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ABSTRACT

In the case of non-abelian gauge theories, the standard Faddeev-
Popov gauge-fixing procedure in the Landau gauge is known to
be incomplete due to the presence of gauge-equivalent gluon field

configurations that fulfil the gauge condition, also known as Gribov copies.
A widespread belief is that the proper analysis of the low energy properties
of non-abelian theories in this gauge requires, therefore, the extension of
the gauge-fixing procedure, beyond the Faddeev-Popov recipe.

This manuscript reviews various applications of the Curci-Ferrari
model, a phenomenological proposal for such an extension, based on the
decoupling properties of Landau gauge correlators as computed on the lat-
tice. In particular, we investigate the predictions of the model concerning
the confinement/deconfinement transition of strongly interacting matter
at finite temperature, first in the case of pure Yang-Mills theory for various
gauge groups, and then in a formal regime of Quantum Chromodynamics
where all quarks are considered heavy. We show that most qualitative
aspects and also many quantitative features of the deconfinement transi-
tion in these theories can be accounted for within the Curci-Ferrari model,
with only one additional parameter, adjusted from comparison to lattice
simulations. Moreover, these features emerge in a systematic and con-
trolled perturbative expansion, as opposed to the ill-defined perturbative
expansion within the Faddeev-Popov model in the infrared.

The applications of the Curci-Ferrari model at finite temperature
and/or density require one to consider a background extension of the
Landau gauge, the so-called Landau-deWitt gauge. Therefore, besides the
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above mentioned applications, the manuscript is intended as a thorough
but pedagogical introduction to these techniques at finite temperature
and/or density, including the rationale for introducing the so-called back-
ground field effective action, the role of the Weyl chambers in discussing
the various physical symmetries of the problem and the complications
that emerge due to the sign problem in the case of a real quark chemical
potential (in the QCD case). It also investigates the fate of the decoupling
correlation functions in the presence of a background as computed in
the Curci-Ferrari model and conjectures a specific behavior for the corre-
sponding functions evaluated on the lattice, in the case of the SU(2) gauge
group.
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INTRODUCTION: THE MANY PATHS TO QCD

Quantum Chromodynamics, or QCD for short, is by now well ac-
cepted as the fundamental theory governing the strong force.
According to this theory, the elementary particles sensible to the

strong interaction, known as quarks and anti-quarks, carry a generalized
notion of charge, the color, that allows them to exchange quanta, known
as gluons, in a way similar to the exchange of photons by electrons and
positrons in Quantum Electrodynamics (QED). A crucial difference with
this latter theory is, however, that the gluons themselves are carriers of
color, allowing them to self-interact. Correspondingly, the SU(3) symmetry
group associated to the color charge is non-abelian, in contradistinction
with the abelian U(1) group at the basis of QED. The fundamental theory
of the strong interaction appears, therefore, as the non-abelian general-
ization of Quantum Electrodynamics.

Although conceptually quite appealing, this generalization hides, in
fact, the long process that lead to the construction of QCD as the funda-
mental theory of the strong interaction, from the thorough study of the
many observed particles that reacted to the strong force and the proposal
of the quark model as a way to bring order to complexity [1–3], to the
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CHAPTER 1. INTRODUCTION: THE MANY PATHS TO QCD

experimental evidence for the existence of quarks [4, 5], the proposal of
a new type of charge with an associated non-abelian symmetry group
[6] and the final formulation of QCD in the form of a non-abelian gauge
theory.

The main reason explaining this long process is that, unlike the other
theories describing the fundamental forces of Nature, the elementary
bricks of QCD are not directly observable. Instead, quarks and anti-quarks
appear to us in the form of a large fauna of bound states or resonances,
the hadrons, of which the protons, the neutrons and the pions are just a
few representatives. Moreover, these compound particles come with the
added mystery to always appear in a color-neutral form. This property,
known as (color) confinement [7], as evaded a fully satisfactory theoretical
grasp since the advent of QCD, and, even though it is now pretty much
accepted to be a mathematical property of the theory [8], its rigorous first
principle derivation is one of the open challenges in theoretical particle
physics. The challenge is rooted in the fact that the coupling of the strong
interaction is much larger than the corresponding coupling of the elec-
tromagnetic interaction and, perturbation theory, so useful in this latter
case, is admittedly of no use here.

Confinement characterizes, however, the low energy regime of the
strong interaction. In the opposite, high energy limit, QCD displays a
totally different behavior. Indeed, as any other relativistic field theory,
the coupling of the interaction varies, or “runs”, with the energy scale
relevant to the particular process under scrutiny. In the case of QCD,
the running coupling decreases and approaches zero logarithmically for
asymptotically large values of the energy. This special property is known
as asymptotic freedom [9, 10] and turns QCD at high energies into a
weakly interacting system of quarks and gluons, thus providing access to
some of its properties from first principle perturbative calculations.1

1In practice, a given process involves both hard and soft scales. If so-called factorization
applies, one can rewrite the process as a convolution between hard and soft components. The

2



Another exciting property of the high energy regime can be revealed by
imagining coupling the system to a thermostat. Indeed, owing to asymp-
totic freedom, one expects the interaction to decrease as the temperature
is increased, up to the point where quarks and anti-quarks cannot remain
bound anymore inside of hadrons. The low temperature confined phase
is then expected to evolve into a deconfined phase, sometimes dubbed as
quark-gluon plasma, in which quarks and gluons are liberated and color
neutrality constraints do not apply anymore. Similarly, one expects to find
a deconfined phase at large matter densities, the so-called color-flavor
locked phase [11], although it is superconducting in nature and therefore
rather different from the deconfined phase at high temperature.

Deconfined phases of matter are believed to be relevant in various
physical situations of interest, for instance during the thermal history
of the early Universe [12], or in the core of certain ultra dense stellar
objets [13]. The quest for the quark-gluon plasma and its decay into a
confining phase (as the system cools down) is also the central motivation
for heavy-ion collision experiments, at RHIC (BNL, Brookhaven, USA),
LHC (Cern, Geneva, Switzerland) or FAIR (GSI, Darmstadt, Germany).
Beyond providing the experimental evidence for the existence of decon-
fined phases of matter, the ultimate goal of these experiments is to acquire
valuable insight into the QCD phase diagram, not only as a function of the
temperature, but also as a function of additional external parameters. For
instance, the possible presence of a critical end-point [14, 15] terminating
a line of first order phase transitions in the plane defined by temperature
and density has been and remains nowadays a hotly debated issue. The
classification and analysis of exotic phases along the density axis or as a
function of a possible magnetic field is also of topical relevance [16–20].

Parallel to these large experimental programs, an intense theoretical

former, because they involve large momentum transfers, can be treated within perturbative QCD.
The latter, although non-perturbative, are universal and evolve with the running scale in a way
that can again be determined within perturbative QCD.
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activity has been devoted to extract the properties of the QCD phase
diagram from first principle calculations.2 As already mentioned, per-
turbation theory is certainly a valuable tool in inferring the behavior of
the system at asymptotically large temperatures or densities. However,
for lower values of these parameters, it has to face the counter-effect of
asymptotic freedom, namely that the coupling becomes larger and larger,
eventually invalidating the use of any perturbative expansion. As a matter
of fact, if one insists in decreasing the energy further, the perturbative
running coupling diverges at a finite scale, known as ΛQCD ' 200 MeV that
sets an apparently impassable barrier for perturbative methods. Moreover,
because this energy scale is not much different from the deconfinement
temperature, see below, one concludes that neither the deconfinement
transition nor the confined phase are amenable to perturbative methods.
In fact, even when combined with Hard-Thermal-Loop re-summation tech-
niques at high temperature [26], perturbation theory is believed to give a
good insight on the deconfined phase only down to temperatures of the
order of two to three times the transition temperature [27, 28]. We will
have more to add below on the relevance of perturbative approaches but
the above considerations are usually taken as the starting point for the
development of non-perturbative tools.

The most famous of them is certainly lattice QCD for it yields a full
numerical solution to the theory within a given space-time discretisation
[29, 30]. It is based on the Euclidean functional integral formulation of
QCD and the probabilistic interpretation of the latter, that allows for
the use of importance sampling Monte-Carlo techniques. After various
decades of improvements in order to solve many practical implementation
issues, lattice QCD has now reached the era of precision, providing much
physical insight as well as a wealth of valuable data that other approaches
can use for benchmarking. In the vacuum, this robust approach gives a

2We shall not review here the many interesting approaches that are based on low energy
models of QCD. See for instance [21–25] and references therein.
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very good account of the hadronic spectrum of the theory [31] as well
as compelling evidence that confinement is a property of QCD [8]. At
finite temperature, it provides a clear evidence for the existence of a
transition between confined and deconfined phases at a temperature
of around Td ' 154MeV [32]. The transition is not a sharp transition,
however, rather a crossover [33, 34] characterized by a rapid but smooth
variation of the thermodynamical properties of the system, which can also
be accurately evaluated within lattice simulations [35].

One of the main drawbacks of lattice simulations is that they rely cru-
cially on the probabilistic interpretation of the functional integral. Away
from this comfort zone, that is whenever the functional to be integrated
is not positive definite, they suffer a tremendous loss of accuracy, known
as sign problem [36, 37]. The latter prevents the investigation of many
interesting quantities such as the QCD phase diagram for moderate to
large densities (and small temperatures) or the evaluation of dynamical
quantities such as transport coefficients. Many approaches have been
devised to circumvent or at least tame the lattice sign problem, such as
Taylor expansions around small densities, re-weightings of the functional
integral, numerical continuations from imaginary chemical potentials, and
more recently the use of Lefschetz thimbles [38] or of complex Langevin
dynamics [39]. Although valuable progress could be achieved within each
of these approaches, no complete solution to the QCD sign problem is
available so far.

The second possible class of methods beyond perturbation theory go
under the name of continuum (or functional) non-perturbative methods. To
avoid the sign problem, these approaches do not aim at a direct numerical
evaluation of the QCD functional integral but rather at the (approxi-
mate) resolution of sets of exact equations characterizing the dynamics
of the system. These equations can be for instance the set of quantum
equations of motion, known as Dyson-Schwinger equations [40–44], or
the hierarchy of renormalization group equations that one derives from
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CHAPTER 1. INTRODUCTION: THE MANY PATHS TO QCD

the Wetterich equation [45–47]. Related approaches include the use of
n-particle-irreducible effective actions [48, 49], the Hamiltonian formal-
ism and its variational principle [50, 51], or Dyson-Schwinger equations
modified through the pinch technique [52].

One common denominator to most continuum approaches is that the
elementary quantities they give directly access to are the correlation
functions of the system. The latter obey infinite hierarchies of coupled
equations that cannot, in general, be solved exactly. As such, there exists
in general no simple systematics for improvement, as opposed to the per-
turbative or lattice approaches. Instead, one usually resorts to truncations
of the infinite hierarchy of equations, dictated either by physical intuition
or computability criteria. The quality of these truncations needs in any
case to be tested a posteriori. An added difficulty in the case of QCD is
that the correlation functions are not uniquely defined. Indeed, within any
gauge theory such as QCD, the definition of correlation functions makes
sense only within a specified gauge, turning the correlation functions into
subtly gauge-dependent quantities, as opposed to the physical, gauge-
invariant observables that one can access from lattice simulations. In
principle, observables can be reconstructed in terms of the gauge-variant
correlation functions but this requires an accurate determination of the
latter through appropriate truncations, the quality of which can again
be tested only a posteriori. Comparison between various continuum ap-
proaches or confrontation to lattice results (when available) is therefore a
crucial element in finding the appropriate truncations.

Here, lattice simulations come specially in handy. Indeed, the latter
can not only be formulated in a gauge invariant setting but also within
a specified gauge. In particular, over the past twenty years, an intense
activity has been devoted to the evaluation of Landau gauge correla-
tion functions, both from lattice simulations and from continuum non-
perturbative approaches. The reason for choosing the Landau gauge is
two-fold. First, this gauge can be formulated as an extremization problem
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which is perfectly suited for a lattice implementation [53–62]. Second, and
even more importantly, the Landau gauge correlation functions have been
thought to provide direct access to the physics of confinement. Indeed,
in their seminal work [63], by combining the symmetry properties of the
Landau gauge together with the hypothesis of confinement, Kugo and
Ojima could predict a very characteristic behavior of the two-point corre-
lation functions for the ghost fields (certain additional degrees of freedom
that are introduced when specifying to the Landau gauge). According
to them, the ghost two-point function should be strongly enhanced at
low momenta, with respect to the two-point function in the absence of
interactions. Correspondingly, the gluon propagator should vanish at low
momenta. This characteristic low momentum behavior, known nowadays
as scaling, could be observed in the various continuum non-perturbative
approaches mentioned above [43, 44, 64–67].

This solution, however, does not seem to be the one seen in lattice
simulations where the gluon two-point function and the ghost dressing
function (the ratio of the ghost two-point function to its non-interacting
version) both saturate to finite non-zero values at low momentum, defining
what is nowadays referred to as a decoupling behavior [53, 68–71]. It has
eventually been shown that non-perturbative continuum approaches can
accommodate both scaling and decoupling type solutions [72], with how-
ever the price of modifying the boundary conditions of the corresponding
infinite hierarchy of equations. Since then, the agreement between lattice
and non-perturbative approaches has considerably increased, providing
better control on the truncations that are considered and opening the way
to a myriad of applications of functional methods to QCD. In particular,
many aspects of the QCD phase diagram can now be addressed with these
methods [73–81].

This manuscript reviews the results obtained within yet a third route,
as originally proposed in [82, 83]. To understand it better, we need to take a
few steps back. We argued above that perturbation theory, although quite
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CHAPTER 1. INTRODUCTION: THE MANY PATHS TO QCD

relevant at high energies, seems to contain the seeds of its own breakdown
as the energy is lowered, since the perturbative running coupling increases
and eventually diverges at a finite scale. It is to be noted, however, that,
in a gauge theory, the very definition of perturbation theory requires a
gauge to be specified. Put it differently, there is not a unique perturbative
expansion in QCD, but infinitely many, in fact as many as there are ways
to fix the gauge. It is true that the way the coupling runs is universal
at high energies.3 However, both the actual value of the coupling (at all
energies) and its running at low energies are not universal. In general,
they depend both on the renormalization scheme and on the gauge that
one works with. Therefore, the properties of the perturbative expansion,
including its range of validity, depend on the precise procedure used to fix
the gauge.

Gauge-fixing is usually performed by following a standard approach,
know as the Faddeev-Popov procedure. The outcome of this procedure
is that, in practice, one should not work with the original QCD action
but, rather, with a gauge-fixed version of it, known as the Faddeev-Popov
action. In principle, these two formulations are identical. In practice,
however, the Faddeev-Popov construction relies on certain mathematical
assumptions which are known not to be realized due to the so-called
Gribov copy problem or Gribov ambiguity [84]. It is generally accepted
that this mathematical subtlety can be neglected in the high energy
regime of the theory. However, in the opposite limit, no one really knows
how it could impact the gauge-fixed implementation of QCD. Even the
breakdown of perturbation theory at low energies could be questioned
and some quantities could become amenable to perturbative methods.
The thesis to be defended in this manuscript is that certain aspects, in
particular the physics of the deconfinement transition, could become akin
to perturbative methods once the standard Faddeev-Popov gauge-fixing

3The β function that controls this running is shown to be two-loop universal.
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procedure is appropriately extended.
In fact, we know already that this perturbative scenario is too naïve

for the strict QCD case [87]. There are compelling evidences, however,
that the scenario could apply to the gluonic or pure gauge sector of QCD.
This manuscript aims at reviewing some of these evidences. We mention
of course that the study of the pure gauge sector is not a purely academic
question, disconnected from QCD. The corresponding Yang-Mills theory
remains non-trivial due to the self-interaction of the gluons and, to some
extent, it is believed to capture some of the non-trivial features of QCD,
in a simplified setting. In particular, unlike the physical QCD case, the
deconfinement transition appears here as a genuine phase transition,
associated with the breaking of a symmetry, the so-called center symmetry
of Yang-Mills theory at finite temperature, that can be probed with order
parameters such as the Polyakov loop. Moreover, as discussed in [87, 88],
a perturbative grasp on the gluon dynamics could open the way to the
study of some of the properties of QCD, if not with perturbative methods,
at least by means of a systematic expansion scheme, controlled by small
parameters.

Roughly speaking, the approaches beyond the standard gauge-fixing
procedure can be classified into two categories: semi-constructive ap-
proaches on the one hand, that aim at resolving the Gribov problem, at
least in some approximate form, and more phenomenologically inspired
approaches on the other hand, that aim at constraining or even falsifying
the operators that could appear beyond the Faddeev-Popov prescription.
In this second type of approaches, constraints could come from experi-
mental measurements but also from lattice simulations. In particular,
gauge-fixed lattice simulations are a method of choice in constraining
whatever model beyond the Faddeev-Popov prescription, precisely because
they themselves do not rely on the Faddeev-Popov construction.

Among the possible phenomenological models beyond the Faddeev-
Popov action, the so-called Curci-Ferrari model [85] (also known as Fradkin-
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CHAPTER 1. INTRODUCTION: THE MANY PATHS TO QCD

Tuytin model [86]) is a particularly interesting one. This model was
originally introduced as a renormalizable infrared regularization of the
Faddeev-Popov action, in the form of a mass term for the gluon field that
eventually needed to be taken to zero. More recently, it has been proposed
as a model beyond the Faddeev-Popov procedure, with the important
difference that the Curci-Ferrari mass remains here a free parameter.4

This proposal is grounded on how (surprisingly) well the lattice Landau
gauge decoupling type correlators in the vacuum can be accommodated
by the one-loop correlation functions of the model [82, 83]. This applies
not only to the two-point correlator functions, but also to the three-point
correlators [89]. Moreover, the model being renormalizable, there is only
one additional parameter as compared to the Faddeev-Popov action, that
can be adjusted from the comparisons to lattice results in the vacuum. The
success of the model in reproducing the vacuum Landau gauge correlators
from high to low momentum scales relies on the existence of infrared
safe renormalization group trajectories along which the coupling of the
interaction remains moderate.5

As a further stringent test of the model, the goal of this manuscript is
to review how consistent are its perturbative predictions away from the
vacuum, in particular with regard to the deconfinement transition and
the corresponding phase structure. The plan is as follows:

• In the next chapter, after reviewing the basic properties and limi-
tations of the standard gauge-fixing procedure, we discuss some of the
possible approaches beyond it. We also introduce the approach to be ex-
amined in this manuscript, based on the Curci-Ferrari model, and review
some of the results obtained with this approach in the vacuum, regarding
the Landau gauge correlation functions. A first attempt at studying finite
temperature effects is also reviewed, based on the hypothesis that the

4What is really free is the value of the Curci-Ferrari mass at a given scale. Interestingly
enough, the running Curci-Ferrari mass runs to 0 both at high and at low energies.

5In particular, no Landau pole is found, as opposed to renormalization group trajectories in
the Faddeev-Popov model.
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finite temperature Landau gauge correlators could carry some imprint of
the deconfinement transition. It turns out that this analysis is inconclu-
sive essentially because the Landau gauge, so useful in the vacuum, does
not properly capture the order parameter associated to the deconfinement
phase transition. In order to understand the limitations of the Landau
gauge, we recall some basic considerations related to center symmetry
and the Polyakov loop in Chapter 3. We also explain why these basic
properties are difficult to capture not only within the Landau gauge but
in fact within any standard gauge-fixed setting.

• The previous difficulties can be solved by generalizing the gauge-
fixing in the presence of a background field. Even though part of this is
known material, we dedicate Chapters 4 and 5 to a self-contained inves-
tigation of the use of background field methods at finite temperature. In
particular, we stress the importance of a description of the states of the
system that is free of the redundancy associated to gauge invariance, as
well as the role of self-consistent backgrounds as alternative order para-
meters for center symmetry. We also discuss other symmetry constraints
such as charge conjugation, homogeneity and isotropy, which are rarely
discussed in the literature. As far as possible, we try to critically discuss
the various implicit assumptions that are usually made when applying
background field methods at finite temperature, in particular regarding
the properties of the gauge-fixed measure.

• The perturbative study of the Yang-Mills deconfinement transition
within the Curci-Ferrari model in the presence of a background is given
in Chapter 6, at leading order, together with a comparison to other ap-
proaches. The convergence properties of the approach are investigated
in Chapter 7 where we evaluate the next-to-leading order corrections.
Chapter 8 investigates further the relation between center symmetry and
the deconfinement transition by discussing the case of the SU(4) gauge
group.

• We also discuss the perturbative predictions of the model for a
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theory cousin to Yang-Mills theory, namely QCD in the regime where all
quarks masses are considered heavy. Although this does not correspond
to the physical QCD case, this formal regime of QCD has received a lot
of attention lately since it possesses a rich phase structure that can be
probed with the same order parameters as in the pure Yang-Mills case
and which can be used as a benchmarking of any method that one plans
to extend to the real QCD case. We analyze to which extent the phase
structure in this regime can be described using perturbation theory within
the Curci-Ferrari model. This is done in Chapter 10 after some additional
material is provided in Chapter 9 on the use of background field methods
at finite density.

• Finally, in Chapter 11, we revisit the question of a possible imprint
of the deconfinement transition on the two-point correlation functions
but this time from the point of view of the background extension of the
Landau gauge. In particular, under certain natural assumptions a bona
fide gauge fixing should satisfy, we postulate a specific behavior of the
gluon propagator at the deconfinement transition, in the case of the SU(2)
gauge group, that realizes what was originally searched for in the Landau
gauge.

• Conclusions are presented in Chapter 12 where the main results are
summarized and an outlook is proposed.

This manuscript reviews results covered in Refs. [129, 143, 154, 155,
163, 168, 176]. Beyond the mere review, we have tried as much as possible
to provide a self-contained document, in particular with regard to the used
methodology. We have also included some unpublished work, such as for
instance the material in Sections 6.3.4, 8.3.4, 10.2 or Appendices A and D.
The manuscript was written during the first half of 2019 and defended the
4th of June of that same year. Since this defended version, a new chapter
has been added (chapter 8) together with some recent relevant references.
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FADDEEV-POPOV GAUGE-FIXING

AND THE CURCI-FERRARI MODEL

The point of view taken in this manuscript is, one, that tackling the
low energy properties of non-abelian gauge theories in the contin-
uum requires extending the standard, but incomplete, Faddeev-

Popov gauge-fixing procedure, and, second, that once such an extension
is found, a new perturbative scheme could become available in the in-
frared. In this first chapter, we introduce the Curci-Ferrari action, as a
phenomenological model for an extension of the Faddeev-Popov action in
the Landau gauge.

For the sake of completeness, we first review the standard gauge-fixing
procedure together with its main properties and limitations. We then
discuss some of the approaches that have been devised in order to go
beyond it and, finally, particularize to the Curci-Ferrari model. We recall
that the latter does a pretty reasonable job in reproducing some of the
known low energy properties of Yang-Mills theory in the vacuum, already
at one-loop order. We also discuss the difficulties that appear when using
the model at finite temperature, serving as the main motivation for the
developments in the rest of the manuscript.
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CHAPTER 2. FADDEEV-POPOV GAUGE-FIXING
AND THE CURCI-FERRARI MODEL

2.1 Standard gauge-fixing

For simplicity, let us review the standard gauge-fixing procedure in the
case of Yang-Mills theory (YM), the theory obtained from QCD after
neglecting the dynamics of quarks. Of course, a similar discussion could
be carried out in the presence of matter fields.

2.1.1 Gauge-invariance

Yang-Mills theory describes the dynamics of a non-abelian gauge field
Aa
µ(x). The index a corresponds to an internal degree of freedom (color)

and labels the generators ita of a non-abelian gauge group, SU(N) in what
follows. The non-abelian structure is encoded in the structure constants
f abc such that [ta, tb]= i f abctc, and the dynamics is specified by the action

(2.1) SY M[A]= 1
4g2

0

∫
ddx Fa

µν(x)Fa
µν(x) ,

with Fa
µν ≡ ∂µAa

ν−∂νAa
µ+ f abc Ab

µ Ac
ν the non-abelian generalization of the

QED field-strength tensor. Since the applications to be discussed in this
manuscript concern the equilibrium properties of the QCD/YM system,
we have here chosen the Euclidean version of the action and, therefore,
there is no distinction between covariant and contravariant indices [90].
Moreover, the gauge field should be taken periodic along the Euclidean
time direction, with a period equal to the inverse temperature β ≡ 1/T.
Correspondingly, the integration symbol

∫
ddx needs to be understood as∫ β

0 dτ
∫

dd−1x and we have Aa
µ(τ+β,~x)= Aa

µ(τ,~x).
The main feature of the YM action is of course that it is gauge-

invariant. This is most easily seen by rewriting (2.1) in an intrinsic form
that does not depend on the particular coordinate system used to describe
the color degrees of freedom.1 One interprets any colored object X a as an

1Later, this will also facilitate the change from the standard, Cartesian bases to the so-called
Cartan-Weyl bases. We shall introduce and use of these bases in subsequent chapters.
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element of the SU(N) Lie algebra X ≡ iX ata. To any two such elements X
and Y , one then associates the Killing form2

(2.2) (X ;Y )≡−2tr XY ,

which allows to rewrite the Yang-Mills action as

(2.3) SY M[A]= 1
4g2

0

∫
ddx

(
Fµν(x);Fµν(x)

)
,

with Fµν = ∂µAν−∂νAµ− [Aµ, Aν]. In this intrinsic representation, a gauge
transformation of the gauge-field is defined to be

(2.4) AU
µ (x)≡U(x) Aµ(x)U†(x)−U(x)∂µU†(x) ,

with U(x) ∈ SU(N), ∀x. It is then easily verified that the field strength
tensor transforms correspondingly as

(2.5) FU
µν(x)=U(x)Fµν(x)U†(x) .

From its definition, the Killing form is trivially invariant under color
rotations in the sense (U XU†;UYU†)= (X ;Y ). It follows, as announced,
that the action (2.1) is gauge invariant. In more pompous terms, it is
constant along a given orbit, defined as the collection of configurations AU

as U spans the possible gauge transformations, for a given A.

2.1.2 Observables

The gauge-invariance of the YM action is just the expression of a certain
arbitrariness in the choice of the gauge-field configuration that describes a
given physical situation. Observables cannot depend on this arbitrariness
and, therefore, are to be represented by gauge-invariant functionals.3 To

2The minus sign is chosen such that (ita; itb)= δab.
3We are deliberately being vague here concerning the type of gauge transformations that

should be considered. At finite temperature, where the gluon field is periodic along the Euclidean
time direction, the true, unphysical gauge transformations are also periodic. There are more
general gauge transformations that preserve the periodicity of the fields but those are associated
to physical transformations in a sense to be clarified in the next chapter.
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any such observable O [A], one associates an expectation value as

(2.6) 〈O〉 ≡
∫

DAO [A] e−SY M[A]∫
DA e−SY M[A] .

where SY M[A] and DA are also gauge-invariant.

The usual difficulty with the above definition is that it involves two in-
definite integrals. Indeed, since O [A], SY M[A] and DA are gauge-invariant,
the integrals sum redundantly over the orbits of the gauge group and are
thus proportional to the (infinite) volume of the group. Even though these
two infinities should formally factorize and cancel between the numerator
and the denominator of (2.6), their presence prevents any expansion of
〈O〉 in terms of expectation values of gauge-variant functionals, typically
products of gauge fields at the same spacetime point, as needed by most
continuum approaches.

One possibility to tackle this problem is to find a way to rewrite the
definition (2.6) identically as

(2.7) 〈O〉 =
∫

Dgf[A]O [A] e−SY M[A]∫
Dgf[A] e−SY M[A] ,

where the measure Dgf[A] is restricted to gauge field configurations obey-
ing a certain, gauge-fixing condition F[A] = 0. Good gauge-fixing condi-
tions should be such that F[AU] 6= F[A], and, therefore, Dgf[AU] 6=Dgf[A].
In this case, the expression (2.7) for the expectation value extends to
gauge-variant functionals and can then be used as a starting point for
developing continuum methods.

Of course, the crux of the problem lies in the construction of the gauge-
fixed measure Dgf[A]. The usual strategy is the so-called Faddeev-Popov
procedure [91, 92] which we now recall.
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2.1.3 Faddeev-Popov procedure

In the Faddeev-Popov approach, under the assumption that the constraint
F[A]= 0 admits a unique solution on each orbit, one writes

(2.8) 1=
∫

DU∆[AU]δ
(
F[AU]

)
,

where ∆[AU] is the determinant of δF[AU]/δU, the so-called Faddeev-
Popov operator.4

Plugging the identity (2.8) into the definition (2.6) and using the gauge
invariance of O [A], SY M[A] and DA, one obtains

(2.9) 〈O〉FP =
∫

DU
∫

DAU O [AU]∆[AU]δ(F[AU]) e−SY M[AU ]∫
DU

∫
DAU∆[AU]δ(F[AU]) e−SY M[AU ]

.

Changing variables from AU to A, the volume of the gauge group factorizes
and cancels between the numerator and the denominator. One then arrives
at the following gauge-fixed expression for the expectation value:

(2.10) 〈O〉FP =
∫

DFP[A]O [A] e−SY M[A]∫
DFP[A] e−SY M[A] ,

where the Faddeev-Popov gauge-fixed measure is defined as

(2.11) DFP[A]≡DA∆[A]δ(F[A]) .

A similar analysis applies to the partition function except for an overall
volume factor which, however, does not affect the temperature-dependent
part of the free-energy density. One finds Z = V ×ZFP, with

(2.12) ZFP =
∫

DFP[A] e−SY M[A] ,
4Strictly speaking, it is the absolute value of the determinant that should appear in Eq. (2.8).

However, since it is assumed that there is only one solution to F[A]= 0 on each orbit, and if one
further assumes that this solution changes continuously as one changes the orbit, the sign of
the determinant is constant and, therefore, irrelevant in the Faddeev-Popov approach. Moreover,
that ∆[AU ] does not depend independently on A and U follows from the identity AVU = (AU )V

which implies F[AδVU ]= F[(AU )δV ].
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and V the volume of the group of gauge transformations, such that
− ln V ∝βΩ with βΩ the Euclidean spacetime volume.

We mention that the previous derivation relies on a rather strong as-
sumption, namely that the solution to the gauge-fixing condition F[A]= 0
is unique along a given orbit. As pointed out by Gribov [84], this assump-
tion is generally wrong due to the existence, instead, of multiple solutions,
the so-called Gribov copies. For this reason, we have denoted by 〈O〉FP

the gauge-fixed expression for the expectation value of an observable as
obtained from the Faddeev-Popov approach, which may differ from 〈O〉
as originally defined in Eq. (2.6). We shall come back to this important
point in the next section. For the time being, we continue reviewing the
properties of the Faddeev-Popov approach.

2.1.4 Faddeev-Popov action

The previous formulation is not very practical due to the presence of both
the determinant ∆[A] and the functional Dirac distribution δ(F[A]) in the
gauge-fixed measure (2.11). As it is well known, one can transform the
latter into a standard field theory with the price of introducing additional
fields.

First, the factor δ(F[A]) can be treated using a Nakanishi-Lautrup
field ha as

(2.13) δ(F[A])=
∫

Dh exp
{
−

∫
ddx iha(x)Fa[A](x)

}
.

Second, the determinant ∆[A] can be evaluated by assuming that F[A]= 0
due to the presence of the factor δ(F[A]). One finds

(2.14) ∆[A]= det
δFa[AU](x)
δθb(y)

∣∣∣∣
θ=0

= det
∫

dd z
δFa[A](x)
δAc

µ(z)

δ(AU)c
µ(z)

δθb(y)

∣∣∣∣∣
θ=0

,

with U = eiθata
. Since (AU)c

µ(z) is nothing but the covariant derivative
Dµθ

c(z)≡ ∂µθc(z)+ f cde Ad
µ(z)θe(z) at leading order in θ, one arrives even-
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tually at

(2.15) ∆[A]= det

(∫
dd z

δFa[A](x)
δAc

µ(z)
Dcb
µ δ(z− y)

)
.

Finally, by introducing (Grassmanian) ghost and anti-ghost fields ca and
c̄a, this rewrites

(2.16) ∆[A]=
∫

D[c, c̄] exp

{∫
ddx

∫
dd y c̄a(x)

δFa[A](x)
δAb

µ(y)
Dµcb(y)

}
.

All together, the gauge-fixed expression for the expectation value of an
observable in the Faddeev-Popov approach reads

(2.17) 〈O〉FP =
∫

D[A, c, c̄,h]O [A] e−SFP[A,c,c̄,h]∫
D[A,h, c, c̄] e−SFP[A,c,c̄,h] ,

where SFP[A, c, c̄,h] ≡ SY M[A]+δSFP[A, c, c̄,h] is the so-called Faddeev-
Popov action, with
(2.18)

δSFP ≡−
∫

ddx
∫

dd y c̄a(x)
δFa[A](x)
δAb

µ(y)
Dµcb(y)+

∫
ddx iha(x)Fa[A](x) .

Similarly, one rewrites the Faddeev-Popov partition function (2.12) as
ZFP =

∫
D[A, c, c̄,h] e−SFP[A,c,c̄,h].

The Landau gauge to be considered in this manuscript corresponds to
the choice Fa[A](x)= ∂µAa

µ(x). The corresponding Faddeev-Popov operator
is ∂µDab

µ δ(x− y), and therefore

(2.19) δSFP =
∫

ddx
{
∂µ c̄a(x)Dµcb(x)+ iha(x)∂µAa

µ(x)
}

,

where an integration by parts has been used in the ghost term.

2.1.5 BRST symmetry

As we now recall, the Faddeev-Popov action possesses a very important
symmetry, the so-called BRST symmetry [93], at the origin of many prop-
erties, including its renormalizability [93–95].
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Suppose that we perform an infinitesimal gauge transformation of
the form δAa

µ = η̄Dµca ≡ η̄ sAa
µ, with η̄ a constant Grassmanian parameter.

The Yang-Mills part of the action is of course invariant by construction, so
let us focus on the gauge-fixing part δSFP. We find

sδSFP =
∫

ddx
∫

dd y (iha(x)− sc̄a(x))
δFa[A](x)
δAb

µ(y)
Dµcb(y)

+
∫

ddx
∫

dd y c̄a(x)
δFa[A](x)
δAb

µ(y)
s2Ab

µ(y)

+
∫

ddx siha(x)Fa[A](x) ,(2.20)

where we have used that∫
dd y

∫
dd z

δFa[A](x)
δAb

µ(y)δAc
ν(z)

Dνcc(z)Dµcb(y)

= −
∫

dd z
∫

dd y
δFa[A](x)

δAc
ν(z)δAb

µ(y)
Dµcb(y)Dνcc(z)

= −
∫

dd y
∫

dd z
δFa[A](x)

δAb
µ(y)δAc

ν(z)
Dνcc(z)Dµcb(y)= 0 .(2.21)

We see that the gauge-fixing contribution is invariant if we set sc̄a = iha,
siha = 0 and choose sca such that s2Aa

µ = 0. A simple calculation reveals
that this is ensured if sca = 1

2 f abccbcc.

In summary, the Faddeev-Popov action is invariant under

(2.22) sAa
µ = Dµca, sca = 1

2
f abccbcc, sc̄a = iha, siha = 0 ,

which is known as BRST symmetry. It is easily verified that s2 vanishes
not only over Aa

µ but over the whole functional space and the BRST
symmetry s is then said to be nilpotent. In fact, the BRST invariance of
the Faddeev-Popov action can be understood in terms of the nilpotency of
s and the gauge-invariance of SY M since the action rewrites

(2.23) SFP = SY M + s
∫

ddx c̄a(x)Fa[A](x) ,

and therefore sSFP = sSY M = 0.
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2.1.6 Gauge-fixing independence

For the gauge-fixing procedure to make sense at all, it should be of course
such that the expectation value of a gauge-invariant functional does not
depend on the choice of gauge-fixing condition. In the Faddeev-Popov ap-
proach, this basic property is not guaranteed a priori since, as mentioned
above, the procedure relies on an incorrect assumption. It is one of the
merits of the BRST symmetry to ensure nonetheless the gauge-fixing
independence of the observables in the Faddeev-Popov framework.

To see how this works, let us first derive the following lemma:
___________________________________________________________________
Given an infinitesimal symmetry ϕ→ϕ+δϕ of a theory S[ϕ], the expec-
tation value of the infinitesimal variation δO [ϕ] needs to vanish.
___________________________________________________________________

This lemma is easily shown by writing

(2.24)
∫

DϕO [ϕ] eS[ϕ] =
∫

DϕO [ϕ+δϕ] eS[ϕ] ,

where one performs a change of variables in the form of an infinitesi-
mal transformation and uses the assumed invariance of S[ϕ] under this
transformation.5

Let us now apply the lemma to prove the gauge-fixing independence
of the observables in the Faddeev-Popov approach. Consider first the
Faddeev-Popov partition function ZFP and let λ denote any parameter that
may enter the definition of the gauge-fixing. From Eq. (2.23), we find

(2.25)
d

dλ
ln ZFP =

〈
s
∫

ddx
(
c̄a(x)

dFa[A](x)
dλ

)〉
.

5It is to be mentioned that this standard derivation does not pay too much attention to how
the measure and the integration domain are transformed. This is of course because, in general,
they are both invariant. However, in the case of a BRST transformation, the initial integration
domain for the gauge-field A is made of purely numerical functions, whereas the transformed
domain is a more general space, including still commuting but non-numerical contributions of
the form η̄Dc. Similarly the measure transforms non-trivially. We argue in Appendix A that the
above lemma is unaffected by these subtleties.
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Being the expectation value of an infinitesimal symmetry transformation,
the right-hand side needs to vanish according to the lemma, from which
we deduce that dZFP/dλ = 0 and thus that the partition function does
not depend on the choice of gauge-fixing functional F[A]. This result
extends in fact to any observable. Using the previous result together with
sO [A]= 0, we find indeed

(2.26)
d

dλ
〈O〉FP =

〈
s
(
O [A]

∫
ddx c̄a(x)

dFa[A](x)
dλ

)〉
,

which vanishes for the same reason.

2.2 Infrared completion of the gauge-fixing

As we have already mentioned, the derivation of the Faddeev-Popov action
(2.18), together with its main properties, relies on a strong assumption,
which is known to not always hold true [84]. In particular, it is incorrect
in the case of the Landau gauge [96] to which we restrict from now on.

2.2.1 Gribov copies

The point is that, contrary to what is assumed in the Faddeev-Popov con-
struction, the gauge-fixing condition F[A]= 0 admits multiple solutions
along a given orbit, the so-called Gribov copies. The existence of the latter
invalidates the use of Eq. (2.8) and, therefore, the identification of 〈O〉 and
〈O〉FP, as given respectively by Eqs. (2.6) and (2.17).

The identification 〈O〉FP ≈ 〈O〉 is nonetheless believed to be legitimate
at high energies since only a perturbative region of the space of gauge-field
configurations contributes to the functional integral and the Gribov copies
can be neglected. In this case, one can evaluate 〈O〉 using the perturbative
expansion of 〈O〉FP which is controlled at high energies thanks to the
asymptotic freedom property [10].
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In contrast, in the low energy regime, the situation is much less clear.
The perturbative expansion of 〈O〉FP is useless due to the presence of an
infrared Landau pole. At the same time, there is no argument anymore in
favour of the identification 〈O〉FP ≈ 〈O〉. As a matter of fact, undoing the
step from Eq. (2.10) to Eq. (2.9) and integrating over the gauge group by
taking into account possible copies, one finds

(2.27) 〈O〉FP =
∫

DAO [A] e−SY M[A] ∑
i(A) s i(A)∫

DA e−SY M[A] ∑
i(A) s i(A)

,

where i(A) labels the Gribov copies along the orbit of A and where s i(A) is
the sign of the Faddeev-Popov determinant on copy i(A). If the quantity∑

i(A) s i(A) were non-zero and of constant sign along the various orbits, the
identification of 〈O〉FP and 〈O〉 would indeed be correct. Unfortunately, for
compact gauge groups, the sum vanishes instead, leading to a 0/0 indeter-
mination, the so-called Neuberger zero problem [97, 98], which prevents
the formal identification of 〈O〉FP and 〈O〉 beyond the one discussed above
in the high energy, perturbative domain. Similarly, the Faddeev-Popov
partition function vanishes.

This calls for constructing alternative gauge-fixing procedures that
take into account the effect of the Gribov copies, at least in some approx-
imate form.6 The quest for such an infrared completion of the Faddeev-
Popov gauge-fixing is not only formal. In fact, according to certain scenar-
ios, once such a gauge-fixing is found, a new perturbative expansion could
become available in the low energy regime [82, 83, 89].

Various strategies have been devised to include the Gribov copies in a
more rigorous way. Let us briefly review some of them.

6Another interesting approach relies in decomposing the gauge group into a subgroup where
the gauge-fixing problem is trivial and a quotient group where the Neuberger zero is absent
[99, 100].
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2.2.2 Gribov-Zwanziger approach

One possibility is to restrict the functional integration over gauge-field
configurations to a subdomain such as some (but in general not all) copies
are excluded. This is for instance achieved in the Gribov-Zwanziger ap-
proach where so-called infinitesimal copies are excluded by restricting to
a region such that the Faddeev-Popov operator −∂µDµ is positive definite
[101, 102].

Just as in the Faddeev-Popov approach, the Gribov-Zwanziger proce-
dure can be formulated as a local and renormalizable theory. A nilpotent
BRST symmetry can be identified but it is non-local [103]. More recently,
a proposal has been made to rewrite the Gribov-Zwanziger action into an
alternative local form that displays a local and nilpotent BRST symmetry
[104]. This rewriting requires however neglecting once more the presence
of copies.

One very appealing feature of the Gribov-Zwanziger approach is that
a mass scale is dynamically generated and determined only in terms of
the Yang-Mills coupling, a feature that any bona fide gauge-fixing should
possess. However, in its original formulation, the Gribov-Zwanziger action
predicts correlation functions at odds with the ones obtained on the lattice.
It has since then been refined by the inclusion of condensates in order to
improve the comparison with lattice results [105, 106].

2.2.3 Serreau-Tissier approach

Another possible strategy, followed for instance by Serreau and Tissier
[107], see also [108] for a similar idea, is to sum formally over all copies,
just as in Eq. (2.27) but with a weighting factor w[AUi(A)] that avoids
the Neuberger zero problem. To ensure that the result is an identical
rewriting of Eq. (2.6), one considers an average rather than a sum.
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To this purpose, one inserts in Eq. (2.6) the identity

(2.28) 1=
∑

i(A) s i(A)w[AUi(A)]∑
i(A) s i(A)w[AUi(A)]

=
∫

DU∆[AU]δ
(
F[AU]

)
w[AU]∫

DU ′∆[AU ′]δ
(
F[AU ′]

)
w[AU ′]

.

Under the integral over A, the volume of the gauge group can be factored
out in the integral over U, while leaving the integral over U ′ unaffected
thanks to the change of variables U ′ →U ′U†. One eventually arrives at

(2.29) 〈O〉 =
∫

DST[A]O [A] e−SY M[A]∫
DST[A] e−SY M[A] ,

with the Serreau-Tissier measure defined as

(2.30) DST[A]≡DA∆[A]δ(F[A]) e− ln
∫

DU ′∆[AU′
]δ(F[AU′

])w[AU′
] .

Note that we have not included any labelling of 〈O〉 since the rewriting is
exact at this point.

In principle, the logarithm of the U ′-integral in the above expression
provides a non-trivial correction to the Faddeev-Popov action. In practice,
however, it is not possible to evaluate this correction exactly and the
following strategy has been adopted, based on the well known replica trick
of Statistical Physics [109]. One writes

(2.31) DST[A]= lim
z→0

D z
ST[A] ,

with

(2.32) D z
ST[A]≡DA∆[A]δ(F[A])

(∫
DU ′∆[AU ′

]δ
(
F[AU ′

]
)
w[AU ′

]
)z−1

.

For any strictly positive integer value of z, the right-hand-side can be
rewritten as a standard field theory involving z replicated versions of
the ghost, anti-ghosts and Nakanishi-Lautrup fields, in addition to z−1
replicas for the field U ′.

This formulation in terms of replicas can be used for practical cal-
culations. The subtle question is, however, how the results obtained for
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an integer number of replicas z ∈ N∗ can be extrapolated to the zero
replica limit z → 0, which requires z ∈R. To date, it is not clear how this
limit should be taken.7 For this reason we shall write the last step of the
Serreau-Tissier approach as

(2.33) 〈O〉ST = lim
z→0

∫
D z

ST[A]O [A] e−SY M[A]∫
D z

ST[A] e−SY M[A] ,

with a labelled expectation value 〈O〉ST to emphasize that, just as in the
case of the Faddeev-Popov approach, the identification between 〈O〉ST and
〈O〉 is still open to debate.

2.2.4 Curci-Ferrari approach

In addition to these semi-constructive strategies, one can envisage a more
phenomenological approach. Indeed, since the standard Faddeev-Popov
action is meant to be modified from a proper account of the Gribov copies,
one can try to propose possible corrections in the form of operators added
to the Faddeev-Popov action8 and constrain the corresponding couplings
from comparison to experiment and/or numerical simulations. All things
considered, the idea is pretty similar to the search of theories beyond
the Standard Model, of course at a more pedestrian level and with the
important difference that, in the present case, the action for the physical
theory is known, be it the Yang-Mills action or the QCD action. What is
searched after is a gauge-fixed version of this physical action, beyond the
standard Faddeev-Popov recipe.

For the Landau gauge, one proposal which has been explored in recent
years is the one based on the Curci-Ferrari model [85, 86]. It consists in
supplementing the Faddeev-Popov action (2.19) with a mass term for the

7An analytic function f (z) is not uniquely determined from its values for z ∈N∗.
8While fulfilling of course the basic symmetries compatible with the gauge-fixing at hand.
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gluon field, SCF[A, c, c̄,h]≡ SY M[A]+δSCF[A, c, c̄,h], with
(2.34)

δSCF =
∫

ddx
{
∂µ c̄a(x)Dµca(x)+ iha(x)∂µAa

µ(x)+ 1
2

m2Aa
µ(x)Aa

µ(x)
}

.

We stress that this is just a model and the question to be asked here is
not whether this action represents a bona fide gauge-fixing but, rather,
whether the Curci-Ferrari mass term could represent a dominant contribu-
tion to the unknown gauge-fixed action beyond the Faddeev-Popov terms.
Of course, other operators could be dominant and the only way to test
this is to confront the predictions of the Curci-Ferrari model with those
of alternative approaches. The rest of the manuscript will be essentially
concerned with this question.

Yet, it is interesting to note that the Curci-Ferrari model possesses
quite a number of convenient features. In particular, it is stable under
renormalization, which means that there is only one additional parameter
to be dealt with. That this is so can be seen as a consequence of the fact
that the model possesses a BRST-like symmetry sm. Indeed, if we take
sm Aa

µ = sAa
µ (we want of course the Yang-Mills part to be invariant on its

own), the Curci-Ferrari mass term transforms as

(2.35) sm

∫
ddx

1
2

m2Aa
µ(x)Aa

µ(x)=−
∫

ddx m2ca(x)∂µAa
µ(x) ,

where we have used an integration by parts. The obtained variation is very
similar to the third term of Eq. (2.20). It follows that the Curci-Ferrari
action is invariant under the modified BRST transformation

(2.36) sm Aa
µ = Dµca, smca = 1

2
f abccbcc, sm c̄a = iha, smiha = m2ca ,

where sm differs from s only on its action over the Nakanishi-Lautrup field.
Related to this symmetry are two non-renormalization theorems, that
greatly facilitate the renormalization of the Curci-Ferrari model [83, 110].

Other properties of the Faddeev-Popov action do not survive the pres-
ence of the Curci-Ferrari mass term. In particular, the modified BRST
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symmetry is not nilpotent anymore since s2
m c̄a = m2ca. Moreover, the

“gauge-fixed” part of the action does not rewrite as a variation under this
modified BRST transformation. It should be stressed, however, that it is
not clear whether the standard BRST symmetry should be manifest in the
infrared, precisely because it appears as a result of neglecting the Gribov
copies.9

Let us close this section by mentioning that the Curci-Ferrari model
bears interesting relations to the other approaches described above. For
instance, as we have mentioned, the standard Gribov-Zwanziger action
needs to be refined with the use of condensates that modify the usual
Gribov-Zwanziger propagator as

(2.37) GGZ(Q)= Q2

Q4+γ4 → GRGZ(Q)= Q2+M2

Q4+ (M2+m2)Q2+M2m2+γ4 .

A recent investigation on the dynamical generation of these condensates
finds that M2 is larger than both the Gribov parameter γ2 and the gluon
condensate m2 [113]. Although the differences are not dramatic, it is inter-
esting to note that for large enough M2, the refined Gribov Zwanziger prop-
agator approaches the Curci-Ferrari one, so not only the corresponding
fields decouple, but the Gribov parameter disappears from the tree-level
propagator.

Another connection exists with the Serreau-Tissier approach. Indeed,
by choosing the weighting functional as

(2.38) w[A]≡ exp
{
−

∫
ddx

1
2
ρ Aa

µ(x)Aa
µ(x)

}
,

it could be shown that the perturbative evaluation of any correlation
function involving only the original, non-replicated fields, is equivalent to

9Interestingly enough, the complicated landscape of Gribov copies is very similar to the
landscape of extrema of the energy functional in disordered systems. The latter are usually treated
using the Parisi-Sourlas procedure [111], which takes the same steps as the Faddeev-Popov
procedure. In this context, it is known that the associated BRST-like symmetry is spontaneously
broken below a critical dimension [112]. One could very well imagine a similar breaking as a
function of the energy in the context of Yang-Mills theories.
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the evaluation of the same correlation function within the Curci-Ferrari
model with m ≡ zρ [107]. The naïve zero replica limit z → 0 brings us back
to the Faddeev-Popov action. However, one could consider the limit in a
different way, by first interpreting zρ as the bare mass of the Curci-Ferrari
model and by using it to absorb the corresponding divergences, after which
the limit z → 0 would again be trivial but would lead to the Curci-Ferrari
model instead.10 Of course, the above argument does not fix the value of
the renormalized Curci-Ferrari mass in terms of the Yang-Mills coupling,
a necessary condition for the procedure to correspond to a bona fide gauge-
fixing, but it gives some indication that the Curci-Ferrari model is maybe
not that far from this goal. As a matter of fact, a mechanism for the
dynamical generation of such a mass could be identified in a gauge cousin
to the Landau gauge [114].

2.2.5 Connection to other approaches

In addition to the above connections, the Curci-Ferrari model could also
be relevant for other continuum approaches including the functional
renormalization group [46, 72, 115], Dyson-Schwinger equations [44, 54,
116–118], the pinch technique [52, 120, 121], or the variational approach
of [122].

All these approaches take the Faddeev-Popov action as a starting
point and aim ideally at circumventing the difficulties of the latter in the
infrared by going beyond perturbation theory. However, because it requires
introducing a cut-off, the practical implementation of these approaches
necessarily leads to an explicit breaking of the BRST symmetry and
implies de facto that the starting action is more general than the Faddeev-
Popov one. In particular, in all present continuum approaches to Yang-
Mills theory, a bare mass term is introduced in one way or an other to

10The fact that the zero replica limit does not commute with other limits is a well known
fact. In applications to disordered systems, it is generally true that one needs to take the infinite
volume limit before the zero replica limit.
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deal with the quadratic divergences that the use of a cut-off entails. This
mass term can take the form of a subtraction in the Dyson-Schwinger and
pinch technique approaches [119, 120], an additional parameter mΛ at
the UV scale in the functional renormalization group approach [115], or
even an explicit mass counterterm in the variational approach [122].

We stress here that this is not a problem per se. One is always allowed
(and sometimes forced) to use a regulator that breaks certain symmetries
of the problem. This just means that the theory space that needs to be
considered is larger. The relevant question is rather how the additional
couplings are fixed in terms of the Yang-Mills coupling. The answer to
this question depends on whether or not BRST symmetry survives in the
infrared. In the case it does, one should fix all the additional parameters
such that the consequences of BRST symmetry are fulfilled. For instance,
in the functional renormalization group approach of [115], one proposal
is to adjust the mΛ parameter so as to trigger the scaling solution, if one
deems the latter a consequence of BRST symmetry (from the Kugo-Ojima
scenario [63]).

However, in the case where BRST symmetry does not survive in the
infrared, the appropriate adjustment of the additional couplings remains
an open question and, for all practical purposes so far, the bare mass
remains a free parameter. For instance, in the functional renormalization
group approach, if one wants to reproduce the lattice correlation functions,
the parameter mΛ needs to be adjusted to fit the lattice data. The same
is true in the case of the pinch technique with the parameter ∆−1

reg(0)
introduced in [120]. It could still be that the lattice decoupling solution can
be generated within a BRST invariant framework but this requires subtle
mechanisms such as the irregularities proposed in [115] or the Schwinger
mechanism discussed in [123–125]. To date, and to our knowledge, none
of these mechanisms was seen to be realized. In this type of scenarios,
studying the Curci-Ferrari model perturbatively can bring an interesting
perspective to the rest of continuum approaches, as a way to disentangle
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what is genuinely non-perturbative from what could become perturbative
once a mechanism for the generation of a Curci-Ferrari mass has been
identified. We shall present some of these comparisons in subsequent
chapters.

As an added note to the original manuscript, let us mention some
recent and interesting development that appearead one year after the
writing of this thesis. In the context of Dyson-Schwinger equations, new
truncations seem to indicate that the earlier ambiguities related to the
removal of quadratic divergences do not seem to impact much the gluon
propagator or its corresponding dressing function [126]. Whether the
full arbitrariness that the subtraction of quadratic divergences entails
has been tested in [126] as well as how the observed insensivity to this
subtraction depends on the specifics of the truncation and how it can be
implemented in other non-perturbative continuum approaches remain
open questions.

2.3 Review of results

Let us conclude this first chapter by reviewing some of the tests that the
Curci-Ferrari model has already passed. We shall also discuss some cases
where it is not fully conclusive, as a motivation for the developments to be
presented in the rest of the manuscript.

The more direct way to test the Curci-Ferrari model is to compare its
predictions for Landau gauge-fixed correlation functions with the corre-
sponding predictions obtained from the lattice: on the one hand, gauge-
fixed correlation functions are the best quantities to test the specificities of
a given gauge; on the other hand, gauge-fixed lattice simulations are less
sensitive to the Gribov ambiguity since gauge-fixing is done by selecting
one copy per orbit.11

11It is statistically rare that two configurations are chosen on the same gauge orbit.
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2.3.1 Zero temperature

In a series of works [82, 83, 89], the lattice results for the vacuum two-
point correlation functions in the Landau gauge [55–62], as well as for
the three-point vertices, have been systematically compared to the one-
loop perturbative predictions of the Curci-Ferrari model. Some of these
comparisons are shown in Figs. 2.1 and 2.2.

The agreement for the two-point functions is rather impressive. A
recent two-loop calculation confirms (and even improves) these results
showing that the very good agreement at one-loop was not accidental [128].
The agreement is less impressive for the three-point vertices but still qual-
itatively very good, given the simplicity of the one-loop approach and the
uncertainties of the lattice simulations. In particular, the Curci-Ferrari
model predicts a zero crossing of the three-gluon vertex, as also seen in
other approaches [127]. The comparison to other continuum approaches
has been more systematically discussed in [129]. For instance, the qualita-
tive dependence of the results on the value of the Curci-Ferrari mass has
been found to be similar to the dependence of the functional renormaliza-
tion group results with respect to the value of the initial parameter mΛ

alluded to above.

It is also to be mentioned that the flow structure of the Curci-Ferrari
model has been studied at one-loop order [83, 107, 129] (and also, more
recently, at two-loop order [128]), see Fig. 2.3. Interestingly enough, it is
found that, in addition to renormalization group trajectories displaying
an infrared Landau pole, reminiscent from the one in the Fadeev-Popov
approach, there exists a family of trajectories which can be defined over
all energy scales. In particular, the one trajectory that best fits the lattice
results remains always in the perturbative regime, see Fig. 2.4, supporting
the idea that the perturbative expansion can be used at all scales in the
Curci-Ferrari model.
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FIGURE 2.1. SU(3) vacuum gluon propagator and ghost dressing
function as computed in the Curci-Ferrari model at one-loop
order, compared to Landau gauge-fixed lattice simulations of
the same quantities. The parameters are defined in the in-
frared safe scheme of [83] and take the values g ' 4.9 and
m ' 540MeV for a renormalization scale µ' 1GeV.
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FIGURE 2.2. SU(3) vacuum three-gluon and ghost-antighost-gluon
vertices for certain configurations of the external momenta as
computed in the Curci-Ferrari model at one-loop order, com-
pared to Landau gauge-fixed lattice simulations of the same
quantities.

2.3.2 Finite temperature

Gauge-fixed lattice simulations also provide results for the Yang-Mills
two-point correlation functions at finite temperature [78, 130–139], as a
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FIGURE 2.3. The one-loop flow structure of the Curci-Ferrari
model in the plane (m̃2,λ), where m̃2(µ) ≡ m2/µ2 and λ(µ) ≡
g2(µ)N/(16π2).

further testing ground for the various continuum approaches.

One particularly scrutinized quantity has been the longitudinal sus-
ceptibility given by the zero momentum value of the longitudinal gluon
propagator,12 χ=GL(p2 = 0). Early lattice results showed a rather sharp
variation of this quantity around the Yang-Mills deconfinement transition
[135, 138] and opened the way to speculations about the possibility of ac-
cessing the physical transition from the study of gauge-variant quantities
[140–142].

The fit of the lattice data to the one-loop Curci-Ferrari two-point func-
tions at finite temperature is globally satisfactory, see [143] for more

12In the Landau gauge, the gluon propagator is (4d) transverse. At finite temperature, how-
ever, this transverse component decomposes into so-called (3d) longitudinal and transverse
components.
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CHAPTER 2. FADDEEV-POPOV GAUGE-FIXING
AND THE CURCI-FERRARI MODEL
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FIGURE 2.4. Running of the relevant expansion parameter of the
Curci-Ferrari model λ̃(µ)≡λ(µ)/(1+ m̃2(µ)) along the trajectory
that best fits the lattice data. The quantities m̃2(µ) and λ(µ)
are defined as in Fig. 2.3.

details. However, the temperature dependence of the susceptibility differs
substantially from the one obtained in lattice simulations, see Fig. 2.5.
This, however, does not necessarily point out to a limitation of the Curci-
Ferrari approach since the other continuum approaches also fail to repro-
duce this particular feature of the lattice results.13

Rather, it has been suggested in [141] that the discrepancy between
continuum and lattice results may be due to the fact that the order param-
eter associated to the deconfinement transition is not properly accounted
for in the Landau gauge (and in fact in most standard gauge fixings). As

13It should be mentioned that the longitudinal gluon propagator is very sensitive to the
details of the lattice simulation. Improved lattice results show a much less pronounced sensitivity
around the transition. It would be interesting to update the comparisons between the continuum
and the lattice approaches in light of these more recent results.
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FIGURE 2.5. Zero momentum value of the longitudinal gluon
propagator (susceptibility), as obtained from the Curci-Ferrari
model at one-loop and compared to the results of Landau gauge-
fixed lattice simulations.

put forward in [73], one way to tackle this problem is to extend the stan-
dard Landau gauge into the so-called Landau-deWitt gauge that allows
for the possibility of a background gauge field configuration. Following
this idea, we shall extend the Curci-Ferrari model in the presence of a
background and investigate the perturbative predictions of the model at
finite temperature, in particular with regard to the QCD/YM theory phase
diagrams. Before embarking on this adventure, in the next three chapters,
we shall make a technical digression on the application of background
field methods at finite temperature, explaining in detail why and how they
allow to circumvent the limitations of standard gauge fixings.
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3
DECONFINEMENT TRANSITION

AND CENTER SYMMETRY

The goal of this chapter is to motivate why standard gauge fixings
do not provide the appropriate framework in order to study the
confinement/deconfinement transition in the continuum. To this

purpose, we shall start reviewing some basic knowledge of finite tempera-
ture QCD and the associated phase transition.

In fact, the physical QCD transition does not correspond to a sharp
transition between two distinct phases of matter but, rather, to a smooth
crossover of the various thermodynamical observables characterizing the
system [34]. To some extent, this obscures the theoretical understanding of
the transition itself. It proves convenient, therefore, to consider particular
limits for which the transition becomes a sharp one, testable with robust
order parameters. One may then hope to access the physical case more
simply from these limiting cases.

For the most part, this manuscript will be concerned with the case
of pure Yang-Mills theory which can be seen as the limit of QCD with
infinitely heavy quarks: SQCD → SY M. In this simplified setting, the tran-
sition can be probed with the help of an observable known as the Polyakov
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loop. Moreover, it can be interpreted as the spontaneous breaking of a spe-
cial symmetry known as center symmetry. This chapter is mainly devoted
to a review of these concepts for they play a major role in the rest of the
manuscript, even when quarks are included back in the analysis.

Although the applications to be covered in the present manuscript will
concern mainly the SU(2) and SU(3) gauge groups, we shall introduce
the various relevant concepts and later derive the various relevant for-
mulas within the general case of SU(N). Some general discussion and an
application to the SU(4) gauge group can be found in Chapter 8.

3.1 The Polyakov loop

Let us start recalling the definition of the Polyakov loop and how it relates
to the confinement/deconfinement transition [144].

3.1.1 Definition

For a given gauge field configuration Aµ(x)= iAa
µ(x)ta on the Lie algebra,

we define the Wilson line wrapped along the compact Euclidean time
direction as

(3.1) LA(~x)≡P exp
{∫ β

0
dτA0(τ,~x)

}
.

Here, P denotes the path-ordering along the Euclidean time direction
that arranges Lie algebra elements A0(τ,~x) from left to right according
to the decreasing value of the argument τ. We also define the normalized
trace of LA(~x) as ΦA(~x)≡ trLA(~x) /N. Finally, the Polyakov loop ` is defined
as the expectation value of ΦA(~x):

(3.2) `≡ 〈
ΦA(~x)

〉
Y M ≡

∫
DAΦA(~x) e−SY M[A]∫

DA e−SY M[A] .
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We mention that the Wilson line LA(~x) is a unitary matrix and, then, the
modulus of its normalized trace ΦA(~x) is not larger than unity. Moreover,
since the averaging weight in Eq. (3.2) is positive, it follows that |`| ≤ 1.

3.1.2 Order parameter interpretation

It can be shown that ` is related to the free-energy cost ∆F for bringing a
static test quark into the thermal bath of gluons as [144, 145]

(3.3) `= e−β∆F .

The interpretation of the Polyakov loop as an order parameter for the
confinement/deconfinement transition follows immediately. Indeed, if we
assume that the system is in the confined phase, no free quarks are
allowed to roam around in the thermal bath (∆F =∞) and then `= 0. In
contrast, in the deconfined phase, quarks can be introduced in the system
provided some finite amount of energy is paid (∆F <∞) and then ` 6= 0.

The behavior of the Polyakov loop as a function of the temperature
has been studied on the lattice [145–149] where it yields a second order
type transition in the case of the SU(2) gauge group and a first order
type transition for SU(N) with N ≥ 3. It is one of the purposes of this
manuscript to review how these seemingly non-perturbative results can
be accessed from perturbative methods, in the framework of the Curci-
Ferrari model.

3.1.3 Gauge transformations

It will be useful in the following to recall how LA(~x) transforms under
a gauge transformation (2.4). To that aim, we introduce a slightly more
general Wilson line

(3.4) LA(σ f ,σi,~x)≡P exp
{∫ σ f

σi

dτA0(τ,~x)
}

,
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with 0<σi <σ f <β.
Owing to the definition of the path-ordering operation P , we find the

two conditions
∂

∂σ f
LA(σ f ,σi,~x) = A0(σ f ,~x)LA(σ f ,σi,~x) ,(3.5)

LA(σi,σi,~x) = 1 ,(3.6)

which characterize LA(σ f ,σi,~x) entirely. In particular, it is easily checked
that U(σ f ,~x)LA(σ f ,σi,~x)U†(σi,~x) obeys the same two conditions as the
Wilson line LAU (σ f ,σi,~x) and, therefore, that

(3.7) LAU (σ f ,σi,~x)=U(σ f ,~x)LA(σ f ,σi,~x)U†(σi,~x) .

The corresponding transformation rule for LA(~x) is obtained by setting
σi = 0 and σ f =β.

3.2 Center symmetry

The previous considerations relate the confinement/deconfinement transi-
tion to the behavior of the Polyakov loop but do not explain why the latter
could vanish in some instances. As we now recall, this is related to a very
special symmetry of the Euclidean YM action (2.1) at finite temperature
known as center symmetry [7, 145, 150].

3.2.1 The role of boundary conditions

The Yang-Mills action is invariant under gauge transformations (2.4).
At finite temperature, the only, however important, constraint on the
field U(x) is that it should preserve the periodic boundary conditions of
the gauge fields along the Euclidean time direction, that is, it should be
such that AU

µ (τ+β,~x)= AU
µ (τ,~x) ,∀Aµ(x). After some simple algebra, this

condition rewrites

(3.8) ∂µZ(τ,~x)− [Aµ(x), Z(τ,~x)]= 0 ,∀Aµ(x) ,
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where Z(τ,~x)≡U†(τ,~x)U(τ+β,~x). Since this has to be true for any possible
gauge field configuration, it follows that Z(τ,~x) should be a constant SU(N)
matrix Z commuting with all the generators of the su(N) Lie algebra and,
therefore, with all the elements of the SU(N) group.

In conclusion, Euclidean YM theory at finite temperature is invariant
under gauge transformations that are β-periodic in time up to an element
Z of the center of the gauge group:

(3.9) U(τ+β,~x)=U(τ,~x) Z, ∀τ, ∀~x .

The center elements are easily seen to be of the form Z = ei 2π
N k1, with

k = 0, . . . , N −1 such that det Z = 1. These transformations form a group,
referred to as the group of twisted gauge transformations, denoted G in
what follows.

3.2.2 Relation to the deconfinement transition

To unveil the relevance of the twisted gauge transformations for the
deconfinement transition, let us see how the Polyakov loop transforms
under the action of G . First, owing to Eq. (3.7), we find the transformation
rule

ΦAU (~x) = 1
N

trU(β,~x)LA(~x)U†(0,~x)(3.10)

= 1
N

trU†(0,~x)U(β,~x)LA(~x)= ei 2π
N kΦA(~x) ,

where we have used the cyclic property of the trace as well as Eq. (3.9).
In order to derive the corresponding transformation rule for `, we note

that, in general, the definition (3.2) makes sense only in the presence
of an infinitesimal, symmetry-breaking source term added to the action:
SY M → SY M−0+eiα ∫

d~xΦA(~x). To account for the presence of this external
source of modulus 0+ and direction eiα, we denote the Polyakov loop more
rigorously as `α.
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With these words of caution in mind, we can now perform a change of
variables in Eq. (3.2) in the form of a twisted gauge transformation:

`α =
∫

DAUΦAU (~x) e−SY M[AU ]+0+eiα ∫
d~xΦAU (~x)∫

DAU e−SY M[AU ]+0+eiα ∫
d~xΦAU (~x)

(3.11)

=
∫

DAΦAU (~x) e−SY M[A]+0+eiα ∫
d~xΦAU (~x)∫

DA e−SY M[A]+0+eiα ∫
d~xΦAU (~x)

= ei 2π
N k`α+2π

N k ,∀k .

In the last steps, we have used the transformation rule (3.10), the invari-
ance of both DA and SY M[A] under twisted gauge transformations and
the fact that the periodic boundary conditions of the fields are preserved.
We have thus found that, under a phase multiplication of the external
source by e−i 2π

N k, the Polyakov loop transforms as

(3.12) `α−2π
N k = ei 2π

N k`α .

From here, two scenarios are possible:

• If the symmetry G is realized in the Wigner-Weyl sense, then the
definition (3.2) makes sense without the need of the symmetry-
breaking source. The transformation rule (3.12) becomes then a
constraint equation for the Polyakov loop implying that the latter
has to vanish.

• In contrast, in the case where the symmetry is spontaneously bro-
ken in the Nambu-Goldstone sense, one expects degenerate ground
states with different values of ` connected to each other by (3.12).
The Polyakov loop does not need to be zero anymore and the system
is in the deconfined phase.1

1The statement is certainly true for the SU(2) and SU(3) groups. The general discussion in
the case of SU(N) is slightly more involved, as we discuss in Chapter 8.
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We have thus related the existence of a confined/deconfined phase
to the explicit/broken realization of the symmetry group G . This connec-
tion offers a promising way for studying the confinement/deconfinement
transition which we shall exploit in subsequent chapters.

3.2.3 The center symmetry group

For later considerations, it will be important to realize that not all the
transformations of G are physical. To see this, consider the subgroup
G0 of periodic gauge transformations, corresponding to twisted gauge
transformations with k = 0. The operator ΦA(~x) is an observable (in the
sense that its expectation value ` measures a physical quantity) which is
left invariant by the elements of G0. It is therefore legitimate to assume
that the elements of G0 correspond to true, and therefore unphysical,
gauge transformations.

In contrast, even though they also look like gauge transformations,
the elements of G that do not belong to G0 correspond to physical trans-
formations because they lead to explicit modifications of the observable
ΦA(~x). In fact, two transformations U1,U2 ∈ G that are related to each
other by U1 =U2U3, with U3 ∈G0, lead to the same modification of ΦA(~x),
and, therefore, have the same physical meaning. It follows that the true
physical content of G lies within the quotient set G /G0. Moreover, since the
subgroup G0 is normal within G (that is ∀U ∈G , ∀U0 ∈G0, UU0U† ∈G0),
this quotient set G /G0 inherits a group structure from G , isomorphic to
ZN . This is known as the center symmetry group.

In summary, two transformations of G that belong to the same class
in G /G0 should be seen as redundant versions of the same, physical center
transformation. In particular, the elements of G0 do not correspond to
physical transformations since they define the neutral element of G /G0.
These simple remarks will play a major role in the next two chapters.
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3.3 Center symmetry and gauge fixing

The results that we have recalled so far rely on the gauge-invariant
formulation of the theory. In practice, however, continuum approaches
to the deconfinement transition require working in a given gauge. It is
therefore important to assess whether and how the previous results extend
to a gauge-fixed setting.

3.3.1 Gauge-fixed measure

Gauge fixing can be interpreted as the replacement of the gauge-invariant
measure DA that enters the evaluation of any observable by a non gauge-
invariant measure Dgf [A], without affecting the value of the observable.
For instance, in the case of the Polyakov loop, one writes

(3.13) `=
∫

DAΦA(~x) e−SY M[A]∫
DA e−SY M[A] =

∫
Dgf [A]ΦA(~x) e−SY M[A]∫

Dgf [A] e−SY M[A] ,

where the appropriate infinitesimal symmetry-breaking source, see the
discussion above, has been left implicit.

The subtleties related to the construction of bona-fide and practical
gauge-fixed measures that realize the above type of identities have been
discussed in the previous chapter and we shall not repeat them here.2

The only point that should be stressed here is that, even though both
integral representations of the Polyakov loop lead to the transformation
rule (3.12), at the heart of its order parameter interpretation, the origin
of this transformation rule is slightly different in each case. The crux of
the problem is whether the transformation rule (3.12) can be maintained
in the presence of approximations.

2We recall, however, that the gauge-fixed measure Dgf [A] is usually not local. Its localization
requires one to introduce integrations over auxiliary fields, such as the Faddeev-Popov ghost and
anti-ghost fields, or the Nakanishi-Lautrup field. Conveniently, however, the formal discussion to
be presented in this and the next two chapters can be done without introducing these fields.
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3.3.2 Gauge fixing and approximations

As we have seen above, in the non gauge-fixed setting, the transformation
rule (3.12) is already essentially manifest at the level of the correspond-
ing integrand in Eq. (3.13) because both DA and SY M[A] are invariant
under twisted gauge transformations while ΦA(~x) transforms according to
Eq. (3.10). In this case, were we to approximate the evaluation of the func-
tional integral by selecting only some of the gauge field configurations (as
one would do on the lattice), the transformation rule (3.12) would remain
true if, for any gauge-field configuration Aµ(x) considered in the evaluation
of the integral, we would also include a representative of each of the possi-
ble twisted gauge transformations of Aµ(x), for k = 1, . . . , N −1. This can
always be achieved in practice without summing over all configurations
under the functional integral.

The situation is drastically different within a gauge-fixed setting. In-
deed, because twisted gauge transformations look so much like true gauge
transformations, it is generally true that standard gauge-fixing conditions,
and in turn the corresponding gauge-fixed measures Dgf [A], are not in-
variant under twisted gauge transformations. In this case, the integrand
in the gauge-fixed integral representation of ` does not have the expected
transformation rule.3 The latter emerges only after integrating over all
gauge field configurations, and, because the functional integral is never
computed exactly, the transformation rule of ` is usually not manifest.

In the next chapter, we show how these shortcomings can be cured
by upgrading standard gauge fixings into background-extended gauge
fixings.

3Due to the existence of Gribov copies, it could be that, for certain configurations Aµ(x),
there exist transformations U ∈G , such that Dgf [AU ]=Dgf [A]. This does not solve the problem,
however, because it is not guaranteed that this property applies to an arbitrary gauge field
configuration and to a collection of transformations representing each of the physical center
transformations.
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BACKGROUND FIELD GAUGES:

STATES AND SYMMETRIES

In this chapter, we recall how the shortcomings of standard gauge
fixings concerning the description of the confinement/deconfinement
transition in the continuum can be cured by means of a background

field. We put special emphasis on the justification of some of the steps
that are usually taken when implementing background field methods at
finite temperature. In particular, we discuss the underlying hypotheses
concerning the gauge-fixed measure and we stress the importance of
finding a good, redundancy-free description of the states of the system
that then allows for the analysis of center symmetry breaking.

We try to follow a semi-deductive approach: we start recalling the
basic properties of background field gauges, argue why these properties
are a priori not sufficient to solve the problem identified at the end of the
previous chapter and, finally, show how the problem is solved thanks to
the notion of self-consistent backgrounds. The main point of this chapter
is that such backgrounds play the role of order parameters for center
symmetry. We give a formal but relatively compact proof of this known
result and postpone a more explicit illustration to the next chapter.
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Self-consistent backgrounds offer an alternative route to the study of
the confinement/deconfinement transition [73] that we shall pursue in
subsequent chapters within the framework of the Curci-Ferrari model.
The present chapter is also the opportunity to introduce various related
constructs, such as the background field effective action or the background-
dependent Polyakov loop that shall ubiquitously appear in the rest of the
manuscript. For later use, we also extend the considerations on center
symmetry to other symmetries, in particular to charge conjugation.

4.1 The role of the background field

In the previous chapter, we claimed that the limitations of standard
gauge fixings regarding the continuum description of the deconfinement
transition could be cured with the help of background field gauges. Let
us now review some of the properties of this type of gauges that shall
eventually help reaching this conclusion. We stress however that these
properties, although helpful, will not be sufficient. The ultimate solution
to the problem will be presented in Sec. 4.2.

4.1.1 Center-invariant gauge-fixed measure

As we saw in the previous chapter, the problem with standard gauge fix-
ings is that the gauge-fixing conditions and, in turn, the associated gauge-
fixed measures Dgf [A], are not invariant under twisted gauge transfor-
mations. This makes it difficult to ensure the appropriate transformation
rule of the Polyakov loop under center transformations (and, therefore,
its order parameter interpretation), unless the Polyakov loop is computed
exactly. The idea behind introducing a background is to upgrade the
gauge fixing in such a way that the corresponding gauge-fixed measure
becomes invariant (in a sense to be specified below), with the hope that
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the transformation rule of the Polyakov loop applies even in the presence
of approximations.

For the sake of illustrating the procedure, let us consider the case
of the Landau gauge. Given a gauge field configuration Aµ(x) such that
∂µAµ(x)= 0 and a twisted gauge transformation U ∈G , one has typically
∂µAU

µ (x) 6= 0 and, therefore, DLandau [AU] 6= DLandau [A]. To cure this obvi-
ously inconvenient feature, one introduces an arbitrary (periodic) back-
ground field configuration Āµ(x) and replaces the Landau gauge-fixing
operator ∂µAµ(x) by a covariant version of it, namely D̄µ(Aµ(x)− Āµ(x)),
where D̄µ ≡ ∂µ_ − [Āµ(x), _] denotes the adjoint covariant derivative in the
presence of the background Āµ(x). The condition

(4.1) D̄µ(Aµ(x)− Āµ(x))= 0 ,

defines the so-called Landau-deWitt (LdW) gauge and is invariant under
simultaneous twisted gauge transformations of Aµ(x) and Āµ(x):

AU
µ (x) =U(x)Aµ(x)U†(x)−U(x)∂µU†(x) ,(4.2)

ĀU
µ (x) =U(x)Āµ(x)U†(x)−U(x)∂µU†(x) .(4.3)

The corresponding gauge-fixed measure is then such that

(4.4) DLdW [AU ; ĀU]=DLdW [A; Ā] , ∀U ∈G .

It is in this sense that the gauge-fixed measure associated to the back-
ground extension of the Landau gauge is invariant under twisted gauge
transformations.

The procedure can be easily extended to any other gauge fixing and
one generally arrives at a gauge-fixed measure such that

(4.5) Dgf [AU ; ĀU]=Dgf [A; Ā] , ∀U ∈G .

For later use we stress that the background should be interpreted as an
infinite collection of gauge-fixing parameters. As such, any bona fide back-
ground gauge fixing should be such that the observables do not dependent
on the chosen background.
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4.1.2 Center-invariant effective action

One interesting feature of the invariance property (4.5) is that it is pre-
served by fluctuations. This is expected because the symmetry is realized
linearly. To check this is in more detail, let us add a source term to the
Yang-Mills action and define the generating functional Ŵ[J; Ā] as

(4.6) Ŵ[J; Ā]≡ ln
∫

Dgf [A; Ā] exp
{
−SY M[A]+

∫
ddx (Jµ;aµ)

}
,

where we have introduced the field aµ(x) ≡ Aµ(x)− Āµ(x). Being the dif-
ference of two gauge fields, it transforms under (4.2)-(4.3) as aU

µ (x) =
U(x)aµ(x)U†(x).

Let us now evaluate Ŵ[JU ; ĀU] with JU
µ (x)≡U(x) Jµ(x)U†(x). Using a

change of variables of the form (4.2) under the functional integral (4.6),
together with the identity (4.5) and the invariance of both the YM action
and the source term, we find1

(4.7) Ŵ[JU ; ĀU]= Ŵ[J; Ā] , ∀U ∈G .

Next, we define the effective (or quantum) action Γ̂[a; Ā] as the Legendre
transform of Ŵ[J; Ā] with respect to the source:

(4.8) Γ̂[a; Ā]≡−Ŵ[J[a; Ā]; Ā]+
∫

ddx (Jµ[a; Ā];aµ) ,

where Jµ[a; Ā] is obtained by inverting the relation

(4.9) aµ[J; Ā](x)= δŴ
δJµ(x)

,

for a fixed background. From the identity (4.7), it follows that

(4.10) a[JU ; ĀU]= aU[J; Ā] , ∀U ∈G ,
1Needless to say, it is also important that the considered transformation U preserves the

periodic boundary conditions of the gauge field along the temporal direction.
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which, upon inversion, reads

(4.11) J[aU ; ĀU]= JU[a; Ā] , ∀U ∈G .

Finally, combining Eqs. (4.7), (4.8) and (4.11), we arrive at

(4.12) Γ̂[aU ; ĀU]= Γ̂[a; Ā] , ∀U ∈G ,

which shows that the symmetry (4.2)-(4.3) is indeed preserved by fluctua-
tions, as already anticipated.

In what follows, we shall use a source term of the form (Jµ; Aµ), which
means that we work instead with the generating functional W[J; Ā] ≡
Ŵ[J; Ā]+∫

ddx (Jµ; Āµ). It is easily seen that the corresponding effective
action is related to the previous one by Γ[A; Ā] = Γ̂[A− Ā; Ā] and obeys,
therefore, the symmetry identity [151]

(4.13) Γ[AU ; ĀU]=Γ[A; Ā] , ∀U ∈G .

4.1.3 Background gauge fixing and approximations

Let us now turn back to our original problem of maintaining the transfor-
mation rule of the Polyakov loop in the presence of approximations and
see if the just derived properties help in that matter.

If we denote by `[Ā] the Polyakov loop computed in some approxi-
mation that preserves Eq. (4.5),2 then, following similar steps as in the
previous chapter, we can derive the transformation rule

(4.14) `α−2π
N k[ĀU]= ei 2π

N k`α[Ā] , ∀U ∈G ,

where ei 2π
N k1 = U†(0,~x)U(β,~x) and eiα is the direction of the necessary,

infinitesimal, symmetry-breaking source. In the Wigner-Weyl realization
of the symmetry, the Polyakov loop does not depend on α, and then

(4.15) `[ĀU]= ei 2π
N k`[Ā] , ∀U ∈G .

2This is easily achieved in practice because the symmetry is realized linearly.
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As interesting as these relations might be, they do not allow us, however,
to solve our original problem. The reason is that Eq. (4.15) is not really
a constraint but rather a relation between two different approximated
evaluations of the Polyakov loop. Only when the latter is computed ex-
actly, does `[Ā] become independent of Ā (seen as an infinite collection of
gauge-fixing parameters) and Eq. (4.15) implies that the Polyakov loop
has to vanish in the center-symmetric phase. We are thus back to our
original problem: even within a background-extended gauge fixing, the
transformation properties of the Polyakov loop seem difficult to maintain
in the presence of approximations.

This negative result may look discouraging. However, we can try to
attack the problem in a different manner which exploits beneficially the
previous results. Since the confinement/deconfinement transition corre-
sponds to a change of the state of the system from a center-symmetric to a
center-breaking state, we only need to find a procedure that allows us to
discriminate, at each temperature, between these two types of states, or,
equivalently, to identify the center-symmetric states among all possible
states. In the case of standard gauge fixings, the gauge-fixed measure
is not invariant under twisted gauge transformations and neither is the
corresponding effective action. Since the states of the system are usually
extracted from the effective action, it is clear that such a framework does
not facilitate the identification of center-symmetric states. In contrast,
the quantum realization of center symmetry in background gauge fixings,
as encoded in Eq. (4.13), is certainly a favourable condition for such an
identification to be possible.

4.1.4 Center-symmetric states: first try

Let us make a first try in identifying the center-symmetric states. It will
lead to a loose end, but it will help understanding the correct procedure to
be presented in the next section.
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A priori, the actual state of the system is obtained at the minimum of
the effective action. More precisely, in the background framework consid-
ered here, one needs to minimize the effective action Γ[A, Ā] with respect
to the field A, for a given background Ā. The actual state of the system
appears then as a certain background-dependent configuration Amin[Ā]
such that

(4.16) Γ[Amin[Ā]; Ā]≤Γ[A; Ā] , ∀A .

We now would like to asses whether such a state Amin[Ā] is center-
symmetric or center-breaking.

To this purpose, we apply a twisted gauge transformation U to Amin[Ā].
The invariance property (4.13) means that the transformed configuration
AU

min[Ā] is also a minimum, but of the functional Γ[_; ĀU]. Indeed, we
have

(4.17) ∀A , Γ[A, ĀU]=Γ[AU†
; Ā]≥Γ[Amin[Ā]; Ā]=Γ[AU

min[Ā]; ĀU] ,

where we have successively used Eqs. (4.13), (4.16) and again (4.13). It
follows that a state of the system, as described in the presence of the
background Ā, is transformed into another state, but described in the
presence of a different background ĀU . This change of description as we
transform the state of the system makes it difficult to identify the states
that are invariant and, therefore, to draw any conclusion on the possible
breaking of center symmetry at some temperature.

The situation is similar to that in Eq. (4.15) where the background is
changed as a center transformation is applied. This is of course reminis-
cent of the fact that the invariance property (4.13) requires the background
to be transformed as well. In the next section, we show nonetheless that
the problem can be circumvented by restricting the discussion to so-called
self-consistent backgrounds.
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4.2 Self-consistent backgrounds

Self-consistent backgrounds are specific background configurations Ās

defined by the property

(4.18) Ās = Amin[Ās] .

As it is well known, the minimum of the effective action coincides with
the one-point function and, therefore, the self-consistency condition also
rewrites Ās = 〈A〉Ās

, where 〈. . .〉Ās
denotes the expectation value in the

presence of the gauge-fixed measure Dgf [A; Ās]. So, in a sense, the strat-
egy of restricting to self-consistent backgrounds corresponds to constantly
adapting the gauge fixing (through the choice of the background configura-
tion) in such a way that the one-point function is always known exactly.3

This has certainly an obvious practical interest.

However, the main benefit of self-consistent backgrounds lies in that
they allow for the identification of center-symmetric states. In fact, as we
now explain, self-consistent backgrounds are order parameters for center
symmetry and can be used, therefore, in place of the Polyakov loop. In
order to reach this conclusion, we first introduce the background field
effective action that leads both to a simple characterization of the self-
consistent backgrounds and to their interpretation as the actual states of
the system.

4.2.1 Background field effective action

The background field effective action is nothing but the effective action
Γ[A, Ā] evaluated along the subspace A = Ā:

(4.19) Γ̃[Ā]≡Γ[A = Ā; Ā] .
3In particular, it follows that self-consistent backgrounds depend on the temperature, as

opposed to the fixed backgrounds considered in the previous section.
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It obeys the invariance property

(4.20) Γ̃[ĀU]= Γ̃[Ā] , ∀U ∈G ,

as it can easily be shown using Eqs. (4.13) and (4.19).
Let us now see how it allows for a characterization of the self-consistent

backgrounds. One important ingredient to find such characterization will
be that the value of the effective action at its minimum does not depend
on the chosen background:

(4.21) Γ[Amin[Ā]; Ā]=Γ[Amin[Ā′]; Ā′] , ∀Ā′ .

This is because minimizing the effective action with respect to A corre-
sponds to taking the zero-source limit in Eq. (4.8), that is to evaluating
the free-energy of the system up to a factor β.4 As any other physical
observable, the free-energy cannot depend on the background Ā. This is
exactly what is encoded in Eq. (4.21).

With this property in mind, let us derive the promised characterization
of self-consistent backgrounds. We first show that a self-consistent back-
ground Ās is necessarily an absolute minimum of Γ̃[Ā]. To this purpose,
we write the following chain of relations

Γ̃[Ās] = Γ[Ās, Ās](4.22)

= Γ[Amin[Ās]; Ās]

= Γ[Amin[Ā]; Ā] , ∀Ā

≤ Γ[Ā; Ā] , ∀Ā

≤ Γ̃[Ā] , ∀Ā ,

where we have successively used Eqs. (4.19), (4.18), (4.21), (4.16) and
again (4.19). Thus, as announced, a self-consistent background Ās is an
absolute minimum of the functional Γ̃[Ā].

4It is assumed here that the gauge-fixed measure Dgf [A] includes appropriate normalization
factors, such that the zero-source limit of Eq. (4.6) is indeed the free-energy up to a factor −β and
a trivial shift related to the volume of the gauge group.
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Next, we prove the following version of the reciprocal property: assum-
ing that there exists at least one self-consistent background Ās, then any
absolute minimum Ām of Γ̃[Ā] is also a self-consistent background. To this
purpose, we note that

(4.23) Γ̃[Ām]≤ Γ̃[Ā] ,∀Ā ,

and write

Γ̃[Ām] ≤ Γ̃[Ās](4.24)

≤ Γ[Ās, Ās]

≤ Γ[Amin[Ās], Ās]

≤ Γ[Amin[Ām], Ām] .

This time, we have successively used Eqs. (4.23), (4.19), (4.18) and (4.21).
This implies that Ām = Amin[Ām], and, therefore, that Ām is self-consistent,
as announced.

In conclusion, we have shown that there are either no self-consistent
backgrounds at all or that they are exactly given by the absolute minima
of the functional Γ̃[Ā]. We shall assume from here on that we are in the
second scenario.5

4.2.2 Background description of the states

Now that we have characterized the self-consistent backgrounds as the
absolute minima of the background field effective action, let us see how
they provide a new description of the states of the system that does not
suffer from the limitations identified in Sec. 4.1.4.

5The present derivation assumes the unicity of the field configuration Amin[Ā] for each
background configuration Ā. Similar results can be obtained under the assumption of degenerate
minima.
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The point is that, when working with self-consistent backgrounds,
all the relevant information can be obtained from the functional Γ̃[Ā]
and the (self-consistent) background configurations Ās that minimize it,
without any reference to the functional Γ[A, Ā] or to the field configuration
Amin[Ā]. In particular, up to a trivial factor, the free-energy of the system
is given by

(4.25) Γ[Amin[Ās]; Ās]=Γ[Ās, Ās]= Γ̃[Ās] ,

that is, it is given by the background field effective action Γ̃[Ā] evaluated at
any self-consistent background Ās. Therefore, in a certain sense, one can
interpret the space of background field configurations Ā over which Γ̃[Ā]
is varied as the the space of all potentially available states, the actual
state of the system corresponding to those particular (self-consistent)
backgrounds that minimize Γ̃[Ā].

Now, the invariance property (4.20) means that, after applying a
twisted gauge transformation U ∈ G to a given state Ās, the newly ob-
tained configuration ĀU

s is also a minimum of the functional Γ̃[Ā] and,
therefore, another acceptable state of the system. The important differ-
ence with respect to the discussion in Sec. 4.1.4 is that there is no change
of description as one transforms the state since the functional that needs
to be minimized remains the same. As a consequence, there is no obstacle
anymore to the identification of center-symmetric states.

4.2.3 Orbit description of the states

Before we proceed to this identification, however, it is important to realize
that the previous description of the states carries some redundancy. This
relates to the fact that the symmetry identity (4.20) applies in particular
to the periodic gauge transformations U ∈ G0. As we have seen in the
previous chapter, these transformations need to be considered as true,
and therefore unphysical, gauge transformations. Their presence only
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reflects the redundancy of the description in terms of gauge fields and,
consequently, two background configurations that belong to the same
orbit under the action of G0 should be considered as describing the same
physical state. In other words, the physical states of the system correspond
to the various possible G0-orbits in the space of background configurations
and a given G0-orbit (a given physical state) admits various equivalent
representations in terms of background configurations.

The redundancy in the description of the physical states by means of
background configurations is similar to the redundancy in the description
of physical center transformations by means of twisted gauge transforma-
tions that we discussed in the previous chapter. And just as it was possible
to remove the redundancy inherent to G by considering the group G /G0, it
is possible to remove the redundancy inherent to the use of backgrounds
by working instead with the corresponding G0-orbits.

To see how this is achieved in practice, we first notice that the back-
ground field effective action can be defined directly on the G0-orbits since
Γ̃[Ā] depends only on the orbit ¯A the background Ā belongs to. We can
then define Γ̃[ ¯A ]≡ Γ̃[Ā], where Ā ∈ ¯A is any background in the orbit ¯A ,
and the physical state is obtained by minimizing Γ̃[ ¯A ] over the space of
G0-orbits. Second, it is possible to define the action of a center transfor-
mation U ∈G /G0 directly on the G0-orbits. Indeed, owing to the property
∀U ∈ G , ∀U0 ∈ G0, UU0U† ∈ G0, all the backgrounds in a given G0-orbit
are transformed under a twisted gauge transformation into backgrounds
belonging to one and the same orbit, which means that one can directly
define the action of a twisted gauge transformation on G0-orbits. Moreover,
this action depends only on the class of G /G0 the twisted gauge transfor-
mation belongs to, thereby defining the action of G /G0 directly on G0-orbits.
Finally, in this redundancy-free formulation, the symmetry identity (4.20)
reads

(4.26) Γ̃[ ¯A U ]= Γ̃[ ¯A ] , ∀U ∈G /G0 .
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From all these considerations, it follows, as announced, that one can
work exclusively in terms of G0-orbits and center transformations.

4.2.4 Center-symmetric states: second try

It should be clear by now that the center-symmetric states of the system
correspond to the center-invariant G0-orbits, that is orbits ¯A such that

(4.27) ∀U ∈G /G0 , ¯A U = ¯A .

In terms of background configurations, this reads

(4.28) ∀U ∈G , ∃U0 ∈G0 , ĀU
µ (x)= ĀU0

µ (x) ,

that is center-symmetric states corresponds to backgrounds that are in-
variant under twisted gauge transformations, modulo periodic gauge
transformations.

In the next chapter, we will see how to practically access the center-
invariant G0-orbits using either Eq. (4.27) or Eq. (4.28). For the time being,
what we can say is that we have classified the physical states of the system
into center-invariant and center non-invariant G0-orbits. Therefore, the
G0-orbits and, by extension, the background configurations, play the role
of order parameters for the confinement/deconfinement transition, as
announced earlier. This is the central result of this chapter, at the basis of
the applications to be presented in subsequent chapters. For other proofs
of this result in the case of the SU(2) gauge group, we refer to [73, 74].

4.3 Other symmetries

The previous considerations apply not only to center symmetry but, as
we now explain, to any physical symmetry of the quantum action. After
introducing some generalities, we discuss in particular the case of charge
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conjugation symmetry which plays an important role in subsequent appli-
cations.

4.3.1 Generalities

Consider a physical transformation T of the state of the system. In
the space of background configurations, it writes Ā → ĀT ,6 where ĀT

should not be mistaken with the notation ĀU . In fact, T is a formal group
transformation, not necessarily an element of SU(N).

The transformation T being physical, the application of T followed
by T −1 to a background representing a given G0-orbit (a given physical
state) should lead to a background of the same G0-orbit, even when some
additional true gauge transformations are inserted between T and T −1.
Mathematically, this writes as

(4.29) ∀U ∈G0 , ∃U ′ ∈G0 , ((ĀT
µ )U)T

−1
(x)= ĀU ′

µ (x) .

From this, it follows immediately that the physical transformation T can
be defined directly on the G0-orbits, as it should, of course, for a physical
transformation.

Moreover, just as with physical center transformations, the group of
physical transformations T can be extended into a group of transforma-
tions T defined as the transformations T modulo elements of G0. Owing
to Eq. (4.29), G0 is a normal subgroup of this extended group and the corre-
sponding quotient is isomorphic to the group of physical transformations.
The reason for introducing such an extended group is that, in the space of
background configurations, any transformation of the extended group is a
valid representation of the corresponding physical transformation.

6We are implicitly assuming here that the background field effective action Γ̃[Ā] is invariant
under T , which happens in particular if the gauge-fixing condition, and in turn the gauge-fixed
measure Dgf [A; Ā], are invariant under (A, Ā) → (AT , ĀT ), and if the symmetry is realized
linearly.
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The states of the system that are invariant under the physical trans-
formation T correspond to the T -invariant G0-orbits. Mathematically,
this writes as

(4.30) ∀T, ¯A T = ¯A ,

or, in terms of background configurations, as

(4.31) ∀T, ∃U0 ∈G0 , ĀT
µ (x)= ĀU0

µ (x) .

In particular, in terms of background configurations, physical invariance
needs to be understood as invariance modulo true gauge transformations.
The characterization (4.30) of invariant states is useful when one has a
simple description of the orbits, such as the description in terms of Weyl
chambers that we review in the next chapter. The characterization (4.31)
is used when such a description is not available, for which we also give an
example in the next chapter.

4.3.2 Charge conjugation

Let us now illustrate these general considerations with the important
case of charge conjugation. On the gauge field, this transformation reads

(4.32) AC
µ (x)≡−At

µ(x) ,

and changes a given representation into the corresponding contragredient
representation. It is easily checked that this indeed corresponds to a
physical symmetry in the sense of the condition (4.29).

In order to see the effect of this symmetry on the Polyakov loop, it is
convenient to introduce the normalised trace of the Wilson line associ-
ated to the anti-quark Φ̄A(~x)≡Φ−At(~x) which transforms according to the
contragredient representation.7 The corresponding Polyakov loop

(4.33) ¯̀≡ 〈
Φ̄A

〉
Y M

7In terms of the anti-path-ordering, this rewrites Φ̄A(~x)= trP̄ exp
{
−∫ β

0 dτA0(τ,~x)
}
.
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is referred to as the anti-Polyakov loop. From Eq. (4.32) and the charge
conjugation invariance of the YM action, it follows immediately that8

(4.34) ¯̀= ` .

This relation is to be expected since charge conjugation symmetry is an
unbroken symmetry of the YM system and, therefore, it should cost the
same energy to bring a quark or an anti-quark into the thermal bath of
gluons.

On the other hand, because Aµ = iAa
µta is anti-hermitian, we have

−At
µ(x)= A∗

µ(x) and thus Φ̄A(~x)=Φ∗
A(~x). This implies

(4.35) ¯̀= `∗ .

We mention that this result relies crucially on the fact that the averag-
ing measure under the functional integral is real. Combining it with the
previous result, we deduce that the Polyakov and anti-Polyakov loops
are real, which is a necessary condition for their interpretation as e−β∆F .
In Chapter 9, we shall investigate how these properties change in the
presence of quarks with a finite chemical potential.

As for the background gauge-fixed theory, assuming that the gauge-
fixed action remains invariant under charge conjugation and because the
symmetry is realized linearly, it is not difficult to argue that

(4.36) Γ̃[ĀC]= Γ̃[Ā] ,

for any transformation C equal to C modulo elements of G0. In terms of
G0-orbits, this reads

(4.37) Γ̃[ ¯A C ]= Γ̃[ ¯A ] ,
8Strictly speaking, this identity holds as long as there is no spontaneous breaking of center

symmetry. When the symmetry is broken, the identity applies to one of the possible states. The
other states are invariant under a combination of charge conjugation and a center transformation.
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which expresses charge conjugation invariance at the quantum level.
Charge conjugation invariant states are such that ¯A C = ¯A . We shall
characterize them more precisely in the next chapter.

4.4 Additional remarks

Let us conclude this chapter with some critical remarks on the rationale
behind the previous background field gauge construction.

4.4.1 Back to the Polyakov loop

The most important feature of the previous construction is that the in-
terpretation of the G0-orbits as order parameters for the deconfinement
transition remains valid in the presence of approximations, provided the
latter maintain the symmetry identity (4.26). This is easily achieved in
practice because the symmetry is realized linearly.9 Moreover, since G0-
orbits represent an alternative order parameter, we do not need to be
concerned anymore with the Polyakov loop and the question of whether
it is possible to maintain its transformation rule in the presence of ap-
proximations. It is interesting to note, however, that the same framework
allows to answer this question positively.

To see this, let us allow for a non-zero source J coupled to a which
can be seen as a functional J[a; Ā] of a and Ā, see the discussion of
the effective action Γ̂[a; Ā] in Sec. 4.1.2. Suppose then that the source is
chosen such that a ≡ A− Ā = 0, that is the background Ā is forced to be
self-consistent with the help of the source J[Ā]≡ J[0; Ā]. We can compute
the Polyakov loop in the presence of this source. Because it depends on the
background Ā, in what follows, we refer to it as the background-dependent
Polyakov loop, and denote it by `[Ā].

9For instance, the perturbative expansion to be used in the following chapters will fulfil this
property.
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Now, from Eq. (4.11), it follows that

(4.38) J[ĀU]= JU[Ā] , ∀U ∈G ,

from which it is easily deduced that

(4.39) `[ĀU]= ei 2π
N k`[Ā] , ∀U ∈G .

In particular, since `[ĀU]= `[Ā] for U ∈G0, `[Ā] can be defined directly
on G0-orbits, `[ ¯A ]≡ `[Ā], and the transformation rule (4.39) rewrites

(4.40) `[ ¯A U ]= ei 2π
N k`[ ¯A ] , ∀U ∈G /G0 .

Now, if the orbit is center-invariant, it follows that

(4.41) `[ ¯A ]= ei 2π
N k`[ ¯A ] , ∀k ∈ {0,1, . . . , N −1} ,

and, therefore, `[ ¯A ] = 0. This property relies only on the identity (4.38)
which is again easily satisfied in the presence of approximations.

Similarly, under charge conjugation

(4.42) J[ĀC]= JC[Ā] .

From this, it is easily deduced that

(4.43) `[ĀC]= ¯̀[Ā]= `∗[Ā] .

In terms of G0-orbits, this reads

(4.44) `[ ¯A C ]= ¯̀[ ¯A ]= `∗[ ¯A ] ,

and for a charge-conjugation-invariant orbit (which should represent the
actual state of the YM system) we recover the above results for the physi-
cal Polyakov and anti-Polyakov loops.

It should be mentioned that the functional `[Ā] defined here is differ-
ent from the one that we introduced in Sec. 3.1.3. The latter was just an
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approximated version of the physical Polyakov loop whose Ā-dependence
stem precisely from the use of approximations. Here, instead, the func-
tional `[Ā] does depend on Ā, even in the absence of approximations,
because it is not the physical Polyakov loop but, rather, the value of the
Polyakov loop as the system is forced into a state corresponding to the
background Ā by means of a non-zero source J[Ā]. The physical Polyakov
loop is retrieved when evaluating `[Ā] for a self-consistent background
Ās which is precisely such that J[Ās]= 0.10 If it so happens that this self-
consistent background belongs to a center-invariant G0-orbit, it follows
from the above that `[Ās]= 0, and so, even in the presence of approxima-
tions.

4.4.2 Hypothesis on the gauge-fixed measure

The justification of all the previous results relies on two natural but strong
assumptions on the generating functional W[J; Ā] which in turn imply
constraints on the gauge-fixed measure Dgf [A; Ā]. These assumptions
are, first, that W[J; Ā] should be convex with respect to J and, second,
that W[0; Ā] should not depend on the background Ā. It is important
to keep these basic assumptions in mind since they are not necessarily
implemented exactly in the practical realizations of the gauge fixing
and/or in the presence of approximations and could therefore lead to some
artefacts. We shall discuss some of these artefacts in Chap. 11. Here, we
analyse the basic assumptions in more detail.

10One may wonder why we do not need an infinitesimal, symmetry-breaking source here,
similar to the one that we introduced in the previous chapter. In the case where the physical
state of the system is represented by a background Ās belonging to a center-invariant orbit, the
system is in the symmetric phase and the symmetry-breaking source is indeed not needed. For
any other physical state, there will typically exist various orbits connected to each other by center
transformations. The values of `[Ā] on each of these orbits represent the various vacua in the
Nambu-Goldstone realization of the symmetry, as they would equivalently be reached from an
infinitesimal, symmetry-breaking source.
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Convexity of W[J; Ā]: The convexity of W[J; Ā] enters crucially in the
identification of the self-consistent backgrounds as the absolute minima of
the functional Γ̃[Ā]. The reason is that the proof of the standard fact that
the limit of zero sources corresponds to the minimization of the functional
Γ[A; Ā] with respect to A requires, in its simpler form, the convexity of
W[J; Ā]. Indeed, W[J; Ā] lies always above any of its tangential planes:

(4.45) W[J; Ā]≥W[J0; Ā]+
∫

ddx
(
δW
δJ(x)

∣∣∣∣
J0

; J(x)− J0(x)
)
.

In terms of the effective action, it follows that

Γ

[
δW
δJ

; Ā
]
≡ −W[J; Ā]+

∫
ddx

(
δW
δJ(x)

; J(x)
)

(4.46)

≤ −W[J0; Ā]+
∫

ddx
(
δW
δJ(x)

∣∣∣∣
J0

; J0(x)
)

+
∫

ddx
(
δW
δJ(x)

− δW
δJ(x)

∣∣∣∣
J0

; J(x)
)
,

for any sources J and J0. Taking the limit J → 0, we finally arrive at

(4.47) Γ

[
δW
δJ

∣∣∣∣
J→0

; Ā
]
≤Γ

[
δW
δJ

∣∣∣∣
J0

; Ā
]

, ∀J0 ,

which justifies the minimization principle referred to above.

The convexity of W[J; Ā] is a natural assumption to be made since
it is a property of an “ideal gauge fixing” where one configuration per
orbit is selected in the space of gauge field configurations. The gauge-fixed
measure associated to this ideal gauge fixing is positive (since the original
measure DA is positive). As we show in App. C using Hölder inequality,
this implies the convexity of W[J, Ā].

In many practical implementations of the gauge fixing, however, the
positivity of the gauge-fixed measure is not satisfied. For instance, in
the Faddeev-Popov approach, positivity is violated due to the presence of
the associated determinant which is known not to have a definite sign
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over the space of gauge-field configurations. The same is true a priori
for the Serreau-Tissier approach due to the averaging over Gribov copies
with an alternating sign, although it could be that the positivity violation
remains moderate if certain copies dominate with respect to others. The
situation seems more under control in the Gribov-Zwanziger approach
where the functional integral is, in principle at least, restricted to the
first Gribov region defined by the positivity of the Faddeev-Popov operator.
However, the positivity of the measure is not necessarily guaranteed in
practical implementations of the Gribov-Zwanziger approach, although
the violation could again remain small.

In fact, the positivity of the gauge-fixed measure is just a sufficient
condition for identifying an order parameter. The order parameter in-
terpretation remains correct provided the positivity violation remains
moderate to ensure the convexity of W[J; Ā]. Since a dynamical mass
scale is expected to be generated (and is actually generated in some cases)
that damps large enough values of the gauge field, we expect the positiv-
ity violation to remain indeed moderate. In the Curci-Ferrari approach,
this damping factor is there from the beginning, so we expect the pos-
itivity requirement to be fulfilled if the Curci-Ferrari mass is large enough.

We mention finally that the non-positivity of the integration measure
can also have a physical origin, as in the presence of dynamical quarks
at finite baryonic density. In this case as well, the very foundation of the
background field method needs to be critically revisited. We shall deal
with this matter in Chapter 9.

Background independence: The other crucial property that enters
the justification of the background field approach is that of the background-
independence of the free-energy. In the Faddeev-Popov approach this is
ensured from the general properties derived in Chap. 2. In other ap-
proaches, including any continuum approach using a free mass parameter,
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this question needs to be investigated. For the Curci-Ferrari approach, we
do so in Chap. 6.

4.4.3 Landau gauge paradox

Although compelling, the above rationale for using the background field
method at finite temperature is not completely free of paradoxes. A par-
ticularly intriguing one is the case of the vanishing background configu-
ration Ā = 0. Indeed, in the absence of background, the invariance under
color rotations is manifest and since we do not expect this symmetry
to be spontaneously broken, we should have 〈A〉Ā=0 = 0 which implies
that Ā = 0 is a self-consistent background. As such, it should always
appear as a minimum of Γ̃[Ā]. This is a priori a welcome result since
Γ̃[Ā = 0] = Γ[A = 0; Ā = 0] is nothing but the free-energy density of the
system computed in the Landau gauge and should, therefore, coincide
with the free-energy density computed in the Landau-deWitt gauge from
whatever relevant non-trivial self-consistent background Ās.

The problem is however that Ā = 0 cannot correspond to a center-
symmetric state as we show in the next chapter. This poses therefore the
question how, in a would be confining phase for which Ās 6= 0, one could
have both an absolute minimum of Γ̃[Ā] at a center-symmetric point and
another absolute minimum, with the same value of Γ̃[Ā], at the center-
breaking point Ā = 0. One possible scenario could be that Ā = 0 needs
to be interpreted as an unstable state (in a sense that still needs to be
defined) which only reaches the same value of Γ̃[Ā] as enough fluctuations
are included in the evaluation of Γ̃[Ā]. To some extent, this is similar to
the flattening that occurs to the mexican hat potential in the O(N) model
with spontaneously broken symmetry [152]. As matter of fact, we will see
in the next chapters that Ā = 0 appears indeed as a maximum of Γ̃[Ā]
in a fixed order approximation. How the effective action could flatten to
bring Ā = 0 to the same potential depth as Ās and how this would affect
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the use of background field methods at finite temperature needs still to be
clarified.
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5
BACKGROUND FIELD GAUGES:

WEYL CHAMBERS

As we have seen previously, within any background-field gauge,
the physical states of the Yang-Mills system can be interpreted
in terms of G0-orbits in the space of background configurations,

where G0 is the subgroup of periodic gauge transformations within the
group G of twisted gauge transformations. These considerations are cru-
cial to the discussion of the confinement/deconfinement transition since
the physical states that are center-symmetric, and thus confining, corre-
spond to the invariant G0-orbits under center transformations. Preparing
the ground for subsequent applications, it is the purpose of the present
chapter to recall how these invariant orbits are identified in practice.

We shall do so using a simplifying assumption on the properties of
the background based on the homogeneity and isotropy of the Yang-Mills
system at finite temperature: we shall restrict to constant temporal back-
grounds in the diagonal part of the algebra. As a consequence, our analysis
of center symmetry will require only a subgroup G̃ of the twisted gauge
transformations, those that preserve this specific form of the background.
We shall start by deriving the general form of these transformations in
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terms of the so-called Weyl transformations and what we refer to as the
winding transformations. The analysis of these two types of transforma-
tions is considerably simplified if one operates a change of color basis from
the conventional Cartesian bases to canonical or Cartan-Weyl bases. Since
these bases play a major role in subsequent calculations, we spend some
time recalling their definition and general properties.

Of particular interest for the analysis of the confinement/deconfinement
transition is the subgroup G̃0 of periodic transformations within G̃ . It will
allow us to interpret the physical states of the system as the G̃0-orbits
in the restricted space of constant, temporal and diagonal backgrounds,
and the center-symmetric states as the center-invariant G̃0-orbits. The
identification of the latter will then be achieved using the notion of Weyl
chambers. In view of its importance when quarks are included back in the
analysis, we shall also discuss charge conjugation symmetry using again
the Weyl chambers.

Finally, we shall return to the original assumption on the form of
the background and critically discuss the homogeneity and isotropy con-
straints on the possible background configurations.

5.1 Constant temporal backgrounds

As we have seen, the actual state of the system is obtained by minimizing
the background field effective action Γ̃[Ā] in the space of background
field configurations, or, in a redundancy-free description, by minimizing
the background field effective action Γ̃[ ¯A ] in the space of G0-orbits. As
usual, the search for minima can be simplified using the symmetries of
the system: any symmetry that is known not to be spontaneously broken,
should be manifest at the level of the state (Wigner-Weyl realization) and
therefore at the level of the minimizing background/orbit.
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5.1.1 Homogeneity and Isotropy

In particular, the Yang-Mills system at finite temperature is homogenous
and isotropic, that is, it is invariant under both temporal and spatial
translations and also under spatial rotations. Because these symmetries
are expected not to be broken spontaneously, it makes sense to restrict
the search for minima of Γ̃[Ā] to constant temporal backgrounds of the
form Āµ(x)= Ā0δµ0.

The discussion is in fact a little bit more subtle due to the general
symmetry considerations of the previous chapter. In particular, the ho-
mogeneity and isotropy of the state translates into the invariance of the
corresponding G0-orbit but not necessarily into the invariance of the vari-
ous background configurations that represent the orbit. Thus, even though
the orbit associated to a constant temporal background is both homoge-
nous and isotropic, there could be other invariant orbits such that none of
the representing backgrounds are invariant, but only invariant modulo a
non-trivial element of G0. We shall return to this interesting possibility at
the end of this chapter and assume for the moment (as usually done in the
literature) that we can indeed restrict to G0-orbits that contain constant
temporal backgrounds, or, more simply, that we can work exclusively with
constant temporal backgrounds of the form Āµ(x)= Ā0δµ0.

Moreover, since color rotations are elements of G0, we can always
assume that the constant Lie algebra element Ā0 has been color rotated
to the diagonal part of the su(N) algebra.1 Denoting by {iH j} a basis of the
latter, with [H j,Hk]= 0, see App. B, the most general background that we
shall consider is then of the form

(5.1) βĀµ(x)= ir jH jδµ0 ,

where the factor β≡ 1/T has been introduced to make the components r j

dimensionless. In fact, the discussion from here on applies more generally
1This is because the elements of su(N) are anti-hermitian matrices and are thus diagonaliz-

able by a unitary change of basis.
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to any semi-simple Lie algebra. Such algebras admit maximally commut-
ing subalgebras, the so-called Cartan subalgebras, which any element of
the algebra can be rotated into. In what follows, unless specifically stated,
we assume that we work in this general context. Denoting by dC the di-
mension of the Cartan subalgebra, the possible background configurations
are then represented by a vector r ∈RdC , with dC = N −1 in the case of
SU(N). We refer to this copy of RdC as the restricted background space and
to the vector r as the restricted background.

Correspondingly, the analysis of the background effective action Γ̃[Ā]
is reduced to that of a background field effective potential V (r) and the
background dependent Polyakov loop `[Ā] introduced in the previous
chapter becomes a function `(r) of the restricted background. Similarly,
the symmetry transformations should also be restricted to those that
preserve the form (5.1) of the background and which we now characterize.

5.1.2 Restricted twisted gauge transformations

The twisted gauge transformations U(x) that preserve the form (5.1) of the
background are such that U(x) ir jH jδµ0U†(x)−U(x)β∂µU†(x) is constant,
temporal and diagonal, for any restricted background r. We refer to these
transformations as restricted twisted gauge transformations. They form a
subgroup of G , denoted G̃ in the following.

If we take the index µ to be spatial in the condition above, we find
that the transformations of G̃ can only depend on τ. Moreover, choosing
r = 0, we find that βdU/dτ = is jH j U for some s ∈RdC . Integrating this
equation yields

(5.2) U(τ)= ei τβ s jH jW ,

for some color rotation W ∈ SU(N). Finally, for the above constraint to
be valid for a given r 6= 0, we should have Wr jH jW† = s jH j for some s
depending on r.
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In summary, the elements of G̃ take the form (5.2), with W a color
rotation that leaves the Cartan subalgebra globally invariant. Such type
of color rotations are known as Weyl transformations. The transformations
of the form ei τβ s jH j will be referred to as winding transformations.

5.1.3 Charge conjugation

Even though it will play a secondary role for the moment, let us also
discuss charge conjugation, which we recall is defined as AC

µ (x)≡−At
µ(x).

In the case of SU(N), since Ht
j = H j, we have A j

µ(x)→−A j
µ(x) and charge

conjugation leaves the Cartan subalgebra globally invariant.
We can therefore consider its action directly on the restricted back-

ground space, where it corresponds to the geometrical transformation
r → −r, that is the reflection about the origin. The invariance of the
potential under charge conjugation reads

(5.3) V (−r)=V (r) ,

and the constraint on the background-dependent Polyakov loops is

(5.4) `(−r)= ¯̀(r) .

We shall now study to which geometrical transformations in the restricted
background space the Weyl and the winding transformations correspond
to.

5.2 Winding and Weyl transformations

The winding transformation ei τβ s jH j acts on a given gauge field configura-
tion Aµ(x) as

βAµ(x) → ei τβ s jH jβAµ(x) e−i τβ s jH j + is jH jδµ0(5.5)

= ei τβ s j adH jβAµ(x)+ is jH jδµ0 .
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Here, we have introduced adθ ≡ [θ, _] and we have used that eθX e−θ =
eadθ X . The operators adH j commute with each other since [adH j ,adHk]=
ad[H j,Hk] = 0. To obtain a more explicit representation of the winding
transformations, we can try, therefore, to diagonalize simultaneously the
action of the operators adH j on the Lie algebra. This is precisely the role
of the Cartan-Weyl bases. These bases will also be used below for the
characterization of the Weyl transformations.2

5.2.1 Cartan-Weyl bases

A Cartan-Weyl basis is a basis {iH j, iEα} of the Lie algebra which extends
the basis {iH j} of the Cartan subalgebra and which diagonalizes simul-
taneously the adjoint action of all the elements of the Cartan subalgebra
[153]:

adH j Hk ≡ [H j,Hk]= 0 ,(5.6)

adH j Eα ≡ [H j,Eα]=α j Eα .(5.7)

The labels α are vectors of RdC whose components are the α j. This copy of
RdC is however not the same as the restricted background space defined
above. For reasons that will become clear shortly, we refer to it as the dual
(restricted) background space. It can be shown that roots always appear
by pairs (α,−α). They form what is known as the root diagram of the
corresponding algebra.

To take a few examples, consider the SU(2) and SU(3) cases. For SU(2),
the Cartan subalgebra is generated by the diagonal Pauli matrix H3 =σ3/2.
From the commutation relations [σi/2,σ j/2] = iεi jkσk/2, it is easily seen
that one possible Cartan-Weyl basis is given by {iσ3/2, iσ+/2, iσ−/2} with
σ± = (σ1 ± iσ2)/

p
2 , and roots ±1. In the case of SU(3), the Cartan sub-

algebra is generated by the diagonal Gell-Mann matrices H3 =λ3/2 and
2They will also lead to considerable simplifications in the calculations to be performed in

subsequent chapters.
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FIGURE 5.1. The SU(3) root diagram. The root diagram of SU(2)
is also visible if one restricts to the horizontal axis. The other
pairs of roots can be interpreted as corresponding to the other
SU(2) subgroups of SU(3).

H8 =λ8/2. Using the values for the SU(3) structure constants, it is easily
checked that the roots are ±(1,0), ±(1/2,

p
3 /2) and ±(1/2,−p3 /2). The

corresponding root diagrams are represented in Fig. 5.1. The root diagram
of SU(N) is constructed in App. B where we show in particular that all
roots are of norm unity.

We mention that Cartan-Weyl bases are not bases of the original, real-
valued Lie algebra but, rather, of the complexified Lie algebra. Therefore,
in such bases, the components of an element X of the original Lie algebra
do not need to be real. However, one can always choose the basis elements
Eα such that X = i(X jH j + XαEα), with X j ∈R and X∗

α = X−α, see App. B
for a more detailed discussion.
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5.2.2 Winding transformations

Decomposing the gauge field Aµ(x) into a Cartan-Weyl basis, it is easily
checked that the winding transformation (5.5) writes

βA j
µ(x) → βA j

µ(x)+ s j ,(5.8)

βAα
µ(x) → βAα

µ(x) ei τβ s·α ,(5.9)

where s ·α ≡ s jα j. Then, the components of βAµ(x) along the Cartan
subalgebra are just shifted by the corresponding components of s, while
the orthogonal components3 are multiplied by the phase ei τβ s·α.

So far, however, we did not implement the fact that winding transfor-
mations, like any other twisted gauge transformation, should preserve the
periodicity of the gauge field along the temporal direction. This implies
some constraints on the vector s defining the winding transformation.
Since the components of the gauge field along the Cartan subalgebra
are just shifted by a constant, the constraints originate only from the
orthogonal components. For these components to remain periodic, we need
to require the following set of conditions:

(5.10) s ·α ∈ 2πZ , ∀α .

In fact, it is sufficient that these conditions be satisfied for a set of roots
{α( j)} that generate any other root as a linear combination with integer
coefficients. In this case, the conditions (5.10) define a lattice, dual to the
one generated by the roots. If we introduce a basis {ᾱ(k)} of this dual lattice,
such that

(5.11) α( j) · ᾱ(k) = 2πδ jk ,

the general solution to (5.10) takes then the form

(5.12) s = nkᾱ
(k) ,

3The reason why we dub these components ‘orthogonal’ is given in App. B
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where nk ∈Z and a summation over k is implied.
As far as the restricted background r is concerned, because it is diago-

nal by assumption, it transforms as (5.8), that is as

(5.13) r → r+nkᾱ
(k) .

We conclude that, in the restricted background space, the winding trans-
formations are generated by translations along the vectors ᾱ(k). We can
then assume that these vectors belong to the restricted background space.
This explains why we dubbed the copy of RdC containing the roots (and in
particular the α( j)) as the dual (restricted) background space.

In the SU(2) case, the Cartan subalgebra is one dimensional and the
restricted background is given by a single real number r. We can take
for instance α(1) = 1 and, therefore, ᾱ(1) = 2π. It follows that winding
transformations are generated by the shift r → r+2π. In the SU(3) case,
the Cartan subalgebra is two dimensional and the restricted background
is given by a vector r = (r3, r8). We can choose α(1) = (1/2,−p3 /2) and α(2) =
(1/2,

p
3 /2). Then, winding transformations are generated by translations

along the vectors ᾱ(1) = (2π,−2π/
p

3 ) and ᾱ(2) = (2π,2π/
p

3 ).

5.2.3 Weyl transformations

Let us now consider the Weyl transformations defined as the color rota-
tions that leave the diagonal part of the algebra globally invariant. It is
easily seen that these transformations cannot be infinitesimal and there-
fore, we need to consider finite transformations of the form W = eθ. The
action of such a color transformation on any element X of the algebra is

(5.14) eθX e−θ = eadθ X =
∞∑

n=0

1
n!

adn
θ X .

Suppose now that we take θ of the form θ = i(θαEα+θ−αE−α)≡ wα, with
θ−α = θ∗α and where no summation over α is implied, hence the notation
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wα. A simple recursion using Eq. (5.7) shows that

(5.15) ad2p
wα

(H j)= i2p(2|θα|2α2)pαkHk

α2 α j ,

for p > 0, and

(5.16) ad2p+1
wα

(H j)=−i2p+1(2|θα|2α2)p(θαEα−θ−αE−α)α j ,

for p ≥ 0. It follows that

ewαH je−wα = H j +
(
cos

(√
2α2 |θα|

)−1
)αkHk

α2 α j(5.17)

− iα jp
2α2 |θα|

sin
(√

2α2 |θα|
)
(θαEα−θ−αE−α) .

Now, choosing |θα| =π/
p

2α2 , we can enforce the transformation to leave
the diagonal part of the algebra globally invariant:

(5.18) H j → H j −2
αkHk

α2 α j .

Considering this as a passive transformation, the restricted background r
transforms as

(5.19) r → r−2
α · r
α2 α ,

which is indeed a Weyl transformation as defined in [153]. In the restricted
background space RdC , this corresponds to a reflection with respect to an
hyperplane orthogonal to the root α and containing the origin.4

Finally, we mention that there exist other color rotations that leave
the Cartan subalgebra invariant, in a trivial way. Those correspond to
rotations eiθ jH j generated by the elements of the Cartan subalgebra itself.
Those are of no interest for the present discussion since they do not lead
to geometrical transformations of the restricted background. They will
however play an important role in Chapter 7 as we derive the Feynman
rules using Cartan-Weyl bases.

4In Eq. (5.19), it seems that we are shifting a vector of the restricted space (r) by a vector of
the dual space (α). However, the root α enters this formula only through its direction α/||α||, the
magnitude of the shift being proportional to the norm of r.
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5.2.4 Summary

From the above considerations, we derive the following invariance proper-
ties of the background field effective potential:

(5.20) V (r+ ᾱ(k))=V (r) , ∀ᾱ(k) ,

as well as

(5.21) V
(
r−2

α · r
α2 α

)
=V (r) , ∀α .

Correspondingly,

(5.22) `(r+ ᾱ(k))= eiϕ(k)`(r) , ∀ᾱ(k) ,

for some ϕ(k) to be fixed in the next section, and

(5.23) `
(
r−2

α · r
α2 α

)
= `(r) , ∀α .

5.3 Weyl chambers and symmetries

In the previous section, we could interpret the various elements of G̃

as geometrical transformations in the restricted background space RdC .
Of particular importance is the subgroup G̃0 of periodic transformations
within G̃ since the physical states are interpreted as the corresponding G̃0-
orbits, and the center-symmetric states correspond to the center-invariant
G̃0-orbits. We shall now characterize the elements of G̃0 and then identify
the center-invariant G̃0-orbits using the concept of Weyl chambers.

In fact, we know already part of the elements of G̃0 since the Weyl
transformations are trivially periodic. The other generators of G̃0 are the
periodic winding transformations, which we now characterize.
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5.3.1 Periodic winding transformations

To identify the periodic winding transformations, we assume that the H j

can all be diagonalized.5 Since they commute with each other, they can in
fact be diagonalized simultaneously,

(5.24) H j|ρ〉 = ρ j|ρ〉,

where the labels ρ are called the weights of the defining representation
or defining weights for short, and are just a convenient way to gather all
eigenvalues ρ j of a given eigenvector |ρ〉. The defining weights are again
vectors of RdC and can, therefore, be represented together with the root
diagram. The reason for representing them on the same copy of RdC will
appear more clearly once we introduce the quarks back in our analysis.
In the SU(2) case, the weights of the defining representation are ±1/2. In
the SU(3) case, we find (1/2,1/(2

p
3 )), (−1/2,1/(2

p
3 )) and (0,−1/

p
3 ), see

Fig. 5.2 for a representation of the corresponding weight diagram and
App. B for the construction of the defining weights for any value of N.

In terms of the weights, a general winding transformation writes

(5.25) ei τβ s jH j =∑
ρ

ei τβ s·ρ|ρ〉〈ρ| ,

where s ·ρ ≡ s jρ j. Periodic winding transformations are obtained by re-
quiring that

(5.26) s ·ρ ∈ 2πZ ,∀ρ.

The solution to (5.26) can then be found by repeating the previous argu-
ments used to solve (5.10). We first introduce a set of weights or their
opposites {ρ( j)} that generates any other weight through linear combina-
tion with integer coefficients. The general solution to (5.26) is then

(5.27) s = nkρ̄
(k) ,

5In the case of SU(N), we have chosen the H j already in an explicitly diagonalized form.
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FIGURE 5.2. Weight diagram for the defining representation of
SU(3), together with the corresponding root diagram (which is
nothing but the non-zero weight diagram of the adjoint repre-
sentation).

with nk ∈ Z and where {ρ̄(k)} is a basis of the lattice dual to the one
generated by the weights:

(5.28) ρ( j) · ρ̄(k) = 2πδ jk .

It follows that, in the restricted background space, periodic winding trans-
formations are generated by translations along the vectors ρ̄(k).

We mention that, because periodic winding transformations are just
particular winding transformations, the lattice generated by {ρ̄( j)} needs to
be a sub-lattice of the one generated by {ᾱ( j)}. This can be understood from
the fact that the adjoint representation is generally obtained by decompos-
ing the tensor product of the defining representation and the associated
contragredient representation (whose weights are opposite to those of the
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defining representation). We can thus construct the eigenstates of adH j

in terms of the eigenstates of H j and we find that the roots can always
be written as differences of weights of the defining representation (an
explicit proof is given in App. B for the SU(N) case). The lattice generated
by {α( j)} is then a sub-lattice of the one generated by {ρ( j)}, which implies
the opposite relation for the corresponding dual lattices.

In the SU(2) case, we can choose ρ(1) = 1/2 and, therefore ρ̄(1) = 4π.
Thus, the periodic winding transformations are generated by the shift
r → r+4π. In the SU(3) case, we can choose ρ(1) = (1/2,−1/(2

p
3 )) and ρ(2) =

(1/2,1/(2
p

3 )). Then, the periodic winding transformations are generated
by translations along the vectors ρ̄(1) = (2π,−2π

p
3 ) and ρ̄(2) = (2π,2π

p
3 ).

We note that, in both cases, we could choose the various bases such that
ᾱ(k) = 4πρ(k) and ρ̄(k) = 4πα(k), see the previous section for the values
of α(k) and ᾱ(k). This property generalizes to higher values of N, see
App. B. Then, if we define the reduced background as r̄ ≡ r/4π, we can
identify the reduced and the dual background spaces and represent all
the above geometrical transformations together with the root and weight
diagrams: Weyl transformations correspond to reflections with respect
to hyperplanes orthogonal to roots and containing the origin, periodic
winding transformations are generated by translations along the roots,
whereas generic winding transformations are generated by translations
along the weights of the defining and contragredient representations. In
the next section, for simplicity, we define the Weyl chambers in the reduced
background space. However, when representing the latter graphically, we
do so in the restricted background space by applying a factor 4π.

We mention finally that, according to Eq. (5.25), the center element
associated to a winding transformation of parameter s is given by eis·ρ.6

In particular, this fixes the phase in Eq. (5.22) to ϕ(k)= ᾱ(k) ·ρ = 4πρ(k) ·ρ
6This center element does not depend on the choice of ρ since s = nkᾱ

(k) and the difference of
two weights is always a root, which implies that s ·ρ− s ·ρ′ is a multiple of 2π.
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and we show in App. B that, in the case of SU(N), this is always ∓2π/N,
with the sign depending on whether ρ(k) is a weight or the opposite of a
weight.

5.3.2 Weyl chambers and invariant states

We are now ready to characterize the center-invariant G̃0-orbits, that is
the center-symmetric states, in the reduced background space RdC . One
possible strategy would be to work directly with the orbits as collections
of background configurations and, by trial and error, find which orbits are
globally invariant under center transformations. In Fig. 5.3, we have tried
to illustrate how painful such a procedure could be, in the SU(3) case. The
difficulty here is that, in order to explore the various orbits, one varies a
given orbit locally (by changing any of the backgrounds that represent the
orbit), with little control on how the orbit changes globally, and therefore
little chance of finding the center-invariant orbits. We now introduce a
simpler strategy based on the notion of Weyl chambers which allows us to
treat the orbits as a whole.

The idea is to use the geometrical interpretation of the transforma-
tions of G̃0 in the reduced background space to subdivide the latter into
cells which are connected to each other by the transformations of G̃0 and
which are, therefore, physically equivalent. These are the so-called Weyl
chambers7 whose points can be seen as representing the various possible
G̃0-orbits and thus the various possible states of the system.

Now, as we have seen in the previous chapter, the action of a center
transformation U ∈G /G0 ' G̃ /G̃0 can be defined directly on the G0-orbits
and, similarly on the G̃0-orbits. This action should then appear as a geo-
metrical transformation of a given Weyl chamber into itself. To see how
this is achieved in practice, one first chooses any representative U ∈ G

7Here the definition of the Weyl chambers differs substantially from the one in Mathematics,
where it corresponds to subdivisions associated to Weyl transformations only [153].
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r3

r8

FIGURE 5.3. A given G̃0-orbit (black dots) and its transformation
(blue dots) under a non-periodic winding transformation (trans-
lation along the blue vector). To vary the original orbit, one
varies locally one of its representing backgrounds (pink dot)
with little control on how the orbit changes globally, making it
difficult to identify the center-invariant orbits.

of the center transformation U and applies the transformation to the
chosen Weyl chamber. This typically moves the Weyl chamber away from
its original location. However, without altering the physical interpreta-
tion, we can bring the Weyl chamber back to its original location by using
transformations of G̃0. In doing so, one defines the action of G̃ directly
on the chosen Weyl chamber. Moreover, two transformations of G̃ that
correspond to the same center transformation in G̃ /G̃0 lead to the same
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geometrical transformation of the Weyl chamber, thereby defining the
action of the center symmetry group G̃ /G̃0 on the chosen Weyl chamber.

In summary, center transformations correspond to certain geometrical
transformations of the Weyl chambers into themselves, and the symmetric
states appear as the fixed points of the Weyl chambers under these geo-
metrical transformations. Similar considerations apply to other physical
transformation, in particular to charge conjugation.

5.3.3 Explicit construction for SU(N)

In the case of SU(N), we have seen that, in the reduced background space,
the generators of G̃0 are the translations by a root and the reflections with
respect to hyperplanes orthogonal to a root and containing the origin. In
order to identify the Weyl chambers, it is convenient to find a generating
set of G̃0 made only of reflections. Such a set is given by all the reflections
with respect to hyperplanes orthogonal to a root and translated by any
multiple of half that root. Indeed, it is easily checked that these reflec-
tions are elements of G̃0 and that the combination of two adjacent such
reflections generates the translation by the corresponding root. The bene-
fit of this generating set is that it allows to identify the Weyl chambers
as the regions delimitated by the corresponding network of hyperplanes.
Moreover, the reflections with respect to the facets of the so-obtained Weyl
chambers allow to transform them into one another without altering the
physical interpretation.

To further understand the structure of the Weyl chambers, consider
first the network of hyperplanes generated by the roots of the basis {α( j)}.
The intersections of these hyperplanes define a lattice generated by a
certain basis {x( j)} and whose elements obey the constraints

(5.29) x( j) ·α(k) = 0 , for k 6= j and (x( j)−α( j)/2) ·α( j) = 0 .

89



CHAPTER 5. BACKGROUND FIELD GAUGES:
WEYL CHAMBERS

Using that the roots are all of norm unity, we find that the solution to
these constraints is x( j) = ᾱ( j)/4π= ρ( j). This implies that the SU(N) Weyl
chambers are sub-pavings of the parallelepipeds generated by the weights
ρ( j). To finally reach the Weyl chambers, we need to see how the remaining
hyperplanes (those associated to roots other than the α( j)), further divide
these parallelepipeds. We shall do this here in the cases N = 2 and N = 3,
and leave the discussion of N = 4 for a future version of the manuscript.

For SU(2), there is only one family of hyperplanes, associated to α(1) = 1.
In the reduced background space, the Weyl chambers are then directly
given by the parallelepipeds generated by ρ(1) = 1/2, that is the inter-
vals [k/2, (k+1)/2], with k ∈Z. It will be enough to work in the interval
[0,1/2] which we refer to as the fundamental Weyl chamber. For SU(3),
there are three families of hyperplanes associated to α(1) = (1/2,−p3 /2),
α(2) = (1/2,

p
3 /2) and α(3) = −α(1) −α(2). The fundamental parallelepiped

associated to the first two is given in terms of ρ(1) = (1/2,−1/(2
p

3 )) and
ρ(2) = (1/2,1/(2

p
3 )). It is further divided by the family of hyperplanes asso-

ciated to α(3). One finds eventually that the Weyl chambers are equilateral
triangles, see Fig. 5.4, the fundamental Weyl chamber being defined as
the one with vertices (0,0), (1/2,−1/(2

p
3 )) and (1/2,1/(2

p
3 )).

We can now locate the center-symmetric states. We have seen that
translations along the ρ(k) (the edges of the fundamental parallelepiped)
correspond to elementary center transformations with a phase ϕ(k) =
∓2π/N with the sign depending on whether ρ(k) is a weight or the opposite
of a weight. Moreover, reflections with respect to the facets of the Weyl
chamber are elements of G̃0, by construction, and allow one to move the
Weyl chamber around without altering the physical interpretation. In the
SU(2) case, under the translation by ρ(1), the fundamental Weyl chamber
[0,1/2] is transformed into [1/2,1]. The latter can be brought back to its
original location by means of a reflection with respect to 1/2. As a result,
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FIGURE 5.4. SU(3) Weyl chambers and their transformations un-
der the action of G̃ and G̃ /G̃0. The first figure shows the fun-
damental Weyl chamber together with one of its axes and an
arbitrary point (representing an arbitrary state) to ease orien-
tation as we transform the Weyl chamber. In each figure, the
darker color indicates the actual position of the Weyl chamber,
while the light colors indicate previous positions of the Weyl
chamber.

we find that center transformations act on the fundamental Weyl chamber
as r̄ → 1/2− r̄. There is only one fixed-point in the fundamental Weyl
chamber, one confining state, r̄ = 1/4 (or r = π). In the SU(3) case, the
fundamental equilateral triangle is such that the two edges connected to
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the origin correspond respectively to a weight and the opposite of a weight.
Therefore, translations along these edges represent the two non-trivial
elements of Z3. After any of these translations, see Fig. 5.4, we need two
reflections with respect to the edges to bring the fundamental triangle
back to its original location, resulting in a rotation by an angle ±2π/3.
Again, there is only one fixed-point under any of these transformations,
the center of the triangle r̄ = (1/3,0) (or r = (4π/3,0)). In order to analyse
the deconfinement transition, we need therefore to evaluate the back-
ground field effective potential on the fundamental Weyl chamber and
monitor the position of its minimum with respect to the center-symmetric
point, as the temperature is varied. We shall do so in various situations
starting from next chapter.

Similarly, we can locate the charge conjugation invariant states. In the
SU(2) case, charge conjugation is nothing but a Weyl reflection. There is
therefore no constraint from charge conjugation invariance in that case.
In the SU(3) case, applying the transformation r →−r to the fundamental
Weyl chamber and bringing it back to its original location by means of an
element of G̃0, one finds that the physical charge conjugation is realized
as a reflection of the fundamental Weyl chamber about the r8 = 0 axis, see
Fig. 5.5. In other words, charge conjugation invariance of the YM system
implies that one can restrict the analysis to restricted backgrounds of
the form r = (r3,0) in the fundamental Weyl chamber. We shall find in
Chapter 6 that this is indeed what is found from the minimization of
the background field effective potential. This will remain true in the
presence of quarks with a vanishing chemical potential. However, for a
non-vanishing chemical potential, due to the explicit breaking of charge
conjugation invariance, we expect the restricted background to develop
a non-zero r8 component. We shall see precisely how this happens in
Chapters 9 and 10.
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FIGURE 5.5. SU(3) Weyl chambers and their transformations un-
der charge conjugation. The first figure shows the fundamental
Weyl chamber together with one of its axes and an arbitrary
point (representing an arbitrary state) to ease orientation as
we transform the Weyl chamber. In each figure, the darker color
indicates the actual position of the Weyl chamber, while the
light colors indicate previous positions of the Weyl chamber.

5.4 Euclidean spacetime symmetries

To conclude this chapter, let us critically revisit the original assumption
of a constant and temporal background. Recall that the reason behind
this choice was that such backgrounds, and in turn, the corresponding
G0-orbits, are invariant both under temporal and spatial translations and

93



CHAPTER 5. BACKGROUND FIELD GAUGES:
WEYL CHAMBERS

under spatial rotations, in line with the homogeneity and isotropy of the
Yang-Mills system at finite temperature.

However, as we also pointed out, there could be other states compatible
with homogeneity and isotropy, such that none of the representing back-
grounds are invariant under translations or rotations, but only invariant
modulo non-trivial true gauge transformations. Using Eq. (4.31), such
backgrounds would be such that

(P1) ∀x,u ∈ [0,β]×R3, ∃Uu(x) ∈G0, Āµ(x+u)= ĀUu
µ (x)

and

(P2) ∀x ∈ [0,β]×R3,∀R ∈ SO(3), ∃UR(x) ∈G0,

{
Ā0(R−1x)= AUR

0 (x)
R i j Ā j(R−1x)= ĀUR

i (x)
,

where we have introduced the notation R x ≡ (τ,R~x). It is trivially verified
that any background in the same orbit than an explicitly translation and
rotation invariant background obeys these properties. Here, however, we
wonder about the existence of backgrounds that obey (P1) and (P2) but
whose orbit does not contain any constant temporal representative.

In App. D, we investigate the existence of such backgrounds, in the
SU(2) case. In addition to the orbits containing constant temporal back-
grounds, we find orbits containing space-color locked backgrounds of the
form

(5.30) Ā0(x)= 0 , Āa
i (x)= Āδa

i ,

with Ā 6= 0. These backgrounds obey condition (P1) in a trivial way. They
also obey condition (P2) because any spatial rotation can be absorbed
back in the form of a color rotation. Moreover, their orbits do not contain
any constant and temporal background representative because their field-
strength tensor is non-zero, Fa

i j = Ā2εai j.
Even though one should in principle evaluate the background field

effective action on these configurations and compare it to the result ob-
tained with constant temporal backgrounds, we expect the space-color
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locked configurations to play no role in the confining phase since they are
not center-invariant. It would be interesting to extend the analysis to the
SU(3) case and see if other types of configurations could be relevant in the
confining phase.
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6
YANG-MILLS DECONFINEMENT TRANSITION

AT LEADING ORDER

A fter these various introductory chapters on the use of background
field techniques at finite temperature,1 we can at last put all the
developed machinery into work and start investigating the con-

finement/deconfinement transition from a perturbative perspective. We
shall do so using the Landau-deWitt gauge (the background extension
of the Landau gauge) and its infrared completion in the form of a back-
ground extended Curci-Ferrari model. Indeed, given that the original
Curci-Ferrari model opens a perturbative window at low energy in the
Landau gauge at vanishing temperature, it is legitimate to expect that
the corresponding background extension shares the same properties at
finite temperature.

In fact, it is the purpose of the rest of the manuscript to review how
many features of the QCD phase diagram, usually obtained from non-
perturbative methods, can be captured from a simple perturbative expan-
sion within the background extension of the Curci-Ferrari model. In this
chapter, we do so at one-loop order, in the case of the pure Yang-Mills

1Some additional features will be discussed in Chap. 9 for the case of finite density.
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theory.
After introducing some generalities about the Landau-deWitt gauge,

we use the properties of the Cartan-Weyl bases introduced earlier to derive
a general expression for the one-loop background-field effective potential,
valid for any gauge group, and which obeys all the symmetries identified
in Chapter 5. We then use this expression to investigate the confinement-
deconfinement transition in the SU(2) and SU(3) cases. In particular, we
compare our results for the corresponding transition temperatures to both
lattice and non-perturbative continuum results. We also investigate the
order parameter in various representations and test the so-called Casimir
scaling hypothesis. Finally, we discuss some open questions concerning the
thermodynamical properties which, in fact, go beyond the mere framework
of the Curci-Ferrari model and affect most, if not all, present continuum
approaches.

6.1 Landau-deWitt gauge

Since the Landau-deWitt gauge has only been mentioned formally so far,
let us derive the associated gauge-fixed action, together with the relevant
Curci-Ferrari completion.

6.1.1 Faddeev-Popov action

The Landau-deWitt gauge corresponds to the following choice of gauge-
fixing functional

(6.1) Fa[A]= D̄µ(Aa
µ− Āa

µ) ,

with D̄µϕ
a ≡ ∂µϕa + f abc Āb

µϕ
c.

Applying the general formula derived in Chap. 2, we find that the
Faddeev-Popov gauge-fixing term reads here

(6.2) δSFP =
∫

ddx
{
D̄µ c̄a(x)Dµca(x)+ iha(x) D̄µaa

µ(x)
}

,
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with aa
µ(x)≡ Aa

µ(x)− Āa
µ(x) and where, for convenience, we have used an

integration by parts in the ghost term. Of course, all the general proper-
ties derived in Chap. 2 apply here. In particular, the gauge-fixed action
is BRST invariant and both the partition function and the expectation
value of any gauge-invariant observable are independent of the choice
of the background Āa

µ(x), seen as an infinite collection of gauge-fixing
parameters.

The gauge-fixing term (6.2) just looks like the corresponding gauge-
fixing term in the Landau gauge upon making the replacement ∂µ→ D̄µ

and Aa
µ→ aa

µ. Moreover, it is easily checked that

(6.3) Fa
µν = F̄a

µν+ D̄µaa
ν− D̄νaa

µ+ f abcab
µac

ν ,

where F̄a
µν is the field-strength tensor associated to the background. There-

fore, for constant, temporal and diagonal backgrounds such as those
considered in this work, the above replacement rule applies also to the
original Yang-Mills contribution. This means in particular that the back-
ground components can be interpreted as imaginary chemical potentials
associated to the (commuting) color charges [154]. Together with the fact
that the gauge-fixed action boils down to the one in the Landau gauge in
the limit of vanishing background, this ensures the renormalizability of
the Landau-deWitt gauge-fixed action and the fact that the background is
not renormalized, as any other chemical potential.2

6.1.2 Curci-Ferrari completion

Similarly to the Landau gauge, the Landau-deWitt gauge-fixing is ham-
pered by the Gribov ambiguity which means that the Faddeev-Popov
action (6.2) should be considered as an approximation, valid at best at
high energies, and that it should be extended at lower energies. Since the
Curci-Ferrari model has proven to be a good candidate for a completion of

2This can be seen as the consequence of the abelian symmetry associated to the color charges.
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the gauge-fixing in the case of the Landau gauge, here we complete the
Faddeev-Popov action using a background extension of the Curci-Ferrari
model.

The two candidates to construct such a background extension are

(6.4)
∫

ddx
1
2

m2Aa
µAa

µ or
∫

ddx
1
2

m2aa
µaa

µ .

However, if we want to maintain the order parameter interpretation of
the background, it is crucial that the symmetry (4.5) is preserved, which
leaves us only with the second possibility. The background extension of the
Curci-Ferrari model that we should consider in the rest of this manuscript
is therefore

(6.5) δSCF =
∫

ddx
{
D̄µ c̄a(x)Dµca(x)+ iha(x) D̄µaa

µ(x)+ 1
2

m2aa
µ(x)aa

µ(x)
}

.

Following the same steps as in Chap. 2, it is easily seen that this action is
invariant under a modified BRST symmetry

(6.6) sm Aa
µ = Dµca, smca = 1

2
f abccbcc, sm c̄a = iha, smiha = m2ca ,

which ensures in particular the renormalizability of the model. Equiva-
lently one can again use the interpretation of the background as a chemical
potential.

6.1.3 Order parameter interpretation

As we saw in Chap. 4, the order parameter interpretation of the back-
ground relied not only on the symmetry property (4.5) but also on the
convexity of the generating functional W[J; Ā] and the background inde-
pendence of the limit W[0, Ā].

In the case of the Faddeev-Popov action (6.2) the partition function is
background independent as we have shown in Chap. 2, but the measure
is not positive definite, which can seriously jeopardize the convexity of
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W[J; Ā]. The presence of the Curci-Ferrari mass in (6.5) reduces the
positivity violation and, a not so large mass could be enough to ensure
the convexity of the generating functional W[J; Ā]. However, the presence
of the Curci-Ferrari mass violates the background independence of the
W[0, Ā] since we now find

(6.7)
δ lnW[0, Ā]
δĀa

µ(x)
= m2(Āa

µ(x)− Aa
min,µ[Ā](x)

)
.

The right-hand side vanishes if the background is self-consistent. Gen-
eralizing the arguments given in Chap. 4, this is enough to show that
the self-consistent backgrounds are extrema of the background field ef-
fective action Γ̃[Ā]. Thus, even though, in this case it is not clear which
extrema represent the self-consistent backgrounds, the order parameter
interpretation of the latter survives.

One can try to restore the background independence of the partition
function, and thus the identification of the self-consistent backgrounds
with the absolute minima of Γ̃[Ā], by introducing a background depen-
dence of the Curci-Ferrari mass. It remains to be investigated, however,
whether this leads to a consistent system of equations and also whether
this is enough to ensure the background independence of other observ-
ables. These questions are beyond the scope of the present discussion
and, in a first approximation, we should neglect the possible background
dependence of the mass.

Moreover, it should be kept in mind that the actual action beyond
the Faddeev-Popov prescription may contain other operators that help
restoring the background independence of the partition function. For this
reason, in what follows, we will assume that the state of the system is
indeed described by the minima of Γ̃[Ā]. In fact, the previous difficulties of
principle are present in most continuum approaches and there is always
an implicit assumption made that the correct recipe is that of minimizing
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Γ̃[Ā].3

6.2 Background field effective potential

The evaluation of the background field effective potential V (r) at one-loop
order requires only the quadratic part of the gauge-fixed action (6.5) with
respect to the fields aµ = Aµ− Āµ, h, c and c̄.4 It reads

S0 ≡
∫

ddx

{
1
2
(
D̄µaν; D̄µaν

)+ m2
0

2
(
aµ;aµ

)+ (
ih; D̄µaµ

)+ (
D̄µ c̄; D̄µc

)}
,

where, for later purpose, we have rescaled all fields by g0, including the
background. In particular, the background covariant derivative reads now
D̄µ_ ≡ ∂µ_−g0 [Āµ, _]. We have also used the intrinsic notation introduced
in the first chapter, in order to facilitate the change from Cartesian color
bases to Cartan-Weyl color bases that we shall consider below.

The presence of a preferred color direction, as provided by the back-
ground βg0 Āµ(x)= ir jH jδµ0, renders the color structure a bit more com-
plicated than usual. Indeed, the background covariant derivative in a
Cartesian basis writes

(6.8) D̄ab
µ = ∂µδab + g0 f acb Āc

µ ,

which is not diagonal in color space for µ= 0. This calls for the introduction
of bases that diagonalize the action of the background covariant derivative
in color space. Since the background is assumed to lie in the Cartan sub-
algebra, these bases are nothing but the Cartan-Weyl bases introduced in
Chapter 5.

3This is not just a formal discussion. In Chap. 10, we will see that the non-positivity of the
measure due to the presence of quarks at finite density, modifies this recipe substantially.

4More generally, the effective action Γ[Ã, Ā] is obtained by expanding the action in the fields
A− Ã, h, c and c̄. We shall compute Γ[Ã, Ā] to one-loop order in Chapter 11.
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6.2.1 Notational convention

In order to fully exploit the properties of Cartan-Weyl bases, we introduce
the following notation. Given an element X of the algebra, we write
its decomposition into a Cartan-Weyl basis {iH j, iEα} as X = i(X jH j +
XαEα)≡ iXκtκ, where the label κ can take two types of values, κ= 0( j) or
κ=α, with t0( j) ≡ H j and tα ≡ Eα. The label 0( j) is referred to as a zero and
should be taken literally as corresponding to the nul vector in the same
space as the one containing the roots α (the dual background space in the
terminology of the previous chapter). There is of course only one such nul
vector. However, there are as many color labels associated to zero as there
are elements in the Cartan sub-algebra, hence the label j used to denote
the various zeros.

Given these notational conventions, the definition of a Cartan-Weyl
basis can be written compactly as

(6.9) [t j, tκ]= κ jtκ ,

where, of course, 0(k)
j = 0, no matter the values of j and k. The vectors

κ appear therefore as the weights of the adjoint representation. Now,
since the background is assumed to lie in the Cartan sub-algebra, the
background covariant derivative acting on X writes

D̄µX = ∂µX − g0[Āµ, X ](6.10)

= i∂µXκtκ+T r j Xκ[t j, tκ]δµ0

= i∂µXκtκ+T r jκ j Xκtκδµ0 = iD̄κ
µXκtκ ,

with D̄κ
µ ≡ ∂µ− iT r ·κδµ0 and r ·κ≡ r jκ j.

As announced, the background covariant derivative is diagonal in color
space when expressed in a Cartan-Weyl basis. This simplifies considerably
the evaluation of the background field effective potential. Similarly, in
order to evaluate the background-dependent Polyakov loop, it will be
convenient to diagonalize the defining action of the H j as H j|ρ〉 = ρ j|ρ〉,
with ρ the weights of the defining representation.
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6.2.2 General one-loop expression

Coming back to the quadratic action (6.8) and choosing the Cartan-Weyl
basis such that (itκ; itλ)= δκ,−λ, see App. B, we find
(6.11)

S0 ≡
∫

ddx

{
1
2

D̄−κ
µ a−κ

ν D̄κ
µaκν+

m2
0

2
a−κ
µ aκµ+ ih−κD̄κ

µaκµ+ D̄−κ
µ c̄−κD̄κ

µcκ
}

.

In Fourier space, using that ϕ−κ(x)=ϕκ(x)∗ for bosonic fields, see App. B,
this reads
(6.12)

S0 ≡
∫ T

Q

{
1
2

aκµ(Q)∗(Q2
κ+m2

0)aκµ(Q)+hκ(Q)∗Qκ
µaκµ(Q)+ c̄−κ(−Q)Q2

κcκ(Q)
}

,

where Qκ ≡Q+T r ·κn is referred to as the generalized momentum, with
Q = (ωn, q), ωn = 2πnT a bosonic Matsubara frequency, and n ≡ (1,~0). We
have also introduced the notation

(6.13)
∫ T

Q
f (Q)≡ T

∑
n∈Z

∫
dd−1q

(2π)d−1 f (ωn, q)

for the Matsubara sum-integrals.

From the quadratic action (6.12), a standard Gaussian integration,
leads to the one-loop potential

(6.14) V1loop(r;T)=∑
κ

[
d−1

2

∫ T

Q
ln

(
Q2
κ+m2)− 1

2

∫ T

Q
ln Q2

κ

]
,

where we have set the bare mass m0 equal to the renormalized mass m,
since we are computing to one-loop accuracy and the mass enters already
a one-loop integral. For later purpose, it is important to emphasize that
the massive contribution originates from the transverse gluonic modes
whereas the massless contribution results from an over-cancellation be-
tween the one massless longitudinal mode and two massless ghost modes.
It is also worth noting that the zero temperature limit of the above expres-
sion at fixed r̂ ≡ Tr does not depend on r̂. Indeed, in this limit, the Mat-
subara sum-integral becomes a d-dimensional integral and the frequency
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shift r̂ ·κ hidden in Qκ can be absorbed using a simple change of variables
in the frequency integral.5 If we disregard this background-independent,
zero-temperature limit, we can set d = 4 and use an integration by parts
(with respect to the variable q) to find

(6.15) V1loop(r;T)=∑
κ

[
−

∫ T

Q

q2

Q2
κ+m2

0
+ 1

3

∫ T

Q

q2

Q2
κ

]
,

which involves convergent Matsubara sums unlike expression (6.14).

Using standard contour integration techniques, see for instance [155],
we arrive at (again, we disregard the zero-temperature limit)
(6.16)

V1loop(r;T)= 1
2π2

∑
κ

[
−

∫ ∞

0
dq

q4

εq
Renεq−ir̂·κ+ 1

3

∫ ∞

0
dq q3 Renq−ir̂·κ

]
,

with n(x) ≡ 1/(eβx −1) the Bose-Einstein distribution function and εq ≡√
q2+m2 . Using the integration by parts backwards, this can also be

rewritten as

(6.17) V1loop(r;T)= T
2π2

∑
κ

∫ ∞

0
dq q2 Re ln

(
1− e−βεq+ir·κ)3

1− e−βq+ir·κ .

Moreover, given that the root diagram is invariant under α→−α, we can
remove the explicit real parts in the previous expressions. Alternatively,
we can evaluate these real parts to find

V1loop(r;T) = 1
2π2

∑
κ

[
−

∫ ∞

0
dq

q4

εq

eβεq cos(r ·κ)−1
e2βεq −2eβεq cos(r ·κ)+1

(6.18)

+ 1
3

∫ ∞

0
dq q3 eβq cos(r ·κ)−1

e2βq −2eβq cos(r ·κ)+1

]
,

or, equivalently,

(6.19) V1loop(r;T)= T
4π2

∑
κ

∫ ∞

0
dq q2 ln

(
e−2βεq −2e−βεq cos(r ·κ)+1

)3

e−2βq −2e−βq cos(r ·κ)+1
.

5As we show in the next section, this property generalizes in fact to any loop order.
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6.2.3 Checking the symmetries

As a crosscheck, let us verify that the above formulas fulfil all the symme-
tries that we identified in Chapter 5.

First of all, the potential should be invariant under winding transfor-
mations which appear in the restricted background space as translations
along any of the vectors ᾱ(k) that generate the lattice dual to the one
generated by the roots:

(6.20) V
(
r+ ᾱ(k))=V (r) , ∀ᾱ(k) .

This identity is trivially fulfilled by Eq. (6.14) because, under a winding
transformation, the generalized momentum Qκ becomes Qκ+Tᾱ(k) ·κ and
the shift Tᾱ(k) ·κ ∈ 2πTZ can be absorbed using a change of variables
in the Matsubara sum. Similarly, eir·κ and cos(r ·κ), which appear for
instance in Eqs. (6.17) and (6.19) respectively, remain invariant under
winding transformations.

The potential should also be invariant under Weyl transformations
which appear as reflections with respect to hyperplanes orthogonal to the
roots:

(6.21) V
(
r−2

r ·α
α2 α

)
=V (r) , ∀α .

This identity is indeed fulfilled by Eq. (6.14) because, under a Weyl trans-
formation, the momentum Qκ becomes Q+T

(
r ·κ−2 r·αα·κ

α2

)=Qκ−2κ·α
α2 α

and
this change of κ can be absorbed using a redefinition of the sum over
κ for it is generally true that the root diagram is invariant under Weyl
transfomations. The same remark applies to eir·κ and cos(r ·κ).

Finally, the potential should be invariant under charge conjugation
which appears as the reflection about the origin of the restricted back-
ground space:

(6.22) V (−r)=V (r) .
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This identity is fulfilled by Eq. (6.14) because, under charge conjugation,
the momentum Qκ is changed to Q−κ and this change of κ can again be
absorbed using a redefinition of the sum over κ since the root diagram is
invariant under α→−α. The same remark applies to e;·κ and cos(r ·κ).

As a consequence of the symmetry identity (6.20), we can show that the
background-independence of the zero-temperature limit of the potential,
that we observed at one-loop, generalizes in fact to any loop order. To see
this, apply this identity n times along the direction ᾱ(k) and take the zero-
temperature limit in the form T = u/n, with u ∈R. Writing the potential
as a function of r̂ and T (rather than r and T), we find

(6.23) V (r̂+uᾱ(k);T → 0)=V (r̂;T → 0) .

Now, since the vectors ᾱ(k) form a basis of the restricted background space,
we have

(6.24) V (r̂+δr̂;T → 0)=V (r̂;T → 0) , ∀δr̂ ,

as announced.

Another consequence of the symmetry identity (6.20) is that the analy-
sis of the background field effective potential can be restricted to the fun-
damental parallelepiped defined by the vectors ᾱ( j). In fact, it is convenient
to decompose the restricted background as r = x jᾱ

( j), with 2πx j = r ·α( j),
and to express the potential as a function of the xi ∈ [0,1]. We shall use
this decomposition in the various plots to be shown in what follows.

6.3 SU(2) and SU(3) gauge groups

We now use the formulas derived in the previous section to investigate
the deconfinement transition in the SU(2) and SU(3) cases.
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FIGURE 6.1. Left: SU(2) background field effective potential in
the fundamental parallelepiped r = xᾱ(1), with ᾱ1 = 2π and
0 < x < 1, which is also the fundamental Weyl chamber. The
center-symmetric or confining point is located at x = 1/2. Right:
SU(3) background field effective potential along the line x1 =
x2 ≡ x of the fundamental parallelepiped. This fundamental
parallelepiped contains two Weyl chamber and we show the
potential in the fundamental Weyl chamber only. The center-
symmetric or confining point is located at x = 1/3. In both cases,
we have subtracted the value of the potential at the confining
point, for more readability.

6.3.1 Deconfinement transition

In the SU(2) case, we can work over the fundamental Weyl chamber
r ∈ [0,2π] whose only center-symmetric point, or confining state, is at r =π.
Using that κ ∈ {−1,0,+1} and writing only the background dependent
contributions to the potential, we find

(6.25) V SU(2)
1loop (r;T)= T

2π2

∫ ∞

0
dq q2 ln

(
e−2βεq −2e−βεq cos(r)+1

)3

e−2βq −2e−βq cos(r)+1
.

This potential is plotted in Fig. 6.1 (left) for various temperatures. As
the temperature is increased, the minimum of the potential moves con-
tinuously from the confining, center-symmetric state at r = π to a pair
of degenerate states (r,2π− r) connected by center symmetry. The tran-
sition is then of the second order type, in agreement with the results of
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lattice simulations [145–149] or continuum non-perturbative approaches
[48, 49, 51, 73, 74, 76, 156–161].

The transition temperature Tc can be determined in terms of m by
requiring that the curvature of the potential vanishes for r = π. This
condition reads

(6.26) 0= T
π2

∫ ∞

0
dq q2

[
eβq

(eβq +1)2 −
3eβεq

(eβεq +1)2

]
,

from which we find TSU(2)
c,1loop ' 0.336m.

The corresponding one-loop expression for the potential in the SU(3)
case can be obtained by observing that each pair of roots is associated
to a SU(2) subgroup. It follows that (again we keep only the background
dependent contributions)
(6.27)

V SU(3)
1loop (r;T)=V SU(2)

1loop (r3;T)+V SU(2)
1loop

(
r3− r8

p
3

2
;T

)
+V SU(2)

1loop

(
r3+ r8

p
3

2
;T

)
.

In Fig. 6.2, we show contour graphs of the potential in the fundamental
Weyl chamber for various temperatures. We observe that, as the tempera-
ture is increased, the minimum of the potential jumps eventually from the
confining, center-symmetric state at r = (4π/3,0) to a triplet of degenerate
states connected by center symmetry. We find that one of the absolute
minima lies always along the r8 = 0 axis. As we have explained in the
previous chapter, this is a consequence of charge conjugation invariance.6

For us, this means that we can restrict the analysis to the r8 = 0 axis,
along which the potential reads more simply

(6.28) V SU(3)
1loop (r;T)=V SU(2)

1loop (r3;T)+2V SU(2)
1loop

(r3

2
;T

)
.

6The presence of two other directions along which the minima move is in accordance with
center symmetry and just means that, as long as center symmetry is not explicitly broken, there
are three equivalent ways to define charge conjugation symmetry.
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FIGURE 6.2. SU(3) background field effective potential in the
fundamental parallelepiped r = x1ᾱ

(1) + x2ᾱ
(2), with ᾱ1 =

2π (1,−1/
p

3 ), ᾱ2 = 2π (1,1/
p

3 ) and 0 < xi < 1. The fundamen-
tal parallelepiped is made of two Weyl chambers (separated
by the dashed line) which contain each one center-symmetric
or confining point, located (1/3,1/3) and (2/3,2/3) respectively
(red dots). Finally, the charge conjugation invariant states are
indicated by a red line.

In Fig. 6.1, we show the potential along this axis, in the fundamental Weyl
chamber, for various temperatures, with a clear signal of a first order type
transition, in agreement with other approaches.

From center-symmetry, it follows that the confining point is always
an extremum, so it is possible to locate the highest spinodal by requiring
the curvature of the potential to vanish at this point. To this purpose, we
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notice first that

(6.29)
∂2

∂r2 V SU(2)
1loop (r;T)

∣∣∣∣
r=4π/3

= ∂2

∂r2 V SU(2)
1loop (r;T)

∣∣∣∣
r=2π/3

.

Using this identity, the equation for a vanishing curvature at the confining
point is found to be
(6.30)

0= T
2π2

∫ ∞

0
dq q2

[
e−3βq +4e−2βq + e−βq

(e−2βq + e−βq +1)2 −3
e−3βεq +4e−2βεq + e−βεq

(e−2βεq + e−βεq +1)2

]
,

from which we deduce that TSU(3)
s,1loop ' 0.382m, while the transition temper-

ature is found to be TSU(3)
c,1loop ' 0.364m.

Finally, given that the mass scale m can be fixed by fitting lattice
Landau-gauge propagators with the corresponding one-loop expressions
obtained within the Curci-Ferrari model,7 we can estimate the values
for the transition temperatures. Table 6.1 summarizes our results and
compares them to other approaches. The obtained values for Tc are already
quite good given the simplicity of the one-loop approximation that we have
considered. In the next chapter, we shall see that the two-loop corrections
considerably improve these values.

Tc (MeV) lattice [162] fRG [49] Variational [161] CF model [163]
SU(2) 295 230 239 238
SU(3) 270 275 245 185

Table 6.1: Transition temperatures for the SU(2) and SU(3) deconfinement
transitions as computed from various approaches.

7We fix the parameters of the model at zero temperature, in which case the background
r̂ = rT vanishes and the Landau-deWitt gauge becomes the Landau gauge.
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6.3.2 Inversion of the Weiss potential

The previous results can be understood in a simple way by comparing
the high and low temperature forms of the background field effective
potential.

For high temperatures (T À m), the mass can be neglected and the
gluonic contributions combine with the massless contributions to yield

(6.31) V1loop(r;T À m)' T4vWeiss(r) ,

where

vWeiss(r) ≡ 1
2π2

∑
κ

∫ ∞

0
dq q2 ln

(
e−2q −2e−q cos(r ·κ)+1

)
,(6.32)

= − 1
3π2

∑
κ

∫ ∞

0
dq q3 eq cos(r ·κ)−1

e2q −2eq cos(r ·κ)+1
(6.33)

is known as the Weiss potential [164, 165]. This potential rewrites

(6.34) vWeiss(r)=− 1
3π2

∑
κ

P4(r ·κ) ,

where

(6.35) P4(r)≡−(π− r)4

8
+ π2(π− r)2

4
− 7π4

120
,

is related to the Bernouilli polynomial of degree 4 and the notation r ·κ
stands for the remainder of the Euclidean division of r ·κ by 2π.

In contrast, for low temperatures (T ¿ m), the gluonic contributions
can be neglected and one obtains again the Weiss potential, but inverted
with respect to the high temperature regime:

(6.36) V1loop(r;T ¿ m)'−T4

2
vWeiss(r) .

This inversion of the Weiss potential (due to the presence of the scale m)
triggers the deconfinement transition if the center-symmetric state of the
system corresponds to the absolute maximum of the Weiss potential. It is
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a simple exercice to check that this is so in the SU(2) and SU(3) cases.

The inversion mechanism is present in other continuum approaches
and was in fact originally proposed in [73]. Let us emphasize that it relies
on the dominance of ghost degrees of freedom at low temperatures, which
obviously poses some conceptual questions such as how this temperature
regime could be a priori dominated by unphysical degrees of freedom,
while maintaining basic principles of thermodynamical consistency. We
shall analyse this question below and try to answer it, at least partially.

6.3.3 Polyakov loops

We can also evaluate the background-dependent Polyakov loop `(r) which
becomes the physical order parameter when evaluated at the minimum of
V (r).

Let us recall that `(r) is nothing but the expectation value of ΦA(~x) in
the presence of a source J[Ā] such that 〈A〉Ā = Ā. Therefore, to evaluate
`(r), we expand ΦA(~x) in powers of aµ(x) = Aµ(x)− Āµ(x) and substitute
any one-point function 〈aµ(x)〉Ā by 0 in the evaluation of the expectation
value. At leading order, we write ΦA(~x) ' ΦĀ(~x) = tr eiβgĀ/N, where we
have used that the background is constant to remove the time-ordering.
We find

`(r) = 1
N

tr eir jH j = 1
N

∑
ρ

eir·ρ ,(6.37)

¯̀(r) = 1
N

tr e−ir jH j = 1
N

∑
ρ

e−ir·ρ .(6.38)

where ρ are the weights of the defining representation, and −ρ those of
the corresponding contragredient representation.

These formulas obey the expected symmetries. Under a winding trans-
formation r → r+ ᾱ(k) (representing a center transformation, with center
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element eiᾱ(k)·ρ), the phase eiρ·r becomes eiρ·reiρ·ᾱ(k)
with eiρ·ᾱ(k)

not depend-
ing on the chosen weight ρ, as we have seen in the Chapter 5. Therefore

(6.39) `
(
r+ ᾱ(k))= eiᾱ(k)·ρ`(r) , ∀ᾱ(k) ,

as it should for a winding transformation. Under a Weyl transformation,
eir·ρ is transformed into eir·ρe−2i r·αα·ρ

α2 = eir·
(
ρ−α·ρ

α2 α
)

and the change of ρ can
be absorbed in a redefinition of the sum over ρ for it is generally true that
the weight diagram is globally invariant under Weyl transformations. It
follows that

(6.40) `
(
r−2

r ·α
α2 α

)
= `(r) ,

as it should for a Weyl transformations. Finally, we observe that `(−r)=
¯̀(r), in line with charge conjugation invariance, see Chapter 5. As we also
saw there, we have `(−r)= `∗(r) and, therefore, ¯̀(r)= `∗(r).

In the SU(2) case, we find

(6.41) `(r)= ¯̀(r)= cos(r/2) ,

whereas in the SU(3) case,

`(r) = e−i r8p
3 +2ei r8

2
p

3 cos(r3/2)
3

,(6.42)

¯̀(r) = ei r8p
3 +2e−i r8

2
p

3 cos(r3/2)
3

.(6.43)

We mention that for the SU(2) gauge group, the constraint from charge
conjugation invariance can also be seen as arising from Weyl symmetry,
and therefore, as we mentioned already, there is no real constraint from
charge conjugation invariance in this case. The reason is that there exists
a Weyl transformation W = iσ2 such that (iσ2)†A0(iσ2)= AC

0 . From this, it
is easily deduced that `(−r)= ¯̀(r). Since Weyl transformations also imply
`(−r)= `(r), it follows that `(r)= ¯̀(r). This last property is in general not
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true in the SU(3) case, except for a charge conjugation invariant state
r = (r3,0) for which

(6.44) `(r)= ¯̀(r)= 1+2cos(r3/2)
3

.

That ` and ¯̀ become equal and real in this case follows from hermitic-
ity and charge conjugation invariance, as we discuss more generally in
Chap. 9.

The physical Polyakov loops, as obtained from the one-loop potential
derived above, are shown in Fig. 6.3. They display of course the same
behavior at the transition that the one observed by following the minimum
of the potential. We mention that both Polyakov loops saturate to 1 at
a temperature T? ' 1.45m, corresponding to the background reaching
0 at this temperature. This occurs with a discontinuity in the second
derivative of the order parameter which leads to artificial singularities in
the thermodynamical observables. A similar feature is observed in other
approaches, see for instance [161]. We will see in the next chapter that
these artefacts disappear at two-loop order.

6.4 Thermodynamics

In principle, the free-energy density of the system is obtained as minus
the background field effective potential evaluated at its minimum r(T):

(6.45) f (T)=V (r(T);T) .

From this, all other thermodynamical observables can be derived. In
particular the pressure and the entropy density are given respectively by

p(T) = − f (T)=−V (r(T);T) ,(6.46)

s(T) = p′(T)=− ∂V (r;T)
∂T

∣∣∣∣
r=r(T)

.(6.47)
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FIGURE 6.3. Polyakov loops for the SU(2) and SU(3) defining rep-
resentations, as functions of T/Tc.

The energy density can then be computed as

(6.48) e(T)= f (T)+Ts(T)= T2(p/T)′ ,

and the so-called interaction measure is

(6.49) i(T)= e(T)−3p(T)
T4 = T(p/T4)′ .

6.4.1 High and low temperature behavior

In the high temperature limit, all modes contributing to the potential
(6.14) become massless and the resulting potential counts effectively
two degrees of freedom per color mode. This is the result of the usual
cancellation between the two unphysical components of the gauge field Aµ

and the two ghost degrees of freedom which, due to their Grasmannian
nature, contribute to the potential with an extra minus sign.

In the low temperature phase, the situation is in general more delicate
and still open to debate [155, 167, 168]. In the present approach, since
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three of the four components of the gauge field become massive while
the ghosts remain massless, the potential is essentially dominated by
ghost degrees of freedom. While this ghost domination is not specific
to the present approach and is in fact a key ingredient in the Weiss
potential inversion mechanism described above, one may fear the presence
of inconsistencies in the behavior of the thermodynamical observables,
such as a negative (thermal) pressure or a negative entropy density. As
we now explain, this unphysical behavior is not present.

The point is that, although the low temperature phase is indeed dom-
inated by the one uncanceled ghost degree of freedom, the latter is sur-
rounded by a background Ā0. Instead of cancelling each other, these two
unphysical degrees of freedom are subtlety combined in such a way that
the thermodynamics remains consistent at low temperatures. More pre-
cisely, the confining value of the background Ā0 operates a transmutation
of the thermal distribution function of the ghost field from a negative
distribution to a positive distribution.

Let us first illustrate this transmutation mechanism in the SU(2)
case where it is particularly compelling. From Eqs. (6.46) and (6.16), the
contribution to the pressure at low temperatures writes

(6.50) p(T)= 1
6π2

∫ ∞

0
dq q3 [−nq −nq−ir̂(T)−nq+ir̂(T)

]
.

The bracket contains the three color mode contributions, corresponding
to κ ∈ {−1,0,+1}. The neutral mode κ = 0 is blind to the background
and contributes negatively to the thermal pressure, as we would expect
from a ghost degree of freedom. However, in the presence of a confining
background r̂(T) = πT, the charge modes κ = ±1 contribute with the
transmuted distribution functions

(6.51) −nq−ir̂(T) =− 1
eβq−iπ−1

= 1
eβq +1

≡ fq > 0 ,

and thus behave effectively as true fermions! Finally, using fq = nq −2n2q

and a simple change of variables, on obtains the total contribution to the
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thermal pressure as

(6.52) p(T)= 3
24π2

∫ ∞

0
dq q3 nq ,

which is positive. Since s(T)/T3 ∼ 4p(T)/T4, the same conclusion is reached
for the entropy density.

We can proceed identically in the SU(3) case. The thermal pressure
reads

(6.53) p(T)= 1
6π2

∫ ∞

0
dq q3 [−2nq −2Renq−ir̂(T)−4Renq−ir̂(T)/2

]
.

In the confining phase r(T)= 4π/3 and

(6.54) −Renq−ir̂(T) =−Renq−ir̂(T)/2 = eβq/2+1
e2βq + eβq +1

> 0 .

To check that the total contribution to the pressure is positive, we can use
the identity8

(6.55)
N−1∑
k=0

nq−i 2π
N k = NnNq ,

After a simple change of variables, we find

(6.56) p(T)= 8
54π2

∫ ∞

0
dq q3 nq .

We conclude therefore that, despite the ghost dominance at low tempera-
tures, the thermodynamical properties seem consistent.

8This is simply derived by writing

N−1∑
k=0

nq−i 2π
N k =

N−1∑
k=0

∞∑
p=1

eβqpe−i 2π
N kp =

∞∑
p=1

eβqp
N−1∑
k=0

e−i 2π
N kp ,

where we have inverted the order of the summations. Now, the inner sum over k vanishes unless p
is a multiple of N, in which case it equals N. Therefore, the sum becomes N

∑∞
p=1 eNβqp = NnNq,

as announced. This result is in fact more general. Given a Matsubara sum S(T)≡ T
∑

n∈Z f (iωn),
we may need to evaluate the related double sum

N−1∑
k=0

T
∑

n∈Z
f
(
iωn + iT

2π
N

k
)
= N

T
N

N−1∑
k=0

∑
n∈Z

f
(
i2π

T
N

(Nn+k)
)
.

With the exception of the factor of N, we can interprete the double sum in the RHS as a single
Matsubara sum at a reduced temperature T/N. Therefore, the result of the sum in the LHS is
NS(T/N).
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6.4.2 Vicinity of the transition

The transmutation mechanism identified in the previous section could
lead to inconsistencies in the vicinity of the transition. Indeed, as one
approaches the transition temperature from below, the gluonic degrees
of freedom start playing a role, while the confining background remains
confining. Then, because the gluonic distribution functions are positive
in the absence of background, those orthogonal to the background trans-
mute into negative distribution functions in the confining phase and can
potentially turn the entropy density or the thermal pressure negative. A
calculation reveals that a very tiny violation occurs at leading order over
a narrow range of temperatures below Tc, see [155, 168]. In the next chap-
ter, we investigate whether higher loop corrections can cure this behavior.

In the SU(3) case, the first order transition is characterized by a
discontinuity of the entropy density, associated to a latent heat ∆ε/T4

c =
∆s/T3

c . At one-loop order in the Curci-Ferrari approach, we find 0.41 that
is only one third of the lattice value [173]. It remains to be investigated
whether this result improves when including higher order corrections.
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7
YM DECONFINEMENT TRANSITION AT

NEXT-TO-LEADING ORDER

We have seen in the previous chapter that the background ex-
tension of the Curci-Ferrari model captures the physics of the
confinement/deconfinement transition in Yang-Mills theories

already at leading order. In particular, we have obtained rather good
estimates for the SU(2) and SU(3) transition temperatures, given the
simplicity of the considered approximation.

In this chapter, we investigate the next-to-leading order corrections to
the background field effective potential and to the background-dependent
Polyakov loop. Not only are these corrections necessary to assess the
convergence properties of the approach but they are also needed to try to
cure some of the problematic features identified at leading order.

We shall see that the two loop corrections help improving the values
for the transition temperatures and cure some of the problematic features.
There will remain some open questions, however. As we argue, these
question are not restricted to the mere Curci-Ferrari approach but pose in
fact challenges to most, if not all, present continuum approaches.
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7.1 Feynman rules and color conservation

In order to evaluate the two-loop corrections to the background field
effective potential, we first need to determine the Feynman rules in the
Landau-deWitt gauge. Due to our previous experience with the one-loop
calculation, we suspect these rules to become simpler when expressed in
a Cartan-Weyl basis. We will check below that this is indeed the case. But
let us first see how this result can be anticipated using the symmetries of
the gauge-fixed action.

7.1.1 Color conservation

In fact, there is still one invariance that we have not yet exploited, namely
the invariance under background gauge transformations

(7.1) SCF[AU ,hU , cU , c̄U ; ĀU]= SCF[A,h, c, c̄; Ā] ,

in the case where the background is left invariant, ĀU = Ā. Indeed, since
only the dynamical fields are transformed in this case, this invariance
implies certain conservation rules that should appear explicitly at the
level of the action provided the fields are decomposed into the eigenmodes
of the corresponding Noether charges.

In the case where the background is constant, temporal and diago-
nal, the transformations that leave the background invariant are color
rotations of the form eiθ jH j , with θ j constant. The corresponding con-
served charges on the Lie algebra are therefore the operators adH j , whose
eigenstates are nothing but the elements tκ of a Cartan-Weyl basis, with
associated charges combined into the vector κ.

Using (6.3) and (6.5) and the Killing form introduced in Chapter 2, the
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background extension of the Curci-Ferrari model writes

SCF =
∫

ddx

{
1
2
(
D̄µaν; D̄µaν

)+ m2
0

2
(
aµ;aµ

)+ (
ih; D̄µaµ

)+ (
D̄µ c̄; D̄µc

)
− (

D̄µ c̄; [aµ, c]
)− (

D̄µaν; [aµ,aν]
)+ 1

4
(
[aµ,aν]; [aµ,aν]

)}
,(7.2)

and decompose each field into a Cartan-Weyl basis, we find

SCF =
∫

ddx

{
1
2

D̄−κ
µ a−κ

ν D̄κ
µaκν+

m2
0

2
a−κ
µ aκµ+ ih−κD̄κ

µaκµ+ D̄−κ
µ c̄−κD̄κ

µcκ

− i fκλτ
(
D̄κ
µ c̄κ

)
aλµcτ− i fκλτ

(
D̄κ
µaκν

)
aλµaτν−

1
4

fκλξ f(−ξ)τσaκµaλνaτµaσν

}
,(7.3)

where we have used (tκ; tλ)=−δκ,−λ and we have introduced the notation
(tκ; [tλ, tτ]) ≡ − fκλτ. This tensor is totally antisymmetric, owing to the
antisymmetry of the bracket and the cyclicity of the Killing form. In
fact, it plays the role of the structure constant tensor in the Cartan-Weyl
basis since, as it is easily shown, [tλ, tτ]= fκλτt−κ. This has been used in
particular to write the four gluon interaction.

We may now ask how is the conservation of color manifest at the level
of the action (7.3). To answer this question, let us first notice that fκλτ
vanishes if two or three labels are zeros since [t0( j), t0(k)] = 0. Moreover,
since [t0 j , tα] = α jtα, f0( j)α(−α) = α j. Finally, let us evaluate how a given tα
acts on tβ in the adjoint representation. Since we know already how the
t0( j) act, we write

(7.4) adt0( j) adtα tβ = adtαadt0( j) tβ+ad[t0( j) ,tα]tβ ,

where we have used that [adX ,adY ]= ad[X ,Y ]. This rewrites

(7.5) adt0( j) adtα tβ = (α+β) jadtα tβ .

So either adtα tβ = [tα, tβ]= 0 or it has to be collinear to tα+β (in which case
α+β has to be a root). In all cases, we notice that fκλτ = 0 if κ+λ+τ 6= 0,
which ensures color conservation at the level of (7.3).
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K, κ

K, κ

νµ

FIGURE 7.1. Diagrammatic representation of the propagators in
the Landau-deWitt gauge.

Let us mention finally that upon complex conjugation in the com-
plexified algebra, see Appendix B, and using that it is possible to choose
the tκ such that t̄κ =−t−κ (where the bar denotes the conjugation in the
complexified algebra) we find [tλ, tτ]=− f ∗

(−κ)(−λ)(−τ)t−κ which implies

(7.6) fκλτ =− f ∗
(−κ)(−λ)(−τ) .

7.1.2 Feynman rules

The action (7.3) is pretty similar to the action in the Landau gauge, up
to the missing conventional factor of i in the structure constants and
the presence of background covariant derivatives that depend on the
color charge of the field they act upon. In Fourier space, these covariant
derivatives become generalized momenta, the color charge of the field
entering as a shift Tr · κ of the frequencies, similar to an imaginary
chemical potential for the color charge. This means that the Feynman
rules for the Landau-deWitt gauge in a Cartan-Weyl basis are pretty
similar to those for the Landau gauge in a conventional Cartesian basis.
For the gluon and ghost propagators, we find respectively

(7.7) P⊥
µν(Qκ)Gm0(Qκ)
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K, κ, µ Q, τ, ρ

L, λ, ν

K, κ, µ Q, τ, ρ

L, λ, ν

FIGURE 7.2. Diagrammatic representation of the derivative ver-
tices.

and

(7.8) G0(Qκ) ,

where we have introduced

(7.9) Gm0(Q)≡ 1
Q2+m2

0
,

as well as the transverse projector P⊥
µν(Q)≡ δµν−QµQν/Q2. These propa-

gator are represented diagrammatically in Fig. 7.1. Each line carries both
a momentum Q and a color charge κ. We note the property Qκ =−(−Q)−κ
which implies Gm0(Qκ)=Gm0((−Q)−κ) and P⊥

µν(Qκ)= P⊥
µν((−Q)−κ) and thus

that the common orientation of momentum and charge can be chosen
arbitrarily.

As for the vertices, the ghost-antighost-gluon vertex is given by

(7.10) g0 fκλτKκ
ν ,

where K is the momentum of the outgoing antighost and κ is the corre-
sponding outgoing color charge, and similarly, λ and τ are the charges of
the outgoing gluon and ghost. Similarly, the three-gluon vertex is given by

(7.11)
g0

6
fκλτ

{
δµρ(Kκ

ν −Qτ
ν)+δνµ(Lλ

ρ−Kκ
ρ)+δρν(Qτ

µ−Lλ
µ)

}
,
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K, κ, µ L, λ, ν

Q, τ, ρP, ξ, σ

FIGURE 7.3. Diagrammatic representation of the four-gluon ver-
tex.

where Qκ, Kλ and Lτ denote the shifted outgoing momenta associated
to the indices µ, ν and ρ. These derivative vertices are represented in
Fig. 7.2. Finally, the four-gluon vertex is given by

g2
0

24

∑
η

{
fκλη fτξ(−η)(δµρδνσ−δµσδνρ)

+ fκτη fλξ(−η)(δµνδρσ−δµσδνρ)

+ fκξη fτλ(−η)(δµρδνσ−δµνδσρ)
}

,(7.12)

where κ, λ, τ and ξ represent the outgoing charges. This vertex is repre-
sented in Fig. (7.3). Using Eq. (7.6), the momenta/charges in the vertices of
Figs. 7.2 and 7.3 can also all be considered incoming, provided one replaces
Eqs. (7.10), (7.11), and (7.12) by the complex-conjugate expressions.

7.2 Two-loop effective potential

There are three diagrams contributing to the background field effective
potential at two-loop order. We can label them according to the number of
gluon propagators, δV 1gl

2loop, δV 2gl
2loop and δV 3gl

2loop respectively. Applying the
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Feynman rules listed above we find

δV 1gl
2loop = ∑

κλτ

Cκλτ

[
− g2

2

∫ T

Q

∫ T

K
Qκ ·P⊥(Lτ) ·KλG0(Qκ)G0(Kλ)Gm(Lτ)

]
,

δV 2gl
2loop = g2

4

∑
κλτ

Cκλτ

∫ T

Q

∫ T

K

[
trP⊥(Qκ)trP⊥(Kλ)

−trP⊥(Qκ)P⊥(Kλ)
]
Gm(Qκ)Gm(Kλ) ,

δV 3gl
2loop = −g2

∑
κλτ

Cκλτ

∫ T

Q

∫ T

K
B(Qκ,Kλ,Lτ)Gm(Qκ)Gm(Kλ)Gm(Lτ) ,

(7.13)

where we have defined the tensor Cκλτ ≡ | fκλτ|2. Since fκλτ vanishes if
κ+λ+τ 6= 0, the same is true for Cκλτ and we can assume that the color
sums in Eq. (7.13) are constrained by color conservation, meaning that
κ+λ+τ= 0. Since we have chosen the momenta such that Q+K +L = 0,
the generalized momenta are also conserved in the sense that

(7.14) Qκ+Kλ+Lτ = 0 .

We shall repeatedly make use of this property in what follows.
Let us also mention that, for the last diagram, we have introduced the

function

B(Qκ,Kλ,Lτ) ≡ −[
Qκ ·P⊥(Lτ) ·Kλ

]
tr

[
P⊥(Kλ)P⊥(Qκ)

]
(7.15)

−2Lτ ·P⊥(Qκ) ·P⊥(Lτ) ·P⊥(Kλ) ·Lτ .

Owing to the symmetry of the corresponding summand/integrand in
Eq. (7.13) with respect to permutations of the triplet (Qκ,Kλ,Lτ), we
can replace this function by its symmetrized version. A straightforward
calculation shows that

Bsym(Qκ,Kλ,Lτ) = 1
3

{(
d− 3

2

)(
1

Q2
κ

+ 1
K2
λ

+ 1
L2
τ

)
(7.16)

+Q4
κ+K4

λ+L4
τ

4Q2
κK2

λ
L2
τ

}[
Q2
κK2

λ− (Qκ ·Kλ)2] ,
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where we note that the combination Q2
κK2

λ− (Qκ ·Kλ)2 is also totally sym-
metric, although not explicitly. This is easily seen by writing

Q2
κK2

λ− (Qκ ·Kλ)2 = Qκ ·P⊥(Kλ) ·QκK2
λ(7.17)

= Lτ ·P⊥(Kλ) ·LτK2
λ = L2

τK
2
λ− (Lτ ·Kλ)2 ,

where we have used Eq. (7.14). Again, we shall make use of these identities
below.

7.2.1 Reduction to scalar sum-integrals

It is convenient to reduce the sum-integrals in Eq. (7.13) to a set of simpler
sum-integrals. To this purpose, we proceed in two steps.

We first reduce everything to the set

(7.18) Jκ
α ≡

∫ T

Q
Gα(Qκ) , Jκ

µν ≡
∫ T

Q

Qκ
µQκ

ν

Q2
κ

Gm(Qκ) .

and

(7.19) Iκλταβγ ≡
∫ T

Q

∫ T

K

[
Q2
κK2

λ− (Qκ ·Kλ)2]Gα(Qκ)Gβ(Kλ)Gγ(Lτ) .

For instance, using

(7.20) trP⊥(Qκ)= d−1 and trP⊥(Qκ)P⊥(Kλ)= d−2+ (Qκ ·Kλ)2

Q2
κK2

λ

,

we find

(7.21) δV 2gl
2loop =

g2

4

∑
κ,λ,τ

Cκλτ

[
(d2−3d+3)Jκ

mJλ
m − Jκ

µνJλ
µν

]
,

for the diagram with two gluon propagators. The diagram with one gluon
propagator can be treated using Eqs. (7.14) and (7.17), together with the
identity

(7.22) G0(Lτ)Gm(Lτ)= 1
m2

[
G0(Lτ)−Gm(Lτ)

]
.
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We find

(7.23) δV 1gl
2loop =

g2

2m2

∑
κ,λ,τ

Cκλτ

[
Iκλτ000 − Iκλτ00m

]
.

As for the diagram with three gluon propagators, similar considerations
using the symmetrized function (7.16) lead to

δV 3gl
2loop = − g2

4

∑
κ,λ,τ

Cκλτ

{
Jκ

mJλ
m − Jκ

µνJλ
µν

− 4
m2

[(
d− 5

4

)
Iκλτmmm − (d−1)Iκλτmm0+

1
4

Iκλτm00

]}
.(7.24)

Adding up the three diagrams, we arrive finally at

δV2loop = g2
∑
κ,λ,τ

Cκλτ

{
(d−1)(d−2)

4
Jκ

mJλ
m + 1

2m2 Iκλτ000

+ 1
m2

[(
d− 5

4

)
Iκλτmmm − (d−1)Iκλτmm0−

1
4

Iκλτm00

]}
,(7.25)

where we note that the contributions involving Jκ
µν have cancelled out.

In a second step, we reduce all the sum-integrals to the set Jκ
α,

(7.26) J̃κ
α ≡

∫ T

Q
Q0
κGα(Qκ) and Sκλτ

αβγ ≡
∫ T

Q

∫ T

K
Gα(Qκ)Gβ(Kλ)Gγ(Lτ) .

To this purpose, we use

(7.27) Qκ ·Kλ = 1
2

[
α2+β2−γ2+L2

τ+γ2− (Q2
κ+α2)− (K2

λ+β2)
]

to obtain, after a lengthy but straightforward calculation,

Iκλταβγ = 1
4

[(
γ2−α2−β2) Jκ

αJλ
β +

(
β2−α2−γ2) Jκ

αJτ
γ +

(
α2−β2−γ2) Jλ

β Jτ
γ

]
−1

4
(
α4+β4+γ4−2α2β2−2α2γ2−2β2γ2)Sκλτ

αβγ

− 1
2

[
J̃κ
α J̃λ

β + J̃κ
α J̃τ

γ + J̃λ
β J̃τ

γ

]
.(7.28)
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Plugging this identity back into Eq. (7.25), we arrive finally at

δV2loop = g2
∑
κ,λ,τ

Cκλτ

{
1
4

(
d2−4d+ 15

4

)
Jκ

mJλ
m + 1

8
Jκ

0 Jλ
m − 1

16
Jκ

0 Jλ
0

− 1
m2

(
d− 11

8

)
J̃κ

m J̃λ
m + 1

m2

(
d− 3

4

)
J̃κ

0 J̃λ
m − 5

8m2 J̃κ
0 J̃λ

0

+ 3m2

4

(
d− 5

4

)
Sκλτ

mmm + m2

16
Sκλτ

m00

}
.(7.29)

This expression is convenient because the Matsubara sum-integrals Jκ
α,

J̃κ
α and Sκλτ

αβγ
are essentially those found in a scalar theory and can be

easily evaluated using standard techniques, see [155].

7.2.2 Thermal decomposition and renormalization

After evaluating the elementary sum-integrals identified above, one can
typically decompose them as

Jκ
α = Jα(0n)+ Jκ

α(1n) ,(7.30)

J̃κ
α = J̃α(0n)+ J̃κ

α(1n) ,(7.31)

Sκλτ
αβγ = Sαβγ(0n)+Sκλτ

αβγ(1n)+Sκλτ
αβγ(2n) ,(7.32)

where (in) refers to the number of loops that are cut off by the presence of
thermal factors n.1

Plugging these decompositions into Eq. (7.29), we arrive at a similar
decomposition for the two-loop correction to the background field effective
potential:

(7.33) δV2loop = δV2loop(0n)+δV2loop(1n)+δV2loop(2n) .

As we have shown in the previous chapter, the zero-temperature contribu-
tion δV2loop(0n) does not depend on the background and can be ignored in
the following analysis.

1More precisely, these should be factors of n with an argument whose real part is positive, so
that the loop momentum is indeed cut off.
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The contribution δV2loop(1n) involves products of the form Jα(0n)Jλ
β

(1n)
or J̃α(0n)J̃λ

β
(1n), as well as Sκλτ

αβγ
(1n). This latter quantity can be expressed

in terms of Jκ
α(1n) as

Sκλτ
αβγ(1n) = Jκ

α(1n) Re Ĩβγ(εα,q + i0+; q)(7.34)

Jλ
β (1n) Re Ĩγα(εβ,k + i0+;k)

Jτ
γ(1n) Re Ĩαβ(εγ,l + i0+; l) ,

where Re Ĩβγ(εα,q + i0+; q) is defined as the real part of the vacuum bubble
integral

(7.35) Iβγ(Q)≡
∫ T=0

K
Gβ(K)Gγ(L) ,

analytically continued to real frequencies, Q = (ωn, q)→ (−iq0+ε, q) and
evaluated on the mass shell q2

0 − q2 = α2, see [155] for more details. For
the cases of interest here, we find

Re Ĩ00(εq+i0+; q) = 1
16π2

[
1
ε
+ ln

µ̄2

m2 +2
]

,(7.36)

Re Ĩm0(q+i0+; q) = 1
16π2

[
1
ε
+ ln

µ̄2

m2 +1
]

,(7.37)

Re Ĩmm(εq+i0+; q) = 1
16π2

[
1
ε
+ ln

µ̄2

m2 +2− πp
3

]
,(7.38)

where we note that the RHS do not depend on q.2 From these relations,
together with the standard results

(7.39) Jα(0n)=− α2

16π2

[
1
ε
+ ln

µ̄2

α2 +1
]

,

and J̃α(0n)= 0, one arrives at

(7.40) δV2loop(1n)= g2Cad

128π2 m2
(
35
ε

+35ln
µ̄2

m2 +
313
3

− 99π

2
p

3

)∑
κ

Jκ
m(1n) ,

2This follows from the definition of Re Ĩβγ(εα,q + i0+; q) and Lorentz invariance.
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where we have made use of the symmetry of Cκλτ together with the
Casimir identity

∑
τCκλτ = Cadδκ,−λ [168].

Finally, the contribution δV2loop(2n) with two thermal factors is UV
finite by construction and one can evaluate it directly in d = 4 dimensions.
One finds

δV2loop(2n) = 3g2

8

∑
κ,λ,τ

Cκλτ

[
5
2

UκVλ− 7
m2ŨκṼλ

]
(7.41)

+ g2m2

16

∑
κ,λ,τ

Cκλτ

[
33Sκλτ

mmm(2n)+Sκλτ
m00(2n)

]
,

with Uκ ≡ Jκ
m(1n)+Jκ

0 (1n)/3, V κ ≡ Jκ
m(1n)−Jκ

0 (1n)/5, Ũκ ≡ J̃κ
m(1n)− J̃κ

0 (1n)
and Ṽ κ ≡ J̃κ

m(1n)−5J̃κ
0 (1n)/21.

One could be worried by the presence of a temperature-dependent
divergence in δV2loop(1n). However, at two-loop order, one should also
consider one-loop diagrams involving counterterms.3 These are obtained
by first rewriting the action in terms of renormalized fields and parameters
as

(7.42) aµ→ Z1/2
a aµ , c → Z1/2

c c , m2 → Zm2m2 , g → Zg g ,

writing Z = 1+δZ and treating the various δZ as new interaction vertices.
At the considered order, we find the counterterm contribution

XδV ct
2loop = −δZc

∑
κ

∫ T

Q
Q2
κG0(Qκ)(7.43)

+ 1
2

∑
κ

∫ T

Q

(
δZa(Q2

κ+m2)+m2δZm2

)
trP⊥(Qκ)G(Qκ) .

Using trP⊥(Qκ)= d−1 together with the fact that
∫ T

Q 1= 0 in dimensional
regularization, this rewrites

(7.44) δV ct
2loop =

d−1
2

m2δZm2

∑
κ

Jκ
m .

3The counterterms should be evaluated at one-loop order, so that the counterterm diagram
counts effectively as a two-loop order diagram.
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We note that this is precisely of the same form as the divergence that
needs to be cancelled out in Eq. (7.40). In fact, the value of δZm2 is fixed
from the renormalization of the gluon two-point function at one-loop order,
which we discuss in Chapter 11. In the zero-momentum scheme considered
there, one finds

(7.45) δZm2 = g2N
192π2

[
−35
ε

+ z f

]
,

and

z f = − 1
s2 +

111
2s

− 287
6

−35ln(s̄)− 1
2

(
s2−2

)
ln(s)

+(
s2−10s+1

)(1
s
+1

)3

ln(s+1)

+1
2

(s2−20s+12)
(
4
s
+1

)3/2

ln

(p
4/s+1 −1p
4/s+1 +1

)
,(7.46)

with s ≡ µ2/m2 and s̄ ≡ µ̄2/m2. The pole in Eq. (7.45) is universal and
exactly cancels the one in Eq. (7.40), as expected in a renormalizable
theory such as the Curci-Ferrari model. Consequently, in what follows, we
redefine δV2loop(1n) to be the sum of (7.40) and (7.44):

(7.47) δV2loop(1n)= g2Cad

128π2 m2
(
z f +35ln s̄2+ 313

3
− 99π

2
p

3

)∑
κ

Jκ
m(1n) .

7.2.3 UV finite contributions

To complete our evaluation of the two-loop corrections, we just need to
recall the expressions for the UV finite contributions Jκ

α(1n), J̃κ
α(1n) and

Sκλτ
αβγ

(2n) [168]. Setting r̂ ≡ r T

Jκ
α(1n) = 1

2π2

∫ ∞

0
dq

q2

εα,q
Renεα,q−ir̂·κ ,(7.48)

J̃κ
α(1n) = 1

2π2

∫ ∞

0
dq q2Imnεα,q−ir̂·κ ,(7.49)
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and

Sκλτ
αβγ(2n) = 1

32π4

∫ ∞

0
dq q

∫ ∞

0
dk kRe

nεα,q−ir̂·κnεβ,k−ir̂·λ
εα,q εβ,k

×Re ln
(εα,q +εβ,k + i0+)2− (εγ,k+q)2

(εα,q +εβ,k + i0+)2− (εγ,k−q)2

+ 1
32π4

∫ ∞

0
dq q

∫ ∞

0
dk kRe

nεα,q−ir̂·κnεβ,k+ir̂·λ
εα,q εβ,k

×Re ln
(εα,q −εβ,k + i0+)2− (εγ,k+q)2

(εα,q −εβ,k + i0+)2− (εγ,k−q)2

+ cyclic permutations of (α,κ), (β,λ) and (γ,τ).(7.50)

These formulas, together with Eqs. (7.47) and (7.41) form the basis for
the evaluation of the two-loop corrections to the background field effective
potential.

7.3 Next-to-leading order Polyakov loop

Corresponding to the two-loop background field effective potential, we
can evaluate the background-dependent Polyakov loop at next-to-leading
order. When evaluated at the minimum of the two-loop background field
effective potential, this gives access to the physical Polyakov loop at next-
to-leading order. As already emphasized, we do not really need to evaluate
the physical Polyakov loop in order to assess the phase transition since the
background that minimizes the background field effective potential is an
equally relevant order parameter for center symmetry, simpler to compute
in practice. Computing the Polyakov loop is nevertheless interesting for
it is a gauge independent quantity and can therefore be compared, in
principle, with non-gauge fixed lattice simulations. Another motivation for
evaluating the next-to-leading order corrections to the Polyakov loop is to
assess the role of higher order corrections in curing some of the artificial
behaviors observed at leading order.
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7.3.1 Setting up the expansion

As emphasized in Chapter 4, the background-dependent Polyakov loop
is defined in the presence of a source that forces the background to be
self-consistent, that is Ā = 〈A〉Ā or 〈a〉Ā = 0. We thus need to expand the
action and the Wilson line in powers of a ≡ A− Ā, and take an average
where we set 〈a〉Ā = 0.

Due to the presence of time-ordering, the expansion of the Wilson line
LA(~x) in a = A− Ā (and not A) is cumbersome. We can however use the
following trick.4 Consider the gauge transformation

(7.51) U(τ)= e−g0 Āτ .

It is such that ĀU = 0 and therefore

(7.52) L Ā+a(~x)=U†(β)L(Ā+a)U (~x)U(0)=U†(β)LaU (~x) ,

with aU ≡U aU†. The expansion in a is easily done, despite the presence
of the time ordering. To order g2, we find
(7.53)

L Ā+a(~x)=U†(β)
[
1+ g

∫ β

0
dτaU

0 (τ,~x)+ g2

2

∫ β

0
dτ

∫ β

0
dσP aU

0 (τ,~x)aU
0 (σ,~x)

]
.

Upon taking the trace and averaging with 〈a〉Ā = 0, we find

`(Ā)= `0(Ā) − g2

2N

∫ β

0
dτ

∫ τ

0
dσGκλ

00 (τ−σ,~0) tr
[
U†(β−τ+σ) tκU†(τ−σ) tλ

]
− g2

2N

∫ β

0
dτ

∫ β

τ

dσGκλ
00 (σ−τ,~0) tr

[
U†(β−σ+τ) tλU†(σ−τ) tκ

]
,(7.54)

where we have made use of the cyclic property of the trace and where

(7.55) Gκλ
00 (τ−σ,~0)≡ 〈P aκ0(τ,~x)aλ0(σ,~x)〉Ā

denotes the Euclidean time component of the gluon propagator, computed
at tree-level. We can make the changes of variables σ→ β−σ and σ→

4We have checked that the brute force calculation leads to the same result.
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β+τ−σ in each of the σ-integrals respectively. We arrive at

`(Ā)= `0(Ā) − g2

2N

∫ β

0
dτ

∫ τ

0
dσGκλ

00 (σ,~0) tr
[
U†(β−σ) tκU†(σ) tλ

]
− g2

2N

∫ β

0
dτ

∫ β

τ

dσGκλ
00 (σ−β,~0) tr

[
U†(β−σ) tκU†(σ) tλ

]
,(7.56)

where we have again used the cyclic property of the trace. Using the
periodicity of the propagator, this rewrites eventually as

(7.57) `(Ā)= `0(Ā)− g2β

2N

∫ β

0
dσGκλ

00 (σ,~0) tr
[
U†(β−σ) tκU†(σ) tλ

]
,

where the τ-integral has become trivial, producing a factor β.

7.3.2 Using the weights

To continue the calculation, we need to evaluate the trace. Before doing so,
let us notice that, with little modifications, the previous formula applies
to the Polyakov loop in any representation. We have indeed

(7.58) `R(Ā)= `R,0(Ā)− g2β

2dR

∫ β

0
dσGκλ

00 (σ,~0) tr
[
U†(β−σ) tκR U†(σ) tλR

]
.

We shall continue with this more generic formula from now on. Now, the
color trace is easily evaluated using the weights ρ of the representation,
defined such that t0( j)|ρ〉 = ρ j|ρ〉. Since the background is taken along the
Cartan sub-algebra, we have U†(σ)|ρ〉 = ei σβ r·ρ|ρ〉 and then

(7.59) tr
[
U†(β−σ) tκU†(σ) tλ

]=∑
ρρ′

ei β−σβ r·ρ+i σβ r·ρ′〈ρ|tκR|ρ′〉〈ρ′|tλ|ρ〉 .

Since the free gluon propagator has non-zero components only for κ=λ=
0( j) and κ=−λ=−α, the color trace has to be considered in those cases
only. In the first case, from the definition of the weights, the color trace
rewrites

(7.60) tr
[
U†(β−σ) t0( j)

U†(σ) t0( j)
]
=∑

ρ

ρ2
j eir·ρ .
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In the second case, similarly to what we did for the adjoint representation
in Eqs. (7.4) and (7.5), it is easily argued that tα|ρ〉 is either zero or has a
definite weight equal to ρ+α (a necessary condition is that ρ+α belongs to
the weight diagram). Therefore, in the second case the color trace rewrites

(7.61) tr
[
U†(β−σ) t−αU†(σ) tα

]=∑
ρ

eir·ρ+i σβ r·α|〈ρ+α|tαR|ρ〉|2 ,

where it is understood that |ρ−α〉 = 0 if ρ−α is not a weight. In fact,
Eqs. (7.60) and (7.61) can be written as a single result. One has just to
replace α by κ in Eq. (7.61). The next-to-leading order correction to the
background-dependent Polyakov loop reads, therefore,

(7.62) ∆`R(Ā)=− g2β

2dR

∑
ρ

eir·ρ∑
κ

|〈ρ+κ|tκR|ρ〉|2
∫ β

0
dσ ei σβ r·κG(−κ)κ

00 (σ,~0) .

7.3.3 Completing the calculation

We finally note that

G(−κ)κ
00 (σ,~0) =

∫ T

Q

q2

(ωn +Tr ·κ)2+ q2

eiωnσ

(ωn +Tr ·κ)2+ q2+m2

= 1
m2

[∫ T

Q

q2 eiωnσ

(ωn +Tr ·κ)2+ q2 −
∫ T

Q

q2 eiωnσ

(ωn +Tr ·κ)2+ q2+m2

]
.(7.63)

Standard contour techniques for the evaluation of Matsubara sums lead
to (recall that 0<σ<β)∫ T

Q

q2 eiωnσ

(ωn +Tr ·κ)2+ q2+m2(7.64)

=
∫

d3q
(2π)3

q2

2εq

[
e(εq−iTr·κ)σnεq−iTr·κ− e(−εq−iTr·κ)σn−εq−iTr·κ

]
,

which generalizes the well known result for κ= 0. It follows that∫ β

0
dσ ei σβ r·κG(−κ)κ

00 (σ,~0)

= 1
2m2

∫
d3q

(2π)3

{[
(eβq −1)nq−iTr·κ+ (e−βq −1)n−q−iTr·κ

]
− q2

q2+m2

[
(eβεq −1)nεq−iTr·κ+ (e−βεq −1)n−εq−iTr·κ

]}
.(7.65)
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Finally, we write

(eβεq −1)nεq−iTr·κ = eir·κ+ (eir·κ−1)nεq−iTr·κ

from which it follows that

(eβεq −1)nεq−iTr·κ+ (e−βεq −1)n−εq−iTr·κ(7.66)

= 2eir·κ+ (eir·κ−1)(nεq−iTr·κ+n−εq−iTr·κ)

= eir·κ+1+ (eir·κ−1)(nεq−iTr·κ−nεq+iTr·κ) ,

and thus that∫ β

0
dσ ei σβ r·κG(−κ)κ

00 (σ,~0)(7.67)

= eir·κ+1
2

∫
d3q

(2π)3

1
q2+m2

+ i
eir·κ−1

m2

∫
d3q

(2π)3

{
Imnq−iTr·κ− q2

q2+m2 Imnεq−iTr·κ

}
.

which we conveniently rewrite as∫ β

0
dσ ei σβ r·κG(−κ)κ

00 (σ,~0)(7.68)

= eir·κ+1
2

[∫
d3q

(2π)3

1
q2+m2 +

2
m2 sin2

(r ·κ
2

)
×

∫
d3q

(2π)3

{
q2

ε2
q

1
cosh(εq/T)−cos(r ·κ)

− (m → 0)
}]

.

We can now plug this expression back into Eq. (7.62) by noticing that∑
ρ

eir·ρ∑
κ

|〈ρ+κ|tκR|ρ〉|2 eir·κ eκ = ∑
ρ

eir·ρ∑
κ

|〈ρ+κ|tκR|ρ〉|2 eκ ,

(7.69)

for any eκ such that e−κ = eκ. We arrive at

∆`R(Ā) = g2

8π
CR

dR

m
T

∑
ρ

eir·ρ

+ g2

2π2

1
dR

m
T

∑
ρ

eir·ρ∑
κ

|〈ρ+κ|tκR|ρ〉|a(T, r ·κ)sin2
(r ·κ

2

)
,(7.70)
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where we have used that
∑
κ |〈ρ +κ|tκR|ρ〉|2 = CR is the Casimir of the

representation,

(7.71)
∫

d3q
(2π)3

1
q2+m2 =− m

4π

in dimensional regularization, and we have introduced the function
(7.72)

a(T, r ·κ)≡
∫ ∞

0

dq q2

m3

(
1

cosh(q/T)−cos(r ·κ)
− q2

ε2
q

1
cosh(εq/T)−cos(r ·κ)

)
.

7.4 Results

We use a renormalization scheme at zero-temperature. In this limit, the
Landau-deWitt gauge boils down to the Landau gauge. We can therefore
adjust the values of m and g to those for which the Curci-Ferrari propa-
gators (computed within the same renormalization scheme) best fit the
Landau gauge lattice propagators at zero temperature, namely g = 4.9
and m = 540 MeV, see [83].

7.4.1 SU(2) and SU(3) transitions

We find once more that the transition is second order in the SU(2) case and
first order in the SU(3) case. Our updated values for the transition tem-
peratures are shown in Table 7.1 and have neatly improved as compared
to the leading order estimations.

7.4.2 Polyakov loops

The Polyakov loop is shown in Fig. 7.4 for both the SU(2) and SU(3) groups.
Let us first mention that the singularity that we found at leading order
(in addition to the one at Tc) seems to have disappeared. Interestingly,
the Polyakov displays a similar non-monotonous behavior as the Polyakov
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Tc (MeV) lattice [162] fRG [49] Variational [161] 2-loop CF [168]
SU(2) 295 230 239 284
SU(3) 270 275 245 254

Table 7.1: Transition temperatures for the SU(2) and SU(3) deconfinement
transitions as computed from various approaches, compared to the two-
loop Curci-Ferrari model.

FIGURE 7.4. Leading and next-to-leading order Polyakov loops for
the SU(3) defining representation, as functions of T/Tc.

loop evaluated on the lattice, approaching its large temperature limit
from above. However, the rise of the Polyakov loop above the transition is
faster than on the lattice, which seems to be a common feature of many
calculations in the continuum.

We mention that the Polyakov loop computed here is the bare Polyakov
loop. The latter is known not to have a proper continuum limit even though,
in dimensional regularization, and at the present level of accuracy, it is UV
finite. A direct comparison to the lattice results requires the computation
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FIGURE 7.5. SU(3) entropy density at one- and two-loop order, in
the vicinity of Tc.

of the renormalized Polyakov, including the running of parameters with
the temperature. This calculation is beyond the scope of the present
manuscript. For an evaluation within the functional renormalization
group, see [169].

7.4.3 Vicinity of the transition

Now that we have the two-loop corrections to the potential, we can revisit
the vicinity of the transition. We find that the slight violation of the
entropy density that was found at one-loop has disappeared, see Fig. 7.5.
However, we find a slight change of the latent which remains roughly 1/3
of the lattice value.

7.4.4 Low temperature behavior

A simple analysis [] shows that, in the absence of RG improvement at least,
the two-loop corrections are sub-leading with respect to the one-loop ones.

141



CHAPTER 7. YM DECONFINEMENT TRANSITION AT NEXT-TO-LEADING
ORDER

This seems a good news since, as we saw, the latter are thermodynamically
consistent despite being dominated by the ghosts. However, one important
problem remains since these contributions are massless and contribute to
the thermodynamical observables in powers of T, a behavior which is not
observed on the lattice.

This problem is not specific to the Curci-Ferrari model and occurs in
fact in most continuum approaches in the Landau gauge (that do not
throw the ghost degrees of freedom by hand), see for instance [167] and
illustrates their inability, so far, to properly exclude the massless degrees
of freedom from the thermodynamical quantities.
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8
MORE ON THE RELATION BETWEEN THE

CENTER SYMMETRY GROUP AND THE

DECONFINEMENT TRANSITION

The confinement/deconfinement transition in pure Yang-Mills the-
ories has been studied for a variety of gauge groups using lattice
simulations [170–172] or non-perturbative continuum methods

[76]. Not only is this useful as a benchmark for the various theoreti-
cal approaches to non-abelian gauge theories, but it also helps refining
the connection between the confinement/deconfinement transition, the
Polyakov loop, and center symmetry breaking. Here, we provide a general
discussion of these questions in the case of the SU(N) gauge group and
investigate them in more detail in the case of the SU(4) gauge group using
the background extended Curci-Ferrari model.

In Chapter 3, we saw that, if center symmetry is realized in the Wigner-
Weyl sense, the Polyakov loop associated to the defining representation
needs to vanish. We also assumed the reciprocal property to hold true. This
is far from obvious, however, because one could imagine scenarios where
only a subgroup of the center symmetry group is broken, in which case the
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defining Polyakov loop would still be equal to zero. Although this is not a
possibility for any prime value of N since ZN does not have any non-trivial
subgroup in this case,1 for other values of N, the question needs to be
posed how to characterize the Wigner-Weyl realization of center symmetry
in terms of order parameters. To this purpose, it is convenient to consider
Polyakov loops in representations other than the defining representation,
and introduce the concept of N-ality. We shall then start with a brief
review of these notions (see [7, 174] for a more thorough discussion) before
summarizing the results obtained within the Curci-Ferrari model for the
SU(4) gauge group.

8.1 Polyakov loops in other representations

To a given representation R : ta 7→ ta
R of dimension dR, one associates a

temporal Wilson line as

(8.1) LAR (~x)≡P exp
{

i
∫ β

0
dτAa

0(τ,~x) ta
R

}
.

The corresponding Polyakov loop is defined as

(8.2) `R ≡ 〈
ΦAR (~x)

〉
Y M ≡

∫
DAΦAR (~x) e−SY M[A]∫

DA e−SY M[A] ,

with ΦAR (~x)≡ trLAR (~x) /dR.

8.1.1 N-ality of a representation

To any representation, one can associate its N-ality that characterizes the
way the corresponding Polyakov loop transforms under center transforma-
tions. In general, a given representation R can be obtained by decomposing
tensor products of the form N ⊗N ⊗ . . . N̄ ⊗ . . . involving a certain number

1This includes the cases N = 2 and N = 3 treated so far.
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n of defining representations and a certain number n̄ of contragredient
representations. Using the two properties

LAR1⊕R2
= LAR1

⊕LAR2
,(8.3)

LAR1⊗R2
= LAR1

⊗LAR2
,(8.4)

it is then easily seen that all representations extracted from the same
tensor product transform in the same way under center transformations.
In place of the transformation rule (3.12), we now have

(8.5) `R
α−2π

N k
= ei 2π

N νR k`R
α ,

where νR ≡ n− n̄ is known as the N-ality of the representation. In fact,
the N-ality is defined only modulo multiples of N and, for convenience,
we shall make the choice 1≤ νR ≤ N in what follows.

Of particular interest are those representations whose N-ality divides
N. Indeed, it is easily seen in this case that the values of k that make the
phase equal to 1 in Eq. (8.5) are multiples of N/νR. The corresponding
elements of ZN are of the form ei 2π

νR
k′

and constitute, therefore, the ZνR

subgroup of ZN .2 It follows that the vanishing of `R does not tell us
anything about the way center symmetry is realized in this subgroup.
However, and interestingly, it tells us that center symmetry is necessarily
realized in the Wigner-Weyl sense by some elements of ZN not included
in ZνR .3

2For a generic N-ality νR , the phase in Eq. (8.5) is equal to 1 for any k multiple of
lcm(N,νR) /νR , where lcm(p, q) stands for the least common multiple of p and q. This cor-
responds to elements of ZN in the subgroup ZNνR /lcm (N,νR ) =Zgcd (N,νR ), where gcd(p, q) stands
for the greatest common divisor of p and q.

3We are here implicitly excluding the presence of symmetries other than the center that
would make the Polyakov loops vanish. We mention also that Polyakov loops could vanish
accidentally, without the need of a symmetry. However, if this happens, it most probably does for
isolated values of the external parameters (temperature, . . . ) and we should not consider these
exceptional cases in the characterization of center symmetry to be given below.
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8.1.2 Center symmetry characterization

Let us now use the previous notions in order to find a characterization of
center symmetry.

Recall that the subgroups of ZN are the groups Zν with 1 ≤ ν ≤ N
a divisor of N, and that, for each ν dividing N, there is only one such
subgroup in ZN , with Z1 = {1} and Zν=N =ZN . In order to characterize the
Wigner-Weyl realization of center symmetry, it is then enough to consider
a collection of representations that exhaust all N-alities 1 ≤ ν< N that
divide N. Indeed the vanishing of the Polyakov loops in all these repre-
sentations implies that center symmetry needs to be realized for elements
that do not belong to any of the strict subgroups of ZN . Since these ele-
ments generate ZN , any element of ZN will then realize the symmetry in
the Wigner-Weyl sense. In summary:
___________________________________________________________________
Center symmetry is manifest in the Wigner-Weyl sense iff all Polyakov
loops vanish within a collection of representations covering all possible
N-alities dividing N but not equal to N (i.e. ν |N and ν 6= N).
___________________________________________________________________

We stress that this characterization does not include representations with
νR = N, also known as representations with vanishing N-ality (since N
equals 0 modulo N). The Polyakov loops in such representations are not
transformed under any center transformation and, therefore, are not con-
strained to vanish.4 It is then no surprise that they do not appear in
the characterization of center symmetry. Let us also mention that, once
the criterion applies, the Polyakov loops in any representation with non-
vanishing N-ality need to vanish.

In fact, the characterization of the center can be further simplified

4In particular, the present formalism does not allow to address the confinement of colored
objects in representations with vanishing N-ality, such as gluons.
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as follows. The set of divisors of N strictly smaller than N is naturally
equipped with a partial ordering corresponding to the relation being a di-
visor of. We call maximal N-alities, the maximal elements for this partial
ordering over this set.5 We can now state that
___________________________________________________________________
Center symmetry is manifest in the Wigner-Weyl sense iff all Polyakov
loops vanish within in a collection of representations covering all possible
maximal N-alities.
___________________________________________________________________

Indeed, the union of the corresponding subgroups is equal to the union
of all the strict subgroups of ZN . Then, the vanishing of the Polyakov
loops with maximal N-alities leads to the same consequences than the
vanishing of the Polyakov loops with non-vanishing N-alities dividing N.

Finally, we mention that the characterization of center symmetry can
also be formulated in terms of the confinement of color charges: the Wigner-
Weyl realization of center symmetry is equivalent to the confinement of
color charges within a collection of representations covering all possible
maximal N-alities. Again, once the criterion is obeyed, all types of color
charges with non-vanishing N-ality are confined.

8.1.3 Fundamental representations

The prototypes for representations covering all possible N-alities are
the so-called fundamental representations obtained by anti-symmetrizing
successive tensor products of the defining representation.6 These corre-
spond to the one-column Young tableaux with a number of boxes equal
to the N-ality. From those, we need only to consider those with maximal

5For instance, if N = 24 = 23 ×3, then the maximal N-alities are 8 = 23 and 12 = 22 ×3. If
N = 3, the only maximal N-ality is 1.

6Another, equivalent possibility, followed by [175], is to consider expectation values of traced
powers of the defining Wilson line, 〈trLk

A〉/Nk.
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N-alities.7

To take an example consider SU(4). There are three fundamental
representations 4, 6 and 4̄, of respective N-alities 1, 2 and 3. According
to the previous criterion, in order to fully characterize the center, we
need only to consider the representation 6 whose N-ality 2 is the only
maximal divisor of 4 (within the set of divisors of 4 not equal to 4). The
subgroup which is not probed by `6 is Z2. Since this is the only non-trivial
subgroup of Z4, the vanishing of `6 characterizes entirely the Wigner-
Weyl realization of Z4. In contrast, the vanishing of `4 is not enough to
characterize the centre since this could also mean a partial breaking of
the symmetry via the Z2 subgroup.

In practice, the breaking pattern depends on the dynamics and, there-
fore, on the considered model and approximation. Its determination re-
quires an explicit calculation. In Sec. 8.3, we shall investigate the breaking
pattern in the SU(4) case using the Curci-Ferrari model in the presence
of a background. Before doing so, in Sec. 8.2, we review the properties of
the Weyl chambers in this case, in particular the location of the center
invariant states. We recall that, in this framework, center symmetry is
characterized by the fact that the background is found at particular points
in the Weyl chambers, those points that are left invariant under the action
of the center symmetry group on the Weyl chambers. In fact, it is enough
to look for points in the Weyl chamber that are invariant under a center
element that generates the complete center symmetry group, in other
words, a center element that does not belong to any of the strict subgroups
of the center symmetry group. Such transformations are precisely those
that act non-trivially on the Polyakov loops with maximal N-ality, and,

7We mention that the fundamental representations are naturally organized in pairs of N-
alities (ν, N −ν). The representations in each pair are contragredient of each other which, in the
case of pure Yang-Mills theory, implies that the corresponding Polyakov loops are equal to each
other, see Chapter 4. This is in line with the fact that, in the above characterization of center
symmetry, at most one of the representations in each pair is considered, since when ν divides N,
N −ν does in general not divide N (the only exception is when N is even and ν= N/2= N −ν but,
in this case, there is anyway only one representation in the pair).
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therefore, if the background is located at such invariant points, the corre-
sponding background dependent Polyakov loops vanish, which in turn is
enough to ensure that the center symmetry is fully manifest.

8.2 SU(4) Weyl chambers

We saw in Chapter 5 that, in the reduced background space (r̄ ≡ r/4π), the
SU(N) Weyl chambers are sub-pavings of the parallelepipeds generated
by N−1 weights ρ( j) of the defining representation, with 1≤ j ≤ N−1, dual
to the roots α( j) = ρ( j)−ρ(N), with 1≤ j ≤ N−1, such that α( j) ·ρ(k) = δ jk/2. To
construct the Weyl chambers, one needs to study how these parallelepipeds
are subdivided by each network of hyperplanes orthogonal to a given of
the remaining roots, ρ( j) −ρ( j′) with 1 ≤ j < j′ ≤ N −1, and translated by
multiples of half that root. The corresponding hyperplane passing through
the origin contains ρ(k) for k 6= j and k 6= j′, as well as ρ( j)+ρ( j′).

The defining weights of SU(N) can be found in App. B. For SU(4), we
may choose

(8.6) ρ(1) = 1
2


−1p
1/3p
1/6

 , ρ(2) = 1
2


0

−p4/3p
1/6

 , ρ(3) = 1
2


0
0

−p3/2

 ,

the remaining weight being ρ(4) =−(ρ(1)+ρ(2)+ρ(3)). Consider the funda-
mental parallelepiped generated by the ρ( j) with 1 ≤ j ≤ 3. It is further
divided in Weyl chambers by the planes containing ρ(3) and ρ(1)+ρ(2), ρ(1)

and ρ(2) +ρ(3), and finally ρ(2) and ρ(3) +ρ(1), as shown in Fig. 8.1. Alto-
gether they divide the fundamental parallelepiped into six tetrahedra,
see Fig. 8.1. A simple calculation shows that these tetrahedra have two
nonadjacent edges that are longer than the other four, by a factor of 2/

p
3 .
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FIGURE 8.1. The fundamental parallelepiped and its division
into SU(4) Weyl chambers in the restricted background space.
The vectors ᾱ(1), ᾱ(2), ᾱ(3) (blue) define the fundamental paral-
lelepiped. The latter is composed of six tetrahedral Weyl cham-
bers: {O, ᾱ(1), ᾱ(1) + ᾱ(2), ᾱ(1) + ᾱ(2) + ᾱ(3)}, {O, ᾱ(2), ᾱ(1) + ᾱ(2), ᾱ(1) +
ᾱ(2)+ᾱ(3)} (blue), {O, ᾱ(1), ᾱ(1)+ᾱ(3), ᾱ(1)+ᾱ(2)+ᾱ(3)}, {O, ᾱ(3), ᾱ(1)+
ᾱ(3), ᾱ(1) + ᾱ(2) + ᾱ(3)} (red), {O, ᾱ(2), ᾱ(2) + ᾱ(3), ᾱ(1) + ᾱ(2) + ᾱ(3)},
{O, ᾱ(3), ᾱ(2) + ᾱ(3), ᾱ(1) + ᾱ(2) + ᾱ(3)} (yellow). Each chamber has
two edges longer than the other four, namely the one connect-
ing the origin to the sum of two ᾱ’s and the one connecting one
ᾱ to the sum of the three ᾱ’s, as illustrated in the figure (red
lines).

8.2.1 Symmetries

Such an irregular tetrahedron, made of four identical isosceles triangles,
is called a tetragonal disphenoid, whose symmetry group is the dihedral
group D2d, with eight elements. These are the identity, the three rotations
by an angle π around any of the axes which relate the midpoints of
nonadjacent edges, the reflections about the two planes perpendicular to
one of the long edges and containing the other, and two other elements
that can be obtained by combining the former. Using the method described
in Chapter 5, it is easily seen that these transformations correspond to the
center transformations, charge conjugation, or any combination of these,
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as we now discuss in more details.

Let us first consider center transformations. As we have seen in Chap-
ter 5, any translation along the defining weights ρ( j) corresponds to a
center transformation with center element e−i2π/N =−i. In order to gen-
erate the other non-trivial transformations, we consider sums of two or
three weights. For a given Weyl chamber connected to the origin, these
correspond to translations along the three edges connected to the origin.
It is easily seen that among those, the translation along the longer edge
corresponds to a center element −1 and is associated to a rotation by an
angle π around the axis that connects the midpoints of the two long edges
of the Weyl chamber. The other two center transformations, corresponding
to ±i, are obtained by combining the two other rotations with any of the
reflection planes described above. Following the same method, one can
see that charge conjugation corresponds to one of the reflection planes—
the other one being a combination of charge conjugation and the center
transformation associated to −1.

Let us mention finally that one very convenient way to guess the
various geometrical transformations of the Weyl chamber associated to
physical transformations is to notice that the values taken by the leading
order background-dependent Polyakov loop in the defining representation
at the nodes of the Weyl chamber span the center of the group (this
is because it equals 1 at the origin and translations along the edges
of the Weyl chamber span all possible center transformations). Upon a
given physical transformation, these values are permuted in a certain
way, which in turn allows one to infer the corresponding geometrical
transformation of the Weyl chamber, together with its invariant points.

8.2.2 Invariant states

As mentioned above, center symmetry is characterized once the invariant
states for a center transformations that generates the whole center sym-
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metry group have been identified. Any such center transformation does the
job and here these correspond to the center elements i or −i. These trans-
formations have only one fixed point, the barycenter of the tetrahedron,8

which is then the only point compatible with center symmetry.

In contrast, the center transformation with center element −1 has a
whole line of fixed points, the one connecting the midpoints of the two
long edges, which contains in particular the barycenter of the tetrahedron.
For any point on this line, except for the barycenter, the Polyakov loop `4

vanishes but not `6, corresponding to a scenario where center symmetry
is partially broken down to the subgroup Z2. The complete breaking of
the symmetry corresponds to points away from this line.

8.3 One-loop results

It is convenient to locate the states in the fundamental parallelepiped in
terms of their coordinates in the basis ρ( j). For a restricted background r,
we write r = x jᾱ

( j), where the 0 ≤ x j ≤ 1 can be obtained as 2πx j = r ·α( j).
In this basis, the center-symmetric point represented in Fig. 8.1 (dot in
the figure) is located at the coordinates (3/4,1/2,1/4). The Z2 invariant
line in the same Weyl chamber is defined by the equations x1 = x2+ x3 and
x2 = 1/2. To simplify the discussion, we note that we can restrict to charge
conjugation invariant states. In the considered Weyl chamber these are
the points in the plane x1 = x2+ x3. In fact, it is even more convenient to
work in a basis of this plane r = y2(ᾱ(1)+ ᾱ(2))+ y3(ᾱ(1)+ ᾱ(3)). The confining
point is located at (1/2,1/4) and the Z2 line is corresponds to y2 = 1/2.

8In general, for SU(N), it is pretty obvious that the barycenter of any Weyl chamber is
invariant under any center transformation [175] and in fact under any physical transformation
(commuting with the periodic gauge transformations in the sense of Eq. (4.29)). A less trivial
question is to identify all possible invariant states associated to a given physical transformation.
Here we shall limit our analysis to the case of SU(4).
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Figure 8.2: Contour plots of the SU(4) potential at LO in a charge-
conjugation-invariant plane. The latter intersects four Weyl chambers
separated by dashed lines. The Z2 invariant lines are the vertical and
horizontal lines (not shown) passing through the origin. The upper (respec-
tively lower) plots correspond to temperatures below (respectively above)
the transition temperature.

8.3.1 Deconfinement transition

Figure 8.2 shows contour plots of the potential in this plane. At low
temperatures, the minimum of the potential is at the center-symmetric
point (upper panels), whereas we find a Z4 quadruplet of degenerate
minima at high temperatures (lower panels), located pairwise in the two
reflection-symmetry planes of the tetrahedron but away from the line of
Z2 symmetry. The breaking of center symmetry is thus complete. We have
checked that the transition is first order with TLO

c /m ≈ 0.367, close to the
value obtained for SU(3) at LO.

153



CHAPTER 8. MORE ON THE RELATION BETWEEN THE CENTER
SYMMETRY GROUP AND THE DECONFINEMENT TRANSITION

8.3.2 Background-dependent Polyakov loops

It is interesting to evaluate the (background-dependent) fundamental
Polyakov loops. The one in the defining representation writes

(8.7) `(r)= 1
4

[
eiρ(1)·r + eiρ(2)·r + eiρ(3)·r + eiρ(4)·r

]
.

Using the fact that α( j) = ρ( j) −ρ(4) and that α(1) +α(2) +α(3) = −4ρ(4) this
rewrites

(8.8) `(r)= e−i π2 (x1+x2+x3)

4

[
1+ e2πix1·r + e2πix2·r + e2πix3·r

]
,

in terms of the coordinates in the fundamental parallelepiped. Then,
we can interpret the vanishing of `(r) as the closure of a rhombus with
external angles 2πx1, 2π(x2−x1), 2π(x3−x2) and 2π(x1−x3) modulo 2π and
up to permutations of x1, x2, and x3. This implies 2πx1 +2π(x2 − x1) = π

and 2πx1 = 2π(x3− x2) modulo 2π, that is,

(8.9) x2 = 1
2

mod1 and x3 = x1− 1
2

mod1 .

In a given Weyl chamber, this corresponds to the segment joining the cen-
ters of the long edges of the tetrahedron, to which belong, in particular, the
center-symmetric point. The corresponding segments in the other cham-
bers in the fundamental parallelepiped are obtained by permutations of x1,
x2 and x3. This are precisely the states where the defining Polyakov loop
needs to vanish if the subgroup Z2 of center transformations is realized
in the Wigner Weyl sense.

Let us now evaluate the Polyakov loop associated to the represen-
tation 6. Since fundamental representations are constructed by anti-
symmetrizing tensor products of defining representations, the weights
of the fundamental representation with N-ality ν are obtained by con-
sidering all the possible sums of ν different weights. There are Cν

N such
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weights, which is precisely the dimension of the considered fundamental
representation. It follows that, in general

(8.10) `Cν
N

(r)= 1
Cν

N

∑
j1<···< jν

ei
(
ρ( j1)+···+ρ( jν)

)
·r .

Here we have

`6(r) = 1
6

[
ei(ρ(1)+ρ(2))·r + ei(ρ(1)+ρ(3))·r + ei(ρ(1)+ρ(4))·r(8.11)

+ ei(ρ(2)+ρ(3))·r + ei(ρ(2)+ρ(4))·r + ei(ρ(3)+ρ(4))·r
]
.

Using again that ρ(1)+ρ(2)+ρ(3)+ρ(4) = 0, this rewrites

(8.12) `6(r)= 1
3

Re
[
ei(ρ(1)+ρ(4))·r + ei(ρ(2)+ρ(4))·r + ei(ρ(1)+ρ(4))·r

]
which is not surprising since 6= 6̄. Using the same remarks as before this
also rewrites as

`6(r) = 1
3

Re e−iπ(x1+x2+x3)
[
e2πix1 + e2πix2 + e2πix3

]
(8.13)

= 1
3

[
cos(π(x1− x2− x3))

+ cos(π(x2− x3− x1))

+ cos(π(x3− x1− x2))
]

or, equivalently

`6(r) = 1
6

Re
[
(eπix1 + e−πix1)(eπix2 + e−πix2)(eπix3 + e−πix3)(8.14)

− eπi(x1+x2+x3)− e−πi(x1+x2+x3)
]

= 1
3

[
4cos(πx1)cos(πx2)cos(πx3)−cos(π(x1+ x2+ x3))

]
.

This defines a surface in the Weyl chamber, containing in particular the
center-symmetric point.

We mention that the fact that the Polyakov loop `6 can vanish away
from the center-symmetric point seems in contradiction with the discus-
sion given above. However, this discussion concerned the physical Polyakov
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loop, whereas here we are discussing the background dependent Polyakov
loop which corresponds to a situation where one artificially imposes the
state of the system to correspond to a given background. The system does
not necessarily explores these states and, if it does, there is no symmetry
principle that would enforce it to remain in such a state for a certain
range of temperatures. We can disregard these accidental vanishings for
the present discussion. We also expect the location of these accidental
vanishing points in the Weyl chamber to change, or even disappear, at
next-to-leading order.

8.4 Casimir scaling

Another application of Polyakov loops in higher representations is the
so-called Casimir scaling. It has been observed that the Polyakov loops in
different representations obey the following scaling law [166]

(8.15) `
1/CR
R = `1/CR′

R′ ,

where CR denotes the Casimir of the representation R. This in turn
implies that the free-energy cost for bringing a colored object into the
medium scales like the square of the corresponding color charge.

To investigate Casimir scaling at leading order in the SU(3) case, we
use (8.3). Taking the traces and normalizing by the dimensions of the
representations, we arrive at9

(d1+d2)ΦAR1⊕R2
= d1ΦAR1

+d2LAR2
,(8.16)

ΦAR1⊗R2
=ΦAR1

ΦAR2
.(8.17)

At leading order, these properties are transferred to the corresponding
Polyakov loops. Moreover, if R̄ denotes the contragredient of a given

9These are similar to the identities obeyed by the characters of the corresponding represen-
tations.
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FIGURE 8.3. Testing the Casimir scaling at leading order.

representation R, we can once again show that the Polyakov loops are
equal and real (on a charge conjugation invariant state). To take a few
examples, we know that 3⊗ 3 = 3̄⊕ 6. From this it follows that 9`2

3 =
3`3+6`6 and then 6`6 = 9`2

3−3`3. Similarly, one finds

8`8 = 9`2
3−1 ,(8.18)

10`10 = 18`3`6−8`8 ,(8.19)

15`15 = 18`3`6−3`3 ,(8.20)

15`15′ = 30`3`10−15`15 ,(8.21)

24`24 = 30`3`10−6`6 ,(8.22)

27`27 = 36`2
6−8`8−1 ,(8.23)

see [166] for more details.
In Fig. 8.3, we show how Casimir scaling is satisfied in our approach.

The scaling is well satisfied down to ' 1.1Tc. For temperatures below, we
observe partial Casimir scaling, with certain groups of representations
obeying scaling (6 and 8, 10 and 15, 15′, 24 and 27, . . . ).
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9
BACKGROUND FIELD GAUGES:

ADDING QUARKS AND DENSITY

In the next two chapters, we pursue our investigation of the deconfine-
ment transition by complementing the background-extended Curci-
Ferrari model with quark degrees of freedom. Including quarks is

in principle straightforward since one has simply to add the usual mat-
ter contribution of the QCD action. In practice, however, the presence
of quarks leads to new difficulties that require one to revisit the very
foundations of the background field method.

These difficulties concern in fact any continuum approach that relies,
in one way or another, on the use of effective actions. They appear at finite
density, as the functional integral measure becomes complex, and are of
two different types: those that relate to the integration measure not being
real-valued and those that relate to its non-positivity. We show how the
first type can be cured by exploiting the symmetries of the system at hand.
In contrast, the second type is more subtle as it connects directly to the
sign problem of lattice QCD [36, 37]. A simple recipe will be postulated to
handle this second type of difficulty, but its justification will remain an
open question beyond the scope of the present manuscript.
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CHAPTER 9. BACKGROUND FIELD GAUGES:
ADDING QUARKS AND DENSITY

9.1 General considerations

In this section, we derive some general properties that will be used
throughout the chapter. We do so by using the QCD action in its non
gauge-fixed version. We shall later extend the discussion to the Landau-
deWitt gauge and to the corresponding Curci-Ferrari model.

The QCD action is obtained by adding the usual matter contribution
to the Yang-Mills action, SY M → SQCD = SY M +δS, with

(9.1) δS[A,ψ,ψ̄;µ]≡
∫

ddx
N f∑
f=1

ψ̄ f (x)
(
D/+M f −µγ0

)
ψ f (x) .

Here, the quarks are taken in the fundamental representation and Dµ =
∂µ− igAa

µta is the corresponding covariant derivative. We have also intro-
duced the usual notation D/≡ γµDµ with γµ the Euclidean Dirac matrices
[90]. These are related to the standard Minkowski matrices γµM as γ0 = γ0

M

and γi =−iγi
M. They are thus Hermitian and satisfy the anti-commutation

relations {γµ,γν}= 2δµν. In the following, we work in the Weyl basis, where
γ∗0,2 = γt

0,2 = γ0,2 and γ∗1,3 = γt
1,3 =−γ1,3. Within this basis, one easily derives

the two identities [176]

(9.2) γ2γ0γµγ0γ2 =−γt
µ and γ3γ1γµγ1γ3 = γ∗µ ,

which will play a major role in the following discussion.
The conjugated field ψ̄ is defined as usual as ψ̄≡ψ†γ0. It is convenient

to extend such conjugation to complex numbers and matrices as z̄ ≡ z∗

and M ≡ γ0M†γ0. In particular, it is readily checked that γ0 = γ0 and
γi = −γi. Moreover, given two matrices M and N, one finds MN = N M.
These properties allow for an easy determination of the conjugate of any
expression, similar to the determination of the bra associated to a ket in
quantum mechanics. We also introduce γ5 ≡ γ0γ1γ2γ3. It obeys the proper-
ties {γ5,γµ}= 0, γ2

5 = 1, γ†
5 = γ5 and γ5 =−γ5.
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Finally, let us recall that the last term in Eq. (9.1) corresponds to the
baryonic charge of the system. It is proportional to the associated chemical
potential µB ≡ 3µ.1 For reasons that shall become clear below, we allow for
both real and imaginary chemical potentials. As usual, the temperature
T ≡ 1/β enters via the boundary conditions of the fields, and, unlike gluons,
quarks obey anti-periodic boundary conditions: ψ(τ+β,~x)=−ψ(τ,~x).

9.1.1 Polyakov loops

Our investigation of the deconfinement transition will again be achieved
by means of the Polyakov loops associated to the defining and contragredi-
ent representations,2

(9.3) `≡
〈

1
N

trP exp
{

i
∫ β

0
dτAa

0(τ,~x) ta
}〉

and

(9.4) ¯̀≡
〈

1
N

trP exp
{
−i

∫ β

0
dτAa

0(τ,~x) tt
a

}〉
.

Those are directly related to the free-energy cost for bringing a quark or
an anti-quark into an equilibrated bath of quarks and gluons [37, 145]:

(9.5) `∝ e−β∆F and ¯̀∝ e−β∆F̄ .

We mention that this interpretation has been questioned in the presence of
a chemical potential due to the non-monotonous behavior of the Polyakov
loops as the chemical potential is varied [177]. We will argue instead in
the next chapter that the non-monotony as a function of µ can be seen
precisely as a consequence of the free-energy interpretation.

1Note that we use the opposite convention for the sign of µ than in Ref. [176].
2This is because we are considering the SU(3) case. As we discuss in a future version of the

manuscript, the case of SU(N) requires one to introduce a priori all the fundamental loops.
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9.1.2 Symmetries

The other crucial ingredients in the analysis to follow are of course the
symmetries of the problem. As we now recall, those are notably modified
by the presence of quarks in the fundamental representation.

First of all, center symmetry is explicitly broken. This is because the
fundamental quarks transform as ψU(x) = U(x)ψ(x). So, even though
the action remains invariant, S[AU ,ψU ,ψ̄U ;µ] = S[A,ψ,ψ̄;µ], the anti-
periodic boundary conditions of the quarks are changed into anti-periodic
boundary conditions modulo a phase, ψU(τ+β,~x)=−ei 2π

N kψU(τ,~x), and the
symmetry is not manifest at the level of the quantum/thermal expectation
values. As a consequence, the Polyakov loops have no reason to vanish
anymore. We will see nonetheless that the Polyakov loops possess a singu-
lar behavior in the heavy quark regime which qualifies them still as good
order parameters.

We expect quarks not to break charge conjugation symmetry as long as
the chemical potential is equal to zero. This is easily checked by evaluating
the action with charge conjugated fields3

(9.6) AC ≡−At , ψC ≡ γ0γ2ψ̄
t , ψ̄C ≡−ψtγ2γ0 ,

and by using the property γ2γ0γµγ0γ2 =−γt
µ. More generally, it is easily

verified that charge conjugation changes the sign of the baryonic charge
term in the action, and thus that

(9.7) S[AC ,ψC ,ψ̄C ;µ]= S[A,ψ,ψ̄;−µ] .

Since charge conjugation does not alter the boundary conditions of the
fields, the symmetry applies also to expectation values. In particular, it is

3The transformation of the field ψ̄ is easily obtained from the conjugation rule described
above: ψC = γ0γ2ψ̄

t → ψ̄C = ψ̄tγ2γ0 =−ψtγ2γ0, where we have used that γ0 = γ0, γ2 =−γ2 and
ψ̄t =ψt.
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easily shown that, as a consequence of charge conjugation, `(µ)= ¯̀(−µ).
For µ= 0, we recover the result ¯̀= ` obtained in Chapter 4.4

Another useful transformation is

(9.8) AK ≡ A∗ , ψK ≡ γ1γ3ψ, ψ̄K ≡ ψ̄γ3γ1 .

Indeed, owing to the property γ3γ1γµγ1γ3 = γ∗µ and assuming that the
fermionic fields are real,5 it is easily checked that

(9.9) S[AK ,ψK ,ψ̄K ;µ]= S[A,ψ,ψ̄;µ∗]∗ .

Although this is strictly speaking not a symmetry for it requires the
complex conjugation of the action, it plays a major role in what follows. It
implies for instance that `(µ)= `(µ∗)∗ and ¯̀(µ)= ¯̀(µ∗)∗ and, thus, that `
and ¯̀ are both real if the chemical potential is real.

For completeness, let us finally combine the previous two transforma-
tions into the transformation

(9.10) AK C = A , ψK C =−γ5ψ̄
t , ψ̄K C =ψtγ5 .

Using {γ5,γµ}= 0 together with γ
†
µ = γµ, one finds

(9.11) S[A,ψK C ,ψ̄K C ;µ]= S[A,ψ,ψ̄;−µ∗]∗ .

In particular, it follows that `(µ) = ¯̀(−µ∗)∗ and, thus, ` and ¯̀ become
complex conjugate of each other if the chemical potential is imaginary. The
transformation (9.10) should not be mistaken with ψ→ γ5ψ, ψ̄→−ψ̄γ5

which leaves the chemical potential unchanged, while flipping the sign of
all quark masses. We shall also make use of this property below.

4Here, we assume that there is no spontanously broken symmetry (as we have seen above,
center symmetry is explicitly broken in the presence of fundamental quarks). A counterexample
is provided by Yang-Mills theory where center symmetry can be spontanously broken. In that
case, `= ¯̀ does not apply to all possible states of the system.

5The Grasmannian fields ψ and ψ̄ are a formal device to write the determinant of an oper-
ator, det M = ∫

D[ψ,ψ̄] exp
{∫

dd x
∫

ddyψ̄(x)M(x, y)ψ(y)
}
. Since (det M)∗ = det M∗, it is perfectly

consistent to assume that ψ∗ =ψ and ψ̄∗ = ψ̄, see also [176].
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9.1.3 Fermion determinant

Let us end this section by recalling that the fermionic part of the action
being quadratic, the fermionic fields can be integrated out exactly. This
means that any observable can be written formally as the corresponding
integral in the pure Yang-Mills theory, but with a functional measure
modified by the so-called fermion determinant. For instance, the partition
function reads

(9.12) Z =
∫

DA∆[A;µ] e−SY M[A] ,

with

(9.13) ∆[A;µ]≡
∫

D[ψ,ψ̄] e−δS[ψ,ψ̄,A;µ] = detM [A;µ]

the determinant of the Dirac operator in the presence of the gauge field A
and a chemical potential µ:

(9.14) M [A;µ]=
N f⊗
f=1

(∂/− gA/+M f −µγ0) .

A similar rewriting applies of course to the Polyakov loops.

Now, using similar arguments as in the previous section, one finds

γ2γ0 M [A;µ]γ0γ2 = M [AC ;−µ]t ,(9.15)

γ3γ1 M [A;µ]γ1γ3 = M [AK ;µ∗]∗,(9.16)

γ5 M [A;µ]γ5 = M [A;−µ∗]† .(9.17)

Again, the last identity was obtained by combining the previous two. If
we use instead the chiral transformation ψ→ γ5ψ, ψ̄→−ψ̄γ5, we obtain
that −γ5 M [A;µ]γ5 is the original Dirac operator but with a sign flip of
all fermion masses:

(9.18) −γ5 M [A;µ]γ5 =
N f⊗
f=1

(∂/− gA/−M f −µγ0) .
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For the fermion determinant, we obtain, correspondingly,

∆[A;µ] = ∆[AC ;−µ] ,(9.19)

∆[A;µ] = (
∆[AK ;µ∗]

)∗ ,(9.20)

∆[A;µ] = (
∆[A;−µ∗]

)∗ .(9.21)

9.2 Continuum sign problem(s)

As it can be seen from Eq. (9.20), the fermion determinant becomes a priori
complex when the chemical potential is taken real. This is the source of
various difficulties, usually collected under the generic name of contin-
uum sign problems [23, 178–183] and which we now discuss in some detail.

We put special care into discriminating between true sign problems
that emanate from the non-positivity of the fermion determinant, and
related difficulties that emanate from its non-real-valuedness. To make
the distinction clear, we label the first type as (Pn) and the second type as
(Rn). As we argue, this latter type of difficulties are easily handled after
one acknowledges the fact that, in the presence of a complex integration
measure, a given observable (with real spectrum) does not necessarily
lead to a real expectation value. In contrast, the former type are more
difficult to handle since they relate directly to the lattice sign problem.

In order to better appreciate the various possible difficulties, we first
consider the case of an imaginary chemical potential where these dif-
ficulties are absent.6 Also, we first discuss the various problems in a
non gauge-fixed setting, in a way similar to [184], and then extend the
discussion to background field gauges.

6As we discuss in the next chapter, the case of imaginary chemical potential possesses further
interesting features that make it a case worth of study.
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9.2.1 Imaginary chemical potential

In the case of an imaginary chemical potential, the fermion determinant
is positive. To see this [178], we note first that the massless Dirac operator
is anti-hermitian. It is thus diagonalizable with a purely imaginary spec-
trum. Moreover, the mass operator being proportional to the identity, the
massive Dirac operator remains diagonalizable. Finally, it follows from
Eq. (9.18) and γ2

5 = 1 that, for each eigenstate of eigenvalue µ+ iλ, there is
another eigenstate of eigenvalue µ− iλ. The fermion determinant is then
the product of positive factors of the form µ2+λ2.7

The positivity of the fermion determinant is a welcome feature at
various levels. On a fundamental level, it ensures the positivity of the
partition function (9.12) and thus the real-valuedness of any thermody-
namical observable derived from it (since ln Z is real).8 On a practical
level, it makes it possible to evaluate the partition function with, discrete,
importance sampling Monte-Carlo techniques. As we now discuss, it has
also its importance within any continuum approach based on the use of
effective actions.

Suppose indeed that we introduce sources η̄ and η coupled respectively
to the operators ΦA and Φ̄A, thus defining the generating functional
W[η, η̄]≡ ln Z[η, η̄], with
(9.22)

Z[η, η̄]≡
∫

DA∆[A;µ] e−SYM[A] exp
{∫

d~x
(
η̄(~x)ΦA(~x)+ Φ̄A(~x)η(~x)

)}
.

The sources are a practical way to generate the expectation values of the
Polyakov loops or more generally correlations between various Polyakov
loops. In the limit of zero sources, one can extract their values from
the extremization of the Polyakov loop effective action, defined as the

7For completeness, we mention that the real-valuedness of the fermion determinant (but not
its positivity) follows more directly from Eq. (9.21).

8We shall not try, for the moment, to give a physical interpretation to the case of imaginary
chemical potential. We shall later show that, for certain values of the (imaginary) chemical
potential, there is a simple physical interpretation.
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Legendre transform of W[η, η̄]:

(9.23) Γ[`, ¯̀]≡−W[η, η̄]+
∫

d~x
(
η̄(~x)`(~x)+ ¯̀(~x)η(~x)

)
,

where the conjugated variables ` and ¯̀ are defined as

(9.24) `(~x)≡ δW
δη̄(~x)

, ¯̀(~x)≡ δW
δη(~x)

,

and are nothing but the Polyakov and anti-Polyakov loops in the presence
of the sources η and η̄.

For the purpose of generating correlation functions, one could consider
the sources to be two independent complex numbers, that is (η, η̄) ∈C×C.
Correspondingly, the variables ` and ¯̀ that enter the effective action are
complex and independent (possibly within some region of C×C). This
is not the most convenient choice, however, because the effective action
becomes generically complex, obscuring the fact that it should be real
in the limit of zero sources where it corresponds to −W[0,0] = − ln Z.
Moreover, a complex effective action makes it difficult to devise a definite
criterion to identify the physical extremum.9

As we now explain, we can avoid these difficulties by restricting (η, η̄)
to a subspace of C×C such that Γ[`, ¯̀] is real. This restriction is of course
allowed as long as the considered subspace contains the limit of zero
sources.10 However, one problem with restricting the space of sources is
that it is not always easy to identify the target space where the conjugated
variables ` and ¯̀ should vary. Interestingly, we will show that it is possi-
ble to find a subspace of C×C which is both stabilized by the Legendre
transformation and over which the effective action is real.

9In principle, one expects that the limit of zero sources corresponds to one extremum only,
or to a collection of degenerated extrema. However, due to the approximations inherent to any
approach, additional extrema can appear and one needs a criterion to identify the correct one.

10We assume again that the limit of zero sources does not depend on the way it is taken,
which is legitimate here since there is no spontanously broken symmetry.
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Suppose that we restrict the sources such that η̄ = η∗, that is the
pair (η, η̄) is taken in the subspace Σ ≡ {

(η, η̄) ∈C×C | η̄= η∗} of complex
conjugated sources. This choice seems natural here since the quantities the
sources are coupled to are also complex conjugate of each other, Φ̄A =Φ∗

A.
We emphasize, however, that this very choice will not be the natural one
in the case of a real chemical potential to be treated in the next section. In
the present case, this choice of sources, together with the real-valuedness
of the fermion determinant, implies that Z[η, η̄] is real:

(9.25) (R1) ∀(η, η̄) ∈Σ , Z[η, η̄] ∈R .

A stronger result is obtained from the positivity of the fermion deter-
minant: Z[η, η̄] is in fact positive over Σ. It follows that the generating
functional W[η, η̄] is real over Σ:

(9.26) (P1) ∀(η, η̄) ∈Σ ,W[η, η̄] ∈R .

Next, we consider the effective action Γ[`, ¯̀]. It is easily seen that, if
the sources are taken in the subspace Σ, the conjugated variables belong
to the same space:

(9.27) (R2) (η, η̄) ∈Σ⇒ (`, ¯̀) ∈Σ .

This result relies crucially on the real-valuedness of the fermion deter-
minant. Indeed, in the presence of a real-valued integration measure,
the expectation values of two complex conjugated quantities, such as ΦA

and Φ̄A, are themselves complex conjugate of each other. One can also
see (R2) as a consequence of (R1) and the identities ` = (δZ/δη̄)/Z and
¯̀= (δZ/δη)/Z. Moreover, by combining the properties (P1) and (R2), we
deduce that Γ[η, η̄] is real over the space Σ:

(9.28) (P2) ∀(`, ¯̀) ∈Σ ,Γ[`, ¯̀] ∈R .
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Finally, from the positivity of the integration measure, we can use sim-
ilar arguments as those given in Appendix C and in Chap. 4 to show that
W[η, η̄] is convex over Σ and that the the limit of zero sources corresponds
to the minimization of Γ[`, ¯̀] over this space:

(9.29) (P3) (η, η̄) ∈Σ→ (0,0)⇔minΣΓ[`, ¯̀] .

In summary, we have just shown that, in the case of an imaginary
chemical potential, the real-valuedness of the fermion determinant en-
sures the existence of a subspace over which the functional Z[η, η̄] is real
(R1) and, thus, such it is stabilized by Legendre transformation (R2). On
the other hand, the positivity of the fermion determinant ensures that the
functionals W[η, η̄] and Γ[`, ¯̀] are real over this subspace (P1/P2) and that
there exists an unambiguous characterization of the limit of zero sources
that allows to select the correct extremum of the effective action over
this subspace (P3). We mention that varying the effective action over Σ is
also convenient because it makes sure that the property of the physical
Polyakov loops being complex conjugate of each other in the case of an
imaginary chemical potential, see above, is automatically fulfilled.

9.2.2 Real chemical potential

In the case of a real chemical potential, both the reality and the positivity
of the fermion determinant are lost and we expect the properties (R1),
(R2), (P1), (P2) and (P3) not to hold true anymore, at least not in such
a simple way as above. As we now recall, the properties (R1) and (R2)
can be shown to still hold true with however a new invariant subspace.
In contrast, to the best of our knowledge, the properties (P1), (P2) and
(P3), for they quite crucially rely on the positivity of the fermion determi-
nant, have not been extended so far to the case of a real chemical potential.
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(R1/R2) For a real chemical potential, Z[η, η̄] is not real in general,
even when restricted to Σ. Correspondingly, the Legendre transformation
does not stabilize Σ. This problem, however, should not be qualified as a
sign problem for it does not originate in the integration measure not being
positive, but only in the integration measure not being real. Moreover, it
has a simple solution, as originally suggested in the matrix model analysis
of [184]. In fact, using the identity (9.20) as well as ΦAK =Φ∗

A, it is easily
checked that Z[η, η̄] is real over the subspace R×R and thus that this
subspace is stable under Legendre transformation. Moreover, this is the
natural subspace where to consider the effective action, since as we have
seen above, the physical Polyakov loops should be real in this case.

The above considerations give a formal basis to the standard rule
on how to analyse the Polyakov loop effective action/potential (see for
instance [23, 179, 182]), when changing from the case of an imaginary
chemical potential to that of a real chemical potential: in contrast to the
former case where ` and ¯̀ are taken complex conjugate of each other, in
the latter case, one chooses instead ` and ¯̀ real and independent. This
change of subspace is illustrated in Fig. 9.1.

(P1/P2) As we have already emphasized, the question of the reality
of Z[η, η̄], and in particular of the partition function Z ≡ Z[η = 0, η̄ = 0],
has not much to do with the sign problem and can be addressed using the
identity (9.20). The true sign problem appears when one tries to argue
that the partition function Z is positive, as it should be the case if −T ln Z
is to represent the free-energy of the system. The fact that the fermion
determinant is not positive-definite makes the proof of the positivity of Z
difficult a priori and, to our knowledge, this question has not been clari-
fied yet. From the reality of Z[η, η̄], the (assumed) positivity of Z and the
expectation that W[η, η̄] should not diverge at any value of the sources, we
also expect Z[η, η̄] to be always positive. Again, the non-positivity of the
fermion determinant makes this statement difficult to prove. These issues
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Re { = Re {

Im { = - Im {

Re {

Re {

Figure 9.1: The two different planes where the Polyakov loop effective
action should be considered depending on whether µ ∈ iR or µ ∈R. These
two planes are sub-manifolds of C×C, but for the sake of representing
them in a three dimensional figure, we have glued together the axes Im`

and −Im ¯̀.

are minor, however, in the sense that, within any continuum approach
that gives access to an explicit expression for Γ[`, ¯̀], one can always check
whether Γ[`, ¯̀] is real over R×R. For instance, in the next chapter, we
check that this is the case for the one-loop Polyakov loop potential com-
puted within the Curci-Ferrari model.

(P3) A slightly more serious sign problem is that, even after checking
that Γ[`, ¯̀] is real over R×R, it is not at all obvious which extremum
one should choose in this subspace, in the case where various extrema
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are present. The criterion that we identified in the case of an imaginary
chemical potential, because it crucially relied on the positivity of the
fermion determinant, is not valid anymore. In fact, it is easily seen that
the physical point cannot correspond to the absolute minimum of the
effective action. This is because, for a vanishing chemical potential, one
can choose to work either over Σ or over R×R. Due to charge conjugation
invariance, the physical point is such that ` = ¯̀ and lies therefore at
the intersection of these two subspaces. Seen from the perspective of the
subspace Σ, the physical point appears as the absolute minimum, but seen
from the perspective of the subspace R×R it appears as a saddle-point.

We mention that this version of the sign problem is not as dramatic as
the one on the lattice, because one can always try to locate the different
extrema (assuming that there is a finite number of them) and select
the correct one based on some additional physical insight. However, this
entails inevitably a loss of prediction power of the continuum approach.
We can try to circumvent the problem by inferring a general rule from
the case of zero chemical potential. In that case, the physical point in the
subspace R×R is not only a saddle-point, it is in fact the deepest saddle
point.11 In what follows, we assume that this rule applies even at non-zero
chemical potential. We stress however that we found no way to justify this
rule from first principles. The best we can do is to provide a posteriori
justifications, based on the relevance of the physical results that we obtain
with this rule, in comparison to other strategies.

9.3 Background field gauges

The previous considerations extend of course also to a gauge-fixed setting.
In particular, as we now discuss, they have a strong imprint on the way

11At least among those compatible with the charge conjugation invariance present in the
µ= 0 case.
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the background field method should be implemented at finite density.

9.3.1 Complex self-consistent backgrounds

To understand this point, recall that the background field approach at fi-
nite temperature relies crucially on the use of self-consistent backgrounds
defined by the condition Ā = 〈A〉Ā. Making the expectation value explicit
and projecting along the generators ta, this condition writes

(9.30) Āa
ν =

∫
Dgf[A; Ā]∆[A;µ] Aa

ν e−SY M[A]∫
Dgf[A; Ā]∆[A;µ] e−SY M[A]

≡ 〈Aa
ν〉Ā .

Since the background is taken constant, temporal and along the Cartan
sub-algebra, this identity is trivially valid for ν 6= 0 or for a 6= 3 and
a 6= 8. Self-consistent backgrounds appear, therefore, as fixed points of the
mapping

(9.31) (Ā3
0, Ā8

0) 7→ (〈A3
0〉Ā,〈A8

0〉Ā) .

Of course, the existence of fixed points depends crucially on which space
the fixed points are searched for. If one views the background as a partic-
ular configuration of the gauge field Aa

µ, the natural choice would be to
look for fixed points in the space of real background components. As we
now discuss, however, this choice is not always the appropriate one. The
right choice depends on the considered situation and is again intimately
related to the properties of the measure under the functional integral.

Let us consider the case of an imaginary chemical potential first. In this
case, the fermion determinant is real. Then, if we choose the background
components to be real, the measure under the functional integral is real.
The expectation values 〈A3

0〉Ā and 〈A8
0〉Ā are also real and (9.31) maps

R×R into itself. This is certainly a favourable condition for the existence
of a fixed point solution, and, thus, of self-consistent backgrounds.
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The problem occurs when changing to a real chemical potential. Indeed,
the fermion determinant being complex in this case, the expectation values
〈A3

0〉Ā and 〈A8
0〉Ā are not real anymore if we insist in keep the background

components real, and the previous favourable condition for the existence
of a (real) self-consistent background is not met. The way out is to allow for
complex components of the background. This may look surprising at first
sight if one insists in viewing the background as a particular configuration
of the gauge-field. However, from the perspective of the gauge-fixing
procedure the background should be rather seen as an infinite collection of
gauge-fixing parameters that characterizes the particular gauge that one
is considering.12 From this perspective, nothing prevents the background
components to be taken complex.

To see how such an extended background allows us to solve the prob-
lem, we need the counterpart of the property (9.20) regarding the gauge-
fixed measure. One finds

(9.32) Dgf[A; Ā]= (
Dgf[AK ; ĀK ]

)∗ .

We note that, since we leave open the possibility of complex background
components, we have ĀK 6= ĀC . More precisely, for our constant, temporal
and diagonal background, we have (ĀK

0 )3,8 =−(Ā3,8
0 )∗, whereas (ĀC

0 )3,8 =
−(Ā3,8

0 ). The background is thus invariant under K if its components are
taken purely imaginary. In this case, it is readily checked that

(9.33)
〈
A3,8

0

〉
Ā =−〈

A3,8
0

〉∗
Ā ,

and, therefore (9.31) maps iR× iR into itself. Thus, there is again some
chance to find self-consistent backgrounds, but with purely imaginary
components this time.

Another possibility is to consider Ā3
0 real and Ā8

0 imaginary. Indeed,
in this case, the background is invariant under a combination of K and

12Complex backgrounds have also been considered in [185, 186]. There, the search for saddle
points in the presence of a complex action forces one to continue the original real gauge field to
complex configurations.
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the Weyl transformation that flips the sign of Ā3
0. Since the Weyl trans-

formation is a symmetry of the problem, it is readily checked in this case
that 〈

A3
0
〉

Ā = 〈
A3

0
〉∗

Ā ,(9.34) 〈
A8

0
〉

Ā =−〈
A8

0
〉∗

Ā .(9.35)

It follows that (9.31) mapsR× iR into itself, opening the possibility for the
existence of self-consistent backgrounds with Ā3

0 real and Ā8
0 imaginary.

9.3.2 Background field effective potential

The previous discussion extends to the background field effective potential,
from which the self-consistent backgrounds should be obtained in principle.
It is convenient to introduce the generating functional
(9.36)

Z[J; Ā0,µ]≡
∫

Dgf[A; Ā0]∆[A;µ] exp
{
−SY M[A]+

∫
ddx J j(x)A j

0(x)
}

,

with J ≡ (J3, J8) and Ā0 ≡ (Ā3
0, Ā8

0). We recall that the background field
effective action Γ̃[Ā0] is constructed from this functional by first Legendre
transforming W[J; Ā0,µ]≡− ln Z[A0; Ā0,µ] with respect to the sources

(9.37) Γ[A0; Ā0,µ]=−W[J; Ā0,µ]+
∫

ddx J j(x)A j
0(x) ,

with

(9.38) A j
0(x)≡ δW

δJ j(x)
= 1

Z
δZ

δJ j(x)
,

and then evaluating Γ̃[Ā0,µ] = Γ[Ā0; Ā0,µ]. We can now follow a similar
discussion as the one presented in Sec. 9.2.

By using the identities (9.19)-(9.21), it is found that

Z[J; Ā0,µ] = Z[−J;−Ā0,−µ](9.39)

= Z[−J∗;−Ā∗
0 ,µ∗]∗(9.40)

= Z[J∗; Ā∗
0 ,−µ∗]∗ ,(9.41)
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r3

r8

ir8

Figure 9.2: The two different planes where the background field effective
action should be considered depending on whether µ ∈ iR or µ ∈R. This
figure is the counterpart of Fig. 9.1.

where the last identity is a combination of the previous two. One
can also use a Weyl transformation to flip the sign of both J3 and Ā3

0 in
Eq. (9.40). Using these identities, it is easily checked that, in the case
of an imaginary chemical potential, Z[J; Ā0,µ] is real if J ∈R×R and
Ā0 ∈R×R. Similarly, in the case of a real chemical potential, Z[J; Ā0,µ]
is real if J ∈ iR× iR and Ā0 ∈ iR× iR, or, if J ∈R× iR and Ā0 ∈R× iR.
From (9.38), it then follows that these subspaces are stabilized by the Leg-
endre transform and are thus the natural subspaces where to study the
background effective action Γ̃[Ā0]. In fact, we will see in the next chapter
that the effective action is somewhat ill-defined over iR× iR, so we shall
restrict to R× iR from now on. The change of subspace for the background
components, as one changes from the case of imaginary chemical potential
to the case of a real chemical potential is illustrated in Fig. 9.2.
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The properties that we have just discussed are the counterpart of
properties (R1) and (R2) discussed in the previous section. The equivalent
of the properties (P1), (P2) and (P3) can again be shown in the case
of an imaginary chemical potential using the positivity of the fermion
determinant. In particular, the background field effective action Γ̃[Ā0]
is real if (Ā3

0, Ā8
0) ∈R×R, and self-consistent backgrounds are obtained

by minimizing the background field effective action over this subspace.
In the case of a real chemical potential, the proof is jeopardized by the
non-positivity of the fermion determinant but it is reasonable to admit
that the background field effective action Γ̃[Ā0] is again real if Ā0 ∈R× iR,
which we shall check on explicit examples in the next chapter. Again,
we shall also choose the physical point as deepest saddle point in this
subspace but here we lack a derivation of this recipe from first principles.

9.3.3 Background dependent Polyakov loop

The connection with the general discussion of Sec. 9.2 can be done using
the background dependent Polyakov loops. From the identities (9.19)-
(9.21), we find that

`[Ā0,µ] = ¯̀[−Ā0,−µ](9.42)

= `[−Ā∗
0 ,µ∗]∗(9.43)

= ¯̀[Ā∗
0 ,−µ∗]∗ .(9.44)

In the case of an imaginary chemical potential, choosing Ā0 ∈R×R, one
finds from Eq. (E.8) that `[Ā0,µ] and ¯̀[Ā0,µ] are complex conjugate of
each other, in agreement with the previous discussion. In the case of a
real chemical potential, choosing Ā0 ∈R× iR, one finds from Eq. (9.43)
that `[Ā0,µ] and ¯̀[Ā0,µ] are both real.

In particular, at leading order, the background dependent Polyakov
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loops are not modified by the quark content and one finds

(9.45) `(r3, r8,µ)= e−i r8p
3 +2cos

( r3
2

)
ei r8

2
p

3

3
= ¯̀(r3,−r8,µ) ,

which obey the above mentioned properties.

9.3.4 Other approaches

Some works propose instead to restrict to r8 = 0 as a way to ensure
that the background potential remains real. This is done either directly
[183, 187, 188] or effectively by first dropping the imaginary part of the
potential and then realizing that the real part has a minimum such that
r8 = 0 [180]. However, this is at odds with the fact that a non-vanishing
chemical potential breaks charge conjugation symmetry and should then
correspond to a non-zero r8. We will see that approaches that artificially
set r8 = 0 miss part of the physical picture by not reproducing the expected
behavior of the Polayakov loops as a function of the chemical potential.
However, for some other aspects, the r8 = 0 and r8 ∈ iR prescriptions
give quantitatively similar results. In particular, we evaluated the ther-
modynamical observables in the Polyakov-extended Quark-Meson model
of [183]. Figure 9.3 shows both the deviation of the pressure p and the
trace anomaly e−3p with respect to the zero-density case, using both
prescriptions for r8.

The prescription r8 = 0 has also been used in [181] to obtain bubble
nucleation rates by computing the barrier between two minima of the
potential in the case of a first order phase transition. We stress again that
the analysis should in principle be carried out with a non-zero, imaginary
r8. In this case however, the very method for extracting nucleation rates
has to be revisited before a comparison such as the one in Fig. 9.3 can be
even considered.
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Figure 9.3: Pressure and trace anomaly deviation with respect to the
zero-density case (divided respectively by the Stefan-Boltzmann pressure
and energy density), as functions of the temperature, for various values
of the baryonic chemical potential µB = 3µ, µB = 200 MeV (blue, plain
and dotted) and µB = 400 MeV (red, dashed and dashed-dotted). The thin
lines correspond to the results obtained with the r8 = 0 prescription, as
in Ref. [183], whereas the thick lines shows the results obtained with the
r8 ∈ iR presciption.
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10
QCD DECONFINEMENT TRANSITION

IN THE HEAVY QUARK REGIME

We now apply the general considerations of the previous chapter
to the study of the deconfinement transition in the presence of
quark degrees of freedom. To keep the picture relatively simple,

we consider a formal regime where the up, down and strange quarks
are considered heavy, and the other, even heavier quarks, are neglected.
This departure from the physical QCD case has been largely explored in
the literature, from lattice simulations [189], first principle continuum
methods [188] or models [190], and this for several reasons.

First, it allows to assess the impact of dynamical quarks on the de-
confinement transition without the contamination from the breaking of
chiral symmetry, the other relevant transition at play in physical QCD.1

Moreover, in this formal regime, QCD presents a rich phase structure that
allows for comparison and benchmarking of various approaches. For us, it
will serve as a further testing ground of the Curci-Ferrari model and the
related hypothesis that some of the low energy properties of QCD can be

1It is interesting, of course, to study the interplay between these two transitions in the
physical case. This lies, however, beyond the scope of the present manuscript.
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described with perturbative methods.

10.1 Background effective potential

As it was already the case in Yang-Mills theory, the evaluation of the
one-loop background effective potential in the presence of quarks requires
only the quadratic part of the action. Thus, for the matter part we only
need

(10.1) δS0[ψ,ψ̄;µ]≡
∫

ddx
N f∑
f=1

ψ̄ f (x)
(
D̄/+M f −µγ0

)
ψ f (x) ,

with D̄ν = ∂ν− iTδν0 r jt j. Decomposing the quark fields into a Cartan-Weyl
basis {|ρ〉} that diagonalizes simultanously the generators t j, ψ=∑

ρψρ|ρ〉,
with t j|ρ〉 = ρ j|ρ〉 and 〈ρ|σ〉 = δρσ, one finds

(10.2) δS0[ψ,ψ̄;µ]≡
∫

ddx
N f∑
f=1

ψ̄ f ,ρ(x)
(
D̄ρ/ +M f −µγ0

)
ψ f ,ρ(x) ,

with D
ρ
ν = ∂ν− iTr ·ρδν0. In Fourier space, this becomes

(10.3) δS0[ψ,ψ̄;µ]≡
∫ T

P

N f∑
f=1

ψ̄ f ,ρ(P) (−iPρ/ +M f −µγ0)ψ f ,ρ(P) ,

where Pρ ≡ P +T r ·ρn is the generalized momentum in the presence of
the background, with P = (ω,~p), ω a fermionic Matsubara frequency, and
n = (1,~0).

10.1.1 General one-loop expression

We mention that each shift T r ·ρn of momentum can be interpreted as an
imaginary shift of the chemical potential µ: µ→µ+ i r ·ρT. This illustrates
once more the interpretation of the background as an imaginary chemical
potential and allows us to derive the one-loop matter contribution to the
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background effective potential using the well known one-loop expression
for the free-energy density of a colorless fermionic field of flavour f in the
absence of background:

(10.4) Vf (T,µ)=− T
π2

∫ ∞

0
dq q2

{
ln

[
1+ e−β (εq, f −µ)

]
+ ln

[
1+ e−β (εq, f +µ)

]}
.

We find

(10.5) δV (r;T,µ)=∑
f ,ρ

Vf
(
T,µ+ iT r ·ρ)

,

where ρ runs over the weights (colors) of the defining representation.

10.1.2 Real-valuedness in the SU(3) case

In the SU(3) case, we recall that r = (r3, r8) and the weights are (0,−1/
p

3 ),
(1,1/

p
3 )/2 and (−1,1/

p
3 )/2. Therefore

δV SU(3)
1loop (r;T,µ)

= − T
π2

∫ ∞

0
dq q2

{
ln

[
1+ e−β (εq, f −µ)−i r8p

3

]
+ ln

[
1+ e−β (εq, f +µ)+i r8p

3

]
+ ln

[
1+ e−β (εq, f −µ)+ i

2

(
r3+ r8p

3

)]
+ ln

[
1+ e−β (εq, f +µ)− i

2

(
r3+ r8p

3

)]
+ ln

[
1+ e−β (εq, f −µ)+ i

2

(
−r3+ r8p

3

)]
+ ln

[
1+ e−β (εq, f +µ)− i

2

(
−r3+ r8p

3

)]}
.(10.6)

For completeness, we recall that the pure glue part of the potential reads

V SU(3)
1loop (r;T)

= T
2π2

∫ ∞

0
dq q2

ln

(
1− e−βεq+ir3

)3

1− e−βq+ir3
+ ln

(
1− e−βεq−ir3

)3

1− e−βq−ir3

+ ln

(
1− e−βεq+i r3+r8

p
3

2

)3

1− e−βq+i r3+r8
p

3
2

+ ln

(
1− e−βεq−i r3+r8

p
3

2

)3

1− e−βq−i r3+r8
p

3
2

+ ln

(
1− e−βεq+i r3−r8

p
3

2

)3

1− e−βq+i r3−r8
p

3
2

+ ln

(
1− e−βεq−i r3−r8

p
3

2

)3

1− e−βq−i r3−r8
p

3
2

 .(10.7)
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It is readily checked that the above expressions are real if (µ, r3, r8) ∈ iR×
R×R, (µ, r3, r8) ∈R× iR× iR or (µ, r3, r8) ∈R×R× iR, as anticipated in the
previous chapter. We mention however that the case (µ, r3, r8) ∈R× iR× iR
is problematic since some of the bosonic integrals become ill-defined. For
this reason, in the case of a real chemical potential, we shall only consider
the case (µ, r3, r8) ∈R×R× iR.

10.1.3 Polyakov loop potential

As we have already mentioned in the previous chapter, at leading order,
the background dependent Polyakov loops take the same expressions as
in the pure YM case, namely

(10.8) `(r)= 1
N

∑
ρ

eir·ρ and ¯̀(r)= 1
N

∑
ρ

e−ir·ρ .

In the SU(3) case, these two Polyakov loops are in one-to-one correspon-
dance with the background components r3 and r8 and one can consider
expressing the latter in terms of the former. Doing so, the background
field effective potential becomes an effective potential for the Polyakov
loop.2

Expressing the background components in terms of the Polyakov loops
is not particularly simple. However, expressing the background field ef-
fective potential in terms of the Polyakov loops can be done as follows.
First, by combining the various terms in the sum (10.5), one arrives at the
following logarithms

ln
[
1+ e−β (εq, f ∓µ)±ir·ρ1

][
1+ e−β (εq, f ∓µ)±ir·ρ2

][
1+ e−β (εq, f ∓µ)±ir·ρ3

]
(10.9)

= ln
[
1+ A±e−β (εq, f ∓µ)+B±e−2β (εq, f ∓µ)+C±e−3β (εq, f ∓µ)

]
,

2That this corresponds to the Polyakov loop potential, as it would be obtained from a Legendre
transformation with respect to sources coupled to the Polyakov loops, can be shown up to two-loop
order, see [168].
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where

A± = e±ir·ρ1 + e±ir·ρ2 + e±ir·ρ3 ,(10.10)

B± = e±ir·(ρ1+ρ2)+ e±ir·(ρ2+ρ3)+ e±ir·(ρ3+ρ1) ,(10.11)

C± = e±ir·(ρ1+ρ2+ρ3) .(10.12)

Using that ρ1 +ρ2 +ρ3 = 0 leads to A+ = 3`= B−, B+ = 3 ¯̀= A− and C+ =
1= C−, and one arrives eventually at

δV SU(3)
1loop (`, ¯̀;T,µ)

= − T
π2

∫ ∞

0
dq q2

{
ln

[
1+3`e−β (εq, f −µ)+3 ¯̀e−2β (εq, f −µ)+ e−3β (εq, f −µ)

]
+ ln

[
1+3 ¯̀e−β (εq, f +µ)`+3`e−2β (εq, f +µ)+ e−3β (εq, f +µ)

]}
.(10.13)

This formula can be extended to SU(N) but in this case one needs to
introduce N−1 Polyakov loops to be mapped to the N−1 background com-
ponents. These are the Polyakov loops associated to the N−1 fundamental
SU(N) representations [153]. More details can be found in App. E. There
we also show how to express the one-loop glue potential in terms of the
Polyakov loops, in the case of the SU(3) gauge group. One obtains

V SU(3)
1loop (`, ¯̀;T)

= 3T
2π2

∫ ∞

0
dq q2 ln

[
1+ e−8βεq − (

9` ¯̀−1
)(

e−βεq + e−7βεq
)

−(
81`2 ¯̀2−27` ¯̀+2

)(
e−3βεq + e−5βεq

)
+(

27`3+27 ¯̀3−27` ¯̀+1
)(

e−2βεq + e−6βεq
)

+(
162`2 ¯̀2−54`3−54 ¯̀3+18` ¯̀−2

)
e−4βεq

]
,

− T
2π2

∫ ∞

0
dq q2 ln

[
1+ e−8βq − (

9` ¯̀−1
)(

e−βq + e−7βq)
−(

81`2 ¯̀2−27` ¯̀+2
)(

e−3βq + e−5βq)
+(

27`3+27 ¯̀3−27` ¯̀+1
)(

e−2βq + e−6βq)
+(

162`2 ¯̀2−54`3−54 ¯̀3+18` ¯̀−2
)
e−4βq

]
.(10.14)

185



CHAPTER 10. QCD DECONFINEMENT TRANSITION
IN THE HEAVY QUARK REGIME

In line with the discussion of the previous chapter, these expressions
should be considered for complex conjugated variables ¯̀= `∗ in the case of
an imaginary chemical potential and for real and independent variables `
and ¯̀ in the case of a real chemical potential.3

10.2 Phase structure at µ= 0

Let us now combine Eqs. (10.6) and (10.7) to study the phase structure
of the model as a function of the (heavy) quark masses. This dependence
has been studied in various approaches, including non gauge-fixed lattice
QCD, and offers, therefore, a valuable benchmark for the Curci-Ferrari
model. For simplicity, we consider the case of two degenerate flavors with
mass Mu = Md and a third flavor with mass Ms.

We first analyze the phase diagram at µ = 0. As we have discussed
above, in this case, the analysis of the background effective potential
can be done either over (r3, r8) ∈R×R or over (r3, r8) ∈R× iR. This is
related to the fact that, because charge conjugation is not broken, we
expect the physical point to lie along the axis r8 = 0 in the fundamental
Weyl chamber. This is indeed what we find numerically. Correspondingly,
we set r8 = 0 in what follows. Along this axis, the background dependent
Polyakov loops `(r) and ¯̀(r), are guaranteed to be equal and real, in line
with their standard interpretation in terms of the free energy of a static
quark or antiquark [37, 145] and the fact that there should be no distinc-
tion between the free energy of a quark and that of an antiquark at µ= 0.

Depending on the values of the quark masses, we find different types
of behaviors as the temperature is varied, see Fig. 10.1. For large masses,
the absolute minimum presents a finite jump at some transition tem-
perature, signalling a first-order transition. Instead, for small masses,

3Being the average values of traced unitary matrix, these variables are further constrained
to lie in some subregion of Σ or R×R respectively.
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Figure 10.1: The background field potential (in arbitrary units) for µ= 0
and r8 = 0, as a function of x = r3/(2π) for different temperatures in the
degenerate case Mu = Ms = M. Top figure: M slightly larger than the
critical value Mc; see Fig. 10.2. Temperature increases for curves from
bottom to top. The dashed line corresponds to the transition temperature.
Middle figure: M = Mc with the same conventions as for the top figure.
Bottom figure: M < Mc. The dashed line is for the crossover temperature,
where the curvature of the potential at the minimum is the smallest.

there is always a unique minimum, whose location rapidly changes with
temperature in some crossover regime. At the common boundary of these
two mass regions, the system presents a critical behavior: there exists
a unique minimum of the potential for all temperatures, which however
behaves as a power-law around some critical temperature. At this critical
point, the curvature of the potential at the minimum needs to vanish, and,
to distinguish it from a mere spinodal in the first order transition region,
we need to require that the third derivative vanishes as well (which is the
condition for the merging of spinodals in the first order transition region).
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The three conditions

(10.15) 0=V ′(r3)=V ′′(r3)=V ′′′(r3)

thus determine the critical values Tc and rc
3 for the temperature and

the background, together with a critical line in the (Mu, Ms) plane, the
so-called Columbia plot.

Our result for the Columbia plot are shown in Fig. 10.2. In the degen-
erate case Mu = Ms we get, for the critical mass, Mc/m = 2.867 and, for
the critical temperature, Tc/m = 0.355. We thus have Mc/Tc = 8.07. This
dimensionless ratio does not depend on the value of m and can be directly
compared to lattice results. For instance, the calculation of Ref. [189]
yields, for 3 degenerate quarks, (Mc/Tc)latt. = 8.32. We obtain similar good
agreement for different numbers of degenerate quark flavors, as summa-
rized in Table 10.1.

N f Mc/m Tc/m Mc/Tc (Mc/Tc)latt. (Mc/Tc)matr.

1 2.395 0.355 6.74 7.22(5) 8.04
2 2.695 0.355 7.59 7.91(5) 8.85
3 2.867 0.355 8.07 8.32(5) 9.33

Table 10.1: Values of the critical quark mass and temperature for N f =
1,2,3 degenerate quark flavors from the present one-loop calculation. The
values of the dimensionless and parameter independent ratio Mc/Tc are
compared to the lattice results of Ref. [189] (previous to last column). For
comparison we also show the values from the matrix model of Ref. [190]
(last column).

We observe that the critical temperature is essentially unaffected by
the presence of quarks. It is actually close to the one obtained in the
present approach for the pure gauge SU(3) theory [163]. This is due to the
fact that, for the typical values of M/T near the critical line, the quark
contribution to the potential is Boltzmann suppressed as compared to that
of the gauge sector [176].
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 0.8
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 1

Crossover

1st order

1 − e−
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1 − e−
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m

Figure 10.2: Columbia plot at µ= 0. In the upper right corner of the plane
(Mu, Ms), the phase transition is of the first-order type. In the lower left
corner, the system presents a crossover. On the plain line, the system has
a critical behavior.

We also mention that recent calculations in the Dyson-Schwinger ap-
proach [188] yield values of the ratio Mc/Tc that are systematically smaller
than the ones obtained on the lattice. The origin of this discrepancy lies in
the fact that in these studies a certain renormalized quark mass is used
to compute the ratios Mc/Tc, whereas on the lattice and in any one-loop
approach such as the one considered here, the bare quark mass is used.

Two-loop corrections to the previous results within the Curci-Ferrari
model have been evaluated in [191] and improve the agreement with
lattice results. More recently, another perturbative approach inspired by
the Gribov-Zwanziger approach has been considered in [192] and supports
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once more the idea that the phase structure of QCD in the top-left corner
of the Columbia plot is akin to perturbative methods.

10.3 Phase structure for µ ∈ iR

The case of imaginary chemical potential is interesting in many respects.
First, as already mentioned in the previous chapter, the sign problem
is under control, allowing for the use of lattice simulations. But more
importantly, the corresponding phase structure is quite rich and offers a
new source for comparison between the various approaches.

10.3.1 Roberge-Weiss symmetry

The richness of the phase structure has to do with the fact that, despite
the explicit breaking of center-symmetry by the fundamental quarks, a
symmetry exists for particular values of the chemical potential.

To see this, consider a center transformation such that U(τ+β) =
e−2π/3U(τ). We have seen that this transformation modifies the boundary
conditions of the quark field to ψ(τ+β,~x)=−e−2π/3ψ(τ,~x) which explicitly
breaks center symmetry at the quantum level. However, the usual anti-
periodic boundary conditions can be restored by means of an abelian
transformation ei2π/3Tτ, with the effect of shifting the chemical potential
by −i2π/3T. It follows that

(10.16) S[AU , ei2π/3TτUψ, e−i2π/3TτU†ψ̄;µ+ i2π/3T]= S[A,ψ,ψ̄;µ] .

Now, had we first applied charge conjugation to the system we would have
ended up with the identity

(10.17) S[(AC )U , ei2π/3TτUψC , e−i2π/3TτU†ψ̄C ; i2π/3T −µ]= S[A,ψ,ψ̄;µ] .

In particular, if we choose µ= iπ/3T, we have a symmetry that survives
at the quantum level since the boundary conditions are unaffected. This
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is the so-called Roberge-Weiss symmetry, a subtle combination of center,
charge conjugation and abelian transformations [193].

The Roberge-Weiss symmetry imposes constraints on certain observ-
ables that one can then use as order parameters testing the possible
spontanous breaking of the symmetry. In particular, if the Roberge-Weiss
symmetry is not spontanously broken, we must have (at µ= iπ/3T)

(10.18) `= e−i2π/3 ¯̀= e−i2π/3`∗ ,

where we used that ¯̀= `∗ when the chemical potential is imaginary. The
argument of the Polyakov loop is then such that

(10.19) Arg`=−i
2π
3

−Arg` ,

and thus Arg`=−iπ/3T. Any departure from this value signals the break-
ing of the Roberge-Weiss symmetry.

We mention finally that, as a consequence of the above properties, the
system is invariant under µ→ µ+ i2π/3T and µ→ i2π/3T −µ. We shall
thus consider chemical potentials µ= ixT with x ∈ [0,π/3].

10.3.2 Results

We consider for simplicity the case of three degenerate quarks with Mu =
Ms = M. For a large enough value of M, we find indeed that the Roberge-
Weiss symmetry can be spontanously broken, with a discontinuity of Arg`
as µi/T crosses π/3, if the temperature is large enough, see Fig. 10.3. It is
interesting to follow the evolution of the (µi/T,T) phase diagram as the
degenerate quark mass M is varied.

For any mass larger than Mc(µ= 0)' 2.8m, such that the transition
at vanishing chemical potential is first-order (see Fig. 10.2), we find that
the transition persists at non-vanishing µi, as depicted in the top panel of
Fig. 10.4. This line of first order transitions, its mirror image by the sym-
metry µi/T → 2π/3−µi/T and the line of first order transitions associated
to the Roberge-Weiss symmetry merge into a triple point at µi/T =π/3 .
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Figure 10.3: Argument of the Polyakov loop in the (µi/T,T) plane for a
degenerate quark mass M.

For M = Mc(µ= 0), the transition at vanishing chemical potential is
second order and there appears, in the (µi/T,T) phase diagram, a couple
of Z2 critical points which terminate the lines of first-order transitions
described above at µi/T = 0 and µi/T = 2π/3. Decreasing the mass M fur-
ther, these critical points penetrate deeper in the phase diagram towards
µi/T =π/3, as shown in the middle panel of Fig. 10.4. The critical points
are located by generalizing the approach at µ= 0. Since we have one extra
variable r8, we need of course one additional condition. We require that
both equations of motion for r3 and r8 are fulfilled:

(10.20) 0= ∂V
∂r3

and 0= ∂V
∂r8

,

that the determinant of the Hessian vanishes, meaning that the curvature
of the potential vanishes in a certain direction,

(10.21) 0= ∂2V
∂r2

3

∂2V
∂r2

8
−

(
∂2V
∂r3∂r8

)2

,

and that the third derivative in this direction vanishes as well

(10.22) 0= a3∂
3V
∂r3

3
+3a2b

∂3V
∂r2

3∂r8
+3ab2 ∂3V

∂r3∂r3
8
+b3∂

3V
∂r3

3
,
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Figure 10.4: Phase diagram in the plane (µi/T,T) for different values of
the degenerate quark mass M. Top panel: M = 3m is larger that the critical
mass at vanishing chemical potential Mc(0) ' 2.8m. Middle panel: M =
2.6m is below Mc(0) but larger than the second critical mass Mc(iπT/3)'
2.2m; see text. Bottom panel: M = 2m is smaller that Mc(iπT/3). Plain
lines correspond to first-order phase transitions, dashed lines to crossovers,
black dots represent Z2 critical points, and the empty circles are triple
points.

with a =−∂2V /∂r3∂r8 and b = ∂2V /∂r2
3.

At a critical value Mc(µ = iπT/3) ' 2.2m, the two Z2 critical points
merge at the symmetric point µi/T = π/3 and give rise to a tricritical
point which terminates the vertical line of first-order transition [194]. The
horizontal lines of first-order transitions for µi/T 6= π/3 have completely
disappeared and are replaced by crossovers. For M < Mc(iπT/3), the pic-
ture is the same with, however, the tricritical point ending the first-order
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transition line at µi/T = π/3 replaced by a Z2 critical point, as shown in
the lower panel of Fig. 10.4.

The approach to tricriticality is controlled by the scaling behavior [194]

(10.23)
Mc(µ)
Tc(µ)

= Mtric.

Ttric.
+K

[(π
3

)2
+

(µ
T

)2
]2/5

.

A fit of our results at µ= iµi yields Mtric./Ttric. = 6.15 and K = 1.85,4 to be
compared with the lattice result of Ref. [189], (Mtric./Ttric.)latt. = 6.66 and
K latt. = 1.55 for 3 degenerate quark flavors.

10.4 Phase structure for µ ∈R
10.4.1 Columbia plot

Using Eqs. (10.20)-(10.22), we can follow the critical line in the Columbia
plot for increasing values of µ2 > 0. The only subtlety is that we need
to solve these equations for (r3, r8) ∈R× iR. We mention however that
there is no ambiguity here on the choice of the saddle point since, on
the critical line there is typically only one saddle point. Our result is
shown in Fig. 10.5 and shows that the critical line moves towards the
Yang-Mills point, in line with the observations made on the lattice. We can
also compare our result at real chemical potential with the extrapolation
of the tricritical scaling law. We observe that tricritical scaling survives
deep in the µ2 > 0 region [176], as also observed in other approaches.

10.4.2 T-dependence of the Polyakov loops

Our analysis reveals that the location of the saddle point is typically
at r8 6= 0, in line with the fact that charge conjugation invariance is

4We mention that the tricritical point can be obtained by setting directly µi/T = π/3 and
using the Roberge-Weiss symmetry, see [195].
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Figure 10.5: Columbia plot for real chemical potential. The first-order
region contracts with increasing µ. The dotted line corresponds to µ= 0.
Successive plain lines correspond to a chemical potential increased by
steps δµ= 0.1 GeV.

explicitly broken by the presence of a finite chemical potential. A non-
vanishing r8 induces a difference between `(µ) and ¯̀(µ), and therefore
between the associated free-energies for quarks and anti-quarks. This
is illustrated in Fig. 10.6, which shows the temperature dependence of
the averaged Polyakov loops in the region of first-order transition. We
observe a significant difference between `(µ) and ¯̀(µ) below the transition
temperature, whereas they essentially agree in the high-temperature
phase. In other words, the energetic price to pay for a static quark is much
higher than that for an anti-quark (at µ > 0) in the quasi-confined, low
temperature phase, where the Polyakov loops are small, whereas it is
essentially the same in the high-temperature deconfined phase. In this
latter case, the explanation is that, in a deconfined phase, quarks and
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Figure 10.6: The Polyakov loops ` (dot-dashed) and ¯̀ (plain) and the cor-
responding quark and anti-quark free energies computed with a nonzero
imaginary background along the r8 direction, in the case of a positive
chemical potential (µ = 0.6m). We also show the same quantities com-
puted with r8 = 0 (dashed) and r3 at the minimum of the potential along
this axis.

anti-quarks are free to roam around and therefore the energetic cost is
essentially the same for bringing a quark or an anti-quark. In contrast, in
the quasi-confined phase, the capacity of the medium to confine a test color
charge depends more notably on the properties of the medium. That anti-
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quarks are more easily confined can be interpreted in terms of screening
of a quark by the anti-quarks of the thermal bath [146].

We mention that previous studies of the phase diagram with back-
ground field methods in the functional renormalization group and Dyson-
Schwinger approaches of Refs. [183, 187, 188] have employed another
criterion than the one used here to determine the physical properties
of the system. Instead of searching for a saddle point of the function
V (r3, ir8,µ) as we propose here, the authors of Refs. [187, 188] define the
physical point as the absolute minimum of the function V (r3,0,µ) as a
function of r3. We have repeated our analysis using this procedure for
comparison. A clear artefact of this procedure is that on the axis r8 = 0,
the tree-level expressions of the Polyakov loops `(µ) and ¯̀(µ) are equal, as
already mentioned. However, we have found that both criteria give essen-
tially the same critical temperatures in our calculation. This is illustrated
in Fig. 10.6.

That the critical temperatures are not significantly modified in these
two prescriptions can be traced back to the relative smallness of the values
of r8 obtained by following the saddle points in our procedure. This, in turn,
originates from the strong Boltzmann suppression of the (heavy) quark
contribution to the potential, which is responsible for the departure of the
saddle point from the axis r8 = 0. We point out that the situation might be
very different in the case of light quarks [183, 187, 188] and that different
procedures for identifying the relevant extremum of the potential may
have more dramatic consequences. This needs to be investigated further.

10.4.3 µ-dependence of the Polyakov loops

Finally, in Fig. 10.7, we show the Polyakov loops and the corresponding
free energies as functions of µ for fixed T/m = 0.33 and M/m = 2.22, for
N f = 3 degenerate flavors. We observe that the Polyakov loops have a
different monotony at small µ but then increase together towards one, in
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line with the observations of Ref. [177]. In this reference, the different
monotony at small µ was used to question the interpretation of the loga-
rithms of the Polyakov loops as free energies. Here, we show instead that
this behavior is perfectly in line with the free-energy interpretation.

The point is that, even though the average charge Q of the thermal
bath should vanish for a vanishing chemical potential, this is not so for
the average charge Qq and Q̄q of the thermal bath in the presence of a
test quark/anti-quark. Therefore, we must have

(10.24)
∂∆F
∂µ

∣∣∣∣
µ=0

=− ∂∆F̄
∂µ

∣∣∣∣
µ=0

6= 0 ,

which explains why the two Polyakov loops have a different monotony for
small µ. In fact we find that

(10.25) ∆Qµ=0 ≡− ∂∆F
∂µ

∣∣∣∣
µ=0

< 0 and ∆Q̄µ=0 ≡− ∂∆̄F
∂µ

∣∣∣∣
µ=0

> 0 ,

so that, in the presence of a test quark (anti-quark) at µ= 0, the thermal
bath charges negatively (positively), see Fig. 10.7. We also show ∆Q =
Qq−Q and ∆Q̄ = Q̄q−Q for increasing values of µ. The fact that they both
approach 0 is expected since both Qq and Q̄q should approach Q at large
µ.
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Figure 10.7: The Polyakov loops ` (plain) and ¯̀ (dot-dashed) and the
corresponding free energies as functions of µ/m. The inset in the first plot
shows a close-up view on the small µ region where the change of monotony
for ` (and therefore ∆Fq) occurs. The second inset shows the difference of
average baryonic charge of the bath in the presence of a test quark (plain)
or a test anti-quark (dot-dashed), with respect to the average charge in
the absence of test charges.
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11
TWO-POINT CORRELATORS IN THE

LANDAU-DEWITT GAUGE

In this final chapter, and as an echo to the discussion at the beginning
of the manuscript, we revisit the two-point correlation functions at
finite temperature from the perspective of the Landau-deWitt gauge.

We have argued that the order parameter for the deconfinement transition
is properly accounted for in this gauge and appears as a shift of momen-
tum in the Feynman rules. Therefore, we expect that the corresponding
correlation functions are more sensitive to the deconfinement transition
than the corresponding correlation functions in the Landau gauge. We
shall test precisely these expectations by computing the various compo-
nents of the ghost and gluon propagators in the massive extension of the
Landau-deWitt gauge.

The main interest of these calculations is that they should be easily
comparable with lattice simulations. In particular, in the low temperature
phase, the value of the order parameter is fixed to zero, corresponding
to a confining background configuration, and the lattice simulations are
similar to those in the Landau gauge but with, definite, twisted boundary
conditions.
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This chapter will also be the opportunity to clarify further aspects of
the background field method at finite temperature. In particular, we shall
investigate to which extent the violation of the underlying assumptions
described in Chap. 4 on the generating functional W[J; Ā], as it is the
rule in most practical implementations of the gauge-fixing, impacts on
the very use of the background field method. Based on this discussion, we
shall also conjecture a specific behavior of the gluon susceptibility at the
transition in any implementation of the gauge-fixing that preserves these
basic assumptions.

11.1 Propagators in the LdW gauge

We have already given many details in previous chapters on how perturba-
tive calculations are conveniently carried out in the Landau-deWitt gauge
in a way that pretty much mimics the calculations in the Landau gauge.
Here, we shall be briefer, highlighting only those aspects specific to the
evaluation of two-point functions.

In contrast to what happens in the Landau gauge, the two-point cor-
relators are not proportional to the identity in color space because color
invariance is explicitly broken by the presence of the background field.
There remains nevertheless a residual invariance under color rotations
of the form exp{iθ jt j}, with t j the generators of the Cartan sub-algebra.
Under these transformations, the fields transform as [168]

(11.1) ϕκ→ eiκ·θϕκ ,

where we note that neutral modes κ= 0( j) are invariant. It follows that
that two-point correlators are block diagonal, with blocks in the neutral
and charged sectors, but no mixing between the neutral and charged
sectors. Moreover the block in the charged sector is diagonal. The block
in the neutral sector does not need to be diagonal but this question is

202



11.1. PROPAGATORS IN THE LDW GAUGE

irrelevant in the SU(2) case considered here, see [154] for a discussion in
the SU(3) case.

We define the color components of the ghost and gluon propagators as

(11.2) G κλ(K)= δ−κ,λG λ(K) , G κλ
µν (K)= δ−κ,λG λ

µν(K) ,

and those of the corresponding self-energies as,

(11.3) Σκλ(K)= δ−κ,λΣκ(K) , Πκλ
µν(K)= δ−κ,λΠκ

µν(K) .

With these conventions, we have, for the ghost propagator

(11.4) G λ(K)= 1(
Kλ

)2+Σλ(K)
.

As for the gluon propagator, it is transverse with respect to the generalized
momentum: Kλ

µG
λ
µν(K)=G λ

µν(K)Kλ
ν = 0 [154]. At finite temperature, it then

admits the following tensorial decomposition

(11.5) G λ
µν(K)=G λ

T(K)PT
µν(K

λ)+G λ
L (K)PL

µν(K
λ) ,

where PT
µν(K) and PL

µν(K) are the transverse and longitudinal projectors
with respect to the frame of the thermal bath, defined as [we write Kµ =
(ω,k) and k2 = k2]

(11.6) PT
µν(K)= (

1−δµ0
)
(1−δν0)

(
δµν−

KµKν

k2

)
and

(11.7) PL
µν(K)+PT

µν(K)= P⊥
µν(K)= δµν−

KµKν

K2 .

It follows in particular that G λ
µν(K) = G λ

νµ(K). In terms of the projected
self-energies

Πλ
T(K) =

PT
µν(K

λ)Πλ
µν(K)

d−2
,(11.8)

Πλ
L(K) = PL

µν(K
λ)Πλ

µν(K) ,(11.9)
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the scalar components of the gluon propagator read

(11.10) G λ
T/L(K)= 1(

Kλ
)2+m2

0+Πλ
T/L(K)

.

In the present case, one can also show that [154]

G λ(K)=G−λ(−K) ,(11.11)

G λ
L,T(K)=G−λ

L,T(−K) ,(11.12)

and similarly for the self-energies.

11.1.1 Ghost propagator

The ghost self-energy involves only one diagram, see Fig. 11.1. Using
similar reduction techniques as the ones employed for the diagrams con-
tributing to the background effective potential, we arrive at

Σλ(K) = ∑
κ,τ

Cκλτ

[
K2
λ−m2

4m2

(
Jκ

m − Jκ
0
)− ωλ

2m2 (J̃κ
m − J̃κ

0 )

+ K4
λ

4m2 Iκτ00(K)−
(
K2
λ+m2)2

4m2 Iκτm0(K)

]
,(11.13)

where the tensor Cκλτ and the sum-integrals Jκ and J̃κ were introduced
in Chap. 7 and

(11.14) Iκτm1m2
(K)≡

∫ T

Q
Gm1(Q

κ)Gm2(L
τ) ,

with Kλ+Qκ+Lτ = 0. The scalar-type Matsubara sum (11.14) can be easily
evaluated using standard techniques [154].
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K, λK, λ

Q, κ

L, τ

Figure 11.1: One-loop contribution to the ghost self-energy. Momenta and
color charges are all either entering or outgoing at the vertices.

11.1.2 Gluon propagator

As for the gluon self-energy, it requires the evaluation of the diagrams
depicted in Fig. 11.2. Using similar techniques as above we arrive at

Πλ
T/L(K) = ∑

κ,τ
Cλκτ


(
1− K4

λ

2m4

)
{IλT/L}κτ00(K)+

(
1+ K2

λ

m2

)2

{IλT/L}κτm0(K)

−2

d−2+
(
1+ K2

λ

2m2

)2
{IλT/L}κτmm(K)

+ (d−2)Jκ
m + K2

λ+m2

m2

(
Jκ

m − Jκ
0
)− 2ωλ

m2 (J̃κ
m − J̃κ

0 )

+ (K2
λ+m2)2

m2 Iκτm0(K)−K2
λ

(
4+ K2

λ

m2

)
Iκτmm(K)

}
,(11.15)

where we have introduced the following integrals

{IλT}κτm1m2
(K)=

PT
µν(K

λ){Iµν}κτm1m2
(K)

d−2
,(11.16)

{IλL}κτm1m2
(K)= PL

µν(K
λ){Iµν}κτm1m2

(K) ,(11.17)

with

(11.18) {Iµν}κτm1m2
(K)≡

∫
Q

Qκ
µQκ

νGm1(Q
κ)Gm2(L

τ) ,

and Kλ+Qκ+Lτ = 0. Again, these sum-integrals can be evaluated using
standard techniques and final expressions can be found in [154].
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K, λ K, λ

Q, κ

+

K, λ

Q, κ

K, λ

L, τ

+

K, λ

Q, κ

K, λ

L, τ

Figure 11.2: One-loop diagrams for the gluon self-energy.

11.1.3 Discussion

For a thorough discussion of the propagators, we refer to [154]. Here,
we concentrate on the longitudinal susceptibility χ, defined as the zero-
momentum value of the longitudinal propagator, more precisely its neutral
component. We find

χ−1 = m2 − g2

π2

∫ ∞

0
dqRenq−irT q

(
1
2
+ q2

m2

)
+ g2m2

π2

∫ ∞

0
dqRe

nεm,q−irT

εm,q

(
3+6

q2

m2 +
q4

m4

)
.(11.19)

Here, it is understood that r is to be taken at the minimum rmin(T) of
the background effective potential. For a generic r, the same expression
corresponds to the inverse susceptibility computed in the presence of a
source that forces the background r to be self-consistent, the same source
used to define the background dependent Polyakov loop in Chap. 4. The
inverse susceptibility in the Landau gauge is easily obtained by setting
r = 0 in Eq. (11.19).

The temperature dependence of the susceptibility across the phase
transition is shown in Fig. 11.3 for the choice of parameters m = 0.71GeV
and g = 7.5. We also show the corresponding result in the Landau gauge
to quantify the effect of the nontrivial background. We observe that the
susceptibility in the Landau-deWitt gauge presents a cusp at the transi-
tion, in sharp contrast with the results in the Landau gauge. The cusp
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Figure 11.3: Temperature dependence of the susceptibility in the longi-
tudinal and neutral sector of the Landau-deWitt gauge, compared to the
corresponding susceptibility in the Landau gauge. The parameters used
are m = 0.71GeV and g = 7.5 and r(T) is determined from the one-loop
background field effective potential.

reflects the non-analytic behavior of the order parameter rmin(T) across
the transition and is in fact present in all the correlator components. How-
ever, it is only in the neutral longitudinal component where it appears in
such a pronounced manner, turning the slight non-monotonous behavior
in the Landau gauge into a rather identifiable peak.

This rise of the susceptibility as one approaches the deconfinement
transition could be easily studied on the lattice. Indeed, in the low tem-
perature phase, the background is fixed to its confining value r =π. Using
a center transformation, it is then possible to map the Landau-deWitt
gauge-fixing action into the Landau gauge-fixing action, the only differ-
ence with respect to the standard lattice simulations being that the fields
should obey anti-periodic boundary conditions.
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11.2 Back to the effective action Γ[A, Ā]

The previous calculation also sheds considerable light on the use of the
background field method and the relation between the functionals Γ[A, Ā]
and Γ̃[Ā]=Γ[Ā, Ā]. In particular, we argued in Chap. 4 that self-consistent
backgrounds defined by the condition Amin(Ā)= Ā correspond to the abso-
lute minima of Γ̃[Ā]. This result is at the basis of the identification of the
self-consistent backgrounds as order parameters for the deconfinement
transition. It requires however working with an “ideal” gauge-fixing such
that the generating functional W[J, Ā] is convex with respect to J and its
zero-source limit W[0, Ā] is background independent. These two properties
are usually not fulfilled in practice, leading to potential artefacts.

Here, we can investigate this question in the case of the Curci-Ferrari
model at one-loop order. We restrict the effective action Γ[A, Ā] to field
configurations A that are constant, temporal and diagonal, just like the
background Ā. The discussion then boils down to that of a function of two
variables V (r̂, r) with r̂ = gA and r = gĀ. The background field effective
potential is obtained by evaluating V (r̂, r) along the diagonal r̂ = r, V (r)=
V (r, r). Another important identity is

(11.20)
χ−1

g2 = ∂2V
∂r̂2

∣∣∣∣
r̂=r

,

which connects the susceptibility with the existence of self-consistent
backgrounds, the presence of a self-consistent background at rs implying
necessarily χ(rs)> 0.

We shall find that there is some tension in the Curci-Ferrari model
between the expected and the actual characterization of the absolute
minima of V (r) as self-consistent backgrounds such that r̂min(r)= r where
r̂min(r) denotes the absolute minimum of V (r̂, r) with respect to r̂ for a
fixed r. In particular, in some temperature interval above Tc, we shall find
self-consistent backgrounds that are not anymore absolute minima of V (r).
We shall interpret this tension as resulting from the violation of the basic
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assumptions referred to above. Reverting the argument, we shall then
conjecture a certain behavior of the susceptibility at the deconfinement
transition in the case where the basic assumptions are fulfilled.

11.2.1 One-loop expression for V (r̂, r)

To obtain V (r̂, r) at one-loop order, we expand the classical action (6.8)
to quadratic order around a generic gluon configuration: A → A+a. In
Fourier space, the quadratic part in the ghost sector reads

(11.21)
∫ T

Q
c̄−κ(−Q)Qκ · Q̂κcκ(Q) ,

with Qκ =Q+κr n and Q̂κ =Q+κr̂ n. Therefore

(11.22) δVgh(r̂, r)=−∑
κ

∫ T

Q
ln

[
Qκ · Q̂κ

]
.

In the gluonic sector, the quadratic part reads

(11.23)
∫ T

Q

{
1
2

aκµ(Q)∗(Q̂2
κP⊥

µν(Q̂κ)+m2
0δµν)aκν(Q)+hκ(Q)∗Qκ

µaκµ(Q)
}

.

The corresponding determinant can be evaluated using Schur’s formula.
We find (Q̂2

κ+m2
0)d−2 (

(Qκ · Q̂κ)2+m2
0Q2

κ

)
. It follows that

(11.24) δVgl(r̂, r)= d−2
2

∑
κ

∫ T

Q
ln

[
Q̂2
κ+m2

0
]+1

2

∑
κ

∫ T

Q
ln

[
(Qκ·Q̂κ)2+m2

0Q2
κ

]
.

Putting all one-loop contributions together and adding the tree-level con-
tribution, we arrive at

V (r̂, r) = m2
0

2g2 (r̂− r)2+ d−2
2

∑
κ

∫ T

Q
ln

[
Q̂2
κ+m2]

+ 1
2

∑
κ

∫ T

Q
ln

[
1+ m2Q2

κ

(Qκ · Q̂κ)2

]
,(11.25)
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where we have replaced the bare mass m0 by the renormalized mass m
in the one-loop terms. We check that for r̂ = r, we recover the one-loop
expression for the background field effective potential

(11.26) V (r)= d−1
2

∑
κ

∫ T

Q
ln

[
Q2
κ+m2]− 1

2

∑
κ

∫ T

Q
lnQ2

κ .

Using Q̂κ =Qκ+κ(r̂− r)n and separating the neutral and charge modes,
one arrives at

V (r̂, r) = m2
0

2g2 (r̂− r)2

+ d−1
2

∫ T

Q
ln

[
Q2+m2]− 1

2

∫ T

Q
lnQ2

+ (d−2)
∫ T

Q
ln

[
ω̂2

++ q2+m2]
+

∫ T

Q
ln

(
1+ m2Q2

+
(Q2++ (r̂− r)ω+)2

)
.(11.27)

If m0 = m = 0, V (r̂, r) does not depend on r and is 2π-periodic in r̂. In the
massive case instead, V (r̂, r) is not defined for all values of r̂ et r. The
reason is the term ln

[
Q2

++ (r̂− r)(ω+ r)
]

whose argument writes

(
ω+ r̂+ r

2

)2

+ q2−
(

r̂− r
2

)2

.(11.28)

If 0< q2 < (r̂− r)2/4, the argument vanishes for real frequencies

ω=− r̂+ r
2

±
√(

r̂− r
2

)2

− q2 .(11.29)

As q2 explores the interval [0, (r̂−r)2/4], these frequencies span the interval
[−Max(r̂, r),−Min(r̂, r)]. This interval should not contain any Matsubara
frequency from which we deduce that for r ∈ [2πnT,2π(n+ 1)T], then
r̂ ∈ [2πnT,2π(n+1)T].
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11.2.2 Numerical analysis

The evaluation of the last Matsubara sum in Eq. (11.27) requires solving
a quartic polynomial in the frequency which is cumbersome. Instead, we
perform the q-integral analytically and the Matsubara sum numerically.
Before doing so, we need to make sure that the considered sum-integral
is UV finite. To this purpose we add and subtract the leading terms
contributing in the UV, which we obtain conveniently by expanding in
powers of r̂− r:

ln
(
1+ m2Q2

+
(Q2++ (r̂− r)ω+)2

)
= ln

(
1+ m2

Q2+

)
− 2m2ω+

Q2+(Q2++m2)
(r̂− r)

+ m2ω2
+(m2+3Q2

+)
Q4+(Q2++m2)2

(r̂− r)2 .(11.30)

It is easily checked that the term in (r̂ − r)2, when added to the corre-
sponding ones from the first and third lines in Eq. (11.27), reproduce
χ−1/(2g2), as it should from (11.20). Moreover the terms in r̂− r can be
easily expressed in terms of the sum-integrals J̃. We are then left with the
numerical evaluation of a convergent Matsubara sum. We have checked
that only the first few terms in the sum are needed and that neglecting
the sum does not change qualitatively the results, which we present in
Fig. 11.4 where identify the self-consistent backgrounds as the zeros of
the function r̂min(r)− r.

We find that, as long as T < Tc, and aside from the spurious Lan-
dau solution r = 0, there is only one self-consistent background at r = π

corresponding to the absolute minimum of V (r). In some range of tem-
peratures Tc < T < T̃ above the transition, r =π remains self-consistent,
even though it is not anymore an absolute minimum of V (r). Only above
T̃ does r =π ceases to be self-consistent. The temperature T̃ is such that
χ−1(π) = 0. At this temperature, a second order transition occurs in the
direction of r̂ at r = π fixed and turns r̂ = π into a maximum, explaining
why r =π ceases to be self-consistent.
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Figure 11.4: r̂min(r)− r as a function of r, for increasing values of T. The
blue (dashed-dotted), orange (dashed) and red (plaine) curves correspond
respectively to temperatures below, at and above Tc. The dotted (red) lines
correspond either to maxima or local minima as a function of r̂ for fixed
r. These additional extrema appear above T̃, the temperature at which a
second order transition occurs in V (r̂, r =πT).

11.2.3 Conjecture

It is tempting to interpret the previous tension between self-consistent
backgrounds and absolute minima of V (r) as originating from our approx-
imate implementation of the gauge-fixing which does not respect the basic
requirements for the generating functional W[J, Ā]. As such, it should
not be specific to the Curci-Ferrari approach but be also present in other
practical approaches that violate these basic assumptions.1

As negative as it could seem, this result can be turned into a conjec-
ture for the actual behavior of the susceptibility in any gauge-fixing that

1Let us mention however that this does not completely hinder the analysis of the deconfine-
ment transition since there is a range of temperatures where the identification of self-consistent
backgrounds and absolute minima of V (r) holds.
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respects the above mentioned properties, such as the lattice gauge-fixing.
Indeed, in any such gauge-fixing the two temperatures Tc and T̃ should
coincide. One natural scenario for this to happen is that the continous
phase transition in the direction r̂ for r = πT occurs exactly at T̃ = Tc.
In that case, not only would the curvature of V (r) at r = πT vanish, but
also the susceptibility χ. Our conjecture is then that, the Landau-deWitt
gauge susceptibility computed on the lattice should not present a peak as
in Fig. 11.3, but rather diverge at Tc.

That two quantities, V ′′(rmin) and χ−1(rmin), vanish simultanously at
Tc seems highly improbable a priori. However, as we now discuss this
scenario becomes viable if the basic requirements are fulfilled. The point
is that, from the definition of r̂min(r) and the background independence of
the free energy V (r̂min(r), r), follow the two equations

(11.31) 0= ∂V
∂r̂

∣∣∣∣
r̂min(r),r

and 0= ∂V
∂r

∣∣∣∣
r̂min(r),r

.

Taking a derivative with respect to r, we obtain the system

0 = ∂2V
∂r̂2

∣∣∣∣
r̂min(r),r

r̂′min(r)+ ∂2V
∂r∂r̂

∣∣∣∣
r̂min(r),r

,(11.32)

0 = ∂2V
∂r∂r̂

∣∣∣∣
r̂min(r),r

r̂′min(r)+ ∂2V
∂r2

∣∣∣∣
r̂min(r),r

,(11.33)

which expresses that the potential is locally flat in the direction of the
vector (r̂′min(r),1), or, in other words, that the Hessian has a zero-mode in
this direction. Suppose now that there exists a temperature T̂ at which
the second eigenvalue vanishes as well. In this case, the Hessian would be
identically zero at (r̂, r)= (r̂min(r), r), and for a self consistent background
r = r̂min(r), we would have

(11.34) V ′′(r)= ∂2V
∂r̂2

∣∣∣∣
r,r

+2
∂2V
∂r̂∂r

∣∣∣∣
r,r

+ ∂2V
∂r2

∣∣∣∣
r,r

= 0 ,

in addition to χ−1(r) = 0. We mention that there is still the possibility
that V ′′(r) vanishes not simultanously to χ−1(r) but to r̂′min(r)−1 (as in the
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Curci-Ferrari model). Indeed, using the equations above we arrive at

(11.35) V ′′(r)= (1− r̂′min(r))2 ∂
2V
∂r̂2

∣∣∣∣
r,r

.

In this scenario however r =πT could be self-consistent while not being
an absolute minimum of V (r).2

For completeness, we mention that somewhat similar identities can
be obtained in the Curci-Ferrari model, although they do not follow from
the background independence of the partition function. In this case, the
second equation in (11.31) is replaced by3

(11.36)
m2

0

g2 (r− r̂min(r))= ∂V
∂r

∣∣∣∣
r̂min(r),r

,

which implies

m2
0

g2 (1− r̂′min(r)) = ∂2V
∂r∂r̂

∣∣∣∣
r̂min(r),r

r̂′min(r)+ ∂2V
∂r2

∣∣∣∣
r̂min(r),r

,(11.37)

to replace (11.33). It follows that

(11.38) V ′′(r)= (1− r̂′min(r))2 ∂
2V
∂r̂2

∣∣∣∣
r,r

+ m2
0

g2 (1− r̂′min(r)) ,

which, we note, allows again for a simultanous vanishing of V ′′(r) and
r̂′min(r)− 1, but not of V ′′(r) and χ−1(r) (unless there is a simultanous
vanishing of three quantities).

2Unless something like a first order transition occurs in the direction of r̂ at r =πT, but this
is not very natural and poses certain problems of continuity of the self-consistent background,
which we do not expect in the SU(2) case.

3It can also be checked that the one-loop expression for V (r̂, r) is such that ∂V /∂r|r̂,r = 0 for any
r, from which it follows that V ′(r)= ∂V /∂r̂|r̂=r,r and, therefore, V ′′(r)= ∂2V /∂r̂2|r̂=r,r+∂2V /∂r̂∂r|r̂,r.
Combining this identity with (11.32) which is still valid, we arrive, for a self-consistent background
r, at V ′′(r) = (1− r̂′min(r))∂2V /∂r̂2|r̂=r,r. This formula is exact at one-loop order. It is seen to
be compatible with (11.38) after expanding to leading order in g2, with 1− r̂′min(r) ∼ g2 and
g2∂2V /∂r̂2|r̂=r,r = m2

0 +O (g2).
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12
CONCLUSIONS AND OUTLOOK

Tackling the most intriguing properties of Quantum Chromodynam-
ics and Yang-Mills theories in the continuum requires one to go
beyond the standard (but incomplete) Faddeev-Popov gauge-fixing

procedure which, although very efficient at high energies, is known not to
be valid at low energies. The so-called Curci-Ferrari model has received a
certain attention lately as a possible candidate for such an extension in
the Landau gauge. Part of that attention is rooted in the impressive agree-
ment between one-loop vaccum correlation functions computed within
the model, and the most accurate determinations of the Landau gauge
correlation functions on the lattice. We know now that this agreement ex-
tends and even improves at two-loop accuracy. Moreover, the Curci-Ferrari
running coupling needed in these comparisons remains moderate over the
whole range of scales, as opposed to the running coupling in the standard
Faddeev-Popov approaches which diverges at a finite scale. These two
surprising results open the exciting possibility to tackle some of the low
energy properties from perturbative means.

Of course, ideally one should aim at generating the Curci-Ferrari model
from first principles, starting from the QCD/YM actions and applying
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a bona fide gauge-fixing procedure. A clear-cut such mechanism is not
known at present in the Landau gauge but various lines of investigation
are being pursued. In the meantime, a more pragmatic approach is to test
the perturbative predictions of the model further and confront them to
existing results, in particular those from the lattice simulations. In this
manuscript, we have reviewed some of these predictions with regard to
the finite temperature properties of the QCD/YM system, in particular
the confinement-deconfinement transition.

We have first reviewed (in chapter 2) the results for the YM correlators
at finite temperature, as computed from the Curci-Ferrari model, with
an emphasis on the so-called longitudinal gluon propagator. The latter
was indeed foreseen for some time as providing a direct probe onto the
deconfinement transition. Although the Curci-Ferrari model describes
qualitatively well the lattice results for the various correlators, it fails in
describing the behavior of the zero-momentum longitudinal propagator
(inverse susceptibility). However, this negative result does not necessarily
signal a failure of the model because the same limitations are observed
within other approaches that do not rely on the Curci-Ferrari model.
Rather it has been argued that the limitations originate in the use of the
Landau gauge which fails in capturing the order parameter associated
to the deconfinement transition. It is known that a more appropriate
gauge at finite temperature is the so-called Landau-deWitt gauge, the
background generalization of the Landau gauge.

We have devoted chapters 3, 4 and 5 to a thorough review of the
rationale behind the use of background field gauges at finite temperature
and why they are indeed the good gauges to discuss the deconfinement
transition. Although the recipe for using the background field method
at finite temperature is a known result, we have tried to give a self-
contained and original derivation, with special emphasis and discussion of
the underlying assumptions that are usually left implicit. The relevance of
this discussion is that some of these assumptions are usually violated by
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practical implementations of the gauge-fixing (including the Curci-Ferrari
modelling), with a potential impact on the interpretation of the results.
Some of these assumptions can also be violated by the physical set-up, as
in the presence of quarks at finite density. The corresponding impact on
the background field methods has been discussed in chapter 9.

Based on this knowledge, we have extended the Curci-Ferrari model in
the presence of a background, which needs to be seen as the finite temper-
ature counterpart of the standard Curci-Ferrari model in the vacuum. We
have investigated various perturbative predictions of this model with re-
gard to the deconfinement transition. In particular, in chapter 6, we have
analyzed the one-loop predictions in the YM case. We find that, already
at one-loop order, the model predicts a deconfinement transition, with
transition temperatures in reasonably good agreement with the results
of other approaches, including lattice. Chapter 7 is devoted to testing the
convergence properties of the perturbative expansion within the model.
We find in particular improved values for the transition temperatures
that get closer to the values determined on the lattice. Chapter 8 further
deepens the connection between center symmetry and the deconfinement
transition by analysing the symmetry breaking patter in the SU(4) case.

In chapter 10, we have extended our analysis in the presence of quarks,
in the formal but interesting regime where all quarks are considered heavy.
We find that most of the known qualitative and quantitative features in
this case can be reproduced by using our model approach at one-loop order.
Higher order corrections have also been investigated in this case and
shown to improve the results.1

In chapter 11, using the accumulated knowledge, we have revisited the
question of whether the gluon susceptibility can probe the deconfinement
transition. In particular, we find that, as compared to what occurred in the
Landau gauge, the gluon susceptibility the Landau-deWitt gauge displays

1We decided not to discuss those results in detail since they will be part of the thesis defended
by my PhD student in Fall 2019.
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a characteristic peaked behavior at the deconfinement transition, which
could be tested against lattice simulations. In fact, using the general
results derived in chapter 4, we conjecture that the lattice susceptibility
should diverge at the transition, the peak observed in the Curci-Ferrari
model reflecting the distance from a true bona fide gauge fixing.

We have also discussed various open questions which concern not only
the Curci-Ferrari model but other continuum approaches. In particular, it
seems that a common mechanism for confinement in all these approaches
is the ghost dominance observed at low temperatures. At first sight, a
ghost dominated phase at low temperature seems worrisome for ghost
degrees of freedom are unphysical and come with negative thermal dis-
tribution functions, leading potentially to inconsistent thermodynamics.
We have shown, however, that the presence of a surrounding confining
background leads to a transmutation of some of these negative distri-
bution functions into positive distribution functions, with a net positive
contribution to, say the entropy density at low temperatures. The same
mechanism leads to a slightly negative entropy density right below the
deconfinement transition at one-loop order. However, we have shown that
two-loop corrections cure this inconsistent behavior.

A problem that found no solution so far is that, in most continuum
approaches in the Landau/Landau-deWitt gauges, there remain massless
degrees of freedom at low temperature that contribute polynomially to the
thermodynamical observables in this limit, at odds with the observations
made on the lattice. This is certainly a future challenge for continuum
approaches that could relate to the use of more exotic background con-
figurations that the ones used in this work, to the way we envisage and
implement gauge-fixing, or to the ability of the approach to generate the
low-lying bound states, in particular glueball states in the case of YM
theory. All these aspects are currently under investigation.

These problems aside, the natural question that comes next is whether
the applicability of the perturbative Curci-Ferrari model (be it in the
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Landau gauge in the vacuum or in the Landau-deWitt gauge at finite
temperature) extends to the physical QCD case, that is in the presence
of light quarks, in which case the relevant symmetry is chiral symmetry
and its spontanous breaking. We know already that the answer to this
question is negative, the reason being that, in the presence of light quarks,
the strength of the interaction between quarks and gluons in the infrared
is two to three times larger than that in the YM sector of the theory, pre-
venting a full perturbative analysis. One can however use the knowledge
that the Curci-Ferrari model in the YM sector is essentially perturbative
to construct a systematic expansion for the Curci-Ferrari model in the
QCD case, controlled by two small parameters, the YM coupling and the
inverse of the number of colors. This strategy has already been used in
the vacuum where it has been shown to capture the physics of chiral
symmetry breaking. It remains to be seen whether it permits to capture
hadronic observables. In particular, in a current investigation we aim at
the determination of the pion decay constant from an ab-initio calculation
within the Curci-Ferrari model. A first investigation within this double
expansion scheme has also been done at finite temperature and finite
chemical potential [88]. In particular, at leading order in the double ex-
pansion, we find already a critical end-point in the phase diagram, in the
same ballpark as certain low energy phenomenological approaches.2

2I refer to the thesis of Jan Maelger for more details.
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BRST TRANSFORMATIONS

UNDER THE FUNCTIONAL INTEGRAL

A.1 A simple case as a toy example

Let us first illustrate the problem and its solution using the case of a
one-dimensional numerical integral

I =
∫ b

a
dx f (x) ,(A.1)

defined over a certain interval [a,b] of the real axis.
Let us embbed the real axis in a Grassmanian algebra generated by 1,

θ et θ̄ and let us consider a change of variables of the form

x =ψ(x′)+ θ̄θϕ(x′) ,(A.2)

where ψ and ϕ denote two numerical functions, with ψ invertible. These
functions can be extended over the Grassmanian algebra using a Taylor
expansion. In particular, we find that

x′ =ψ−1(x)− θ̄θϕ(x′)
dψ−1

dx

=ψ−1(x)− θ̄θϕ(ψ−1(x))
dψ−1

dx
.(A.3)
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This shows that, when ϕ 6= 0, the new variable x′ cannot be numerical and
it is a priori not clear how the change of variables should be applied under
the integral.

We now argue that, if the following condition is satisfied

ϕ(ψ−1(b)) f (b)−ϕ(ψ−1(a)) f (a)= 0 ,(A.4)

one can proceed as if x′ were real and write

I =
∫ ψ−1(b)

ψ−1(a)
dx′

(
dψ
dx′ + θ̄θ

dϕ
dx′

)
f (ψ(x′)+ θ̄θϕ(x′)) .(A.5)

To see this, let us start from the announced result and write∫ ψ−1(b)

ψ−1(a)
dx′

(
dψ
dx′ + θ̄θ

dϕ
dx′

)
f (ψ(x′)+ θ̄θϕ(x′))

=
∫ ψ−1(b)

ψ−1(a)
dx′

(
dψ
dx′ + θ̄θ

dϕ
dx′

)(
f (ψ(x′))+ θ̄θϕ(x′)

d f
dx

∣∣∣∣
x=ψ(x′)

)

=
∫ ψ−1(b)

ψ−1(a)
dx′ dψ

dx′ f (ψ(x′))+ θ̄θ
∫ ψ−1(b)

ψ−1(a)
dx′ d

dx′

(
ϕ(x′) f (ψ(x′))

)
=

∫ b

a
dx f (x) ,(A.6)

where we have used the condition (A.4).

A.2 The case of a BRST transformations

When a BRST transformation ϕ=ϕ′+ θ̄sϕ′ is applied under the functional
integral, it is usually assumed that (‘sdet’ stands for the superdetermi-
nant) ∫

DϕI [ϕ]=
∫

Dϕ′sdet
(
1+ δθ̄sϕ′

δϕ′

)
I [ϕ′+ θ̄sϕ′] ,(A.7)

where the fields that are originally numerical are assumed to remain nu-
merical, despite the fact that, for such fields, ϕ−ϕ′ = θ̄sϕ is non numerical.
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Let us now analyze under which conditions, the above identity applies.
To this purpose, we shall start from the RHS of and try to go back to the
LHS.

One has (qm = 0 for any bosonic omponent ϕm and qm = 1 for any
fermionic component)∫

Dϕ′sdet
(
1+ δθ̄sϕ′

δϕ′

)
I [ϕ′+ θ̄sϕ′]

=
∫

Dϕ′

1+
∫

x
(−1)qm

δθ̄sϕ′
m(x)

δϕ′
m(x)︸ ︷︷ ︸

supertrace


(
I [ϕ′]+

∫
x
θ̄sϕ′

m(x)
δI

δϕ′
m(x)

)

=
∫

Dϕ′I [ϕ′]+
∫

Dϕ′
(∫

x
(−1)qm

δθ̄sϕ′
m(x)

δϕ′
m(x)

I [ϕ′]+
∫

x
θ̄sϕ′

m(x)
δI

δϕ′
m(x)

)
=

∫
Dϕ′I [ϕ′]+ θ̄

∫
Dϕ′

∫
x

δ

δϕ′
m(x)

(
sϕ′

m(x)I [ϕ′]
)
.

(A.8)

The identity (A.7) is then valid if

0=
∫

Dϕ′
∫

x

δ

δϕ′
m(x)

(
sϕ′

m(x)I [ϕ′]
)
,(A.9)

which states the vanishing of the volume integral of a superdivergence
(over a space made of numerical and Grassmanian fields).

Using Stoke’s theorem, we should be able to relate this to the flux of a
certain current through the boundary, which would be the generalization
of (A.4). To see how this works in the case where the volume contains
Grassmanian directions, let us consider a simple exemple with four vari-
ables x, y,θ, θ̄. The integral over the superspace of the superdivergence of
four component field writes∫

dxdydθdθ̄
(
∂ fx

∂x
+ ∂ f y

∂y
+ ∂ fθ
∂θ

+ ∂ fθ̄
∂θ̄

)
=

∫
dxdy

(
∂3 fx

∂x∂θ∂θ̄
+ ∂3 f y

∂y∂θ∂θ̄

)
,

(A.10)
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where we used
∫

dθ∂/∂θ = 0. We obtain a standard volume integral of the
divergence of a current field with components ∂2 fx/∂θ∂θ̄ et ∂2 f y/∂θ∂θ̄. The
final result is then the flux of such vector field through the boundary of
the standard volume.

Going back to the case of Yang-Mills theory, in Chap. 2, we applied a
BRST change of variables to the integral

(A.11)
∫

D[A, c, c̄,h]O [A] c̄
δF[A]a(x)

δλ
e−SFP[A,c,c̄,h] .

In order for this change of variables to be justified, we need to show the
flux of

O [A]
δF[A]a(x)

δλ

∫
D[c, c̄]Dµc c̄ e−SFP[A,c,c̄,h](A.12)

vanishes through the boundary of the integration domain for the gauge-
field. In fact this current is exponentially suppressed at the boundary due
to the factor e−SY M[A].1

1There are no flat directions due to the gauge-fixing.
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THE SU(N) LIE ALGEBRA

The special unitary group SU(N) is the group of complex N ×N unitary
matrices with unit determinant. The corresponding su(N) Lie algebra is
obtained by considering infinitesimal elements U =1+X and imposing the
two conditions UU† =1 and detU = 1. One finds X + X † = 0 and tr X = 0,
which means that su(N) is the space of traceless anti-hermitian matrices.
Its dimension is N2 −1 and a commonly used basis is provided by the
matrices iH j (1≤ j ≤ N −1), iX j j′ and iY j j′ (1≤ j < j′ ≤ N), with

(B.1) H j ≡ 1√
2 j( j+1)


1 j

− j
0N−1− j

 ,

and

X j j′
kk′ = 1

2
(
δ jkδ j′k′ +δ jk′δ j′k

)
,(B.2)

Y j j′
kk′ = − i

2
(
δ jkδ j′k′ −δ jk′δ j′k

)
.(B.3)

With this choice, the trace of the square of any basis element is −1/2 and
the trace of the product of two distinct basis elements is 0. In what follows,
we review various important notions related to the su(N) algebra.
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B.1 Defining weights of su(N)

The above choice of basis shows explicitly that some of the generators of
the su(N) algebra can be diagonalized simultanously. This can be rewrit-
ten formally as

(B.4) H j|ρ(k)〉 = ρ(k)
j |ρ(k)〉 , ∀1≤ k ≤ N , ∀1≤ j ≤ N −1 ,

where the N kets |ρ(k)〉 define a basis of eigenstates in the space of the
defining representation of the algebra. For each eigenstate |ρ(k)〉, the vari-
ous eigenvalues ρ(k)

j are conveniently gathered into a (N −1)-dimensional
real vector ρ(k) that also serves labelling the eigenstate. The ρ(k) are re-
ferred to as the weights of the defining representation or defining weights
for short. We mention that these vectors sum up to one since

(B.5)
N∑

k=1
ρ(k)

j =
N∑

k=1

(
H j

)
kk = trH j = 0 .

Similarly,

(B.6)
N∑

k=1
ρ(k)

j ρ(k)
j′ = trH j H j′ = 1

2
δ j j′ ,

from our normalization convention.
It is easy to compute the norms of the defining weights and also the

angles between various such weights. To this purpose we note that

(B.7) ρ(k)
j = (H j)kk = 1√

2 j( j+1)
×


0 , for k > j+1
− j , for k = j+1
1 , for k ≤ j

and write

ρ(k) ·ρ(k) =
k−1∑
j=1

(
H j

)2
kk +

N−1∑
j=k

(
H j

)2
kk(B.8)

= (k−1)2

2(k−1)k
+

N−1∑
j=k

1
2 j( j+1)

= 1
2

(
1− 1

N

)
.
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Similarly, for k < k′,

ρ(k) ·ρ(k′) =
k−1∑
j=1

(
H j

)
kk

(
H j

)
k′k′(B.9)

+
k′−1∑
j=k

(
H j

)
kk

(
H j

)
k′k′

+
N−1∑
j=k′

(
H j

)
kk

(
H j

)
k′k′

= − (k′−1)
2(k′−1)k′ +

N−1∑
j=k′

1
2 j( j+1)

=− 1
2N

.

The defining weights of the su(N) algebra are thus N equal norm vectors
of RN−1 such that the angles between any two of these vectors are also all
equal.

Finally, it is easily seen that, except for the full set, any subset of
defining weights is linearly independent. To prove this, we choose, without
loss of generality, the first n weights ρ(1), . . . , ρ(n) and evaluate the Gram
matrix

(B.10) Gn ≡
(
ρ(k) ·ρ(l))

(k,l) =
1
2

(
1n − 1n

N

)
,

where 1n denotes the n×n matrix with all components equal to 1. The
chosen set of weights is linearly independent iff the Gram matrix is
invertible. We then just need to evaluate the determinant of the Gram
matrix as

lndet(2Gn) = tr ln(2Gn)=−tr
∞∑

k=1

1
k

(
1n

N

)k

(B.11)

= −
∞∑

k=1

1
k

( n
N

)k
= ln

(
1− n

N

)
,

where we have used that 1k
n = nk−11n for k ≥ 1. Then, det(2Gn)= 1−n/N,

and, as announced, except for the full set (n = N), any subset of defining
weights is linearly independent. In particular, any set of N −1 defining
weights forms a basis of RN−1.
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B.2 Roots of su(N)

The notion of weight is not restricted to the defining representation but
applies in fact to any representation of the algebra, in particular to the
adjoint representation X 7→ adX ≡ [X , _]. Since [adH j ,adHk] = ad[H j,Hk] =
0, it is again meaningfull to try to diagonalize simultanously all the
generators adH j . In fact, we know already N −1 eigenstates since

(B.12) adH j Hk = [H j,Hk]= 0 .

The corresponding weights are all equal to the nul vector of RN−1. We are
thus left with determining the remaining eigenstates Eα such that

(B.13) [H j,Eα]=α jEα .

The non-zero weights α are referred to as the roots of the algebra and the
diagonalizing basis {iH j, iEα} is known as a Cartan-Weyl basis.

To find the elements Eα, consider the matrices Z j j′
± ≡ X j j′ ± iY j j′, with

j < j′. They are such that(
Z+

) j j′
kk′ = δ jkδ j′k′ and

(
Z−

) j j′
kk′ = δ jk′δ j′k .(B.14)

Therefore, (
H j

)
αβ

(
Z+

)kk′
βγ

− (
Z+

)kk′
αβ

(
H j

)
βγ

(B.15)

= [(
H j

)
αα

− (
H j

)
γγ

](
Z+

)kk′
αγ

= [(
H j

)
kk −

(
H j

)
k′k′

](
Z+

)kk′
αγ

,

and (
H j

)
αβ

(
Z−

)kk′
βγ

− (
Z−

)kk′
αβ

(
H j

)
βγ

(B.16)

= [(
H j

)
αα

− (
H j

)
γγ

](
Z−

)kk′
αγ

= [(
H j

)
k′k′ −

(
H j

)
kk

](
Z−

)kk′
αγ

.
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This shows that the Zkk′
± (with k < k′) are nothing but the sought after Eα

and the corresponding roots appear as differences of the defining weights
α(kk′) = ρ(k)−ρ(k′).1

We have

(B.17) α(kk′) ·α(kk′) = (ρ(k))2+ (ρ(k′))2−2ρ(k) ·ρ(k′) = 1− 1
N

+ 1
N

= 1 ,

where we have used that k 6= k′. This means that the roots are all of norm
unity. Scalar products between roots can be computed in a similar way,
but, contrary to the defining weights, they depend on the chosen pair of
roots. Finally, we have

(B.18)
∑

k 6=k′
α(kk′)

j α(kk′)
j′ = ∑

k,k′

(
ρ(k)

j ρ(k)
j′ −2ρ(k)

j ρ(k′)
j′ +ρ(k′)

j ρ(k′)
j′

)
= Nδ j j′ ,

which is nothing but the Casimir of the adjoint representation.

B.3 Relations between roots and weights

Next, we consider the scalar product between a defining weight ρ(k) and a
root α(k′k′′), with k′ < k′′. If k = k′, we have

(B.19) ρ(k) ·α(k′k′′) = (ρ(k))2−ρ(k) ·ρ(k′′) = 1
2

(
1− 1

N

)
+ 1

2N
= 1

2
,

while, if k 6= k′ and k 6= k′′, we have

(B.20) ρ(k) ·α(k′k′′) = ρ(k) ·ρ(k′)−ρ(k) ·ρ(k′′) = 0 .

Consider then N − 1 of the defining weights. Without loss of general-
ity, we can choose ρ(1), . . . ,ρ(N−1). As we have seen above, they form a

1This comes as no surprise since the adjoint representation is found when decomposing
the the tensor product of the defining representation and the corresponding contragredient
representation, after symmetrization and elimination of the singlet trace. Since the weights of
the contragredient representation are opposite to the weights of the defining representation, it is
no doubt that the roots appear as differences of the defining weights.
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basis of the space and generate the remaining weight ρ(N) as a linear
combination with integer coefficients. Next, consider the N − 1 roots
α(1) ≡α1N , . . . ,αN−1 ≡α(N−1)N which also generate the other roots as linear
combinations with integer coefficients. From the above equations, it is
easily seen that 4πα(1), . . . , 4πα(N−1) is a basis dual to ρ(1), . . . ,ρ(N−1) in the
sense defined in Chapter 5. Similarly 4πρ(1), . . . ,4πρ(N−1) is a basis dual to
4πα(1), . . . ,4πα(N−1).

These remarks are very useful because, as we have seen in Chapter 5,
generic (resp. periodic) winding transformations are generated by vectors
that generate a lattice dual to the one generated by the roots (resp. by
the defining weights). Equivalently, we can now say that, up to a factor
4π, generic (resp. periodic) winding transformations are generated by
the defining weights (resp. by the roots). Moreover, the center element
associated to a given weight 4πρ(k) is e4πiρ(k)·ρ(l) = e−i 2π

N and depends neither
on l nor on k. It can be convenient instead to find a generating set of
winding transformations that covers all the center elements. This set is
provided by 4πρ(1), 4π(ρ(1)+ρ(2)), . . . ,4π(ρ(1)+·· ·ρ(N−1))=−4πρ(N).

B.4 Complexified algebra and Killing form

We mention that the eigenstates iEα do not belong to the original (real)
Lie algebra, but rather to the complexified algebra. The reason why the
complexification is needed is that the operators adiH j are not symmetric
with respect to the Killing form (X1; X2) 7→ −2tr X1X2, and thus not nec-
essarily diagonalizable over the original algebra. They become however
anti-hermitian with respect to an extended version of the Killing form,
and therefore diagonalizable over the complexified algebra.

To see this in more details, consider first the Killing form over the
original Lie algebra. First, because

(B.21) (X ; X )= 2tr X X † = 2
∑
a
|Xa|2 ,
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the Killing form defines a non-degenerate, positive definite symmetric
form over the original Lie algebra. Moreover, it obeys the cyclicity property

(B.22) (X1;adX2 X3)= (X2;adX3 X1)= (X3;adX1 X2) ,

which implies in particular (X1;adX2 X3)=−(adX2 X1; X3). This means that
the operator adX2 is anti-symmetric, so not diagonalizable a priori over
the original Lie algebra.

To turn this antisymmetric operator into an anti-hermitian one, we
now define the complexified algebra as the space of pairs Z = (X ,Y ), which
we denote also as Z = X + IY , equiped with the extended Lie bracket
[X1+IY1, X2+IY2]≡ [X1, X2]−[Y1,Y2]+I([X1,Y2]+[Y1, X2]). We also define
a complex conjugation over the complexified algebra as X + IY ≡ X −
IY . This complex conjugation should not be mistaken with the complex
conjuation of matrices. We have in fact Z̄ =−Z†. Finally we define

(B.23) 〈Z1; Z2〉 ≡−2tr Z̄1 Z2 = 〈Z̄2; Z̄1〉 = 〈Z2; Z1〉∗ ,

which extends the Killing form over the complexified algebra (since X̄ = X
for elements of the original algeba). We have

(B.24) 〈Z; Z〉 = (X ; X )+ (Y ;Y )

so the extended Killing form is now hermitian positive definite. Moreover

(B.25) 〈X1;adX2 X3〉 = 〈X̄2;adX3 X̄1〉 = 〈X̄3;adX̄1
X2〉 .

For an element X2 = X̄2 of the original Lie algebra, such as iH j, this
implies in particular 〈X1;adX2 X3〉 =−〈adX2 X1; X3〉, which means that the
operator adX2 is anti-hermitian and thus diagonalizable, with imaginary
eigenvalues.

This is why the adH j can be diagonalized simultanously and the
roots are real vectors. Moreover, by conjugating [H j,Eα] = α jEα, we
find [H j, Ēα] = −α jĒα which shows why roots come by pairs and tells

231



APPENDIX B. THE SU(N) LIE ALGEBRA

us that, with an appropriate choice of normalisation we have Ēα =−E†
α =

−E−α (this is preciely the choice made above for the Zkk′
± ). Finally, this

shows, that the diagonalization basis can be chosen such that 〈iH j; iHk〉 =
δ jk, 〈iH j, iEα〉 = 0 and 〈Eα;Eβ〉 = δαβ, which implies (iH j; iHk) = δ jk,
(iH j, iEα〉) = 0 and (iEα; iEβ) = δ−α,β, owing to H̄ j = −H j and our phase
convention between Ēα and E−α.

We mention finally that the components of an element X of the original
algebra in the Cartan-Weyl basis are not necessarily real. However since
H̄ j = −H j and Ēα = −E−α, we find X = X̄ = i(X∗

j H j + X∗
αE−α) and, thus,

X∗
j = X j and X∗

α = X−α. This conclusion can also be reached using the
hermitian conjugation which is nothing but Z† =−Z̄.
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HÖLDER INEQUALITY AND CONVEXITY

Consider two positive real numbers p and q such 1/p+1/q = 1 and two
functions f and g such that f p et gq are integrable. Then, the function
f g is also integrable and we have the following inequality :

(C.1)
∫

| f g| ≤
(∫

| f |p
)1/p (∫

|g|q
)1/q

,

known as Hölder’s inequality. The latter can be slightly generalized as
follows. Consider a positive function h and assume that hf p and hgq are
integrable. We can then apply the previous inequality to the functions
h1/p f et h1/q g. It follows that hf g is integrable (this uses the assumption
1/p+1/q = 1) and

(C.2)
∫

h| f g| ≤
(∫

h| f |p
)1/p (∫

h|g|q
)1/q

.

We assume in what follows that this result applies to functional integrals
with positive measures D+A:

(C.3)
∫

D+A
∣∣ f [A] g[A]

∣∣≤ (∫
D+A

∣∣ f [A]
∣∣p

)1/p (∫
D+A

∣∣g[A]
∣∣q

)1/q

.
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Let us next consider

(C.4) eW[J;Ā] ≡
∫

Dgf [A; Ā] e−SY M[A]+J·A ,

where we assume Dgf [A; Ā] to be positive and we have introduced the
short-hand notation J ·A ≡ ∫

ddx (Jµ; Aµ). Given two positive real numbers
α1 and α2 such that α1+α2 = 1, we can apply Eq. (C.3) with

(C.5) D+A =Dgf [A; Ā] e−SY M[A] ,

and

(C.6) f [A]= eα1J1·A , g[A]= eα2J2·A ,

as well as p = 1/α1 and 1= 1/α2. We find

eW[α1J1+α2J2;Ā] =
∫

Dgf [A; Ā] e−SY M[A]eα1J1·A eα2J2·A

≤
(∫

Dgf [A; Ā] e−SY M[A]eJ1·A
)α1

︸ ︷︷ ︸(
eW[J1;Ā]

)α1

(∫
Dgf [A; Ā] e−SY M[A]eJ2·A

)α2

︸ ︷︷ ︸(
eW[J2;Ā]

)α2

.(C.7)

This implies

(C.8) W[α1J1+α2J2; Ā]≤α1W[J1; Ā]+α2W[J2; Ā] ,

which expresses the convexity of W[J; Ā] with respect to J.
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HOMOGENEITY AND ISOTROPY MODULO

GAUGE TRANSFORMATIONS

This appendix contains unpublished work in collaboration with Marcela
Peláez and Nicolás Wschebor. The possible background configurations
compatible with homogeneity and isotropy of Euclidean space-time are
classified in the SU(2) case. We find the existence of some exotic configu-
rations satisfying these constraints, in addition to the constant temporal
backgrounds used throughout the manuscript. The reason why we did not
try to publish these results is that these exotic configurations do not seem
to lead to a confining phase. However, it would be interesting to extend the
analysis to the SU(3) gauge group to see if there could be exotic confining
configurations in this case.

We look for periodic Euclidean background configurations Āµ(x) such
that

(P1) ∀x,u ∈ [0,β]×R3, ∃Uu(x) ∈G0, Āµ(x+u)= ĀUu
µ (x);

(P2) ∀x ∈ [0,β]×R3, ∀R ∈ SO(3), ∃UR(x) ∈G0,

{
Ā0(R−1x)= ĀUR

0 (x)
R i j Ā j(R−1x)= ĀUR

i (x)
,
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where we introduced the notation R x ≡ (τ,R~x). We mention that the
formulation of the problem is gauge-invariant in the following sense. If
Āµ(x) is a configuration obeying the properties (P1) and (P2), then for
any periodic gauge transformation U ∈G0, the transformed configuration
ĀU
µ (x) also obeys these properties. Indeed, ĀU

µ (x) is periodic and

ĀU
µ (x+u) = U(x+u) Āµ(x+u)U†(x+u)−U(x+u)∂µU†(x+u)

= U(x+u)Uu(x) Āµ(x)U†
u(x)U†(x+u)

−U(x+u) (Uu(x)∂µU†
u(x))U†(x+u)−U(x+u)∂µU†(x+u)

= U(x+u)Uu(x) Āµ(x)U†
u(x)U†(x+u)

−U(x+u)Uu(x)∂µ(U†
u(x)U†(x+u))

= ĀV
µ (x)= (ĀU

µ )VU−1
(x) ,(D.1)

with V (x)≡U(x+u)Uu(x) a periodic gauge transformation. We can treat
similarly the case of the spatial rotations. It follows that, in order to find
configurations obeying the properties (P1) and (P2), it is enough to look
for configurations in a given gauge. We shall consider a convenient choice
of gauge below.

D.1 Field-strength tensor

It is convenient to note that the field-strength tensor F̄µν(x) corresponding
to the looked for backgroundconfigurations must be such that

(P3) ∀x,u ∈ [0,β]×R3, ∃Uu(x) ∈G0,
F̄µν(x+u)=Uu(x) F̄µν(x)U†

u(x);

(P4) ∀x ∈ [0,β]×R3, ∀R ∈ SO(3), ∃UR(x) ∈G0,{
R i jF̄ j0(R−1x)=UR(x) F̄i0(x)U†

R(x)
R i jRklF̄ jl(R−1x)=UR(x) F̄ik(x)U†

R(x)
.

In a given basis, these properties rewrites
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(P3b) ∀x,u ∈ [0,β]×R3, ∃M(u, x) ∈ SO(3) ,
F̄a
µν(x+u)= Mab(u, x)F̄b

µν(x);

(P4b) ∀x ∈ [0,β]×R3, ∀R ∈ SO(3), ∃R(R, x) ∈ SO(3),{
R i jF̄a

j0(R−1x)=R−1
ab(R, x)F̄b

i0(x)
R i jRklF̄a

jl(R
−1x)=R−1

ab(R, x)F̄b
ik(x)

.

From property (P3b), we have in particular that F̄a
µν(x)= Mab(x,0)F̄b

µν(0).
So it seems that we could choose a gauge where F̄µν(x) = F̄µν(0). How-
ever, this is not quite true because we are only allowed periodic gauge
transformations, and we do not know whether M(x,0) ≡ M(τ,~x) is peri-
odic. What we know is that F̄µν(τ+β,~x) = F̄µν(τ,~x) from which it follows
that M(τ+β,~x) F̄µν(0)= M(τ,~x) F̄µν(0) or, equivalently, that M−1(τ,~x) M(τ+
β,~x)F̄µν(0)= F̄µν(0). We can then to distinguish three cases:

(A) If two of the six color vectors F̄µν(0) (0 ≤ µ < ν ≤ 3) are linearly
independent, we have M(τ+β,~x)= M(τ,~x) and we can indeed choose
a gauge such that F̄µν(x)= F̄µν(0).

(B) If F̄a
µν(0)= f̄µνna, with some of the f̄µν 6= 0, we know just that this

common color direction ~n is stabilized by M−1(τ,~x) M(τ+β,~x). In
other words M(τ+β,~x)= eiθ(τ,~x)~n·~σM(τ,~x), for a certain θ(τ,~x).

(C) The third case is simply F̄µν(0)= 0. There is no constraint on M but,
as in case (A), we have obviously F̄µν(x)= F̄µν(0)(= 0).

We refer to these cases respectively as non-degenerate, degenerate and
pure gauge. Below, we discuss them separately. But before we do so, let us
exploit the property (P4b). Combining two rotations R and S, we find

(D.2) Si jR jkF̄a
k0(R−1S−1x)=R−1

ab(SR, x)F̄b
i0(x)

but also

Si jR jkF̄a
k0(R−1S−1x) = R−1

ab(R,S−1x)Si jF̄b
j0(S−1x)

= R−1
ab(R,S−1x)R−1

bc (S, x)F̄ c
i0(x) .(D.3)
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Applying the same argument to the magnetic sector, we arrive at

(D.4) R−1
ab(SR, x)F̄b

µν(x)=R−1
ab(R,S−1x)R−1

bc (S, x)F̄ c
µν(x) .

In particular, for x = 0, we find

(D.5) R−1
ab(SR,0)F̄b

µν(0)=R−1
ab(R,0)R−1

bc (S,0)F̄ c
µν(0) .

We are then lead to distinguish the three same cases as above:

(A) If two of the six color vectors F̄µν(0) (0 ≤ µ < ν ≤ 3) are linearly
independent, we have R(SR,0)=R(S,0)R(R,0), that is R is a real,
N2−1 dimensional representation of SO(3).

(B) If F̄a
µν(0)= f̄µνna, with some of the f̄µν 6= 0, we know just that this

color direction ~n is stabilized by R(SR,0)R−1(R,0)R−1(S,0). In
other words R(SR,0)= eiθ(R,S)~n·~σR(S,0)R(R,0), for a certain θ(R,S).

(C) The third case is simply F̄µν(0)= 0.

Cases (B) and (C) are easily handled, so we consider them first

D.2 Degenerate case

Suppose that Fa
µν(0)= f̄µνna with some of the f̄µν 6= 0. We have, for any R,

(D.6) R i j f̄ j0na =R−1
ab(R,0) f̄ i0nb and R i jRkl f̄ jlna =R−1

ab(R,0) f iknb .

This implies that, for any R ,

(D.7) R i j f̄ j0 = f̄ i0 , R i jRkl f̄ jl = f̄ ik and Rab(R,0)nb = na ,

which is only possible if f̄µν = 0, that is case (C) to be treated now.
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D.3 Pure gauge case

If F̄µν(x)= 0, there exists a U ∈G , not necessarily periodic, such that

(D.8) Āµ(x)=−U(x)∂µU†(x) ,

with Āµ periodic. Let us mention that, up to an important restriction to
be discussed below, any such configuration obeys the properties (P1) and
(P2). For instance

Āµ(x+u) = −U(x+u)∂µU†(x+u)

= −U(x+u)U†(x)U(x)∂µ(U†(x)U(x)U†(x+u))

= −U(x+u)U†(x) [U(x)∂µU†(x)]U(x)U†(x+u)

−U(x+u)U†(x)∂µ(U(x)U†(x+u))

= AVu(x) ,(D.9)

with Vu(x)≡U(x+u)U†(x). One can treat rotations in the same way, with
VR(x)≡U(R−1x)U†(x). The important restriction mentioned above is that
Vu(x) and VR(x) should be periodic in time. This implies that

∀u, U(τ+β+u0,~x+~u)U†(τ+β,~x)=U(τ+u0,~x+~u)U†(τ,~x) ,(D.10)

∀R, U(τ+β,R−1~x)U†(τ+β,~x)=U(τ,R−1~x)U†(τ,~x) ,(D.11)

or, equivalently,

∀u, U†(τ+β,~x)U(τ,~x)=U†(τ+β+u0,~x+~u)U(τ+u0,~x+~u) ,(D.12)

∀R, U†(τ+β,~x)U(τ,~x)=U†(τ+β,R−1~x)U(τ,R−1~x) .(D.13)

It follows that

(D.14) U†(τ+β,~x)U(τ,~x)=V ,

for a certain V ∈ SU(N). Let us now introduce

(D.15) W(τ,~x)=U(τ,~x) Me−i τβ r jH j
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with M and r j such that (it is always possible to find such an M and r j)

(D.16) M†V †M = eir jH j .

Using Eq. (D.14), we find

W(τ+β,~x) =U(τ+β,~x) Me−ir jH j e−i τβ r jH j(D.17)

=U(τ,~x)V †Me−ir jH j e−i τβ r jH j

=U(τ,~x) MM†V †Me−ir jH j e−i τβ r jH j

=U(τ,~x) Me−i τβ r jH j =W(τ,~x) .

Moreover

(D.18) Wei τβ r jH j∂µ(Wei τβ r jH j)† =UM∂µ(UM)† =U∂µU† =−Āµ .

In other words

βĀW†

µ =−ei τβ r jH jβ∂µe−i τβ r jH j = ir jH jδµ0 .(D.19)

We have thus shown that the most general periodic pure gauge configu-
rations compatible with the properties (P1) and (P2) belong to the same
G0-orbits as constant temporal backgrounds.

D.4 Non-degenerate case

This case depends on the considered group. Here we restrict to the SU(2)
gauge group and leave the SU(3) case for a future study. In this case
F̄µν(x)= F̄µν(0) and R(R,0) is a real, three dimensional representation of
SO(3).

If R(R,0)=1, then

(D.20) R i jF̄a
j0(x)= F̄a

i0(x) and R i jRklF̄a
jl(x)= F̄a

ik(x) .

It follows that F̄a
i0(x) = 0 and F̄a

i j(x) = γδi j. But γ should be zero since
F̄a

i j(x) is antisymmetric. This leads to the case (C) that we have already
discussed.
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The other possible three dimensional representation is equivalent to
the fundamental one. We can choose the color basis such that R(R,0)= R.
We have then

(D.21) R i jRabF̄b
j0(x)= F̄a

i0(x) and R i jRklRabF̄b
jl(x)= F̄a

ik(x)

from which we deduce that

(D.22) F̄a
i0(x)=αδa

i and F̄a
i j(x)=βεi ja .

We next impose the Bianchi identity DµF̄νρ +DνF̄ρµ+DρF̄µν = 0. In
terms of components, we find two independent identities

0 = εabc(βĀb
0εi jc +αĀb

i δc j −αĀb
jδci) ,(D.23)

0 = βεabc(Āb
i ε jkc + Āb

jεkic + Āb
kεi jc) .(D.24)

The first identity reads

(D.25) 0=βĀb
0(δaiδb j −δa jδbi)+αĀb

i εab j −αĀb
jεabi .

If i = j, there is no information. If i 6= j, we choose a = i and b = j and find

(D.26) 0=βĀb
0 .

If we choose a = i and b 6= j, we find

(D.27) ∀i 6= j, 0=αĀ j
i .

Finally, if we choose b = i and a 6= j, we find

(D.28) ∀i, 0=αĀ i
i .

The second identity reads

(D.29) 0=β ((Āk
i − Ā i

k)δa j + (Ā i
j − Ā j

i )δak + (Ā j
k − Āk

j )δai) ,

that is

(D.30) ∀i 6= j, 0=β (Ā j
i − Ā i

j) .
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The case α=β= 0 corresponds to the case (C) already described above. If
α 6= 0 (and β= 0), we have Āa

i = 0. It follows that F̄a
i0 = ∂i Āa

0 =αδa
i and then

that Āa
0(x)=αxa +γa(τ). Because α 6= 0, these configurations cannot be in

the same orbits as the constant temporal backgrounds. Moreover, they
obey the property (P2). However, it is easy to convince oneself that they
do not obey the property (P1). To see this, let us consider an infinitesimal
spatial translation. The property (P1) would read

αua = ∂0θ
a +εabcθb(αxc +γc(τ)) ,(D.31)

0 = ∂iθ
a .(D.32)

Taking a derivative with respect to xi in the first equation, and using the
second, we find

(D.33) 0=αεabiθb .

which implies in any case α = 0 (since θ = 0 also implies α = 0). Finally,
if β 6= 0, we find Āa

0 = 0 and Āa
i = Ā i

a. This case is not that interesting
because it cannot lead to a confined phase at small temperatures. An
example of such configurations is given by Aa

0 = 0 and Aa
i =

√
βδa

i , which
are easily checked to be translation and rotation invariant modulo gauge
transformations.

We mention also that one can use the constraints from charge conju-
gation (in the pure YM case) and parity invariance. In the SU(2) case,
charge conjugation does not impose any constraint because it is tanta-
mount to a color rotation (Weyl transformation). On the other hand, it
is easily checked that partity invariance (modulo color rotations) implies
that α= 0.
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THE BACKGROUND FIELD POTENTIAL

IN TERMS OF POLYAKOV LOOPS

In this appendix, we explain how Eq. (10.13) can be generalized to the
SU(N) case and how Eq. (10.14) is derived in the SU(3) case.

E.1 Fields in the defining representation

Combining the logarithms in Eq. (10.5), one arrives at

ln
N∏

j=1

[
1+ e−β (εq, f ∓µ)±ir·ρ( j)

]
(E.1)

= ln
[
1+

N∑
ν=1

e−νβ (εq, f ∓µ)
∑

j1<···< jν
e±i

(
ρ( j1)+···+ρ( jν)

)]
.

We have seen in chapter 8 that the fundamental Polyakov loops play a
role in the characterization of center symmetry. It is no doubt that they
will enter the generalization that we are after. At leading order, they are
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given by

`Cν
N

(r) = 1
Cν

N

∑
j1<···< jν

ei
(
ρ( j1)+···+ρ( jν)

)
·r ,(E.2)

`C
ν
N

(r) = 1
Cν

N

∑
j1<···< jν

e−i
(
ρ( j1)+···+ρ( jν)

)
·r .(E.3)

We then arrive at

δV SU(N)
1loop ({`Cν

N
,`C

ν
N

};T,µ)(E.4)

= − T
π2

∫ ∞

0
dq q2

{
ln

[
1+

N∑
ν=1

Cν
N`Cν

N
e−νβ (εq, f −µ)

]
+

+ ln
[
1+

N∑
ν=1

Cν
N`C

ν
N

e−νβ (εq, f +µ)
]}

.

At vanishing chemical potential, one can restrict to `C
ν
N
= `Cν

N
.

E.2 Fields in the adjoint representation

Combining the logarithms in Eq. (6.17), we obtain

ln
8∏

j=1

[
1− e−βεq+ir·κ( j)

]
(E.5)

= ln(1− e−βεq)2
3∏

j=1

[
1− e−βεq+ir·α( j)

] 3∏
j=1

[
1− e−βεq−ir·α( j)

]
,

with α(1) = ρ(2)−ρ(3), α(2) = ρ(3)−ρ(1), α(3) = ρ(1)−ρ(2), and then α(1)+α(2)+
α(3) = 0. We have

3∏
j=1

[
1− e−βεq+ir·α( j)

]
= 1− e−3βεq − e−βεq

3∑
j=1

eir·α( j) + e−2βεq
3∑

j=1
e−ir·α( j)

.

(E.6)
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Then
3∏

j=1

[
1− e−βεq+ir·α( j)

] 3∏
j=1

[
1− e−βεq−ir·α( j)

]
= (1− e−3βεq)2− e−βεq(1− e−βεq)(1− e−3βεq)(8`8(r)−2)

+3e−2βεq(1+ e−2βεq)(1+`3(3r)+`3̄(3r))

−2e−3βεq(4`8(2r)+8`8(r)−3) ,(E.7)

where we have used

3`3(r) =
3∑

j=1
eir·ρ( j)

,(E.8)

8`8(r) = 2+
3∑

j=1
eir·α( j) +

3∑
j=1

e−ir·α( j)
.(E.9)

Now, using

(E.10) 8`8(r)= 9`3(r)`3̄(r)−1 ,

together with1

`3(2r) = 3`3(r)2−2`3̄(r) ,(E.11)

`3(3r) = 1+9`3(r)3−9`3(r)`3̄(r) ,(E.12)

we finally arrive at

ln
8∏

j=1

[
1− e−βεq+ir·κ( j)

]
(E.13)

= ln
[
1+ e−8βεq − (

9`3`3̄−1
)(

e−βεq + e−7βεq
)

−(
81`2

3`
2
3̄−27`3`3̄+2

)(
e−3βεq + e−5βεq

)
+(

27`3
3+27`3

3̄−27`3`3̄+1
)(

e−2βεq + e−6βεq
)

+(
162`2

3`
2
3̄−54`3

3−54`3
3̄+18`3`3̄−2

)
e−4βεq

]
.(E.14)

As in the previous section, it should be possible to generalize this formula
to the SU(N) case, in terms of the fundamental Polyakov loops.

1These identities are conveniently obtained by expanding 9`3(r)2 and 27`3(r)3 respectively,
using Eq. (E.8) and then identifying the various terms of the expansions in terms of `3(r).
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