explored different noise types on
the depth observation, which is used, both, as input to the neural planner and
to generate the Egomap for the classical planner. Redwood noise is classically
used in evaluation of navigation (Anderson et al. 2018a), and we also explored
an additional variant which we call “Redwood+” in Table 5.1. It is motivated by
the observation that in the standard Habitat implementation of the depth noise
model, a depth D above a given threshold T was set to zero 2, i.e. if(D>T)D=0,
which is the inverse behavior of the noiseless setting, which truncates depth, ie.
if(D>T)D=T. We argue that this extremely strong discrepancy does not fall into the
category of noise but rather to a change in the nature of the sensor (it corresponds
to the behavior of certain depth sensors like Kinect), degrades transfer and does
not allow a sound evaluation; we therefore replaced this zeroing version with the
standard truncating variant. This difference mostly has an impact on the neural
planner, not the classical one.

As we can see in Table 5.1, the planners perform similarly in the noiseless envi-
ronment. However, the classical planner’s performance drops significantly in the
noisy environment, due to a degraded quality of the Egomap on which planning
is performed. The impact of noise on the neural planner is less pronounced.

Hybrid planning in simulation Table 5.2 compares performances of the low-level
planners with the proposed hybrid planner. The hybrid planner outperforms both
low-level variants in the Success rate, and also outperforms the baseline random
high-level decisions. This version of the HL-planner takes as input the first-person
RGB-D observation and thus exploits regularities between the currently observed
scene structure and low-level planning performance.

We also explored whether there exist correlations between the 2D structure
of the occupancy map and performance of the two low-level planners and a

2. https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/
habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73

https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73
https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73
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Figure 5.4 – Rollouts of four episodes in different environments: the robot starts
at ⌅ and has to reach the goal position ⌅. Top row: comparing
trajectories taken by the trained neural planner, classical planner and
our hybrid planner. Bottom row: each step of the hybrid planner
path in the top row is colored with the chosen low-level planner,
neural or classical.

Figure 5.5 – Failure cases: Two examples where the hybrid planner perform worse
than the neural and classical planners.

high-level planner on this input, additional to first-person input. As a proof of
concept, and to minimize the impact of noise and purely focus on scene structure,
we performed this experiment with a noiseless Egomap⇤ generated through
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Mt + ptRGB observation               Depth observation             GT map and current path             (occ. map, shown allocentric)
t=6
17

t=6
99
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34

Figure 5.6 – A rollout of an episode, showing inputs and representations. We
overlay the current path over the ground-truth (GT) map, color coding
neural steps and classical steps. The robot starts at ⌅ and has to reach
the goal position ⌅. For better comparability, the Egomap Mt is
shown here not as an Egomap but in an allocentric frame. The big
black arrows indicate parts of the map corresponding to the scene
shown in Figure 5.1.

privileged information in the simulator. Results in Table 5.3 show that the impact
of the scene structure is minimal.

Experiments with a real robot we carried out 12 episodes with the LoCoBot in
Naver Labs Europe office building, the "Chateau" (see Figure 5.1) with multiple
rooms and challenging situations, like thick carpets and multiple big windows
that pose problems to the onboard depth sensors. We report results in Table 5.4
shows that the hybrid solution outperforms both individual standalone low-level
planners significantly.

The low performance of the classical planner is explained by the fact that
the maps it produces are noisy. One particular aspect we can single out is the
choice of map integration over time as in Chaplot et al. 2020a, which uses max
pooling to combine the bird’s-eye-view estimate of the latest observation with the
current global bird’s-eye-view map. This choice is simple to implement but not
as robust as state-of-the art Lidar based solutions like RTAB-Map, that feature
a sophisticate probabilistic model and loop closure. Our choice is motivated by
the objective to minimize the algorithmic sim2real gap of the two representations:
the current state-of-the-art mapping solutions are difficult to integrate into a
simulator like Habitat. The goal of these experiences is not to achieve state-of-the-
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art performance in planning, but to study the possibility of learning regularities
in planning performance.

Another reason of the low classical planner’s performance is the lack of high-
level reasoning in case of missing information. The planning algorithm assumes
that any unobserved area in the map is navigable, it corrects these estimates when
a new observation becomes available and re-plans. This leads to backtracking
and long trajectories. In contrast, the neural planner takes decisions not based
on a 2D occupancy map but on first person input, which provides better cues on
dead ends. It can also learn higher-level visual reasoning from a large amount
of environment interactions and can avoid situations where backtracking would
be needed otherwise. To quantify this behavior, in Table 5.4 we also provide
an additional metric, SPLSucc, which corresponds to the SPL metric only for the
successful episodes by the respective planner. This metric is high for the classical
planner, which is efficient in cases where it does not get lost in local minima and
requires extensive backtracking, leading to exceeding the maximum number of
steps the task allows (=500).

The hybrid planner achieves the same 100% success rate as the standalone neural
planner, but with a better SPL metric (72.50 instead of 58.55), which indicates that
it is more efficient. The neural planner indeed spends more time exploring, which
makes it more robust than the classical planner in certain situations but can also
be harmful in others. The hybrid planner manages to combine both advantages
by dynamically switching between them.

5.4.2 Qualitative Results

Sample trajectories in simulation Figure 5.4 shows four episodes in different
environments. The top row of pictures compares the behaviour of the neural,
classical and hybrid planners. The bottom row shows the decisions taken by
the hybrid planner in each episode. Our hybrid solution combines the low-level
planners to solve long-horizon navigation tasks by exploring complex unknown
environments, maneuvering in narrow spaces and efficiently reaching the goal.
The hybrid planner starts episodes by using mainly the neural planner, which
has better exploration capabilities. The neural planner is the preferred choice
when the robot has to pass through a narrow corridor, as in the 3rd example. The
classical planner is frequently employed towards the end of the episodes, when
the path to the goal is clearer, as in the 4th example.

While the proposed hybrid approach has on average better navigation perfor-
mance, this strategy can occasionally perform worse than the individual low-level
planners. Figure 5.5 shows two typical failure cases: on the left, the hybrid planner
selects the neural planner to start the episode, but it explores the wrong side of
the scene, so the hybrid planner has to take a long detour to reach the goal. On
the right, a more rare but dramatic failure case occurs when the hybrid planner,
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driven mainly by the neural planner, gets lost and starts to frenetically explore
the environment. We conjecture that this might be due to few actions executed by
the classical planner that put the neural planner in an unstable state.

Example robot rollout Figure 5.6 shows an example episode rollout for three
time instants t = 17, 34, 99, including the first person input ot (RGB and depth),
the GT map with the overlaid path and color coded high-level decisions, as well as
the occupancy Egomap Mt — which we display in an allocentric way (and not as
an egocentric map) for better comparability with the GT map. During the episode,
we can notice that the HL planner relies more on the neural planner, which is
more capable of navigating through narrow spaces encountered in this episode,
except when the robot deviates from the most promising direction (towards the
door) and the classical planner is chosen. Indeed, until t = 17, the classical
planner dominate the HL decisions, and guides the robot towards the goal. After
a segment where the neural planner is chosen, at t = 34, the classical planner
takes over again to readjust the direction of the robot; then, until the end of the
episode, the HL planner switches again to the neural one to traverse the final
narrow passage.

5.5 Conclusion

We have presented a hybrid method for navigation in real environments, which
combines advantages of classical planning methods based on occupancy maps
and shortest path computations with the power of neural methods trained in
large-scale 3D photo-realistic simulations. We used RL to train a neural HL
planner to dynamically switch between the two different LL planners and showed
that they are complementary. Our experiments provide evidence for correlations
between the observed scene structure and the difference in planning performance
between the two LL planners, which are exploited by the hybrid solution. We
have evaluated the proposed method in, both, simulation and a robot in a real
office building, showing that the learned regularities transfer well. Future work
will focus on learning the high-level decision on real data in the form of offline
trajectories captured with a physical robot.
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6.1 Summary of Contributions

In this manuscript, we described different contributions that leverage classical
robotics and deep learning-based agents for robot navigation in real environments.
Our contributions can be summarized as follows:

Sim2Real generalization capacity of end-to-end neural agents In two real
physical environments, we conducted an evaluation of three variants of end-to-
end neural agents. The purpose is to benchmark the generalization capacities of
end-to-end agent models, deployed on physical robots. We showed that for the
PointNav task, fine-tuning an agent on the simulation twin of the targeted real
scene reduces the sim2real gap applying any sim2real adaptation technique. The
agent has already been trained on various publicly available scenes. Currently,
scanning buildings can be done in a very short time with handheld devices (e.g.
matterport devices - Matterport (2020) or smartphones equipped with LIDAR), and
produces high-quality photorealistic scenes. We encourage the idea of fine-tuning
end-to-end agents, deployed on commercialized robots, on scanned buildings.
This can enhance the current performance of the robot to realize its assigned task
in the targeted real environment.

Interpreting neural agents in real settings We realized an in-depth analysis to
visualize and interpret the sensor usage of the neural agents during real scene
navigation. The analysis helped in understanding the visual reasoning of the
agent and how the agent understands the usefulness of each input sensory signal.
We visualized the backpropagated gradients with respect to the input. We found
that the neural network attends to regions in visual observation where the agent is
going to act next, in another word, to where it is looking at (e.g., looking right to
move right). More interestingly, in the case of an encountered obstacle, the average
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gradients of depth sensor are higher than in the case of no obstacle. Moreover,
the neural network attends to the region of the blocking obstacle. On the other
side, the visual sensors had negligible attention (possibly, unused) when the agent
reached the goal. We conjecture that the agent currently "understands" (in some
sense) the usefulness of the odometery and goal sensors over visual sensors. The
current interpretation study indicates that the agent indeed puts an attention on
the visual information when needed.

Hybrid agent for multi objects reasoning tasks We have introduced a novel
hybrid agent for the MultiON task, designed to be deployed in real scenarios. The
design choice of the hybrid agent disentangles semantics reasoning, exploration
reasoning and waypoint planning. The disentanglement decreases the sim2real
gap for trained agents and increases the interpretability of the agent. We did a
comparison between the hybrid agent and the end-to-end neural agents trained,
whether with and without privileged information. Despite the state-of-the-art per-
formance of end-to-end agents in simulation, the hybrid agent outperforms them
in real environments. In Simulation, the hybrid agent has the best performance
with real robot configurations.

Novel EgoMap exploration policy We introduced a novel exploration module
for the hybrid agent trained with Deep Reinforcement Learning (RL). The policy
doesn’t process any visual observations, only ego-centric maps (EgoMap), by a
metric Simultaneous Localization and Mapping (SLAM) is running in parallel. The
usage of a metric map only solution for exploration minimized the sim2real gap.
The exploration policy outperforms the state-of-the-art methods on new unseen
environments.

Hybrid agent for efficient planning We leverage the availability of two different
decision-making approaches: symbolic and neural planners. We introduced
another high-level planner that dynamically switches between the two planners.
The switching mechanism is based on the high-level planner prediction on “whom
to trust” to do planning at the current time step. We showed that adding two
different planners simultaneously didn’t produce any “self-destructive” behavior
that can elongate the path to reach the end goal. On the contrary, when we
compared with the two baselines: standalone symbolic and neural planners, the
new agent outperforms both. We tested the hybrid approach on PointNav task in
both setups: simulation and real.
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6.2 Perspectives for Future Work

Semantics’ aware agent, robust to false detections The high-level policy we
introduced in Chapter 4 (Ego-Map Exploration) is a semantic-agnostic planner that
proposes a way-point for navigation, it considers neither the semantic layout of
the environment nor the current semantic target. Although, our high-level policy
has an exploration performance in scene coverage, in addition to its contribution
to our hybrid agent performance in the MultiON task, we consider the lack of
semantic awareness to be a limitation. Some of the existing hybrid agent works
introduced semantic inductive biases (Chaplot et al. 2020a; Ramakrishnan et al.
2022; Zhai et al. 2022) in their high-level policies and offer promising results
on single object navigation (ObjectNav) in simulation and in real (Gervet et al.
2023). We believe that these methods, if adapted to the multi-objects variants, can
maintain good results.

But a challenge that we share with these works are the false positive detections
in the environment, which are accumulated on the map once they are projected.
These detections act as false guidance for the high-level planner, hence the whole
navigation episode is prone to fail drastically. Most of the semantic projection
techniques used in hybrid agent rely on off-the-shelves 2D semantic segmentation
models. These models don’t consider any 3D structure of the model in the
environment and treat different observations as independent samples of the
environment (refer to Passive AI in introduction - Chapter 1). Future directions in
semantic mapping should consider these previous detections. An agent should be
able to “rethink and readjust” its previous detections with the current one and
only map the object once it has high certainty. One possible direction is to use
transformers to correlate and attend between the history of detection and mapped
positions. Transformers have already been used in similar contexts. They have
been used as an alternative for hand-designed “non-maximum suppression” in
object detections (Carion et al. 2020) and as a data association between frames in
object tracking (Meinhardt et al. 2022).

Implicit neural representations for hybrid agents Although, in this thesis, we
favor explicit representations of the environment, implicit neural representations
have recently shown some advancements in novel view synthesis. In 2020, Neural
Radiance Fields (NeRF) (Mildenhall et al. 2020) have been introduced as a neural-
based solution for the novel view synthesis problem. A scene is represented in a
fully connected neural network, whose input is the spatial location and viewing
direction and outputs the RGB view with the appearance (emitted radiance).
Additionally, Yen-Chen et al. (2021) build a framework, called iNeRF that performs
pose estimation by “inverting” NeRF. Implicit neural representation opens the
door for new advancements in robotics. Adamkiewicz et al. (2022) propose an
algorithm for navigating a drone through an indoor 3D environment represented
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as a NeRF (trained offline) using RGB-only for localization. The drone has to
avoid obstacles to reach a specific goal using the NeRF representations. Li et al.
(2022c) uses implicit representations to encode the distance between any position
in the scene and a navigable goal. Li et al. (2021) uses implicit representations to
tackle robot manipulation tasks that involve rigid bodies and fluids. They show
that a dynamics model, constructed from learned implicit representations space,
enables visuomotor control for manipulations.

In mobile navigation, Marza et al. (2023b) proposes two implicit representations
as inductive biases in autonomous agents navigating to find multiple objects
(MultiON). A semantic finder function the predicts the position of a previously
seen objects and a structural representation function that predicts occupancy and
exploration. They succeeded to learn these functions dynamically during the
navigation episodes. Moreover, Sucar et al. (2021) bring out an implicit SLAM
approach: a dense real-time SLAM that uses implicit neural scene representation.
It’s potentially capable of jointly optimizing a full 3D map alongside the camera
poses. An extension of this work has been introduced in semanticNeRF (Zhi et al.
2021) that jointly encodes semantic with appearance and geometry. Therefore, a 2D
semantic labels can be attained accurately and completely using few annotations.
We suggest that SemanticNeRF can cooperate inside hybrid modular agents with
explicit mapped objects to add a “verification layer” to minimize the possibility of
false objects mapping. Marza et al. (2023a) has already moved into this direction
by using trained SemanticNeRFs with exploration embodied agent. The agent
plans with a symbolic planner on the Bird Eye-View map, estimated from the
NeRFs.
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