
HAL Id: tel-04556833
https://hal.science/tel-04556833v1

Submitted on 23 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Diagrammatic Monte Carlo: recent developments and
applications to the Hubbard model

Michel Ferrero

To cite this version:
Michel Ferrero. Diagrammatic Monte Carlo: recent developments and applications to the Hubbard
model. Condensed Matter [cond-mat]. Institut Polytechnique de Paris, 2023. �tel-04556833�

https://hal.science/tel-04556833v1
https://hal.archives-ouvertes.fr


H
a

b
ilit

a
tio

n
 à

 d
iri

g
e

r d
e

s 
re

c
h

e
rc

h
e

s Le logotype en réserve blanche 
s’applique sur fonds foncés.

Le logotype bleu, noir… … ou blanc

Le logotype, dans ses versions verticale et horizontale, 
existe en bleu pour un usage sur fond clair.

La version en noir s’applique à titre exceptionnel, 
uniquement pour certains modèles d’enveloppes.

PANTONE 7694C
CMJN  100 - 57 - 9 - 52
RVB  1 - 66 - 106

PANTONE PROCESS BLACK
CMJN  0 - 0 - 0 - 100
RVB  0 - 0 - 0

9

Diagrammatic Monte Carlo:
recent developments and applications to

the Hubbard model

Habilitation à diriger des recherches
de l’Institut Polytechnique de Paris

Spécialité : Physique

Habilitation soutenue à Paris, le 7 juin 2023, par

Michel Ferrero

Composition du jury :

André-Marie Tremblay
Professeur, University of Sherbrooke, Québec, Canada Président

Giorgio Sangiovanni
Professeur, Institute for Theoretical Physics and Astrophysics,
Würzburg, Allemagne

Rapporteur

Ulrich Schollwöck
Professeur, LMU München, Allemagne Rapporteur

Corinna Kollath
Professeure, Physikalisches Institut, Universität Bonn,
Allemagne

Examinatrice

Thierry Giamarchi
Professeur, Department of Quantum Matter Physics, Ecole de
Physique, University of Geneva, Suisse

Examinateur





Contents

1 Introduction 1

2 Diagrammatic Monte Carlo algorithms 5
2.1 An example of a perturbation expansion algorithm: CT-INT . . . . . . . . . . . . 5

2.1.1 Perturbation series for the partition function . . . . . . . . . . . . . . . . 5

2.1.2 Ratio of perturbation series for the Green function . . . . . . . . . . . . . 6

2.1.3 Monte Carlo sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 The fermionic sign problem and the α-trick . . . . . . . . . . . . . . . . . 8

2.1.5 Behavior of the sign problem and limitations of the algorithm . . . . . . . 8

2.1.6 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The original DiagMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Monte Carlo sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Nature of the fermionic sign problem . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Resummation of the series . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Determinant-based versus diagram-based approaches . . . . . . . . . . . . . . . . 14

3 Recent algorithmic developments of the DiagMC 15
3.1 The CDet algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Generalization to one-particle irreducible quantities . . . . . . . . . . . . . . . . . 17

3.3 Resummation of the series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Constructing optimized perturbation series . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 The dangers of boldification . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Chemical potential shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3 Renormalized perturbation theory . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Broken-symmetry perturbation series . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Weak-to-intermediate coupling regime of the half-filled Hubbard model in two di-
mensions 32
4.1 Crossover from a metallic state to a quasi-ordered insulating-like state . . . . . . . 32

4.2 A multi-method, multi-messenger study . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Dynamical mean-field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Single-particle properties beyond mean-field theory . . . . . . . . . . . . . . . . . 35

4.5 Double occupancy and Pomeranchuk effect . . . . . . . . . . . . . . . . . . . . . 37

4.6 Magnetic correlations beyond mean-field theory . . . . . . . . . . . . . . . . . . . 39

4.7 Nature and consequences of spin fluctuations . . . . . . . . . . . . . . . . . . . . 41

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



5 Unbiased calculations of the antiferromagnetic phase in the three-dimensional Hub-
bard model 46
5.1 Magnetic phase diagram and current limitations . . . . . . . . . . . . . . . . . . . 46

5.2 Broken-symmetry perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Magnetization and critical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Double occupancy and entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Evolution inside the antiferromagnetic phase . . . . . . . . . . . . . . . . . . . . . 49

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Doping the Hubbard model: magnetic and charge correlations and pseudogap 51
6.1 Model and physical observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Magnetic correlation regimes: the weak, the strong and the long . . . . . . . . . . 53

6.3 Commensurate to incommensurate crossover . . . . . . . . . . . . . . . . . . . . 55

6.4 Absence of charge redistribution in the intermediate temperature regime . . . . . . 57

6.5 Single-particle response: crossover diagram and spectral fingerprints . . . . . . . . 58

6.6 Modified spin-fluctuation approach to the pseudogap . . . . . . . . . . . . . . . . 61

6.7 Fate of the pseudogap at low temperature . . . . . . . . . . . . . . . . . . . . . . 62

6.8 Toward a comprehensive picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusions and perspectives 65

8 References 68

ii



1 Introduction

Materials with strong electronic correlations host among the most fascinating phenomena of mod-
ern condensed matter physics. They originate from a complex interplay between the Coulomb
interaction, the kinetic motion of the electrons, the lattice structure and magnetic degrees of free-
dom. Different phases characterized by distinct symmetries and properties compete. Because they
may have very similar (free) energies, small modifications of parameters, such as the electronic
density, an external magnetic field or pressure can stabilize one or another phase or give birth to
new states of matter. This often results in sophisticated phase diagrams with, for example, un-
usual spin- or charge-ordered regimes [1], Mott metal-to-insulator transitions [2], quantum critical
behavior close to zero-temperature phase transitions [3] or high-temperature superconductivity [4].
An emblematic example of such phase diagrams in shown in Fig. 1. It features the different forms
of matter that appear in the hole-doped copper oxides discovered in 1986 [5, 6]. Changes in the
number of electronic carriers and temperature yield a number of peculiar phases and regimes with
remarkable properties. On the one hand, investigating these phase diagrams raises very funda-
mental physics questions about the emergence of organized structures in systems involving a large
number of interacting particles [7]. On the other hand, correlated materials can have useful proper-
ties and it is likely that unconventional features like high-temperature superconductivity or colossal
magnetoresistance will find future technological applications. It is then no surprise that the dis-
covery of high-temperature superconductors and other strongly correlated materials has triggered
an immense amount of innovative scientific inquiry. Experimental techniques have been developed
with ever more sensitive and precise probes on increasingly cleaner samples.

Despite all these advances, many central questions remain. For example, the nature of the pseu-
dogap regime [8, 9] or the mechanisms behind the superconductivity in cuprates is still largely
debated [10]. Even more generic features, such as the strange metallic behavior seen in many
correlated materials [11], have escaped a generally accepted understanding. Indeed, studying the
physics of a large number of interacting quantum entities, the quantum many-body problem, is a
formidable theoretical challenge. To date, there is no generic framework that allows to embrace
the full complexity of a realistic material, including all electronic and lattice degrees of freedom.
There is therefore a crucial need to develop practical tools for calculating and predicting materials
properties, as outlined by Dirac in 1929 [12]. A natural first step in this construction of efficient
methods for the many-body problem is to start investigating simpler models that nevertheless cap-
ture the essence of interacting quantum particles, very much like the Ising model [13, 14] does in
the context of classical statistical physics.

Hubbard model Probably the simplest model describing interacting fermions on a lattice is the
single-band Hubbard model [15–18] given by the Hamiltonian

H =
∑
r ,r ′,σ

tr r ′c
†
rσcr ′σ + U

∑
r

nr↑nr↓, (1)

where tr r ′ are hopping amplitudes between the sites r , r ′ of a lattice, c†rσ creates a fermion with spin
σ at site r , nrσ = c

†
rσcrσ and U is the Coulomb repulsion experienced by two fermions sitting on the

same lattice site. The Hubbard model emphasizes the physics of electronic correlations and, in this
simple form, does not include multiple orbitals, non-local interactions or lattice effects. Despite its
simplicity, the Hubbard model displays a wide range of correlated electron behaviors ranging from
metal-to-insulator transitions to superconductivity and magnetism [19, 20]. It is also believed to be
a relevant effective low-energy model for cuprate superconductors [21]. More recently, experiments
on cold atoms trapped in optical lattices have also been able to directly simulate the Hubbard
model at intermediate temperatures [22–27].
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Figure 1: Typical phase diagram of hole-doped copper oxides. The blue and green regions
correspond to antiferromagnetic order (AF) and d-wave superconducting order (d-SC) setting in
at the Néel and superconducting transition temperatures TN and Tc , respectively. The yellow and
magenta regions indicate the pseudogap and strange metallic regimes, separated by a crossover at
T ∗. The red and green striped area show the presence of charge and incommensurate spin order
below TCDW and TSDW, respectively. Taken from Ref. [6].

Except for special circumstances, such as the one-dimensional case [28, 29], there is no general
analytical solution for the Hubbard model (1). In that respect, the development of sophisticated
computational methods has been instrumental in making progress in our understanding of the
model. As we will discuss below, all numerical approaches are based on some level of approximation.
If this has originally led to possible disagreements between different methods, the situation is
constantly improving and consensus is progressively reached for certain regimes of parameters of
the model, notably thank to multi-method collaborations [30–34]. For example, it is now established
that the ground state of the two-dimensional Hubbard model with only nearest-neighbor hoppings
at intermediate to strong coupling and near optimal doping does not display superconductivity but
rather a stripe ordered phase [32]. The existence of superconductivity in this model has been a
central question in the field and more work is still needed to establish how the situation depends
on the presence of e.g. a next-nearest-neighbor hopping. Another example where a consensus
has been reached is the weak-coupling finite temperature regime of the half-filled two-dimensional
Hubbard model (with no nearest-neighbor hopping) which is now largely understood (see Sec. 4 and
Ref. [34]). There are however still many exciting regimes where a consensus is lacking, especially in
trying to connect the ground-state properties to those found at finite temperature [35, 36]. This
can to some extent be attributed to the existence of a dichotomy in the available algorithms for
zero and finite temperature.

Ground-state methods A possible approach to characterize the physics of strongly correlated
systems is to start from their ground-state properties and infer how they may be controlling
their properties at finite temperature. Algorithms aiming at the zero-temperature limit are often
wavefunction-based methods. They construct an approximation to the ground-state wavefunction
which is used to compute physical observables. We briefly describe two prototypical examples of
these algorithms:
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• Auxiliary-field quantum Monte Carlo: This algorithm [37–39] starts from a trial wavefunction
and projects it to the ground state by applying e−βH for β → ∞. The method works in
imaginary time on finite lattices. The projection is done stochastically and can suffer from
the fermionic sign problem [40]. The latter can be circumvented by a constrained-path
approximation that involves a choice of a proper trial wavefunction.

• Density matrix renormalization group: It is a variational wavefunction algorithm [41, 42] that
constructs the ground state by diagonalizing the Hamiltonian in a truncated subspace de-
termined by the condition that the spatial extent of the entanglement between basis states
should be minimized. The algorithm generally works on strip geometries and is controlled by
the number of states that need to be kept in the basis in order to capture the entanglement
of the wavefunction.

Finite temperature algorithms A different path to analyze the properties of interacting fermions
is to take a top-to-bottom viewpoint, where one studies the physical observables at finite temper-
ature and gradually reduces it to identify the onset of different regimes and possible instabilities on
the way to the ground state. Most of the algorithms in this class of methods are stochastic. We
again describe some typical examples here:

• Dynamical mean-field theory and extensions: The dynamical mean-field theory [43–45] has
been a central tool in the study of correlated systems. It maps the original lattice problem on
a self-consistent impurity model. It thus fully captures local correlations but neglects spatial
correlations. Several cluster [46] or vertex-based [47] extensions allow for a systematic im-
provement over single-site dynamical mean-field theory by including spatial correlations. In
all these methods, the computational complexity comes from solving a cluster of quantum
impurities embedded in a bath, typically with continuous-time quantum Monte Carlo meth-
ods [48]. They generally suffer from a fermionic sign problem and are limited by the size of
the impurity cluster.

• Determinantal quantum Monte Carlo: This algorithm is a controlled method for the simula-
tion of correlated fermions on a finite lattice [49–53]. It is based on a transformation of the
interacting problem into a free fermion system coupled with auxiliary fields. The field configu-
rations are sampled stochastically to compute physical observables. It requires extrapolations
with the system size and the Trotter discretization step.

• Diagrammatic Monte Carlo: First developed by Svistunov and Prokof’ev [54], this algorithm
is based on the stochastic evaluation of the Feynman diagrams contributing to a given per-
turbation expansion. The method can work directly in the limit of infinite system size. It is
limited by the statistical variance and the perturbation series for physical observables need
to be resummed from the knowledge of a small number of perturbation orders. Recent
improvements of this method are the topic of the following sections.

Limitations and complementarity The algorithms described above all face some limitation con-
nected to the entanglement of the ground-state wavefunction, the choice of an appropriate guiding
wavefunction, the fermionic sign problem or the restricted size or geometry of the system that they
can consider. There is no universal method that can tackle all regimes of parameters of a quantum
many-body problem and it is very important to take advantage of the complementary viewpoints
that they offer. In that respect, attempting to establish a handshake between the results obtained
from zero-temperature methods and finite-temperature approaches will certainly prove to be a very
fruitful enterprise. There is therefore a great value in continuing to push forward the development
of existing algorithms and in conceiving new ones.
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Diagrammatic Monte Carlo and its recent developments In the following, we will discuss some
recent developments and applications of one of the techniques introduced above: the diagrammatic
Monte Carlo algorithm. It is a very versatile approach that has been applied to a variety of physical
systems including, among others, the polaron problem [55–58], the electron gas [59–61] or the
unitary gas [62]. It will not be our intention to cover all these applications and the presentation will
be highly biased towards our own work with results obtained for different incarnations of the Hubbard
model at finite temperature and at equilibrium. As we will discuss, one of the singular aspects and
strength of the diagrammatic Monte Carlo approach is that it can treat very large systems avoiding
the need to perform finite-size scaling. On the other hand, there are difficult regimes, especially
those characterized by a long magnetic correlation length, where it is still difficult to obtain accurate
results and more future developments are needed.

Organization of the following sections In Sec. 2, we introduce the general notion of a di-
agrammatic Monte Carlo method by taking the particular example of the interaction expansion
continuous-time quantum Monte Carlo algorithm. This will set the stage to present the original
version of the diagrammatic Monte Carlo method. There have been several important recent al-
gorithmic improvements to the method that have contributed to broaden its scope of applicability.
These developments are discussed in Sec. 3. The following three sections present applications of
these algorithms to several versions of the Hubbard model. In Sec. 4, we discuss the physics of the
half-filled Hubbard model in two dimensions which also includes results obtained from a large body
of other many-body methods. We then turn to the physics of the antiferromagnetic phase of the
three-dimensional Hubbard model at half-filling in Sec. 5. The third model that we have investi-
gated is the doped two-dimensional Hubbard that we discuss in Sec. 6. In particular, we analyze
the behavior of the pseudogap regime and how it is related to the onset of magnetic correlations.
We also attempt to establish a connection between our finite-temperature results and ground-state
results obtained by auxiliary-field quantum Monte Carlo. We finally conclude and discuss future
perspectives in Sec. 7.
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2 Diagrammatic Monte Carlo algorithms

There are several algorithms that are designated as diagrammatic Monte Carlo algorithms. What
they all have in common is that they stochastically sample the contributions of a perturbation ex-
pansion. Different algorithms use expansions of different quantities of interest expanded in different
coupling constants. Our main focus will be the algorithm originally introduced by N. Prokof’ev and
B. Svistunov [55] and its subsequent developments and applications to the Hubbard model. To
avoid confusion, we will denote the latter as DiagMC in the following. But before introducing
the DiagMC, we will first examine another perturbation-based algorithm: the continuous-time in-
teraction expansion quantum Monte Carlo (CT-INT) [63–66]. Historically, the CT-INT has been
introduced after the DiagMC, but it is useful to review it in order to introduce the formalism and
discuss similarities and differences with the DiagMC approach later on.

2.1 An example of a perturbation expansion algorithm: CT-INT

The CT-INT is now mainly used in the context of quantum impurity models, but it can equally be
formulated for the Hubbard model (is it then sometimes referred to as determinant diagrammatic
Monte Carlo – DDMC). The starting point is a separation of the Hamiltonian into a non-interacting
part H0 and a perturbation part Hint:

H =
∑
r ,r ′,σ

tr r ′c
†
rσcr ′σ + U

∑
r

nr↑nr↓ = H0 +Hint. (2)

With this separation, it is natural to work in the interaction picture (operators will have a hat in
this picture). The time evolution operator is given by

Û(τ, τ ′) = eτH0
[
e−(τ−τ

′)H
]
e−τ

′H0 . (3)

It satisfies the following differential equation

∂τ Û(τ, τ
′) = eτH0 (H0 −H) e−(τ−τ

′)He−τ
′H0 = −Ĥint(τ)Û(τ, τ

′) (4)

with the initial condition Û(τ, τ) = 1. By iteratively integrating the equation we find

Û(τ, τ ′) =

∞∑
n=0

(−1)n

n!

∫ τ
τ ′
dτ1 · · ·

∫ τ
τ ′
dτn Tτ

[
Ĥint(τ1) · · · Ĥint(τn)

]
, (5)

where we introduced the time-ordering operator Tτ . This expression will be useful to obtain per-
turbation series for quantities of interest.

2.1.1 Perturbation series for the partition function

The expression (5) for the time evolution operator allows us to find a perturbation expansion of
the partition function Z in powers of the Coulomb interaction U, i.e.

Z = Tre−βH =
∞∑
n=0

znU
n, (6)
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where β = 1/T is the inverse temperature. Indeed,

Z

Z0
=

〈
Û(β, 0)

〉
0
=

∞∑
n=0

(−1)n

n!

∫ β
0

dτ1 · · ·
∫ β
0

dτn
〈
Tτ

[
Ĥint(τ1) · · · Ĥint(τn)

]〉
0

=

∞∑
n=0

(−U)n

n!

∫ β
0

dτ1 · · ·
∫ β
0

dτn∑
r1,...,rn

〈
Tτ

[
n̂r1↑(τ1) · · · n̂rn↑(τn)

]〉
0

〈
Tτ

[
n̂r1↓(τ1) · · · n̂rn↓(τn)

]〉
0
,

(7)

where ⟨Â⟩0 is the average of the observable A in the non-interacting system and Z0 = exp(−βH0).
We can now use Wick’s theorem to express these averages as simple determinants

Z = Z0

∞∑
n=0

(−U)n

n!

∫ β
0

dτ1 · · ·
∫ β
0

dτn
∑
r1,...,rn

detM
(n)
↑ detM

(n)
↓ , (8)

where the matrices have elements

M
(n)
σ =


G0σ(0, 0

−) G0σ(r1 − r2, τ1 − τ2) . . . G0σ(r1 − rn, τ1 − τn)
G0σ(r2 − r1, τ2 − τ1) G0σ(0, 0

−) . . . G0σ(r2 − rn, τ2 − τn)
...

...
. . .

...
G0σ(rn − r1, τn − τ1) G0σ(rn − r2, τn − τ2) . . . G0σ(0, 0

−)

 . (9)

In these matrices, the non-interacting propagator G0σ is given in Fourier space by

G0σ(k , iωn) =
1

iωn + µ− ϵk
, (10)

where ϵk is the non-interacting dispersion of the electrons. From the expressions above, we see
that the partition function Z can be expressed as a perturbation series in U. Every coefficient in
this series is an integral of a product of determinants over n imaginary times {τ1, . . . , τn} and n
site positions {r1, . . . , rn}.

2.1.2 Ratio of perturbation series for the Green function

A very similar derivation can be used to obtain the perturbation series for the interacting Green
function

Gσ(r − r ′, τ − τ ′) = −
1

Z
Tre−βHTτcrσ(τ)c

†
r ′σ(τ

′) (11)

Using the time evolution operator, it can be written as

Gσ(r − r ′, τ − τ ′) = −
1

Z

〈
Tτ

(
Û(β, 0)ĉσ(τ)ĉ

†
σ(τ

′)
)〉
0

(12)

Following the same steps as for the partition function, we end up with

Gσ(r − r ′, τ − τ ′) =
Z0
Z

∞∑
n=0

(−U)n

n!

∫ β
0

dτ1 · · ·
∫ β
0

dτn∑
r1,...,rn

〈
(−1)Tτ

[
n̂r1↑n̂r1↓(τ1) · · · n̂rn↑n̂rn↓(τn)ĉrσ(τ)ĉ

†
r ′σ(τ

′)
]〉
0

(13)

We can again use Wick’s theorem and express the non-interacting averages in terms of determi-
nants. The only difference is that the matrix corresponding to the spin σ will have one more row
and column corresponding to the ĉσ(τ)ĉ

†
σ(τ

′) terms

Gσ(r − r ′, τ − τ ′) =
Z0
Z

∞∑
n=0

(−U)n

n!

∫ β
0

dτ1 · · ·
∫ β
0

dτn
∑
r1,...,rn

det M̃
(n)
σ detM

(n)
σ̄ (14)

6



where M(n)σ̄ is the same as above and M̃(n)σ has elements

M̃
(n)
σ =


G0σ(0, 0

−) . . . G0σ(r1 − rn, τ1 − τn) G0σ(r1 − r ′, τ1 − τ ′)
G0σ(r2 − r1, τ2 − τ1) . . . G0σ(r2 − rn, τ2 − τn) G0σ(r2 − r ′, τ2 − τ ′)

...
. . .

...
...

G0σ(rn − r1, τn − τ1) . . . G0σ(0, 0
−) G0σ(rn − r ′, τn − τ ′)

G0σ(r − r1, τ − τ1) . . . G0σ(r − rn, τ − τn) G0σ(r − r ′, τ − τ ′)

 (15)

We have now found a perturbation series for the partition function and an expression for the
Green function that involves a ratio of two series. Indeed, in (13) the partition function Z in the
denominator is itself a series in U. Note that similar calculations can be carried out for other
observables such as the double occupancy, etc.

2.1.3 Monte Carlo sampling

The final expression for the Green function has the form

Gσ(r − r ′, τ − τ ′) =
∑∞
n=0

(−U)n
n!

∫ β
0 dτ1 · · ·

∫ β
0 dτn

∑
r1,...,rn

det M̃
(n)
σ detM

(n)
σ̄∑∞

n=0
(−U)n
n!

∫ β
0 dτ1 · · ·

∫ β
0 dτn

∑
r1,...,rn

detM
(n)
↑ detM

(n)
↓

. (16)

Carrying out the integrals over imaginary times and sums over space positions quickly becomes
prohibitive with standard integration tools. A natural approach is to sample them stochastically
using a Metropolis-Hastings algorithm. In that context, a Monte Carlo configuration would be
associated with a given choice of the perturbation order n, a set of imaginary times {τ1, . . . , τn} and
a set of positions {r1, . . . , rn}. We can denote such a configuration with C = {n, r1, τ1, . . . , rn, τn}.
The expression for the Green function then becomes

Gσ(r − r ′, τ − τ ′) =
∑
C
(−U)n
n! det M̃σ[C] detMσ̄[C]∑

C
(−U)n
n! detM↑[C] detM↓[C]

. (17)

A natural choice for the Monte Carlo weight ρ(C) of a configuration C is to use the absolute value
of the contribution w(C) of that configuration to the partition function

ρ(C) = |w(C)| =
∣∣∣∣(−U)nn! detM↑[C] detM↓[C]

∣∣∣∣ (18)

The Monte Carlo estimate of the Green function is then

Gσ(r − r ′, τ − τ ′) =
∑MC
C sign(w(C)) det M̃σ[C]/ detMσ[C]∑MC

C sign(w(C))
, (19)

where
∑MC
C is a sum over the configurations generated during the Markov process with relative

probabilities given by ρ(C). There is freedom about how to propose new configurations in the
Markov chain. A simple way to generate ergodic configurations is to have two Monte Carlo
“moves”: an insertion of an additional vertex at a random imaginary time and a random position and
a removal of a randomly chosen vertex in C. The first move increases the current perturbation order
n → n + 1, while the second move decreases the perturbation order n → n − 1. As a side remark,
one can efficiently compute the ratio det M̃σ[C]/ detMσ[C] by keeping a copy of the inverse matrix
M−1σ [C] and updating it during the Monte Carlo evolution using the Sherman–Morrison formula.
The numerical cost for the insertion or removal of a vertex is then O(n2).
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2.1.4 The fermionic sign problem and the α-trick

In the formulation above, the CT-INT algorithm will suffer from a very strong fermionic sign
problem. Its origin comes from the sign changes of the contribution w(C) in the denominator
in (19). Indeed, when there is no spin imbalance, both determinants entering w(C) in (18) are the
same and their product is positive. A sign alternation then comes from the (−U)n and subsequent
orders have contributions of opposite sign. This leads to an increased variance that eventually
makes it impossible to obtain reliable estimates of the physical observables.

A way to improve the sign problem is to change the determinants so that their product will have
a sign compensating the (−1)n. This can be partially achieved with the so-called α-trick: rewrite
the interaction term in the Hamiltonian as

Unr↑nr↓ → U(nr↑ − α↓)(nr↓ − α↑) + U
∑
σ

nrσασ + const (20)

and write the expansion in powers of U(nr↑ − α↓)(nr↓ − α↑). To compensate for this change, the
second term U

∑
σ nrσασ must be included as a constant energy shift in the non-interacting part

H0. This artificial introduction of α↑ and α↓ has no consequence on the final result, but it leads
to two practical changes. The first is that the non-interacting Green function is now given by

G0σ(k , iωn) =
1

iωn + µ− ϵk − Uασ
, (21)

which creates a spin imbalance for the non-interacting electrons. The second change brought by
the ασ is that the expansion in powers of U will involve different interaction terms and the matrices
now include extra ασ terms on the diagonal

M
(n)
σ →


G0σ(0, 0

−)− ασ̄ G0σ(r1 − r2, τ1 − τ2) . . . G0σ(r1 − rn, τ1 − τn)
G0σ(r2 − r1, τ2 − τ1) G0σ(0, 0

−)− ασ̄ . . . G0σ(r2 − rn, τ2 − τn)
...

...
. . .

...
G0σ(rn − r1, τn − τ1) G0σ(rn − r2, τn − τ2) . . . G0σ(0, 0

−)− ασ̄

 . (22)

Let us consider the contribution to the partition function at order 1. The product of the determi-
nants in this case is〈

Tτ (n̂r1↑ − α↓)(τ1)
〉
0

〈
Tτ (n̂r1↓ − α↑)(τ1)

〉
0
= (⟨nr1↑⟩0 − α↓)(⟨nr1↓⟩0 − α↑) (23)

If we for example suppose that ⟨nr1σ⟩0 ≃ 1/2 as would be the case for a system close to half-filling,
then one could choose

ασ =

{
1
2 + δ σ =↑
1
2 − δ σ =↓

(24)

For some value of δ, we can expect that the two terms (⟨n↑⟩0 − α↓) and (⟨n↓⟩0 − α↑) will have
different signs so that their product is negative. This would compensate for the (−U) prefactor and
make the contribution positive. With similar arguments, one can motivate that at higher orders,
such a choice for ασ may lead to products of determinants that have a sign (−1)n compensating
the (−U)n. In the generic case, the sign problem cannot be completely removed, but tuning the δ
parameter can lead to great improvements.

2.1.5 Behavior of the sign problem and limitations of the algorithm

The complexity of the CT-INT algorithm is of order O(n2) at every Monte Carlo step. It is clear
that the average perturbation order visited during the simulation will control the computational
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Figure 2: Histograms of the absolute contributions from different perturbation orders to the parti-
tion function of the one-dimensional Hubbard chain with N = 32 sites, U = 3.5t and µ = t. The
histograms correspond to four different temperatures and it is seen that the average perturbation
order increases linearly with inverse temperature β.

speed of a step in the calculation. It can be shown that the average perturbation order behaves as
∼ UβN, where N is the number of sites considered in the model. An example of the distribution of
perturbation orders contributing to the partition function is shown in Fig. 2 for a one-dimensional
periodic Hubbard chain

Hchain = −t
N∑
i=1

∑
σ

c
†
iσci+1σ − µ

N∑
i=1

∑
σ

niσ + U

N∑
i=1

ni↑ni↓, (25)

where N is the number of sites in the chain, µ is the chemical potential, t the nearest-neighbor
hopping and U the onsite Coulomb repulsion. The polynomial increase of the average perturbation
order with system size, inverse temperature and interaction strength certainly makes the algorithm
slower, but it is not the major bottleneck of the algorithm.

The real limitation comes from the fermionic sign problem that generically appears. A good quan-
tifier of the sign problem is the average sign in the denominator of (19)

s = ⟨sign(w(C))⟩ . (26)

There are special cases, such as half-filling, when the sign problem is absent and s = 1. But
for a doped lattice model, the increase of the average perturbation order is typically accompanied
by an exponential reduction of the average sign with decreasing temperature or increasing system
size. This is shown in Fig. 3 where we display both the average sign and the average perturbation
order for a simulation of the one-dimensional Hubbard chain (25). The average perturbation order
increases linearly with inverse temperature and with the number of sites N. When the sampled
perturbation order is larger, the sign alternation becomes more dramatic as the imaginary times and
positions of the internal vertices are changed. The resulting average sign is suppressed exponentially
and the corresponding increase in variance makes it impossible to obtain accurate results at low
temperature or larger coupling when the system is large. The impossibility to reach large system
sizes with the CT-INT motivates the need to design other algorithms that allow for the simulation
of large systems.
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Figure 3: Behavior of the average sign (left panels) and average perturbation order (right panels)
in the one-dimensional Hubbard chain. The upper panels display their behavior as a function of
the inverse temperature β = 1/T for two values of the interaction. The lower panels document
the behavior as a function of the system size for two different temperatures. The average sign
decreases exponentially with inverse temperature or number of sites.
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2.1.6 Some remarks

This introduction to the CT-INT algorithm will be useful to discuss some of the properties of the
DiagMC approach. Let us conclude this section by making some observations about the CT-INT
algorithm:

• The algorithm is based on the stochastic sampling of a perturbation series, but it is not
perturbative and limited to small values of the coupling U. Indeed, the algorithm is numerically
exact and when the sign problem can be controlled, it can reach the strong coupling regime.
In practice, all relevant perturbation orders are sampled and there is no artificial truncation
that needs to be performed.

• Seen as complex functions of U, both the partition function and the numerator in the Green
function (16) are entire functions. As a result, the corresponding series have infinite conver-
gence radius. For any finite size system and any finite temperature, the coefficients eventually
decay exponentially at large perturbation orders and their contribution becomes negligible.
The perturbation series is therefore well-controlled mathematically. The limitation comes
from the difficulty to accurately sample these coefficients because of the sign problem.

• The CT-INT belongs to the family of diagrammatic Monte Carlo methods, but diagrams
are never used in practice. There is a diagrammatic interpretation of the determinants that
can be seen as a sum of all Feynman diagrams that can be placed on the set of interaction
vertices. But it is always their sum that is sampled, they are never sampled individually.

• There are other continuous-time quantum Monte Carlo algorithms, such as the CT-HYB [67,
68] or the CT-AUX [69] that are mainly targeted at solving quantum impurity models.

2.2 The original DiagMC algorithm

We now turn our discussion to the DiagMC algorithm. The algorithm has been introduced by
N. Prokof’ev and B. Svistunov [55] for the polaron problem, but its formulation is very general.
The idea of the algorithm is to write a single perturbation series directly for the physical observable
of interest and sample its contributions stochastically. It may seem that this is precisely what we
have described with the CT-INT algorithm above, but there is an important difference. In the
CT-INT algorithm, the expression for the Green function (16) is a ratio of two perturbation series
in U. The algorithm samples both the numerator and the denominator and then takes the ratio at
the very end of the calculation. In the DiagMC algorithm, the Green function is not expressed as
a ratio but as a single series

Gσ(r − r ′, τ − τ ′) =
∞∑
n=0

gσnU
n. (27)

The coefficients of this series have a clear diagrammatic interpretation: every coefficient gσn is given
by

gσn =

∫ β
0

dτ1 · · ·
∫ β
0

dτn
∑
r1,...,rn

F σ(r , τ, r ′, τ ′; r1, τ1, . . . , rn, τn), (28)

where the function F σ(r , τ, r ′, τ ′; r1, τ1, . . . , rn, τn) is the sum of all connected diagrams with ex-
ternal vertices (r , τ) and (r ′, τ ′) and internal vertices {(r1, τ1), . . . , (rn, τn)}. The elimination of
disconnected diagrams comes from the linked cluster theorem. If one starts from the expres-
sion (13) both numerator and denominator have a diagrammatic interpretation: the product of
the determinants can be seen as the sum of all possible diagrams at order n, both connected and
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disconnected. But once the ratio is taken, all the disconnected diagrams simplify and one is left
with only connected diagrams. This is the usual derivation of the Feynman diagrams for the Green
function which is eventually written as

Gσ(r − r ′, τ − τ ′) =
∞∑
n=0

∫ β
0

dτ1 · · ·
∫ β
0

dτn
∑
r1,...,rn

Mn∑
k=1

Dσk (r , τ, r
′, τ ′; τ1, r1, . . . , τn, rn), (29)

where Mn is the number of different topologies of connected diagrams at order n and the contri-
bution of the k th connected diagram is Dσk (r , τ, r

′, τ ′; τ1, r1, . . . , τn, rn).

2.2.1 Monte Carlo sampling

Again, the imaginary-time integrals and the sums over spatial positions cannot be computed ex-
plicitly and a Monte Carlo algorithm is used to sample them. In the original DiagMC, the sum over
the different diagram topologies is also done stochastically. A Monte Carlo configuration is then
characterized by the set C = {n, k, r1, τ1, . . . , rn, τn} and the corresponding Monte Carlo probability
is the absolute value of the contribution of a diagram

ρ(C) = |w(C)| =
∣∣Dσk (r , τ, r ′, τ ′; τ1, r1, . . . , τn, rn)∣∣ . (30)

A given coefficient gσn is then simply

gσn = K
MC∑
C

sign(w(C)), (31)

where the sum is over the configurations (here taken at fixed perturbation order n) generated
by the Markov chain. Note that a Metropolis-Hastings algorithm will only produce configurations
that have well-defined relative Monte Carlo probabilities, but it is not able to provide a normalized
distribution. When the physical observable is obtained from a ratio, which is usually the case
in statistical physics or in the CT-INT algorithm, this missing normalization cancels out in the
ratio. But in DiagMC, there is no such ratio, and the Monte Carlo sum needs to be normalized
by a constant K. There are different strategies to obtain a normalization. For example, one can
compute a known value from the sampled configurations and use it to normalize the result. Another
possibility is to compute two subsequent orders at the same time (with moves that add or remove
an interaction vertex) starting from order 0, which is known analytically, and use the lowest order
to normalize the next order. Other more sophisticated approaches have also been proposed to
efficiently compute and normalize all orders at the same time [70].

The Monte Carlo moves start from a given topology and generate new configurations, either by
changing the values of the imaginary-time and space positions of the vertices, or by creating new
topologies. Actually, in the original formulation of the DiagMC, the diagrams were constructed
with vertices carrying an imaginary time and propagators expressed in reciprocal space. Special care
had to be taken in the sampling of the diagrams in order to satisfy the momentum conservation.
This could be achieved with a worm algorithm that was switching between a physical space where
momentum conservation was ensured and a non-physical space where momentum conservation
was not imposed [71]. In later implementations of the DiagMC, such as in our work Ref. [72], the
diagrams were expressed in real space. This had both the advantage of making the Monte Carlo
moves simpler to implement and also made the sampling more efficient because propagators have
a fast decay as a function of spatial distance resulting in fairly localized diagrams. Note that the
computational cost for a single Monte Carlo move is of order O(1) in the DiagMC.
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Figure 4: Thermodynamic behavior of connected and disconnected diagrams. Left panel: A con-
nected diagram at order 5. Because propagators decay quickly with the distance, the spatial integral
over internal vertices has mainly contributions from diagrams that remain close to xin and xout. As
a result, the integral is not dramatically changing when the system size increases. Right panel:
A disconnected diagrams at order 5. The disconnected piece involving x1 and x4 gives the same
contribution to the diagram, no matter how far it is from xin and xout. The spatial integral over the
internal vertices x1 and x4 will yield a contribution proportional to the system size. For the diagram
that only contains disconnected pairs of fermionic loops (tadpoles), the corresponding contribution
to the coefficient scales like (βUN)n at order n and strongly increases the average perturbation
order.

2.2.2 Thermodynamic limit

Probably the biggest advantage of the DiagMC algorithm is the possibility to investigate very large
systems. Unlike other algorithms, such as the CT-INT, the general structure of the contributions
gσn does not dramatically change with the system size. Different system sizes induce changes in
the free propagators, but those are quite small when the system size is large enough. The system
size also enters in the sums over spatial positions. But because the propagators decay quickly with
the distance, the diagrams that have a non-negligible contribution are quite localized in space. As
a result, only a restricted part of the spatial sums is relevant and it is not scaling with the system
size. This property is intimately related to the fact that the diagrams are connected so that all
vertices are bound together by the propagators (see Fig. 4).

In contrast, in the CT-INT algorithm, the determinants in the numerator and denominator can be
seen as a sum of all possible diagrams, including disconnected ones. In this case, it is clear that
diagrams consisting of several pieces can have a large weight even when the pieces are far apart,
as shown in Fig. 4. Increasing the system size then directly leads to a larger coefficient growing
like Nn at order n (N is the number of sites) and eventually pushes the average perturbation order
to larger values.

2.2.3 Nature of the fermionic sign problem

The limitations of the DiagMC come from the difficulty to compute many series coefficients gσn .
The sign of the contributions Dσk (r , τ, r

′, τ ′; τ1, r1, . . . , τn, rn) changes for different value of the
imaginary times and spatial positions. And even for fixed times and positions, different diagram
topologies have different signs. Supposing that the perturbation series has a non-zero convergence
radius R, the coefficients gσn are expected to decrease as 1/Rn. This means that at large orders,
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the Monte Carlo sampling has to yield a small coefficient, while the number of diagrams increases
factorially with absolute values of the contributions from single diagrams remaining of the same
order of magnitude. This is how the fermionic sign problem [40] manifests itself in the DiagMC.
Having an alternation of signs between different topologies is actually needed: if all diagrams had
the same sign, the coefficients would increase factorially with the perturbation order and the series
would never converge. In practice, however, this alternation yields a large statistical variance and
typically not more than 6 or 7 perturbations orders can be computed with enough accuracy. A lot
of the recent efforts aim at improving this sign problem, as discussed in Sec. 3.

2.2.4 Resummation of the series

In the DiagMC, it is directly the series for the physical observable that is computed. This series is
less sensitive to the system size and can in principle be computed for very large lattices. However,
unlike the partition function or the numerator of (16), the Green function seen as a function of
the coupling U is not an entire function. The corresponding series will in general have a finite
convergence radius. This introduces the new difficulty of resumming the series at the physical
value of U. Various series acceleration or analytical continuation schemes are therefore typically
needed in order to obtain the value of the physical observable. With only 6 or 7 perturbation
orders, this can become very challenging and often limits the range of applicability of the DiagMC
to weak-to-intermediate values of the coupling constant U.

2.3 Determinant-based versus diagram-based approaches

We have presented two prototypical diagrammatic Monte Carlo algorithms that share some sim-
ilarities but also have some very distinctive differences. The CT-INT algorithm is based on a
perturbation expansion of the partition function. It computes physical observables, such as the
Green function, as a ratio (ZG)/Z where both the numerator and the denominator are computed
during the Monte Carlo. At every step a product of determinants is evaluated. From a diagram-
matic perspective, this is a sum of a factorial number of connected and disconnected diagrams and
it is obtained in a polynomial effort. If these diagrams were sampled individually, it would lead to
a dramatic sign problem and only a few of perturbation orders could be computed. The strength
of the determinant is that the sum of all diagrams has a much better behaving sign and very large
perturbation orders (several hundreds) can be reached. On the other hand, the fact that the deter-
minants contain disconnected diagrams leads to a rapid increase of the average perturbation order
with the system size and an increasingly bad sign problem. As a result, it is difficult to address
large systems with such determinant-based methods.

The DiagMC samples the contribution to the actual perturbation series of the physical quantity
(not a ratio). For the Green function, those contributions are a set of connected diagrams that
are sampled individually. The fact that diagrams are connected makes them more local in space
and not as sensitive to the system size that can be taken very large. The sampling of individual
diagrams comes with a strong sign problem and only a very limited number of coefficients can be
evaluated. This makes the resummation of the series very difficult and the strong coupling regime
is often out of reach. A natural way to improve the sign problem would be to explicitly sum all
topologies at every Monte Carlo step, but this would come with a factorial computational cost that
prohibits reaching large perturbation orders.

Understanding the strengths and limitations of these approaches has been a very important ingre-
dient in the recent developments that took inspiration from both determinant- and diagram-based
approaches and eventually lead to great algorithmic improvements. This will be the topic of the
next section.
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3 Recent algorithmic developments of the DiagMC

The DiagMC algorithm has not seen major improvements between 1998 and 2017. There have been
some effort at improving the Monte Carlo sampling and reducing the fermionic sign problem, but
the typical perturbation orders that were reachable for the Hubbard model remained quite limited,
around 6 or 7. An important development that triggered renewed interest in the diagrammatic
approach came in 2017, with the introduction of the connected determinant algorithm (CDet) [73].
From the discussion above, it seems clear that explicitly summing all connected diagrams at a given
Monte Carlo step would yield a much better behavior of the sign. But a naive summation would
require to add up a factorial number of terms. The idea behind the CDet algorithm is to use
a recursive formula involving determinants in order to sum all the connected diagrams with a
computational effort that is only exponential. This exponential cost is not as powerful as the
polynomial complexity of computing the sum of all diagrams (both connected and disconnected)
with a single determinant, but it nevertheless turned out to be a very important advance that
made it possible to compute about twice as many perturbation orders as compared to the original
DiagMC algorithm. It was soon generalized to compute one-particle irreducible quantities. With
more available coefficients, a lot of the effort after that was to find ways to resum the series or
formulate modified series with better convergence properties. We will summarize some of these
developments here.

3.1 The CDet algorithm

Let us imagine we have a set of n interaction vertices characterized by n imaginary times and n
spatial positions. We will denote this set by V = {x1, . . . , xn} where xi = (ri , τi) is a combined
index for time and position. This set of internal vertices V will have a certain contribution to the
coefficient gσn in the perturbation series of the Green function Gσ(xout, xin). We will write this
contribution with GσV (xout, xin) so that

gσn =
(−U)n

n!

∑
V

GσV (xout, xin). (32)

From a diagrammatic point of view, GσV (xout, xin) is given by the sum of all connected diagrams
starting at xin and ending at xout with propagators connecting the internal vertices in V . The idea
of the CDet algorithm is to start from the sum of all connected and disconnected diagrams which
can be expressed as the product of determinants

DσV (xout, xin) = detMσV (xout, xin) detM σ̄V (∅), (33)

where we have introduced the matrices

MσV (xout, xin) =


G0σ(x1, x1) . . . G0σ(x1, xn) G0σ(x1, xin)

...
. . .

...
...

G0σ(xn, x1) . . . G0σ(xn, xn) G0σ(xn, xin)

G0σ(xout, x1) . . . G0σ(xout, xn) G0σ(xout, xin)



M σ̄V (∅) =

G0σ̄(x1, x1) . . . G0σ̄(x1, xn)...
. . .

...
G0σ̄(xn, x1) . . . G0σ̄(xn, xn)

 .
(34)

Then, the disconnected part is removed recursively. Any disconnected diagram in DσV (xout, xin) is
made of two parts: a connected part involving xin, xout and some subset S ⊊ V of internal vertices
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and a part that can be either connected or disconnected and involves the remaining vertices V \S, see
Fig. 5. For a given S, the sum of all such disconnected diagrams is given by GσS(xout, xin)DσV \S(∅).
The sum of all connected diagrams is obtained by removing these contributions for all subsets S
from the full sum of diagrams DσV (xout, xin)

GσV (xout, xin) = DσV (xout, xin)−
∑
S⊊V
GσS(xout, xin)DσV \S(∅). (35)

This equation involves Gσ(xout, xin) on both sides. However, the set S on the right is always a subset
of V . One can therefore evaluate (35) recursively. In practice, this is done with the following steps:

• One starts by computing and storing DσS(xout, xin) and DσS(∅) for all S ⊆ V . If there are
n internal vertices, there are

(
n
k

)
subsets including k vertices. Computing the determinant

for one of those subsets has a cost of order O(k3). The total computational complexity to
compute all determinants is then naively

n∑
k=0

(
n

k

)
k3 ≃ 2nn2

3 + n

8
∼ n32n (36)

This complexity can be brought down to O(2n) using a fast principal minor algorithm [74]
that we generalized for several applications within diagrammatic Monte Carlo algorithms [75].

• The next step is to compute the starting point of the recursion Gσ∅(xout, xin) which is nothing
but the free propagator G0σ(xout, xin).

• Then, all the GσS(xout, xin) with S containing a single vertex are computed using (35). This
only involves Gσ∅(xout, xin) which has already been computed.

• The construction continues like this, with GσS(xout, xin) being computed for all S containing
2 vertices, and then 3, . . ., until reaching S = V and thus concluding the calculation of
GσV (xout, xin). At every step with k vertices, only connected contributions involving a number
of vertices smaller than k are necessary in (35) and those have already been computed in the
recursion. When computing the contribution for a subset with k vertices, the sum in (35)
involves 2k terms. The total complexity is then given by

n∑
k=0

(
n

k

)
2k = 3n (37)

This complexity can in principle be reduced to O(n22n) using a fast subset convolution
technique [76]. It however turns out that for the orders that can be reached and once the
overhead for the subset convolution is taken into account, the direct O(3n) calculation often
performs better.

The CDet algorithm is somewhere between the original DiagMC and a single determinant-based
algorithm like CT-INT. At every Monte Carlo step, the contribution from all possible topologies
involving the n internal vertices is taken into account. A Monte Carlo configuration is then entirely
determined by the set V = {x1, . . . , xn} and the sampling has to be done over the possible imaginary
times and positions of the internal vertices. The computational cost is dominated by the recursion
formula (35) which has exponential complexity O(3n). It however turns out that the improvement
that this brings in terms of fermionic sign problem eventually makes it a much more powerful
algorithm that the original formulation of DiagMC. For the Hubbard model, up to 12-13 coefficients
can be computed in favorable cases. Also, importantly, it has been shown that if the series for
the physical observable is convergent, the CDet algorithm can reach a given accuracy ϵ in a
computational time that is a polynomial in ϵ−1 [77].
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Figure 5: Generic topology of a disconnected diagram. It is composed of a connected part involving
the external vertices xin and xout and a subset S = {x3, x7} ⊊ V of internal vertices. The other part
is a vacuum diagram constructed on the remaining internal vertices in V \S = {x1, x2, x4, x5, x6, x8}.
It does not need to be connected.

3.2 Generalization to one-particle irreducible quantities

The CDet recursion is a method to sum all connected diagrams involving a set V of interaction
vertices. The algorithm described for the Green function is easily generalized to quantities such
as the double occupancy ⟨nr↑nr↓⟩ or other correlators akin to ⟨nrσ(τ)nr ′σ′(τ ′)⟩ that can be used
to compute spin or charge susceptibilities. When it comes to single-particle properties, it is often
important to have access to both the Green function and the associated self-energy. In principle,
it is enough to use Dyson’s equation to retrieve the self-energy, but it turns out in practice that it
leads to very noisy data. We have investigated several approaches to compute the self-energy in
order to assess what is the best strategy [78]:

(A) Dyson’s equation: The self-energy is simply obtained from the computed Green function via

Σσ(xout, xin) = G
−1
0σ (xout, xin)− G−1σ (xout, xin). (38)

(B) Equation of motion: Using the equations of motion for the Green function, one can show
that the self-energy can be obtained as

Σσ(xout, xin) = Σ
Hartree
σ δxout,xin + F̄σ(xout, xin)−ΣσGσΣσ(xout, xin), (39)

where ΣHartree
σ is the constant Hartree term and F̄σ is the correlation function defined by

F̄σ(xout, xin) ≡ −U2⟨Tτnσ̄cσ(xout)nσ̄c
†
σ(xin)⟩. (40)

Graphically, the equation for the self-energy can be seen as

Σσ =
Gσ̄
+

All vertices in V
(connected) −

Σσ

Σσ

Gσ
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The self-energy is obtained from the correlation function which is the sum of all diagrams with
two external interaction vertices connected by all possible combination of propagators. The
one-particle-irreducible (1PI) diagrams are filtered out by subtracting all diagrams that are
made of two self-energy diagrams connected by a single propagator line [78]. Reorganizing
the terms, we can write

Σσ = Σ
Hartree
σ + F̄σ −

[
F̄σG0σ +Σ

HartreeG0σ
]
Σσ. (41)

With the CDet algorithm, the perturbation series for Gσ is computed and used to obtain
the Hartree term ΣHartree. Then, F̄σ is also calculated with the CDet algorithm. Because
the perturbation series for F̄σ is at least of order U2 and that of ΣHartree at least of order
U, the equation (41) provides a recursion for the computation of the series coefficients of
the self-energy. The expression (41) does not involve any inversion and is thus expected to
provide better results than Dyson’s equation with the only additional cost of computing F̄σ
which is also of complexity O(3n) at order n.

(C) Determinantal approach to sum all 1PI diagrams: The third method is very similar to the
equation of motion approach, except that the cancellation to only keep 1PI diagrams is done
at every Monte Carlo step, for a given set of internal vertices V , rather than as a post-
processing procedure as above. The contribution of the set V to the self-energy is the sum
of the Hartree term UGσ̄V (xin, xin)δxout,xin and a non-local part Σ̃σV (xout, xin) given by

F̄ σV (xout, xin)−
∑
x ′∈V

S⊆V \{x ′}
S′=V \(S∪{x ′})

F σS′(xout, x
′)Σ̃σS(x

′, xin)−
∑
S⊆V
S′=V \S

F σS′(xout, xin)
(
UGσ̄S(xin, xin)

)
, (42)

where we have introduced another correlation function that is easily computed in CDet

Fσ(xout, xin) = ΣσGσ(xout, xin) ≡ −U⟨Tτnσ̄cσ(xout)c
†
σ(xin)⟩. (43)

The recursion (42) can again be understood graphically

Σ̃σV

xin

xout

=
All vertices in V

(connected)

xin

xout

−
∑
x ′∈V

S⊆V \{x ′}
S′=V \(S∪{x ′})

Σ̃σS

x ′

}F σS′
Gσ

Σσ

xin

xout

−
∑
S⊆V
S′=V \S

Gσ
Gσ̄S(0

−)

} F σS′Σσ

xin

xout

The evaluation of this expression is done recursively for Σ̃σS (in red) starting with the order-2
diagram

Σ̃σ(xin, xin) =

xin xout

(44)

The recursion involves a sum over an internal vertex x ′ which implies that the correlators
F σS have to be computed for all possible pairs of external vertices. This comes with a
computational cost O(n23n) which dominates the computational time. Eliminating the non-
1PI diagrams at every Monte Carlo step is certainly improving the sign problem, but it is not
evident whether this compensates for the increased complexity.

We have compared the three approaches described above by computing the self-energy of the
two-dimensional Hubbard model

H = −t
∑
⟨r ,r ′⟩,σ

c†rσcr ′σ + U
∑
r

nr↑nr↓, (45)
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Figure 6: Hubbard model self-energy at the first Matsubara frequency Σ̃k⃗(iω0) along the
k⃗ = (0, 0) → (π, 0) → (π, π) → (0, 0) path, as obtained from Dyson’s equation (green), the
equations of motion approach (orange) and the direct self-energy measurement (blue). Left panel:
Contribution at order 3. Right panel: Contribution at order 6 (the Dyson’s equation approach is
not shown). We use a 32×32 lattice with βt = 2, U = 4t, µ = 0. All simulations lasted 120 CPU
hours. Figures taken from [78].

with only nearest-neighbor hoppings, on a periodic 32 × 32 lattice. We will denote the proto-
cols (A), (B), (C) by Dyson, EOM and ΣDet in the following.

In Fig. 6, we display a comparison of different contributions to the self-energy Σk,σ(iω0) taken at
the first Matsubara frequency along a k-path in the Brillouin zone and obtained after a simulation
of 120 CPU hours. Already at order 3 (left panel), it is clear that Dyson’s equation yields much
larger error bars and both the EOM and ΣDet are a lot more accurate and have comparable error
bars. At order 6 (right panel), Dyson’s equation is not able to produce relevant results so we only
compare EOM and ΣDet. The EOM approach is shown to have larger variance, a result that
continues to be true at larger orders.

The evolution of the variance of the EOM and ΣDet approaches for a selected self-energy as a
function of perturbation order is shown in the left panel of Fig. 7. For all computed orders, the
variance of the ΣDet is about one order of magnitude smaller than the EOM approach.

The conclusion of this study is that even though the elimination of non-1PI diagrams requires
more computational effort in the ΣDet approach (see right panel of Fig. 7), it eventually leads to
smaller statistical variance on the evaluation of the self-energy. This is both the result of a more
efficient cancellation when it is done for every internal vertex configuration, but it also comes from
a more efficient sampling when only self-energy diagrams are kept. Indeed, during the sampling
of the Fσ and F̄σ correlators the vertices are less constrained and even though the diagrams are
connected they have a larger spatial extent than those involved in the self-energy calculation with a
higher irreducibility level. Very similar algorithms to isolate 1PI diagrams have also been described
in Ref. [79] and Ref. [80].

3.3 Resummation of the series

The algorithms described above have made it possible to compute more perturbation coefficients. A
first application has been a careful study of the weak-to-intermediate regime of the two-dimensional
Hubbard model which is described in Sec. 4. However, in the doped case, even with a larger number
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measurement. We use a 32 × 32 lattice with βt = 2, U = 4t, µ = 0. Right panel: Comparison
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fitted by its expected high-n behavior: γΣn23n for the ΣDet (dotted red line) and γG3n for Dyson
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Figure 8: Pole structure of the self-energy of the Hubbard atom with ϵ = −1/2 at the first
Matsubara frequency for two temperatures: 1/5 (left panel) and 1/20 (right panel). The color
indicates the phase of the complex number and the intensity is proportional to its modulus.

of coefficients, the series were difficult to resum in the most interesting regimes of intermediate-to-
strong coupling at low temperatures. This difficulty in the doped Hubbard model is not that much
a problem of lacking enough coefficients, but mainly comes from the bad behavior of the original
series in this regime. Ultimately, it is because the self-energy and other physical observables seen
as a function of a complex coupling U have a very non-trivial pole structure. An example of this
pole structure can be computed for the simple case of a Hubbard atom, which is a single energy
level with a Coulomb repulsion

Hatom = ϵ
∑
σ

nσ + Un↑n↓. (46)

This system can be solved exactly and yields a self-energy

Σatom
σ (iωn) = ⟨nσ⟩U +

⟨nσ⟩(1− ⟨nσ⟩)U2

iωn − ϵ− (1− ⟨nσ⟩)U
, (47)

where the average occupancy ⟨nσ⟩ is

⟨nσ⟩ =
e−βϵ + e−β(2ϵ+U)

1 + 2e−βϵ + e−β(2ϵ+U)
. (48)

The self-energy at the first Matsubara frequency is shown in the complex plane of U in Fig. 8 for
two temperatures. In both cases several poles are seen and their position strongly depends on the
physical parameters, such as the temperature.

The closest pole to the origin will set the radius of convergence of the series. In the most favorable
situations, the value of interest of U lies within the convergence radius and a simple analysis of
the partial sum of the series can be enough to find the value of the observable. But if one is
interested in a value of U beyond the convergence radius, it becomes necessary to perform some
analytical continuation of the series. There are various methods to do this, many of which have
been developed and used in the 60’s, at a time when high-temperature series were being studied in
the context of statistical physics models. We typically use Padé approximants [81–83], Dlog-Padé
approximants [84], integral approximants [85] or conformal maps to evaluate the series beyond its
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convergence radius. Comparing the results from different approaches can be used to assess a level
of confidence for the resummation.

Unfortunately, the series generally become more difficult to resum in the most interesting regimes.
What will in general define the probability of success is the proximity of a pole to the positive real
axis. In a situation where the poles lies far from the real positive axis, such as the example on the
left panel of Fig. 8, resummation techniques will in general be efficient. When instead a pole is
close to the real positive axis and the evaluation has to be done beyond this point (e.g. at U = 1
on the right panel of Fig. 8), the resummation will often be impossible. The closer the pole is to
the axis, the more coefficients are needed. In practice we observe that by just getting the pole a
bit closer to the axis, many more coefficients are quickly needed and because we only have access
to ∼ 10− 12 coefficients, the resummation becomes the bottleneck of the calculation.

There is no general understanding of what controls the entire pole structure of a physical observable
such as the self-energy of the Hubbard model. It is likely that some of the pole have a purely
mathematical origin which is not directly connected to a physical property of the system. Other
poles, however, do correlate with physical phenomena. For example, if the system displays a
second-order phase transition as a function of U, there will be an associated branch cut that goes
through the real axis and makes it impossible to resum the series beyond the critical value of U.
More generally, if the system moves close to a phase transition, it is expected that some poles
will be close to the real axis. An example is the column of poles on the right panel of Fig. 8. As
temperature goes to zero, the poles will eventually merge into a branch cut. Its physical origin is
the zero-temperature change of particle number at Uc = 1/2. Indeed, at zero temperature, the
ground state has ⟨n↑⟩ = 1 for U < 1/2, while it has ⟨n↑⟩ = 1/2 for U > 1/2. This change of
particle number can be seen as a phase transition and has an associated complex pole structure. It
is generally believed that regimes (e.g. of the Hubbard model) that are close to a phase transition
or that involve very long correlation lengths, will also have intricate pole structures making them
difficult to be tackled by perturbation-based techniques.

3.4 Constructing optimized perturbation series

It was soon realized that computing a handful of additional perturbation series coefficients would
not solve the inherent difficulty posed by the resummation of the series in situations where poles
are lying close to the real axis. This motivated a research direction aiming at formulating different
perturbation series yielding the same physical quantities but with better convergence properties [59,
72, 86–90].

3.4.1 The dangers of boldification

A natural approach, which is probably as old as perturbation theory itself, is the boldification of
the series: a reorganization of the diagrams in a way that the series is expressed in terms of
the interacting propagators rather than the non-interacting ones. While this naturally seems to
include more physical content into smaller orders of the perturbation series, it is not clear how
the boldification procedure changes the convergence properties of the series. In Ref. [91], we
have shown that the bold (skeleton) series for the self-energy of the two-dimensional Hubbard
model sometimes convergences to an unphysical solution, see Fig. 9. Our understanding is that
this is a consequence of the Luttinger-Ward functional not being a single-valued function [91–
95]. In other words, the functional Σσ[G] can have several branches in addition to the physical
one and it is impossible to predict if the skeleton expansion for Σσ will converge to the physical
solution, if it converges at all. This problem is especially dangerous because it is very difficult to
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Figure 9: Convergence of the bold (skeleton) and bare series for the self-energy of the two-
dimensional Hubbard model at the first Matsubara frequency along a path in the Brillouin zone.
The temperature is T = 0.5t and the model is taken at half-filling. The solid and dashed lines
correspond to the real and imaginary parts, respectively. Figure adapted from Ref. [91].

diagnose whether a converged solution is physical or unphysical [87]. The multivaluedness of the
Luttinger-Ward functional has been shown to be related to the divergence of the vertex function
and triggered a very interesting series of works investigating the nature and consequences of these
divergencies [96–104].

3.4.2 Chemical potential shifts

On the other hand, series expressed in terms of bare (non-interacting) propagators never seem to
suffer from misleading convergence. For example, a comparison between the convergence of the
bare and of the skeleton series for the self-energy is shown in Fig. 9. The question is then whether
there is freedom in the choice of the bare propagator. We have actually already met a change of
bare propagators in Sec. 2.1.4 when the α-trick for the CT-INT algorithm was introduced. A very
similar strategy can be used to change the bare propagator with an effective shift of the chemical
potential. Consider the Hamiltonian

H =
∑
r ,r ′,σ

tr r ′c
†
rσcr ′σ − µ0

∑
r ,σ

nrσ + ξ
(µ0 − µ)
U

∑
r ,σ

nrσ + ξ
∑
r

nr↑nr↓, (49)

where µ is the physical chemical potential and µ0 takes an arbitrary value. When ξ = U this
Hamiltonian describes the usual Hubbard model with an onsite interaction U at a chemical potential
µ. When ξ = 0, the Hamiltonian describes non-interacting electrons at a chemical potential µ0. If
we treat ξ as the perturbation expansion parameter, we obtain a series formulated in terms of the
modified non-interacting propagator

G0σ(k , iωn) =
1

iωn + µ− ϵk
→ G̃0σ(k , iωn) =

1

iωn + µ0 − ϵk
. (50)

To compensate for this shift in chemical potential, new diagrams generated by the ξ((µ0 −
µ)/U)

∑
rσ nrσ term have to be included in the perturbation series. In the CDet (or ΣDet), this is

very easily implemented by just adding an extra term on the diagonal of the matrices (34) entering
the recursion (35):

MσV (xout, xin)→ M̃σV (xout, xin) =


G̃0σ(x1, x1)− α . . . G̃0σ(x1, xn) G̃0σ(x1, xin)

G̃0σ(x2, x1) . . . G̃0σ(x2, xn) G̃0σ(x2, xin)
...

. . .
...

...
G̃0σ(xn, x1) . . . G̃0σ(xn, xn)− α G̃0σ(xn, xin)

G̃0σ(xout, x1) . . . G̃0σ(xout, xn) G̃0σ(xout, xin)

 ,
(51)
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Figure 10: Partial sums up to order K of the series for the imaginary part of self-energy of the
Hubbard model with U = 4t, t ′ = −0.3t, µ = 0, T = 0.5t, n ∼ 0.725. The results for the
first four Matsubara frequencies are shown in black (n = 0), magenta (n = 1), red (n = 2) and
green(n = 3). The panels correspond to two different choices for α = (µ0−µ)/U. The dashed lines
are a benchmark from determinantal quantum Monte Carlo [49]. Figure adapted from Ref. [72].

where we have introduced α ≡ (µ − µ0)/U to make the connection with the CT-INT algorithm.
With these modified propagators and the corresponding compensation terms, the series is now
different for every choice of µ0. However, if they converge, all the series should yield the same
physical answer when evaluated at ξ = U. Different choices for µ0 correspond to different ways
to reach the physical chemical potential µ at ξ = U. Tuning µ0 (or equivalently α) may therefore
lead to series with different convergence properties. Note that the motivation here is different from
what drove the introduction of the α-trick in the CT-INT. In the CT-INT, the goal was to reduce
the sign problem, and typically different values for α↑ and α↓ were taken. Here, the motivation is to
control the pole structure of the physical observable and in general it is not necessary to introduce
a spin dependence in α = α↑ = α↓.

We explored the freedom to change the chemical potential of the bare propagator in Ref. [72]
and studied how the perturbation series for the self-energy in the Hubbard model was affected. In
Fig. 10, we display the partial sums of the series for the self-energy of the Hubbard model on a
16 × 16 lattice for two different values of α. It clearly appears that some choices lead to much
better behaving series that quickly converge to the benchmark values. In this relatively simple
regime, a converged solution can already be found with just 4 perturbation orders with a clever
choice of α. Some insight into the effect of a changing the bare propagator can be gained by
looking at the exactly solvable Hubbard atom (46). Just like for the lattice Hubbard model above,
the Hamiltonian can be changed so that the starting point of the perturbation series corresponds
to an isolated level at a modified energy ϵ0 = ϵ+ αU. The self-energy expressed as a function of
the expansion parameter ξ is

Σatom
σ (iωn) = ⟨nσ⟩ξ +

⟨nσ⟩(1− ⟨nσ⟩)ξ2

iωn − ϵ̃− (1− ⟨nσ⟩)ξ
, (52)

where the average occupancy ⟨nσ⟩ is

⟨nσ⟩ =
e−βϵ̃ + e−β(2ϵ̃+ξ)

1 + 2e−βϵ̃ + e−β(2ϵ̃+ξ)
, (53)

and ϵ̃ = ϵ0 + ξ(ϵ− ϵ0)/U ≡ ϵ+ αU − ξα. The pole structure in the plane of the complex variable
ξ is shown in Fig. 11. The parameters were chosen so that the density, temperature and coupling
are similar to those of the lattice model shown above. Changing the starting point has the effect
of moving the poles to different locations in the complex plane. In this example, the optimal value
is α ≃ 0.38 and the poles have moved outside the circle ξ = U so that the series is converging. For
the value α = 0.15, poles are still present within the ξ = U circle and the series is not converging.
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Figure 11: Pole structure of the Hubbard atom self-energy for U = 4, T = 0.5, ϵ = −0.138,
n ∼ 0.725 and two different values of α. The physical solution is at the cross ξ = U on the unit
circle. The color indicates the phase of the complex number and the intensity is proportional to its
modulus. Figure adapted from Ref. [72].

Introducing a new degree of freedom offers a handle to improve the convergence properties of
the series. But it can become cumbersome to perform lengthy scans for different values of the
shifted chemical potential. In practice, it seems that good choices for α are often close to the
value αMF = ⟨nσ⟩0, where the average value is taken in the non-interacting system with chemical
potential µ0. There is some intuition behind this: for this value, the non-interacting propagator is
the mean-field solution of the problem. Indeed, αMF is such that

G̃0σ(x, x)− ⟨nσ⟩0 = 0, (54)

which is exactly the mean-field equation. From a diagrammatic point of view, starting the expansion
around the mean-field solution also reduces the number of diagrams because all diagrams involving
a tadpole (a single fermionic loop) vanish. This is a direct consequence of the diagonal of the
matrix (51) vanishing for the mean-field propagator. Reducing the number of diagrams typically
reduces the contribution from larger order coefficients and incidentally tends to lead to better
behaved pole structures.

3.4.3 Renormalized perturbation theory

In the previous section, we derived different series expansions yielding the same physical result
by writing a modified Hamiltonian (49) involving a new expansion parameter ξ. For ξ = U, the
Hamiltonian is equivalent to the physical one, while for ξ = 0 it describes non-interacting electrons
at a different chemical potential µ0. Different choices for µ0 yield different perturbation series in
ξ with coefficients that can be computed using the CDet algorithm. Another way to think about
the new series coefficients is to start by writing the non-interacting propagator as

G0σ(k , iωn) =
1

iωn + µ0 + ξα− ϵk
, (55)

where α = (µ − µ0)/U. When ξ = U the original bare propagator is found, while for ξ = 0 it
corresponds to the modified propagator G̃0σ for the electrons at the chemical potential µ0. We
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Figure 12: Diagrammatic interpretation of the chemical potential shift. The first row is the
series expansion of G0σ in terms of the modified G̃0σ. When this series is injected in the original
perturbation expansion of Gσ (second row) one obtains a new series for Gσ in terms of the modified
propagators G̃0σ (third row). It includes an additional family of diagrams with α-insertions.

can expand G0σ in powers of ξ

G0σ(k , iωn) = G̃0σ − ξG̃0σαG̃0σ + ξ2G̃0σαG̃0σαG̃0σ + . . . . (56)

The modified series in ξ can be retrieved by substituting the bare propagators G0σ in the original
series with the expression above and gathering all terms involving the n powers of ξ into the
corresponding order-n coefficient. Diagrammatically, every propagator line G0σ is replaced by a
sum of propagator lines G̃0σ involving an arbitrary number of α-insertions that all account for an
additional power of ξ, see Fig. 12. The new series is therefore constructed from the usual diagrams
with modified propagators G̃0σ and an additional class of diagrams, where a certain number of
α-insertions appear.

Generalizing the chemical potential shift approach The chemical potential shift gives a very
specific form for the expression (56) of the bare propagator in powers of ξ. It is very tempting
to ask whether one could design a more general renormalization scheme, where G0 would be any
function of ξ. This generic renormalization is the topic of our work in Ref. [88]. In order to have a
flexible framework to derive a renormalization perturbation theory, it is useful to write the action of
the model with a space and time dependent local interaction ξ(x), where x = (r , τ) is a space-time
index. The action becomes a functional of ξ and reads

Sbare[G0, ξ] = −
∑
σ

∫
dxdx ′ c†σ(x)G

−1
0σ (x, x

′)cσ(x
′) +

∫
dx ξ(x)n↑(x)n↓(x). (57)

The physical result is recovered for ξ(x) = U. Constructing a perturbation expansion in powers of
ξ, one obtains the series for the Green function

Gσ(xout, xin)[ξ] =

∞∑
n=0

(−1)n

n!

∫
dx1 · · · dxn Gσ{x1,...,xn}(xout, xin) ξ(x1) · · · ξ(xn). (58)

The coefficients Gσ{x1,...,xn} can be computed using the usual CDet algorithm with non-interacting
propagators G0. A general renormalization scheme is realized by substituting G0 above with G0[ξ],
a chosen functional of the interaction ξ that we decompose as

G−10σ [ξ] = G
−1
Rσ + ∆Rσ[ξ]. (59)
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The functional ∆R[ξ] can be any series in ξ with the only property that G0σ[ξ = 0] = GRσ when
ξ = 0 and the original bare propagator is recovered when ξ = U, namely G0σ[ξ = U] = G0σ. For
example, the chemical potential shifted propagator (55) corresponds to the choice GRσ = G̃0σ and
∆Rσ(x, x

′)[ξ] = ξ(x)αδ(x − x ′). When inserted in the action, the renormalized propagator defines
a renormalized action

SR[GR, ξ] = Sbare[G0[ξ], ξ] = −
∑
σ

∫
dxdx ′ c†σ(x)G

−1
0σ (x, x

′)[ξ]cσ(x
′) +

∫
dx ξ(x)n↑(x)n↓(x).

(60)
Starting from the functional SR, our goal is to obtain the series expansion of the corresponding
Green function in powers of ξ

G̃σ(xout, xin)[ξ] =

∞∑
n=0

(−1)n

n!

∫
dx1 · · · dxn Gσ{x1,...,xn}(xout, xin)[ξ] ξ(x1) · · · ξ(xn)

=

∞∑
n=0

(−1)n

n!

∫
dx1 · · · dxn G̃σ{x1,...,xn}(xout, xin) ξ(x1) · · · ξ(xn).

(61)

In this equation, Gσ{x1,...,xn}(xout, xin)[ξ] can in principle be computed by simply replacing G0 with

G0[ξ] in the CDet algorithm. When evaluated at ξ = U, G̃σ[U] = Gσ and the physical Green
function is found, while at ξ = 0 it will be equal to GR. Formally speaking, the series coefficients
G̃σ{x1,...,xn}(xout, xin) of the renormalized series for a given set of internal vertices are given by the
functional derivative

G̃σ{x1,...,xn}(xout, xin) =
δnG̃σ(xout, xin)[ξ]

δξ(x1) · · · δξ(xn)
. (62)

While this expression is certainly correct, it is not easily implemented numerically and we need a
general strategy to evaluate such functional derivatives.

Zeon algebras A possible approach to isolate the contribution of a given set of vertices is to
evaluate the functional (61) for a special choice of the function ξ that involves a collection of
commuting null-square variables defining a zeon algebra. More precisely, the n-particle zeon algebra
is defined as the abelian algebra generated by the collection {zi} with 1 ≤ i ≤ n along with the
scalar 1 = z0 subject to the following rules:

zizj = zjzi for i ̸= j and z2i = 0 for 1 ≤ i ≤ n. (63)

Any element in the algebra can be seen as a polynomial

Q(z1, . . . , zn) =
∑
S⊆V
q(S)

∏
j∈S
zj , (64)

where V = {z1, . . . , zn} and there is a total of 2n coefficients q(S). In order to compute the
functional derivative (62), it is enough to evaluate G̃σ(xout, xin)[ξ] for the special case

ξ(x) =

n∑
j=1

zj δ(x − xj) (65)

and the prefactor of the z1 · · · zn term in the resulting polynomial will yield the series coefficient
G̃σ{x1,...,xn}(xout, xin). Intuitively, evaluating a functional at ξ given by (65) will filter out only the
contributions that come from the specific values of the given internal vertices {x1, . . . , xn}. The
coefficient associated for example with the term in z3z4z7 in the polynomial describes the contri-
bution that involves only the internal vertices x3, x4, x7. In that respect, the zeon algebra can the
thought of as a mathematical bookkeeping device.
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Replacing ξ with (65) means that we will have to manipulate polynomials of zeon variables. Addition
and subtraction are trivially implemented. The multiplication of two polynomials Q1 and Q2 involves
a sum over all subsets of V = {z1, . . . , zn}. Indeed, let

Q3(z1, . . . , zn) = Q1(z1, . . . , zn)Q2(z1, . . . , zn). (66)

If qi(S) is the coefficient of
∏
j∈S zj in Qi(z1, . . . , zn) then we have that

q3(V ) =
∑
S⊊V
q1(S)q2(V \ S). (67)

This operation can be done in O(2n) operations. The division

Q3(z1, . . . , zn) = Q1(z1, . . . , zn)/Q2(z1, . . . , zn) (68)

is instead obtained from a subset convolution and requires O(3n) operations in the recursion:

q3(V ) = q1(V )−
∑
S⊊V
q3(S)q2(V \ S). (69)

The recursion (69) is very reminiscent of the CDet recursion (35). There is simple reason for that:
The CDet formula can be found from the fraction (16) where the interaction U is replaced by (65)

Gσ[ξ] = Gσ(z1, . . . , zn) =
ZGσ(z1, . . . , zn)

Z(z1, . . . , zn)
. (70)

Recognizing DσV (∅), DσV (xout, xin) and GσV (xout, xin) in (35) as the coefficients of the polynomials
Z(z1, . . . , zn), ZGσ(z1, . . . , zn) and Gσ(z1, . . . , zn), respectively, one sees that the fraction exactly
leads to the CDet formula.

The renormalized perturbation series algorithm (RDet) In practice, RDet algorithm is imple-
mented as follows:

1. At a given Monte Carlo step, a certain configuration of internal vertices V = {x1, . . . , xn} is
sampled during the computation of the order n contribution to the Green function.

2. First, the renormalized bare propagator (59) is evaluated for ξ given by (65). This will yield
a polynomial G0σ(z1, . . . , zn).

3. This polynomial is inserted in the matrices (34) and the CDet recursion (35) is computed.
As a result, the polynomials G̃σS(z1, . . . , zn) are obtained for all S ⊆ V . Eventually, the
contribution of the internal vertices V to the Green function coefficient G̃σV (xout, xin) at order
n in ξ is given by the prefactor of the z1 · · · zn term in the polynomial

P (z1, . . . , zn) =
∑
S⊆V

(−1)|S|

|S|! G̃
σ
S(z1, . . . , zn)

∏
j∈S
zj , (71)

where |S| is the cardinality of the set S.

4. Note that both steps above involve manipulations of polynomials with zeon variables which
are computationally more expensive than similar operations with usual complex numbers.

5. It can be shown that the numerical complexity for the calculation of the coefficient in the
renormalized perturbation series is O(n34n).
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Figure 13: Comparison of the bare series with the renormalized series defined by (72) with two
choices for ∆R. The system considered is the two-dimensional Hubbard model. Left panel: Partial
sum for the density for the parameters shown in the label. They correspond to a hole doping of
about 5%. Right panel: Partial sum for the double occupancy for the parameters shown in the
label. The system is half-filled. The result from DMFT and DΓA are shown for comparison. Figure
adapted from Ref. [88].

Convergence properties of the renormalized series We have investigated the following form
for the renormalized bare propagator functional

G−10σ (x, x
′)[ξ] = G−10σ (x, x

′)− ∆R(x, x ′) + ξ(x)ξ(x ′)∆R(x, x ′)/U2. (72)

The function ∆R(x, x ′) can be chosen freely. We considered two possibilities

1. A BCS-inspired ansatz with

∆R(k , iωn) =
∆2

iωn + γϵk
. (73)

The motivation behind this choice is to construct the perturbation series around a free
propagator that already has suppressed fermionic excitations. It may be useful to analyze
the Hubbard model in regimes where the solution is expected to have incoherent metallic
behavior.

2. A bare propagator constructed from a DMFT solution

∆R(k , iωn) = Σ
loc
DMFT(iωn), (74)

where Σloc
DMFT is the self-energy obtained from the DMFT solution of the considered model.

In this case again, the bare propagator is expected to already display some properties of the
interacting solution and may prove to be a good starting point.

We compare the series generated by the two choices above with the results of the original bare series
(that do include a chemical potential shift) computed for the two-dimensional Hubbard model. The
partial sums as a function of perturbation order for the density in the doped t ′ = −0.3t regime and
for the double occupancy at half-filling are shown in Fig. 13. For both these examples, the bare
series strongly diverges and resummation tools have a very difficult time to provide an accurate
result. Instead, the renormalized series have a much better behavior and can be evaluated at
the physical value of U with Padé approximants. It is interesting to note, that even though the
computational effort to compute the renormalized coefficients is more important, more coefficients
can be obtained (as many as 14 for the double occupancy). The reason is the reduced variance
and the more local sampling of vertices in the renormalized case.
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Figure 14: Spectral function A(k) for the hole-doped two-dimensional Hubbard model with t ′ =
−0.3t at n ≃ 0.95 and T = 0.1t as obtained from the RDet algorithm with the renormalized
propagator defined by (72) and ∆R = Σloc

DMFT. Figure adapted from Ref. [88].

We have also computed the spectral function in the hole-doped two dimensional Hubbard model
using the RDet algorithm with ∆R = Σloc

DMFT. The result is shown in Fig. 14. In this regime,
the Hubbard model already displays a clear nodal/antinodal dichotomy with more coherent quasi-
particles at the node and a suppression of spectral weight close to the antinode. Our previous
diagrammatic Monte Carlo calculations in Ref. [72] could evaluate 7 perturbation orders at tem-
perature T = 0.2t, while here we are able to reach T = 0.1t with 10 perturbation orders. We can
conclude that using renormalized series may be a useful tool to investigate systems in their strong
coupling regime. More work is however needed to understand how the choice of ∆R needs to be
tuned to a given physical problem. Let us finally mention that we have also designed a similar
scheme with an implementation of a one-loop renormalization of the interaction vertex [89].

3.5 Broken-symmetry perturbation series

It is often believed that perturbation-based approaches are not suited for the investigation of
phase transitions. Indeed, when a second-order phase transition is triggered by an increase of the
perturbation expansion parameter, such as the coupling U, it will appear as a branch cut in the
complex-U plane of physical observables. This makes any attempt to resum the series at values
of the coupling inside the ordered phases hopeless. There is however a scheme that makes it
possible to circumvent this difficulty and study systems in the vicinity of phase transitions using
broken-symmetry perturbation series. This possibility comes from the freedom in choosing the
starting point of the perturbation expansion. For concreteness, we will focus on the example of the
antiferromagnetic phase in the half-filled three-dimensional Hubbard model, but similar derivations
can be made for other ordered phases and other models. In a similar way as we did for shifted
chemical potential expansions in Sec. 3.4.2, we introduce a Hamiltonian

H = −t
∑
⟨r ,r ′⟩,σ

c†rσcr ′σ −
(
1−
ξ

U

)
h
∑
r

prS
z
r + ξ

∑
r

(nr↑ −
1

2
)(nr↓ −

1

2
), (75)

where the first term describes a nearest-neighbor hopping, Szr = (nr↑ − nr↓)/2 and pr = ±1
depending on whether r belongs to one or the other sub-lattice of the bipartite cubic lattice. When
ξ = U, this Hamiltonian describes the Hubbard model with an onsite interaction U with no external
magnetic field, which is the system that we are interested in. For ξ = 0, it instead describes non-
interacting electrons in a staggered magnetic field h. For any value of ξ ̸= U, the Hamiltonian (75)
describes a spin broken-symmetry system in a staggered field of amplitude (1−ξ/U)h. Constructing
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the perturbation series in ξ around a state which is readily symmetry broken has the advantage
that one can reach the possibly ordered state at ξ = U without going through a phase transition
and singularities in the complex-ξ plane may be avoided. The value of the artificial external field h
does not change the properties of the model at ξ = U and one can use h as a tuning parameter
to optimize the convergence properties of the broken-symmetry series. In practical terms, the
broken-symmetry perturbation series is easily implemented by replacing the usual non-interacting
propagators with the non-interacting propagator G̃0σ of the system in the presence of the staggered
magnetic field. The matrices (34) appearing in the recursion (35) acquire an extra hprσ/2U term
on the diagonal.

We have used this approach to compute the properties of the magnetically-ordered phase of the
three-dimensional Hubbard model [105] which will be discussed in Sec. 5 below. We have also
constructed a similar expansion around a BCS state in order to study the phase transition between
the superconducting and the normal phase of the negative-U three-dimensional Hubbard model in
an external Zeeman field [106].
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4 Weak-to-intermediate coupling regime of the half-filled Hubbard
model in two dimensions

One of the first applications of the improved DiagMC algorithms described above has been the
systematic study of the half-filled two-dimensional Hubbard model

H = −t
∑
⟨r ,r ′⟩,σ

c†rσcr ′σ −
U

2

∑
r ,σ

nrσ + U
∑
r

nr↑nr↓, (76)

where the first term only includes a hopping t between nearest-neighbor sites of a square lattice
and the chemical potential has been set to µ = U/2 to ensure that ⟨nσ⟩ = 1/2. This model has
particle-hole symmetry and its non-interacting Fermi surface follows the antiferromagnetic Brillouin
zone. The density of states ρ(ω) associated to the dispersion ϵk = −2t(cos(kx) + cos(ky )) has
a van Hove singularity at ω = 0 stemming from the flat dispersion around the (±π, 0), (0,±π)
points in the Brillouin zone.

4.1 Crossover from a metallic state to a quasi-ordered insulating-like state

At zero temperature, the ground state of (76) is an antiferromagnet for all values of U > 0. At
weak coupling, this is a consequence of the q = (π, π) nesting property of the Fermi surface
which creates a Slater [107] antiferromagnetic band insulating state. At finite temperature T > 0,
long-range order is forbidden by the Mermin-Wagner theorem [108, 109]. Nevertheless, one can
expect that there is a regime above T = 0 where the antiferromagnetic correlation length ξ is
very large and grows exponentially with 1/T . The fact that diagrammatic Monte Carlo can reach
large system sizes makes it a good method to address these regimes that are challenging for other
many-body techniques. The left panel of Fig. 15 summarizes the first systematic results obtained
with the ΣDet algorithm in Ref. [110] in the weak-to-intermediate coupling regime.

Four different regions appear. At high temperatures T ≳ 0.4t, thermal fluctuations prevent the
formation of long-lived quasiparticles and the system is incoherent. For U ≲ 3t and as temperature
is decreased, a metallic region (M) with coherent quasiparticles appears. This crossover happens
around a temperature TNQP at which the thermal de Broglie wavelength v∗F /(πT ) along the nodal
(π/2, π/2) direction becomes larger than the lattice spacing. Here v∗F is the renormalized Fermi
velocity. In the metallic region, the self-energy Σ(k , iωn) is metallic-like and characterized by a
negative slope of its imaginary part at low Matsubara frequencies

slope (Σ(k , iωn)) =
d ImΣ(k , iω)
diω

∣∣∣∣
ω→0

< 0. (77)

Note that because of the perfect nesting property of the Fermi surface, this metallic state is not
a proper Fermi liquid (see Ref. [34] for an in-depth discussion). When the temperature is further
decreased or if the interaction strength is increased, the magnetic correlation length gradually
increases [111]. The associated antiferromagnetic fluctuations enhance the quasiparticle scattering
rate and eventually lead to the formation of a pseudogap in the single-particle spectrum. The
system becomes a quasi-ordered insulating-like state (I). The crossover between the metallic state
and this insulating-like state can be characterized by the change of slope of the imaginary part of
the self-energy Σ(k , iωn). With increasing U or decreasing T , the change of slope is first observed
at the antinode k = (π, 0) (red points) and is followed by the node k = (π/2, π/2) (blue points).
There is a small non-Fermi liquid (nFL) region, where the nodal self-energy is still metallic-like,
while it is insulating like at the antinode.

32



Figure 15: Left panel: Phase diagram as obtained from ΣDet for the half-filled two-dimensional
Hubbard model in the weak-to-intermediate coupling regime. The red area (M) is a good metal,
the blue region (I) is a quasi-ordered insulating-like state. They are separated by a non-Fermi liquid
region (nFL). The red (blue) points are determined from the change of slope of the antinodal
(nodal) self-energy at low Matsubara frequencies. Right panel: Imaginary part of the self-energy
at the first Matsubara frequency (top row) and the difference between the values at the first two
Matsubara frequencies (bottom row) as a proxy for the slope. The temperature is T = 0.2t.
Adapted from Ref. [110].

A more detailed description of the self-energy in the metallic and insulating-like region in shown
in the right panel of Fig. 15. In the metallic state at T = 0.2t and U = 2t, the self-energy is
very uniform over the Brillouin zone and its slope is negative for all values of k . On the contrary,
in the insulating regime, at T = 0.2t and U = 4t, there is significant momentum differentiation
and ImΣ(k , iω0) is more negative (with a positive slope) along the antiferromagnetic Brillouin zone
and even a bit more so at the antinode. The resulting large scattering rate is responsible for the
destruction of coherent quasiparticles in this regime.

As previously discussed in Refs [112–114], the formation of a quasi-ordered insulating state pre-
empts the Mott transition observed in single-site dynamical mean-field theory [43] and its cluster
extensions [115, 116]. It is still an open question whether there is some signal of a Mott transition
at a finite value of U inside the quasi-ordered state. This regime is currently not reachable by the
ΣDet algorithm. Indeed, when the correlation length becomes very large, it is likely that a pole
appears close to the real axis in the complex-U plane of the self-energy. This makes the resumma-
tion increasingly difficult and resummation can only be carried out for values of U just a bit larger
than the crossover scale depicted on Fig. 15.

4.2 A multi-method, multi-messenger study

The possibility to obtain unbiased results in the weak-to-intermediate coupling regime was one of
the motivations to carry out a comparative study of the Hubbard model (76) with a comprehensive
set of state-of-the-art many-body methods [34]. Our study provides an assessment of the ability
of different methods to properly describe the regimes discussed above and elucidates the role of
spin fluctuations using several (multi-messenger) physical observables. We focus on the specific
value U = 2t and analyze the properties of the Hubbard model as a function of the temperature
T . The algorithms that we considered in our study can be organized in different groups:
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1. Benchmark methods. We have used the CDet and ΣDet algorithms described above as
well as determinantal quantum Monte Carlo (DQMC) [49–53] to obtain benchmark results
down to temperatures T ≃ 0.06t. Both methods are numerically exact and can compute
both single- and two-particle response functions.

2. Mean-field methods. The dynamical mean-field theory (DMFT) [43–45] provides a very
useful reference point beyond which spatial fluctuations must be included.

3. Cluster extension of DMFT. Two possible ways to include spatial correlations within the
DMFT framework are the dynamical cluster approximation (DCA) [46, 117, 118] and cel-
lular DMFT (CDMFT) [46, 115, 119, 120] that we used with its center-focused extrapola-
tion [121]. They are controlled approximations, but are limited by the size of the cluster that
can be computed.

4. Vertex-based extensions of DMFT. Spatial correlations within dynamical mean-field theory
methods can also be included by computing higher-order Green functions. We have obtained
results with the dynamical vertex approximation (DΓA, ladder version) [112, 114, 122], the
triply irreducible local expansion (TRILEX) [123–125] in various flavors, the dual fermion (DF,
ladder version) [126–128] and the dual boson (DB, single-shot) [129–131] approaches [47].

5. Other approaches. We have also included results from the two-particle self-consistent ap-
proach (TPSC, TPSC+) [132, 133], the functional renormalization group (fRG) [134] (up
to one loop with Katanin substitution) and the parquet approximation (PA) [135, 136].

In the following, we will discuss some selected results from our work [34] and compare the methods
above in the different regimes of the model. It is useful to start with the dynamical mean-field
description of the half-filled Hubbard model to then start assessing the role of non-local spatial
correlations.

4.3 Dynamical mean-field solution

Within the dynamical mean-field theory, local fluctuations are taken into account, but spatial
fluctuations are ignored. The results of the dynamical mean-field theory can therefore be used
as a simple starting point to then evaluate the role of non-local spatial correlations. The DMFT
phase diagram is shown in Fig. 16. Just like the exact phase diagram in Fig. 15, it shows a
high-temperature incoherent state which turns into a metallic state in the weak-coupling regime as
temperature is decreased below T ≃ TDMFT

QP . Because DMFT does not take spatial fluctuations into
account, the Mermin-Wagner theorem is not satisfied and the DMFT solution has a second-order
phase transition to an ordered antiferromagnetic state at a finite Néel temperature TDMFT

Néel . The
temperature at which this phase transition appears can be interpreted as the temperature at which
the magnetic correlation length becomes very large in the exact solution that does however not
allow for magnetic order. Taken together, the temperatures TDMFT

QP and TDMFT
Néel define crossover

lines that are in fairly good agreement with the exact result. The magnetic correlation length
ξ obtained by DMFT and static mean-field theory is shown on the right panel of Fig. 16. The
correlation lengths diverge at the Néel temperature predicted by the two methods, TMFT

Néel and
TDMFT

Néel . It is interesting to see that the correlation length predicted by DMFT is very close to the
DiagMC one down to temperatures T ≃ 0.1t.

It is instructive to compare the self-energy obtained by DMFT with the benchmark self-energy.
This is shown in Fig. 17. The top row is the ΣDet result for the nodal (k = (π, 0)) and antinodal
(k = (π/2, π/2) self-energy Σ(k , iωn) for different temperatures. The three characteristic regimes
can be identified: for T ≳ 0.3 the imaginary part of self-energy has a positive slope and the system

34



Figure 16: Left panel: Phase diagram obtained by single-site dynamical mean-field calculations.
The red region is an incoherent state. At lower temperatures and U ≲ 5t, a metallic state (cyan
region) with coherent quasiparticle appears. At larger couplings (or low temperatures) there is a
second-order phase transition to a antiferromagnetic insulator (blue area). Right panel: Correlation
length at U = 2t as a function of the temperature T as obtained from static mean-field theory
(yellow), DMFT (gray) and DiagMC (black). Both static mean-field and DMFT see a divergence
at a finite Néel temperature. Taken from Ref. [34].

is in its incoherent regime. For 0.1t ≲ T ≲ 0.3t, coherent quasiparticles exist and the self-energy
has a negative slope. Below T ≃ 0.1, the low-frequency part of Σ(k , iωn) starts to display a kink
with positive slope, marking the formation of a pseudogap in the spectral function.

The DMFT self-energy is shown in the second row of Fig. 17. Because of the local approximation
of DMFT, Σ(k , iωn) has no k-dependence. It compares fairly well to the ΣDet results down to
T ≃ 0.3t, especially at the node, but then starts to depart from the benchmark. This temperature
is about the temperature where the magnetic correlation length starts to exceed one lattice site
(see Fig. 16) and it makes sense that this is where spatial correlations beyond DMFT need to
be taken into account. Note that an inspection of the local part of the self-energy shows that it
compares well to the ΣDet solution down to T ≃ 0.1t (see Fig. 5 of Ref. [34]). Below T ≃ 0.08t,
the DMFT solution is magnetically ordered with a gap corresponding to a Slater mechanism. The
gap is opened via a non-zero real part of the self-energy that effectively creates a band insulator
at low energies. The imaginary part of the DMFT self-energy continues to be regular even at
these low temperatures. In the true solution, the spin symmetry cannot be broken and the real
part has to vanish for all temperatures T > 0 because of particle-hole symmetry. The opening of a
pseudogap in the spectral function then necessarily has to come from a more singular behavior of
the imaginary part of Σ(k , iωn). This singular behavior is clearly seen on Fig. 17 for temperatures
below T ≃ 0.06.

4.4 Single-particle properties beyond mean-field theory

In this section, we analyze how the single-particle properties are modified when spatial fluctuations
are included in different many-body techniques.

Cluster extension of DMFT These extensions of the dynamical mean-field theory include spatial
fluctuations and momentum dependence in the self-energy by solving an auxiliary cluster of coupled
impurities embedded in a bath. The precise expression of the self-consistency depends on the chosen
extension (DCA or CDMFT), but in all cases, the scale over which spatial fluctuations are taken into
account is basically set by the size of the impurity cluster. The self-energies obtained by DCA and
CDMFT are shown and compared to the benchmark in Fig. 18. For both DCA and CDMFT, the
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Figure 17: Top row: Imaginary part of the self-energy Σ(k , iωn) at the antinode k = (π, 0)
(left) and at the node k = (π/2, π/2) (right) as obtained by the ΣDet algorithm for different
temperatures. Bottom row: Same as top row but with the DMFT self-energy displayed as well.
Note that below T ≃ 0.8t, the DMFT solution is magnetically ordered. Taken from Ref. [34].

crossover from the incoherent state to the metallic state is well described and agrees quantitatively
with the benchmark. When entering the metal, the self-energies start acquiring a momentum
dependence that was absent in the single-site DMFT solution and nodal-antinodal differentiation
is present for temperatures below T ≃ 0.33. The self-energies are in good quantitative agreement
in the metallic regime down to T ≃ 0.1t. However, both methods are unable to open a pseudogap
in the insulating-like regime and the corresponding self-energies remain regular at low frequencies
down to the smallest temperature T ≃ 0.06. This is not very surprising. From Fig.16, it appears
that the correlation length is ξ ≃ 15 in this temperature regime. The correlation length that can
be captured with a cluster of N sites is about

√
N/2 and it would take a cluster of 1000 sites to

correctly describe the spatial fluctuations at T = 0.6. This is currently out of reach for cluster
methods. Cluster methods are actually more suitable for regimes where the correlation length is
shorter, either at strong coupling or by doping the system away from half-filling.

Vertex-based extensions of DMFT Long-ranged spatial correlations may be more efficiently
treated with diagrammatic extensions of DMFT, such as DΓA, TRILEX, DF or DB. The antinodal
self-energies obtained by theses approaches are shown in Fig. 19. The incoherent to metallic
crossover is again well described by all the methods, in very good quantitative agreement with the
ΣDet benchmark. Except for the TRILEX, the diagrammatic extensions of DMFT also see the
onset of a pseudogap at lower temperatures. The agreement with the benchmark is less quantitative
though. The DF method seems to be performing best, while DΓA slightly overestimates the
scattering rate, while DB seem to underestimate them.

Other approaches The self-energies of three other families of methods (TPSC/TPSC+, fRG and
PA) are also displayed on Fig. 19. They all capture the crossover into a state with more coherent
quasiparticles and momentum differentiation. The onset temperature of the insulating pseudogap
regime is however quantitatively different from the benchmark. The TPSC approach, in its original
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Figure 18: Imaginary part of the self-energy at the antinode (AN, top row) and at the node (N,
bottom row) as obtained from the benchmark (left), DCA (middle) with 128 sites in the cluster
and CDMFT (right) with 64 sites in the cluster. Taken from Ref. [34].

version, tends to overestimate this temperature because spin fluctuations are overestimated as
well. A recent improvement of the method, TPSC+, that partially feeds back the self-energy
into the fluctuation propagators, leads to results that are in much better agreement with the
benchmark. The PA seems to eventually capture the insulating behavior at the antinode albeit at a
lower temperatures T < 0.05 in comparison to DiagMC. The fRG calculations can be carried out
only down to a temperature scale T ≃ 0.07 at which the running coupling constants diverge [137].
Down to this temperature, however, fRG is in qualitative agreement with the benchmark and shows
a non-metallic behavior at the antinode.

4.5 Double occupancy and Pomeranchuk effect

The double occupancy is a very useful probe to examine the nature of the regimes of the Hubbard
model. According to the used algorithm, it can either be measured directly, or obtained from the
self-energy (and Green function) via the Galitskii-Migdal formula [138]

D =
T

U

∑
k,n

Σ(k , iωn)G(k , iωn). (78)

The double occupancy results for several methods is displayed in Fig. 20. The benchmark result from
DiagMC and DQMC is shown in black. Starting from high temperature, the double occupancy first
decreases with decreasing temperature. It then reaches a minimum value at intermediate T ≃ t,
grows again down to T ≃ 0.1t and finally drops quickly when entering the pseudogap regime.

The high-temperature decrease of D upon cooling is easily explained by considering the expression
of the double occupancy in an isolated Hubbard atom:

Datomic =
1

2 + 2 exp(U/(2T ))
. (79)

The increase seen when cooling the system in the temperature range 0.1t ≲ T ≲ t is a manifesta-
tion of the Pomeranchuk effect, which has been documented very early in the half-filled Hubbard
model [139]. Note that it takes place in a large part of the metallic regime. It can be understood
from the Maxwell equation

∂D

∂T

∣∣∣∣
U

= −
∂S

∂U

∣∣∣∣
T

. (80)
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Figure 19: Imaginary part of the self-energy at the antinode as obtained from various many-body
methods (see label). Taken from Ref. [34].

Figure 20: Double occupancy versus temperature as obtained from various many-body methods
(see label). Adapted from Ref. [34].
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In the metallic regime, an increase of the correlation U leads to a larger entropy (because of the
increase of the effective mass with U which controls the slope of the linear entropy in the metal).
As a result, the temperature derivative of D is negative. Eventually, D has a drop below T ≃ 0.1t
when long range magnetic correlations set in. This is because entering the Slater antiferromagnetic
correlation regime is accompanied by a gain of potential energy because of the localization of the
electrons in this insulating regime.

As shown in Fig. 20, DMFT is able to capture these different trends even though it overestimates
the amplitude of the effect [140, 141]. The drop in the DMFT calculation is a consequence of
the system entering an ordered phase, but as discussed earlier it happens at roughly the correct
temperature.

All the many-body methods are able to capture the Pomeranchuk effect, but only those that
form an insulating pseudogap state at low temperatures correctly describe the drop of D. Cluster
extensions of DMFT and the TRILEX method therefore do not see the decrease of D upon cooling
at low temperature. Vertex-based methods as well as TPSC/TPSC+ and PA all yield a drop. DΓA,
DB and the PA are in remarkable agreement with the benchmark, while DF, TPSC/TPSC+ are
qualitatively correct.

4.6 Magnetic correlations beyond mean-field theory

We next investigate the magnetic correlations of the two-dimensional half-filled Hubbard model
in order to elucidate the role of spin fluctuations in establishing the low-temperature pseudogap
insulator. Surprisingly, it will turn out that magnetic fluctuations are already present well above the
pseudogap regime, in the metallic regime. We will discuss their origin and consequences below.

Antiferromagnetic spin susceptibility The first quantity that we inspect is the spin susceptibility
χsp(q, iΩn) given by

χsp(q, iΩn) =

∫ β
0

dτ
∑
r

e iτΩne−iqr ⟨Sz(r , τ)Sz(0, 0)⟩ , (81)

where β = 1/T and Sz(r , τ) = n↑(r , τ)− n↓(r , τ). Note that we do not include the prefactor 1/2
in our definition of Sz . Because of the perfect nesting of the Fermi surface, the spin susceptibility
is always most enhanced at q = (π, π). The antiferromagnetic static susceptibility χsp(q =

(π, π), iΩn = 0) is shown in Fig. 21 for various methods. The benchmark result from CDet and
DQMC is most visible on the top left panel (black line). At high temperature, the susceptibility
essentially corresponds to that of a collection of independent fluctuating moments with a Curie law
χsp(q = (π, π), iΩn = 0) ∼ T−1. At low temperatures T ≲ 0.07t, when the pseudogap opens and
the charge degrees of freedom start to be frozen, the susceptibility sees an exponential grow. The
spin dynamics in this regime is expected to be described by a non-linear sigma model [132, 142–145]
and the exponential growth is predicted in the lower critical dimension d = 2. It is more surprising
that the behavior of the susceptibility between these two limits, in the metallic regime, seems to
be exponential as well, albeit with a different exponent. It is quite counter-intuitive that lowering
the temperature can lead to both more coherent quasiparticles and, at the same time, larger and
longer-ranged spin fluctuations. We will discuss this point more in details below.

The susceptibilities obtained by dynamical mean-field theory and its cluster extensions are also
shown on the top left panel. They are in good agreement at high temperatures but eventually
depart from the benchmark and diverge at a finite Néel temperature, because the Mermin-Wagner
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Figure 21: Antiferromagnetic static spin susceptibility χsp(q = (π, π), iΩn = 0) as a function of
inverse temperature on a logarithmic scale obtained from various many-body methods (see labels).
Adapted from Ref. [34].

theorem is not satisfied in these methods. The Néel temperature decreases with larger clusters and
should eventually go to zero, but this decrease is logarithmically slow with system size [121, 146].

Vertex-based methods (top right panel) do respect the Mermin-Wagner theorem and do not have a
divergent susceptibility. They all nicely capture the three different regimes of χsp. The DF and DB
solutions are very close to the benchmark and can be computed down to temperatures slightly below
the benchmark methods. The DΓA [112, 114, 122] slightly underestimated the spin susceptibility
but can be converged down to lower temperatures. The TRILEX method (bottom left panel) also
find the low temperature exponential scaling with some differences between different versions of
the method.

Finally, the fRG and PA approaches correctly describe the high-temperature behavior and part of the
metallic state. The fRG does not respect the Mermin-Wagner theorem and eventually overestimate
the susceptibility. The PA method does not seem to be able to resolve the pseudogap region. The
TPSC has the correct trends but overestimates spin fluctuations. This is partly corrected by the
TPSC+ which is in good agreement with the benchmark down to T ≃ 0.1t and then qualitatively
describes the low-temperature exponential increase.

Magnetic correlation length The spatial extent of the magnetic correlations can be obtained by
extracting the correlation length ξ from the susceptibility χsp(q, iΩn), assuming it has an Ornstein-
Zernike form [147] close to its maximum at Q = (π, π)

χsp(q, iΩn = 0) ≃
A

(q −Q)2 + ξ2 . (82)

The susceptibilities computed by the different methods are generally very well fitted by the Ornstein-
Zernike form above. The resulting correlation length ξ is shown in Fig. 22. The qualitative behavior
of ξ is very similar to χsp(Q, iΩn = 0) discussed above. In particular, the three regimes are clearly
visible in the benchmark data. Especially, the correlation length has a clear exponential scaling in
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Figure 22: Magnetic correlation length ξ extracted from the magnetic susceptibility as a function of
inverse temperature on a logarithmic scale obtained from various many-body methods (see labels).
Taken from Ref. [34].

the metallic regime for 0.08t ≲ T ≲ 0.2t. The second exponential regime in the insulating-like
region just starts to be visible in the CDet calculations. It is more apparent in the DΓA results
that can be carried out down to lower temperatures. As for the susceptibility, the vertex-based
extensions of DMFT all shown the three regimes, as well as TPSC/TPSC+.

In summary, the magnetic correlations go through three regimes as temperature is lowered. Down
to T ≃ 0.2t they follow a Curie mean-field behavior with correlation lengths that do not exceed
ξ ≃ 2. At intermediate temperatures, mostly in the metallic regime 0.08t ≲ T ≲ 0.2t, the
magnetic correlations increase exponentially with inverse temperature reaching correlation lengths
as large as ξ ≃ 10 in a regime where coherent quasiparticles are still seen, at least at the node. In
the pseudogap quasi-ordered low temperature regime T ≲ 0.08t, the susceptibility and correlation
length acquire another exponential growth which is associated to the freezing of the charge degrees
of freedom.

4.7 Nature and consequences of spin fluctuations

In this section, we discuss in more details how spin fluctuations affect the physics in the different
regimes described above. In particular, we analyze the mechanisms that open the low-temperature
pseudogap. We also examine the effect of the exponentially growing magnetic correlations on the
coherence and nature of the quasiparticles in the metallic regime.

Spin-fluctuation theory to the test The simplest version of spin-fluctuation theory expresses the
self-energy as the result of a coupling between the electrons and a spin collective mode described
by the susceptibility

ΣSF(k , iωn) = g
2T

∫
d2q

(2π)2

∑
m

G0(k + q, iωn + iΩm)χsp(q, iΩm), (83)

where G0 is the non-interacting electronic propagator, χsp is the spin susceptibility and g is a
coupling constant that quantifies the strength of the coupling. In order to gauge whether (83) can
be used as a starting point to analyze the role of magnetic correlations, we compare it directly with
self-energies obtained by DΓA at the antinode (π, 0) in Fig. 23. We therefore compute (83) using
the χsp obtained by DΓA and, for simplicity, we choose g2 = 3U2/8. Note that other choices can
be made. For example, in TPSC the choice g2 = 3U2⟨n↑n↓⟩/8⟨n↑⟩⟨n↓⟩ ensures both rotational
invariance and that the Galitskii-Migdal equation is satisfied [148].

It appears that the spin-fluctuation expression (83) is in very good agreement with DΓA at high
temperatures and in good qualitative agreement in the metallic and insulating regimes where it
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Figure 23: Self-energy obtained by spin-fluctuation theory compared with DΓA results in three
regimes: the incoherent high-temperature regime (left), the metallic state (middle) and the low-
temperature pseudogap insulator (right). Different versions of the spin-fluctuation formula are
considered (see labels). Taken from Ref. [34].

slightly overestimates the self-energy. We can further ask whether the momentum integral in (83)
is dominated by momenta near Q = (π, π). The dashed curves in Fig. 23 are obtained by restricting
the integration over momenta such that |qi−Qi | < 2ξ−1, i ∈ {x, y}. At high temperature and in the
pseudogap insulator, this restriction does not lead to qualitative changes and spin fluctuations are
dominated by the Brillouin zone area close to the antiferromagnetic wave vector. In the metallic
regime, however, results change qualitatively and the self-energy obtained from the restricted
integral does not have a metallic behavior. In the metallic regime, including spin fluctuation from
all wave vectors is essential. We also examine if the DΓA susceptibility can be replaced in (83) by
an Ornstein-Zernike fit of the form

χsp(q, iΩn) =
A

(q −Q)2 + ξ−2 + |Ωn|γ
, (84)

where γ is a Landau damping coefficient. The resulting violet curve on Fig. 23 is in very good
agreement at high temperatures. In the pseudogap low-temperature regime, it is qualitatively similar
to the DΓA result but overestimates the self-energy. Not surprisingly, it also yields a qualitatively
wrong result in the metallic region, again because it only considers momenta centered around
Q = (π, π).

Pseudogap insulating regime The self-energy in the pseudogap insulating regime is qualitatively
well described by the spin-fluctuation expression (83) with the susceptibility χsp taking an Ornstein-
Zernike form (84). This allows for a deeper analytical understanding of this regime, see Refs [132,
145]. In particular, the pseudogap at a momentum kF on the Fermi surface (that we suppose
different from the antinode) appears in the renormalized classical regime [132, 149] where the
temperature satisfies the condition πT ≫ ωc and ωc is an important low energy scale defined by

ωc =
vF
ξ
=
vF
ξ0
e−2πρs/T . (85)

Above, vF is the Fermi velocity at kF and we have assumed an exponential growth of the correlation
length at low temperatures, with ρs being the spin stiffness of the system. The condition πT ≫ ωc
can be rewritten as ξ ≫ vF /πT which means that the renormalized classical regime corresponds
to the regime where the correlation length is much larger than the thermal de Broglie wavelength,
i.e. the maximum distance over which an electron wave packet remains coherent despite thermal
agitation [132]. The system can be seen as if it were ordered over the scale where coherence is not
destroyed by thermal fluctuations. In this regime, only the first Matsubara frequency contributes
to (83) and we find

ImΣ(kF , iωn) = −g̃
T√
ω2n − ω2c

ln
ωn +

√
ω2n − ω2c

ωn −
√
ω2n − ω2c

, (86)
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where prefactors have been gathered into g̃. When ωn ≫ ωc , which is the case in the pseudogap
insulator, we find that

ImΣ(kF , iωn) ∼ −2g̃T
1

ωn
ln
ωn
ωc
. (87)

We recognize a negative divergent behavior in the self-energy of the pseudogap insulating regime.
This self-energy yields a spectral function A(k , ω) = −Im[ω + µ − ϵk − Σ]/π that displays a
pseudogap between two peaks separated by a distance 4

√
πg̃ρs . The widths of the peaks [144,

145, 150] are of order (g̃T 2/ρs)1/2. As temperature goes to T = 0, the peaks evolve into the
ground-state insulating gap due to the long-range antiferromagnetic order. Note that the analysis
above is not valid for a momentum taken at the van Hove singularity k = (π, π). In that case, the
self-energy is even more singular as discussed in Sec. VII.B. of Ref. [34].

Metallic regime The metallic region in Fig. 15 has been identified as the region where the slope
of the imaginary part of the self-energy is negative. A closer inspection of the quantities

Zk =

[
1−
∂ImΣ(k , iω)
∂ω

∣∣∣∣
ω→0

]−1
γk = τ

−1
k = −Zk ImΣ(k , iω)

∣∣∣∣
ω→0

(88)

shows that the metallic phase is actually divided into two subregions. In a Fermi liquid, Zk would
correspond to the quasiparticle spectral weight and γk to the inverse of the quasiparticle lifetime.
Because of the nesting property of the Fermi surface, the metallic regime is a non-Fermi-liquid
(see discussion in Sec. VII.C. of Ref. [34] for details), but Zk and γk still give some intuition about
the behavior of the quasiparticles. In particular, Zk and γk both decrease upon cooling over most
of the metallic region, see cyan area in Fig. 24. This is the expected behavior for a conventional
metal. But below T ≃ 0.1t and still above the pseudogap formation temperature, Zk and γk start
increasing. This change of behavior can be understood by expressing the zero-frequency scattering
rate in terms of the spectral representation of χsp

−ImΣ(k , i0+) ∼ g2
∫
d2q

∫
dω

1

sinh(βω)
Imχsp(q, ω)δ(ω − ϵk+q). (89)

The width in frequency of 1/ sinh(βω) is of the order of the temperature T , while Imχsp has a
typical extent set by the Landau damping γ and peaks at at the characteristic spin-fluctuation
frequency

ωsf = γξ
−2 (90)

as can be seen from expression (84). As a result, when T ≲ ωsf, only the low-frequency part of
Imχsf matters and the prominent peak in Imχsf is filtered away. The contribution to the scattering
rate in this regime is therefore small and does not prevent the formation of quasiparticles. Note
that ωsf is a function of temperature so that the condition T ≲ ωsf characterizes the metallic
region above T ≃ 0.1t. Instead, when T ≳ ωsf, the peak of the susceptibility does contribute
to the scattering rate and leads to a rapid decrease of the quasiparticle lifetime with increasing
antiferromagnetic spin fluctuations. This is the region T ≲ 0.1t. In summary, the two low-energy
scales ωc and ωsf eventually define three low-temperature regions:

1. T ≳ ωc ⇔ T ≲ 0.06t: The pseudogap insulating regime, where the spin fluctuations
close to Q = (π, π) dominate the scattering. The Ornstein-Zernike form provides a good
approximation in this renormalized classical regime.

2. ωsf ≲ T ≲ ωc ⇔ 0.06t ≲ T ≲ 0.1t: The low-temperature metallic regime where a precursor
pseudogap starts opening. The scattering rate is non-metallic and increases upon cooling.
The spin fluctuations close to Q = (π, π) represent an important fraction of the scattering
rate which increases when the magnetic correlation length and the spin susceptibility increase.
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Figure 24: Quasiparticle parameters Zk (left) and γk (right) at the antinode (red) and node
(blue) for the ΣDet benchmark as a function of the temperature T . Region 1○ is the incoherent
regime, 3○ the metallic regime, 5○ the pseudogap insulating regime. 2○ and 4○ are nodal/antinodal
differentiated regions. Taken from Ref. [34].

3. T ≲ ωsf ⇔ T ≳ 0.1t: The more conventional metallic regime. All wave vectors of the
spin fluctuations need to be taken into account in order to properly describe the scattering
rate. A direct inspection of χsp shows that the Ornstein-Zernike misses an important part
of the spectral weight away from Q = (π, π). The contribution from wave vectors close
to (π, π) can be shown to be proportional to g2(A/γ)T 2ξ3. The increase of the correlation
length ξ is balanced by a rapid decrease of the (A/γ) term via the increasing Landau damping
and prevents the destruction of coherent quasiparticles. This is how in the metallic regime,
both long-range magnetic correlations that grow exponentially and coherent quasiparticles
can coexist.

4.8 Conclusion

The two-dimensional Hubbard model at half-filling has been studied in details at weak coupling
with a special focus on the different regimes appearing at U = 2t as a function of temperature.
Despite its apparent simplicity for this low coupling value, the model displays very rich physics and is
still very challenging for state-of-the art computational methods, especially in its low-temperature
regime. It has therefore been an ideal testbed for a comprehensive comparison of different many-
body techniques. In this context, the modern versions of DiagMC, CDet and ΣDet, together with
DQMC have provided unbiased benchmark results. Through a systematic analysis of one- and two-
particle observables, we have precisely characterized the regimes with particular attention on the
nature and role of the spin fluctuations. At high temperatures, the system is incoherent. It gradually
turns into a metal with coherent quasiparticles upon cooling. All the many-body methods are able to
quantitatively describe this first crossover. As temperature is further lowered in the metallic regime,
the magnetic correlation length increases exponentially and cluster extensions of DMFT depart from
the benchmark result because they cannot treat impurity cluster sizes that are large enough. Even
though the magnetic correlation length is very large, we have shown that the scattering rate is
determined by spin fluctuations from all wave vectors, not just those close to Q = (π, π) and, as
a result, long-range magnetic correlations can coexist with well defined quasiparticles. At lower
temperature, the pseudogap insulating regime is reached with a further exponential increase of the
correlation length. All methods eventually break down, even if diagrammatic extensions of DMFT
are in good semi-quantitative agreement with the benchmark down into the pseudogap regime.
Finally, TPSC/TPSC+, fRG and PA capture the correct qualitative physics but are not always in
good quantitative agreement.
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Figure 25: Imaginary part of the self-energy obtained from the combination of DMFT with spin-
fluctuation theory in three different temperature regimes: high-temperature incoherent (left),
metallic (middle) and pseudogap insulating (right). Results from DiagMC and DΓA are shown
for comparison. Taken from Ref. [34].

Having benchmark results available makes it possible to explore new approaches and determine their
level of accuracy. One of the outcomes of our study is that while DMFT does not capture spatial
fluctuations, it still does a very good job at evaluating local observables, even at a quantitative level
in the metallic regime where the magnetic correlation length is already large. This has motivated
a simple approximation where the self-energy is taken as the sum of the local DMFT self-energy
supplemented by the non-local part of the spin-fluctuation (83):

Σ(k , iωn) ≃ ΣDMFT(iωn) + [ΣSF(k , iωn)−Σloc
SF(iωn)], (91)

where ΣSF is computed with (83) using the DΓA approximation for χsp. Results for this approxi-
mation are shown in Fig. 25 in the three main regimes. They are in good quantitative agreement
all the way down to the pseudogap opening where they still provide a qualitatively correct behav-
ior. This is documenting that while the local physics needs a non-perturbative treatment, even at
U = 2t, the non-local part can be treated perturbatively.

In the future, it would be very useful to carry out a similar analysis to analyze the strong coupling
regime. This will however need to involve methodological developments as there are currently no
many-body techniques that can provide a complete benchmark with full momentum resolution at
larger values of U. It would be interesting to explore whether clever choices of renormalized prop-
agators in an RDet approach would allow to reach larger couplings and circumvent the difficulties
of the series resummations.
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5 Unbiased calculations of the antiferromagnetic phase in the three-
dimensional Hubbard model

One of the outstanding challenges in the physics of strongly correlated materials is to understand
their phase diagrams, how different phases compete and what are the mechanisms that give rise to
one phase or another. It is therefore desirable to have powerful tools and models to address these
questions. The three-dimensional Hubbard model is maybe the simplest platform to investigate the
potential of different computational approaches to study phase transitions in systems of correlated
fermions. We will consider the simplest half-filled case, described by the Hamiltonian

H = −t
∑
⟨r ,r ′⟩,σ

c†rσcr ′σ + U
∑
r

nr↑nr↓ −
U

2

∑
r ,σ

nrσ, (92)

where t is a nearest-neighbor hopping amplitude on an L×L×L cubic lattice, U is the local Coulomb
interaction and we have set the chemical potential to µ = U/2 in order to maintain the system at
half-filling. Note that this model can be realized with cold atoms trapped in optical lattices [151]
and experiments have been able to measure nearest-neighbor magnetic correlations [24, 152, 153]
in cubic geometries. This provides further motivation to develop methods that can quantitatively
compare with experiments.

5.1 Magnetic phase diagram and current limitations

The phase diagram at half-filling as a function of U and temperature is understood to a large extent.
At zero temperature, antiferromagnetic order is stabilized for any value of U > 0. As temperature
is increased, the order is eventually suppressed at the Néel temperature TN and a paramagnetic
state is stabilized [154]. The resulting dome-shaped area of antiferromagnetic order has a max-
imum at a value U ∼ 8t, see Fig. 27. While this qualitative behavior is established, obtaining
accurate numerical results close to the transition where the antiferromagnetic correlation length
diverges is especially difficult, even at half-filling where quantum Monte Carlo methods generally
do not suffer from a sign problem. For this reason, the finite temperature three-dimensional half-
filled model has been investigated by many methods, including e.g. the two-particle self-consistent
approach (TPSC) [155, 156], lattice quantum Monte Carlo methods [154, 157–160] or diagram-
matic [122, 126, 161–164] and cluster extensions [46, 165–169] of the dynamical mean-field theory
(DMFT) [43–45]. Except for single-site DMFT which does not capture spatial fluctuations, most
of the studies have investigated the transition from above by computing susceptibilities in order
to find an estimate for TN and possibly the associated critical exponent. But the ordered phase
itself has rarely been stabilized and studied in details. For methods that simulate a finite lattice,
such as determinantal quantum Monte Carlo (DQMC) or determinant diagrammatic Monte Carlo
(DDMC), there is a natural reason for this: A phase transition to an ordered state cannot occur
and only susceptibilities of the normal state can be used to locate the phase transition. Extensions
of DMFT can potentially be used inside ordered phases but, to our knowledge, such studies have
not been conducted for the three-dimensional Hubbard model so far (the two-dimensional case has
been addressed in e.g. Refs [141, 170]).

5.2 Broken-symmetry perturbation theory

We have used the generalization of the CDet algorithm to broken-symmetry perturbation series
to compute physical properties directly inside the antiferromagnetic phase [105]. As discussed

46



Figure 26: Partial sum for the magnetization for different choices of the external field h = αhMF in
a case where the physical system is paramagnetic (left panel) and where it has antiferromagnetic
order (right panel). Adapted from Ref. [105].

in Sec. 3.5, the idea of the method is to construct a perturbation theory starting from a non-
interacting state placed in an external staggered magnetic field. The perturbation series is written
in terms of a coupling ξ which defines both the strength of the local Coulomb interaction and
of the external field acting on the system (1 − ξ/U)h. When ξ = 0 the external field is h and
the non-interacting system already breaks the magnetic SU(2) symmetry. As ξ is increased, the
external field gradually diminishes and eventually vanished at the physical value of interest ξ = U.
At this value, the system described by the perturbation series is exactly the same as (92) and may
or may not display antiferromagnetic order. In both events though, no symmetry is broken between
the ξ = 0 state and the physical state at ξ = U and one can hope that the underlying pole structure
of the broken-symmetry perturbation series is well behaved so that it may be evaluated at ξ = U.

We have been able to consider systems that are large enough (most of the calculations where done
for a 20× 20× 20 lattice) that finite-size scaling was not necessary in order to extrapolate to the
thermodynamic limit. The result at ξ = U should not depend on the field strength h at ξ = 0. The
parameter h can therefore be used to control the convergence of the series. In practice, optimal
choices for h range between 0 and the effective field hMF found in the antiferromagnetic mean-field
solution of (92) at the physical interaction U. We therefore describe the choice of h with the scalar
α ∈ [0, 1] such that h = αhMF. An example of the effect of α on the convergence properties of
the magnetization is shown in Fig. 26. In order to provide a confidence interval for our results, we
use several resummation techniques (Padé, Dlog-Padé) for several values of α.

5.3 Magnetization and critical behavior

We start by analyzing the behavior of the magnetization close to the second-order phase transition
at TN . We compute the magnetization in two different complementary ways:

• We evaluate the magnetization by directly computing the average value m = ⟨n0↑⟩ − ⟨n0↓⟩
within the CDet algorithm.

• We add an external staggered field Hext to the Hamiltonian (92) that couples to Szr and
compute the grand potential density Ω/L3 with CDet. The magnetization is obtained from
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Figure 27: Left panel: Néel temperature for the three-dimensional Hubbard model at half-filling as
obtained from different computational methods: DMFT [164], TUfRG [171], DF [164], DCA [165],
DDMC [159], QMC [157], DΓA [163], CDet (PM) [160] and CDet (AF) (this work). Right panels:
Magnetization m as a function of the temperature T for three values of the interaction U. The
dashed curves are a fit of the form a(T − TN)β. The obtained values for TN are displayed on
the phase diagram on the left with green stars and the values of β are shown in the inset (the
yellow line is the theoretical expectation for the O(3) Heisenberg universality class). Adapted from
Ref. [105].

several small fields by fitting the linear behavior of Ω

m = −
∂Ω

L3∂Hext

∣∣∣∣
Hext=0

, (93)

The first approach is simpler to implement in practice, but the series for the magnetization become
difficult to resum for U > 6t at low temperatures. In this regime, the second method proves to be
more efficient.

In Fig. 27, we display the magnetization as a function of temperature for different value of the
interaction U. The obtained data is very accurate up to U ∼ 6t. Above this value, we were not able
to reliably resum the series close to the phase transition. The m(T ) curves all have the expected
(T − TN)β critical behavior close to the phase transition. This allows for a three parameter fit
with a function a(T − TN)β from which we can extract both the critical exponent β (see inset
in Fig. 27) and the Néel temperature. We find TN(U = 2) = 0.0425(25), TN(U = 4) = 0.191(1)
and TN(U = 6) = 0.315(5). These values are also shown on the phase diagram in Fig. 27 and
compare well with other approaches. The found critical exponent is in very good agreement with
the expected value β = 0.3689(3) for the O(3) Heisenberg universality class [172] as also found with
other approaches such as dual fermions [164] or the dynamical vertex approximation [161, 173]. A
novelty of the results is that they show the behavior of the magnetization inside the ordered phase.
It is interesting to see that it reaches a saturation value quickly as temperature is decreased and
even more so and larger value of U.

5.4 Double occupancy and entropy

More insight into the nature of the transition can be obtain by studying the behavior of the double
occupancy D = ⟨n↑n↓⟩ across the transition. This is shown on the left panel of Fig. 28 for three
different value of the coupling. The result at U = 4t shows that, above the transition, the double
occupancy decreases with increasing temperature. This is due to the Pomeranchuk effect discussed
above in Sec. 4.5 for the two-dimensional case (see also Ref. [174]). The behavior of D below TN is
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Figure 28: Left panel: Double occupancy D = ⟨n↑n↓⟩ as a function of the temperature T for three
values of the Coulomb interaction U. Right panel: Entropy S as a function of the temperature
T at U = 4t. The inset is the same plot over a larger temperature range and shows the high-
temperature limit ln(4). Adapted from Ref. [105].

characteristic of a potential energy driven transition, with a rapid decrease as the antiferromagnetic
order is stabilized. This is compatible with a Slater mechanism where the formation of an ordered
state is accompanied by a localization of the electrons and a reduction of D. At the larger couplings
U = 6t and U = 8t the double occupancy does not see a dramatic change across the transition.
For those values of U, the system has not yet reached the Heisenberg regime where a kinetic energy
driven transition is expected and would yield an increase of D as the temperature goes below TN .

The right panel of Fig. 28 shows the entropy density S as a function of the temperature at U = 4t.
The entropy is most easily computed from the temperature derivative of the grand potential

S = −
∂Ω

L3∂T
. (94)

In this regime, the entropy has a linear behavior almost immediately above TN , showing that a
good metallic state is realized. At very high temperatures, the entropy eventually saturates at
the expected ln(4) value. At low temperatures below TN , the entropy behaves as T 3, compatible
with the T 3 scaling of the spin-wave contribution to the specific heat of an antiferromagnet [175].
Such measurements of the entropy can potentially be useful in connection with experiments on
cold atoms, where entropy is the natural quantity to evaluate as it is conserved in closed traps.

5.5 Evolution inside the antiferromagnetic phase

We have measured the magnetization and double occupancy deeper into the antiferromagnetic
dome. For the magnetization, it turned out to be more accurate to compute it from the derivative
of the grand potential with respect to an external added field for value of U > 6t. The results
are shown on Fig. 28 for several temperatures as a function of the interaction U. Interestingly,
the series are easier to resum when the antiferromagnetic order in well established. We could
reach values as large as U = 18t. The first observation is that both the double occupancy and
the magnetization quickly reach a saturation value which almost does not change below T = 0.2t
above U ≃ 5t. The magnetization keeps on increasing at least until U = 18t. At any finite
temperature, we expect it to eventually have a maximum, but at a larger value of U, well beyond
the maximum of the dome at U ≃ 8t. The double occupancy has a first rapid decay when entering
the magnetic dome and then regularly decreases. When the antiferromagnetism is prohibited, as
can be done in dynamical mean-field calculations, there is a Mott transition at a critical value of U.
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Figure 29: Physical properties inside the antiferromagnetic dome. Left panel: magnetization as
a function of U for two temperatures. At small U, the magnetization is measured directly within
CDet, while at larger values of U it is obtained via (93). Right panel: double occupancy as a
function of U for three temperatures. Adapted from Ref. [105].

It is interesting to ask whether there are signatures of this transition when the antiferromagnetic
order is established [176]. This question was addressed in Refs [141, 170] in two dimensions within
a cellular dynamical mean-field approach. In our calculation, we however do not have access to the
underlying normal state solution and can only measure the double occupancy of the ordered state.
In the range of interactions that we could access, we are not able to see particular features in this
quantity.

5.6 Conclusion

We have used the broken-symmetry perturbation series introduced in Sec. 3.5 to investigate the
three-dimensional Hubbard model at half-filling. This approach is complementary to other methods
as it is able to compute physical quantities in the ordered phase directly in the thermodynamic limit
and no finite-size scaling analysis is necessary. We were able to compute the magnetization and
double occupancy across the phase transition for values of U < 6t in the weak-to-intermediate
coupling regime. In the strong coupling regime, beyond the maximum of the antiferromagnetic
dome, the series cannot be resummed reliably. It would be interesting to investigate whether a
generalized RDet scheme would allow to reach larger values of the interaction U.

Inside the antiferromagnetic dome, the situation is more favorable and the magnetization and
double occupancy can be computed to values of U as large as U = 18t. The double occupancy in
the antiferromagnetic dome has a very smooth behavior as a function of U and does not provide
striking insights into the nature of the weak to strong coupling crossover or the possible remnant
of an underlying Mott transition that is observed in the normal state. Finding other observables
that would be more expressive is an important next step.

A natural extension of this work is to go away from the half-filled case and investigate the incom-
mensurate order and quantum criticality of the doped model. This would offer a complementary
perspective to previous studies such as Refs [160, 173].
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6 Doping the Hubbard model: magnetic and charge correlations and
pseudogap

The two-dimensional Hubbard model that we have discussed at half-filling in Sec. 4 is a very rich
platform to investigate the physics of strong correlations. It very much plays the role that the Ising
model [13, 14] does in statistical physics but in the quantum many-body context. Its relevance
goes well beyond that of a simple playground model and, even if it is not fully realistic at the micro-
scopic level, features many important phenomena observed in a broad range of materials [19, 20].
In particular, in its hole-doped regime, it is often conjectured to be the minimal model capturing
the main characteristics of high-temperature cuprate superconductors [5, 177]. The latter are a
good example of how correlations can give rise to intricate physical properties. At low temper-
ature, besides superconductivity, experiments find a rich diversity of phases with different kinds
of intertwined long-range order, most notably charge density waves [10]. At larger temperature,
the metallic non-superconducting “normal” state is highly unconventional with a partially destroyed
Fermi surface resulting from the depletion of the number of electronic excitations and the formation
of a pseudogap [6].

Understanding the relationship between these different effects with the help of the Hubbard model
has proven to be a formidable challenge. While great progress has been achieved, including through
collaborative efforts [30–32, 34], a consensus phase diagram for the Hubbard model is still miss-
ing [35, 36] and fundamental questions remain. Does the two-dimensional Hubbard model host
superconductivity in some regimes of parameter? Is the pseudogap state a new kind of metallic
state that could in principle be stabilized down to zero temperature, or is it a finite-temperature in-
termediate state which is always unstable to various kinds of long-range ordering? In that respect,
what is the relationship between the strength of magnetic and charge correlations, their spatial
extent and the onset of the pseudogap?

Many different computational techniques have addressed these questions and some regimes, as
e.g. the half-filled case discussed in Sec. 4, are well understood. Away from half-filling at stronger
coupling, which is the relevant regime for cuprate superconductors, the picture becomes more
blurry and a dichotomy largely exists among computational studies. Wave-function based meth-
ods such as the density-matrix renormalization group (DMRG) [31, 178–180], variational Monte
Carlo (VMC) [181], auxiliary field quantum Monte Carlo (AFQMC) [31, 182, 183], the density
matrix embedding theory (DMET) [31, 184, 185] or inhomogeneous dynamical mean-field the-
ory (iDMFT) [186–188] have addressed the nature of the ground state and demonstrated (when
only nearest-neighbor hoppings are considered) that it is characterized by spin and charge order-
ing forming stripe patterns at low doping levels as proposed early on in the context of mean-field
studies [189–192]. On the other hand, methods aimed at non-zero temperatures, mainly based on
cluster extensions of the dynamical mean-field theory, have revealed that the Hubbard model hosts
a pseudogap regime associated with magnetic correlations [46, 193–201]. The nature of the mag-
netic and charge correlations have also been studied with DMFT [202], iDMFT [203], determinant
Quantum Monte Carlo (DQMC) [179, 204], the dynamical cluster approximation (DCA) [205],
AFQMC [206] and the minimally entangled typical thermal states (METTS) [207]. However, the
precise relation between magnetic and charge correlations and the pseudogap has not been carefully
investigated. Answering crucial questions, such as the fate of the pseudogap state as temperature
is lowered and how it connects to ground states with long-range order therefore calls for a “hand-
shake” between different families of established computational methods and the development of
new ones.

Our works in Refs [80, 208] are a first step in this direction. Using diagrammatic Monte Carlo, we
obtain unbiased results for a broad range of parameters, including regimes with strong correlations
displaying a pseudogap. At the same time, we also discuss the nature, strength and extent of
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magnetic and charge correlations. Piecing together our results and those obtained in the ground
state (mainly by Ref. [183]), we attempt to provide some answers to the questions above.

6.1 Model and physical observables

In the following, we consider the doped unfrustrated two-dimensional Hubbard model on a square
lattice

H = −t
∑
⟨r ,r ′⟩,σ

tr r ′c
†
rσcr ′σ + U

∑
r

nr↑nr↓ − µ
∑
r ,σ

nrσ, (95)

where the hopping amplitude t is only between nearest neighbors, U is the Coulomb repulsion and
µ the chemical potential. The non-interacting dispersion relation is given by ϵk = −2t(cos(kx) +
cos(ky )). Note that we do not consider next-nearest neighbor hoppings, t ′ = 0. We use the
diagrammatic Monte Carlo algorithms described in Sec. 3 to compute physical observables on a
square L × L lattice. For our simulations, we used L = 64 as we found it to be sufficient to
eliminate finite-size effects. Note that there is in principle no technical limitations in considering
larger systems. We investigated the temperature range 0.07t ≤ T ≤ 0.25t and coupling strengths
up to U = 8.5t for doping levels δ = 1− ⟨n↑ + n↓⟩ going from half-filling (δ = 0) up to 20% hole
doping (δ = 0.2).

Spin and charge susceptibilities In order to probe the spin and charge correlations, we use the
momentum-resolved spin susceptibility (in real and reciprocal space), which provides a quantitative
measure of magnetic ordering tendencies, and the momentum-resolved charge susceptibility, which
characterizes the response of the system to an inhomogeneous density perturbation. The spin
susceptibility in real space is

χsp(r) =

∫ 1/T
0

dτ ⟨Sz(r , τ)Sz(0, 0)⟩, (96)

where Sz(r) = 1
2

(
nr↑ − nr↓

)
is the z-component of the spin operator. Because the spin susceptibil-

ities often peak close to the antiferromagnetic wave vector Q = (π, π), it is useful to also consider
the staggered spin susceptibility χst

sp(r) = (−1)x+yχsp(r) which emphasizes the incommensurate
behavior of the susceptibility. The Fourier transform of χsp(r), χsp(q), would diverge at the onset
of long-range magnetic order of wave vector q. Similarly, the charge susceptibility is defined by

χch(r) =

∫ 1/T
0

dτ ⟨δn(r , τ) δn(0, 0)⟩, (97)

where δn(r) =
∑
σ nrσ − ⟨n⟩, and ⟨n⟩ is the average number of particles per site ⟨n⟩ =

∑
σ⟨nrσ⟩.

The Fourier transform of χch(r), χch(q), would diverges at the onset of long-range charge order
of wave vector q. In order to probe local correlations we also use the double occupancy

D = ⟨nr↑ nr↓⟩, (98)

which quantifies the formation of local moments. The entrance into the Mott-insulating regime
can be characterized by an incompressible plateau in the density ⟨n⟩ as a function of the chemical
potential µ. The spin and charge correlators were computed using the CDet algorithm with a
mean-field chemical potential shift α = αMF = ⟨nσ⟩0, see Sec. 3.4.2. We also compared these
results with those obtained by a modified version of the CDet algorithm that makes it possible
to compute perturbation series at a fixed value of the interacting density ⟨n⟩, thank to a double
expansion in both U and α (see Ref. [208] for details).
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Figure 30: Typical results for one- and two-particle responses. Left panel: Momentum-space spin
susceptibility χsp(q) for U = 5t, T = 0.1t and ⟨n⟩ = 0.8 over a quarter of the Brillouin zone
(right). We also show a double-Lorentzian fit along the q = (Q,Q) (right top) and q = (Q,π)
(right bottom) directions, where Q ∈ [0, π]. The solid blue line is the sum of the two dashed lines,
which are Lorentzians. Right panel: Imaginary part of the self-energy Σ(k , iω0) taken at the first
Matsubara frequency over a quarter of the Brillouin zone. Parameters are U = 4t, T = 0.2t and
⟨n⟩ ≃ 0.977 Adapted from Refs [80, 208].

A typical result of a measured spin susceptibility is shown on the left panel of Fig. 30 for U = 5t,
T = 0.1t at 20% doping. In this example, the spin susceptibility has two incommensurate peaks
close to (π, π). In order to extract the corresponding correlation length ξ, we fit these peaks using
a double Lorentzian Ornstein-Zernike form with a constant offset

χsp(q) = A

(
1

|q − (Qx , Qy )|2 + ξ2
+

1

|q − (Qy , Qx)|2 + ξ2
+ const

)
. (99)

This procedure was also used e.g. in Refs [179, 205].

Self-energies and spectral functions The one-particle properties are obtained from the mea-
surement of the self-energy Σ(k , iωn) in reciprocal space and Matsubara frequencies. We use the
ΣDet algorithm described in Sec. 3.2. With the self-energy, the Green function is found with the
Dyson equation

G(k , iωn) =
[
G−10 (k , iωn)−Σ(k , iωn)

]−1
. (100)

Evaluating the Green function at the first Matsubara frequency gives a proxy A(k) for the spectral
function A(k , ω = 0) at zero energy

A(k , ω = 0) ≃ A(k) ≡ ImG(k , iω0). (101)

We sometimes find it useful to analyze the low-frequency behavior of the self-energy, to see whether
it is more metallic-like or more insulating-like. To this effect, we compute the difference between
the first two Matsubara frequency, which behaves like the slope

∆ImΣ(k) = ImΣ(k , iω0)− ImΣ(k , iω1). (102)

∆ImΣ(k) is positive for a metallic-like self-energy and negative for an insulating-like self-energy.

6.2 Magnetic correlation regimes: the weak, the strong and the long

We start our discussion by a systematic analysis of the spin susceptibility χsp(q). It generally
displays one or several peaks close to (π, π). In Sec. 6.3, we will discuss the commensurate-to-
incommensurate crossover of the magnetic correlations. But here, we are first interested in the
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Figure 31: Top row: Maximum value of the spin susceptibility χsp over the Brillouin zone (left)
for several doping levels. The associated correlation length ξmax shown (middle) and evaluated for
different temperatures (right). Bottom row: Double occupancy D as a function of U for several
densities (left). The density versus chemical potential (middle) shows the development of a gap
beyond U ≳ 5t. A diagram showing the correlation length as a function of U and doping. The
temperature for the bottom row is always T = 0.2t. Adapted from Ref. [208].

typical strength and extent of the spin correlations and therefore focus on the value at its largest
peak χsp(qmax) and use it to find the correlation length ξmax, as discussed above. These results
are shown on the first row of Fig. 31 and are complemented by double occupancy and density
versus chemical potential data (second row). Together, these results show that there are three
characteristic correlation regimes for the two-particle response of the system:

The weak-coupling regime For U ≲ 3t and T ≳ 0.1t, the system is in a weakly correlated
regime. The double occupancy gradually decreases with increasing U and also decreases when
the density goes away from half-filling, see the bottom left panel of Fig. 31 for T = 0.2t. The
maximum value of the spin susceptibility and the associated correlation length slowly increase with
U (two first panels on the top row). In this regime, the double occupancy decreases with increasing
temperature (see inset in the double occupancy plot) because of the Pomeranchuk effect that we
have already discussed in the half-filled case, Sec. 4.5. We observe this Pomeranchuk effect for all
densities at least down to n = 0.775. Close to half-filling, we can observe a small change of slope
in the density versus chemical potential curve (middle panel on the bottom row), indicating that
the compressibility at half-filling is smaller than in the doped system.

The long correlation length regime When U is further increased, the maximal value of the
spin susceptibility increases rapidly, even more so as one approaches half-filling, see Fig. 31. The
weakly density-dependent position of the maximum for T = 0.2t is around U ≃ 4t − 5t. In this
intermediate coupling regime, the correlation length becomes large, especially close to half-filling
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and as the temperature is lowered (see top right panel of Fig. 31). It decreases rapidly when the
density is reduced and for T ≥ 0.1t it is only a couple of lattice sites long beyond 10% doping.
The double occupancy as a function of U decreases more rapidly for densities close to half-filling,
as a consequence of the larger correlation length, see bottom left panel. This is expected as the
spins get more localized when ξ becomes large. The density versus chemical potential seem to
indicate that there is a wider plateau but because of the long correlation length, it is difficult to
obtain accurate results close to half-filling.

The strong local correlations regime For U ≳ 6 we enter a regime of strong correlations
(at temperatures T ∼ 0.2t). The double occupancy is only a fraction (about 25%) of its non-
interacting value and becomes less dependent on the density. These (quasi) antiferromagnetic
correlations are very local and the spin susceptibility and magnetic correlation length now decrease
with increasing U, see top left and middle panels of Fig. 31. Another clear indication that this
regime has strong correlations comes from the behavior of the density versus chemical potential.
In this regime there is a clear plateau at half-filling showing a charge gap of the order ∆ ∼ U/2.
This is compatible with a Mott insulating state at half-filling [198, 209].

Magnetic crossover diagram Our results for the magnetic correlation length are summarized on
the bottom right panel of Fig. 31. The intensity map shows that there is a clear dome close to
half-filling and U ≃ 5t where the correlation length is maximal. This dome separates a regime of
long correlation length for U ≤ 4t − 5t where spin-correlation theory can be expected to provide a
reasonable description of the physics with a regime at larger U ≥ 6t where the physics is qualitatively
different and dominated by short-range (quasi) antiferromagnetic correlations.

6.3 Commensurate to incommensurate crossover

In this section, we further investigate the spin correlations in regimes where the correlation length
is sizable. We focus in particular on the commensurate or incommensurate nature of the spin
correlations by examining the spin susceptibility in momentum space χsp(q) and the staggered spin
susceptibility in real space χst

sp(r) as a function of temperature, density and interaction strength.
The results are shown on Fig. 32. It is readily clear that it is very important to have access to large
lattices to resolve the details of the spin susceptibility.

The first row of Fig. 32 shows the density dependence at a fixed temperature T = 0.2t and
interaction U = 5t. This is the value of the interaction for which we find the largest spatial extent
of the magnetic correlations in real space, see Fig. 31. Close to half-filling, the spin susceptibility
χsp(q) is strongly peaked at q = (π, π). Correspondingly, in real space, the staggered susceptibility
shows extended commensurate antiferromagnetic correlations. As the density is reduced, the peak
first remains at (π, π) and below a critical density n ≃ 0.95 gradually splits into four separate peaks
at (π ± δs , π) and (π, π ± δs), compatible with the square lattice symmetry. The peaks become
weaker and wider as the density is further reduced. The real-space staggered spin susceptibility
display incommensurate spin correlations for densities below n ≃ 0.9 with domain walls separating π-
shifted regions with antiferromagnetically correlated spins. The correlation length quickly becomes
shorter as the density is reduced. Let us readily mention here that the onset of incommensurate
spin correlations is never accompanied by a significant redistribution of the charge in the range of
parameters that we have studied, see Sec. 6.4 below.

The second row of Fig. 32 shows the dependence of the spin susceptibility when the interaction
strength is changed for a fixed density n = 0.875 and temperature T = 0.1t. An increasing
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Figure 32: Intensity plots of the spin susceptibility χsp(q) together with the corresponding real-
space staggered spin susceptibility χst

sp(r) = (−1)x+yχsp(r). Top row: Evolution as a function of
the doping for U = 5t and T = 0.2t. Bottom row: Evolution as a function of U at a fixed density
n = 0.875 and T = 0.1t. Adapted from Ref. [208].
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Figure 33: Left panel: Charge susceptibility χch(q) along two cuts in the Brillouin zone for n =
0.8, U = 5t, T = 0.1 (top left) and n = 0.89, U = 5t, T = 0.067 (top right). The temperature
evolution of the spin susceptibility and the charge susceptibility is show for two sets of parameters on
the bottom. Right panel: Maximum charge susceptibility χch(qmax) for n = 0.875. This behavior
can be contrasted to the spin susceptibility shown on Fig. 31. Adapted from Ref. [208].

interaction U also splits the peak that was originally at (π, π). Our results suggest that the
peaks would remain incommensurate in the limit of very large coupling U, as was also seen in
Ref. [210] using a slave-boson approach. Let us mention that we have also found a commensurate
to incommensurate crossover as a function of temperature T .

The commensurate to incommensurate crossover has previously been addressed by other numerical
methods, albeit at larger temperatures and with less momentum resolution. DQMC has been used
at finite temperature and predominantly on the 16× 4 cylinder geometry, first for the three-orbital
Hubbard model [204] and then for the single-band Hubbard model [179]. The authors also found
commensurate spin correlations close to half-filling that become incommensurate at larger doping.
These findings have been confirmed in a recent DCA study on 8× 8 clusters [205]. Also METTS
calculations [207] found incommensurate correlations at U = 10t and 1/16 doping.

6.4 Absence of charge redistribution in the intermediate temperature regime

In this section, we examine whether the onset of incommensurate spin correlations is accompanied
by a charge response of the system, as was proposed in previous works [179, 204, 205, 207].
The latter suggest that the formation of incommensurate spin correlations with a wavevector
(π± δs , π) is accompanied by incommensurate charge correlations with wavevector (±δc , 0) where
δc ≃ 2δs . No conclusive evidence of charge correlations where found in Ref. [179] except for a
weak boundary effect in the real-space staggered susceptibility. In Ref. [207] a clear (±δc , 0) peak
becomes apparent below T = 0.05 for n = 15/16 and U = 10 and for a cylindrical width-four
geometry. Finally, Ref. [205] sees a broadened maximum around the (0, 0) wavevector which can
be fitted with a double-Lorentzian revealing two distinct maxima at (±δc , 0).

In Fig. 33, we show results for the charge susceptibility χch(q) close to the (0, 0) wave vector.
We chose different parameters for which the spin susceptibility is large. We find that the charge
susceptibility close to (0, 0) is very flat. If we fit χch with a double Lorentzian we find two peaks
at an incommensurate wave vector (±δc , 0). In general, we do not see a clear connection between
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δc and δs . To a large extent, the structures that we see close to (0, 0) are already present in the
Lindhard function of the non-interacting system [202, 211]. They do not increase with increasing
interaction U or decreasing temperature T , as shown in the right panel of Fig. 33. This behavior
is in striking contrast to the behavior of the spin susceptibility in Fig. 31. The charge response in
the range of parameters that we studied is at least an order of magnitude smaller that the spin
response, see bottom left panel of Fig. 33.

To summarize, our results indicate that, for the parameters that we investigated the charge cor-
relations remain uniform over the lattice even when longer-range spin correlations develop. From
our observations this absence of charge stripe correlations persists in the phase diagram at least
down to T ∼ 0.10 and for values of U < 7. It is an open and interesting question whether charge
correlations would quickly start developing at lower temperatures or larger values of U [207].

6.5 Single-particle response: crossover diagram and spectral fingerprints

We now turn to an investigation of the single-particle properties of the doped Hubbard model
and clarify how they are related to the spin and charge correlations discussed above and found in
ground-state calculations. A systematic analysis of the self-energies and spectral functions reveals
that there are three distinct physical regimes with qualitatively different spectral properties. They
are separated by well-defined crossovers as a function of the interaction U and hole doping δ as
shown on the first row of Fig. 34 for different temperatures. The regions on these plots correspond
to:

The weakly correlated metal The blue region on the first row of Fig. 34 is a weakly correlated
metal with an electron-like Fermi surface, very close to the non-interacting system. Note that
we take a pragmatic definition of the Fermi surface at finite temperature by identifying it with the
maximum of the spectral function proxy A(k) = − 1π ImG(k , iω0). It is understood that a real Fermi
surface only exists at T = 0, but the maximum of A(k) nevertheless gives information about the
location of low-energy excitations. The spectral weight in the weakly correlated metal is uniform
along the Fermi surface and relatively large, compatible with a small self-energy and long-lived
quasiparticles. A representative point of this regime is W .

The strongly correlated metal The green region found at stronger interactions and intermediate
doping levels is a different metallic regime. The Fermi surface is hole-like after it has gone through
an interaction-driven Lifshitz transition (green triangles in Fig. 34. The self-energy becomes sizable
and the quasiparticle lifetime has decreased significantly. The point S is representative of this
regime.

The pseudogap regime The red region on Fig. 34 is characterized by the existence of a pseu-
dogap at the antinode (π, 0). It can be identified by a suppression of spectral weight, a sudden
increase of the self-energy at the antinode or by a reduction of the uniform magnetic susceptibility.
All these criteria define slightly different crossover lines that are nevertheless all very close and
have the same qualitative behavior. The lighter red area describes a regime where the self-energy
undergoes a series of momentum-selective crossovers. Note that the pseudogap only appears at
intermediate and strong coupling, where the Fermi surface is already hole-like, as was found in
one of our earlier studies [200]. As temperature is lowered, the extent of the pseudogap regime
increases. In order to address the question of the interplay between the spatial range of magnetic
correlations and the formation of the pseudogap, we also depict on the first row of Fig. 34 contour

58



Figure 34: Top row: Three regimes with qualitatively different single-particle spectral behavior.
The blue and green regions correspond to a weakly and strongly correlated metal, respectively.
The red region corresponds to a regime with a pseudogap at the antinode. The dashed lines
are contours of constant spin correlation length (see Fig. 31). The plain gray line, reproduced
from Ref. [183], indicated where the ground state displays long-range spin/charge stripe ordering.
Bottom row: Spectral function A(k), imaginary part of the self-energy at the first Matsubara
frequency ImΣ(k , iω0) and difference of the imaginary part between the first two Matsubara fre-
quencies ∆ImΣ(k) = ImΣ(k , iω0)− ImΣ(k , iω1) over a quarter of the Brillouin zone for four points
(see top row) characteristic of the different regimes. The white lines indicate the non-interacting
Fermi surface. The green lines show the maximum of the spectral function. Finally, the zero-energy
quasiparticle lines are shown in black. Adapted from Ref. [80].
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lines of equal spin correlation length ξ (dashed black lines). At weak-to-intermediate interactions,
the pseudogap is associated with fairly long-range spin correlations [34, 132, 145, 212], very much
like the pseudogap discussed in the half-filled model at weak coupling in Sec. 4.7. At stronger
coupling, instead, the pseudogap is already found at high temperature and in regimes where the
correlation length is only a couple of lattice sites. This is an important qualitative difference be-
tween the nature of the weak coupling pseudogap (point P1) and the strong coupling pseudogap
(points P2, P3). We emphasize that the onset and extent of the pseudogap regime seems to be
independent from the commensurate or incommensurate nature of the spin correlations discussed
above. Indeed, for T = 0.2t and T = 0.1t the crossover from commensurate to incommensurate
appears at roughly 10% and 7.5% hole doping, respectively, with a very weak U dependence.

In order to further characterize these different regimes, we show, on the second row of Fig. 34,
momentum-resolved spectral properties at T = 0.2t: the spectral function proxy A(k), the imagi-
nary part of the self-energy at the first Matsubara frequency ImΣ(k , iω0) and the difference between
the two first Matsubara frequencies which gives an indication about the low-frequency slope of the
self-energy ∆ImΣ(k) = ∆ImΣ(k , iω0)−∆ImΣ(k , iω1). This difference is positive in a conventional
metal. These quantities are computed for the representative points discussed above:

• In the weakly correlated metal (W point, T = 0.2t, U = 4, n = 0.866), the Fermi surface
(green line) obtained from the maximum of A(k) is very close to the non-interacting one
(white line). It also coincides with the zero-energy quasiparticle line obtained from ϵk − µ+
ReΣ(k , iω0) = 0 (black line), which shows where the Fermi surface would be if lifetime effects
coming from the imaginary part of the self-energy were neglected. Because the self-energy
is small, the zero-energy quasiparticle line is almost unchanged.

• The strongly correlated metal (S point, T = 0.2t, U = 7.5t, n = 0.868) displays a reshaped
Fermi surface and zero-energy quasiparticle line that become hole-like. This reshaping is the
result of a correlation-induced Lifshitz transition induced by the momentum dependence of
ReΣ(k , iω0). The green and black lines are slightly different because of prominent peaks
in the imaginary part of the self-energy close to (π, π/2). There is some nodal/antinodal
differentiation with about 10% less spectral weight at the antinode. For both metallic regimes
S and W , the difference ∆ImΣ(k) is positive over the entire Brillouin zone, as expected for
a metal.

• The weak-coupling pseudogap (P1, T = 0.2t, U = 4t, n = 0.977) also has a hole-like zero-
energy quasiparticle line resulting from the momentum dependence of the real part of the
self-energy. However, because the peaks in the imaginary part of Σ(k , iω0) have moved closer
to (π, 0), the interacting Fermi surface actually remains electron-like. The spectral weight at
the antinode is also consequently reduce and roughly 13% smaller as compared to the node.

• In the strong-coupling regime (P2, T = 0.2t, U = 7t, n = 0.997), the pseudogap is much
more pronounced and leads to the formation of Fermi arcs around the nodal region. The zero-
energy quasiparticle line is strongly modified and hole-like. The spectral function is broadened
by lifetime effects and has a maximum that is electron-like but no longer corresponds to well
established quasiparticles. For both P1 and P2, the difference ∆ImΣ(k) is negative in a region
just above the antiferromagnetic Brillouin zone, indicating that the self-energy is large close
to the Fermi surface. This change of slope is a good indicator of the onset of the pseudogap
regime and defines the red points on the plots of the first row of Fig. 34.

It is interesting to note that, as temperature is decreased in the pseudogap region, the imaginary
part of the self-energy increases. But the largest peaks in the imaginary part are found above the
antiferromagnetic Brillouin zone. As a result, the lifetime effects are stronger at the antinode,
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Figure 35: Comparison between the imaginary part (left) and real part (right) of the computed non-
local self-energy Σnl(k , iω0) and the modified spin-fluctuation theory Σsf

nl(k , iωn) at temperature
T = 0.2t. The self-energies are shown for selected point in the pseudogap regime, see Fig. 34.
Black lines indicate the zero-energy quasiparticle lines, while the white lines indicate the Fermi
surface associated with the modified bare Green function G(k , iω0, µ̄). Adapted from Ref. [80].

leaving more coherent quasiparticles at the node. This nodal/antinodal dichotomy has also been
discussed in cluster extensions of the dynamical mean-field theory [119, 193, 196–198]

6.6 Modified spin-fluctuation approach to the pseudogap

In our study of the weak coupling half-filled Hubbard model in Sec. 4, we have seen that spin-
fluctuation theory was quite successful at describing the onset of the pseudogap in the quasi-
ordered insulating low temperature regime [34, 132, 145, 212]. At strong coupling, the magnetic
correlation length is much shorter and certainly does not satisfy the condition ξ ≫ vF /πT for
the renormalized classical regime (85). It is nevertheless interesting to ask whether the spectral
properties can be described in terms of some spin fluctuation theory. Let us start by mentioning
that previous works based on a fluctuation diagnostics [72, 199] have shown that the spin channel is
indeed responsible for the onset of the pseudogap. Also, as discussed above, the spin susceptibility
is by far the dominating susceptibility in the pseudogap region. As such, the pseudogap is unlikely
to be due to the fluctuations of a low-T charge order. These arguments give a good motivation
to try to describe the pseudogap in terms of a spin fluctuation inspired theory.

We start by dividing the self-energy into a local and non-local part: Σ = Σloc + Σnl. The local
part is quite large, especially in the strong-coupling regime, and is not adequately approximated
by spin-fluctuation theory. A better local self-energy is obtained e.g. from a dynamical mean-field
theory calculation. For the non-local part, we use Hedin’s equation Σ = −G ⋆ W ⋆ Γ involving
convolutional products over momenta and frequencies, with W = U − U2χsp. Here Γ is the vertex
function and χsp is the dynamical spin susceptibility. We approximate this expression by considering
the following ansatz for the non-local part of the self-energy:

Σsp
nl (k , iω0) = γ̄ U

2 T
1

N

∑
q

G0(k + q, iω0, µ̄)

(Q− q)2 + ξ̄−2
. (103)

We have replaced the vertex Γ by a constant γ̄ and the effective spin interaction W by an Ornstein-
Zernike form of the commensurate spin susceptibility χsp centered around Q = (π, π) and with
correlation length ξ̄. In the expression (103), we use a non-interacting form of the Green’s function
G0 which, importantly, involves an adjustable chemical potential µ̄. We have also limited the
frequency convolution to the zero bosonic Matsubara frequency, an approximation which is known
to become more accurate at low-T when a pseudogap opens [34, 132]. We fit our numerically exact
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data in order to extract the three parameters γ̄, µ̄, ξ̄. Note that we only consider the imaginary
part of the self-energy in the optimization process. In Fig. 35, we compare the real and imaginary
parts of the non-local part of the computed self-energy Σnl with the optimized spin-fluctuation
expression Σsf

nl for three points (P1, P2, P3) inside the pseudogap region:

• In the weak-coupling pseudogap regime (point P1, T = 0.2t, U = 4t, n = 0.977), the
agreement between the fit and the original data is remarkable, both for the real and imaginary
parts. The parameter µ̄ = −0.26t is somewhat lower than the non-interacting chemical
potential corresponding to the density (µ0 = −0.10t). The parameter ξ̄ = 5.0 is close to
the actual (commensurate) value of ξ = 4.3 obtained numerically. Finally, γ̄ = 0.5, which
hints to the fact that the Γ vertex is relatively uniform and not very large.

• In the strong-coupling pseudogap regime (points P2, T = 0.2t, U = 7t, n = 0.958 and point
P3, T = 0.2t, U = 8.5, n = 0.956), the spin-fluctuation still produces a qualitatively correct
picture, especially for the imaginary part. Note that the fact that the extrema are roughly in
the correct place comes from the freedom to tune µ̄ (see the white lines) in Fig. 35. This
freedom to chose the non-interacting propagator is very much reminiscent of the freedom we
use with the α-shift when optimizing the convergence radius of the perturbation series, as
discussed in Sec. 3.4.2. The fitting procedure yields µ̄ = −0.89, ξ̄ = 1.60, γ̄ = 4.90 for P2
and µ̄ = −1.03, ξ̄ = 1.25 and γ̄ = 4.84 for P3. This shows that the Γ vertex becomes larger
in this regime while the correlation length is short. Note that the real part of the self-energy
has the correct trends, but the overall magnitude is four times too large.

Our results suggest that a properly modified spin-fluctuation theory can provide an excellent de-
scription of the non-local part of the self-energy in the weak-coupling pseudogap regime and still
does qualitatively well in its strong-coupling region. In the latter regime, we found it difficult to
quantitatively evaluate both the real and the imaginary part. We have also tried to allow for a
complex phase in γ̄ as suggested in Ref. [201], but this did not lead to a better fit. This is certainly
a hint that momentum and frequency dependence of the vertex function become more important
in the strong coupling regime.

6.7 Fate of the pseudogap at low temperature

One of the main motivation for our study of the doped Hubbard model is to try to establish a
connection between the physical nature of the ground state and the finite temperature crossovers
described above. Distinct families of computational methods have investigated these two limits [35,
36] but a complete handshake is still lacking. In the present context, an outstanding puzzle is the
fate of the pseudogap region at the temperature is cooled down to T = 0. How does it connect
to the spin/charge stripe order seen in the ground state? Do the Fermi arcs observed at finite
temperature eventually evolve into a reconstructed Fermi surface? These questions continue to be
a subject of intense debate in the context of cuprate superconductors [10].

In order to address these questions, we extrapolate the crossover lines that we find at several finite
temperatures to T = 0 and compare with the ground-state result of Ref. [183]. The extrapolation
procedure in shown on the left panel of Fig. 36. According to the region in parameter space, we
find it easier to extrapolate our data by keeping the doping level δ or the interaction strength U
fixed. We use the lowest two temperatures to do a linear extrapolation. This procedure is applied
for both the pseudogap crossover line (red) and the Lifshitz transition line (green). The resulting
zero-temperature diagram is shown on the right panel of Fig. 36. The red line separates a region
with a pseudogap and a region with no pseudogap. The Lifshitz transition extrapolated at T = 0
follows this red line up to about 13% and then deviates. The black line is adapted from the AFQMC
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Figure 36: Left panel: Temperature dependence of the pseudogap crossover (red circles) and
Lifshitz transition (green circles) at fixed interaction U or fixed doping δ. AFQMC ground-state
results from Ref. [183] are shown as black squares. The dashed lines show our linear extrapolation
from the lowest available temperatures. Right panel: Resulting zero-temperature extrapolation of
the pseudogap crossover region (red line) as well as of the Lifshitz transition line (green line). The
black line shows the phase transition line found in Ref. [183] a region with (pink) or without (blue)
spin/charge stripe ordering. Adapted from Ref. [80].

study of Ref. [183] which is in good agreement with variational Monte Carlo results [182]. The
line shows the transition between a state with long-range spin/charge stripe order [31, 180, 189–
191] and a state with only short range charge and spin order in the ground state. Remarkably,
our extrapolation to T = 0 of the pseudogap boundary is in near-perfect agreement with this
phase transition line. This seems to indicate that the pseudogap regime eventually becomes stripe-
ordered at zero T and that there is no range of doping where the ground state would be a genuine
zero-temperature pseudogap phase. This is one of the important conclusions of our work.

6.8 Toward a comprehensive picture

The results that we have obtained for a broad range of parameters allow for a first step toward a
unifying qualitative picture of the physical regimes of the doped two-dimensional Hubbard model.
Our findings are summarized on the left panel of Fig. 37. At finite temperature, we identify three
regimes: a weakly correlated metal (blue) with properties close to the non-interacting system, a
strongly correlated metal (green) with a reshaped hole-like Fermi surface and a pseudogap region
(red) with a suppression of spectral weight close to the antinode.

When extrapolated to zero temperature, our results seem to indicate that the pseudogap region
eventually turns into a long-range ordered charge/spin stripe as found in Ref. [183]. We can
therefore attempt to sketch a strong-coupling phase diagram as a function of temperature and
doping level. This is shown on the right panel of Fig. 37. The pseudogap and Lifshitz crossovers
are indicated by T ∗ and TL. We also display the commensurate to incommensurate spin fluctuation
crossover TIC as well as the crossover from a short to a long spin correlation length Tξ. At higher
temperatures, the pseudogap formation is driven by spin correlations and the charge response is
very weak. But eventually, at low temperatures, charge correlations should start to grow. This
is expected if the ground state is stripe ordered. There is also evidence in Refs [206, 207] that
charge correlations appear at low temperatures and that a finite-temperature phase transition to
a charge long-range ordered state takes place [206]. From our data, we identify that the ideal
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Figure 37: Summary of our results. Left panel: The three regimes with qualitatively different
behavior single-particle spectral properties, as already shown in Fig. 34. Right panel: Proposed
unifying picture at strong coupling. The pseudogap regime (below T ∗ in red) extrapolated to
a stripe/charge ordered phase a T = 0. This may be preempted by a finite-temperature phase
transition. The strongly correlated metal and the weakly correlated metal are shown in green and
blue, respectively. The dashed gray line (Tξ) sets a scale below which the magnetic correlation
length is large. Below the yellow line (TIC) magnetic correlations are incommensurate. Adapted
from Ref. [80].

region of parameters to further investigate this question is for n ≃ 0.9 and U ≃ 4t, a place where
long-range incommensurate spin correlations are present. When the doping is increase, the stripe
order eventually disappears. In the weak-to-intermediate coupling regime and in the absence of
other instabilities, the Hubbard model will eventually turn superconducting because of the Kohn-
Luttinger effect [213], albeit at possibly very low temperatures. At stronger coupling, it has been
shown that stripe order wins over superconductivity over a significant range of doping [32]. The
situation just above the critical doping for stripe order is still under investigation but recent results
seem to indicate that superconductivity exists over some range of doping [182].

In conclusion, we have investigated the two-dimensional Hubbard model using a numerically exact
diagrammatic Monte Carlo algorithm. We have established crossover diagrams for single-particle
properties as well as for magnetic properties. We have shown that a pseudogap regime exists both
at weak coupling where the antiferromagnetic correlation length is large and at strong coupling
where the correlation length is short ranged. A suitably modified spin-fluctuation theory was found
to successfully reproduce some of the salient qualitative features of the pseudogap regime. An
important result of our work is that the pseudogap regime eventually turns into a stripe-ordered
phase at zero-temperature.
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7 Conclusions and perspectives

We have described recent developments and some applications of a class of equilibrium diagram-
matic Monte Carlo algorithms based on the original work of Prokof’ev and Svistunov [54]. The
strength of the diagrammatic Monte Carlo approach is that it is not limited by the size of the system
under consideration and can be used to directly address the thermodynamic limit where finite-size
effects are absent. The initial method does however suffer from the fermionic sign problem which
limits the number of perturbation series coefficients that can be computed.

On the methodological side, a first line of research has been aiming at improving the statistical
variance in order to be able to evaluate more series coefficients. This has led to the development of
algorithms that explicitly sum all relevant diagram topologies for a given set of internal interaction
vertices [73, 78, 79] in an exponential effort, while the number of topologies is factorial. When
the series is convergent, this makes it possible [77] to reach a given accuracy ϵ in a computational
time that is a polynomial in ϵ−1.

The availability of more coefficients gives access to more challenging regimes of correlated systems.
But these regimes generally also lead to more intricate series that are difficult to resum with
standard tools [81–85]. In practice, the resummation is often limited by the presence of poles
(or pole-like structures) in the plane of the observable seen as a function of a complex coupling
constant. This observation shifted further developments in a different direction, aiming this time
at improving the convergence properties of the series. Progress could be made thank to the
freedom that exists in choosing the starting point of the perturbation expansion: Different starting
points generate different “paths” between the non-interacting system and the interacting one as
the coupling constant is increased. As a result, some choices may lead to series that go through
better-behaved complex plane structures [59, 72, 86–90] with faster convergence properties. A very
interesting byproduct of the use of new starting points is the possibility to express broken-symmetry
perturbation series that can yield physical observables directly in an ordered phase [105, 106].

We have used these improved algorithms to investigate the Hubbard model, an epitome of strongly
correlated systems. We have mainly focused on its two-dimensional version on a square lattice with
only nearest-neighbor hoppings. The opportunity to have unbiased results in non-trivial regimes
and with very fine momentum resolution has proven to be a great asset. A systematic analysis of
the single- and two-particle response of the system has allowed for a careful characterization of the
different regimes of the model at half-filling [34] and in the doped case [80, 208]. In particular, we
have investigated how spin-fluctuation mechanisms were related to the formation of a pseudogap,
both in cases where the magnetic correlation length is large and when it is only a couple of lattice
sites. Our study has also made a first attempt at connecting the pseudogap physics at finite
temperature and the zero-temperature results of Ref. [183]. We find evidence that the pseudogap
eventually goes through an instability at low temperatures and always becomes an ordered stripe
state at zero temperature at low-to-intermediate doping.

These first investigations call for further work. In the doped two-dimensional case, an appealing
next step is to include a non-zero next-nearest-neighbor hopping t ′ in order to make a more
realistic contact with cuprate superconductors (for which t ′ typically lies in the interval −0.4t ≲
t ′ ≲ −0.1t) [214]. The fine momentum resolution in the computation of magnetic susceptibilities
would allow e.g. to connect to neutron scattering experiments that have investigated the existence
of incommensurate magnetic correlations, e.g. in La2CuO4 and YBa2Cu3O6 compounds [215–217]
and observed a linear relationship between the incommensuration vector and the superconducting
temperature. Of course, there is the elephant in the room: the superconducting phase. The
bottleneck that prevents accessing the superconducting properties is the increasingly complex pole
structure that makes the resummation of the series impossible. It is likely that it will take important
methodological advances before we are able to compute the normal state properties all the way
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down to the critical temperature. But some steps can be taken before that. It would for example
be instructive to measure the pairing susceptibility even at temperatures above the superconducting
dome and investigate its dependence on doping or nearest-neighbor hopping. In a previous work [72],
we have performed a fluctuation diagnostics comparing the contribution of different channels (spin,
charge and pairing) to the self-energy. At the temperatures we could reach, T ≃ 0.2t, the signal
in the pairing channel was extremely weak. But progress in the meanwhile makes it possible to go
to temperature T ≃ 0.07t and it would be very instructive to see whether the pairing susceptibility
shows some evidence of the superconducting state. A different approach is to try to directly stabilize
the superconducting solution, as we have done for superconductivity in the negative-U Hubbard
model [106] or antiferromagnetism in the three-dimensional repulsive Hubbard model (Sec. 5). In
these works, we have observed that the series is sometimes easier to compute and resum deep
into the ordered phase than it is close to the phase transition. Constructing the series from a
superconducting non-interacting system may provide a shortcut to the superconducting dome of
the two-dimensional Hubbard model. Being able to determine whether the doped Hubbard model
has a superconducting phase for t ′ ̸= 0 and establishing its connection with single-particle properties
such as the pseudogap is certainly one of the great challenges in the field.

While we have concentrated most of our discussion on single-band Hubbard models, the diagram-
matic Monte Carlo method is quite versatile and perturbation series can be written for many
different models. For example, results have been obtained for the polaron problem [55–58], the
electron gas [59–61] or the unitary gas [62] to mention but a few. It would be exciting to explore
whether other systems, such as frustrated spin systems, could also be approached with algorithms
similar to those presented above. We have started to investigate an algorithm that uses a Majo-
rana representation of a spin-1/2. Interestingly Majorana fermions also have a Wick theorem and
a recursion very similar to Sec. 3.1 can be designed, except that determinants are replaced with
Pfaffians. It is still an open question how the sign problem will behave in this representation and
whether low temperatures are reachable.

Another largely unexplored territory is that of multiorbital models, which are essential for the study
of more realistic models. A first work in this direction is Ref. [218] that designed a diagrammatic
Monte Carlo algorithm for impurity models with general interactions and hybridizations. Introducing
several coupling constants raises interesting questions about the most efficient way to design a
perturbation series. Treating all interaction terms with the same expansion parameter seems to
lead to very complex pole structures and difficult resummations. In that respect, it is worth
investigating whether different expansions, maybe multiple expansions in several coupling constants,
lead to better-behaved series.

At about the same time when the more recent diagrammatic Monte Carlo algorithms for equilibrium
were being developed, several lines of research aiming at the construction of algorithms describing
the real-time evolution of quantum systems were conducted. Among them are for example the
inchworm algorithms [219–224] that construct propagators in time iteratively, reusing information
obtained in previous steps and thus reducing the sign problem. Another class of algorithms com-
pute the time integrals appearing in Feynman diagrams analytically [225–230]. This allows for a
controlled continuation to the real axis. The complexity however comes from the very arduous
expressions that need to be evaluated and algorithms that can perform symbolic calculations need
to be implemented. Besides these efforts, maybe one of the most promising family of algorithms
are those that implement an interaction expansion in the Keldysh [231] formalism. Very much like
for the CDet algorithm, it has been shown that explicitly summing a class of diagrams, via a sum
over all Keldysh indices for a given set of interaction vertices, leads to important cancellations and a
great reduction of the variance [86, 232, 233]. Recent developments for this class of real-time algo-
rithm also show that more accurate results can be obtained by replacing the stochastic integration
by either integration based on low-discrepancy sequences (quasi Monte Carlo) [234, 235] or, more
recently, by a low-rank tensor network representation of the function to be integrated [236–240].
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These techniques have focused their attention on the real-time dynamics of quantum impurity prob-
lems. Whether they can be extended to a lattice model, possibly at equilibrium, is an outstanding
question and a very exciting future line of research.

In summary, there has been an intense activity in the design of new diagrammatic Monte Carlo
algorithm over the last years. It has lead to great improvements and encouraging first results
in highly non-trivial regimes of strongly correlated systems that sometimes even set the current
state-of-the-art of quantum many-body methods. But there are still many outstanding challenges
ahead to make these algorithms more robust and applicable to a broader class of realistic models.
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