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A main challenge in modern aeronautics is to achieve disruptive design solutions for
a greener and affordable aviation. One way towards this target is to increase aerody-
namic efficiency through very high wing aspect ratios, involving lighter and flexible
structures to reduce weight. A main obstacle in this path is to provide trustable pre-
dictions at the early design stage, where the conventional approaches fail due to insuf-
ficient knowledge, and limited room for high-fidelity analyses. Considerable progress
has already been achieved by embedding more efficient, physics-based methods into
the process. However, in most cases the effort of studying complex phenomena is not
accompanied by an assessment of the inherent uncertainty. And yet, uncertainty can
be critical especially in early design, as its negative realization in the advanced phases
may produce serious consequences (such as the need to fully redesign the aircraft).
The aim of this project is therefore to address this gap, by developing some suitable
analysis tools in support of the conceptual design of highly flexible aircraft, with the
capability of propagating some relevant uncertainty through the optimization process
and finally provide information on the reliability of the results. To this end, we lever-
age physics-based simulation as the most complete source of information, capable of
capturing non-linearities and complex disciplinary interactions typical of flexible air-
plane dynamics. The project is built around four objectives: 1) the development of a
set of adequate models for aerodynamics, flight dynamics and structural dynamics; 2)
the integration of the above modules with an aircraft sizing tool to broaden the de-
sign exploration capabilities by taking into account discipline-related uncertainty and
constraints; 3) the expansion of the analysis capabilities and set of constraints by en-
abling coupled aero-structural analyses under uncertainty; 4) the demonstration of a
robust design and optimization process for a highly flexible aircraft concept. After a
detailed discussion of the background and relevant literature, this document continues
presenting and discussing the development, validation and integration of the different
analysis tools. Then, it introduces a first application where some of the analysis and
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simulation capabilities are exploited for an aircraft multi-disciplinary design & opti-
mization process, where uncertainty is allowed to be propagated into some key perfor-
mance indices. A second, more complex architecture is subsequently presented, where
static and dynamic aeroelasticity is taken into account, with and without uncertainty.
Finally, some studies are performed demonstrating how the proposed framework can
be successfully employed in a robust analysis and optimization process of high-aspect-
ratio flexible aircraft. Conclusions and future perspectives are then elaborated in the
final chapter.
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2 Chapter 1. Introduction

1.1 Background

As environmental requirements become more and more stringent, reduction of emis-
sions in commercial aviation is targeted with increasing pressure both by research and
industry [34–36]. A large effort is put on the exploration of disruptive technologies and
configurations that may lead to a new generation of highly efficient aircraft [37, 38].
Most innovation strategies arise at the three levels of propulsion, structures and aero-
dynamics. Technologies such as electric/hybrid propulsion and distributed propul-
sion are receiving large attention [39], as well as cutting-edge structural solutions in-
cluding composites-rich structures, bio-inspired materials, morphing structures [40],
foldable wings [41, 42], to just name a few. From the aerodynamic side, the tendency
is to promote efficient layouts such as blended wing-body configurations [43, 44], box-
wing configurations [45–47], boundary layer ingestion [48], very high aspect ratio truss-
braced wings [49–52] or semi-aeroelastic hinged wing tips [53] (see Figure 1.1).

(a) Strut-braced high-aspect-ratio wings, from [49] (b) Double-bubble fuselage, high-aspect-ratio wing
configuration, from [54, 55]

(c) Airbus AlbatrossONE semi-aeroelastic hinged
wing tips, from [53]

FIGURE 1.1: Examples of unconventional aircraft concepts featuring highly-efficient
wing configurations.

As usual in aerospace design, the implementation of such choices involves important
implications on several disciplines. It is evident that future aircraft candidate concepts
all present the challenge of a stronger interaction among disciplines that are tradition-
ally treated as independent, at least at preliminary and conceptual design stages. Such
a standard design approach is no longer convenient for these kinds of configurations.
For instance, high aspect ratio wings accentuate aero-structural issues, such as flutter,
divergence, limit-cycle oscillations (LCO) and gust loads, and affect stability, control
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strategies and pilot coupling [1]. Therefore, an effective exploration of disruptive con-
cepts needs to be accompanied by analysis and optimization frameworks as multidis-
ciplinary as possible, even at conceptual or preliminary design stages [56]. For this
reason, a new paradigm of physics-based and integrated aircraft conceptual design is
being introduced to replace the classical approach of knowledge-based sectorial design.
The new approach aims to take into account the interactions among the different disci-
plines by increasing the level of detail and retaining the relevant disciplinary couplings
(see Figure 1.2). The shift towards this design philosophy indeed offers economic ad-
vantages. In fact it is widely accepted that integrated design approaches handling an
increased amount of information and knowledge during the early design phases have
a positive impact on the overall design cost. The cost of any design change grows
considerably with the advancement of the process, and modern integrated conceptual
design represents the opportunity to anticipate the events of design changes and con-
tain the costs in a relevant way [57, 58] (see Figure 1.3). To report a relevant case, after
finding that divergent flutter may occur under certain conditions in the Boeing B747-8
and B747-8F, reparations and software updates had to be applied [59], with costs for
the company and the operators and damage to the company image. Failing to provide
adequate multidisciplinary capabilities early in the design may lead to severe conse-
quences not just limited to expensive late corrections, but could even entail the failure
of the whole process [1]. Fortunately modern computational power and numerical
methods (such as surrogate modelling) encourages increasing efforts on the develop-
ment of analysis tools and their mutual integration to corroborate aircraft conceptual
design procedures with physics-based predictions. Such strategy inevitably calls for
advanced tools capable of resolving the desired level of complexity, with the constraint
of keeping affordable computational costs and time suitable for the early stage of the
design.

Due to the promising potential advantages and to the availability of computational
power, multidisciplinary analysis and optimization (MDAO) for aircraft design has
shown in recent years significant progress. Together with the numerous achievements,
though, several issues still remain challenging and stimulate ongoing efforts in the re-
search community.

For instance, as aircraft design involves several disciplines, each of which requires dif-
ferent tools and handling a large body of information, the exchange of data between
modules represents a crucial question [60]. The definition of common programming
languages, interfaces and data management strategies becomes a key enabler for the
effectiveness of the whole framework [61–63].

Another critical point is the choice of an appropriate model and numerical strategies for
each of the involved disciplines. The design team, as well as the single specialist, have
at their disposal a broad set of analysis methods of different levels of fidelity (accuracy
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(a) Traditional design approach

(b) Integrated design approach

FIGURE 1.2: Traditional vs integrated design approaches (adapted from [1]).

to capture the physical phenomena) . A proper design framework should be imple-
mented in such a way that the appropriate fidelity level is employed for each maturity
status of the design process. Often, effort is put on introducing as much physics as
possible from the earliest stages by some clever multifidelity approaches. The strategy
is to exploit information from a few expensive higher-fidelity analyses to correct and
enrich the results of the lower-fidelity tool. This can be done either by directly merging
the two solvers in a new hybrid tool [64–66], or by deriving a surrogate model through
data sets from multiple tools [67, 68]. The adoption of such strategies and the choice
of the appropriate fidelity levels for different design purposes are widely discussed in
[69]. When developing an MDAO framework, the assessment of the applicability of all
the different analysis tools and their impact in terms of accuracy of the results is a nec-
essary task. In fact, it is desirable to provide the highest possible flexibility towards the
exploration of wide design spaces, and all the integrated tools should prove capable
to handle large ranges of variables, ideally including discrete variables or topological



1.2. Project outline, aim and objectives 5

FIGURE 1.3: Integrated multidisciplinary design process versus traditional design pro-
cess. When decisions are made earlier, they can have a high impact at a relatively low

cost (from [2]).

decisions (such as presence/absence of wing braces) and represent a variety of physical
conditions and phenomena, while keeping the computational time reasonable.

The complexity of the MDAO tasks is even increased by the fact that any engineer-
ing model is inherently affected by uncertainties. This is especially true at conceptual
design, where the level of detail requires to retain a lot of unknowns, and where vir-
tually all the methods must introduce approximations in order to meet a compromise
between speed and accuracy. For this reason, uncertainty quantification and manage-
ment in MDAO applications is an interesting challenge, at the centre of several research
activities [70, 71]. If properly addressed, it would improve the quality of the design out-
comes providing key information on the robustness and reliability of the results.

1.2 Project outline, aim and objectives

The present work aims to provide some of the necessary tools within the above broad
context of new generation multidisciplinary conceptual design, with special attention
given to high-aspect-ratio configurations where structural flexibility induces a poten-
tially significant risk. The project belongs to a wide framework development plan for
multidisciplinary conceptual design of novel aircraft configurations which is carried
out at both the founding centres: a) the University of Southampton, where advanced ef-
ficient methods for aerodynamic computations have been developed and are currently
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under further refinement, b) the ONERA centre of Toulouse, where parallel develop-
ment is in progress for advanced aircraft sizing tools - covering for example blended-
wing-body, hybrid, turboelectric and distributed propulsion configurations - as well as
numerical methods for robust multidisciplinary design and optimization procedures.
All of the mentioned research is bound to be integrated within a large multidisciplinary
framework for conceptual design of novel aircraft concepts. Some example applica-
tions can be found in [72–74].

Within the given panorama, the present project aims in particular to develope some
analysis and simulation tools, suitable for conceptual design level, to capture relevant
static and dynamic phenomena affected by large airframe flexibility, and to treat them
in a stochastic way by taking into account the uncertainties linked to the unavoidably
imperfect knowledge typical of the early design stage.

Specifically, we want to retain as much information as possible regarding the core dis-
ciplines of aerodynamics, structural dynamics and flight dynamics (and their possible
coupling) in order not only to understand in what measure the behaviour of the vehicle
is affected by structural flexibility, but also in what measure the uncertainties relative to
the three mentioned domains affect such a behaviour. Of course, the generic term ‘be-
haviour’ needs to be translated into quantifiable parameters of interest, such as flying
qualities, loads, or fuel consumption. Also, each uncertain quantity of interest has to
be associated to a stochastic range, and compared to design constraints to be met with
a certain probability. The disciplinary modules need to fully allow a mutual coupling,
but also be capable to run as stand-alone modules for those cases where coupling is
negligible. Therefore, the development is oriented towards a modular approach, in the
sense that different models for different disciplines can be interfaced to address differ-
ent coupled problems. For example, steady or unsteady aerodynamics could be cou-
pled with linear or nonlinear structural dynamics, or with the flight dynamics module,
according to different specific needs. Moreover, the analysis and simulation package
has to allow a practical interface to be plugged into a wider framework, typically an
external sizing and optimization architecture.

The core idea behind the project could be summarized by the following research ques-
tion:

Can we develop an analysis and simulation framework to investigate aeroelastic and
flight performance of new generation flexible aircraft, capable of handling and prop-
agating input uncertainty, in support of a robust design and optimization process at
conceptual design phase?

The project is built around four technical objectives:
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I the development of a set of adequate analysis tools for the disciplines of interest,
namely aerodynamics, flight dynamics and structural dynamics, in response to
the need of more physics-based methods for unconventional design exploration;

II the integration of the above modules with an aircraft sizing tool to broaden the
design exploration capabilities, including the possibility of taking into account
discipline-related uncertainty and constraints;

III the further expansion of the framework’s capabilities and set of constraints by
enabling coupled aero-structural analyses under uncertainty;

IV the demonstration of a robust design and optimization process for a highly flexi-
ble aircraft concept.

The development of such analysis tools paves the way for at least two desirable applica-
tions: a) the usage within a robust multidisciplinary design & optimization framework
for unconventional aircraft configurations; b) the exploitation of the fast flexible aircraft
flight dynamics simulation capabilities to be run on a fixed-base research flight simu-
lator, present at the University of Southampton, for handling qualities assessment and
other simulation campaigns. However, only the first type of application is addressed
in this project, whereas the second type is seen as a secondary perspective that would
benefit from the implemented tools, but that would still require further developments
to be considered in future research activities.

1.3 Thesis structure

Considering the above aim and objectives, the present Thesis is structured as follows.

Chapter 2 gives a more detailed description of the background of this project, with
focus on the key aspects that we want to address and on the relative state of the art.

The first technical objective (I) is addressed in Chapter 3, where the development, vali-
dation and integration of a list of necessary tools is presented.

Chapter 4 demonstrates a first aircraft robust MDAO application using some of the
developed tools, fulfilling the second technical objective (II). In particular, the test case
is for a transport aircraft wing planform optimization to minimize the fuel mass for a
give mission. Uncertainty is included through a couple of aircraft input parameters,
and it is propagated into some flying qualities reliability constraints.

The third technical objective (III) is addressed in Chapter 5, where a more complex ar-
chitecture for robust MDAO of flexible aircraft is proposed. Static and dynamic aeroe-
lasticity is considered, and uncertainty can be introduced and propagated into flutter
and dynamic gust response constraints.



8 Chapter 1. Introduction

Finally, Chapter 6 presents some flexible aircraft MDAO case studies performed using
the above-mentioned framework. Several cases are covered, including deterministic
and probabilistic cases, involving flutter and/or gust loads constraints. Results are
compared against a conventional rigid-aircraft design approach. This covers the last
technical objective (IV), in fulfillment of the global PhD project aim.

Conclusions are then drawn in Chapter 7, which summarizes the main achievements
of this project and discusses the most interesting perspectives.
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2.1 Overview

The project objectives stated in the previous Chapter require a multidisciplinary frame-
work covering different technical capabilities. In the first instance, there is a need for
effective analysis and simulation tools for the involved flight physics disciplines. These
tools should be able to interact with an overall aircraft sizing process, so that infor-
mation regarding geometry, weight & balance, or performance can be exchanged and
made available to an optimizer. Then, it is necessary to have in place adequate meth-
ods for robust optimization of complex and costly objective functions. This means that
not only modern and efficient optimization methods are required, but also some un-
certainty quantification techniques that minimize the computational burden of uncer-
tainty propagation. It becomes clear then that the technical domain is quite vast and
complex. This Chapter seeks to clarify the background from which this project evolves,
and to identify more in details the bounds enforced on the present investigations. This
is done with the support of relevant literature offering instructive and inspiring in-
sights on the state of the art, with attention on both the success and limitations of the
discussed approaches. After a brief overview given below in this Section, more details
are discussed in Sections 2.2 to 2.6.

To start with, simulation in aerospace applications is a fundamental task which is ad-
dressed for various purposes and in different contexts, spanning from design to veri-
fication, testing, training, etc. In this work, three core and interrelated disciplines are
mainly involved, namely flight mechanics, aerodynamics, and structural mechanics.
These three domains are often treated separately and differently. In fact, while flight
mechanics is well described by low-order models and low frequencies, structural me-
chanics problems involve high frequencies and higher-order models. In both cases
the simulation is aimed at visualizing the system response following certain inputs
or disturbances. On the other hand, aerodynamics simulations are aimed at computing
loads and energy transformations due to the interaction with the surrounding flow, and
a variety of methods are available with different complexity and computational cost.
However, aerodynamics is in general identified as the most challenging discipline. The
resulting aerodynamic loads can be used for design and optimization purposes.

In contrast with the above disciplinary cases, a broader simulation approach is required
when the three main areas play all a relevant role. This is the case for aeroelastic studies,
and even more when controls and actuators are taken into account, in which case we
adopt the more general term of aeroservoelasticity (ASE). When all these disciplines are
expected to be relevantly involved, an adequate interdisciplinary, higher-order simula-
tion model needs to be employed encompassing the wider range of frequencies. How-
ever, as a general trend, higher-order systems, such as aeroelastic or aero-servoelastic
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systems, involve increased complexity and therefore increased uncertainty (see Fig-
ure 2.1). Therefore, two coexisting needs emerge: on the one hand, the need for mul-
tidisciplinary simulation arises in order to address the analysis of complex systems
characterized by potentially important interactions between flight physics disciplines
traditionally treated as independent; on the other hand, such simulation capabilities
should be employed in a robust approach where deterministic analyses are accompa-
nied by some uncertainty propagation techniques that provide the designer with an
awareness of the impact that the inevitable lack of knowledge may have on the final
outcome.

FIGURE 2.1: Uncertainty in multidisciplinary flight vehicle modeling, from [3].

The role of the inherent uncertainty is especially important during the early design
phases. Figure 2.2 clarifies this statement by showing a qualitative trend of the ‘amount’
of uncertainty and how this decreases with the increasing knowledge through the de-
sign maturation. The figure also points out how crucial the conceptual phase is in the
whole process: despite the high level of uncertainty, it is during this phase that the
most relevant decision making takes place, fixing most of the relevant variables and
therefore reducing abruptly the design ‘freedom’. Also, consequently to the decisions
taken at this stage, a great deal of the costs are committed, and this is why the cost
curve experiences a steep increase at this same phase. This simple but effective anal-
ysis underlines the impact that the conceptual design phase has on the final outcome.
Being able to capture the relevant sources of uncertainty and to map their effect into the
analysis predictions can be a powerful strategy for estimating costs and risks of novel
designs. The subject is further detailed in [75] and [4].
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The uncertainty ranges can be large due both to aleatory causes, related with the ran-
domness of certain operational conditions, and to epistemic ones, arising from the lack
of knowledge or from the unavoidable approximations underlying the models em-
ployed. The difficulty of considering and propagating uncertainty through the design
process is exacerbated when the disciplinary couplings and complex models are taken
into account [76] (see again Figure 2.1). This is confirmed by the fact that, although con-
siderable progress has been achieved on multidisciplinary aircraft conceptual design,
many of the proposed frameworks in the literature fail at identifying the key sources of
uncertainty and do not convey any information about the robustness/reliability of the
design outcomes.

FIGURE 2.2: Design Process Paradigm Shift, from [4].

The development of simulation capabilities adequate to the above needs and suitable
for modern aircraft design and optimization represents a huge challenge that requires
the investment of a lot of expertise, time and computational power. The list of possi-
ble interesting applications is virtually unlimited, covering for example investigations
on new generation real-time flight simulators, handling qualities assessment of flexi-
ble aircraft, stability and control analysis, control system design (autopilot functions,
load alleviation, stability augmentation), manoeuvre loads assessment for structural
sizing and optimization, overall aircraft design and optimization. Addressing all these
kinds of studies is clearly out of the scope of a single PhD program. Instead, given this
wide range of possible applications, the interest here is more on the development and
the proof-of-concept of the main building-blocks of a multidisciplinary aircraft design
framework, paving the way for further developments and more detailed investigations
on several research cases.

In terms of demonstrative applications, where simulation is used in support of a robust
analysis and optimization process for flexible aircraft, this work restricts its focus on a
few domains. A first interest is to perform flight simulation for flying qualities assess-
ment. This would represent a key initial step before moving to more complex tasks,
such as pilot-in-the-loop simulations or control design, which will not be addressed
here. A second target is aeroelastic simulation, both static and dynamic, in order to
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capture the most critical aspects of fluid-structure interaction, such as flutter or gust-
induced loads.

Therefore, the following Sections concentrate on a review of relevant literature on these
domains. In particular, Section 2.2 addresses the topic of flight simulation investiga-
tions at the level of conceptual design, covering approaches for both rigid and flexible
aircraft. Then, Section 2.3 explores the problem of aircraft sizing involving flexible
high-aspect-ratio wings. This mainly concerns static aeroelasticity and aircraft sizing
techniques. Dynamic aeroelastic issues, and in particular flutter and gust loads, are
discussed in Section 2.4. Next, Section 2.5 presents the most interesting optimization
strategies to be considered for this project, with particular focus on MDO. Finally, Sec-
tion 2.6 focuses on the problem of sensitivity analysis and uncertainty quantification,
with attention on aircraft design applications.

2.2 Flight simulation at conceptual design

The traditional aircraft design approach seldom relies on flight simulation. This is his-
torically due to the lack of computational power, that made the simulation an expensive
task. Additionally, it is difficult to produce a simulation framework which is robust in
all the design space and at all flight conditions. Most approaches therefore rely on
simplified analytical models or on empirical relationships. With the advent of modern
digital computers, with increasingly powerful performance, the importance of flight
simulation has continuously increased over the years [77]. Simulators are increasingly
used not only for pilot training but also for other applications such as flight planning,
envelope expansion, design and analysis of control laws, handling qualities investiga-
tions, and pilot-in-the-loop studies.

Nowadays, several studies have already included flight simulation and flight dynam-
ics information into modern conceptual design tools, with the aim of supporting the
design with more physics when empirical data are not sufficient. Relevant examples of
such applications can be found in [5, 78–81], just to mention a few.

The main benefits of including multidisciplinary flight simulation capabilities during
the design process are: a) the possibility to perform sizing manoeuvres with a higher
fidelity than the standard methods, and b) the opportunity to investigate the effect of
the disciplinary interactions on flying qualities, handling qualities, stability and control
characteristics of the design candidates.

The following parts of this Chapter give further details on the state of the art and rele-
vant issues related with these tasks. In particular, Section 2.2.1 gives a review of recent
work on flying qualities constraints at aircraft conceptual design. Then, Section 2.2.2



14 Chapter 2. Literature review

reviews the state-of-the-art modeling methods for multidisciplinary simulation of air
vehicles.

2.2.1 Flying qualities constraints

Compliance with flying qualities requirements is a mandatory task of the certification
process. Typically the analysis of flying qualities is done in the latest stages of the de-
sign, when most of the features are fixed, and configuration changes in the attempt
to improve the dynamic characteristics may not be affordable. If this approach is ac-
ceptable for conventional aircraft design, where the high level of knowledge ensures a
certain degree of confidence, this is not necessarily true for unconventional concepts.
For this reason, some effort has been put by industries and research to include flight dy-
namics constraints earlier in the design process [82]. The work of Mieloszyk et al. [82]
represents a relevant example of such an effort, and the approach is here briefly summa-
rized. The paper aims to use design constraints based on airworthiness specifications
on the dynamic properties of an unconventional box-wing configuration. In this case
the authors refer to the MIL-STD acceptability criteria [83] and to the CS-23 Airworthi-
ness requirements [84]. These requirements concern the 6-degrees-of-freedom dynam-
ics of the vehicle, and more exactly they involve the flight dynamics modal characteris-
tics such as phugoid, short-period and dutch-roll damping ratios, dutch-roll frequency
and spiral mode time to double. The dynamic stability data on the design candidates
were computed automatically during an optimization [85]. The computation was done
through the use of the Simulation and Dynamic Stability Analysis (SDSA) software [86].
Several flight conditions were used with variable flight speed and altitude. The sta-
bility analysis was carried out by extracting the eigenvalues of the full 6-DOFs rigid
body dynamic matrix from the linearised equations of motion [87]. The added value of
this work is to have shown the feasibility of introducing a comprehensive list of flight
dynamics constraints during an overall aircraft design and optimization problem. In
this way, the authors manage to address the problem of granting satisfactory flying
qualities from the earliest design phase, even for an unconventional configuration.

A similar approach is used in the SimSAC Project, as reported in [5], where the CEA-
SIOM advanced analysis tools employed during the conceptual design are used also
for higher fidelity verification of the compliance with the ICAO recommendations or
the MIL-STD acceptability criteria [83]. After computing all the needed aerodynamic
and inertial characteristics through the appropriate CEASIOM modules, the evaluation
of the overall dynamic properties of the vehicle leverages also in this case on the SDSA

software [86]. An example of the software output during a sizing and optimization cy-
cle on a Boeing 747-like baseline is reported in Figure 2.3, where short-period damping
and natural frequency are compared with the certification specifications. It can be seen
that some candidates under some flight conditions exhibit unacceptable characteristics,
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calling for alternative design solutions. The figure demonstrates how flying qualities
could potentially be an active constraint during aircraft design. The work offers an-
other successful example of a multidisciplinary design and optimization framework
for aircraft conceptual design, where stability & control characteristics are considered
as constraining features during the overall design process.

FIGURE 2.3: Short-period characteristics predicted during sizing and optimization
loops in SDSA, plotted against the specification categories (from [5]).

Other approaches can be found in the literature to tackle the assessment of specification-
compliance during aircraft conceptual design, such as in [26, 88, 89]. However, not
much has been done to the writer’s knowledge to assess the impact of uncertainty on
the design outcome. Even less so if the design concerns flexible aircraft. Therefore,
one contribution of this project is to fill this gap, proposing a framework with similar
functionalities as those just mentioned, but with the additional capabilities of propa-
gating uncertainty, from a user-selected set of inputs, with the possibility of treating
also flexible aircraft concepts.

2.2.2 Flight simulation of flexible aircraft

The subject of flight simulation of flexible aircraft is wide and complex, as it encom-
passes various disciplines, namely flight dynamics, structural dynamics, aerodynamics
and aeroelasticity. Since different approaches, tools and levels of fidelity are available
for each of these disciplines, several combinations have been developed in the litera-
ture according to different specific needs or objectives and availability of resources of
each case.

In general flight simulation capabilities can bring several advantages, including the
ability to investigate flying qualities, handling qualities, stability, pilot coupling effects,
as well as to perform manoeuvre loads assessments and control design at various lev-
els (stability augmentation, autopilot, loads alleviation). Moreover, a simulation tool
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implementing the most interesting disciplinary coupling (such as aero-structural cou-
pling in the case of this project) can be used as a reference to determine the accuracy and
the domain of validity of lower-fidelity approaches, such as those based on uncoupled
models.

This Section summarizes the most interesting approaches for flight dynamics investi-
gations on flexible aircraft, at a level that could potentially suit conceptual design anal-
yses. A large amount of work exists in literature on this topic (such as in [1, 90–95]), and
a thorough review would be excessively long for the purpose of this work. Therefore,
just a couple of relevant examples are here discussed. These have been chosen because
they seem sufficiently representative to draw out the main conclusions about the most
relevant phenomena to be captured and the adequate tools to be employed.

The first example is from [19], based on previous work from [6, 96]. The authors de-
veloped a model to simulate the open loop dynamics of very flexible aircraft. High
flexibility of the structure was allowed by a geometrically-exact composite beam for-
mulation. Structural rotations are parameterized using the Cartesian Rotation Vector
with respect to a body-attached reference frame. Fully three-dimensional orientation of
the body reference frame is achieved by quaternions representation. Aerodynamics is
modelled through an unsteady vortex lattice method, where thickness of aerodynamic
surfaces is neglected, whereas camber is allowed. An implementation of wake roll-up
is also included. The degrees of freedom of the fully-coupled non-linear system are
the circulation vector of the vortex lattice model and its first time derivative, the struc-
tural deformations and their first time derivatives, the position and orientation of the
structural nodes and the respective first time derivatives with respect to the body ref-
erence frame, the position and orientation of the body frame with respect to the inertial
frame, and the translational and rotational velocities of the body reference frame. The
full inertial coupling between elastic and rigid body motion is enforced including also
the effect of gyroscopic forces due to structural rotation. Such an effect is found to be
relevant for example when yaw rate is present (as stated by Hesse and Palacios [6, 96]).
The proposed approach proved able to show the limitations of the mean-axes formula-
tion, which fails to account for large deformations. Figure 2.4 compares the evolution
of a spiral manoeuvre computed with a full non-linear model, a linearized model and
a mean-axes model, and shows some inaccuracy of the mean-axes formulation at low
stiffness values. The varying stiffness E is parameterized with respect to a reference
value E0 through the parameter σ, defined as σ = E/E0, with σ = 10 corresponding
to the rigid body stiffness of the test-case employed. It is seen that even in the case
of high stiffness, when the hypothesis of small deformations is satisfied, inaccurate
performance predictions are obtained when rotation rates are relevant. This happens
because the impact of gyroscopic effect is completely neglected by the mean-axes ap-
proximation, and it is visible in Fig. 2.5, where a constant relative error is produced
even at high values of the stiffness parameter.
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FIGURE 2.4: Spiral trajectory predicted by three different levels of fidelity, for three
different stiffness parameter values (σ =4, 10 and 50), from [6].

FIGURE 2.5: Relative error of linearized and mean-axes models with respect to fully-
coupled nonlinear model with varying stiffness prameter σ, from [6]

In [7], the equations of motion are derived from the principle of virtual work, where ge-
ometrical non-linearities are allowed, and the structural model relies on a finite element
discretization where each element is assumed to experience constant strain. A two-
dimensional inviscid incompressible unsteady aerodynamic model is used, where a
span-wise lift distribution function is adopted as a correction for flow three-dimensionality
(a so-called 2.5D approach). The simulations of the complete test-case aircraft were
carried out considering only the flexibility of the main wing, the fuselage and tail be-
ing treated as rigid surfaces. The model was implemented in a MATLAB toolbox at
the University of Michigan. An interesting comparison of three levels of fidelity was
performed to assess the respective range of validity. The lowest fidelity model simu-
lated the rigid body dynamics of the statically-deformed aeroplane, where the static



18 Chapter 2. Literature review

deflection was pre-calculated around a certain equilibrium condition; the middle fi-
delity model retained the elastic degrees of freedom, but they were computed from a
linearised approximation under steady-state conditions; the highest-fidelity model was
the fully-coupled non-linear unsteady system. It was found that for simple symmetric
manoeuvres, linearised solutions may be acceptable to capture the main aircraft dy-
namics, whereas for asymmetric manoeuvres a non-linear approach is required for an
adequate description, especially of the lateral-directional states. Some significant re-
sults are shown in Fig. 2.6, where the response to a combined aileron and rudder input
is reported for the three levels of fidelity.

FIGURE 2.6: Comparison of responses to lateral controls with three levels of fidelity,
from [7].

The above examples allow to extrapolate a few important observations.

First, they give an idea of the tools that are commonly used for these kinds of simula-
tions. In virtually all cases, the aerodynamic models rely on inviscid, incompressible,
potential, unsteady flow assumptions, such as the UVLM or unsteady strip theory. The
structural model is only a beam method, preferably nonlinear to capture the effects of
large deformations. The 6-degrees-of-freedom dynamics for time-marching trajectory
calculation is retained in exact form (no linearization of the rigid-body equations of mo-
tion is enforced). This allows to correctly capture the system evolution over relatively
long time windows.

Second, in many cases flexiblity is only taken into account for the wings, and the rest
of the aircraft is considered rigid. This is a widely accepted approximation, as the most
relevant aeroelastic effects are due to wing deformation, and it is especially valid for
large tube-and-wing aircraft, where the main body is abundantly reinforced and rigid.

Lastly, as it can be seen from the time histories in Figures 2.4 and 2.6, the effect of
flexibility does not seem to impact significantly the instantaneous overall aircraft re-
sponse. This means that the ‘rigid-body’ modes remain sufficiently separated from the
aeroelastic ones, so that no relevant interaction is observed to affect the aircraft stability
characteristics. On the other hand, the effect of flexibility is seen in the long-term, after
the dynamics is propagated for a few seconds. In particular, the main impact is seen in
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the lateral-directional behaviour. Therefore, it appears that when the interest is mainly
on the stability characteristics, or on the sudden response to a short disturbance (such
as gust encounter), the aircraft motion and the structural response could be reasonably
decoupled, at least on a first instance. On the other hand, if a long manoeuvre or flight
phase has to be simulated, such as for guidance and control or pilot-in-the-loop stud-
ies, it is advisable to retain the fully-coupled system, including the nonlinear coupling
between longitudinal and lateral-directional degrees of freedom.

From these considerations, the following conclusions are drawn:

• Potential flow methods such as VLM and strip theory and beam methods are the
most suitable for the required aeroelastic analysis capabilities;

• Flexibility can be considered to affect uniquely the wings, and ignored for the rest
of the aircraft structure;

• It is convenient to develop a modular framework with an aeroelastic module and
a nonlinear flight dynamics module to be implemented separately and allowed
to be coupled only when needed.

2.3 Sizing of high-aspect-ratio wings

The potential significant increase in aerodynamic efficiency deriving from high-aspect-
ratio lifting surfaces has motivated a great research effort over time. In fact, as lift-
induced drag can account for 40-50% of the aircraft’s total drag in cruise [97], the re-
duction of this drag component, attainable by the adoption of more slender wings, still
represents a highly attractive target, both from an economic and environmental point of
view. However, one fundamental drawback is that a high-aspect-ratio wing inevitably
features a long bending arm with respect to the wing root, requiring a strong and well-
designed structure to cope with the increased loads. This would ultimately result in an
increase of weight, with the risk of offsetting the aerodynamic benefits. The elongated
wing would also imply higher deformations, especially if the structural mass has to be
minimized at the expense of stiffness. This undoubtedly accentuates concerns about
the aeroelastic safety of such wings, both in terms of static and dynamic behaviour.

Therefore, any effort to address the design of high-aspect-ratio wings has the mission
to provide a trade-off between these conflicting aspects. In order to do that, it is neces-
sary to take into account all the above issues, requiring significant analysis capabilities
and computational resources. Indeed, the designer has to address different problems
simultaneously, such as aero-structural analysis and optimization, dynamic aeroelas-
tic simulations - where even the selection of appropriate methods and of a convenient
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parameterization are not trivial tasks - as well as the integration within an overall air-
craft design logic, since the design of an isolated wing does not insure the feasibility
or the optimality of the solution found. In fact, the final assessment of the design suc-
cess is in reality related not to the wing itself, but to the entire aircraft configuration,
as the final objective is usually a global performance index such as fuel consumption,
range, passenger capacity, etc. It becomes clear, then, how such a mission is rather a
multidisciplinary problem.

The above considerations are true no matter what design phase is under examination.
However, as already stated, this work is focused on the conceptual design level. This
poses a two-fold problem, because on one hand there is a need to select and impose
some simplifying assumptions in order to maintain the computational burden afford-
able while exploring the design space, but on the other hand it is necessary to imple-
ment the capabilities to address the main aeroelastic issues and assess whether or not
they are critical for each particular design.

A relevant example of how the problem could be addressed is the approach proposed
in [8]. The case is particularly pertinent first because the context is conceptual design,
consistently with the present case, and second because the adopted baseline, adapted
from the Airbus A320 series, is very similar to the CeRAS configuration that will be
used throughout this project as a reference. Here, the authors tackle the problem in an
effort to retain the effects of geometrical non-linearity on the aero-structural computa-
tion, demonstrating that they may significantly affect the sizing outcome. Apart from
this conclusion, which is already a substantial contribution, it is interesting to present
some more details about the adopted tools and methodology.

The overall objective of the paper is to develop a framework that enables parametric
studies - such as the dependence on aspect ratio - for the Breguet range over a rela-
tively simple aircraft model. To accomplish this, the wing is first sized and optimized
from an aeroelastic perspective, in the sense that the sizing static manoeuvre loads are
computed on the deformable wing.

Concerning the choice of the aeroelastic model, the VLM is adopted for the aerody-
namic part. Lifting surfaces are represented by a flat plate approximation, following
[16]. Only lift forces are taken into account in the aeroelastic evaluations. Drag is com-
puted separately using semi-empirical relationships, following [98–100], and it is only
used for the calculation of the Breguet range. The wing structure is modeled by two
consecutive levels of abstraction. The first one is a simplified representation of a three-
dimensional wing-box, considered rectangular and composed by two identical spars,
the upper and lower skin and a series of identical and equally spaced stringers (see Fig-
ure 2.7), all made of the same aluminium alloy. This model serves in the first instance
as a base to derive some ‘condensed’ properties for an equivalent finite element beam
model, which constitutes the second level of abstraction. Each beam element is defined
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by a series of mass and stiffness parameters that are calculated via some analytical ex-
pressions from the wing-box geometry.

It is the beam model that is coupled to the aerodynamic model for the aeroelastic anal-
yses. The mapping between the structural and aerodynamic discretization is based
on Radial Basis Functions (RBF), following the approach used in Neocass [78, 79].
When computing the sizing manoeuvre loads the structural model retains geometri-
cal nonlinearity, and the static solution is found iteratively using the Newton-Raphson
method. Once the nonlinear equilibrium is found, the beam forces and moments are
transferred to the wing-box model, which is then used to evaluate the stress on the
different components. The box-to-beam reduction approach significantly speeds-up
the aeroelastic analyses. This is easily understood as a non-linear analysis based on a
three-dimensional finite element model of the wing-box representation would imply
an enormous increase of the structural degrees of freedom, as well as additional com-
plexity in terms of numerical convergence and stability. The use of equivalent beam
models (also known as stick models) to speed up aeroelastic studies on large aircraft
wing structures has widespread support, as confirmed by several prominent modern
works on flexible aircraft MDAO [11, 78, 79, 94, 101]. For the interested reader, a thor-
ough investigation of different possible approaches is provided for example by [102].

FIGURE 2.7: Wing-box cross section idealization used in [8].

The structural optimization is performed by using as variables the three geometrical
quantities that define the wing-box geometry at each section: the spar thickness, skin
thickness and stringers’ area. The objective is to minimize the wing mass under a series
of structural failure constraints, including the Von Mises stress, the skin buckling stress,
the crippling and buckling stresses in the stringers.

Some conclusions are worth mentioning here. The authors state that a strong correla-
tion was found between structural displacement and final wing mass, as well as struc-
tural displacement versus range. These aspects are better understood by looking at
Figure 2.8. In particular, it is stated that the adoption of a geometrically nonlinear
structural model brought a mass reduction of over 5% compared to the linear analysis.
Also, it can be seen again from Figure 2.8 that the optimal configuration, in their case
providing the longest range, varies depending on whether a linear or nonlinear model
is used. These findings suggest that a nonlinear structural representation may be de-
sirable, especially if mass minimization and fuel minimization are to be performed.
The importance of nonlinear structural models is confirmed also by other studies on
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high-aspect-ratio wings, such as in [29, 103, 104]. A less clear correlation was found
instead between displacement and aerodynamic efficiency, indicating that a more ap-
proximated approach may still be adequate for cruise drag evaluation. Finally, it is
interesting to note that in one study they identify an optimal aspect ratio of 19, which
is reduced if some wing span constraints are applied. This looks quite a high value
for a full-aluminium structure, considering that an Airbus A320 has an aspect ratio of
about 9.5. These interesting results motivate further studies on similar high-aspect-
ratio wings with adequate analysis tools.

Overall, the work clearly shows a remarkable maturity in addressing a complex mul-
tidisciplinary design and optimization task, where both aeroelastic issues and overall
aircraft design aspects are taken into account. The proposed methodology is certainly
inspiring in the context of the present project. Nevertheless, it should be pointed out
that some limits still emerge. In fact, there is no actual optimization at the aircraft level,
but rather a few simple parametric studies. Also, dynamic aeroelasticity is not taken
into account at all, nor is the impact of uncertainty of any sort. Therefore, it is believed
that the present research objectives remain challenging and relatively unexplored.

FIGURE 2.8: Effects of linear and nonlinear structural models on overall aircraft figures
of merit, from [8].

2.4 Dynamic aeroelasticity

An important and challenging aspect to be considered when dealing with flexible air-
frames, especially lifting surfaces, is dynamic aeroelasticity. In fact, on one hand there
are important safety implications, because dynamic effects such as flutter and gust re-
sponse are potentially dangerous phenomena that need to be cautiously analyzed. On
the other hand, dynamic aeroelasticity requires significant computational capabilities,
both in terms of model complexity and computational time. Therefore, including an
assessment on these aspects during the conceptual design of high-aspect-ratio aircraft
remains a research challenge, and it represents one of the main gaps that this project
seeks to address.

The following Sections give some background on the two main dynamic aeroelastic
problems this work focuses on: the flutter problem in Section 2.4.1, and dynamic gust
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loads in Section 2.4.2. Also, a review of some relevant examples of aircraft MDAO
studies where these aspects are taken into account is given in Section 2.4.3.

2.4.1 The flutter problem

Aeroelastic flutter is undoubtedly one of the major sources of concern when exploring
flexible high-aspect-ratio wings. This is true not only because flutter is a very danger-
ous phenomenon, but also because it is difficult to accurately predict. Reliable tools
exist today, of course, but they are in general high-fidelity, expensive methods, in most
cases tuned and validated against experiments on existing configurations. The main
challenges arise when addressing conceptual design of unconventional configurations,
where less data and less time are available. For example, divergent modes could differ
from one configuration to another, and this requires to retain a sufficiently large num-
ber of modes for all calculations. For these reasons, flutter is in most cases ignored
during the traditional conceptual design steps, and it is only studied in later phases of
the process. However, one limit of this approach, as discussed in Section 2.6.5, is the
commitment of considerable costs in those advanced phases, due to the high expense
of analyses and eventual design adjustments carried out at that point of the develop-
ment. Therefore, one interest of the present project is to develop and test an alternative
approach for the conceptual design of high-aspect-ratio configurations where the main
aeroelastic issues, including flutter, can be taken into account. It is clearly impossible
to completely perform in advance all the preliminary and advanced studies at a much
lower cost. The objective here is rather to be able to derive some trends - of the desired
objective function and aeroelastic constraints - with respect to critical design variables
(such as aspect-ratio, or wing structural parameters) in order to anticipate the main haz-
ards connected to unconventional configurations and reject the most risky ones from
the set of optimal solutions. This would ultimately mitigate the cost and risks of ad-
vanced studies by reducing the design space around a conceptual optimum which is
already expected to be free from flutter - albeit not with 100% confidence.

With this aim in mind, this Section continues with a brief review of the theory and
the main methods available in the literature for flutter analysis, by focusing on those
compatible with the stated conceptual design requirements.

By definition, flutter is a dynamic instability of a flight vehicle associated with the interac-
tion of aerodynamic, elastic, and inertial forces [105]. As such, it is convenient to treat the
problem from the perspective of dynamic system stability, which consists of deriving
a suitable model of the physics behind, express it in linear form and infer its stability
characteristics by studying its eigenspectrum. The general form of what is known as
the flutter equation, describing the equilibrium between the above three types of forces,
is given in Equation (2.1) (from [106]).
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[
V2

c2 M p2 + K +
1
2

ρ V2 A(p)
]

q = 0 (2.1)

The matrices M, K and A(p) relate the generalized displacements q with the general-
ized inertial, elastic and unsteady aerodynamic forces, respectively. The variable p can
be seen as the nondimensional differential operator c/V ( d

dt ) in the time domain, or,
equivalently, the Laplace variable in the Laplace domain.

Of course many different physical models, combining a variety of structural and aero-
dynamic theories, can be expressed in the form of Equation (2.1). However, according
to how the aerodynamic formulation depends on p, the approaches can be grouped in
most cases in three main categories:

• p methods: If the aerodynamic forces can be expressed as a sufficiently simple
function of p, at any fixed value of density and speed, Equation (2.1) can be solved
as a classical eigenvalue problem, where each possible solution p = λ + i k is
a complex number related to the frequency and damping of a particular mode.
These methods offer a practical solution of the flutter problem, and are poten-
tially valid anywhere below and above the flutter speed, provided that the aero-
dynamic model remains valid at the corresponding flow conditions. However,
the method is not the most popular, because not many aerodynamic models al-
low such a general and simple dependence on p. A classical example can be
found in [107].

• k methods: More sophisticated aerodynamic formulations, such as from the ker-
nel function or doublet lattice approach or the supersonic Mach box, lead to aero-
dynamic matrices valid only for harmonic motion, p = ik. These methods are
able to provide the exact flutter speed, at which in effect the hypothesis of har-
monic motion is realistic because oscillations become undamped, but they cannot
offer an accurate view of the migration of modal frequencies and damping ra-
tios with varying speed. Also, they are not guaranteed to predict what is the real
mode to first become unstable.

• p-k methods: These methods represent an extension of the basic k methods. It is
assumed that for sinusoidal motion with slowly decreasing or increasing ampli-
tudes the aerodynamic model based on harmonic motion remains a good approx-
imation. This allows to somewhat extend the sophisticated frequency domain
aerodynamic theories in the neighbourhood of the zero-damping flutter speed.

Other slightly different approaches to solve the flutter problem have been proposed,
but their thorough examination is out of the scope of this work. The interested reader
can find additional information for example in [108, 109]. The interest here is just to
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give an overview of the problem and the available solution methods. Some applications
involving dynamic aeroelastic constraints, including flutter, during conceptual aircraft
MDAO are discussed in Section 2.4.3. Before that, Section 2.4.2 introduces another
important issue in dynamic aeroelasticity, namely gust-induced loads.

2.4.2 Dynamic gust loads

Gust response is a critical aeroelastic issue in aircraft sizing. The static manoeuvre
loads are never considered sufficient in any sizing approach, even in traditional con-
ceptual design. Moreover, recent evidences show that modern climate changes can
have a significant worsening impact on wind gust, such as a 20-30% increase in the
daily or hourly occurrences of high-speed gust events. Such a trend may lead to in-
creased attention to gust loads in the future aircraft sizing and certification processes.
And even at present, specifications always impose to combine the static manoeuvre
flight envelope with the gust envelope, and pick the most critical conditions among the
two. This is shown in Figure 2.9. For a rigid aircraft the effect of a vertical gust can
be considered with good approximation proportional to the flight speed [110]. This is
why the gust envelope is represented by straight lines whose slope depends on the gust
intensity, and which are superimposed to the steady level flight condition, represented
by a load factor n = 1. Common discrete values of vertical gust speed used for initial
sizing are U1 = 50 ft/s and U2 = 25 ft/s.

FIGURE 2.9: Superposition of manoeuvre and gust envelopes, from [9].
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However, even for rigid aircraft, the actual dependence of the load factor on the gust
speed should be corrected to account for the alleviation arising from unsteady aerody-
namic effects. In the conventional conceptual design approaches, this is done through
some semi-empirical relationships. For example, reference [9] adopts the experimental
alleviation factor proposed by Pratt and Walker [111] kg, so that the gust-induced load
factor is:

ngust =
ρ

2 g
kg U

VC(EAS)CLα

m/S
(2.2)

kg =
0.88 µg

5.3 + µg
(2.3)

µg =
2 m

ρ S cMGCCLα

(2.4)

where ρ is the air density, U is the vertical gust speed, VC(EAS) is the cruise equivalent air
speed, CLα is the aircraft lift-curve slope, m is the aircraft mass, S the aircraft reference
surface, cMGC the wing mean geometric chord.

The objective of the conceptual sizing is to estimate the worst gust loads and the mass
of an appropriately sized structure to sustain them. From Equations (2.2) to (2.4) it
emerges that a nonlinear relationship relates the load factor to the aircraft mass. This
means that the worst mass case for gust loads is not known a priori, and several cases
should be analyzed. In practice, it is acceptable, at the earliest stage, to compute the
two extreme cases of lowest and highest mass [9]. In particular, the lowest mass to
be considered is the maximum zero-fuel weight (MZFW), increased by 5% to account
for a minimum quantity of fuel always remaining onboard. The maximum mass case,
instead, corresponds to the maximum take-off weight (MTOW). However, in this case
the mass of the fuel stored in the overhanging part of the wing reduces the bending
moment at the wing root, so its contribution to the total load factor has to be subtracted.
This contribution is given by its mass, denoted as MCV, multiplied by the distance of
its center of gravity from the root chord. Reference [9] approximates this distance as
55% of the distance from the point of application of the aerodynamic loads, so that
ultimately, the mass considered in this case is MTOW - 0.55 MCV.

Once the two load factors are calculated, they are compared to the manoeuvre limit
load factor of 2.5, and the highest is used to estimate the required structural mass.

Such a semi-empirical approach can be considered quite accurate when dealing with
conventional designs, but there is no guarantee that it holds valid for unconventional
configurations. Especially when flexible high aspect ratio wings are involved, the sub-
ject becomes risky, as these wings are more prone to high gust-induced aeroelastic
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loads. For this reason, it is of interest in this work to investigate the effects of gust
loads, in addition to flutter, when included as dynamic aeroelastic constraints during a
flexible aircraft MDAO.

When addressing the problem in a more physics-based perspective, where semi-empirical
formulas are of no interest, useful indications can be found in the certification specifi-
cations (EASA CS25 [112] or FAA part 25 [113]). These regulations indicate two main
approaches to verify airworthiness with respect to gust loads. The first one consists in
determining the dynamic response to prescribed discrete gust inputs. The second de-
mands to verify the response to a continuous turbulence model, provided in frequency
domain. Of course verifying full compliance with regulations is definitely out of the
scope of this work, and in general of any conceptual design task. Here, regulations are
just used as a reference to define realistic design constraints, and no attempt is made
to enforce a thorough assessment of compliance. This work only focuses on the first of
the two approaches.

The discrete gust shape prescribed by regulations has the ‘1-cosine’ form described in
Figure 2.10. The disturbance is assumed to be one-dimensional with the gust velocity
acting normally (vertically in this case) to the airplane advancing direction. The one-
dimensional assumption constrains the instantaneous vertical gust velocities to be the
same at all points in planes normal to the direction of airplane travel. The disturbance is
considered frozen in space while the airplane crosses its field. The shape is defined by
two main parameters: the gust gradient, H, corresponding to half of the wavelength,
and the gust amplitude, or design gust velocity, Uds, indicating the maximum vertical
velocity. The latter is given as a function of the gust gradient, extrapolated according to
experimental evidences, so the two parameters are not independent. The curve describ-
ing this dependence is also shown in Figure 2.10. In order to assess the structural safety
with confidence, it is recommended to compute the responses to a sufficient number of
different gust gradients, because the worst combination of frequency and amplitude is
in general not known a priori.

The appropriate design gust velocity depends not only on the gust gradient, but also
on the flight altitude and on the aircraft mass properties. In particular, the expression
provided by regulations is:

Uds = Uref Fg

(
H

350

)1/6

(2.5)

where the reference speed Uref, to be expressed in ft/s, is provided by the specifications,
and only depends on the altitude and on whether the flight speed is set to the cruise
speed VC or the dive speed VD. Fg is called the flight profile alleviation factor, and
introduces the dependence on different aircraft properties as follows:
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Fg = 0.5
(

Fgz + Fgm
)

(2.6)

where:

Fgz = 1− Zmo

76200
(2.7)

Fgm =

√
R2 tan

(
π R1

4

)
(2.8)

R1 =
Maximum Landing Weight
Maximum Take-off Weight

(2.9)

R2 =
Maximum Zero Fuel Weight
Maximum Take-off Weight

(2.10)

Zmo = Maximum operating altitude (2.11)

FIGURE 2.10: Typical ‘1-Cosine’ design gust velocity profiles, from the FAA Advisory
Circular 25.341-1 [10].

The above expressions can be used to enforce some realistic simulation-based con-
straints on dynamic gust loads.

2.4.3 Dynamic aeroelasticity for conceptual aircraft MDAO

It is of interest here to show that some solutions involving the above methods are suit-
able and have been successfully applied to aircraft design and optimization cases. In
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particular, the Neocass framework [78, 79] allows the computation of flutter speed
using an aeroelastic model based on a stick model for the structure, derived from a
wing-box representation as discussed in Section 2.3, and the DLM to model the aero-
dynamics. Another interesting application where flutter speed is calculated at concep-
tual level in support of aircraft design is the one proposed in [11]. Here the aeroelas-
tic model is based on a frequency-domain unsteady strip theory formulation, with a
proposed correction to capture some compressibility effects in the transonic domain,
and again a beam model derived from a wing-box geometry. It should be underlined
that in both cases certain limitations had to be retained as a compromise to address
a conceptual-level problem. For example, the DLM in itself is only valid for incom-
pressible, irrotational and inviscid flow, and is effective under the hypothesis of small
deformations. However, under these limitations, it captures well the unsteady three-
dimensional aerodynamics, and is therefore generally accepted for aeroelastic compu-
tations at conceptual design. The same is true for the unsteady strip theory, especially if
applied to high-aspect-ratio wings. In fact, as stated in [11], although it fails to capture
the three-dimensional wing tip effects, strip theory remains an accepted method for
the aerodynamic response of high-aspect-ratio wings [114, 115], thoroughly validated
in the literature [29, 116].

Regarding how flutter speed calculations are integrated within the aircraft design pro-
cess, the two frameworks follow different approaches. In Neocass, flutter can be in-
cluded as a constraint only during the inner structural sizing phase, with the overall
aircraft variables being kept fixed. An example application is provided in [117]. In
short, their approach consists of individuating in Equation (2.1) the dependence on the
prescribed structural variables and evaluate by use of finite differences the eigenvalues
derivatives with respect to the structural variables. These in turn are used to finally
calculate the derivative of the flutter constraint with respect to structural variables, so
that they can be employed during a gradient-based optimization.

The approach of [11], instead, demonstrates how the newly-developed aeroelastic solver
was coupled into an existing aircraft design tool, namely the Transport Aircraft System
OPTimization (TASOPT) tool [118], developed at MIT. As a first coupling of two ini-
tially separated programs, the approach is kept simpler: the flutter speed is calculated
for each design candidate during the overall aircraft optimization process, and a cost
function is defined to penalize each candidate that approaches or reaches instability.
The monitored quantity is the highest real part of the eigenvalues obtained by solving
Equation (2.1). Although being a less sophisticated approach compared to the one in
[117] just discussed, it represents a more straightforward way to couple an external
solver to an existing aircraft design platform. This allows greater flexibility for plug-
ging and testing different solvers. An important conclusion reported from [11] is that
a flutter constraint may have a decisive impact on the design of a high-aspect-ratio air-
craft. In fact, the proposed demonstrative application, carried out around a Douglas
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D8 baseline, shows that flutter speed effectively limits the optimal feasible aspect ratio,
resulting in a 3.3% higher fuel burn compared to the unconstrained optimum. Also,
the study continues by investigating the effect of possible new material technology im-
proving the allowable stress, with respect to the standard aluminium baseline. Results
show that the impact of a flutter constraint on fuel burn and maximum take-off weight
would be more and more significant with increasing material performance (see Figure
2.11). Reference [117] does not provide such a comparative analysis, but states that the
flutter-constrained structural sizing process managed to move the flutter speed of the
optimized baseline from 100 m/s to above 250 m/s.

FIGURE 2.11: Variations of optimum fuel burn and maximum take-off weight with
specific allowable stress and effects of a flutter constraint in the loop (from [11]).

These examples are not the only ones available in literature, but they were chosen to be
discussed here because they give a good idea of the state of the art at the time of writing.
In particular they turn out to be relevant example because both of them show validated
applicability to modern transport aircraft, which is the main focus of this work. How-
ever, there are other successful applications of multidisciplinary optimization applied
on aircraft design that are at least worth mentioning, such as [12, 13, 119]. One in partic-
ular, presented in [12, 13] deserves appreciation for the remarkable maturity and com-
plexity. The work presents an MDO framework for the conceptual-preliminary design
of solar HALE unmanned drones, where several disciplines, including flight dynamics
and aeroelasticity, are treated with physics-based approaches. A few applications are
presented, demonstrating the capability of performing a multi-objective optimization -
mass minimization and endurance maximization - constrained by several disciplinary
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constraints, including worst-case stresses, static margin, control reversal, tip stall mar-
gin at cruise, dynamic and aeroelastic stability, and battery charge. It should be noted
that such a wide coverage of disciplines is probably enabled by the fact that the study
is conducted at an industrial level, where all the relevant expertise is promptly avail-
able with a well-developed and mature technological know-how. Although the present
project is developed in a different, research-level environment, and such a wide multi-
disciplinarity is not envisaged, it is still worth to note that: first, this example further
confirms the interest of including static and dynamic aeroelasticity, as well as flight
dynamic performance, in the optimization loop; second, the methods proposed to ad-
dress aeroelastic analyses confirm an establishment in the state of the art, as they are
not significantly different from those identified above. In fact, the aeroelastic model is
taken from the MIT ASWING code [120, 121], and consists of an unsteady strip theory
model coupled with a nonlinear beam. The beam properties, in turn, are derived from
the two-dimensional characteristics of a wing-box representation, allowed to include
composite layers, by use of the dedicated software Co-Blade [122].

Another interesting aspect to underline from [12, 13] is the use of dynamic aeroelas-
tic constraints in the loop. In particular, the implementation of the flutter constraint
is treated similarly as discussed above, with the worst-case damping ratio identified
from the eigenvalues (for all altitudes) and returned to the optimizer. Also, in addition
to what already seen, this time also the dynamic aeroelastic response to gust is included
as a constraint. This is implemented by allowing time-marching simulations at certain
prescribed flight conditions. The reported examples show the possibility of simulating
either a one-dimensional linear gust ramp, or a two-dimensional ‘1-cosine’ shape (see
Figure 2.12). As gust encounter simulations may turn out to be quite expensive, espe-
cially if intended to be run several times during optimization loops, for each of the gust
case, an offline study was carried to derive worst case non-dimensional gust shape pa-
rameters - e.g. longitudinal characteristic length over chord - and therefore reduce the
number of simulations required.

It is not clear how relevant the impact of all these constraints was in the reported case
studies, compared to a more conventional unconstrained approach. However the au-
thors state that the constraints were active and contributed to shape the final opti-
mal configuration. In [13] they even discuss the effect of including an Active Flutter
Suppression (AFS) system, demonstrating that such a technology would allow a 10%
weight saving compared to a passive solution, consisting in a more robust structure
with increased stiffness. Although this result cannot be taken as a general conclusion,
it is still useful to show how critical it is to enable an aircraft design framework with
aeroelastic analysis capabilities.
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FIGURE 2.12: Examples of gust encounter setups for dynamic aeroelastic simulations,
as implemented in the MDO framework proposed in [12, 13].

2.5 Multi Disciplinary Optimization

As Multidiscipinary Design and Optimization (MDO) is in general linked to complex
and expensive problems, the choice of the optimization approach to adopt is of critical
importance. In fact, despite the physical phenomena to be analyzed in the aerospace
domains are in most cases adequately addressed by a variety of modern computational
methods and tools, the computational time required for the different analyses still rep-
resents a challenging obstacle. Therefore, the efficiency of the optimization algorithm
managing the analysis iterations can determine the success of the design approach. For
this reason, great effort has been invested in the development of efficient MDO archi-
tectures and optimization algorithms. One significant example is the establishment
of the AGILE European project1, which collects contributions from many important
European aerospace research and industrial institutions. An extensive discussion on
this wide topic could easily be the subject of an entire dedicated manuscript, which
is clearly not the objective of this work. Some relevant and detailed literature can be
found for example in [94, 123–126].

Here, the focus is restricted on one of the best performing approaches successfully ap-
plied to large and complex MDO problems [127, 128], namely Bayesian optimization,
for which an overview is provided in Section 2.5.1. Moreover, some efficient exten-
sions of this approach, leading to the so-called Super-Efficient Global Optimization,
are discussed in Section 2.5.2, as they appear particularly promising for the aims of this
project.

1https://www.agile4.eu, 2019-2022

https://www.agile4.eu
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2.5.1 Bayesian optimization and Efficient Global Optimization

Bayesian optimization is a machine learning technique best-suited to optimizing expen-
sive objective functions which in general lack known special structure - like concavity
or linearity - and for which derivatives are not available [14]. Because of this lack of
knowledge, such functions are often referred to as ‘black-box’ functions. Bayesian Op-
timization is effective for global optimization over continuous domains and may tol-
erate stochastic noise in function evaluations. According to [14], the best use of this
class of methods is for problems of less than 20 dimensions, although such a value is
actually problem-dependent, and therefore should probably be seen only as indicative.
The optimization of a coupled MDA often lies in this class of problems, because the
analysis can be nonlinear, expensive, sometimes noisy, and with a limited set of design
variables.

One key ingredient that makes this approach effective is the use of surrogate mod-
els to represent the expensive objective function. In particular, differently from other
surrogate-based optimization methods, Bayesian optimization surrogates are devel-
oped using Bayesian statistics, and the decision on where to evaluate the objective
derives from a Bayesian interpretation of these surrogates.

A Bayesian optimization algorithm consists of two main components: a Bayesian statis-
tical metamodel approximating the true objective function, and an acquisition function
used to decide where the real function should be sampled after each iteration. The sta-
tistical model is a Gaussian process (GP) [129], also known as Kriging, that associates
to any point in the design space a probability distribution for the corresponding true
value of the objective function. It is first built based on an initial set of function evalua-
tions, usually selected according to a Design of Experiments (DOE), and then updated
at each new observation during the enrichment process. The acquisition function (or
infill criterion, or acquisition criterion), instead, is aimed at selecting the point with the
best chance to approach the optimum. The most common acquisition function is the
Expected Improvement (EI), which seeks to return as a choice for the next evaluation
the point representing the best combination of large local uncertainty and promising
mean value of the surrogate objective function, as it will be clarified later. The basic
pseudocode for a Bayesian optimization process is provided in Algorithm 1. A graphi-
cal example of a Bayesian optimization step based on Expected Improvement is given
in Figure 2.13.

The GP regression is based on the hypothesis that, for any point x, the unknown ob-
jective f (x) can be expressed as a multivariate normal probability distribution, with a
particular mean value µ0(x) and a covariance matrix given by a covariance function or
kernel Σ0(xi, xj) that can be evaluated for each pair of points xi, xj. The kernel is chosen
so that points xi, xj that are closer in the input space have a large positive correlation,
reflecting the assumption that their function values should be more similar than points
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Algorithm 1 Basic pseudocode for Bayesian optimization

Input: Objective function f , initial DOE of size n0, maximum number of iterations N
Define a Gaussian Process to represent the objective function f
Define an appropriate acquisition function
Observe f at n0 points according to an initial DOE
while n ≤ N do

Update the GP surrogate model
Find xn+1 maximizing the acquisition function
Evaluate the objective function f (xn+1)
Update current best f ∗(n)
Increment n

end while
Output: Point corresponding to the best evaluated objective function

FIGURE 2.13: Illustration of the Bayesian optimization mechanism, from [14]. The
top figure shows the Gaussian Process regression of a 1D function in terms of mean
(solid line) and 95% confidence interval (dashed envelope). The model is derived af-
ter three function evaluations, indicated by blue circles. The bottom figure plots the
associated Expected Improvement acquisition function. The point that maximizes the

EI (represented by an ‘x’) is selected for the next objective function evaluation.
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that are far apart. Different formulations are possible for the mean and kernel func-
tions. For example, the mean can be expressed by a constant value, or by a simple
polynomial in x, the latter being more useful when representing an objective function
expected to have some specific trend. Different options are also commonly used for the
kernel function, such as the power exponential or Gaussian kernel, or the Màtern kernel
[14].

The most commonly used acquisition function is the Expected Improvement. Its def-
inition follows a simple reasoning: it is desired that each sample at which the true,
expensive objective function is evaluated corresponds to a large improvement with re-
spect to the best values among the previous evaluations. Such improvement is of course
unknown until the next evaluation is done. However, it is possible to have an estima-
tion of this improvement based on the assumed GP surrogate. If n evaluations have
already been performed, and f ∗n is the best collected value at the moment, the Expected
Improvement is a measure of such estimation, defined as in Equation (2.12).

EIn(x) := En

[
[ f (x)− f ∗n ]

+
]

(2.12)

Here, En indicates the expectation based on the knowledge of the previous n evalua-
tions, and the apex [ ]+ indicates that the value is retained only if positive, and is set to
zero otherwise.

A closed form to compute the expected improvement based on the statistical properties
of the Gaussian Process (mean and variance as functions of x) is described in [130] or
[131]. The mathematical development is not reported here, but the main outcome is
that with an available expression for EIn(x) it is possible to select the next sample as
the one that maximizes it:

xn+1 = arg max(EIn(x)) (2.13)

The EI function is inexpensive to compute, despite it can present issues in its numeri-
cal differentiation. However, solving Equation (2.13) remains a relatively fast task that
can be addressed by several classical optimization methods. This approach, first intro-
duced by Močkus [132], was revived by Jones [131] under the name of Efficient Global
Optimization (EGO).

The methodology just discussed represents one of the main approaches for efficient
global optimization of expensive black-box functions. However, other variants have
been proposed in the literature. For example, other acquisition functions can be used
in alternative to the Expected Improvement, such as Knowledge Gradient (KG), En-
tropy Search (ES), Predictive Entropy Search (PES) or Multi-Step Optimal Acquisition
Functions. Moreover, the basic logic of Bayesian optimization just discussed was ex-
tended to more complex problems, such as those involving noisy evaluations, parallel
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computations, multi-fidelity approaches and others. The interested reader can find fur-
ther information in [14].

2.5.2 Super-Efficient Global Optimization

Recent developments have allowed further improvements of the EGO approach. In
particular, a first method addressing the incorporation of constraints, not contemplated
by the original EGO, was proposed by [133]. The method allows solving general non-
linearly mixed constrained problems, and was named Super-Efficient Global Optimiza-
tion (SEGO). Further improvements have been discussed by [134, 135], concerning the
handling of a large number of design variables, the introduction of more efficient in-
fill criteria, improving the original formulation based on the Expected Improvement,
and the combination of Mixture of Experts (MOE) in order to adapt the approach to
more complex multidisciplinary problems. A better way to handle constraints was also
proposed by [128, 136], where a demonstration is presented over an aircraft MDO ap-
plication.

One key idea of SEGO, which determines its great potential, is the handling of mixed
equality and inequality constraints by introducing additional metamodels, one for each
constraint function. This is of great benefit especially when those constraints imply the
evaluation of other expensive functions. This would be the case for example when
introducing dynamic aeroelastic constraints within an overall aircraft sizing and opti-
mization framework.

However, taking constraints into account by means of their Bayesian surrogate models
is not a trivial task. One problem, for example, is that the estimation of feasibility ob-
tained only via the mean of their GPs does not grant feasibility with respect to the true
constraint functions. Nevertheless, satisfactory results have been obtained by means
of the so-called Upper Trust Bound technique [136], which encourages exploration of
the feasible domain by combining the mean prediction and the associated uncertainty
function given by the GP.

Another challenge is the solution of the optimization problem to maximize the Ex-
pected Improvement acquisition function over the feasible domain. This problem can
easily become very difficult, as the acquisition function EI is highly multimodal, as
visible in Figure 2.13. For this reason, some modified acquisition functions have been
proposed. One example is the one proposed by Watson and Barnes, which subtracts
the GP mean from the EI, as shown in Equation (2.14). Such a function was shown to
ease the solution of the optimization problem with a significant increase in efficiency.

WB2 = EI(x) − µ(x) (2.14)
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One additional modification of this criterion, proposed by [135], consists of adding a
scale factor s to the EI, which has a smoothing effect on the acquisition function with
additional benefit in terms of optimization cost. The new criterion is indicated as WB2S,
and is expressed as in Equation (2.15).

WB2S = s EI(x) − µ(x) (2.15)

These characteristics are among the main and most recent improvements of the SEGO
strategy, making it a cutting-edge solution for efficient optimization of expensive black-
box functions under mixed, expensive black-box constraints. Therefore, it is probably
the most suitable and flexible technique for the kind of Multi Disciplinary Optimization
problems to be addressed in this project. Moreover, the ONERA center of Toulouse,
which has supported this project as research partner, has given a large contribution to
the latest evolution of the SEGO approach [128, 134–136], and has developed its own
SEGO suite, named SEGOMOE. For this reason, this tool was selected to address the most
complex MDAO cases presented later in this manuscript.

2.6 Design under uncertainty: optimization, reliability, robust-
ness

2.6.1 General considerations

One main driver motivating the present research project is the fact that complex design
problems inevitably imply uncertainty and risks, and the more complex the problem,
the higher the uncertainty. Investigating the impact of uncertainty is in many cases
of fundamental importance, at research level as well as at industrial level. The prob-
lem is that such investigations significantly increase the computational cost compared
to deterministic studies. This is why uncertainty quantification and design under un-
certainty are still very active research topics. This Section is aimed at highlighting the
main aspects of this problem, discussing the possible formulations, and clarifying the
concepts of reliability and robustness in the context of design under uncertainty. Then,
Section 2.6.5 further discusses the issue with more specific focus on aircraft multidisci-
plinary design, providing also some example applications from the recent literature.

A useful classification of design and optimization problems in the context of uncer-
tainty is provided by Levrière [15]. It is based on the fact that any design problem
depends on two kinds of functions; the objective function and the constraint function.
The proposed classification distinguishes the cases where uncertainty is propagated
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into the objective function from those where it is propagated into the constraint func-
tion. The first case involves the concept of ‘robustness’, defined as the quality of a sys-
tem’s response (objective function) of being insensitive to small variations in system
parameters. The second case is linked to the idea of ‘reliability’, intended as the ability
of a system to ensure its functions in a given uncertain context, where non-admissible
solutions are tolerated as long as they remain unlikely.

Depending on the specific needs, the objective and constraint functions can be given
three possible states: function not needed, deterministic function, function subject to
uncertainty. The possible combinations of these states applied to the objective and con-
straint functions give origin to different design classes with corresponding different
outcomes. This is well illustrated in Figure 2.14. In particular, in the context of de-
terministic approaches, the design can be: a) admissible, if deterministic constraints
are applied but no optimization is addressed; b) optimal, if a deterministic objective
function is optimized without imposing any constraints; c) optimal and admissible,
if a deterministic optimization is performed under deterministic constraints. In pres-
ence of uncertainty, some additional categories can be defined. If uncertainty affects
only the constraint function, the design is said: d) reliable, if no optimization is car-
ried out; e) optimal and reliable, if uncertainty is propagated only to the constraints,
and the optimization is run over a deterministic objective function. On the contrary,
if uncertainty only concerns the objective function, the design is called: g) robust, if it
the objective function can be optimized with a sufficiently high probability; h) robust
and admissible, if in addition some deterministic constraints are satisfied. Ultimately
the most complex design class is: i) robust and reliable, if both the objective function is
optimized and the constraint are satisfied with a satisfactory probability.

The type of approach to be used depends of course on the specific needs of each prob-
lem and on the available resources. Ideally, any designer aims at a robust and reliable
optimal design. In reality, this cannot always be ensured, and the choice is the result of
a trade-off between the need to minimize risks and the limited computational or time
budget. In this project, we aim at developing a flexible framework that can easily be
adapted to any of the discussed approaches. However, as one main challenge to be
addressed is the introduction of dynamic aeroelasticity within an overall aircraft de-
sign problem, the investigations will prioritize the dynamic aeroelastic analyses. As it
will be shown later, these are taken into account as performance constraints during the
overall MDO. Consequently, the focus is primarily to investigate the impact of uncer-
tainty on these constraints, and the preferred approach will be for optimal and reliable
design. However, a change for a different approach, such as robust and admissible
design, or robust and reliable design, could be easily attained without any significant
implementation effort.

It should be noted that the terms ‘robust’ and ‘robustness’ are occasionally used in this
manuscript in a generic sense indicating ‘resilience’ against uncertainty, but it is worth



2.6. Design under uncertainty: optimization, reliability, robustness 39

pointing out that in accordance to the described definitions the more appropriate terms
are ‘reliable’ and ‘reliability’.

FIGURE 2.14: Different possible design and optimization approaches in presence of
uncertainty, from [15].

2.6.2 Uncertainty Quantification and Sensitivity Analysis

After having clarified the definitions of robust and reliable design, it is now useful to
enter in the details of the mathematical problem concerning how the input uncertainty
can be propagated into the desired outputs - whether these are objective or constraint
functions. This basically involves the domain of what are called Uncertainty Quantifi-
cation (UQ) and Sensitivity Analysis (SA). The following discussion is based on ref-
erence [137], which offers a useful overview of the main theoretical aspects of these
topics.

To start with, let us consider a generic function F giving the output Y and depending
on a space x and on a set of uncertain parameters Q, as in Equation (2.16).

Y = F(x, Q) (2.16)

The output Y may have values belonging to the output space ΩY according to an un-
known probability distribution, denoted as ρY. The objective of UQ is to determine
this output distribution, knowing the input distributions on the vector Q. The follow-
ing discussion is limited to the case where all the uncertain parameters are statistically
independent, so that each of them is represented by a separate univariate probability
distribution.
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The desired information about the output probability distribution usually involves a
few common statistical metrics: the mean, or expectation, E, and the variance V. These
are defined as in Equations (2.17) and (2.18), respectively.

E[Y] =
∫

ΩY

y ρY(y) dy (2.17)

V[Y] =
∫

ΩY

(y − E[Y])2 ρY(y) dy (2.18)

The mean represents the expected value of the model output Y, whereas the variance
is an indication of how much the output is expected to vary around the mean. An
additional useful index is the percentile Px of Y, which defines the value below which
the model outputs are located with a probability of x percent. Mathematically, this
corresponds to the definition given in Equation (2.19).

x =
∫ Px

−∞
ρY(y) dy (2.19)

In some cases, however, the interest may go beyond the computation of the above quan-
tities. In particular, one may want to know what parameters among the set Q have the
most impact on the variation of the output Y. In fact, it is possible that the output is
very sensitive to some of these parameters, and insensitive to others. The quantifica-
tion of how much each parameter is responsible for the output uncertainty is exactly
the scope of what is called Sensitivity Analysis (SA). Several metrics have been pro-
posed to mathematically define this sensitivity. A review of different methods is given
by [138]. However, the most common indices are those proposed by Sobol [139], known
as Sobol indices, which are based on the concept of variance. The idea is to estimate
how much of the output variance is due to each uncertain input. Therefore, such an
index should be low for a given parameter whose variation results in a comparatively
small variation of the final output. Conversely, if a change in one parameter leads to a
large variation of the output, the index should be high. Following this reasoning, one
main index, known as first-order Sobol sensitivity index, Si, is defined as in Equation
(2.20).

Si =
V[E[Y|Qi]]

V[Y]
(2.20)

where V[E[Y|Qi]] is the expected value of the output Y when the parameter Qi is fixed.
This index represents therefore the expected reduction in the variance of the model
when the parameter Qi is kept constant. It can be shown that the sum of the first-order
Sobol indices cannot exceed one, and is only equal to one if there is no interaction
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between the uncertain parameters [140]. Two parameters are said to interact if they
have a non-additive effect on the output.

Higher order Sobol indices exist and give information about the interactions between
each parameter with several others. Usually, enough information is given by the first-
order indices and what are called total-order indices STi [141]. These include not only
the sensitivity of first-order effects, but also the sensitivity due to interactions between
a certain input Qi and all combinations of the remaining ones [142]. The definition is
given in Equation (2.21).

STi = 1 − V[E[Y|Q−i]]

V[Y]
(2.21)

Here, Q−i indicates all uncertain parameters except Qi. The sum of the total Sobol
sensitivity indices is equal to or greater than one, and is only equal to one if there are
no interactions between the parameters [140].

Now that a clear definition of the needed quantities of interest has been presented, the
following Section is dedicated to the main methods employed in literature for their
computation.

2.6.3 Monte Carlo and Quasi-Monte Carlo method

The simplest method to derive the required statistical metrics for UQ and SA is the
Monte Carlo method. The idea is to evaluate the model thousands of times in corre-
spondence of randomly sampled (according to their probability distribution) param-
eter sets. The collected series of model outputs is then used to compute the needed
statistical indices. The advantage of this approach is the simplicity and applicability to
any problem, without requiring any assumptions about the model. However, a critical
drawback is that it is extremely expensive, often prohibitively. This major disadvan-
tage can be somehow mitigated by the so-called quasi-Monte Carlo approach, which
reduces the number of model evaluations by more efficient sampling techniques cov-
ering the parameter space more evenly. Examples of such techniques are the Sobol
sequence [143] and the Hammersley sequence [144].

After N model evaluations, the mean and the variance can be computed as in Equations
(2.22) and (2.23).

E[Y] ≈ 1
N

Ns

∑
i=1

Yi (2.22)

V[Y] ≈ 1
N − 1

N

∑
i=1

(Yi −E[Y])2 (2.23)
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Clearly, the accuracy increases with increasing number of samples. To compute Sobol
indices from a Monte Carlo, Reference [137] favors the Saltelli’s method [141], which
is not documented here for brevity. With this approach, if N is the number of sam-
ples needed by the quasi-Monte Carlo method to achieve a certain accuracy in the
UQ, the corresponding number of samples required to compute the Sobol indices is
Ns = N(d + 2), with d denoting the number of uncertain parameters.

2.6.4 Polynomial Chaos Expansion

A much more efficient way to perform UQ and SA, representing the current standard
in most applications, is through the use of Polynomial Chaos Expansion (PCE). This
method consists of creating a surrogate model F̂ of the true function F of Equation
(2.16) based on a polynomial expansion structured as in Equation (2.24).

F ≈ F̂ =
Np−1

∑
n=0

cn(x) φn(Q) (2.24)

where cn are expansion coefficients and φn are the polynomials. The number of ex-
pansion factors Np depends on the number of uncertain inputs D and on the chosen
polynomial order p as in Equation (2.25).

Np =

(
D + p

p

)
=

(D + p)!
D! (D + p)!

(2.25)

It is convenient to choose the polynomials φn(Q) so they are orthogonal with respect
to the multivariate probability density function ρQ, and one method to do this by using
the so-called three-term recurrence relation [145]. The following step is to find the
expansion coefficients cn. If this is to be accomplished by treating the true function
as a black-box, which means that nothing can be inferred by knowledge of the true
function’s properties, then the approach is said non-intrusive. This is the preferred
approach here, as it allows greater flexibility to treat different problems. Non-intrusive
methods can be divided into two main classes: point-collocation methods and pseudo-
spectral projection methods.

Point-collocation methods demand that the polynomial approximation is equal to the
true model at a set of prescribed collocation nodes. This condition allows the problem
of finding the coefficients cn through a set of linear equations. The number of colloca-
tion points suggested by [137] is Nc = 2 Np + 2.

Pseudo-spectral projection methods, instead, are based on a least square minimization
of the error between the true and surrogate model, and requires numerical integration
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to find the expansion coefficients cn. The number of model evaluations needed varies
according to the integration scheme, for which several options are available [137].

The choice of the polynomial chaos expansions method is problem dependent. In gen-
eral, the pseudo-spectral method is faster than point-collocation, but has lower stabil-
ity. Moreover, point-collocation (as well as the quasi-Monte Carlo method) is robust
towards missing values as long as the number of results remaining is high enough.
Therefore, the point-collocation method is here preferred.

Once the PCE is generated, several statistical metrics can be directly obtained from it.
For example, the mean and variance can be calculated as in Equations (2.26) and (2.27),
respectively.

E[Y] ≈ c0 (2.26)

V[Y] ≈
Np−1

∑
n=1

γn c2
n (2.27)

where γn is a normalization factor defined as γn = E[φ2
n(Q)].

The first- and total-order Sobol indices can either be derived analytically from the PCE,
as shown in [146, 147], or with the Monte Carlo procedure described above, with the
difference that the Monte Carlo approach would be much faster because the sampling
would be on the polynomial surrogate F̂, and not on the true, expensive function F.

Polynomial chaos expansions are recommended as long as the number of uncertain
parameters is small (typically < 20), as they are much faster than Monte Carlo methods
[137].

2.6.5 Applications in aircraft conceptual design

Despite most studies on aircraft conceptual design and optimization rely on determin-
istic processes, assuming the feasibility of their results and ignoring the concept of ro-
bustness, some studies do face the issue of uncertainty quantification and propagation,
although not necessarily including aeroelasticity-related issues.

For example, Reference [148] introduces environmental and operational uncertainty
within the design and optimization process of a combat air vehicle. The key uncertain
parameters, all of aleatory nature, are identified for the particular application to be the
combat altitude, the combat Mach number, the number of turns and the angle of turn.
There is no a-priori evaluation of the input parameters uncertainty. Instead, the distri-
bution shapes are chosen by the authors only according to reasonable assumptions. The
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uncertainty is always represented with a normal distribution around a nominal value
with standard deviations of approximately 0.5% of the nominal value, except for the
number of turns, which is considered as a more random variable, and for this reason is
assumed to vary with a uniform distribution. The multidisciplinary design exploration
is based on surrogate modelling techniques, the most effective of which has been identi-
fied by the authors in the non-deterministic Kriging (or GP) [149]. The surrogate model
is built through standard Monte Carlo simulations based on a simple uniform Design
of Experiment (DOE). Although some of the adopted methods could be improved -
such as the Monte Carlo simulations or the uniform DOE, which are quite inefficient -
the paper represents a good example where the uncertainty propagation successfully
supports the exploration providing a robust design outcome.

Differently from the previous approach, the work of Mines [75] tries to derive informa-
tion on the distributions and correlations of the key uncertainty sources from model-
and data- based considerations, instead of assuming prescribed independent distribu-
tions without justification. To this purpose, the author identifies the main uncertainty
sources with epistemic model uncertainty, and more precisely with the uncertainty due
to the finite element discretization in the adopted physics-based models. In addition,
the work includes wing-level reliability constraints (such as on tip deflection), which
means that the constraint compliance is affected by uncertainty. The work demon-
strates the added value of including design robustness and reliability information early
on the design, which can help saving a large amount of money in comparison to the
case where a realization of negative uncertainty late in the design process results in the
non-compliance to some constraints/requirements.

In these examples and in all similar ones, some limitations are of course necessary:
it is not practical to take all the possible problem inputs as uncertain, and propagate
dozens, or hundreds, or thousands of uncertain parameters across the entire design
and optimization process. Therefore, depending on the main objectives of each study,
the priority is given to a restricted set of quantities (aerodynamic coefficients, geometry,
weight and balance, structural properties, etc), and to a restricted set of constraints or
figures of merit (performance, flying qualities, fuel mass, structural safety, etc). The
idea is to show that if the framework can be adapted to different, particular robust
multidisciplinary analysis and optimization problems, then it can be easily applied to
several other studies involving similar figures of merit or different combinations of the
disciplinary modules, for example different aerodynamic model coupled with the same
flight dynamics model, or the same aerodynamic model coupled with rigid or flexible
structure, etc.
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2.7 Summary

This Chapter covered a literature review on the following points:

• Applications involving flight simulation during conceptual design studies, in-
cluding flying qualities assessment and simulation of flexible aircraft dynamics;

• Efficient methods for sizing and optimization of high-aspect-ratio wings at con-
ceptual design level;

• The issues of flutter and dynamic gust loads, and how they can be taken into
account in overall aircraft conceptual design;

• Bayesian Optimization and Super Efficient Global Optimization to tackle complex
MDO problems;

• How to perform design and optimization under uncertainty: the main Uncer-
tainty Quantification techniques and some example applications in aircraft con-
ceptual design.

Advanced and effective methods exist for all the individual topics above, but their
smart combination into an efficient framework for robust MDAO for the design of flex-
ible aircraft is still lacking of mature and comprehensive applications. This represents
the main research gap that this work aims to fill. The proposed approach is detailed in
the following chapters.
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3.1 Overview

This chapter presents a set of tools that were chosen to be part of the analysis and sim-
ulation framework suitable for conceptual design of flexible aircraft. Some of them
were developed by the author when no suitable solution was found off-the-shelf for
the identified needs. As the aim is to cover a range of applications as wide as possi-
ble, including estimations for non-conventional vehicles, the attempt here is to provide
tools with large adaptability, offering a variety of features that could be switched on or
off according to the particular needs. For instance, linear and nonlinear methods can
be selected at the aerodynamic, flight dynamics and structural dynamics levels. Also,
the disciplinary modules can be used as stand-alone applications with their own input-
output channels, or they could be interfaced for coupled analyses. The source code
can be compiled (with or without multidisciplinary coupling) either into a stand-alone
application or into a Python shared object. This latter option allows the tools to be
plugged into a multidisciplinary environment, for which a Python interface has been
developed.

In this context, the most challenging task is generally recognized to be the prediction of
aerodynamic loads. In this work, some methods have been selected because considered
suitable for conceptual design applications, according to most of the related literature
(see Section 2.2.2). Since it is assumed that limited knowledge is available at this design
phase - which is not necessarily true for conventional concepts, but it is surely a fair
assumption when coping with novel concepts - it was decided to have a small set of
different fidelity levels, which the analyst can choose according to the complexity of the
particular case. The choice shall follow a preliminary assessment based on experience,
theoretical inference or on representative test simulations. The available aerodynamic
modules are presented in Section 3.2, together with their validation for those that have
been developed by the author.

Similarly, the approaches to model the structural dynamics and its interface with the
aerodynamic methods are presented in Section 3.3 and Section 3.4.

Time-domain simulation capabilities were also given particular attention for the fol-
lowing reasons: a) they have the advantage to capture and clearly show the effects of
possible nonlinearities and/or transient responses, b) they enable to simulate sizing
scenarios (manoeuvres, gust encounters) to improve the quality of the structural sizing
process; c) they allow flying and handling qualities predictions to be verified or to be
extracted from the time history results; d) virtual flight simulation within a fixed-base
new generation flight simulator, recently installed at the University of Southampton,
is envisioned as a desirable outcome of the research project, because it would pave the
way to further research on handling qualities and pilot-coupling assessment. For these
reasons, a flight simulation tool was developed during this project, and its formulation
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and validation are presented in Section 3.5. Also, its coupling with the aerodynamic
modules is described in Section 3.5.2.

To best exploit the nonlinear time-domain results, a system identification module has
been put in place with the aim of automatically extracting some relevant figures from
the output data. In this way the simulations can be automatically iterated multiple
times and used within sensitivity analyses, sizing loops or optimisation loops. The idea
is to provide a general tool to tackle a variety of tasks, such as the extraction of flying
qualities figures of merits, the identification of maximum loads during prescribed ma-
noeuvres or the evaluation of maximum control surface deflection. Nevertheless, the
proposed method is being currently applied on the first mentioned category, namely
the flying qualities extraction, because in line with the gradual maturation of the frame-
work development it offers the opportunity to test the strategies without necessarily re-
quiring a full disciplinary coupling, which risks to obfuscate the research progress with
excessive complexity. The investigated system identification strategies are presented in
Section 3.6.

As already stated earlier in this work, the problems faced here are not merely related
with the capability of predicting certain nominal behaviours or characteristics of the de-
sign candidates, but we aim at going further and corroborating such predictions with
information on the reliability of the results. To do so, it is important first to identify
for each task of interest (flying qualities estimation, loads prediction, etc) the relevant
sources of uncertainty, and then to set up an analysis framework to propagate the un-
certainty through the design process into the output quantities of interest. In other
words, some sensitivity analysis and uncertainty quantification capabilities are needed,
and for this reason some available tools have been selected to be part of the developed
framework. These are introduced in Section 3.7.

Of course, all of these tools need to be integrated with an aircraft sizing and optimiza-
tion process. To this purpose, this work took advantage of the expertise of the ONERA
centre, which provided the FAST-OAD aircraft sizing tool [150] and the SMT and SEGOMOE

libraries for surrogate modelling and optimization techniques. These are discussed in
Section 3.8.

To give a better overview of the framework architecture, its main building-blocks are
here summarized. The main modules are:

• A choice of aerodynamic models, including a classical analytical model based on
linear aerodynamic derivatives, and a steady or unsteady implementation of the
Vortex Lattice Method (VLM or UVLM);

• A nonlinear structural mechanics solver (GEBT, Geometrically Exact Beam Theroy)

• Two possible aeroelastic solvers: a) a linear solver based on potential unsteady
strip theory coupled with linear beam theory, mainly required for flutter analysis;
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b) a linear/nonlinear model coupling the GEBT structural solver with the VLM or
UVLM aerodynamic solvers;

• A flight dynamics simulation module (FDM) implementing the 6DOFs nonlinear
equations of motion;

• A post-processing module to extract the desired quantity of interest (amplitude,
frequency, damping) out of the simulation history by use of a Least Square best
fit technique of the time-domain data;

• An uncertainty quantification and sensitivity analysis module that wraps the
above modules and propagates the uncertainty from the input parameters into
the desired outputs. It returns the desired statistical metrics to be used in the
reliability evaluation;

• An aircraft conceptual sizing tool (FAST-OAD) performing the necessary loops un-
til convergence to a consistent configuration (i.e. satisfying the TLARs);

• An optimization environment (SEGOMOE) to be interfaced with the sizing pro-
cess and with the implemented multidisciplinary deterministic or stochastic con-
straints (such as flying qualities constraints, flutter speed, gust loads).

Table 3.1 clarifies which solvers were developed by the author and which ones were
integrated from existing open-source resources.

Implemented by the author Off-the-shelf software

VLM (Vortex Lattice Model) GEBT (nonlinear beam model)

UVLM (Unsteady VLM) FAST-OAD (aircraft sizing tool)

Unsteady strip theory SEGOMOE (Bayesian optimization)

Linear aeroelastic solver Uncertainpy (UQ & SA tool)

Nonlinear aeroelastic solver

FDM (Flight Dynamics Module)

Post-processing module

TABLE 3.1: List of the developed and integrated tools available in the proposed
MDAO framework.

The global architecture (for a fictitious, generic task) is summarized in Figure 3.1. The
process starts with the definition of an optimization problem based on a set of design
variables - here they will mostly concern geometric variables - denoted as Vg and an
objective function, here identified with the fuel mass. According to the input geome-
try, and on a series of top-level aircraft requirements (TLAR), FAST-OAD performs the
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conceptual sizing of a rigid aircraft, based on low-fidelity models (especially for aero-
dynamics and structure). Some parameters of the converged configuration, here de-
noted as Wg as they usually involve wing characteristics, are then passed to the flight
physics disciplinary modules. These can include the flight dynamics module, or an
aerodynamic module, or an aeroelastic module, or a combination of them. The actual
structure corresponding to the ‘Flight Physics Modules’ block depends on the specific
task to be addressed, and on the required performance to be evaluated. The output of
this simulation block can be a set of scalar quantities or their time history, if time simu-
lation is performed. In this second case, the time series can involve some displacement
X(t) or load F(t). These output can be fed to the processing module in order to derive
the required figures of merit, such as the generic frequency and damping ratio ω and ξ,
or some target structural loads σ and τ. If uncertainty has to be considered, the uncer-
tainty quantification (UQ) module shall be included to propagate it to those outputs.
Typical uncertain inputs could be the aircraft center of gravity location ∆xCG, the longi-
tudinal moment of inertia Iyy, the wing elastic axis location a, and its offset d from the
wing center of gravity axis. The uncertainty distributions of those parameters are indi-
cated by a hat ˆ( ), and would be the inputs of the UQ module. The output distributions
of the desired figures of merit (ξ̂, ω̂, σ̂, τ̂) can then be used to define a set of reliability
constraints, for example targeting for each output a certain mean or variance or the
probability to overshoot a certain threshold. A similar variant of this architecture, not
shown in Figure 3.1, can propagate the uncertainty to the objective function, in which
case the problem could more properly be defined as robust optimization, according to
the definition given earlier in Section 2.6.1.

V
(0)
g ∆̂xCG, Îyy, â, d̂ TLAR

V ∗
g

0, 5 → 1 :

Optimizer
1 : Vg

ξ̂∗, ω̂∗, σ̂∗, τ̂∗, V̂ ∗
f 5 : ξ̂, ω̂, σ̂, τ̂ , V̂f

1, 4 → 2 :

UQ
2 : ∆xCG, Iyy, a, d

Fuel∗ 5 : Fuel
1 :

Overall Aircraft Sizing
2 : Wg

2 :

Flight Physics Modules
3 : X(t), F (t)

4 : ξ, ω, σ, τ, Vf
3 :

Processing

FIGURE 3.1: Generic XDSM1scheme representing the overall structure of the present
framework for robust design and optimization under reliability constraints. The spe-
cific disciplinary blocks to be included and the list of inputs and outputs will depend
on the particular study to be performed. The structure can slightly change accordingly.
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3.2 Aerodynamics

Chosing and implementing the appropriate aerodynamic solvers requires a good un-
derstanding of the assumptions and limitations behind the available theories and meth-
ods. Therefore, to provide a deeper understanding of the adopted strategy, this section
not only describes the numerical approaches implemented in this work, but also revises
the relevant theoretical principles behind them.

The most general description of the fluid dynamics problem is given by the Navier-
Stokes equations, expressing the conservation of momentum in differential form:

ρ

(
∂qi

∂t
+ V · ∇qi

)
= ρ fi −

∂

∂xi

(
P +

2
3

µ∇ · V
)
+

∂

∂xj
µ

(
∂qi

∂xj
+

∂qj

∂xi

)
(3.1)

(i = 1, 2, 3)

where ρ is the density, V is the velocity vector, fi is the body force in the i-th direction,
P is the pressure and µ the viscosity. The typical boundary conditions associated with
Equation (3.1) require that the normal and tangential velocity components decay to
zero at the solid boundary:

qn = 0 (on solid surface) (3.2)

qt = 0 (on solid surface) (3.3)

These equations must be combined with the continuity equation, that in its most gen-
eral form is:

∂ρ

∂t
+ V · ∇ρ + ρ∇ · V = 0 (3.4)

For high speed problems also the energy equation has to be used, which is not reported
since it is not of interest for the present case.

Because of the complexity of the Navier-Stokes equations, analytical solutions are avail-
able only for very simple cases, and numerical methods with some sets of assumptions
have to be used according to the problem approached and the requirements in terms of
accuracy, time and computational power available.

1EXtended Design Structure Matrix: in this work, the graphical convention follows the one from [151].
For a reader not familiar with the matter, it is important to know that in these charts all inputs are on
vertical lines, all outputs on horizontal lines, gray lines represent data exchange between modules, and
black arrow lines indicate the process flow.
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The most advanced computational methods (Direct, Eddy, RANS simulations, etc.) for
solving the fluid dynamics equations are to be abandoned at conceptual design phase
for at least two reasons: 1) the computational cost and time is in general too high to
allow vast design exploration; 2) being sensible to low-scale effects, they are of value
mostly when a high level of geometric detail (airfoil leading-edge curvature, fillets,
roughness) is involved, which is not the case during conceptual design.

Typically, the approaches recognized as affordable, or promising, for conceptual design
applications neglect the viscous effects, or approximate them relying on pre-computed
data [152–154]. The methods employed in this work belong to this category, and are
introduced in the following sections.

3.2.1 Linear derivative-based aerodynamics

The most basic and still powerful aerodynamic model is the traditional approach of
Bryan [155], based on the assumption of linear dependency on flight state variables,
where each contribution is linearly superimposed to build up the total aerodynamic
force/moment. The total aerodynamic coefficients are given by expressions such as in
Equations (3.5) and (3.6).

Ci = Ci0 + Ciα
∆α + CiV

∆V
Ve

+ Ciq

q cMGC

2 V
+ Ciz

2 ∆z
c

+ Ciδ
δ (3.5)

(i = D, L, m)

Ci = Ci0 + Ciβ
∆β + Cip

b p
2 V

+ Cir
r cMGC

2 V
+ Ciδ

δ (3.6)

(i = C, `, n)

The assumption is usually applicable to a large portion of the flight envelope, at least
for most conventional aircraft, and even when linearity is no longer present, such as
when approaching stall, or in transonic regimes, local linearization is often success-
fully used in many applications. This approach ensures very fast computations and,
in combination with the linearized equations of motion, allows the classical stability
& control analysis to be quickly performed through eigenvalue and eigenvector com-
putation. For these reasons, the approach is the standard in industry and many flight
simulation applications [156–158].

The predictions rely on a database of pre-computed aerodynamic derivatives, in a form
similar to that illustrated in Figure 3.2. The structure reveals the limits of the approach:
first, a large amount of data is to be computed; second, to reduce such a number, some
interactions between the state variables are usually neglected.
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Moreover, the reliability of the approach strictly depends on the quality of the data
sources. When data comes from extensive simulation or testing campaigns the pre-
dictions can be highly accurate. At conceptual design, although these sources are not
available, data from analytical and semi-empirical relationships give satisfactory re-
sults, at least for conventional configurations. For this reason, the first aerodynamic
model considered in this work is based on the classical Bryan’s approximation (Equa-
tions (3.5) and (3.6)), where the needed aerodynamic coefficients are computed through
analytical and semi-empirical relationships from [9, 159–161]. In addition, most of the
needed coefficients could also be computed by use of the Vortex Lattice Method that
will be discussed later in this chapter.

FIGURE 3.2: Typical format of aerodynamic database, from [5].

It is worth mentioning here a few details about the computation of drag, as it is directly
linked to the key performance indicator of fuel burn. The present approach follows the
drag build-up of [9], where the total drag is given by four contributions: viscous drag
CD0, compressibility drag CDc, induced drag CDi, and trim drag CDtrim. The total drag
build-up is obtained as in Equation (3.7):

CD = kCD

(
kCD0 CD0 + kCDc CDc + kCD i CDi + kCDtrim

CDtrim

)
(3.7)

where the coefficients ki, when available, account for additional corrections due to par-
ticular technologies such as winglets. The viscous drag is obtained by summing and
normalizing the friction contributions of all the wet areas as in Equation (3.8), with the
friction coefficients given by the Prandtl-Schlichting correlation [162] as in Equation
(3.9).

CD0 = ∑
i

c f i k f i
Swet,i

Si
(3.8)
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c f =
0.455

(1 + 0.126 M2)
(
log10 Re

)2.58 (3.9)

The compressibility term is estimated by a semi-empirical formula taking as inputs
only Mach number and lift coefficient [9]. Although its validity is not general, the
correction is considered acceptable as far as the Mach number does not exceed 0.8 [72].

The remaining two contributions, namely induced and trim drag, are evaluated em-
ploying simple analytical functions and semi-empirical corrections. The induced drag
is given by Equation (3.10) [163], and the Oswald factor e is estimated as in [164]. The
contribution due to trim is computed by Equation (3.11) as indicated in [9].

cDi =
C2

L
πA e

(3.10)

CDtrim = 5.89 · 10−4 CL (3.11)

3.2.2 Linear unsteady strip theory

A common approach to model the aerodynamic loads for aeroelastic applications is to
treat each wing section through unsteady 2-dimensional potential aerodynamics [165,
166]. In this way any cross-flow and viscous effects are neglected. The computational
burden is therefore reduced and suitable for preliminary evaluations, especially when
dealing with high aspect-ratio configurations, where the cross-flow effects are limited
to a small region around the wing tips (as reported in Section 2.4.3). The potential
flow assumption is valid for linear aerodynamic regimes, i.e. moderate angles of attack
and subsonic speed [167]. Within this range, even the unsteady effects can be included
with a linear model. A linear unsteady aerodynamic model becomes an useful tool
for treating aeroelastic systems flying in relatively simple conditions (small angles of
attack, small gust amplitude or control deflections, negligible cross-flow or sideslip),
because it allows the full aero-structural system to be described linearly, and this, in
turn, allows standard eigenvalue analysis or control studies to be performed [30, 168–
170]. Therefore, the method enables, for instance, fast predictions of flutter/divergence
speed, including open-loop and closed-loop cases.

For these reasons, this method has been included as one of the options available for
this work. The main interest, within the time frame of this project, is to use it for flutter
predictions, although it can be - and it has been - successfully employed also for other
applications (see [30, 171]).



56 Chapter 3. Formulation and analysis tools

The formulation is here briefly reported, and refers to the flow around a thin, uncam-
bered profile, identified with its straight mean-line as in Figure 3.3.

FIGURE 3.3: Mean-line of the aerofoil. ϑ and h denote pitch and plunge, respectively.

The aerodynamic loads are derived from the two-dimensional unsteady potential the-
ory of Theodorsen [18], and considered continuously distributed along the wing span.
The arbitrary motion of the aerofoil and the flap deflection can be evaluated by means
of convolution of the Wagner’s function, and the same procedure is applied for the gust
encounter with the Kussner’s function, as reported in [20].

According to this, the total lift and pitch moment can be expressed as a summation of
the contributions of aerofoil motion, flap deflection and gust encounter:

L = La + Lδ + Lg (3.12)

M = Ma + Mδ + Mg (3.13)

The expressions for the three terms are treated separately in the Appendix A.1. Lift and
moments are evaluated at the elastic axis.

For the Wagner’s function φW(t), the exponential approximation of Jones is used [172],
which reads as in Equation (3.14).

φW(t) = 1 − A1 e−b1
U
b t − A2 e−b2

U
b t; (3.14)

where the coefficients are A1 = 0.165, A2 = 0.335, b1 = 0.0455, b2 = 0.3.

The effect of gust can be accounted for using the Kussner’s solution, with the following
exponential approximation of the Kussner’s function ψK(t):
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ψK(t) = 1 − A3 e−b3
U
b t − A4 e−b4

U
b t; (3.15)

where the coefficients, proposed by Leishman [173], are A3 = 0.5792, A4 = 0.4208,
b3 = 0.1393, b4 = 1.802.

Further details on the model formulation are given in Appendix A. In the present work,
this model is only applied for flutter analysis of a clamped wing with no control sur-
faces’ deflections. Therefore, only the contribution of aerofoil motion, La, is retained.

3.2.3 The steady Vortex Lattice Method

3.2.3.1 Theoretical background

This method arises from a series of assumptions that considerably simplify the fluid
dynamics problem of Equations (3.1) and (3.4). The simplifying approach leading to
the definition of the VLM will be briefly summarised here.

A first common hypothesis is that of constant viscosity µ. When viscosity is completely
neglected, the flow is said to be inviscid, and the introduction of such an assumption
in the Navier-Stokes equations leads to the Euler equation:

∂V
∂t

+ V · ∇V = f− ∇P
ρ

(3.16)

Another common assumption, valid at low speed regimes, is that of incompressibility
(ρ = constant). Enforcing this condition in Equation (3.4) leads to the incompressible
continuity equation:

∇ · V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0 (3.17)

It can be shown that at subsonic flow regimes the flow around wings can be represented
with sufficient accuracy by the Euler Equation (3.16) and the incompressible continuity
Equation (3.17). Such an approximation is only valid out of the thin boundary layer
surrounding the surface. Within the boundary layer viscosity plays a relevant role
as it is responsible for the generation of the so-called viscous drag, which cannot be
predicted by the Euler equation.

Another important approximation that is made to further simplify the fluid dynamic
equations is that of irrotational flow, which means that the fluid particles do not ex-
perience rotation, so that ∇× V = 0. Under this assumption it can be demonstrated
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that the velocity is an exact differential of a potential Φ which is independent of the
integration path, and is only a function of the location:

Φ(x, y, z) =
∫ R

R0

Vx dx + Vy dy + Vz dz (3.18)

where R0 is an arbitary starting point. The velocity at each point can therefore be ob-
tained by the gradient of the velocity potential:

V = ∇Φ (3.19)

Thus, for an incompressible irrotational flow the continuity equation can be expressed
as:

∇ · V = ∇ · ∇Φ = ∇2Φ = 0 (3.20)

Equation (3.20) is known as Laplace’s equation, and the flow described by this equation
is referred to as potential flow. When viscosity is also neglected, the only boundary
condition to be satisfied is that the normal component of the relative velocity on the
solid surface must be zero:

∇(Φ−Φ∞) · n = 0 (3.21)

where n is the local normal vector of the surface. A boundary condition must be set
also at the farfield (infinity). For a fluid originally at rest, the perturbation introduced
by a moving body should decay far from the body (r→ ∞):

lim
r→∞
∇(Φ−Φ∞) = 0 (3.22)

Equations (3.20) to (3.22) form the theoretical basis for the Vortex Lattice Method, which
therefore is valid for incompressible inviscid irrotational flow.

The basic idea behind the method is that a solution to the Laplace equation (3.20) can
be obtained by a distribution of elementary solutions on the problem boundaries (body
surface and wake). In fact, because of the principle of superposition, if each elementary
function is a solution of the Laplace equation, their linear combination will also be a
solution for that equation. They are also called singular solutions because they feature
zero velocity at infinity (satisfying the boundary condition (3.22)) but singular velocity
at r = 0. The solution of the global problem is found by integrating those singular
solutions over the boundaries. The problem is thus reduced to finding an appropri-
ate set of singular solutions that fulfils the boundary condition (3.21). Several singular
solutions are suitable for this purpose, such as sources, doublets, polynomials and vor-
tices. The 3D VLM relies on vortex segments, for which the velocity field is given by
the Biot-Savart law.
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The method in brief prescribes to cover the solid surface with a lattice of vortices whose
circulations Γ are initially unknown, and will be determined after enforcing the bound-
ary condition (3.21) on some discrete locations, named collocation points. Once the
circulations are known, the aerodynamic force can be computed by means of the Kutta-
Jukowsky theorem:

F = ρ V∞ × Γ (3.23)

where F is the aerodynamic force per unit length and V∞ the free stream speed.

A first basic application is that of the horseshoe vortex lattice model, where the wingspan
is modelled through a series of horseshoe-shaped vortices as in Figure 3.4. A more
accurate discretization of the lifting surface is achieved by vortex ring elements, rep-
resented in Figure 3.5. This last approach is the one referred to as VLM in this work.
The problem is set up by reformulating the boundary condition (3.21) in terms of the
normal velocity components induced by the vortex distribution on the wing and wake
and the free-stream speed, which means:

∇Φ · n = ∇Φ∞ · n → A Γ = V∞ · n (3.24)

In Equation (3.24), A is called the aerodynamic influence matrix, where any element
(ij) represents the velocity induced in the collocation point of panel i by a unit vortex
ring in panel j, and Γ is the vector of all the unknown circulations.

FIGURE 3.4: Horseshoe vortex lattice model for a lifting-line problem, from [16].
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FIGURE 3.5: Vortex ring model for the VLM, from [16].

3.2.3.2 Applicability and limitations

The VLM is an useful tool to predict lift and induced drag for three-dimensional lifting
surfaces. Depending on the accuracy required, it can describe flat plates, cambered sur-
faces or a complete three-dimensional body with any kind of thickness and camber. It
is very common because of its flexibility on the geometrical description and its fastness
- it just solves a linear system of equations. Nevertheless, the method must be used
with awareness of its limitations, due the assumptions made for its derivation. The
three main reasons that limit the accuracy of the VLM are compressibility, viscosity,
panel modelling and wake model. As far as compressibility is concerned, a correction
is possible, named the Prandtl-Glauert rule, and it will be discussed later in Section
3.2.5. The three remaining problems are briefly described here.

The equations implemented in the VLM are derived with the assumption of inviscid
flow. This means that all the boundary layer phenomena are completely neglected.
In particular, the lift remains a linear function of the angle of attack, without any ca-
pability of predicting flow-separation, and low Reynolds number calculations should
be avoided. An iterative way to couple the potential flow equations of the VLM and
the viscous boundary layer equations exists: the Interactive Boundary Layer method
(IBL). It consists in an iterative loop where a boundary layer thickness is estimated
after the potential flow solution. The boundary layer modifies the geometry of the pre-
vious potential model, requiring a new iteration. After each loop the boundary layer
thickness and potential flow solution are updated until both the potential and viscous
models have converged (see Figure 3.6). Although this procedure is in principle im-
plementable, the increase in computational effort and time offsets the gain in accuracy.
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Also, an appropriate modelling of viscous effects requires a refined geometrical de-
scription, including profile shapes, junctions, fairings, etc, otherwise it could lead to
imprecise predictions [174]. On the other hand, potential flow solvers are generally
recognized to provide much more reliable predictions about lift force, even with sim-
plified geometries [16, 98, 163]. Since aeroelastic phenomena are mainly triggered by
lift forces [20], many authors successfully addressed aeroelastic problems assuming no
drag at all [7, 19, 92, 96, 175]. Following this philosophy, no effort was put in this work
to further enhance the VLM implementation with viscous effects, with the reminder of
restricting its application to problems where the latter are of minor relevance.

FIGURE 3.6: Interactive Boundary Layer iterative procedure, from [17].

Panel modelling also implies some loss of accuracy due to an imperfect geometrical de-
scription of the desired surface. In fact, three-dimensional surfaces in general cannot be
decomposed into flat quad panels [17] (see Figure 3.7). This results in some numerical
error, which is expected to be small, but still difficult to evaluate [19]. Also, the stan-
dard panel approach implies constant singularity distribution (sources, doublets, etc.)
over the panel. Higher-order panel methods can be formulated, where linear or non-
linear distribution of elementary solutions and/or geometries may be described [16].
Nevertheless, also in this case the increased accuracy may not be worth the augmented
computational time. Another limit due to panel discretization is the difficulty model-
ing wing-body interactions, so that usually only lifting surfaces are analysed, without
accounting for fuselage and nacelles.

The third major limit of the panel methods is the model of the wake, usually treated
as flat. In reality, the wake follows the shape of the streamlines. An iterative loop can
be used to achieve the so-called wake rollup, that would give a more realistic model
(see Figures 3.8 and 3.9). As before, the choice of whether to implement this feature or
not depends on the required degree of accuracy and on the availability of time for the
simulations.
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FIGURE 3.7: Geometrical issue with panel discretization, from [16]: all four corner
points of a surface panel seldom lay in the same plane.

FIGURE 3.8: Panel discretization for wake rollup, from [16].

3.2.3.3 Validation of the VLM solver

Several VLM programs are available online, such as [17, 154, 176, 177]. However, the
adoption of these tools was not found of practical benefit to the project, for different
reasons. In some of the above programs, the scope is to provide an advanced model
suited for high geometrical detail, including propellers and non-lifting bodies interac-
tion, boundary layer approximated predictions, etc. All these features, not necessarily
required for the present work, make the code architecture very large and complex to
be accessed by external developers, especially as the developer documentation is al-
ways poor if not completely missing. Furthermore, most of those tools are aimed at
rigid body modelling, so even if accessing the source code had been a trivial task, a
non-trivial implementation work would have still been demanded to include unsteady
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FIGURE 3.9: Iteration loop with or without boundary layer calculation and wake shape
calculation, from [17].

aerodynamics and mesh deformation routines. On the other hand, a basic VLM Fortran
implementation existed from previous work in our team at the University of Southamp-
ton, limited to a flat, horizontal, single wing in symmetric flow. Such a Fortran model
was already predisposed to be interfaced with the FALCon procedure [64] to allow
two-dimensional viscous corrections through RANS simulation data. Although this is
something not required here, it could still be of interest for future research. Considering
all of these aspects, it was preferred to start from the simple, in-house Fortran imple-
mentation and improve it only with the features considered of interest for the present
project and its possible developments (arbitrary 3D wing shape and orientation, multi-
ple wings, asymmetric flow, control surfaces, mesh deformation, interfaces to external
solvers). This necessary implementation work was considered more beneficial for an
efficient and aware development process than a tedious decryption, interpretation and
adaptation of large, poorly documented platforms of unnecessary complexity.

The present section reports the validation process of the developed VLM solver, which
was accomplished gradually in parallel with the implementation progress. The vali-
dation has been carried out by comparison with one of the tools mentioned above, the
XFLR5 program [17], a well-established VLM solver freely available online under the
GNU General Public License. All lifting surfaces are modeled by planar surfaces gen-
erated by all the profile mean lines. In the present model, the wake is represented by
straight vortex lines developing downstream from each trailing edge vortex ring, as in
Figure 3.4, whereas in XFLR5 the wake vortex lines are deformed by a roll-up procedure.
It was found that for the following static cases this difference does not add significant
mismatch in the results.

The validation was accomplished through a series of steps, from simple to complex
configurations.
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Flat wing with varying sweep angle

The first, simplest validation case was aimed at validating the aerodynamic results for a
planar wing at different sweep angles in simple symmetric flow conditions. The sweep
angle was varied from zero to 15 °. The aerodynamic coefficients corresponding to a
sweep of 5° are compared in Table 3.2. The variation of pitching moment coefficient
with respect to sweep angle is reported in Figure 3.10.

XFLR5 Validated model

CL 0.193 0.192
CD 0.001 0.001
Cm −0.090 −0.089

TABLE 3.2: Aerodynamic coefficients obtained with the two solvers for the 5° sweep
test case. The resolution is adapted to that of XFLR5, which is limited to the third

decimal.

FIGURE 3.10: Predictions from the two solvers of the variation of the flat wing pitching
moment coefficient Cm against sweep angle.

Side force validation

Since XFLR5 does not compute side force, the validation of the side force coefficient
computed by the Fortran solver was accomplished by comparing results from the same
wing simulated first in horizontal position with angle of attack α = 3° and then in
vertical position with sideslip angle β = 3°(see force contour plots in Figure 3.11). The
calculations matched perfectly, with force coefficients CL,h = CY,v = 0.26595 and rolling
moment coefficients C`,h = C`,v = 0.06528.

Two-wing configuration with main wing and horizontal stabiliser

This case was aimed at validating the interaction between two wings. A flat swept
horizontal tailplane was added to the configuration, both located at the same height.
Details on the geometry are given in Figure 3.12. The obtained aerodynamic coefficients
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(a) Wing in horizontal position with α = 3°. (b) Wing in vertical position with β = 3°.

FIGURE 3.11: Comparison between a horizontal wing with angle of attack α = 3° and
the same wing in vertical position with sideslip angle β = 3°, for validation of the side

force coefficient.

are compared in Table 3.3, showing again good agreement with the reference, with less
than 1% error.

XFLR5 Validated model

CL 0.130 0.130
CD 0.001 0.001
Cm 0.241 0.239
Cl 0.006 0.006
Cn 0.000 0.000

TABLE 3.3: Aerodynamic coefficients obtained with the two solvers for the test case
of Figure 3.12. Notice that the Fortran solver gave a non-zero yawing coefficient Cn =
0.00028, which is not reported because of the resolution of XFLR5, limited to three

decimals.

Three-wing configuration

The last validation considered asymmetric flow around a full three-wings configura-
tion with main wing plus horizontal and vertical stabilisers. The main wing featured
both in-plane and out-of-plane displacements through sweep and dihedral angles. Ge-
ometrical details are given in Figure 3.13. A good match of the aerodynamic coefficients
was achieved, with a maximum of 1.5% error on the Cm, as reported in Table 3.4.
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(a) XFLR5.

(b) Validated model.

FIGURE 3.12: Panel models with pressure coefficient distribution from the two com-
pared solvers. Main wing: sweep angle λS = 10°, dihedral angle γD = 10°. Tail: span
bH = 5 m, chord cH = 1 m, tilt angle τH = −3°, root leading edge distance from main

wing root leading edge d = 6m. Angle of attack α = 2°, sideslip angle β = 2°.

XFLR5 Validated model

CL 0.132 0.131
CD 0.001 0.001
Cm 0.384 0.378
Cl 0.006 0.006
Cn 0.009 0.009

TABLE 3.4: Aerodynamic coefficients obtained with the two solvers for the test case of
Figure 3.13

.
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(a) XFLR5.

(b) Validated model.

FIGURE 3.13: Panel models with pressure coefficient distribution from the two com-
pared solvers. Main wing: sweep angle λs = 0°, dihedral angle γ = 10°. Horizontal
tabiliser: span bh = 5 m, chord ch = 1 m, tilt angle τh = −3°. Fin: span b f = 3.5 m,

chord ch = 1 m. Angle of attack α = 2°, sideslip angle β = 2°.

3.2.4 The Unsteady Vortex Lattice Method

3.2.4.1 Theoretical background

As most aeroelastic dynamic problems require the capability to model flow unsteadi-
ness [20], the unsteady version of the VLM described in Section 3.2.3 was implemented
in addition to the above methods. The advantage of this method, compared to the un-
steady strip theory in Section 3.2.2 is in that the former allows three-dimensional flow
and flow interactions between multiple surfaces to be modeled.



68 Chapter 3. Formulation and analysis tools

Another method often used for 3D unsteady aerodynamic computations is the Dou-
blet Lattice Method (DLM). Although being faster than the UVLM, the DLM is a linear
method limited to small out-of-plane harmonic motion with a flat wake, and it is for-
mulated in the frequency domain. On the contrary, the UVLM has a wider applicabil-
ity because any 3D motion and deformation in the time domain of the lifting surface
is allowed, and the 3D shape of the force-free wake is obtained as part of the solution
procedure and contributes to it. These characteristics make the latter a more attrac-
tive option for applications where complex geometries and large structural motion are
envisioned, calling for more flexible analysis tools.

Here follows a brief description of how this formulation differs with respect to the
steady one already given.

First, the boundary condition (3.21) needs to account for the contribution of the instan-
taneous body motion, and therefore it is expanded as follows:

(∇ΦB + ∇ΦW − ∇Φ∞ − Vrel − Ω× r) · n = 0 (3.25)

where ΦB and ΦW are the velocity potential due to body and wake circulation, re-
spectively, Φ∞ is the free-stream potential, Vrel is the velocity component due to the
body translation with respect to the fluid (excluding the free-stream speed, already ac-
counted for by Φ∞, but including both rigid body and elastic motion, if any) and the
last term inside the brackets accounts for the velocity at r due to the rigid body angular
rates Ω.

A second main difference is in the computation of the aerodynamic force at each panel.
Instead of using the Kutta-Jukowsky formula (3.23), whose extension to unsteady con-
ditions is controversial [19], the loads are obtained by computing the pressures through
the unsteady Bernoulli equation [16]:

P∞ − P
P

=
V2

B
2

+
|V∞ + Vrel + Ω× r|2

2
+

∂ Φ
∂ t

(3.26)

where VB = ∇ΦB is the local velocity due to the body circulation, and VB is its mag-
nitude.

Third and last fundamental difference with respect to the steady version, the UVLM
requires a discretization of the wake into vortex rings as done for the body surfaces.
This is done by creating a new row of vortex segments at each time step placed in the
space covered by the wing trailing edge during the step in question (see Figure 3.5).
The new shed wake vortex rings are assigned the same circulation value as the one
of the respective trailing edge vortex at the previous step. This is done in order to
comply with Kelvin’s theorem, stating that in the potential flow region the angular
momentum cannot change, and thus the circulation around a fluid curve enclosing the



3.2. Aerodynamics 69

wing and its wake is conserved. In this way, the memory of the past flow conditions is
retained through the wake circulation, which remains unchanged in absence of viscous
dissipation.

The validation of the present implementation of the UVLM is reported in the following
Section.

3.2.4.2 Validation of the UVLM solver

This section reports the validation of the present implementation of the Unsteady Vor-
tex Lattice Method. As done for the steady part, some validation cases of increasing
complexity were chosen progressively with the maturation of the program.

The first case, from [16], is for the sudden forward acceleration of flat wings. The initial
flow conditions are influenced by the starting vortex shed by the trailing edge. This
induces a downwash on the wing with decreasing intensity as the vortex is left down-
stream, according to the Biot-Savart law [163]. For this reason, the local instantaneous
angle of attack is lower than the nominal steady-state one, the latter being approached
asymptotically as the starting vortex moves to infinity downstream.

The simulations are repeated for several aspect ratios, and this gives an idea of the
three-dimensional effect of wing tip vorticity. The results are reported in Figure 3.14. As
expected, low-aspect-ratio wings experience lower lift because the tip-induced down-
wash reduces the local effective angle of attack along the span.

It should be noted that the very first values of lift coefficient given by the UVLM are af-
fected by a singularity at t = 0 in the time derivative of the velocity potential, needed
in the unsteady Bernoulli equation for pressure computation. The singularity is prop-
agated by the finite difference method in the first time steps. The error is due to the
fact that a sudden variation of this term happens in a short time, producing a very
high value of the velocity potential time rate, and a few steps are needed for its effect
to vanish. The error could be reduced by reducing the time step of the time-marching
numerical scheme.

A second validation case, again from [16], is for a 3D wing in forced sinusoidal motion
at three different reduced frequencies k. Figure 3.15 compares the simulated results for
the lift coefficient during steady oscillations (after the transient is vanished), compared
against data from [16]. Good agreement was found in all cases, again with less than 1%
error.

Further confirmation of the adequacy of the model in the case of harmonic oscillations
has been obtained by comparison with the unsteady theory of Theodorsen [18]. In this
case, as the theory concerns two-dimensional flow around thin airfoils, a very high
aspect ratio (A= 100) was used in the 3D UVLM model. The frequencies investigated
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FIGURE 3.14: Validation of the UVLM solver. Lift coefficient of 3D thin wings of dif-
ferent aspect ratios in sudden forward motion. The simulated conditions correspond

to α = 5° and V ∆t/c = 1/16. Comparison against data from [16].

FIGURE 3.15: Validation of the UVLM solver. Time history of lift coefficient of a 3D
wing in sinusoidal plunging motion for three reduced frequencies. A= 4, h = ∞,

α = −5°. Comparison against data from [16].

correspond to k = 0.25, k = 0.5 and k = 0.75. Again, a good matching was obtained
as shown in Figure 3.16.
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FIGURE 3.16: Validation of the UVLM solver. Lift coefficient of a 2D thin profile in
harmonic plunging oscillations, for three reduced frequencies. Comparison against

the theoretical model of Theodorsen [18], data from [19].

A more complex case, first introduced in [178] and studied also in [179], was simulated
to test the developed model more thoroughly. This time in fact large 3D geometri-
cal variations are considered, and curved surfaces are treated instead of planar wings.
The test-case is for two curved symmetric wings flapping in a bird-like sense while
moving forward at constant speed. For a better understanding, this is represented in
Figure 3.17, where five snapshots are taken from one flapping cycle. Each wing has an
aspect ratioA = 3, and the curvature is that of the NACA 83xx airfoils, where the first
two digits refer to maximum camber value and location, and the last two are irrelevant
as they relate to the thickness, which is not modeled in this formulation. The configu-
ration presents a geometric angle of incidence with respect to the free-stream direction
of α0 = 5°, and the flapping motion is given by the harmonic law φ(t) = 45 cos (ω t),
where φ is the flapping angle, expressed in degrees.

A first case, corresponding to moderate frequency (k = 0.1), and a second one at high
frequency (k = 0.75) are considered. In both cases, as done by the reference authors,
each wing is discretized with 6 chord-wise and 10 span-wise vortex rings, and the flap-
ping cycle is resolved through 40 time steps.

The lift coefficient time history for the low-frequency case is reported in Figure 3.18
and compared with the data from Murua [19]. A semi-quantitative comparison is also
reported in Figure 3.19, where the contour plot of wake circulation is compared with
that from [178]. The distributions look qualitatively identical.
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Similarly, the lift coefficient variation for the high-frequency case is reported in Fig-
ure 3.20 and validated against reference [19], whereas the wake circulation contour
plot is compared in Figure 3.21 with reference [178]. Again, the same range of circula-
tion values and the same distribution can be qualitatively observed. It should be noted
that the two compared methods cannot be assessed as exactly equivalent because some
fine-tuning parameters from [178] were not explicitly given (such as the numerical cut-
off radius that eliminates the vortex-line singularity, which impacts the precision and
the stability of the method, or the exact definitions for the local reference systems on
each panel, such as the local lift direction or the surface normal direction).

FIGURE 3.17: Validation of the UVLM solver. Flapping wing test-case.



3.2. Aerodynamics 73

FIGURE 3.18: Validation of the UVLM solver. Flapping wing at k = 0.1. Comparison
against data from Murua [19].

(a) Reference [178].

(b) Present UVLM.

FIGURE 3.19: Validation of the UVLM solver. Qualitative comparison of contour plots
of the wake circulation Γwake for the flapping wing test-case. Reduced flapping fre-
quency k = 0.1. The reference figure (a) shows only the last flapping cycle, whereas
the present model (b) reports one additional cycle, showing that the conditions are
already practically stationary, with no visible transient effects from one cycle to the

other.
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FIGURE 3.20: Validation of the UVLM solver. Flapping wing at k = 0.75. Comparison
against data from Murua [19].
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(a) Reference [178].

(b) Present UVLM.

FIGURE 3.21: Validation of the UVLM solver. Qualitative comparison of contour plots
of the wake circulation Γwake for the flapping wing test-case. Reduced flapping fre-
quency k = 0.75. The reference figure (a) shows only the last flapping cycle, whereas
the present model (b) reports two additional cycles, showing that the conditions are
already practically stationary, with no visible transient effects from one cycle to the

other.

3.2.5 Compressibility corrections

The derivation of the governing equations for both the VLM and the strip theory method
implied the hypothesis of incompressible (low-speed) flow. Nevertheless, a correc-
tion accounting for a certain degree of compressibility can be introduced, named the
Prandtl-Glauert rule. Such correction relies on the assumptions of steady flow and
small perturbations, which means that the perturbation on the free stream flow induced
by the moving body is small:

∣∣∣∣∂Φ
∂x

∣∣∣∣ ,
∣∣∣∣∂Φ

∂y

∣∣∣∣ ,
∣∣∣∣∂Φ

∂z

∣∣∣∣� V∞ (3.27)

Under these conditions, it can be shown that the same Laplace equation of the incom-
pressible case holds if applying the simple coordinate transformation:
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x0 =
x√

1−M2
∞

(3.28)

y0 = y (3.29)

z0 = z (3.30)

Φ0(x0, y0, z0) = Φ(x, y, z) (3.31)

(3.32)

This transformation implies that the numerical value of the disturbance potential Φ0

at the point (x0, y0, z0) equals the one of Φ in the original coordinates at point (x, y, z).
But it is important to note that the original wing planform in compressible flow differs
from the one in equivalent incompressible flow, because its x0-dimensions have been
stretched by 1/

√
1−M2

∞, whereas the dimensions in the other two directions remain
unchanged. These differences are shown in Figure 3.22. In particular, it is important to
note that the transformation produces a change in the wing aspect ratio and sweep.

The equivalence between the two domains means that, once the geometry is trans-
formed in the (x0, y0, z − 0) frame, the velocity and pressure distributions can be cal-
culated using the incompressible methods already discussed, and then the pressure
field can be transferred back to the corresponding points in the original wing. This
means that the forces acting on the mesh of the wing in compressible flow are equal to
the corresponding forces on the transformed wing in incompressible flow, which has
a different aspect ratio and sweep angle. However, as the dimensions are different,
the non-dimensional coefficients are different, and it can be shown that the high speed
coefficients are obtained as:

CL(M>0) =
CL(M=0)√

1−M2
∞

(3.33)

Cm(M>0) =
Cm(M=0)√

1−M2
∞

(3.34)

It is important to note that, because of the inherent geometrical distortion, when a
three-dimensional solution is required, as for the VLM case, there is no alternative to
analyzing a new wing planform for each different Mach number. Instead, for a two-
dimensional approximation, as the strip theory, the original geometry can be kept, and
only the corrections of Equations (3.33) and (3.34) are required. These can simply be
implemented by replacing the incompressible thin-plate lift-curve slope of 2 π with the
compressible one of 2 π/

√
1−M2

∞.
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The Prandtl-Glauert correction is valid for steady or quasi-steady flow up to M = 0.7
[163]. For unsteady aerodynamics some corrections have also been proposed. How-
ever, they require the definition of several additional coefficients or indicial functions,
that introduce additional complexity, uncertainty and computational cost. On the other
hand, as far as strip theory is concerned, it is known that applying the Prandtl-Glauert
correction to the lift-curve slope results in conservative flutter speed predictions [20].
Therefore, it was decided that:

• For steady, 3D compressible analysis, the VLM with the Prandtl-Glauert transfor-
mation will be used;

• For time-marching gust response simulations the approximation of quasi-steady
flow is assumed, and the VLM with the Prandtl-Glauert transformation will be
used;

• For flutter analysis, the strip theory with the Prandtl-Glauert correction applied
to the lift-curve slope will be used;

• No effort is done to correct the UVLM for compressibility, and therefore its use
will be limited to incompressible regimes.

FIGURE 3.22: Equivalent straight and swept planforms obtained by the Prandtl-
Glauert transformation, from [20].
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3.3 Structural dynamics

This section provides the details of the structural dynamics models to be employed for
aeroelastic analyses. Following Chapter 2, 1-dimensional structural models are in gen-
eral adequate for aeroelastic applications targeted in this project. For this reason, only
1-D beam theory is here taken into account. First, a linear Finite Element Model de-
veloped by the author in previous work [171] is presented in Section 3.3.1. The model,
originally conceived for clamped, uniform beams, was adapted here to unconstrained
wings with varying section properties. This model is useful in particular for its capa-
bility to provide quick estimation on the structure dynamic properties via eigenvalue
analysis. This model is also coupled with the linear unsteady aerodynamic strip theory
introduced in Section 3.2.2, enabling linear aeroelasticity computations. This is further
discussed in Section 3.4.1.

These tools are especially useful when dealing with moderate deformations. In the
future steps of this project, a non-linear structural solver will also be included to enable
aeroelastic computation in the case of higly flexible aircraft. This is briefly mentioned
in Sections 3.3.2 and 3.4.2.

3.3.1 Linear beam Finite Element Model

The linear beam model employed in this work is based on the hypothesis of small
displacements and on the Euler-Bernoulli beam theory, which considers the shear strain
negligible compared to the bending strains and assumes that each beam cross section
rotates rigidly around its neutral axis. A complete description of this formulation can
be found in [30, 171]. Here only the main features are outlined.

First, it is worth pointing out that all the below equations relating to linear or nonlinear
structural models are expressed in a structural reference frame, which is fixed at the
beam clamped end. It is a right-handed frame whose first axis xs is directed along the
undeformed beam axis, and ys and zs represent the horizontal and vertical directions,
with zs positive upwards (see Figure 3.23). The subscript ( )s will be dropped in the
following equations to ease the notation, but the reader shall have no doubt that all the
structural equations and definitions refer to this frame.

The model considers only two structural responses: a) the bending response, involving
the vertical deformation u and the rotation ϕ around the bending axis, and b) the twist
response, involving the twist rotation ϑ. The corresponding dynamic equations for
bending and twist are obtained writing the equilibrium (in terms of forces per unit
span) between the inertial loads, the elastic forces and the external (aerodynamic) loads
(Fz and Mx). If the beam elastic axis (EA) and its center-of-gravity axis (CG) are not
coincident, the bending and twisting degrees of freedom are inertially coupled, and the
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FIGURE 3.23: Beam coordinate system.

importance of this coupling increases with the GC to EA distance d. This linear model
is restricted to the out-of-plane bending, and therefore only the horizontal component
of this offset, namely yCG, is taken into account.

The resulting structural model, according to a classical derivation (such as from [105]),
is described by the following set of equations:

µ(x) ∂2u(x,t)
∂t2 − µ(x) yCG(x) ∂2ϑ(x,t)

∂t2 + ∂2

∂x2

(
EIA

yy(x) ∂2u(x,t)
∂x2

)
= ∂Fz(x,t)

∂x

µ(x)d(x) ∂2 u
∂t2 (x, t) +

[
Ip(x) + µ(x) y2

CG(x)
]

∂2ϑ
∂t2 (x, t)− GJ(x) ∂2ϑ

∂x2 (x, t) = ∂Mx(x,t)
∂x

(3.35)
Here, IA

yy and IA
zz are the two section area moments of inertia, and its product with the

Young’s modulus E gives the bending stiffness. GJ is the torsional stiffness, with J
being the cross-section torsion constant. µ denotes the local mass per unit length, Ip

is the polar moment of inertia around the CG, and yCG indicates the shift of the local
center of gravity from the beam axis.

The analytical model described above has been implemented in a finite element model,
following the Weak Galerkin Method [180]. The shape functions used for bending
variables are the third-order polynomials of the Euler’s beam formulation, while linear
functions were used to model twist.

For each element the vector we contains all the nodal displacements of the element:

we(t) =
[
we1 | we2

]T
=
[
u1(t) ϕ1(t) ϑ1(t) | u2(t) ϕ2(t) ϑ2(t)

]T
, (3.36)

where ui(t), ϕi(t) and ϑi(t) are the vertical displacement, bending slope and twist of
the i-th node, respectively.

The system is then assembled for N elements and the constrained degrees of freedom
are conveniently removed, giving:

M ẅ + K w = Fa (3.37)
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3.3.2 Nonlinear Geometrically-Exact Beam Theory (GEBT)

As discussed in Section 2.3, the effects of large deformations may be important, and
therefore it is desirable to have the capability to capture them. For this reason, this
framework includes a non-linear structural solver interfaced with the steady and un-
steady VLM modules. More precisely, it is a geometrically-nonlinear solver, which
models correctly the nonlinear deformations, but retains the linearity of the constitutive
relationships. This serves as the highest fidelity tool in this framework for aeroelastic
analysis of very flexible airplanes.

The chosen structural dynamics software is the GEBT program (standing for Non-linear
Geometrically-Exact Beam Theory), freely available at [181] and documented in [182,
183]. The software, developed in Fortran, has already been successfully employed on
aeroelastic applications, such as in [6, 22, 96, 179, 184].

It is a general-purpose tool designed to address the challenging analysis of highly-
flexible, slender structures, where the hypothesis of small displacement, bringing to
the common and simple linear models, are significantly violated. The main feature
of the approach is that displacements, forces and moments are transferred between
the deformed and undeformed beam frames according to exact, nonlinear kinematic
relationships involving all the translation and rotation degrees of freedom in space.
The nonlinear equilibrium is found iteratively using the Newtown-Raphson method.

The material, however, is still supposed to be in its linear elastic domain, which is why
the constitutive relationships remain linear. A detailed description of the analytical
formulation can be found in [182, 183, 185].

GEBT requires the cross-sectional properties at each element node to be provided in
the form of flexibility and mass matrices. The flexibility matrix S expresses the link
between nodal loads and structural strains as in Equation (3.38). The notation follows
the structural reference frame shown in Figure 3.23.



γxx

2 γxy

2 γxz

κx

κy

κz


=



S11 S12 S13 · · · S16

S21 S22 S23 · · · S26

S31 S32 S33 · · · S36
...

...
...

. . .
...

S61 S62 S63 · · · S66


︸ ︷︷ ︸

S



Fx

Fy

Fz

Mx

My

Mz


(3.38)

Here, the first axis is the beam axis, so that γ11 are the axial strains, γ12 and γ21 are the
shear strains, and κx = ∂ϑ/∂x measures the twist per unit length and κy = ∂ϕy/∂x
and κz = ∂ϕz/∂x are the two curvatures per unit length. The user can model any
type of material, including anisotropic ones, by providing an appropriately populated
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flexibility matrix. To suppress unneeded deformation mechanisms it is sufficient to put
the corresponding elements Sij equal to zero. For example, for an isotropic cross-section
at its shear center, the flexibility matrix would be:

S =



1
EA 0 0 0 0 0
0 1

GKxy
0 0 0 0

0 0 1
GKxz

0 0 0
0 0 0 1

GJ 0 0

0 0 0 0 1
EIA

yy
0

0 0 0 0 0 1
EIA

zz


(3.39)

Here, EA is the cross-section axial rigidity, with A denoting the cross-section area, and
GKxy and GKxz are the shearing rigidity in the horizontal and vertical planes. Note
that the assumption of negligible vertical and horizontal shear deformation is enforced
by considering infinite shearing rigidity (1/GKxy = 1/GKxz = 0), so Kxy and Kxz do
not need to be computed. Again, GJ is the torsional rigidity, with J being the cross-
section torsion constant. IA

yy and IA
zz are the two section area moments of inertia, which

multiplied by the Young’s modulus E give the bending rigidity around the structural
ys and zs axes.

If dynamic analysis has to be performed, linear and angular momenta have to be in-
cluded for dynamic simulations. Equation (3.40) relates the structural velocities to the
linear and angular momentum via the mass matrix M.



Px

Py

Pz

Qx

Qy

Qz


=



µ 0 0 0 µ zCG −µ yCG

0 µ 0 −µ zCG 0 0
0 0 µ µ yCG 0 0
0 −µ zCG µ yCG Ip 0 0

µ zCG 0 0 0 Iyy 0
−µ yCG 0 0 0 0 Izz


︸ ︷︷ ︸

M



Vx

Vy

Vz

Ωx

Ωy

Ωz


(3.40)

Here, µ denotes the local mass per unit length, yCG and zCG indicate the shift of the local
center of gravity from the beam axis. The terms Iyy, Izz and Ip denote the two mass
moments of inertia and the polar moment of inertia, respectively. Pi and Qi are the
linear and angular momenta, and Vi and Ωi are the linear and angular velocities.

GEBT allows different types of analysis to be performed on slender structures with con-
stant or varying section properties along the beam axis, including:

• Linear or nonlinear static analysis;
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• Linear or nonlinear steady-state dynamic simulation (neglecting all time deriva-
tives)

• Linear or nonlinear transient dynamic simulation;

• Eigenvalue analysis of small motions about a linearized nonlinear steady state.

In the context of this project, the most interesting applications are the nonlinear static
analysis and the linear transient dynamic analysis starting from a static nonlinear equi-
librium.

3.4 Aeroelasticity

3.4.1 Linear aeroelasticity by 1D-beam FEM and unsteady strip aerodynam-
ics

A linear aeroelastic model has been developed and validated as an intermediate fidelity
level tool for aeroelastic applications, especially time simulation and flutter prediction
through eigenvalue analysis. The model relies on the unsteady strip theory presented
in Section 3.2.2 for the aerodynamic loads, and on the linear beam FEM of Section 3.3.1.

FIGURE 3.24: Representative layout and discretization for the linear aeroelastic model.
The real wing in grey is represented by a flat surface, discretized in N 2D strips (blue).
Each strip undergoes pitch and plunge motion according to the structural deforma-
tion. No interaction (crossflow) exists among the different wing sections. Only the

main wing is modeled.

3.4.1.1 Discretized aeroelastic equations

The complete coupled set of equations describing the aeroelastic model is found com-
bining the above aerodynamic model with Equation (3.37). A full derivation of the
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matrix formulation was already published in [30, 171], and therefore only a synthetic
overview is reported here. Once all the aerodynamic matrices are available, and the
additional aerodynamic states z are included in the global equilibrium, Equation (3.37)
is expanded as follows:


M(3N×3N) ẅ + K(3N×3N) w = A(3N×3N)

M ẅ + A(3N×3N)
C ẇ

+ A(3N×3N)
K w + A(3N×8N)

z z

ż = Ψ(8N×3N) w + E(8N×8N) z

(3.41)

The right-hand side of the first line in Equation (3.41) represents the total aerodynamic
force Fa, which arises from the aerodynamic stiffness, damping and added masses (ac-
counted for by the AK, AC and AM matrices, respectively) and from the unsteady aero-
dynamic effects included via the last term Az z. The second line of Equation (3.41) de-
scribes the dynamics of the aerodynamic states, which involves the additional coupling
matrix Ψ and the dynamic matrix E. It should be noted that this formulation attributes
all the required variables to each beam node. This means that each node is assigned
with 3 structural displacements (with the respective velocities and accelerations), and 8
additional aerodynamic states. Therefore, the size of each matrix is proportional to the
number of nodes. With the hypothesis of clamped wing, enforced hereafter, the num-
ber of free nodes equals the number of elements N, which is used in Equation (3.41) to
specify the matrices’ dimensions.

This system is then re-assembled in state-space form. To this aim, the three following
matrices are introduced for convenience:

MT = M − AM

CT = C − AC

KT = K − AK

(3.42)

Here, C is the structural damping matrix, which was set to zero in this work as a con-
servative simplifying assumption, but that could be easily populated to include any
damping model eventually required. The desired state-space representation is of the
kind:

ẋ = A x (3.43)

Equations (3.41) are turned into the form of Equation (3.43) with by implementing the
following matrix structure:
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x =

w
v
z

 ; A =


0 I 0

−M−1
T KT −M−1

T CT −M−1
T Az

Ψ 0 E
0 0 0


It is worth specifying that the state vector w represents the structural nodal variables
(vertical displacement, bending slope and twist), v = ẇ represents their velocities, z
contains the aerodynamic variables coupled to the structural degrees of freedom.

3.4.1.2 Validation

The model described above can be applied either to a restrained wing (typically a
clamped wing) or to a wing-fuselage system, where the center of gravity is free to
plunge vertically according to the applied external forces, namely the gravitational,
inertial and aerodynamic loads (see Figure 3.25). A validation case for a wing-fuselage
system has been chosen from [20], for which the planform, discretization and mass
distribution are illustrated in Figure 3.26. All the data describing the test-case can be
found in the reference text.

In the book, torsional motion is neglected, so that the structure can only experience
heaving oscillations. This restriction is enforced in the present model by constraining
to zero the torsional degree of freedom of all the elements.

Additionally, the reference example approximates the response by retaining only the
rigid body, the first symmetric and the first asymmetric bending modes. The same
approximation is therefore enforced in the present model, by applying a classical modal
projection technique to the structural dynamic matrix. More details on this procedure
can be found in [171].

Figure 3.27 shows the comparison of the root bending moment per unit gust ampli-
tude after a sharp-edged gust encounter. The results are computed for both the rigid
airplane case, where any structural vibration is constrained, and the elastic airplane
case. It can be seen that the two models capture the same behaviour, despite not show-
ing an exact match (especially regarding the flexible response). This is attributed to a
main difference in the discretization method: while in reference [20] the exact analyti-
cal modal shapes are used, in the present case the modal shapes depend on the finite
element representation. Also, in the present model the added masses can only be at-
tributed to the element nodes. Since only a uniform discretization scheme is allowed,
the added masses cannot be placed exactly in the same locations as in Figure 3.26. This
mismatch only influences the inertial loads in the elastic case, as in the rigid case the
mass distribution is irrelevant.
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An important observation is that the elastic case undergoes higher structural stresses,
and this is due to the inertial loads transferred from the wing structure to the center
of gravity through the wing root. Other than serving as a validation case, this exam-
ple provides further confirmation of the critical role that structural flexibility plays in
aircraft design, and of the importance of underpinning the design with aeroelastic eval-
uations.

FIGURE 3.25: Schematic representation of a free wing-fuselage system experiencing
aeroelastic oscillations, from [20].

FIGURE 3.26: Planform, discretization, and mass distribution for the test-case in [20].

A couple of validation cases were also investigated to verify the correctness of the pro-
posed model for flutter predictions. Two wing models with opposite characteristics
were selected from the literature: the Goland wing [186] which is a quite rigid, low-
aspect-ratio wing, and the Patil wing [29], very slender and flexible.

The Goland wing properties are given in Table 3.5. The evolution of its stability char-
acteristics with increasing air speed is traced in Figures 3.28 and 3.29, showing, re-
spectively, the frequencies and damping ratios of the first 5 modes. Figure 3.28 shows
that above 100-110 m/s the frequencies of the first bending mode and the first torsional
mode start to coalesce. This progressive modal coupling is the cause of the flutter insta-
bility, which is reached at 134.6 m/s (marked by a red vertical line). From the damping
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FIGURE 3.27: Time response of the root bending moment per unit gust amplitude
following a sharp-edged gust. The curves are compared with those reported in [20].

ratio plot of Figure 3.29, it can be seen that at that speed the first torsional mode (in or-
ange) crosses the x axis, becoming negatively damped. At the crossing point, the mode
has a frequency of 10.9 Hz. On the other hand, the first bending mode shows a steep in-
crease in its damping, which is a common behaviour in such aeroelastic systems. These
results indicate that the physical instability phenomenon is captured correctly. This is
confirmed by the data found in the literature, where the flutter speed predictions are
very close to the one found here, where (see Table 3.6).

Property Unit Value
Semispan m 6.096
Chord m 1.8288
Mass per unit length kg/m 35.71
Elastic axis (from l.e.) - 33% chord
Center of gravity (from l.e.) - 43% chord
Bending rigidity N·m2 9.77 · 106

Torsional rigidity N·m2 0.99 · 106

Moment of inertia kg·m 8.64

TABLE 3.5: Aeroelastic properties of the Goland wing, as given in [19].

Source Model Vf [m/s] e [%]
Goland [186] Analytical 137.2 1.9
Patil [187] Beam + strip theory 135.6 0.7
Present model Beam + strip theory 134.6 0.0

TABLE 3.6: Flutter speed of the Goland wing. Note that e denotes the relative differ-
ence with respect to the present model.

Similar conclusions are drawn from the second flutter investigation, this time on the
more flexible Patil wing. The aeroelastic properties are summarized in Table 3.7. Again,
the convergence between the first bending (blue) and the first torsional (green) modes
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FIGURE 3.28: Evolution of the first 5 modal frequencies with air speed for the Goland
wing. A red vertical line marks the speed at which the flutter instability is reached.

FIGURE 3.29: Evolution of the first 5 modal damping ratios with air speed for the
Goland wing. A red vertical line marks the speed at which the flutter instability is

reached.

is quite evident from Figure 3.30. This time, the second bending mode (orange) is
between the two, but it does not participate in the flutter mechanism. From Figure 3.31,
it can be seen that the unstable mode is again the first torsional mode, whose damping
becomes negative above 31.4 m/s, at the frequency of about 3.4 Hz. It is also interesting
to note that because of the high flexibility (low stiffness), the first bending frequency
is so low that at some point, around 26 m/s, it almost looses its oscillatory nature,
touching the critical damping 1.0, before turning again into a highly damped oscillatory
state, with a damping ratio above 0.9. The qualitative and quantitative differences
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between these two plots and those for the Goland wing (Figures 3.28 and 3.29) reflect
the relevant physical differences between a slender, flexible wing and a stout, rigid one.
However, also for the Patil wing the results are satisfactory when compared to other
studies. Data from three reference papers are collected in Table 3.8, and all demonstrate
a very good match with respect to the present results.

Property Unit Value
Semispan m 16.0
Chord m 1.0
Mass per unit length kg/m 0.75
Elastic axis - 50% chord
Center of gravity - 50% chord
Bending rigidity Nm2 2 · 104

Torsional rigidity Nm2 1 · 104

TABLE 3.7: Aeroelastic properties of the Patil wing, from [29].

FIGURE 3.30: Evolution of the first 6 modal frequencies with air speed for the Patil
wing. A red vertical line marks the speed at which the flutter instability is reached.

Source Model Vf [m/s] f [Hz]
Patil [187] Beam + 3D panel 31.8 3.7
Patil [188] Beam + strip theory 32.2 3.6
Present model Beam + strip theory 31.4 3.4

TABLE 3.8: Flutter speed and frequency of the Patil wing.

3.4.2 Nonlinear aeroelasticity

The highest fidelity model developed in this project for aeroelastic simulations is one
coupling the GEBT nonlinear structural model presented in Section 3.3.2 with the steady
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FIGURE 3.31: Evolution of the first 6 modal damping ratios with air speed for the Patil
wing. A red vertical line marks the speed at which the flutter instability is reached.

and unsteady VLM of Sections 3.2.3 and 3.2.4. This model brings the framework the
capability of dealing with flexible slender lifting surfaces in an efficient way, suitable
for supporting the conceptual design phase, in line with the current state of the art,
discussed in Sections 2.3 and 2.4. In particular, it enables to address the nonlinear static
analysis needed for the structural sizing and optimization of flexible wings, as well as to
perform dynamic response to gust by superimposing the aeroelastic transient response
to the nonlinear static equilibrium corresponding to level flight.

3.4.2.1 Fluid-structure interface

In order to put such disciplinary coupling in place, it is essential to interface the two
domains in an effective and robust way. This means that aerodynamic loads must be
transferred to the structural model and structural deformations and velocities must be
tracked back to the aerodynamic mesh by maintaining physical consistence. In the
linear model presented in Section 3.4.1, this was a trivial task because the aerodynamic
and structural meshes are coincident: the aerodynamic strips are located exactly at the
beam nodes, so that loads and deformations are all directly calculated and applied at
the same points, without requiring any transformation or interpolation process.

However, as the VLM and beam discretizations are completely different, an interpola-
tion technique is required. The approach here adopted follows the method proposed
by [189]. The basic idea is that we need a relationship that allows to derive the displace-
ments in the fluid domain mesh, indicated here as δy f , knowing those in the structural
domain, δys. Provided that the fluid domain consists of N f nodes, and the structural
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domain of Ns nodes, this relationship is commonly expressed in the form of Equation
(3.44).

(δy f )i =
Ns

∑
j=1

hij (δys)j (3.44)

The elements hij can be grouped in a matrix H known as interpolation matrix. A com-
mon requirement is that the interpolation of displacements and forces between the two
domains guarantees the conservation of energy. This is usually obtained by imposing
that the virtual work of the aerodynamic loads on the virtual displacement in the aero-
dynamic domain equals the virtual work of the corresponding structural loads on the
virtual structural displacements. It is well known that this condition translates into the
fact that the loads on the structural nodes can be derived from the loads in the aero-
dynamic domain by multiplying the latter by the transpose of H. Despite this does
not include the conservation of momentum, the approach is still satisfactory in most
applications and remains one of the most commonly applied.

To understand how the adopted approach brings to the calculation of the required ma-
trix H, it is worth starting from a simple statement of the problem. The objective is to
reconstruct a function f , defined in a compact space Ω, that allows to find a set of nodes
Y = [y1, y2, . . . , yN f ] from the knowledge of the function values f (x̄1), f (x̄2), . . . , f (x̄Ns)

on scattered distinct centers X = [x̄1, x̄2, . . . , x̄Ns ]. The first step is to build a local ap-
proximation of f , f̂ as a sum of basis functions pi(x):

f̂ =
m

∑
i=1

pi(x) ai(x) = p(x) a(x) (3.45)

with m being the chosen number of basis functions and ai(x) denoting their coefficients.

The proposed solution to find a suitable set of coefficients ai(x) derives from the weighted
least square fit for the approximation, as in Equation (3.46).

Minimize J(x) =
∫

Ω
φ(x − x̄)

(
f̂ − f (x̄)

)2
dΩ(x̄) (3.46)

with the linear constraint:

f̂ (x̄) =
m

∑
i=1

pi(x̂) ai(x) (3.47)

The weight functions φ(x) are called Radial Basis Functions (RBF) [190].

The solution of Equation (3.46), detailed in [189], brings to a function of the form:
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f̂ (x) =
Ns

∑
j=1

ψj(x) f (x̂) (3.48)

where ψj(x) are called shape functions.

Equation (3.48) represents the required solution, analogous to Equation (3.44). The
shape functions, evaluated at the different nodes, can be finally assembled into the
interface matrix H.

The computation of the interface matrix H needs to be done only once at the beginning
of the analysis. Then, the same matrix allows to transform geometry and forces forth
and back between the two domains during the nonlinear iterations or time domain it-
erations. The size of the matrix is fixed by the number of aerodynamic and structural
nodes. It should be noted that for the beam discretization, the number of beam nodes is
not sufficient, because the interpolation function would fail to capture rotations around
the beam axis, leading to an ill-conditioned matrix. To overcome this issue, it is con-
venient to add some auxiliary nodes outside the beam axis, forming a ‘fish-bone’ mesh
that allows to capture rotations very effectively. Here two nodes are added for each
beam node, creating one forward and one backward arm along the local wing chord.
Of course these are only used for the interpolation procedure, and are not part of the
structural model. An example of the discretization of a high-aspect-ratio wing is given
in Figure 3.32. Here, the deformed VLM mesh, including the trailing vortex lines, is
represented in black, whereas the undeformed shape is in grey. The deformed beam is
reported in red, and the auxiliary points are highlights as red circles. In addition, to give
a better idea of what the loads distribution looks like, the aerodynamic lift forces on the
VLM panels are shown by blue arrows. An alternative view, showing the pressure co-
efficient distribution over the deformed aerodynamic mesh, is reported in Figure 3.33.
Some more details are reported in Figure 3.34, where a closer view of the wing is given
showing both the aerodynamic forces, in blue, and the corresponding equivalent forces
on the structural domain, in red, obtained through the transpose of the interpolation
matrix H. The moduli of the structural forces are higher than the aerodynamic ones
because the contributions of many aerodynamic panels have to be concentrated into a
smaller number of structural points. Also, it can be noted that in order to achieve the
correct amount of twisting moment with the given arms, the structural forces on the
aft points result downward, opposite with respect to the total resulting force, which
is upward. This is just a numerical artifice that depends on the chosen arm length,
and different distributions would result from different arms. In all cases, the total lift
and moments would remain consistent with the aerodynamic loads, by respecting the
equivalence of the virtual works between the two domains.

Some finer details, this time about the aerodynamic model, are given in Figure 3.35,
which shows the aerodynamic force distribution over a small portion of the wing. What
is interesting here is that the application points of these forces is crucial for the accuracy
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of the simulation. In particular, the figure shows the VLM grid in thin grey lines, the
wing geometrical leading and trailing edges in thick black lines, the midpoints of the
bound vortex segments denoted by circles, and the VLM collocation points denoted
by small crosses. It is important that the aerodynamic forces are placed on the vortex
segments’ midpoints, as the theory requires, and not elsewere, for example at the collo-
cation points, or at the leading edge of the geometrical grid. In fact, it should be noted
that in many cases a VLM model can be quite accurate even with just a few chordwise
panels - strip theory, for example, is almost equivalent to one single chordwise panel
- and this translates into a benefit in computational speed. But when decreasing the
number of chordwise panels, an error in the chordwise location of the aerodynamic
force would be amplified, with a significant cascading effect on the twisting moment,
twisting deformation, local lift, and therefore on the final aeroelastic solution.

FIGURE 3.32: Visualization of the aeroelastic model for the Patil wing. Overview
showing the undeformed aerodynamic mesh (grey), the deformed one, including the
wake (black), the beam model with the additional auxiliary nodes (red), and the aero-

dynamic forces acting on the deformed wing (blue arrows).
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FIGURE 3.33: Visualization of the aeroelastic model for the Patil wing. Overview
showing the pressure coefficient distribution over the deformed wing.

FIGURE 3.34: Visualization of the aeroelastic model for the Patil wing. Detail view
showing the aerodynamic forces (blue) generated in the aerodynamic domain (black)

and the equivalent forces transferred to the structural domain (red).
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FIGURE 3.35: Visualization of the aeroelastic model for the Patil wing. Detail view
showing the wing geometry (thick black lines), the vortex lattice discretization (thin
grey lines), the VLM collocation points (represented by an ‘x’) and the aerodynamic

forces (blue), applied at the midpoint of the leading vortex line of each vortex ring.
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3.4.2.2 Validation - static aeroelasticity

Figures 3.32 to 3.35 are taken from the aeroelastic model of the Patil wing, from [21].
This model was used for a validation case for the nonlinear aeroelastic tool just dis-
cussed. The wing is quite appropriate for this purpose because of its slenderness
and flexibility, and it has already been employed as a reference test case by others
[22, 29, 41, 104]. The wing characteristics and flow conditions are summarized in Table
3.7. Figures 3.36 and 3.37 report the spanwise bending and twist deformation, respec-
tively, measured at the wing elastic axis. The flow conditions are defined by the air
speed and density V = 25.0 m/s and ρ = 0.0889 kg/m3, and two different angles of
attack are examined: α = 2 deg and α = 4 deg. The results obtained with the present
model are compared against those from the FALCon tool of [22] and those from [21].
Both references adopted an analogous aeroelastic model, coupling an inviscid, incom-
pressible panel method with a geometrically-nonlinear beam. As it can be noted, the
results from the present model match satisfactorily with the reference data. Only the
twist curve at α = 4 deg shows some visible error, especially with respect to Smith
[21]. However, as the corresponding vertical deformation is practically identical, the
differences in the twist data are probably to be attributed to the reference frame in
which structural rotations are expressed, and not to a relevant difference in the physi-
cal model. The present model adopts a global reference frame fixed to the undeformed
configuration, but it is not clear what frame was used by [21] to produce its plots, nor
whether it was a global frame or a local one. However, the validation is considered
successful. It is worth noting that the tip of the deformed wing moves towards a lower
spanwise abscissa for higher deformations, so that the total length of the curved wing
remains constant. This is a clear effect of the geometric nonlinearity. A linear model
would have only given a higher vertical displacement at the same spanwise abscissa,
resulting in an unnaturally longer wing.
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FIGURE 3.36: Validation of the present nonlinear aeroelastic model: spanwise vertical
displacement of the Patil wing’s elastic axis, compared against data from [21] and [22].

FIGURE 3.37: Validation of the present nonlinear aeroelastic model: spanwise twist of
the Patil wing, compared against data from [21] and [22].
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3.5 Flight dynamics

This section presents the implemented model for flight dynamics simulation. The
choice to implement this module rather than adapt existing programs was motivated
by the preference for a simple, minimal and easy to interface software, compatible with
the aerodynamic and aeroelastic modules described previously. In fact, off-the-shelf
software, such as JSBSim [158], usually comes with a variety of secondary functional-
ities and a large number of inputs and settings which would add unnecessary com-
plexity and increased risk of errors or inconsistency in the input, output and inner
variable definitions. The formulation of the 6-DOFs flight dynamics follows from the
well-known rigid-body equations for atmospheric flight, as could be found for instance
in [156, 157]. As the purpose of simulation here is to test brief manoeuvres or short air-
craft responses, quite limited in time and space, and certainly at non-supersonic speeds,
Earth rotation and curvature are neglected as they would add no relevant effects. All
the following equations are expressed in body axes. The force equations read as fol-
lows:


X − m g sin θ = m [V̇x + q Vz − r Vy]

Y−m g cos θ sin φ = m [V̇y + r Vx − p Vz]

Z−m g cos θ cos φ = m [V̇z + p Vz − q Vx]

(3.49)

The moment equations in matrix form are:

 `

M

N

 =

 İx − İxy − İzx

− İxy İy − İyz

− İxy − İyz İz
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q
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 +
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+

 0 −r q
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p

q
r

 (3.50)

It should be noted that Equation (3.50) neglects the angular momentum due to hinged
parts, elastic motion and rotating sub-systems. However, as far as aeroelasticity is con-
cerned, the elastic motion could be kept decoupled by using the so-called ‘mean-axes’
formulation. Such axes are by definition a particular set of body axes for which the
inertial coupling between rigid body and elastic deformation vanishes. Their use, first
discussed by Milne [95], represents the classical approach for representing the dynam-
ics of a flexible aircraft [20, 156]. The main advantage is the simplicity of dealing with
basically two different dynamic systems (one being a rigid mass point representing the
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aircraft, the second being the flexible structure), where the only remaining coupling is
aerodynamic. Strictly speaking, this approach neglects the coupling due to gyroscopic
effects, as mentioned in Section 2.2.2. If a full coupling of the equations of motion with
the aeroelastic dynamics is desired, an additional set of 6 equations has to be added to
identify at each instant the origin and the orientation of the body-fixed reference frame
with respect to the CG, and the momentum due to elastic motion should be included in
the equilibrium of Equation (3.50). However, at this stage of development, the mean-
axes formulation is considered the most practical option, as it facilitates a progressive,
modular implementation and validation of the flight dynamics model and of the aeroe-
lastic model and their future coupling.

The system of equations is completed by adding the kinematics (3.51) and navigation
(3.52) equations:

φ̇

θ̇

ψ̇

 =

1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ


p

q
r

 (3.51)

ẋE

ẏE

żE

 = LBE

Vx

Vy

Vz

 (3.52)

where the rotation matrix LBE contains the Euler’s angles to rotate a vector from the
body to the Earth (inertial) reference frames:

LBE =

(cos θ cos ψ) (− cos φ sin ψ + sin φ sin θ cos ψ) (sin φ sin ψ + cos φ sin θ cos ψ)

(cos θ sin ψ) (cos φ cos ψ + sin φ sin θ sin ψ) (− sin φ cos ψ + cos φ sin θ sin ψ)

sin θ − sin φ cos θ − cos φ cos θ


(3.53)

Equations (3.49) to (3.52) are used to compute the body translational and angular ac-
celerations, the Euler angles rates and the velocity with respect to the Earth reference
frame. Those are then propagated through numerical integration to get the updated
body speed, angular rate, attitude and location. The choice of the integration schemes
follows the one in [158], where the 2nd-order Adams-Bashforth ([157]) is used to in-
tegrate the linear body accelerations into body speeds, the 1st-order Euler scheme is
used to integrate the angular accelerations and attitude rates, and the 3rd-order Adams-
Bashforth scheme to obtain the updated position in the inertial coordinates. This pro-
cedure is adopted without modifications as it complies with a well-established practice
in non-linear aircraft flight simulation.

The implementation was made in Fortran language to be more easily interfaced with
the VLM and UVLM solvers presented above, although the simulation code was made
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independent on the aerodynamic solver. In fact, the aerodynamic forces and moments
are taken from a separate function that could call any desired external computation.

The verification of the implemented model is reported in the following section.

3.5.1 Validation of the flight dynamics module

The validation of the flight dynamics module proceeded through two subsequent steps.
First, only the nonlinear longitudinal dynamics was considered with no lateral cou-
pling. Then, a pitch-and-roll manoeuvre was simulated to reproduce a full coupling
between the 6-degrees-of-freedom variables.

The first test-case is for a low-speed transport aircraft from the book Aircraft Control and
Simulation by [157]. The simulation reproduces the pitching response to elevator and
throttle commands. The equations of motion employed retain all the nonlinear terms,
whereas the aerodynamic model is linearized around the initial equilibrium condition.
Figure 3.38 shows the perturbation in attitude and angle of attack due to an elevator
doublet during steady horizontal flight. Figure 3.39 reports the response to throttle
doublet. In both cases, the response matches satisfactorily with the reference.

FIGURE 3.38: Evolution of angle of attack and elevation due to an elevator doublet
of amplitude δe = δe0 ± 2.0◦, with δe0 = −9.2184◦ performed between 1.0 and 2.0

seconds.
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FIGURE 3.39: Evolution of angle of attack and elevation due to a throttle doublet of
amplitude ∆T/T = ±0.1 performed between 1.0 and 7.0 seconds.

The second validation case reproduces a fully coupled manoeuvre where all the nonlin-
ear terms play a relevant role. For this purpose, the chosen test case is a small manoeu-
vrable airplane performing considerably fast rotational motion. The reference simula-
tion data are from [191], and the aircraft parameters can be found in [156]. Such case
is studied by the reference authors to demonstrate the relevance of the nonlinear iner-
tial coupling terms, which can produce a consistent deviation from a steady flight and
even lead to instability. The only approximations made by the authors are those of con-
stant airspeed and small variations of angle of attack and sideslip. The validated model
reproduced the constant speed approximation by forcing at each instant the thrust to
exactly counterbalance drag and the eventual weight projection in the flight path di-
rection. The aerodynamic angles were calculated with the exact trigonometrical re-
lationships. Figures 3.40 to 3.42 respectively show the evolution of angle of attack,
sideslip angle and roll rate due to a step aileron deflection starting from steady hori-
zontal flight. Two cases are reported corresponding to aileron deflections of δa = −4.0◦

and δa = −5.0◦. In both cases, a pitch-down initial condition is imposed by setting the
elevator to δe = 2.0◦. It can be noted that divergent oscillations are experienced when
the aileron deflection is δa = −5.0◦, a behaviour which is exclusively due to the nonlin-
ear inertial coupling of the equations of motion. A dynamic model linearized around
the same stable initial condition would not be able to predict such behaviour.
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FIGURE 3.40: Evolution of angle of attack due to step aileron actuation δa, starting
from a pitch-down initial condition with elevator deflection set to δe = 2.0◦.

FIGURE 3.41: Evolution of sideslip angle due to step aileron actuation δa, starting from
a pitch-down initial condition with elevator deflection set to δe = 2.0◦.

3.5.2 Coupling flight dynamics with VLM aerodynamics

Flight dynamics simulators typically rely upon simple aerodynamic models based on
precomputed tables of aerodynamic coefficients. In this way the aerodynamic loads,
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FIGURE 3.42: Evolution of roll rate due to step aileron actuation δa, starting from a
pitch-down initial condition with elevator deflection set to δe = 2.0◦.

the most expensive to calculate, are quickly computed and the equations of motion
can be integrated at high speed. The problem with this approach is that it fails when
the aerodynamic database is not available. This can be the case at conceptual design
phase, when several data are still missing. In this case it is still possible to set up a
simplified aerodynamic model based on the limited information available describing
the essential geometrical and aerodynamic parameters. When dealing with traditional
aircraft design, there are several analytical or semi-empirical methods [98, 159, 192] to
quickly accomplish this task. Actually such methods provide enough information on
the aerodynamic performance, including stability & control characteristics, to complete
the design successfully with no real necessity for a proper flight simulation tool. Things
are different when designing unconventional configurations, where there is no guaran-
tee the mentioned methods apply. The design team needs more advanced tools to at
least verify whether the conventional methods are appropriate or not, and in the latter
case such extra tools become the only alternative left to go forward.

The strategy here proposed is to couple the above 6-DOFs flight dynamics simula-
tion module with the VLM-based aerodynamic module to best exploit the information
available from a conceptual sizing process.

A first, simple validation case which is often run when coupling the flight equations of
motion with any aerodynamic solver is that of a single wing free to oscillate around a
restrained center of gravity [23, 193]. The test-case here is from [23]. A simple rectan-
gular wing is placed downstream of a fictitious center of gravity (CG). While the CG



3.5. Flight dynamics 103

is fixed in space, the wing is free to rigidly rotate around it. The motion is determined
by the aerodynamic loads acting on the wing due to a constant airspeed parallel to the
inertial horizontal direction, as it was inside a wind tunnel. The test-case is shown in
Figure 3.43, and the related parameters are reported in Table 3.9. The simulation results
are compared with the reference data in Figure 3.44, showing good agreement.

FIGURE 3.43: Single wing test-case, from [23]. The CG position is identified by the ∗
symbol. The figure has a representational purpose only, and the contour plot does not

provide any relevant information.

Parameter Units Value

Span m 1.0
Aspect ratio - 6.0
Tilt angle deg 0.0
Leading edge to CG distance m 0.96
Chord-wise panels - 17
Span-wise panels - 36
Inertia moment kg·m2 1.0
Airspeed m/s 30.0
Air density kg/m2 1.225
Initial pitch deg 5.0
Time step s 0.0025

TABLE 3.9: Parameters for the free-to-pitch wing.
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FIGURE 3.44: Evolution of pitch angle of the free-to-pitch wing due to an initial con-
dition of θ = 5 deg. Validation against data from [23].

A second validation test-case featuring a conventional wing-stabilizer configuration
was run to investigate the performance of the solver for more complex geometries. In
particular the interest here is to confirm that the effects of the downwash generated by
the main wing upon the stabilizer are properly captured and propagated to the body
dynamics. The parameters for this configuration are given in Table 3.10, and the pitch
angle time evolution is compared with that from [23] in Figure 3.47. A slight mismatch
is observed for this configuration, but this may be due to a different numerical setup of
the simulation which cannot be exactly reproduced due to a lack of information from
the reference paper. In particular, only the total number of panels is specified, and not
the chord-wise and span-wise discretization schemes for the two wings. Differently
from the single-wing simulation, the position of the CG is not explicitly given, and it is
here guessed based on other simulations reported in the reference manuscript, but it is
possible that the true value is slightly different. Also, the point around which the main
wing is rotated to get the tilt angle of 3.0 deg is not specified, and it is here assumed
to be the quarter chord. Nevertheless, the results give overall a very close dynamic
response, without any relevant discrepancy in frequency or damping, a result which is
considered satisfactory.
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FIGURE 3.45: Two-wing conventional glider

FIGURE 3.46: Two-wing conventional glider test-case, from [23]. The figure has a
representational purpose only, and the contour plot does not provide any relevant

information.

Parameter Unit Value

Main wing

Span m 2.0
Aspect ratio - 18.0
Tilt angle deg 3.0
Leading edge to CG distance m 0.03
Chord-wise panels - 17
Span-wise panels - 36

Horizontal stabilizer

Span m 0.6
Aspect ratio - 6.0
Tilt angle deg 0.0
Leading edge to CG distance m 0.745
Chord-wise panels - 17
Span-wise panels - 36

Global

Inertia moment kg·m2 0.2
Airspeed m/s 30.0
Air density kg/m2 1.225
Initial pitch deg 5.0
Time step s 0.0025

TABLE 3.10: Parameters for the free-to-pitch wing-stabilizer glider.
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FIGURE 3.47: Evolution of pitch angle of the glider configuration due to an initial
condition of θ = 5 deg. Validation against data from [23].
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3.6 System identification for nonlinear systems

With the available tools presented earlier in this chapter, an useful task is the estima-
tion of key performance indicators out of the simulation results. Some examples could
be the frequencies and damping ratios of the flight modes, or similar parameters such
as the Control Anticipation Parameter (CAP), often used as a flying quality indicator
[83, 156], that can be used to assess specification compliance. However, the follow-
ing considerations hold for other similar figures of merit, such as control derivatives,
control demand, flutter speed, etc.

The quickest and easiest approach for this kind of dynamic characteristics estimation
is the standard linearization of the equations of motion. In this way, the system dy-
namics can be expressed in state-space form (as done for example in the aeroelastic
module of Section 3.4.1), in which case the Jacobian matrix can be used to compute the
local dynamic characteristics by standard eigenvalue analysis. The task is even eas-
ier for conventional configurations, as analytical relationships exist ([156, 159]) to give
full or approximated expressions of the linear aircraft dynamic characteristics (usually
frequency, damping, time to double, time to half, CAP, [83, 156]). For example, an
approximated expression for the rigid body short period natural frequency, as given in
[156] is:

ω2
sp = −2 µ Cmα + Cmq (CLα + CD)

2 µ Īy
(3.54)

where µ is the non-dimensional mass, Īy the non-dimensional moment of inertia around
the y body axis, and the remaining coefficients are the aerodynamic derivatives ex-
pressed in the conventional nomenclature.

One difficulty could be on how to compute the needed aerodynamic derivatives in-
volved in the mentioned relationships. This could be done with conventional semi-
empirical formula such as those provided in [159], or, for unconventional geometries,
through the developed VLM. This is what is usually done in the literature related to
aircraft dynamic characterization at conceptual design.

However, this approach may not be accurate for highly flexible unconventional air-
craft, where some overlapping may occur between ‘rigid-body’ and structural modes.
Or, some non-linear interactions may cause the behaviour to deviate from the one pre-
dicted by linear analysis. An example of such possibility is shown in Figures 3.40 to
3.42, already discussed in Section 3.5.1, where a slight difference in a control input can
result in the evolution to switch from a predictable and stable behaviour to an unstable
evolution that is only captured by the non-linear time-marching model. In this exam-
ple, the non-linearity is only given by the non-linear terms of the rigid-body equations
of motion. This reasoning can be extended to other aspects, such as dynamic loads
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monitoring. In this case, the introduction of non-linear aeroelastic effects could poten-
tially give rise to more complex behaviours. For this reason, an effort is made in this
work to exploit the added information arising from nonlinear time-marching simula-
tion. This requires some system identification or parameter identification techniques
for extracting the desired quantities of interest from the simulation data.

In the context of the present work, the advantage of time-domain simulations lies in the
large body of information conveyed. In particular, a valuable aspect is the capability to
capture the effects of nonlinearities, which are in general lost if other methods, such as
frequency-domain, are used instead. However, the richer information provided needs
interpretation. When a few simulations are run, such as during human-piloted simu-
lation campaigns, or after a very specific, one-of-a-kind evaluation, this task is often
assigned to the human. When a large number of simulations need to be performed in a
short time (as for example during a numerical optimization process), human interpreta-
tion is no longer a viable option. Also, even for one-of-a-kind analyses, if some param-
eters need to be extracted from the time history, some automatic processing technique
comes in handy. In particular, it is still interesting at this design stage to have access to
quantifiable figures of merit, such as frequencies or damping ratios, that are typical of
linear system analysis. The estimation of such parameters would enable to assess the
compliance with dynamic specification constraints, which are mostly about linear sys-
tem characterization, even for design concepts that are not well represented, or at least
not a priori, by the conventional, knowledge-based, linear characterization. Moreover,
a linear Jacobian of a complex, non-linear coupled system, such as for flexible airplane
dynamics, may not always be available, depending on the models employed and how
their coupling is implemented. For this reason, an effort is done here to process the
time domain simulation data and extract a set of figures of merits - corresponding to
linear damping and frequency - that with the best approximation describe the obtained
non-linear response. It should be noted that when assigning some linear descriptors
(frequency, damping) to a non-linear curve, an approximation is inevitably demanded.
The advantage here is that such approximation is done a posteriori based on the full
non-linear results, and its adequacy can be verified against those.

To this purpose, different signal processing techniques have been tested, including Dy-
namic Mode Decomposition (DMD) [194], Empirical Modal Decomposition (EMD) [195],
the Hilbert Transform [196], useful to extract damping ratios, the Fast Fourier Trans-
form (FFT) [196], the Prony method [197] and some Least Squares fitting techniques [198].
The method to be used shall be selected according to the complexity of the problem.
It is true that the applicability to more complex simulation signals is not ensured. Sig-
nal processing and system or parameter identification can often result being non-trivial
tasks, as confirmed by the large amount of related literature and software libraries (such
as the Matlab Signal Processing Toolbox and the Scipy.signal, [196, 199]). Some
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interesting reviews of techniques specifically tailored on aerospace applications were
found in [76] and [200].

When the objective of the processing module is to extract frequencies and damping
ratios, the Prony method was selected as it found effective and robust enough for the
applications of this work (see Chapter 4). It performs a curve fitting similar to the Fast
Fourier Transform, returning a best fit function of complex exponential form:

F̃(t) =
N

∑
i=1

Ai eλit (3.55)

where Ai and λi are both complex coefficients, and N the number of vibration modes to
retain. This can be either estimated by an FFT analysis, or fixed by the user if a certain
behaviour is expected. For the initial testing of the presented framework, the cate-
gory of problems investigated can be adequately described by just one or two modes,
simplifying the fitting process. For example, Figure 3.48 reports the curve fitting of
some random 4th-order harmonic oscillations combining both converging and diverg-
ing modes. In this case, the Prony fitting of Equation (3.55) with N = 4 perfectly
captured the dynamics identifying the two dominant frequencies and damping ratios.

FIGURE 3.48: Example curve fitting of a 4th-order oscillator function via the Prony
method.



110 Chapter 3. Formulation and analysis tools

3.7 Sensitivity analysis and uncertainty quantification approaches

3.7.1 Problem definition and tool selection

As already mentioned (see Section 2.1), early aircraft analysis is inherently affected
by uncertainty, both of aleatory and epistemic kind. In this work, which focuses on
aircraft flying qualities and aeroelastic performance estimation at conceptual design
level, we aim to include and propagate the most relevant uncertainties onto the desired
output performance indicators. The demonstrative case studies reported later in this
work restrict the investigation into longitudinal dynamics, flutter speed and dynamic
gust loads. The uncertainty herein considered is that arising from the approximate
methods used during the sizing process. In particular, such uncertainty will involve
those parameters that most influence the performance indices of interest. For example,
if flying qualities are targeted as figures of merit, the uncertainty could be conveniently
placed on the estimations of weight and balance characteristics (location of the center
of gravity, aircraft moments of inertia). Similarly, if aeroelastic response is among the
desired output, typical uncertain parameters could be the structural stiffness, mass,
inertia, or the location of the elastic axis. These considerations will be further developed
for each of the case studies investigated in the following Chapters.

To perform uncertainty quantification and sensitivity analysis the off-the-shelf toolbox
Uncertainpy [137] was tested and chosen, and interfaced with the performance analy-
sis modules. The toolbox, originally conceived mainly for computational neuroscience,
is easily adaptable to any computational field in that it is a model-independent, open
source, Python-based platform. The main features of the platform are here briefly sum-
marized.

The sensitivity analysis is addressed by computation of first-order Sobol indices [139]
and total Sobol indices [140, 141] when interactions between the uncertain parameters
exist.

As far as uncertainty quantification is concerned, it implements both quasi-Monte Carlo
methods and Polynomial Chaos Expansions (see Section 2.6) using non-intrusive meth-
ods. The quasi-Monte Carlo methods employ variance-reduction techniques to re-
duce the number of model evaluations needed. The samples are selected using a low-
discrepancy sequence such as the Hammersley sequence [144]. As for the PCE ap-
proach, the orthogonal polynomials are found using the three-term recurrence relation
[145], and the expansion coefficients can be found either through the Tikhonov regu-
larization [201], belonging to the class of point collocation methods, or by a pseudo-
spectral approach based on Leja quadrature and Smolyak sparse grids [202, 203]. The
Sobol first and total order methods can be computed directly from the PCE [146]. The
interested reader can find more information about this approach in the Uncertainpy

documentation [137].
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The output metrics provided are the Quantity of Interest (QoI) mean, variance, 5% and
95% percentiles and the Sobol indices. Additionally, some modifications were made
to obtain the Probability Distribution Function (PDF) together with any desired per-
centile.

As pointed out in Section 2.6, Polynomial Chaos Expansions are much faster than
(quasi-) Monte Carlo methods as long as the number of uncertain parameters is rel-
atively low, typically smaller than about twenty [147]. As this is the case for the analy-
ses involved in this work, the PCE method is used hereafter with the point collocation
approach.

Before employing the framework for aerospace-related applications, the UQ module
was tested and validated against a benchmark case to prove its functionality and effec-
tiveness. The validation is presented in the following section.

3.7.2 Validation - mathematical example

A benchmark mathematical problem was chosen from the literature to verify the Uncertainpy
results. The example is adopted from [24, 204] where an uncertainty quantification was
performed on the following function:

g(x1, x2, x3) = 0.25
(
sin(x1 − 3)(x2 − 1) + (x3 − 1)2) − 1 (3.56)

with uncertainty on the three input variables as described in Table 3.11.

The main reference results are from the method proposed in [24], a dimension-adaptive
PCE (DA-PCE) that proved to be quite efficient compared to other approaches (Monte
Carlo, FORM, SORM, PDEM). The resulting PDF after 72 model evaluations is com-
pared with that from [24] in Figure 3.49. Also, a comparison is reported in Table 3.12,
based on the available data from the reference, on the QoI value q which is predicted
to satisfy a certain probability threshold P. For other methods reported in the refer-
ence paper the values of q are not directly determinable, but they do report the number
of evaluations needed to complete the UQ task, and therefore this parameter is also
reported in the table for comparison. The validation shows that the adopted method
performs well and with good efficiency compared with other methods.

Variable Distribution Range
x1 Uniform [0.0 , 10.0]
x2 Uniform [6.0 , 16.0]
x3 Uniform [0.0 , 10.0]

TABLE 3.11: Uncertain ranges and distributions of variables for the test-case in Equa-
tion (3.56).
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FIGURE 3.49: Comparison of the PDF obtained with the present approach against data
from [24].

q s.t. P{q(X)} > P

Method P = 28.4% P = 77.4% P = 99.3% Evaluations

Monte Carlo ([24]) ∼ 0.5 ∼ 10.0 ∼ 20.0 106

DA-PCE ([24]) 0.0 10.0 20.0 11

Uncertainpy 1.1 10.9 21.2 73

FORM ([24]) - - - 96

SORM ([24]) - - - 123

PDEM ([24]) - - - 135

TABLE 3.12: Comparison of output metrics from the UQ module for the validation
test-case.

3.8 Aircraft conceptual sizing and optimization

The computational framework builds upon the aircraft design tool Fixed-wing Aircraft
Sizing Tool (FAST). FAST has been developed by ONERA and ISAE-SUPAERO since
2015 and it is conceived as a quick conceptual design tool to be used either for quick
sizing and parametric studies on conventional tube and wings transport aircraft, or in
combination with advanced analysis tools for unconventional design explorations, as
is the case in the current PhD project. A detailed documentation covering all the main
internal processes can be found in [72] and [26]. The most recent upgrade of the tool
has been renamed FAST-OAD (for Overall Aircraft Design) [25], and is today available
open-source on GitHub2. In its basic formulation, the user specifies a series of Top
Level Requirements and an initial geometry, and the framework estimates the overall

2https://github.com/fast-aircraft-design/FAST-OAD

https://github.com/fast-aircraft-design/FAST-OAD
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aircraft performance (such as fuel mass, payload range, etc.) through a series of sizing
loops involving modular analyses for the key disciplines. These include basic flight
mechanics, aerodynamics, structures, propulsion, weight and balance. The original
approach is based on a point mass approximation together with semi-empirical equa-
tions for performance and aerodynamic predictions. This allows high computational
efficiency and accuracy to be achieved as long as traditional concepts are treated. The
propulsion module can be based either on a dataset from the CeRAS project [160], or an
analytical model that provides thrust and fuel consumption as function of altitude and
flight speed [161]. The performance module gathers all the information from the disci-
plinary modules and performs a time marching simulation of the full mission. Sizing
and positioning of components are iteratively updated during the design loops through
dedicated geometry, weight and balance modules. Overall aircraft design rules from [9]
are used to initially locate the main components, such as wing, tail, landing gear, etc.
An overview of the multidisciplinary structure of the tool is given in Figure 3.50.

FAST-OAD has recently been used for more advanced studies by interfacing it with
physics-based analysis tools to extend its applicability to novel aircraft concepts, such
as blended wing-body, distributed propulsion, electric and hybrid propulsion [31, 39,
43, 73]. Moreover, the platform, developed in Python, can be interfaced with the Sur-
rogate Modelling Tools SMT [205] and the Super Efficient Global Optimization SEGOMOE

libraries by ONERA and ISAE-SUPAERO (see Section 2.5.2). The libraries provide sev-
eral surrogate modeling methods (e.g., radial basis functions, Kriging) and sampling
methods (e.g. Latin Hypercube Sampling) and allows several optimization strategies,
including Bayesian optimization, to be applied to the aircraft sizing process. Some
applications of aircraft multidisciplinary design and optimization using FAST-OAD to-
gether with SEGOMOE have already been demonstrated, for example in [136, 206]. In this
project, a similar path is followed, where FAST-OAD and SEGOOMOE are interfaced with
the discussed disciplinary tools in order to enable novel MDAO studies involving flight
dynamic constraints, flexible high-aspect-ratio wings and uncertainty propagation.
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3.9 Summary

This Chapter described the implementation, integration and validation of several anal-
ysis tools required to achieve the project’s objectives. Such set of tools consists of the
following models:

• A choice of aerodynamic models, including a classical analytical model based on
linear aerodynamic derivatives, and a steady or unsteady implementation of the
Vortex Lattice Method (VLM or UVLM);

• A nonlinear structural mechanics solver (GEBT, Geometrically Exact Beam Theroy)

• Two possible aeroelastic solvers: a) a linear solver based on potential unsteady
strip theory coupled with linear beam theory, mainly required for flutter analysis;
b) a linear/nonlinear solver coupling the GEBT structural solver with the VLM or
UVLM aerodynamic solvers;

• A flight dynamics simulation module (FDM) implementing the 6DOFs nonlinear
equations of motion;

• A post-processing module to extract the desired quantity of interest (amplitude,
frequency, damping) out of the simulation history by use of a Least Square best
fit technique of the time-domain data;

• An uncertainty quantification and sensitivity analysis module that wraps the
above modules and propagates the uncertainty from the input parameters into
the desired outputs. It returns the desired statistical metrics to be used in the
reliability evaluation;

• An aircraft conceptual sizing tool (FAST-OAD) performing the necessary loops un-
til convergence to a consistent configuration;

• An optimization environment (SEGOMOE) to be interfaced with the sizing pro-
cess and with the implemented multidisciplinary deterministic or stochastic con-
straints (such as flying qualities constraints, flutter speed, gust loads).

The next chapters show different applications where subsets of such tools are assem-
bled into different MDAO architectures. Each time, the overall structure and set of
variables and constraints are adapted to meet the specific problem needs.
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4.1 Overview

A first application of the discussed framework is here presented. The case study aims
to optimize the planform of an A320-like configuration with respect to the fuel mass
required for a representative flight, under reliability constraints on the short period
dynamics. The reference configuration is the CeRAS baseline [160] (see Figure 4.1), a
public database from the University of Aachen that provides an approximation of the
A320 aircraft. Its main characteristics are summarized in Table 4.1. Four geometric pa-
rameters were chosen as optimization variables: the taper ratio and the quarter-chord
sweep of the main wing and horizontal tail. Although previous studies [31] showed
that aspect ratio may play a key role in fuel mass optimization, it was decided here not
to include it among the optimization variables. In fact, highly elongated wings would
require further aeroelastic verification, which is not available at the current state of the
presented framework. It was assumed instead that the baseline aspect ratio is already
the best trade-off between aerodynamic efficiency and structural mass. Uncertainty is
associated to the estimation of the center of gravity location xCG and to the longitudinal
moment of inertia Iyy. The propagation of this uncertainty through the MDA is handled
by the uncertainty quantification module, which ultimately returns the probabilities of
constraint violations. Four flying qualities constraints were applied: the upper and
lower bounds of short period damping ξsp and natural frequency ωn sp. This choice
arises from the fact that short period characteristics in particular have critical influence
on manoeuvrability. The overall optimization task is summarized in Tab 4.2. Of course
this study does not aim at a complete treatment of flying qualities requirements, which
would require a prohibitive effort for the collection and codification of the certification
specifications. Instead, we want to present a proof of concept of the proposed frame-
work, showing the capability to handle multidisciplinary aircraft design and optimiza-
tion under uncertainty, with reliability constraints on aerodynamic and/or dynamic
performances. The aim is to demonstrate the ability of the framework to handle this
optimization problem on any kind of aircraft configuration, possibly disruptive ones
where the verification of FQ requirements from the early design stage would be of pri-
mary importance. Similarly, the Bayesian Optimization tool SEGOMOE was selected to
demonstrate the feasibility of the proposed MDAO approach, although in effect this
method is not strictly required for the low dimension and relatively limited space of
the specific problem here addressed.

The global framework architecture is summarized in Figure 4.2. The optimizer requires
to define the optimization variables, their bounds, the constraints and the objective
function. In this case the optimization variables are denoted as Vg. For each candidate
evaluation the uncertainty quantification module takes into account the prescribed dis-
tributions of the uncertain parameters and runs an adequate number of calls to the
multidisciplinary analysis (MDA) in order to compute the statistical metrics associated



4.1. Overview 119

FIGURE 4.1: CeRAS baseline planform, from [26].

Top Level Aircraft Requirements
Number of passengers 150
Passenger weight [lbs] 200
Design Range [NM] 2750
Operational Range [NM] 800
Cruise Mach number 0.78
Approach speed [kts] 132
Planform parameters
Wing area [m2] 122.4
Mean aerodynamic chord (MAC) [m] 4.2
Aspect ratio 9.48
Wing break 0.40
Wing sweep angle at 25% chord [deg] 24.5
Wing taper ratio 0.313
Horizontal tail sweep angle at 25% chord [deg] 28.0
Horizontal tail taper ratio 0.300
Propulsion
Max thrust at sea level [N] 117880
Weight & balance
Max take-off weight [N] 7.55× 105

Selected nominal CG location 45%MAC
Pitching moment of inertia [kg×m2] 3.6× 106

TABLE 4.1: CeRAS baseline parameters, from [26].

to one or more QoIs. In the present study the chosen metrics are the 5% and 95% per-
centiles of the short period damping and natural frequency, indicated as P5

(
ξ̂sp, ω̂n sp

)
and P95

(
ξ̂sp, ω̂n sp

)
. These values are compared by the optimizer with the required

boundaries to enforce the reliability constraints. The MDA starts with the FAST-OAD

sizing process, which receives the design variables Vg and returns a converged con-
figuration, meaning that TLARs are always satisfied when changing the design vari-
ables, by means of a full resizing of the aircraft. This is characterized by additional
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Function/quantity Range/distribution
Minimize Fuel mass
with respect to Main wing taper ratio [0.25, 0.37]

Main wing sweep at 25% chord [20° , 29° ]
Horizontal tail taper ratio [0.24, 0.36]
Horizontal tail sweep at 25% chord [23° , 34° ]

with uncertainty on CG location Normal
(E = xCG, V = 0.1 xCG)

Longitudinal inertia moment Uniform
(0.8 Iyy, 1.2 Iyy)

subject to P [ξsp > 0.45] > 95%
P [ξsp < 1.35] > 95%
P [ωn sp > 2.4 ] > 95%
P [ωn sp < 3.4 ] > 95%

TABLE 4.2: Definition of the MDAO problem under flying qualities reliability con-
straints.

geometric parameters Pg, an estimation of the CG location xCG, and other indicators
such as the mission fuel mass, which is here used as objective function. The configu-
ration returned by FAST-OAD is subsequently given to the UVLM module, with a CG
position altered by ∆ xCG, representing its uncertainty. The unsteady solver simulates
some pitching oscillations at the frequency ω0, which is assumed a representative short
period frequency for the particular class of aircraft considered. The time response in
terms of aerodynamic loads is then processed to extrapolate an equivalent, derivative-
based aerodynamic model characterized by a set of coefficients CLi , Cmi (defined later
in Section 4.2). The assumption here is that even if each candidate has a slightly differ-
ent frequency, this variation adds a negligible aerodynamic contribution compared to
the model obtained at ω0. The assumption is reasonable because, given the relatively
high flight speed, a small variation of ω produces a negligible variation of the reduced
frequency k = ω c̄/2 V, which is the parameter that really affects the unsteady aero-
dynamics. Once the aerodynamic derivatives are identified, they are fed to the flight
dynamics module, together with the other aircraft parameters Pg and the longitudinal
moment of inertia Iyy, given by the uncertainty quantification module. Here the time
response (in this case the longitudinal short period response) is computed following a
disturbance, and the time domain results are then processed to get the desired QoI, in
this case the short period damping ξsp and natural frequency ωn sp. More details on the
single disciplinary modules mentioned above are given in the following sections.

This Chapter continues in Section 4.2 with a detailed description of how the aerody-
namic and flight dynamics disciplines are taken into account. Then, Section 4.3 shows
how the computational cost of the proposed MDAO architecture can be considerably
reduced by introducing a surrogate model of the most expensive calculation blocks.
Subsequently, Section 4.4 discusses more in details how the flying qualities reliability
constraints are defined and implemented. The results of the overall optimization study
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are then presented and discussed in Section 4.5. Finally, conclusions are drawn in Sec-
tion 4.6.

V
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V ∗
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FIGURE 4.2: Framework for aircraft multidisciplinary design and optimization under
reliability constraints.

4.2 Aerodynamics and flight dynamics

To demonstrate the versatility of the developed framework, offering the user different
disciplinary tools to be selected and combined according to the specific study, it was
chosen to adopt a quasi-steady aerodynamic model that combines a linear derivative-
based approach with more complex unsteady simulations.

The quasi-steady aerodynamic model expresses the global aerodynamic coefficients as
in Equation (4.1).

∆ Ci = Ciα ∆α + Ciq

(
c

2 V

)
q + Ciα̇

(
c̄

2 V

)
α̇ + Ciα̈

(
c̄

2 V

)2

α̈ (4.1)

(i = D, L, m)

Such a model requires the knowledge of some unconventional derivatives, namely Ciα̇,
Ciα̈, which are not generally provided by standard analytical conceptual design meth-
ods. However, they can be obtained by means of higher-fidelity unsteady solvers. A
possible approach for their derivation is described in [207], which requires that first
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some unsteady aerodynamic simulations are performed for a forced oscillating mo-
tion. Enough oscillation cycles must be run in order to let the transient response vanish,
achieving the periodic evolution. This could take two or three cycles at high frequency,
but in the present case it was found that the initial transient decays in a small fraction
of a period.

For a sinusoidal pitch oscillation with α (t) = α0 sin(ω t) the aerodynamic variables of
interest are:

α̇ = q = α0 ω cos(ω t) (4.2)

α̈ = q̇ = − α0 ω2 sin(ω t) (4.3)

Equation (4.1) then becomes:

∆ Ci = Ciα α0 sin(ω t) + Ciq α0 cos(ω t) (4.4)

with:

Ciα = (Ciα − k2 Ciα̈) (4.5)

Ciq = (Ciq + Ciα̇) (4.6)

where k = ω c̄/(2 V) is the reduced frequency. Equation (4.4) represents a truncated
Fourier series for Ci (wt), and therefore the coefficients (4.5) and (4.6) can be obtained
as:

Ciα =
2

α0 n T

∫ n T

0
∆ Ci(t) sin(ω t) dt (4.7)

Ciq =
2

α0 k n T

∫ n T

0
∆ Ci(t) cos(ω t) dt (4.8)

These coefficients can be computed by numerical integration of the CL(t) and Cm(t)
curves obtained with the UVLM. The Ciα and Ciq coefficients can be calculated through
the steady VLM. Ultimately, with these quantities known, the remaining terms Ciα̇ and
Ciα̈ are obtained from (4.5) and (4.6).

To provide an example, the unsteady aerodynamics module based on the UVLM (see
Section 3.2.4) and its steady version are here employed to compute the full set of deriva-
tives needed for longitudinal flight simulation. A snapshot from a UVLM simulation
of the CeRAS baseline is reported in Figure 4.4. These simulations impose a sinusoidal
pitching oscillation and return the time history of the force and moment coefficients.
As the short period is not really affected by drag, only lift and moment coefficients are
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taken into account. The imposed pitching motion is of the form:

α(t) = αM + α0 sin(ω t) (4.9)

with αM = 5.0° and α0 = 3.0°.

The effectiveness of the approach is demonstrated in Figure 4.3, where the lift and
moment coefficients obtained with the steady and unsteady derivatives are compared
with the output curves from the UVLM. It can be seen that the linear model based on
the identified unsteady derivatives matches satisfactorily the reference curve, except
for the initial transient due to the start of motion. An appreciable difference is found
with respect to the prediction based on static derivatives only.

(a) Lift coefficient (b) Moment coefficient

FIGURE 4.3: Identification of lift coefficient time history under forced pitch oscilla-
tions.

The choice of oscillations around a non-zero angle of attack is mainly due to the fact
that it is of no interest to include negative angles of attack for an airliner configuration.
It is preferable instead to span a larger portion of the positive, linear range of angles of
attack. An example of the lift and moment responses is reported in Figure 4.5. It can
be seen that the unsteady aerodynamics captures two main differences with respect to
the steady model. The first is an amplitude gap, especially visible in the lift coefficient
curve, producing a higher lift for the unsteady case. This translates into a slightly
steeper slope of the CL − α ellipse, and therefore an increased aerodynamic stiffness.
The second effect, mainly affecting the pitching moment, is a phase anticipation of the
unsteady moment with respect to the steady one. That appears clearly in the time-
domain curve and it is even more evident from the larger CL − α ellipse. These effects
are to be attributed to the interaction between main wing and tail, and in particular to
tail downwash delay, whose effect is to let the main wing lift coefficient grow bigger
and the main wing moment coefficient grow earlier than the steady prediction, where
the tail effect is considered immediate. Note that some points related to the initial
transient may be visible in the curves, but as it vanishes quite fast, this does not prevent
from capturing the stationary periodic behaviour via the linear unsteady derivatives.
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The aerodynamic calculations were carried out around a trimmed climb configuration
with α = θ = αM, where θ is the pitch angle. The trim is achieved by a Newton
algorithm to find the nonlinear equilibrium with the steady VLM. The nonlinearity
comes from the fact that a change in the tail tilt angle also changes loads and loads
distribution, so that an iterative process is required to achieve balance. The UVLM is
then run from the trimmed geometry. This allows to be consistent with the following
flight dynamics simulation, which is then started from an equilibrium condition at α =

αM. The flight dynamics module, taking as input the configuration file including the
computed derivatives, returns the response to a step pitch control. The output is then
processed as described in Section 3.6 to extract the damping and frequency of the short
period mode.

FIGURE 4.4: Snapshot during unsteady simulation of the CeRAS A320 baseline, run
with the present UVLM solver.

4.3 Surrogate modelling of the aircraft sizing process and aero-
dynamic characterization

The aircraft sizing process and the aerodynamic characterization of the converged con-
figuration are the most expensive tasks in the present MDAO chain. Running the opti-
mization and uncertainty quantification loops with the full architecture showed in Fig-
ure 4.2 would reach prohibitive costs for conceptual exploration and design (the study
presented herein would require several days as one single run of the UVLM analysis
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(a) Lift coefficient vs time (b) Moment coefficient vs time

(c) Lift coefficient vs angle of attack (d) Moment coefficient vs angle of attack

FIGURE 4.5: Example of aerodynamic responses to pitch oscillations and their identi-
fication via linear derivatives.

takes around one hour). For this reason it was chosen to build a surrogate model of siz-
ing and aerodynamic characterization of the design candidates. The FAST-OAD output
depends only on the geometrical optimization variables Vg. The UVLM solver requires
as input, in addition to Vg, a complementary set of geometrical outputs from FAST-OAD,
Pg1 (root chords, distance between main wing and tail, nominal center of gravity loca-
tion, etc) and the uncertainty on the center of gravity location ∆ xCG, and its ultimate
output, after the derivative identification process, is the set of aerodynamic derivatives
to be fed to the flight dynamics module. Therefore the block FAST-OAD+UVLM takes
five inputs (the four optimization variables Vg plus the uncertain parameter ∆ xCG)
and outputs the fuel mass objective function, the eight aerodynamic derivatives (CLα ,
CLq ,CLα̇ ,CLα̈ ,Cmα , Cmq ,Cmα̇ ,Cmα̈ ) and the remaining aircraft parameters Pg2 needed by the
flight dynamics module (wing area and mean aerodynamic chord). Overall, the block
takes five inputs and returns ten outputs. The structure of this updated version of the
MDAO framework is summarized in Figure 4.6. A Gaussian process was chosen as ker-
nel for the surrogate model. This generally requires around 10×Ndim sample points to
reach adequate precision. As in this case Ndim = 5, a DOE of 65 samples was set up via
Latin Hypercube Sampling (LHS), accounting for about 20% extra points to be used for
validation. The training points and the test points were selected through a nested LHS
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algorithm from the ScikitLearn toolbox [208]. With this set up the surrogate model
gave satisfactory results for all the outputs, with a root mean square error always below
the 0.3%. The validation is reported in Appendix B.

V
(0)
g ∆̂xCG, Îyy
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FIGURE 4.6: Framework for robust design and optimization under reliability con-
straints, where the aircraft sizing, aerodynamic and flight dynamic modules are re-

placed by a surrogate model.

4.4 Reliability constraints

As mentioned above, the dynamic constraints here adopted are on the short period
damping and natural frequency. A wide set of possibilities is available from the liter-
ature for flying qualities specifications or recommendations, including qualitative and
quantitative guidance, in frequency and time domain. In this work the quantitative def-
inition of the constraints was made starting from the so-called longitudinal short period
thumb print criterion. It defines some regions in the ξsp − ωn sp plane corresponding to
different pilot ratings such as satisfactory, acceptable, poor, unacceptable. The diagram
is reported in Figure 4.7. The figure also shows four lines defining the scalar values
adopted here as upper and lower bounds for the two parameters. It is worth pointing
out that as ξsp is expected to stay close to the lower bound, the upper bound on ωn sp

was fixed close to the satisfactory limit corresponding to ξsp, min. The values for each
bound are given in Table 4.4.

With these scalar bounds fixed, the reliability problem is based on the probability of
those bounds to be violated: acceptable configurations are considered those for which
the probability to fall within the bounds is greater than 95%. Before running the opti-
mization task, the capability of the uncertainty quantification module to well predict
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the statistics for the quantities of interest was tested with a single, random combination
of the design variables Vg. An uncertainty quantification with the PCE method intro-
duced in Section 3.7 was run on this configuration assigning the following uncertainty
distributions reported in Table 4.3. The choice of these different distributions is due to
the fact that FAST-OAD gives an estimation for the CG location but not for the moment
of inertia. In lack of enough supporting data, the amount of uncertainty (variance,
bounds) injected was decided somewhat arbitrarily. The results were validated against
a distribution obtained via a Monte Carlo simulation with 104 samples. A probabil-
ity distribution function was extrapolated from the PCE evaluating it at 105 samples,
and this is compared in Figures 4.8(a) and 4.8(b) with a histogram chart built from the
Monte Carlo results. The outcome demonstrated that the PCE approach is able to re-
produce the model with satisfactory accuracy. It was found that a polynomial order
of 4, using point collocation method and the Hammersley sampling with 32 function
calls was sufficient as no appreciable improvement was obtained by increasing the or-
der up to 6 and the function calls up to 80. The main statistical metrics are reported in
Figures 4.8(c) and 4.8(d). It also confirms that the sensitivity analysis is consistent as
the first Sobol indices correctly sum to 1. It is worth pointing out that the obtained dis-
tributions are wide enough to approach the constraint boundaries of Table 4.4, which
justifies the search for optimal constrained configuration.

FIGURE 4.7: Thumb print criterion reporting the pilot opinion contours related to the
short period characteristics. The dashed red lines show the bounds used in this work.
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Parameter Distribution Descriptors
∆xCG Normal E = xCG, V = 0.1 xCG
Iyy Uniform Imin = 0.8 IyyB, Imax = 1.2 IyyB

TABLE 4.3: Uncertainty distributions on the input parameters. xCG is the CG location
for a prescribed load case defined in FAST-OAD. IyyB is the moment of inertia of the

baseline configuration.

Parameter Lower bound Upper bound
ξsp 0.45 1.35
ωn sp 2.4 3.4

TABLE 4.4: Short period damping and natural frequency constraints adopted for the
present case study.

(a) Short period damping - PDF (b) Short period natural frequency - PDF

(c) Short period damping - statistical metrics (d) Short period frequency - statistical metrics

FIGURE 4.8: Validation of the PCE approach for a reference configuration (tr W =
0.3, ΛW = 25°, tr T = 0.28, , ΛT = 28°).

4.5 Optimization results

In order to perform the optimization with the SEGOMOE tool it is required to define a
learning DOE, which is used to build a Gaussian process for the black-box function to
optimize. A DOE size of 60 points was given, and additional 100 calls were allowed to
the optimizer as exploration iterations. Such values are quite high for a 4-dimension
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space, but it was decided to keep this setup to produce more data and test the stability
of the framework over a large number of iterations. At each iteration, the optimizer
updates the surrogate with the added knowledge and maximizes the WB2 acquisition
function (see Section 2.5.2). to choose the next candidate to evaluate. The learning and
optimization history is reported in Figure 4.9. It can be seen that the optimizer rapidly
converges to candidates very close to the optimum in few iterations after running the
DOE, demonstrating that the learning was sufficient to identify the most promising
design regions. The 100 iterations were also enough to explore the design space, as
no relevant changes in the objective function were found after the first iterations. In
a few cases the expected improvement moved towards worse candidates, sometimes
giving a very high value of the objective function. It was found that the best configu-
rations in terms of fuel burn always have satisfactory short period characteristics with
respect to the given constraints. In particular, the only constraint which is sometimes
violated is the lower bound on natural frequency, whereas the others are matched in
all cases. This could be explained by recalling, from classical notions of flight dynam-
ics [156, 209] that a low short period frequency could arise mainly from a low absolute
value of the aerodynamic stiffness in pitch Cmα (the sign is always negative), or from
a high moment of inertia, or both. As the inertia is here distributed in the same way
for every configuration, the correlation between higher fuel consumption and lower
short period frequency is to be found on the aerodynamic pitch stiffness. In effect, the
module of Cmα is reduced with a backward shift of the CG but also with a lower slope
CLα , and the latter decreases with a decrease on efficiency. Moreover, a very low pitch
stiffness due to wing shape is automatically compensated in the sizing process with a
more effective (larger) tail plane, which translates into a heavier and consequently less
efficient configuration. For this reasons the most aerodynamically efficient configura-
tions also provide good short period characteristics, and conversely the worst shapes
promoting inefficient load distributions also determine a deterioration of the short pe-
riod response. It is also interesting to note, from Figure 4.10, that low sweep angles ΛW

never comply with the constraints. The reason is linked with the above discussion: low
sweep angles have here the effect of moving the aerodynamic center forward, reduc-
ing the static margin and the absolute value of the pitch stiffness Cmα , producing lower
short period frequencies.

FIGURE 4.9: Monitor plot of the DOE runs and optimization history.



130 Chapter 4. Aircraft MDAO under flying qualities reliability constraints

FIGURE 4.10: Radar plot summarizing all the evaluations during the DOE and the
optimization iterations.

Source tr W ΛW tr T ΛT Fuel mass
CeRAS 0.31 24.5° 0.3 28.0° 19406 kg
Optimizer 0.37 29.0° 0.24 32.0° 19137 kg

TABLE 4.5: Fuel mass optimization results compared with baseline data. The opti-
mized configuration offers an improvement of 1.4%.

4.6 Conclusions

This work introduced a MDAO framework for aircraft design applications capable to
deal with optimization under uncertainty. The framework is composed by a combi-
nation of existing tools for aircraft sizing, optimization and uncertainty quantification,
and some more recent tools for aerodynamic and flight performance analysis devel-
oped, validated and assembled during this PhD project. The framework was tested on
a demonstrative case study: a transport aircraft fuel mass optimization with respect
to planform variables, with uncertainty on the center of gravity location and on the
longitudinal moment of inertia, and under reliability constraints on the short period
damping and natural frequency. The unsteady aerodynamics module was used to run
a series of oscillating simulations, which were processed to identify a set of aerody-
namic derivatives. These were used to set up a much faster aerodynamic function to
be called by the flight dynamics module. This enabled a very fast computation of the
dynamic response of the aircraft, which can then be processed to get the desired fig-
ures of merit, in this case the short period damping and natural frequency. Further
improvement on computational speed (by a factor of 10) was obtained by a surrogate
modelling approach replacing the aircraft design and unsteady aerodynamics modules,
with negligible error. The above process is automatically handled by the uncertainty
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quantification module, that computes the stochastic output, given the distributions of
the uncertain input parameters. Such outputs are ultimately passed to the optimizer,
which verifies the reliability of the candidate against the required boundaries. The
bayesian optimization converged to an optimum satisfying all the given constraints.
It was found that the most stringent constraint is the lower bound on the natural fre-
quency, but for the type of vehicle considered all the best candidates in terms of fuel
burn also comply with the present short period requirements. The reason for this was
recognized to be the fact that aerodynamic efficiency also translates into increased aero-
dynamic pitch stiffness, and this relationship is favourable at least for the category of
aircraft studied herein.

The framework proved capable to successfully address the multidisciplinary optimiza-
tion task, with an architecture conceived to be flexible with respect to the problem. In
fact, although a reduced set of variables and constraints was here adopted, the same
approach and tools are applicable to more complex problems, with increased number
of variables or constraints or uncertain parameters. The same kind of analysis could
be performed for example to include robust control design, provided that the aero-
dynamic function is enriched with the needed control laws. In that case more strin-
gent constraints could be applied, and additional dynamic responses could be studied,
including lateral dynamics or the complete coupled set of the equations of motion.
Moreover, as the aerodynamic tools here employed have already been coupled with a
structural dynamic solver of aeroelastic calculations, the next studies will extend the
framework to include aeroelastic constraints. This would allow to broaden the explo-
ration to larger aspect ratios and more efficient and innovative configurations. Further
work can also include comparisons against lower or higher fidelity methods, and addi-
tional investigations involving other parameters uncertainties and their impact on the
aeroelastic safety of the candidate vehicles.

4.7 Summary

This Chapter provides a first demonstration of a robust multidisciplinary analysis and
optimization task under uncertainty performed using some of the tools presented in
Chapter 3. The application involves a transport aircraft planform optimization un-
der short period reliability constraints, targeting the best aerodynamic configuration
to minimize the fuel mass for a given reference mission. The Chapter is structured as
follows:

• An overview of the problem is given, defining the optimization objective (fuel
minimization), variables (wing planform parameters), uncertain inputs (longitu-
dinal balance), dynamic constraints (short period characteristics). The proposed
framework architecture for this particular task is also presented and discussed.
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• A detailed description is given about how the aerodynamics and flight dynamics
modules are employed to calculate the required quantities of interest;

• Given the cost of the aircraft design loops combined with the unsteady aerody-
namic evaluations, an alternative approach based on a surrogate model of these
processes is introduced, allowing to significantly speed up the overall optimiza-
tion;

• The implementation of the flying qualities reliability constraints is detailed, cov-
ering also how the uncertainty propagation from the input parameters to the out-
put dynamic characteristics is performed.

• The optimization results are presented and discussed, and some conclusive re-
marks are drawn.

No effort is made at this stage to take static or dynamic aeroelastic issues into account.
These aspects are left as the main objects of the next chapters.
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5.1 Overview

Robust analysis and optimization for flexible aircraft is a wide and challenging prob-
lem. This is still true at the conceptual design phase, which is the focus of this work.
In fact, although conceptual design involves simplified methods and faster tools com-
pared to the more advanced design phases, on the other hand the task is complicated
by the need to guess several parameters or to make certain assumptions, with the re-
sponsibility that choices made at this stage may prove decisive for the success of the
next development. Moreover, as most assumptions and guesses are made based on
statistical and semi-empirical data, if a disruptive concept is to be achieved, those data
may simply be missing, or unreliable. This calls for new methods that not only can pre-
dict the effects of relevant disciplinary interactions - such as fluid-structure interaction
- but that are also capable to provide information about the sensitivity of the analysis to
some key, uncertain parameters and about the robustness of the design outcome with
respect to those uncertainties.

Due to the variety of domains involved - static and dynamic structural mechanics,
steady and unsteady aerodynamics, aircraft performance, optimization, sensitivity anal-
ysis, uncertainty quantification, etc. - and of methods available, there is no unique ap-
proach to the problem. The different methods and tools could be combined in a variety
of ways, and the approach to be preferred is case-specific, depending on what knowl-
edge is available and on the exact problem definition, that is, what objective, what
variables, which constraints, which uncertainties.

Hereafter an approach to the design and optimization of a high aspect ratio transport
aircraft is presented making use of the tools previously introduced in this manuscript.
The idea is to demonstrate the applicability of those tools to a complex research case,
showing the ability to custom the framework according to some prescribed research
needs. It is shown how the different available modules are combined into an adapt-
able architecture to be tailored on different problem definitions. The core ideas of the
proposed approach are briefly outlined in the present section. Additional details with
quantitative information, results and discussion are given in the following sections.

The aim is to use the developed tools to extend the design capabilities of the exist-
ing FAST-OAD aircraft design tool, in order to take into account the main aeroelastic
problems of high aspect ratio wings, and the effect of uncertainties in the wing struc-
tural model. More in detail, the objective is to find a configuration with minimal fuel
consumption, with respect to some wing planform parameters, including aspect ratio,
ensuring that:

• The wing structure is properly sized using static loads arising from the flexible
wing;
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• The weight of the sized wing is optimal with respect to an identified set of struc-
tural parameters;

• The overall aircraft design process takes into account the eventual corrections on
wing weight due to the aeroelastic sizing;

• The wing does not undergo plastic deformation or structural failure under gust
loads, computed on the flexible wing;

• The wing is flutter-free within the prescribed fight envelope;

• Compliance with gust loads and aeroelastic flutter requirements can be granted
not only in a deterministic way, but also in a robust way, propagating some key
structural model uncertainty.

To meet these targets, a MDAO framework was developed, integrating the disciplinary
tools in a set of functional blocks designed to respond to the points above. A better
understanding of the architecture can be achieved with the aid of Figure 5.1. The over-
all optimization process calls the Multi-Disciplinary Analysis with input variables Vg,
which refer to a desired set of aircraft geometry parameters. The MDA is handled
by an aeroelastic sizing routine, which is aimed at ensuring that the overall aircraft
sizing process run by FAST-OAD is consistent with the aeroelastic sizing of the wing,
which is done outside FAST-OAD. In fact, the latter does not take into account any ef-
fect of structural flexibility, nor does it build any structural model to predict stress. It
only adopts traditional rigid-body equations and semi-empirical regressions based on
existing conventional aircraft to estimate performance and weight and balance charac-
teristics. The tool only allows for some technological correction factors to be applied
as inputs in link with some components. For example, one correction factor could be
applied, if known, to the drag build-up accounting for the effect of winglets. In the
present case, the factor kw is employed to correct the estimation of the flexible wing’s
structural weight. This is done as follows. First, FAST-OAD is launched, with no correc-
tion applied (kw = 1), based on the input geometric variables Vg, and some Top Level
Aircraft Requirements (TLAR). The sizing process terminates with a sized rigid aircraft
with a certain amount of fuel burn required, and a wing structure weighing Ww1. This
value is collected and stored by the aeroelastic sizing routine. It is worth pointing out
here that the fuel burn, which is used as objective for the overall optimization, is the
one calculated for the rigid aircraft. It is assumed here that structural deformation adds
a negligible effect to the overall aircraft drag polar, so no effort is made to apply such
a correction. The main interest in including aeroelastic analyses is to capture the more
important effects on structural integrity, which have a strong impact on weight and
safety. Based on the sized rigid body wing geometry, completely identified by the pa-
rameters Wg, an approximated wing-box structural model is initialized, depending on
the three variables tw, ts, As, defining the web thickness, skin thickness and stringers
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cross section area, respectively. After initializing the wing-box model with a rigid body,
analytical approach, providing the initial guess tw0, ts0, As0, a structural optimization
is performed in a neighborhood of [tw0, ts0, As0], aimed at minimizing the wing struc-
tural weight Ww2 with the constraints that the static direct and shear stresses σs,max and
τs,max on the structure do not exceed the material - aluminium - yield strength. This
time, loads are computed on the elastic wing, requiring an aeroelastic model has to be
generated. This is done through a beam generation module that computes the needed
elastic properties from the wing box geometry and condensates them into an equiv-
alent finite element beam model. The beam properties (FEM data) are passed to the
aeroelastic solver, which couples the nonlinear beam solver with the VLM aerodynam-
ics to compute the structural loads on the deformable wing. This analysis has to be run
at a prescribed load factor L/W. As the structural flexibility introduces a nonlinear-
ity in the lift slope of the wing, the angle of attack providing the required load factor
cannot be determined directly, and has to be calculated iteratively. Once the load fac-
tor is matched, the structural stresses are stored and used to constrain the structural
optimization process. After the latter has converged to the best structural weight W∗w2,
this value is compared with the wing structural weight Ww1 estimated by FAST-OAD.
If Ww1 ≈ W∗w2, then the design is consistent and the sizing process is terminated. If
Ww1 6= W∗w2, a correction factor kw is generated to make FAST-OAD size a new airplane
with a different wing weight. This in general ends up with a different configuration Wg,
and therefore a different wing-box, and different aeroelastic behaviour. The aeroelastic
sizing and optimization on the new wing is repeated until a new W∗w2 is computed. The
process is iterated until a consistent design is found with Ww1 ≈ W∗w2. Once this is
achieved, the dynamic aeroelastic behaviour of the candidate is investigated. At this
point, the dynamic aeroelastic solvers are called to evaluate either the flutter speed, or
the gust loads, or both. The outputs (Vf , σd,max and τd,max) are used as constraints for
the overall MDAO. The process described this far is repeated for each design candidate
corresponding to different values of the Vg vector.

The above workflow stands for the deterministic case. The robust case has the same
structure, but the deterministic dynamic aeroelastic constraints are replaced by relia-
bility constraints. In this case, illustrated in Figure 5.2, uncertainty is attributed for
example to the elastic axis location a and to the center of gravity axis location d of the
wing. Prescribed distributions â and d̂ are given to the uncertainty quantification mod-
ule, that propagates the uncertainty into the needed quantities of interest, producing
the output distributions V̂f , σ̂d,max and τ̂d,max. At this point, the constraints are trans-
lated into probabilistic inequalities, requiring that the probability of failure is lower
than a prescribed acceptable probability threshold.

This description only aimed at providing an overview of the framework and of the
main ideas behind the developed approach. Further details are given in the following
Sections. In particular, Section 5.2 describes in deep the sizing process for the flexible
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wing, including quantitative example applications. Then, Section 5.3 describes how the
dynamic aeroelastic constraints are defined and enforced, both for the deterministic
and the probabilistic approaches. Quantitative examples are given as well, both for
the flutter analysis and the dynamic gust loads evaluations. These include sensitivity
analyses aimed at selecting what uncertainty parameters should be considered for the
robust optimization problem.

The content of this Chapter covers in details the whole proposed framework architec-
ture. Some example applications will be demonstrated later in Chapter 6
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FIGURE 5.1: Extended design structure matrix of the present MDAO framework for
aeroelastic sizing and fuel burn optimization of a transport aircraft. Deterministic

approach.
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FIGURE 5.2: Extended design structure matrix of the present MDAO framework for
aeroelastic sizing and fuel burn optimization of a transport aircraft. Probabilistic ap-

proach.
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5.2 Flexible wing sizing

This Section describes in detail the structural sizing and optimization process for flex-
ible wings and how this is merged with the overall aircraft sizing process. First, the
approach for the initialization of the wing structure is introduced in Section 5.2.1. The
outcome of this initial guess is a simplified three-dimensional wing-box structure. In
order to enable the assessment of the aeroelastic performance of the resulting wing, the
3D wing-box model is first reduced into an equivalent beam model. This process is ex-
plained in Section 5.2.2. Once the aeroelastic model is ready, with both the beam model
and the VLM aerodynamic model correctly generated and interfaced, the static aeroe-
lastic analysis can be launched to finalize the wing structural sizing, now with taking
into account the effects of flexibility. The numerical setup for this analysis and the def-
inition of the sizing load case are detailed in Section 5.2.3. Once the static aeroelastic
analysis for the wing structural sizing is clearly defined, Section 5.2.4 describes how
the optimization process is put in place in order to produce the best structural layout,
in terms of structural mass, that satisfies the imposed static safety requirements. Two
sample optimization cases are also provided. Finally, Section 5.2.5 explains how the
result of the wing structural optimization is combined with the overall aircraft sizing
process, ensuring that the rest of the aircraft is consistently designed with respect to the
optimal wing shape and weight.

5.2.1 Initial sizing of a wing-box structure

The overall aircraft design tool FAST-OAD, following a common conventional approach,
was not designed to encapsulate stress analysis or aeroelastic analysis during the siz-
ing loops. It rather relies on semi-empirical formulations that relate the wing weight
to the main planform parameters. Therefore, it does not handle sufficient informa-
tion about the structural layout to allow for these types of studies. This fact translated
into a gap between the existing design process and the desired extension leveraging
on the developed aeroelastic tools. For instance, the aeroelastic models in question
need input quantities such as bending rigidity, torsional rigidity, moments of inertia,
mass distribution, shear center location. This information is unnecessary, and therefore
unavailable, within the FAST-OAD routines. The problem was then to fill this gap by
somehow estimating the required data, starting from the available quantities. The is-
sue was addressed by estimating a simplified wing-box structure, initially sized using
simple analytical expressions for loads and stress calculation.

The use of wing-box models with simplified geometry and parameterization is a com-
mon approach in literature when addressing wing aeroelastic sizing and optimization
(see for instance [8, 101]). Here follows a detailed description of the model adopted in
this work.
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The sizing process is adapted from [27]. Aeronautical aluminium properties, summa-
rized in Table 5.1, are assigned to all components. The wing-box geometry is assumed
having a rectangular cross section, composed by the three main functional elements:
two (identical) spars carrying the shear loads, the skin absorbing the twisting loads
and a set of stringers resisting bending loads. A schematic representation is given in
Figure 5.3. It can be noted that the adopted cross section idealization lays somewhere
between the one of [27] (reported in Figure 5.5) and the one of [8] (see Figure 5.4). In
addition, ribs are also considered, but only for mass estimation, based on data from the
same category of aircraft, and they do not share any load. The breakdown into the three
main functional elements means that the three different kind of loads - vertical shear,
torsional shear and bending stress - are totally assigned to the corresponding structural
components: the spars are sized to sustain the total vertical force, the skin to carry
the total twisting moment, the stringers to withstand the total bending moment. This
separation allows the structure to be quickly sized analytically. A three-dimensional
representation of such a structural idealization is given in Figure 5.6, borrowed from
[27], which highlights the described loads breakdown. As far as the two-dimensional
cross-section is concerned, the outer rectangle dimensions are fixed by three outputs
from FAST-OAD: the two chordwise locations of the front and rear spars, and the av-
erage thickness ratio of the aerodynamic profile. The resulting wing-box planform is
represented in Figure 5.7, which refers to the CeRAS baseline wing planform. As the
rectangular cross-section is assumed to be perfectly symmetrical, its shear center is
considered located at the rectangle’s centroid, and therefore the elastic axis is located
exactly in the middle of the two spar lines.

FIGURE 5.3: Cross section idealization adopted in this work.

FIGURE 5.4: Cross section idealization used in [8].

Once the cross-section perimeter is fixed, its layout can be completely defined by the
three additional parameters ts, tw, As indicating, respectively, the skin thickness, the



142 Chapter 5. MDAO framework for flexible transport aircraft

FIGURE 5.5: Cross section idealization used in [27].

FIGURE 5.6: Wing primary structure idealization and loads partitioning, as proposed
in [27].

total web thickness (twice the thickness of one spar) and the stringers cross section, as
indicated in Figure 5.3. The stringers are considered equally distributed in the lower
and upper surface and chord-wise, and they are regarded as longitudinal rods located
along the skin, supposed to react the direct stress needed to counteract bending. There-
fore, the only parameter that needs to be sized is their total area. Their actual number
and shape are not relevant at this scale. The parameter As refers to the sum of all cross
section areas of the stringers located on the upper (or lower) surface, so that the total
available area equals 2 As. We found that this functional partitioning approach is more
conservative than evaluating an equivalent Von Mises stress at the most stressed point
of the cross section, and, despite approximated, it matches satisfactorily with the semi-
empirical correlations used in FAST-OAD, as it will be shown later. Therefore, it was
chosen to keep this idealization not only for the initial guess of the three variables, but
also during the wing mass optimization iterations.
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FIGURE 5.7: Spars and elastic axis location on the baseline wing planform.

FIGURE 5.8: View of the 3D wing-box idealization adopted in this work. The particular
example is from a kinkedA 15 wing configuration.

Property Symbol Unit Value
Density ρm kg/m3 2900
Young’s modulus E GPa 68.9
Shear modulus G GPa 24.0
Yield strength σm MPa 276
Shear strength τm MPa 207

TABLE 5.1: Material properties for the wing-box components. Values typical of aero-
nautical aluminium alloy.

The span-wise parameterization is again kept simple, following [27]: the three variables
ts, tw, As are linearly scaled from root in order to reach the minimum technologically
feasible values at the wing tip. In this way, the structural optimization problem is
reduced to three dimensions, corresponding to the three cross section parameters at
the wing root, which is assumed to be the most solicited section. A view of the adopted
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wing-box idealization is given in Figure 5.8.

It should be noted that only the three main structural responses above are taken into ac-
count for sizing the structure and for constraining the optimization by comparison with
the material allowable stress. Other types of failure, such as stringer buckling, panel
compression and shear buckling, stringer-panel buckling or crippling are not consid-
ered here. Instead, secondary failure modes are considered prevented by summing
to the primary structure mass an additional weight fraction, estimated by FAST-OAD,
accounting for appropriate reinforcements and other secondary masses. The main rea-
son for this simplifying choice is that the increased level of detail would require sev-
eral additional optimization variables, such as stringers’ shape, stringers’ spacing, ribs
number, ribs spacing. This would turn into a much higher computational cost, and a
level of detail more appropriate to preliminary than conceptual design. As the present
approach is already conservative, the added cost of the extended design space would
be of marginal use, and would add unnecessary complexity with respect to this first,
demonstrative application to robust aeroelastic MDAO. Also, the introduction of one
or more additional structural variables and constraints represents a fairly simple mod-
ification to the code architecture, and would not bring any substantial change in the
philosophy of the approach. Moreover, it should be noted that the main focus here
is the wing structural weight, because of its impact on the mission fuel burn. In this
perspective, it is assumed here that the additional constraints would mainly impact the
structural layout, in terms of ribs ans stringers distribution, with little influence on the
overall wing mass. Finally, as it will be shown later, some effects linked to fluctuations
in the nominal section properties, due to the remaining uncertainty on the structural
configuration, are still accounted for, at least in the evaluation of the aeroelastic relia-
bility constraints. For these reasons, the implementation of additional structural con-
straints is left to future developments - which should be eased by the modularity of the
proposed framework - and is not included in the present work.

The initial sizing and weight estimation of the wing-box is achieved by four separate
steps, corresponding to skin, web, stringers and ribs sizing. Loads are estimated based
on a limit load factor nL = L/W = 2.5. Neglecting the contributions of fuselage and
horizontal tail, all the lift is supposed to be carried by the wing, and considered acting
at the 25% of the mean aerodynamic chord (see again Figure 5.6). Reference [27] evalu-
ates its length and location by finding the mean geometric chord of a straight-tapered
unswept wing. Here, as the wing is in general swept and kinked, these quantities are
directly available among the wing parameters Wg from FAST-OAD, where they are com-
puted with the appropriate relationships. The overall force and moments are applied
to the wing root section, supposed to be the most loaded one, and once its parameters
are sized, they are scaled linearly along the span to reach their minimum technological
limit at the wing tip. The analytical procedure is outlined in Appendix C.
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5.2.2 Beam model generation for aeroelastic analysis

So far, the process of overall aircraft sizing and wing-box initial sizing have been de-
tailed. But a wing-box model, albeit simplified, still demands a relatively high compu-
tational cost if some aero-structural analysis is to be carried out for conceptual design
purposes. This can become especially prohibitive in the present case, where not only
multiple optimization and sizing loops are required, but also dynamic analysis and un-
certainty quantification are to be performed. Therefore, one further simplifying step
is taken here, which is the reduction of the generated wing-box model into an equiva-
lent, three-dimensional beam model. To give an overview of such a model, it is worth
recalling the main underlying assumptions, already discussed in Section 5.2.1:

• The same homogeneous, isotropic aluminium is adopted for all the components;

• Linear elastic behaviour of the material is assumed;

• The wing-box has a regular rectangular cross section with two axes of symmetry;

• The wing-box is the only structural part of the wing to play an active role: no
loads or inertia are transferred to or from other parts of the wing;

• The structure is slender, so that vertical and horizontal shear deformations are
negligible with respect to the effect of rotation;

• All cross sections rotate and translate rigidly.

These assumptions allow stating the following:

• Only one elastic modulus E and one shear modulus G are needed, and they are
set equal to the standard values available for aeronautical aluminium, reported
in Table 5.1;

• The shear center of each cross section is located at the centroid of the wing-box
rectangle;

• The center of gravity of each cross section with and without fuel is located at the
centroid of the wing-box rectangle;

• Only three main sectional moments of inertia need to be calculated, the products
of inertia being zero due to the section symmetry;

• Only the wing-box geometry is needed to completely define the elastic and iner-
tial properties of the equivalent beam;

• The equivalent beam can be conveniently placed along the locus of all centroids
of the wing-box.
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With these considerations in mind, it is possible to derive all the needed parameters
to define the beam model. As discussed in Section 3.3.2, this requires to define one
flexibility matrix S and one mass matrix M for each beam element. By enforcing the
above assumptions, the former shall have the following form:

S =



1
EA 0 0 0 0 0
0 1

GKxy
0 0 0 0

0 0 1
GKxz

0 0 0
0 0 0 1

GJ 0 0

0 0 0 0 1
EIA

yy
0

0 0 0 0 0 1
EIA

zz


(5.1)

Here, EA is the cross-section axial rigidity, with A denoting the cross-section area, and
GKxy and GKxz are the shearing rigidity in the horizontal and vertical planes. Note that
the assumption of negligible vertical and horizontal shear deformation is enforced by
considering infinite shearing rigidity (1/GKxy = 1/GKxz = 0), so Kxy and Kxz do not
need to be computed. GJ is the torsional rigidity, with J being the cross-section torsion
constant. IA

yy and IA
zz are the two section area moments of inertia, and their product with

the Young’s modulus E gives the bending rigidity around the structural ys and zs axes.
Note that all quantities are here referred to the local right-handed cross-sectional refer-
ence frame, with xs denoting the normal direction, and ys and zs indicating respectively
the horizontal and vertical Cartesian coordinates.

Within the same reference frame, the local mass matrix is as follows:

M =



µ 0 0 0 µ zCG −µ yCG

0 µ 0 −µ zCG 0 0
0 0 µ µ yCG 0 0
0 −µ zCG µ yCG Ip 0 0

µ zCG 0 0 0 Iyy 0
−µ yCG 0 0 0 0 Izz


(5.2)

The local mass per unit length is here denoted by µ, and is given by the product of the
material density ρm by the cross-sectional area A. The shift of the local center of gravity
from the beam axis is indicated by yCG and zCG. Evidently, if the two quantities are
not equally zero, the structure would feature inertial coupling in bending and torsion
dynamics. According to what stated above, in the present nominal configuration the
mass center, the shear center and the beam axis are all coincident, located at the centroid
of the wing-box cross-section, and therefore yCG and zCG are set equal to zero. The
effect of uncertainty on this assumption, and more precisely the effect of yCG 6= 0, is
investigated and discussed in Section 5.3, and a robust MDAO approach where the
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impact of this uncertainty is taken into account is described in Section 6.4. The terms
Iyy, Izz and Ip denote the two mass moments of inertia and the polar moment of inertia,
respectively.

According to the assumed wing-box geometry and to the associated material prop-
erties, the structural parameters needed in Equations (5.1) and(5.2) are calculated as
follows.

The cross-sectional area A is simply given by summing the area of all the wing-box
components. With reference to the wing-box parameters illustrated in Figure 5.3, that
gives:

A = cb (hw + 2 ts)− hw (cb − tw) + 2 As (5.3)

The torsion constant J required in Equation (5.1) must be derived from the part of the
structure that actually reacts torsion. Therefore, it only depends on the rectangle walls
composed by skin and spars, and no contribution arises from the stringers. The tor-
sion constant of a rectangular thin-walled cross-section does not have an analytically
exact expression, which is only available for circular shapes. Any other shape would
undergo a certain amount of warping, that prevents the derivation of simple analytical
expressions and requires numerical methods for precise calculations. With the approx-
imation of thin walls and constant shear flow across the thickness of shell and spars,
the torsion constant can be expressed as:

J =
4 Ω2

wb∮ ds
t

(5.4)

where ds represents an increment of curvilinear coordinate defining the thin wall perime-
ter, and t is the local thickness. Applied to the present rectangular cross-section, Equa-
tion (5.4) gives:

J =
ts tw h2

b (cb − tw/2)2

cb ts + hb tw/2 − t2
s − t2

w/4
(5.5)

Considering that the stringers have the overall arms of hw/2 and cb/4 with respect to
the symmetry axes, the two area moments of inertia of the wing-box cross section are
given by:

Ib
yy =

1
12
[
cb (hw + 2 ts)

3 − (cb − 2 ts) h3
w
]
+ As (hw/2)2 (5.6)

Ib
zz =

1
12
[
(2 ts + hw) c3

b − hw (cb − 2 ts)
3]+ As (cb/4)2 (5.7)
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The wing-box polar moment of inertia is simply obtained by:

Ib
p = Ib

yy + Ib
zz (5.8)

To give an idea of how the computed beam properties would be distributed along the
wing, the stiffness distributions calculated for the CeRAS baseline wing are plotted
in Figure 5.9. Also, in confirmation of the correctness of the presented approach, the
bending stiffness distributions were derived for an aspect ratio 18 wing, and compared
to those reported from [8] for a very similar configuration. The curves are shown in
Figure 5.10. As neither the aircraft configuration, nor the models employed are exactly
the same, there is no expectation of a perfect match, and therefore the comparison is
intended only to be qualitative.

(a) (b)

FIGURE 5.9: Span-wise distributions of the beam stiffness properties derived for the
CeRAS baseline wing. The out-of-plane bending stiffness EIA

yy and torsional stiffness
GJ are plotted in (a), whereas the in-plane bending stiffness EIA

zz is shown in (b).

As far as mass properties are concerned, it should be noted that these vary according to
whether fuel is included or not. The empty weight configuration would only be charac-
terized by the wing-box parameters above. On the other hand, the heavy configuration
should include the additional inertia of the fuel. In this case, the fuel contributions are:

µ f = ρ f (cb − tw) hw (5.9)

I f
yy = ρ f

(cb − tw) h3
w

12
(5.10)

I f
zz = ρ f

(cb − tw)3 hw

12
(5.11)

I f
p = ρ f (I f

yy I f
zz) (5.12)
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FIGURE 5.10: Verification of the computed span-wise distributions of the out-of-plane
and in-plane bending stiffness (EIA

yy and EIA
zz, respectively) for an A -18 wing. The

comparison is against data from [8].

Therefore, for the empty weight configuration, the parameters needed by the mass
matrix of Equation (5.2) would be:

µ = ρm A (5.13)

Iyy = Ib
yy (5.14)

Izz = Ib
zz (5.15)

Ip = Ib
p (5.16)

Whereas, for the heavy configuration:

µ = ρm A + µ f (5.17)

Iyy = Ib
yy + I f

yy (5.18)

Izz = Ib
zz + I f

zz (5.19)

Ip = Ib
p + I f

p (5.20)

All of the above quantities are calculated at each beam node location, according to the
local wing-box dimensions. The GEBT structural module assumes a linear variation of
those nodal values along each beam element.

Once all the wing-box properties are defined, the primary structure mass is estimated
by simply summing the mass of each structural element:
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W ′w2 =
Nel

∑
i=1

0.5 (µ(i) + µ(i+1)) le (5.21)

where Nel is the number of beam elements, µ(i) is the cross-section mass per unit length
at the i-th node, and le is the element length. Note that W ′w2 is the primary structure
mass as calculated from the FEM model, in contrast with W ′w1, which is the FAST-OAD

estimation for the same quantity.

With all the structural and geometrical properties defined, the model is ready for the
needed aeroelastic studies. A graphical representation of what such a model looks
like is given in Figure 5.11, showing some details of the aerodynamic and structural
discretizations, as well as the resulting aerodynamic loads distribution on the deformed
wing.

5.2.3 Sizing load case definition

Once the aeroelastic model is completely defined, the sizing process for the elastic wing
can be addressed. Wings must generally be sized in order to withstand manoeuvre
loads and gust loads. Manoeuvre loads are treated as steady loads, so that a few static
load conditions are selected and applied to the wing. In a preliminary design context,
this translates into the selection of one positive and one negative load factor, and sev-
eral flow conditions determined by the different flight altitudes. Here, in the context
of conceptual design, although ‘enriched’, the static load case scenario is restricted to a
single condition. This is defined by a limit load factor of 2.5, and a flight speed corre-
sponding to the dive speed referred to sea-level (EAS). As regulations specify that “the
structure must be able to support limit loads without detrimental permanent deforma-
tion” [210], the sizing process here has to insure that the material yield strength is not
exceeded at the prescribed load case. It is important to underline that this condition is
here verified only at the wing root, which is assumed to be the most solicited section.

A few considerations are needed to understand how the aeroelastic analysis is carried
out to get the loads at the required load factor. It is clear that at any fixed dynamic
pressure, the loads acting on a flexible wing, unlike a rigid wing, depend non-linearly
on the reference angle of attack. In fact, different increments of the angle of attack
generate increments of loads that are not proportional, because larger non-linear local
deformations have to be superimposed to the nominal angle of attack. Therefore, to get
the desired load factor, the correct angle of attack must be found iteratively. However,
a complex non-linear behaviour is excluded, because there are no expected sources of
discontinuities or drastic changes - such as stall, shock waves, buckling - within the
flow conditions and angles of attack expected in the simulations. The only possible
mechanism of marked non-linearity would be aeroelastic divergence, and in that case
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(a) Details of the aerodynamic and structural discretizations

(b) Contour plot for the lift distribution

FIGURE 5.11: 3D views of the aeroelastic model employed, showing both the VLM
discretization and the beam model, including the auxiliary structural points needed

for the fluid-structure interpolation.

there is no reason to search for a sizing point: the candidate structure is not adequately
strong, and it shall be discarded for the next one to be analyzed.

For these reasons, a couple of first-order methods were implemented and tested to find
the correct angle of attack producing the required load factor: the classic chord and the
regula falsi methods [28, 211] (see Appendix D). While the former occasionally did not
converge due to subsequent iterations too close to each other, the latter was found to
behave remarkably well: most cases converge to the prescribed load factor, with an
error of less than 1%, in three or four iterations, which is practically the minimum
number attainable for the numerical solution of non-linear equations. Other methods,
such as the common second-order Newton-Raphson method were not considered, first
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because of the satisfactory performance of the regula falsi method, second because they
would require the computation of derivatives.

5.2.4 Static structural optimization of flexible wings

As introduced at the beginning of this Section, a simplified approach is proposed in
this work to address the sizing of a flexible wing structure, which is a necessary step
in order to be able to investigate some relevant aeroelastic performance of the aircraft
design candidate. The objective function to minimize here is the mass of the wing-box
structure W ′w2, also referred to as the primary structure, which does not include rein-
forcements or secondary parts. The strategy adopted is to start with an initial guess of
the structural layout, already discussed in Section 5.2.1, and then to run an optimization
to minimize the structural weight within a design space surrounding the initial guess
configuration. This is intended to reduce the search space and therefore speed-up the
convergence. In fact, it is expected that high aspect ratio wings require a stronger struc-
ture compared to low aspect ratio ones, and therefore it is detrimental to use a unique,
wide design space in the two situations.

Consistently with the above initial guess approach, the optimization cost is kept as low
as possible by relying only on the three variables ts, tw and As already defined, referring
to the root section of the wing-box (see again Figure 5.3). Again, to eliminate possible
additional variables, the lower technological bounds of these three parameters are as-
signed to the wing tip, and a linear decrease is assumed to define their distribution
along the span. Such an hypothesis is believed to be conservative, as in other, more
detailed studies on similar aircraft (as in [212]) the slope of this decrease is allowed to
change in order to reach the minimum parameters’ bounds before the wing tip, with
the effect to further decrease weight. In other cases (such as in [8]) the wing-box param-
eters at multiple stations are even treated as independent variables. These approaches
are powerful and effective for a single wing optimization case, but would require pro-
hibitive costs for the purpose of this work, where many optimization cases are to be
addressed. In line with the choice of the three optimization variables, the only con-
straints employed are the bending and shear stresses at root. Monitoring many stress
values all over the beam as additional constraints would represent an increased bur-
den for the structural optimizer, and it is not considered an essential task at this stage.
A more detailed optimization approach and a comparison of the computational costs
may be the object of future studies.

In the present case, three root loads are considered to constrain the optimization: the
torsion shear on the skin τt, the vertical shear on the webs τv and the bending stress
on the stringers σb. They are calculated by the expressions given in Sections C.1 to C.3,
retaining the same underlying assumptions. The constraints provide that the material
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shear strength τm is not exceeded in the skin and spars at root, and that the material
yield strength σm is not exceeded in the stringers.

As mentioned above, the three-dimensional design space is adaptively bounded for
each aircraft configuration depending on the pre-calculated initial guess [ts0, tw0, As0].
The upper bounds for all the three variables are set (arbitrarily) to 1.5 times the initial
guess values. For the lower bounds, a factor of 0.5 is applied, but for the skin and
web thicknesses a comparison with the corresponding minimum technological value
is made, and the biggest is retained. The minimum skin thickness is set equal to 2.7
mm, a value commonly assumed for lightning strike requirements [212]. For the spars
thickness, the minimum aluminum sheet thickness of 1.2 mm is selected [27]. No tech-
nological bounds are applied for the stringers’ area.

The wing structural optimization problem is summarized in Table 5.2. An example of
the sizing and optimization process is given in the following Section, where the wing
of the CeRAS baseline configuration is adopted as a first test case, so that it will serve
both to clarify and to validate the approach.

Function/quantity Lower bound Upper bound
Minimize Wing structural mass W ′w2
with respect to Root skin thickness ts max(0.5 ts0, tsL) 1.5 ts0

Root spar thickness tw max(0.5 tw0, twL) 1.5 tw0

Root stringers area As 0.5 As0 1.5 As0

subject to τt < τm (material shear strength not exceeded)
τv < τm (material shear strength not exceeded)
σb < σm (material yield strength not exceeded)

TABLE 5.2: Definition of the simplified structural optimization problem for the flexible
wing.

5.2.4.1 Application and verification on the baseline test case

The results of a sample wing structural optimization case is here presented, applied
on the CeRAS baseline configuration. The initial guess is obtained with the approach
already discussed in Section 5.2.1.

The optimization process consists of a Design of Experiment (DOE) of 15 points, fol-
lowed by 30 optimization iterations, for a total of 45 evaluations. As previously men-
tioned, the optimization is run through SEGOMOE using a GP with the WB2 acquisition
function (see Section 2.5.2). The evolution of the best objective function over the op-
timization iterations is reported in Figure 5.12(a). The first 15 iterations are dedicated
to exploration, and this is why the current best is initially quite far from the final one.
The corresponding constraint and variable values are reported in Figures 5.12(b) and
5.13. Note that the current best only stores the best value in the optimization history
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that complies with the constraints. It should also be noted that the initial guess config-
uration is added as the last point (15th) of the DOE, and it considerably contributes to
reduce the current best and enables a quick convergence to the optimum, which in this
case is quite close to it. This can be seen clearly from Figure 5.12(a), where the current
best gets substantially close to the optimum, both in terms of objective and variables,
right after the 15th iteration. This can also be seen from Figures 5.14(a) to 5.14(b). The
first shows the objective function values of each iteration in chronological order. The
other two, similarly, plot the evolution of the three constraints and the three variables,
respectively. They show that, despite a certain exploration is still carried out, the best
valid points are always close to the initial guess and the optimal, which is found very
soon. Note that the constraints have been normalized with respect to the material limits
according to the following expressions:

c(σb) =
(σm − σb)

σm
> 0 (5.22)

c(τt) =
(τm − τt)

τm
> 0 (5.23)

c(τv) =
(τm − τv)

τm
> 0 (5.24)

It is interesting to point out here that despite the simplified and separated expressions
for the loads on the three functional components of the wing box, the optimization task
is not trivial: a violation of the bending stress, evaluated on stringers, does not neces-
sarily translate into an increase of the stringers area variable As. In fact, any change
of each design variable will affect all the section properties assigned to the equivalent
beam. This means that, for example, an increase of the skin or web thickness will in-
crease the area moment of inertia, the torsion constant, etc., resulting in a stiffer beam,
less sensible to deformation-induced loads, possibly to the point that the bending loads
on the stringers are no longer above the allowable ones. This could happen without any
increase of the As variable. Therefore, different combinations of the three parameters
can provide constraints compliance, and the non-trivial optimization task is to find the
one that minimizes mass. This is exactly what happens in the present case: looking
at Table 5.3, where the results are summarized, it can be seen that the optimal config-
uration is lighter and safer than the initial guess even though the stringers area As is
actually reduced with respect to the initial guess. The best configuration turns out to
correspond to one where sufficient strength is achieved by a slightly thicker skin, and
a mass saving is obtained with thinner spars and stringers.

Another aspect that emerges from Figures 5.12(b) and 5.14(b) is that in this case the
torsion constraint is always largely satisfied. This indicates that the lighting strike re-
quirement, imposing a skin thickness no lower than 2.7 mm, is more stringent than
the torsional strength constraint. This fact is here accepted as a confirmation that the
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(a) Structural mass objective

(b) Static loads constraints

FIGURE 5.12: Flexible wing structural optimization process under static loads con-
straints over the CeRAS baseline configuration. Evolution of the current best wing
mass objective function (a) and the corresponding static loads constraints (b) through

the SEGOMOE optimization iterations.

adopted approach is conservative. Although the case could be further optimized by
allowing the skin to share part of the vertical or bending loads, permitting in turn the
other parts to be lightened, this solution is undesirable because it could underestimate
the overall mass. Therefore, the ‘excessive’ safety in torsion is retained here as a conser-
vative solution, that provides margin against other constraints, such as buckling, which
are ignored.

This choice is further sustained by the fact that the results obtained are satisfactorily
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FIGURE 5.13: Flexible wing structural optimization process under static loads con-
straints over the CeRAS baseline configuration. Evolution of the current best variables

through the SEGOMOE optimization iterations.

close to the data available from FAST-OAD, which can be considered, as far as the base-
line is concerned, a reliable reference. For instance, the empty-weight wing mass of
8200 kg provided by the initial guess exceeds by less than 1% the value of 8120 kg of
FAST-OAD. The mass predictions for the overall structure as well as its different com-
ponents are detailed in Figure 5.16. Here, the mass fraction corresponding to stringers
and spar caps, which mainly sustain bending loads, is labeled as ‘bending’ mass. The
mass of skin and spars, whose main function is to react shearing loads, are not sepa-
rated in FAST-OAD, so they are grouped in ‘shear’ mass. It is worth recalling that the
difference between the total empty weight mass Ww and the primary structure mass
W ′w, composed by the skin, spars, stringers and ribs, is the mass of landing gear rein-
forcements and secondary masses, which is set equal to the value given by FAST-OAD.
It can be seen that a good match is achieved for all the sub-parts.

Configuration ts (mm) tw (mm) As (m2) W
′
w (kg) Ww (kg)

Initial guess 2.7 9.5 0.0316 5,349 8,200
Optimal 2.8 9.1 0.0315 5,326 8,178
FAST-OAD - - - 5,267 8,120

TABLE 5.3: Optimization results for the flexible wing structural optimization process
over the CeRAS baseline configuration. The data for the initial guess structure, as
well as from the corresponding rigid configuration sized by FAST-OAD are reported for

comparison.

Given this already accurate initial estimation, the optimization barely influences the
result, giving an optimum wing mass of 8178 kg, reducing the initial guess of only
about 20 kg. Despite the contribution of the optimization looks here irrelevant, these
results are indeed desired, because they confirm the consistency of both the initial guess
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(a) Structural mass objective

(b) Static loads constraints

FIGURE 5.14: Flexible wing structural optimization process under static loads con-
straints over the CeRAS baseline configuration. Monitor plot of the wing mass objec-
tive function (a) and the corresponding static loads constraint (b) through the SEGOMOE

optimization iterations.

and the optimization approach with respect to known data (the baseline is expected
to be quite an optimized configuration!). Also, it should be noted that the optimizer
converges to a configuration that not only features a lower objective function, but that
is also valid with respect to the structural constraints, while the initial guess is not.
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FIGURE 5.15: Flexible wing structural optimization process under static loads con-
straints over the CeRAS baseline configuration. Monitor plot of the design variables

through the SEGOMOE optimization iterations.

FIGURE 5.16: Wing structural mass buildup for the CeRAS baseline. Three sets of
data are compared: the FEM data for the initial guess structural layout (blue), the FEM
data for the optimal structural layout (red) and the estimation for the rigid aircraft by

FAST-OAD (green).
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5.2.4.2 Application on high aspect ratio wing

An analogous structural optimization task to the one of Section 5.2.4.1 is presented
here, but applied on a wing of aspect ratio 15, quite higher than the 9.5 of the CeRAS
baseline. Qualitatively, the same kind of plots and data are reported (Figures 5.17 to
5.20). Quantitatively, there are a few details worth to be noted.

First, the convergence to the optimum is slower (32 evaluations were needed instead of
21). One reason for that is that less points in the DOE comply with the constraints, in-
cluding the initial guess, that this time violates the bending strength condition. It takes
17 iterations after the DOE for the optimizer to progressively converge to a candidate
fulfilling all the conditions. This ends up with the selection of a heavier configuration
compared to the initial guess, with the mass increase resulting from thicker skin and
stringers (see Table 5.4).

Another interesting and reassuring aspect, emerging from Figure 5.21, is the remark-
ably accurate match between the initial guess and the FAST-OAD predictions, which
further confirms the validity of the implemented initial guess approach.

Finally, and most importantly, this high-aspect-ratio example shows that, differently
from the baseline case, the aeroelastic module is predicting an appreciable difference
with respect to the conventional FAST-OAD approach, suggesting that the latter may
not be totally accurate for flexible wings. In particular, the aeroelastic optimization
gives a wing-box mass and a total empty-weight wing mass around 11% and 8% higher
than the respective values from FAST-OAD. Therefore, the mismatch confirms that the
conventional approach may underestimate the structural weight of high aspect ratio
wings, confirming that the adoption of the proposed aeroelastic approach is a desirable
enhancement. This conclusion was expected, because the semi-empirical relationships
are fine-tuned on pretty rigid wings with A ≈ 10, and therefore their validity and
conservativeness were indeed questionable.

Configuration ts (mm) tw (mm) As (m2) W
′
w (kg) Ww (kg)

Initial guess 2.7 10.7 0.0462 8,786 12,086
Optimal 2.9 10.4 0.0534 9,894 13,194
FAST-OAD - - - 8,898 12,198

TABLE 5.4: Optimization results for the flexible wing structural optimization process
over theA 15 configuration. The data for the initial guess structure, as well as from
the corresponding rigid configuration sized by FAST-OAD, are reported for comparison.
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(a) Structural mass objective

(b) Static loads constraints

FIGURE 5.17: Flexible wing structural optimization process under static loads con-
straints over the ‘A 15’ configuration. Evolution of the current best wing mass objec-
tive function (a) and the corresponding static loads constraints (b) through the SEGOMOE

optimization iterations.
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FIGURE 5.18: Flexible wing structural optimization process under static loads con-
straints over theA 15 configuration. Evolution of the current best variables through

the SEGOMOE optimization iterations.
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(a) Structural mass objective

(b) Static loads constraints

FIGURE 5.19: Flexible wing structural optimization process under static loads con-
straints over theA 15 configuration. Monitor plot of the wing mass objective function
(a) and the corresponding static loads constraint (b) through the SEGOMOE optimization

iterations.
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FIGURE 5.20: Flexible wing structural optimization process under static loads con-
straints over theA 15 configuration. Monitor plot of the design variables through the

SEGOMOE optimization iterations.

FIGURE 5.21: Wing structural mass buildup for theA 15 configuration. Three sets of
data are compared: the FEM data for the initial guess structural layout (blue), the FEM
data for the optimal structural layout (red) and the estimation for the rigid aircraft by

FAST-OAD (green).
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5.2.5 Consistency against overall aircraft sizing

Section 5.2.4 described the structural optimization process for a flexible wing aimed
at minimizing the wing structural mass while ensuring safety against the main failure
modes. The process implies a fixed wing planform geometry and mean thickness, re-
sulting from the initial FAST-OAD overall aircraft sizing, and selects the best wing-box
structure fitting that geometry. It was shown that the optimization may end up with
an optimal mass which is higher than the one initially predicted by the overall air-
craft sizing. The mismatch is expected to be accentuated when dealing with elongated
wings, where the structural flexibility can affect loads in a way that the traditional
semi-empirical relations of FAST-OAD are not guaranteed to capture properly. When the
mismatch between the wing mass from FAST-OAD, here denoted as Ww1, and the one
from the aeroelastic optimization Ww2, is significant, then the consistency between the
overall aircraft sizing and the wing sizing is lost. In other words, the aircraft would be
sized with respect to a wing which has a wrong, unsafe weight. To enforce consistency,
an iterative approach has been implemented, and it is here briefly described.

The basic idea is to feed the optimal wing weight Ww2 back to the aircraft sizing process,
which in turn elaborates a correction factor that is passed to FAST-OAD, so that a new
overall sizing process is run with the updated wing mass. The result will be an updated
aircraft configuration consistently sized in order not only to meet the fixed top-level
requirements, but also to carry an appropriate wing structure.

Although this core idea is relatively simple, its implementation is in practice slightly
complicated by the way the correction is conveyed within FAST-OAD. The program is
indeed conceived to allow several technological correction factors to be defined. For
instance, some of them are employed to account for secondary aerodynamic effects on
trim, shape or lift-induced drag due to specific devices such as winglets. Others, such
as the one which is of interest in this case, provide for weight corrections of the different
parts, taking into account for example the weight save and balance changes due to the
employment of composite materials in the fuselage, or in the wings, or in the tails,
etc. In this specific case, a wing weight correction factor, referred to as kw, is used to
introduce a weight penalty if the structural optimization gives Ww2 significantly greater
than Ww1. In particular, the correction is triggered by a discrepancy of more than 2%.
The problem at this point is the choice of the appropriate factor kw. In fact, its value only
applies when the FAST-OAD analysis is initialized, but then the aircraft sizing process
starts a series of iterations to make the whole configuration converge into a consistent,
feasible concept. Over these inner iterations, the wing geometry, mass and all the other
aircraft parameters progressively change and adapt. This means that, if the initial wing
weight estimate, without correction, is denoted as W(0)

w1 , at the end of the next call to
FAST-OAD, the final corrected wing weight, denoted as W(1)

w1 is going to be different
from kw W(0)

w1 . Therefore, the choice to set kw = Ww2/W(0)
w1 , that could initially seem
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straightforward, does not bring to the desired result. What happens instead is that the
resulting wing mass of the updated configuration is an unknown nonlinear function of
kw:

W(i+1)
w1 = f (kw) 6= kw W(0)

w1 (5.25)

For this reason, it is necessary to solve numerically for kw in order to get the desired
configuration where Ww1 ≈ Ww2. As the nonlinear problem is still relatively simple
and depending on a single variable, the same numerical strategy already discussed
in other parts of this manuscript, the ragula falsi method (see Appendix D), was suc-
cessfully applied. The initial FAST-OAD sizing provides a first point, corresponding to
kw = 1. A second point is evaluated at kw = Ww2/W(0)

w1 . With two known points, the
algorithm starts converging quickly, and generally finds a solution in about 4 function
calls.

In addition, another issue has to be addressed in order to ensure the consistency be-
tween the overall aircraft sizing and the wing structural sizing. In fact, even if a new
aircraft configuration is found where the wing mass matches the mass provided by the
optimizer, that new wing planform is in general expected to be different, and in par-
ticular larger, than the one used during the optimization. This means that there is no
guarantee that the optimized structure still complies with the constraints, now that the
loads arise from a different wing. On the contrary, it is rather possible that a new, larger
wing requires an adapted, reinforced structure. Therefore, at each time the aircraft con-
figuration is updated, a new wing-box sizing and optimization should be carried out.
For example, let us consider that an aircraft configuration has been updated after nk

iterations - needed to find the adequate correction factor kw - so that W(nk)
w1 ≈ Ww2. At

this point a new guess wing-box structure is produced and a new optimization cycle is
launched. At the end, the new optimal wing structure is obtained, with its mass being
denoted by W(1)

w2 ( 6= W(0)
w2 ). Note that the two different apexes indicate that the two

estimates have been obtained by two different, subsequent optimization loops. The
new optimal wing mass W(1)

w2 is then checked against the last prediction from FASTOAD,
W(nk ,1)

w1 , where the second apex (1) was added for the reason just explained. Again, if the
two new mass values W(1)

w2 and W(nk ,1)
w1 still differ by more than 2%, the process above is

repeated. Eventually, in a few iterations a final configuration will be produced where
the wing mass is consistent with a structure optimized to safely comply with the static
limit loads. This condition is achieved when W(no)

w2 ≈ W(nk ,no)
w1 , with no denoting the

number of outer iterations (that is the number of structural optimization cycles that
were carried out).

To sum up, the iterative process starts with FASTOAD producing an aircraft configura-
tion with a wing of mass W(0,0)

w1 . The wing structure is optimized using the described
methods and tools, resulting on a best structure of weight W(0)

w2 . If W(0)
w2 > 1.02 ·W(0,0)

w1 ,
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a correction factor is found in nk iterations with the regula falsi method and is applied
to FASTOAD to get an updated configuration with W(nk ,1)

w1 ≈ W(0)
w2 . Once this is obtained,

a second structural optimization is performed on the new wing to get a new best, W(1)
w2 .

This process is reiterated no times until W(no)
w2 ≈ W(nk ,no)

w1 . For further clarification, an
extract from Figure 5.1 is given in Figure 5.22, providing a graphical overview of the
procedure just discussed.

It was found that up to an aspect ratio of about 15, only one or two iterations are in
general sufficient to ensure design consistency. For higher aspect ratios, more itera-
tions may be required, depending on the other wing shape parameters. For instance,
higher taper ratios tend to shift the aerodynamic loads toward the wing tip, increasing
bending loads at root, and therefore demanding a heavier structure that could require
more design iterations to achieve a consistent aircraft configuration. Similarly, a low
kink span ratio reduces the room available for the structure around the root, demand-
ing thicker structural components in order to sustain loads, and likely resulting in a
structure quite heavier than predicted by the rigid wing sizing approach of FASTOAD.
This can also contribute to an increase in the number of iterations required to attain
consistency.

FIGURE 5.22: Highlight from the overall XDSM scheme of Figure 5.1. Detail of the it-
erative aeroelastic sizing approach, designed to ensure consistency between the wing
mass Ww1, considered in the overall aircraft sizing, and the wing mass optimized to
sustain the prescribed aeroelastic loads, Ww2. The design is considered consistent

when the two values differ by less than 2%.
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Just to provide a few visual examples of what the discussed iterative approach looks
like, three cases are reported in Figures 5.23 to 5.25. The first one corresponds to an
aspect ratioA = 17.6, taper ratio tr = 0.34 and a kink span ratio ksr = 0.33. Despite
the wing is quite slender, two iterations were sufficient to converge to a consistent air-
craft. The second case corresponds to an aspect ratioA = 19.1, taper ratio tr = 0.30
and a kink span ratio ksr = 0.26. This higher aspect ratio case turned out to be more
challenging than the previous one, requiring three design and optimization iterations
to converge. Finally, an even higher aspect ratio configuration, withA = 19.6, taper
ratio tr = 0.32 and a kink span ratio ksr = 0.27, is shown to have demanded four itera-
tions before convergence. Note that each iteration represented on these figures requires
about 2 to 5 minutes of serial computation on a modern computer.

FIGURE 5.23: Sizing and optimization iterations for an aircraft configuration with
A = 17.6, tr = 0.34 and ksr = 0.33. The traced quantities correspond to the wing
empty weight estimated by FAST-OAD (Ww1), by the initial guess, and by the aeroelastic

structural optimization (Ww2).
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FIGURE 5.24: Sizing and optimization iterations for an aircraft configuration with
A = 19.1, tr = 0.30 and ksr = 0.26. The traced quantities correspond to the wing
empty weight estimated by FAST-OAD (Ww1), by the initial guess, and by the aeroelastic

structural optimization (Ww1).

FIGURE 5.25: Sizing and optimization iterations for an aircraft configuration with
A = 19.6, tr = 0.32 and ksr = 0.27. The traced quantities correspond to the wing
empty weight estimated by FAST-OAD (Ww1), by the initial guess, and by the aeroelastic

structural optimization (Ww1).

5.3 Dynamic aeroelastic constraints under uncertainty

The process described until now is intended to size each aircraft configuration with
respect to static limit loads taking into account the static aeroelastic behaviour of the
wing. Dynamic aeroelastic behaviour is in general more complex and expensive to in-
vestigate, and therefore a retrofit approach, where structural changes are updated in
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order to improve their dynamic aeroelastic characteristics, would require a substantial
increase of the computational burden, with respect to the proposed one, where only
static behaviour is considered. This additional cost would be sharply increased if some
kind of robustness has to be granted, as it is the case in this work, because the un-
certainty propagation inevitably multiplies the cost of deterministic analyses. On the
other hand, dynamic aeroelastic phenomena remain of undeniable importance for the
safety of any flying vehicle, especially where slender lifting surfaces are involved. This
is why dynamic aeroelasticity is kept as a key target area to be explored in this research.
Therefore, one main challenge of this project was to conciliate the need to minimize the
computational time for conceptual design exploration with the contrasting requirement
of addressing at least the main safety issues related with dynamic aeroelasticity. The
solution proposed in this work results from a compromise between these demands.

First, two main dynamic aeroelastic phenomena are identified and included in the anal-
ysis framework: flutter and open-loop gust response. Other aspects, such as closed-
loop gust response, tail aeroelastic dynamics, the impact of flexibility on the overall
flight dynamics, etc., are not considered here. It is believed that they can still be better
addressed in a successive, more detailed phase after that the overall aircraft conceptual
design has been accomplished, and the primary geometry has been fixed. Otherwise,
future developments could be addressed at improving and broadening the actual ca-
pabilities to cover these other challenges.

Second, it was decided to exclude the dynamic aeroelastic analyses from the sizing
and structural optimization phases. Instead, these are carried out only after the con-
figuration has converged and been fixed, and they just act as constraints for the outer
optimization, which aims at minimizing the fuel burn with respect to wing planform
geometry. Hence, any configuration proving non-compliant with the flutter or gust
response requirements is simply rejected, and no retrofit is addressed.

Third, as far as robustness is concerned, although the list of uncertain parameters at this
stage could potentially be very large, it has been repeatedly underlined in the previous
sections that an effort is made here to keep the number of parameters and variables lim-
ited as far as possible. This is true for the overall MDAO problem, as well as for inner
structural optimization task and the dynamic aeroelastic constraints. For this reason,
as far as the latter are concerned, an initial conceptual screening of those parameters
that could relevantly affect the wings’ aeroelastic response was carried out, bringing to
the selection of only six quantities. Then, some sensitivity analyses were carried out in
order to further restrict the set of uncertain parameters to be actually employed in the
overall MDAO.

Finally, as already mentioned at the beginning of this chapter, the choice was made
to only investigate uncertainty propagation when evaluating the dynamic aeroelastic
constraints. Therefore, the proposed robust MDAO problem takes more specifically
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the form of a reliability-constrained optimization. The inner sizing and structural opti-
mization cycles are all run in a deterministic way on the nominal configurations.

The following sections give more details about how exactly the constraints are put in
place, and what kind of analyses they involve. In particular, Section 5.3.1 introduces the
deterministic flutter analysis and the implementation of the corresponding constraint
within the MDAO, and Section 5.3.2 describes the sensitivity studies made on flutter
and the consequent definition of the flutter speed reliability constraint. Then, similarly,
Section 5.3.3 discusses how the deterministic gust response simulations are set up and
how deterministic gust constraints are defined, whereas the sensitivity analyses and
the implementation of the probabilistic gust loads constraints are subsequently treated
in Section 5.3.4.

5.3.1 Deterministic flutter speed on low and high aspect ratio configurations

One of the dynamic aeroelastic constraints that have been enforced in this case study is
the wing flutter speed. The deterministic constraint is simply formulated by requiring
that flutter must not happen below a fixed speed threshold. This follows the indica-
tions given by airworthiness regulations. For example, the EASA Certification Speci-
fications for large aeroplanes (CS25) originally imposed that the airplane must be free
from aeroelastic instability within an envelope enlarged up to 20% in terms of Mach and
air speed at all altitudes. Today, as from the latest amendment (see [213]), this value has
been harmonized with the U.S. FAA regulations [214], putting that value at 15%. Here,
one single condition is imposed to constrain the optimization, corresponding to the
speed threshold of 1.15 VD EAS, and to a Mach number of 0.6, based on the sea-level
speed of sound of 340 m/s. No other conditions, such as different altitudes and Mach
numbers are studied. This is motivated on one hand by the need for minimizing the
computational costs, and on the other hand by the fact that the adopted tools would
not capture more complex phenomena such as dynamic shock waves or buffeting that
could be involved at high altitude, transonic conditions. Therefore it would be of little
use to repeat the same analysis with different, less reliable flow conditions. Moreover,
this work offers a first proof of concept of a proposed approach, and the number of
flight conditions and their physical complexity can be increased in future work.

The tools adopted for flutter analysis are different from those employed for the static
aeroelastic studies. From the aerodynamic side, the unsteady strip theory presented in
Section 3.2.2 is used instead of the steady VLM. This choice was motivated in Section
2.4.3. The structural model is still a finite element beam model, sharing the same prop-
erties as the static aeroelastic case, but the beam degrees of freedom are restricted to
three, namely vertical translation, bending rotation and twist (see Section 3.3.1). Also,
as flutter is a matter of stability in the immediate surrounding of a static equilibrium,
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the model is kept linear, differently from the static approach, where geometric nonlin-
earity is taken into account. This is in line with most of the literature relating to similar
studies at conceptual design (see again Section 2.4.3). As a consequence, the effect of
initial static deformation is neglected. More technical details about the aerodynamics,
structural dynamics and their coupling have been given in Section 3.4.1.

Nonetheless, it is worth resuming here some key aspects of the approach adopted. The
flutter problem consists in finding the speed at which the aeroelastic system turns un-
stable. Different numerical approaches are possible to solve this problem, depending
also on how the physics is modeled. In most cases the problem is complicated by the
intrinsic dependence of the unsteady aerodynamic loads not only on the flow speed,
but also on the reduced frequency. Nevertheless, in the present model this dependency
is removed by relying on Wagner’s indicial function, which constitutes an approxima-
tion of the indicial unsteady aerodynamic response to a step change in the angle of
attack. In the domain of strip theory, the exact analytical response was only formulated
by employing the Theodorsen function, which is a complex function of the reduced
oscillation frequency. But Wagner’s indicial function, and the use of convolution to
extend its applicability to arbitrary motion, offers a valid and practical alternative to
frequency-based methods. This allowed, after the manipulations explained in Section
3.4.1, the present aeroelastic model to be expressed as a linear system in the canonical
form:

ẋ = A x (5.26)

where x is a state vector, containing structural and aerodynamic variables, and A is the
dynamic matrix, which is assembled from the structural and aerodynamic mass, stiff-
ness and damping matrices, plus additional coupling matrices relating to some aero-
dynamic variables deriving from the unsteady formulation. Now, it is well known that
the stability of any such system as in Equation (5.26) is completely characterized by the
eigenspectrum of the dynamic matrix: its stability can easily be inferred by examining
its eigenvalues. In this specific aeroelastic system, once the structural model, with its
parameters, and the wing planform geometry are fixed, the remaining quantity that
shapes the model, and therefore the dynamic matrix, is the dynamic pressure, or, if
the density is kept constant, the speed. Therefore, it is possible to trace the change in
the system eigenvalues with respect to the flow speed, until the first one crosses the
imaginary axis, or, equivalently, until the first mode exhibits a negative damping.

With this formulation, where the system matrix and eigenvalues depend only on the
speed, this method falls into the category of what are called p methods, in contrast
with the other widely diffused category of p − k methods, where the dependency on
the reduced frequency k is maintained (see Section 2.4).

With these considerations, finding the flutter speed reduces to solving a nonlinear one-
dimensional problem. The unknown is the speed at which the first eigenvalue has its
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real part approaching zero. As for other problems discussed previously in this work,
the regula falsi method (see Appendix D) proved effective also in this case. The main
difference here is that there is no initial guess available, so the first iterations just evalu-
ate the system stability at the arbitrary value of 150 m/s, and then at increments of 100
m/s, until a first unstable speed is found. At this point, the algorithm starts to converge.
However, the eigenvalue analysis of the present dynamic matrix is a rather cheap task,
compared to other nonlinear problems previously discussed, such as the search for the
correct angle of attack matching the required load factor, or for the FAST-OAD correction
factor to get the desired wing mass. Therefore, a slightly higher number of iterations
does not add sensible computational burden. Moreover, the initial system size, deriv-
ing from the number of finite elements, is consistently reduced by means of a simple
modal projection. More specifically, the beam structure made of 60 elements, having
3× 60 degrees of freedom, was found to be adequately modeled by retaining only the
first 10 modes (ordered per ascending frequency). This amounts to a reduction of 95%
of the structural system size, and allows the solution for the flutter speed to be found in
a couple of seconds, with an error of less than 1% with respect to the full-order model.

An interesting aspect of the adopted method, and in general of any p method, is that the
stability analysis holds the same degree of accuracy at any speed. In contrast, the p− k
method is accurate only in the immediate neighborhood of the stability limit, where
damping is almost zero and the behaviour can be approximated as purely harmonic.
Therefore the p method is more suited to study the change in stability with varying
speed. Frequencies and damping ratios can be easily evaluated at different speeds and
plotted to have a better understanding of the system behaviour and its evolution.

An example, run on the baseline test-case, is reported in Figures 5.26 and 5.27. The
first one shows the shift of the modal frequencies with respect to speed. In particular,
it can be seen that appreciable changes arise above 100 m/s, where the third mode,
corresponding to the first torsional mode, starts to experience a progressive decrease
in frequency. On the other hand, the first mode, of pure bending, shifts to higher fre-
quencies, approaching the second bending and the first torsional modes. As it is well
known in aeroelasticity, this approach leads to a coupling between the modes that at
some point turns to amplifying, unstable oscillations. A red line indicates the actual
speed of 255 m/s where instability is reached. At this point, the first bending and
torsion mode have the frequency of 4.5 and 7.5 Hz, respectively. The phenomenon is
graphically more evident from the damping ratios plot of Figure 5.27. The flutter speed
is clearly identified by the point at which the first mode’s damping crosses the zero
axis, after a sudden shift from its initial trend of increasing stability. At the same time,
also the first torsion mode experiences a sudden change in damping, in this case to-
wards higher values. The second bending mode, although its frequency overlaps with
the first torsion mode, does not show any appreciable shift in frequency or damping,
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suggesting it does not participate in the flutter mechanism. The first six modal shapes
are represented in Figure 5.30.

FIGURE 5.26: Evolution of the first 10 modal frequencies with air speed for the CeRAS
wing model. A red vertical line marks the speed at which the flutter instability is

reached.

FIGURE 5.27: Evolution of the first 10 modal damping ratios with air speed for the
CeRAS wing model. A red vertical line marks the speed at which the flutter instability

is reached.

To provide another example, the same plots are reported for a higher aspect ratio wing.
The configuration is the same as the one treated in Section 5.2.4.2, with the same taper
ratio and kink span ratio as the baseline, and an aspect ratio of 15. A few differences
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can be noted in comparison to the previous case. First of all, as it could be expected
from a more elongated structure, the wing shows a reduced aeroelastic stability, with a
flutter speed of 215 m/s, 40 m/s lower than the baseline. Also, the increased bending
inertia, resulting from a mass distribution that is moved further from the wing root,
determines lower bending frequencies. The torsional frequencies do not show a simi-
lar shift from the corresponding baseline frequencies. As a result, three bending modes
initially appear in Figure 5.28 below the first torsion mode. Then, the first torsional
frequency progressively drops from 13.5 Hz down to 6.6 Hz, while the first bending
frequency increases from 1.5 to 3.7 Hz. Here, the coupling with the first bending mode
finally brings instability. The damping ratio trends, illustrated in 5.29, do not show
particular differences, at least qualitatively, from the baseline case. Similarly, the modal
shapes, represented in Figure 5.31, are almost identical to those of the baseline, as it can
be seen by comparison with Figure 5.30. It is worth noting that the ‘A 15’ wing shows
an evident mode switching with increasing speed. For example, the 1st torsion mode is
the 4th mode in the order of ascending frequencies at zero speed, but its frequency re-
duces with increasing speed and just before flutter it goes below the 3rd bending mode,
which is why it is plotted as the 3rd mode ( f = 6.6 Hz) in Figure 5.31. Also, compar-
ing Figures 5.30 and 5.31, it can be seen that the 5th and 6th modes are inverted for
the two wings. Such observations demonstrate that mode switching is a common phe-
nomenon in flutter analysis, which can be easily triggered during parametric studies,
uncertainty quantification, design exploration and optimization. Therefore, in order
to have a correct understanding of the causes of the instability, it is important that the
tools employed are adequately precise to capture and show such modes evolution.

It is worth pointing out that all the discussed results, as well as all the following flutter
analyses launched during the MDAO process, are based on the heavy weight wing
configuration, that is, the wing with all fuel onboard. The reason for this choice is
that the increased mass and inertia anticipate the bending-torsional coupling and the
speed of flutter. In fact, all tests that were done with empty weight wings, with various
geometries, revealed a great increase in stability, due to the prevalence of the stiffening
elastic forces over the aerodynamic and inertial loads. This resulted in very high flutter
speeds, in most cases well above Mach 0.7, which is considered the limit of validity of
the adopted models. Such results, from a qualitative perspective, simply reveal that
those configurations are not critical at all for flutter constraints. From a quantitative
point of view, they are meaningless because they violate the validity of the physical
models, and therefore they are not reported in this manuscript.



5.3. Dynamic aeroelastic constraints under uncertainty 175

FIGURE 5.28: Evolution of the first 10 modal frequencies with air speed for the ‘A 15’
wing model. A red vertical line marks the speed at which the flutter instability is

reached.

FIGURE 5.29: Evolution of the first 10 modal damping ratios with air speed for the
‘A 15’ wing model. A red vertical line marks the speed at which the flutter instability

is reached.

5.3.2 Sensitivity of flutter speed with respect to aeroelastic parameters

The examples provided in Section 5.3.1 refer to nominal configurations, both for the
baseline and for the ‘A 15’ cases. The nominal parameters are derived from the aeroe-
lastic sizing process discussed previously in this Chapter: a first guess of the wing-box
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(a) Mode 1 (1st bending, f = 4.5 Hz). (b) Mode 2 (2nd bending, f = 7.3 Hz).

(c) Mode 3 (1st torsion, f = 7.5 Hz). (d) Mode 4 (3rd bending, f = 15.5 Hz).

(e) Mode 5 (2nd torsion, f = 20.1 Hz). (f) Mode 6 (4th bending, f = 29.8 Hz).

FIGURE 5.30: First six wing structural modes of the baseline configuration. The red
line identifies the elastic axis. The reported frequencies correspond to flutter speed.

Each shape is scaled freely in order to give a better visual understanding.
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(a) Mode 1 (1st bending, f = 3.7 Hz). (b) Mode 2 (2nd bending, f = 4.7 Hz).

(c) Mode 3 (1st torsion, f = 6.6 Hz). (d) Mode 4 (3rd bending, f = 9.8 Hz).

(e) Mode 5 (4th bending, f = 17.4 Hz). (f) Mode 6 (2nd torsion, f = 19.8 Hz).

FIGURE 5.31: First six wing structural modes of the ‘A 15’ configuration. The red line
identifies the elastic axis. The reported frequencies correspond to flutter speed. Each

shape is scaled freely in order to give a better visual understanding.
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structure and its equivalent beam model are produced, then optimized with respect
to the structural safety constraints, and the process is repeated iteratively, if needed,
until the wing mass is consistent with the overall aircraft configuration. It has already
been discussed how the structural parameters are directly computed from the assumed
wing-box geometry. Given the different simplifying assumptions, it is clear that such
predictions provide only an approximation of a realistic, definitive structure. Moreover,
throughout successive, more advanced design phases, it is likely that several features,
including geometry and material properties, will be adjusted. For these reasons, it is of
interest at this stage to evaluate how errors in the underlying assumptions, or changes
during forthcoming design phases, could impact the outcome of the optimization, and
in particular how they would impact the structural safety and the fuel mass, the latter
being the final objective of this optimization. To this aim, some sensitivity analyses
have been preliminary conducted, in order to identify the most relevant parameters
affecting the aeroelastic stability of the main wing. The identified parameters will be
considered as the uncertainty sources to be taken into account when enforcing the reli-
ability constraint on flutter speed.

The definition of the flutter sensitivity analysis problem is given in Section 5.3.2.1,
whereas two sensitivity analysis applications are reported in Section 5.3.2.2, applied
to the baseline and the ‘A 15’ configuration.

5.3.2.1 Problem definition

When choosing what parameters should be considered as uncertain in the present
model, two possible approaches were weighed.

The first one is to look at the variables that define the wing-box model, i.e. the thick-
nesses of spars and skin and the stringers area. Once these are fixed, all the beam
characteristics follow. So assigning uncertainty to this limited group of independent
variables would result in a propagation of uncertainty affecting all of the derived prop-
erties. However, the physical meaning of this approach, in this case, is that a simplified
wing-box with rectangular cross sections is allowed to change into other simplified
wing-boxes with equally simple rectangular cross sections. Therefore, any sample an-
alyzed during the uncertainty quantification would still represent another unrealistic
sample, just as for the nominal case, with a high risk of not covering any plausible
variations of the structure properties.

In reality, the final design would be characterized by more complex geometries, with
each section following the local aerodynamic profile, components made of slightly dif-
ferent aluminium alloys, thickness and mass distributions adjusted due to reinforce-
ments, secondary components and to a large number of additional requirements that
can only be treated in more advanced design phases.
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The second way to address the definition of the uncertainty quantification problem
is to start from the derived beam model, characterized by a certain number of ‘con-
densed’ properties, and to assign uncertainty to those derived parameters. This ap-
proach would cover a wider domain of structural changes, without need to trace the
uncertainty propagation from a highly detailed model. Any property change in the
beam model could then represent the effect of different changes of the real, detailed
configuration. In this way, the study would be more general, and not restricted to a
small family of simplified, unrealistic structures, as it would be with the first approach.
Therefore, this second strategy was preferred.

Considering the relative simplicity of a beam model, like the one here adopted, it was
not difficult to select a restricted set of key parameters that may relevantly affect the
wing aeroelastic performances.

One of them is the chord-wise position of the elastic axis. It primarily determines the
intensity of aerodynamic twisting moment on the structure: the further the elastic axis
is from the aerodynamic center of pressure, the stronger the twisting moment would
be. The nominal position of the elastic axis is at the center of the rectangular wing-box
cross section, which is fixed from FAST-OAD. The uncertainty on this quantity can derive
from different factors and their combination, for example a change in the front and/or
rear spar position or thickness, the asymmetry of the actual cross section, a chord-wise
shift of the real center of pressure from the theoretical quarter-chord position assumed
in VLM and strip theory models.

Some of the above factors would also cause another important parameter to change:
the location of the center of gravity. However, rather than the absolute CG location, the
relevant parameter, as far as the aeroelastic behaviour of the wing is concerned, is the
relative distance between the CG and the elastic axis, because it affects the inertial cou-
pling between bending and torsional dynamics. This shift could arise from different
factors: asymmetric fuel distribution inside the actual wing, asymmetric use of compo-
nents of different densities, position of reinforcements, actuators and other secondary
elements. Although some factors can affect at the same time both the elastic axis and
the center of gravity, others would mainly affect only one of the two. Therefore, the
two parameters will be allowed to vary independently from one another.

Other key factors that define a beam model are the equivalent elastic properties. As
far as the flutter analysis is concerned, the elastic properties of the simple linear beam
model are represented by the two quantities EIA

yy and GJ. On the one hand, a first
source of uncertainty lies in the definition of the two elastic moduli E and G. The
nominal values are assigned by assuming that all the active components of the structure
are made of exactly the same alloy. This is not actually true, because in general not only
different components are made of different alloys, but also they are manufactured via
different processes - lamination, forming, etc - that alter the metallic grain structure
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and as a consequence also the macroscopic characteristics such as the elastic moduli. In
addition, geometry changes can also affect the elastic properties of the equivalent beam,
in particular via the area moments of inertia Iyy and the torsion constant J. Therefore,
assigning uncertainty to the two quantities EIA

yy and GJ would encompass all of these
effects.

Finally, important changes on the beam dynamics can arise from its inertia properties.
In fact, any changes in geometry and mass distribution would affect structural modal
shapes and frequencies, and therefore its stability and dynamic characteristics. The
condensed beam parameters that convey such information are the linear mass distri-
bution and the different moments of inertia. More specifically, the linear beam model
employed for the flutter analysis only requires two inertial parameters to be defined:
the local mass per unit length µ and the polar moment of inertia Ip (see Table 5.5). The
slightly more complex non-linear beam model adopted for the gust response analysis
additionally requires the two inertia moments EIyy and EIzz. The products of inertia
continue to be neglected.

In consequence of these considerations, six parameters have been selected to perform
a sensitivity analysis on the flutter speed: the elastic axis location a, the offset between
the elastic axis and the center of gravity d, the beam average mass per unit length µ, the
bending and torsional stiffnesses EIA

yy and GJ and the moment of inertia Ip. These are all
the parameters needed to completely define the stiffness and mass matrices of the finite
element model used for flutter analysis. It is worth noting that an important assump-
tion still holds: all these quantities are defined at the wing root, and they change over
the wing span according to the same distribution obtained from the nominal wing-box.
This means that, for example, if the root value for the mass µ is increased by 5% with
respect to the nominal one, then all the nodal mass values along the span are increased
by 5% with respect to the nominal ones at the corresponding nodes. Therefore the span-
wise distributions are only scaled with respect to the nominal ones, keeping the same
shapes (some examples were plotted in Figures 5.9 and 5.10). However, adding some
additional uncertainty to these distributions would not be a difficult implementation,
if needed.

Quantitatively, it is hard to estimate how all the discussed uncertainty sources would
affect the six selected parameters, in terms of statistical distributions. It is already hard
to evaluate how all the above design changes could impact the characteristics of one
single, well-known aircraft configuration such as the baseline. Especially if there is
no detailed model available, which is the case at this early design phase. It would be
even harder to quantify or justify the choice of any uncertainty distribution regarding
unconventionally high aspect ratio configurations. Nor is it the scope of this work to
provide evaluations at high technological readiness and industrial-level reliability. In-
stead, the primary interest here is to provide a proof of concept of the capabilities of the
developed framework. The quantity and quality of data available to accurately define
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the sensitivity and uncertainty quantification problems are of secondary importance.
Therefore, uncertainty has here been assigned based on simple reasonable assump-
tions, rather than opting for questionable quantitative approaches requiring extensive
data collection and detailed evaluations, or industrial expert judgement.

The assumptions are that: a) all quantities feature normal uncertainty distributions,
centered around their nominal values; b) all distributions are assigned such that the
99.7% of the cases fall within an interval of ± 10% of their nominal values, except for
the center of gravity to elastic axis distance, for which the interval is restricted to ±
5% because there are less reasons why these two points should move away from each
other.

The chosen uncertain parameters and their distributions to be used in the flutter sensi-
tivity analysis are reported in Table 5.5.

Property Mean Standard deviation

Elastic axis location a 3 ς = 10% chord

CG shift from EA d 3 ς = 5% chord

Mass per unit length µ 3 ς = 10% µ

Bending stiffness EIA
yy 3 ς = 10% EIA

yy

Torsional stiffness GJ 3 ς = 10% GJ

Polar moment of inertia Ip 3 ς = 10% Ip

TABLE 5.5: Uncertain parameters and corresponding distributions adopted for the
flutter sensitivity analysis. All distributions are Gaussian. Symbols denoted with a
bar (̄ ) represent the nominal values produced by the sizing and optimization process.

The symbol ς indicates the standard deviation.

5.3.2.2 Application to the baseline and the high aspect ratio test-cases

A first sensitivity analysis was carried out on the baseline configuration using the
Uncertainpy toolbox introduced in Section 3.7. A polynomial order of 4 was found
adequate to generate the polynomial chaos expansion, after comparing results from
order 2 up to 6. The generation of the PCE required 422 function calls - a number cal-
culated automatically by the PCE library. Then, the statistical characterization of the
response, including mean, variance, 1st order and total Sobol’s indices, was obtained
after a Monte Carlo sampling of the PCE, with a DOE size of 106. The nominal values
of the 6 uncertain parameters are reported in Table 5.6, which also includes the data for
the second test case, the ‘A 15’ wing.

The output probability density function for the flutter speed is reported in Figure 5.32.
The distribution peak is reached slightly before the deterministic flutter speed of 255
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Property Symbol Baseline A 15

Elastic axis location a 38%chord 38%chord

CG shift from EA d 0.0 0.0

Mass per unit length µ 1.8e3 kg/m 1.9e3 kg/m

Bending stiffness EIA
yy 6.9e8 N·m2 9.3e8 N·m2

Torsional stiffness GJ 2.1e8 N·m2 2.4e8 N·m2

Polar moment of inertia Ip 1.0e3 kg·m 1.1e3 kg·m

TABLE 5.6: Mean (nominal) values of the 6 selected uncertain parameters for the
flutter speed sensitivity studies on the CeRAS baseline and the ‘A 15’ wings.

m/s. The mean is at 264 m/s, just above the deterministic value, and the standard
deviation is of 39 m/s. As the reader could see from the Figure, the output is not a per-
fectly symmetric distribution as a Gaussian curve would be, although the asymmetry is
subtle. This is attributed to the substantial ‘asymmetry’ of the physical problem: as the
speed is increased, compressibility increasingly affects the results through the Prandtl-
Glauert correction, which is a nonlinear function of the Mach number. Therefore, the
samples falling into the right half of the curve cannot be expected to be distributed
exactly specularly with respect to those on the left side. Also, it is important to remem-
ber that results of flutter speeds above Mach 0.7, corresponding to 240 m/s, are not
trustworthy, because the Prandtl-Glauert compressibility correction loses its validity.
Results around Mach 1 (V = 340 m/s) and above are simply meaningless, they just rep-
resent the numerical output of a model which is not physically consistent anymore. But
this right portion (high speed) of the distribution is not of concern at all in the purpose
of this work, as the samples will anyway lie above the minimum threshold. The inter-
est here is to have a fair understanding on the left part (low speed) of the distribution,
where the model is valid, to evaluate the probability of flutter happening below the
safety threshold. The safety region, where this probability has to be negligible, is set to
be up to 200 m/s, consistently with what discussed in Section 5.3.1, and is highlighted
in Figure 5.32 by a red shade. That indicates the region where flutter should occur with
the least probability (ideally zero probability).

The first important result that this analysis provides is not the whole distribution in
itself, but the distribution at dangerous speeds. In this case, the baseline appears to
be adequately safe, with almost zero probability of having flutter below 200 m/s. The
definition of ‘safe’ in probabilistic terms, as far as flutter speed is concerned, is not given
by regulations, and clearly the early design phase cannot give an accurate assessment
of sensitivity and uncertainty. The definition is rather arbitrary and would depend
much on the specific design task and needs. The acceptable probability is driven by the
risk that the designer is ready to accept. Here, as this work is purely demonstrative,
and no immediate industrial interests are at stake, a free choice was made to consider
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safe any design candidate whose probability to experience flutter below 200 m/s is less
than 5%. This translates into the condition that the 5th percentile of the flutter speed
PDF must be greater than 200 m/s.

The second fundamental outcome of this study is the assessment of the sensitivity of
the flutter speed to the selected uncertain parameters. The sensitivity analysis here
consists on the evaluation of the 1st order and total Sobol indices. These are graphi-
cally given in Figure 5.33, together with a few other statistical metrics. What emerges
is that out of the six uncertain parameters, only two of them, namely the elastic axis
position a and its distance from the center of gravity d, have a major impact on the
flutter speed, at least with the assumed input distributions (see Table 5.5). In physical
terms, the former determines the intensity of the aerodynamic twisting moment on the
structure, and the latter affects the arm of the inertial forces, and therefore their mo-
ment around the elastic axis. The results indicate that these effects have much larger
importance than the assumed variations in mass and stiffness. In effect, stiffness has
a more direct impact on deformations, but not necessarily on stresses. The sum of all
the 1st order Sobol indices amounts to 0.94. When this sum approaches 1, it means that
no relevant effects arise from the interaction between the uncertain parameters. Higher
order indices would give the sensitivity due to these interactions. Here only the total
Sobol indices are additionally computed. Their sum amounts to 1.06, confirming that
there is little sensitivity to parameter’s interaction, and however such little interaction
effects, again, come only from the two parameters a and d, as the total indices of the
remaining parameters are negligible. All the main statistical figures are summarized in
Table 5.7.

The net dominance of the two parameters a and d suggests that the robust MDAO pro-
cess can be addressed by only assigning uncertainty to these two quantities, whereas
the remaining four can be kept fixed to their deterministic estimation. This would sig-
nificantly reduce the computational cost of evaluating the flutter reliability constraint.
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FIGURE 5.32: Flutter speed Probability Distribution Function following the uncer-
tainty propagation on the baseline test-case. The area shed in red indicates the im-
posed flutter-safe region: the probability of flutter occurring within this region should
be lower than 5%. The baseline results robust enough with respect to such condition.

FIGURE 5.33: Main statistical and sensitivity indices from the flutter sensitivity analy-
sis on the baseline configuration.

To gain some further insights on the problem of uncertain flutter characteristics, the
same analysis was repeated on the ‘A 15’ configuration that has already been used as
a comparative use case in previous Sections of this Chapter. The output distribution of
the flutter speed of this second wing is reproduced in Figure 5.34. The response does
not present relevant qualitative differences from the baseline case. The distribution



5.3. Dynamic aeroelastic constraints under uncertainty 185

Distribution properties
Mean 264 m/s
Standard deviation 39 m/s
5th percentile (P5) 221 m/s

Sensitivity indices
a d µ EI GJ Ip Sum

Sobol first 0.67 0.25 1.4e-5 1.9e-5 1.0e-2 1.6e-4 0.93
Sobol total 0.73 0.32 8.6e-4 7.2e-4 1.2e-2 1.0e-3 1.06

TABLE 5.7: Main statistical figures from the sensitivity analysis and uncertainty quan-
tification on the flutter speed for the baseline configuration.

features the same light asymmetry, with a peak almost coincident with the nominal
flutter speed of 215 m/s, a mean shifted slightly upwards, to 230 m/s, and a standard
deviation of 35 m/s. This time, the higher flexibility of the wing translates into a less
robust design: despite the nominal flutter speed is above the minimum allowable of
200 m/s, the 5th percentile P5 = 193 m/s makes it not sufficiently reliable, according
to the above statement that P5 must be greater than 200 m/s. Therefore, while the
deterministic optimization would keep this as a valid configuration, the probabilistic
approach, that as already explained relies on reliability constraints, would dismiss this
candidate as inadequate, because it is insufficiently robust to uncertainties.

The sensitivity analysis reveals almost identical characteristics with respect to the base-
line: the response is dominated by the elastic axis location a and its distance from the
center of gravity d. The Sobol indices mirror those obtained from the baseline. The
statistical results are graphically summarized in Figure 5.35, and are also collected in
Table 5.8.

Considering the close sensitivity results between the two significantly different con-
figurations, it was decided that during the overall MDAO the reliability constraint on
flutter speed shall be based only on the uncertainty on the two parameters a and d, with
their distributions kept the same as in Table 5.5.
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FIGURE 5.34: Flutter speed distribution following uncertainty propagation on the
‘A 15’ test case. The area shed in red indicates the imposed flutter-safe region: the
probability of flutter occurring within this region should be lower than 5%. This con-

figuration does not appear to be robust enough with respect to such condition.

FIGURE 5.35: Main statistical and sensitivity indices from the flutter sensitivity analy-
sis on the aspect ratio 15 configuration.



5.3. Dynamic aeroelastic constraints under uncertainty 187

Distribution properties
Mean 230 m/s
Standard deviation 35 m/s
5th percentile (P5) 192 m/s

Sensitivity indices
a d µ EI GJ Ip Sum

Sobol first 0.55 0.32 8.3e-5 9.7e-5 9.7e-3 6.6e-4 0.88
Sobol total 0.65 0.43 6.4e-3 5.9e-3 2.0e-2 8.3e-3 1.12

TABLE 5.8: Main statistical figures from the sensitivity analysis and uncertainty quan-
tification on the flutter speed for the aspect ratio 15 configuration.

5.3.3 Dynamic gust response

Gust response is a critical aeroelastic issue in aircraft sizing. The static manoeuvre
loads are never considered sufficient in any sizing approach, even in traditional con-
ceptual design. Specifications always impose to combine the static manoeuvre flight
envelope with the gust envelope, and pick the most critical conditions among the two.
In simplified approaches, such as the one of FAST-OAD, this translates into additional
semi-empirical relationships to estimate the worst gust loads. Such relationships are
in general expressed in terms of flow conditions (speed, density, Mach number), wing
geometry and mass, and are tuned according to empirical studies on a given class of
aircraft (as mentioned in Section 2.4.2). Therefore, the predictions can be considered
quite accurate when dealing with conventional designs, but there is no guarantee they
hold valid for unconventional configurations. Especially when flexible high aspect ra-
tio wings are involved, the subject becomes risky, as these wings are more prone to high
gust-induced aeroelastic loads, and no parameter exists in the semi-empirical formu-
lation to account for flexibility. For this reason, gust loads were introduced, together
with flutter, as additional aeroelastic constraints to be enforced in the proposed aircraft
MDAO framework.

Again, a compromise was needed when selecting the tools to be used. The model
adopted for flutter predictions was discarded for different reasons. First, the structural
model would neglect any nonlinear effect in terms of deformation and pre-stress due to
static loads before gust encounter. Also, the implemented unsteady strip theory would
not capture three dimensional flow effects around the wing tip. This is not a major con-
cern when addressing flutter, because the phenomenon depends on the entire wing,
rather than on local effects confined at wing tip. Even more so if considering that the
higher the aspect ratio, the more these effects are localised and the less they are rele-
vant. On the other hand, the outboard wing region is the most critical when evaluating
gust loads, because the airloads on that region have greater impact on the bending
loads, and because structural twist is accentuated towards the far end of the wing, with
a relevant impact on those tip loads. Finally, discrete gust calculations will be limited to
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the first wing structural peak frequency, corresponding to a reduced frequency of ap-
proximately 0.02, as it will be explained later. Such value is well within the range of 0.0
- 0.05 that is commonly accepted as quasi-steady. Under such conditions, it is assumed
that unsteady aerodynamic effects can be neglected. For these reasons, it is preferred
to use a three-dimensional aerodynamic solver, such as the VLM, despite quasi-static,
rather than a two-dimensional strip theory. In effect, unsteady aerodynamics is more
important when studying the flutter phenomenon, where the involved frequencies are
at least twice as high as the critical gust frequencies, as the following sections will show.

For these reasons, it was chosen to adopt the same models used for the static aeroe-
lastic sizing: the beam model adapted from GEBT, coupled with the developed VLM.
In particular, the initial static equilibrium is found exactly as discussed in Section 5.2
at sea level, searching the nonlinear structural solution. Then, the dynamic analysis is
carried out from that nonlinear equilibrium, but this time, at each time step, the struc-
tural states are updated according to the linear dynamic incremental solution, derived
from the instantaneous aerodynamic, inertial and internal loads.

The next Sections give details on how the gust loads constraints are implemented ac-
cording to regulations (Section 5.3.3.1) and show some examples of the deterministic
responses obtained from the baseline configuration, as well as from a higher aspect
ratio one (Section 5.3.3.2).

5.3.3.1 Implementation of specifications requirements

The constraints on dynamic gust loads are here introduced following the certification
specifications discussed in Section 2.4.2.

The design conditions for encounters with gusts are to be evaluated with respect to
steady, 1-g level flight. Here, cruise conditions are used, expressed in equivalent sea-
level conditions. This translates into a density of ρ = 1.225 kg/m3, a flight speed of
135 m/s and a Mach number of 0.4. Because of the assumption of symmetric wing-
box made in the structural model, and the flat-plate approximation used for the VLM
analysis, only positive (upwards) gust profiles are taken into account. Negative gusts
would not add any relevant information.

Before setting up the dynamic gust constraints to be enforced within the MDAO, a pre-
liminary assessment was carried out in order to determine whether there are certain
gust conditions, in terms of amplitudes and frequencies, that are worth including and
others that can reasonably be excluded to reduce the computational burden. Regula-
tions require that a sufficient number of gust gradient distances in the range 9 m to 107
m must be investigated to find the most critical case. This range was here explored with
10 samples. For each gradient distance H, the corresponding design gust velocity Uds

is found by Equation 2.5. The 10 profiles, which can slightly change for each particular
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aircraft because of Equations (2.6) to (2.11), would look like those in Figure 5.36. The
desired simulation output is the time history of the same three structural loads that are
employed as constraints during the static structural optimization. These are the direct
stress on the stringers due to bending, σb, the vertical shear stress on the spars due to
vertical shearing forces, τv, and the shear stress on the skin due to twist, τt. Consis-
tently with the static structural optimization approach, discussed in Section 5.2.4, the
quantities monitored are only those at the wing root.

Strictly speaking, it is also recommended to study all appropriate combinations of air-
plane configuration, weight, center of gravity, payload, fuel load, thrust, speed, and
altitude. As already stated in Section 2.4.2, a full verification of all these combinations
is out of the scope of this research. Nevertheless, to gain a wider understanding of
the problem, the preliminary study involved not only 10 different gust gradients, but
also the two limit fuel conditions of full and empty tanks, with updated aircraft mass
and static equilibrium. The outcome of such preliminary assessment is reported and
discussed in the following Section.

FIGURE 5.36: Example of gust profiles used for preliminary studies on dynamic gust
response.



190 Chapter 5. MDAO framework for flexible transport aircraft

5.3.3.2 Deterministic loads on low and high aspect ratio configurations

A first investigation was carried out on the baseline test case. Dynamic gust response
simulations were performed for each of the 10 gust inputs shown in Figure 5.36, ini-
tially for the heavy weight configuration (full fuel tanks). The dynamic simulation
starts from the nonlinear static equilibrium at load factor 1, which is iteratively ob-
tained as described in Section 5.2.3. The time step and simulation time were adjusted
according to each particular gust frequency, with each gust input discretized in 80 steps.
The outputs of the structural stresses at root are shown in Figure 5.37 to 5.39.

FIGURE 5.37: Bending stress responses to discrete gusts from the baseline test case.

FIGURE 5.38: Vertical shear stress responses to discrete gusts from the baseline test
case.
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FIGURE 5.39: Torsional shear stress responses to discrete gusts from the baseline test
case.

The first observation that emerge by comparing the three outputs is that the loads on
the stringers and spars are largely more significant than the torsional shear on the skin.
This is an expected result, in line with the static analysis results and with the consid-
erations discussed in Section 5.2.4. The minor importance of the twisting shear stress
allows focusing the attention on the other two stress quantities.

From Figures 5.37 and 5.38 it is possible to identify one single worst case, corresponding
to a gust gradient of 42 m, or a frequency of 3.2 Hz (reduced frequency k = 0.049). The
most severe load, when compared with the allowable limits, appear to be the bending
stress on the stringers, which in the worst case attains the 85% of the material ten-
sile strength. For the same gust input, the corresponding vertical shear on the spars
achieves the 80% of the material shear strength.

The second set of simulations was performed on the ‘A 15’ wing, already adopted for
other demonstrations previously in this Chapter, still in heavy weight configuration.
The responses are reported in Figures 5.40 to 5.42. Again, the only relevant stresses are
those arising from bending and vertical shear loads. This time, the worst cases arise
from gust gradients between 63 and 74 m, corresponding to around 1.8 and 2.1 Hz (re-
duced frequency k = 0.026 - 0.031). The sensitivity is therefore higher for lower gust
frequencies. This is consistent with the fact that the natural frequencies of this high as-
pect ratio configuration are lower than the baseline ones, as already shown comparing
Figures 5.26 and 5.28.

It is also interesting to note that here the structural stresses are higher than for the
baseline, despite both cases are safely sized to withstand static loads. This confirms
that high aspect ratios bring an increased risk in terms of aeroelastic loads. It can be
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seen, in fact, that this time the bending and vertical shear loads reach respectively about
92% and 90% of the material strength in the worst gust cases.

FIGURE 5.40: Bending stress responses to discrete gusts from the aspect ratio 15 test
case.

FIGURE 5.41: Vertical shear stress responses to discrete gusts from the aspect ratio 15
test case.
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FIGURE 5.42: Torsional shear stress responses to discrete gusts from the aspect ratio
15 test case.

The responses for the empty weight configurations (zero fuel) are reported in Figures
5.43 to 5.45 for the baseline wing and in Figures 5.46 to 5.48 for the ‘A 15’ wing.
These cases revealed that the reduction of inertia associated to the absence of fuel de-
termines an increase of the modal frequencies, and a reduction in the structural loads.
The higher natural frequencies are expected, since it is a well-known physical notion
that in any system frequency is proportional to stiffness and inversely proportional to
mass or inertia. The loads reduction indicates that inertial loads have a penalising ef-
fect, making the structure more sensitive to low frequencies, closer to the range where
the most of the turbulence energy is statistically more concentrated. These consider-
ations led to the choice of excluding the empty-weight case from the definition of the
gust loads constraints to be enforced during the global MDAO. Only the heavy weight
configurations will be considered hereafter.
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FIGURE 5.43: Bending stress responses to discrete gusts from the empty weight base-
line test case.

FIGURE 5.44: Vertical shear stress responses to discrete gusts from the empty weight
baseline test case.
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FIGURE 5.45: Torsional shear stress responses to discrete gusts from the empty weight
baseline test case.

FIGURE 5.46: Bending stress responses to discrete gusts from the empty weight aspect
ratio 15 test case.
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FIGURE 5.47: Vertical shear stress responses to discrete gusts from the empty weight
aspect ratio 15 test case.

FIGURE 5.48: Torsional shear stress responses to discrete gusts from the empty weight
aspect ratio 15 test case.

Overall, two main conclusions are to be drawn out of this preliminary study. The first
is the confirmation that high aspect ratio configurations, although statically sized with
the same approach and constraints than the low aspect ratio ones, are expected to be
less safe with respect to gust loads. The second, which follows, is that the most critical
conditions arise when a high aspect ratio wing encounters a gust disturbance of low
frequency (around 2 Hz). Although low aspect ratio wings may have a peak response
at slightly higher frequencies (around 3 Hz), its impact would not be as severe as for
the high aspect ratio wings. Therefore, if the number of analyses has to be minimized
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during the conceptual design exploration, it is preferable to focus on low frequency
gust inputs, and then verify safety against the entire range only for the final best can-
didate. Or, a frequency analysis on the linear beam could be run on each candidate to
estimate its specific dominant frequency, and then select the most appropriate worst-
case gust input. However, even frequency analysis leaves some room for uncertainty,
as it only captures the steady state response, without providing information about the
transient response. This step was not taken here for simplicity, although it would not
require much effort to be implemented in future developments. Instead, it was decided
to base the gust loads constraints on one single gust input of frequency 1.8 Hz, leaving
the complete verification of safety at the end of the optimization process.

5.3.4 Sensitivity of gust loads to aeroelastic parameters

The same considerations outlined in Section 5.3.2 about the interest for sensitivity of
flutter speed to the main aeroelastic parameters apply also for gust loads. The relevant
lack of knowledge due to the early design phase, especially in the case of unconven-
tional design exploration, and the unavoidable presence of simplifying assumptions,
which limit the accuracy of the aeroelastic predictions, motivate the quest for a robust
approach when dealing with aeroelastic constraints. To gain a deeper understanding
on the most critical parameters impacting the dynamic gust response, and therefore be-
ing able to efficiently and effectively set up the gust reliability constraints, a sensitivity
study was performed similarly to what has been done with respect to the flutter speed.

The details, some of which differ from the flutter sensitivity analysis due to the different
tools employed, are given in Section 5.3.2.1. Then, as for the flutter case, two studies
are reported and compared in Section 5.3.4.2.

5.3.4.1 Problem definition

The sensitivity analysis performed on gust loads was kept basically specular to the one
done on flutter speed. The only difference arises from the fact that the beam model
used in the gust loads analysis is more detailed than the one used for flutter, as already
discussed (see Section 5.3.3). For this reason, a further selection had to be made. More
in detail, the flutter sensitivity analysis was run with respect to the following six pa-
rameters: the elastic axis location a, its offset d from the center of gravity, the mass per
unit length µ, the bending and torsional stiffnesses EIA

yy and GJ, the polar moment of
inertia Ip. Each of the two bending and torsional stiffnesses is defined by the product
of two different parameters. Whereas the beam model used for the flutter analysis only
needs their products, making irrelevant whether the uncertainty comes from the elas-
tic modulus or from the section geometry, the beam model adopted for gust analysis
treats the four parameters (E, IA

yy, G and J) independently when building the stiffness
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and mass matrices. Therefore, if one wants to replicate the same sensitivity analysis
problem as the one presented in Section 5.3.2.1, a choice has to be made on which of
the four parameters carries the uncertainty. A choice was made based on the simple
assumption that the aluminium elastic moduli cannot vary to the same extent as the
wing-box geometry may do. Therefore, it was decided to fix them to their nominal val-
ues, and assign the uncertainty only to the geometry-governed parameters: the inertia
moment IA

yy and the torsion constant J. All the other parameters are treated exactly the
same way as done for the flutter sensitivity analysis. The uncertainty distributions are
summarized in Table 5.9. The following Section presents and discusses the results of
two sensitivity analyses on the two usual wing configurations.

Property Mean Standard deviation

Elastic axis location a 3 ς = 10% chord

CG shift from EA d 3 ς = 5% chord

Mass per unit length µ 3 ς = 10% µ

Bending stiffness IA
yy 3 ς = 10% IA

yy

Torsional stiffness J 3 ς = 10% J

Polar moment of inertia Ip 3 ς = 10% Ip

TABLE 5.9: Uncertain parameters and corresponding distributions adopted for the
gust loads sensitivity analysis. All distributions are Gaussian. Symbols denoted with a
bar (̄ ) represent the nominal values produced by the sizing and optimization process.

The symbol ς indicates the standard deviation.

5.3.4.2 Application to the baseline and the high aspect ratio test-cases

The two studies here presented refer to the same two test cases used previously in
this Chapter, the baseline and the aspect ratio 15 configuration. The three quantities of
interest monitored are those already discussed when defining the static and dynamic
load constraints: the direct bending stress on the stringers σb, the vertical shear stress
on the spars τv, and the torsional shear on the skin τt. As before, these are only the
loads at the wing root. Similarly to what was done for the flutter speed constraint, it
was decided to consider ‘robust’ any configuration whose probability of resulting safe
is at least 95%. This is equivalent to saying that the 95th percentile P95 of the output
distribution must be lower than the material strength.

As far as the baseline is concerned, the output distributions of the three loads are re-
ported in Figure 5.49. The unsafe zones are again highlighted with a red shade. The
three Figures qualitatively show that the baseline is quite robust with respect to the
injected uncertainty. They also confirm that the most critical constraint is the bending
one, for which P95 = 226 MPa, amounting to 82% of the material yield strength. It is
immediately followed by the vertical shear, with P95 = 163 MPa, at 80% of the material
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shear strength. As expected, considering the results from the deterministic analysis,
the torsional loads are significantly lower, with a P95 of just 40 MPa.

The sensitivity analysis results for the three types of loads are graphically summarized
in Figure 5.50, and numerically reported in Tables 5.10 to 5.12. The most important
result to be drawn out from the three Figures is the net prevalence of one single pa-
rameter: the elastic axis location a. In all the three loads its first-order Sobol indices of
0.74, 0.81 and 1.0 largely exceed the indices of the other five parameters. For the bend-
ing and vertical loads, a secondary role is played by the mass per unit length µ, with
first order indices of 0.12 and 0.09, respectively. A slightly lower sensitivity is exhibited
with respect to the inertia moments and the CG to EA distance d. In the case of twisting
loads, almost zero sensitivity is found to all parameters except the elastic axis location.
Finally, it should be noted that in the three cases the sum of the first-order Sobol indices
is exactly one, revealing no relevant sensitivity to the interactions among the different
parameters.

These results are somehow in line with what was found for the flutter sensitivity analy-
sis: also in that case the most important parameter was the elastic axis location. Differ-
ently from that case, though, the CG to EA distance is much less relevant. This can be
explained by considering that the main physical effect of this parameter is to introduce
an inertial coupling between bending and torsional dynamics. Now, since flutter usu-
ally arises from the aeroelastic coupling between bending and torsional modes, with
their frequencies moving close to each other, it is easily understood that the speed at
which this instability phenomenon appears may be relevantly impacted by the bending-
torsion inertial coupling introduced by the offset d. This coupling results of minor
importance in the case of gust encounters, because the speed is low enough to have
bending and torsional frequencies well separated, so that the gust input excites essen-
tially only one type of response (bending in most cases). It can be added that mass and
inertia have a lower impact at the simulated gust conditions because the frequency is
not high enough to trigger strong inertial loads. The elastic axis location, on the other
hand, remains of primary importance because it affects the aerodynamic pitching mo-
ment acting on the structure both in the static and in the dynamic cases.

When moving to the high aspect ratio test case, only a few differences can be observed.
First, if one looks at the three output distributions in Figure 5.51, they are shifted to-
wards higher loads values compared to the baseline case. This is an expected outcome,
reflecting what was already observed with the deterministic tests. The distributions are
also wider, as also indicated by the higher standard deviations, confirming that flexible
wings involve not only higher levels of structural stress, but also higher uncertainty
with respect to model errors or future design changes. In fact, this precise configura-
tion does not meet all the reliability requirements: the 95th percentile of the bending
stress distribution, P95(σ̂b), which amounts to 279 MPa, is higher than the material yield
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strength, which means that the probability of encountering bending stress at root above
the allowable limit is higher than 5%.

A second main difference with respect to the baseline results is in the sensitivity analy-
sis. Here, the importance of the elastic axis location is even higher than for the baseline,
with the respective Sobol indices equal almost to one in the three load types (see Figure
5.52 and Tables 5.13 to 5.15). The difference can be explained by the fact that the dom-
inating frequencies are even lower, so that a gust encounter is even closer to a static
phenomenon, where the elastic axis location plays the most important role.

Despite these quantitative differences, a common, qualitative result of these two sensi-
tivity studies is that one single parameter, the EA location, dominates the output distri-
butions. For this reason, in order to minimize the computational cost of the probabilis-
tic approach to the global MDAO process, it was decided that the uncertainty will only
be attributed to this parameter when evaluating the robustness against the gust loads
constraints.

(a) Bending stress - σb (b) Vertical shear - τv

(c) Torsional shear - τt

FIGURE 5.49: Gust loads distributions following uncertainty propagation on the
CeRAS baseline wing. The area shed in red indicates the imposed safe region: the
probability of loads occurring within this region should be lower than 5%. The base-

line results robust enough with respect to all constraints.



5.3. Dynamic aeroelastic constraints under uncertainty 201

(a) Bending stress on stringers - σb (b) Vertical shear on spars - τv

(c) Torsional shear on skin - τt

FIGURE 5.50: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced loads at wing root for the CeRAS baseline wing.

Distribution properties
Mean 220 MPa
Standard deviation 3 MPa
95th percentile (P95) 226 MPa

Sensitivity indices
a d µ I J Ip Sum

Sobol first 0.74 0.03 0.12 0.08 0.03 7.8e-6 1.0
Sobol total 0.74 0.03 0.12 0.08 0.03 3.0e-5 1.0

TABLE 5.10: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced bending loads at wing root for the baseline con-

figuration.
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Distribution properties
Mean 160 MPa
Standard deviation 2 MPa
95th percentile (P95) 163 MPa

Sensitivity indices
a d µ I J Ip Sum

Sobol first 0.81 0.02 0.09 0.06 0.02 1.2e-5 1.0
Sobol total 0.81 0.02 0.09 0.06 0.02 3.0e-5 1.0

TABLE 5.11: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced vertical shear loads at wing root for the baseline

configuration.

Distribution properties
Mean 28 MPa
Standard deviation 7 MPa
95th percentile (P95) 40 MPa

Sensitivity indices
a d µ I J Ip Sum

Sobol first 1.0 1.0e-3 4.0e-7 2.2e-6 1.1e-6 6.7e-8 1.0
Sobol total 1.0 1.0e-3 4.0e-7 2.0e-6 6.3e-6 4.0e-8 1.0

TABLE 5.12: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced torsional shear loads at wing root for the baseline

configuration.

Distribution properties
Mean 256 MPa
Standard deviation 13 MPa
95th percentile (P95) 279 MPa

Sensitivity indices
a d µ I J Ip Sum

Sobol first 0.98 7.7e-4 1.4e-3 2.3e-3 0.01 4.2e-6 1.0
Sobol total 0.98 9.8e-4 1.4e-3 2.6e-3 0.01 1.8e-5 1.0

TABLE 5.13: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced bending loads at wing root for the ‘A -15’ con-

figuration.
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(a) Bending stress on stringers - σb (b) Vertical shear on spars - τv

(c) Torsional shear on skin - τt

FIGURE 5.51: Gust loads distributions following uncertainty propagation on the
‘A 15’ wing. The area shed in red indicates the imposed safe region: the probability of
loads occurring within this region should be lower than 5%. This configuration does

not result robust enough with respect to the bending loads.

Distribution properties
Mean 184 MPa
Standard deviation 6 MPa
95th percentile (P95) 194 MPa

Sensitivity indices
a d µ I J Ip Sum

Sobol first 0.95 0.01 4.6e-5 0.02 0.01 1.3e-5 1.0
Sobol total 0.95 0.01 9.1e-4 0.02 0.01 6.2e-5 1.0

TABLE 5.14: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced vertical shear loads at wing root for the ‘A -15’

configuration.
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(a) Bending stress on stringers - σb (b) Vertical shear on spars - τv

(c) Torsional shear on skin - τt

FIGURE 5.52: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced loads at wing root for the ‘A 15’ wing.

Distribution properties
Mean 27 MPa
Standard deviation 7 MPa
95th percentile (P95) 38 MPa

Sensitivity indices
a d µ I J Ip Sum

Sobol first 1.0 4.9e-6 3.0e-5 2.4e-5 1.1e-4 2.1e-7 1.0
Sobol total 1.0 4.9e-6 6.0e-5 5.0e-5 1.5e-4 1.5e-7 1.0

TABLE 5.15: Main statistical figures from the sensitivity analysis and uncertainty
quantification on the gust-induced torsional shear loads at wing root for the ‘A -15’

configuration.
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5.4 Summary

This Chapter proposes an MDAO architecture to enable the overall design and opti-
mization of flexible aircraft, taking into account nonlinear static aeroelasticity during
the wing sizing process, and allowing to propagate input uncertainty into some dy-
namic aeroelastic constraints, including flutter speed and gust loads. The Chapter is
structured as follows:

• An overview of the problem is given, and two proposed architectures are de-
scribed, corresponding to the deterministic and to the robust approaches.

• One of the main added values of this development is the sizing and optimization
of flexible wings and its implementation within the overall aircraft sizing pro-
cess. These aspects are thoroughly discussed, and some examples are presented,
serving also as validation cases for such newly-introduced capabilities.

• Considerable space is also given to the implementation of the dynamic aeroelastic
constraints. Dedicated sections describe how the flutter and gust constraints are
defined, explain how flutter analysis and gust response simulations are carried
out, and provide numerical examples.

• As robustness in the optimization represents another key contribution of this
work, this Chapter also details how uncertainty can be propagated into the flutter
and gust loads constraints.

• Some sensitivity analyses and uncertainty quantification examples are performed
to achieve a better understanding of the parameter dependencies, enabling to se-
lect only the most relevant input uncertainty and therefore reduce the computa-
tional burden of the overall robust MDAO.

Demonstrative applications of the deterministic and robust MDAO process using the
above architectures are presented in the next chapter.
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6.1 Overview

The previous Chapter presented the different building blocks of the developed MDAO
framework, covering not only the overall structure, but also the details of numeri-
cal methods, inner processes such as coupled analyses, optimization and uncertainty
quantification, and of how the information is exchanged among the different modules.
Several demonstrative test cases were also given to better illustrate the main function-
alities.

With all these aspects being clarified, it is now possible to show some applications of the
whole MDAO process. In all cases, the definition of the optimization problem is kept
relatively simple, as the work represents the first application of the proposed approach.
Applications to higher dimension design spaces, or to more complex configurations,
such as strut-braced wings, are interesting perspectives for a future evolution of the
present research work.

The overall MDAO process was given for the deterministic and robust approach in Fig-
ures 5.1 and 5.2, respectively. Also, the aircraft baseline and the mission definition are
the same as in Figure 4.1 and Table 4.1. The design space is limited to three dimen-
sions, selected among some wing shape variables that have a relevant physical impact
either on the objective function or on the constraints, or both. The first and most im-
portant one is the wing aspect ratio, for the obvious reason that it greatly influences
both the aerodynamic efficiency - and therefore the fuel consumption - and the aeroe-
lastic characteristics of the wing. This was already seen in Chapter 5 when comparing
the aeroelastic behaviour of the ‘A 15’ test case against that of the baseline configu-
ration. The second selected variable is the taper ratio. This parameter influences the
span-wise lift distribution, which in turn impacts on the one hand the aerodynamic
efficiency and on the other the aerodynamic and inertial loads transferred to the struc-
ture - a high taper ratio moves those loads outboard - impacting both the static and the
dynamic aeroelastic response. Finally, the kink span ratio is selected as the third and
last wing planform variable. It has a secondary effect on the aerodynamic efficiency
in comparison to the two previous variables, but it is expected to have an impact on
the aeroelastic behaviour of the wing, because it changes its structural layout, espe-
cially towards the root sections where loads are higher. Modifying the structural shape
also impacts the amount of material to be added to reach adequate structural strength.
For example, from a structural point of view it is in principle desirable to have a large
chord - and therefore a larger profile thickness - at the wing root, because the larger
wing box would better absorb bending and twisting loads with employing less struc-
tural mass. Also, a wing which is larger at root would have loads more concentrated
inboard, producing lower bending loads and therefore allowing a lighter structure. As
a consequence, because it impacts the airframe mass, this quantity would also have an
indirect, secondary effect on the fuel consumption.
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Other important parameters, that it would be interesting to add in future studies,
would be for example the sweep angle and the twist. Both of them contribute consid-
erably to the aerodynamic efficiency and the wing aeroelastic performance, both static
and dynamic. Nevertheless, the former is not touched here because a credible assess-
ment of its aeroelastic effects would require some analysis at the transonic conditions
experienced at cruise, possibly involving localised shock waves and buffeting, which
remains a challenging task to be addressed at such an early design phase. Regarding
twist, the main reason why it is not included as a variable is because its effect on the
drag polar and therefore on the fuel consumption is not accounted for in FAST-OAD,
which assumes the twist is already optimized to provide an almost elliptical span-wise
lift distribution. Taking into account the effects of twist in the computation of the flexi-
ble wing polar would require an expensive coupling with the aeroelastic module. This
is something feasible with the tools and interfaces already available at this stage of the
development, and the only reason why such coupling was not put in place was to re-
duce the computational burden of each configuration analysis, with the priority given
to the evaluation of the dynamic aeroelastic constraints. Therefore, for the following
analyses a fixed linear twist distribution was assigned, culminating with a 5.0° nose
down at the wing tip, with respect to the root chord. Finally, it is worth noting that
the wing area is not a degree of freedom of the problem because it is sized by the OAD
process to match low-speed performance and tank volume requirements. Therefore
the optimization can only concentrate on the variables that influence the planform at
iso-area.

This choice of design variables and fixed parameters applies to all the following op-
timization cases, which differ only by what aeroelastic constraints are adopted and
whether they are treated as deterministic or probabilistic.

This Chapter continues with an optimization task carried out using only the conven-
tional aircraft sizing tool FAST-OAD, based on traditional design rules assuming rigid
airframe. The results are reported in Section 6.2. This will serve as a reference for
comparison against some MDAO studies on flexible aircraft. These are presented in
the subsequent Sections, where different combinations of the dynamic aeroelastic con-
straints were enforced, following both the deterministic (Sections 6.3.1 to 6.3.3) and the
robust approaches (Sections 6.4.1 to 6.4.3).

6.2 Rigid aircraft optimization

The optimization task here presented is aimed at providing a reference from a conven-
tional rigid aircraft design approach for comparison with the proposed flexible aircraft
design approach. As stated above, the objective function to be minimized is the fuel
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mass, and the design variables are the wing aspect ratio, taper ratio and kink span lo-
cation. The aspect ratio, which is believed to play the main role, is allowed to vary in
a large range, between 8.0 and 20.0, with the CeRAS baseline placed close to the lower
bound, atA = 9.5. The remaining two variables change in a smaller range around the
baseline values, because large deviations from it would appear quite unrealistic.

As the involved methods only apply to rigid aircraft design, no aeroelastic constraints
can be enforced. The optimization is therefore unconstrained. All the top level aircraft
requirements are automatically satisfied with the internal FAST-OAD sizing loops. The
problem definition is summarized in Table 6.1.

Function/variable Lower bound Upper bound

Minimize Fuel mass

with respect to Aspect ratio 8.0 20.0

Taper ratio 0.25 0.35

Kink span ratio 0.2 0.4

subject to No aeroelastic constraints applicable

TABLE 6.1: Definition of the fuel mass optimization problem for a rigid aircraft.

A description of the optimization process and its outcome is provided in Figures 6.1 to
6.4. The first part of the optimization is the learning phase, where the optimizer per-
forms a design exploration according to a Design of Experiment (DOE) of a prescribed
size. The DOE is automatically created by SEGOMOE following a Latin Hypercube Sam-
pling scheme. Once the DOE is analyzed, the optimizer starts the actual optimization
iterations based on a Gaussian process, in a balance between exploitation of the ac-
quired information and exploration of new candidates selected according to the best
expected improvement. The purely exploratory part where the DOE is evaluated is
shaded in yellow in all the following images. The size for the DOE was set equal to
13, and its last point is imposed to be the baseline configuration, corresponding to an
aspect ratio of 9.5, taper ratio 0.31 and kink span ratio 0.375. Then, the optimization is
allowed running for 30 additional iterations, for a total number of 43 candidates evalu-
ated.

Figures 6.1 and 6.2 report the monitor plots of the objective function and the design
variables, respectively. These plots show the chronological evolution of the optimiza-
tion process, including the initial DOE evaluation. It can be seen that immediately after
the DOE, the optimizer starts converging towards the optimal region. The design vari-
ables slightly fluctuate towards their optimal combination, which is practically found
already at the 20th iteration. The remaining evaluations only involve imperceptible
changes, except the very last ones, where some additional exploration is attempted,
somehow forcibly, without delivering any improvement.
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The convergence to the optimum is better shown in Figures 6.3 and 6.4, where only
the current best objective and variables are traced. In particular, Figure 6.3 gives an
idea of how quickly and in what measure the fuel mass is reduced in comparison with
the baseline value. The improvement is of about 700 kg of fuel, which represents a re-
duction of almost 4%, a quantity not huge but nonetheless considerable. The variable
plots, both in Figure 6.2 and 6.4, clearly indicate that the best configuration is reached
in correspondence of an aspect ratio of about 15, taper ratio 0.35 and kink span ratio
0.4. The first value is remarkable, as it shows a clear trend towards a very high aspect
ratio wing compared to the baseline. This figure alone confirms the need to pursue the
optimization study with the added aeroelastic capabilities. Moreover, the slightly in-
creased taper ratio involves some shift of the aerodynamic loads towards the wing tips,
making it interesting to study how this change would impact the aeroelastic behaviour
of the wing, and whether it would comply with the dynamic aeroelastic constraints or
not. The kink position at 40% of the wing span is quite close to the baseline value of
37.5%, suggesting that this quantity is already close to the real optimum. This value
should have a positive influence from an aeroelastic point of view, as it implies that the
inboard section of the wing is quite large, so that there is room for a strong structure in
the most critical region of the wing.

The optimal wing planform is represented in Figure 6.5, together with the baseline one
for comparison.

FIGURE 6.1: Optimization process using the conventional FAST-OAD approach. Mon-
itor plot of the fuel mass objective function through the SEGOMOE optimization itera-

tions.
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FIGURE 6.2: Optimization process using the conventional FAST-OAD approach. Moni-
tor plot of the three design variables through the SEGOMOE optimization iterations.

FIGURE 6.3: Optimization process using the conventional FAST-OAD approach. Evolu-
tion of the current best fuel mass through the SEGOMOE optimization iterations.
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FIGURE 6.4: Optimization process using the conventional FAST-OAD approach. Evolu-
tion of the current best design variables through the SEGOMOE optimization iterations.

FIGURE 6.5: Best wing planform from the unconstrained rigid aircraft optimization.
The baseline wing planform is also reported for comparison.
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6.3 Deterministic MDAO results

The first application of the MDAO framework for flexible aircraft design was aimed at
addressing the optimization problem introduced earlier in this Section with enforcing
the discussed aeroelastic constraints in a deterministic way. In this case, the framework
architecture corresponds to the one outlined in Figure 5.1. Three possible combinations
for the constraints’ setup were tested separately: flutter constraint only, gust loads con-
straints only, flutter and gust constraints together. These three cases are presented in
Sections 6.3.1, 6.3.2 and 6.3.3, respectively.

6.3.1 Optimization under flutter constraint only

The first proposed application of a MDAO using the developed framework involves the
enforcement of one dynamic aeroelastic constraint targeting the flutter speed. It was
imposed that acceptable configurations are those with a flutter speed above 200 m/s.
The choice of this value was justified in Section 5.3.1.

Because a constrained optimization is more challenging than an unconstrained one,
the initial DOE size was slightly increased with respect to the previous unconstrained,
rigid aircraft optimization, going from 13 to 15. Among these points, the last two were
imposed to be the baseline configuration and the optimal configuration obtained in
the previous optimization, which relied exclusively on the original FAST-OAD modules.
The number of subsequent optimization iterations was also increased to 35, bringing
the total number of evaluations to 50.

It should be noted that for ease of representation, all constraints are plotted after being
normalized and translated to be referred to zero. In the case of flutter, the normalized
constraint value is defined as:

c(Vf ) =
(Vf − 200)

200
(6.1)

In this way, negative values correspond to constraint violations. Also, for instance,
a constraint value of 0.2 would mean that the flutter speed is 20 % higher than the
defined minimum threshold of 200 m/s, i.e. Vf = 240 m/s. The problem definition is
summarized in Table 6.2.

The monitor plots of the optimization process are given in Figures 6.6 and 6.7. In par-
ticular, the first one presents the evolution of both the objective function and the flutter
constraint over the iterations. The second one reports the corresponding trajectories
of the three design variables. Note that the unacceptable region, where constraints are
violated, is shaded in red in Figure 6.6(b). The same is done for all the following con-
straint plots of this Chapter.
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Function/variable Lower bound Upper bound

Minimize Fuel mass

with respect to Aspect ratio 8.0 20.0

Taper ratio 0.25 0.35

Kink span ratio 0.2 0.4

subject to Vf > 200 m/s ⇒ c(Vf ) > 0

TABLE 6.2: Definition of the MDAO problem for the flexible aircraft with a determin-
istic constraint on flutter speed.

A few aspects are worth to be commented. To begin with, at a first glance it is quite
evident that the optimizer is efficient at approaching the optimal region, as the fuel
mass values in Figure 6.6(a) drops close to the optimum immediately after the compu-
tation of the DOE. Second, Figure 6.6(b) reveals that the deterministic flutter constraint
is rarely violated, and this happens only in correspondence of the highest aspect ratios.
An interesting point to focus the attention on is the candidate that scored best in the
rigid aircraft optimization based on FAST-OAD. It is identified by a green diamond in
Figure 6.6(a), and by a green dashed line in Figures 6.6(b) and 6.7. In fact, under the
new approach where aeroelasticity is taken into account, this configuration not only
turns out to be unsafe by violating the flutter constraint, but it does not even appear
as efficient as predicted from the basic FAST-OAD analysis in terms of fuel consump-
tion. Indeed, its fuel mass is increased to above 18,900 kg, around 1.3% higher than
what estimated with the rigid aircraft approach. This is due to the static flexible wing
sizing, that required a stronger and heavier wing structure in order to resist the high
loads. For this reason, the candidate no longer results optimal. The best configuration,
instead, was found in correspondence of the lower aspect ratio of 13.2 (the numerical
optimization results are collected in Table 6.3). Its figure of merit amounts to 18,800 kg,
just above the 18,700 kg of the best configuration from the rigid aircraft approach of
FAST-OAD. It is interesting to note that together with the aspect ratio, also the optimal
taper ratio changed with respect to the rigid aircraft optimization, shifting from 0.35
to 0.25. This drop is another effect of the aeroelastic sizing, which penalizes the shift
outboard of the aerodynamic loads caused by high taper ratios. In fact, at a lower taper
ratio the reduction of bending loads, which translates into a lighter structure, compen-
sates the loss in aerodynamic efficiency. As far as the kink span location is concerned, it
was already anticipated that the FAST-OAD optimum at 0.4 would have likely benefited
to the aeroelastic behaviour of the wing, because it concentrates a larger fraction of the
wing area closer inboard, contributing to loosen bending loads and thus reducing the
required airframe weight. Such considerations are confirmed by these new results, as
the optimal kink span ratio remains unchanged.

A clearer view of the fuel minimization process is given in Figures 6.8 and 6.9, plotting
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the evolution of the current best fuel mass and the corresponding constraint and vari-
ables. Additionally, the optimal wing configuration is shown in Figure 6.10, together
with the baseline and the optimal wing found with the rigid airframe approach.

(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.6: MDAO process for flexible aircraft under deterministic constraint on flut-
ter speed. Monitor plot of the fuel mass objective function (a) and the flutter constraint

(b) through the SEGOMOE optimization iterations.
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FIGURE 6.7: MDAO process for flexible aircraft under deterministic constraint on flut-
ter speed. Monitor plot of the three design variables through the SEGOMOE optimization

iterations.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.8: MDAO process for flexible aircraft under deterministic constraint on flut-
ter speed. Evolution of the current best fuel mass (a) and the corresponding flutter

constraint (b) through the SEGOMOE optimization iterations.
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FIGURE 6.9: MDAO process for flexible aircraft under deterministic constraint on flut-
ter speed. Evolution of the current best design variables through the SEGOMOE opti-

mization iterations.

A tr ksr Fuel mass

13.2 0.25 0.4 18,806 kg

TABLE 6.3: Best point from the MDAO results under flutter deterministic constraint.

FIGURE 6.10: Best wing planform from the MDAO results under flutter determinis-
tic constraint. The baseline and the best planform from the FAST-OAD rigid aircraft

optimization are also reported for comparison.

6.3.2 Optimization under gust loads constraints only

The second MDAO application is analogous to the first one, except the dynamic aeroe-
lastic constraints: the flutter constraint is now replaced by the gust loads constraints.
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As already anticipated in Section 5.3.3, these consist of the three loads at wing root:
direct stress on the stringers (σb), vertical shear on the spars (τv) and torsional shear on
the skin (τt). The optimizer setup is kept identical, with an imposed total of 50 evalua-
tions, divided into 15 DOE and 35 optimization iterations. Again, the last two points of
the DOE correspond to the baseline configuration and the best configuration given by
the rigid aircraft optimization. The problem definition is given in Table 6.4.

Similarly to what was done for the flutter constraint, also the gust loads constraints
were conveniently represented in normalized form. These are defined in Equations
(6.2) to (6.4).

c(σb) =
σm − σb

σm
(6.2)

c(τv) =
τm − τv

τm
(6.3)

c(τt) =
τm − τt

τm
(6.4)

where σm = 276 MPa and τm = 207 MPa are the material yield and shear strengths.
In this way, negative values correspond to violated constraints, with loads higher than
the allowable material limits. All values are reduced in such a way that they can be
more easily plotted together. For example, a value of 0.2 indicates a 20% of safety with
respect to the material limit, no matter its absolute value.

Function/variable Lower bound Upper bound

Minimize Fuel mass

with respect to Aspect ratio 8.0 20.0

Taper ratio 0.25 0.35

Kink span ratio 0.2 0.4

subject to σ
gust
b < σm ⇒ c(σb) > 0

τ
gust
v < τm ⇒ c(τv) > 0

τ
gust
t < τm ⇒ c(τt) > 0

TABLE 6.4: Definition of the MDAO problem for the flexible aircraft with deterministic
constraints on dynamic gust loads.

The same types of plots as the previous optimization case are reported. Figure 6.11
shows the monitor plot of the fuel mass objective function and the corresponding con-
straints. Figure 6.12 contains the history of the three design variables. The numerical
results are reported in Table 6.5, whereas their graphical representation is drawn in
Figure 6.15.
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As noted in the previous optimizations, the Figures show that the optimizer was quite
fast at identifying the most promising design region right after the DOE evaluations.
This time, there are no occurrences of constraint violations all over the process. Only a
couple of candidates, within the DOE, featured a very limited safety margin, although it
never goes negative (see Figure 6.11(b)). This reveals that the adopted gust constraints
are less restrictive than the static structural sizing. In fact, it should be reminded that
before evaluating the dynamic aeroelastic constraints, any configuration has first un-
dergone the static aeroelastic sizing loops to ensure that the static limit loads are safely
sustained. A second observation can be made about the significant difference between
the shearing stress constraints and the other two: whereas the direct and vertical stress
safety margin oscillate between 0% and 30%, with the optimum featuring around 10%
for both of them, the torsion shear stress is always largely safe, with margins above 80%.
This is an expected outcome, considering what discussed in Section 5.2.4.1, confirming
that the estimations done with the proposed method can be considered conservative in
terms of structural mass allocation.

The fact that these constraints are less restrictive than the flutter one apparently allows
the aspect ratio to be slightly increased (up to 14.1, see Table 6.5). Nevertheless, this
does not bring any significant change in the fuel burn, which in this case amounts
to 18,850 kg, just 50 kg above the previous optimum - a difference of just 0.2%. It is
important to point out here that a certain sensitivity limit in terms of mass estimations
exists with the present approach. In fact, the reader should recall (see Section 5.2.5) that
a 2% tolerance is allowed during the inner sizing loops, when imposing that the sized
wing box weight must equal the weight considered by FAST-OAD. Now, 50 kg of fuel is
close to that sensitivity limit, as it will be shown in the final results discussion (Section
6.5). Therefore, it would make no sense, technically but also practically, to search or
compare candidates that differ of less than this quantity. Thus, it can be concluded
that a same optimum is found in terms of objective function, but at slightly different
coordinates, suggesting the existence of a plateau.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.11: MDAO process for flexible aircraft under deterministic constraints on
gust loads. Monitor plot of the fuel mass objective function (a) and the gust loads

constraints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.12: MDAO process for flexible aircraft under deterministic constraints on
gust loads. Monitor plot of the three design variables through the SEGOMOE optimiza-

tion iterations.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.13: MDAO process for flexible aircraft under deterministic constraints on
gust loads. Evolution of the current best fuel mass (a) and the corresponding gust

loads constraints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.14: MDAO process for flexible aircraft under deterministic constraints on
gust loads. Evolution of the current best design variables through the SEGOMOE opti-

mization iterations.

A tr ksr Fuel mass

14.1 0.25 0.4 18,854 kg

TABLE 6.5: Best point from the MDAO results under gust loads deterministic con-
straints.

FIGURE 6.15: Best wing planform from the MDAO results under gust loads determin-
istic constraints. The baseline and the best planform from the FAST-OAD rigid aircraft

optimization are also reported for comparison.

6.3.3 Optimization under flutter and gust loads constraints

The last proposed case of MDAO under deterministic aeroelastic constraints is the com-
bination of the two former cases: the same optimization task is performed, this time
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including all the aeroelastic constraints on flutter and gust loads (see Table 6.6). The
reason to set up this case is mainly to test the ability of the framework and the opti-
mizer to perform a more complex task and reach a result that is consistent with the
two previous cases. The outcome confirmed such consistency. As summarized in Table
6.7, the optimal fuel mass was found at 18,814 kg, close to the previous values, at an
aspect ratio of 13.1, taper ratio of 0.25 and kink span ratio of 0.4. The point matches
almost exactly the optimal point obtained with the flutter constraint only, confirming
that flutter has a dominating effect in the present case. However, as already stated, its
effect impacts only the aspect ratio, which is kept one unit lower than the optimal one
given by the gust-constrained case, and almost 2 units lower than the best one given by
the rigid aircraft optimization.

A graphical representation of the best planform is given in Figure 6.16. The moni-
tor plots describing the optimization iterations are provided in Figures 6.17 and 6.18,
whereas the evolution of the best candidate is reported in Figures 6.19 to 6.20.

It is worth mentioning at this point that comparative remarks about all the optimization
cases discussed in this Chapter, including those for robust MDAO presented in the next
Section, are given later in Section 6.5.

Function/variable Lower bound Upper bound

Minimize Fuel mass

with respect to Aspect ratio 8.0 20.0

Taper ratio 0.25 0.35

Kink span ratio 0.2 0.4

subject to Vf > 200 m/s ⇒ c(Vf ) > 0

σ
gust
b < σm ⇒ c(σb) > 0

τ
gust
v < τm ⇒ c(τv) > 0

τ
gust
t < τm ⇒ c(τt) > 0

TABLE 6.6: Definition of the MDAO problem for the flexible aircraft with deterministic
aeroelastic constraints on flutter and gust loads.

A tr ksr Fuel mass

13.1 0.25 0.4 18,814 kg

TABLE 6.7: Best point from the MDAO results under flutter and gust loads determin-
istic constraints.
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FIGURE 6.16: Best wing planform from the MDAO results under flutter and gust loads
deterministic constraints. The baseline and the best planform from the FAST-OAD rigid

aircraft optimization are also reported for comparison.



228 Chapter 6. Robust MDAO studies

(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.17: MDAO process for flexible aircraft under deterministic constraints on
flutter speed and gust loads. Monitor plot of the fuel mass objective function (a) and
the flutter and gust loads constraints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.18: MDAO process for flexible aircraft under deterministic constraints on
flutter speed and gust loads. Monitor plot of the three design variables through the

SEGOMOE optimization iterations.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.19: MDAO process for flexible aircraft under deterministic constraints on
flutter speed and gust loads. Evolution of the current best fuel mass (a) and the cor-
responding flutter and gust loads constraints (b) through the SEGOMOE optimization

iterations.
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FIGURE 6.20: MDAO process for flexible aircraft under deterministic constraints on
flutter speed and gust loads. Evolution of the current best design variables through

the SEGOMOE optimization iterations.

6.4 Robust MDAO results

The last step to demonstrate the framework capabilities is to repeat the optimization
studies presented above with the additional complexity of introducing reliability aeroe-
lastic constraints, in order to asses the impact of uncertainty on some key parameters.
The choices about what the parameters to be treated as uncertain and what uncertainty
distributions to be assigned were discussed in Sections 5.3.2.2 and 5.3.4.2, with the
support of some sensitivity studies. Just to remind the main conclusions from those
Sections, it was established that the flutter constraint shall be analyzed considering un-
certainty on two parameters: the location of the wing elastic axis a, and its offset from
the wing center of gravity axis, d. Both those quantities are normalized with respect to
the local chord, and are assumed constant all over the span. To evaluate the reliability
constraints on gust loads, it was assessed that considering only the uncertainty on the
elastic axis location a is sufficient, as the sensitivity to the other selected parameters
proved to be much less relevant.

Again, the same three combinations for the constraints setup were tested, as done for
the deterministic studies: flutter constraint only, gust loads constraints only, flutter and
gust constraints together. These three cases are presented in Sections 6.4.1, 6.4.2 and
6.4.3, respectively.
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6.4.1 Optimization under flutter reliability constraint only

The first presented case of MDAO under uncertainty involves the enforcement of one
reliability constraint on flutter speed. The uncertainty is attributed to the wing’s elastic
axis location a and its distance from the center of gravity axis d. This uncertainty is
propagated to the flutter speed prediction, and the constraint imposes that flutter must
occur above the limit of 200 m/s with a probability of at least 95%. In other words, for a
candidate to be acceptable, less than 5% of the cases shall feature a flutter speed below
that limit. The constraint can therefore be expressed by the inequality P5(V̂f ) > 200
m/s, where P5() indicates the 5th percentile, in this case of the output flutter speed
distribution V̂f . Consistently with what was done previously, the constraint is trans-
lated and normalized to ease its graphical representation, especially for comparison
with other cases and other constraints. The represented quantity, which must result
positive, is the one defined in Equation (6.5).

c(V̂f ) =
P5(V̂f ) − 200

200
(6.5)

The case description is summarized in Table 6.8. The usual plots to follow the optimiza-
tion process and outcome are reported. In particular the monitor plots of the objective
function, constraints and variables are given in Figures 6.22 and 6.23, and the evolution
of the current best is portrayed by Figures 6.24 and 6.25.

Compared to the corresponding deterministic case, it can be clearly seen from Fig-
ure 6.22 that much more constraint violations occurred. Nevertheless, the optimum
reached is very close to the one found in the deterministic optimization, both in terms
of variables and objective function. The quantitative results are summarized in Table
6.9, and the best candidate is represented in Figure 6.21. The closeness with the deter-
ministic results suggests that the imposed uncertainty is not very penalising. Indeed,
it is seen on the deterministic case that the constraint is not active at the optimum.
The slight mismatch in the results - about 60 kg in the optimal fuel mass (18,865 kg
here, 18,806 kg in the deterministic case) and 0.5 in the optimalA (13.7 here vs 13.2 in
the deterministic case) - suggests that some impact may be caused by the underlying
sensitivity limit mentioned in Section 6.3.2. However, any significant increase of the
search efforts would be hardly justified, considering that the variations in the objective
function are very small and close to the tool sensitivity. A more comprehensive, com-
parative discussion and explanation of the different results is given a dedicated space
in Section 6.5.

Before moving to the next case, it is worth observing the results of the propagation of
uncertainty on the flutter speed during the optimization iterations. The output dis-
tributions, in form of PDFs, are collected in Figure 6.26. These help gaining a better



6.4. Robust MDAO results 233

understanding of the reliability constraint mechanism. As already said, any accept-
able configuration must have less than 5% probability of experiencing flutter below
200 m/s. Now, the Figure highlights in particular three interesting candidates. The
first one is the baseline (in blue): its distribution is quite far above the limit, showing, as
expected, practically zero probability of developing flutter below the imposed thresh-
old. Conversely, the best rigid configuration found with FAST-OAD alone (in green)
evidently violates the constraint, with its distribution laying mostly below the 200 m/s
limit, featuring more than 60% probability of developing low-speed flutter. Therefore,
while the baseline could be labelled as ‘excessively’ safe, the other would be excessively
unsafe. Consistently with this reasoning, the optimum is found in between the two ex-
cesses: its distribution, highlighted in red, is closer to the dangerous region, but with
only around 4% probability of having an unacceptable flutter speed, proving therefore
to be safe ‘enough’ with respect to the prescribed constraint. Another interesting fact
emerging from those plots is that low aspect ratio configurations, whose PDFs are lo-
cated on the right side with higher flutter speeds, show wider distributions compared
to high aspect ratio configurations, concentrated on the left side. This outcome, not
completely intuitive, demonstrates that despite having in general a greater aeroelastic
stability, low aspect ratio wings appear to be more sensitive to structural changes. On
the other hand, slender wings are less stable in terms of flutter, but their behaviour
seems somewhat more predictable. This is likely due to the fact that the uncertainty is
given in percentage of the root chord, which translates into higher absolute values for
low-aspect-ratio wings (low span and large root chord) compared to high-aspect-ratio
ones (long span and small root chord).

Function/quantity Range/distribution

Minimize Fuel mass

with respect to Aspect ratio [8.0 , 20.0 ]

Taper ratio [0.25, 0.35]

Kink span ratio [0.2 , 0.4 ]

with uncertainty on Wing EA location (a) Normal
(E = a, 3ς = 10% chord)

Wing CG to EA offset (d) Normal
(E = 0, 3ς = 5% chord)

subject to P (Vf > 200m/s) > 95% ⇒ c(V̂f ) > 0

TABLE 6.8: Definition of the MDAO problem for the flexible aircraft with reliability
constraint on flutter speed.

A tr ksr Fuel mass

13.7 0.25 0.4 18,865 kg

TABLE 6.9: Best point from the MDAO results under flutter reliability constraint.
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FIGURE 6.21: Best wing planform from the MDAO results under flutter reliability
constraints. The baseline and the best planform from the FAST-OAD rigid aircraft opti-

mization are also reported for comparison.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.22: MDAO process for flexible aircraft under reliability constraint on flutter
speed. Monitor plot of the fuel mass objective function (a) and the flutter constraint

(b) through the SEGOMOE optimization iterations.
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FIGURE 6.23: MDAO process for flexible aircraft under reliability constraint on flutter
speed. Monitor plot of the three design variables through the SEGOMOE optimization

iterations.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.24: MDAO process for flexible aircraft under reliability constraint on flut-
ter speed. Evolution of the current best fuel mass (a) and the corresponding flutter

constraint (b) through the SEGOMOE optimization iterations.
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FIGURE 6.25: MDAO process for flexible aircraft under reliability constraint on flutter
speed. Evolution of the current best design variables through the SEGOMOE optimiza-

tion iterations.

FIGURE 6.26: MDAO process for flexible aircraft under reliability constraint on flutter
speed. Juxtaposition of all evaluated flutter speed distributions during the optimiza-

tion process.

6.4.2 Optimization under gust loads reliability constraints only

Following the approach used with the deterministic optimization studies, the second
robust MDAO task takes into account only the dynamic gust loads constraints, this
time under uncertainty. As motivated in Section 5.3.4.2 after a sensitivity study, only
the wing elastic axis location (denoted by a) is considered uncertain and propagated
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to evaluate the reliability constraints. The aim of such constraints is to ensure that
the probability of the material strength not being exceeded during a gust encounter is
greater than a certain threshold, which in this case has been fixed to 95%. This condition
can be reformulated by imposing that the 95th percentile of the output distributions for
the gust loads must be lower than the material allowable limit. This must hold simulta-
neously for all the three gust loads already identified, namely the bending stress on the
stringers, the maximum vertical shear on the spars and the torsional shear on the skin,
all the three evaluated at the wing root. Therefore, the corresponding expressions to
Equations (6.2) to (6.4) for the normalized reliability constraints are those in Equations
(6.6) to (6.8). The problem definition is summarized in Table 6.10.

c(σ̂b) =
σm − P95(σ̂b)

σm
(6.6)

c(τ̂v) =
τm − P95(τ̂v)

τm
(6.7)

c(τ̂t) =
τm − P95(τ̂t)

τm
(6.8)

The usual plots for the monitoring of the optimization process and the evolution of
the current best are given in Figures 6.28 to 6.31. In particular, looking at Figure 6.28,
a similar trend as the deterministic case is evident, with the bending loads being the
most important in all cases. Moreover, although the constraints are rarely violated, this
time the safety margin is considerably lower. For instance, the safety margin of the
deterministic optimum for the bending load constraint was around 12%, whereas the
same margin under uncertainty falls to about 4%. However, it appears that even the
reliability constraint, at least under the specified uncertainty and the chosen approx-
imated definition, does not have a relevant impact on the optimization outcome. In
fact, the best configuration found does not deviate considerably from the deterministic
case (see Table 6.11 and Figure 6.27). This means that what mainly penalizes the fuel
minimization is the inner static sizing, and not the gust loads constraints.

As for the flutter-constrained case, it is still worth observing the output distributions of
the gust loads during the optimization evaluations. In particular, the PDFs of the bend-
ing and vertical shear loads, the most relevant ones, are reported in Figures 6.32(a) and
6.32(b). As seen in the previous case with the flutter reliability constraint, the baseline
configuration is confirmed to be largely away from the dangerous region (its distribu-
tion is highlighted in blue). On the other hand, both the robust optimum and the rigid
optimum, with their higher aspect ratios, are much closer to the unacceptable region,
although none of them demonstrates any significant probability of structural failure.
Contrary to the flutter constraint, it can be noted that this time the high aspect ratio
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configurations, whose distributions are located on the right part of the plots (towards
higher loads), prove to be also the most sensible to the structural variations: the more
slender the wing, the wider its distribution and therefore the larger the uncertainty and
the risk of structural failure.

Function/quantity Range/distribution

Minimize Fuel mass

with respect to Aspect ratio [8.0 , 20.0 ]

Taper ratio [0.25, 0.35]

Kink span ratio [0.2 , 0.4 ]

with uncertainty on Wing EA location (a) Normal
(E = a, 3ς = 10% chord)

subject to P (σ
gust
b < σm) > 95% ⇒ c(σ̂b) > 0

P (τ
gust
v < τm) > 95% ⇒ c(τ̂v) > 0

P (τ
gust
t < τm) > 95% ⇒ c(τ̂t) > 0

TABLE 6.10: Definition of the MDAO problem for the flexible aircraft with reliability
constraint on flutter speed.

A tr ksr Fuel mass

13.7 0.25 0.4 18,858 kg

TABLE 6.11: Best point from the MDAO results under gust loads reliability constraints.

FIGURE 6.27: Best wing planform from the MDAO results under gust loads reliabil-
ity constraints. The baseline and the best planform from the FAST-OAD rigid aircraft

optimization are also reported for comparison.
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(a) Fuel mass objective

(b) Gust loads constraints

FIGURE 6.28: MDAO process for flexible aircraft under reliability constraints on gust
loads. Monitor plot of the fuel mass objective function (a) and the gust loads con-

straints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.29: MDAO process for flexible aircraft under reliability constraints on gust
loads. Monitor plot of the three design variables through the SEGOMOE optimization

iterations.
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(a) Fuel mass objective

(b) Gust loads constraints

FIGURE 6.30: MDAO process for flexible aircraft under reliability constraints on gust
loads. Evolution of the current best fuel mass (a) and the corresponding gust loads

constraints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.31: MDAO process for flexible aircraft under reliability constraints on gust
loads. Evolution of the current best design variables through the SEGOMOE optimization

iterations.
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(a)

(b)

FIGURE 6.32: MDAO process for flexible aircraft under reliability constraints on gust
loads. Juxtaposition of all evaluated bending loads distributions (a) and vertical shear

loads (b) during the optimization process.

6.4.3 Optimization under flutter and gust loads reliability constraints

The last optimization example to demonstrate the framework capabilities is the most
complex, where the uncertainty is propagated to all the available dynamic aeroelastic
constraints. As already stated, the output flutter speed distribution V̂f is computed
after assigning uncertainty to two parameters, namely the elastic axis location a and
its distance from the center of gravity axis d. Instead, the gust loads distributions are
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derived by considering only the first input uncertainty. The problem definition is sum-
marized in Table 6.12. The tracking of the optimization process is given in Figures 6.34
to 6.37. The plotted constraint values are the normalized ones, defined in Equations
(6.5) and (6.6) to (6.8). The optimal candidate is represented in Figure 6.33, and its nu-
merical details are given in Table 6.13. No relevant changes are observed with respect
to the previous case, neither on the best coordinates nor on the objective function. Also,
consistently with the previous cases, the most stringent constraint is again the flutter
one, and a large number of constraint violations can be observed both during DOE
evaluation and the optimization process. A final, comparative discussion of these and
all the other results presented above is provided in Section 6.5.

Function/quantity Range/distribution Propagated to

Minimize Fuel mass

with respect to Aspect ratio [8.0 , 20.0 ]

Taper ratio [0.25, 0.35]

Kink span ratio [0.2 , 0.4 ]

with
uncertainty on EA location a Normal

(E = a, 3ς = 10% chord) Flutter, gust

CG to EA offset d Normal
(E = 0, 3ς = 5% chord) Flutter

subject to P (Vf > 200 m/s) > 95% ⇒ c(V̂f ) > 0

P (σ
gust
b < σm) > 95% ⇒ c(σ̂b) > 0

P (τ
gust
v < τm) > 95% ⇒ c(τ̂v) > 0

P (τ
gust
t < τm) > 95% ⇒ c(τ̂t) > 0

TABLE 6.12: Definition of the MDAO problem for the flexible aircraft with reliability
constraint on flutter speed and gust loads.

A tr ksr Fuel mass

13.0 0.25 0.4 18,821 kg

TABLE 6.13: Best point from the MDAO results under flutter speed and gust loads
reliability constraints.
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FIGURE 6.33: Best wing planform from the MDAO results under flutter speed and
gust loads reliability constraints. The baseline and the best planform from the

FAST-OAD rigid aircraft optimization are also reported for comparison.
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(a) Fuel mass objective

(b) Flutter and gust loads constraints

FIGURE 6.34: MDAO process for flexible aircraft under reliability constraints on flutter
speed and gust loads. Monitor plot of the fuel mass objective function (a) and the

flutter and gust loads constraints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.35: MDAO process for flexible aircraft under reliability constraints on flutter
speed and gust loads. Monitor plot of the three design variables through the SEGOMOE

optimization iterations.
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(a) Fuel mass objective

(b) Flutter speed constraint

FIGURE 6.36: MDAO process for flexible aircraft under reliability constraints on flutter
speed and gust loads. Evolution of the current best fuel mass (a) and the correspond-
ing flutter and gust loads constraints (b) through the SEGOMOE optimization iterations.
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FIGURE 6.37: MDAO process for flexible aircraft under reliability constraints on flut-
ter speed and gust loads. Evolution of the current best design variables through the

SEGOMOE optimization iterations.

6.5 Results review and discussion

As several optimization cases have been presented one after another, it is worth collect-
ing the results and discussing the main outcomes in a comprehensive and comparative
way, which is the purpose of this Section. In fact, it was already observed that some
mismatches emerged from the different studies, some of which did not appear to allow
perfectly consistent conclusions.

First of all, it is useful to gather all the optimal points obtained from the different op-
timization applications. This is done in Table 6.14, reporting the best coordinates and
objective functions obtained over the 7 different cases. Also, the corresponding wing
configurations are represented and compared in Figure 6.38.
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ID Case description A tr ksr Fuel mass (kg)

0 Rigid aircraft 14.9 0.35 0.4 18,714

1 Deterministic flutter constraint 13.2 0.25 0.4 18,806

2 Deterministic gust constraints 14.1 0.25 0.4 18,854

3 Deterministic flutter & gust constraints 13.1 0.25 0.4 18,814

4 Reliability flutter constraint 13.7 0.25 0.4 18,865

5 Reliability gust constraints 13.7 0.25 0.4 18,858

6 Reliability flutter & gust constraints 13.0 0.25 0.4 18,821

TABLE 6.14: Summary of the optimization results from the different cases previously
presented.

FIGURE 6.38: Best wing planforms from the different optimization cases previously
presented. The baseline and the best planform from the FAST-OAD rigid aircraft opti-

mization are also reported for comparison.

One clear outcome is that the rigid aircraft optimization is always optimistic compared
to the flexible aircraft MDAOs, with the former giving a fuel burn prediction around
100-150 kg lower than the flexible aircraft process. Also, the best coordinates for the
rigid aircraft [A , tr] = [14.9, 0.35] are never reached with the aeroelastic approach.

A second general observation is that appreciable variations of the aspect ratio (between
13 and 14.1) produce small variations of the fuel mass, indicating, as already suggested,
a possible plateau in the fuel-vs-A relationship.

A good overview of the problem is obtained by looking at the plots showing the scatter
of the objective function with respect to the three optimization variables over all the
different analyses that have been carried out (including feasible and unfeasible evalu-
ations). These are given in Figure 6.39. The first interesting information conveyed by
these plots is the kind of relationship that links the fuel mass to the three variables. The
evidence is that only the aspect ratio and the kink span ratio have a clear impact on the
fuel burn. In particular, the former (Figure 6.39(a)) reveals an U-shaped distribution,
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with a minimum located somewhat in the middle of the analyzed range, and the sec-
ond (Figure 6.39(c)) indicates a linear descending trend, with the best values located
towards the higher bound of 0.4. Less pronounced, and less relevant, is the effect of the
taper ratio, with all the different MDAOs finding the best configurations at tr = 0.25.
As expected, the main feature to focus on is the fuel-vs-A relationship, since the deter-
mination of a unique optimum turned out to be dubious.

(a)

(b) (c)

FIGURE 6.39: Scatter plots of the fuel mass with respect to the three design variables:
aspect ratio (a), taper ratio (b) and kink span ratio (c). The data are those collected

during the 6 MDAO cases presented above.

Further insights can be achieved by comparing the one-dimensional evolution of the
fuel mass with respect to the aspect ratio, obtained from both the rigid and flexible air-
craft sizing approaches. This was done by keeping the two remaining variables fixed,
and in particular setting them to their optimal values tr = 0.25 and ksr = 0.4. The
resulting curves are plotted in Figure 6.40. The two curves, originally coincident and
then separating at around A = 12.5, have two different minima. In particular, the
FAST-OAD curve results smoother and has a distinctly identifiable minimum atA ≈ 15.
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The initial descending trend of the fuel-vs-A curve is explained by the fact that in that
range the improvement in aerodynamic efficiency overcomes the impact of airframe
weight increase required by slender wing structures, with a positive overall impact on
fuel consumption. However, with increasingA , the weight penalty, due to the need
for more robust wing structures to sustain higher and higher bending loads, starts to
prevail over the aerodynamic benefits. This causes a gradual trend inversion after the
optimalA of 15, where the fuel mass curve exhibits a positive slope.

The flexible aircraft curve, instead, starts fluctuating after departing from the rigid air-
craft curve, generating an irregular, plateau-like region betweenA 12.5 and 15 where
a minimum is not clearly recognizable. The plateau is physically explained by the fact
that there is an aspect ratio range where the gain in fuel burn due to improved aerody-
namic efficiency of more slender wings is counterbalanced by the increase in structural
weight, with no net positive or negative impacts. The irregular trend in this region
is characterized by fluctuations of fuel mass in the order of 20-50 kg. Their presence
is to be attributed to the aeroelastic sizing process, where two levels of numerical un-
certainty exist: first, the inner wing structural optimization is given a fixed number of
evaluations before exiting - 45 in this case - and the outcome is therefore susceptible to
a certain degree of randomness; second, when the wing structural weight Ww2 is more
than 2% away from the corresponding value Ww1 predicted by FAST-OAD, the outer
loops, as explained in Section 5.2.5, start by adjusting the aircraft configuration to the
different wing weight and repeating the structural optimization until the discrepancy
is less than the allowed 2%. The exigence of such loops appears to arise always above
A = 12.5, triggering the split between the two curves. These sources of numerical un-
certainty are the reason of the fluctuations of the flexible aircraft curve, and prevent to
pursue a fine optimization.

To better quantify these effects, multiple runs have been launched in theA range 12 to
15. The results are reported in Figure 6.41, which confirms a noise of about 20 kg in most
cases, except a larger error of 50 kg aroundA = 13, where the aeroelastic predictions
start to deviate from the rigid aircraft model, making the structural optimization task
more likely to find each time slightly different optima.

These considerations explain the differences in the results between cases 1 to 6 in Table
6.14. Anyways, the contained extent of the fluctuations does not necessarily demand
an increase of the analysis precision. The configurations in the aspect ratio interval 12.5
- 14 would result virtually equivalent in terms of fuel consumption. A design selection
in this case should rather be dictated by other practical considerations - for example the
fact that higher aspect ratios are in general more expensive from a manufacturing point
of view. Moreover, the wing span could intervene as an additional constraint because of
infrastructural requirements (airports, hangars, etc.). These aspects would likely prove
more stringent than a 50 kg save in fuel mass, and would lead to the preference of an
aspect ratio located at the lower side of the identified optimal region.
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FIGURE 6.40: One-dimensional tracking of the fuel-vs-A relationship over the stud-
ied space. The two curves correspond to the rigid aircraft sizing process obtained with
FAST-OAD alone (dashed line), and to the flexible aircraft approach enabled by the de-
veloped methods (solid line). The taper ratio and kink span ratio are fixed to tr = 0.25

and ksr = 0.4.

FIGURE 6.41: Overlap of multiple runs over theA interval 12 - 15 showing the effect
of numerical uncertainty in the flexible aircraft sizing process.

Another interesting aspect to discuss is the role of the enforced aeroelastic constraints.
Looking back at Table 6.14, it appears that the real cause of the small discrepancy be-
tween the results of cases 1 to 6 is to be found in discussed effect of the numerical
fluctuations, and not in the impact of the different enforced constraints. Indeed, the
results are all located in the actual optimal region identified as the ‘plateau’ in Figure
6.40, suggesting that the prevailing driver is the physical dependence of the fuel with
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respect to the three variables, and that the constraints are never strict enough to affect
the minimization. This is confirmed when looking at the scatter plots of the different
constraint values with respect to the three optimization variables. These are given in
Figure 6.42, for the flutter speed constraint, and in Figure 6.43 for the gust loads con-
straints. In all the plots the deterministic constraints are denoted by a cross, and the
probabilistic constraints by a dot.

Starting with the flutter constraint, it is evident that the taper ratio and kink span ra-
tio do not have a critical effect (see Figures 6.42(b) and 6.42(c)), and the only relevant
role is the one played by the aspect ratio (Figure 6.42(a)). The latter, in fact, shows
a clear, almost linear relationship with the flutter speed constraint. However, despite
this marked effect, the constraint, as it was defined, starts to be active aboveA = 16 in
the deterministic case, and aboveA = 14 in the probabilistic case. This confirms the
fact that such constraint was not decisive during any of the proposed cases.

Analogous conclusions are drawn from the gust loads constraints plots of Figures 6.43(a)
to 6.43(c). A few differences can be noted though: first, the trend versus the aspect ratio
is non-linear and shows a greater dispersion towards the higher aspect ratios; second,
this time also the kink span ratio reveals a noticeable, although modest, linear effect
on the three types of loads. However, apart from these secondary remarks, the main
fact remains that none of these constraints were strict enough to play a key role in the
optimization outcomes.

Nevertheless, this lack of impact is only case-dependent, and a small change in the con-
straint definition may turn into a totally different optimization outcome. For example,
one can imagine that a safety factor is to be imposed on the flutter speed limit as well
as on the gust loads. This would translate into an upward shift of the unacceptable
region, shaded in red in the previous Figures (such as 6.42(b) and 6.42(c)). The offset
would be equal to the imposed safety factor.

To give an idea of what the impact of such a move would be, three cases were com-
pared, corresponding to three different safety factors: 0% (no increased safety, same
condition as the discussed examples), 8% and 10%. The same data collected during the
previous analyses were used, and the constraints considered are the probabilistic ones.
The effects are shown in Figure 6.44. Here, the case with no safety increase is reported
first (Figures 6.44(a) and 6.44(b)), corresponding exactly to the case 6 already discussed.
It can be seen that the optimal aspect ratio region is only marginally impacted by the
constraints, and the minimization results would be the same even without enforcing
any constraint. When a safety factor of 0.08 is introduced (Figures 6.44(c) and 6.44(d)),
the optimal region in the fuel-vs-A space is no longer compliant, and the optimum
starts to depend on the severity of the enforced constraints. Both the flutter speed and
the gust bending loads show an active role. Increasing the safety factor to 0.1 (Figures
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6.44(e) and 6.44(f)) accentuates this trend, showing even less valid candidates, trigger-
ing also the vertical shear constraint and further reducing the optimal aspect ratio. The
different numerical results are collected in Table 6.15, and a graphical representation
of the corresponding wing geometries is given in Figure 6.45. The optimal fuel mass
would increase up to about 18,980 kg, more than 150 kg above the loosely constrained
optimization, and the best aspect ratio would correspondingly decrease from 13 to 11.5.
Similar effects can be expected if the input uncertainty is increased, or if additional un-
certainty is injected, for example in the weight estimate provided by the aeroelastic
sizing.

(a)

(b) (c)

FIGURE 6.42: Scatter plots of the flutter constraint with respect to the three design
variables: aspect ratio (a), taper ratio (b) and kink span ratio (c). The data are those
collected during the 6 MDAO cases presented above, including the deterministic and

probabilistic cases.
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(a)

(b) (c)

FIGURE 6.43: Scatter plots of the gust loads constraints with respect to the three design
variables: aspect ratio (a), taper ratio (b) and kink span ratio (c). The data are those
collected during the 6 MDAO cases presented above, including the deterministic and

probabilistic cases.
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(a) No safety factor - Constraints vsA (b) No safety factor - Fuel vsA

(c) 8% safety factor - Constraints vsA (d) 8% safety factor - Fuel vsA

(e) 10% safety factor - Constraints vsA (f) 10% safety factor - Fuel vsA

FIGURE 6.44: Examples showing the impact of introducing a safety factor in the
reliability-constrained MDAO. For each case, the scatter plots of the constraints-vs-
A and fuel-vs-A distributions are reported. The first case (a and b) has no safety
factor, corresponding exactly to the MDAO case number 6 discussed above; the sec-
ond and third case correspond respectively to a safety factor of 8% (c and d) and 10%
(e and f). The safety factor is applied to all constraints, and its effect is highlighted by
different red-shaded areas in the left Figures, as well as by different numbers of valid

points, highlighted in green in the right figures.
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ID Safety factor A tr ksr Fuel mass (kg)

6.1 0% 13.0 0.25 0.4 18,821

6.2 8% 12.0 0.25 0.4 18,912

6.3 10% 11.5 0.25 0.4 18,977

TABLE 6.15: MDAO under flutter and gust loads reliability constraints. Optimization
results corresponding to different safety increments applied on the constraint defini-

tions.

FIGURE 6.45: Best wing planforms corresponding to different safety increments ap-
plied on the constraint definitions. The baseline and the best planform from the

FAST-OAD rigid aircraft optimization are also reported for comparison.
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6.6 Conclusions

This Chapter has demonstrated the application of the framework proposed in Chapter
5 for robust multidisciplinary analysis and optimization for flexible transport aircraft.
The specific case study involved the wing planform optimization of the CeRAS base-
line for fuel mass minimization over a fixed mission. In particular, three geometric
variables were chosen: the wing aspect ratioA , its taper ratio tr and the nondimen-
sional kink position (or kink span ratio) ksr. Structural flexibility was taken into account
for the main wing, which is considered the only element to undergo significant defor-
mations and oscillations. The term ‘robust’, as anticipated in Chapter 2, is intended
in its wider connotation indicating ‘resilience’ against uncertainty or design changes.
More precisely, the uncertainty, attributed to a few structural parameters, is propagated
only onto the constraints on flutter speed and gust loads. Therefore, strictly speaking,
the task performed is an optimization under dynamic aeroelastic reliability constraints.

Before addressing this task, some simplified versions of it were performed, with in-
creasing complexity, in order to have some reference results to compare with. The first
case, presented in Section 6.2, considers the aircraft as perfectly rigid. In that case, there
is no need for the inner structural optimization loop (for flexible wings), and addition-
ally no dynamic aeroelastic constraints are applied. The optimization was performed
just by means of the standard FAST-OAD sizing routines and of the SEGOMOE optimiza-
tion suite. As aeroelasticity is neglected by FAST-OAD, the optimization was left un-
constrained, and therefore also the uncertainty propagation was avoided, in favour of
a deterministic approach. The results show a clear tendency towards very elongated
wings, with an optimal aspect ratio of 14.9, 57% higher than the baseline one, allowing
a 3.5% save in fuel mass compared to the baseline configuration.

The following step, after the rigid aircraft optimization, was to employ the new frame-
work to perform a first set of flexible aircraft MDAO in a deterministic context. The
problem definition was left unchanged, but this time some aeroelastic constraints were
enforced. In particular, a first case was run with the constraint on flutter speed, a sec-
ond case with three constraints on gust loads (bending, vertical shear and torsion), and
a third case with all constraints on both flutter speed and gust loads active at the same
time. However, it was found that the main driver affecting the optimization results
was the inner wing structural optimization loop. In fact, the constraints applied at that
stage, imposing safety against static limit loads on the deformable wing, appeared to
be more stringent compared to the outer dynamic aeroelastic constraints, which are
evaluated only after the wing is sized for static loads. Therefore, most configurations
resulted compliant with respect to the deterministic flutter and gust constraints. How-
ever, the inner structural sizing routine, which considers the wing flexibility, already
reveals some differences with respect to the standard rigid aircraft approach. In par-
ticular, the main effect of the flexible wing sizing was a smaller optimal aspect ratio,
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which was found between 13 and 14 in the three cases studied, instead of the almost 15
given by the rigid case. This resulted in a reduced save of fuel mass (about 3% instead
of 3.5).

The last and more complex step was to run the same three MDAO cases for the flexi-
ble aircraft, but this time introducing uncertainty on a couple of structural parameters
(the location of the wing’s elastic and center-of-gravity axes). Therefore the dynamic
aeroelastic constraints were redefined as reliability constraints, imposed on the proba-
bility of violating certain safety limits of flutter speed and/or gust loads. It is true that
the choice of such kind of stochastic constraints is somewhat arbitrary, because most
specification requirements are deterministic, and the definition of how much ‘reliable’
or ‘robust’ the results should be is really up to the designer will for the particular case
under examination. Thus, it was shown that the optimization results under reliabil-
ity constraints are indeed dependent on how restrictive the probabilistic requirements
are. For example, the first round of optimization studies under aeroelastic reliability
constraints did not provide significant differences compared to the previous determin-
istic studies. This happened because the probabilistic requirements were not stringent
enough to make a difference in the optimization process, which remained dominated
by the inner static wing sizing. In fact, the optimal wing planform resulted from the
best compromise between aerodynamic efficiency and structural weight, both of which
increase with the aspect ratio.

However, it was later shown how a different choice of the reliability requirements can
easily change the design outcome. For example, it was found that increasing the safety
threshold for flutter speed and gust loads by 8 or 10% makes the aeroelastic constraints
(especially flutter and bending gust loads) much more active, with the effect of reduc-
ing the best allowable aspect ratio down to 12.5 or 11.5, and further reducing the fuel
mass gain to 2.5% or 2.1%.

Overall, this Chapter demonstrated the capability of the proposed framework to tackle
complex optimization problems for the design of unconventionally high aspect ratio
flexible aircraft, with the possibility of injecting and propagating parameters uncer-
tainty to evaluate the robustness or reliability of the design outcome. The application
focused on the wing planform optimization of a transport aircraft to minimize fuel, and
structural uncertainty was considered and propagated into some dynamic aeroelastic
reliability constraints, including flutter speed and gust loads. Results were compared
against those for a conventional rigid aircraft design approach, and the main differ-
ences were highlighted and discussed. In particular, it was found that the conventional
approach can result in dangerous non-conservative results, as its predictions were too
optimistic both with respect to the fuel mass objective function, and to the aeroelastic
safety of the optimal configuration.
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The proposed framework introduces a great computational cost with respect to the con-
ventional approach, the former requiring around a couple of days of serial calculations
on a modern computer for the robust approach and half to one day for the deterministic
one, compared to less than an hour for the conventional rigid-aircraft approach. How-
ever, an order of magnitude of a few days of calculations during a conceptual design
phase represents a minimal cost if compared to all the mitigation activity to be un-
dertaken in case an aircraft project is found unsafe during its advanced development.
Moreover, these few days can be significantly reduced by running the optimization in
parallel.

6.7 Summary

This Chapter presents some aircraft design and optimization studies involving the de-
veloped framework and tools discussed earlier in this manuscript. In particular, the
Chapter is structured as follows:

• An overview of the problem is provided. The optimization task targets the fuel
minimization for a baseline airliner for a fixed mission, by searching the best com-
bination of a few wing planform parameters, including the aspect ratio. The con-
straints to be applied concern flutter speed and gust loads, and they are to be
treated in both a deterministic and a probabilistic approach.

• Before running the optimization cases taking aeroelasticity into account, one con-
ventional optimization assuming a fully rigid airframe is performed, serving as a
reference for the subsequent applications on flexible aircraft.

• A series of three flexible aircraft MDAO cases is performed according to the de-
terministic approach. The first implements only the flutter speed constraints, the
second implements the gust loads constraints only, the third involves all con-
straints together.

• Three flexible aircraft robust MDAO cases are performed following the same for-
mat as the previous ones, but as uncertainty is introduced, the dynamic aeroelas-
tic constraints are expressed in a probabilistic way, taking the form of reliability
constraints.

• A comparative review and discussion of all the above results is provided, and
conclusions are drawn.

This chapter marks the fulfillment of the last of the technical objectives stated in Sec-
tion 1.2. With the rest of them being already addressed in the previous chapters, this
also marks the accomplishment of this project’s overall aim. A conclusive overview of
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this Thesis’s content and look to the main perspectives for future work are given in the
next chapter.
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7.1 Thesis summary

In a context where air transport innovation is targeted with increasing urgency, with
both research and industry engaged with vibrant determination, this project seeks to
propose a new and effective approach for the conceptual design and optimization of
novel efficient aircraft concepts, and in particular of those involving flexible, high-
aspect-ratio lifting surfaces. As discussed in Chapter 1, this task requires the capability
of capturing, as early as possible in the design process, the complex physical phenom-
ena deriving from structural flexibility, generally defined as fluid-structure interaction
or aeroelastic problems.

The complexity arises from several aspects: different disciplines have to be treated in a
coupled way (at least aerodynamics and structural dynamics, but also flight dynamics
and control science are involved), several challenging phenomena have to be taken into
account, such as static and dynamic structural response, structural response at high
deformations, three-dimensional aerodynamic effects, unsteady aerodynamics, com-
pressibility, flight mechanics. As a result, static and dynamic aeroelastic analyses easily
become costly and difficult to set up.

Moreover, conducting such multidisciplinary studies at conceptual design level nec-
essarily introduces and combines uncertainty from different sources, due to the un-
avoidable assumptions and approximate estimations or guesses in lack of precise and
trustable data. Despite this problem is often bypassed in favour of a deterministic ap-
proach, such choice can be risky, if not fatal, as it can significantly impact the devel-
opment costs due to expensive design reviews during the next, more advanced design
phases. For this reason, this project aimed not only at the development of adequate
multidisciplinary analysis tools to include aeroelastic and flight dynamics information
during the conceptual design phase, but also to provide a capability of injecting and
propagating uncertainty over the design and optimization process, in order to deliver
an assessment about the robustness of the optimization results.

The fundamental aim of this project is summarized as follows:

The development of an analysis and simulation framework to investigate aeroelas-
tic and flight performance of new generation flexible aircraft, capable of handling
and propagating input uncertainty, in support of a robust design and optimization
process at conceptual design phase.

To achieve this target, the project was built around four technical objectives, stated in
Section 1.2 and reported here for convenience:

I the development of a set of adequate analysis tools for the disciplines of interest,
namely aerodynamics, flight dynamics and structural dynamics, in response to
the need of more physics-based methods for unconventional design exploration;
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II the integration of the above modules with an aircraft sizing tool to broaden the
design exploration capabilities, including the possibility of taking into account
discipline-related uncertainty and constraints;

III the further expansion of the framework’s capabilities and set of constraints by
enabling coupled aero-structural analyses under uncertainty;

IV the demonstration of a robust design and optimization process for a highly flexi-
ble aircraft concept.

In order to effectively address the above objectives, a review of the state of the art was
pursued, spanning the main technical domains involved in this research problem. This
review is provided in Chapter 2.

Then, the development, integration and validation of all the required tools is docu-
mented in Chapter 3. More in detail, those tools respond to the need of suitable com-
putational methods for: steady and unsteady aerodynamics, linear and nonlinear, static
and dynamic structural mechanics, static and dynamic aeroelasticity, flight dynamics
simulation, simulation post-processing, sensitivity analysis and uncertainty quantifi-
cation, overall aircraft design and optimization. This development partly fulfills the
technical objective I.

A first demonstration of how those tools can be integrated for a robust multidisci-
plinary analysis and optimization task is provided in Chapter 4. The application in-
volves a transport aircraft planform optimization under uncertainty, targeting the best
aerodynamic configuration to minimize the fuel mass for a given reference mission.
Some of the developed disciplinary tools (aerodynamics and flight dynamics modules)
were used to constrain the optimization under flying qualities requirements, concern-
ing in particular the short period dynamics. The input uncertainty was put on some
weight & balance parameters and propagated into the short period characteristics, so
that the dynamic constraints took the form of reliability constraints. This study demon-
strates the accomplishment of the technical objective II. This objective represents an
intermediate step in the project outline, as aeroelasticity was not taken into account
yet.

The technical objective III is achieved in Chapter 5, which presents a more complex
architecture for robust multidisciplinary analysis of flexible aircraft, where static and
dynamic aeroelasticity is finally considered. The structure is similar to the previous
example, but this time the reliability constraints are on the dynamic aeroelastic perfor-
mance of the candidate configurations, and in particular on flutter speed and dynamic
gust loads. The Chapter details all the relevant building blocks and their interface,
which involves an inner structural sizing and optimization loop for flexible wings,
and an outer overall aircraft optimization loop under the new aeroelastic reliability
constraints. Some sensitivity studies on the aeroelastic quantities of interest are also
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presented, in order to select the most relevant parameters whose uncertainty can sig-
nificantly impact the design outcome.

Finally, the capabilities of the above framework are demonstrated in Chapter 6. A se-
ries of optimization studies was performed with increasing complexity. First, a conven-
tional optimization was carried out under the assumption of rigid aircraft, therefore ig-
noring any aeroelastic issue. Then, the same optimization was run considering wings
flexibility, and adopting deterministic flutter and gust loads constraints. Lastly, the op-
timization was repeated but introducing some relevant structural uncertainty, accord-
ing to the sensitivity results of Chapter 5, and propagating it into flutter and gust loads
reliability constraints. The results from the different approaches are also discussed and
compared at the end of the Chapter. These case studies concretely demonstrate the ap-
plicability of the developed approach for robust analysis and optimization of flexible
aircraft. This successfully addresses the last technical objective (IV), in fulfillment of
the PhD project aim.

7.2 Achievements

7.2.1 Tools development, integration and validation

A robust analysis and optimization process for flexible aircraft is a multidisciplinary
task that requires the integration of several disciplinary analysis tools within a numer-
ical framework that also involves aircraft sizing algorithms, optimization algorithms
and uncertainty quantification tools. A large part of this project was aimed at the de-
velopment and integration of such tools. In particular, the flight physics disciplines
of interest, as far as this project is concerned, are mainly aeroelasticity and flight dy-
namics. Aeroealsticity is essential to capture the potentially dangerous response of the
flexible airframe subjected to static and dynamic airloads. Flight dynamics is of interest
because this research is projected towards the flight simulation of flexible aircraft. Static
and dynamic aeroelastic analyses require in turn adequate models for steady and un-
steady aerodynamics, static and dynamic, linear/nonlinear structural mechanics, and
an effective interface to couple the two domains. For these reasons, the disciplinary
tools development and integration was addressed to the implementation of:

• A choice of aerodynamic models, including a classical analytical model based on
linear aerodynamic derivatives, and a steady or unsteady implementation of the
Vortex Lattice Method (VLM or UVLM);

• A nonlinear structural mechanics solver (GEBT, Geometrically Exact Beam The-
ory)
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• Two possible aeroelastic solvers: a) a linear solver based on potential unsteady
strip theory coupled with linear beam theory, mainly required for flutter analysis;
b) a linear/nonlinear solver coupling the GEBT structural solver with the VLM or
UVLM aerodynamic solvers;

• A flight dynamics simulation module (FDM) implementing the 6DOFs nonlinear
equations of motion;

• A post-processing module to extract the desired quantity of interest (amplitude,
frequency, damping) out of the simulation history by use of a Least Square best
fit technique of the time-domain data;

All the above disciplinary tools have been developed by the author, except the GEBT

solver, which was taken off-the-shelf and then integrated with the VLM/UVLM solvers
to enable nonlinear aeroelastic analysis. The choice of developing such programs re-
sulted from a combination of reasons: lack of well documented and validated off-the-
shelf software matching the different needs, the interest of having a fully mastered
code, with deep knowledge of its structure, analytical basis and numerical limitations,
the need for flexible interface between the different disciplines.

In addition, the following existing tools have been tested and integrated for aircraft
design and optimization under uncertainty:

• An uncertainty quantification and sensitivity analysis module that wraps the
above modules and propagates the uncertainty from the input parameters into
the desired outputs. It returns the desired statistical metrics to be used in the
reliability evaluation;

• An aircraft conceptual sizing tool (FAST-OAD) performing the necessary loops un-
til convergence to a consistent configuration;

• An optimization environment (SEGOMOE) to be interfaced with the sizing pro-
cess and with the implemented multidisciplinary deterministic or stochastic con-
straints (such as flying qualities constraints, flutter speed, gust loads).

The availability of such tools allows performing a variety of analysis, simulation and
optimization tasks over flexible aircraft or flexible wings, with the option to introduce
uncertainty and propagate it into different figures of merit, such as flying qualities,
static loads, flutter speed, gust loads, but also overall parameters such as fuel con-
sumption.

The successful implementation, integration and validation of those tools marks the first
achievement of this project, responding to the first objective I set out in the preamble of
this work (Section 1.2). This outcome represents an important contribution because it
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opens to several different multidisciplinary studies on flexible aircraft robust optimiza-
tion. The remaining Chapters of this manuscript offer just a glimpse of the research
problems that could be addressed.

7.2.2 Application: MDAO of rigid aircraft under flying qualities reliability
constraints

A second, intermediate achievement of this work is the demonstration of how some
of the proposed tools can be assembled and employed for a multidisciplinary design
and optimization process for a transport aircraft under input parameter uncertainty. In
particular, the selected case study was about a planform optimization to minimize fuel
mass, constrained by some probabilistic constraints on short period characteristics.

To evaluate such dynamic characteristics, some of the developed disciplinary tools
were used. In particular, it was shown how the VLM and the UVLM can be used to
calculate a set of steady and unsteady aerodynamic derivatives that can be stored in an
aerodynamic database useful for flight simulation. Subsequently, the flight dynamics
module can be run, with the unsteady aerodynamic loads easily and quickly calculated
via simple formulae based on the pre-computed derivatives. This approach allows to
perform flight simulation studies that benefit from an enriched aerodynamic model,
which is usually not available during early simulation campaigns. It was shown that
the computational cost of complex models could be mitigated by the use of surrogate
models.

In this particular case, the flight dynamics model was used to simulate the short period
response at certain fixed cruise conditions. The post-processing module was then used
to extract the desired figures of merit (in this case short period damping and frequency)
out of the simulated time history, in a completely automatic fashion. These quantities
were compared against some flying qualities requirements, derived from military spec-
ifications, in order to constrain the overall optimization.

An additional degree of complexity was introduced by considering that weight and
balance estimations from the aircraft sizing tool were uncertain. Such uncertainty was
propagated to the short period characteristics by use of the uncertainty quantification
module. Therefore, the flying qualities constraints were formulated in probabilistic
terms. The overall problem took the form of a reliability-constrained optimization.

This application represents a first example of how the implemented tools can be as-
sembled into an MDAO framework for robust aircraft design, responding to the inter-
mediate objective II. This example, however, did not include all the disciplinary tools
developed throughout the project, and in particular did not take airframe flexibility
into account. Such problem was addressed in the following activities.
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7.2.3 MDAO framework for the design of flexible aircraft under uncertainty

The most ambitious achievement of this project in terms of software architecture is the
assembling of a robust MDAO framework for very high-aspect-ratio flexible aircraft.
The aim was to allow an overall optimization process for an aircraft configuration by
taking into account the major issues arising from wings’ flexibility. These include both
the static and dynamic aeroelastic characteristics.

The static aeroelastic behaviour is investigated within an inner wing sizing and opti-
mization loop, with the outer optimization variables kept fixed while the wing struc-
tural layout is optimized for minimum weight under static manoeuvre loads constraints.
This is addressed in an aeroelastic sizing cycle integrating the developed nonlinear
aeroelastic model with the FAST-OAD aircraft sizing tool and the SEGOMOE optimizer.
Some validating examples were provided, showing that when applied to conventional
wings of moderate aspect ratio, the results of this approach are consistent with standard
semi-empirical methods.

The dynamic aeroelastic characteristics of the sized wing is subsequently evaluated not
to provide a feedback to the sizing process, which would imply excessive complexity
and computational time, but simply to constrain the outer optimization process. The
non-compliant configurations are not resized, but just discarded. In particular, the dy-
namic aeroelastic features considered in this work are flutter speed and gust loads. It
was shown how the developed tools can be interfaced with the overall aircraft sizing
process and provide the desired output quantities.

Additionally, such a framework can include some uncertainty quantification routines
to propagate the required input parameter uncertainty into the desired output quanti-
ties. Here, this process was demonstrated for some input structural parameters, whose
uncertainty is propagated to the dynamic aeroelastic characteristics of the wing. In this
way, the overall optimization problem can take the form of a reliability-constrained
optimization, where the flutter speed and gust loads constraints are formulated in a
probabilistic way.

Such a process provides another example of the effectiveness of the methods developed
and integrated throughout this project to tackle complex MDAO problems for robust
aircraft design at conceptual level, fulfilling the third research objective III.

7.2.4 Application: MDAO of flexible aircraft under aeroelastic reliability
constraints

The last and most complex achievement of this project is the demonstration of how the
developed framework described above, including in particular the linear and nonlinear
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aeroelastic tools, can be employed for robust MDAO of high-aspect-ratio flexible air-
craft. A case study was set up, consisting in the optimization of a transport aircraft, the
CeRAS baseline, aiming at minimizing the fuel mass for a given mission, with respect
to a few wing planform variables, including the aspect ratio.

An overview of the framework architecture has already been given in the previous Sec-
tion. Three main approaches were compared: 1) a conventional optimization based
only on the traditional rigid-aircraft approach of FAST-OAD, neglecting any aeroelas-
tic effects and constraints; 2) a deterministic MDAO using the newly-developed tools,
where aeroelasticity was taken into account both for the inner wing static sizing and
for the outer evaluation of the flutter and gust loads constraints; 3) a robust MDAO
approach following the same logic as the previous, but this time considering some in-
put uncertainty on a few key structural parameters, and propagating it into the outer
flutter and gust loads constraints.

The results obtained with the different methodologies have been compared and dis-
cussed. One main outcome is that the proposed method provides equivalent predic-
tions as the conventional rigid-aircraft one when applied to low or medium aspect ra-
tios, up to around 11, but then the two approaches start to deviate from each other.
In particular, the rigid-aircraft approach resulted optimistic compared to the flexible-
aircraft approach, confirming the potential advantage of the latter in terms of safety
and robustness.

Moreover, it was demonstrated how the aeroelastic reliability constraints can signif-
icantly impact the optimization outcome, depending on how much uncertainty the
designer is prepared to accept. In fact, it was shown that a slight change of the ac-
ceptability criteria, especially on flutter speed and gust bending loads, can turn them
from inactive to active, in which case their effect is mainly to reduce the optimal feasible
aspect ratio and degrade efficiency.

The reported applications represent only an example among the different studies that
could be addressed with the available tools. However, to the author’s knowledge, there
are very little comparable examples in literature of such complex multi-disciplinary
tasks where the overall optimization of an entire aircraft configuration is addressed
by taking into account both static and dynamic aeroelastic effects, capable at the same
time of propagating uncertainty to enable a reliability-constrained optimization. The
achievement of this level of performance accomplishes the last objective of this project
(IV), and represents the most valuable contribution of this PhD program.



7.3. Perspectives 273

7.3 Perspectives

7.3.1 Possible improvements and future work

The proposed development and studies represent an already rich and complex multi-
disciplinary research work. Yet, the presented applications served as first proofs of
concept of the implemented approach, so that several aspects were considered only in
a limited way. Therefore, there are plenty of areas where the focus can be increased,
or shifted, and several ways in which the analysis capabilities can be improved. An
exemplifying list of possible improvements and further studies is here briefly provided.

To start with, the same kind of MDAO studies could be addressed with some additional
features not considered in this work. For example, the analyses could be extended
to include the evaluation of asymmetrical flutter, the inertial effects of wing-mounted
engines, lateral flying qualities. Also, the design space could be extended to include not
only additional wing geometry variables (such as wing twist, sweep, dihedral angle),
but also other variables at the aircraft level. Similarly, the set of constraints could be
expanded, for example by considering more sizing mass cases or flight points where
to evaluate the gust response and flutter safety. Flying qualities constraints could also
be added together with aeroelastic constraints during the same MDAO, whereas this
work only presented the two types of constraints in two separate applications.

It would be also interesting to apply the same design approach and available tools to
different configurations, such as unconventional wing shapes (box-wing, strut-braced
wings, blended-wing-body configurations) or in combination to other design solutions
involving electric/hybrid propulsion, distributed propulsion or hydrogen propulsion.

Moreover, some of the available analysis tools could be applied not only to overall
aircraft applications, but also to lower level studies involving just the wing, or the wing
and tail, or the wing with its control surfaces, for example to design manoeuvre loads
alleviation (MLA) and gust loads alleviation (GLA) systems.

Furthermore, it would be interesting to provide some comparison of the proposed
strategies against standard high-fidelity methods. A relatively simple example could be
to reproduce a wing sizing and optimization case, such as those demonstrated in Sec-
tion 5.2.4, with a more detailed structural finite element model of the three-dimensional
wing structure. More ambitious validation studies could reproduce the entire MDAO
cases presented in Chapter 6 and substituting the present aeroelastic models with higher-
fidelity structural and aerodynamic tools. Some work could be performed on charac-
terizing the accuracy of the proposed approach, and the gain in computational time.
Several aspects could be further investigated, such as the role of mass tolerance in the
wing sizing loops, the question of introducing additional surrogate models, or the effect
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of restructuring the optimization problem so that planform and structural variables are
treated together at the same level, instead of separating them in inner and outer loops.

Finally, as already mentioned earlier in this manuscript, an interest exists at the Univer-
sity of Southampton, where an advanced research flight simulator is being put in place,
towards the flight simulation of fully flexible aircraft configurations. The simulation
tools developed during this PhD project offer a good starting point in this direction.
More details on this are given in the following Section.

7.3.2 Flight simulation of very flexible aircraft

Flight simulation of highly flexible aircraft can be achieved with the tools presented so
far by coupling the flight dynamics simulation model of Section 3.5 with the nonlin-
ear steady or unsteady aeroelastic model presented in Section 3.4.2. The tools have all
been implemented in order to be compatible and with a dedicated interface. In fact,
they are all part of the Fortran suite, where the modules are designed to share the same
variables, classes and subroutines, as well as data formats for the inputs and outputs.
For example, the flight dynamics module can import the instantaneous aerodynamic
loads in three main ways: a) from a simple derivative-based aerodynamic function; b)
from the steady or unsteady VLM; c) from the aeroelastic module, that in turn cou-
ples the steady/unsteady VLM with the GEBT linear/nonlinear solver. The last op-
tion would correspond to the mean-axes simulation approach discussed above, where
flight dynamics module propagates the trajectory of the vehicle while at each time step
the aerodynamic loads are computed by the aeroelastic solver. An extract of a simple
demonstration is represented in Figures 7.1 and 7.2. Here, the level horizontal flight of
a wing-plus-stabilizer configuration is simulated after the wing oscillations are excited
by a step-change of local angle of attack. The Figures capture an instant after several
oscillations occurred. This is visible from the undulated shape of the wake, reproduced
by the UVLM solver, which gives an idea of the trajectories of different points along the
wing’s trailing edge. Additionally, the wake roll-up can be noted in correspondence of
the wing tips. It is worth to point out that only the wing is here treated as flexible,
whereas the tail is considered rigid. The unevenness of the tail’s wake is only due to
the interaction with the oscillating wake of the main wing.

This example is aimed at showing the capabilities of the developed analysis and simu-
lation toolbox, and in particular the ability to select and couple the disciplinary tools to
perform simulations of different complexity according to the specific needs. However,
the unsteady flight simulation of a flexible aircraft, representing highest level of com-
plexity, remains a challenging task when linking its application to robust analysis and
optimization process. For instance, it requires a demanding tuning and validation pro-
cess, involving a consistent definition of geometry and reference frames, as well as an
appropriate choice of discretization density for aerodynamics and structure, numerical



7.3. Perspectives 275

FIGURE 7.1: Snapshot from an unsteady aeroelastic simulation of the response of a
flexible wing-plus-stabilizer configuration to a step-change in the angle of attack. The
contour plot highlights the distribution of vorticity over the wing, stabilizer and their

wakes.

integration method and time stepping adequate both for the structural dynamics and
the unsteady aerodynamics. Moreover, those choices are case-specific, meaning that it
is not immediate at all to move from a test case to another.

For these reasons, this level of simulation is only shown here for demonstrative pur-
pose. Further validation and software optimization work is required to have this ca-
pability ready to be included into wider studies involving aircraft design exploration,
optimization and uncertainty quantification. In this project the different disciplinary
modules have been employed for different case studies, but without enforcing this full
coupling.
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FIGURE 7.2: Snapshot from an unsteady aeroelastic simulation of the response of a
flexible wing-plus-stabilizer configuration to a step-change in the angle of attack. The
contour plot highlights the distribution of lift over the wing and stabilizer. Their dis-

cretized wakes are also represented by a black uncoloured mesh.
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A.1 Expressions for unsteady lift and moment

A.1.1 Contribution of aerofoil pitch-plunge motion

The contribution of the aerofoil motion is:

La(t) =πρ U2 b
[
− b

U2 ü +
b
U

θ̇ − b2

U2 a θ̈

]
−

2 π ρ U2 b
[
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] (A.1)
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(A.3)

A.1.2 Contribution of flap rotation

The dependence of aerodynamic loads on the flap rotation and its time derivatives is
expressed as:
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(A.5)
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The coefficients used above are from Theodorsen [18].

A.1.3 Contribution of gust encounter

The response to any arbitrary shape of Wg(t) is obtained as follows:

Lg(t) = 2 π ρ U2 b
[

Wg(t)ψ(t) +
∫ t

0

dWg(τ)

dτ
ψ(t − τ) dτ

]
(A.6)
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1
2
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) [
Wg(t)ψ(t) +
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0

dWg(τ)

dτ
ψ(t − τ) dτ

]
(A.7)

A.2 Transformation of Integro-Differential Equations into Or-
dinary Differential Equations

The introduction of the aerodynamic loads in the form of unsteady aerodynamics for-
mulation makes the problem a coupled set of Integro-Differential Equations (IDEs).
This is due to the convolution integral terms present in Equations. (A.1), (A.2) and
(A.4) to (A.7) of the Appendix A.1. Those terms account for the past history of the
system, which is needed when considering the unsteadiness of the flow field. A math-
ematical procedure exists to replace the integral terms with additional variables and
equations describing their evolution. As a result, the set of IDEs can be expressed in
terms of an expanded set of Ordinary Differential Equations (ODEs) with an increased
number of state variables. This procedure is described for example in References [165]
or [215]. Basically, a new set of variables is defined for those integral terms arising from
convolution that cannot be expressed as linear functions of the structural variables (or
their time derivatives). To obtain the dynamics of the new variables (the right part of
Equations (A.11) of the Appendix A.3.1, the Leibniz integral role is applied, namely:

∂

∂z

∫ b(z)

a(z)
f (x, z) dx =

∫ b(z)

a(z)

∂ f
∂z

dx + f (b(z), z)
∂b
∂z
− f (a(z), z)

∂a
∂z

(A.8)

The new variables and their dynamics are described in details in the Appendix A.3.1.

A.3 Total aerodynamic loads

Developing the above equations, the aerodynamic loads can be expressed as linear
functions of the structural and some appropriate aerodynamic variables (see section
A.3.1)
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L(x, t) = a0(x, t) + a1 ü(x, t) + a2 θ̈(x, t) + a3 u̇(x, t) + a4 θ̇(x, t)
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(A.9)
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(A.10)

Each of the following coefficients must be calculated for each element if the taper ratio
is not unity. Moreover, the following quantities are defined for convenience:
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A.3.1 Aerodynamic variables

Developing the equations in section A.1, the new variables and their dynamics are
expressed as follows:
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To obtain the dynamics of the new variables (the right part of Equations (A.11)), the
Leibniz integral role has been applied, namely:
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A.3.2 Formulation of discretized aerodynamics

Applying the Galerkin’s method, the equilibrium equations become defined in integral
sense, multiplying them by some assumed weighting functions (here denoted as γ(x)
and χ(x)) and integrating along the span-wise axis. Doing this, the terms related with
the aerodynamics are, in local element coordinates:
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where:

γ̃e(ζ) = NT
v (ζ) γe (A.14a)

χ̃e(ζ) = NT
θ (ζ) χe (A.14b)

Substituting Eqs. (A.9) and (A.10) in the respective terms of of Eq. (A.13), and applying
the same procedure of the previous section to each term, the discretized expressions
for the aerodynamic loads are obtained. For example, developing such a procedure for
one term of the lift, it gives:
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It is worthwhile to show also how the procedure is applied to the terms containing the
z−variables. For instance:
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The aerodynamic loads in matrix form, for each element, become:

fe = a0 + a1 üe + a2 θ̈e + a3 u̇e + a4 θ̇e + a5 ue +

+ a6 θe + a7 z1,e + a8 z2,e + a9 z3,e + a10 z4,e +

+ b0 + b1 δ̈e + b2 δ̇e + b3 δe + b4 z5,e + b5 z6,e +

+ c1 Wg + c2 z7,e + c3 z8,e

(A.17)

me = d0 + d1 üe + d2 θ̈e + d3 u̇e + d4 θ̇e + d5 ue +

+ d6 θe + d7 z1,e + d8 z2,e + d9 z3,e + d10 z4,e +

+ e0 + e1 δ̈e + e2 δ̇e + e3 δe + e4 z5,e + e5 z6,e +

+ f1 Wg + f2 z7,e + f3 z8,e

(A.18)

A.3.3 Unsteady aileron hinge moment

The procedure to obtain the hinge moment is analogue to that shown in the previous
section, thus, developing Eq. (29) of the main document:

Mh(x, t) = m0(x, t) + m1 ü(x, t) + m2 θ̈(x, t) + m3 u̇(x, t) +

+ m4 θ̇(x, t) + m5 u(x, t) + m6 θ(x, t) + m7 z1(x, t) +

+ m8 z2(x, t) + m9 z3(x, t) + m10 z4(x, t) +

+ n0(x, t) + n1 δ̈(x, t) + n2 δ̇(x, t) + n3 δ(x, t) +

+ n4 z5(x, t) + n5 z6(x, t)

(A.19)

Coefficients in Eq. (A.19) are:
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m1 = −ρ b3 T1

m2 = −2 ρ b4 T13

m3 = ρ U b2 T12 (1− A1 − A2)

m4 = −ρ U b3
(
−2 T9 − T1 + T4 (a− 0.5) + T12

(
1
2
− a
)

(1− A1 − A2)

)
m5 = ρ U 2 b T12 (A1 b1 + A2 b2)

m6 = −ρ U 2 b2 T12

((
1
2
− a
)

(A1 b1 + A2 b2) + (1− A1 − A2)

)
m7 = ρ U 3 b T12 A1 b1

((
1
2
− a
)

b1 − 1
)

m8 = ρ U 3 b T12 A2 b2

((
1
2
− a
)

b2 − 1
)

m9 = −ρ U 3 T12 A1 b2
1

m10 = −ρ U 3 T12 A2 b2
2

n1 =
ρ b4 T3

π

n2 =
ρ U b3 T11

2 π

(
T4 − 0.5 T12

(
1
2
+ a
)

(1− A1 − A2)

)
n3 = −ρ U b2

π

[
U (T5 − T4 T10) + 0.5 T12 U T10

(
1
2
+ a
)

(1− A1 − A2)

+
1
4

T12 T11 b
(

1
2
+ a
)

(A1 ε1 + A2 ε2)

]
n4 =

T12 ρ U b2

4 π

(
1
2
+ a
)

A1 ε1 (T11 b ε1 − 2 U T10)

n5 =
T12 ρ U b2

4 π

(
1
2
+ a
)

A2 ε2 (T11 b ε2 − 2 U T10)

The same procedure discussed above was followed to obtain discretized expressions
for the hinge moment. Therefore, each term in Eq. (A.19) is manipulated such as the
first one shown below:

le

∫ 1

0
ξ̃(ζ)m1 ü(ζ, t) dζ = ξT

e

[
le m1

∫ 1

0
Nt(ζ) NT

v (ζ) dζ

]
üe(t) =

= ξT
e m1 üe(t)

(A.20)
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where ξe represents the nodal values of the weighting function for the Galerkin’s method:

ξ̃(ζ) = NT
t (ζ) ξe (A.21)

Applying this procedure for each contribution, it yields the following matrix expres-
sion:

Mh,e = m0 + m1 üe + m2 θ̈e + m3 u̇e + m4 θ̇e + m5 ue +

+ m6 θe + m7 z1,e + m8 z2,e + m9 z3,e + m10 z4,e +

+ n0 + n1 δ̈e + n2 δ̇e + n3 δe + n4 z5,e + n5 z6,e

(A.22)

Rearranging it in a more compact form, and assembling for multiple flapped elements,
it brings to Eq. (30) of the main document.
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The verification of the surrogate model for the aircraft sizing and unsteady aerody-
namic calculation processes is here reported. The model depends on 5 variables (the
4 geometric optimization variables Vg plus the error on the CG location ∆xCG) and re-
turns 8 aerodynamic derivatives plus 2 aircraft parameters (wing reference area and
MAC) and the objective function (fuel mass). Figures B.1 to B.3 show that all the pre-
dicted outputs are in good agreement with the training points, used to train the Gaus-
sian process, and with the test points, excluded from the training and used only for
verification. The RMS error was always below 0.3%.
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(a) CLα (b) CLq

(c) CLα̇
(d) CLα̈

FIGURE B.1: Validation of the surrogate models - Lift coefficient derivatives.
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(a) CMα (b) CMq

(c) CMα̇
(d) CMα̈

FIGURE B.2: Validation of the surrogate models - Moment coefficient derivatives.
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(a) Wing area (b) Mean aerodynamic chord

(c) Fuel mass

FIGURE B.3: Validation of the surrogate models - Aircraft parameters.
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C.1 Skin sizing

The skin is supposed to withstand the torsional moment. The total moment acting at
the wing root for a swept wing is calculated as the estimated moment of a straight wing
plus the contribution of sweep:

Mt =
1
2

ρ V2 S
2

cmgc Cm +
L
2

ymgc

cos Λ1/4
(C.1)

where ymgc is the location of the mean geometric chord along the y body axis, which
divided by the cosine of the quarter chord sweep angle Λ1/4 gives the arm in the x
direction generated by the sweep.

The thickness needed to withstand the limit loads is found by inverting the Bredt’s
formula for thin-walled cross sections:

τ =
|Mt|

2 Ωwb ts
⇒ ts =

|Mt|
2 Ωwb τm

(C.2)

where Ωwb is the wing-box cross section area, that for the present rectangular shape
is simply given by the product of its two dimensions cb and hb. Recall that these are
obtained from the FAST-OAD output: the former is known from the front and rear spar
positions, the latter is derived from the profile thickness ratio, by applying a reduction
factor of 0.9.

The skin thickness is subject to a lower bound dictated by lighting strike requirements,
imposing a minimum thickness commonly set to 2.7 mm (as from [212]).

C.2 Web sizing

With the discussed assumption that the shear force of the wing half is entirely reacted
by the spars, and that these are considered of identical cross section, the two of them are
equivalent to a single shear web of thickness tw and height hb. Each spar has therefore
a thickness of tw/2. Under these assumptions, stress analysis theory provides the an-
alytical expressions for the stress distribution over a uniform rectangular cross section
subjected to vertical shear. Such a distribution is of parabolic shape, with the maximum
located at the neutral axis. With a total vertical force of nL W/2 applied on each wing,
neglecting the contributions of fuselage and tail, the maximum shear stress at the root
section is:

τ =
3
2

nL W
hb tw

(C.3)
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The required thickness is therefore:

tw =
3
2

nL W
hb τm

(C.4)

The lower bound for the spar thickness is set to the minimal technological limit of 1.2
mm, following [212].

C.3 Stringers sizing

The wing stringers are sized to react the whole wing bending moment generated by lift.
As discussed above, the adopted procedure does not require any other quantities than
the overall stringers cross section. Their shape, number and spacing is not of concern
at this stage. The overall cross-sectional area at wing root is here denoted as 2 As, with
As being the area located on the upper and lower skin, in a specular fashion. Therefore,
considering half of the total lift applied at the mean geometric chord, the total bending
moment at root, and the required stringers area to counteract it are as follows:

Mb =
nL W

2
ymgc = σ As hb ⇒ As =

nL W
2 ymgc

σm hb
(C.5)

No specific technological bounds are applied to As. It is just imposed that once As

is calculated at the wing root, the corresponding value at the wing tip is 0.05 As, as
suggested in [27], so that the span-wise distribution is a linear function between these
two values.

C.4 Ribs sizing

Within the hypotheses discussed above, the only quantity related with ribs that is rel-
evant to this approach is their weight contribution. Their contribution to structural
stiffness and integrity is not analyzed here. Therefore, no analytical expressions are
derived for their detailed sizing, and no variables linked with ribs are added to the
optimization problem. Instead, an approximate estimation is made, adapted from the
approach of [27]. Here, the authors suggest to assign ribs the same thickness of the lo-
cal skin, neglect any lightening holes, consider a semi-elliptic geometry and a spacing
of half the local chord. The approach proved to give realistic prediction in the domain
of general aviation aircraft. In the present case, with a completely different category of
aircraft, it was found that this approach does not match satisfactorily with the available
data on the CeRAS baseline. Instead, it was found more accurate to assign them half
the local thickness of one spar, considering the same rectangular cross-section of the
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wing box, and a spacing of about 60-70 cm (as from [8, 212]). The higher value of 70 cm
was adopted here.

C.5 Reinforcements and secondary parts

The total wing mass is given by the primary structure mass, composed by spars, stringers,
skin and ribs and estimated as above, plus the mass of reinforcements, mainly needed
by the landing gear, and of secondary parts. These two last contributions are difficult
to estimate in a direct way as done for the primary structure, and it is more realistic at
this stage to rely on experience and existing data for the given class of airplane. There-
fore, this mass is here set equal to the value estimated by FAST-OAD, where a statistical
regression is adopted from [9]. Here, the expressions for landing gear reinforcements
mass mr and secondary parts mass ms are in the forms:

mr = c1 k1 (MLW)c2 (C.6)

ms = c3 k1 (MTOW)c4 SPF c5 (C.7)

where the coefficients ci are fixed coefficients, k1 depends on the number and location
of the engines, MLW and MTOW are the Maximum Landing Weight and Maximum
Take-Off Weight, respectively, and SPF is the surface of the overhanging wing.
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D.1 Classic chord method

The classic chord method is based on the approximation of local linearity of the real
non-linear function f (x), so that at each iteration the new point xn+1 is given by:

xn+1 = xn + mn f (xn) (D.1)

where mn is the inverse of the slope of the linear approximation. Differently from the
simpler chord method, where such a slope is kept fixed, so that mn = m, in the classic
chord method mn is updated at each iteration, which greatly accelerates convergence.
The value of mn is set equal to the inverse of the slope of the straight line connecting
the points [xn, f (xn)] and [xn−1, f (xn−1)]:

xn+1 = xn +
xn − xn−1

f (xn) − f (xn−1)
f (xn) (D.2)

FIGURE D.1: Classic chord method, from Reference [28].

D.2 Regula falsi method

The difference of the regula falsi method with respect to the classic chord method is that
the coefficient mn is computed using the points [xn, f (xn)] and [xn′ , f (xn′)], where n′ is
the highest index for which f (xn) · f (xn′) < 0:

xn+1 = xn +
xn − xn′

f (xn) − f (xn′)
f (xn) (D.3)
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FIGURE D.2: Regula falsi method, from Reference [28].
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