
HAL Id: tel-04561954
https://hal.science/tel-04561954v2

Submitted on 13 May 2024 (v2), last revised 25 Nov 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Throughput Optimization Techniques for Heterogeneous
Architectures
Nicolas Derumigny

To cite this version:
Nicolas Derumigny. Throughput Optimization Techniques for Heterogeneous Architectures. Com-
puter Science [cs]. Université Grenoble - Alpes; Colorado State University, 2022. English. �NNT : �.
�tel-04561954v2�

https://hal.science/tel-04561954v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


THÈSE 

Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
et de la COLORADO STATE UNIVERSITY

École doctorale : Mathématiques, Sciences et Technologies de l'Information, Informatique
Spécialité : Informatique
Unité de recherche : CORSE

Titre de la thèse en français :  Techniques d’Optimisation 
du Débit pour Architectures Hétérogènes

Titre  de  la  thèse  en  anglais :  Throughput  Optimization 
Techniques for Heterogeneous Architectures
Présentée par :

Derumigny, Nicolas
Direction de thèse :

Fabrice RASTELLO
Directeur de recherche, Inria centre Grenoble-alpes

Directeur de thèse

Louis-Noël POUCHET
Associate Professor, Colorado State University

Co-Directeur de thèse

Sebastian HACK
Professor, Saarland University
Erven Rohou
Directeur de recherche, Inria centre Rennes

Thèse soutenue publiquement le « 13/12/22 », devant le jury composé de :
Fabrice RASTELLO
Directeur de recherche, Inria centre Grenoble-alpes

Directeur de thèse

Louis-Noël POUCHET
Associate Professor, Colorado State University

Co-Directeur de thèse

Sebastian HACK
Professor, Saarland University

Rapporteur

Erven Rohou
Directeur de recherche, Inria centre Rennes

Rapporteur

Frédéric PÉTROT
Professeur, Grenoble INP

Examinateur

Ayal ZACKS
Ingénieur, Mobileye

Examinateur

Invités :
Francisco ORTEGA
Assistant Professor, Colorado State University
James WILSON
Professor, Colorado State University
Yashwant MALAIYA
Professor, Colorado State University

Rapporteurs :



Titre : Techniques d’Optimisation du Débit pour Architectures Hétérogènes

Mots clés : CPU, architecture, FPGA, synthèse haut-niveau, débit

Résumé : 

Alors que les processeurs deviennent de plus en plus complexes et nombreux, leur optimisation 
manuelle  est  un  processus  coûteux  et  propice  à  l’erreur.  Ce  manuscrit  vise  à  guider  les 
programmeurs  et  designers  d’accélérateurs  via  une  étude  parallèle  des  impératifs  logiciels  et 
matériels qui y sont liés.

Dans la première partie, nous présentons un programme capable de déterminer automatiquement 
un modèle de performances décrivant le comportement d’un processeur. Dans la seconde partie, 
nous couvrons l’optimisation de design d’accélérateurs dédiés dans le cadre de la synthèse haut-
niveau, sous l’aspect du partage de resources.

Title: Throughput Optimization Techniques for Heterogeneous Architectures

Keywords: CPU, architecture, FPGA, HLS, throughput

Abstract: 

While processors are becoming more and more complex, their manual optimization is a costly and 
tedious  process.  This  manuscript  aims  at  guiding  programmers  and  hardware  designers  by 
proposing a two-sided study of both the software and hardware constraints associated with high-
performance accelerator usage. 

In the first part, we present a framework able to automatically built a performance model describing 
the behavior of a CPU. In the second part, we cover the optimization process of dedicated hardware 
accelerator in the context of high-level synthesis under the angle of resource sharing.



ABSTRACT

THROUGHPUT OPTIMIZATION TECHNIQUES FOR HETEROGENEOUS
ARCHITECTURES

Moore’s Law has allowed during the past 40 years to exponentially increase transistor
density of integrated circuits. As a result, computing devices ranging from general-
purpose processors to dedicated accelerators have become more and more complex due
to the specialization and the multiplication of their compute units. Therefore, both
low-level program optimization (e.g. assembly-level programming and generation) and
accelerator design must solve the issue of efficiently mapping the input program com-
putations to the various chip capabilities. However, real-world chip blueprints are not
openly accessible in practice, and their documentation is often incomplete. Given the
diversity of CPUs available (Intel’s / AMD’s / Arm’s microarchitectures), we tackle in
this manuscript the problem of automatically inferring a performance model applicable
to fine-grain throughput optimization of regular programs. Furthermore, when order of
magnitude of performance gain over generic accelerators are needed, domain-specific ac-
celerators must be considered; which raises the same question of the number of dedicated
units as well as their functionality. To remedy this issue, we present two complementary
approaches: on one hand, the study of single-application specialized accelerators with an
emphasis on hardware reuse, and, on the other hand, the generation of semi-specialized
designs suited for a user-defined set of applications.
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Tout au long des 40 dernières années, la loi de Moore a permis d’augmenter de façon
exponentielle la densité des transistors des circuits intégrés. En conséquence, les appareils
informatiques – allant des processeurs centraux aux accélérateurs dédiés, sont devenus de
plus en plus complexes du fait de la multiplicité croissante de leurs unités de calcul. Par
conséquent, à la fois le design de puces et l’optimisation logicielle (qu’elle soit manuelle, en
assembleur, ou effectuée par un compilateur) doivent résoudre le problème de l’association
efficace des calculs variés du programmes aux unités présentes sur le matériel. Or, les
caractéristiques de ces unités ne sont pas toujours disponibles. Devant la diversité des
CPU du commerce (Intel, AMD, Arm ayant chacun leurs microarchitectures), nous nous
attaquons ici au problème de la génération automatique de modèles de performance,
applicables lors de l’optimisation à grain fin de programmes réguliers. De plus, dans les
cas où des gains de multiples ordre de grandeur sont désirés, des accélérateurs spécifiques
doivent être utilisés, ce qui pose une question similaire au niveau de l’organisation de la
puce. Pour faire face à ces questions, nous proposons deux approches complémentaires
: d’une part, l’étude d’accélérateurs de calcul haute performance dédiés à une unique
application et, d’autre part, la génération automatique d’architectures semi-spécialisées
à une famille d’applications.
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Chapter 1
Introduction

Heterogeneous Architectures
While Moore’s Law – doubling of the transistor density every two years – has slightly

faded in the past 10 years, its applicability on single-thread workloads has at the same
time greatly reduced. Because of thermal limitations, the computing frequency of general-
purpose accelerators reached a hard limit in the early 2000s by stabilizing at the gigahertz
scale – a barrier still in place today. To overcome this limitation, processors became
multicore: coarse-grain replication of a general-purpose unit called core was implemented
as the best cost-effective technique to use available silicon with a significant impact on
performance while stabilizing power consumption generation over generation. This split
performance measurement of chips in two main workloads: single-threaded, where only
one core can actively compute, and multithreaded, where all integrated cores are used in
parallel.

Given the lack of frequency gain, one could deduce that single-threaded performance
has stagnated over the past fifteen years, as the simple solution to accelerated com-
putation (“run the chip faster”) was not doable in practice. This was not the case.
Single-threaded performance has continued to improve, though at a slower pace. This
increase has been reached part by the slight frequency progression allowed by lithographic
advances (a 2005 Intel Pentium 4 reached at most 4 GHz, whereas state-of-the-art proces-
sors break the 6 GHz barrier), but mostly because of internal chips layout improvements.
Architecturally speaking, Moore Law’s transistors are used to build specialized logic,
deriving from the one-size-fits-all initial paradigm to a set of small heterogeneous units
orchestrated by a scheduler. Indeed, nowadays’ CPUs integrate a variety of accelerators
such as vector units, artificial neural networks or cryptographic accelerators, etc; but
also multiple simple ALUs and address generation units to be able to exploit efficiently
non-specific workloads. In parallel, memory subsystems have also greatly benefited from
this greater density to increase the available amount of memory directly accessible by
the processor by building intricate cache hierarchy and steadily improving cache size over
generations.

Latest innovations (ARM’s big.LITTLE technology, Intel’s Alder Lake architecture)
even showed the pertinence of heterogeneity at the core level. In these chips, several
types of cores realizing different performance/size compromises are integrated: high-
performance, large cores are present in order to improve execution time of single-threaded
workloads, whereas multithreaded ones benefit from the numerous efficient cores, whose
higher count was made possible by their smaller silicon space requirement.

Note that hardware specialization also applied to memory’s logic: data paths and
memory hierarchy also became more and more intricate, trading chip space for perfor-
mances on chosen applications and memory access patterns. This complex hierarchy has
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also proved to be challenging to exploit at its complete potential, but such research topics
fall out of the scope of this manuscript.

Similarly, GPUs now integrate hardware media encoders, ray tracing cores, systolic
matrix multiplication units and optical flow accelerator to better suit the needs of their
users, also shifting from their single instruction multiple thread paradigm to a composition
of parallel application-specific accelerators on the same chip. While being less flexible than
GPUs, dedicated accelerators’ architecture are also more heterogeneous: depending on
their target, designs must achieve a unique balance between high-performance compute
units for critical workloads (often replicated to achieve a target throughput), and slower
units for less frequent thus required operations.

This diversification and specialization of dedicated hardware units lead to more and
more complex architectures, whichever the type of the chip. As a consequence, the
peak theoretical performance is usually achievable only on a very limited, often non-
representative set of benchmarks.
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Optimization and Heterogeneous Architecture
Optimization in the topic of software programming designates the capacity of achiev-

ing improvement in one metric, usually one of the followings:

• The energy consumed during one solving of a problem.

• The throughput defined as the number of instances of a problem solved in average
per unit of time.

• The latency, defined as the total amount of time elapsed between the start of the
computation and its termination for one instance of a problem.

When the target workload is fixed, the mean usage over time of the compute units of
an accelerator, called occupancy, is often used as a measure of the exploited potential of
the architecture. The relevance of this metric is based on the underlying assumption that
expressing part of the computation under a form that is executable by dedicated hardware
will lead to a lower execution time, which is true when the runtime cost of transformation
of the computation does not exceed the speedup granted by the dedicated unit.

Therefore, automated optimization of an application to a heterogeneous chip requires
an accurate performance model for each of its units. As some components may be shared
between them (for example, a matrix unit on a CPU may share some components with
its vector unit, so that some combinations of concurrent matrix and vector operations are
slower or even not possible), the task can be more tedious than it may seem. Moreover,
the number of elementary operations performed in the target workload must also be
accurately estimated, as the key problem relies in the mapping of chains of these atomic
operations to the on-chip computing resources.

In this manuscript, this aspect of the optimization framework is solved by restricting
to classes of programs for which the number and the kind of all operations is statically
computable, i.e. does not depend on any value of the input data. Though we acknowledge
that this restriction does not cover the breadth of high-performance computing applica-
tions, such programs still cover workloads from a variety of domains such as linear algebra,
machine learning, computer vision and simulation.

The question of optimization applied to heterogeneous architecture is two-sided, de-
pending on what is considered fixed and what can be modified: from a software program-
mer’s point of view, a fixed architecture has to be exploited as much as possible to ensure
minimal execution time. From a chip designer’s, the goal is to calibrate an accelerator to
best suit the target workload, which translates to deciding the best compromise between
flexibility, performances and power consumption.

In this manuscript, we discuss both points of view and present a complete approach
to low-level optimization on heterogeneous chips, paving the way for future hardware-
software co-designs.
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Contributions

Performance Model Generation
Automated optimization is vain without an accurate estimation of the effect of one

hardware/software transformation on the overall execution time. Therefore, we present
in Chap. 4 a complete reverse-engineering framework of CPU resources resulting in an
instruction-level cost model. We evaluate its accuracy on basic blocks with no depen-
dencies extracted from SPECInt 2017 and achieve a mean error rate of 7.8 % compared
to native execution, outperforming state-of-the-art tools such as llvm-mca (20.1 %) and
Intel IACA (8.7 %).

A similar resource model of 3-operation FPGA compute units is also computed in
Chap. 7, achieving a mean error rate of 0% on DSP, 7.4 % on LUT and 14.4 % of FF
compared to post-netlist predicted values. Latencies are also predicted for very simple
sequences of operations, leading to an accuracy of 3.57 % over 28 designs using 3 or 4
operations.

Formal Proofs of Software / Hardware Mappings
While several optimization techniques rely on inexact heuristics, we present in Chap. 5

and Chap. 7 the formal proofs for both our CPU reverse engineering framework and our
FPGA design generator. Whereas the former converges to a unique, existing performance
model matching the usual hardware-deduced state of the art, the second one presents a
formulation of an optimization problem whose solution is an accelerator architecture
achieving minimal execution time of the input program, given a fixed area budget for
compute units.

Efficient Resource Usage
Depending on the context, on-chip resources can be considered either as a constraint

or as a measure of the quality of an implementation. For example, saturating one of the
always-used resources such as a memory bus is considered as the stopping point for both
assembly-level program optimization and design generation, as gains in the computing
parts will not translate further in actual performances due to stalls. However, in the
general case, unused resources such as idle compute units are an indicator of under-
utilization of the chip. In Chap. 8, we show how to create a balanced semi-generic
accelerator given a set of applications to be accelerated. We evaluate the performances
of the generated design on two distinct families of computation, Correlation and Linear
Algebra, and show that our generic accelerator does not degrade either performance or
usage by more than one order of magnitude on our tested applications.
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Outline
In this manuscript, we present several approaches to optimize applications on two

classes of chips: general-purpose processors (CPUs) and dedicated accelerators (FPGAs
/ ASICs). After a first introduction of the common concepts in Chap. 2, we tackle in Part I
the issue of the detection of the units physically implemented in superscalar CPUs. While
Chap. 4 offers a CPU-agnostic algorithm that reverse-engineer superscalar CPUs to infer a
throughput-based performance model, Chap. 5 offers formal guarantees on its convergence
and links the abstract resource representation used with the traditional hardware-based
model. Part II follows the complementary approach: designing an efficient accelerator
given the characteristics of one or more applications to be executed on the dedicated logic.
Chap. 6 presents a complete overview of the ecosystem used to generate designs: the
High-Level Synthesis framework, which is then used in Chap. 7 to build resource-efficient
accelerators. However, due to scalability issues, we propose in Chap. 8 another approach
with a semi-generic accelerator sharing its compute units to be able to accelerate a panel of
user-defined applications while staying competitive in terms of performance-per-area with
dedicated solutions. Finally, Chap. 9 concludes and presents possible research directions
that emerged from the works presented throughout this manuscript.
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Chapter 2
Background

Though the topic of hardware architectures covers a variety of research fields, ranging
from high-performance computing and power-hungry accelerators to embedded systems
and design focused on energy efficiency, the core components of complex designs remains
similar. Memory, ALU, compute units: though offering radically different area / perfor-
mance / power consumption trade-offs, all silicon-based designs rely on the same families
of building blocks that are generically gathered under the notion of resource. Both spe-
cialized hardware such as FPGAs and ASICs and general-purpose CPUs have clocked
submodules responsible of specific tasks, on which the programmer aims to balance the
load in order to maximize the global usage of the chip.

This chapter covers the basic notions common to nearly any hardware accelerator that
this manuscript will use as building blocks in the following chapters: resource, pipelining,
scheduling, as well as compute-specific components of modern CPUs.
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2.1 Abstract Resource Model
On both CPU and FPGA, the notion of resource is at the heart of optimization

technics. The holy grail of optimization is the complete usage of a (generic or specialized)
compute accelerator, combined with the justification that each task cannot be expressed
in a simpler manner. In that regard, a resource is either a bottleneck (when the operation
it performs is not executed fast enough to "feed" the other resources), or an opportunity
to increase the processing speed (when it is idle). In this section, we cover the fundamental
characteristics of a resource as used in the next chapter: either as an abstract resource
of a CPU performance model in Chap. 3 and 4, or as a compute unit to be synthesized
and shared in Chap. 7, and 8.

2.1.1 Resources
A resource is defined as a clocked component whose task is necessary for the correct

execution of a subpart of a program, referred as job in this section, typically one instruc-
tion when dealing with CPUs. A resource is characterized by its latency, its throughput
and its critical path:

• The latency is the amount of time elapsed between the start of the resource’s job
and its completion.

• The throughput is the maximum number of jobs that can be executed per amount
of time by the resource. Often, this metric does not vary with time, which is why
the throughput is sometimes defined as the average number of jobs executed per
unit of time on a steady state when treating an infinite number of jobs.

• The critical path or CP represents the time taken by some data to traverse the
longest path between two clock cycles. Due to physical constraints, if CPres is the
critical path of a resource res, then the maximum frequency of a design containing

a resource cannot be greater that
1

CPres

. While CPs are fixed on a CPU, as its de-

sign cannot be dynamically changed (as well as its maximum operating frequency);
techniques exist on FPGAs and ASICs to minimize the critical path and increase
the final design frequency [3, 4, 5, 6].

In the case of resources computing or transforming data, the throughput corre-
sponds to its processing power, while the throughput of resources storing data is
called bandwidth.

Furthermore, as jobs consume resources, we introduce the following notations:

• ρj,r is the amount of usage by the job j of the resource r, For example, a single
addition will use half of a resource corresponding to a 2-operation wide ALU.

• load(r) or r.load is the load of the resource, equals to
∑

j ρj,r: the total combined
usage of the resource r. By definition of the abstract resource model, a program
cannot be faster than the load it puts on any resource.
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Target Resource Role

CPU Front-end Decompose instructions into machine commands
CPU ALU Compute arithmetic and logical operations
CPU Load/Store Units Manage access to the memory subsystem
CPU Cache Store recently used values to speed up accesses
CPU Scheduler Dispatch operations on available execution units

FPGA Compute Unit Execution of a set of operations
FPGA BRAM Elementary on-chip memory storage location
FPGA Off-chip bus Access off-chip data

Table 2.1: Example of resource for different hardware targets

In the next chapters, resources are treated as an abstraction in order to decompose
the behavior of compute accelerators, either for performance prediction or bottleneck
analysis.

Therefore, different sorts of hardware units are represented as abstract resources,
as described in Tbl. 2.1, ranging from traditional compute units whose performance
is measured in FLOPS to front-end or scheduler which are mandatory for the correct
execution of an instruction, but may become bottlenecks when too many of them need
to be treated at the same time. Due to the versatile nature of FPGAs, resources are
limited to elementary components that are part of any designs: Compute Units, on-chip
memory access units and off-chip memory access mechanisms. Contrary to CPUs’, the
performance of FPGA resources is variable depending on the designer’s needs, which
explains the difference in metrics used to express performances in both worlds. For CPU,

the Instruction per Cycle rate, defined as
#{instructionsexecuted}

time
is a measurement of

the occupancy of the (fixed) hardware units, with the idea that maximizing the global
resource usage leads to optimality, while FPGA express performance as a throughput or
latency versus area compromise.

2.1.2 Pipelining and Resource Sharing
To increase the performance of a resource, the simplest solution relies in its mere

replication [6, 7, 8]. However, that may lead to the unnecessary implementations of not
performance-critical components. To limit the increase of area linked with duplication,
other approaches have been developed based on the resource sharing, the most common
of which being pipelining.

Pipelining

Pipelining refers to the decomposition of a resource into smaller blocks on the time
dimension [7]. Followingly, all blocks may be used in parallel, increasing throughput
without the need of new hardware units, as illustrated in Fig. 2.1. However, due to the
need of synchronization of the blocks with the hardware clock, a pipelined design has
often a latency higher than a non-pipelined one, thought this effect can be mitigated
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Figure 2.1: Non-pipelined (a) versus pipelined (b) designs

with a higher operating frequency. Indeed, as the data paths inside the resource are split
into several submodules, so is the longest path; hence a generally lower CP on pipelined
designs, translating into higher a operating frequency.

We define the initiation interval (or II ) of a pipeline resource the amount of time (ex-
pressed as clock cycles) elapsed between the beginning of the treatment of two successive

jobs. When the latency of the pipeline is fixed, then II =
1

throughput
.

Other Resource Sharing Techniques

Traditional non-pipelining resource sharing techniques [8, 9] consist in replicating
low-area / high-usage part of the design while leaving in common other components
untouched. This increases overall occupancy of the available units by reusing non-
performance critical units (thus increasing overall latency), hence leading to better per-
formance per area.

As an illustration, in the former example, duplicating the "add" stage allows to com-
pute more tasks without replication of the load / store units in cases where the available
bandwidth is already sufficient, as shown in Fig. 2.2. General-purpose chips such as CPU
and GPU uses a mixture of pipelined units such as ALUs or memory access units, and
shared components such as caches or instructions schedulers in order to offer the best
performance-per-area given a fixed silicon budget.

On FPGAs, modification of clock domains can also be used to increase the processing
speed of compute units and share them between different data paths of the design [10].

Full Pipelining A resource is said to be fully pipelined when its II is equal to 1, which
means that the resource is able to function on new data every cycle.
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Figure 2.2: Resource shared (a) and non resource shared (b) architectures
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Figure 2.3: Abstract resource model: resource usage (a) and corresponding loads/schedules

2.1.3 Scheduling
The schedule of a program P is a function σ returning for each of its elementary job

(ji)i∈[0,n−1] its the timestamp of execution, while the placement refers to the affectation of
a resource for each couple of jobs and timestamp. A placement is legal when no resource
is used more than its maximum throughput at any cycle, and a schedule is legal when
there exists a legal placement respecting it, and it respect job dependencies, i.e. if there
is a dependence between j1 and j2, then σ(j1) + lat(j1) ≤ j2 where lat is the latency of
each job.

Scheduling can be offline if the full list of jobs is known before the scheduling decision,
or online when the scheduler decision is taken before the arrival of new jobs.

Classical offline scheduling policies include:

• ASAP or As Soon As Possible: executes the jobs in the order they came in, affecting
to each job to the first available compatible unit.

• ALAP or As Late As Possible: recursively builds a schedule from the finishing task
by assigning to each jobs the latest timestamp without breaking dependencies.

Scheduling using the abstract resource model From the abstract resource model,
we can deduce a schedule for each sub-task, which correspond to one of the ideal sched-
ules (i.e. a schedule resulting in the highest throughput) for batched computation of
independent executions.
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1 Function Execution_Time(P)
2 for j ∈ P do
3 for r ∈ R do
4 load[r] += ρj,r;
5 end
6 end
7 return max(load)

8 end

Algorithm 1: Naive scheduling using abstract resources

Lemma 2.1.1. Let us consider a program P composed of n jobs j0, ..., jn−1, each using
a set of resource ρ(j) ⊆ R. Then, the naive algorithm detailed in Alg. 1, illustrated on
Fig. 2.3 outputs the optimal average throughput of independent batched executions of P.

Proof. By contradiction.

⇒ Let σ be a schedule whose execution time τ is strictly lower than the output of Alg. 1.
Consider the resource r ∈ R of maximum load under Alg. 1 and τ ′ its associated
execution time. By definition of the abstract resource mapping,

∑
j∈P σjρj,r ≤ τ ,

but as
∑

j∈P σjρj,r = τ ′, τ ≤ τ ′ which contradicts our hypothesis.

⇐ Let τ be the maximum load over all resources after naive scheduling. Let us σa

be the ASAP schedule under resource constraints ignoring dependencies. Trivially,
its execution time is τ as only resources constraints the execution. Let us define σ

recursively such that:

– σ(j0) = σa(j0) (= 0)

– If there exists (j, j′) ∈ P2 such that j depends from j′ (we note j′ → j) and
σ(j′)+ lat(j′) > σa(j) (with lat(j′) a constant depending on the resource usage
of j′), then we define σ(j) = k · τ · σa(j) with k ∈ N such that the equality is
verified.

– Pipelined execution starts with an II of τ .

By construction, σ is legal: i) it respects dependence and ii) no resource is used
twice at the same timestamp, because the schedule modulo τ is the ASAP schedule,
thus respecting placement.

Now, let us take a steady pipelined execution of P using σ. As the execution is
in a steady state, the resource usage is the same as the ASAP schedule, with the
exception that some jobs are shifted by k. Therefore, the jobs executed during a
time window of size τ are exactly the ones composing one execution of P , so the
average throughput is 1/τ , which demonstrate the existence of a schedule reaching
the throughput predicted by Alg. 1.
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Assuming that the abstract resources cover a subset of the actual resources of the
modeled chip, then the execution time output by the naive scheduling is a lower bound
on the actual execution time, as the reserve part of the proof becomes false. However, in
the case when the execution time matches the actual execution time, then the abstract
resource model also pinpoints a possible bottleneck: the resource with the highest load.

Note that this schedule relies on the fact that amount of usage of each resources by
the chip and in the abstract resource model is the same. When this is not the case, such
as on superscalar CPUs, where an instruction may use some resource but not others, the
equivalence is less straightforward. Therefore, a complete proof of equivalence between
the abstract resource model and the usual CPU port model where resource usage is
defined with disjunctions (“or”) instead of conjunctions (“and”) is detailed in Chap. 5.1.

12



ASM µOpsFront-end

ins
tru
cti
on

sch
edu
led

Scheduler

Memory

Reorder
Buffer

EU

EU

EU

EU
ins
tru
cti
on

dec
od
edass

em
bly

ins
tru
cti
on

ins
tru
cti
on

ret
ire
d

Figure 2.4: Schematic view of a CPU and life cycle of an instruction

2.2 General CPU Architecture
Even though the general principles of CPU design have not changed since the first

8086 – executing a stream of instruction as fast as possible – several implementation
techniques have been developed to decrease overall execution time of programs, especially
on high-performance chips for which area and power consumption are less restricted:
cache, buffer, out-of-order execution, pipelining, prefetching, ... In this section, we will
focus on the resources used in the steady state execution of low memory footprint kernels,
i.e. ignoring the memory subsystem.

An instruction’s path in the CPU can be decomposed into three phases, illustrated
in Fig. 2.4: it is first decoded by the front-end and decomposed into simpler, machine-
specific µOPs. An instruction coming out of the decoder is also called issued. Then, it is
scheduled to an execution unit, before being retired, that is, evicted from the execution
pipeline.

2.2.1 Out-of-order Execution
Modern high-performance CPU architecture are out-of-order, which means that the

internal order of execution of the instruction may be different from the order in which
instructions are submitted. This allows the extraction of instruction-level parallelism:
depending on the dependence pattern, some instructions may be executed in parallel,
even though they are not present in a consecutive order in the program.

As a consequence, out-of-order CPUs must integrate supplementary components com-
pared to in-order ones:

• The Reorder Buffer, or ROB, is a buffer containing instructions that have been
decoded and that can potentially be executed.

• The Scheduler is a component that selects instructions whose dependencies are
satisfied from the ROB and assigns them to an execution port.

• Execution Ports are a hardware unit controlling several execution units, each capa-
ble of one arithmetic/logic or memory operation such as loading, storing, branching
or computing. Thus, a port is usually capable of performing a set of different oper-
ations, usually in a fully pipelined fashion.

13
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Usually, the peak performance of a superscalar pipeline is express as its Instructions
Per Cycle (IPC) rate, corresponding to the maximum number of instructions that may
be executed per clock cycle in a steady state. It is often limited by the size of internal
buses and not the number of ports: for example, the Intel Skylake architecture has 8
ports, but can only retire a maximum of 4 instructions per cycle.

As an example, AMD’s Zen3 architecture [11] integrates a ROB that stores up to 256
entries. A maximum of 6 instructions can be fetched by the schedulers, which dispatch
them to ports amongst the 14 integrated ones (8 for the integer / logical part, and 6 for
the floating point subsystem).

Note that even historically low-power chips such as Arm Cortex series have started to
converge to port-based architectures for their top-of-the line designs. For example, the
Cortex-A72, integrated in the Raspberry Pi 4, integrates an out-of-order pipeline with a
maximum throughput of 3 instructions per cycle [12].

2.2.2 Front-end
Decoding Stage

The decoding stage is the step that fetches data from global memory and extract
the instructions in the first predecode step. Then, the instructions are translated into
smaller, atomic, micro-instructions (also referred as µOPs), understandable by the CPU’s
execution units. The complexity of the front-end depends on the target ISA and the
performance objective of the processor: while simple microcontrollers operating on fixed-
size ISA have straightforward front-end implementations, modern instruction sets such
as Armv8a [13] or x86 [14] requires intricate logic.

For example, as illustrated in Fig. 2.5, Intel’s Skylake front-end is able to pre-decode
only aligned blocks of 32 bits [15], and decode at most five instructions per cycle. The
translation is then done by 4 decoders: 3 "simple" that are only able to output one
µOP, and 1 "complex" that can also decode multi-µOPs instructions. Note that the
complex decoder always decodes the first instructions in given by the predecoder, leading
to potential stalls on complex assembly code.

To avoid multiple decoding of the same instructions, CPU designers have implemented
a micro-instruction cache called µOP-cache or DSB (Decoded Stream Buffer), subject to
multiple restrictions [16].
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Branch Prediction

One of the major sources of potential stalls in modern microprocessors is conditional
branch instruction. Indeed, in this case, the next code section is unknown and a simple
CPU must wait for it to be computed before actually starting its execution.

As branches represents in average around 20% of the total instruction mix of pro-
grams [17], CPU architects have developed branch prediction mechanisms to guess the
branch destination before its actual computation, and speculate the rest of the execution
until validation of the branch target address. If the guess is validated, then instructions
are committed at no cost and execution can continue. In the other case, a misspre-
diction occurs and speculated instructions’ side effects have to be reverted, triggering a
performance penalty whose amount typically ranges around 10 to 20 cycles in modern
superscalar CPUs. Until 2018, speculative treatment of data was considered safe, but it
was shown with the vulnerabilities Meltdown and Spectre [18, 19] that this is not the
case.

With CPUs now being able to execute more than 4 instructions in parallel thanks
to their out-of-order paradigm, and ROB capacity now reaching 512 entries (in Intel
Alder Lake [20]), this means that branch predictors have to correctly predict around one
hundred branches in order not to be a bottleneck. Due to this reason, branch prediction
remains a hot research topic [21, 22, 23], even though this manuscript concentrates on
throughput measurements and ensure perfect operation of the branch predictor in most
of its experiments.

2.2.3 Instruction Set Extensions
To improve CPU efficiency on domain-specific computing, instruction set extensions

have been developed: new instructions that do not interfere with the base ISA, but which
triggers custom logic to improve computing speed. Examples include vector extensions of
the x86 ISA, SSE and AVX, now a de facto standard of the x86_64 instruction set; but
also less known variations such as Intel’s GFNI [24] to improve Gallois fields computations
or TSX for transactional memory support.

ISA extensions may or may not introduce new resources depending on their imple-
mentation. For example, AVX instructions are advised by Intel not to be mixed with the
older SSE instructions it supersedes, as this causes further latency [25]. On the opposite,
VNNI [26], an x86 extension dedicated to machine learning, builds on the top of the
already existing AVX-512 extension set, thus requiring no supplementary resources.
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Throughput Optimization for
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Chapter 3
Throughput Performance Models for
Superscalar Architectures

With CPUs becoming more and more complex, cycle-accurate simulators have stopped
being able to accurately reproduce the execution path of programs on high-performance
architectures. While RTL simulation (wire-level modeling of all chip components) can
theoretically achieve such objective, its prohibitive time overhead limits in practice its
usage to small microcontrollers or internal CPU subparts.

However, the need of fast yet precise performance models is real, especially in the
context of performance debugging, where the objective is to pinpoint the code region
responsible for slowdowns and, ideally, offer optimization advice. This chapter covers
in Sec. 3.1 various techniques aiming at constructing automatically performance models
for superscalar CPUs by explicitly recovering per-instruction port usage. Then, Sec. 3.2
presents the theoretical foundations of our abstract resource decomposition built upon
the model presented in Sec. 2.1, as a conjunctive resource mapping instead of the usual
disjunctive one. This way, abstract mapping can supersede former works thanks to an
easy expression of microbenchmarks’ throughput as well as a flexible representation of
existing bottlenecks. Finally, Sec. 3.3 presents the modifications done to the Pipedream
library [27] in order to obtain an accurate microbenchmark-based throughput measure-
ment infrastructure.
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3.1 State of the Art
The most straightforward idea when building a performance model of a CPU is to

stick to some level of simulation by predicting the behavior of some hardware units while
ignoring or approximating others. As a consequence, these approaches often require out-
of-the-box information about CPU’s architecture and rely on hardware-specific tools such
as performance counters.

3.1.1 Performance Counters Derived Models
Performance counters are particularly useful for microarchitectural performance mod-

eling as they provide an on-chip infrastructure for micro-architectural event measure-
ments. Initially built for chip debuging and testing, performance counters are now usable
for performance optimisation in tools such as Perf [28] or PAPI [29]. On Intel CPUs, ded-
icated counters exist to provide the number of µOPs that used each port in one section
of the program, which can be used to characterize the port usage of every instruction.

First attempts to measure the latency and throughput of x86 instructions where led
by Agner Fog [16] and Granlund [30] using hand-written microbenchmarks. Each bench-
mark is composed of the dependence-free repetition of one or several instructions, and
performance counters to measure cycles and port usage of each type of instruction as well
as their variation. This method proved to be successful for the majority of consumer-
available x86 CPU form Intel, AMD and VIA. Fog’s mappings are considered by the
community to be quite accurate. For example, the machine model of the x86 back-end
of the the LLVM compiler framework [31] is partially based on them [32].

However, Fog’s and Granlund’s approach using microbenchmarks and manual analysis
is tedious and error-prone, since modern CPU instruction sets have thousands of different
instructions with complicated interactions. Abel and Reineke [33, 34] have tackled this
problem by designing an automatic microbenchmark generator detecting instructions
that saturate individual ports, and using them to deduce overall resource usage thanks to
hardware counters. They recently also started providing data on the newest generations
of AMD CPUs, but since those do not have the required hardware counters, Abel and
Reineke only publish port mappings derived from the documentation, and throughput /
latencies resulting from measurements.

This work has been reused in uiCA [15], an instruction-level simulator relying on an
accurate port mapping, but also making extensive use of microbenchmarks [35, 36] to
deduce information about Intel-specific microarchitectural details such as behavior of the
predecoder, activation condition of the µOP cache or implementation of the ROB.

Another direction of research was explored by PMEvo [37]: a tool that automati-
cally generates semi-randomly a set of benchmarks that is uses to build a port mapping.
Thought PMEvo does not require hardware performance counters as it only relies on
runtime measurements of its benchmarks, its goal still lies in the automated generation
of an architecture-derived port mapping.
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3.1.2 Proprietary and Ad-Hoc Tools
Intel has developed a static analyzer named IACA [25] which uses its internal map-

ping based on proprietary information. However, the project is closed-source and has
been deprecated since April 2019. Even though some latencies are given directly in the
documentation [14], they are known to contain errors and approximations, in addition to
being incomplete.

OSACA [38], is an open source alternative to IACA that offers a similar static through-
put and latency estimator. It relies on automated benchmarks manually linked with
publicly available documentation to infer the port mapping and the latencies of the in-
structions. The tool Kerncraft [39] focuses on hot loop bodies from HPC applications
while also modeling caches; its mapping comes from automated benchmarks generated
through Likwid [40] and hardware counters measurements. CQA [41], a static loop an-
alyzer integrated into the MAQAO framework [42], takes a similar path while also sup-
porting OpenMP routines. It combines dependency analysis, microbenchmarks, and a
port mapping and previous manual results to offer various types of optimization advice
to the user, such as vectorisation, or how to avoid port saturation. Both Kerncraft and
CQA use a hardcoded port mapping based on Fog’s work and official Intel and AMD
documentation.

As the LLVM compiler needs internally a performance model in order to evaluate its
output quality, it now ships with a derived stand-alone tool, llvm-mca [43], dedicated
to assembly-level execution time prediction. Because of the constraints that comes with
a compiler infrastructure, llvm-mca relies on a simple CPU model including a decoding
stage, a queue and an execution stage based on ad-hoc ports mapping (either taken from
other academic work or from vendor documentation).

Besides the classic port mappings, machine learning based approaches have also been
used to approximate the throughput of basic blocks with good accuracy. Ithermal [44]
uses a deep neural network based on LSTM as a ”black box“ to predict the execution
time of basic blocks, trading understanding of the model for accuracy. Followingly, the
resulting model is completely opaque and cannot be analyzed or used for any other
purpose than the prediction of basic block throughputs. For example, Ithemal does not
output instruction-based feedbacks, i.e. detail reports of the influence of each instruction,
which is critical for manual assembly optimization.

However, Ithemal has been reused as a differentiable surrogate in DiffTune [45] for
the optimization of llvm-mca [43]. The neural network, enriched with llvm-mca’s internal
parameters, is trained on simulated measurements through convex optimization; then
the trained network is used as a black box predictor to fine-tune the microarchitectural
parameters.

3.1.3 Comparison with the Abstract Resource Model
Models derived from the port mapping topology, while able to accurately predict

the execution of pipelined instructions bottlenecked only on the execution ports, cannot
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represent other bottlenecks like the reorder buffer, or the non-pipelined instructions like
division. To remedy these issues, port mapping are used as the backbone of both simula-
tors, but enriched with other components in order to simulate the complete behavior of
CPUs. We claim that a simpler approach is possible by the use of abstract resources when
only dealing with instructions throughput. We detail further this approach in Chap. 4.

The other techniques relies on black-box models, either because of proprietary infor-
mation or machine learning. While being competitive from the view of pure accuracy, the
fact that they do not output hints about bottleneck nor potential improvements made
them impractical for real-world performance optimization. Moreover, CPU documenta-
tion and vendor tools are known to contain errors and bugs [15, 16, 30], both because
of human factors and deliberate obfuscation to protect designers’ intellectual properties.
This calls for automated, benchmark-driven performance models in order to keep up
with the growing number of CPU microarchitectures available on the High Performance
Computing domain.

While the idea of using performance counter may seem well-founded, they reveal to
be in practice not reliable enough to build performance models. Indeed, as they were
build initially for CPU debugging, they are known to be buggy, ill-documented, and
specific to one vendor, if not one architecture [14]. For example, AMD’s implementation
of performance counters does not match Intel’s one, and Arm’s ecosystem is even less
developed – in the case where they exist. This calls for a performance model build on
the simplest form of measurement that is integrated in CPUs: time, and nothing else.

Of all the models presented in Sec. 3.1.1 and Sec. 3.1.2, PMEvo is the one that
resemble the work presented in this part the most, as it satisfies both constraint of not
being automated and only relying on time measurements. However, one of the most
significant flaw of PMEvo’s approach lies in its handling of a large set of instructions
for the mapping (i.e., all available), which may lead to quickly explode the number of
microbenchmarks as they are selected by evolutionary algorithms. Due to the simplicity
of the expression of throughput with the abstract resource model (see Sec. 2.1.3), an
approach based solely on this model is more likely to scale well with respect to the
number of instructions in the ISA.
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3.2 Conjunctive and Disjunctive Resource Mapping
To characterize the throughput of each individual instruction, a description of the

available resources and the way they are shared is needed. As seen in Sec.3.1, the most
natural way to express this sharing is through a port mapping, that is, a tripartite graph
that describes how instructions decompose to µOPs and assigns µOPs to execution ports
(see Fig. 3.1a). The goal of existing work has been to reverse engineer such a port mapping
for different CPU architectures.

The first level of this mapping (from instructions to µOPs) is conjunctive, i.e., a given
instruction decomposes into one or more of each of the µOPs it maps to. However, the
second level of this mapping, on the other hand, is disjunctive, i.e. a µOP can choose to
execute on any one of the ports it maps to. Even with hardware counters that provide
the number of µOPs executed per cycle and the usage of each individual port, creating
such a mapping is challenging and requires a lot of manual effort with ad hoc solutions
to handle all the cases specific to each architecture [46, 16, 30, 33].

In this section, we present an intuition of the main advantage of the conjunctive ab-
stract resource representation: its ability to predict straightforwardly throughputs equiv-
alent to usual disjunctive mapping, with a simple correspondence in the case of port
mapping representations.

3.2.1 Tripartite and Bipartite Port Mapping
Such hardware-derived approaches, while powerful and allowing a semi-automatic

characterization of basic-block throughput, suffer from several limitations. First, they
often assume that the architecture provides the required hardware counters. Second,
they only allow modeling the throughput bottlenecks associated with port usage, and
neglect other resources, such as the front-end or reorder buffer. Thus, it provides a
performance model of an ideal architecture that does not necessarily fully match reality.

To overcome these limitations, we restrict ourselves to only using cycle measurements
when building our performance model. Not relying on specialized hardware performance
counters may complicate the initial model construction, but in exchange our approach is
able to model resources not covered by hardware counters with relative ease. This also
paves the way to significantly ease the development of modeling techniques for new CPU
architectures. One of the main challenges is to generate a set of micro-benchmarks that
allows the detection of all the possible resource sharing. Unfortunately, to be exhaus-
tive, and in the absence of structural properties, this set is combinatorial: all possible
mixes of instructions need to be evaluated. A simple way to reduce the set of micro-
benchmarks required is to reduce the set of modeled instructions to those that are emit-
ted by compilers [44, 37]. Another natural strategy followed by Ithemal [44] is to build
micro-benchmarks from the “most executed” basic-blocks of some representative bench-
marks. A third strategy, used by PMEvo [37], is to restrict micro-benchmarks to contain
repetitions of only two different instructions.
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Figure 3.1: Mappings computed for a few SKL-SP instructions.

The second main challenge addressed by PMEvo is to build an interpretable model,
that is, a resource-mapping that can be used by a compiler or a performance debugging
tool, instead of a black-box only able to predict the throughput of a microkernel. One
issue with the standard port-mapping approach, as used in [33, 38, 43], is that computing
the throughput of a set of instructions requires the resolution of a flow problem; that is,
given a set of micro-benchmarks, finding a mapping of µOPs to ports that best expresses
the corresponding observed performances requires solving a multi-resolution linear opti-
mization problem. This linear problem also does not scale to larger sets of benchmarks,
even when restricting the micro-benchmarks to only contain up to two different instruc-
tions. PMEvo addressed this issue by using a evolutionary algorithm that approximates
the result.

3.2.2 Dual Representation of a Disjunctive Mapping
Our approach is based on a crucial observation: a dual representation exists for which

computing the throughput is not a linear problem, but a simple formula instead. While
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Figure 3.2: Disjunctive port assignment examples

it takes several hours to solve the original disjunctive-port-mapping formulation, only a
few minutes suffice for the corresponding conjunctive-resource-mapping formulation.

For the sake of illustration only let us consider the Skylake instructions restricted to
those that only use ports 0, 1, or 6 (denoted as p0, p1, and p6). Fig. 3.1a shows the
port mapping for six such instructions. In this example: the µOP of BSR has a single
port p1 on which it can be issued; as for instruction ADDSS, its µOP can be issued on
either p0 or p1. Hence, BSR has a throughput of one, that is, only one instruction can
be issued per cycle, whereas ADDSS has a throughput of two: two different instances
of ADDSS may be executed in parallel by p0 and p1. The throughput of the multiset
K = {ADDSS2, BSR}, more compactly denoted by ADDSS2BSR, is therefore determined by
the combined throughput of resources p0 and p1. Indeed, in a steady state mode, the
execution can saturate both resources by repeating the pattern represented in Fig 3.2a.
In this case, there clearly does not exist any better scheduling, and the corresponding
execution time for K is 3 cycles for every 6 instructions, that is, an Instruction Per
Cycle (IPC) of 2. Now, if we consider the set ADDSS BSR2, its throughput is limited by
p1. Indeed, the optimal schedule in that case would repeat the pattern represented in
Fig 3.2b, which requires 2 cycles for 3 instructions, that is, an IPC of 1.5. More generally,
the maximum throughput of a multiset on a tripartite port-mapping can be solved by
expressing the minimal scheduling problem as a flow problem.

The dual representation, advocated in this section, corresponds to a conjunctive bi-
partite resource mapping as illustrated in Fig. 3.1b. In this dual mapping, an instruction
such as ADDSS which uses one out of two possible ports p0 and p1 only uses the abstract
resource r01 representing the combined load on both ports, and uses neither r0 nor r1.
Therefore, the maximum throughput of r01 is the sum of the throughput of p0 and p1,
that is, 2 uses per cycle. Instructions that may only be computed on p0 then uses r0 and
r01, along with all other resources combining the use of p0 with other ports such as r06
and r016. It follows that the average execution time of a microkernel is computed as the
maximum load over all abstract resources, that is, their number of uses divided by their
throughput (as demonstrated in Sec. 2.1.3). We prove in Sec. 5.1.2 the strict equivalence
between the two representations without the need for any combinatorial explosion in the
number of combined resources. Because of this property, the trade-off offered by the con-
junctive formulation (more resources for a simpler throughput computation) offers better
overhaul solving complexity that former disjunctive-based approaches for real processors,
hence the better scalability of Palmed. Indeed, in practice, some combined resources
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are not needed (e.g. r16 in our example) as their usage is already perfectly described by
the usage of individual resources (here, r1 and r6).

A key contribution of this chapter is to provide a less intricate two-level view, that
can be constructed quicker than previous works. Instead of representing the execution
flow as the traditional three-level “instructions decomposed as micro-operations (micro-
ops) executed by ports” model, we opt for a direct “instructions use abstract resources”
model. Whereas an instruction is transformed into several micro-ops which in turn may
be executed by different compute units; our bipartite model strictly uses every resource
mapped to the instructions. In other words, the or in the mapping graph are replaced
with and, which greatly simplifies throughput estimation. This representation may also
represent other bottlenecks such as the instruction decoder or the reorder buffer as other
abstract resources. Note that this corresponds to the user view, where the micro-ops and
their execution paths are kept hidden inside the processor.
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3.3 Code Generation for Accurate Throughput Mea-
surements

All performance numbers presented in the next chapters results from the usage of the
Pipedream [27] benchmarking library realized by Fabian Grüber. Initially, its goal was
to generate assembly microbenchmark (dependence-free sequence of assembly instruc-
tions) to be characterized using a set of performance counters, and eventually to reverse
engineer port mappings. We modified it to even facilitate its usage for throughput mea-
surement, with the following changes:

• Support of the Armv8a instruction set.

• Support of only one performance counter: the one measuring CPU cycles, widely
available on any high-performance architecture, either using PAPI [29] or Linux’
Perf [28].

• Limitation of the effects of the pre-decoder bottleneck on recent Intel microarchi-
tectures (Sec. 3.3.1).

• Limitation of the dependences between different instructions (Sec. 3.3.2).

Though still containing limitations, discussed in Sec. 3.3.3, the modified Pipedream
benchmarking library has proven to be mature enough to be the back-end of our reverse-
engineering framework detailed in Chap. 4.

3.3.1 Padding Microkernels of Multiple Instructions
The predecoder is the hardware component in charge of extracting instructions from

the program’s binary once mapped into memory. On recent Intel microarchitectures [15],
this pre-decode stage is operating on aligned chunks of 16 bytes, with a maximum rate of
5 instructions per cycles. When more than 5 instructions are present in the chunk, only
the first 5 are decoded (in one cycle), and the next (up to 5) instructions of the same
block are then decoded. This may create bottlenecks on codes where 6 instructions are
present on a 16-byte segment, such as XOR_R32_R32. This instruction performs an bitwise
exclusive or of two registers, storing the result in on of the operands, often used to zero
out registers. In assembly, it requires 3 bytes, leading to a theoretical maximum of 5.33
instructions per 16-byte boundaries, thus saturating the pre-decoding stage. However,
this will result in actual performance degradation, as this instruction translates to a single
µOP: due to the retired queue bottleneck, its final IPC is reduced to 4.

To avoid biased measurements by Pipedream, we pad our micro-kernels with NO-OP:
instructions of variable size without any port usage, in order to maintain a 16-byte align-
ment of the benchmarked instruction. However, these NO-OP still take room at the pre-
decoder level: therefore, its systematic usage results in worse performances than the
non-padded version.

Therefore, we only pad benchmarks consisting in the repetition of a "large" number
of instructions, for example 10 times ADDPD and 11 times LEA, for which the alignment of
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the kernel is crucial for performance. Indeed, the total number of instructions generated
by Pipedream in its main execution loop is small to avoid hitting the instruction cache
bandwidth (in practice, ≃200 instructions), which induce a small number of effective
repetitions of the measured kernels; hence worsening the effect of misalignment on the
performance.

Experimentally, we added padding to benchmark that consists in the repetition of
more than 20 instructions in order to align each repetition of the kernel in order to
mitigate this effect.

3.3.2 Generation of Basic Blocks with no Dependencies
We found that the default register allocator of Pipedream was not well-suited for

throughput measurements when instructions of different throughput were used together.
By default, the Minimize_Deps_Register_Allocator used for throughput measure-

ments has a straightforward approach: one register is used for all register read operands,
one is used if needed as the base address for memory loads / stores, and the other available
registers are used in a round-robin fashion in order to maximize assembly-level reuse dis-
tance. However, when two different instructions are benchmarked together with different
resource usage profile, situations may happen where this behavior creates dependencies
between each instruction type, as illustrated in Fig. 3.3. In this case, the measured
IPC does not reflect only back-end resource usage of the instructions, but is polluted by
dependencies.

We mitigate this effect with the Minimize_Deps_Pooled_Register_Allocator: for
each instruction type and each written operand, a pool of registers is attributed, with size
proportional to its relative number in the measured microkernel (with a minimum of 1).
A single register is still used for operands that are only read, but registers used as des-
tinations for writes are taken from the instruction’s pool, thus removing any dependence
between instructions of different types. The idea here is to be resilient to any value of the
instructions’ IPC: no write-after-write dependency syntactically exists between the differ-
ent instructions. Between instructions of the same type, write-after-write dependencies
do not result in any constraints, as all instructions are executed at the same speed: when
the size of the pool exceeds the number of register written per cycle, there is no reason
for the CPU to stall to enforce coherency of the register file1. This is especially useful in
cases where read and writes happens to memory, as one register is also reserved for the
base memory address2, decreasing the number of register available for the destinations.

Fig 3.3 shows the effect of the allocation on a benchmark of the form S4SII , used in
Palmed to detect the resource used by I (here ROL). While no WaW dependencies exists

1While modern high-performance CPUs integrate register renaming in order to mitigate stall induces
by dependencies such as WaW, this is not the case for all processors, especially on power-efficient ones
where the number of available registers is reduced to save area.

2The former implementation used two registers: one for memory reads, the other for memory writes,
whereas our improved version relies on integer offsets to access different memory cells when possible.
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1 # ----- unroll 0
2 orq (%rsi), %rdx
3 orq 64(% rsi), %rcx
4 orq 128(% rsi),

%rbx
5 orq 192(% rsi),

%rax
6 rol $1, %r15
7 # ----- unroll 1
8 orq 256(% rsi),

%r14
9 orq 320(% rsi),

%r13
10 orq 384(% rsi),

%r12
11 orq 448(% rsi),

%r11
12 rol $1, %r10
13 # ----- unroll 2
14 orq 512(% rsi), %r9
15 orq 576(% rsi), %r8
16 orq 640(% rsi),

%rdx
17 orq 704(% rsi),

%rcx
18 rol $1, %rbx
19 # ----- unroll 3
20 orq 768(% rsi),

%rax
21 orq 832(% rsi),

%r15
22 orq 896(% rsi),

%r14
23 orq 960(% rsi),

%r13
24 rol $1, %r12
25 # ----- unroll 4
26 orq 1024(% rsi),

%r11
27 orq 1088(% rsi),

%r10
28 orq 1152(% rsi),

%r9
29 orq 1216(% rsi),

%r8
30 rol $1, %rdx

(a)

1 # ----- unroll 0
2 orq (%rsi), %rdx
3 orq 64(% rsi), %rcx
4 orq 128(% rsi),

%rax
5 orq 192(% rsi),

%r10
6 rol $1, %rbx
7 # ----- unroll 1
8 orq 256(% rsi), %r9
9 orq 320(% rsi), %r8

10 orq 384(% rsi),
%rdx

11 orq 448(% rsi),
%rcx

12 rol $1, %r15
13 # ----- unroll 2
14 orq 512(% rsi),

%rax
15 orq 576(% rsi),

%r10
16 orq 640(% rsi), %r9
17 orq 704(% rsi), %r8
18 rol $1, %r14
19 # ----- unroll 3
20 orq 768(% rsi),

%rdx
21 orq 832(% rsi),

%rcx
22 orq 896(% rsi),

%rax
23 orq 960(% rsi),

%r10
24 rol $1, %r13
25 # ----- unroll 4
26 orq 1024(% rsi),

%r9
27 orq 1088(% rsi),

%r8
28 orq 1152(% rsi),

%rdx
29 orq 1216(% rsi),

%rcx
30 rol $1, %r12

(b)

Figure 3.3: Example of assembly kernels and resulting dependencies produced by the old (a)
and the new (b) allocator for four ROL (quadword or register/memory) and one ORQ (register
rotation left of a constant factor 1)
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Figure 3.4: µOPs generated for SSE vector add (VADDPD) with one operand from memory
(M128) and two register operands (XMM) and associated latency

between ROL and ORQ in Fig. 3.3b (i.e., register writes are guaranteed to happen in-order),
the register rbx is used in Fig. 3.3a on line 4 by ORQ and line 18 by ROL. Therefore,
cases where the latency of ORQ latency is higher than the number of cycles needed to
start the execution of the 11 in-between instructions will trigger a WaW dependency,
therefore triggering additional mechanisms inside the CPU, potentially adding noise to
our measurement.

3.3.3 Limitations of the Code Generator
Complex Addressing Patterns Due to software architecture decision, some variation
of instructions are not supported, such as:

• x86 Instructions using a register as scale operand of a memory location, e.g. ADD
rax, [rbx + 4*rcx]. As they are used in practice by compilers to access attributes
in arrays of struct or multi-dimensional arrays, this problem needs to be solved for
real-world usage of Pipedream.

• Instructions using the instruction pointer as operand.

• Instruction with side-effect on the control flow, i.e. branches.

Latency measurements As Pipedream is build as throughput benchmark genera-
tion library, the notion of latency is not easily measurable as it definition is not as clear as
it may seem. Indeed, while latency is often considered as an instruction-bound constant,
this is not true in practice. Depending on the number of µOPs an instruction generates
and the order of availability of its source operands, an instruction can have different
latency profile, as described in [33]. Indeed, the latency of an instruction is defined as
the minimum number of cycles between the availability of all its source operand and the
availability of its results. In the case of an instruction being decomposed into several
micro-ops, as illustrated in Fig. 3.4, the latency can vary between being the sequence of
two µOPs (typically a load and a computation), or only one µOP (the computation) if the
µOP fetching value from memory is not on the critical path of the program, depending
on the sequence of µOPs considered.
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As of now, Pipedream is not able to generate microbenchmarks maximizing operand-
specific critical path, and can only maximize register-to-register or memory-to-memory
dependencies by reusing the same register / memory location in all instructions. This also
means that register-to-memory and memory-to-register dependencies cannot be taken into
account at all, due to the lack of automated detection of low resource usage instruction
converting register to memory.
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Chapter 4
Palmed: Efficient Automated
Characterisation of Throughput in Superscalar
Architetures

In this chapter, we present Palmed: a CPU back-end characterisation tool, built
upon the theoretical foundations described in Chap. 3 and the abstract model defined in
Sec. 2.1. Its goal is to propose a simple, microbenchmark-driven CPU resource model, as
described in Tbl. 4.1.

This chapter starts with a complete overview of the Palmed framework in Sec. 4.1,
then details each of the major steps of the algorithm: first in Sec. 4.2, how we narrow
the ISA to select a few representative instructions. Then, two flavors of Palmed are
presented: an exact formulation, which does not converge sufficiently fast in practice
(Sec. 4.3), and a fast but inexact one (Sec. 4.4). Finally, both versions are evaluated in
Sec. 4.6 on a simulated, ideal machine and on real ones.

Table 4.1: Summary of key features of Palmed vs. related work

no HW no manual interpretable generalcounters expertise

llvm-mca [43] ✗ ✗ ✓ ✓

Ithemal [44] ✓ ✗ ✗ ✗

IACA [25] N/A ✗ ✓ ✓

uop.info [33] ✗ ✗ ✓ ✓

PMEvo [37] ✓ ✓ ✓ ✗

Palmed ✓ ✓ ✓ ✓
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Figure 4.1: High-level view of the algorithms of Palmed

4.1 Complete Flow of Palmed
Fig. 4.1 overviews the major steps of Palmed, which are extensively described in the

following sections. Our algorithm follows an approach similar to the one developed by
uops.info: its principle is to first find a set of basic instructions producing only one µOP
and bound to one port.

This first step can be done on Intel CPUs by measuring the µOP per cycle on each
port for each instruction through performance counters. This approach will not be tackled
here, as it contradicts our goal of non-dependence toward CPU vendors.

Those basic instructions are then used to characterize the port mapping of any general
instruction by artificially saturating one-by-one each individual port and measuring the
effect on the usage of the other ports. The challenge addressed by Palmed is to find a
mapping, even for architectures that do not have such hardware counters.

This translates in two major hardships: firstly, in our case, there is no predefined
resources; secondly, there even is no simple technique to find the number of µOPs an
instruction decomposes into. As illustrated by Fig. 4.1 the algorithm of Palmed is
composed of three steps: 1. Find basic instructions; 2. Characterize a set of abstract
resources (expressed as a core mapping) and an associated set of saturating microkernels
(a single instruction might not be enough to saturate a resource); 3. Compute the resource
usage of each other instruction with respect to the core mapping.

As an example, let us consider x86 instructions using only p0, p1, or p6 on Intel’s Sky-
lake microarchitecture; there exists 754 of such benchmarkable instructions. Quadratic
benchmarking – that is, measuring the execution time of one benchmark per pair of in-
struction, leading to a quadratic number of measures (567762) – allows us to regroup
those of similar behavior together, leading to only 9 classes of instructions. For each class,
a single instruction is used as a representative. Among those instructions, two heuristics
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(described in sec 4.2) select the set of basic instructions, outputting DIVPS, BSR, JMP,
JNLE, and ADDSS.

Fig. 3.1b shows the output of the Core Mapping stage in Fig. 4.1. In practice, abstract
resources are internally named R0, . . . , R5. For convenience we renamed them to the
hardware execution ports they correspond to: for example, the abstract resource r01
corresponds to the combined use of port p0 and p1 for an optimal schedule.

The core mapping also computes a set of saturating micro-benchmarks that individ-
ually saturate each of the individual abstract resource. Here, each basic instruction will
constitute by itself a saturating micro-benchmark: DIVPS will saturate r0, BSR will sat-
urate r1, JMP will saturate r6, ADDSS will saturate r01, and JNLE will saturate r06. Note
that this is not the case in general: we possibly need to combine several basic instructions
together to saturate a resource. Here, the saturating micro-benchmark for resource r016
is composed of two basic instructions: ADDSS and JNLE. The last phase of our algorithm
will, for each of the 742 remaining instructions, build a set of micro-benchmarks that
combine the saturating kernels with the instruction, and compute its mapping.
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4.2 Selection Heuristics
The first step of our algorithm trims the instruction set to extract a minimal set for

which the mapping will be computed using a linear programming solver. As this (core)
mapping will be reused later, we need enough instructions to detect all resources, but the
more instructions we have, the longer the resolution of the linear problem this mapping
will take. We thus first apply three filters that reduce the number of basic instructions,
as depicted in Algo. 2.

4.2.1 How not to Benchmark the Whole ISA
Keeping High IPC instructions

If a < 1 (measured with a microbenchmark repeating only a), then a is not consider as
a candidate for basic instructions. Assuming every physical resource to have a through-
put of 1, such instructions use one resource more than once. However, these low-IPC
instructions are still mapped at the very last step of Palmed (see Sec. 4.5).

Then, we compute, for every remaining pair of instruction (a, b), the throughput of
the microkernel aabb. This set of benchmarks is called quadratic benchmarks (see Fig. 4.1)
as their number is quadratic with respect to the number of instructions. These quadratic
benchmarks are later reused in the following heuristics.

To speed up measurements, we parallelize the measurements of the quadratic bench-
marks on all available cores of our tested CPU (simultaneous multi-threading disabled)
using one process per core. Indeed, as only single core performance matters and no share
data is used between benchmark, this technique allow full usage of the available process-
ing power without disadvantages. While the CPU may throttle under high load due to
power consumption or thermal limits, our measurements are not significantly modified
by such behavior as we report time as clock cycles for instructions that do not tamper
neither with memory nor with uncore units. Therefore, throttling – which imply decrease
of the operating frequency – do not modify these measurements, as they are only linked
to internal microarchitectural parameters.

Equivalence Classes

If ∀p, aapp = bbpp then it is useless to keep both a and b. Therefore, this second
filter removes duplicates, that is, if two instructions behave similarly with regard to the
evaluation used for our basic instruction selection, then one of them can be ignored. Ob-
viously, on a real machine, despite all the crucial efforts to remove execution hazards,
the measured IPCs never perfectly match and the correct criteria for selecting a repre-
sentative instruction for duplicates should approximate the equality test ∀p, aapp ≈ bbpp.
The construction of equivalence classes and associated representative instructions in this
context uses hierarchical clustering [47]. We cluster all remaining instructions in multiple
hierarchical clustering by varying the number of clusters while keeping a reasonable size
(between 50 and 200 in our experiences), and retain the cluster of maximal silhouette.
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1 Function Select_basic_insts(I, n)
2 IF := I;

// Remove low-IPC; compute eq. classes
3 foreach a ∈ IF do
4 if a ≤ 1− ϵ then IF := IF − {a} ;

5 if ∃b ∈ IF , ∀p ∈ I, aapp = bbpp then
6 IF := IF − {a}
7 end
8 end

// Select very basic instructions
9 foreach a ∈ IF do

10 Dj[a] :=
{
b ∈ IF , aabb = a+ b

}
11 end
12 let a <VB b ⇔
13 (|Dj[a]| > |Dj[b]|) ∨

(
|Dj[a]| = |Dj[b]| ∧ a > b

)
;

14 IVB := ∅;
15 for a ∈ IF in <VB order do
16 if IVB ⊂ Dj[a] then IVB := IVB ∪ {a} ;
17 if |IV B| = n then return IB := IV B;
18 end

// Select most greedier instructions
19 IMG := ∅;
20 for a ∈ IF in ≼greedier order do
21 IMG := IMG ∪ {a};
22 if |IV B ∪ IMG| = n then return IB := IVB ∪ IMG;
23 end
24 return IB := IVB ∪ IMG;
25 end

Algorithm 2: Set of basic instructions IB

Finally, we select the most representative instruction by taking the one closest to the
centroid of each instruction class.

As seen in Sec. 2.2.3, the benchmarked ISA may be broken down into a initial set
of instructions, complemented by extensions, for example vector instructions, that add
further compute capabilities to the CPU. As conflicts may happen while mixing instruc-
tions of different extensions (such as AVX and SSE on some Intel CPUs), we apply our
equivalence class filter independently to each set of extension as well as the original ISA.

Once low IPC instruction duplicates have been removed, the selection relies on two
criteria (as detailed in Algo. 2): max clique and min order.

4.2.2 Max Clique: Very Basic Instructions

Instructions a and b are considered disjoint if aabb = a + b ; case in which their IPC
is said to be additive. The set of very basic instructions is defined as a maximal clique of
disjoint instructions, as illustrated in Fig. 4.2. This captures instructions that maps to a

34



ANDNPS
(XMM, XMM)
1*p015

PADDQ
(MM, MM)
1*p05

LEA_B
(R32)
1*p15

ADDSS
(XMM, XMM)

1*p01

BSR
(R16, R16)

1*p1

UNPCKHPS 
(XMM, XMM)

1*p5

 DIVPS
(XMM, XMM)

1*p0

ROUNDPD
(XMM, XMM)

2*p01

DPPD
2*p01+
1*p5

Figure 4.2: Example of Max Clique instructions selection with instruction and port usage from
Intel’s Skylake microarchitecture. Blue instructions are selected instructions, edges symbolize
instructions with additive IPC.

single resource. Indeed, two instructions that do not share any resource will have their
IPC additive, thus belonging to the maximum clique of our graph. This selection tech-
nique is formally proved to converge (assuming the existence of single-resource saturating
instruction) in Sec. 5.2.2.

Note that, in practice, max clique is applied only on instructions belonging to the
base ISA, as, on all tested architectures, extensions were not using new execution ports,
but only reuse existing ones. This decision makes sense from a high-level point of view, as
the instructions of extensions are supposed to be used in some parts of programs. Using
dedicated executions paths for these instructions to allow concurrent execution with any
other instruction is a costly design decision, which would be beneficial only if the new
instruction were to be used in nearly all parts of any program, which is not the case in
practice.

4.2.3 Min Order: Most Greedier Instructions
Instruction a is considered more greedier than b (we note a ≼greedier b) if ∀p, aapp ≥

bbpp. This relation defines a pre-order, and we select the n most greedier instructions
(the bigger is n the more complete is the core mapping but also the more complex is the
linear program) as output of this filter.

This selection filter is formally proved to converge to a set of instruction saturating a
single resource in Sec. 5.2.3, under condition of existence of these instructions.

In practice, we apply the Min Order filter to every instruction set extension separately,
as the distribution of execution units for new instructions is unknown. For example, on
Skylake, ports p0, p1, p5 and p6 may perform arithmetic operation on integers, which
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Figure 4.3: Example of Min Order instructions selection with instruction and port usage from
Intel’s Skylake microarchitecture. Edges symbolize the pre-order relation between instructions.

translates to a single resource R0156 on the abstract resource model. However, AVX-512
integer instructions of the Skylake-SP microarchitecture only use a subset of these ports
(p0 and p5, linked to the R05 abstract resource), and they are the only one to do so in the
whole ISA. Therefore, separate treatment of extensions allow to find these R05-saturating
instructions while avoiding the selection of other instructions. Without this trick, a larger
n value would be required, polluting the selected instructions with other, non-necessary
ones.

36



4.3 Finding the Exact Core Mapping
After having selected the basic instructions from the Max Clique and the Min Order

filters, the challenge is now to find the complete mapping for these instructions, named
Core Mapping. In that goal, we propose a two-step approach, based on a Linear Pro-
gramming (LP) formulation. The first step determines the number of resources present
in the CPU with an iterative process that tries to saturate each resource. The second
step determines the edge values, that is, the amount of use of each resource by each
instruction. Finally, we select for each instruction a saturating benchmark, that we use
on every remaining instruction of the ISA in order to determine their resource usage, as
detailed in Sec. 4.5.

We developed two variations of the Core Mapping computation. The first one, detailed
in this section, is guaranteed to converge to the correct abstract resource mapping that
the CPU follows (see Chap. 5 for the complete details), but is based on a high dimension
LP that does not converge fast enough in practice with real measures due to complexity
of the error rate formulation. The second one, detailed in the next section, is based on
smart rules of thumb in order to deduce an approximation of the shape of the mapping,
which is fixed later when computing the edge values.

The exact core mapping phase adds one more preliminary step to the Core Mapping
computation: the calibration of the error rate, for each pair of instructions. This phase
sets the maximum error we allow when computing a resource mapping that best models
the observed performance over a set of micro-benchmarks. On perfect architectures (that
is, architectures whose behavior can be perfectly described using the abstract resource
model), all error rates would be equal to zero.

4.3.1 Determine Hazardous Instructions
Our proved infrastructure relies on our ability to measure the throughput of any

multi-set of instructions without being polluted by other execution bottlenecks such as
alignment issues of the front-end, that cannot be modeled by the resource mapping formal-
ism. In theory, assuming an ideal machine that matches the port-mapping performance
model, for any two instructions a and b, then three resources should be enough to model
any combination {(i, j) ∈ N, aibj}. Real-world experiments show that this is not the
case, hence the presence of a modelling error on the IPC of aibj-class microbenchmarks.
However, some of the instructions show more hazards than others: a first pre-processing
step considers all simple instruction pairs (a, b) and evaluates the minimal error ϵ(K)

required to map those two instructions to no more than three resources. This error is
extended to every benchmark K of more than two instructions with a fixed constant
value.
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1 Function Mapping(K,G)
2 Solve Bipartite Weight Problem
3 I := instructions(K);
4 (ρi,r)I,P := edges(G);
5 ∀(i, r) ∈ I × P, 0 ≤ ρi,r ∈ [0, 1];
6 ∀(K, r) ∈ K × P,

7 ρK,r =
(∑

i∈I σK,iρi,r
)
×K/

(∑
i∈I σK,i

)
;

8 ∀(K, r) ∈ K × P, ρK,r ≤ 1;
9 ∀K ∈ K, SK = maxr∈P ρK,r ≥ 1− ϵ(K);

// With ϵ(K) the error rate computed in the hazardous instructions
step (Sec. 4.3.1)

10 Minimize
∑

i∈I ρi,r;
11 return (I,P, {ρi,r});
12 end

Algorithm 3: Bipartite Weight Problem (BWP), as used in the exact-LP1, LP2 and
LPAUX

4.3.2 Bipartite Weight Problem (BWP)
The proved variations of Palmed is based on a single LP formulation, the Bipartite

Weight Problem, or BWP, which is first applied to a constant seed of microbenchmarks,
then enriched to grant completeness of the output mapping.

The BWP is formalized in Alg. 3, and aims at finding both the shape and the correct
values of the edges of a Core Mapping at the same time. We use the following notations:
ρi,r ∈ Q+ expresses the proportional usage of the resource r by instruction i, and K the
average number of instructions executed each cycle when K is executed by the CPU. The
proportion of a resource r that is used is thus ρK,r = K ·

(∑
i∈I σK,iρi,r

)
/
(∑

i∈I σK,i

)
,

bounded by its throughput (ρK,r ≤ ρr = 1). One of the resources must be the limiting
factor, that is, ∃r, ρK,r = 1. However, we authorize sub-saturation of the resources,
acknowledging our model does not predict accurately every microkernel, and we note
SK = maxr ρK,r ≤ 1. These constraints form our linear problem minimizing the sum of
the edges values in order to decrease the complexity of the mapping, that is:

min
∑
i∈I

ρi,r

4.3.3 Characterize Resources (LP1)
The aim of the first LP step is to guarantee that the core mapping is as complete

as possible: in particular, it should not miss any a resource. Therefore, LP1 is an it-
erative process solving at each step a new instance of the BWP, aiming at finding all
existing resources starting from an initial seed of benchmarks. The LP1 then stops when
a stabilization of the number of resources is reached.
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The initial set of microbenchmarks, which needs to be as “representative” as possible,
is derived from the simple instructions with the following rules:

• a ∈ I alone

• aabb, as this benchmark has the following property: If a and b are independent, that
is the set of resources used by a and b are disjoint, or have a cumulated usage that
does not exceed 1

a+b
, then aabb = a+ b

• aMb (with M = 4 in practice) to avoid the convergence of the solver to a simpler
solution with fewer resources and edges representing only the conflicting case aabb

The iterative process that follows is:

1. Starting from the initial set, find a mapping by solving the BWP.

2. For each abstract resource, construct a news microbenchmark composed of every
instruction that are using it.

3. Solve this news BWP instance. If the new solution leads to the same number of
resources than the former iteration, stop. Else, return to step 2.

The enrichment (step 2.) is done as follows: for each resource found, we add a
benchmark composed of every instruction using it (with a fixed minimal threshold ϵ) with
a multiplicity of their IPC, forcing the split of resources in case of undesired merges. Once
convergence has been reached, we expect all existing resources to be discovered. Then,
Palmed must ensure that every existing instruction-to-resource edge is represented.

4.3.4 Find Saturating Kernels (LP2)
Once all resources have been found, we now have to find the correct values of each

edge. For this purpose, we extract for each resource r a saturating kernel sat[r] that
we combine with every instruction i to build a new microbenchmark, and add it to our
iterative microbenchmark set.

Ksat(i, r) = i1(sat[r])N

where N is chosen bigger than 4× sat[r]/i. Then, we solve one last BWP instance. The
proof of the completeness of the mapping, given a set of saturated benchmarks with a
low usage of any other resource, is detailed in Sec. 5.

The saturating kernel sat[r] is chosen among all saturating microbenchmarks of the
last LP2 as the benchmark K that has minimum consumption:

cons(K) =
∑

i∈I, r∈P

ρi,r

The LP2 finally returns the Core Mapping as well as a new, final set of saturating
benchmarks, that are used to find the port mapping of the complete ISA as described in
Sec. 4.5. The complete flow is recapitulated in Alg. 4.
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1 Function Core_mapping(IB)
// Determine hazardous instructions

2 K :=
⋃

(a,b)∈I2
B , a̸=b

{
a, aabb, aMb

}
;

// Characterize resources
3 do
4 G := Mapping(K) ; // LP1
5 Knew :=

⋃
r∈P

{
Πi∈IB , ρi,r≥ϵi

i
}
−K;

6 K := K ∪ Knew;
7 until Knew = ∅;

// Find saturating kernels
8 foreach r ∈ R do
9 sat[r] := K ∈ K s.t. ρK,r = 1 that minimizes cons(K);

10 for i ∈ IB s.t. i /∈ sat[r] do
11 K := K ∪ {Ksat(i, r)};
12 end
13 end
14 G := Mapping(K) ; // LP2

// Find final saturating kernels
15 foreach r ∈ R do
16 sat[r] := K ∈ K s.t. ρK,r = 1 that minimizes cons(K);
17 end
18 return K, sat,G;
19 end

Algorithm 4: Find core mapping and saturating kernels (exact version)
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4.4 Faster approximation of the Complete Resource
Mapping Problem

While the approach detailed in the former section is formally proven, this does not
mean that it is satisfactory in practice. Indeed, the proof (see Sec. 5) assume existence
of single-resource instructions, which is not granted true for all architectures (especially
for combined resource), and assumes that all benchmarks are perfect, that is, without
measurement noise nor resource that does not follow the abstract resource model.

Therefore, when adding error rates to benchmarks (and minimizing them as a sec-
ondary target), the solver times out on all of our experiences (see Sec. 4.6) and only offers
approximated solutions. We thus present another approach, based on simple and inexact
rules of thumb to determine the number of resources and then minimizing directly the
error rate, but which reveals to be both faster and more accurate in practice.

4.4.1 Finding the Shape of the Mapping: (ILP1)
For this variation, the goal of the first step is to find the shape of the resource mapping,

that is, the number of resources needed, but also the possible edges from core instructions
to resources. For this, Palmed solves the following Integer Linear Programming (ILP)
problem, formalized in Alg. 5, repeated until no new benchmark is added3 (note that the
hazardous instructions step becomes superfluous in this fast solving version):

• Objective function: Minimize the number of resources.

• Constraints: From the same seed of microkernels as Sec. 4.3.3, we derive the
following constraints (in the order of Alg. 5):

– Each very basic instruction as defined in Sec. 4.2.2 is linked to at least one
resource unused by other very basic instructions (line 4).

– For each greedier instruction i as defined in Sec. 4.2.3, there exists at least one
resource common to i and to all other instructions a for which iiaa ̸= i+a (line
5). This relation corresponds to the negation of the disjoint relation defined
in Sec. 4.2.2, that we note ><.

– For all other microkernels:

1. Every instruction identified as saturating (that is, instructions for which
the execution time of the microkernel is equal to its execution time alone)
maps to at least a resource unused by other instructions of the microkernel
(line 7).

2. If no saturating instruction is found, then there exists a resource shared
by every instruction of the benchmark (line 10).

3This corresponds to an approximation of the LP1 described in Sec. 4.3.3.
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1 Function Shape_mapping(K, IV B, IMG)
2 Solve
3 ∀(i, r) ∈ I × P, ρi,r ∈ {0, 1};
4 ∀i ∈ IV B,minr∈P 1− ρi,r +

∑
j∈IV B\{i} ρj,r = 0;

5 ∀i ∈ IMG,maxr∈P ρi,r +
∑

j><i ρj,r = 1 + |{j >< i}|;
6 foreach K ∈ K s.t. {iα ∈ K s.t. cycles(iα) = cycles(K)} = ∅ do
7 maxr∈P

∑
i∈K ρi,r ≥ |{i ∈ K}|;

8 end
9 foreach K ∈ K s.t. {iα ∈ K s.t. cycles(iα) = cycles(K)} ≠ ∅ do

10 ∀iα ∈ K s.t. cycles(iα) = cycles(K)
11 minr∈P 1− ρi,r +

∑
j∈K,j ̸=i ρj,r = 0;

12 end
13 Minimize

∑
i∈IB maxr∈P ρi,r;

14 return (I,P, {ρi,r});
15 end

Algorithm 5: ILP1: Approximation of the shape of core mapping

The enrichment is kept the same as LP1: for each resource found, we add a benchmark
composed of every instruction using it with a multiplicity of their IPC, with the same goal
of splitting resources in case of undesired merges. Once convergence has been reached,
we also expect most of existing resources and edges to be discovered.

4.4.2 Find Saturating Kernels (LP2)
After having found the shape of the mapping consisting of the possible resources and

instructions-to-resource edges; the LP2 must find the value of the edges. Contrary to
Sec. 4.3.4, the BWP is modified by forcing the number of resource and the non-zero
edges so that only edges and resources discovered by the ILP1 exist. Moreover, no further
benchmark is added compared to the this last ILP1 run.

Then, instead of relying on a costly, per-benchmark error rate, the objective function
is modified to minimized the sum of one-sided error rates. Indeed, we consider that they
may exists resources not detected by the ILP1, but that a benchmark still cannot exceed
its predicted throughput. Therefore, the objective function is changed to become:

Minimize
∑
K∈K

err(K) = SK − 1

Finally, and similarly to the proved version, the set of saturating kernels is deduced
from the last LP2 step and returned, as well as the resource profile of the Basic Instruc-
tions. The complete approximate version of the LP2 is detailed in Alg. 6.
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1 Function Core_mapping(IB)
// Characterize resources

2 K :=
⋃

(a,b)∈I2
B , a̸=b

{
a, aabb, aMb

}
;

3 do
4 G := Shape_Mapping(K, IV B, IMG) ; // ILP1
5 Knew :=

⋃
r∈P

{
Πi∈IB , ρi,r≥ϵi

i
}
−K;

6 K := K ∪ Knew;
7 until Knew = ∅;
8 G := Mapping(K,G) ; // LP2

// Find final saturating kernels
9 foreach r ∈ R do

10 sat[r] := K ∈ K s.t. ρK,r = 1 minimizing cons(K);
11 end
12 return K, sat,G;
13 end

Algorithm 6: Core mapping and saturating kernels (approximated version)
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1 IB := select_basic_insts(I, n);
2 K, sat,G := Core_mapping(IB);
3 foreach inst ∈ I do
4 K :=

⋃
r∈P Ksat(inst, r);

5 I := IB ∪ {inst};
6 Solve Find a solution to the following problem
7 ∀r ∈ P, 0 ≤ ρinst,r;
8 ∀(K, r) ∈ K × P, ρK,r =

(∑
i∈I σK,iρi,r

)
×K/

(∑
i∈I σK,i

)
;

9 ∀(K, r) ∈ K × P, ρK,r ≤ 1;
10 ∀K ∈ K, SK = maxr∈P ρK,r;
11 Minimize

∑
K∈K(1− SK);

12 end

Algorithm 7: LPAUX: Complete resource mapping

4.5 Complete Mapping (LPAUX)
Whichever flavor of the Core Mapping is used, the last step remains identical, cor-

responding to Algo. 7: solving an optimization problem for each remaining instruction.
Its formulation is once again based on a modified BWP, except that the resources and
the edges of the core mapping computed previously are frozen. The presence or absence
of an edge from the to-be-mapped instruction i to a resource r is constrained by using
Ksat(i, r) = iisat[r]L∗sat[r] in the set of microbenchmarks, with L = 4 in practice (identical
to the enrichment presented in Sec. 4.3.3, based on the proof from Sec. 5.3). The idea is
to force the saturation of r by charging it with sat[r], hence expressing the usage of r by
i.

Note that we first realize all the benchmarks, then collapse the instructions into equiv-
alence classes of exact same IPC and behavior with respect to the saturating benchmarks,
then solve one LPAUX per equivalence class. The final output of Palmed is then the result
of these LPs: the resource usage of each instruction in the targeted ISA.
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4.6 Evaluation: Basic Blocks Throughput Prediction
without Dependencies

While Palmed can in theory recover any resource mapping, things are not that simple
in practice. Indeed, real CPUs cannot be described only by the abstract resource model,
and benchmark measurements are always subject to noise (either from the operating
system, the environment or the interference of other components such as branch prediction
on long microbenchmarks). Therefore, this section is divided into two parts: the first one
(Sec. 4.6.1) shows that Palmed’s exact version is able to find perfectly the resources
derived from a usual 3-level port mapping taken from uops.info [33]. The second one
(Sec. 4.6.2) evaluates both version of Palmed on two real-world CPU microarchitecture:
Intel’s Skylake-SP and AMD’s first generation Zen.

4.6.1 Exact Port Mapping Recovery
Here, our goal is to show that Palmed is able to find a correct disjunctive mapping,

given (i) an execution model matching the dual representation of uops.info’s mapping,
(ii) ideal microbenchmarking results, i.e. without any constraint on the total number of
instructions per microbenchmark and without rounding error. Because of the idealized
nature of the simulations, the error rate given to the ILP solver was extremely tight:
we set the maximum relative error between a microbenchmark simulation (by the ab-
stract model) and the benchmark IPC (computed from an ideal representation) to 10−7,
corresponding to rounding errors made internally by the solver. We test every Intel mi-
croarchitecture supported up to Cannon Lake, and report the results in Table 4.2. Solving
is achieved using Gurobi [48] version 9 on an Intel i9-7940X running Arch Linux (kernel
version 5.8.1).

Silent resources On some architectures, certain ports cannot be detected by Palmed,
as they are “hidden” under another resource. More generally, a silent port is a port ps for
which every instruction that uses this port also uses another fixed port pm, which masks
it.

Given this matter of fact, pm will always be saturated before ps, so hidden ports are
never bottlenecks of the execution. It follows that their representation is not required for
performance modeling, so we do not classify their absence as errors of the mapping.

Our algorithm successfully computes a disjunctive mapping corresponding exactly to
uops.info’s dual mapping on all tested architectures. Silent resources are not expressed
by these mappings: for example, up to the Westmere architecture, port 3 was dedicated
to the generation of memory addresses for stores only, whereas port 4 handles the mem-
ory access itself, hence we detect only abstract resources derived from port 4 for those
microarchitectures.
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Architecture Nb. of Silent Nb. of
codename eq. classes ports found res.

Conroe 161 p3 / p4 8
Wolfdale 157 p3 / p4 8
Nehalem 147 p3 / p4 8
Westmere 156 p3 / p4 8
Sandy Bridge 186 None 9
Ivy Bridge 184 None 9
Haswell 218 p7 12
Broadwell 222 p7 12
Skylake 217 p7 14
Skylake-X 288 p7 14
Kaby Lake 205 p7 14
Coffee Lake 210 p7 14
Cannon Lake 242 p7 14

Table 4.2: Number of detected equivalent classes and resources for an ideal CPU simulated
from uops.info’s mapping

4.6.2 Real-world CPU Throughput Prediction
This section compares throughput accuracy on assembly microkernels extracted from

two benchmarking suites: the SPECrate version of SPECint2017 [49] and Polybench [50].
We compare both version of Palmed (exact and approximate) against the native

execution, along with the predictions of four existing tools: IACA [25], PMEvo [37],
llvm-mca [43] and the port mapping deduced from uops.info’s work [33].

Our evaluation is performed on two architectures: the SKL-SP is an Intel Xeon Silver
4114 CPU at 2.20 GHz, using Debian, Linux kernel 4.19 and PAPI 6.0.0.1 to collect the
execution time in cycles for each microbenchmarks, restraining to non-AVX-512 instruc-
tions due to Pipedream limitations. The ZEN is an AMD EPYC 7401P CPU at 2 GHz
with a similar software setup. Solving is achieved using Gurobi [48] version 10, installed
on each machine, set with a timeout of 30 minutes. For each of these two architectures,
the number of generated microbenchmarks, resources found and mapped instructions are
gathered in Table 4.3.

Calibration of the Model

The port mapping is computed using the algorithm presented in Sec. 4.5 using a
list of x86 instructions extracted from Intel’s XED [51]. We discard instructions which
cannot be instrumented in practice, such as instruction modifying the control flow (as
our microbenchmark generator cannot handle non-trivial control flow in the instrumented
instructions), privileged instructions, along with instructions whose IPC is lower than
0.05, as they do not present any interest for performance prediction of throughput-limited
microkernels. While benchmarking memory instructions, we ensure that every access hits
the L1 cache to avoid cache-related bottlenecks, which are out of Palmed’s scope. Due
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to the complexity of the x86 instruction set, we separate the SSE and AVX instructions
from the “base ISA”: we apply separately the heuristics of Sec. 4.2 before gathering all
selected instructions in a single combined basic instructions set as described in Fig. 4.1.

A stated in Sec. 4.2, we also forbid benchmarks combining different extensions (e.g.
SSE+AVX). Indeed, combinations of several vector extensions of different width are
known to cause extra latency, that is, a sort of dependency from one instruction to
the other (two consecutive SSE instructions would not be penalized, whereas one SSE
and one AVX will). This violates our assumption that the relative order of instruction
does not matter, and in practice we observed a significant degradation of the mapping
without this mitigation.

Because of variations in the real-world measurements, we constrain the error rate
to 0.05 for the micro-benchmark coefficients, meaning that the number of repetitions of
an instruction inside its microkernel nay differ by at most 5% from what the algorithm
requires. For example, a benchmark aabb with a = 0.06 and b = 1 will be rounded to
a1b20. Note that in the BWP defined in Alg. 4.3.2, we use the rounded coefficients and not
the ideal ones; and the IPC is also rounded accordingly. Note that our microbenchmark
generator is pre-constrained with these limitations; therefore we did not evaluate Palmed
with another measurement back-end – although we expect similar results as we ensured
to have reproducible execution times.

Throughput Estimations

To evaluate Palmed, the same microkernel is run:

1. natively on each CPU, with the IPC measured with the CPU_CLK_UNHALTED perfor-
mance counter

2. using our mapping with abstract resources corresponding to the actual machine, as
described in Sec. 4.6.2, both using the exact and the approximation variants

3. using Abel’s work (uops.info) [33], by running a conjunctive mapping with exact
compatibility and approximating the execution time by the port with the highest
usage

4. using PMEvo [37], ignoring any instruction not supported by its provided mapping

5. using IACA [25], by inserting assembly markers around the kernel and generated
by our back-end and running the tool with this assembly

6. using llvm-mca [43], also by inserting markers in the assembly code generated by
our back-end and running the tool

Unlike PMEvo and llvm-mca, UOPS and IACA do not support the ZEN architecture,
hence the absence of data.

The microkernels are extracted from two reputed benchmark suites: SPECInt2017 [49]
and Polybench [50]. For Polybench, we used QEMU [52] to gather the translation blocks
executed at runtime along with their number of executions. For SPEC, we used static
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binary analysis tools to extract the basic blocks along with performance counters statistics
in order to recover the performance-critical section of the code, as the cost of running
an emulator was too high to reproduce Polybench’s setup. Overall these two benchmark
suites generate thousands of basic blocks, and for each we use the various methods above
to display the predicted performance of a microkernel made of the same instruction mix
that is occurring in that basic block. This evaluation approach allows to generate a high
variety of realistic instruction mixes (e.g., combining SIMD and address calculations for
numerical kernels like in Polybench).

Fig. 4.4 synthesizes our results in two pieces. First, Fig. 4.4a displays the results as
a heatmap for each basic block, comparing the predicted throughput with the measured
one. A dark area at coordinate (x, y) means that the selected tool has a prediction
accuracy of y for a significant number of microkernels with a real IPC of x.

Then, Tbl. 4.4b and Tbl. 4.4c synthesize, for each tool, its error rate, aggregated over
all the basic blocks of the test suite using a Root-Mean-Square method:

ErrRMS, tool =

√√√√∑
i

weighti∑
j weightj

(
IPCi,tool − IPCi,native

IPCi,native

)2

We also provide Kendall’s τ coefficient [53], a measure of the rank correlation of a
predictor – that is, for each pair of basic blocks, whether a predictor predicted correctly
which block had the higher IPC. The coefficient varies between −1 (full anti-correlation)
and 1 (full correlation).

The same table also provides a coverage metric, with respect to Palmed. This metric
characterizes the proportion of basic blocks supported by Palmed that the tool was
able to process. Note that the ability to process a basic block varies from tool to tool:
some work in degraded mode when meeting instructions they cannot handle, some will
crash on the basic block. For PMEvo, we ignored any instruction not supported by their
mapping – degrading the quality of the result; hence, a plain error is a basic block in
which no single instruction was supported. Although it would be fairer to other tools to
measure absolute coverage – that is, the proportion of basic blocks supported by the tool,
regardless of what Palmed supports –, technical limitations prevented us from doing so:
running the various tools requires our back-end to generate assembly code, which can
only be done for the instructions it supports.

We compare the number of instructions supported by Palmed with the ones sup-
ported by uops.info as a baseline. As uops supports only partially AMD’s architecture
(providing only throughput and latencies, but no usable port mapping), less than half the
instructions supported by our tool are present for this target. Note the slight difference in
the number of instructions supported by both versions of Palmed: this is explained by
patches on the Pipedream library, whose revision is different between the two Palmed
version. Contrarily, on SKL-SP, uops supports the AVX-512 extension, therefore leading
to a more complete set of supported instructions. PMEvo’s mapping behaves poorly in
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Machine SKL-SP ZEN

Processor 2x Intel Xeon AMD EPYC
Silver 4114 7401P

Cores 20 24

Benchmarking time 8h 6h
LP solving time (Exact Method) 4h (timeout) 4h (timeout)
LP solving time (Approximation) 2h 2h

Gen. microbenchmarks ∼ 1,000,000 ∼ 1,000,000
Resources found (Exact Method) 10 5
Resources found (Approximation) 17 17

uops’ inst. supported 3313 1104
Instructions mapped (Exact Method) 2598 2592
Instructions mapped (Approximation) 2586 2596

Table 4.3: Main features of the obtained mappings

terms of coverage (see Fig. 4.4), failing to support all instructions in more than 25 % of
the basic blocks on any benchmark and processor tested. This behavior is due to our
different compilation options, as PMEvo’s supported instructions are directly collected
from their SPEC2017 binaries. As a consequence, both MSE and Kendall’s tau values
are lower than other tools as those unsupported instructions are treated as if they took
no resource at all on our IPC estimates.

Moreover, Palmed-approx requires 2h of solving time (see Tbl. 4.3) to map about
2500 instructions. This is between one half (SKL-SP) and one eighth (Zen) of PMEvo’s
solving time [33], demonstrating the scalability of Palmed with respect to the number
of instructions. Contrarily, Palmed-exact times out on both tested architectures, while
outputting mapping of lower quality. This is mainly due to the number of resource
found by the LP1, lower on the exact version than on the approximated one. Indeed,
disambiguation of resources requires an accurate measurements of the IPC of benchmark
with multiple instructions, which enters in contradiction with the presence of an error
rate. This leads to a Core Mapping using fewer resource than necessary (10 on SKL-SP
versus 17 found by Palmed-approx), hurting the accuracy of the complete mapping. The
approximate version forces a minimal number of resources due to the constraints derived
from the Max Clique filter, hence mitigating this effect.

In Fig. 4.4, we observe that Palmed-approx reaches a hight accuracy than uops.info
and PMEvo on both platforms. On Skylake, it outperforms all other tested tools in
terms of Kendall’s tau, and compares well with IACA and LLVM-MCA, archiving sub-
10% mean square error rate on SPEC2017. However, those two last tools use manual
expertise and are tailored for a platform, whereas our tool is fully automated and generic.

On ZEN, both versions of Palmed are comparable to LLVM-MCA, but show a greater
error rate than on Intel. This is due to the internal organization of the ZEN microarchi-
tecture, which uses a separated pipeline for integer/control flow and floating point/vector
operations. This layout is more complex than Intel’s, for which execution units for general
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(a) IPC prediction profile heatmaps – predictions closer to the red line are more accurate. Predicted
IPC ratio (y axis) against native IPC (x axis)

Palmed-exact Palmed-approx uops.info PMEvo IACA llvm-mca
Cov. Err. Cov. Err. τK Cov. Err. τK Cov. Err. τK Cov. Err. τK Cov. Err. τK

Unit (%) (%) (%) (%) (1) (%) (%) (1) (%) (%) (1) (%) (%) (1) (%) (%) (1)

SPEC2017 N/A 19.2 N/A 7.8 0.90 99.9 40.3 0.71 71.3 28.1 0.47 100.0 8.7 0.80 96.8 20.1 0.73
Polybench N/A 27.4 N/A 24.4 0.78 100.0 68.1 0.29 66.8 46.7 0.14 100.0 15.1 0.67 99.5 15.3 0.65

(b) Translation block coverage (Cov.), root-mean-square error on IPC predictions (Err.) and Kendall’s
tau correlation coefficient (τK) compared to native execution for SKL-SP architecture

Palmed-exact Palmed-approx uops.info PMEvo IACA llvm-mca
Cov. Err. Cov. Err. τK Cov. Err. τK Cov. Err. τK Cov. Err. τK Cov. Err. τK

Unit (%) (%) (%) (%) (1) (%) (%) (1) (%) (%) (1) (%) (%) (1) (%) (%) (1)

SPEC2017 N/A 18.9 N/A 29.9 0.68 N/A N/A N/A 71.3 36.5 0.43 N/A N/A N/A 96.8 33.4 0.75
Polybench N/A 32.2 N/A 32.6 0.46 N/A N/A N/A 66.8 38.5 0.11 N/A N/A N/A 99.5 28.6 0.40

(c) Translation block coverage (Cov.), root-mean-square error on IPC predictions (Err.) and Kendall’s
tau correlation coefficient (τK) compared to native execution for Zen architecture

Figure 4.4: Accuracy of IPC predictions compared to native execution of Palmed versus
uops.info, PMEvo, IACA and llvm-mca on SPEC CPU2017 and PolyBench/C 4.2

computation and vector operations share the same ports. This translates to a greater
number of abstract resources for the ZEN CPU and more complex interactions than
what the abstract model is able to represent – which adds to the fact that both version
of Palmed seek to minimize the number of resources. Moreover, we suppose that the
hypothesis of a perfect scheduling may not be true for ZEN, as most of the benchmark’s
IPC are lower than the one predicted, as seen on Fig. 4.4a.

More generally, IACA, uops.info and LLVM-MCA tend to over-estimate the IPC,
which is due to their port-based approach: bottlenecks coming from neither ports nor
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front-end limitations are not taken into account, leading to higher IPC estimations for
microkernels where other resources are bottlenecking. Contrarily, benchmarking-based
approaches (Palmed and PMEvo) present both under and over approximations as they
are based on real-life execution, where all bottlenecks are present. Note that Palmed,
IACA, LLVM-MCA (ZEN only) and PMEvo (ZEN only) also express the front-end bot-
tleneck: the limit on the maximal number of instructions being decoding in one cycle
(no over-approximation of microkernels with high IPC), that is, a maximal IPC of 4 on
SKL-SP and 5 for ZEN. Therefore, we expect Palmed (and PMEvo) to have maximal
error rate on benchmarks with few instructions, case in which some undetected / wrongly
detected common resources will have higher importance, whereas LLVM-MCA, uops.info
and IACA will tend to be more fragile on long microkernels with possible non-port related
resources – especially buffer ones.
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Chapter 5
Formal Proofs of Convergence of Palmed

While Sec. 4.3 offers an "exact" solution in the sense that it perfectly recover simulated
port mappings (as shown in Sec. 4.6.1), this empirical evidence is not sufficient to claim
completeness and generality of Palmed.

This section remedies this issue by providing formal proofs of convergence of Palmed
flow of work, under the assumption of existence of instructions using “few” resources in
the abstract resource model.

In Sec. 5.1, a proof of equivalence between the well-known port mapping problem,
where one instruction can be executed by one port among a set of compatible ones, is
proposed. Then, Sec. 5.2 and Sec. 5.3 builds over this result to show first that Palmed’s
selection mechanism succeed in selecting instructions with a propriety called 1/4-exclusive
saturation, and then that they are used in our sequence of LP in a way that detects all
possible resources with correct usage.
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5.1 Equivalence of the Abstract Resource Model and
the Port Mapping Model

5.1.1 Primary Definitions
Definition 5.1.1 (Microkernel). A microkernel K is an infinite loop made up of a finite
multiset of instructions, K = I

σK,1

1 I
σK,2

2 · · · IσK,m
m without dependencies between instruc-

tions. The number of instructions executed during one loop iteration is |K| =
∑

i σK,i.

Definition 5.1.2 (Disjunctive port mapping). A disjunctive port mapping is a bipartite
graph (V,P , E) where: V represents the set of µOPs; P represents the set of resources
(corresponding to execution ports in a real-world CPU); E ⊂ V ×P expresses the possible
mappings from µOPs to ports. In this original form each port r ∈ P has a throughput
ρ(r) of 1.

Let K = I
σK,1

1 I
σK,2

2 · · · IσK,m
m be a microkernel where each instruction is composed of a

single µOP vi.
A valid assignment represents the choice of which resources to associate with a given

instance of an instruction. However, this choice might change between iterations. Thus,
we represent the valid assignment as a mapping p : I ×P 7→ [0; 1] where pi,r corresponds
to the frequency a given resource is chosen. We also define Ri(p) = {r, pi,r ̸= 0}. This
assignment is valid if:

∀Ii ∈ K, ∀r ∈ Ri(p), (vi, r) ∈ E

∀Ii ∈ K,
∑

r∈Ri(p)

pi,r = 1

The execution time of an assignment (pi,r)i,r, is:

tend = max
r∈P

∑
i∈K

σK,i · pi,r

The minimal execution time over all valid assignments is denoted t(K) (obtained using
an optimal assignment).

Definition 5.1.3 (Conjunctive port mapping). A conjunctive port mapping is a bipartite
weighted graph (I,P , E, ρI,P) where: I represents the set of instructions; P represents
the set of abstract resources; E ⊂ I × P expresses the required use of abstract resources
for each instruction;

Each abstract resource r ∈ P has a (normalized) throughput of 1; an instruction i

that uses a resource r ((i, r) ∈ E) always uses the same proportion (number of cycles,
possibly lower/greater than 1) ρi,r ∈ Q+; if i does not use r, then ρi,r = 0.

Let K = I
σK,I1
1 I

σK,I2
2 · · · IσK,Im

m be a microkernel. In a steady state execution of K, for
each loop iteration, instruction i must use resource r (σK,i · ρi,r) cycles.
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The number of cycles required to execute one loop iteration is:

t(K) = max
r∈P

(∑
i∈K

σK,i · ρi,r

)

One should observe that Def. 5.1.3 defines formally a normalized version of the graph
used in the illustrative example of Sec. 3.2.2; where throughputs of abstract resources are
set to 1. For the sake of clarity, we used non-normalized throughputs (that is, different
than 1) in Fig. 3.1b with the following notations: use stands for the non-normalized
usage, and load for the normalized ρi,r, equal to #usei

throughput(r)
. For example, VCVTT uses

2 times r01, which has a throughput of 2: its load ρVCVTT,r01 is equal to 1. Similarly,
ρADDSS,r016 = 1/3.

Definition 5.1.4 (Throughput). The throughput K of a microkernel K is its instruction
per cycle rate (IPC), defined as:

• K =
|K|
t(K)

= max
valid assignment p

( ∑
i∈K σK,i

maxr∈P
∑

i∈K σK,i · pi,r

)
for a disjunctive port mapping.

• K =
|K|
t(K)

=

∑
i∈K σK,i

maxr∈P
∑

i∈K σK,i · ρi,r
for a conjunctive port mapping

Example Given a and b two instructions, aabb represents a microkernel repeating a and
b as many times as their respective IPC a and b. We note its throughput aabb.

Definition 5.1.5 (∇-dual conjunctive port mapping). Let (V, P , E) be a disjunctive port
mapping. Let ∇ be a non-empty set of subsets of P. We define its ∇-dual, a conjunctive
port mapping, as (V,P , E) such that:

P = {rJ , J ∈ ∇}
E = {(v, rJ) s.t. {r, (v, r) ∈ E} ⊆ J}

ρ(rJ) =
∑

rj∈J ρ(rj) = |J |

Then, we can normalize this graph by adding weights to edges, and update the resource
throughput, noted ρN .

ρNi,rJ =

{
1/ρ(rJ) if (i, rJ) ∈ E

0 else
ρN(rJ) = 1
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5.1.2 Equivalence between Disjunctive and Conjunctive formu-
lations

This section provides the main intuition to understand the equivalence between the
disjunctive and the conjunctive form.

Definition 5.1.6 (Saturated port set). Consider a microkernel K. Let (pi,r)i,r be a valid
assignment of K for a disjunctive port mapping (V,P , E). Its saturated port set S is
defined as follows:

S =

{
rs such that tend =

∑
i∈K

σK,i · pi,rs

}
That is, the set of resources rS for which their loads

∑
i∈K σK,i · pi,rs correspond to

|K|/K, the steady state execution time of K.

Lemma 5.1.1 (Saturated set assumption). Let (pi,r)i,r be a valid assignment for a mi-
crokernel K in a disjunctive port mapping (V,P , E) and S its saturated set. Let rs and
rt be two resources such that (v, rs) ∈ E and (v, rt) ∈ E, we assume rs ∈ S and rt ̸∈ S.

Then, either there exists a faster valid assignment for which both resources rs and rt
are saturated, or there exists a valid assignment whose saturated set is strictly smaller
than p.

A direct consequence of this lemma is:

Corollary 5.1.1 (Saturating assignment). Let us consider an optimal assignment (pi,r)i,r
of a list of µOPs K on a disjunctive port mapping (V,P , E), such that the size of its
saturated set S is minimal. For all v ∈ V such that there are (rx, ry) ∈ P2 connected to
v (i.e. (v, rx) ∈ E and (v, ry) ∈ E): if rx ∈ S, then ry ∈ S.

Thus: ∀i ∈ I, [Ri(p) ⊂ S ⇔ {r, (vi, r) ∈ E} ⊂ S]

Theorem 5.1.1 (Equivalence of ∇-duality). Let K be a microkernel. Let (V,P , E) (with
the set of resources P = {rj}j), ∇ a set of subsets of P, and (V,P , E) (with the set of
resources P also denoted {rJ}J∈∇) be its ∇-dual.

(i) Let (pi,r)i,r be a valid optimal assignment (i.e. of minimal execution time and min-
imal saturated set size) of K with regard to (V,P , E). This assignment can be translated
into its ∇-dual, with no change to its execution time. In other words, t(K) ≤ t(K).

(ii) If ∇ is the set of all subsets of P then t(K) = t(K).

Theorem 5.1.2 (Equivalence). Let K be a microkernel and (V,P , E) (with the associated
throughput function t) be a disjunctive port mapping. Then, there exists ∇ a set of
subsets of P, and (V,P , E) a conjunctive port mapping called the dual (with the associated
throughput t) whose set of resources P is indexed by ∇ such that:

(i) Every (pi,r)i,r optimal assignment (i.e. of minimal execution time and minimal
saturated set size) of K with regard to (V,P , E) can be translated into (V,P , E), with no
change of its execution time. In other words, t(K) ≤ t(K).

(ii) If ∇ is the set of all subsets of P then t(K) = t(K).
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Proof. (i) Let p be an optimal valid assignment for a list of µOPs K on a disjunctive port
mapping (V,P , E), which minimizes its saturated set of size |S|.

From the definition of an execution time, we have:

∀r ∈ P ,
∑
i∈K

σK,i · pi,r ≤ t(K)

Hence, for any subset of resources J ⊂ P ,∑
r∈J

∑
i∈K

σK,i · pi,r ≤ t(K) · |J |

Thus,

∀J ⊂ P ,

∑
r∈J
∑

i∈K σK,i · pi,r
|J |

≤ t(K) (5.1)

Notice that this is an equality when J is a subset of a saturated set S of any optimal
placement (pi,r)i. Indeed, by the definition of the saturated set (definition 5.1.6) we have
that for each rs ∈ S, t(K) =

∑
i∈K σK,i · pi,r. We will now prove that t(K) ≤ t(K).

Consider any combined port rJ ∈ P whose throughput is ρ(rJ) = |J |. For any rJ , by the
definition of the dual: ∑

i∈K

σK,i · ρNi,rJ =
∑
i∈K

σK,i ·
δ(vi,rJ )∈E

|J |

=
∑
i∈K

σK,i ·
δ{r,(vi,r)∈E}⊆J

|J |

where δstat = 1 if the statement stat is true, and δstat = 0 if it is false.
Now, let us show that for any assignment (pi,r)i,r in the disjunctive graph, we have:

δ{r,(vi,r)∈E}⊆J ≤
∑
r∈J

pi,r (5.2)

In order to prove this statement, we consider the two cases on the value of δ:

• If {r, (vi, r) ∈ E} ̸⊆ J , then the δ = 0. Because pi,r are positive values by definition,
this inequality is trivially satisfied.

• If {r, (vi, r) ∈ E} ⊆ J , then all the neighbors of r in the disjunctive graph are in J .
Thus, Ri(p) ⊆ {r, (vi, r) ∈ E} ⊆ J . So,

∑
r∈J pi,r = 1. Notice that in this case, we

have an equality.
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Therefore, for any rJ ∈ P :

∑
i∈K

σK,i · ρNi,rJ ≤
∑
i∈K

σK,i ·
∑

r∈J pi,r

|J |

≤
∑

r∈J
∑

i∈K σK,i · pi,r
|J |

By using equation (5.1), we have t(K) ≤ t(K).
(ii) Now, assuming that ∇ is not limited to a few subsets of P , let us prove that

t(K) = t(K).
For a given optimal assignment (pi,r)i,r, let us pick J = S, his saturated set of minimal

size. Let us show that for this particular J , the previously considered inequalities are
equalities.

As mentioned previously, equation (5.1) is an equality when J is a subset of the
saturated set S. Thus, we only need to show that the inequality (5.2) is an equality for
this J .

Notice that for any instruction vi, if we have an edge (vi, r) ∈ E when r ∈ J = S, then
by Corollary 5.1.1, we have {r, (vi, r) ∈ E} ⊆ J . Thus, given a vi we have two situations:

• Either there are no edge from vi to any r ∈ J , then δ{r,(vi,r)∈E}⊆J = 0, and∑
r∈J pi,r = 0. Thus, we have equality.

• Or there are an edge from vi to a saturated resource r ∈ J . Thus, as mentioned
before, {r, (vi, r) ∈ E} ⊆ J and δ{r,(vi,r)∈E}⊆J = 1 =

∑
r∈J pi,r. Thus, we also have

an equality.

Therefore, the whole chain of inequality linking t(K) to t(K) are equalities. Thus,
t(K) = t(K).

We have an equality if ∇ is the set of all subsets of P , whose size is exponential in
the number of resources. However, the proof shows that we can restrict ourselves to the
saturated set S of an optimal assignment.

In practice, we build ∇ by considering the abstract resources that directly correspond
to the set of resources that a given µOP can be mapped to in the disjunctive mapping.
Then, we recursively apply this rule: if two abstract resources have a non-empty intersec-
tion, we then add their union as a new abstract resource. Intuitively, this new abstract
resource introduces a new constraint on the valid assignment in the dual, corresponding
to a potential saturation of these resources. Given the fact that CPU resources reflects
design choices, the in-practice complexity of the conjunctive mapping is not translated
into an exponential number of resources.
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5.2 Selection of Basic Instructions
In this section, we build upon the definition of a bipartite conjunctive mapping as

introduced in Definition 5.1.3 to prove the convergence of the two instruction selection
algorithms, Max Clique and Min Order, to a reduced set of instructions. We show that
the resulting set presents strong properties in terms of resource usage, under condition of
existence of these instructions, thus satisfying crucial hypothesis for our end-to-end proof
of Palmed.

5.2.1 Primary Definitions
Definition 5.2.1 (Extended bipartite conjunctive mapping). A bipartite conjunctive port
mapping is equivalent to a unique extended form that decouples the use of combined re-
sources as either a consequence of the use of simpler resources, or as the sole use of the
combined resource.

Let (V,P , E) be a bipartite conjunctive port mapping. Its extended form is a graph
(V,P , E ′ ∪B) with B the set of back edges defined by:

• (r, r′) ∈ B ⊂ P2 ⇔ ∀i, ρi,r′ ≥ ρi,r ∧ ρ(r′) > ρ(r).
Then, ρr,r′ = 1, and (r, r′) ∈ B is said to be a back edge.

• ∀(v, r), (v, r, ρ′v,r) ∈ E ′ ⇔ (v, r, ρv,r) ∈ E with weight ρ′v,r = ρv,r −
∑

r′ ̸=r ρv,r · ρr,r′ >
0.
If ρ′v,r is reduced to 0, the edge is not in E ′.

An illustrative example is given in figure 5.1.

Definition 5.2.2 (Resource usage). Given a bipartite conjunctive port mapping and a
microkernel K, we note ρK,r the use of the resource r during the execution of K, i.e.

ρK,r =
∑
vi∈K

ρvi,r

Definition 5.2.3 (Load of a resource). Given the conjunctive port mapping (V,P , E)

under its extended form and a microkernel K, we note load(r) the normalized use of the
resource r during the execution of the microkernel of execution time tend, i.e.

load(r) =
∑

v∈K ρv,r +
∑

r′∈P ρK,r′ρr′,r

tend

Definition 5.2.4 (Normalized resource mapping). The normalized version (V,P , E ′) of
a conjunctive (or disjunctive) resource mapping is the semantically equivalent resource
mapping (V,P , E) where the throughput of every resource has been normalized to 1, thus
decreasing the value of the edges:

wE′

v,r =
ρEv,r
ρ(r)
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Figure 5.1: Conjunctive resource mapping (a) and its extended form (b); both normalized

In the extended resource mapping form, the values of the back-edges become:

ρB
′

r,r′ =
ρBr,r′

ρ(r′)

Lemma 5.2.1 (Bounds of the normalized back edges). On a normalized bipartite resource
mapping under its extended form:

0 ≤ ρr,r′ ≤
1

2

Definition 5.2.5 (k-exclusive saturation). A microkernel S is said to be a k-exclusive
saturation with k ∈ [0, 1] of a resource r when the maximum of the uses of every resource
but r is bounded by k (excluding back edge coming from r), and when S never uses a
resource that has a back edge with r, i.e. when S verifies

max
r′ ̸=r

ρr,r′=0

ρS,r′ ≤
1− k

S

And
∀r′, ρr,r′ ̸= 0 ⇒ ρS,r′ = 0

We call S an exclusive saturation of r when S is a 1-exclusive saturation of r, which means
that S only uses the resource r. By extension, we call i ∈ I a k-exclusive saturation if
the benchmark composed of the instruction alone forms a k-exclusive saturation.

Definition 5.2.6 (Basic Instructions and Covering Set of Instructions). Let (I,P , E) be
a bipartite conjunctive mapping under extended form. We call k-basic instructions and
denote I(k)

B ⊂ I the set of instructions realizing a k-exclusive saturation of any resource
r ∈ P.

If, for every resource r, an instruction realizing a k-exclusive saturation of r belongs
to J ⊆ I, then J is said to be a k-covering of P. Similarly, we call J a covering of P
if J is a 1-covering of P.
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5.2.2 Max Clique: Selection of Independent Instructions
Theorem 5.2.1 (Very Basic Instruction Selection). Let (I,P , E) be a tripartite con-
junctive mapping under extended form, and let G = (I, E) be a graph with

E = {(a, b) ∈ I2, aabb = a+ b}

Let us assume that I is a 1
2
-cover of P

Then a complete subgraph of maximum size of G belongs to I(1/2)
B and is a minimal

1
2
-covering set of {r | ∄r′, ρr′,r ̸= 0}.

Proof. Trivially, the set of instructions realizing a 1
2
-exclusive saturation of {r ∈ P ,∀r′,

(r′, r) ̸∈ B} is a complete subgraph of G, and its cardinal is minimal.
By contradiction: Let us prove that I belonging to the complete subgraph of maximum

size cannot use r such that ρI,r > 1
2
· 1
I

and ∃r′, ρr′,r ̸= 0. By definition, there exist at
least two such resources, r1 and r2 with a back edge directed toward r (else r and r1 can
be merged to a single one), and no back edge directed to them. Moreover, by hypothesis,
I is a 1

2
-covering set of instructions, so there exists I1 and I2

1
2
-exclusive saturation of r1

and r2. Then the benchmark II11 II does not verify II11 II = I1 + I2
Now, let us prove that I ∈ GM cannot use several resources: let I ∈ GM and r, r′ such

that r ̸= r′ with ̸ ∃r′′, ρr′′,r ̸= 0 (respectively for r′); let us suppose that ρI,r ̸= 0 and
ρI,r′ ̸= 0. We assume that r is its limiting resource, i.e. ρI,r =

1
I
. By hypothesis, I is a

1
2
-cover of P , so ∃Ir, an 1

2
-exclusive saturation of r. By definition, IIIIrr ̸= I + Ir as they

share a common saturating resource r, thus Ir ̸∈ GM . But, by definition, IIIIr′r′ ̸= I + Ir′

as I uses r′, saturating resource of Ir′ , so Ir′ ̸∈ GM . But Ir and Ir′ uses fewer resources
than I, so ∀a, IIaa = I + a ⇒ IIrr aa = Ir + a, which means that if I has an edge with
a, then Ir also has an edge with a (reciprocally with r′). So GM \ I ∪ {Ir, Ir′} is also a
complete subgraph, and its size is bigger than G, hence the contradiction.

5.2.3 Min Order: Selection of the Instructions using Resources
of High Throughput

While the algorithm presented in Sec. 4.2.3 is efficient in practice to detect instructions
mapping to resources of highest throughput (while Max Clique gathers resources of lowest
throughput), we prove in this section a slightly different one, detailed in Alg. 8. As the
latter relies on exact values of IPC, the non-exact one is preferred in practice because of
its resilience to experimental noise (e.g. resources that do not follow exactly the bipartite
model) and the freedom it grant to select more instructions than theoretically needed.

Theorem 5.2.2 (Most Greedier Instructions Selection). Let (I,P , E) be a bipartite con-
junctive mapping under normalized non-extended form. We assume that I covers P, and

that covering instructions verify ρi,r =
1

ρ(r)
, i.e. their usage of r is atomic.
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1 IMG = ∅;
2 for i = maxIPC(I) to 1 do
3 I ′ = {a ∈ I such that a ≤ i};
4 IMG = IMG ∪ {a ∈ I such that a ∈ min≼ I ′ and a = i};
5 end

Algorithm 8: Exact version of the Most Greedier instruction selection

Let G be the DAG associated with the order relation

a ≼ b ⇔ ∀p, aapp ≥ bbpp

Then, for i ∈ N∗, the set of instructions of IPC equals to i that are minima of
≼ over {a ∈ I such that a ≤ i} is exactly the covering set of instructions for {r ∈
P such that minv ∈ I(ρv,r) =

1

i
} (resources of throughput equal to i).

Proof. Existence: Let r be a resource with throughput i. Then a, an instruction realizing

an exclusive saturation of r exists by hypothesis. As its usage of r is ρi,r =
1

ρ(r)
, then its

throughput is i, proving its existence.
Unicity: Let r be a resource with throughput i, and b an instruction that uses r. If b

verifies b = i and b is not an exclusive saturation of r, then there exists r2 ̸= r used by b.
As r is the resource used by b with maximum usage, ρb,r = 1

i
. By hypothesis, there also

exists a an exclusive saturation of r with a = i, and ρa,r =
1
i
.

Then, a trivially verifies ∀p, aapp ≥ bbpp, as a uses r with the same amount than b

and no other resource. Therefore, a ≼ b so either a = b or b is not a minimum for ≼.
Therefore, only covering instructions can be minima of ≼, proving their unicity,

Corollary 5.2.1 (Most Greedier Instructions Selection). Alg. 8 selects exactly a covering
set of instructions of I, that is I(1)

B .

Therefore, the combined use of Theorem 5.2.1 and 5.2.2 outputs a 1/2-covering of I,
one by selecting instruction mapping to instruction of low throughput, the other selecting
iteratively a covering set of instructions of high throughput.
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Figure 5.2: Saturating benchmarks S and instructions to analyse I: individual uses (5.2b and
5.2a), and benchmark S4·SII (5.2c)

5.3 Convergence to the Complete Mapping
In this section, we build upon the previous result (selection of a set of covering in-

structions) to prove convergence of the LP encoded proposed in the previous chapter. In
particular, we justify here the choice of S4·SII as a widget allowing the characterization
of instruction-to-resource edges in the final mapping.

In this section, we assume that the solver finds an edge (I, r) when we provide a
microkernel containing at least once I that saturates r. This means that the solver is
powerful enough to detect that an instruction which uses a resource (and its amount) as
long as we provide a benchmark using the instruction limited by it.

Theorem 5.3.1 (Completeness of the output mapping). Let r, rST and rS be three re-
sources, and S and I two microkernels represented as a single vertex combining the use
of all their instructions, forming a normalized conjunctive bipartite mapping under its
extended form (see definition 5.2.1).

Let us assume that S verifies the following properties:

• S realize a 1
4
-exclusive saturation of rS

• S uses another resource rT with a coefficient αST (noted ρS,rT with the former
notation)

Then the benchmark S4·SII saturates rS, allowing the solver to find the link I → rS.

Proof. For the sake of simplicity, we will use greek letters instead of multiple indexes of
ρ in this proof:

• ℓ, ℓ′ (possibly 0) are the back edge from rS (resp. rST ) to r (resp. rS), which
corresponds to ρrS ,r and ρrT ,rS , respectively

• α, β, and γ are used to denote ρI,rST ,, ρI,rS , and ρI,r.
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The graph representing the resource usage for one execution of the benchmark S is
represented in figure 5.2a and figure 5.2b for I. As S realizes a 1

4
-exclusive saturation of

rS, then ρS,rS = 1/S, so that S repetitions of S are needed to load resource rS with the
value 1.

Let us consider the benchmark S4·SII , illustrated in figure 5.2c. By definition of a
k-exclusive saturation, S does not use r apart from the contribution from rST and rT .

Then, the load of rT is:
load(rT ) = 4αSTS + γI

The load of rS is:

load(rS) = ℓ′ · load(rT ) + αI + 4 · S
S

= ℓ′ · (4αSTS + γI) + αI + 4

= 4ℓ′αSTS + ℓ′γI + αI + 4

And the load of R is:

load(R) ≤ ℓ · load(rS) + βI

= 4ℓ′ℓαSTS + ℓ′ℓγI + ℓαI + 4ℓ+ βI

By lemma 5.2.1, ℓ ≤ 1

2
and ℓ′ ≤ 1

2
.

Then

load(r) ≤ 4αST
S

4
+ γ

I

4
+ α

I

2
+

4

2
+ βI

But, by definition of the IPC, max (α, β, γ) =
1

I
, so

load(r) ≤ αSTS +
1

4
+

1

2
+

4

2
+

1

2

≤ αSTS +
13

4

As S realizes a 1
4
-exclusive saturation of rS, then αST ≤ 3

4·S , so

load(r) ≤ 3 · S
4 · S

+
13

4

≤ 4

Similarly,

load(rT ) ≤ 4αSTS + γI ≤ 3 + 1

≤ 4
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To obtain a lower bound on load(rS), we use similar bounds: α ≥ 0 and ℓ′ ≥ 0, so

load(rS) = ℓ′ · (4αSTS + γI) + αI + 4

≥ 4 + I · (ℓ′γ + α)

So, when rS is used by S, either indirectly by γ > 0 and ℓ′ > 0 or directly when α > 0,
then load(rS) > load(rT ) and load(rS) > load(r). So rS is the bottleneck, and the solver
will find the edge I → rS.

Note that this proof still stands when S and I use several resources that indirectly
contribute to rS, as it is be equivalent to a bigger value of γ.
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Conclusion
Given an arbitrary three-level port mapping, we know thanks to Sec. 5.1 that there

exist an equivalent conjunctive resource mapping for throughput modeling.
In Sec. 5.2, we prove that, assuming that the target ISA contains a covering set

of instructions for the resources present in the microarchitecture, Max Clique and Min
Order output a 1/2-covering from these instructions. Max Clique selects the minimal 1/2-
covering of non-combined resources, while Min Order selects a covering set of instructions
for P . Combined, this forms an overall 1/2-covering of P . This allows Palmed’s sequence
of LP to build saturating benchmarks for each resource, detecting correctly all edges of
these Basic Instructions.

Then, the benchmarks described in Sec. 5.3 allow the characterization of any us-
age edge given a 1/4-exclusive saturation of its resource. As the 1/2-Basic Instructions
are a covering set, then there exist a 1/2-exclusive saturation of it, that a fortiori is
a 1/4-exclusive saturation. Therefore, Palmed is able to find the only corresponding
disjunctive mapping of an arbitrary three-level port mapping, assuming that the ISA
contains a covering set of instructions with atomic usage of its resources.
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Part II

Generation of Throughput-Efficient
Accelerators
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Chapter 6
High-Level Synthesis

HLS designates the process of creating either FPGA or ASIC designs from a high-level
language, usually C, C++ or SystemC, instead of the usual RTL specification, usually
VHDL or Verilog.

Current HLS toolchains were heavily influenced by the academic project AutoPi-
lot [54], now part of Xilinx Vitis Development Suite [55] since 2012 following its acquisi-
tion in 2011. Indeed, C-based HLS was shown to significantly decrease the total cost of
development of dedicated accelerator designs, compared to manual RTL designs [56]. Xil-
inx’s concurrent, Altera (part of Intel since late 2018) launched their HLS tool targeting
OpenCL source code in 2013, followed two years later by a C++ front-end, forming [57].

Since then, several optimization techniques have been applied throughout the whole
toolchain, concerning domains ranging from data transfer optimizations [58] to algorithm
structure modifications inherited from CPU or GPU compiler designs [59], or even gen-
eration of custom architecture from more restricted DSLs [60].

This chapter presents the usual HLS workflow and the motivation of using HLS as
a designing technique concurrent to the usual RTL flow in Sec. 6.1. In this section, we
recapitulate the most useful HLS features for high-performance design generation: source
code annotations for performance targets, resource control and communications as well as
control of the design target frequency. Then, Sec. 6.2 discusses the main HLS limitations
and weaknesses compared to manual RTL code, as well as possible workarounds using
pure-HLS techniques. Finally, Sec. 6.3 goes through more intricate limitations for high-
performance, resource-shared designs as well as their consequence in terms of design size
and performance.
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Figure 6.1: Generic architecture of an FPGA

6.1 Introduction
This section is dedicated to non-HLS experts or beginners, and covers the fundamental

notions of FPGA architecture and HLS design. Basic concepts are defined in Sec. 6.1.1,
then technical explanations of HLS-specific primitives are discussed in Sec. 6.1.2, with a
specific focus on resource sharing in Sec. 6.1.3. Then, HLS specification of data transfers
is explained in Sec. 6.1.4, as well as decisions regarding the implementation of the design’s
operating frequency in Sec. 6.1.5.

6.1.1 Overview
Generic FPGA architecture

A FPGA is a reconfigurable array of elements called logic cells, which contains several
hardware primitives [61], as illustrated in Fig. 6.1:

• FF: Flip-Flops are the basic storage hardware primitives. One FF holds one bit
of data, and has no restriction on the number of accesses per cycle apart due to
routing issues.

• LUT: Look-Up Table are the basic logic primitives. They may be used either as a
truth table for computing, as small chunks of memory (LUTRAM) or as routing
resources (multiplexers).

• SLR: Shift Registers are another storage primitive, implemented internally using
LUTs. Contrary to FFs that hold data until modification, shift registers delay the
transmission of their value by a custom number of clock cycles, which is useful for
synchronization of inputs between pipeline stages.

68



Furthermore, FPGAs are enriched with non-standard cells dedicated to specific pur-
poses whose location is fixed on the chip:

• BRAM / URAM: Block RAM and Ultra RAM are two memory storage primitives
presenting higher density compared to FFs, to the cost of a reduced number of
possible accesses per clock cycle: one per memory port. Usually, only two ports per
BRAM unit are available, which leads to contention when data has to be accessed
in parallel.

• DSP: Digital Signal Processing units are programmable hardware accelerators, ef-
ficient for specific types of computation such as floating-point additions and multi-
plications. The usual design technique [62] for HPC accelerators aims at optimizing
the DSP usage for floating-point computations as they are mostly the limiting re-
source on compute-limited applications.

• Communication tiles: Tiles that are connected to out-of-chip components. This can
vary from high-performance interfaces directly connected to RAM to transceivers
dedicated to out-of-board communications, as well as classical interfaces such as
USB, HDMI or even LED control for debugging purposes.

The principle of FPGA design is to activate and combine some of these elementary
blocks together to form bigger units such as multi-bit adders, multipliers, multiplexers
and memories. These elementary design units are also hierarchically assembled to create
hardware components such as execution units, buffers, scratchpads and, ultimately, a
complete design. We designate in this manuscript by the term FPGA architecture the
type and the layout of all units integrated in a functional design.

Due to the variety of hardware primitives available on-chip, FPGA accelerator design
fundamentally differs from traditional low-level CPU tuning such as techniques seen in
Part I. The goal shifts from ensuring maximal usage of the available resources through
instruction selection to deciding the best software-to-hardware mapping to enforce maxi-
mum occupancy of the on-chip resources. For example, FPGA designs try to achieve a
balance between memory and computation characteristics of the program to accelerate
in order to limit stalls.

HLS Workflow versus Traditionnal RTL Workflow

HLS aims at producing FPGA designs from a software-inherited language, usually
C/C++ language. Internally, the "high-level"4 input code is first translated to a Register
Transfer Level (RTL)5 language in the HLS synthesis phase to produce a reusable IP
(Intellectual Property [of a sub-design]) that can be used as a building block in a larger

4Considering C as "High Level" gives an intuition of the complexity of RTL, that HLS aims at replacing!

5Note that RTL specify the abstraction level of the architectural specification, whereas HDL (Hard-
ware Description Language) is used to designate the language itself, usually Verilog or VHDL. In this
manuscript, we will only use the term "RTL" for both meaning for consistency.
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design. In this framework, code behavior can be checked, either with C simulation,
which is the testing directly on the C program, or with co-simulation that also performs
a simulation of the generated RTL. The next steps are then common with RTL-based
workflow, as illustrated in Fig. 6.2. First, the designs are processed by the tool to generate
a netlist, that is, the list of all required cells and their input/output mapping. This pass is
either called implementation or design synthesis depending on the toolchain used. Then,
the netlist is mapped following the specifications of an existing chip (for FPGA design) or
lithographic process library (for ASICs), so that each input-output link is compliant with
its corresponding constraints, in a step called place and route (P&R). These constraints
can concern:

Placement On a FPGA, the location of small compute accelerators called Digital Sig-
nal Processing units (DSP) and memory storage banks called Block RAM (BRAMs) or
UltraRAMs (URAMs) is fixed. Similarly, I/O pins always have a non-movable location,
as well as PLLs or off-memory links: the RTL-defined sub-designs using these blocks/pins
must then be placed in a way that allowing access to their physical location.

Timing The interconnect between logic blocks should be functional at the target fre-
quency, which constrains the type of link and its maximum length on the chip.

On FPGA design, P&R results in a bitstream, that is, a binary file that may be flashed
to the programmable logic to configure it. Note that the place and route step also gives
an estimate of the slowest clocked path between two storage locations, called critical path
(noted CP). The more complex operations are and the routing distance is between two
logic blocks, the longer the critical path is. Optimizing it is a key step in accelerator
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design as the maximum achievable stable frequency fmax is given by:

fmax =
1

CP

Several techniques are known to lower CP length, such as retiming, pipelining, trim-
ming, buffer insertion, deportation of the computation to dedicated units [5]; or adapta-
tion of the interfaces to better suits the timing constraints. On the other hand, complex
combinatorial patterns, high occupation of the FPGA and designs with high pressure on
routing resources are susceptible to exhibit longer CP, and thus low operating frequency.

Advantages and Downsides

HLS shifts the description from an architectural one to a semantic-based one, that
is by design not suited for this use. Therefore, C/C++-based HLS comes with several
structural challenges [63], boiling down to the fact that one (C/C++) specification of
a program can be executed on a multitude of different architectures exposing different
performance/area trade-offs and different bottlenecks. This, combined with the (relative)
early stage of the toolchains, is why the source code has to be annotated with pragma (see
Sec. 6.1.2 for more details) to guide the synthesis tool in producing optimized designs. As
a consequence, the output design quality is heavily dependent of the syntactic structure
of the synthesized code.

Though these annotations require intricate knowledge about chip architecture – a
point that HLS aims at lightening –, they also allow faster design space exploration
(DSE) than traditional RTL methods. Changing the data width, replicating compute
units, pipelining are typical examples of design changes that would lead to tedious and
error-prone glue writing in RTL, but are very simple to express in HLS.

Another advantage of HLS lies in its simplification of the design verification check.
In real-world designs, verification outcosts designing (see Fig. 6.3); HLS softens this cost
by allowing direct behavioral specification of the architecture at the earliest stage: the
source code. However, this means that most of the complexity of the verification now
lies in the HLS tool, like in the software world, where both compiler and source code
must be examined to ensure a validated specification. Similarly, the output RTL code
consumes usually more area than manual, optimized ones due to the use of necessary
generic interfaces and limitations of the source language, especially in the expression of
parallel operations and cycle-accurate communications (see Sec. 6.2 for more details).

6.1.2 Annotation of the Source Code with pragma
For the following sections, we limit ourselves to HLS synthesis from Xilinx’s Vitis

2022.1 toolchain [55]. Though most of the annotations are limited to this infrastructure,
we believe that their underlying weaknesses are common to other concurrent solutions
such as Intel HLS Compiler or Mentor Catapult.

Unless stated otherwise, all information concerning annotation behavior is documented
in the Vitis High-Level Synthesis User Guide [64].
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Figure 6.3: Cost of chip design for several lithographic technologies [1], in millions of dollars

Pipelining

Pipelining a design corresponds to splitting it into stages that can be executed concur-
rently, leading to an improved throughput with limited resource overhead (see Sec. 2.1.2
for a detailed explanation).

In the HLS context, pipelining is obtained by annotating the pipelined section with
#pragma HLS pipeline ii=xx, with xx the pipeline initiation interval. The higher the
initiation interval is, the lower the throughput will be, but the more resource reuse op-
portunities may appear. Syntactically, Vitis has two ways of splitting a main design into
smaller, simpler sub-designs that are candidates to pipelining: loops and functions.

Both can use the pipeline pragma, which is effective for a function only when it is
used in an innermost loop body. Note that the top-level module cannot be pipelined, as
no fixed specification exists for interface that "loops" over a module.

Though pipelining with minimal II has become the golden rule of HLS design, as it
leads to an asymptotic 100 % occupancy of the compute units (as long as the pipeline is fed
and after the first initialization cycles, all stages are active at all timesteps), some works
suggest that this design rule is not the most efficient in all cases in terms of throughput
per area, especially in designed focused on resource reuse [62].

Stalls To control latency in cases where an input is not available, several types of
pipeline can be generated via the option style=xxx. Possible designs are (see Fig. 6.4
for a graphical illustration):

• stp: Stalled pipeline, the default one. If an input is not available, then all stages
of the pipelined are frozen, and the execution resumes when new data become
available.
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Figure 6.4: stp, flp and frp pipelining types

• flp: Flushable pipeline, that allows data to be processed even without input thanks
to dedicated flushing logic. Flushable pipelines come with a slight resource increase
due to the additional control of each pipeline stage.

• frp: Free-running / flushable pipeline, which is always running even when no input
is provided by inserting a "bubble", that is, an operation whose output is discarded
in the pipeline. It may only be synthesized in datataflow regions (see Sec. 6.1.2),
adds buffers to the design to store outputs and requires the use a blockable I/O
interface (e.g. AXIStream, see Sec. 6.1.4). However, it may also decrease routing
resources by eliminating the need of a cross-stage interconnect, which may result
in higher frequency as seen in Sec. 6.1.1.

Rewinding The rewind option avoids stalling when the pipelined region is encapsu-
lated in another loop, by allowing cross outer loop iteration overlapping. This optimiza-
tion, illustrated in Fig. 6.5 is especially efficient for loops with small trip counts.

Another optimization that ca be used to limit stalls is specified by #pragma HLS
loop_flatten, that will generate control logic for perfectly or semi-perfectly nested loops
nest as if only one loop was syntactically specified. This is equivalent to rewriting the
code in a way that merges the loops together, without changing the scheduling of each
operation. Thus, pipelines generated from flattened loops will only stall at each termina-
tion of one outer loop iteration (unless rewind), limiting resource spillage with virtually
no additional logic needed.

73



Inner loop
iteration

TimeOuter loop iteration 1

Outer loop iteration 2

(a)

Inner loop
iteration

TimeOuter loop iteration 1

Outer loop iteration 2

Overlap between
outer loop iterations

(b)

Figure 6.5: Non-rewinded (a) vs rewinded (b) loops

Unrolling

Unrolling a loop means, in HLS, coarse grain replication of the subdesign defined
by the loop body, creating as many replicas as the unroll factor. The corresponding
annotation is #pragma HLS unroll factor=xxx.

Following a toolchain-dependent dependence analysis, the iterations of the loops are
distributed evenly between replicas. If the analysis concluded that iterations are paral-
lelizable and if the tool succeeds in scheduling the loading and storing of required data in
parallel, then their execution is scheduled at the same timestamp, leading to a speedup
equal to the number of replicas. In the other case, the benefit of unrolling is voided by
the dependencies, and replicas are scheduled one after the other, leading to no speedup,
but a significant increase in resource usage.

One of the major drawbacks of this technique lies in the underperformance of the
dependency analysis pass. Far from widely spread, exact techniques such as ADA [65],
Vitis’ dependence analysis is based on syntactic check on the variables used, thus re-
quiring further annotations with the #pragma HLS dependence var=xxx type=inter
false to override its conservative deductions, with xxx the variable where a non-existing
dependence is detected.

Moreover, a high replication factor also leads to a design with complex routing path,
leading to a decrease of operating frequency. This effect is essentially present on full
unrolling of compute-intensive loops, for which other techniques such as pipelining or
coarse-grain replication may be better suited.

Array Storage Type

By default, C-arrays are mapped by Vitis HLS to either flip-flops or BRAMs depending
on their size and their number of concurrent accesses, limited by the number of read/write
ports in the case of BRAMs. This behavior is configurable through the #pragma HLS
bind_storage variable=xxx type=yyy impl=zzz with xxx the target array, zzz the
physical block used to implement memory (BRAM, URAM if available, LUTRAM or
SRL, with or without ECC when the target supports it) and yyy the memory type:
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Figure 6.6: Array partition types

• FIFO to implement the storage as a FIFO stack (with an unlimited number of
readers).

• RAM_1P, RAM_1PWNR, RAM_2P, RAM_S1P , RAM_T2P to implement the storage as ad-
dressable memory, with different configurations of simultaneous accesses: 1 read-
/write port, 1 write port/N read ports (which leads to BRAM replications in the
final hardware), 2 ports with 1 read/write and 1 read, 2 ports with 1 read and 1
write, or 2 read/write ports.

• ROM_1P, ROM_2P, ROM_NP addressable, read-only memory, with support for 1, 2 or
N read ports.

Array Partitioning

The simplest way to map a C-like array onto an FPGA is to store linearly its data in
on-chip memory, following its original semantic. However, physical BRAM6 units have
a limited amount of access ports (usually two), that are used to either read or store
data. Following pipelining and unrolling transformations, an array may be accessed more
than twice per cycle, which means that data have to be distributed on several BRAMs
to allow concurrent access, or data have to be replicated. This data distribution is
called partitioning and is controlled by the #pragma HLS array_partition type=xxx
factor=yyy dim=zzz that splits array in sub-arrays placed in different BRAMs, with:

• dim controlling the target dimension of the array

• factor number of sub-arrays to be stored in different BRAMs

• type the partitioned algorithm illustrated in Fig. 6.6, either:

– complete: one BRAM is used for each value

– block: blocks of size(array)/FACTOR consecutive values are stored in the
same BRAM

6All the content of this section is also valid for URAMs as well.
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1 void top(int in1[N], int in2[N], int out[N]) {
2 int tmp1[N], tmp2[N];
3 funcA(in1 , tmp1); // read in1 , write tmp1
4 funcB(in2 , tmp2); // read in2 , writes tmp2
5 // dependency on tmp1 and tmp2
6 funcC(tmp1 , tmp2 , out); // read tmp1 and tmp2 , write out
7 }

(a)

Non-dataflow execution

Dataflow execution

Time

funcA() funcC()funcB()

funcA() funcC()
funcB()

(b)

Figure 6.7: Loops, dataflow and concurrent execution: code (a) and corresponding execution
times with /without dataflow (b)

– cyclic: values are distributed on BRAM following a modulo placement, so
that consecutive values are never assigned to the same BRAM

Depending of the access pattern and the pipelining/unrolling annotations, block or
cyclic partitioning may result in a minimum BRAM usage.

Task-level Pipelining

One of the major drawbacks of C/C++-based HLS lies in its implicit expression of
parallelism, as detailed in Sec. 6.2.1. For example, the toolchain is often not able to
overlap the execution of two functions7, especially in cases where no dependence exists
between them, as illustrated in Fig. 6.7. The annotation #pragma HLS dataflow aims
at correcting this behavior by allowing task-level concurrent execution: all functions in a
pragma dataflow-annotated region are synthesized as independent sub-designs running as
soon as their inputs are available. Thus, all modules are able to run in parallel, to the cost
of either FIFO or ping-pong buffers to implement the storage of their input and output
data. The schedule is then dynamic depending on the availability if the input, leading
to both task-level parallelism (space-multiplexing of the units) and task-level pipelining
(time-multiplexing of the compute units) when the I/O signals allow it. Both usages are
illustrated on Fig. 6.7.

However, Vitis can only apply its dataflow optimization to code sections following
a pattern allowing simple dependence analysis [66]: only single-producer / multiple-
consumer is currently supported; potentially leading to code transformations increasing
memory footprint.

7Even when applied, this behavior is currently legacy and unmaintained by Vitis HLS.
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Performance

The annotation #pragma HLS performance ti=xxx aims at autodiscovering pipelin-
ing, inlining, array partitioning and unrolling parameters, so that a loop with known trip
count achieves the given transaction interval (TI), that is, the number of cycles elapsed
between two successive executions of the loop. It may be defined two-fold:

TI =
II

TC
=

F

OPS

With:

• II the initiation interval of the loop

• TC its trip count

• F the frequency of the design (in Hz)

• OPS the number of executions of one loop body per second

Though being the current objective in terms of user interface, the performance anno-
tation is still limited to code simple to analyze and uses extensively array partitioning to
conservatively reach the target TI.

6.1.3 Controlling Resource Usage
Resource usage cannot be explicitly controlled, in the sense that the user cannot

fix a hard limit over the number of DSP/FF/LUT/BRAM that a design can consume.
However, annotations can be used to guide the synthesis tool toward a reduced usage of
certain resources.

BRAM

BRAM usage can be controlled by the HLS array_partition pragma. Reducing the
partition factor will lead to a lower BRAM usage, to the cost of lower performance due
to port contention.

Logic

Similarly to BRAM usage, overall compute resources can be reduced by specify-
ing lower unroll factors, once again to the cost of lower performances. Fine-grain re-
source usage can be controlled with the #pragma HLS allocation function/operation
instances=xxx limit=yyy with xxx the name of the function and yyy the maximum
number of instantiations of the component (see Fig. 6.8 for more details).

Depending on the code structure and the dependence pattern between data, the HLS
allocation pragma may increase efficiency (measured by throughput/area) by forcing
reuse of the targeted component.
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1 void foo(half a, half b,
half &c) {

2 #pragma HLS allocation
operation instances=hadd
limit=1

3 // Reuse the same
hardware unit for both
additions

4 c = a + b + c;
5 }

(a)

1 void foo(half a, half b,
half &c) {

2 #pragma HLS allocation
function instances=bar
limit=3

3 // Instantiate 3
different hardware units

4 bar(a);
5 bar(b);
6 bar(c);
7 }

(b)

Figure 6.8: Example of resource control via the HLS allocation pragma on operations (a)
and functions (b) for half (FP16) data type

6.1.4 Handling Off-chip Communications
Interfaces are one of the weak points of HLS. The user is left with two choices: either

using built-in interfaces, that are compatible with other off-the-shelf IPs due to their
standard communication protocol8, or implementing their own, which is more flexible
but time-consuming and error-prone.

Standard Communication Protocols

The top-level function, which defines the communication interfaces with other IPs,
may be annotated with the #pragma HLS interface [67] to specify communication pro-
tocol with other IPs (e.g. for off-chip data communication). Possible choices are:

• AXI4: High-Performance communication interface linking two designs in a slave-
master hierarchy. Off-chip memory accessed via AXI is configured on MPSoC by
memory-mapped registers, but the AXI-to-memory IP has direct access to the off-
chip RAM (DMA). The AXI protocol handles handshake, bursts (high-throughput
access of consecutive data by allowing multiple reads on one request), and is com-
posed internally by 5 mandatory channels: Read Address, Read Data, Write Ad-
dress, Write Data, Write Response, for a total of 45 signals.

• AXIStream: A simpler version of AXI, which only allows streaming of data, that
is, no request can be made by the receiving end other than stopping or continuing
the transfer. This is equivalent to an AXI interface handling only bursts with no
specification of the target address. Compared to full-AXI, AXIStream only requires
5 mandatory signals to be implemented, hence being and ideal choice for streaming
accelerators treating on-line data.

• AXI4-Lite: Low-performance, low-resource communication interface base on the
AXI protocol. On MPSoC such as Zynq-7000, AXILite-to-memory IP directly

8At least theoretically compatible...
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maps data in memory (MMIO), as the specification only allows 32 or 64 bits data
accesses, corresponding to a register-like structure. As a consequence, only 19
signals are required to implement an AXI4-Lite link, while still being compatible
with AXI4 targets.

Custom Communications

Input variables defined as volatile are generated as signals rather than being stored
in a buffer at the start of the execution of an HLS-generated IP9. This means that
the user can read or change the value of the signal by reading or writing the targeted
variable. Synchronization of the signal with the clock is achieved by using the #pragma
HLS protocol annotation: the signals separated by ap_wait() statements (defined in
ap_utils.h) inside a protocol-annotated blocks are sent through the corresponding wire
at the same cycle.

Another less used method consists in enclosing the state machine defining the signal
in a for loop pipelined with an II of 1. Though not being officially documented, this
technique can also be used to generate fine-grain pipelines, tackled later in this manuscript
in Sec. 6.3.3.

6.1.5 Selection of the Design Frequency
The selection of the operating frequency is equivalent to setting a maximal target of

the critical path. This operation is three-fold: first, in HLS, the tool must know its target
CP in order to limit combinatorial logic that may lead to an invalid design, or split it if
possible. After HLS synthesis, the toolchain outputs an estimate of the maximum CP.
As HLS-generated designs are supposed to be functional in most cases, this estimate is
often conservative, and previous work has shown that overclocking the IP still leads to
valid designs [68].

The implementation step further refines the estimate, as the output netlist is optimized
for a specific cell library, for which the timings of compute paths can be computed from
the specifications. However, the most accurate CP estimation is obtained after P&R, as
larger designs’ CP may lie in the routing between two modules of the final design.

Note that, on some FPGAs such as Xilinx Zync MPSoC, clock generators are not
integrated in the programmable logic, but out-of-chip. Therefore, the final bitstream
does not configure them to the target frequency (even though the complete toolchain
is aware of it!). Instead, the user has to manually configure the clock generator to the
desired frequency10, typically through memory-mapped registers setting the base clock
and the multiplier. The tool setfclk11, written in C, was derived from the PYNQ’s

9This behavior may be enforced with #pragma HLS interface mode=ap_none port=xxx
register=off, which is (surprisingly) not conflicting with annotations specifying the communi-
cation standard on the same variable.

10Which is why electronicians refer to these clocks as constant and not static.

11https://gitlab.inria.fr/CORSE/setfclk
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Python SDK to allow easy configuration of the fabric clock for the tested FPGAs in this
manuscript.
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1 void foo(half a, half b,
half &c) {

2 half t1, t2;
3 // Scheduled in parallel
4 t1 = a + b;
5 t2 = a * b;
6

7 // Scheduled after t1
and t2

8 c = t1 + t2;
9

10 }

(a)

1 void foo(half a1[N], half
a2[N], half c1[N], half
c2[N]) {

2 // Scheduled in parallel
3 bar1(a, c1);
4 bar2(b, c2);
5 }

(b)

Figure 6.9: ASAP scheduling in Vitis: operators (a) and functions (b)

6.2 Generic Toolchain’s Limitations
Due to the inherent complexity of hardware designs, current toolchains are limited in

the feasible design space, either due to lack of primitives or lack of syntactic structure for
their expression. This section covers some of these limitations with a focus on compute-
limited designs: the lack of control over parallelism in Sec. 6.2.1, the lack of control over
frequency domains in Sec. 6.2.2, and the inefficiencies in DSP usage in Sec. 6.2.3.

6.2.1 Parallel Operations
As discussed in 6.1.2, Vitis has a way of specifying task-level parallelism, but to

the cost of increased resource usage and heavy limitations on the source code pattern.
However, Vitis’ scheduling policy is to generate an ASAP schedule: all operations that
may be executed are executed as soon as possible, leading de facto to a parallel design to
some extent. This scheduling choice is applied to operators, that is, statements performing
computations, but also to functions12, as illustrated in Fig. 6.9, when the dependence
analysis succeeds in deducing that parallelization is legal, which boils down to aliasing of
the function arguments.

6.2.2 Frequency Domains
Frequency selection is a key research topic in both CPU, GPU and FPGA/ASIC

design, as it has deep consequences on the power/performance ratio of end-user chips.
However, C-based HLS tools cannot handle multiple clock domains, as all C-defined
operations are by definition synchronous, thus scheduled on a single, module-wide clock.
Another, more programming-language view of this issue is that C lacks the expression
of parallelism (as seen in Sec. 6.2.1), and thus lacks a way to express different execution
speeds of the parallel sections. Nevertheless, an HLS source file may be broken down into
several submodules that may be clocked differently; but the responsibility of handling

12However, this behavior is being considered as legacy and unmaintained.
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synchronization (that is, managing glue logic in RTL) is left to the user, voiding the
interest of HLS as a semantic specification of the design.

6.2.3 DSP Primitives
By leveling up the abstraction level from RTL to C, the user loses part of the low-

level access to FPGA components. The best example of this loss lies in the DSP usage.
Whereas, in RTL, DSP usage has virtually no limitation apart from their frequency limit,
in HLS, the latter are limited to hardcoded primitives such as adders, multipliers, cascade
operations, etc. This limits the user in multiple ways:

No User-Specified II of DSP primitives

The DSP primitives given to the user all achieve an II of 1, in the sense that they are
all available for a new computation every cycle. While these designs are the most widely
spread and lead to high-performance modules, their behavior restricts the possibilities of
the user in terms of fine grain control of the resources. For example, an FP32 adder takes
4 DSP for a PYNQ-Z1 FPGA. There is currently no way to specify to the toolchain to
generate a (slower) 1 DSP FP32 adder, even though this can lead to smaller designs, or
even more efficient ones in cases where the adder is not a bottleneck of the final module.

No Cross-operator DSP reuse

As DSP primitives use a fixed, preallocated amount of DSPs, no cross-operator sharing
of the DSPs is possible. For example, a design that needs N additions followed by N

multiplication cannot reuse the DSPs between these two primitives, even though this is
technically possible (to the cost of more control and storage logic) with RTL designs.

No Time Mutiplexing of DSPs

As discussed in Sec. 6.2.2, HLS cannot specify different clock domains for different
modules. However, overclocking the DSP is a well-known technique used to increase
throughput and resource efficiency of FPGA designs [69]. Note that this may technically
be achieved by synthesizing separate HLS modules encapsulating DSP, targeted to the
overclocked frequency, then linking these accelerators to a glue HLS module. However,
this approach contradicts the spirit of HLS as the synthesis tool loses its semantic view
of the execution (unknown modules and communications being treated as black boxes).
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1 void add(half a, half b,
half &c) {

2 #pragma HLS inline
3 c = a + b;
4 }

(a)

1 void foo(half a, half b,
half &c) {

2 #pragma HLS allocation
operation

3 instances=hadd
limit=1

4 // Functions are inlined:
5 // Only one adder
6 // is instantiated
7 add(a, c1);
8 add(b, c2);
9 }

(b)

Figure 6.10: Inlining (a) and operator reuse (b)

6.3 Toolchain’s Limitations for Resource-Shared De-
sign Generation

Though HLS tools are mature enough to allow fast design space exploration [70, 71],
several weaknesses in design specification limit the range of possibilities of source-to-
source approaches. Contrary to the former sections that provide low-level details of
non-reachable designs, mostly due to the lack of dedicated annotations or primitives,
this section tackles restrictions on the syntactic formulation of C codes on the angle of
resource sharing. Expression oof sharing at the module scope is discussed in Sec. 6.3.1, the
associated cost in resources in Sec. 6.3.2 and Sec. 6.3.3 proposes two opposed approaches
for high-performance, custom accelerator specification.

6.3.1 Expressing Shared Modules
As discussed in Sec. 6.1.3, Vitis HLS has no explicit annotation for resource sharing.

As a consequence, cross-function sharing is impossible without the use of #pragma HLS
inline, that explicit copy of the function code at its call site (inlining). This way, single
operator units can be shared with other surrounding operations, possibly coming from
other inlined functions as well, authorizing cross-function resource sharing syntactically.
However, semantically, the inlined function has lost its propriety of being an atomic
reusable unit, often voiding its interest in terms of hardware design.

The combined use of the inline and allocation annotation is illustrated in Fig. 6.10.
Only one FP16 adder instance will be synthesized per foo replica. However, calls to add
outer foo body will not reuse any of the foo units.

Similarly, cross-loop operator reuse is not enforceable by any annotation, though the
resource pragma on different loop nest may lead to compute unit reuse by the HLS tool.
However, in any cases, the affectation of operators to units stays implicit.

6.3.2 Overhead of Operation Clustering
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1 void foo(half *in , half
*out) {

2 ...
3 half a, a1 , b, b1, out ,

out1;
4 for (int i=0; i<NB_IT;

i++) {
5 #pragma HLS pipeline II=XXX
6 switch

(computation_id) {
7 case 0: {
8 a = ...;
9 b = ...;

10 a1 = ...;
11 b1 = ...;
12 break;
13 }
14 ...
15 }
16 out = a + b;
17 out1 = a1 + b1;
18 switch

(computation_id) {
19 case 0: {
20 ... = out;
21 ... = out1;
22 break;
23 }
24 }
25 }
26 ...
27 }

(a)

1 void add1(half a, half b,
half &c) {

2 #pragma HLS inline off
3 c = a + b;
4 }
5

6 void add2(half a, half b,
half &c) {

7 #pragma HLS inline off
8 c = a + b;
9 }

10

11 void foo(half *in , half
*out) {

12 #pragma HLS allocation
function

13 instances=add1
limit=1

14 #pragma HLS allocation
function

15 instances=add2
limit=1

16 #pragma HLS pipeline II=XXX
17

18 ...
19 add1(a, b, c);
20 add2(a1, b1 , c1);
21 add1(a2, b2 , c2);
22 ...
23 }

(b)

Figure 6.11: Single-operation (a) and function-based (b) explicit resource binding

To allow explicit compute unit binding, the programmer has two efficient choices:

• Syntactically relying on one operation, and rely on switch to route the input /
outputs to the rest of the program (Fig 6.11a)

• Cluster operations into functions, limit the number of instances of each function to
1 and reuse the functions as much as needed (Fig 6.11b).

While the first case is constraining the syntactic structure of the program by forcing
a main loop structure iterating over all usages of the operator, the second one is more
resource-hungry due to the additional interfaces needed by the (non-inlined) functions.
However, more complex sequences of operations can be shared through function-level
replication, which is impossible in the other case due to the instance annotation only
applicable to toolchain-specific operations.
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6.3.3 Fine-grain Execution Pipeline Generation
In the case of pipelined IPs, that is, HLS-crafted IP in which a custom pipeline is

needed with control over the resource used and its iteration interval, the programmer
is left with two solutions depending on the expression of the shared operations seen in
Sec. 6.3.2.

Explicit Scheduling If the approach of single-operation reuse is taken, the pipeline is
composed of a single loop with user-defined iteration intervals as illustrated in Fig. 6.11a,
with switch statements selecting input and output of the operators depending on the
user-defined schedule. While this approach is the most flexible in terms of control of the
schedule/placement of the operations, the lack of intricate dependence analysis of the
HLS tool may detect memory conflicts between iterations of the loop, and then relax the
II to meet its conservative constraints. As a consequence, a module capable of sustaining
the desired memory access workload is required to bypass this analysis.

Implicit Scheduling If the approach of function-level reuse is taken, then the pro-
grammer may schedule explicitly each call, or opt for an implicit scheduling. The latter
is expressed in Fig. 6.11b, with the subtlety of requiring a function-level pipelining annota-
tion (even with a target latency higher than the module’s) to activate Vitis’ HLS resource
sharing optimization. In this case, inner pipeline computations may be reordered: as a
consequence, the overall latency may be higher than the explicit scheduling’s, as the syn-
thesis tool can interpolate bubbles (idle cycles) in the compute unit’s schedule to ensure
consistency of the dependency analysis.

6.3.4 Accurate Measuring of the Execution Time
The most accurate way to measure time in HLS relies in the use of an on-chip counter,

that is, an external IP placed in the usual RTL hardware block design editor, which value
is polled by the HLS IP before and after the measured computation. However, due to
dead code elimination by the HLS tool, not all HLS-based computations of the execution
time will result in a correct value. For example, the code illustrated in Fig. 6.12a will
result in a nb_cycles of always zero as the compiler can reorder statements and execute
both counter reads in the same cycle.

Instead, one way to avoid undesired simplification of the cycle measurements is both
the usage of the #pragma HLS protocol that specifies the order in which operations
are scheduled (as seen in Sec. 6.1.4) and the direct transfer of the values of the counter
instead of performing the subtraction (potentially simplified) on-chip. In this case, the
programmer must place ap_wait() calls around the measuring statement to correctly
specify the scheduling of the protocol section. The corresponding code is reported
Fig. 6.12b.
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1 void foo(...,
2 volatile unsigned

&counter ,
3 unsigned &nb_cycles) {
4 unsigned before =

counter;
5 ... // compute
6 nb_cycles = counter -

before;
7 }

(a)

1 void foo(...,
2 volatile unsigned

&counter ,
3 unsigned

&nb_cycles_before ,
4 unsigned

&nb_cycles_after) {
5 # pragma HLS INTERFACE

mode=s_axilite
port=nb_cycles_before

6 # pragma HLS INTERFACE
mode=ap_none
port=nb_cycles_before
register

7 # pragma HLS INTERFACE
mode=s_axilite
port=nb_cycles_after

8 # pragma HLS INTERFACE
mode=ap_none
port=nb_cycles_after
register

9 # pragma HLS INTERFACE
mode=ap_none port=counter
register=off

10 start: {
11 #pragma HLS protocol

mode=fixed
12 ap_wait ();
13 nb_cycles_before =

counter;
14 ap_wait ();
15 }
16 ... // compute
17 end: {
18 #pragma HLS protocol

mode=fixed
19 ap_wait ();
20 nb_cycles_after =

counter;
21 ap_wait ();
22 }
23 }

(b)

Figure 6.12: Erroneous (a) and correct (b) HLS execution time measurement using an on-chip
counter
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Chapter 7
Towards a General Formulation of the
Resource Sharing Problem

Former limitations of HLS described in Sec. 6.2 concern mainly back-end, that is,
families of designs that the synthesis tool cannot generate due to the lack of standard
specification for their use in HLS C/C++ (Sec. 6.2.1), or its lacks of support for specific
primitives (Sec. 6.2.3), or However, even given these restrictions on the design space,
current tools are far from implementing automatically Paretto-optimal designs for a fixed
latency/throughput or resource budget.

This section proposes an approach to remedy this issue under the resource sharing
aspect, that is, reuse of functional units throughout the program to ensure their high
occupancy. This chapter paves the way for an automatized framework that, given in
input i) a C specification of a program with statically analyzable control flow and ii)
an area budget, generates both an architecture capable of executing the program and a
mapping from the program’s operations to the architecture compute units. First, Sec. 7.1
overviews former approaches. Then, Sec. 7.3 and 7.4 tackles the issue of resource and
latency estimates of the compute units, needed for the tool to estimate total resource
usage. Sec. 7.5 proposes a naive convex encoding of the resource sharing problem; and
Sec. 7.6 discusses the limitations of this approach as well as possible heuristics for real-life,
fast generation of non-provably optimal accelerator designs.
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7.1 Existing Resource Sharing Techniques
Resource sharing techniques on FPGAs are by no means new. The idea of reducing

the size of designs by time-multiplexing their execution units was already around when
the first FPGAs were commercialized [72], and has evolved in par with High-Level Syn-
thesis techniques [73, 74] that started from ad-hoc languages to the modern subset of
C/C++ [55, 57, 75]. Classical techniques rely on optimization of loop structures [76]
in order to generate efficient pipelines through sharing of code-derived execution units,
and remain the current direction of research today [59, 77]. Another direction concerns
synthesis tools, where the granularity of shared element is smaller [78, 79], often limited
to a few DSPs or load/store units, as detailed in Sec. 6.1.1.

This section analyses two resource sharing approaches in a bottom-up way: first,
sharing at Basic Block (BB) level is studied in Sec. 7.1.1, based on the research work
from Josipovic et al. [78]. Then, Sec. 7.1.2 details the technique used by Li et al. [59]
to detect shareable components across loops on statically scheduled circuits, and thus to
generate efficient designs.

7.1.1 Basic Blocks-Level Resource Sharing
As current HLS tools operate from high-level C/C++ source code, scheduling infor-

mation must be automatically inferred during synthesis while at the same time keeping
track of resources. Therefore, the tool has chose which compromise to implement between
replication of units, that performs better but uses more area; and sharing, that involves
more complex routing – while ensuring correctness of the generated circuit. To simplify
the problem, some tools [55, 80] rely on static scheduling: the timestamp of execution
of each operation is fixed. However, in the case of dynamic scheduling, also referred as
dataflow circuits, timestamp of execution of operations is not decided at compile time,
hence a more challenging task as wrong scheduling decisions may lead to deadlocks, that
is, indefinite waiting before the execution of some operations.

The approach taken by Josipovic et al. [78], described in this sub-section, is integrated
in the Dynamatic HLS tool [75] and targets sharing at the granularity of dynamically-
scheduled operations on high-performance sections, defined as loops in the original pro-
gram. It relies on a occupancy metric in order to quantify the shareable operations in
dataflow circuits and uses synchronizing components to assign them to pipelined execu-
tion units without possibility of deadlocks. The main idea of this technique is detailed in
the next section.

Compared to Xilinx’s commercial tool, this approach uses exactly as many DSPs when
evaluated on a 10 synthetic benchmarks. However, it requires between 3.56 and 7.02 times
more routing resources (LUTs) and its execution time/critical path also suffers from non-
negligible overhead due to dynamic scheduling that is not profitable in all applications.
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1 for (i = 0; i < N; i++) {
2 a[i*x] = i*y;
3 }

Figure 7.1: Example of design exposing shareable opportunities

Technical Solution

Motivating Example Let us illustrate the non-triviality of legal resource sharing in
dataflow circuit with a simple example: the synthesis of an accelerator respecting the
specification expressed in Fig. 7.1.

Assuming the data type of i, x and y are the same, then the multiplier operation can
be shared using two multiplexers to select the corresponding x or y value.

However, this design fails to provide a deadlock-free implementation of the specifica-
tion no matter the input order of operands – a requirement for safe dataflow circuits –, as
starvation may occur if two y1, y2 values corresponding to two different executions arrives
consecutively. In that case, the storing stage will wait for the result of i ∗ x1 only to find
i ∗ y2, hence an incorrect execution.

Resource Sharing in the Absence of Input Ordering The principle of resource
sharing is to route data from multiple possible input paths, treat it, then route the
corresponding result to the correct next unit. Therefore, the difficulty when designing
resource shared circuits in the dataflow paradigm is to avoid starvation by ensuring
correct synchronization of inputs. As deadlocks can emerge from situations in which the
arrival ordering of the inputs does not follow the one deduced from the control flow of the
program, the safest way to ensure coherency of the execution is to limit the ordering of
the inputs and operations to the one specified by the control flow. This can be enforced by
an in-order implementation of the sequence of operations, for example through a dataless
token that orchestrates the data path: on FPGA architectures, this translates into buffers
that store the intermediate results, forks that distribute intermediate values and joins
for the stalling logic. Such glue guarding elements can be naively implemented before
each shared operations to provide maximal safety to the cost of higher resource usage,
degrading both latency and throughput.

One solution proposed to mitigate this overhead is to implement the ordering of the
input at the basic block level, that is, in regions delimited by two branches. Note that
further application-specific optimizations can also be realized when the control flow of
preceding units allows the derivation of timing-related rules, but this is not the case in
general.

In order to maximize the range of applicability of this technique, Josipovic et al. have
proposed a criteria of profitability based on the occupancy of units to decided whether
its operations are worth sharing: the sum of the token occupancy of a pair of operation
must lower or equal than the total unit latency.
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Limitations

First, this approach is limited to operation-level sharing, similarly to [59] and to
the approach presented in this chapter. On the other hand, overlay-based techniques
such as [81] and the Generic Accelerator, described in Chap. 8, leverage the on-the-fly
configuration of Xilinx’ DSP48E1 units to select at runtime which operation to execute
(amongst a fixed, supported set). Supporting such kind of flexible execution units would
allow more aggressive operator sharing, reducing DSP usage on low-throughput workloads
to the cost of additional routing and synchronization primitives – as well as latency.

Moreover, the decomposition of dataflow circuits into basic blocks forbids sharing
across them by design. As this approach focuses on throughput per area in a steady
execution state, this decision is designed not to harm performances, but this is often not
the case in practice. Once again, more aggressive sharing can be achieve by breaking
basic blocks boundaries, which would also increase the complexity of routing resources
as well as requiring associated multiplexing components.

Finally, this approach proposes an on/off optimization framework, without decision
margin from the designer. However, real-life IPs are often required to be customizable in
terms of size and performance in order to globally balance each individual component of a
VLSI design. Contrarily, the Linear Programming formulation, advocated in this section,
aims at formalizing a globally optimal solution to the resource sharing problem under
area budget, similarly to [59] where the optimization target accounts for the available
on-chip area.

7.1.2 Loop-based Resource Sharing for Throughput-based Opti-
mization

While the approach in 7.1.1 is dedicated to loop-level optimization in order to gener-
ate efficient designs for dynamically scheduled applications, it cannot perform cross-loop
resource sharing, nor does it focus on globally optimal architectures.

Indeed, designs can be optimized for global throughput instead of latency: the relevant
metric is then the average number of independent executions of the workload per unit
of time. In this context, a local optima in terms of throughput-per-area, i.e. one design
with best throughput for one execution of the application, may not be the best globally,
i.e. when dealing with batched repetitions.

This observation was made by Li et al. [59], who proposed an approach based on
per-loop resource vector usage (detailed in the next section) in order to determine com-
ponents worth sharing, and achieve a globally optimal design. Compared to the locally-
optimized version on 8 double-precision synthetic benchmarks, this approach reaches a
mean speedup of 31 %, demonstrating experimentally its interest.

Motivating Example

In applications presented as a sequence of loop nests (e.g. stencils), operator imbal-
ance across inner loop nests can create idling situations for compute units, thus leaving
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opportunities for resource sharing. Let us illustrate with the skeleton of DWT as an
example, illustrated in Fig. 7.2a. It is composed of 4 loop nests: 2 with twice many
additions as multiplications (L1, L2), and 2 with as many additions as multiplications
(L3, L4).

Let us compare the performance of the following hardware accelerator topologies:

1. Fully Pipelined: 2 adders, 2 multipliers

2. Non Fully-Pipelined: 2 adders, 1 multiplier

While loops L1 and L2 are both executable with an II of 1 cycle on both architecture,
L3 and L4 must be executed with an II of at least 2 cycles on (2) due to the presence of
only one multiplier. Contrarily, the architecture (1) still achieves an II of 1 on L3 and L4.

The usual designing technique consist in maximizing local throughput, hence select-
ing the architecture (1), then performing coarse-grain replication in order to maximize
utilization of the targeted FPGA accelerator. However, a 64-bit floating point implemen-
tation of (1) uses 28 DSPs, while (2) only requires 17. When looking at the performance
on a 512x512 image size, (1) takes 59 kilo-cycles, whereas (2) takes 85 kilo-cycles. We can
then compute the efficiency of each design, defined as the throughput per DSP (or inverse
latency per DSP, in this context): 6.1 10−7 cycle−1.DSP−1 for (1), whereas (2) reaches
6.9 10−7 cycle−1.DSP−1. Therefore, the non-fully pipelined implementation achieves pro-
portionally more performance per area that the fully pipelined version.

When measuring only throughput, this means that the architecture (2) is preferable,
as more replicas can be instantiated than (1) for the same chip area usage, leading to a
global gain in terms of throughput.

Technical Solution

This counter-intuitive remark can be generalized and formalized; in that regard,
Li et al. define the Loop Shareable Load Vector : the vector whose coordinates denote
the number of operations of each type that take more resource than a 32-bit 8-to-1
multiplexer13 and a fixed, per-operation additive resource model. The objective is then
to find the Loop Resource Allocation Vector corresponding to the repartition of com-
pute units in the design space which maximizes the global performance (expressed as
#replica ∗ perf_per_replica).

However, external constraints complicate the formalization of the loop-based, through-
put focused resource sharing problem. First, the estimated performance of the design has
to take dependencies into account without over-approximating, and secondly the overall
resource usage must fit within the FPGA’s hardware limitations. The best solution is
then deduced either by manual enumeration of all valid values of the resource alloca-
tion vectore, or using an Integer Linear Programming solver such as [48], thanks to the
proposed formulation.

13This condition ensures that the cost of the interconnect, i.e. multiplexers inserted at the inputs of the
units, remains negligible compared to the gains provided through resource sharing
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1 L1: for i = 1 to M-3 step 2
2 // two additions , one multiplications
3 L2: for i = 2 to M-1 step 2
4 // two additions , one multiplications
5 L3: for i = 1 to M-3 step 2
6 // two additions , two multiplications
7 L4: for i = 2 to M-1 step 2
8 // two additions , two multiplications

(a)
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(c)

Figure 7.2: Squeletton code (a), fully pipelined (c) and non-fully pipelined (b) accelerators
for DWT. Red squares indicated compute units, bright if occupied, dark if idle. Despite being
slower in terms of latency, the non-fully pipelined version achieves more problems solved (15)
than the fully pipelined one (12) with a similar resource and time budget.

Limitations

While this approach tackles a counter-intuitive result, its scope is not as wide as
what could be expected. Indeed, while the targeted optimization is the global through-
put, the metric used to quantify it is the average performance, computed as #replica ∗
perf_per_replica. This corresponds to batched execution of the targeted workload, i.e.
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repeated solving of independent instances of each problem. However, the proposed solu-
tion does not guarantee an occupancy of 100 % of the integrated compute units due to
inherent operator imbalance in the loops of the tested benchmarks. Theoretically, there
could exist a solution achieving better throughput, if all units were to be used at each
timestep during a steady state execution profile. Such designs exist in practices thanks
to Coarse-Grain Pipelining (CGP), resulting in a bigger design with higher latency, but
superior performance per area. The GA detailed in Sec. 8 is entirely built around the
idea of CGP by allowing parallel execution of kernels (seen as subparts of programs) that
offers optimal occupancy on batched workloads when resource requirements are met.

Nevertheless, as the coarse-grained pipelined version of the accelerators detailed in
Li’s work can be significantly bigger, this also means that pure replication of this design
may not achieve maximal performances in extremely resource-constrained conditions. In
particular, cases where only one instance of a CGP design may fit on-chip can still benefit
from the approach described in this subsection. Indeed, it produces smaller designs, which
can maximize chip occupancy by leaving fewer resources unused after maximal replication.
As the latter are physically integrated on-chip on FPGAs, there is little interest in letting
them out of the design.

Another weakness of this approach lies in the fact that achieving a reduction of the
design surface without hurting the performance to the same extent requires major resource
usage difference between operators. In the current Vitis HLS toolchain, this is only valid
for double precision operations, where an adder uses 3 DSP and a multiplier 11. On
lower bitwidth, both units use the same amount of DSP, voiding any interest to local
slowdowns.
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7.2 Compute Unit: Definition
In this chapter, a Compute Unit (CU) is defined as an atomic subdesign of an accel-

erator, that is able to compute only a fixed graph of operations from register-like inputs.
A CU is entirely defined by:

1. The list of its (scalar) inputs / outputs

2. The data type of its inputs / outputs

3. The compute graph (CDAG) of its output

4. Its II, that is, its peak throughput

Whereas points 1, 2 and 3 describe the functional behavior of the CU, point 4 is heavily
linked to its resource usage. Indeed, as seen in Sec. 2.1.2 fully pipelined CUs exhibit no
reuse of single-operator units as all of them are already fully time-shared. On the other
hand, CUs with an II strictly greater than 1 allow inter-CU reuse of those units, which
may seem to increase efficiency. While this fact may be true for some designs, intra-CU
reuse can lead to under-utilization of its units, voiding from its conception the target of
high occupancy. Moreover, reusing single-operators units implies that the CDAG of the
CU is composed of several operations, thus specializing the CU to a specific pattern. This
leads to less potential call sites in the target program, thus translating into a potentially
a lesser efficient design when assembled in the complete accelerator.

Example Let us consider the accelerator architectures and the program described in
Fig. 7.3. Pre-P&R resource, latency and throughput measurements of both architecture
are reported in Table 7.1 for a Xilinx ZCU104 development board.

Though exploiting reuse of the "+" operator directly in the CU thanks to its II of
2, the design specified in Fig. 7.3b achieves strictly worse throughput-per-area than the
design composed only of single-operation CU (Fig. 7.3a). This is due to the non-reuse
of the multiplier in cu_2add_1mul across the program, leading to the need of another
instance of a multiplier (in cu_mul). On the other hand, latency was improved because
of the reduction of the interconnect between CUs.

In other words, using resource sharing directly in non operator-balanced CUs limits its
applicability to specific programs and performance targets where the loss of occupancy
at the single-operator level does not matter. This is due to the fact that, as seen in
Sec. 6.2.3, the current toolchain is not able to generate primitives for single-operator
CU with an II higher than 1: it will instead use the one with an II of 1, leading to no
resource reduction or cross-operator DSP sharing, contrarily to what a non-expert user
could expect.

In the following sections, we limit ourselves to single-datatype CUs, but we believe
that only minimal changes are needed in the resource and latency estimates to adapt this
work for type-heterogeneous CUs.
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1 void cu_add(half i1, half
i2 , half &o1) {

2 #pragma HLS pipeline ii=1
3 o1 = i1 + i2;
4 }

1 void cu_mul(half i1, half
i2 , half &o1) {

2 #pragma HLS pipeline ii=1
3 o1 = i1 * i2;
4 }

(a)

1 void cu_2add_1mul(half
i1 , half i2, half i3 ,
half i4, half &o) {

2 #pragma HLS pipeline ii=2
3 o1 = (i1+i2) *

(i3+i4);
4 }

1 void cu_mul(half i1, half
i2 , half &o1) {

2 #pragma HLS pipeline ii=2
3 o1 = i1*i2;
4 }

(b)

1 void foo(half i1 , half i2, half i3, half i4 , half &o1) {
2 half tmp;
3 tmp = i3*i3;
4 &o = (i1+i2) * (tmp+i4);
5 }

(c)

Figure 7.3: Two FPGA accelerator architecture, using fully pipelined (a) and non-fully
pipelined (b) CUs, for the program (c)

Metric LUT FF DSP Throughput Latency

Archi (a) 195 167 4 0.5 pb/cycle 8 cycles/pb
Archi (b) 220 227 6 0.5 pb/cycle 7 cycles/pb

Table 7.1: Resource, latency and throughput estimates of two architectures for an accelerator
executing 10 successive instances of the program from Fig. 7.3c
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7.3 Resource Estimation of Compute Units
Our estimation of the resources taken by the CU considers the HLS toolchain as a

black-box and follows a physicist-like approach. Starting from plausible terms, we infer
for each operator their resource consumption behavior for both parallel and sequential
repetitions thanks to microbenchmarking, similar in its spirit to the work presented in
Part. I. Models for each resource are detailed in the following sections: DSP in 7.3.1, LUT
in Sec. 7.3.2, FF and SRL in Sec. 7.3.3. Then, all the resource models are calibrated and
evaluated in Sec. 7.3.4. Finally, we combine both estimators into a final one that operates
on arbitrary CDAG in Sec. 7.3.5, and evaluate its accuracy in Sec. 7.3.6.

7.3.1 DSP Estimation
We propose the following model for the estimation of the number of DSPs inside a

CU:
NDSP = Kop

DSP ·
⌈ n

II

⌉
With:

• NDSP the number of DSP

• Kop
DSP a constant specific to the operation type (such as “addition/FP32”)

• n the number of operations in the CU (either fully parallel or fully sequential)

• II the initiation interval (i.e. max throughput) of the CU

As floating-points operations are by default mapped to DSPs due to their efficiency
compared to LUT-based computation, and as DSPs are only computation units (nor
storage nor routing), their estimate is only composed of one term.

⌈ n

II

⌉
corresponds

to the minimal number of units performing the operation to ensure a throughput of one
computation every ii cycles, which is multiplied by the number of DSP per operator KDSP .
In practice, such a simple model is sufficient in practice for a perfect DSP estimator (see
Sec. 7.3.5) on our test CUs, because the HLS tool failed to exploit sharing opportunities
at the DSP level, as described in Sec. 6.2.3.

7.3.2 LUT Estimation
We propose the following model for the estimation of the number of LUT inside a

CU:

NLUT = KLUT · bitwidth ·
⌈ n

II

⌉
+ nb_in · bitwidth ·

K
′

LUT · II −K
′′

LUT · (II − 2)︸ ︷︷ ︸
if II>2


With (keeping the same notations as the previous sections):

• bitwidth the number of bits used to represent input data

• nb_in the number of inputs of the CU
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• KLUT , K
′
LUT and K

′′
LUT three positive constants specific to the operation type

As LUTs represent both compute and routing components, we could have expect
their number to be quadratic with respect to the size of the inputs, as lower-weight
bits may interact with higher-weight one, typically on multipliers. While this is true
for integer-based computation, on floating-point ones, the computations (and these non-
linear interactions) are handled by the DSPs. As a consequence, LUTs are only used as
routing components, thus scaling linearly with the number of single-operator units in the
CU.

Qualitatively,

• KLUT · bitwidth
⌈ n

II

⌉
represents the number of LUTs used by the actual single-

operation units, i.e. DSPs

• nb_in · bitwidth ·K ′
LUT · II represents the additional LUTs needed to route a slower

pipeline

• nb_in ·bitwidth ·K ′′
LUT ·(II−2) is a correction term expressing LUT-based resource

sharing on pipelines with a high initiation interval

7.3.3 Storage Units Estimation
SRL

We propose the following model for the estimation of the number of SLRs inside a
CU:

NSRL = max

0,

bitwidth · CSRL(nb_ops, II) if C′
(nb_ops, II) > 0

0 else


With (keeping the same notations as the previous sections):

• NSRL the number of SRL

• C and C′ linear combinations of nb_ops and II with integer coefficients

Experimentally, SLRs are mostly used in CUs with a low initiation interval, due to
the synthesis tool’s inner cost model that prefers SLR for high-throughput units in order
to synchronize input arrival for computation on pipepline stages that are not the first
operations. This may be caused by the fact that SRLs do not require extra routing logic
to select their value depending on some inner state of the CU (typically representing
the state of the execution pipeline for CUs that have an II higher than 1). As no clear
behavior emerged from the toolchain estimate, we opted for an ad-hoc linear model with
a cut-off, which experimentally provides satisfactory accuracy, as evauated in Sec. 7.3.6.
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FF

FF number is estimated by (reusing the previous notations, with NFF and KFF the
number of FFs and the FF-specific coefficients):

NFF = KFF · bitwidth ·
⌈ n

II

⌉
+ nb_in · bitwidth ·

K
′

FF · II −K
′′

FF · (II − 2)︸ ︷︷ ︸
if II>2

−NSRL

In the worst case, storage units are needed at each step of the compute pipeline (i.e.
before and after each operator-specific combination of DSP), which is why no quadratic
term appears in the estimator. Therefore, the idea behind each term is exactly the same
as the one for LUTs: FF are either linked to the number of single-operation units, or due
to pipelining, or saved by resource sharing on high-II pipelines. As FF and SRL are both
storage units, our generic estimator formula (used for LUTs) estimates their sum. Then,
as the synthesis of SRL follows a non-generic scaling, we estimate them separately with
a the former’s section formula, then subtracts them from our FF estimator in order to
keep their sum unchanged.

7.3.4 Microbenchmarking CDAGs
The calibration of the estimator is done by manually exploring the space of possible

variables and finding, for each operator and each combination (sequential or parallel), the
values minimizing the mean average error of the prediction versus the post-P&R value
over CUs composed of 1 to 8 repetitions of a unique operator, while keeping a meaning
from a high-level point of view. Technically, this mean that the constants must be under
the form

a

2b
with b lower than 4. Predictor Mean Average Error rates are reported

in Table 7.2a for half-precision adders and in Table 7.2b for half-precision multipliers,
corresponding to aggregated results of the measures presented in Fig. 7.4.

MAE of SRL prediction is always zero for parallel composition of operations, as the
toochain never instantiates any SRL for these tasks. Indeed, operations are fully parallel,
sp there is no need of input synchronization across pipeline stages. On reductions, SRL
predictions match exactly the resource usage for CUs with II of 1 and 2, but failed to
detect any SRLs on designs with II of 3 and 4, due to the cut-off (condition using C′).
This can be solved by completing the predictor with higher-order terms, but we have
chosen not to implement them to avoid overfitting.

7.3.5 Combination of Sequential and Parallel Models
As our estimator is able to predict with reasonable accuracy the area of both sequential

and parallel CDAGs, we propose a combination of both models to support predictions on
arbitrary CDAG topologies.

Starting from the roots of the CDAG of a CU, that is, its output, we recursively
apply either the sequential or the parallel model depending on the operation type of the
parent: when the current node and the parent node uses the same operation, then the
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Figure 7.4: Resource predictor (red line) versus pre-P&R (blue bar) for several FPGA resources
for reductions of additions. half_a_b denotes a reduction using a operation with an II of b on
FP16 data type
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MAE MAE
Resource (reductions) (vector)

DSP 0 % 0 %
LUT 7.8 % 4.2 %
FF 35.3 % 7.5 %
SRL 10.7 % 0 %

(a) Predictor accuracy on sequence and paral-
lel (vector) instances of FP16 adders

MAE MAE
Resource (reductions) (vector)

DSP 0 % 0 %
LUT 16.6 % 7.9 %
FF 35.3 % 7.5 %
SRL 10.7 % 0 %

(b) Predictor accuracy on sequence and paral-
lel (vector) instances of FP16 multipliers

Table 7.2: Resource predictor accuracy

Input: C the CDAG of a CU
1 Function estimate_area(C, parent_node)
2 node = root(C);
3 if parent_node = nil then
4 return seq_estimate (node);
5 else
6 left = estimate_area(node→left_child, node);
7 right = estimate_area(node→right_child, node);
8 if node.type = parent_node.type then
9 return left + right + seq_estimate (node);

10 else
11 return left + right + par_estimate (node);
12 end
13 end
14 end

Algorithm 9: Composition of the sequential and parallel CU area models

sequential model is applied. In the other case and for the base case, the parallel one is
used, as illustrated in Alg. 9. Note that all arithmetic operations considered have only
two children, hence our restriction to this case.

7.3.6 Evaluation
We evaluate the complete CU resource estimator against the systematic combination

of the purely sequential model on a random set of 7 CUs types mixing sequence and
parallel composition of 3 or 4 multipliers and adders. We vary the number of repetitions
of the CDAG inside the CU (from 1 to 4) as well as its II (also from 1 to 4) and report
our estimates compared to the post-P&R resource usage in Tbl. 7.5. As expected, combi-
nation of the sequential and parallel model is needed to achieve satisfying (i.e. sub-10%
MAE) accuracy. Coefficients for each model are reported in Fig. 7.3 (sequential combi-
nations) and in Fig. 7.4 (parallel combinations). We use the Xilinx ZCU104 board with
a target frequency of 100 MHz as target, and Xilinx Vitis High Level Synthesis design
suite 2021.2 for the synthesis tool.
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Resource Kres K′
res K′′

res

DSP 2 0 0
LUT 2 0.625 -0.5
FF 2.5 1.5 -1.875
SRL 1 0 0

(a)

Resource Kres K′
res K′′

res

DSP 2 0 0
LUT 6 0.75 -0.5625
FF 2.5 1.5 -1.875
SRL 1 0 0

(b)

Table 7.3: Resource predictor coefficients for sequential composition of additions (a) and mul-
tiplications (b)

Resource Kres K′
res K′′

res

DSP 2 0 0
LUT 7 0.125 0
FF 1 0.5 -0.35
SRL 0 0 0

(a)

Resource Kres K′
res K′′

res

DSP 2 0 0
LUT 2.5 0.125 -0.0625
FF 1 0.5 -0.35
SRL 0 0 0

(b)

Table 7.4: Resource predictor coefficients for parallel composition of additions (a) and multi-
plications (b)

MAE MAE
Resource (Sequential) (Composition)

DSP 0 % 0 %
LUT 11.4 % 7.4 %
FF 37.2 % 14.4%
SRL 29.5 % 7.6 %

Table 7.5: Resource predictor accuracy on FP16 multipliers and adders

As DSP are explicitly instantiated by the HLS tool when required by arithmetical
operations – and nowhere else in our simple PU as they carry no loop nor data-dependent
control flow –, we are able to perfectly predict their number. LUT and SRL are also
predicted within a 10 % error margin as they handle the routing of data inside the CU.
However, the number of FF is harder to predict as they indicates the amount of elementary
storage element used in the design. Because of resource reuse happening directly inside
the CU (one register may be reused at several operator stages) the predicted number of
FFs is bigger than the actual number of integrated FFs on CUs with 4 operators, as seen
in Fig. 7.5; hence a higher MAE of 14.4 % for this metric.

For the same reasons, the number of DSPs is proportional to the number of required
operations: from a pure resource usage point of view, there is no interest in combining
operations into CUs. This is especially true for CUs with an II greater than one, where the
synthesis tool is not able to reuse DSPs across different operators. This sharing technique
will be tackled in Chap. 8, where aggressive resource sharing of DSPs is performed through
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Figure 7.5: Resource predictor (red line) versus post-P&R values (blue bar) for FF predictions
on mixes of 3 and 4 operators CU

cross-operator reuse. Moreover, the effect of clustering operations in CUs is even worse on
FFs and LUTs: multiplying the size of a CU by replicating it (e.g. creating a vector CU)
leads to no gain, neither does the increase of the CU’s II on the performance-per-resource
ratio. Indeed, Kres = 0, K ′

res > 0 and 2K ′
res ∗ 2 +K ′′

res, for both LUTs and FFs, showing
that the number of LUTs and FFs increases with the II.

Contrary to what could be expected, decreasing the speed of CUs results in no resource
sharing on both routing (LUTs) and storage (FFs) elements, as data pathes become more
complex when the II increases. On our tested designs, the number of instantiated SRL
is also not significant enough to change the overall resource usage, with value being non-
zero only on CUs with an II of 1, typically in less that 400 units, whereas FF and LUT
number ranges from ∼300 to ∼3000.
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Operator Overhead Latency Initial Latency

+ 2 1
* 1 1

Table 7.6: Latency predictor coefficients on FP16 multipliers and adders

Figure 7.6: Latency predictor (red line) versus HLS ground truth (blue bar). [ops]_a denotes
a CDAG linearised as in the list [ops] replicated a times

7.4 Latency Estimation of Compute Units
Along with the resource usage (estimated in the previous section) and the II (specified

using source code annotations), the latency is a crucial metric for design optimization,
as it specifies the number of cycles elapsed between the start of the computation of a
CU and its results being available. In this section, we present a simple model for latency
prediction of a CDAG, when mapped to a single Compute Unit.

7.4.1 Formula and Micro-benchmarking
The latency estimate follows a simple idea: if two operations happen in sequence,

then the total latency is the sum of the individual latency of each path; if they occur in
parallel, then the latency is the maximum of the two paths. This correspond the notion
of critical path: the longest possible path combination of data inside the CU.

Therefore, we use a simple model that takes into account both the latency due to com-
putations and the latency due to data routing. For each supported operator, we measure
their latency when enclosed alone in a CU, that we call initial latency. Then, we measure
sequences of operator and deduce the overhead latency, that is, the supplementary time
for each new operator in sequence. Corresponding coefficients are reported in Tbl. 7.6.

7.4.2 Evaluation
We evaluate the estimator of latency defined in the previous section with the same

experimental setup than Sec. 7.3.4, restricted to fully pipelined CUs as we saw in Sec. 7.3.6
that reducing the II did not provide resource reduction.
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On every tested CU, the estimate was at most 1 cycle off, leading to an average error
of 3.57 %, as illustrated in Fig. 7.6. These artifacts are due to clock synchronization:
while we count latency as a number of cycles, it in fact represents a duration, which
is over-approximated to fit into cycles by the synthesis tool. However, composition of
operators may shortcut some unnecessary stall cycles to ensure correct propagation of
the signal to the next operator, leading to one-off errors on the tested CDAGs.
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7.5 Naive Convex Encoding of the Resource Sharing
Problem

Given an estimator of the area of CUs and their latency, we can formulate the com-
bined architecture generation and resource mapping/scheduling problem as a convex opti-
mization one in order to solve it using state-of-the-art Integer Linear Programming (ILP)
solvers such as Gurobi [48] or CPLEX [82]. This section presents such a formulation
in a naive way, using one variable per solution of the problem and explicitly affecting a
timestamp to each operation of the application, without concern about regularity of the
original program.

7.5.1 Variables
We define a program as the weighted CDAG (O,D) representing the fully unrolled

graph of computations executed at runtime, with O the set of operations and D the set
of dependencies, weighted by the latency of each operator.

Our goal is to find the optimal partitioning of O into CUs, i.e. a set of hardware units
and a legal affectation of the CDAG operations to the units such that the total execution
time of the CDAG is minimal.

We use the following notations:

Sets

• O is the set of all operations in the program, we note its elements o ∈ O.

• D is the set of all dependencies, modeled by a triplet (o1, o2, i) with (o1, o2) ∈ O2

and i the type of dependency (i.e. place of o1 as argument of o2). We note o1 →i o2,
or o → o′ for any type of dependency.

• P is the set of all CUs, we note p ∈ P its elements.

• T is the set of all operation types, in our case restricted to {+,×}.

• C = J0, nK is the set of all possible timestamps of operations in the global program.
We note c ∈ C its elements, standing for cycles.

• Cp = J0, npK is the set op all timestamps of operations inside a CU. We note s ∈ Cp
its elements.

• S is the set of all operation slots of a PE, corresponding to parallel execution paths
at a given timestamp. We note s ∈ S its elements.

Variables

• δo,sp,c ∈ {0, 1} indicates that op o is scheduled at the (CU-local) timestamp c on CU
p slot s. For convenience, we note δop ∈ {0, 1} which indicates that op o is mapped
to PE p, regardless of its timestamp and its slot. For convenience, we also define
δop ∈ {0, 1} =

∑
s∈S
∑

c∈Cp δ
o,s
p,c and δop,c which indicates that o is mapped to CU p

cycle c, regardless of the slot, with δop,c ∈ {0, 1} =
∑

s∈S δ
o,s
p,c .
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• σo
c ∈ {0, 1} indicates that op o is scheduled at timestamp c in the global design. For

convenience, we note σo ∈ N =
∑

c∈C c · σo
c the starting timestamp of o.

• γo
c ∈ {0, 1} indicates that the CU containing o is scheduled in the global design to

start at timestamp c. For convenience, we note: γo ∈ N =
∑

c∈C c · γo
c the starting

timestamp of the PE containing o.

• ιo1,o2 ∈ {0, 1} indicates that the CU containing o1 also contains o2 and that o1 and
o2 are mapped to the same PE call.

• areap ∈ N is the area taken by PE p, and areap,c ∈ N is the area taken by PE p

restraint to its c ∈ CP first timestamps.

• latp ∈ N is the latency of CU p.

Other constants

• type : O → T the function giving the type of an operation, we note o.type for
type(o).

• lat : T → N∗
+ the function giving the latency of an operation, we note o.lat for

lat(o).

• areatpat is the area taken by an op of type t with pattern pat being either par (in
parallel) of seq (in sequence). From 7.3, our model does not require neither the slot
nor the timestamp of the operation.

• Karea an upper bound of the area, defined by the user as a constraint over the size
of the output IP. This is also the constant that varies when generating a family of
design of various area/performance ratio.

• Kcycle an upper bound of C, used in the constraints to specify if-conditions.

7.5.2 Objective Function
As our goal is to minimize the total execution time of the IP while keeping the best

efficiency in terms of performance-per-area, our objective function is:

min
lex

(lat, area)

7.5.3 Constraints
To ensure correctness of the output design and schedule, legality constraints are given

to the ILP solver:

Legality constraints

• Definition of the global area as the sum of CU areas, neglecting the interconnect
cost:

area =
∑
p∈P

areap
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• Definition of the CU areas as the maximum of the area of the CU restricted to the
first c cycles:

∀c ∈ C, areap ≥ areap,c

• Definition of the individual CU area, from the previous section’s modeling:

∀p ∈ P ,∀c ∈ Cp, areap,c =
areap,c−1+∑

s∈S

max

[
max

(o,o′,i)∈D
o.type=o′.type

(
ιo,o′ · areao

′.type
seq + (1− ιo,o′) · areao

′.type
par −Karea · (1− δo

′,s
p,c )
)
,

max
o′∈O

∄(o,o′,i)∈D
s.t. o.type=o′.type

(
δo

′,s
p,c · areao′.typepar

)]

• Definition of the global latency as the maximum of the final timestamp of each PE,
that is, the starting time of the CU summed with its latency:

∀o ∈ O,∀p ∈ P , γo + latp ≤ lat+Kcycle · (1− δop)

• Definition of the CU latency as the maximum timestamp of an operation inside a
CU, summed with its latency:

∀p ∈ P , latp = max
o∈O

(
σo − γo + o.lat−Kcycle · (1− δop)

)
• Definition of the common appurtenance to the same CU:

∀(o1, o2) ∈ O2, ιo1,o2 = max
p∈P
c∈C

(
γo1
c ∧ γo2

c ∧ δo1p ∧ δo2p
)

• One operation is mapped to only a unique CU and a unique (CU-local) timestamp:

∀o ∈ O,
∑
p∈P

δop = 1

• One operation has a single global timestamp:

∀o ∈ O,
∑
c∈C

σo
c = 1

• A CU has at most one operation per slot and per timestamp, though it can have
“holes”:

∀p ∈ P ,∀s ∈ S,∀c ∈ C,∀c′ ∈ Cp
∑
o∈O

(
σo
c ∧ δo,sp,c′

)
≤ 1
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• Homogeneity of type in CU slots – if any two operations are mapped to the same
timestamp, same slot, then they must be of the same type:

∀p ∈ P ,∀s ∈ S,∀c ∈ Cp, ∀(o1, o2) ∈ O2 s.t. o1.type ̸= o2.type, δ
o1,s
p,c + δo2,sp,c ≤ 1

• Definition of starting time c of the CU call containing an operation as the timestamp
where there exist c′ for which the operation in scheduled locally in the CU at c′,
and globally at c+ c′:

∀o ∈ O, ∀c ∈ C, γo
c = max

c′∈Cp
c+c′∈C
p∈P

(
σo
c+c′ + δop,c′ − 1

)

• Relationship between the scheduled time in a CU and in the global program – the
global timestamp of an operation is defined such that there exist c′ for which the
operation in scheduled locally in the CU at c′, and the CU is scheduled (globally)
at c− c′:

∀o ∈ O,∀c ∈ C, σo
c = max

c′∈C
c−c′∈Cp
p∈P

(
γo
c′ + δop,c−c′ − 1

)

Program-specific constraints

The former constraints ensure that the output CU-covering of the original program
is well-formed, but they are not enough to guarantee the semantic equivalence between
the original program and the generated one. Indeed, dependencies must be respected,
which is has not been encoded into ILP constraints. Therefore, we add the following
constraints:

• Latency constraint on the global schedule – an operation cannot be scheduled before
the availability of its source operands:

∀(o, o′, i) ∈ D, σo + o.lat ≤ σo′

S

• Data produced by a CU are not available right at the end of ignao+ o.lat, but have
to wait for the end of the CU execution before being transmitted again to another
CU:

∀(o1, o2, i) ∈ D,∀p ∈ P , γo1 + latp ≤ γo2 +Kcycle · (1− δo2p ) +Kcycle · (1− ιo1,o2)

• A CU must be atomic, i.e. must not depend both for input and output on another
CU:

∀(o1, o2, i) ∈ D,∀o3 ∈ O s.t. ∃(o2, o3, i′) ∈ D, ιo1,o3 ≤ ιo2,o3
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• Unicity of the DAG of computation for each CU:

∀(o1, o2, o3, o4) ∈ O4, if o1.type = o3.type and o2.type = o4.type, then

– If ∃i, o1 →′
i o2 and o3 →i o4, then no constraint is added.

– Else:

∀p ∈ P , ∀(s1, s2) ∈ S2,∀(c1, c2) ∈ C2
p s.t. c1 ̸= c2,

(
δo1,s1p,c1

+ δo2,s2p,c2
+ δo3,s1p,c1

+ δo4,s2p,c2

)
≤ 3

Constraints to speed up solving time

Though this set of constraints provides valid solutions of the general resource sharing
problem, they do not guarantee unicity of the representation of the solution, in the sense
that one CU may be represented under different encodings because of the degree of free-
dom provided by slots and CU identifiers. Therefore, we add supplementary constraints
in order to prune the solution space and keep a minimal number of encodings per CU.

• Order the CU operation slots, so that the first one are filled first:

∀p ∈ P ,∀s ∈ S ∖ {slast},∀c ∈ Cp, δo,sp,c ≥ δo,s+1
p,c

• Order the CUs, so that the one of minimal identifiers are used first:

∀p ∈ P ∖ {pminus},
∑
o∈O

δop ≤
∑
o∈O

δop+1
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7.6 Real-life Implementation, Heuristics
Though the presented ILP is a correct encoding of the combined architecture design

and scheduling problem, it still leave a lot to be desired. From the expressiveness point
of view, the instantiated CUs are of fixed CDAG and cannot be programmed even for
small variation of control flow. This lack of flexibility may cause the solution to either
add extra stall cycles (waiting for another CU to be ready) or extra CUs when dealing
with repetition of similar compute pattern. Therefore, the LP tends to converge to
solutions with CUs containing few operations in order to maximize operator reuse instead
of discovering regular compute pattern. This fact lead to the production of a Generic
Accelerator where small CUs are reused along with a customizable structure in order to
accelerate a family of applications, as described later in Chap. 8.

This formulation also completely eludes the cost of the interconnect, which is a classi-
cal issue with resource sharing [83]. Here, designs with irregular reuse patterns will result
in generating, for each CU, a multiplexer of high fan-in selecting one input per active
cycle. A solution to this problem is also presented in Chap. 8, where the considerable
amount of glue logic is acknowledged and used to allow reprogramming of the design with
regeneration of a news bitstream.

Finally, this formulation is useless in practice due to its complexity, as illustrated in
this section. Indeed, the number of boolean variables is of the order of O(|O|·|S|·|Cp|·|T |+
|O|2) (number of γo,s

p,c and ιo1,o2), with O (|P| · |Cp| · |S| · (|O|2 + |C|)) constraints (number
of sub-expression in the computation of the CU areas and unicity of the CU/slot/local
timestamp of each operation). Therefore, the number of possible solutions grows expo-
nentially with respect to the size of the input application, dooming any hope of scaling
on real-life problems of several thousands of nodes.

7.6.1 Exact Implementation: Scaling
Even though the size of the space is exponential, a smart convex formulation of the

problem could reveal to be enough on small problem sizes. To determine whether this is
the case for the combined placement-schedule problem, on FPGA, we encoded the ILP
described in the previous section using Gurobi 10 [48], and collect solving time on several
toy AST on an Arch Linux machine running Gurobi 10 and Linux 6.2.11, equipped with
an AMD Ryzen 2700U and 32 GiB of RAM, with CU sizes restricted to only 1 operation.

Results are reported in Fig. 7.7 (note the log y axis). All applications output ILPs
that times out (more than 10 hours solving time) above 12 nodes to place/schedule, even
though this problem does not require any design space exploration from the solver, as
there is only one valid affectation of operations to possible CUs. Given the time reported
for such trivial CU mappings, we conclude that this formulation is not usable on real-life
problems sizes due to scalability issues.
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Figure 7.7: Scaling of the ILP formulation with the number of node in the target AST for
three loop bodies. Missing points time out (more than 10 hours of solving).

7.6.2 A Faster Greedy Approximation
A classic solution to overcome the complexity issue is to fall back to approximations,

trading optimality in favor of execution time, as seen in Part. I. Nevertheless, the goal
still lies in maximizing accuracy and speed gains, but reduced to cases that are the most
common in real-life, while more exotic corner cases may present degraded behavior.

Implementation

Algorithm To avoid the complexity resulting from the evaluation of all possible map-
pings, we reduce down the problem to the classic scheduling under resource constraint
problem. Given a fixed architecture represented as a list of PE with multiplicity, we aims
at maximizing reuse of available components, which by proxy minimizes the execution
time.

A classic approximation for this family of problems is greedy algorithms, in which the
output solution results from a series of locally optimal choices. In our case, the choice is
made during scheduling of the operations, operating on the fully unrolled CDAG. More
precisely, we use a priority list on the CUs to map the first compatible unit to the first
matching CDAG pattern, detailed in Alg. 10.

Code generation While solving time reveals to be an issue for optimal resource-shared
designs, actual implementation of and end-to-end design generation chain raises further
issues. Indeed, while the combined placement-schedule problem optimizes reuse of low-
level operations such as adders / multipliers, it does not explicitly specify the interconnect
size and topology. Our implementation uses one intermediate register for each CU input
and output, and relies on the HLS tool to simply redundant ones. Moreover, to avoid
redundant computations, we run a quadratic constant subexpression elimination pass
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Input: C the unrolled CDAG of a program, A an array of CU representing the
architecture, sorted by priority

Output: σ the schedule of the operations, δ its schedule
1 WorkList = {c ∈ C with no dependence};
2 t = 0;
3 RS = [[False]×size(A)]× size(C)]; // Reservation Station
4 while WorkList is not empty do
5 CurRS = RS[t];
6 for i ∈ [0, size(A)− 1] such that CurrRS[i] = False do
7 for o ∈ WorkList do
8 if A[i].CDAG matches o.tree then
9 for op ∈ o.tree matched by A[i].CDAG do

10 σ(op) = t+ latency_offset(op,match);
11 δ(op) = A[i];
12 op.available = t+A[i].lat;
13 end
14 for ti ∈ [0,A[i].II − 1] do
15 RS[t+ti][i] = True;
16 end
17 WorkList.remove(o);
18 end
19 end
20 for o ∈ A without placement/schedule do
21 if ∀op ∈ dep(o), op.avail ≤ t then
22 WorkList.add(op);
23 end
24 end
25 end
26 t = t+1;
27 end

Algorithm 10: Greedy placement-scheduling of CDAG under resource constraints

in order to generate only one execution path for each possible CU source value. These
intermediate results are stored in one global buffer, implemented as BRAMs in the final
design.

Experimental Results

We implemented the greedy scheduling heuristic as a pass inside the PoCC [84] com-
piler, and report in this paragraph resources and execution times after after place and
route of an out-of-context implementation of the designs using Vivado Design Suite and
Vitis HLS 2022.2. The target FPGA was set to a Zynq Ultrascale+ XCZU7EV MPSoC
(252k LUT, 504k FFs, 1728 DSPs) configured to a 100 MHz frequency goal.

Execution time of our placement-schedule implementation is detailed in Tbl. 7.7, as
well as number of operations for our problem sizes. Fig. 7.8a shows the evolution of
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N Number of ops Schedule-mapping time

8 690 2.4s
9 776 3.5s
10 862 4.5s
11 948 5.8s
12 1034 7.3s

Table 7.7: Greedy scheduling-placement solving time and number of operations for one Nx16
DWT iteration.

(a) (b)

Figure 7.8: LUT and FF used as percentage of the chip size for N by 16 DWT designs generated
using our CU greedy placement heuristic (a) and a pure HLS version (b)

the resource usage as a function of the number of scheduled nodes when computing one
iteration of the Discrete Wavelet Transform (DWT) benchmark on a Nx16 image using
double precision data type (the most resource-hungry in terms of compute unit size) for
a fixed architecture of 8 CUs: 4 adders and 4 multipliers.

As a baseline, the resources used by same benchmark synthesized using pure HLS
annotated with pragma HLS allocation operation in order to limit synthesis to the
same number of hardware units is reported in Fig. 7.8b. Performances metrics of the
design produced by both techniques are presented in Fig. 7.9. As the pure HLS version
is not pipelined, only its latency (i.e. equals to its II) is reported.

As the generated hardware is derived from the loop structure of the code, the size of
the problem is only represented in the final design as the number of iterations of the loop
(i.e. number of execution of the subdesign representing the loop body), which has little
effect on the required resources. This explains the reason for the designs not to change
significantly its resource usage with the size of the input data, as the topology of the loop
body (only linked to the number of CUs) remains unchanged.

Due to the use of intermediate registers to store partial computations in our greedy
scheduling implementation, the output designs are pipelined, allowing small overlap of
executions during final stage of copying output data from the shared buffer to the top
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Figure 7.9: Performance metrics (latency and II) for a the vanilla resource-constraint HLS
design (non-pipelined) and the greedily scheduled one.

level I/O interfaces. On the other hand, the pure HLS version does not provide any
pipelining, which explain partially its efficiency in terms of used resources.

As seen in Sec. 7.1.2, due do dependencies on the syntactic structure of the loop, all
CUs are not used in the first two loop nests of the benchmark, while the greedy approach
uses all possible parallelism opportunities, hence resulting in a 25 % performance gain in
terms of II. However, the time needed to copy back the data void this gains when looking
at the latency, where the greedy version offers similar performances than the pure HLS
one.

While the main goal of the greedy heuristic – reducing the execution time to ac-
ceptable level, less than 10 seconds on a problem of more thanks a thousand nodes to
place/schedule –, another issue occurs: the usage of routing resource skyrockets, reaching
22% of the chip for an 8-CU design on DWT 12x16 and linearly growing with the size
of the data. As a comparison, the architecture only requires 44 DSP (no matter the size
of the input), which accounts for 2.5 % of the total number of DSPs on the chip; and a
4-pragma annotated HLS version only requires an area usage of 3.6 % of the available
LUTs and 2.8 % of the FFs for the same DSP usage.

The reason for this resource-hungriness is rather straightforward: in the absence of
a clear reuse pattern of the data across CUs14, the synthesis tool uses one multiplexer
per compute unit input, with a fan-in at least equals to its number of calls inside the
design. As the number of CU is kept fixed for this experiments, the multiplexers becomes
proportionally bigger with the size of the input data.

14Contrarily to vanilla HLS that leverages the loop-base structure of the code use fixed, area-efficient
data selection units.
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Worse, this behavior would apply to both the greedy approximation’s solution and
the solutions output by the solver, as a metric of the regularity of the access pattern is
never being optimized for, nor even expressed in our approaches.

We thus conclude that the notion of optimality when only considering placement /
schedule at the compute unit level is not a relevant metric on real-world applications, as
the cost of the interconnect becomes preponderant. This calls either for a tool dedicated to
the optimization of the interconnect by finding regularity in their reuse pattern – which
falls out of scope of this manuscript – or a more flexible approach that would replace
the costly multiplexers with a more flexible interconnect whose benefits overpass mere
pipelining. This second approach is tackled in the next chapter of this manuscript with
the Generic Accelerator, a method dedicated to the generation of DSP-efficient designs
for multi-benchmark acceleration.
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Chapter 8
Automated Generation of Semi-generic
Throughput-oriented Accelerators

As seen in Chap. 6, the accessibility of designing accelerators has significantly in-
creased thanks to the recent improvements in performances and user interface of HLS
tools [55, 57], as well as supplementary hardware/software design stacks (e.g., with com-
pilers for High-Level Synthesis such as the Xilinx Merlin compiler [85, 86]). Designers can
now quickly generate customized designs for a particular application, or possibly (a set
of) kernels within it which are candidates for profitable acceleration [87, 77]. However,
re-targeting an existing implementation to a new application is often time-consuming
if not impossible: at best, it requires generating and updating a new bitstream on the
FPGA, and at worst it is not possible at all for ASIC-based designs if the new workload
has not been taken into account at design time.

However, as seen in Chap. 7, the issue of efficient hardware generation is complex,
and automated generation of optimal designs in the sense of maximal performance/area
ratio is far from being generally answered. Flexible accelerators, e.g., using overlays [88]
or VTA [89], ignores this issue by taking the opposite approach: finding a unique de-
sign that maximize occupancy of the chip, while mapping on a second step programs to
the overlay topology. These attempts try to bring the best of both worlds: (most of)
the performance benefits of hardware specialization, while maintaining some generality
of computations that can be accelerated; to the cost of a supplementary compilation
step when mapping applications to the (one-size-fit-all) design. In this chapter, whose
results have been presented in [90], we develop an approach called kernel merging to
create multi-functionality accelerators from a collection of to-be-accelerated applications,
and present the algorithms needed for end-to-end automation. We start by a simple yet
pragmatic observation: it is possible to easily build a semi-Generic Accelerator (GA) by
restricting the functionalities addressed to those amenable to polyhedral modeling, that is,
cases where each functionality supported (e.g., GEMM, AXPY, etc.) by the accelerator
can be exactly modeled as a polyhedral program, where the loop bounds and array access
functions are affine expressions made of the surrounding loop iterators. From then, we
derived polyhedral analysis to split the input benchmarks into polyhedral kernels defining
the atomic primitives to be accelerated on-chip, an generate a corresponding resource-
efficient accelerator based on a template architecture. This chapter is organized as follow:
first, Sec. 8.1 illustrates our approach on two simple examples, while Sec. 8.2 details the
polyhedral kernel decomposition and merging algorithms as well as possible code gener-
ation approaches. Sec 8.3 details the hardware implementation of the accelerator, and
Sec 8.4 evaluates its performance and area consumption compared to dedicated designs.
Sec. 8.5 goes through the limitations of our approach as well as possible improvement
directions. Finally, Sec. 8.6 presents former approaches to semi-specific accelerator design
and compare them with the one presented in this chapter.
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1 L1: for (j = 0; j < N ; j++)
2 mean[j] = 0.0;
3 L2: for (i = 0; i < N ; i++)
4 for (j = 0; j < N ; j++)
5 mean[j] += data[i][j];
6 L3: for (j = 0; j < N ; j++)
7 mean[j] /= N;
8 L4: for (i = 0; i < N ; i++)
9 for (j = 0; j < N; j++)

10 data[i][j] -= mean[j];

Figure 8.1: CENTER naive implementation

8.1 Illustrative Examples
We illustrate the gains of a semi-generic accelerator on a workload composed of 3 in-

dependent correlation matrix (CORR) computations, a widely used data science calculus.
First, in Sec. 8.1.1, we show how coarse grain pipelining may help speed up batched com-
putation of CENTER, a sub-problem of CORR. Then, we show in Sec. 8.1.2 the design
choices at stake when crafting a semi-generic accelerator capable of efficiently executing
both problems. Finally, we detailed the flow of the accelerator generation and usage in
Sec. 8.1.3.

8.1.1 Data Centering
Let us consider the program realizing the following matrix transformation, correspond-

ing to data centering:
XC

ij = Xij − (
∑
i′

Xi′j)/n

One naive implementation of this computation is given in Fig. 8.1. It uses four loop
nests with different operators:

L1: Initialization of the mean vector (no operator)

L2: Column-wise accumulation of the matrix coefficients (+)

L3: Division of the previous accumulated values by N (/)

L4: Column-wise subtraction of the mean to the input matrix (−)

These loops form what we call functionalities or kernels, which are defined as affine
subparts of the input program, represented using a single loop nest. Under the resource
sharing point of view, some of this functionalities can rely on the same physical compute
unit, that may or may not be shared across kernels. For example, operator sharing can
happen between the addition and subtraction part, as it boils down to a preprocessing of
a single bitflip on FPGA per FP16-encoded data. In the rest of the paper, we note this
operator ±, that can also perform absolute value with the same trick.

The dispatch of kernels over functional units that execute them is fundamental for the
generation of efficient accelerators. For example, the usual coarse-grain replication [62, 91]
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1 for(id=0; id<BATCH_SIZE +4; id++)
2 for (i = 0; i < N ; i++)
3 for (j = 0; j < N ; j++) {
4 if (id < BATCH_SIZE and i==0)
5 mean[id][j] = 0.0;
6 if (id < BATCH_SIZE +1 and id >=1)
7 mean[id -1][j] += data[id -1][i][j];
8 if (id < BATCH_SIZE +2 and id >=2 and i==0)
9 mean[id -2][j] /= N;

10 if (id >= 3 and i==0)
11 data[id -3][i][j] -= mean[id -3][j];
12 }

Figure 8.2: CENTER coarse-grain pipelined implementation

of a single high-performance design will fail to provide the best throughput-per-area
on a sequence of CENTER. However, deeper resource sharing can be achieved through
retiming [92] of the kernels: by spreading problems across time, we avoid simultaneous
usage of the / operator. The transformed code corresponding to retimed CENTER is
reported on Fig. 8.2. In the HLS framework [64], this retiming must be followed by a loop
merging transformation to ensure both operator and control structure reuse; which forms
the structure of a coarse-grain pipeline [93]. At each step of the id loop, each pipeline
stage executes one kernel instance.

However, this merging is not trivial when it comes to iteration spaces: L1 and L3
iterate over a space of size N , while L2 and L3 iterate over a space of size N2, hence the
need of conditions on the loop iterator (here i) to ensure a correct number of executions
of the loops bodies of smaller iteration spaces. As a downside, this means that the divider
unit is idle at least (N−1)/N fraction of the time during the whole computation. We can
reduce this idle time with batching: by executing several independent instances of the
same problem, low usage compute units can be reused without heavy impact on the overall
execution time, as illustrated in Tbl. 8.1. Here, we report execution time and DSP usage of
a coarse-grained pipelined design realizing 10 batched executions of CENTER, compared
to a dedicated design either replicated 10 times (CENTERx10) or 10 successive calls
to the same IP (10xCENTER); CGP-CENTER-inf denoting the maximum achievable
throughput, corresponding to an infinite number of successive independent CENTER
instances. As expected, high batching factors favor performances as the pipeline stages
are proportionally less idle on this workload.

8.1.2 Center, Correlation and Multi-purpose Acceleration
Even though CENTER transformation is a part of the Correlation (denoted CORR in

the rest of this chapter) computation, a dedicated CORR accelerator cannot be used for
the sole purpose of CENTER computations, as it lacks communication logic for this in-
termediary result. However, designers may want this capability for small post-processing,
semi-specific IPs. This raises the following question: “What is the area of a programmable
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Benchmark Cycles/Pb Operators DSP

CENTER 8343 1±, 1/ 2
CENTERx10 834 10±, 10/ 20
10xCENTER 8343 1±, 1/ 2

CGP-CENTERx10 5744 2±, 1/ 4
CGP-CENTER-inf 4096 2±, 1/ 4

Table 8.1: Performance and area metric for coarse-grained pipeline (CGP) vs coarse grained
replication (CGR) of CENTER accelerator (matrices of size 64×64, FP16 data type)

accelerator capable of executing arbitrary subproblems of CORR?” In this chapter, we
present a DSP-efficient answer to this problem.

CORR can be decomposed into several computations, corresponding to the loop nests
that a programmer would write when designing an HLS accelerator:

• CENTER: XC
ij = Xij − (

∑
i′ Xi′j)/n

• STDDEV: σX
j =

√∑
i(X

C
i )

2/n

• CENTER-REDUCE: XCR
ij = (Xij −

∑
i′ Xi′j) /(σ

X
j ·

√
n)

• T-MATMULT: (XCR)t ·XCR

The naive approach consists in the juxtaposition of fixed-functions dedicated to each
of the individual problems, without hardware reuse at all. Though this collection of ded-
icated accelerators does not need any interconnection between its sub-accelerators, its
efficiency is far from being optimal. Indeed, a naive HLS-designed accelerator composed
of the 4 primitives mentioned above would use 14 DSP when each accelerator is (individ-
ually) optimized for efficiency (SUM-AREA), and 36 DSP for a throughput-oriented one
(SUM-THR), as illustrated in Tbl. 8.3. On the opposite, our kernel merging approach
focus on heavy reuse of DSP units and clear separation of the compute units. This
allow the integration of 1-DSP FMA units, superior in density to the HLS primitives
that implements FMAs with 4 DSP (2 for the multiplication and 2 for the addition).
Furthermore, the GA supports the computation of any CORR sub-problem using only
3 DSPs, with support of batching factor up to 3 without significant degradation of the
total execution time of CORR instances. Followingly, our approach is able to outperform
dedicated designs in terms of performance per area, measured by the FLOP per cycle
per DSP metric, as illustrated in Tbl. 8.2 (see Sec. 8.4 for more details). As a reference,
ScaleHLS [77] achieves similar DSP-efficiency, as explained in Sec. 8.4.3.

To understand these gains, let us detail the specificities of the CORR accelerator.
Assuming N is the size of the input matrix, only T-MATMULT is computed in O(N3)

operations, the others being computed in O(N2). Furthermore, T-MATMULT uses only
additions and multiplications, which means that the majority of the time will be spent
using these units on a dedicated accelerator: sharing them will only lead to marginal
gains. However, CENTER, STDDEV and CENTER-REDUCE also require the use of a
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Cycles Nb of + Nb of
√
·

Design (CORR) DSP and ∗ and /

SUM-AREA 291221 14 4 and 3 3 and 2
SUM-THR 144614 36 10 and 8 3 and 2

3xCORR-AREA 291221 12 3 3
GA-CORR 320603 3 3 1

Table 8.2: Performance and area metric for coarse-grain pipelined correlation, sum accelerator
and dedicated accelerator

SUM-AREA SUM-THR 3xCORR-AREA GA-CORR

FLOP/C/DSP 0.134 0.105 0.314 1.256

Table 8.3: Performance per area metric for coarse-grain pipelined correlation, sum accelerator
and dedicated accelerator

division and a square root operator, which can be shared between independent batched
executions of CORR. This lead to significant area gains over the traditional coarse-grain
replication strategy by avoiding unnecessary replicas of low-usage units, i.e. division and
square root operators, with minimal impact on overall latency.

This time, the kernel merging approach allows us to mix both sharing and replication:
we replicate the MATMULT accelerator to keep minimal impact of the sharing on the
overall execution time. This leads to an increase of the execution time of 10 % compared
to a basic dedicated accelerator while saving the area of two compute units per replica
(/ and

√
·).

Furthermore, we enrich the accelerator with additional data routing capabilities to
become more versatile: depending on a user configuration, any sub-computations of Cor-
relation can be computed, hence our “generic” naming. Area and execution time of the
GA-CORR3 (generic accelerator capable of executing a 3-batched Correlation) compared
to a simple non batched, non-generic accelerator is reported in Tbl. 8.2. As expected,
the generic batched accelerator is able to provide a reduction of 66 % of the number of
divider and square root units, no change in terms of adders / multipliers, to the cost of
a 10 % increase in execution time.

8.1.3 Accelerator Creation and Usage Workflow
The steps used to create the Generic accelerators are illustrated Fig. 8.3. The input

applications, broken down into elementary kernels, are used to create Functional Units.
Then, the generated FUs are selected and replicated following FPGA-specific constraints
(e.g. available area and resource consumption of FUs) in the fixed accelerator structure.
Finally, an HLS synthesis tool produces the output bitstream as well as C drivers for
basic FPGA interaction.
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for i in 0..512:
A[i] += B[i]

for i in 0..512:
out += A[i]

for i in 0..512:
A[i] += B[i]

for i in 0..512:
out += A[i]

Set of input applications

for i in 0..512:
A[i] += B[i]

Fixed
Interconnect /

Structure

Architecture
Description / 
Constraints Output Design

Set of polyhedral kernels

for i in 0..512:
A[i] += B[i]for i in 0..512:

A[i] += B[i]

Merged kernels
(Functional Units)

HLSfor i in 0..512:
A[i] += B[i]for i in 0..512:

A[i] += B[i]for i in 0..512:
A[i] += B[i]

Customized
Generic Accelerator

Figure 8.3: Workflow of the creation of the accelerator

Customized
Generic Accelerator

Input application

for i in 0..512:
A[i] += B[i]

Polyhedral kernels
(used by the application)

for i in 0..512:
A[i] += B[i]for i in 0..512:

A[i] += B[i]

Pre-generated design

addcmv ...
mulmm ...
addm ...

Configuration File
Placement & Scheduling

A[i] += B[i]

out += A[i]

for i in 0..512:
A[i] += B[i]

for i in 0..512:
out += A[i]

Figure 8.4: Workflow of the usage of the accelerator

To use an already generated GA for one of its compatible applications, a configuration
file containing the sequence of kernels must be generated. Its generation wokflow, relying
on the previously generated design, is detailed Fig. 8.4. The application is first broken
down into kernels; then, these kernels are mapped and scheduled to the existing FUs
given their number and supported primitives.
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1 // Kernel 1
2 for (i = 0; i < N; ++i)
3 for (j = 0; j < N; ++j)
4 C[i][j] = beta * C[i][j]; // S1
5 // Kernel 2
6 for (i = 0; i < N; ++i)
7 for (j = 0; j < N; ++j)
8 for (k = 0; k < N; ++k)
9 C[i][j] += alpha * A[i][k] * B[k][j];

Figure 8.5: Example: General Matrix Multiplication, split in two kernels

8.2 Kernel Merging for Multi-Functionalities
We now present our approach of building a multi-functionality accelerator. First, we

deduce from each input application a set of polyhedral kernels, each computing a particular
functionality. Then, we apply kernel merging to generate a family of multi-functionality
Functional Units, and we finally select and replicate some of these FUs depending on our
ad-hoc profitability criteria.

8.2.1 Polyhedral Kernel Representation
In this work, a kernel is a polyhedral program; that is, a program with a static

control-flow (every branch taken in the code can be exactly predicted at compile-time,
independently of the value of the data computed on). In addition, polyhedral programs
must be described exactly using only affine functions of the surrounding loop iterator
and parametric constants. Three structures are used to describe such programs: for
each statement S, we define their iteration domain DS, which describe the set of all
dynamic executions of the statement, each identified by the vector of values that the
surrounding loop iterators take when it executes (that is, the iteration vector x⃗S); their
access functions which maps every iteration vector to the specific memory location(s)
accessed by that instance; and a scheduling function ΘS which maps every iteration
vector to multidimensional timestamp t⃗, such that in the transformed code, the iteration
vectors are executed in the lexicographic order of their timestamps [94, 65]. We note
t = [t1, t2, ...] ∈ T where T is the schedule space.

We illustrate with the two kernels below in Fig. 8.5, where, for the sake of illustration,
we decomposed a classical GEMM kernel into two kernels.

The iteration domain of Kernel 1 (K1) is DK1 : {[i, j] : 0 ≤ i < N and 0 ≤ j < N},
and Kernel 2 (K2) is DK2 : {[i, j, k] : 0 ≤ i < N and 0 ≤ j < N and 0 ≤ k < N}.
The access functions of K1 include ReadK1 : {[i, j] 7→ C[x, y] : x = i and y = j} and K2
includes ReadK2 : {[i, j, k] 7→ A[x, y] : x = i and y = k}. The original schedule of K1 is
ΘK1 = {x⃗S1 = [i, j] 7→ [t1, t2, t3, t4, t5] : t1 = 0 and t2 = i and t3 = 0 and t4 = j and t5 =

0}, that is a 2d+ 1 encoding of the schedule, for a loop depth d [95, 96].
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1 for (i = 0; i < N; ++i)
2 for (j = 0; j < N; ++j)
3 C[i][j] = 0; // S1
4 for (j = 0; j < N; ++j)
5 for (k = 0; k < N ;

++k)
6 C[i][j] +=

A[i][k] * B[k][j]; // S2

(a)

1 for (i = 0; i < N; ++i)
2 for (j = 0; j < N; ++j)
3 C[i][j] =

(i==0) ?0:C[i-1][j]; // S1
4 for (j = 0; j < N; ++j)
5 for (k = 0; k < N ;

++k)
6 C[i][j] +=

A[i][k] * B[k][j]; // S2

(b)

Figure 8.6: Example of programs with trivially kernelisable (a) and non-trivially kernelisable
(b)

More generally, for a polyhedral program P composed of n statements (Si)1≤i≤n we
define ΘP the schedule of a complete program by the statement-wise collection of sched-
ules:

ΘS :

∪Si∈PDSi
→ T

xSi 7→ ΘSi(xi)

8.2.2 Decomposition of Applications into Kernels
The Generic Accelerator operates at the kernel granularity, whereas all polyhedral

programs are not directly written as a sequence of kernels.
Let us restrict the applications that can be mapped to a GA to programs without loop-

carried dependency between statements of different loop nests, as illustrated in Fig. 8.6.
For a fixed i ̸= 0, in Fig. 8.6a, S1 reads no value, whereas S1 in Fig. 8.6b reads {C[i −
1][j] : 0 ≤ j < n }, which is written by S2. Formally, we defined the class of trivially
kernelisable programs as follows.

Definition 8.2.1 (Trivially Kernelisable Program). Let S1 and S2 be two statements of
a polyhedral program P belonging to two different loop nests.

Using the former notations of a 2d + 1 encoded schedule, let c be the inner-most
common scheduling dimension of S1 and S2, and tc the corresponding value in the 2d+1

schedule. Without loss of generality, we assume for any schedule prefix (t1, ..., tc) that
there exists a iteration vector prefix (x1, ..., xc′) such that:∀x⃗S1 = (x1, ..., xc′ , x

S1
c′+1, ...),∃(tS1c+1, t

S1
c+2, ...) s.t. ΘP(x⃗S1) = [t1, ..., tc, t

S1
c+1, ...]

∀x⃗S2 = (x1, ..., xc′ , x
S2
c′+1, ...),∃(tS2c+1, t

S2
c+2, ...) s.t. ΘP(x⃗S2) = [t1, ..., tc, t

S2
c+1, ...]

We also assume that for all x⃗S1 and x⃗S2 such vectors and a fixed tc, tS2c+1 > tS1c+1, that is,
the loop nest of S2 is executed after the one of S1.
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1 for (i = 0; i < N; ++i)
2 for (j = 0; j < N; ++j)
3 C[i][j] = 0; // S1
4 for (j = 0; j < N; ++j)
5 for (k = 0; k < N ;

++k)
6 C[i][j] +=

A[i][k] * B[k][j]; // S2

(a)

1 for (i = 0; i < N; ++i)
2 for (j = 0; j < N; ++j)
3 C[i][j] = 0; // S1
4 for (i = 0; i < N; ++i)
5 for (j = 0; j < N; ++j)
6 for (k = 0; k < N ;

++k)
7 C[i][j] +=

A[i][k] * B[k][j]; // S2

(b)

Figure 8.7: Example of loop fission: corresponding MatMult code before (a) and after (b)
transformation

P is trivially kernelisable if:

∀S1 ̸= S2,∀t,
(
Read

|tc=t
S1 ∪Write

|tc=t
S1

)
∩

(
t−1⋃
i=0

Write
|tc=i
S2

)
= ∅

With:

• Read
|tc=t
S1 the set of values read by S1 for all x⃗S1 ∈ DS1, that is

Read
|tc=t
S = ReadS

(
Θ−1

P ({[t1, ..., tc−1, t, tc+1, ...]})
)

Note that we implicitly extend ReadS1 by ReadS1 = ∅ if Θ−1
P ({t⃗S1}) ∩ DS1 = ∅.

• Similarly, Write
|tc=i
S is defined as

Write
|tc=t
S = WriteS

(
Θ−1

P ({[t1, ..., tc−1, t, tc+1, ...]})
)

With a similar implicit extension of WriteS2.

Given a trivially kernelisable program, our goal is to break it into kernels, that is,
a sequence of perfect loop nests. For that, we must apply loop fission (illustrated in
Fig. 8.7), a transformation isolating statements of imperfectly nested loops in their own
loop nest.

Definition 8.2.2 (Loop Fission). Loop fission is a transformation of the schedule of a
polyhedral program breaking a loop nest into two loop nests of same iteration domain,
each one enclosing a different part (statement) of the original loop body.

Reusing the former notations, when S1 and S2 are two consecutive statements (tS2c+1 =

tS1c+1 + 1), we define Θf
P one schedule resulting of the fission of S1 and S2, such that:
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Θf
P =



x⃗S1 7→ ΘP(x⃗S1) = [t1, ..., tc−1, t, t
S1
c+1, ...] if x⃗S1 ∈ DS1

x⃗S2 7→ ΘP(x⃗S2) + [1, 0, ...] = [t1 + 1, ..., tc−1, t, t
S2
c+1, ...] if x⃗S2 ∈ DS2

x⃗ 7→ ΘP(x⃗) + [1, 0, ...]
if x /∈ DS1 ∪ DS2 and
ΘP(x⃗) > minx⃗S1∈T ΘP(x⃗S1)

x⃗ 7→ ΘP(x⃗) otherwise

In the general case, such a transformation is illegal, as it may break dependencies.

Theorem 8.2.1. Any splitting of two different statements of a trivially kernelisable pro-
gram is legal.

Proof. Let S1 and S2 be two different statements and d be a (RaR or WaW) dependence
between S1 and S2, we note d = x⃗S1 −→ x⃗S2 (producer to consumer). Let xc be the
outer-most common dimension of x⃗S1 and x⃗S2, corresponding to tc in the original schedule.

Without loss of generality, we assume ΘP(x⃗S2) > ΘP(x⃗S1). Let Θf
P be the schedule

after fission of P between Sa and Sb.
We note ≼ the order relation of statements defined by S ≼ S ′ ⇔ xS

c+1 ≤ xS′
c+1,

corresponding to the syntactic order of loops in the original program.

• If S2 ≼ Sa, then Θf
P(x⃗S2) = ΘP(x⃗S2) and Θf

P(x⃗S1) = ΘP(x⃗S1), so ΘP(x⃗S1) <

ΘP(x⃗S2) as ΘP is a valid schedule, and d is respected.

• If S1 ≽ Sb, then Θf
P(x⃗S1) = ΘP(x⃗S1) + [1, 0, ...] and Θf

P(x⃗S2) = ΘP(x⃗S2) + [1, 0, ...],
so ΘP(x⃗S1) < ΘP(x⃗S2) as ΘP is a valid schedule, and d is respected.

• If S1 = Sa and S2 = Sb, then Θf
P(x⃗S1) = ΘP(x⃗S1) and Θf

P(x⃗S2 = ΘP(x⃗S2) +

[1, 0, ...], so ΘP(x⃗S1) < ΘP(x⃗S2) and d is respected.

The complete flow of the decomposition of a polyhedral program into kernels is given
in Alg. 11. Checking whether an input program is trivially kernelisable can be done using
a dependence analysis software such as [97], by checking for each pair of statement S ≼ R,
for all l loop level and p pair of references the emptiness of the dependence polyhedrons
DSδR,l,p as defined in [98].

If the program fails this step due to write-after-write dependencies on the input pro-
gram, then a conversion to a Dynamic Single Assignment form using [99] can be per-
formed, suppressing the former to result in a trivially kernelisable program. Then, we
perform complete loop fission of the program (legal thanks to Thm. 8.2.1), and output
as kernels all individual perfectly nested loops of the converted program.

8.2.3 Kernel Set and Workloads
Given a set of polyhedral kernels that are candidates to merges, we aim to execute

workloads that are arbitrary compositions (in sequence or in parallel) of calls to these
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Input: A polyhedral program P
1 if is_trivially_kernelisable(P) then
2 P ′ := P ;
3 else
4 P ′ := convert_to_DSA(P);
5 if ¬ is_trivially_kernelisable(P ′) then
6 fail;
7 end
8 end
9 for all S statement of P ′ do

10 P ′ := apply_loop_fission(P ′, S);
11 end
12 return the set of all loop nests of P ′

Algorithm 11: Kernel decomposition of a trivially kernelisable program

kernels. These computations can be captured by a simple language for straight-line pro-
grams, which is then trivially amenable to compilation, to extract a a forest of directed
acyclic graphs, where each node represents one kernel call. We assume each kernel rep-
resents a pure function, and summarizes its functionality as follows.

Definition 8.2.3 (Kernel representation). Given a kernel K, we define its functionality
as the signature of the kernel augmented with the loop bounds, for each loop:

K : input1, ..., inputn, N1, ..., Nm → output1, ..., outputp

We also define OpsK the set of arithmetic operations executed by K.

For example, the complete signature of K2 is

K2 : C[N ][N ], A[N ][N ], B[N ][N ], alpha,N,N,N → C[N ][N ]

where OpsK2 = {+, ∗, ∗}. A workload in the present work can be modeled as a straight-
line program, such that (a) temporary variables are allowed; (b) there is a single kernel
call per instruction; (c) type and size analysis for every input/output passed as argument
to the program kernels succeeds, given the signatures of every kernel. Focusing on (dense)
linear algebra, high-level expressions can be written in this simple form, which is then
compiled to obtain a sequence of kernel calls implementing this program. Parallelism
between kernel calls is automatically detected from the DAGs, creating “batches” of calls
when possible from the input workload, simply recognizing parallelizable operations by
computing the earliest schedule of each node in the DAGs.

We illustrate with the simple following program composed of 4 instructions repre-
sented Fig. 8.8, that is a valid input to our system. For clarity, K1 is renamed to MatScale,
and K2 is renamed to MatMulScaleA. In our prototype implementation, supported vari-
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1 TMP1 [ N ] [ N ] := MatScale (C1 [ N ] [ N ] , 4 2 , N , N )
2 TMP2 [ N ] [ N ] := MatMulScaleA ( TMP1 [ N ] [ N ] , A [ N ] [ N ] , B [ N ] [ N ] , 5 1 , N , N , N )
3 TMP3 [ N ] [ N ] := MatScale (C2 [ N ] [ N ] , 4 3 , N , N )
4 TMP4 [ N ] [ N ] := MatMulScaleA ( TMP3 [ N ] [ N ] , A [ N ] [ N ] , B [ N ] [ N ] , 5 2 , N , N , N )

Figure 8.8: Example of a 4 instructions input program

Input: K a set of kernels, D its DAG of dependencies, F a set of FUs
1 Function make_largest_insn(K, D, F)
2 ins := [ ];
3 scheduled := ∅;
4 for f = 0 to #FU − 1 do
5 ins.append();
6 for k in K do
7 if is_compatible(k,f) and do_not_depend(k, scheduled, D) then
8 ins.append(k);
9 scheduled.add(k);

10 break;
11 end
12 end
13 end
14 merge_nodes(scheduled, D);
15 return ins;
16 end

Algorithm 12: Selection of the next macro-instruction

able types are scalars, 1D arrays (vectors) and 2D arrays (matrices), which should all be
of the same data type.

This program may be input by the user, and is then compiled to a sequence of “in-
structions” to be executed by the accelerator. As described in Sec. 8.3, the accelerator
executes a stream of instructions given as input, where each instruction contains the name
of the kernel to invoke, which hardware unit it must be placed, and the operands/loop
bound information as in the example above. The order of execution follows the order of
instructions sent to the accelerator. A simple compilation step creates this sequence of
instructions from the input program above.

This analysis delivers the set of calls to be executed as their earliest start time (assum-
ing each call takes 1 time quantum), e.g. MatScale:0,0 and MatMulScaleA:1,1 giving
explicitly the number of calls (i.e., the number of entries per kernel name) and the paral-
lelism opportunities (i.e., all calls at the same time step can be executed in parallel). In
our current implementation, we weight timesteps by their iteration latency, and a simple
greedy placement of the calls on the available hardware units is implemented, illustrated
in Alg. 13. Decomposition of the application into kernels is performed using a similar
algorithm than Alg. 11, but also gathering dependencies between statement to create the
DAG of kernel execution D. Then, we sort the kernel list by their latency, solving ties by
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Input: P a polyhedral program, F a set of FUs
Output: Insn, a sequence of macro-instructions

1 K, D = decompose_kernels (A);
2 sort(K);
3 Insn := [ ];
4 while K ̸= ∅ do
5 Insn.append(make_largest_insn(K, D, F));
6 end
7 sort(Insn);
8 return (Insn);

Algorithm 13: Placement of an application on an existing Generic Accelerator

minimizing ASAP scheduling timestamp difference (without resource limitation) between
consecutive elements.

Then, we greedily build macro-instructions of the GA by packing operations of largest
execution time and modify D to ensure legality of the dependencies (Alg. 12). Indeed,
once an instruction has been generated, the corresponding nodes are merged in the DAG,
creating new dependencies that prevent illegal scheduling, that is, cycles in the depen-
dence graph of macro-instructions. Finally, we perform a topological sort to the set of
macro-instructions generated in an out-of-order manner to create a legal scheduling of
the complete program.

Therefore, the problems to be addressed when designing the accelerator include (a)
how many parallel instances of each kernel should be possible? And (b) which operations
(+,*, etc) may be shared between kernels?

8.2.4 Kernel Merging
We now outline our high-level method for generating a semantically correct perfectly

nested loop structure, that capture the set of all functionalities to be implemented by the
accelerator. We leverage polyhedral program analysis and transformations [94] to create
such code structure.

Iteration domain extension

The first operation is to normalize all kernels so that every statement is represented
by an iteration domain of identical, maximal dimensionality across all kernels, while pre-
serving the semantics. This amounts to computing a maximal common loop embedding,
and statement perfectization [77] is an instance of such transformation. Specifically, we
first compute maxd the maximal dimensionality of all iterations domains to be merged:
maxd = maxK∈kernelsdim(DK). Then, for every kernel whose dimensionality is less than
maxd, we create Dext

K = Universe(maxd) ∩ DK ∩ oneiterdims(K), where Universe(x)

builds the infinite/unbounded polyhedron of dimensionality x, and oneiterdims(K) is
the lexicographic minimum of every dimension in maxd that is not a dimension in DK .
For example, we would get: Dext

K1 : {[i, j, k] : 0 ≤ i < N and 0 ≤ j < N and k = 0}.
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We then further extend the iteration domains systematically with one additional di-
mension: kid, which represents the unique ID of a kernel that is merged. For our example,
assuming Kernel1 (K1) identifier is 1, and K2’s is 2, we get: Dext

K1 : [K1] → {[kid, i, j, k] :
0 ≤ i < N and 0 ≤ j < N and k = 0 and kid = K1}.

Scheduling for fusion and pipelining

The next operation builds the union of all extended iteration domains into a single
polyhedral program, by building a schedule for fusion. This schedule merges all loop
levels, and only separate kernels at the inner-most loop level. For example, the short
notation for ΘK2 is {[i, j, k] → [0, i, 0, j, 0, k, 0]}. The schedules merging K1, then K2,
are simply their original identity schedule (possibly extended to maxd), where we use
the kernel id to compute the last schedule dimension, for every statement in each kernel.
We have ΘK : [K] → {[kid, i, ...,m] → [0, i, 0, ..., 0,m, kid]} if the kernel contains a single
statement, otherwise kid needs to be extended to model the unique id of every statement
in the kernel instead, in their order of execution, such that for every kernel and every
statement kid is globally unique.

For example, to fuse K1 with K2 we would get Θext
K1 : [K1] → {[kid, i, j, k] →

[0, i, 0, j, 0, k, kid] : kid = K1}, and ΘK2 : [K2] → {[kid, i, j, k] → [0, i, 0, j, 0, k, kid] :

kid = K2}. However, further modifications of the schedule may be implemented: in par-
ticular, loop permutation may be employed to implement fine-grain parallelism when pos-
sible, as discussed below in Sec. 8.2.5, for example ΘK2 : [K2] → {[i, j, k] → [0, i, 0, k, 0, j,

kid] : kid = K2} that permutes the k and j loops to expose a synchronization-free
inner-parallel loop if possible.

Controlling separation

The final operation is to actually generate the candidate loop nest, by using polyhedral
code generation [94]. Intuitively, CLooG [94] generates a code that scans the iteration
domains in the lexicographic order of the timestamps computed by the Θ functions. A
key aspect of performance for the generated codes is to implement separation along every
loop dimension, that is the process of grouping iterations of the loop as a function of
the specific set of statements to be executed. For example, along the k loop, at iteration
0 both K1 and K2 execute, but at iteration > 0 only K2 executes. In this work, we
aim to push conditionals that guard the execution of a statement to the inner-most loop
level, therefore we simply turn off separation in CLooG, to obtain the code illustrated in
Fig. 8.9.

8.2.5 Profitability Criteria
While any set of polyhedral programs can be merged with the procedure above, not

all such programs are candidate for efficient acceleration, and may not benefit from being
merged with other kernels. However, the profitability criteria can be expressed as the
result of polyhedral analyses on the set of kernels.
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1 for (i = 0; i < N; ++i)
2 for (k = 0; k < N; ++k)
3 for (j = 0; j < N; ++j) {
4 if (KER == K1 && k == 0)
5 C[i][j] = beta * C[i][j]; // S1
6 if (KER == K2)
7 C[i][j] += alpha * A[i][k] * B[k][j];
8 }

Figure 8.9: Example code structure of a two merged kernels

Pipelining

A central objective is to enable coarse-grain pipelining across kernels. Therefore, we
model a criterion for making pipelining possible (otherwise no pipelining is implemented),
that eventually drives the loop order: the inner-most loop should be such that either there
is no loop-carried dependence (LCD) along it for the kernel, or if there is a LCD, the
distance must be constant, and greater than the expected iteration latency (for one iter-
ation of the inner-most loop). The final loop permutation for the program is computed
such that we minimize dependences satisfied by the inner-most loop level in the merged
program, using only loop permutations as the possible transformations. We simply com-
pute all possible loop permutations for the merged loop nest, and for each case compute
whether the inner loop is parallel. If this system has no solution, we relax it to enable
LCD for the inner-most loop level if and only if the dependence distance is greater than
the iteration latency for the statement.

Exposing Functional Units

A kernel can be viewed as the actual computation statement(s) associated with it,
along with their iteration domain. As we generate a fused loop nest, all statements share
the same unique loop nest implemented in hardware to iterate them. Therefore, two
parallel instances of a kernel can be implemented by simply replicating the statement(s)
in the inner-most loop. We call such hardware instances implementing a statement a
functional units (FUs), and we aim to select how many instances of each functional unit
should be implemented in the accelerator. We note that depending on the kernels being
merged, syntactically identical statements (after variable renaming) may occur: in this
case two functional units may compute exactly the same operations, albeit perhaps with
different iteration domains. This can be easily detected from the kernels representations,
and we merge into a single FU those computing identical operations, to facilitate solving
the optimization problem below. Note in our simple compilation phase to convert the
input straight-line program to a sequence of instructions, we exploit the fact that multiple
kernels/functionalities may be mapped to the same FU, perhaps by adjusting the loop
bounds passed as argument to the instruction, to find a compact placement and schedule.
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Number of replications

The key challenge is to determine the number of replications of each kernel/function-
ality, given that (a) different workloads may expose vastly different amount of parallelism;
and (b) the number of elementary operation(s) that can be shared between kernels is re-
lated to the number of replications of each kernel. Our objective is to optimize through-
put per area, in other words, we aim to increase resource sharing without performance
penalty, something typically achievable when units would anyway be otherwise idling due
to sequences of dependent kernel calls.

For a particular workload summarized as the number of calls to each kernel, we aim
to minimize the expected execution time under resource constraints, summarized in the
following optimization problem:

minimize
∑

K∈Kernels

⌈#calls(K)/#FU(K)⌉ ∗ card(DK) ∗ ILK

subject to
∑

i∈FUs

Area(FUi) ∗#FUi < max_area

Where a FU, or Functional Unit, is the hardware implementation of the operations in a
kernel K, and ILK the iteration latency to execute one inner-most loop iteration, that is
the latency of the FU to execute once. The unknown to be computed is the number of
FU, for each FU type. The workload mix, given by the number of calls to each kernel/-
functionality, is an input of this optimization problem. As we weight the latency of an
iteration by the cardinality of its iteration domain, in case of an heterogeneous workload
combining N2 (e.g., matrix addition) and N3 (e.g., matrix-multiplication) operations, the
dominant cost driving the solution found will be the latter. Area(FU) is computed by
approximating the DSP consumption of a FU, itself adjusted if operations in a FU can
be shared across multiple FUs: they are of the same type, and can execute in pipelined
fashion. In practice, to solve this problem we simply enumerate all solutions (i.e., number
of FUs of each type) and for each, we compute its latency and resources. We output the
first solution that meets resource constraints with minimal latency.
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Figure 8.10: Layout of the Generic Accelerator

8.3 Accelerator Implementation
In this section, we analyze the modules that compose the accelerator and discuss their

implementation.

8.3.1 Structure of the Accelerator
The accelerator layout is illustrated Fig 8.10, and is orchestrated around a single

pipelined loop dispatching user-specified computing tasks to Functional Units (FUs),
corresponding to the loop bodies of the merged kernels. The execution of one kernel is
decomposed in four steps: computation of the read/write locations as function of the
current loop iterator, loading of the data, actual computation, storage of the produced
output. Each of these stages is executed by one of the three accelerator submodules: loop
control logic (dispatch of the operation to the FU), FUs (execution), local buffer (data
storage and access).

While our accelerator architecture is designed for the Xilinx Ultrascale+ MPSoC [100],
that is, a FPGA integrated with a CPU, none of its features depends on the CPU. There-
fore, some implementation details may be specific such as the communication-handling
logic and the wrapping application mentioned below, but they do not limit the genericity
of our approach.

8.3.2 Iteration Vector Generator (IVG)
Though merged kernels are transformed to iterate on the same space, additional logic

is still needed to convert the global (scalar) loop index to the iteration vector given as
input to the FU – typically indexes of accessed arrays. This computation is done by the
IVG, that initializes the iteration vectors to 0d and update them using their former value
through a fixed state machine.

8.3.3 Functional Units
Functional Units (FU) are specialized, fully pipelined units capable of executing one

or more operations of the input kernels such as addition, multiplication, data movement
(e.g. for transposition), etc. They take as input the iteration vector, load directly values
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Figure 8.11: Anatomy of an HLS-generated FU: control path in light blue, multiplier path in
red and sub/adder path in dark blue

from the local buffer depending on the current iteration vector value, and compute one or
more outputs, which are directly stored back to the local buffer. A FU can expose several
computation capabilities, e.g. matrix addition, FMA, but uses internally pre-generated
compute units optimized to the target technology. We propose two implementations for
FPGA FUs relying on FMA, additions, subtraction or multiplications:

• One relying on Vivado Block Design Floating Point primitives configured for max-
imal efficiency. This primitive provides an 1-DSP FP16 FMA unit that can be
reused for any scalar operation (addition, multiplication or subtraction), leading
to a maximum throughput per area of 2 FLOP/Cycle/DSP. Internally, these units
are connected to the accelerator using AXIStream interfaces at the Vivado block
design level, which also increase the cost of the interconnect.

• One relying on Vitis HLS Floating Point primitives. With this technique, an 16-
bit FMA is decomposed as a multiplier (2-DSP) and an adder (2-DSP) cascaded.
Therefore, the maximal achievable throughput-per area is only 0.5 FLOP/Cy-
cle/DSP, while reducing interconnect costs by removing the need of AXIStream
interfaces. Its structure is illustrated Fig. 8.11, and can be configured to be an
FMA (using both an adder and a multiplier) or a single adder/multiplier to save
DSPs.

Furthermore, we allow further sharing by adding logic to flip the sign bit of one of
the FP16-encoded operand in order to perform a+ (−b) with no additional DSP cost as
well as absolute value computation.

As FUs are fully pipelined, they must have no loop-carried dependence: the minimal
reuse distance of read-after-write dependence has to be higher than the latency of the
complete FU. In the case of reduction, we store the intermediary results in a separated
scalar buffer, and stall the pipeline while waiting for the end of each operation.
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8.3.4 Loop Bound Generator (LBG)
Before the execution of any kernel, the LBG scans all scheduled kernels and computes

the cardinality of the minimal iteration space by maxing their iteration space sizes. This
value is then used as the trip count of the FU-scheduling loop.

8.3.5 Loop Control Logic
The accelerator is organized around a single loop defined in HLS-C++ as a for

ranging from 0 to a maximum value given by the LBG. This loop corresponds to a
flattened version of the fully merged loops of all accelerated kernels, and is pipelined to
achieve a maximum throughput of 1 execution of all FUs per cycle, i.e. to fully exploit
all FUs.

The role of the loop control logic is twofold. First, it schedules operations on the FU,
and second, it iterates over all merged kernels to ensure a correct and complete execution
of the input workload.

8.3.6 Off-Chip Communications
Data in the local buffer are coalesced [7] for transfers into 64-bit packets that are sent

or received together in one burst to/from the off-chip DRAM before and after execution
of the accelerator. Execution time is measured by an on-chip counter wired to the main
clock, whose value is fetched before the execution of the computation and right after its
termination (i.e. not including communications). The local buffer communicates with off-
chip memory using the AXI4 bus, connected to one high-performance communication port
of the Zync MPSoC. Its setup is controlled by MMIO-mapped registers using an AXILite
bus, managed by a wrapper C++ application running on CPU integrated in the ZCU104
MPSoC. This application also handles the execution flow as well as memory management
from an embedded Linux OS, using libraries provided by the PYNQ framework as well
as autogenerated drivers from Vitis HLS.

8.3.7 Access to the Local Buffer
Loads and stores on the local buffer are performed through one generic load-store

unit, offering one store and two loads per FU per cycle on at least two different memory
locations. To allow off-chip communications at a rate of 64-bit per cycle, the Local
Buffer is implemented with double-port BRAM and partitioned cyclically by a factor of
2, granting a maximum of 4 simultaneous FP16 loads/stores per cycle.
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Number of operators Nb. of IVG supports Local Buffer
FMA a/b

√
a FU triangular loops Size

BLAS 2 0 0 2 Yes 27 Matrices
CORR 3 1 1 4 No 27 Matrices

Table 8.4: Configuration of the LA-GA accelerator and the Correlation accelerator

8.4 Experimental Results
In this section, we will analyze the performances of two merged accelerators whose

characteristics are reported in Tbl. 8.4: one optimized for dense linear algebra com-
putation, the other for the computation of correlation matrices, as expressed in Poly-
Bench/C [50].

All cycle measurements of the GAs are on a ZCU104 board running the PYNQ 2.6
Linux image, and all IP are generated from annotated C++ code using Xilinx Vitis
2022.1 [64] on Linux 6 on a laptop equipped with an AMD Ryzen 7 2700U @ 2.2 GHz.
Custom designs as well as pure-HLS GAs are implemented in pure HLS using Vitis HLS
2022.2 (unsafe math optimizations disabled), and their resource usage is measured after
out-of-context P&R, which excludes data routing between the accelerators and the in-
tegrated CPU. For non-pure HLS GA that also uses Vivado’s block design primitives,
resource usage are computed as a delta between the complete placed and routed GA
and the SoC-GA interconnect placed and routed alone. In our experimental setup, this
interconnect accounts for 3007 FFs and 2708 LUTs. Cycles measurements of the pro-
posed accelerator are taken by an on-chip counter on the target board, whereas custom
accelerators’ execution times are computed from the pipeline latency given by the HLS
Tool report. Unless specified, the data type used is 16-bit floating point. The total func-
tionalities of the accelerators are summarized in Tbl. 8.5; which are integrated in two FU
types:

• one capable of handling mulmm and all the mul and add/sub derivatives (customized
for either Linear Algebra or Correlation with kernel-specific data routing)

• one handling sqrt and div, based on two operators:
√
· and /, only used for

Correlation

We compare our accelerators both with HLS-based FUs and Vivado-based FUs with
the Max Sharing (MS) dedicated design, where only one physical hardware unit is instan-
tiated for each operation type, and the Max Throughput (MT) one that achieves minimal
execution time while keeping all data in a local buffer of the same characteristics than the
generic accelerator one, thus limiting the available parallelism. On both MT and MS, no
genericity of the design is possible, i.e. only the selected benchmark can be executed. We
evaluate our generic accelerator on two metrics: execution time (in cycle) and through-
put per area, computed as NB_FLOP

EXEC_TIME∗NB_RESOURCE
with NB_FLOP the number of
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Kernel Description Op. LA-GA CORR-GA

noop Do nothing None ✓ ✓
mulmm Matrix-matrix multiplication FMA ✓ ✓
mulmv Matrix-vector multiplication FMA ✓ ✓

multrmm Triangular matrix-matrix multiplication FMA ✓
multrmv Triangular matrix-vector multiplication FMA ✓
mulsm Scalar-matrix multiplication FMA ✓ ✓

multrsm Scalar-triangular matrix multiplication FMA ✓
mulsv Scalar-vector multiplication FMA ✓ ✓
muls Scalar-scalar multiplication FMA ✓ ✓
trm Matrix transposition None ✓ ✓
addm Matrix addition FMA ✓ ✓
addv Vector addition FMA ✓ ✓
adds Scalar addition FMA ✓ ✓

addtrm Triangular matrix addition FMA ✓
subm Matrix subtraction FMA ✓ ✓

subcmv Column-wise matrix subtraction FMA ✓
subv Vector subtraction FMA ✓ ✓
subs Scalar subtraction FMA ✓ ✓
pmulm Point-wise matrix multiplication FMA ✓
pmulv Point-wise vector multiplication FMA ✓
oprodv Outer (vector) product FMA ✓ ✓
copyv Vector copy None ✓
dot Dot product FMA ✓

sasum Vector sum of absolute value FMA ✓
sqrtv Point-wise vector square root

√
· ✓

sqrts Scalar square root
√
· ✓

accsumcm Columns-wise accumulation of a matrix FMA ✓ ✓
cutminv Vector round to 1 low values None ✓ ✓
divms Pointwise division of matrices FMA ✓
divvs Pointwise division of vectors FMA ✓
divcmv Point-wise division with col.-wise value / ✓
set0m Initialisation of a matrix to 0 None ✓
setidm Initialisation of a matrix to Id None ✓
setd1 Initialisation of the diag. of a matrix to 1 None ✓

Table 8.5: Supported kernels list, by either the Correlation or the Linear Algebra accelerator

16-bit floating-point operations in the input benchmarks, and NB_RESOURCE the
number of DSPs or chunks of 10 000 FF / LUT in the design.

8.4.1 Linear Algebra
The accelerator for linear algebra, noted LA-GA is composed of two identical FUs

supporting FMA, additions / subtractions, multiplications, absolute value computations
as well as matrix transpositions. Its execution time, resource and performance per area
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Bench Arithmetic Execution Time (cycles)
name expression MS MT LA-GA-HLS LA-GA

ASUM α = ∥x∥L1 70 70 227 493
DOT α = x · y 71 71 227 493

SCALV A = α · x 69 37 99 109

SCALM A = α · A+B 5572 2059 8243 8258

GEMV y = α · A · x+ β · y 4553 2126 4291 4311
TRMV y = A · x 2304 2304 2115 2125
GER A = α · x · yt + A 4738 2057 8323 8343

GEMM C = α · A ·B + β · C 307586 134018 270403 270423
TRMM C = α · A ·B 147456 147456 137267 137282

(a)
FLOP/C/DSP FLOP/C/10kFF FLOP/C/10kLUT

Bench LA-GA LA-GA LA-GA
name MS MT HLS LA-GA MS MT HLS LA-GA MS MT HLS LA-GA

ASUM 0.457 0.457 0.047 0.065 3.302 3.302 0.700 0.188 5.224 5.224 0.226 0.081
DOT 0.601 0.451 0.094 0.130 6.432 6.432 1.401 0.376 9.955 10.005 0.452 0.163

SCALV 0.464 0.432 0.108 0.294 3.356 6.229 1.606 0.850 5.453 10.062 0.518 0.368

SCALM 0.368 0.497 0.166 0.496 5.080 13.593 2.468 1.436 7.722 20.466 0.796 0.622

GEMV 0.457 0.391 0.323 0.965 3.960 12.950 4.816 2.793 5.686 18.752 1.553 1.210
TRMV 0.444 0.444 0.323 0.964 6.074 6.084 4.810 2.789 9.250 9.259 1.551 1.208
GER 0.436 0.401 0.165 0.495 6.093 13.528 2.464 1.432 9.348 20.058 0.794 0.620

GEMM 0.433 0.397 0.328 0.985 5.759 12.934 4.891 2.850 8.860 19.011 1.577 1.234
TRMM 0.445 0.296 0.318 0.955 5.867 5.953 4.745 2.764 9.190 9.026 1.530 1.197

(b)

Table 8.6: Execution time (a) and performance-per-area (b) of a custom IP optimized for Max
Sharing (MS) and Max Throughput (MT) and the Generic Accelerator, both with pure HLS
FUs (LA-GA-HLS) and non-HLS FUs (LA-GA) for several linear algebra benchmarks

metrics are reported in Tbl. 8.6 for 9 linear algebra benchmarks, along with the description
of their computations. Performances on batches of 3 independent problems are also
evaluated in Tbl. 8.7.

The FU layout of the LA-GA was guided by the presence of high-density FP16 FMA
primitives on our synthesis toolchain (Vivado ML Edition 2022.2): at the cost of AX-
IStream connections in the top-level block design, fused multiply-add units can only cost
1 DSP, which is not possible using pure HLS without heavy rewrite of the original code
to explicitly schedule operation on available units. Therefore, our target board architec-
ture does not benefit from FU integrating only additions or only multiplication, and will
in some cases exhibit higher performance-per-area metric than both dedicated designs,
cases in which we bold the GA FLOP/Cycle/DSP value. However, this is not the case
in the general case. To measure the effect of this optimization, we also report metrics of
the pure HLS GS (LA-GA-HLS), relying on the Vitis HLS FMA, which takes 4 DSP but
have the advantage of a lower latency.

137



Bench Execution Time (cycles) FLOP/C/DSP
name MS MT LA-GA-HLS LA-GA MS MT LA-GA-HLS LA-GA

ASUMx3 210 210 435 962 0.457 0.457 0.074 0.100
DOTx3 213 213 435 962 0.601 0.451 0.147 0.200

SCALVx3 207 111 179 194 0.464 0.432 0.179 0.495

SCALMx3 16716 6177 12355 12375 0.368 0.497 0.332 0.993

GEMVx3 13659 6378 8643 8683 0.457 0.391 0.481 1.437
TRMVx3 6912 6912 4211 4226 0.444 0.444 0.486 1.454
GERx3 14214 6171 16627 16662 0.436 0.401 0.248 0.743

GEMMx3 922758 402054 544899 544939 0.433 0.397 0.489 1.466
TRMMx3 442368 442368 274515 274540 0.445 0.296 0.478 1.433

(a)

Bench FLOP/C/10kFF FLOP/C/10kLUT
name MS MT LA-GA-HLS LA-GA MS MT LA-GA-HLS LA-GA

ASUMx3 3.302 3.302 1.096 0.289 5.224 5.224 0.202 0.125
DOTx3 6.432 6.432 2.193 0.578 9.955 10.005 0.404 0.250

SCALVx3 3.356 6.229 2.664 1.432 5.453 10.062 0.490 0.620

SCALMx3 5.080 13.593 4.941 2.874 7.722 20.466 0.909 0.909

GEMVx3 3.960 12.950 7.173 4.160 5.686 18.752 1.320 1.802
TRMVx3 6.074 6.084 7.248 4.208 9.250 9.259 1.334 1.822
GERx3 6.093 13.528 3.700 2.151 9.348 20.058 0.681 0.932

GEMMx3 5.759 12.934 7.282 4.242 8.860 19.011 1.340 1.837
TRMMx3 5.867 5.953 7.117 4.147 9.190 9.026 1.310 1.796

(b)

Table 8.7: Execution time (a) and performance-per-area (b) of a custom IP optimized for Max
Sharing (MS) and Max Throughput (MT) and the Generic Accelerator, both with pure HLS
FUs (LA-GA-HLS) and non-HLS FUs (LA-GA) for batched linear algebra benchmarks

Bench Arithmetic Execution Time (cycles)
name expression MS MT CORR-GA-HLS CORR-GA

CENTER XC
ij = Xij − (

∑
i′ Xi′j)/n 8343 4166 12530 12535

STDDEV σX
j =

√∑
i(X

C
i )

2/n 16691 8370 29153 29163
CTR-RED-DIV XCR

ij = (Xij −
∑

i′ Xi′j) /(σ
X
j ·

√
n) 20935 10486 33482 33495

CORR (XCR)t ·XCR 291221 144614 308054 308071

(a)
Bench FLOP/C/DSP FLOP/C/10kFF FLOP/C/10kLUT
name CORR-GA CORR-GA MS CORR-GA
name MS MT HLS CORR-GA MS MT HLS CORR-GA MS MT HLS CORR-GA

CENTER 0.495 0.495 0.055 0.220 10.362 19.448 0.881 0.709 9.570 15.374 0.347 0.314
STDDEV 0.247 0.247 0.047 0.189 7.796 13.991 0.758 0.610 6.148 10.148 0.299 0.270

CTR-RED-DIV 0.247 0.164 0.051 0.206 6.579 0.826 9.707 0.665 5.579 7.761 0.326 0.294

CORR 0.468 0.314 0.147 0.590 10.905 17.962 2.366 1.905 9.119 13.834 0.933 0.844

(b)

Table 8.8: Execution time (a) and performance-per-area (b) of a custom IP optimized for Max
Sharing (MS) and Max Throughput (MT) and the Generic Accelerator, both with pure HLS
FUs (CORR-GA-HLS) and non-HLS FUs (CORR-GA) for correlation subexpressions
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Bench Execution Time (cycles) FLOP/C/DSP
name MS MT CORR-GA-HLS CORR-GA MS MT CORR-GA-HLS CORR-GA

CENTERx3 25029 12498 12728 12735 0.495 0.495 0.162 0.648
STDDEVx3 50073 25110 37811 37827 0.247 0.247 0.109 0.437

CENTER-REDUCE-DIVx3 62805 50402 31458 50423 0.247 0.164 0.103 0.410

CORRx3 873663 433842 320843 320867 0.468 0.314 0.425 1.698

(a)
Bench FLOP/C/10kFF FLOP/C/10kLUT
name MS MT CORR-GA-HLS CORR-GA MS MT CORR-GA-HLS CORR-GA

CENTERx3 10.362 19.448 2.603 2.095 9.570 15.374 1.026 0.928
STDDEVx3 7.796 13.991 1.752 1.410 6.148 10.148 0.691 0.625

CENTER-REDUCE-DIVx3 6.579 1.646 9.707 1.325 5.579 7.761 0.649 0.587

CORRx3 10.905 17.962 6.815 5.488 9.119 13.834 2.687 2.430

(b)

Table 8.9: Execution time (a) and performance-per-area (b) of a custom IP optimized for Max
Sharing (MS) and Max Throughput (MT) and the Generic Accelerator, both with pure HLS
FUs (CORR-GA-HLS) and non-HLS FUs (CORR-GA) for batched correlation subexpressions

Even with this optimization, on SCALV, SCALM and GER, the LA-GA is around 2
times slower than MS for non-batched workloads. This is due to the dedicated accelerator
expressing in one fully pipelined loop nest the complete application, whereas the LA-GA
splits it in several (fully pipelined) kernels, increasing the overall latency. A solution to
avoid this issue is to increase the granularity of FUs and allow expressions such as α·A+B

as a single kernel, which is not possible in our current implementation as FUs are limited
to 2 inputs / 1 output computations per cycle. However, these differences fade away when
the input is batched as the LA-GA will overlap sequential kernel executions through
coarse-grain pipelining and present systematically faster execution that MS except for
GER, where the batching factor is not enough to benefit from coarse-grain pipelining due
to a 3-stage pipeline.

On ASUM and DOT, the LA-GA execution time is even worse, falling behind dedi-
cated accelerators with a factor of 7. This is one limitation of our approach: because of
the use of AXIStream interconnect with the area-efficient FMA primitives, scalar com-
putation takes 7 cycles on the LA-GA instead of 1 on dedicated designs, and 3 on the
LA-GA-HLS for which this interconnect is also not present. Therefore, the execution
pipeline of the LA-GA must stall 6 cycles waiting for the former computation in the case
of reductions, leading to poor execution time (and thus performance-per-area) on BLAS1
primitives with sequential dependence on their (only) loop.

8.4.2 Correlation
For data science applications such as Correlation, linear algebra primitives are not

sufficient as other kernels are needed: column-wise accumulation of the matrix (a one-
kernel implementation of At · 1vector), column-wise subtraction of a vector to a matrix
and cut-off of a vector (used to avoid floating-points error when dividing by a near-zero
value) as well as division and square root.
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Therefore, we enriched our accelerator with one FU merging these four kernels to cre-
ate the CORR-GA accelerator whose configuration is detailed in Tbl. 8.4, that integrates:

• 3 FU capable of computing mulmm and all derivatives (kernels relying on FMA or
any of its variations);

• 1 FU capable of computing either
√
· or /

Reports of the execution time as well as performance-per-area metrics are summarized
in Tbl. 8.8 for one execution of each kernel, while performances on 3-batched workspans
are detailed in Tbl. 8.9.

The CORR-GA performs significantly worse than dedicated designs on CENTER,
STDDEV and CTR-RED-DIV, with execution time degraded from 50 % to 133 %. As
for the LA-GA, this is due to the granularity of the kernels that imposes additional
execution stages compared to dedicated accelerators. On the complete Correlation com-
putation, the CORR-GA is similar in execution time to Max Sharing and better in terms
of performance-per-area than dedicated designs. Indeed, CORR complexity is dominated
by the matrix multiplication step, for which the CORR-GA behaves similarly to the Max
Sharing accelerator (one FMA per cycle), so our approach shows similar execution time
and better performance per area thanks to its area-efficient FMA units.

Batching multiplies this ratio by 3 as all three available FMA-compatible FUs can
be used in parallel, while lesser-used divider and square root units are shared between
instances. More generally, on all of the tested batched expressions, the CORR-GA out-
performs dedicated designs in terms of performance-per-DSP, showing the interest of our
approach for area-efficient, throughput-based accelerator generation.

8.4.3 Scaling and Comparison
We evaluate the scalability of our approach on three different aspects: data type,

number of entries of the local buffer and problem size. Area measurements are reported
after P&R in Tbl. 8.10.

While switching from half precision to double precision doubles LUT due to the addi-
tional routing resources necessary to handle the supplementary data, the accelerator logic
size (LUT and FF) only increases by around 20 % when quadrupling the size of the local
buffer. This is due to the fact that loading and storing units are the only elements to
scale with its size: the data dispatch, FU selection and iteration vector generation logic
remains unchanged. Moreover, the number of DSP is multiplied by 10 when the data
size quadruples, which shows the limitations of FPGAs for high precision floating-point
computations.15

On the other hand, LUT, FF and DSP usage increases linearly with the number of FU,
suggesting that our approach does not generate quadratic amount of logic with respect
to its raw computation power. However, synthesis time increases significantly with the

15In this case, the pure HLS version would take 11 DSP (8 for the multiplier and 3 for the adder),
suggesting that the DSP used in the ZCU104 are not designed for FP64 computations.
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Data Type Nb. Entries Nb. FU Pb. Size LUT FF DSP BRAM

FP16 27 2 64 15955 6910 2 117
FP16 (HLS) 27 2 64 12487 4026 6 117

FP64 27 2 64 33190 18795 20 441

FP16 50 2 64 18452 8038 2 209
FP16 100 2 64 19499 8274 2 409

FP16 27 2 90 16422 7706 2 225

FP16 27 5 64 32240 11170 5 117
FP16 27 10 64 56701 17090 10 120

FP16 27 20 64 HLS Synthesis time out (> 3h)

Table 8.10: Scaling properties of the LA-GA accelerator

Maximum achieved frequency
Accelerator after P&R (MHz)

CORR-MS 222
CORR-MT 225

CORR-GA (2 FU) 217
CORR-GA (10 FU) 176

Table 8.11: Maximum frequency achieved for each design

number of FUs, reaching several hours for a GA with 10 FUs. This aligns with the results
shown in Sec. 7.6.2 for our greedy mapping heuristics, with interconnect size in the order
of magnitude of 10 000 LUTs and FFs for less than 50 DSPs.

As a demonstration of the influence of the GA structure on frequency compared to
a full design, Tbl. 8.11 reports maximum achievable frequency according to the timing
report for different implementations of the Corr accelerator16: the Max Sharing and
Max Throughput one, and the Generic Accelerator with 2 and 10 FUs. As the Generic
accelerator requires more logic to schedule dynamically its kernel on the FUs and complex
memory controller units to route data from the shared buffer to the FUs, its critical path
is slightly reduced compared to the dedicated designs: from 222 MHz achieved by the Max
Sharing IP, the GA with 10 FU could only reach 176 MHz. However, this complexity is
bound to the number of FUs, as shown by the 2 FU version, whose frequency (217 MHz)
nearly matches dedicated design. This is easily explainable, as the GA complexity comes
mainly from the adaptation of generic templated components to multiple FUs – and not
from the FUs themselves.

16Note that the dedicated designs require specification of a target critical path of 5 ns at the HLS step,
while the default HLS target of 10 ns is sufficient for the GA to reach 200 MHz-level frequency, for the
reasons described hereafter.
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Data Type Implementation OP/Cycle/DSP

INT32 ResNet-18 ScaleHLS [77] 1.343
INT32 ResNet-18 TVM-VTA [101] 0.344

INT32 LA-GA GEMM 0.646

FP32 GEMM ScaleHLS 0.393
FP32 LA-GA-HLS GEMM 0.212
FP32 LA-GA GEMM 0.849

Table 8.12: Performance per area comparison with data extracted from other published accel-
erators

We also provide as a indicative example in Tbl. 8.12 a comparison of our perfor-
mance against two state-of-the art designs dedicated to machine learning workloads:
ScaleHLS [77] and VTA [101], on GEMM, extrapolated from their FP16 (2 DSP per ad-
dition, 2 DSP per multiplication) to an FP32 projection (2 DSP per addition, 3 DSP per
multiplication) and INT32 one (0 DSP per addition, 3 DSP per multiplication) from the
ScaleHLS publication, and compare to ours. However, our utilization of block design-level
DSP IP does not allow an apple-to-apple comparison with tools that only rely on DSP as
instantiated by Vitis HLS. Therefore, we included the LA-GA-HLS GEMM implementa-
tion to measure the exact cost of kernel merging in terms of throughput-per-area when
only relying on current High-Level Synthesis tools: roughly 50 %. When comparing the
LA-GA optimized with single-DSP, throughput optimized FUs, we achieve comparable
performance to state of the art designs, whereas ScaleHLS optimizes a single workload
and is not producing a generic accelerator.
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8.5 Limitations
Though the kernel merging approach for automated generation of general accelerators

is promising, our implementation suffers from several flaws, both on the technical side
(unused/overused FPGA resources) and on our evaluated accelerators.

8.5.1 Routing between FUs and Buffers
Our implementation allows every FU to access every memory location of the local

buffer for easier customization of the generated accelerator. Indeed, a generic local buffer
load/store IP is integrated for every FU, that rely on costly multiplexers and intricate
code formulation for the HLS toolchain in order to generate valid RTL output. This could
be avoided by specializing it to the access pattern of the FU, to the cost of an increased
pressure on the final placement/scheduling compilation step.

Deeper polyhedral analysis and re-scheduling may also exhibit cross-FU reuse oppor-
tunities when the same data is used by 2 different FUs. A future research direction may
be to ensure maximal merging of these data paths to avoid as best as possible redundant
loads; but we expect this analysis to lead to few real-life use cases.

8.5.2 Merging of Kernels with Different Iteration Space
In all tested benchmarks, the iteration space vector can be shared among all merged

kernels. However, this is not true in general: two kernels may iterate over dimensions
of different size, which requires the generation of two iteration vectors by the IVG. This
leads to additional LUT-based logic limiting the application of our approach on LUT-
constrained designs, but should not disturb the execution time of our tested benchmarks.

8.5.3 Data Reuse: Optimizing Buffer Communication
Our implementation does not consider reuse of data inter iteration of the FU, as this

may introduce loop carried dependencies and thus stall the pipeline. However, short-
distance single-producer/multiple consumer data can be kept in FF-based memory to
alleviate BRAM’s load, diminishing pressure on ports and allowing further parallel com-
putations on the now-loadable data.

8.5.4 No Control Flow Instructions
The major difference between a GA and a CPU lies in the incapability of the GA

to perform data-dependent control flow kernels. On the architectural point of view, this
translates by two unfitted components:

1. The GA has restricted access to its kernel index (its “program counter”), as it can
only read it then increment it by one.

2. The bound used for the main scheduling loop is fixed, which prevent any form of
early exit.
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While simple transformations of the accelerator template can allow direct access to the
kernel index, solving the first issue; early exit management requires deeper modifications
to ensure correct handling of the break statements without degrading the main loop’s
initiation interval. Another approach relies in rewriting the main loop from a for to a
while, which has not been explored yet.

8.5.5 Vectorization of the FUs
In our evaluation, we only consider FUs composed of one fused multiply-add operation,

that is, scalar FUs. While this is a limitation of our current implementation, there is no
technical reason to do so in the general case: the elementary data type may be switched
from 16-bit floating point scalar to a wider one such as 4xFP16 to adapt our existing
structure to vectorized FUs. Such an adaptation with AXIStream FU primitives timed
out (> 20 hours of HLS synthesis) on our test machine, probably due to the use of 20
GiB of SWAP space as the 32 GiB of RAM available were not sufficient.
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8.6 Related Work
The topic of semi-specialized accelerator design has been widely studied recently [102,

103, 104], targeting a variety of subdomains such as encryption [105], graph process-
ing [106] or machine learning [107, 108, 109, 110]. Thanks to HLS, the expertise required
to design hardware architectures has lowered, which allows the focus on the high-level
sharing method rather that its implementation details: for example Cong et al. [111] pro-
pose a technique to quickly generate accelerators on a template architecture, but targets
single application acceleration on MPSoC, in contrast to the multi-functionality approach
detailed in this chapter.

This section analysis the major research projects dedicated to generic accelerator
designs, by comparing the effect of the underlying architecture onto design decisions:
while Sec. 8.6.1 overviews the trade-offs offered by 2 implementations of architecture-
agnostic resource-shared generic designs (DSAGEN [112] on ASICs and the Versatile
Tensor Accelerator [101] on FPGAs), Sec 8.6.2 focuses on a DSP-specialized overlay from
Jain et al. [81], whose goal is similar to the Generic Accelerator presented in this chapter.

8.6.1 Generic Resource-shared Designs
DSAGEN

Common data dependence patterns described in [113], composed of stream-join and
alias-free indirections, lead to the development of the SPU – Sparse Processing Unit –,
a generic systolic accelerator for applications presenting complex data-dependent control
flow.

From this work emerges DSAGEN[112], an infrastructure that enables the genera-
tion of custom architectures for domain-specific computation (such as the SPU) through
the customizable composition of modular building blocks: Processing Element, Switch,
Memory Delay, Sync and Controller. This approach relies on a decoupling of the memory
and computation pipeline while also exposing hardware features to the software stack
through a feature-rich compiler. Optionally, the hardware architecture can be further op-
timized to better suite software characteristics using a local search algorithm to perform
automated Design Space Exploration (DSE).

Contrary to the GA, both projects target ASIC generation, which allows more complex
interconnect and achieve better overall performances compared to FPGAs because of a
usually higher operating frequency and denser computing logic. This orientation was
abandoned in OverGen [88], a hardware generation framework coupling DSAGEN with
ChipYard [114] (a SoC generator build for agile design flow) in order to automatically
design domain-specific overlays dedicated to a specific underlying architecture.

Moreover, DSAGEN’s decomposition of the architecture operates as a finer grain,
as some templated components of the GA appear in DSAGEN as configurable modular
blocks, e.g. memory or synchronization elements.
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Concerning generality of the output designs, both approaches take as input C code
as a proxy for the supported features, hence the same notion of semi-specialization.

While the Control Core may seem analogous to our Loop Control Logic unit (See
Sec. 8.3 for more details), it is in fact implemented using a Turing-complete RISC-V
core, more powerful but bigger than the workload-derived ISA supported by the GA.

Finally, the spread of PE layouts supported by DSAGEN differs fundamentally from
the fixed, complete memory-to-FU topology implemented in the GA. Indeed, DSAGEN
rely on an Architecture Description Graph (ADG) to specify the layout of its supported
building blocks, allowing the generation of CGRA tiles as well as systolic architectures.
Contrarily, the fixed, templated architecture of the GA allows simpler parametrization
and synthesis, but also hurt scaling to the point of timing out for designs as small as 20
FUs, and requiring extra routing logic because of the possible accesses of all FUs to the
shared buffer.

VTA

While DSAGEN targets ASICs in order to achieve performances comparable to state-
of-the-art hardware accelerators, the Versatile Tensor Accelerator [101] (subsequently
referred as VTA) leverage High Level Synthesis to also target edge-class FPGA such as
Xilinx’ PYNQ Z117.

Similarly to the GA presented in this chapter, VTA relies on the concept of decomposi-
tion of programs into kernels for deported execution on an accelerator. However, its deep
learning focus limits its functional units to configurable GEMM and tensor-specialized
ALUs, which differs from the automatically generated FUs of our GA. Nevertheless, VTA
is a fully parametrizable extensible framework in which new hardware intrinsics can be
added seamlessly by design. Contrarily to the GA, these new compute capabilities must
be implemented by hand in the framework, instead of relying on kernel fusion to automate
this step.

VTA also features a DSE step to optimize its architectural parameters such as the
shape of the internal GEMM accelerator in order to adapt it to a new chip. Such a
functionality is not present in the GA, where the resource usage is only guided by the set
of accelerated kernels and an upper bound corresponding to the FPGA size.

Moreover, VTA’s kernels are translated from a task-level ISA to micro-code using a
JIT compiler, whereas our approach directly exposes the supported operations to the
user (similar to VTA’s micro-ops) and allows seamless mapping of new applications to
the design thanks to a static placement algorithm detailed in Sec. 8.2.3. Interestingly,
both approaches are limited in the expressiveness of their internal ISA as neither of them
can express branches: repetitions of the (micro-)instructions have to be used to emulate
loops.

17Note that VTA has to degrade the original FP32 data type to a FPGA-friendlier INT8 “with negligi-
ble accuracy degradation” in order to exhibit competitive performances when compared to industry-
optimized ARM libraries.
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8.6.2 DSP-dedicated Resource Sharing on Overlay Architectures
While approaches mentioned in the former section focus on the synthesis of generic

architectures, they function as high-level tools, either unaware of the actual architecture
of the targeted FPGA or dedicated to ASICs, for which this architecture is non-existent.
While this allows simpler adaptation to new chips thanks to this genericity, this also
means that part of the performances may be left on the table, either due to unnecessary
generic interfaces (and subsequently, glue logic), or lack of usage of all the possibilities
offer by the targeted compute units. For example, HLS-based designs are limited by
the panel of DSP primitives integrated in the synthesis tool, as described in Sec. 6.2.3:
manually or semi-manually optimized designs would not suffer from this issue.

Jane et al. [81] project explores this direction by manually implementing their FUs
to take advantage of the underlying DSP48E1 block of Xilinx’ Ultrascale Zynq chips in a
runtime-configurable manner. These FUs are composed following the classic island struc-
ture [8] to provide efficient yet configurable overlays on which applications are mapped
using a customized compiler, as detailed in the next paragraphs.

When compared with Vitis HLS’s out-of-the-box designs, the overlay architecture is
40% faster in average over a set of 24 benchmarks, while using up to 50 % of its theoretical
processing power. Furthermore, benchmark-specific reconfiguration is performed more
than 1000 times faster than using HLS, as no synthesis is required to map an application
to the overlay once the has been generated.

Technical Solution

The architecture used in Jain et al.’s overlay relies on a classical island topology:
a square 2D array of precessing elements called tiles, where each tile can communicate
horizontally and vertically to its immediate neighbor.

Choice of the Overlay Architecture The major drawback of an island-style topology
lies in the imbalance between of IO resources and the computation resources. While
computing resources are integrated in all tiles (thus growing quadratically), the amount of
I/O resource only increase linearly as only tiles on the edges of the array can communicate
with off-chip components.

Therefore, the compromises at stake here are:

• The size of the 2D array, that defines the ratio between I/O tiles and compute tiles.
The bigger the array, the more powerful the overlay is in terms of theoretical peak
power, but the harder it is to fully use it.

• The number of communication channels per tile edge: more channels means more
bandwidth between tiles and for off-chip communications, but also more complex
interconnect resources.

• The computing power of each tile. While single-DSP tiles offers the most flexibility
in term of exposition of the hardware-level features to the application, it also comes
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Figure 8.12: Anatomy of the DSP48E1 as described by the vendor documentation [2]

with more routing resource per DSP than multi-DSP tiles. Contrarily, multi-DSP
tiles limit the CDFG pattern that can take full advantage of the DSPs due to the
specialization of certain data paths.

The DSP48E1-derived FU As seen in Sec. 6.1.1, FPGAs integrate pipelined units
called DSP, dedicated to the acceleration of a several fixed-bitwidth computation. Xilinx’
Ultrascale Architecture integrates the DSP48E1 [2], a 48-bit programmable hardware
primitive composed of a pre-adder (optionally configurable as a subtraction), a 25x18-
bit multiplier and a configurable 48-bit post-operator (either an addition, a subtraction
or a logical and), as illustrated in Fig. 8.12. Therefore, the maximum theoretical peak
performance of an FPGA, assuming all operations to be mapped to DSP, is 3×#DSP .
However, usual designing methods rely on fixed data paths and usage of DSPs for one
fixed sequence of computation, which considerably limits their in-practice compute power.

The FUs used in [81] aims at offering a configurable elementary compute unit while
minimizing interconnect size and exposing hardware features to the software stack. Fol-
lowing a scalability study of the compromises detailed in the former paragraph, the final
FU is composed of 2 DSP48E1 units in cascade, fully pipelined with a 4-input, 4-output
structure. One of them is preceded by shift registers for synchronization purposes, which
translate to a 13 cycles latency when using both DSP, or 8 cycles when shortcuting the
second one. The desired operation and data path is selected by configuring a 109-bit
control register, implemented as Flip-Flops.

Finally, a tile corresponds to a FU, enriched with routing elements that allow com-
munications with the neighboring tiles.

Compilation to the Overlay To deport an application on the overlay, its complete
CDFG is deduced from a set of kernels described in a high level language, similarly to
the GA. Its composing nodes are then collapsed using pattern matching to form one of
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the hardware-accelerated primitives if the data path allows it. This reduces the size of
the graph and allows faster execution compared to non-architecture optimized designs.
Then, each node is assigned to a FU of the overlay.

Optionally, the mapped kernels can be replicated several times, either as identical
or different instances, to further increase occupancy of the overlay and increase overall
throughput.

Finally, the synchronization between FUs is achieved by configuring the size of their
shift registers in order to delay inputs and ensure coherency of the data.

This operation-level mapping contrasts with the approach taken by VTA and the
GA, which both operate at the coarser granularity of kernels. In that case, targeted
applications are decomposed into hardware-accelerated primitives, before being mapped
to the final design.

Limitations

One of the strength of this approach relies in the tight coupling between the FU
architecture and the FPGA’s DSP blocks. However, this feature has a major drawback:
no automation of the generation of the FUs is possible without information about the
target FPGA, trading performance for customizability. This direction of improvement is
explored in by our Generic Accelerator, for which loop merging is used to generate FUs
that are specialized to a set of applications, as described in Sec. 8.2.

Also, the approach of the GA is limited to polyhedral codes, and its loop merging
technique is in practice efficient for applications relying on multiple loops of similar cardi-
nality of their iteration domain. This limitation is not present in Jain’s approach, where
the compiler targeting the overlay operates at the operation level instead of the loop level.
This allows a bigger spectrum of supported applications, as well as better load balancing
across FUs.

Moreover, the interconnect between overlay tiles (FUs augmented with data routing
capabilities) is array-shaped [8], which improve scalability in terms of number of FUs that
can be integrated on-chip but limits the in-practice throughput due the lack of parallelism
exploitable by of all FUs simultaneously, translating to a sub-optimal occupancy of the
tiles.

Contrarily, our GA is built around a templated interconnect that allows arbitrary
communications between FUs, as data is stored in an on-chip buffer shared between
all FUs. While this approach allows superior performances in terms of throughput-per-
DSP, as evaluated in Sec. 8.4, it is not without compromises on its scaling, both with
respect to local buffer size and the number of FUs – similarily to the approach taken by
DSAGEN [112].
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Chapter 9
Conclusion and Future Research Directions

With the decline of yearly frequency improvement of chips, the pressure of delivering
generational performance gains now shifts toward the rest of the computation stack:
software and architecture [115]. In a ideal world, both would be co-developed together in
order to reduce the so-called software bloat and avoid unused chips elements. However,
we are far from this situation, partly due to the multiplicity of actors and use cases
of silicon chips, hence the perpetual back and forth between new architecture bringing
possibilities and optimization of the software on existing hardware.

This manuscript aims at providing possible answers for both software optimization
and hardware generation:

On one hand, the Palmed framework developed in Chap. 3 and 4 allows to generate
automatically accurate performance models through a microbenchmark-driven approach,
paving the way for simpler assembly-level optimizations, either compiler-automated or
manual. In these chapters, we show how two selection filters can reduce to ISA to a limited
number of instructions with different resource usage characteristics after a first profiling of
the instruction set using quadratic benchmarking. We also developed an algorithm able
to solve the instruction to resource mapping problem by formulating the search space
as a dual form in which performance estimation of microkernels boils down to a max
of summation, allowing faster solving. We apply this technique to two state-of-the art
processors and show an accuracy similar to alternative hand-optimized tools, illustrating
the soundness of this approach. Finally, Chap. 5 perfects this work by embedding it into
a formal frame and proving convergence of Palmed to the unique resource mapping of
any processor.

On the other hand, other ways to adapt hardware architectures to the program they
run are explored in this manuscript under the compute resource sharing aspect on FPGA.
Within the HLS framework, the tentative detailed in Chap. 7 of solving the combined
placement-schedule using an LP solver hits a complexity wall when trying to find an
exact solution, with solving time reaching more than 10 hours for mapping of compute
DAGs of fewer than 50 nodes. Fall backing to an approximated approach, using a greedy
heuristic shows promising results in terms of performances, but hits a second wall: the
interconnect size that voids partly the resource sharing gains.

Therefore, we build in Chap. 8 a generic accelerator from the idea of developing this
interconnect in order to construct a multi-purpose design, instead of trying to reduce
its size. Thus, we leverage loop merging, a well-known polyhedral transformation, to
build semi-specialized FUs and integrate them in a fixed canvas to create accelerators
dedicated to several applications while keeping our focused on resource sharing, that is,
efficiency of usage of available computing elements. This technique has been evaluated
on Linear Algebra as well as Correlation IPs, and has shown to conserve DSP-efficiency
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of dedicated designs, with a cost in logic elements similar to our greedy mapping try, but
adding multi-functionality as a supplementary functionality.
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Future Research Directions

PALMED
Precise processor models, and by extension resource mappings are particularly use-

ful for two applications: performance predictions and bottleneck analysis. The most
straightforward application of Part I of this manuscript would be to automatically plug
Palmed’s resource mapping into a compiler back-end such as LLVM, avoiding the ad-hoc
mapping it currently relies on without degrading its performance. However, as shown in
Sec.4.6, Palmed is not significantly more accurate than existing performance models, as
it strength mostly relies in its automated behavior. Therefore, we think of the integration
of automated performance models into compilers as a long-term research direction that
offers a pragmatic way of dealing with the diversity of chips released on the market over
the years.

However, bottleneck analysis has also proven to be a top-of-the-line research topic.
Micro-architectural simulators such as Gem5 [116], IACA [25], OSACA [38] or GUS [27]
demonstrates the demand for such tools, whose development is cumbersome when CPU
microarchitectures are refreshed. Therefore, Palmed’s mapping can be used as one com-
ponent of a modular performance analysis tool by providing the instruction-level through-
put model. To that goal, ideas and infrastructure components of Palmed/Pipedream
may be reused for assembly latency measurements in order to automatically characterize
instruction-level performance profiles. Nevertheless, other main components of such a
simulator also have to be developed: a Palmed-like estimator for the memory subsystem
latency (including cache hierarchy and prefetching), a cost model for the branch predic-
tion and a system to take data dependence into account at the instruction scheduling
step.

FPGA Resource Sharing
While the principle of HLS – bringing chip design closer to their use case by embedding

the process within a semantic hull – goes in the direction of hardware/software codesign,
the link between the source code and generated hardware is still far from being perfect.
Part II of this manuscript identifies three issues when tackling resource sharing in the
HLS framework:

• Scaling of an optimal solution and choice of the approximation. While LP solvers
and greedy scheduling under resource constraints are the two possibilities explored
in this manuscript, other technical solutions must be explored. For optimal solving,
non-linear solvers or SAT-solvers may exhibit easier formulation and/or solving
time; while neither graph-derived scheduling algorithms nor iterative compilation
techniques were explored as alternatives.

• Interconnect cost on highly-reuse units. Currently, the technical solution lies in im-
plementing high fan-in multiplexers of prohibitive cost. However, control structures
directly derived from the input loops show that more efficient implementations are
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already known. One possible research direction lies in their efficient selection and
adaptation to irregular input pattern such as those exhibited by heavy resource-
shared designs.

• General improvement of the structure of the Generic Accelerator. Limitations cited
in Sec. 8.5 raise possible ways of improvement in the creation of semi-custom accel-
erators. As of now, the GA is only configurable by the number and nature of FUs,
as well as its memory size. Further customization of the memory controller and the
scheduler should help reducing overall resource usage; while implementations with
more complex FUs (e.g. vector, matrix or control-flow modifying FUs) would help
pushing the spectrum of possible designs closer to general-purpose ones, offering
greater flexibility to the designers.
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