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Introduction 

I have always been fascinated by mathematics and physics. From my perspective engineering represents the 

perfect mix using mathematics to explain and control physical phenomena that occur in in the real world. This is 

especially true for applied electromagnetics. I therefore graduated in 2003 from the University of Siena in Italy 

with a master degree in Telecommunications Engineering. After two months I obtained a two years Research 

Training Network grant (AMPER: Application of Multiparameter Polarimetry) at Mothesim (MOdelisation, 

THEorie et SIMulation) in France to work on polarimetry with Dr. Frédéric Molinet. In parallel I started a PhD 

at the University of Siena under the supervision of Pr. Stefano Maci. My topic was related to deterministic and 

stochastic numerical methods for the electromagnetic analysis. After the PhD, I continued my research at Siena 

with a four-year research associate position during which I worked on metamaterials, beam expansion techniques 

and numerical methods. 

In November 2010, I joined IETR in Rennes as a postdoctoral researcher working with Pr. Ronan Sauleau on 

substrate integrated waveguide antennas. In September 2013, I joined Sorbonne Université, formerly University 

of Pierre and Marie Curie, as maître de conférences. 

The aim of this manuscript is to summarize my research activity and to presents its evolution in the next years. 

The document is organized into four chapters as follows. The first chapter is my curriculum vitae. The second 

chapter briefly summarizes my teaching activity. The third chapter introduces my past research and the last 

chapter presents the research activity I intend to carry on for the coming years.     

Note relative aux modalités de rédaction du mémoire d'habilitation à diriger des recherches à Sorbonne 

Université : selon les UFR, votre mémoire d'habilitation, synthèse et perspectives de vos travaux d'environ 50 

pages (hors les articles joints), en français ou en anglais, peut être ou pas déjà rédige lorsque vous soumettez 

votre pré-dossier à la CTH. http://www.sciences.sorbonne-universite.fr/fr/recherche/hdr.html 
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Chapter 2 : Teaching activities 
 

Since September 2013, I have taught in the Bachelor and Master program at Sorbonne Université. The programs 

in which I am involved are listed below: 

 

Bachelor: 3-year bachelor program in Electronics at Sorbonne 

Master SysCom (Embedded Systems Technologies and Applications speciality): 2-year master program in 

Engineering Science at Sorbonne.  

 
Since 2015, I am in charge of the new module Numerical methods and algorithms (L3). This course covers 

interpolation, numerical integration (classical methods and Gaussian methods), and numerical techniques for 

ordinary differential equations. 

 

From 2020 I will be also in charge of the new module Numerical methods and matlab (L2). This course will 

cover the solution of linear systems (Gaussian Elimination, LU and Cholesky decomposition, over-determined 

systems). 

 

The teaching activity is detailed in the next sections. 
 

2.1 Teaching activities in first-year bachelor (L1) 
  

2013-2014 

 

 Introduction to electronics 

16h TD    8h TP 

 Mechanical and electrical systems 

28h TD   12h TP 

  
 

2.2 Teaching activities in second and third-year bachelor (L2/L3) 

 

2017-2018  

 L2 Electrostatic Fields 

18h TD  

 L2 Mathematical tools for  the electronics 1 
36h TD 

 L3 Numerical methods and algorithms 
8h CM + 16h TD +  56h TP 

 L3 EM propagation et radiation 
28h TD + 8h TP 

2016-2017  

 L2 Electrostatic Fields 

18h TD  

 L2 Mathematical tools for  the electronics 1 
36h TD 

 L3 Numerical methods and algorithms 
8h CM + 16h TD +  56h TP 

 L3 EM propagation et radiation 
28h TD + 8h TP 

2015-2016 

 L2 Electrostatic Fields 

18h TD 

 L2 Mathematical tools for  the electronics 1 
36h TD 

 L3 Numerical methods and algorithms 
8h CM + 16h TD +  56h TP  

 L3 EM propagation et radiation 
30h TD + 16h TP 

2014-2015 

 

 L2 Electrostatic Fields 
18h TD 

 L2 Electronics project: heartbeat detector 
 26h TP 

 L2 Mathematical tools for  the electronics 1 

36h TD 

 L3 EM propagation et radiation 

30h TD + 16h TP 
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2013-2014 

 L2 Introduction to Matlab 

15h TD 

 L2 Electronics project: heartbeat detector 

22h TP 

 L3 EM propagation et radiation 
30h TD + 16h TP 

 

2.3 Teaching activities in master (M1/M2) 
 

2017-2018 

 M2 Antennas, modelling and radar 

applications 
20h TP 

 

2016-2017 

 M2 Antennas, modelling and radar 

applications  
20h TP 

 

2015-2016 

 M1 alternance Numerical methods for 

differential equations 
12h TP 

 M2 Antennas, modelling and radar 

applications 
24h TP 

2014-2015 

 M1 alternance Numerical methods for 

differential equations 
12h TP  

 M1 Numerical methods for differential 

equations 
14h TD + 12h TP 1h G 

 M2 Antennas, modelling and radar 

applications 
24h TP  

2013-2014 

 M1 alternance Numerical methods for 

differential equations  
12h TP 

 M1 Numerical methods for differential 

equations 
12h TP 

 

 

2.4 Teaching activities before September 2013 
 

Université Rennes 1, IUT de Rennes and IUT de Saint Malo 
 

2012-2013 

 L1 Electromagnetics 
10h TD 

 L1 Optoelectronics 
10h TP 

 M1 Waveguide propagation 

16h TP 
 

University of Siena (Italy) 

2009-2010 

 M2 Antennas and propagation 
30h CM 

 L2 Antenna design 
 24h TP 

2008-2009 

 M2 Antennas and propagation 
30h CM 

 L2 Antenna design 
24h TP 

2007-2008 

 M2 Antennas and propagation 
30h CM 
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Chapter 3 : Past research activities 
 
 

This chapter briefly outlines my research activities during my Master project work in Italy (October 2002 – 

March 2003, Part I), during my PhD activity in France, England and Italy (October 2003 – October 2006, Part II), 

my Post-Doc fellowship in Italy (November 2006-October 2010, Part III) and my Post-Doc fellowship in France 

(November 2010 – August 2013, Part IV). It is worth noting that what presented here does not aim to be 

complete and exhaustive. For more details the reader should refer to the related articles.  

 
 

3.1. Master thesis work (October 2002 –March 2003) 

Rigorous network representation and dispersion analysis of a Frequency Selective 

Surface printed over a dielectric slab 

List of related publications: [P.29], [C.56]-[C.58]. 

Introduction 

A Frequency Selective Surface (FSS) is a thin surface able to reflect and transmit an incident electromagnetic 

field based on the frequency of the field [3.1]. It is composed by 2D-periodic array of metallic elements with a 

unit-cell dimension smaller than the wavelength. Under this latter assumption only one of the infinitude of 

Floquet’s modes propagates. In other words, the field scattered by the FSS under a plane-wave illumination is 

essentially a plane-wave as for a continuous surface. This means that propagation can be studied by using a 

simple Transmission Line (TL) along the direction orthogonal to the FSS (equivalent to the dominant Floquet’s 

mode) [3.2] where the FSS is represented in terms of a lumped RLC network placed in parallel across the TL. 

Under the assumption of lossless element (perfect electric conducting element) the equivalent impedance is 

purely imaginary. 

This model is exact only for an infinitesimally thin FSS, for which the tangential electric field is continuous 

across the FSS (continuous voltage in the TL) while the magnetic field is discontinuous (current discontinuity in 

the TL).      

                                
(a)                                                          (b) 

Figure 3.1 Geometry for a dipole-FSS printed on a grounded dielectric slab. 

 

Figure 3.1 shown to example of the most common types of metasurfaces: the dipole-type cell (a) and the slot-

type cell (b). A dipole-type FSS in free space will strongly reflect the wave at the frequency where all the dipole 

are resonating, while it will reflect little energy below this frequency (and in between two resonances) acting as a 

stop-band filter. On the contrary, a slot-type FSS will strongly transmit the wave at the frequency where all the 

slots are resonating in phase, while most of the field will be reflected for other frequencies acting as a pass-band 

filter.  

FSS printed on grounded stratified dielectric media (Fig.3.2) have been widely used during the years for 

synthesizing artificial surfaces and electromagnetic band-gap (EBG) structures [3.3]-[3.7]. The main advantages 

of FSS technology is their low cost and easily fabrication. Major effort has been devoted to the implementation 

with FSS of artificial magnetic conductors (AMC) or surfaces which exhibit “soft” and/or “hard” equivalent 

boundary conditions. The benefits of such structures are suppression of surface wave coupling, reduction of 

diffraction lobes, improvement of planar antenna efficiency, realization of compact antennas, and suppression of 

parallel plate waveguide modes 
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Figure 3.2 Geometry for a dipole-FSS printed on a grounded dielectric slab. 

State of the art and motivation at the period of the research 
Several authors have treated the artificial surface problem via equivalent lumped circuits to characterize both the 

reflection and the dispersion properties [3.8]-[3.10]. The lumped parameters are generally based on quasi-static 

approximations, capable of modeling the surface reflection properties to impinging plane waves in a limited 

frequency range. Therefore, it is important to derive a rigorous network description valid in a wide range of 

frequencies and wavenumbers from the visible to the nonvisible region. 

Proposed solution 

The proposed solution invokes the inductor (L) and capacitance (C) properties of the equivalent boundary 

impedance associated with the FSS; however, it does not specify particular L and C parameters on a quasi-static 

approach, but rather it identifies wavenumber-dependent parameters which exhibit weak variations with 

frequency. These parameters are poles and zeros of the FSS equivalent admittance which is properly defined by 

a homogenization process. They have the capability of rigorously reconstructing the surface response on a large 

region of the dispersion diagram. 

In the range of frequency where a single propagating Floquet mode occurs, the structures under analysis is 

equivalent to two coupled transmission line networks, one for the Transverse Electric Field polarization (TE) and 

the other for the Transverse Magnetic Field polarization (TM) as shown in Fig. 3.3. 
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Figure 3.3. EBG structure composed by a FSS printed on a dielectric slab. 

 

Foster’s reactance theorem [3.11] implies that the variation of the admittance functions ( ( , )TM

FSS xY k  ) with the 

frequency satisfies pole-zero analytical properties of classical lumped LC admittance functions. An analytical 

form for ( , )TM

FSS xY k  can be then obtained by applying the Forster’s theorem knowing the FSS resonances, 

yielding for the TE and TM case: 
 

0),(),(),( ,

,

,

,

1,

,

0   yx

ETM

FSSyx

ETM

ccyx

ETM kYkYkY ,                                              (3.1) 
 

The numerical solution of (3.1) provides the dispersion behavior of both surface and leaky-wave modes. Figure 

3.4 shows the results obtained for a structure composed by periodic dipoles printed over a dielectric slab. Full-

wave simulations are used for comparison. 

The method can be used for the dispersion analysis of new kind of waveguide as the quasi-TEM waveguides 

with artificial walls [3.12], [3.13] or for planar leaky-wave antenna. In the following an example of the first kind 

of structures is considered and analyzed. The waveguide is a standard WR90 rectangular waveguide (a=2.286 cm, 

b=1.018 cm) with the side walls covered by a slab printed with a dipole FSS (Fig.3.5a). In the frequency range 

where the surface acts as a PMC for grazing incidence, the structure is compatible with a TEM propagation. The 

modal analysis for the FSS-loaded waveguide is performed through the resonance equation obtained with the 

transmission line network shown in Fig. 3.5b. The curves obtained with the equivalent network model (Fig. 3.5c) 

are successfully compared with those obtained by a commercial full-wave simulator (CST™ Microwave Studio). 

The dispersion curve of the standard TE10 mode of the WR90 waveguide is also shown for comparison (we use 

here the terminology TE w.r.t. the direction of wave propagation (y), but this is also TE w.r.t. z). 
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(a)                                                                         (b) 

Figure 3.4. Dispersion diagrams for the structure shown in the inset (dimension in mm). On one side, the phase of the reflection coefficient 

for grazing incidence is presented. The dispersion curves of the FSS- admittance poles (dash-dotted line) and that of the zero-phase of  
(dashed line, PMC label) are extrapolated beyond the light line. The vertical line denotes the limit of the region where the analytical 
expression of the FSS admittance is analytically continued by extrapolation of poles and zeros. The dispersion curves of (a) TM and (b) TE 

surface wave modes are calculated by the presented method (dots) and by a conventional dispersion full-wave analysis (continuous line). 
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Figure 3.5.Quasi-TEM rectangular waveguide realized by FSS loaded grounded substrates. (b) Relevant transverse transmission line 

network for deriving the dispersion equation (c) Dispersion diagram for a rectangular waveguide with vertical walls loaded by FSS. In the 

insets: amplitude profile of the modes in the transverse plane at various frequencies. 
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3.2. PhD frame-time (October 2003 – October 2006) 

Deterministic and stochastic methods for the electromagnetic analysis of complex 

structures 

The PhD work has been divided in 3 different research activities: 

 Part I: “Field diffracted by an arbitrary target in front of a statistical flat rough surface” - This 

part has been developed at the private company MOTHESIM (Modélisation, Théorie et SImulation 

Mathématiques), France under the European RTN research contract AMPER (Application of Multi-

Parameter Polarimetry). Supervisor Dr. F. Molinet. During this time the author have spent one month at 

the University of Essex, England under the supervision of  Dr D. Bebbington. 

 Part II: “Iteration-free approach to the scattering from large objects by using incremental 

diffraction-type special functions” - developed at the University of Siena Italy in collaboration with 

the Politecnico di Torino, Italy under the supervision of Prof. S. Maci and Prof. G. Vecchi. 

 Part III: “Efficient computation of the mixed potential dyadic Green’s function for dielectric 

multilayer structures” - developed at the University of Siena in collaboration with the private 

company I.D.S. (Ingegneria dei Sistemi), Italy under the supervision of Prof. S. Maci and Dr. Alessia 

Polemi. The numerical implementation of the developed theory has been included in the commercial 

software ADF-EMS (Antenna Design Framework – ElectroMagnetic Satellite).  

 

List of related publications: [P.28], [C.52]-[C.55]. 

 

3.2.1 Field diffracted by a target in front of a statistical flat rough surface 
 

Motivation and State of the art at the period of the research 

The radar scattering from rough surfaces has been investigated by many researchers and an extensive literature 

exists on this subject. In contrast, only few works have been done for the scattering of a deterministic target in 

front of a rough surface or bared in a medium limited by a rough surface due to the difficulty of the problem. 

Activity goals 

The scope of the first part of the PhD project has been the development of a new approach able to overcome the 

limitations of existing procedures. Attention has been devoted to the near-field interactions between the object 

and the rough surface. These interactions are important for an exact formulation of the problem and derivation of 

the field diffracted by the arbitrary target.  

Proposed solution 
 

 
Figure 3.6 Geometry for the Green’s function problem. 

 

The basic idea in order to solve the problem has been the derivation of the Green’s function for the half-space 

delimited by a flat random rough surface (Fig. 3.6). This has been done using a second order perturbation 

method. The surface high profile  ,h x y  is described as a continuous stochastic process in the spatial variables x 

and y with zero average, variance 2 and autocorrelation function ,h hR . Under the assumption that the roughness 

is small compared to the incident wavelength (  , ,  ,x y S h x y     ) and for small gradients of the height 

function (  , 1h x y ), it is possible to develop the field on the boundary S in Taylor’s expansion around the 

average height 0z   
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The total field E  is decomposed as the sum of the incident field 
incE  and the scattered field by the surface 

scatE : 

inc scat E E E . 

Perturbation theory assumes that the scattered field may be written as a series: 
 

 n

scat s

n

E E ,                                                                    (3.3) 

where the n-order term  n

sE  is  nO h . 

Since in general  , /h x y x   and  , /h x y y   are  O kh , the boundary condition in (3.2) can be satisfied 

separately equating the terms of the same order. 
 

 
(a)                                                       (b) 

Figure 3.7 Equivalent problems for the zero order solution (a) and for the higher order solutions (b) 
 

The zero order solution is given by the solution of the flat surface problem (Fig. 3.7a). Higher order solutions are 

equivalent to the field radiated by a magnetic current distribution placed on the flat surface (Fig. 3.7b), which 

amplitude is given by the tangential electric field on the surface obtained for the previous order solution. The 

second order magnetic current is thus given by the field radiated by the first order current on the source himself. 

This fact implies that a singularity extraction has to be carefully done. 

Figure 3.8 presents the Green’s function for an electric dipole placed at a wave length from a smooth rough 

surface with σ = 0.1λ and Gaussian correlation length 1λ. The average electric field in the dipole plane is 

presented. As can be seen the field is lightly perturbed by roughness. As RMS increases, the average field 

becomes more and more perturbed by roughness (Fig. 3.9). 
 

 
(a)                                                       (b) 

Figure 3.8 Electric Average Far Field (a) X-component (b)Y-component. 
 

 
(a)                                                       (b) 

Figure 3.9 Electric Average Far Field (a) X-component (b)Y-component. 
 

Then the derivation of the scattered field by a target in front of the rough surface has been addressed using an 

integral equation approach (electric field integral equation) with a Method of the Moments scheme. It has been 

shown that only the inverse of the mean value of this integral operator (or the corresponding solution impedance 

matrix) needs to be calculated in order to derive the zero, first and second order terms of the induced currents 

and radiated field. Both quantities are random variables. The elements of the coherency matrix are then 

calculated once the diffracted electromagnetic field is known.  
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3.2.2 Iteration-free approach to the scattering from large objects by using Incremental 

diffraction-type special functions 
 

State of the art at the period of the research 
The Integral Equation (IE) approach combined with the Method of the Moments (MoM) is widely used in the 

derivation of the electromagnetic scattering [3.14]. Conventional MoM formulations are severely limited by the 

problem size leading in some cases to large, dense and sometimes ill-conditioned matrices. Different approaches 

have been presented in literature to overcome these problems. The iteration free approach is an interesting 

method, where standard basis functions are aggregated into larger functions (Synthetic Function eXpansion - 

SFX) [3.15], [3.16]. These aggregate basis functions are obtained from the numerical solution of smaller-size 

problems, and then used in the MoM solution of larger problems. 

Activity goals 

We have proposed an analytical method to generate SFX to analyze large areas of rough-edge perfectly metallic 

planar objects. 

Proposed solution 

The core of the proposed method is based on the construction of basis functions (BF) describing the edge 

diffraction effects. The key issue investigated here is the excitation mechanism employed to generate these basis 

functions. Two different approaches are investigated, and the relevant results critically compared: 1) spherical 

wave generated diffraction BFs; 2) and grazing plane-wave generated BFs with different propagation directions. 

 

A) SPHERICAL WAVE GENERATION OF PHYSICAL OPTICS BASIS FUNCTIONS (SWG-POF) 
 

 

 
Figure 3.10  Geometry for defining SWG-POF 

 

The diffraction process can be described by equivalent spherical wave incremental contributions arising from the 

edges. Elementary dipoles distributed close to the edge are used as generating sources of fringe currents as 

shown in Fig. 3.10 with the geometry of the problem. 

The electric dipoles are centered at a generic position ' and displaced at /10  from the edge along both   and 

  in order to avoid inappropriate singularities at the edge. Pairs of dipoles parallel and orthogonal to the edge 

are used to consider both polarizations, namely TE and TM. The PO induced currents normalized with respect to 

the maximum values can be approximated by the following expressions: 
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 (m=1,.. N)mv  are the position vectors of the s-block surface vertexes,   is a normalization constant, and 

( , )x y  is the characteristic function of the s-block equal to one inside the s-block and zero elsewhere. The basis 

functions are normalized in such a way that the maximum value of the amplitude (obtained for 0  , and 

'  ) is equal to one. The generating sources are placed along the polygonal contour of the surface with 

uniform steps, thus constructing a sequence like , ( , ) ( , , )n x y n x y  f f . These functions are called Spherical 

wave generated-PO functions (SWG-POF) since derived by currents reconstructing diffraction effects,. The step 

  between contiguous generating sources will be chosen according to a spectral Singular Value Decomposition 

(SVD). 

 

 

 (B) NEARLY GRAZING PLANE WAVE GENERATION OF PO BASIS FUNCTIONS 
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An alternative description of the diffraction contribution can be given in terms of BFs generated by propagating 

nearly grazing plane waves. As a generating source we taken TE or TM polarized plane waves characterized by 

the wave-vector    
2 2

' 2 ' '' t x yk k k   k k z , where ' ˆ ˆ' 't x yk k k x y  is the transverse to z part of 'k , and k 

is the free-space wave-number. The transverse wave-vectors '

tk  associated to the generating plane waves are 

chosen so that    
2 2

2 ' '

x yk k k   (near grazing incidence) with a constant angular step; namely  

 

                  ' ˆ ˆsin costn k n n    k x y                                                      (3.5) 

 

where the step   between contiguous wave-numbers will be chosen according to the SVD scheme in a similar 

way as for the selection of the spherical wave basis functions. The normalized PO currents associated to the 

above plane waves are given by 
 

        
( ' ' ) ( ' ' )' '

, ,
ˆ( ', , ) ( , ),    ( ', , ) ( , )x x x xj k x k y j k x k y

n TM tn n TE tnx y e x y x y e x y    
  f k k f k k z            (3.6) 

 

where   is the above-defined characteristic function of the polygonal surface. We note that in order to interpret 

the TE component in (3.6) as a normalized grazing wave PO current for TE polarization, we should apply a 

process to the limit for near grazing of the normalized currents.  

As an example, a square flat plate of dimension 4L   is illuminated by an electric dipole at 1 wavelength from 

the plate. The plate has been considered as a unique block in the iteration-free procedure. The simulations have 

been done by using 98 SWG-SFX and 80 PWG-SFX. Figs.3.11 shows the comparison of the far field and the 

induced currents with a standard MoM (FEKO™) using 12800 RWG BFs. A very good agreement is observed 

with the results obtained using just 98 SWG-SFX and 80 PWG-SFX. Both types of basis functions reduce the 

computational cost of the MoM analysis of large and complex structures presenting wide edged flat metallic 

surfaces. The most evident computational gain consists on a reduction of the MoM matrix size that has a 

dimension proportional to the perimeter and not to the plate area. A comparison of the two different generating 

processes shows that the spherical wave generation approach is more accurate. On the other hand, the plane 

wave generation approach exhibits advantages of closed form spectral domain entries, with favourable capability 

in treating electrically large problems. 
 

 
     (a)                                                   (b)                                                 (c)                                                        (d) 

Figure 3.11 Square plate, 4L  ; Induced currents: (a) E-plane; (b) H-plane. Far-field (c) E-plane; (d) H-plane. The comparison is done 

between the proposed method and full-wave simulation using FEKO. 

 

3.2.3 Efficient computation of the mixed potential dyadic Green’s function for dielectric 

multilayer structures 
 

Motivation and State of the art at the period of the research 

Mixed potential formulation represents the state of the art for the Integral Equation approach to electromagnetic 

scattering problems. This approach requires the computation of scalar and vector potentials associated to both 

electric and magnetic sources using their associated dyadic Green’s functions. The computations of these 

quantities for a homogenous medium are expressed in a simple and well-known form while the case of dielectric 

stratified medium represents a challenging problem. 

The private company I.D.S. (Ingegneria dei Sistemi[3.17]) was interested including the dyadic Green’s function 

for stratified mediums (figure 3.12) in their commercial software ADF-EMS (Antenna Design Framework – 

ElectroMagnetic Satellite). This activity has opened the possibility to analyze planar antennas (patches, etc.) with 

ADF-EMS using an IE-Method of the Moment method. 
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Figure 3.12 Geometry of the Green’s function problem for a dielectric multilayer structure. 

 

Activity goals 
Computation of the mixed potential Green’s function for stratified medium and implementation of an efficient 

routine. 

Proposed solution 
The problem has been solved using a 2D spectral domain representation. Each dyadic component is expressed as 

a bi-dimensional inverse Fourier integral. Different acceleration techniques have been applied to each 

component in order to speed-up the numerical integration process. No details are given due to contract policy. 

Results obtained with the developed code has been successfully compared to those obtained with the available 

state of the art Method of the Moments commercial software’s (Ansoft Designer
TM

 and FEKO
TM

)  at a reduced 

computational time.  
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3.3. Post-Doc frame-time I    (November 2006 – October 2010) 

During the post-doc fellowship at the University of Siena my research activity have been focused on 3 different 

research topics: 

 Electromagnetic scattering form electrically large objects.  

 Efficient beam expansion of the field radiated by apertures. 

 Planar metasurface structures. 

 

List of related publications: [P.19], [P.22]-[P.27], [IC.7]-[IC.19], [C.32],[C.34]-[C.35],[C.39]-[C.50]. 
 

3.3.1 Electromagnetic scattering form electrically large objects 
 

State of the art and motivation at the period of the research 

Iteration free approaches have been introduced in the recent years for the prediction of the electromagnetic 

scattering from large complex objects [3.18][3.19][3.20][3.21]. All these approaches are of the Domain-

Decomposition type, and rely on segmenting the structure in smaller parts, called blocks. Each block is analyzed 

in the presence of several auxiliary sources that represent the effect of all the other blocks. The solution of the 

corresponding electromagnetic problem is then used to construct basis functions (BF), called Synthetic Functions 

(SFX), over the considered block. To this end a Singular Value Decomposition (SVD) is used to select the 

relevant and linearly independent responses [3.18][3.20][3.21]. These new functions are subsequently used in the 

full-wave MoM analysis to the entire structure. The generation of the SFX is time consuming because several 

simulations of each block alone has to be performed. Moreover there is still not a clear criterion for the 

selection of auxiliary sources.  
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Proposed solution 
To overcome such limitations, I have contributed to the development of two new kind of entire domain BFs 

generated analytically, as presented in the following sections: 

- Section (A) presents the derivation of BFs for generic planar surfaces. 

- Section (B) describes the extension to a generic curved surface. 

 (A) Flat surfaces 

A new type of analytical entire-domain BFs have been introduced for the analysis of the electromagnetic 

scattering from multifaceted bodies and radiation from planar apertures. The BFs are particularly suited for 

polygonal contours; however, arbitrary contours may be treated with the same technique.  

The induced current ( , )x yJ  on a general flat surface is a spatially limited 

function (Fig.3.13 shows the geometry of the problem). This property 

implies the applicability of the usual sampling (Shannon) theorem to 

express its Fourier spectrum  ,x yk kJ  as a function of an infinite set of 

spectral samples, leading to: 

   

,

( , ) , ( , ) xn ymj k x k y

x y x y

n m

x y k k n k m k W x y e


 



    J J      (3.7) 

where , ,2x y x yk D  , ( , ) 1W x y   on the surface, zero elsewhere. Equation (3.7) state that every current 

distribution defined over a flat face can be represented as a sum of linear phase functions (LPF).  

The completeness of the BF set can be easily demonstrated by the delta-Dirac reconstruction in its spatial and 

spectral representation: 
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The free space Green’s function has the well-known properties to behave as a low-pass filter for the current in 

the 2D spectral domain. Relation (3.8) state that the summation of W  centered in the phase lattice is a equal to 

the unity. This latter aspect has been used in order to find the function needed to represent the circular spectral 

domain  (of radius ) defined by the band-pass of the Green’s operator. A truncated version of the r.h.s. of 

(3.8) has been introduced with summation extended to the spectral samples inside a circular domain ' '    of 

radius '  . 

Namely, as a criterion of truncation to define the degrees of freedom, we impose that in   the average 

quadratic error in reconstructing unity is less than a fixed threshold '

min  by summing spectral LPF with phasing 

inside ' . Fig. 3.14 shows this procedure for a triangular plate. The required flatness can be achieved by 

gradually filling the spectral circle   by increasing the number of spectral LPF. 

The number of degrees of freedom DoFN  can be defined as the number of LPF inside '  multiplied by a factor 

2 to account for the two polarizations, thus leading to the approximation 
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                                                          (3.9) 

 

wherein  is the free-space wavelength. The approximation in (3.9) is more accurate for increasing dimension of 

the plate in wavelength. Figures 3.15-3.16 show the proposed method applied to a metallic disc and to a corner. 
 

       
                                            (a)                                           (b)                                           (c)                                             (d) 

Figure 3.14 Filling of the spectral circle of radius area 0k  ( 2.1  ) for a triangular surface as in (a) by increasing the number of spectral 

LPF functions. (a) Wavenumbers within a circle of 01.5k ; (b) Wavenumbers within a circle of radius 02k , (c) Final setting of ' 2.5   with 

error min' 0.03   with respect to unity. 

ẑ

x̂

ŷ

xD

yD
 

Figure 3.13 Geometry of the problem 
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(a)                                                                     (b) 

Figure 3.15. Induced current amplitude on the E-plane (a) and H plane (b) for a circular plate illuminated close to grazing incidence 

( 80   , geometry shown in the inset of (a)). Comparison among RWG (3446), LPF expansion (1260), and Circular waveguide mode 

(CWM) expansion (1260). The inset of Fig (b) shows the behavior of  and ’ as a function of the observation level. 
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(a)                                                           (b)                                                                               (c) 

Figure 3.16 Currents on a perfectly conducting corner reflector composed by two orthogonal square plates of side 2 , illuminated by a 

plane wave. (a) Colored map of the MoM currents (2157 unknowns). (b) Colored map of the LPF expansion (2116 terms). (c) Comparison of 

current amplitude on the bottom face 

 

 (B) Curved surfaces 
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(a)                                                                                            (b) 

Figure 3.17 (a) Example of  representation of generic surface S  as a collections of portion (patches) with relative local mappings.  (b) 

Transformation  used for mapping the curved surface S of curvilinear parameter u, v and normal n, in a flat parametric surface. The inverse 

function is denoted by 1The parametric domain can be arbitrary contoured. 

 

A complete set of entire-domain BFs have been introduced for the analysis of scattering from bodies with curved 

surfaces (figure 3.17a); they are defined via the application of a generalization of the Shannon sampling theorem. 

The BFs are defined for curved patches with arbitrary contours, via a three-step procedure (for simplicity only 

the basic ideas are presented): 

1) First, the curved patch is mapped, via Transformation Optics [3.22]-[3.24], onto a flat parametric domain 

surrounded by a virtual anisotropic inhomogeneous space (Fig. 3.17b) described by the permittivity and 

permeability tensors 'ε , 'μ : 

 



HDR Thesis of Dr. Massimiliano CASALETTI                                                                                                                  12/10/2018 Pag. 20 
 

0 0'  ;   ' ;  μ α ε α

   

 
1

1
det[ ] ,

T



  α Λ Λ

  

x x x

u v n

y y y

u v n

z z z

u v n

   
   
 
   
   
 
   
    

Λ ,                                     (3.10)

 

 

where Λ , depends on the particular patch geometry.

 2) Next, LPF functions are defined on the parametric flat domain as for flat surfaces 
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The sufficient and non-redundant number of functions is found by solving the local dispersion equation 
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and using (locally) the spectral domain completeness relationship introduced for the flat case. 

3) Finally, the back-transformation from flat anisotropic to curved isotropic space yields the BFs for the curved 

patch. 
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The number of BFs so obtained matches the degrees of freedom of the field known in literature [3.25]. 

Numerical results confirm the effectiveness of the representation for both fields and currents. The case of a 

NURBS surface is shown in Fig.3.18. 
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                             (a)                                                                                                                (b) 

Figure 3.18(a) Comparison between induced current on a NURBS surface illuminated by en electric dipole botained by SBF expansion and 

reference solution obtained by a MoM (FEKO). (b) Field scattered versus aspect angle q in radians. Comparison between the field radiated 

by the reconstructed SBF currents (continuous line) and the reference solution obtained by a MoM (dots) 
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3.3.2 Efficient beam expansion of the field radiated by apertures 

 
State of the art at the period of the research 

A number of different beams have been introduced in literature: Gaussian beams (GB) [3.26], Gaussian-ray basis 

functions (GRBF) [3.27], higher-order Gauss-Laguerre (GLB) or Gauss-Hermite (GHB) beams [3.28],[3.29], 

CSP, Bessel Beams (BB) [3.30] . GBs have the limitation of satisfying Maxwell’s equations only in the paraxial 

region; however, they desirably do not possess branch singularity in space. GRBF are obtained from GB by 

introducing an empirical extra parameter, with the aim to control beam width at a given distance from the source. 

GL or GH beams deal with expansions around a preferred axis of propagation with higher-order terms 

representing the off-axis variations. They have the advantage of constituting an orthogonal set, and therefore are 

often used as basis for a mode matching technique. However, their descriptive capability is still restricted to the 

paraxial region. To expand the field in the whole space, CPS beams represents a good solution.  

In Gabor-type (phase-space) expansions [3.31], the field is expanded using a lattice of beams emerging from a 

set of points in the aperture plane and propagate from each point in a 2D lattice of directions. These beams 

describe the local radiation properties of the aperture distribution; the beam amplitudes are determined by the 

local radiation properties (the local spectrum) of the aperture near the lattice points. The difficultly of the 

implementation resides in the optimal choice of the spatial (space lattice points) and spectral (angular beam 

density) resolutions. 

Research goal 

The main goal of this research work has been the derivation of a new automatic procedure for the beam 

expansion of the field radiated by an aperture valid in the whole space. 

Proposed solution 

I have contributed to the introduction of two new types of beams with cylindrical symmetry. They are exact 

solution of Maxwell equation with closed form expressions in both space and spectral domains. In addition, their 

formulations are found to be very accurate for expanding in beams the field generated by generic apertures 

(circular, rectangular; etc.).  

- FORMULATION A 

In this case, the proposed beams are generated in a natural way starting from the spectral-domain radiation 

integral written in cylindrical coordinates 
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where  ,g k

  denotes an aperture spectrum of either electric or magnetic field or of a scalar potential, while 

2 2;zjzk

z ze k k k k


  , is the spectral-domain representation of the free-space Green's function. 

Due to the inherent periodicity in α, the aperture plane in a Fourier series,  ,g k

  can be expanded in a Fourier 
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   and the integral in α in (3.14) can be evaluated in a closed form, yielding: 
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where J
n

 is the Bessel function of n-th order. 

The coefficients  
n

c k


 are represented by the Generalized Pencil of Function (GPOF) method [3.32] as 
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where 
mn

d  and 
mn

b  are the output residues and poles of the GPOF algorithm. Using (3.16) in (3.15) leads to 
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In (3.17), 
nW possess a recursive closed form and it is evaluated at a point whose z-coordinate has been displaced 

in the complex plane by
mnjb . Eq. (3.17) is the defining equation of the wave object that we shall refer to as the 

Complex Conical beam (CCB-A), for their cylindrical symmetry. 

The procedure outlined here permits the calculation of the beam expansion provided that the aperture Fourier 

spectrum  ,
x y

f k k  is available. The latter should not necessarily be known in analytical form, but can also be 

obtained through a FFT of space field samples. 

- FORMULATION B 

An alternative formulation has been obtained starting from the aperture field spectrum (3.14) and multiplying 

and dividing the integrand by  
n

k k


. One of these two factors is included in the Fourier expansion yielding the 

coefficients  nc k  defined by (3.16). The subsequent GPOF expansion is n-dependent 
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because     /
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The initial radiation integral, as in the first case, reduces to the double sum 
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A closed form solution to this integral has been obtained as 
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where 
  2

h
n

kr  is the spherical Hankel function of the second kind and sin /z r  . The solution for negative 

orders n is again obtained as      2
, , 1 , ,

n n

n j n
z ze 

   


    . Eq. (3.20) is the defining equation of the wave 

object that we shall refer to as the Complex Conical Beam of type B (CCB-B). 

One can also notice that the new wave objects denoted by 
n

  constitute a special subset of the classical spherical 

harmonics 
mn

  when m n ; namely 
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It is worth noting that for n=0, we again obtain a complex source point 
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Two examples of expansion of the radiated field by an aperture are shown in Figs. 3.19-3.20. A circular aperture 

with radius 4wr   illuminated by a TM44 mode is considered in Fig. 3.19. A total of 64 and 52 CCB’s have 

been automatically generated by the GPOF procedure to represent the field. Fig.3.19a presents successful 

comparative results obtained using both formulations A and B; the reference solution is provided by the direct 

integration of (3.14). Fig. 3.19b presents the absolute errors between normalized fields. Figures 3.20a-b present a 

comparison between the electric field radiated by a rectangular aperture of dimensions 5x2 with uniform 

aperture field (both phase and amplitude) obtained: using the Gauss-Hermite expansion, CCB type A and B and 

the reference solution provided by the direct integration, in two principal planes. 
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(a)                                                                              (b) 

Figure 3.19. a) E-plane ( = 0) and  H-plane ( = 90º) cuts of the radiated total electric field magnitude by a TM44 circular waveguide mode, 

sampled on a sphere of radius 300λ;  b) Corresponding field representation error. 
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(a)                                                                                            (b) 

Figure 3.20. a) E-plane ( = 0) and b) H-plane ( =90) cuts of the total electric field magnitude radiated by a 5x2 phased rectangular 
aperture, sampled on a sphere of radius 300λ. 
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3.3.3 Planar metasurface structures 

 
Introduction 

Metasurfaces constitute a class of thin meta-materials, which are used from microwave to optical regime to 

create new antennas and microwave devices. 

Proposed solution 

In this context I have proposed the use of impedance surfaces for transforming surface or guided waves into a 

different configuration of wave-field with desirable properties. These surfaces have been obtained by an 

appropriate synthesis of inhomogeneous surface impedance that allow a local modification of the dispersion 

equation and, at constant operating frequency, of the local wave-vector. Two innovative solutions have been 

implemented: 

- Section (A) presents a highly directive H-plane antenna with a Luneburg lens inside a Parallel Plate Waveguide. 

- Section (B) presents a new kind of spiral antennas. 
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(A) Highly directive H-plane Luneburg lens antenna 

State of the art and motivation at the period of the research 

Traditional dielectric lenses, manufactured using several layers of various dielectrics with appropriate profiles 

are still very expensive due to complex manufacturing process. Furthermore, in order to achieve a relatively 

smooth refractive index variation a large number of dielectric layers are needed making the whole process even 

more complicated. Planar metasurface lenses are low profile and easier to fabricate compared to standard 

dielectric lenses, thus offering advantages for new communication antennas and sensor applications. Moreover 

the variation of the surface impedance that corresponds to the refractive index can be made practically 

continuous since a large number of layers/pixels can be used. 
 

 

Figure. 3.21 Printed circular patches on a dielectric substrate inside a parallel-plate waveguide. Changing the patch radii controls the 

equivalent inhomogeneous surface impedance.  

Proposed solution 

A highly directive H-plane antenna using a Luneburg lens has been designed. The lens effect has been obtained 

by changing the effective permittivity of the dielectric inside a parallel plate waveguide by varying the 

equivalent boundary conditions of one wall of the parallel plate waveguide, as shown in Fig.3.21. The final 

effect of changing the boundary condition on one wall of the parallel plate waveguide is equivalent to changing 

the local dispersion and phase velocity. This effect allows to modify the global wave-front as it occurs in a solid 

dielectric lenses with variable refraction index.  

A dielectric slab with printed circular patches of variable radii has been placed on top of one wall of an ideal 

infinite parallel-plate waveguide (PPW) structure. The wave-number along a generic ρ coordinate (parallel to the 

metallic plates) associated to a propagating TM mode has been interpreted as the product between the free-space 

wavenumber k and an equivalent refractive index neq , namely 
 

  2 2 2 21 /z z eqk k k k k k kn      ,                                                      (3.23) 

 

where  
2

1eq zn k k  and kz is the wavenumber along z. It is evident from (3.23) that in order to have a 

refractive index 1eqn  , kz should be imaginary, that is the guided mode in the PPW has to be evanescent along 

the z direction. For TM polarization, assuming that each patch is embedded in a locally uniform periodic lattice, 

the transverse resonance dispersion equation is obtained by solving the equivalent circuit in Fig. 3.22a, where the 

patch-texture is effectively represented by the impedance Zs
TM

 on one side of a short circuited TM transmission 

line. This impedance, which depends on the local radius of the local patches, is obtained using the pole-zero 

matching method, presented in Section 3.1, with a MoM analysis. 

The solution of the transmission line resonance in Fig. 3.22a is simply obtained by using the transverse resonant 

technique, namely 
 

     0
tan 0

TM TM

S z
Z jZ k h  , (3.24) 

 

where 
0

TM

zZ k k  ,  is the free space impedance, h is the height of the parallel-plate waveguide from the top of 

the patches to the upper plate and Zs
TM

 is the effective surface impedance of the patch layer. 

A Luneburg lens possesses the property to focus parallel rays into a single point on the lens edge, or reciprocally, 

to transform radial rays from a point source at the lens edge into parallel rays at the exit from the lens. This effect 

can be used to design a high-gain antenna with very good scanning properties. The lens is defined by the law 

 
2

( ) 2 /eqn R   , where  is the radial coordinate and R is the radius of the lens.  

This impedance profile needed to synthesize the lens has been obtained from (3.24) as 
 

     2 2
1 / tanh 1 /sX

R kh R 


   .                                                          (3.25) 

 

A lens designed at a center frequency of 13 GHz, with a radius R = 75.6 mm, placed in a parallel-plate 

waveguide with a height h = 1.8 mm is shown in Fig.3.22c. The dielectric substrate has permittivity r = 10.2 and 
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thickness d = 0.7 mm. The final antenna layout is shown in Fig. 3.23a. Fig. 3.23b shows the field inside the lens, 

while Fig. 3.23c shows the radiation patterns in the H plane at several frequencies. The essential benefit of this 

kind of antenna lies in the simplicity of the realization compared to standard dielectric lens antennas. 
 

                    
(a)                                                       (b)                                                                          (c)              

Figure 3.22 (a) Equivalent circuit defining the surface impedance for TMz polarization, where 
0

TM

zZ k k . (b) Impedance values 

obtainable using different patch radii with respect to the k=kneq. Dielectric substrate with permittivity r = 10.2 and thickness d = 0.7 mm, 
pixel size is 3.15 mm and minimum spacing between the patches is 0.3 mm. (c) Array of circular patches with the surface impedance profile 

corresponding to the Luneburg lens (pixel size is 3.15 mm and minimum spacing between the patches is 0.3 mm). 

 

         
       (a)                                                                   (b)                                                                         (c)  

Figure 3.23 (a) geometry of the designed antenna with the exponential change in the waveguide height (h1 = 2.3 mm, h2 = 5.75 mm), (b) 
snapshot of the simulated Ez field above the patches, (c) farfield patterns in the H-plane. 

 

(B) Spiral leaky-wave antennas based on modulated surface impedance 

State of the art and motivation at the period of the research 

The antennas presented here are completely different from conventional spiral antennas based on the active 

region concept.  

Proposed solution 

A new typology of planar circularly polarized leaky wave (LW) antennas excited by a single-point feed has been 

developed. The basic structure is constituted by variable, spiral-shape modulated metasurface. 

A vertical probe excites a cylindrical surface wave (SW) on the impedance surface, and the latter converts it into 

a circularly polarized LW. To illustrate the phenomenology, a vertical dipole is used; however, more effective 

feeds may be adopted in practical realizations. The vertical elemental dipole with moment 
0I z  is placed on an 

infinite plane at z=0. We assume that the latter is subjected to the impedance boundary condition  
 

  
00s t t zz

jX


 z H E
,                                                                 

(3.26) 

 

where sX
 
is a positive reactance, and ,t tE H are the transverse-to-z components of the electric and magnetic 

fields, respectively. The dipole excites on the reactive surface a TM0-type SW which at a certain distance from 

the dipole has the following tangent electric field (z=0)  
 

   2

10
,        t s sw sw sw swz

jX J H  

 E J J ρ ,                                                   (3.27) 

 

where
 2

1H
 
is the Hankel functions of second kind of first order and the radial propagation constant sw k   

respects the dispersion equation  
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,                                                   

(3.28) 

where 
z  is the attenuation constant in the z direction. 

The reactance sX  is shaped as a sinusoidal Archimedean spiral 
 

   , 1 sins s swX X M         ,                                                  (3.29) 

 

where sX  represents the average values of the impedance. Its radial period is equal to the wavelength of the SW 

excited on an equivalent homogeneous surface impedance. The constant M is the impedance modulation index. 

The (-1) indexed wavenumber of the relative mode of the Floquet decomposition of the tangential field, belongs 

to the visible region of the aperture radiation and leads to an almost broadside beam. An analytical 

approximation of the radiated field has been derived. Universal curves for antenna design have been also 

obtained (Fig. 3.24) and a design procedure outlined. Two types of practical solutions are presented, which are 

relevant to different implementation of the impedance modulation: 

 

i) a grounded dielectric slab with a spiral-sinusoidal thickness (Figure 3.25a) 

ii) a texture of dense printed patches with sizes variable with a spiral-sinusoidal function 

(Figure3.25b).   

Full wave results are compared successfully with the analytical approximations (Figs 3.26-3.27). Both the 

layouts represent good solutions for millimeter wave circular polarized antennas. Our solutions exhibit high-gain 

(20-25 dB) and moderate bandwidth (10%) in contrast with conventional spiral antennas, characterized by broad 

bandwidth and low gain. 
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(a)                                                                                                        (b) 

Figure. 3.24. Design curves of gain (G) and efficiency (t) as a function of the aperture radius in free-space wavelengths 

for  0.5 1.5sX    . (a) M=0.3 and  (b) M=0.5 

 

             
(a)                                                                                                                     (b) 

Figure 3.25 Dielectric spiral antenna with modulated thickness, its local 2D problem, and the equivalent  transmission line model for the TM 
dominant surface wave. (b) Printed patch  antenna with its local 2D problem and the equivalent  transmission line model for the TM 

dominant surface wave. For both cases 0 1 1 1,TM TM

z zZ k k Z k k    
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(a)                                                                                                       (b) 

Figure 3.26 Directivity diagrams for co-polar (a) and cross polar (b) components for the 24dB gain antenna at 18 GHz. The results from the 

full-wave analysis (no absorbing boundary condition at the termination, continuous line) are compared with those from the closed form 

solution shown in (11)-(15) (dashed lines). 
 

 

 
(a)                                                                                                       (b) 

Figure 3.27  Directivity diagrams for co-polar (a) and cross polar (b) components for the 20dB gain antenna at 13 GHz. The results from the 
full-wave analysis (continuous line) are compared with those from the closed form solution. 

 

 

 

3.4. Post-Doc frame-time II     (November 2010 – August 2013 ) 

During the post-doc fellowship at IETR, Université de Rennes 1, my research activity have been focused on two 

different topics: 

 Analysis and design of complex substrate integrated waveguide (SIW) structures, described in Section 

3.4.1 

 Fast analysis and design of quasi-optical integrated imaging-like systems. The beam expansion method 

introduced in Part II in association with a Physical Optic approximation has been used for the analysis 

and the design of a novel wide scanning antenna based on an imaging-like system. 

 

List of related publications: [P.18], [P.20]-[P.21], [IC.4]-[IC.6], [C.33], [C.36]-[C.55]. 

 

3.4.1 Analysis and design of complex substrate integrated waveguide (SIW) structures 

 
Introduction 

Substrate Integrated Waveguides (SIW) have been introduced recently to provide a means to create waveguide 

based, high frequency circuits at low cost. They are realized using standard printed circuit board (PCB) 

technology which is easy and cheap to produce. The basic idea consists in realizing waveguide channels on a 

grounded dielectric slab by using arrays of metallic vias. SIW technology maintains the advantage of metallic 

waveguides in addition with the possibility to integrate typical of microstrip structures, allowing sophisticated 

packaging technology and the integration of complex beam-forming networks and antennas on the same board. 
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State of the art and motivation 

The analysis of the propagation in SIW configurations has been carried out in many ways; however because of 

the presence of vias fence which form the lateral walls of the waveguide, a finite difference of finite element 

type of solution needs to be often employed. Thus the design of real device using quasi-optical system 

(electrically very large structures) can be time consuming and memory demanding.  

Proposed solution 

The work has been performed in two successive steps. In the first step, the field inside the waveguide structure 

has been efficiently computed by considering the dyadic Green’s function of the PPW expressed as an expansion 

in terms of vectorial cylindrical eigenfunctions. The primary dyadic Green’s function can be obtained from two 

scalar functions '  and ''  representing respectively the TM a TE components with respect to the z axis 

direction as 
 

               1 2

2
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G r r z z r r z z r r zz r r ,   (3.30) 

 

where k  ,   and '  denote a gradient operator with respect to observation location and source location, 

respectively and  t  denotes the transverse gradient operator. 

The scalar functions introduced above are related to the scalar wave equation subjected to TM or TE boundary 

conditions on the PEC plate surface, respectively. Solving the wave equations in cylindrical coordinates using a 

radial waveguide representation, end imposing boundary conditions on the metal plates, yelds: 
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where 
0m

  is the Kronecker’s delta function, nM , nN  are cylindrical vectors eigenfunctions. 

In the second step the field scattered by the vias has been introduced. A structure composed by Np vias centered 

at 1, 2 , ,
pNρ ρ ρ  and an exciting magnetic source sM  has been considered. The scattered field from each via has 

been expressed as a linear superposition of cylindrical wave as 
 

     , , , ,

1 1

, , , , , ,
p

m m m m
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TM TE

s m n p n z p m n p n z p
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A k k z A k k z 

 

  

   H r M ρ ρ N ρ ρ .                     (3.32) 

 

The scattered field amplitudes , ,

TM

m n pA , , ,

TE

m n pA   have been determined by imposing the boundary conditions on the 

surface of each via, namely 
 

   int int
ˆ ˆ ˆ ˆ,    

q q q q
q inc s q q inc s qa a   
       

ρ ρ ρ ρ
n E E n E n H H n H ,                            (3.33) 

 

where ˆ
qn  is the normal unit vector  to the surface and  aq is the radius of the via. 

Since the scatterer is conformal to the coordinate system, (3.33) can be solved separately for the TM and TE 

polarization. Using (3.32) in (3.33) and with the help of the Bessel summation theorem a couple of matrix 

equations have been obtained and solved. The theory developed during the activity has been implemented in a 

Matlab code and validated by full-wave simulation with a commercial software (HFSS
TM

). An extremely good 

agreement is obtained for all cases at a reduced computational time and memory occupation. As examples Fig. 

3.28b reports the comparison of the transmission characteristics of the phase shifter represented in Fig. 3.28a 

while Fig. 3.29b those relevant to the coaxially fed low-reflection waveguide corner shows in Fig.3.29a. In Table 

I, CPU time for the considered cases are reported and compared to those needed to HFSS. The improvement of 

the proposed method is stunning. 

 
CPU SIMULATION TIME ON A XEON E5540 2.83GHZ WITH 16GBYTE RAM 

Structure 
Number of metallic  

/dielectric posts  

HFSS 
This 
paper Mesh 

Freq. 

Point 

R. h. corner 100 / 1 306 s. 83 s. 15.2 s 
Phase shifter 38 / 27 234 s. 117 s. 19.5 s. 

TABLE I 
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(a)                                                                     (b) 

Figure 3.28. (a) Phase shifter with 27 air holes. r=2.2, h=0.254mm, p=1.6mm, a=0.4mm, L=28.8mm, l=0.669mm, d=0.4mm. (b) S-

parameters for a phase shifter (Fig. 12) with 27 air holes. In the inset, comparison between the simulated phase obtained with the proposed 
method and numerical results obtained with HFSS. 

 

 
 

             
(a)                                                                                      (b) 

Figure 3.29. (a) Geometry of the low-reflection right-angled corner. r=2.2, h=1mm, p=0.65mm, a=0.2mm, L=17.6mm, l1=l2=3.2mm, 

d=2mm. (b) Comparison between the magnitudes of the S-parameters for the low-reflection right-angled corner obtained with the proposed 
method (blue line) and HFSS (red dots). The S-parameter for the corner structure without the air hole is also reported (black dashed line). 
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Chapter 4 : Present and future research activity 
 

Since my master internship in 2003, I have acquired different research-oriented skills thanks to the different 

people I have met during my career. My research project for the coming years described in this chapter, intends 

to take benefit of these different skills (i.e., antennas, numerical methods, and metamaterials) in order to propose 

an original approach for current challenges in electromagnetic engineering.  

 

My main research project deals with the development of analytical and numerical methods for the 

implementation of planar aperture field antennas. 

Planar antennas have the attractive features of low profile and small size. They are become very popular because 

of their low cost and ease of fabrication, and easy integration with circuit components. In fact, printed antennas 

are inexpensive to fabricate using modern printed circuit technology, and are conformal to planar and non-planar 

surfaces. Moreover, these antennas can be easily mounted on the surface of trains, aircrafts, satellites, and even 

on handheld mobile devices. 

Aperture field theory establish an easy and direct link between the desired antenna radiation properties (radiation 

pattern, polarization, etc.) and the continuous field distribution needed on the aperture of the antenna. The main 

challenge is the physical implementation of such ideal field.  

The goal of the research activity is to develop a global methodology composed by different sub blocks for the 

aperture field reconstruction using planar structures as metasurfaces, slot antennas and shaped reflectors in order 

to take advantage of the aperture field optimization methods. This project represents the natural junction between 

the different activities I have been working on since my position at Sorbonne University in 2013. 

 

A secondary and parallel activity dealing with the numerical modelling of complex natural environment is also 

presented in Sect 4.2.   

 

4.1 Analytical and numerical methods for aperture field planar antennas  

 

Aperture field optimization
Analytical methods
Iterative methods

Aperture Field implementation

Planar slot antennas
Metasurface antennas
Structured reflectors

Optimization and analysis tools

Moment method
Mode matching
Physical optics

Antenna
specifications

Antenna
layout

 

Figure 4.0. Planar antenna implementation algorithm 

Aperture field implementation represents a very challenge task. Particular continuous and discrete distributions 

have been implemented in different ways in the past. In general a single or multiple active elements (dipoles, 

slots, etc.) are placed closely in the aperture plane sometime in presence of some passive elements. Classic array 

theory cannot be used in general because of the strong coupling between elements, thus numerical optimization 

represents the only safe procedure for this purpose. Numerical analysis in conjunction with classical optimization 

algorithms (genetic algorithm, particle swarm optimization, etc.) can be very time consuming and the 

optimization become easily impossible as the size of the aperture increase. Moreover, using commercial software, 

it can be very difficult (in general not all the data are accessible to the user) to define a desired cost function to 

be minimized.      

The idea is to couple analytical and numerical ad-hoc methods in order to take advantage of both methodologies. 

This scheme can overcome the above mentioned limitations allowing to implement complicated aperture 

distributions and leading to novel antenna solutions. 

The approach is summarized in Fig. 4.0. The long term goal (more then 5 years) is to develop a tool that, given 

as input certain number of antenna parameters, provides as output the corresponding optimized planar antenna 

layout. Even if the ideal future goal will be to develop a blackbox, more realistically the project aims to develop 

an “opaquebox” for average experienced user (the target are PhD students). To be more specific, the term 

“opaque” has to be interpreted in the sense that the user will need to know only the basics of the involved 
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methods (and set a minimum number of parameters) and not the details. This user friendly interface will 

facilitate the collaboration with researcher from other institutions.    

 

The proposed technique is composed of two main steps. The process starts with an aperture field optimization 

that can be perform using analytical or iterative methods. It is crucial that this step is closely related to the 

implementation technology. In fact each technology limits in some way the degrees of freedom of the feasible 

aperture field. As an example, planar slot antennas radiating the energy through a discrete number of slots can 

only implement discrete aperture distributions. 

In the second step the aperture field is synthetized using a preselect technology (slot antennas, metasurface and 

reflectors). In this task, simplified analytical models based on physical aspects are deeply coupled with ad-hoc 

numerical full-wave tools. Finally the antenna layout is generated.           

In the next sections, the technical details of each block are presented. These activities are on-going and will 

continue in the next five years and more. On one hand, some important aspects are already well defined and 

presented in details. Even for these cases, the research will be very active in the next years. On the other hand, 

new approaches that have to be investigated are reported in the sections “future works”.  

 

4.1.1 Aperture Field Optimization 

 

List of related publications: [P.4], [P.8]-[P.11], [P.14]-[P.16], [BC.1]. 

 

The goal of any aperture synthesis procedure is to derive an aperture field distribution able to generate a required 

pattern in the far/near-field region of the aperture. A priori, such ideal pattern may also not be a physical solution 

of the problem at hand. In this case, the procedure has to find the “best” physical approximation of the pattern. 

Several optimization techniques based on near-field near/far-field transformations have been presented in the 

literature. In this research, the choice to derive the distribution analytically or with semi-analytical methods has 

been chosen. This aspect allows us to easily introduce physical constraints and to control the convergence of the 

method.    

The semi-analytical methods are based on a set theoretic approach and alternate projection method [4.1]. Each 

requirement or relevant information is expressed as a set of constraints for the possible solution. The solution of 

the problem will belong to the intersection of all these sets of constraints or will be the closest one, according to 

a provided measure criterion.  

 

Aperture

Field

Far-field

pattern

xy

z

 

Figure 4.1. Geometry of the problem: (a) near-field synthesis; (b) far-field synthesis. 

The geometry of the problem is shown in Fig.4.1.  An aperture of size is located at z=0 and is radiating in free 

space. The radiation requirements define an “objective mask” for the near field in the focusing plane or for the 

radiation pattern for the far field. This mask also defines, by an inverse Fourier Transform (FT), a starting 

distribution for the optimization process. The physical and mechanical constraints (size of the focusing aperture, 

etc…) define an “aperture mask” for the antenna aperture plane. Once the constraints of the problem are defined, 

an iterative procedure based on an alternative projection method is used to derive the aperture field distribution 

[4.1]. 

The process steps can be summed as follows: 

1) The physical constraints are imposed on the actual aperture field distribution by applying the aperture 

mask. 
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2) The radiation generated by the new aperture field in the far-field or in the focusing plane is computed by 

the FT of the electric field. 

3) The radiation requirements are imposed on the radiated field by applying the objective mask. 

4) The field is back propagated to the aperture leading to a new aperture field distribution. 

5) While the objective goals are not met, repeat the process (return to step 1).  
 

The procedure is repeated until lays within the imposed requirements in the focusing plane or the squared error is 

lower than a certain threshold. It is worth saying that the FTs in (2) and (4) have been evaluated with a Fast 

Fourier Transform (FFT) algorithm speeding up their computation and the overall convergence time of the 

design procedure. 

Since this procedure it is quite known for far-field optimization only the details for the near-field case are 

presented in the next two subsections. Some preliminary studies on analytical distributions are presented in 

subsection c. 

This research is in collaboration with Dr. Mauro Ettorre (IETR) and Pr. Matteo Albani (University of Siena). 

A) Near Field vector optimization on a 2D plane 

The required pattern is defined over a focusing plane located at a distance h and parallel to the radiating aperture 

(see Fig. 4.1a). Transverse magnetic (TM) modes with respect to the z-direction are considered. However, the 

procedure can be extended to transverse electric (TE) modes or any combination of modes. In a first stage we 

focus our attention on the possibility to control the beamwidth and sidelobe level of the z-component of electric 

field in the focusing plane. In addition invariance is assumed for the radiated field.  

The objective mask for the near field in the focusing plane can be defined as follows: 
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                                                      (4.1) 

where 2 10 1c c    are fixed limits for the normalized module of zE  in some space domains 1A  and 2A over 

the focusing plane, respectively(see Fig.4.1a). Note that the mask also defines a reference solution equal to 1c  

and 2c  in the two domains 1A  and 2A , respectively. 

The size of the focusing aperture define the aperture mask (the field is defined only over the surface and it is 

assumed zero outside this region). 

At each iteration the squared error of the field distribution is derived over the focusing plane. Once the error is 

below a certain threshold the procedure stops. 

The output of the optimization is the z–component of the electric field over the focusing aperture. Thanks to the 

invariance of the radiated field, the tangential electric field can be easily derived.  

B) Near Field vector optimization on a 3D volume 

   

                                             (a)                                                                                        (b) 

Figure 4.2. (a) The problem set-up with an illustration of the applied algorithm. (b) 3D focal spot shaping: the grey disks represent the 

shaping planes. The horizontal profile corresponds to the middle of the shaping volume. 
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3-D near field shaping consists in defining the source distribution that yields the requested field shape in a 

predefined volume V (Fig. 4.2a). Ultimately, the goal is to shape the norm of the field, which comprises the three 

field components in the form of 
22 2

x y zI E E E    [4.2].  

Given an aperture   located at z=0 (Fig. 4.2a), the objective is to shape the field in the volume V, given specific 

requirements, either on the norm or some field components. The volume is segmented in N horizontal parallel 

planes, equally spaced along z-direction. The requirements are given by specific field masks, which may differ 

from plane to plane. 

Without loss of generality, we assume that the setup supports only a TM mode. In such a problem, the field can 

be expressed only in terms of the z-component magnetic vector potential A [4.3]. 

The process is visualized in Fig. 4.2 in a clockwise fashion. The whole process can be summed as follows: 
 

1. Calculate the field  , ,n

nE x y z  for n = 1,...,N, generated by the aperture field tot

APE . 

2. Mask the field at each plane [Mask( nE )].  

3. Back-propagate each masked field to the aperture ( n

APE ).  

4. Average all the back-propagated fields to create the new aperture distribution: 
tot n

AP n AP

n

E w E   

5. While the shaping goals are not met, repeat the process (return to step 1).  
 

The algorithm stops if the field at step 5 lays inside the mask requirements within a certain defined error.  

The key role of the procedure is played by the masking operation of step 2. The mask at each plane of the 

sampled volume can be the same or different, depending on the pattern requirements (SLL and the beamwidth). 

It is evident that, in order to achieve convergence of the method, limitations exist concerning the applied 

constraints (i.e., too small beamwidths) and also, the masks of adjacent planes cannot differ considerably. That 

said, both the tangential and the vertical to the aperture components can be shaped.  
  

C) Analytical aperture field distributions 

Analytical aperture distributions can be derived by physical consideration or by mathematical properties of 

Fourier transform. Some examples of aperture distribution that have been recently derived are presented below.   

A single beam antenna with linear polarization pointing at  0 0,   can be obtained by imposing the following 

objective aperture field [P.4]: 
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   E ρ e                                                      (4.2) 

 

where the amplitude is constant over the aperture and the polarization of beam is controlled by  0
ˆ e  as : 
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                                                    (4.3) 

 

Analogously, a CP beam can be obtained by superposing two distributions of the form (4.2) radiating orthogonal 

LP beams with a 2  phase shift. Thus, a broadside Right Hand CP (RHCP) antenna can be generated by 

distribution (4.2) with a normalized polarization vector given by  

 

  0
ˆ ˆ ˆ( ) 1 2 j  e x y .                                                                     (4.4) 

 

An aperture field distribution that radiates multiple beams can be obtained by superposing the field distributions 

of the form (4.2),(4.3) leading to [P.4]: 

 

1

1
( ) ( )

beamsN
obj k

t t

kbeamsN 

  E ρ E ρ                                                                  (4.5) 

 

where beamsN  is the number of beams and ( )k

t
E ρ  is the objective field corresponding to each individual beam.  

The whole aperture is thus used to generate the radiation of the whole beams.  
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For flat-top antenna applications require an almost constant normalized radiation pattern 
nF  within an angular 

region, (while it is below a certain threshold outside of the region), namely 
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                                                               (4.6) 

 

where   is the maximum oscillation with respect to the desired level and 1   is the threshold. 

An aperture distribution able to radiate a field of the form (4.6) with RHCP can be obtained by multiplying the 

bi-dimensional inverse Fourier transformation of the characteristic function of a circular disk [4.4] by the term 

 ˆ ˆix y  as: 
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As seen in (4.7), 
f  is fixed a priori, while quantities   and   in (4.6) depend on aperture dimension. 

As a final example of aperture field for near field focalization is presented based on high-frequency techniques 

applied to cylindrical wave function. The idea is to express the field radiated by inward cylindrical waves 

traveling over a radiating infinite aperture in terms of incomplete Hankel functions. The radiated field is split 

into two main contributions: Geometrical Optics (GO) and Space Wave (SW) arising at the aperture center. 

Closed form expressions clearly show that the GO contribution creates a non-diffractive Bessel beam radiation 

close to the axis of symmetry of the generating aperture, where the SW is negligible. Therefore, non-diffractive 

radiation is not only generated by resonant apertures having a Bessel-like distribution given by a combination of 

inward and outward cylindrical waves, thus simplifying the beam generator synthesis (Fig.4.3). 

In contrast, outward cylindrical wave infinite aperture distributions cannot provide a non-diffractive beam 

generation. The finite aperture case has been considered for an inward aperture illumination, showing that the 

non-diffractive Bessel beam is still generated within a given a non-diffractive range, as it happens for finite size 

Bessel distributions (Figure 4.4) [P.15] [BC1]. 

 

Figure 4.3- Ray interpretation of the GO field for an infinite aperture. (a) Inward Hankel aperture distribution: the GO field comprises an 

inward Hankel beam ray (in red), present throughout the space, and an outward Hankel beam ray (in green) bounded inside the cone a  ; 

the superposition of the two rays inside the cone (yellow area) creates a Bessel beam. (b) Outward Hankel aperture distribution: the GO field 

comprises only an outward Hankel beam ray (in green) bounded outside the cone a  . 

 
Figure 4.4 - Aperture geometry and map of the GO contribution to the z-component of the electric field radiated by a finite inward 

cylindrical traveling wave aperture distribution. The Bessel beam is generated in the yellow region around the longitudinal z-axis. 
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Future works 

In the next future, the TE component of the field will be introduced in the optimization processes (A) and (B) in 

order to allow a full vector optimization. 

The impact on antenna parameters (side lobe level, etc..) of the interaction between multiple beams in aperture 

expression (4.5) will be analysed and alternative expression will be investigated. 

A quality test of our solution will be done by comparing the obtained optimal distribution with those provided by 

pure numerical algorithm. For this purpose we plan to open a collaboration with Dr. Giacomo Olivieri 

(University of Trento) an expert in convex optimization.   

  

4.1.2 Synthesis of the aperture field distribution 

This section presents the details of the aperture field synthesis approach and the analysis methods for the three 

different technologies: planar slot antenna, metasurface antenna, and structured reflectors.  

 

4.1.2.1 Planar slots antennas 

 

List of related publications: [P.7], [P.16]-[P.18], [P.20]-[P.21], [IC.2]- [IC.6], [C.1], [C.1], [C.13]. 

  

(a)                                  (b) 
Figure 4.5 (a) Example of Radial Slot Line Antenna. (b) Optimization of the slots position. 

 

The basic idea of Radial line slot array (RLSA) [4.5],[4.6] is to launch a radial wave (outward or inward) in a 

parallel-plate waveguide. This wave then radiates out of a series of slots cut into the top face of the antenna. In 

principle, by an appropriate choice of the slots position and orientation it is possible to control the radiated field. 

RLSA are attractive antenna solutions thanks to their compactness, planarity and high efficiency. An example of 

RLSA is shown in Figure 4.5a, where an outward wave is excited by a coaxial feed placed in the middle of the 

antenna. 

The aperture field distribution derived using one of the method presented before corresponds to an equivalent 

aperture magnetic current distribution. The current distribution is synthesized by using the slots of the RLSA. 

Each slot is equivalent to a magnetic dipole oriented along the slot length. The dipole moment is proportional to 

the feeding mode (outwards cylindrical wave) within the parallel plate waveguide (PPW) of the RLSA antenna 

and function of the position and size of the corresponding slot. The slots, and as a consequence their equivalent 

magnetic dipoles, must be oriented in the same direction as the current distribution for its synthesis [4.7]. It is 

worth saying that the mutual coupling between each slot of any ring and the surrounding slots may be different 

and may induce small asymmetries in the radiated field. For each slot of the RLSA the equivalent magnetic 

dipole moment is derived with an in-house full-wave analysis tool presented in the next subsection. The position 

and length of any slot is adjusted for synthesizing the derived aperture magnetic current distribution. For each 

slot or control point (see Fig. 4.5b) a complex fitness function is defined as follows: 

 

 
r t

t

o t

M
F

M


ρ

ρ
                                                                               (4.8) 

where rM and oM are the realized and target magnetic dipole moment amplitude. The phase and amplitude of 

the fitness function represent the error between the target and actual magnetic dipole moment distribution over 

the aperture. The fitness function is used to modify the position and length of the slots within an optimization 

loop. At each iteration of the optimization process, the in-house analysis tool is used to evaluate the slots’ 
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magnetic dipole moment distribution. The fitting function is then derived. In addition, the spillover efficiency of 

the antenna is also calculated. The spillover efficiency is maximized during the optimization. The position and 

length of the slots are updated accordingly to physical consideration as for example the phase of the guided 

wave. An example of RLSA optimization is reported in Fig.4.6 

 
(a)                                                                    (b)                                                                        (c) 

Fig. 4.6. Ideal and synthesized magnetic dipole moment distribution provided by the two steps of the design procedure for the final RLSA 

antenna: (a) magnitude;(b) phase; (c) spillover efficiency and average aperture distribution error versus iteration step with a different number 
of entire domain basis functions for the analysis of the RLSA with the MoM code. 

 

Future work 

The phase associated to a slot is mainly dictated by the phase of the wave propagating inside the waveguide. 

This limits the positions where a slot with a particular moment dipole phase could be etched. This effect can lead 

to aliasing in the aperture sampling. 

To avoid this problem two approaches will be tested: 1) the use of non-radiating slot acting as phase shifter; 2) 

the use of multiple feeders. 

 

Planar Antenna Full wave analysis 

 

 

 
 

Figure 4.7. Stacked-PPW geometry analyzed in this paper. In each PPW, metallic and/or dielectric posts can be arbitrarily placed. The PPWs 

are numbered from the lowest (1) to the uppermost . The th PPW is bounded on the top by the th interface and on the bottom by the th 

interface; it is filled by a material with relative permittivity and permeability and , respectively. In the MoM described here, slots etched in 
the interfaces (in white) are replaced by equivalent magnetic currents (horizontal arrows). The structure is excited by the magnetic current 

(diagonal arrow), considered as a “feeding port” in the paper. 

 

Over the past decade, SIW technology has been steadily becoming a technology of choice in the millimeter-wave 

region, primarily due to ease of fabrication using standard procedures, and the possibility of integration with 

other well-known radiating and guiding planar structures. Numerous structures, e.g., [4.8]–[4.11], have been 

designed over the years using approximate analytical methods based on the equivalent-waveguide-width model 

[4.12] and transmission-line theory [4.13] or finite-difference (FD) and finite-element-method (FEM)-based full-

wave solvers. In the former case, the computational efficiency is achieved at the expense of accuracy, which is, 

in general, low for a broad range of structural parameters. In the latter case, the demand on computational 

resources of FD and FEM solvers may become extreme or render such solvers inapplicable even on high-end 

configurations. Therefore, a general, fast, and accurate analysis tool is needed for designing and optimizing 

generic SIW structures, ranging from, for example, relatively simple filters to complex radiating slot arrays, e.g., 

[4.9], [4.10], [4.14]. Existing numerical methods either are applicable to large structures but do not take into 

account specific features of the structures, or overly simplify the problems by assuming restrictive symmetries or 

simplified field variations (e.g., periodicity or absence of vertical or azimuthal variation of the post currents) 

[4.15], [4.16].  

 

The main idea of this activity is to develop a rigorous full-wave code taking advantage of specific SIW features 

to accurately analyze complex and electrically large radiating structures through a realistic detail of all the 

relevant components. Specifically, as proved in my previous research activity [4.17], azimuthal variations around 

the posts are required to model posts with moderate diameter, while vertical parallel-plate waveguide (PPW) 
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modes are required to model the breaking of vertical uniformity due as for example to slot coupling or coaxial 

excitation.  

The approach utilizes the advantages of method of moments (MoM) and mode matching (MM), as well as of the 

convenient representation of electromagnetic fields.  

 

The formulation has to:  

1) models losses in the dielectric substrate and in the metallic wall of the waveguides;  

2) models metallic and dielectric lossy posts;  

3) includes an arbitrary number of aperture-coupled stacked PPWs; 

4) reduces the computation effort due to MM problems for radially attenuated modes by restricting the analyses 

to a limited number of posts selected through a simple rule-of-thumb; 

5) speed up the computation of MoM matrix entries and forcing terms (asymptotic evaluations of the coupling 

integrals); 

 

In order to achieve the above mentioned goals, we split the Green’s function into a PPW contribution and a post-

scattered one. The former contribution is expressed in terms of a radial transmission-line representation, 

converging much faster than the alternative z-transmission-line representation for larger radial dimensions. The 

latter contribution is expressed as a series of cylindrical vector wave functions. This leads to an efficient 

representation and to an easy control of the degree of accuracy. Radiating or coupling slots are accounted for by 

introducing equivalent magnetic currents. Boundary conditions on slots are enforced, and a method of moments 

is formulated and solved. Acceleration strategies based on common symmetries of slot arrays can be introduced. 

These are possible since we can isolate the physical contributions of different wave species (PPW modes, free-

space interactions, post-scattering, guided waves) in the complete expressions of the MoM matrix entries and 

would not hold for an MoM fully discretizing all the vertical posts. 

This work is done in collaboration with Dr. Guido Valerio (L2E).  

 

Losses in the dielectric substrate and in the metallic wall of the waveguides 

z



h
0

,

Zs
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n

n

^

^

  
Figure 4.8. Lateral view of a lossy PPW 

 

In typical microwave applications, SIW channels are obtained by drilling commercial metalized dielectric 

substrates, and then filling the holes with conducting materials (or dielectric) in order to implement the 

cylindrical posts. This procedure leads to structures that use the same kind of metallization for both top and 

bottom planes. Moreover, at microwave regime, the roughness of the metallization can be in general neglected. 

All these considerations lead to the use of the Leontovich equivalent boundary condition for the metallic planes 

 

   1 / 2s sZ j                                                                       (4.9) 

 

where  is the conductivity,   is the angular velocity and s is the permeability. 

Other type of surfaces (such as thin metals [4.18], rough surfaces [4.19],[4.20] or partially reflecting surfaces 

[4.21]) can be modeled through an equivalent impedance. At a first stage only lossy metal plates will be 

considered henceforth. 

The structure under analysis consists of a PPW, defined by two horizontal lossy metallic plates placed at a 

distance h, laterally unbounded, filled by a dielectric medium (see Fig. 4.8). Inside the PPW an arbitrary number 

of vertical cylindrical posts can be placed, either of penetrable or impenetrable medium. 

From a computational point of view, it is of paramount importance to choose the most effective representation 

according to the kind of field. In this view, the cylindrical eigenmode expansion of the field seems to be the 

appropriate choice [4.22]. The fields scattered by these posts can be modeled by linear sums of vector modes 

with unknown amplitude, while the incident field on the posts can be computed through a Green’s function 

represented in terms of eigenfunctions expansion [4.22]. The scattered amplitudes are then found by imposing 

boundary conditions on the post surfaces. 
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Vector functions are defined as in [4.22, Sec. 7.2] 

 

   

   

ˆ ,

1
ˆ ,

TM

TE

k

    

     

M r z r

N r z r



 
                                                               (4.10) 

 

referring to the transverse (with respect to z) magnetic field TM
z
 and TE

z
 polarization, respectively. The scalar 

 functions must satisfy the scalar Helmholtz equation. Assuming a 
j te 

 time harmonic dependence, it can be 

solved by conventional means, through separation of variables in cylindrical coordinates  , , z r  (in 

anticipation of the presence of circular cylindrical scatterers), yielding 
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r                                                    (4.11) 

 

with TM/TEt  , where nJ  and 
(2)

nH  are n-th order Bessel and second kind Hankel functions describing the 

radial dependence of fields inside and outside the posts, respectively. 
m

tk , 
m

t

zk  are the m-th TM/TE mode 

transverse propagation constants and the z functions are eigenvalues of the Sturm-Liouville problem 
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d
k z
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                                                              (4.12) 

 

subject to the following boundary conditions on the conductor plates 
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                                                (4.13) 

 

Since the coefficients of the terms in the boundary conditions are complex, this defines a nonself-adjoint Sturm-

Liouville problem [4.22, Sec. 5.3]. If we wish to construct complete orthonormal sets based on these solutions in 

order to construct arbitrary fields, we need normalized eigenfunctions. This can be accomplished through a 

suitable choice of the coefficients mc . Using the L
2
-Hermitian inner product the eigenfunctions   of the adjoint 

problem are obtained from a Helmholtz operator having a complex conjugate wavenumber and adjoint boundary 

conditions at the conducting plates. 

Since the solutions   to the adjoint TM/TE problems are the complex conjugate of  , the normalization can be 

performed through the bi-orthogonality relationship as [4.22, Sec. 5.3]  
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, ,

h
t t t t

m n m n mnz z dz                                                       (4.14) 

 

with TM/TEt   and mn  denoting the Kronecker’s symbol 1mn   when m n  or 0mn   when m n . 

This procedure leads to  
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                                    (4.15) 
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where ,m

m

TM TE

m m

TM

z

TE

z

Z Z
k

k




   are the modal impedance of the m-th TM/TE mode, respectively and ,

m m

TM TE

z zk k  are 

the m-th solution (eigenvalues) of the following dispersion equations  
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                                              (4.15) 

 

Having obtained orthonormal bases for the eigenfunction expansion, we proceed to derive the dyadic magnetic 

Green’s function, given in [4.24],[4.25] as 
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(4.16) 

 

Thus, the incident magnetic field radiated by a magnetic source MJ  distributed on a surface S   is obtained as 

the convolution of (4.16) with MJ , resulting in 
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Metallic and dielectric lossy posts 
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                                    (a)                                                     (b)                                                                         (c)        
Figure 4.9. Vector eigenfunction expansion of the scattered field from: (a) impenetrable post; (b) penetrable post; (c) incident scattered and 

transmitted field in a penetrable post. 

 

Once the dyadic Green’s function and vector wave functions are known, one can proceed to the formulation of 

the MM/MoM problem, since all types of fields (impressed and scattered) on the post surfaces can be described 

efficiently. A resolvable system of linear equations is obtained by imposing the appropriate boundary conditions. 

The field scattered by the posts in the whole SIW structure is thus expressed as a discrete sum of vector 

cylindrical waves defined as 

     
post

1 1

, , , , , ,
m m m m
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TM TM TM TE TE TM

s mnl n z l mnl n z l
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 

  

   H r M ρ ρ N ρ ρ           (4.18) 

 

To determine the field scattered by an impenetrable post (Fig. 4.9a) of radius aq, described by a non-dispersive 

impedance condition sZ , we impose the following boundary condition on the surface of the post 
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   TOT TOTˆ ˆ ˆ
q q

q s q qa a
Z
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   

ρ ρ ρ ρ
ρ E r ρ ρ H r                                (4.19) 

 

where ˆ
qρ  is the radial unit vector directed from the center of the post toward the exterior of the post, and E

TOT
 

and H
TOT

 are the total electric and magnetic fields, respectively. For 0sZ  condition (4.19) resort to the PEC 

post case. 

The fields are expanded through cylindrical wave functions as in (4.18). From the two scalar components of the 

vector identity (4.19) a couple of linear equations is obtained for the unknowns 
t

mnqA . They are expressed as a 

series of azimuthal modes with linear phase around the q-th cylinder. From the orthogonality of the azimuthal 

eigenfunctions 
jne 

 we can obtain two linear equations for each azimuthal harmonic n  

 

  ,
n TM TE n

mnq mnqf A A t  ,  ,
n TM TE n

z mnq mnq zf A A t  (4.20) 

 

The two equations come from the  and the z components of (4.19); 
nf  and 

n

zf  are linear functions of 
TM

mnqA  

and 
TE

mnqA , 
nt  and 

n

zt  are known quantities depending on the excitation current. For each harmonic n , (4.20) can 

then be projected on the m -th adjoint vertical eigenfunction 
t

m  in order to obtain a linear system having the 

same number of equations and unknowns. The obtained equations contains the scalar products between different 

polarization eigenfunctions: , , ,TE TM TM TE

m m m m
     .  

If 0sZ  , (4.19) and (4.20) both reduce to the simpler case of a PEC post, where the TE and TM polarizations 

are decoupled. 

To determine the field scattered from a penetrable (possibly lossy) post, whose radius is qa  and complex 

dielectric constants are 
( ) ( ),q q

r r  , the continuity of the tangential electric and magnetic fields are imposed on the 

post surface (Fig. 4.9c) 
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where the superscripts ‘PPW’, ‘Posts’, and ‘q’ stand respectively for the fields excited in the PPW in the absence 

of the posts, for the fields scattered by all the posts, and for the field inside the q-th post under analysis. The 

fields in the waveguide are expanded through the Hankel function formulation of (4.18), while the field inside 

each cylinder is expanded through the Bessel function expression. Note that, if the post is metallic, a null field is 

retained inside the post, and only the electric field continuity (4.21) is used. 

Each equation (4.21)-(4.22) can be projected along the   and the z directions, thus obtaining a system of four 

scalar equations for the unknown coefficient 
/TM TE

mnlA  and 
/TM TE

mnlB . These scalar equations are then projected on 

the basis of harmonic functions describing the azimuthal dependence of field around the considered cylinder. For 

each harmonic n , the two equations resulting from the components of (4.22) are 

 

 ,
n TM TM n

mnl mnle A B t                                                               (4.23) 

 , , ,n TM TE TM TE n

z mnl mnl mnl mnl ze A A B B t                                                         (4.24) 

 

and the two equations resulting from the components of (4.22) are 

 

 ,n TE TE n

mnl mnlh A B s                                                              (4.25) 

 , , ,n TM TE TM TE n

z mnl mnl mnl mnl zh A A B B s                                                   (4.26) 

 

where e and h are linear functions of 
/TM TE

mnlA  and
/TM TE

mnlB , and t and s are known quantities depending on the 

excitation current. The four equations can then be projected on the vertical eigenfunctions   in order to obtain a 

linear system having the same number of equations and unknowns. Specifically, a careful choice of the 
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eigenfunctions should be done in order to obtain stable solutions even for large losses in the cylinder. In fact, we 

can have eigenfunctions defined inside the q-th post (where wavenumbers are referred to the post dielectric), 

namely 
 q

m , and eigenvalues defined in the PPW (where wavenumbers are referred to the PPW dielectric), 

namely m . It turns out that the best strategy is to project (4.23) and (4.26) on m , and (4.24) and (4.25) on 

 q

m  

 
1 1

, , ,n TM TM TM n TM

mnl mnl m me A B t                                                    (4.27) 
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2 2
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mnl mnl m mh A B s                                                    (4.28) 
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z mnl mnl mnl mnl m z mh A A B B s                                       (4.30) 

 

We can derive explicit expressions for 
TM

mnlB  from (4.27) and for 
TE

mnlB  from (4.28), and substitute them into 

(4.29) and (4.30). Using the bi-orthogonality relationship (4.14) we finally obtain two scalar equations for the 

unknowns 
TM

mnlA  and 
TE

mnlA . It turns out that with the above-mentioned testing choice, these expressions are 

composed only by terms having ratio of Bessel/Hankel functions of eigenvalue of the same medium. Thus, also 

with a large imaginary part of the argument the terms remain numerically stables. 

 

Arbitrary number of aperture-coupled stacked PPWs 

 

Let us consider a stacked configuration, where an arbitrary stratification of PPWs is present, and adjacent PPWs 

are coupled through slots etched in the interfaces (see Fig. 4.7). The generic nth PPW is bounded on the top by 

the (n+1)th interface and on the bottom by the nth interface. Its electromagnetic parameters are denoted as n   

and n . Magnetic currents on both the upper and the lower plates of each PPW. They are taken into account in 

the integral equation with a different sign, due to the opposite directions of the vectors normal to the different 

interface. In the kth PPW, the magnetic field is denoted by the superscript “(k)”. The equivalent unknown 

magnetic currents are denoted with the superscript “(k+1)”, if placed on the upper plate of the kth PPW. The 

currents are denoted with the superscript “(k)” if placed on the lower plate of the kth PPW (see Fig. 4.7). 

We can write, on the kth interface, the following integral equation: 
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The integral operator 
 k

L  operates on a magnetic current to yield the magnetic field inside the kth PPW 
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j d  L A G r r A r r                                                    (4.32) 

where 
,SIW k

G  is the Green’s function of the kth SIW. 

The unknown magnetic function M  is discretized as a sum of suitable entire-domain basis functions 

 

   
1

b slotN N

f f

f

v


 M r b r                                                                       (4.33) 

 

where slotN  is the total number of slots present, and bN is the number of basis functions present on each slot. 

As far as narrow rectangular slots are of interest, the current can be assumed directed along the length of each 

slot, and its transverse dependence is neglected. This assumption has validated for slots having a width 

10w  ,   being the medium wavelength. In this case, if a local Cartesian reference system  ,u v  is 

associated to the qth slot (where the u-axis is along its length qL , and the -axis along its width qW , with the 

origin at its center), the sinusoidal basis functions ,q nb are 

 ,

1
ˆ sin

2

q

q n

q q

Ln
u

W L

  
   

   

b r u                                                      (4.34) 
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for 
2 2

q qL L
u    and 

2 2

q qW W
v   .This particular choice of entire-domain basis functions has several 

advantages. It reduces the filling time of the MoM impedance matrix, leads to a significant memory saving, and 

avoids possible problems related to the numerical solutions of large linear systems [4.26]. 

Using a Galerkin testing procedure a linear system is obtained, where the admittance matrix has a block structure 

as  

 

(4.35) 

 

On-diagonal submatrices collect reactions among currents placed on the same interface, while off-diagonal 

submatrices are defined by interactions between adjacent interfaces. The tridiagonal block structure is due to the 

fact that only adjacent interfaces interact through the PPW in between them. 

 

Numerical examples 

Actually we are testing our formulation for the analysis of SIW microwave devices and antennas available in the 

scientific literature. The results are compared with numerical simulation performed with the finite elements 

commercial software Ansys HFSS
TM

 15 and measurements when available. Two examples are shown below. For 

the reader’s convenience the measured parameters taken from the original articles are also included. 
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                            (a)                                                                                                                     (b)  

Figure 4.10. (a) Geometry of the generalized Chebyshev SIW diplexer Physical parameters of the substrate: height h= 0.762 mm, relative 

permittivity r=3.46, loss tangent tan= 0.0018. All dimensions are expressed in millimeters. (b) Comparison of the magnitude of the 

scattering parameters. 

 

The first example is a large system implementing a generalized Chebychev diplexer [4.27]. The structure and the 

relevant geometrical parameters are given in Fig. 4.10a.  The structure is composed by 414 copper posts and fed 

by 3 ports. The S-parameters of the structures computed with our method are compared to HFSS
TM

 simulations 

in Fig. 4.10b. A very good agreement is found among all these methods and the measurements performed in 

[4.27]. 
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Figure 4.11. Pillbox structure in [P.20]. (a) Three-dimensional view (the slots along the 25 waveguides in the top PPW are etched in the 

uppermost metallic plate M3, transparent in the picture). (b) Top view of the lower PPW (the green slots are on the common metallic plate 
M2). (c) Top view of the upper PPW (the green slots are on the uppermost metallic plate M3, the blue slots are on the common metallic plate 

M2). The length shows the possible displacement of the horn from the central position to scan the beam. Main physical and geometrical 

parameters: a=5.7mm, t=63.2mm, s=117mm, thickness of both layers h=0.508mm, dielectric constant in both layers r=2.2. The via-hole 
diameter is 0.4 mm, and their spacing is 0.8 mm. The average dimensions of the radiating slots are W=0.2mm, L=5.2mm. The dimensions of 

the coupling slots are W=1mm, L=3.6mm. 

 

The second example is an SIW pillbox antenna, proposed in [P.20]. Its geometry is shown in Fig. 4.11a. It 

consists of two stacked PPWs filled by two identical Rogers 5880 substrates, having both permittivity r=2.2 and 

height h=0.508mm. Top views of both the PPW environments are shown in Fig. 4.10(b) and (c). The structure is 

completely shielded at its edges by metallic vias connecting the metallic layers M1 and M3 in Fig. 4.11a. The 

stacked PPWs are coupled by means of 34 slots etched on the common plate and a parabolic reflector (quasi-

optical system). The parabolic reflector is made by metal posts connecting the metallic layers and of the metallic 

vias connecting the metallic layers and in PPWs. There are 184 radiating slots etched on the uppermost plate; the 

structure is fed by a probe-fed integrated horn (realized with metallic pins) located in the lower PPW. The horn 

feed launches a TEM mode in the lower PPW. A total of 2896 posts are present in the complete structure. More 

details about the structure and fabrication process can be found in the caption of Fig. 4.10 and in [P.20]. The 

analysis of such a structure is a suitable test of the capabilities of the method because of its size and complexity. 

The far field computed with the code on two principal planes will be compared to HFSS simulations and 

measurements of a realized prototype [P.20]. In particular, in HFSS, despite the use of a powerful PC with 64 

GB RAM memory, it was not possible to simulate the complete structure made by metallic pins. Indeed, several 

HFSS simulations have been performed in order to determine the parts of the structures that could be replaced by 

metallic walls with no loss of accuracy. As a result, the horn and the quasi-optical transition were made by 

perfect metallic sheets to reduce the computational effort; the total number of posts in the HFSS structure is 

therefore 2080. This process was quite time-consuming, and its results are frequency-dependent and not 

applicable to general structures. On the other hand, this analysis is not necessary for our code, which can handle 

the complete structure with no simplifications. 

In Fig. 4.12, the computed normalized radiation patterns in the H- and E-planes are shown at 24.15 GHz, when 

the horn is placed in the central position [l=0 in Fig. 4.11(b)]. The number of modes and basis functions used for 

our code are the following: three vertical PPW modes (the TEM and the first higher-order TM and TE modes); 

three azimuthal modes in the field expansion for each post; three basis functions for magnetic currents on each 

slot. A very good agreement is observed between the approaches, whereas differences in the sidelobes can be 

attributed to slight differences in the definitions of the structures. 

Fig. 4.13 shows the radiation patterns in the E-plane, only for two different frequencies ( f=23GHz and 

f=24.5GHz), for the sake of brevity. The horn is placed in the central position. The patterns obtained with the 

code are compared this time both to HFSS simulations and measurements. In both cases, a very good agreement 

is found among the different approaches, confirming the validity of the proposed method. An important feature 

of the pillbox antenna is its scanning capability as the feeding horn is displaced along the y-axis in the focal 

plane of the parabola [see the parameter Fig. 4.11 (b)]. 

It is then of paramount importance to verify the correctness of the method when scanning the beam. Fig. 4.14 

provides the normalized radiation patterns in E-plane at 24.1 GHz for three different positions of the feed horn 

with respect to the y-axis of the parabola (8.86, 17.72, and 26.58 mm). The main lobe of the pattern points at the 

elevation angles =8.6°,16.83°,25.74°, respectively. Only the E-plane is shown for the sake of brevity. The 

agreement of our code with measurements and HFSS results is remarkable. 
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In Table I, the computation time is compared between the HFSS simulations and these analyses. The advantage 

in terms of performance is evident. The data have been generated using a Personal Computer with a 2.8 GHz 

Intel I7 870 CPU, while the proposed methods have been implemented in Matlab
TM

.  

For the larger antenna problem, a large speedup factor is reached if we perform a single-frequency analysis or an 

optimization, for which a new meshing procedure is required at each step. In fact, optimization techniques for 

the fine tuning of these structures would not be possible with a general-purpose software due to its excessive 

simulation time and to the simplifications required in the model. 

On the other hand, if a frequency sweep is performed, the meshing would have a smaller impact on the total 

HFSS time since it would be performed only once. However, the speedup ratio obtained when only the HFSS 

simulation time is present is still considerable. 

The actual implementation of the codes does not take advantage of multi-core or multi-CPU systems, but it can 

be parallelized in the future. 

This research is in collaboration with Dr. Guido Valerio (L2E) and Pr. Matteo Albani (University of Siena). 

 

TABLE I 

CPU SIMULATION TIME ON A XEON E5540 2.83 GHZ WITH 64 GBYTE RAM 

Structure 
Metallic / 

dielectric posts 

 HFSS 
This 

paper Slots 
Mesh 

Freq. 
Point 

Cheb. diplexer 414 / 0 0 746 s 35 s 10.2 s 

Simplified antenna 2080         218 29460 s 2860 - 

Complete antenna 2896         218 Not possible 721 s 

 

 

 
Figure 4.12. Normalized radiation patterns of the pillbox antenna with the feed horn in the central position (Fig. 10, with l=0) at 24.15 GHz. 

(a) H-plane. (b) E-plane. Approach proposed in this paper (red lines), and HFSS simulations (blue lines). 

` 

 
Figure 4.13. Normalized radiation patterns in the E-plane of the pillbox antenna with the feed horn in the central position (Fig. 10, with l=0). 
(a) f=23GHz. (b) f=24.5GHz. Code proposed in this paper (red lines), HFSS simulations (blue lines), and measured data (green lines). 
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Figure 4.14. Normalized radiation patterns of the pillbox antenna of Fig. 10 in the E-plane at 24.1 GHz, when the horn position is changed. 

(a) l=8.86mm. (b) l=17.72mm. (c) l=26.58mm. Approach proposed in this paper (red lines), HFSS simulations (blue lines), and measured 

data (green lines). 

 

Future works 

In the next years several improvements will be implemented on the analysis tool: 

- Introduction of triangular domain RWG basis functions leading to hybrid discretization of the structure. 

This will allow the analysis of general shape slots. 

- As the antenna aperture increase, the number of unknown can become very large (especially with 

RWG). We know that the actual integral equation can lead to hill conditioned matrices. Thus, a 

numerical stability study will be performed, and if needed the integral equation will be modified 

(Combined Field Integral Equation)   

- Introduction of realistic input port as for example microstrip port. 

- Hybridization with a Finite Element Method. The introduction of cylindrical region ports described by 

cylindrical modes will allow the hybridization with other numerical techniques. In fact the cylindrical 

region could be simulated with a FEM and the field on the boundary expanded in cylindrical modes 

leading to a scattering matrix representation S. This matrix can be easily coupled with the S matrix of 

the cylindrical region ports obtained with the actual formulation. This procedure will allow the analysis 

of very heterogenic structure as for example a wideband transaction between coaxial cable and 

waveguide.       

 

This activity will be performed within the framework of the ANR-ASTRID project Fast Hybrid Electromagnetic 

Modeling for the analysis of highly-integrated complex 3D Substrate Integrated Waveguide antenna front-ends 

(Fast-HEM-3DSIW). 

 

 

4.1.2.2 Metasurface antennas 

 

List of related publications: [P.2], [P.4], [P.10], [C.4], [C.9], [C.14]. 
 

The properties of these surfaces are described in terms of surface impedances (or admittances) and dimensionless 

chirality tensors [4.28] (analogous to the constitutive parameters for volumetric metamaterials). Metasurfaces 

have been recently used in many applications like holographic antennas [4.29], leaky-wave antennas [P.25] 

[4.30]-[4.31],[P.10], planar lenses [4.32]-[4.33], orbital angular momentum communication [4.34], 

transformation optics [11]-[12] or polarization convertors [13]-[14]. 

Holographic and leaky-wave antennas are based on the propagation properties of waves over a local 

sinusoidally modulated impedance [4.39]. By choosing an appropriate modulation, it is possible to control the 

propagation of surface waves (SW) along a surface or to obtain the transition from SW to leaky wave (LW) modes 

in order to realize antennas [4.40]-[P.10]. 

Surfaces composed of sub-wavelength printed elements over grounded dielectric slabs were largely used in 

order to obtain modulated scalar impedances by locally changing the dimensions of the elements [3]-[4.43] [P.10]. 

Symmetric elements are used to produce scalar impedances [4.29]-[4.30],[P.25],[4.43],[P.10] while asymmetric 

elements can implement tensorial impedances by creating cross-pol field components [3],[22]-[24]. 

Scalar metasurface antennas can produce general polarized beams [4.29]-[4.30],[P.25],[4.43], [P.10]. However, 

the direction of the radiating aperture field (or the equivalent surface current) is dictated by the source [P.10]. This 

latter aspect limits the number of possible aperture field distributions that can be implemented. 

Recently, tensorial metasurfaces were successfully used in antenna design that can radiate CP waves 

[4.29],[4.44] and isoflux shaped beam antennas for space applications [4.44],[4.45]. The additional degrees of 

freedom offered by tensorial metasurfaces could be used to overcome the limits of scalar solution by generalizing 

the procedure presented in [P.10]. 
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The objective of the research is to propose a systematic procedure for the design of metasurface antennas 

capable of implementing a general aperture field distribution (amplitude, phase and polarization). The principal 

novelty of this approach is the independent control of the generated aperture field components. This important 

aspect (critical for general aperture implementation), can be achieved by introducing independent modulations of 

the impedance tensorial components and an exact formulation for the first order holography.  

Background Physics 

The surface impedance 
s

Z  is defined as the ratio between tangential electric (
tE ) and the magnetic (

tH ) fields 

at the surface boundary S  for a particular wavevector (
sw

k ): 

 

            ˆ
t tS

S




    sw

s sρ
ρ

E ρ Z k n H ρ Z J ρ                                                      (4.36) 

where 
' 'ˆ ˆ
u v   ρ u v  is a point on the antenna surface, n̂  is the vector normal to the surface, S and 

   ˆ
t S

 
r

J r n H r  is the equivalent surface current 

LW

v̂

n̂

û

ˆ ( )h ρ

ρ
ˆ ( )sw

t
k ρ

 
Figure 4.15. Metasurface geometry and leaky wave generation 

 

Since we deal with surface waves (discrete spectrum), the impedance (4.36) is defined only for a discrete set of 

wavenumbers, namely: 

        ˆ ˆ ˆ, , , , cos sinsw sw sw

t t tk n k n       sw
k k u v                                  (4.37) 

where swk  is the wavenumber associated with the n-th mode propagating along the direction ˆ sw

tk  defined by the 

angle   at the angular velocity  . 

The impedance boundary condition can be implemented using different approaches, however, in any case it takes 

into account all of the interaction effects between the wave and the structure and media below the z=0 plane (see 

Fig. 4.15).   

We will focus our attention on the dominant mode (n=0) propagating on reciprocal lossless metasurfaces. 

Conservation of energy (anti-Hermitian impedance tensor 
†
 

s s
Z Z ) in conjuction with reciprocity imply that 

s
Z  is a purely imaginary symmetric tensor [4.45]. 

Thus, in a general 2D orthogonal reference system placed on S, equation (4.36) is written as 

 

u uu uv v uu uv u

v uv vv u uv vv v

E X X H X X J
j j

E X X H X X J

         
          

         
.                                                (4.38) 

 
where the subscripts u and v refer to the components of the various quantities in the general framework. 

In the following, we suppose that the incident SW is propagating along a general direction ˆ sw

tk  on a metasurface 

placed in the x-y plane as shown in Fig. 4.15.  

For tensorial surface impedances, the dominant SW mode is a hybrid EH mode. The magnetic field on the 

surface is assumed to be of the general form 
 

( ) ˆ( ) ( ) ( )j

t A e
    

sw
k ρ ρ

H ρ ρ h ρ                                                                   (4.39) 
 

where A is the field amplitude, ĥ  is the magnetic field polarization unit vector, ˆsw sw

t tksw
k k  is the wave vector 

and the propagation constant sw

tk  is found by solving the dispersion equation. 
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Let us consider a small modulation of the surface reactance components along the propagation direction of the 

form 

 
2

1 cosij ij ij

ij

X x X M x
p

  
   

    

                                                               (4.40) 

 

where 
ijX , 

ijM  and 
ijp  are the average reactance, the modulation index and the periodicity of the ij component, 

respectively. It should be noted that the periodicities of the reactance components are not necessarily identical 

ij klp p . 

Under the assumption of small perturbation of the average impedance values ( 1ijM  ), eq.(4.39) can still be 

considered as a valid approximation of the magnetic field above the modulated impedance [4.29], [4.30], [P.24]. 

Thus, a first order estimation of the electric field with respect to small parameters 
ijM  can be obtained by 

replacing (4.39), (4.40) into (4.38) and writing the cosine term of (4.40) in the exponential form, leading to : 

 
2 2 2 2

2 2 2 2
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2 2 2 2

2 2 2 2

uu uv uu uv

uv vv vu vv

j x j x j x j x
p p p puu uv uu uv

u uu u uv v uu u uv v uu u uv v

j x j x j x j x
p p p puv vv vu vv

v uv u vv v uv u vv v vu u vv v

M M M M
E j X J X J X J e X J e X J e X J e

M M M M
E j X J X J X J e X J e X J e X J e

   

   

 

 

  
       

   


 
      

 
 





       (4.41) 

 

For each component of the electric field, the first line represents non radiative surface waves, while the terms of 

the second line can be leaky waves if
02sw

t ijk p k  . As can be seen in eq.(4.41), the phase of the excited 

leaky waves can be controlled by the periodicity of the reactance
ijp  while the amplitude is proportional to the 

product ij ijX M . 

The idea is to found a procedure to control the generated LW component of the field (4.41), namely  

 
2 2

2 2

2 2

2 2

uu uv

uv vv

j x j x
p puu uv

LW uu u uv v
LW u

t LW
j x j x

v p puv vv

uv u vv v

M M
X J e X J e

E
j

E M M
X J e X J e

 

 

 

 

 
 

 
   
  
 
 

E                                                    (4.42) 

 

in order to implement a desired objective radiating aperture field distribution: 

 
arg( )

arg( )

obj
u

obj
v

j Eobj
obj

uobj u

t obj j Eobj
v v

E eE

E E e

  
   
    

E                                                                     (4.43) 

 

v̂
n̂

û

   2
ˆˆ loc  x ρ h ρ

ρ

 1
ˆ loc x ρ

incΨ

 
Figure 4.16. Local framework definition. 

 

The easiest  approache to obtain the desired phase distribution on the surface is to equate the phase of each 

individual term in (4.42) with the phase of (4.43) for every component. 

Imposing this condition between each term of (4.42) with (4.43) leads to the following condition for the 

impedance periodicities: 
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   
2

arg arg
ij obj

j ij i

p
J E




  
                                                                     (4.44) 

where   sgn 1 2ij ijX    and uv vu   . 

The tensor impedance (4.40) with the periodicities given by (4.44) can be written in compact form if all of the 

average impedances 
ijX  have the same sign. In fact, by defining the incident wave incΨ  as the phase of the 

current J , and the objective wave 
objΨ  as the phase terms of the objective electric field, namely: 

 

11

2
2

arg( )arg( )

1 1

arg( ) arg( )
2 2

,  

obj

obj

j Einc objj J

inc objinc objj J j E

ee

e e

      
        

         

Ψ Ψ                                            (4.45) 

 

the modulated tensorial impedance is obtained as [P.2]: 

 

 *

obj incj j    
s

Z X X M                                                       (4.46) 

 

where X  is the average reactance tensor, M is the modulation index matrice,   and  are the outer and the 

Hadamard products respectively.  

As stated before, 
s

Z must be anti-Hermitian. This condition is not guaranteed by (4.46) as the off diagonal 

impedance elements depend on field parameters that can not be controled a priori (incident field and objective 

field). This problem arises because we are trying to impose the 4 conditions in (4.44) with only 3 degrees of 

freedom given by the impedance tensor. 

A possible solution is to decompose the tensor (4.46) as the sum of its hermitian part H  and its antihermiatian 

one A  and then to use this latter as the impedance tensor. This choice, even if derived with a different approach, 

leads to the formulation presented in [4.29]. However, this technique does not garentee a perfect match between 

(4.42) and (4.43) because a significant part of the tensor that guarantee the exact phase (4.44) is neglected. 

  

In this research, a second approach to overcome the above-mentioned problem is introduced. The idea is to 

equating the phase of the sum of the terms in (4.42) with the desired phase distribution (4.43). This is a quite 

complex problem because four impedance elements have to be controlled at the same time while maintaining the 

anti-hermitian property. In order to simplify this calculation, we take advantage of the fact that physical 

properties (energy conservation and reciprocity) are conserved under orthogonal transformations. At each point 

of the metasurface we define a local framework such that the magnetic field  t
H ρ  is directed along a local 

axis (Fig. 4.16). Such an orthogonal reference system can be defined as: 

 

   

   

ˆˆ

ˆˆ ˆ

loc

v

loc loc

u v

 

  

x ρ h ρ

x ρ x ρ n
.                                                               (4.47) 

 

Thus, denoting by  R ρ  the transformation matrix from the global to the local framework, the local wave and 

impedance can be written as 

 

                   
1

                 loc loc loc

t t t t s s


               E ρ R ρ E ρ H ρ R ρ H ρ Z ρ R ρ Z ρ R ρ            (4.48) 

 

In equation (4.48) and what follows, the superscript loc  indicates that the quantity is written in the local 

framework.  

In the local framework, eq.(4.38) becomes 

 

0 0

loc loc loc loc locloc loc

u uu uv uu uvv u

loc loc loc loc loc

v vu vv vu vv

E X X X XH J
j j

E X X X X
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         

        
                                     (4.49) 
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As seen in equation (4.49), only the first column of 
loc

sZ  affects the electric field. The idea is to use eq. (4.46) in 

the local framework only for the elements of the first column, namely: 

 

 

 

*

, ,

*

, ,

1

1

loc loc loc loc loc

uu uu uu obj u obj u

loc loc loc loc loc

vu vu vu obj v obj u

X X M

X X M

      
  


       

.                                                   (4.50) 

 

We can now ensure that 
s

Z is anti-Hermitian by imposing loc loc

uv vuX X as this component does not affect the 

electric field. In addition, loc

vvX is a free quantity that we can use for other design purposes.  

Finally, the impedance in the global framework that allows a phase match between the incident wave and the 

objective wave is obtained as 

 

   
   

   
 

1
loc loc

uu vu

loc loc

vu vv

X X
j

X X

  
    

  
s

ρ ρ
Z ρ R ρ R ρ

ρ ρ
.                                              (4.51) 

 

As a final remark, it can be noted that eq.(4.51) has apparently 3 degrees of freedoms  , ,loc loc loc

vv uu vuX M M . 

However, since loc

vvX  affects the propagation constant 
sw

tk , it cannot be arbitrarily selected. 

 

Amplitude synthesis is based on a proper choice of the free parameters of eq.(4.51). As described before, the 

amplitude of the LW is proportional to the product 
ij ijX M . Thus, the idea is to change this product along the 

metasurface in order to compensate the spreading factor of the SW and obtain an amplitude behavior 

proportional to that of the objective field.  

As a result, the average reactance and the modulation index of each component of the impedance will vary 

depending on the position on the metasurface. Eqs.(4.42),(4.43) imply that the following conditions have to be 

verified 
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    


   

ρ ρ ρ ρ

ρ ρ ρ ρ
                                                         (4.52) 

 

Eq. (4.52) imposes the product loc loc

ij ijX M  but not their individual values. However, since the dispersion constant 

sw

tk  is affected mainly by the average reactances values, smooth continuous variations of these have to be 

imposed to avoid undesired reflections. 
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Figure 4.17. Dividing the metasurface into sectorial areas with mono-directional propagation. 

 

In order to estimate the magnetic field needed in eqs.(4.51),(4.52), a Geometrical Optic (GO)-based procedure is 

introduced [P.10]. The idea is to consider the modulated impedance as a double-scale problem, with a rapid 

variation rate (with respect to the wavelength) given by the sinusoidal modulation ( ijp  ) and a slower 

variation given by the space dependence of the modulation parameters ( ijM ijX , and ijp ). Under optic 
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approximation, the fast impedance variation can be described by an equivalent impedance obtained using the 

local periodic dispersion [P.10]. Thus, the modulated metasurface can be assimilated to a continuous slowly-

variating equivalent surface impedance. It is important to note that even the metasurface is lossless; the 

equivalent impedance has a real part (resistance) describing the energy loss due to leaky wave radiation. 

In order to numerically solve the propagation problem, the metasurface is divided into sectorial areas where 

propagation can be considered mono-directional (Fig. 4.17). Then, each sectorial area is divided into various 

subdomains along the propagation direction, in which the impedance modulation (18) is assumed to be constant 

(
ijX ,

ijM  and ijp  are constants). A new procedure able to analytically solve the propagation problem within each 

subdomain has been introduced (next subsection). The global solution is obtained by imposing the continuity of 

tangential field across each domain. 

 

Local dispersion Analysis 
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Figure 4.18: (a) Equivalent transmission line problem for z>0. (b)(c) Equivalent circuit at z=0. 

 

The propagation problem over a periodically modulated surface can be interpreted as shown in Fig. 4.18(a), 

where an infinite number of independent transmission line along the normal direction (one for each Floquet 

mode n and polarization state) are coupled together at the impedance surface. 

The transmission line propagation constants and characteristic impedances are given by  
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Z k k Z k k



 

    

 

,  (4.52) 

 

where k   is the wavenumber associated to the medium above the impedance and   the corresponding 

wave impedance. 

At the impedance level (z=0) the circuit can be simplified as in Fig.4.18(b), where the infinite transmission lines 

have been replaces by their corresponding line impedances. 

Boundary condition implies the following relation between electric and magnetic field: 

 

  0 0
ˆ

t tz zs 
  E Z n H ,  (4.53) 

 

where the field and the impedance tensor are expressed in the TM/TE framework, namely 
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, ,

, ,

TM TM TM TETM TM

TE TM TE TETE TE

Z ZV I

Z ZV I

    
     

    
.  (4.54) 

 

Each component of the surface impedance tensor is supposed of the following general form  

 

     , , , ,1sZ x jX M f x         ,  (4.55) 

 

where ,  =TE/TM, ,

sX    is the average value of surface reactance, ,M   <1 is the modulation index and ,f    

is a periodic function with period ,p  . 

If the periods ,p   are multiple of a same period p, the problem is still periodic, thus it can be interpreted as 

composed by a discrete infinite number of independent transmission lines. The only difference with respect to 

the scalar case is that lines with different polarizations (TE/TM) are coupled together.  

In the following we will call this particular framework the canonical basis because eqs.(4.53)-(4.55) directly 

establish a relation between electrical quantities defined in different transmission lines (in general with different 

polarization state).  

Each periodic function ,f    in (4.55) is expressed as Fourier series expansion  
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then, using (4.56) in (4.55) leads to 
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where the following quantities have been introduced: 
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Using eqs.(4.56)-(4.58) in boundary condition (4.55) lead to the form: 
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Eq. (4.59) explains how a general modal circuit in the representation of Fig. 4.18(a) is coupled with all the other 

modes. Using circuit formalism, condition (4.59) states that in each modal circuit, the boundary condition is 

equivalent to the impedance 
selfZ  connected to a controlled voltage source 

,g nV  (Fig.4.18(c)). 

An effective impedance (of the homogenized problem for a particular mode) can be defined as 
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TM TM TM TM
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TE TE TE TE
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. (4.60) 

 

The dispersion can be calculated using (4.58)-(4.60) the resonance condition: 
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   , 0eff n x n xZ k Z k   ,                                                              (4.61) 

 

where the effective impedance 
,neffZ  (shown in Fig.3(c)) is defined as 
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This procedure leads to: 
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Eq. (4.63) can be rewritten in matrix form as 0 M I  where 1 1 1 1
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   (4.64) 

and 
nn selfA Z Z    . 

The non-trivial solutions of eq.(4.64) are obtained imposing det 0M . 

 

Alghoritm 

 

Figure 4.19 summarizes the design steps needed to implement a given objective electric field distribution. 
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Figure 4.19. Metasurface implementation algorithm. 
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 Step 1: The average impedances variations laws and the maximum values of the modulation indexes are 

found by ensuring that the reactance values are available in the database. 

 Step 2: The incident surface wave is evaluated by decomposing the metasurface into various subdomains 

along the propagation direction, in which the surface modulation is assumed to be constant. For a cylindrical 

SW the metasurface is devided into angular sub-domains, each sub-domain is then divided into N elementary 

radial sections. 

Next, starting from the source and following the propagation, the following steps are performed on each sector: 

 Step 3: The propagation constant , ,

sw

t nk   is found by solving the local dispersion problem, then amplitude and 

phase of the magnetic field are found imposing tangential field continuity at sector interface. 

 Step 4: The transformation matrix  R ρ  is found, the incident and the objective fields are then written in the 

local framework. 

 Step 7: Modulation indexes  11

locM ρ  and  12

locM ρ  are calculated using equation (4.52). 

 Step 8: Impedance variations are obtained using equations (4.51) (Holography principle) and (4.52).  

 Step 9: The metasurface is discretized according to the selected periodic lattice. Following this, the 

metasurface layout is obtained by selecting the corresponding patch geometry available in the database. 

  

Impedance design 





g

  



g
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g
 



 
                                                                    (a)                         (b)                        (c)                          (d) 

Figure 4.20. Unit cell topologies. The chosen cell (a) consists of a circular patch with a v shaped slot. It is defined by slot wideness g , the 

orientation angle  and the slot aperture angle  . 
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Figure 4.21. Printed metasurface equivalent TM and TE transmission lines. 

 

The obtained surface impedance law  sZ ρ  can be implemented by printing asymmetric subwavelength 

patches in a squared lattice over a dielectric substrate as already proposed in [4.29] and [4.44]-[4.46]. 

An in-house tool based on periodical Method of Moment is used to characterize the surface impedance taking 

into account all the possible dispersion effects (dielectric slab dispersion, etc..). First, the resonating wavenumber 
sw

k  associated to the dominant guided wave is found. Then, the sheet impedance   sheet

sw
Z k  (see Fig.4.21) 

associated to this particular wavenumber is calculated. Finally, the impenetrable impedance  sw
Z k  is obtained 

by adding the contribution of the grounded dielectric slab at the resonant wavenumber. 

Several patch topologies were investigated to find the geometry able to ensure the highest reactance variation 

range. In order to have independent control of reactance component variations, a large range of impedance 

values is needed. This can be obtained by adding degrees of freedom to the cell geometry. As a result, a new 

geometry, composed of a circular patch with a variable v-shaped slot (Fig. 4.20a) is introduced.  

This geometry can produce variable cross-reactance values acting mainly on the slot opening angle  . This 

additional degree of freedom leads to a four-dimensional database (incident angle, patch dimension, patch 

orientation angle  , and slot opening angle  ) that will significantly increase the design possibilities offered by 

this unit cell. 
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(a)                                                                           (b)                                                                      (c) 

Figure 4.22. Reactance levels corresponding to the unit cells of angles 60    and 0   printed over a substrate TMM6 of permittivity 6 

and thickness 1.27mm : X   (a), X  (b), and X  (c). 

 

It is important to stress that, since the cell is asymmetrical and the lattice is squared, a rotation   of the cell is 

not equivalent to a change of the incident angle of the SW on the patch lattice. As a result, impedance depends 

on the orientation angle  . 

An example of impedance values obtained with the new patch geometry at 20GHz  is shown in Fig.4.22. The 

periodic cells of dimension 
0 12 , where 0  is the free space wavelength, are printed on a Rogers TMM6 

substrate with relative permittivity 6r   and thickness 1.27mm=0.207h  . The plots show the impedance as 

a function of the incident angle (vertical axis) and the ratio between the patch radius and the lattice dimensions 

(horizontal axis) for 60   and 60   . 

 

This research is in collaboration with Pr. Hélène Roussel (L2E). 

 

Future research 

The research in the next years will be focalized on three important aspects: minimization of two undesired 

effects as (a) the limited bandwidth and (b) the impact of the feeder on the radiation diagram, and (c) the 

development of a numerical tool for the analysis of realistic metasurface antennas. 

Limited bandwidth. Metasurface antennas present a limited bandwidth (roughly 7%). This is essentially due to 

the interaction between the surface-wave and the periodic structure. While the period of the printed element is 

constant with respect to the frequency, the SW propagation constant has to obey to the loaded dielectric slab 

dispersion equation. As a result, the interaction between SW and periodic structure is strongly frequency 

dependent. 

Possible solution: the optimal solution will be the control of the dispersion curve of the guided mode. Multiple 

solutions are possible as for example: 1) introduction of additional artificial surfaces in order to control the 

dispersion of the surface wave; 2) use of ad-hoc quasi-resonant element. Other approaches will be tested as for 

example the use of multiple periodicities in the definition of the metasurface basic element. 

 

Impact of the feeder on the radiation diagram. A strong hypothesis in the metasurface antenna design 

procedure is the availability of a perfect surface-wave launcher. Typical SW-launchers used in the literature are 

composed by small circular patches excited by pins. These structures excite the desired SW but also a spatial-

wave that affect the radiation pattern of the antenna. This effect is more important in tensorial solutions where 

the SW is a hybrid mode, since the field polarization is no more conformal to the patch geometry as for scalar 

solutions. 

Possible solution: In my opinion this aspect cannot be addressed in methodic way using commercial software 

because numerical methods as FEM (Finite Element Method), etc. cannot separate each physical contribution of 

the total field. In contrast, a theoretical approach based on Green’s function of the “loaded” dielectric slab can be 

used to decompose the radiated field into surface and spatial wave. This will allow the use of some geometrical 

optimization technique in order to maximize the power associated to the surface wave.    

 

Realistic antenna analysis. Metasurface antenna are electrically large, moreover the patch’s small geometrical 

details leads to very fine mesh that have a strong negative impact on the computational time and the numerical 

stability. At the moment, it is very hard (or impossible) simulate a final design of such antennas with commercial 

software using a workstation with more than 128Gbyte of memory.  

Possible solution: Integral equation (IE) - Method of moments (MoM) is particularly suitable for the analysis of 

printed structure since the availability of the dielectric slab Green’s functions that allows limiting the presence of 
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unknowns on the metallic elements surface. A possible solution is to use IE-MoM in association with the 

Synthetic Function Expansion (SFX) compressive domain decomposition method. SFX method, developed at the 

Politecnico di Torino, belongs to a class of domain decomposition (DD) full-wave methods that end up in 

drastically reducing the actual size of the final MoM algebraic problem. The overall large problem is addressed 

by DD, thus the actual size of the final MoM matrix is reduced by grouping basis functions into “aggregate 

functions” defined over sub-domains, i.e., portions of the structure that are significantly larger than one cell of 

the initial mesh. The main advantage of SFX over other similar techniques as Characteristic Basis Function 

Method (CBFM) is the ability to include the strong near-field interactions between the different blocks of the 

structure under analysis. This latter aspect is crucial in metasurface application where the surface is excited by a 

surface-wave (near-field interaction).  

 

4.1.2.3 Reflective and transmissive surfaces 

 

List of related publications: [P.9], [C.7], [C.19]. 
 

At very high frequencies, as for THz applications, a reflector or a lens are suitable structures that can be used to 

implementing the aperture field distribution. The basic idea is to illuminate the above mentioned structures with 

a source, and to handle the phase of the reflected/transmitted field as shown in Fig.4.23. Although we have 

investigated both, at THz frequencies, metallic reflectors are very efficient because of their extremely low losses. 

 

 
(a)                                                                  (b) 

Figure 4.23  Reflective(a) and transmissive (b) phase gratings 

 

The drawback of this implementation is that only the phase can be synthetized, while the amplitude is fixed by 

the source generating the incident field. In order to overcome this limitation, the optimization loop has to be 

changed as shown in Fig. 4.24 in order to take into account this constraint. 

 

 
Figure 4.24: Schematic of the program calculating the phase profile of the Global grating 

 

Once the optimal distribution is found the phase can be synthetized by optical consideration as follow: 
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Figure 4.25: Reflection of the interfering beams on the surface of a phase grating 

 

 

(A) Reflection. In order to correctly generate the aperture field, all the reflected rays should be parallels to the 

surface normal (the electric field vector lays correctly in the aperture plane) and its phase modified by the path 

lengths. The reflector geometry is shown in Fig. 4.25. The incoming rays are arriving with an angle inc with 

respect to the aperture normal vector. Each facet of the reflector is inclined of an angle equal to inc/2 in order to 

generate the reflected ray in the desired direction. Then, the distance z is selected in such a way to obtain the 

desired phase shift oi : 

 0 1 cos inc

z
k






 


                                                                  (4.65) 

 

Reference aperture plane

z

Reference ray



 
Figure 4.26: Geometry of the transmissing structure 

 

(B) Transmission.  The geometry of the transmissive structure is shown in Fig. 4.26. The relief of the 

transmissive grating modifies the phase front of the incoming beam because its refractive index is different from 

the refractive index of the air. So, a phase shift is introduced between different rays which do not travel along the 

same distance inside the structure. A desired phase shift with respect to the reference ray can obtained selecting 

the height of the dielectric relief as 

 0 1d

z
k n


 


                                                                        (4.66) 

 

where nd is the refractive index of the dielectric.  

 

The obtained structures has been called Global phase grating [P.9].  

 

Analysis Tool 

In general a Gaussian beam is used as incident field over the phase grating. However, commercial 

electromagnetic software does not handle Gaussian source. For this reason a Physical Optics (PO) analysis tool 

has been developed. This latter allows the simulation of very large structures in a reasonable time. An example 

of a randomly generated reflector is shown in Fig. 4.27. The incident wavevector is depicted in blue, while the 

field polarization is in red. In the actual version a simple version of shadowing has been implemented (shadowed 

parts are in black).    
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Figure 4.27: Shadowing of the PO analysis 

Future work 

The next step will be to improve the geometrical optics expression (4.65) for the shape of the reflector. The idea 

is to use eq.(4.65) as starting point for a geometry optimization based on the available analysis tool. Since this 

kind of surface can be seen as composed by a multitude of cavities (see Fig.4.27), the PO code will be improved 

implementing an Iterative Physical Optics scheme (IPO). This technique is the iterative refinement of first-order 

PO surface currents to incorporate higher-order multi-bounce and multiple diffraction effects.  

Due to the local coupling of each cell (the average reflector is flat) an alternative approach could be the analysis 

of the local environment of each cell (a small portion of the reflector around the desired cell) using a full-wave 

IE-MoM.    

 

Another solution that will be investigated is to replace the dielectric transmissive grating approach with a 

transmitarray. To do so, different dielectric layers with printed metallic periodic elements will be used (see 

Fig.4.28a). Each unit cell must introduce a certain phase shift between the incident plane wave and the 

transmitted field, while minimizing the reflection of the incident field. The value of the impedances can be 

determined by an optimization using transmission line theory. Then, the metallic patterns will be designed to 

achieve the calculated impedances. A preliminary test for an operation at 600 GHz has been fabricated using the 

process available by our colleagues at LERMA (Dr. Martina Wiedner). A triple layer structure as shown in 

figure 4.28(a) has been realized, the final structure is shown in Fig. 4.28(c). Fig. 4.28(b) shows a simulation that 

illustrates the focusing capability of the transmit array. The measurements are currently on-going.  

A PhD student is expected to start in September 2018. The funding comes from the CNES (French Space 

Agency) and the projects are led by Dr. Martina Wiedner. 

   

Figure 4.28 (a) Schematic of the transmit array (b) Simulation of the focusing power of the transmit array (c) Photgraphy of the fabricated 
prototype 
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4.1.2.4 Antenna optimization 

List of related publications: [P.2], [P.6], [P.9], [P.10], [P.14], [P.16]. 

This section presents the application of the design method for three particular applications. These activities are 

actually on going and are planned to continue in the next years.  

Planar antenna for near-field applications 

The design techniques used for focusing and shaping the electromagnetic field in the near-field or Fresnel zone 

of an antenna stem from the seminal works in [4.53]–[4.55]. In these works, large (in terms of wavelength) and 

linearly-polarized apertures are considered and an equivalence between their near and far fields is derived. The 

considered near fields are either transversal or longitudinal to the axis of a defined focal plane parallel to the 

focusing aperture. In brief, it is shown that the fields in the Fresnel and far-field zones present the same 

properties if a quadratic phase taper is imposed to the tangential field distribution of the focusing aperture. 

Therefore, the optimization/shaping of the fields in the Fresnel zone is generally done by using classical far-field 

techniques. This is strictly valid as long as the focal plane is placed at distance larger than one aperture size and 

generally beyond the near-field or reactive zone of an antenna. In addition, there is no control or design 

flexibility on the aperture and spillover efficiency, polarization and size of the system. Besides, complicated and 

lossy beam forming networks are used to practically implement the required aperture field distribution 

introducing inevitable distortions [4.56]–[4.58]. 

A simple planar structure for the near-field can be obtained using the proposed method. An example of Bessel 

beam antenna has been successfully optimized and implemented using a RLSA antenna [P.16] as shown in Fig. 

4.28(a). Measurements agree very well with the developed numerical model (Figs. 4.28(b)-(d)). 

    

                  (a)                                                            (b)                                               (c)                                                          (d) 

Figure 4.28. (a) Final prototype. Comparison between measured and MoM results : (b) Normalized component of the electric field at on the 
focusing (c) 2-D MoM electric field plot. (d) 2-D measured electric field plot. 

Two similar antennas have been implemented also with metasurface technology. Fig. 4.29 presents the 

antenna impedance distributions, while Fig. 4.30 represents the map of the near field generated by the 

metasurface antennas. As can be seen, the focusing effect is present within the non-diffractive region (white 

line). 

 

 
Figure 4.29.  Reactance chart for a Bessel beam polarized along z, generated with a 1J  distribution or an  1

1H  distribution. The average 

impedance is Zs=j 290Ω and modulation index M=0.17. 
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Figure 4.30 Normalized near field Ez component radiated by scanning for a the Bessel beam launcher antenna (a) using the aperture 

distribution (21). (b) Alternative aperture distribution (24). The white line indicate the limit of non-diffractive range 
 

As third example, an antenna optimized for the near-field focalization in a 3D region working at 30GHz is 

presented. The antenna layout is presented in Fig.4.31(a). Figs. 4.31(b)-(c), 4.32 present the measured near field 

and the field obtained with the developed MoM tool. An excellent agreement has been achieved.    
 

  
                (a)                                          (b)                                    (c) 

Figure 4.31. (a) Antenna layout. Measured Ez (normalized) at 30 GHz, on the (b) y = 0 and (c) x = 0 plane 

 

 

 
Figure 4.32. 2D illustrations of the  normalized Ez at three different heights (90,120 and 150 mm). Simulations and measurements are 
presented. 
 

This approach has been also used to investigate the possibility of excitation of Orbital Angular Momentum 

(OAM) field in the near field. Various antenna solutions have been proposed to radiate far fields carrying OAM. 

On the other hand, fewer results are known about the focusing capabilities of vortex beams in the near field. A 

RLSA antenna has been optimized and the preliminary results shown in Fig. 4.33 are very promising. 
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These works are done together with Dr. Mauro Ettorre, CNRS researcher at IETR, and with Pr. Matteo Albani 

from the University of Siena (Italy). At this moment a postdoc and a PhD student are working on this subject 

while in the last two years two PhD have actively contributed to the topic. 

 

  
                                  (a)                                           (b)                                               (c)                                             (d) 

Figure 4.33. Normalized Ez component for f = 12.5 GHz by the in-house MoM and CST for z = 32 cm. (a) Amplitude. (b) Phase. Normalized 

Ez component for f = 12.5 GHz by CST (z = 32 cm, as in Fig. 9). (a) MoM Amplitude. (b) MoM Phase. (c) CST Amplitude. (d) MoM Phase 

 

Planar metasurface antenna design for far field applications 

Some preliminary designs have been performed in order to test the aperture field implementation procedure 

using metasurfaces. Two realizations working at 9.5GHz are shown in Fig. 4.34. The first prototype is a 

broadside RHCP antenna while the second is a four beams antenna radiating two orthogonal LP beams, and R 

and L-HCP beams. The measurements are presented in Figs. 4.35-4.36. The desired radiating pattern has been 

successfully implemented. This work, done in collaboration with Pr. Hélène Roussel from L2E, has been funded 

by the CNES (PhD thesis +R&T project). 

 

Figure 4.34. Representation of the two manufactured metasurfaces. (a) Broadside RHCP metasurface. (b) Four-beams metasurface. 
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Figure 4.35. Measurement setup of the far field radiation pattern at the GeePs Laboratory. Broadside RHCP metasurface radiation pattern 

(normalized) at 9.5 GHz. Simulation results are represented in black while measurements are in red (a) RHCP component in the   cut-plane. 

(b) LHCP component in the   cut-plane. 
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(a)                                                                                                    (b) 
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(c)                                                                                                    (d) 

Figure 4.36. Multi-beam metasurface radiation pattern (normalized) at 9.5 GHz. Simulation results are represented in black while 

measurements are in red (a) RHCP component in the 90    cut-plane. (b) LHCP component in the 90    cut-plane. (c) Phi component 

in the 0    cut-plane. (d) Theta component in the 0    cut-plane 

 

THz application 

An interesting application of these structures is the design of beam splitters for multi-pixel THz heterodyne 

receptor for radio astronomy applications. A classical receptor scheme is shown in Fig. 4.36(a). In order to 

obtain a multipixel receptor the Radio Frequency (RF) signal and the Local Oscillator (LO) have to be splitted in 

multiple beams of equal power Fig. 4.36(b). 

 

 

MixerRF

LO

100%

100%

MPI

Martin-Puplett
interferometer

 
                                                     (a)                                                                                             (b 

Figure 4.36: Schematic of a. (b) Optical setup of a phase grating 
 

For beam splitter design, Daman or Fourier gratings are commonly used. It is a periodic lattice that can reflect an 

incident plane-wave into several beams. While the direction of the beams can be chosen, their shape cannot. 

Also, the shape of the incident beam is not taken into account and this lead to sub-optimal efficiency. To add 

more degrees of freedom in the design and to efficiently take into account the oblique incident non-planar wave-

front, different optimization methods to design phase-only Diffractive Optical Elements (DOEs) exists in the 

literature where an Inverse Fourier Transform (IFT) maps the desired radiated field pattern onto the DOE 

aperture. In the process, GO approximation is classically assumed at optical frequencies but can lead to non-

optimized performance at THz. 

Our procedure does not make use of GO approximation (for the aperture field calculation) but calculates instead 

the radiated field due to an equivalent magnetic current in the DOE aperture in the optimization process. With 

respect to GO-assumptions-based design procedure, this rigorous approach enables obtaining equal-intensity 

split beams, required in multi-pixel instruments. 

The difference can be explained by the dipolar nature of the reflector's current radiation that is not taken into 

account in GO, which leads to unbalanced beams under oblique incidence illumination (the intensity of the field 

radiated by a current element is not isotropic over the beam angles as supposed by GO). 

This work is done together with Dr. Julien Sarrizin (L2E), and is a collaboration with Dr. Martina Wiedner from 

the Observatoire de Paris (LERMA), who designs and builds heterodyne receivers for THz radio-astronomy. 
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Two PhD students have worked on this topic. The funding comes from the CNES (French Space Agency) and 

the projects are led by Dr. Martina Wiedner. 

Two prototypes at 610 GHz have been fabricated (see figs 4.37(a) and 4.38(a)) and characterized (see figs 

4.37(b) (c) and 4.38(b) (c)). 

 

 

 
(a)                                                   (b)                                                                       (c) 

Figure 4.37: (a)Manufactured reflective phase grating (b) Measurements setup (c) Measured far-field pattern 

 

 

                       (a)                                          (b)                                                                        (c) 
Figure 4.38. (a) Transmissive phase grating made of TPX®. (b) Measurements set-up (b) Measured power 

 

 

Future work 

A planar antenna for SATCOMM applications will be developed in the ANR-ASTRID Fast-HEM-3DSIW 

framework in collaboration with the IETR. The current state of the art for communication/surveillance systems 

shows a need for complex radiating frontends. Such systems should be able to handle multiple beams in order to 

cover large areas with a high antenna gain. 3D integrated multi-beam antennas can represent a breakthrough for 

military and civil applications for the integration of such systems in moving platforms. At the moment, the most 

promising solutions are based on quasi-optical Beam Forming Network (BFN) realized using multilayer 

Substrate Integrated Waveguide (SIW) technology. The optimization algorithms will be used for the design and 

realization of a novel complex multilayer quasi-optical Beam Forming Network (up to 6 metallic layers) for 

SATCOMM antenna frontends working at Ka band. 

 
 

4.1.3 Equipment 

 

My research mainly lies in modelling and numerical fields, however as shown in the previous section, the test 

and the application of the procedure needs the realization and the measurements of several antennas prototypes. 

This activity requires a certain number of rather expensive equipment. 

 

  
(a)                                              (b)                                             (c) 

Figure 4.39: (a) Laser etching machine ProtoLaser S4 (b) Through-hole plating machine LPKF Contac S4 (c) LPKF MultiPress S 
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The realization of SIW and metasurface antennas will be performed internally at L2E. In fact, a laser etching 

machine is available from beginning 2018, while a through-hole plating machine and a multipress for creating 

multilayer circuit have just been acquired and they will be available in the next months (Fig. 4.39). 

Regarding the measurement environment, we now have, since 2017, two anechoic chambers. A large one, built 

by Siepel company in our campus in Saint-Cyr (outside Paris), and a smaller one in the L2E laboratory (Fig. 

4.40). Moreover, a collaboration with Dr. Mohammed Serhir (GeePs), expert of measurements, has started 

recently. 

For the structured surface antennas, realization and the measurements will be performed by our colleagues at 

LERMA. 

 

       
(a)                                                              (b)   

Figure 4.40: Experimental environment at L2E. (a) Anechoic chamber (Siepel) at Saint Cyr, size: 10m x 4.4m x 4.4m, frequency: 400MHz+ 

(b) Anechoic chamber at L2E, size: 3m x 3 mx 2m. 
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4.2 Electromagnetic analysis of large natural environments for radar applications  

 

List of related publications: [P.3], [IC.1], [C.5], [C.11]. 

 

The main objective of this activity is to develop an efficient and accurate full-wave method for the 

electromagnetic analysis of large portion of natural environments in presence of targets for the Foliage 

Penetrating (FoPen) radars. 

This work is done together with Pr. Helene Roussel, Full Professor at L2E. The funding comes from the DGA 

(ANR ASTRID led by Pr. Roussel)  and a ANR ASTRID Maturation will be submitted next year. 

 

Context 

Since low frequency electromagnetic waves penetrate through forest foliage, the frequency bands VHF, UHF, L 

and S are typically used for this type of applications [4.59]-[4.64]. FoPen radar development is very expensive 

and requires extensive measurement programs. The development of a "full wave" electromagnetic model for 

analyzing scattering from large forest areas surrounding metallic targets can significantly reduce the number of 

such measurements. Indeed, the use of such models could substitute the first steps of radar developement by 

identifiying the types of radar configurations which should be investigated. 

In addition to detecting targets under cover, the proposed model can also treat problems related to the forest, 

such as the study of the biomass and the influence of moisture on the diffracted field. 

 

Motivation 

The development of exact electromagnetic models of forest scenarios presents two main challenges: (i) First, the 

scene is composed of highly heterogeneous media (lossy dielectric materials and metals); (ii) The size of the 

illuminated area (the focal spot of the UHF radar antenna) could be up to 50×50 m
2
 which corresponds to 65×65 

wavelentgh at 400MHz.   

Several techniques have been proposed in the literature for electromagnetic simulation of this type of scenarios. 

In [4.62], a hybrid FDTD formulation using Huygens’ surface approach for the metallic target and a coherent 

single scattering theory for the forest has been proposed. This model accounts for the coupling between the 

target and the foliage by using the reciprocity theorem [4.63]. In [4.64], a Multilevel Fast Multipole Algorithm 

(MLFMA) has been used to evaluate the scattering characteristics of electrically large conducting and dielectric 

targets placed at the interface of a dielectric half-space below and air above.  

Several full-wave techniques can be used to evaluate the field scattered by a heterogeneous environment 

(dielectric and metallic media). A surface integral formulation has been employed in [4.65] for both metallic and 

dielectric scatterers. However, this method requires the decomposition of the scene into several homogeneous 

dielectric sub problems, which is not possible for a natural environment. 

The main idea is to develop a model that can take advantage of all the possible physical simplifications that can 

be safely applied for our application and, at the same time, that can be easily and deeply parallelized.  

 

On going research 

A typical scene of interest for our investigation is described in Fig.4.42a. A metallic object is placed in a locally 

flat natural environment and surrounded by trees. From an electromagnetic point of view, the scene is composed 

of two classes of elements: the dielectric forest and the metallic target. 

Metallic target Forest

Coupling

 
Figure 4.42. (a) Example of representation of a typical scene (b) The trees are described by vertical cylinders (trunks) and tilted cylinders 

(primary branches) at VHF frequencies (around 400 MHz). 
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In the frequency range between 100 to 400 MHz (UHF-VHF) the main scatterers of the natural environment are 

the tree trunks and the primary branches [4.74]. As a result, the forest can be represented by vertical and titled 

dielectric cylinders as shown in Fig.4.42b. 

 

Our approach is based on a hybrid surface/volume integral formulation which uses the Characteristic Basis 

Function Method (CBFM) applied in the context of the VEFIE [4.67]-[4.69] to construct a numerical Green’s 

function of the natural environment. This choice is justified by the fact that the volume formulation of the 

electric field integral equation has been successfully used by our group to model the “forest only” scene. 

  

The scattered electromagnetic field is obtained by solving an Electric Field Integral Equation (EFIE) for the 

metallic objects using a Method of the Moment (MoM) scheme [4.70]-[4.73]. The target is supposed to be a 

Perfect Electric Conductor (PEC), while the ground is assumed to be flat. This latter limitation can be overcome 

by modeling the ground deformations as dielectric objects with the same electromagnetic characteristic as those 

of the ground.   

 
Hybrid EFIE-VEFIE formulation 

 

Throughout this chapter, the free-space propagation constant 0k  is defined as 
0 0 0 02 /k        where 

0 , 0  and 0  are respectively the permeability, permittivity and the wavelength in free space. The observation 

and source point are represented respectively by r  and r' . 

 

Let us consider a PEC object with boundary   with normal n̂  illuminated by by an incident electromagnetic 

wave S

iE . This wave will induce a surface electric current  'SJ r  radiating the scattered wave by the object. This 

latter can be expressed as the convolution of the unknown current 
SJ  and the Green’s function of the medium. 

Using the boundary condition on r  (total electrical tangent field equal to zero) leads to the EFIE: 

   

         0

0

1
ˆ ˆ ˆ ˆ , ' ' ' ' , ' 0S

i S Sjk G d G d
jk

 

 
            

 
 n n E r n n r r J r J r r r                              (4.67) 

 

The obtained equation is a Fredholm integral equation of the first kind and it can be used for closed and open 

structures. 

Let us consider now a region   filled by an inhomogeneous dielectric with electric permittivity   r and 

electric conducibility   r illuminated by the incident field V

iE . Introducing an unknown equivalent volume 

current as     0j k  
V

J r r E , where     0 0    r r  is the dielectric contrast, leads to the following 

equation (Volume Electric Field Integral Equation) that held for each r : 
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r r J r r r J r E
r r

                  (4.68) 

 

When both metallic and dielectric object are present, a hybrid volume surface integral equation can be derived 

by considering as incident field for the EFIE the sum of the primary field radiated by the source ( iE ) and the 

field radiated by volume currents ( namely      ,S

i i VE r = E r E J r ) and for the VEFIE the sum of field 

radiated by the source and the currents  (      ,V

i i SE r = E r E J r ). 

For the numerical solution, a Moment Method discretization scheme is then introduced by approximating the 

surface and volume electric currents as 

   

   
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1

' '
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                                                                         (4.69) 
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where ,S V

n nI I  are unknown coefficients and S

nf , V

nf  are suitable sets of basis surface and volume functions, 

respectively. Generally a Galerking testing scheme is adopted leading to the following matrix equation 

 

ss sv s s

v vvs vv

     
     

      

Z Z I V

I VZ Z
                                                                     (4.70) 

where 
ss

Z , 
vv

Z  are the coupling matrices between basis functions of the same nature, 
vs

Z  ,
sv

Z  represent the 

coupling matrices between different kind of currents, 
sI  and 

vI  are the unknown surface and volume current 

amplitudes, while 
sV  and 

vV  are the source vectors. 

 

Application to the specific problem 

In our application ( )G r,r'  represent the Green’s function of the two layered media (free-space and the lossy 

ground),   is the domain occupied by the dielectric scatterers (trunks and main branches), while  is the union 

of the PEC objects surfaces. 

Since we are interested only in the diffracted field in the far-field region, a larger representation error in the 

surface and volume current can be tolered with respect to antenna applications where the currents and the near-

field has to be computed accurately in order compute input parameters. This aspect let us introduce some 

approximations, based on physical arguments, that can significatively speed up the computational time while 

keeping a good accuracy in this contex (not in general). 

The first approximation concerns the geometry and its discretization (meshing and basis function choice). The 

dielectric cylinders can be safely replaced by parallelepiped [4.66], this allow its discretization into N cubic cells 

of dimension smaller or equal to 10s  (where s  is the wavelength inside the scatterers) so that the field inside 

each cell can be considered as constant. Hence, uniform basis functions and Dirac test functions (point matching 

method) can be used. However, the metallic surface  has to be discretized more accurately, thus a triangular 

mesh and Rao-Wilton-Glisson (RWG) basis functions [4.70] are used. 

As second approximation, the Green’s function is calculated by using a modified image dipole approach, which 

is based on an approximated continuous spectrum of plane waves. In the models presented heretofore, the 

metallic target and the trees are lying on a horizontal plane separating two semi-infinite homogeneous mediums 

(the ground and free space). The soil roughness is assumed to be negligible in the considered frequency band. 

The rigorous Green’s function calculation of the vector and scalar potentials for a layered medium requires the 

evaluations of several Sommerfeld-type integrals [4.71]-[4.73]. To avoid doing these calculations, and thereby 

speeding up our computation significantly, a complex image approximation based on Fresnel reflection 

coefficients has been introduced (Fig. 4.43a). An image source is placed in the specular position with respect to 

the plane as for the PEC case, while its amplitude is modified by the Fresnel reflections coefficients given by 

   0 1 0 1z z z zk k k k    ,    1 0 1 1 0 1z z z zn k k n k k    , where
 

2 2

zi ik k k   (with i=0,1) are the vertical 

wave numbers in free space and in the ground medium, k is the radial wave number, and 1n  is the refractive 

index of the lossy ground. 

0 0, 

0 0, ,r   

Source point 

 ', ', 'x y z

 ', ', 'x y z

Simple image of the 

source point 

Observation point 

 , ,x y z
0R

1R

Fresnel reflection coefficients
x

z

, 

Region 1

Region 2

 
Figure 4.43.  (a) Image principle geometry using Fresnel reflection coefficients. (b) Comparison of the amplitude of the total field diffracted 

by an oblique electric dipole moment oriented along ( 45 , 0     ) at 5mr   plotted in the XZ plan ( 0   ). 
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The field iE  radiated by the image source is thus expressed as         ˆ ˆ
i p p     E r E r E r u u  where 

pE  is the field radiated by a source placed at the image position and   ˆ
image image   u r r' r r' z  and 

ˆ || ||u u u .  

The accuracy of the approximated approach based on the use of the Fresnel reflections coefficients has been 

widely investigated and the computational time compared with other methods.  An example of an electric dipole 

placed in the free-space (region-1) above a lossy ground (region-2), as illustrated in Fig.4.43a. A lossy ground of 

relative permittivity 7r  , and conductivity 0.02 S/m   is considered. The source point is located 

at    ', ', ' 0,0,0.1 mx y z  , and the working frequency is 500MHzf  . Figure 4.43b presents a comparison of 

the amplitude of the field obtained by using three different methods: - the rigorous Sommerfeld calculation 

(rigorous solution);  - a two level discrete complex image method [4.74]-[4.76]; -the Fresnel coefficients method. 

The Fresnel coefficients method provides a sufficiently accurate result demanding a significantly lower 

execution time. Indeed, doing the simulation under the same computer the calculation of the Sommerfeld integral 

and the DCIM take respectively 59.25s and 16.77s while the approach proposed takes 2.83s. Such reduction in 

CPU time is of great interest when dealing with large scenes. 

 

In the recent past years an efficient VEFIE solver has been developed [4.66] in our lab. It is based on an 

Extended-CBFM (CBFM-E) compression scheme [4.68] and can handle a large number of unknowns. This latter 

algorithm begins with a domain decomposition of the scene into several geometrical smaller blocks. In each 

block, Characteristic Basis Functions (CBFs) are generated by aggregating uniform (low-level) basis functions. 

The number of CBFs retained for each block is much lower than the original number of low-level basis functions, 

leading to a significant MoM interaction matrix compression. This scheme can easily handle problems involving 

millions of unknowns with a significant reduction of computational time and memory requirement with respect 

to conventional MoM approach. 

In order to take advantage of the above-mentioned tool, we rewrite the linear system (4.70) by solving, 

separately, the two unknown currents terms ( sI  and vI ): 

 

1

c, s s vss s sv vv

   
 
Z Z I V Z Z V                                                             (4.71) 

1

, v v svv c v vs ss

   
 
Z Z I V Z Z V                                                             (4.72) 

 

where 
1

,c s sv vv vs


Z Z Z Z  and 

1

,c v vs ss sv


Z Z Z Z  represent the coupling matrices. 

Equation (4.71) can be interpreted as a EFIE scheme for the surface currents using the VEFIE formulation as 

numerical Green’s function. System (4.72), represents a VEFIE scheme for the volume currents using the EFIE 

formumation as numerical Green’s function. 

Matrices representing volume current interactions are compressed by the CBFM_E approach enabling us to 

handle very large scenarios.  

NUMERICAL AND EXPERIMENTAL VALIDATION 

The model has been validated by comparisons with avaiable commercial software and by comparison with 

measurements.  

Numerical validation 

In order to obtain reference solutions small structures have been analyzed. An example is shown in Fig. 4.44a. 

The scenario is composed of a metallic parallelepiped surrounded by two identical trees. The size of the 

parallelepiped is (0.2 m × 0.2 m × 1.2m). The trees are composed of trunks of height 2.1m and 4 primary 

branches. The relative permittivity and conductivity of the trees are  4. 2r   and 0.0167S/m  ). The 

distance between the cube and the trees is d 0.25m . The relative permittivity and conductivity of the ground 

are  5r   and 0.034S/m  , respectively. The incident field is a plane wave propagating along the direction 

defined by ( , ) (30 ,0 )inc inc      at the frequency of 300MHzf  . The discretization of the scene leads to 7518  

unknowns ( 7200  for the volume formulation and 318  for the surface one). In Fig.4.44b, a comparison of the 

amplitude of the diffracted Field (polar HH) obtained with DEMOS and FEKO is presented for an observation 

point at a distance 2000mR  . We note that good agreement is obtained between the two models. 
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                     (b) 

Figure 4.44. Comparison of the diffracted field. (a) the considered scene (b) the amplitude of the polar HH (dB) in the 0   cut-plane. 

 

In terms of the computing time, DEMOS is more efficient than FEKO, which uses the traditional MoM. In fact, 

it took 1minute and 15seconds to perform the analysis while FEKO needed around 35 minutes. The execution 

times were obtained on the same computer (CPU Intel® i7 4600U with 16 Gb RAM). 

 

Experimental validation 

Since environmental conditions and experimental uncertainties may dramatically influence the scattering as well 

as the forest electromagnetic properties change during the year, the underlying idea is to carry out bi-static 

scaled-model measurements in an anechoic chamber. Their aim is to validate our scattering model in well-

controlled conditions. Some experiments have been conducted in the anechoic chamber of CCRM in Marseille, 

France (see Fig. 4.45a). The dimensions of the anechoic chamber are equal to 14 x 6.5 x 6.5 m3. The bi-static 

measurement setup consists of two antennas, a transmitter and a receiver, placed on a semi-circular vertical arch 

and/or a rotating arm (allowing the positioning of the antennas in the horizontal plane), a network analyzer, 

synthesizers and external mixers [4.76]. We plan to assess our model by comparing our results with 

measurements on controlled structures and for different frequencies and incident angles. Some preliminary 

measurements have already been performed, concerning a mono-static case and a simple configuration 

composed of a L-shaped target placed on a metal plate and surrounded by 2 trees (see Fig. 4.45a). On figure 

4.45b, we compare for the VV and HH polarizations the variations of the measured and scattered fields with 

respect to the incident angle θ at 11Ghz. We obtain a good agreement between the two results. 

 

 
(a)                                                                                  (b) 

Figure 4.45. a) The target b) Comparison of the scattered field (measured (red) and calculated (blue) scattered fields) by the L-shaped target 

placed on a metal plate. 

 

 

APPLICATION OF THE MODEL TO REALISTIC CASES 
The developed model can be used to investigate the effect of a metallic target in a realistic scenario. A large 

forest area generated arbitrary in a scene of (15 15m m ) (Fig. 4.56). The scene is comprised of 52 trees that 

corresponds to a tree density of (
20.23 [ / ]trees m ) and a metallic military tank. Each tree has 8 primary 

branches and their heights vary between 1.2 m to 4.5 m. The relative permittivity and conductivity of the ground 

are  5r   and 0.07S/m  . The tank is 2.6m high, 3.2min length and 1.5m in width. The incident field is a 

plane wave of frequency 400MHzf  .  
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Figure 4.46. Geometry of the considered scene. 

 

 
                                                         (a)                                                                                                          (b) 
Figure 4.47. Influence of the presence of a metallic target in a forest environment on the amplitude of the co-polar VV and HH for the 

incident angle (( , ) 45 ,0 )inc inc     : (a) without the target (dB). (b) in presence of the target (dB).  

 

Figure 4.47 presents the amplitude of the co-polarisations (VV and HH) of the scattered field calculated at a 

distance R=2000m with respect to the direction cosines ( ˆ sin cosu    and ˆ sin sinv   ), both in presence 

and absence of the metallic target. This is done in order to investigate the effect of the presence of the target on 

the field diffracted by the forest. For this example, a bi-static configuration is used.  The incident angles are 

   , 45 ,0inc inc      and the observation points are such that s varies from 0° to 89° (with a step of 1°) and the 

azimuth angle s  varies from 0° to 360° (with a step of 5°). 

Not unexpectedly, for the co-polarization  cases of VV and HH, the maxima are in the forward ( obs inc  and 

 ibs co n  ) and backward ( obs inc  and   180obs inc    ) directions, when we consider only the forest, the 

latter being the strongest (the subscript obs refers to the angles of the observation points). This is due to the 

double bounce of signals between the trunk and the ground. Both of these lobes are relatively narrow. This is the 

typical bi-static scattering pattern of a single vertical cylinder laying on a flat surface, and by extension the one 

of a forest patch comprised of vertical trunks and branches with relatively vertical orientations. 

In the other side concerning the cross-polar HV and VH given in Fig. 4.48, the maxima are not in the backward 

and forward directions. This may be due, at least partly, to the presence of primary branches of the trees. We can 

also imagine being able to better detect the target for these polarizations if we use bi-static configurations in . 

We notice also that the level of polar VV is more important than the other polar field; consequently, we use a 

different scale for this polarization to maintain a contrasting image.  

It is worthwhile to note that the presence of a metallic target significantly enlarges the aperture of the two main 

lobes of the pattern. This leads us to the conjecture that the most desirable bi-static angular directions for 

detecting metallic objects are not in the back- and forward-scattering directions (using HH and VV polarisations) 

but in the angular ranges that skirt these angles instead. 
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                                                         (a)                                                                                                          (b) 

Figure 4.48. Influence of the presence of a metallic target in a forest environment on the amplitude of the cross-polar VH and HV for the 

incident angle (( , ) 45 ,0 )inc inc     : (a) without the target (dB). (b) in presence of the target (dB).  

 

Additionally, we investigate the effect of the presence of the forest on the radar cross-section of the tank, and we 

also treat the same scene for a monostatic configuration (HH polarization). The results of comparison are given 

in Fig.4.49a. It can be seen from this figure that the presence of the tank affects the RCS of the forest and 

depends on the position of the tank in the forest and the surrounding trees. For the other case of co-polarization 

(VV), the difference between the RCS of the forest alone and that of the forest in the presence of target is less 

obvious. 

 

 
(a)                                                                              (b) 

Figure 4.49. (a)The effect of the forest on the polar HH monostatic RCS on theta of the tank. The incident field is a plane wave propagating 

along the direction defined by 0 90inc    and 0inc   . (b) Time consumption in terms of number of trees. 

 

The simulation of the scene has been carried out on a shared memory computer (CPU Intel® CPU E5-1650 v3 

with 128 Go RAM). The discretization of the scene leads to 773 670 unknowns (762 240 for the volume 

formulation and 11430 for the surface one). Using a CBFM-E for the forest the number of unknowns is reduced 

to 93223, thus realizing a compression rate (CR defined in [4.68]) of 8.17. The memory consumption for this 

complex scene is 96 514 Mb. The entire simulation takes 16h 25min for the bi-static case and 7h30min for the 

monostatic one. This simulation has been carried out by using a computer with a CPU Intel® i7 4600U and 16 

Gb RAM). The execution time as a function of the number of trees (which is directly related to the number of 

unknowns) is shown in Fig. 4.89b. 

 

Future work 

1) Acceleration of the 
sv

Z matrix filling time 

Each element 
,

sv

i vz of the n m  rectangular matrix 
sv

Z represents the field radiated by the i-th RWG basis 

function in the center of the v-th volumetric cell. Since we are dealing with large scenarios, it follows that almost 

the totality of the dielectric cell centers are in the far-field region for each single basis function. Because of the 

nature of the Green’s function, the matrix 
sv

Z will be numerically rank-deficient. In other words, the effective 
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rank of the matrix  min ,r m n . From this consideration it follows that in principle it is possible to recreate 

the information contained in 
sv

Z  with a number of parameters smaller than the product m n . 

To take advantage of this consideration we will investigate the use of the Adaptive Cross Approximation 

Algorithm (ACA) [4.77]. ACA is a purely algebraic procedure that aims to approximate m nZ  through a product 

form 

 

m n m n m r r n    Z Z U V                                                                  (4.73) 

 

by keeping the Frobenus norm of the relative error below a selected threshold  , namely: 

 

m n m n m n   Z Z Z .                                                               (4.74) 

 

The interesting thing about this algorithm is that it approximates the original matrix by requiring only partial 

knowledge of the original matrix. In particular, the 
sv

Z  matrix could be recreated by calculating only r(m+n) 

coupling terms and recreated with a complexity of   2O r m n . 

2) Compression of the 
ss

Z matrix 

In the actual form of our formulation the matrix 
ss

Z is directly the EFIE-MoM coupling matrix of the metallic 

objects alone. Its size is directly related to the discretization of these objects (the size increase as the size and the 

geometrical complexity of the objects increase). Realistic complex targets could thus produce very large 

coupling matrices leading to extremely long computational time. Moreover, the EFIE suffers from ill-

conditioning in the presence of dense discretizations [4.78]. This latter problem can be solved by using 

Calderon-based preconditioners [4.79]-[4.81]. 

In order to overcome these problems we plan to extend the CBF method to the metallic objects [reference]. 

Particular attention has to be taken in order to guarantee the continuity of the surface current at the interface 

between adjacent CBF.  

The expected benefits by applying this procedure, based on a Singular Value Decomposition (SVD) of a matrix 

containing the current solution of each block illuminated with different sources, are: 1) an important matrix size 

compression; 2) the SVD filtering could improve the compressed matrix condition number. 

3) New measurements campaign 

A new measurements campaign has to be plan in order to validate experimentally the scattering of complex 

metallic objects in presence of a more realistic environment. The main issue will be the introduction of a realistic 

ground for two reasons:  - the need of a uniform material with the desired complex dielectric constant; 2  

4) Parallelization of the code 

The model is in principle easily parallelizable. The volumetric interactions have been already successfully 

parallelized with an MPI implementation [4.82]. The next step will be the parallelization of the whole code for 

the hybrid formulation.  
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Conclusion 
 
 

This HDR thesis summarizes the professional activities I have conducted this last decade, both before and after I 

joined Sorbonne. The presented research project, dealing with the implementation of planar aperture field 

antennas, represents the natural junction between the different activities I have been working: antenna design, 

metamaterials, and numerical methods. The novelty of the project is the strong interaction between different 

techniques coming from these domains (aperture field optimization, numerical analysis and antenna physics).    

Aperture field reconstruction using three planar complementary technologies has been exposed: 

 

A) Slot antennas. Slot antennas are very well known in the antenna community. However, to the best of 

my knowledge, few works are present in the literature about the aperture field reconstruction. A new 

technique for the implementation of a general aperture distribution has been presented and will be 

improved in the next years in order to prevent undersampling problems. Weak point: only discrete 

distribution can be implemented. Strong point: the primary feeder radiates inside a parallel plate 

waveguide and do not contribute directly to the radiated field.  

 

B) Metasurface antenna. Metasurface antennas based on the conversion of a surface wave into leaky 

wave have recently been introduced. Some interesting examples have been published for far field 

applications. However, these design procedures are very complicated and not general leading to limited 

degrees of freedom in the radiation pattern. A completely different approach enabling the aperture field 

synthesis has been introduced and preliminary examples in the near and far field region presented. The 

future research will be focalised in the bandwidth enhancement. Some reconfigurable structures as for 

example LCD technology will also be considered. Weak points: The feeder is placed above the 

metasurface to excite the desired surface-wave. It radiates also a spurious field in the free space that can 

limit the antenna performance. Strong point: continuous distribution can be implemented.     

 

C) Shaped surfaces. Shaped reflectors as Fourier grating, etc. have been used in the past to design beam 

splitters and other devices at THz regime. These devices are based on periodic profiles, where the 

period is determined by the desired angle between beams. This aspect limits the versatility of these 

solutions for the following reasons: 1) the beam directions are dictated by the periodicity, thus it is not 

possible to radiate to customary directions; 2) it is very hard to independently control the shape and the 

energy associated to each beam; 3) the periodic nature of the surface will excite non-desired harmonics. 

The proposed aperture field shaped surface does not suffer in principle of these restrictions. Further 

developments are necessary to optimize the procedure. The possibility to improve the transmissive 

solution using a transmittaray will be deeply investigated in the next years.  Weak points: The profile is 

no more periodic, this means that the alignment has to be done very carefully. The bandwidth is narrow. 

Strong point: continuous distribution can be implemented. This means that this technique can be used 

to design planar lenses etc. 

 
In conclusion, my perspective for the next years consists in continuing to develop analytical and numerical 

models for electromagnetics. The particularity of these models is that they are not general purpose tools but they 

are targeted to particular applications in order to take advantage of the physics of the problem. The natural 

desired output is the design of novel planar antennas. Furthermore, I would like to continue my scientific 

collaborations and developing new ones with both academics and industrials. 
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