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I. INTRODUCTION

Strongly-correlated states of matter present a serious theoretical challenge, as pertur-

bation theory typically fails to describe them. An archetypal example are high critical

temperature (Tc) superconductors [1], which have resisted theoretical efforts to account for

their phenomenology since their discovery, [2, 3]. The absence of long-lived quasiparticles, as

reported by photo-emission experiments, and their unconventional transport properties are

two signatures of their incompatibility with the Fermi liquid paradigm, [4]. The Hubbard

model [5], marginal Fermi liquid theory [6] and various field theories with a large (infinite)

number of degrees of freedom [7] aided by random interactions [8] all provide some degree

of insight into this problem.

Progress in understanding the physics at play in these systems has been complicated by

the variety of phases (most famously superconductivity and the pseudogap, but also anti-

ferromagnetism, spin and charge and pair density waves, spin glasses...) that appear to be

competing (or working in concert) in different regions of the phase diagram characterized

by temperature, doping, magnetic field, pressure, etc.

Hydrodynamics and effective field theory methods [9–11] offer a complementary avenue

to more microscopic approaches by eschewing the microscopic details of strongly-correlated

systems, as proved to be particularly relevant for graphene [12–14], and more qualitatively

for bad metals [15]. These approaches rely on identifying the relevant infrared degrees of free-

dom, based on the symmetries of the system, and writing the most general action/equations

of motion compatible with these symmetries in a derivative expansion. The control parame-

ter in this expansion is the cutoff of the infrared theory, where microscopic degrees of freedom

cannot be neglected anymore. It is closely related to the time and length scales where local

equilibrium is established. The price to pay is that the analysis is limited to low energies,

late times and long distances, and breaks down near a phase transition or as temperature

goes to zero (in particular in the vicinity of any quantum critical point where fluctuation
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effects cannot be neglected). Besides the equation of state, effective approaches also need

to be supplemented with transport coefficients which parametrize the various terms in the

derivative expansion, the values of which can only be computed within a microscopically

complete theory or measured experimentally.

Gauge/gravity duality (also referred to colloquially as holography) maps a strongly-

coupled, large N matrix model (where N is the rank of the gauge group) to classical Einstein

gravity coupled to a set of matter fields, [16]. The application of this set of techniques to

strongly-correlated condensed matter systems has been intensively pursued in the past fif-

teen years, [17, 18]. The original duality [16] relates a specific gauge theory to a specific

string theory, so that in principle microscopic degrees of freedom on both sides of the duality

can be matched (in practice, this can be technically involved). A more common approach in

applied gauge/gravity duality is the bottom up one, where the dual field theory is not known

precisely, nor is it clear that the classical gravity dual can be promoted to a full quantum

gravity. A charged black hole is dual to a nonzero density, thermal state in the dual field

theory. The horizon of the black hole provides a thermal bath of degrees of freedom in which

excitations can relax. At long distances and late times, the hydrodynamic equations emerge

at the boundary from bulk dynamics, [19]. Within the range of validity of the low energy

classical gravity theory, the equation of state and transport coefficients of the dual effective

field theory can be computed. There has been a rich dialogue between gauge/gravity dual-

ity and hydrodynamics, the most famous example being perhaps the KSS lower bound on

the shear viscosity to entropy ratio, [20], which originated from the calculation of the shear

viscosity in the N = 4 super Yang-Mills plasma [21].

In applying these tools, identifying the right set of symmetries is paramount, as this will

dictate the starting point of the effective approach. This does so by determining the set of

hydrodynamic conservation equations governing the low energy dynamics of the system in

one case, or by acting as a guiding principle to write down the appropriate bulk action/field

Ansatz in the second.

In the absence of any microscopic model to compute transport coefficients, fundamental

bounds allow to constrain the parameters of the effective field theory – in some circum-

stances, these bounds can be saturated, and then offer more insight into the low-energy

dynamics.

Positivity of the divergence of a suitable entropy current has historically played an essen-

4



tial role in constructing consistent hydrodynamic theories (together with Onsager reciprocity

relations), either by trimming down the number of transport coefficients or bounding the

remaining ones. However, these bounds are typically not tight, and transport coefficients

are far from saturating them (though we will see circumstances later on in this manuscript

where precisely this happens, leading to interesting phenomenological consequences).

Quantum mechanical bounds have proven to be a more fruitful avenue. The Mott-Ioffe-

Regel bound famously bounds from above the resistivity of metals, under the assumption

of long-lived quasiparticles – or turning this around, its violation is a hallmark of non-

quasiparticle transport and strong electronic correlations. It can be stated starting from the

Drude model of electronic transport as

ρdc ≲
ℏ

kd−2
F e2

(1)

after using kF ℓ ≳ 1: the quasiparticle mean free path ℓ should be longer than their Compton

wavelength. This bound is commonly violated at room temperature by so-called bad metals,

[322, 323]. To get (1), we used a lower bound on the mean free path. If instead we bound

the quasiparticle lifetime through τkBT ≳ ℏ, we find [15]

ρdc ≲
ℏkBT

EFk
d−2
F e2

(2)

so that the resistivity of quasiparticle metals is bounded from above by T -linearity. Many

strongly-correlated metals appear to saturate this bound – which one may summarize suc-

cintly by the slogan: ‘strong correlations tend to push quantum many-body systems as close

to bounds as allowed by quantum mechanics’.

For a strongly-correlated, diffusive metal where quasiparticles are short-lived and mo-

mentum is relaxed, the resistivity is more usefully restated as an Einstein relation between

the conductivity, the diffusivity and the static susceptibility. The bound (2) then becomes

a lower bound on the diffusivity [15]

D ≳ v2
ℏ

kBT
(3)

where v is some characteristic infrared velocity, which has been argued to be the Fermi

velocity in a metal with a Fermi surface, the speed of light in relativistic systems, or the

butterfly velocity (which controls the ballistic spread of quantum chaos) in quantum chaotic

systems, [146]. A closely related bound has been rigorously established on the rate of

propagation of quantum chaos, ΛL ≤ 2πkBT/ℏ, where ΛL is the Lyapunov exponent, [26].
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As we have noted, the bound (2) follows from putting together the Drude formula for

electronic transport and the quantum mechanical bound

τ ≳ τP ≡ ℏ

kBT
(4)

This is tantamount to saying that quantum dissipative processes cannot occur on timescales

shorter than the ‘Planckian’ timescale τP , [7, 22, 23].

While these bounds are not proven in general, they have received much theoretical sup-

port, especially (3), from holographic calculations [146, 149, 150] or the Sachdev-Ye-Kitaev

(SYK) model, [170, 178]. The link between hydrodynamics and quantum chaos has been

strengthened by noting that energy diffusion is intimately related to the Lyapunov ex-

ponent and the butterfly velocity DT ∼ v2BλL through the phenomenon of pole-skipping,

[85, 154, 182–184]. Several experiments also appear consistent with these expectations,

[30–33, 325? ].1

In this thesis, we will describe recent progress in applying effective hydrodynamic and

holographic approaches on two classes of problems:

1. Transport in the vicinity of quantum critical points or phases. In many-

body quantum systems with strong interactions, the characteristic timescales relevant

for a variety of dynamical processes are short, and are set by the inverse tempera-

ture τP = ℏ/(kBT ). For example, the ‘Planckian’ timescale τP [7, 22, 23] has been

shown to control the onset of hydrodynamics in holographic plasmas, the post-quench

equilibration of the SYK model, as well as the Lyapunov exponent characterising the

growth rate of chaos in both of the aforementioned kinds of theories [24–29]. Transport

measurements in the strange metallic phase of high-Tc superconductors [30–33, 325]

further support the conjecture that τP fundamentally bounds the dynamics of strongly

correlated phases [15, 22, 23, 34].

Indeed, in the vicinity of a quantum critical point (QCP), T is the only energy scale

and so the importance of τP is manifest [7]. However, there are circumstances in which

non-universal effects are important and lead to dynamics that survive on timescales

much longer than τP . The most familiar example is near a QCP where translational

1 The more recent conjectured violation of the Planckian bound reported in [? ] is subject to caution.
What they are reporting really is a violation of (2), which only signals that their system is not described
by quasiparticles. It only turns into a violation of (4) if one is willing to accept that the resistivity is
simply given by the Drude formula, which is unlikely.
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symmetry is broken by an irrelevant coupling g [35–39], leading to the slow relaxation

of momentum and a parametrically small resistivity. More generally, whenever the

dynamics near a QCP is sensitive to a dangerously irrelevant coupling, τP is no longer

privileged since the irrelevant coupling provides an additional energy scale [7]. In such

situations, it is not obvious what the relevant timescales for dynamical processes are.

2. Phases with spontaneously broken translations. This is motivated by the ubiq-

uity of such phases in the phase diagram of strongly-correlated electron materials, in

particular cuprate or iron-based high Tc superconductors, kagome materials, organic

conductors, transition metals dichalcogenides, etc. While translational ‘spin-charge

stripe’ order was long anticipated on theoretical grounds to play an important role in

underdoped cuprates and other doped Mott insulators [40–46], and was experimentally

confirmed subsequently in most families of underdoped cuprate materials [47] as well

as in numerical studies of the Hubbard model [48, 49], recent experiments suggest that

charge density fluctuations [50] and short-range charge density wave order are actually

found across the phase diagram all the way to the edge of the superconducting dome,

[51–60].2 These observations prompted a number of investigations of the impact of

such fluctuating charge order on transport and spectroscopic experiments, [62–67].

In seeking to apply effective field theory methods to this problem, one is inevitably

confronted with the impact of disorder and other sources of explicit translation symme-

try breaking on the dynamics of the charge density wave, leading to the phenomenon

of pinning, [68]. When the explicit breaking is weak, the symmetry rules which usually

tightly constrain effective field theories are relaxed and it becomes more arduous to

develop a consistent double expansion, in powers of the strength of the explicit break-

ing and of the effective field theory cut-off. On the other hand, gauge/gravity duality

allows to model such phases from first principles, and is particularly appealing testing

arena for effective field theories with approximate symmetries.

Thus, by considering holographic phases breaking translations pseudo-spontaneously

and how their low energy dynamics matched to field theory expectations, great progress

was made in the last few years: the incorporation of the physics of explicit sym-

metry breaking in the hydrodynamics of phases breaking translations spontaneously

2 A recent numerical study of the Hubbard model also reports fluctuating stripes across the phase diagram,
[61].
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[63, 64, 67, 69]; the construction of simpler homogeneous holographic models for

(pseudo-)spontaneously breaking translations [65, 70–78], which provided a far more

tractable platform to compare with hydrodynamic predictions; a thorough analysis of

how background strain and external sources enter in the hydrodynamic theory, [79, 80],

and subsequent comparison with holographic constructions [81].

In section II, we review the hydrodynamics of charged fluids and their linear excitations.

In section III, we give an overview of holographic methods and the holographic modeling

of quantum critical points. In section IV, we review transport near quantum critical points

using gauge/gravity duality. In section V, we discuss recent progress in incorporating back-

ground strain in the hydrodynamics of spontaneously broken translation phases, without

assuming any particular boost symmetry, and expand on checks of this theory by various

holographic models. Next, in section VI, we turn to the physics of pseudo-spontaneous trans-

lation symmetry breaking in hydrodynamics and in holography, and discuss phenomeno-

logical implications. In section VII, we discuss Wigner solid electronic phases and their

quantitative description in terms of the hydrodynamic theory of a pinned magnetophonon.

Finally, we close in section VIII with a discussion on the relevance of pseudo-spontaneous

breaking of translations to strange metallic transport in strongly-correlated materials and

cuprate high Tc superconductors in particular.

Some of the content of this manuscript has been borrowed from some of my previous

work, specifically [63–65, 67, 82–86]

II. HYDRODYNAMICS OF CHARGED FLUIDS

A. Generalities

Symmetries and their spontaneous breaking provide a natural route to classifying states

of matter, formalized by Landau’s theory of second-order phase transitions [87]. This is an

example of effective field theory, valid around the critical temperature at which the phase

transition occurs, where the relevant degrees of freedom are only the order parameter and

its fluctuations.

Hydrodynamics and its extensions to non-liquid states of matter (e.g. elasticity theory)

[88] constitute another class of effective field theories, which describe the long-distance,
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late-time dynamics of the system. Microscopic degrees of freedom are integrated out in this

limit, and are reorganized into fast and slow degrees of freedom. Fast degrees of freedom

equilibrate on time and length scales short compared to the local equilibration scales, which

are typically set by the temperature of the system. Slow degrees of freedom are protected

by symmetries and need to be retained in the effective field theory – they are the conserved

densities of the system, such as energy, charge or momentum. Their evolution is described

by conservation laws descending from the symmetries previously mentioned. They cannot

decay locally and are transported away on scales much larger than the local equilibration

scales to other regions of the system by hydrodynamic modes, such as sound or diffusion.

More concretely, the equations of motion for the conserved densities na take the form

ṅa(t, x) +∇ · ja(t, x) = 0 . (5)

Upper dots stand for time derivatives, ˙≡ ∂/∂t. For a fluid with a conserved U(1) charge,

the na’s are the set of energy ε, momentum πi and charge n densities. The spatial currents

ja are generally not slow operators.3 They decay locally in the thermal bath of conserved

densities, so that their vacuum expectations values obey so-called constitutive relations, i.e.

local expansions in terms of the densities and external sources:4

⟨ja⟩ = α
(0)
ab ⟨nb⟩+ α

(1)
ab ∇⟨nb⟩+ · · · (6)

The angular brackets denote a thermal average. The α
(0),(1)
ab are transport coefficient matri-

ces, order by order in the gradient expansion, with dots denoting higher-order terms. Which

of these coefficients are nonzero depends on the details of the system and the symmetry

breaking pattern. The underlying reason why such expansions are possible is related to the

central assumption to hydrodynamics: all microscopic, high energy modes relax on short

scales of the order the thermalization time/length, and can be integrated out. At longer

scales, only hydrodynamic fields are retained and are the sole source of non-analyticities in

the retarded Green’s functions. In other words, in the hydrodynamic regime, the retarded

Green’s functions only contain the gapless hydrodynamic poles.

3 In special cases they can be. For example, in a system invariant under Galilean boosts, the corresponding
Ward identity gives an operator equation between the charge current and momentum operators, so that
the charge current is a slow operator in this case. In a relativistic system, the Lorentz boosts Ward identity
equates the momentum and energy current operators, so the energy current becomes a slow operator as
well.

4 Throughout this manuscript, we work in a hydrodynamic frame where the time components of the con-
served currents match the microscopic conserved densities, and dissipative corrections only enter with
spatial gradients. Any time derivative correction can be traded for spatial derivatives by using the equa-
tions of motion and constitutive relations at lower order in derivatives.
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In this manuscript, we will limit ourselves to expansions to first order in gradients. We

will also ignore the effects of fluctuations, [89, 90], which generally spoil the analyticity of

retarded Green’s functions and of the dispersion relations of the hydrodynamic modes beyond

first order in gradient terms. In gauge/gravity duality, these fluctuations are suppressed by

the N → +∞ limit, [91].

Inserting (6) in (5), these become evolution equations for the vevs of the conserved

densities, which can now be solved. Taking a spatial Fourier transform and dropping angular

brackets for convenience, we obtain a set of dynamical equations given by

ṅa(t, q) +Mab(q) · nb(t, q) = 0 . (7)

By construction, the matrixMab(q) =M0+M1q+M2q
2+· · · has a local expansion in powers

of the wave-vector q, with each term suppressed by the cutoff length of hydrodynamics ℓth

(ie qℓth ≪ 1 and M1 ∼ O(ℓth), M2 ∼ O(ℓ2th), etc.).

We would now like to compute the retarded Green’s functions of the system. As usual,

this implies turning on a time-dependent deformation of the Hamiltonian

Ho 7→ H(t) = Ho −
∫
ddxna(t, x)δµe,a(t, x) (8)

(with d the number of spatial dimensions), upon which the equations of motion become

ṅa(t, q) +Ma
b (q) ·

(
nb(t, q)− χb

c δµ
c
e

)
= 0 . (9)

Here χ is the matrix of static susceptibilities, obtained by functional differentiation of the

equilibrium free energy

χab(x− x′) = − δ2W [µe]

δµa
e(x)δµ

b
e(x

′)
, (10)

where W = −T log Tre−βH . This matrix encodes the linear response of the system to static

perturbations δµe(x). It should be positive definite in order for the system to be locally

thermodynamically stable.

Taking a Laplace transform of (9) (see [9] for more details) leads to the retarded Green’s

functions

GR
ab(ω, q) ≡

δna(ω, q)

δµb
e(ω, q)

= − (iω −M)−1 ·M · χ (11)

where ω is the frequency. The hydrodynamic poles of the system are found by solving the

equation det(−iω+M) = 0. As a point of reference, in the case of a single conserved U(1),
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the constitutive relation for the spatial current compatible with invariance under parity and

time reversal and with external sources turned on is

ji = −Dn

(
∇in− χnn∇iδµe

)
+ · · · , i = 1 . . . d , (12)

leading to a quadratically dispersing, diffusive mode ω = −iDnq
2 + · · · . The diffusivity can

be measured by the following Kubo formula

Dn =
1

χnn

lim
ω→0

lim
q→0

ω

q2
ImGR

nn(ω, q) . (13)

Instead, in the longitudinal sector, a neutral fluid would have two linearly dispersing

sound modes ω = ±csq − iΓ
2
q2, where the longitudinal sound velocity is determined by

the various static susceptibilities and the sound attenuation Γ by first-order in gradients

dissipative corrections to the constitutive relation of the energy current and stress tensor,

see e.g. [88].

Hydrodynamics only gives access to gapless poles with a vanishing dispersion relation

at zero wavevector ω(q = 0) = 0, the hydrodynamic modes. Non-hydrodynamic, gapped

modes of the system cannot reliably be included in the hydrodynamics in general, except

in certain special circumstances, for instance when the gap is generated by breaking weakly

one of the symmetries of the system [92, 93]. Later in this manuscript, we will explain

how to incorporate such weakly-gapped degrees of freedom in the low energy effective field

theory. Generic gapped modes which do not fall in the previous category typically signal

the breakdown of the effective field theory description [94, 95] and can only be accounted

for by supplementing hydrodynamics with a microscopic completion.5

B. Linearized excitations in charged fluids

Linearised hydrodynamics is the theory that describes the transport of small perturba-

tions of charge and heat over long distance and timescales in a system which is locally in

thermal equilibrium. We will assume that our system has both translational and rotational

symmetry, but no particular form of boost symmetry.6

5 Remarkably, when the gradient expansion can be systematically computed in a microscopically complete
framework, the dispersion relation of gapped modes can be obtained by resumming the hydrodynamic
series, [94].

6 See [96–101] for more complete treatments of fluid hydrodynamics without boosts.
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The hydrodynamic variables are the long wavelength perturbations of the entropy density

δs, charge density δn and momentum density πi. In the absence of external sources, the

linearized conservation equations are

∂tδs+ ∂ · (δjq/T ) = 0,

∂tδn+ ∂ · δj = 0,

∂tδπ
i + ∂jδτ

ji = 0.

(14)

The perturbations (δs, δn, δπi) are sourced by temperature, chemical potential, and velocity

perturbations (δT, δµ, δvi). The static susceptibility matrix χ relating these quantities has

the form 


δn

δs

δπi


 =




χnn χns 0

χns χss 0

0 0 χππ







δµ

δT

δvi


 . (15)

In d spatial dimensions, and in the absence of external sources, the constitutive relations for

the charge, heat, and momentum currents are (neglecting terms of order ∂2 and higher)

δji = nδvi − σo∂
iδµ− αo∂

iδT, (16)

δjiq = sTδvi − Tαo∂
iδµ− κ̄o∂

iδT, (17)

δτ ij = δijδp− η

(
∂iδvj + ∂jδvi − 2

d
δij (∂ · δv)

)
− ζ (∂ · δv) δij, (18)

where δp = sδT +nδµ is the pressure fluctuation, η and ζ are the shear and bulk viscosities

and σo, αo and κ̄0 are further dissipative transport coefficients related to the thermoelectric

conductivities σ, α, κ̄ by

σ(ω) =
n2

χππ

i

ω
+ σo , α(ω) =

sn

χππ

i

ω
+ αo , κ̄(ω) =

Ts2

χππ

i

ω
+ κ̄o. (19)

The divergent low frequency parts of the thermoelectric conductivities are a consequence of

the non-zero static susceptibilities between the thermoelectric currents and the conserved

momentum [37]

χπj = n , χπjq = sT. (20)

The longitudinal excitations of this theory consist of a diffusive excitation with dispersion

relation

ωD = −iDk2, D =
s2T 2σo + κ̄0Tn

2 − 2nsT 2αo

T 2 (s2χnn + n2χss − 2snχns)
, (21)
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as well as two sound modes with dispersion relations

ω± = ±
√
n2χss + s2χnn − 2snχsn

χππ (χssχnn − χ2
sn)

k − iΓ

2
k2,

Γ =
2η
(
1− 1

d

)
+ ζ

χππ

−D +
σoχss − 2αoχns +

κ̄0

T
χnn

χssχnn − χ2
sn

.

(22)

The sound waves are ‘coherent’ [15] excitations that transport perturbations of both long-

lived momentum density δπi and of pressure δp through the system. The importance of

pressure fluctuations in the transport of momentum density is obvious from the form of the

stress tensor (18).

In contrast to this, the diffusive mode is an ‘incoherent’ excitation of the system, in

that it does not transport long-lived momentum density. We can define perturbations of an

‘incoherent’ density δninc

δninc ≡ s2Tδ (n/s) = T (sδn− nδs) , (23)

which obeys the conservation equation

∂tδninc + ∂ · δjinc = 0, δjinc ≡ sTδj − nδjq. (24)

The incoherent perturbations δninc and δjinc are special because they do not overlap with

fluctuations in the pressure and momentum density i.e. their static susceptibilities vanish

χnincp = 0, χjincπ = 0. (25)

The consequence of this is, that to leading order in the hydrodynamic limit7 the retarded

Green’s function of δninc has the simple diffusive form

GR
nincninc

(ω, k) =
−k2 (T 2s2σo − 2nsT 2αo + n2T κ̄o)

−iω +Dk2
. (26)

It does not have poles corresponding to the propagation of the sound waves (22).8 The

diffusivity D in equation (21) obeys the Einstein relation

D =
σinc
χinc

, (27)

7 Explicitly, we let ω → λ2ω, k → λk and expand the Green’s function at leading order in λ.
8 i.e. the full Green’s function does not have sound poles when expanded in the limit λ → 0 with ω → λω,
k → λk.
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where σinc and χinc are the dc conductivity and static susceptibility of δninc

σinc ≡ lim
ω→0

lim
k→0

i

ω
GR

jincjinc
(ω, k) = lim

ω→0
lim
k→0

i

ω

ω2

k2
GR

nincninc
(ω, k) = T 2s2σo − 2nsT 2αo + n2T κ̄o,

χinc ≡ − lim
k→0

lim
ω→0

GR
nincninc

(ω, k) = T 2
(
n2χss − 2snχns + s2χnn

)
.

(28)

Note that in contrast to the dc conductivities of charge and heat individually, the dc conduc-

tivity of δninc is finite. This is because δjinc has no overlap with the conserved momentum

[102]. It is this independence from momentum conservation that makes it possible for σinc

to be controlled by the underlying infrared QCP (as we will discuss in section IVA), unlike

the electrical conductivity. Also note that while the values of the incoherent conductivity

and susceptibility depend on the overall normalization of δninc, the value of the diffusivity

D does not.

Another useful expression for χinc can be found by using thermodynamic identities on

the expression in equation (28) and taking a low temperature limit

χinc (T → 0) −→ Tn2cn, (29)

where cn = T (∂s/∂T )n is the specific heat at fixed charge density. We have assumed that,

in this low temperature limit, the charge susceptibility is finite while the entropy density is

a power law s ∼ T α with α ≥ 0. These conditions will be valid in all of the holographic

theories we examine later in section III B and section IV.

We can also evaluate the susceptibility of pressure at low temperatures to find

χpp(T → 0) → n2

χnn

. (30)

In holographic theories at non-zero density, the chemical potential µ of the theory is not a

near-horizon property, but depends on knowledge of the entire spacetime. As a consequence,

the low temperature static charge susceptibility χnn = (∂n/∂µ)T at low temperature is not

an IR property of these theories.

By diagonalizing the susceptibility matrix in the basis (δninc, δp), we have separated its

components into IR and UV-dominated pieces.

The incoherent conductivity also controls the dissipative dynamics of another set of phys-

ical processes in this system.

The hydrodynamic equations (14) to (18) are valid in the absence of external sources. In

the presence of a small electric field δEi, the momentum conservation equation should be
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modified to

∂tδπ
i + ∂jδτ

ji = nδEi, (31)

while ∂iδµ should be replaced with ∂iδµ− δEi in the constitutive relations (16) to (18). The

presence of an external electric field affects the measured conductivities and diffusivities.

One experimentally relevant configuration is when there is an electric field such that no

current flows (open-circuit boundary conditions). The open circuit dc thermal conductivity

is simply related to the incoherent conductivity by

κ ≡ − δjs
∂δT

∣∣∣∣
δj=0

=
σinc
Tn2

. (32)

Similarly, under the condition ∂ ·δj = 0 (i.e. charge perturbations are static ∂tδn = 0), there

is a hydrodynamic diffusion equation

∂t

(
δT +

χππ (nαo − sσo)

n2 (∂s/∂T )n
∂ · δv

)
= DT∂

2

(
δT +

χππ (nαo − sσo)

n2 (∂s/∂T )n
∂ · δv

)
+O(∂3) (33)

with a ‘thermal’ diffusivity

DT ≡ κ

cn
, (34)

which is simply related to σinc by equation (32).

In the low temperature limit described above, D therefore coincides with DT

DT =
κ

cn
=

σinc
Tn2cn

= lim
T→0

σinc
χinc

= lim
T→0

D, (35)

due to the relation (29).

III. HOLOGRAPHIC METHODS

A. Generalities

The hydrodynamic construction outlined in the previous section can be systematically

carried out order by order in the gradient expansion. The procedure quickly becomes in-

tractable analytically due to the proliferation of terms to be considered, [103]. Moreover,

the equation of state and each transport coefficient needs to be measured experimentally or

computed in a microscopic model.

Most microscopic models, nevertheless, face serious difficulties whenever the system under

investigation is either strongly interacting, made of a large number of constituents, placed
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at finite chemical potential, finite temperature or when its real time dynamics is consid-

ered. Under these circumstances, the AdS-CFT correspondence9 provides a self-consistent

framework to attack these problems and guide new interdisciplinary explorations. Holog-

raphy posits a duality between a large class of quantum field theories with gauge group of

dimension N and higher-dimensional gravitational theories (for details we refer to a num-

ber of reviews and textbooks now available in the literature [17, 18, 106]). The duality

was originally discovered in the context of string theory [16, 107, 108], which provides a

precise formulation of the conjecture, between a supersymmetric gauge theory (N = 4 su-

per Yang-Mills with gauge group SU(N)) and a string theory (type IIB string theory on

AdS5 × S5), now widely accepted as proven. In the bottom-up approach, the simplifying

limit of classical gravity coupled to matter fields without extended objects (D-branes) is

taken and corresponds to considering a dual field theory in the regime of strong ‘t Hooft

coupling and in the large N limit10 and is known as the bottom-up approach. Bottom-up

holographic methods have been applied in several directions such as quantum chromody-

namics (QCD) and heavy ion collisions [110, 111], condensed matter many-body systems

and quantum information [17, 18, 112–114].

From a formal point of view, the duality is built on the identification of the field theory

partition function with sources on with the gravitational on-shell path integral, [107, 108]:

ZQFT [sa(x)] = Zgravity[sa(x)] (36)

with

ZQFT [{sa(x)}] = ⟨ei
∑

a

∫
dx sa(x)Oa(x)⟩ , Zgravity[{sa(x)}] =

∫ φa→sa

(ΠaDϕa) e
iS[{φa}] (37)

The field theory operators Oa and sources sa are given by specific coefficients of the asymp-

totic expansion of dynamical fields ϕa living in the curved, higher-dimensional, bulk space-

time through a by now well-established holographic dictionary, [128]. Local symmetries in

the bulk are mapped into global symmetries of the boundary field theory. Thermal, finite

density states in the dual field theory are captured by gravitational charged black hole so-

lutions in the bulk, with the field theory temperature given by the Hawking temperature at

9 Anti de Sitter spacetime [107] is a maximally symmetric spacetime which is a solution of Einstein’s
equations with a negative cosmological constant. It is endowed with a conformal timelike boundary. A
conformal field theory is invariant under the conformal group, which contains spacetime translations,
spatial rotations, Lorentz boosts and special conformal transformations. It is also scale invariant.

10 Here, N is the rank of the dual gauge field theory [109]. In the absence of a precisely identified dual field
theory, this limit has to be understood as a large number of degrees of freedom.
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the event horizon and the chemical potential by the boundary value of the bulk gauge field.

From this gravitational background, all thermodynamic quantities can be computed, as well

as the static susceptibilities. Linear perturbations of the gravitational solution together

with appropriate boundary conditions for the bulk fields [115] yield the real-time, space-

dependent retarded Green’s functions, the poles of which are given by the quasi-normal

modes of the black hole solution. This linear analysis also gives access to all linear transport

coefficients through the appropriate Kubo formulas. This way, one can obtain the dispersion

relations of both hydrodynamic and gapped excitations in the dual field theory, [116, 117].

The low energy excitations of charged black holes have been successfully matched to the

predictions of charged, relativistic linearized hydrodynamics [118–122].11 Besides providing

a concrete test bed for hydrodynamics, holography is a microscopically complete framework

which allows to compute all transport coefficients. This has led to important insights on

strongly-coupled dynamics, such as the celebrated lower bound on the shear viscosity to

entropy density ratio [20] or the fast hydrodynamization of the Quark-Gluon-Plasma [28].

The interplay between quantum criticality and holography was immediately the subject of

much attention, and contributed to kickstart the program of applying holographic methods

to strongly-correlated condensed matter systems, see eg the review [18] for an exhaustive

review of this literature. In the next subsection, we introduce holographic quantum critical

points and their scaling properties.

B. Holographic quantum critical points

In this section, we will describe the properties of the holographic QCPs of [129–135]. A

reader who is very familiar with these QCPs can safely skip this section.

The holographic QCPs that we study arise at the IR endpoint of the RG flows generated

by relevant deformations of UV conformal fixed points. Using gauge/gravity duality, RG

flows of this kind can be captured by the gravitational Einstein-Maxwell-scalar action

SUV =

∫
dd+2x

√−g
(
R− 1

2
(∂ϕ)2 − Z(ϕ)

4
F 2 − V (ϕ)

)
. (38)

The relevant deformations that can be captured by this action include those that generate

a non-zero density. We are interested in solutions that near the boundary (u → ∞) have

11 The full nonlinear structure of the hydrodynamic theory can be also derived from the gravitational equa-
tions using the fluid-gravity correspondence [123].
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an asymptotic metric that is AdSd+2 together with the near-boundary behaviour for the

potentials

V (ϕ→ 0) → −d(d+ 1) +m2ϕ2/2 , Z(ϕ→ 0) → 1 . (39)

By choosing the scalar couplings V (ϕ) and Z(ϕ) appropriately, we can find gravitational

solutions which are dual to field theories that are governed by IR quantum critical points.

The metric of these solutions depart from AdS away from the boundary, and in the deep

interior become scale-covariant (at zero temperature). Solutions of this kind arise when the

scalar field ϕ has a runaway behaviour in the deep interior ‘IR region’, where the scalar

couplings can be approximated by exponentials

V (ϕ→ ∞) −→ V0e
−δφ , Z(ϕ→ ∞) −→ Z0e

γφ , (40)

where δ, γ are real numbers that will be constrained shortly. Interpreting the radial coordi-

nate as the energy scale of the dual field theory in the usual way, we expect the IR properties

of the dual quantum field theory to be governed by this IR region of the spacetime. The

effective action governing the IR region is

SIR =

∫
dd+2x

√−g
(
R− 1

2
(∂ϕ)2 − V0e

−δφ − Z0e
γφ

4
F 2

)
. (41)

As is now well-understood [132, 133, 135], the various terms in the IR effective action are

on different footings. The first three terms proportional to the Ricci curvature, the scalar

kinetic term and the scalar potential directly support the IR solution dual to the QCP and

their effects cannot be neglected [129] in order to obtain consistent solutions. The last term,

proportional to F 2, parameterises a deformation of the QCP. Depending on the value of the

exponent γ, this deformation will be either marginal or irrelevant. It captures the effects

of nonzero density (particle-hole symmetry breaking) near the QCP. When it is marginal,

it directly sources the IR solution. When it is irrelevant, it sources corrections to the IR

solution that grow towards the boundary of the IR region of the spacetime.

We will now describe the IR solutions in greater detail. The action (41) admits zero

temperature scaling solutions [135], which are naturally parametrized by two scaling expo-

nents: {z, θ} [130, 131, 135]. These solutions (valid deep in the interior of the bulk) are dual
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to an IR quantum critical point, and have the form

ds2 =
( r
L

)2 θ
d

(
−L

2z

r2z
L2
tdt

2 +
L̃2dr2

r2
+
L2

r2
L2
xdx

2

)
, ϕ = κ ln

( r
L

)
,

κ2 =
2

d
(d− θ)(dz − d− θ) , κδ = 2

θ

d
.

(42)

The regime of the full geometry where this IR solution is valid is controlled by the scale L:

for θ < d (θ > d), it is valid for r ≫ L (r ≪ L) assuming that that the asymptotically AdS

boundary is at r → 0 (r → ∞). The r coordinate does not extend all the way to the AdS

boundary. The values of the scales Lt and Lx will be determined in a non-trivial way by

the flow to the asymptotically AdS solution, and so we keep them as free parameters. Their

dependence on the UV sources depends on the specific RG flow considered.

Our choice of coordinates makes it manifest that the zero temperature metric transforms

covariantly under the scaling

t→ Λzt , (r,x) → Λ(r,x), (43)

and therefore that z is the dynamical critical exponent of the critical point. The zero

temperature metric is only covariant (rather than invariant) under this transformation when

there is a non-zero hyperscaling violation exponent θ. Hyperscaling violation is directly

related to the IR running of the scalar ϕ, and to the fact that the scale L has not decoupled

from the IR theory. θ determines the effective spatial dimensionality d−θ of the IR quantum

critical state. This statement can be made precise by embedding such solutions in higher or

lower-dimensional spacetimes [130, 136, 137].

We have not yet given an expression for the value of the dynamical exponent z. To do

so, we need to consider the deformations of the QCP due to the gauge field F term in the

IR effective action (41).

1. Marginal deformation (z ̸= 1)

The first possibility is that the deformation of interest is marginal. That is, it does not

give rise to terms with different powers of r in the solution (42). This implies

A = A0

( r
L

)θ−d−z

Ltdt , A2
0 =

2(z − 1)

Z0(d+ z − θ)
,

κγ = 2d− 2(d− 1)
θ

d
, L̃2 =

(d+ z − θ)(d− 1 + z − θ)

−V0
.

(44)
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The IR metric enjoys nonrelativistic scaling z ̸= 1. The relations between (δ, γ) and (z, θ)

can be inverted to express z and θ in terms of parameters in the effective action. Thus the

scaling exponents of the IR QCP are completely determined by specifying the gravitational

action.

When a small temperature T is turned on, the solutions with marginal deformations

change: there is a horizon at r = rh and

ds2 =
( r
L

)2 θ
d

(
−L

2zf

r2z
L2
tdt

2 +
L̃2dr2

r2f
+
L2

r2
L2
xdx

2

)
, f = 1−

(
r

rh

)d+z−θ

. (45)

These IR solutions are dual to the thermal state of the quantum critical theory, with T

related to rh by (49) below.

Even at non-zero temperature, there is a region L ≪ r ≪ rh where the metric looks

like the zero temperature form (42). One simple example of this is the AdS-Reissner-

Nordström solution, which is characterized by an AdS2×Rd zero temperature IR geometry.

The AdS2 can be placed at nonzero temperature, which describes small departures from the

zero temperature state.

Imposing the null energy condition and positivity of the low temperature heat capacity

results in the following restrictions on the allowed parameter space of IR solutions

d− θ

z
≥ 0 , (d− θ)(dz − d− θ) ≥ 0 , (z − 1)(d+ z − θ) ≥ 0 . (46)

2. Irrelevant deformation (z = 1)

The second possibility we would like to consider is that the deformation of interest is

irrelevant. For these cases the T = 0 IR solution has z = 1, and the deformation sources

power law (in r) corrections to this solution that grow towards the edge of the IR region.

This means that the IR solution is like a ‘CFT’ in d−θ spatial dimensions, in the presence of

an irrelevant deformation parameterised by a coupling g = A0. As dilatations are broken by

θ ̸= 0, it is not an actual CFT, but it can be endowed with a generalized conformal structure

in the sense of [136, 137]. The full solution is obtained by solving for the backreaction of

the irrelevant field A order-by-order in g. The leading corrections take the form (where the

subscript g = 0 means (42) with z = 1)

ds2 = ds2g=0

(
1 + #g2

( r
L

)2∆g

+O(r4∆g)

)
, ϕ = ϕg=0 +#g2

( r
L

)2∆g

+O(r4∆g) . (47)
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The corrections are quadratic in the irrelevant coupling as the corresponding field appears

quadratically in the scalar and Einstein equations.

(47) is supplemented by

At = LtA0

( r
L

)θ−d−1−2∆g

(
1 + #A2

0

( r
L

)2∆A0

+O(r4∆A0 )

)
, 2∆A0

= 2(d− θ)− κγ +
2

d
θ .

(48)

The critical states (42) with z = 1 can also be placed at a small, nonzero temperature by

introducing an event horizon at r = rh. Close to the horizon, the metric will have the form

(45) with z = 1. The zero temperature form (47) will be recovered in the range L≪ r ≪ rh.

Since z = 1, the inequalities (46) enforce that θ < 0. This in turn implies that the

expansions in (47) can only make sense if ∆g < 0 (the IR is located at r → +∞ in these

coordinates). This is precisely what we expect for the dimension of an irrelevant coupling.

The irrelevant coupling g breaks the z = 1 symmetry of the QCP, in tandem with break-

ing the particle-hole symmetry of the QCP. g also breaks Lorentz boost symmetry. The

dimension of the irrelevant coupling is primarily determined by the value of γ.

3. More on irrelevant deformations of holographic QCPs

We will now characterise more precisely the scaling properties of the z = 1 IR solutions

by relating ∆A0
(defined above) to the dimension of an irrelevant coupling. At has two

independent modes: in addition to the A0 mode that scales as rθ−d−1+2∆A0 , there is a

constant r0 mode that is allowed by U(1) gauge invariance. As usual in holographic theories,

we would like to interpret one of these modes as the source of an operator that is irrelevant

near the IR critical point, and the other as the corresponding expectation value [17, 18, 106].

From their radial dependence, we see that the difference between the IR scaling dimension

of the source and the expectation value is θ − d − 1 + 2∆A0
. Combining this with the fact

that their dimensions should sum to d + 1 − θ, due to the effective dimensionality of the

IR critical point, we are left with two possible values for the dimensionality of the operator.

We choose the positive value ∆irr = d+ 1− θ −∆A0
> 0, and so the source has dimension

∆A0
< 0. Note that since ∆irr > d+1−θ, this is an irrelevant deformation of the IR critical

point.

We interpret the mode which grows fastest near the boundary of the IR solution as the

source, and hence A0 is the source for an irrelevant deformation of the IR critical point with
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dimension ∆A0
given by (48). This irrelevant source produces a deformation of the metric

which vanishes in the deep IR, as expected. This is in contrast to the constant mode (the

expectation value), which would backreact on the metric in a way that grows in the IR and

destroys the critical point, consistent with the discussion in [138].

From (44), we see that for the z ̸= 1 QCPs, g = A0 is a marginal coupling.

4. IR scaling of thermodynamic observables

Physically, we expect that the scaling dimension of the irrelevant coupling will control the

IR behaviour of certain observables. In this section, we specifically comment on thermody-

namic observables. We will address the impact of these irrelevant deformations on transport

in section IVA.

The scaling properties of the solutions we have just described result in many field theory

observables exhibiting scaling behaviour at low temperatures and frequencies. This scaling

behaviour can be understood in terms of the anomalous IR scaling dimensions of entropy

and charge density in these solutions [130, 131, 133, 135, 139].

Once the values of V0 and Z0 in the IR action have been fixed, the zero temperature

IR solution is characterized by the parameters Lt, Lx and L. Changing the values of these

parameters does not induce any RG flow (i.e. any new radial dependence in the IR solu-

tion) and so they are marginal. There are two important deformations that do change the

radial dependence of the IR solution. The first is turning on rh i.e. turning on a non-zero

temperature. The second is turning on the coupling g = A0, which for z = 1 solutions is an

irrelevant deformation that induces an RG flow.12

We will now assign IR scaling dimensions by determining how quantities depend on these

two IR scales – the temperature T and the irrelevant coupling g. This is straightforward

for quantities which can be expressed explicitly in terms of the near-horizon gravitational

solution, as their T and g dependence is then manifest. The Hawking temperature is related

to the horizon radius by

T =
(d+ z − θ)

4πL̃
Lt

(rh
L

)−z

⇒ [T ] = z, (49)

12 There are additional irrelevant deformations, but since they do not affect the low temperature and low

frequency behaviour of the observables of interest in this work, we will not discuss them.
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in our conventions where [r] = −1. This result is consistent with interpreting T as an inverse

time, where [t] = −z in line with the scaling transformation (43). The entropy density s

and charge density n can be calculated from the area of the horizon and the electric flux

emitted by the horizon, and are given by

s = 4πLd
x

(rh
L

)θ−d

, n = Ld
x

(θ − d− z − 2∆g)Z0

L̃
A0. (50)

We can therefore assign them the dimensions13

[s] = d− θ, [n] = ∆A0
, (51)

using equation (49).

It is also convenient to define an anomalous scaling dimension Φ for the charge density

[139, 140] via14

[n] = ∆A0
= d− θ + Φ. (52)

We observe that even for the marginal case, Φ = θ−d is non trivial and implies [n] = 0. We

will see later that this scaling assignment correctly reproduces the explicit low T scaling of

transport observables.

The authors of [140] used (51) as a starting point and derived a complete scaling theory

of transport observables in quantum critical states of this kind. They showed that a vari-

ety of magnetothermoelectric transport observables (but not thermodynamic observables)

experimentally measured in cuprate high Tc superconductors could be understood from this

phenomenological theory, assuming that these observables are insensitive to irrelevant de-

formations. The inclusion of non-zero anomalous dimensions is an improvement on previous

applications of scaling theories to the cuprates [141] (see [2, 142] for more discussion of the

role of quantum criticality in the cuprates).

We emphasise that these scaling dimensions do not tell us anything about how n and s

depend on the sources which deform the UV CFT, such as the chemical potential µ. At zero

temperature, the UV sources generate an RG flow to the IR solution, where the values of

all of the parameters in the IR solution A0, Lt, Lx etc. will depend non-trivially on the UV

sources. Access to the entire RG flow is needed to reconstruct this dependence. But the

dependence of n and s on rh does tell us their T dependence at low T , as the other parameters

13 In the absence of hyperscaling violation, [s]=d as expected. Hyperscaling violation acts as an effective
spatial dimensionality d− θ.

14 This is anomalous since in d− θ effective spatial dimensions, we would expect [n] = d− θ = [s].
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in the IR solution A0, Lt, Lx etc. are T -independent in the limit T → 0 (otherwise the zero

temperature IR solution would not exist).

For the z ̸= 1 solutions, [A0] = 0 (i.e. this coupling is marginal) and so the scaling

dimensions of s and n indicate their dependence on the only dimensionful scale T ,15 s ∼
T (d−θ)/z and n ∼ T 0. For z = 1 solutions, the total scaling dimensions of s and n tell us the

combined dependence on T and the dimensionful irrelevant coupling A0. The information

about how they separately depend on A0 and on T is not captured by the total dimension.

More information – the explicit expressions (50) – are needed to determine this separate

dependence, s ∼ (A0)
0 T d−θ and n ∼ A0 T

0.

As we have emphasised, in general the relation between the UV sources and the IR

sources of the theory is not simple. However, the fact that the charge density n (50) is

directly proportional to A0 at zero temperature means that it can sometimes be helpful to

think of A0 as an ‘IR charge density’.

IV. TRANSPORT NEAR HOLOGRAPHIC QUANTUM CRITICAL POINTS

A. Holographic quantum critical points with 1 ≤ z < +∞

In [82, 143], we have computed the low-frequency response to a small oscillating electric

field – the ac conductivity – near the holographic QCPs described in section III B. We only

outline the main results here and refer to [82, 143] for details of the calculation.

We find that the conductivity takes the general form

σ(ω) =
n2

χππ

i

ω
+ (χππ)

2σinc(ω) . (53)

The first term arises from momentum conservation and captures the contribution of

momentum-dragging processes to the current. The second term is the incoherent con-

tribution described in the section II B, which does not drag momentum.16 It reads

σinc(ω) =
σdc
inc

1− iωτeq
, σdc

inc = σo(χππ)
2. (54)

This calculation is valid in the limit where ω ≪ T . This means that it only makes sense

to keep the effects of the timescale τeq in the conductivity (ie extend the validity of (54) to

15 In fact, as A0 can be replaced with Z0 by equation (44) for these solutions, it is not very meaningful to
ask how IR observables depend on A0.

16 This can be seen more precisely by putting together (19), (28) and recalling that in a Lorentz-invariant
theory, αo = −µσo/T , κ̄o = µ2σo/T

2 and χππ = ε+ p = sT + nµ after imposing the Lorentz boost ward
identity πi = jiε = jiq − µji.

24



frequencies of order ωτeq ∼ 1 instead of ω ≪ T ) if this timescale is parametrically longer

than the timescale set by temperature, τeqT ≫ 1. A precise expression for τeq in terms of

bulk fields can be found in [82, 143].

For holographic QCPs with z ̸= 1, we find that in fact Tτeq ∼ 1, so that the expression for

the conductivity near the QCP (53) is actually of the same form as (19) for charged fluids.

The effects of the QCP manifest themselves in the temperature dependence of σdc
inc. In holo-

graphic theories of the kind (38), we showed in [102] that σdc
inc = (sT )2(s/4π)(d−2)/2Z(ϕ(rh)).

All the quantities appearing in σinc are determined by the black hole horizon, or in other

words, are IR quantities that are not directly sensitive to details of the UV. So σinc is a

contribution to the conductivity which is determined by the IR, and is amenable to an IR

scaling analysis. In contrast, σo involves χππ = sT + nµ ≃ µn at low temperatures, and µ

is not an IR quantity (it comes from the boundary condition at the UV AdS boundary).

Instead, QCPs with z = 1 feature a dangerously irrelevant deformation, which manifests

itself by sourcing a long-lived mode (a quasinormal mode of the dual black hole) at low

temperatures in the vicinity of the QCP. This mode has a lifetime τeq, which schematically

takes the form

τeq ∼
1

T

(
T∆g

g

)2

, (55)

where g is the irrelevant coupling and ∆g its dimension. As by definition of an irrelevant

deformation ∆g < 0, the timescale τeq ≫ 1/T as T → 0. This implies that relativistic

hydrodynamics has a significantly restricted range of validity near the QCP (it is valid for

times t ≳ τeq ≫ 1/T rather than t ≳ 1/T ), as the dangerously irrelevant coupling slows

down the return to equilibrium. This affects the low frequency dependence of the incoherent

conductivity (54), which can display a coherent, Drude-like peak centered at ω = 0.

Furthermore, not only the incoherent dc conductivity, but also its associated susceptibility

and diffusivity (which obeys an Einstein relation), are consistent with a scaling theory based

on the scaling hypothesis:

[s] = d− θ , [n] = d− θ + Φ . (56)

At low temperatures, all of these quantities are directly determined by the near-horizon

solution, and so we can explicitly determine their dependence on temperature and on irrel-

evant couplings. While the incoherent dc conductivity always scales with temperature as

predicted by the scaling theory, the associated susceptibility and diffusivity do not. However,
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the temperature scaling of these latter observables is consistent with the scaling theory once

their dependence on a dangerously irrelevant coupling is accounted for. Such a dangerously

irrelevant deformation is present for IR QCPs states with z = 1 and θ ̸= 0. Further, the low

frequency scaling of the ac (time-dependent) incoherent conductivity at zero temperature

is also consistent with this scaling theory, once its dependence on the irrelevant coupling is

accounted for.

Our results are further evidence that IR scaling theories are a helpful way to understand

the properties of near-horizon observables in holographic theories, but that not all such

observables obey naive temperature scaling. In other words, some care must be taken when

characterizing the degree to which near-horizon observables are universal.

Irrelevant deformations are also known to play an important role in the thermal diffusivity

DT near the z = 1 quantum critical points that we study [144]. More precisely, for a generic

holographic quantum critical state DT , written in units of the Planckian time τP = ℏ/kBT

and the butterfly velocity vB (an IR velocity that quantifies the spread of quantum chaos

[145, 146]), is a simple universal constant. However, for z = 1 critical states this universal

relation breaks down as DT becomes sensitive to irrelevant deformations of the critical point.

We showed that both DT and τeq are in fact controlled by the same dangerously irrelevant

coupling and therefore that τeq (rather than τP ) is the timescale controlling thermal diffusion

in these systems

DT =
2

d+ 1− θ
v2Bτeq . (57)

This is consistent with the conjectures of [147, 148]. Near translational invariant quantum

critical states, we furthermore showed in (35) that the usual ‘incoherent’ diffusion constant

D of relativistic hydrodynamics is equal to DT and thus D ∼ v2Bτeq in these cases also.

One of the key results of this section is the identification of the physical timescale τeq which

controls the thermal diffusivity near z = 1 IR QCPs through equation (57). As anticipated

in [147, 148], this timescale is the equilibration timescale of the system, which in our case is

much longer than that set by temperature τ ∼ 1/T , see (55). In the case we have studied

(translation-invariant QCPs), this timescale corresponds to the lifetime of the longest-lived

non-hydrodynamic excitation near the QCP. This differs from previous holographic results,

where the timescale appearing in (57) was found to be τeq ∼ 1/T [146, 149–155].

It is natural to ask whether the velocity in the relation (57) should also be interpreted

not as the butterfly velocity but as the velocity of a long-lived collective excitation of the
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system. Indeed, we note that for z = 1 holographic systems, the speed of sound in the

infrared spacetime17 v2s = 2v2B/(d+1− θ) = 1/(d− θ) is precisely equal to the speed in (57).

We anticipate that the systems we study here, in which the z = 1 spacetime arises at the

IR endpoint of the RG flow, will also support a collective mode with this speed and that it

is the speed of this mode that sets the diffusivity.

In ongoing work [156], we are showing that the linearized equations of motion reveal that

the low-energy EFT at low temperatures features an emergent (d−1)-form symmetry with a

mixed ‘t Hooft anomaly when an external gauge field coupling to the global U(1) symmetry

is turned on. This is similar to the EFT for superfluids where the Josephson relation is

traded for the conservation of the winding number, [157] (see also the discussion in section

VE). This EFT features a gapless, propagating mode (the superfluid Goldstone in the EFT

for superfluids), which has the speed v2s = 1/(d − θ) mentioned in the previous paragraph.

At nonzero temperature, this emergent symmetry is broken by the irrelevant operator Ao

that puts the system at nonzero density and gives rise to the long timescale τeq.

Thus the relation (57) is seen to be on the same footing as another case which has been

studied in great detail: that of a neutral fluid with slowly relaxing momentum [92]. There it

was shown that while transport is diffusive at late times, at earlier times the diffusive mode

undergoes a collision and turns into a pair of ‘sound’ modes with a long lifetime and speed

vs. The thermal diffusivity is DT = v2sτeq, see equation (2.17) of [92].

Similar relations arise in other hydrodynamic theories where a gapless mode becomes long-

lived, for instance in the hydrodynamic theories of fluctuating superconductivity [158] and

fluctuating, pinned charge density waves [64]. The velocities are respectively the superfluid

sound velocity and the shear transverse sound velocity, respectively. The same relations can

also be derived in probe brane scenarios [159–161], states with generalised global symmetries

[162], magnetohydrodynamics and Müller-Israel-Stewart theory [93].

In the more generic cases in which irrelevant deformations are unimportant and therefore

τeq is not parametrically long, the thermal diffusivity near the QCP is [144]

DT =
z

4π(z − 1)
× v2BT

−1 . (58)

In light of the previous discussion, it would be interesting to understand if this relation can

also be refined by quantitatively identifying a lifetime τeq = #T−1 and velocity v2s = #v2B of

17 By this we mean the speed of the sound mode obtained by promoting the IR spacetime to the full spacetime

as in [136].
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a collective mode in these systems such that DT = v2sτeq. Such a relation would indicate that

it is not the butterfly velocity vB that fundamentally sets the thermal diffusivity, but instead

the velocity of a collective mode that transports energy through the system. It would also

hint at a relation between the velocities of collective modes and the butterfly velocity near

quantum critical points. While the jury is still out for finite values of z, we investigated this

question for z = +∞ (that is, with an AdS2×R2 geometry) in [85], to which we now turn.

B. Hydrodynamic diffusion and its breakdown near AdS2 quantum critical points

Even in the absence of a weakly broken symmetry, the breakdown of hydrodynamics can

be characterized by an energy scale ωeq and wavenumber keq, which are sensitive to the

system’s microscopic details. ωeq and keq are defined as the absolute values of the complex

frequency ω and complex wavenumber k at which the hydrodynamic pole of the retarded

Green’s function first collides with a non-hydrodynamic pole or branch point [94, 95, 163,

164].18 The convergence properties of the real-space hydrodynamic gradient expansion are

governed by keq [165, 166], which also coincides with the radius of convergence of the small-k

expansion of the hydrodynamic dispersion relation ωhydro(k). See [167–170] for other recent

applications of this.

In [85], we have studied the breakdown of hydrodynamics in certain low temperature

(T ) states dual to black holes with nearly-extremal AdS2×R2 near-horizon metrics. Such

states are closely related to the Sachdev-Ye-Kitaev (SYK)-like models of electrons in strange

metals, which are governed by the same type of infra-red fixed point in the limit of large

number of fermions and strong interactions [25, 27, 171–180]. Specifically, we have studied

the AdS4-Reissner-Nordström (AdS4-RN) black brane, and the breakdown of the hydro-

dynamics governing the diffusive transport of energy, charge and momentum in their dual

states.19 The states we are interested in do not include any slow modes in the sense de-

scribed in the previous section. Instead, local equilibration is controlled by the incoherent

dynamics that follow from the presence of an AdS2×R2 fixed point. We identified simple,

general results for the local equilibration scales ωeq and keq and confirmed that these also

apply to the SYK chain model studied in [170] in the limit of strong interactions.

18 Non-analyticities due to interactions between hydrodynamic modes provide an independent mechanism
for the breakdown of hydrodynamics (see e.g. [9] for a review), but these are expected to be suppressed
in the large N limit [91].

19 We also studied the diffusion of energy in a state with momentum relaxation. We obtained similar results
as in translation-invariant states.
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Figure 1. Numerically obtained local equilibration data for diffusive hydrodynamics in Gεε (black

circles) and Gππ (red squares) of the charged state.

Our first result (see figure 1) was that the breakdown is caused by modes associated to

the AdS2 region of the geometry, and as a consequence ωeq is set by universal (i.e. infra-red)

data via

ωeq → 2π∆T as T → 0, (59)

where ∆ is the infra-red scaling dimension of the least irrelevant operator that couples to

the diffusion mode. This is in contrast to systems with a weakly broken symmetry, for which

ωeq ≪ T . More precisely, we find that at small k and T the Fourier space locations of the

longest-lived non-hydrodynamic poles are inherited from infra-red Green’s functions, and are

located at ωn = −i(n+∆)2πT for non-negative integers n. The breakdown is characterized

by a collision, parametrically close to the imaginary ω axis, between the n = 0 mode (which

has a weak k-dependence) and the hydrodynamic mode. This collision manifests itself as a

branch-point singularity in the dispersion relation of the mode.

Secondly, we found that at low temperatures the corrections to the quadratic approxi-

mation −iDk2 to the exact hydrodynamic dispersion relation are parametrically small such

that the collision occurs when k is almost real and

k2eq →
ωeq

D
as T → 0. (60)

In other words, the scales keq and ωeq governing the regime of validity of hydrodynamics are

set simply by the diffusivity D and the scaling dimension ∆. In some of the examples we

studied (those involving diffusion of energy), the relevant diffusivity is controlled by an irrel-

evant deformation of the AdS2 fixed point and in these cases the result (60) indicates that

29



keq is controlled by the same irrelevant deformation. A priori, the result (60) is quite surpris-

ing: it relates the radius of convergence to just the leading order term in the hydrodynamic

expansion. This is a consequence of the AdS2 fixed point.

By rearranging equation (60) we obtain an answer to the question raised in [15] (and

in the previous section) of what the underlying velocity and time scales are that govern

the diffusivity in non-quasiparticle systems. In all our examples they are set by the local

equilibration scales

D → v2eqτeq, as T → 0, (61)

where veq ≡ ωeq/keq and τeq ≡ ω−1
eq are the velocity and timescale associated to local equili-

bration.

In the cases where diffusive hydrodynamics breaks down due to a parametrically slow

mode protected by a weakly broken symmetry, D is typically set by τeq and the speed of

the propagating mode that dominates following the breakdown.20 We emphasize that the

breakdown of hydrodynamics is qualitatively different in the cases we study: there is not

a single slow mode but a tower of AdS2 modes with parametrically similar lifetimes set

by ωn, and the breakdown does not produce a propagating mode with velocity v ≃ veq.

More generally, the local equilibration time has been argued to set an upper bound on the

diffusivity in [147, 148]. All examples that we study are consistent with a bound of the form

D ≲ v2eqτeq for the range of parameters we have investigated.

In the absence of a slow mode, it was proposed that low temperature diffusivities are set

by the butterfly velocity vB and Lyapunov time τL that characterize the onset of scrambling

following thermalization of the system [146]. This was shown to robustly apply to the

diffusivity of energy density Dε in holographic theories and SYK-like models [144, 149, 150,

178, 179, 181]. For the examples we study, τ−1
L = 2πT and

Dε → v2BτL as T → 0, (62)

which is furthermore true in general for states governed by an infra-red AdS2 with the

universal deformation [150].

As for our result (61), equation (62) can be viewed as a consequence of the excellent

applicability of the quadratic approximation to the exact hydrodynamic dispersion relation

20 Unlike here, τeq is often defined by the lifetime of a k = 0 mode. In the convention of this section, these
examples have D → v2eqτeq/2 in the limit of slow relaxation, as the k = 0 mode has a gap ω = −i2/(τeq).
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up to the relevant scale. Specifically, pole-skipping analysis suggests that the energy diffusion

mode satisfies ωhydro(k = iv−1
B τ−1

L ) = iτ−1
L [154, 182, 183], from which (62) follows assuming

corrections to the quadratic, diffusive form −iDεk
2 at k = iv−1

B τ−1
L are parametrically small

as T → 0.

Our result (61) is more general than (62) in that it is true for all diffusivities in the

examples we study, not just the diffusion of energy. Fundamentally this is because, by

definition, all diffusive modes pass through the location set by (ωeq, keq), while only the

energy diffusion mode satisfies the pole-skipping constraint above [184]. As a consequence,

this provides a new perspective on, and generalization of, the relations between equilibration,

transport and scrambling and their applications in AdS2/SYK-like models of electrons in

strange metals.

There is good reason to expect that at least some of our results will generalise beyond

the specific examples studied here to other states governed by AdS2 infra-red fixed points.

While our key observation that the quadratic approximation to the hydrodynamic dispersion

relation works parametrically well even for wavenumbers k2 ∼ T seems unusual, it is non-

trivially consistent with the result (62) that is indeed true for holographic AdS2×R2 fixed

points with a universal deformation [150] as well as in related SYK chain models [178, 179].

There are more general holographic and SYK-like systems governed by AdS2 fixed points

that exhibit additional diffusive modes beyond the two types we have studied. Of particular

interest are non-translationally invariant systems with a U(1) symmetry, for which an Ein-

stein relation relates the electrical resistivity to a diffusivity [15, 150, 179]. If our results (59)

and (60) extend to such modes, they will therefore also provide a simple relation between

the phenomenologically important electrical resistivity and the local equilibration scales of

such strongly correlated systems.

Confirmation of the broader applicability of our result (61) for AdS2×R2 solutions would

be an important step for quantifying diffusivities near general infra-red fixed points. One

way to do this would be to identify a speed u and timescale τ such that in general D ∼ u2τ

with the coefficient being T -independent. This is difficult even for the relatively simple

case of holographic energy diffusion, primarily because there are two exceptional types of

fixed point where dangerously irrelevant deformations take over the properties of the mode:

AdS2×R2 fixed points (i.e. dynamical critical exponent z = ∞) [150] and relativistic fixed

points (i.e. z = 1) [144]. If our result does generalize to AdS2×R2 solutions (including

31



those with non-universal deformations), both of these exceptional cases will be consistent

with the identification u = veq and τ = τeq.
21,22 Provided that naive T -scaling holds for the

equilibration scales in the other cases (τeq ∼ 1/T and veq ∼ T 1−1/z), which seems likely, this

identification will then work for all fixed points.

V. HYDRODYNAMICS OF PHASES WITH BROKEN TRANSLATIONS

Continuous, global symmetries can be spontaneously broken in the ground state (see [125]

for a recent introduction). Formally, this means that the ground state is invariant under

a smaller set of symmetries than the Hamiltonian of the system. A corresponding number

of gapless modes, the Goldstone bosons, appear in the spectrum. In the simplest case of

an internal symmetry and when the broken generators commute, the number of Goldstones

is given by the number of broken generators. In other cases, such as that of spacetime

symmetries [187], the counting rule is more complicated, see [188] for a review.

Hydrodynamics can be advantageously extended to systems with spontaneously broken

symmetries, like superfluid Helium or crystalline solids, [88]. The set of slow degrees of

freedom is enlarged to include the Goldstone modes, the dynamical evolution of which is

described by so-called Josephson equations (historically, the Josephson equation describes

the phase difference in a superconductor in the presence of an external voltage).

In this section, we focus on the case of broken translations, such as crystalline solids,

charge density waves and Wigner crystals. We incorporate the effects of background strain,

which provd important to match to existing holographic studies. Moreover, strain/pressure

is also a common experimental tool in the investigation of broken translation phases in

strongly-correlated materials and has a strong effect on the onset of the charge density wave

and superconducting phases, [189, 190].

A. Thermodynamics

For simplicity, we assume the system is two-dimensional (d = 2), isotropic and that

translations are spontaneously broken in all spatial directions – extensions to anisotropic or

21 We expect the result of footnote 20 to apply to the z = 1 cases due to the existence of a parametrically
slow mode [82, 143].

22 Another family of holographic z = 1 fixed points was studied in [185, 186]. These geometries do not
have a slow mode, but in a certain limit also display an emergent SL(2,R) symmetry and a spectrum of
infra-red mode similar to the one studied in this work.
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higher-dimensional crystals are conceptually straightforward but technically tedious, due to

more complicated tensor structures and a larger number of transport coefficients. We will

not consider the coupling to background sources, which can be realized along the lines of

[79, 80]. We also do not assume any particular boost symmetry.23

Since spatial translations are spontaneously broken in all directions, we expect as many

Goldstone modes as there are broken translations.24 The Goldstones of broken translations

are often called phonons and are related to the displacements of the underlying crystal

structure, which we denote by ui. They transform non-linearly under spatial translations

xi → xi + ai as

ui → ui + ai . (63)

The free energy of the system must be invariant under these shifts, so that it only depends

on the non-linear, Lagrange strain tensor, [88]

uij = ∇(iuj) +
1

2
∇iuk∇ju

k . (64)

Lower-case latin indices i, j, . . . are raised an lowered with the Kronecker delta δij and run

over spatial dimensions.

The elastic part of the equilibrium free energy density of the system is then, by isotropy,

fel =
Bo(X, Y )

2
X2 +Go(X, Y )Y (65)

where we have defined X ≡ uii, Y ≡ uiju
ij − 1

2
(uii) and suppressed the dependence on

temperature and chemical potential for now.25 The first parameterX corresponds to a purely

volumetric deformation, ∆V/V = X, while the second, Y , to a deviatoric deformation which

modifies the shape of the material but not its total volume. Accordingly, the coefficients

Bo, Go are the bare nonlinear bulk and shear moduli, respectively. If translations are broken

in one dimension only, there is only a bulk modulus. Both quantities are nonlinear functions

of the deformation parameters X, Y and, in what follows, of temperature and chemical

potential as well.

Since we wish to compute the linear response of the system to external perturbations,

the first step is to determine the static susceptibilities. To this end, we expand the static

23 See [96–101] for more complete treatments of fluid hydrodynamics without boosts.
24 Rotations are also spontaneously broken, but do not have independent Goldstones, per the Goldstone

counting theorems for broken spacetime symmetries [187]. The underlying reason is that translations and
rotations are not independent local transformations.

25 One could equivalently define a generic function fel(X,Y ). Our parametrization makes the linear limit
X,Y → 0 and the limit of zero background strain clearer. In d > 2, this function would depend on d
independent scalars, [191, 192].
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free energy to quadratic order in fluctuations using26

ui = mxi + (1 +m)δϕi(x) , i = {x, y} , (66)

where m is a real parameter, and we have assumed that the linear perturbations δϕi depend

only on one spatial dimension. As we are about to see, the δϕi are the Goldstones modes of

the system.

A nonzero m represents a nonzero, isotropic background strain on the state:

X = ull = uo +O(∇) , uo ≡ m(m+ 2) . (67)

For this state, Y = O(∇2). In this configuration, the equilibrium free energy density fel,

and the bare elastic moduli Bo, Go are functions of uo.

Anisotropic strains can easily be considered by allowing for additional off-diagonal terms

of the type ui ∼ xj. The first term mxi in Eq.(66) can be thought as the additional

displacement from the would-be equilibrium configuration m = 0 to the actual configuration

with background strain m ̸= 0. In this sense, for m ̸= 0, the Goldstone fields δϕi(x)

parametrize the low-energy dynamics around the configuration with background strain uo.

Plugging in the expansion (66) in the elastic free energy (65) and expanding to quadratic

order in fluctuations, we obtain

fel =
u2o
2
Bo − pelλ∥ +

G

2
(λ⊥)

2 +
1

2
(B +G)

(
λ∥
)2

(68)

where it is convenient to define the longitudinal and transverse Goldstones λ∥ = ∇ · δϕ,
λ⊥ = ∇×δϕ. We have also defined a background elastic pressure pel = −(1+uo)∂uo

(u2oBo)/2

due to the nonzero background strain uo, as well as the renormalized, effective nonlinear bulk

and shear moduli

B ≡ 1

2
(1 + uo)

2∂2uo

(
u2oBo

)
,

G ≡ (1 + uo)
2Go +

u2o
2
(1 + uo)

2∂YBo − pel .

(69)

The bare bulk and shear moduli are renormalized due to the nonzero background strain. In

the limit of zero strain, we recover B(uo = 0) = Bo and G(uo = 0) = Go.

The free energy in Eq.(68) now displays a linear term in δϕx with coefficient pel.
27 This

linear term implies that the system is not in mechanical equilibrium whenever m is nonzero:

26 This maps to the formulation of [79] as follows: ui ↔ ΦI − xI , uij ↔ hIJ − δIJ , m = 1

α
− 1.

27 This term also appears in the relativistic treatment of [79]. Here we generate it by expanding around the
state with background strain in Eq.(66). In [79], pel is introduced directly as a force contribution to the
free energy. There, the reference contribution is not assumed to minimize the free energy. After matching
conventions, both approaches give the same results.
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a background strain is applied to the system, through non-trivial boundary conditions and

the resulting sum of external forces does not vanish. Instead, in mechanical equilibrium,

there is no background displacement, m = 0, and pel = 0. The standard treatment of

elasticity theory (see e.g. [88]) assumes the reference configuration, the choice of which is

arbitrary, to correspond with the state of mechanical equilibrium.

Turning on background external sources f 7→ f − s∥λ∥ − s⊥λ⊥, we obtain the Goldstone

static susceptibilities after integrating out the Goldstones:28

χλ∥λ∥
≡ −∂

(2)fel
∂s∥2

=
1

B +G
,

χλ⊥λ⊥
≡ −∂

(2)fel
∂s⊥2

=
1

G
.

(70)

B + G and G should both be positive definite in order for the phase to be locally ther-

modynamically stable, which follows from the usual requirement that the determinant of

the Hessian of the free energy be positive definite. We will see later on that this ensures

that sound modes have a positive velocity squared. Through (69), we observe that both

the bulk and shear moduli have a non-trivial dependence on background strain. Varying

the background strain may lead to thermodynamic instabilities, signaled by divergences in

the static susceptibilities (70) when G or B + G change sign. Determining whether these

instabilities are actually present requires to know their functional dependence on uo and is

beyond the effective field theory approach.

By their properties under parity transformations x 7→ −x, we also expect the longitu-

dinal phonon λ∥ to couple to entropy and charge. To this end, we include temperature

and chemical potential dependence in the bare moduli Bo(u
i
i, T, µ) and Go(u

i
i, T, µ) in (65).

Linearizing around (66) together with {T, µ} = {To, µo} + {δT, δµ} allows to identify the

off-diagonal susceptibilities

χnλ∥
≡ −∂

(2)fel
∂s∥∂µ

=
∂µpel
B +G

,

χsλ∥
≡ − ∂(2)fel

∂s∥∂T
=

∂Tpel
B +G

.

(71)

They are nonzero even in the absence of background strain and correspond physically to the

chemical and thermal expansion of the system under strain.

28 This leads to s⊥ = Gλ⊥, s∥ = (G+B)λ∥.
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The full longitudinal static susceptibility matrix reads:

χo,∥ =




χnn χnε 0 χnλ∥

χnε χεε 0 χελ∥

0 0 χππ 0

χnλ∥
χελ∥

0 χλ∥λ∥



. (72)

The equality of off-diagonal components follows from invariance under PT symmetry.

In the transverse sector, the susceptibility matrix χo,⊥ is diagonal with the two nonzero

elements χλ⊥λ⊥
, given by (70), and χπ⊥π⊥

= χππ, by isotropy.

B. Dynamics

We are now ready to state the equations that govern the dynamics of the system in the

hydrodynamic regime. Assuming rotation, translation and U(1) symmetry, these are the

conservation of energy, charge and momentum density

ε̇+∇ · jiε = 0 , ṅ+∇ · j = 0 , π̇i +∇jτ
ji = 0 , (73)

together with the Josephson equation for the dynamic evolution of the Goldstones:

d

dt
ui = −vi + . . . . (74)

d/dt ≡ ∂t + vi∇i stands for the material derivative and the dots for dissipative corrections

to this relation.

We can arrive at (74) in the following way. The Goldstone fields are canonically conjugate

to the momentum density, i.e. the conserved charge that generates the broken symmetry:

i [πi(x), uj(x′)] = −δ(2)(x− x′)
(
δij +∇iuj

)
. (75)

Then, we deform the Hamiltonian by an external velocity source Ho 7→ H = Ho−
∫
d2x πiv

i
e

and use the Schrödinger equation to compute the time evolution of the displacement:

u̇i = i [H, ui] = vie + vje∇ju
i . (76)

Since ui must be time-independent in thermodynamic equilibrium (vi = vie), this means that

the Josephson relation must take the form

u̇i = (vje − vj)
(
δij +∇ju

i
)
+ ũi , (77)
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in agreement with (9). Taking a divergence or a curl of (77) with sources off leads to (74).

We have allowed for a possible dissipative correction ũi.

In our thermodynamic ensemble, the first law of thermodynamics is

df = −s dT − n dµ+ hijd (∇iuj) , (78)

where hij ≡ ∂f/∂(∇iuj) is

hij =

(
XBo +

X2

2
∂XBo + Y ∂XGo

)
X ij

+

(
2Go + Y ∂YGo +

X2

2
∂YBo

)
Y ij ,

(79)

with

X ij =
∂X

∂∇iuj
= δij +∇iuj ,

Y ij =
∂Y

∂∇iuj
= 2 (uij + uik∇ku

j)−XX ij .

(80)

Using that the entropy density must be conserved ṡ+∇i(sv
i + j̃iq/T ) = 0 in the absence of

dissipative (gradient) corrections, the ideal constitutive relations are found to be

jiε =(ε+ p) vi + hijvj + hilvj∇jul + j̃iε , (81)

τ ij =p δij + hij + hil∇jul + viπj + τ̃ ij , (82)

ji =n vi + j̃i . (83)

Here p is the thermodynamic pressure, which verifies p = −f = −ε+ sT + nµ+ vkπ
k. It is

straightforward to verify that the stress tensor τ ji is symmetric by substituting the expression

for hij in terms of uij in (81). j̃iq, j̃
i
ε, τ̃

ji and j̃i all stand for dissipative corrections which

are at least first order in gradients.

The form of dissipative corrections are determined by a well-known algorithm. We start

by allowing all possible terms that are spatial derivatives of the fields (the conserved densities

and the Goldstones) consistent with the symmetries – for instance, we do not allow terms

that violate parity. Then, we require that these terms do not lead to non-localities in the

equations of motion. Finally, we check that the entropy current is positive definite, also

imposing Onsager relations. The outcome of this procedure, which we detail in appendix A,
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leads to the following constitutive relations:

j̃i = −σij
o ∇jµ− αij

o ∇jT − 1

2
ξijµ ∇khkj ,

j̃iq
T

= −αij
o ∇jµ− κ̄ijo

T
∇jT − 1

2
ξijT ∇khkj ,

τ̃ ij = −ηijkl∇(kvl) ,

ũi = ξijµ ∇jµ+ ξijT ∇jT + ξijh ∇khkj ,

j̃iε = j̃iq + µj̃i − hijũ
j + vj τ̃

ij .

(84)

In the absence of background strain, all the transport matrices would have a trivial index

structure and depend on temperature and chemical potential only,29 e.g. σij
o = σ(o)(T, µ)δ

ij

or ηijkl∇(kvl) = −ησij − 2
d
ζ∂kv

kδij, where we have defined the shear rate tensor σij =

∇(ivj) − 2
d
∇kv

kδij.

In the presence of background strain, the strain tensor uij provides an independent rank-

2 tensor. This gives rise to new terms in the transport matrices, which all take the form

σij
o = σ(o)(T, µ, uo)δ

ij + σ(u)(T, µ, uo)u
ij in d = 230 with some arbitrary dependence on uo

(since X = uo and Y = 0 when evaluated on the background (66)). There is more freedom

in the viscosity rank-4 tensor, which takes the general form

ηijkl =2 η(0)
(
δikδjl −

1

2
δijδkl

)
+ ζ(0)δijδkl

+ 2 η(u)
(
δikujl −

1

2
δijukl −

1

2
uijδkl +

1

4
ummδijδkl

)

+ 2
(
ζ(u) + ζ̄(u)

)
δiju⟨kl⟩ + 2

(
ζ(u) − ζ̄(u)

)
u⟨ij⟩δkl

(85)

where angular brackets stand for the transverse, traceless part of the tensor.

29 Throughout this manuscript, we do not consider states with a background fluid velocity. See [193], [96–
101].

30 In d > 2, additional tensor structures such as ui
ku

kj would enter. To map to the formulation of [79],
higher-order terms in their strain uIJ need to be considered.
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C. Linear response

With the constitutive relations in hand, we can now investigate the linear response of the

system about the equilibrium state



T

s

µ

n

vi

πi

ui




=




To

so

µo

no

0

0

mxi




+




δT

δs

δµ

δn

δvi

δπi

δϕi




e−iωt+iqx . (86)

We have made use of the underlying translation invariance of the system to decompose the

linear perturbation in plane waves.

We start with the transverse sector. In contrast to the fluid case discussed at the end of

Section II (see also [9]), the transverse Goldstone field mixes with transverse momentum to

form a pair of sound modes propagating in opposite directions:

ω = ± q

√
G

χππ

− i

2

(
η

χππ

+Gξ

)
q2 +O(q3) . (87)

This is the celebrated shear sound mode of crystalline solids. Its velocity is real provided

that the matrix of static susceptibility is positive definite, which implies G > 0 and χππ > 0.

The sound attenuation receives two contributions

η ≡ η(0) +
uo
2
η(u) , ξ ≡ 1

1 + u0

(
ξ
(0)
h +

u0
2
ξ
(u)
h

)
. (88)

Here, as in the longitudinal sector, we find that the effect of the extra terms in the constitu-

tive relations due to background strain can be hidden away in a redefinition of the transport

coefficients contributing to linear response. This is advantageous as this means there is no

proliferation of transport coefficients. For instance, the shear Kubo formula that usually

measures the shear viscosity for a fluid becomes

η(0) +
uo
2
η(u) ≡ η = − lim

ω→0

1

ω
ImGR

τxyτxy(ω, q = 0) (89)

and it is the linear combination (88) which appears, not the individual transport coefficients

η(0) and η(u).
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There is a similar Kubo formula for ξµ:

ξµ = − lim
ω→0

1

ω
ImGR

ju̇(ω, q = 0) (90)

and for ξ:

ξ = − lim
ω→0

1

ω
ImGR

u̇u̇(ω, q = 0) (91)

which as we will see defines the Goldstone diffusivity.

In the longitudinal sector, there are four modes: two sound modes propagating in opposite

directions and two diffusive modes. Their expressions are in general quite complicated, and

so we report them only for a neutral, relativistic system (in which one of the diffusive mode

disappears)31

ω = ± c∥q −
i

2
Γ∥q

2 , ω = −iD∥q
2 , D∥ =

(B +G)χππ ξ

c∥2χ
(λ∥)
εε

,

c∥
2 =

B +G

χππ

+
T 2
(
so − χsh∥

)2

χππχ
(λ∥)
εε

, Γ∥ =
η + ζ

χππ

+
ξ χππ

c∥2


c∥2 −

T
(
so − χsh∥

)

χ
(λ∥)
εε




2

,

(92)

Here χsh∥
= ∂s/∂λ∥ = −∂pel/∂T0, and similarly χ

(λ∥)
εε = cvT0 (with cv the heat capacity),

computed fixing λ∥. Similarly to the transverse sector, only certain linear combinations of

transport coefficients appear (e.g. ξ instead of both ξ
(0)
h and ξ

(u)
h ). After matching conven-

tions, these expressions agree with [79, 80]. The modes can be worked out in full generality

(absence of boost symmetry, finite density, nonzero background strain), but become rather

complicated. The appearance of instabilities related to a change of sign of B+G is manifest

in the expression for D∥, as the corresponding purely imaginary mode would then cross to

the upper half complex frequency plane.

At very low temperatures, we expect the sound modes to be mostly carried by the Gold-

stone field and the longitudinal momentum density, while the diffusive mode corresponds to

thermal diffusion. At temperatures close to the critical temperature, the sound modes are

carried by thermal and momentum fluctuations, while the diffusive mode is predominantly

carried by the Goldstone mode.

31 See the appendix A for details on how to take this limit. See also [80] for the complete expressions at
finite density.
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D. Holography

The holographic description of broken-symmetry, strongly-coupled phases of matter with

an eye towards condensed matter was initiated in [194–196] by considering the spontaneous

breaking of a global U(1) symmetry – a superfluid state. Superfluid hydrodynamics correctly

predicts the low energy dynamics of holographic superfluids, [197–202].

Closely following the global U(1) case, instabilities towards holographic spatially mod-

ulated phases breaking translations spontaneously were investigated as well, [203–207]. In

these studies, one looks for a spatially modulated, normalizable bulk mode (i.e., without

a source at the boundary) in the translation-invariant, homogeneous bulk geometry. The

outcome of this analysis is an instability curve displaying the maximum temperature at

which the mode can be found vs the wavevector of the modulation, i.e., the onset of the

instability. The apex of this curve gives the thermodynamically preferred wavevector with

the highest critical temperature, below which a fully backreacted, spatially modulated phase

breaking translations spontaneously can be expected to be found. As such, when the pre-

ferred trajectory within the instability curve is followed, these phases are true global minima

of the thermodynamic free energy, [208]. The breaking of parity and time reversal through

Chern-Simons couplings in the bulk and/or an external magnetic field played an impor-

tant role originally to generate the instabilities, but is not always necessary, [209]. The

original works focused on inhomogeneous instabilities, but helical phases proved easier to

construct at first, [210–212]. Backreacted inhomogeneous phases spatially modulated along

one direction were constructed in [213–215], bearing on the expertise developed to construct

explicit holographic lattices. Generalizations to two-dimensional, checkerboard or triangu-

lar patterns are found in [216, 217], with the triangular lattice providing the minimum free

energy state. Remarkably, these phases all include circulating current loops together with

spontaneous parity breaking, which is reminiscent of the loop current order proposed to

underlie the pseudogap phase of underdoped cuprate high Tc superconductors, [218]. This

phenomenology is a direct consequence of the bulk Chern-Simons term.

Probe branes constructions can also display spatially modulated instabilities [219–221].

Being top-down models descending from specific string theory realizations, they have the

advantage of offering a more precise field theory interpretation. On the other hand, it is not

clear how one should interpret the spontaneous spatial modulation of charge and current
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densities, since in these setups momentum and temperature fluctuations are frozen.

Phases in which the breaking of translations and of a global U(1) are intertwined are of

interest to model pair density wave phases [222], which are thought to play an important

role in the phase diagram of underdoped cuprate high Tc superconductors. They have been

argued to be the mother phase from which daughter charge density wave and superconduct-

ing phases emerge. Holographic realization of these phases are found in [223–225]. These

constructions rely on a combination of bulk Chern-Simons terms and the introduction of

Stückelberg scalars, which naturally give rise to pair density wave phases where the conden-

sate is spatially modulated with a zero average and periodicity which is twice that of the

charge density wave.

While hydrodynamics for Galilean-invariant phases with broken translations is an old

subject [88, 226–228], it was revisited in [64], which incorporated phase relaxation by de-

fects and pinning by disorder in the hydrodynamic framework without assuming Galilean

invariance. Many holographic studies were subsequently carried out, intent on verifying the

match between the holographic and hydrodynamic approaches, [73, 76, 79–81, 84, 229–231].

Importantly, a consistent hydrodynamic construction with nonzero background strain and

with coupling to external sources, [79, 80].

The presence of an isotropic background strain (equivalently, a background elastic pres-

sure pel) is a common feature of many of these homogeneous holographic models, which at

an operational level can be directly observed by identifying an extra contribution pel to the

(relativistic) momentum susceptibility, χππ = ε + p − pel. More importantly, this implies

that the states considered are not global (or even local) minima of the holographic thermo-

dynamic free energy, [208, 217] (when the free energy is minimized, pel = 0). In spite of

this, they are locally thermodynamically stable, with a positive definite static susceptibility

matrix. Accordingly, they do not have poles in the upper half complex frequency plane.

Increasing the background strain gives additional contributions to the effective elastic

moduli through (69). Depending on the specific functional dependence on strain, this may

lead to thermodynamic instabilities if the effective elastic moduli vanish (this leads in turn to

a divergence of the corresponding susceptibilities (70)). These thermodynamic instabilities

have dynamical counterparts, as e.g. the transverse sound velocity (87) becomes complex

or the longitudinal diffusive mode D∥ (92) crosses to the upper half plane. The conjectured

endpoint of this instability is the nucleation of topological defects, which relax the back-
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ground strain, and probably leads to a plastic behaviour and the failure of the rigidity of

the system.32

In holographic systems, the black hole horizon provides a large bath of O(N2) degrees

of freedom. It is natural to expect that the Goldstone can relax into this bath. This

is embodied by a modernized version of the “membrane paradigm”, [236, 237], whereby

transport coefficients characterizing linear response are expressed in terms of the background

solution evaluated on the black hole horizon through the construction of radially conserved

bulk fluxes, [238],[239, 240].

This was used to great effect to compute the linear, relativistic transport coefficients (84)

in holographic models of spontaneously broken translations, either homogeneous [84, 229]

or inhomogeneous, [241, 242]. As an illustration, we can consider the model of [84]:

S =

∫
d4x

√−g
[
R− 1

2
∂ϕ2 − 1

4
Z(ϕ)F 2 − V (ϕ)− 1

2
Y (ϕ)

2∑

i=1

δIJ∂ψI∂ψJ

]
, (93)

with I, J = 1, 2 run over the spatial coordinates of the boundary. The model has a global

shift symmetry ψI → ψI+cI where cI is a real constant. Picking the bulk Ansatz ψI = kδIix
i

breaks both spatial translations xi → xi + ai and the shift symmetry, but preserves a

diagonal subgroup. The scalar couplings V (ϕ), Z(ϕ) and Y (ϕ) are chosen so as to allow

an asymptotically anti de Sitter UV spacetime. Moreover, picking Y (ϕ) ∼ ϕ2 for small

ϕ, together with spontaneous Dirichlet conditions for ϕ, results in spontaneous breaking of

translations (see [84] for details of the model).

The dissipative coefficients then take the relatively simple form:

σo =
(sT + k2IY )

2

(sT + µn+ k2IY )
2Zh +

4πk2(IY )
2n2

sYh (sT + µn+ k2IY )
2 , (94)

ξµ = − 4πIY n (sT + µn)

sYh (sT + µn+ k2IY )
2 − µ

(sT + k2IY )

(sT + µn+ k2IY )
2Zh , (95)

ξ =
4π (sT + µn)2

k2sYh (sT + µn+ k2IY )
2 +

µ2Zh

(sT + µn+ k2IY )
2 . (96)

Here IY ≡
∫ 0

rh

√
grrgttY (ϕ)dr, with rh the horizon location, grr and gtt the dr

2 and dt2 metric

elements. Moreover Zh ≡ Z(ϕ(rh)), Yh ≡ Y (ϕ(rh)).

Together with knowledge of the static susceptibilities and of the value of the shear viscos-

ity η, this allows to check that the dispersion relation of transverse hydrodynamics modes

32 The Landau instability for superfluids at large background superfluid velocities [232] is also driven by the
change of sign of a static susceptibility. In other words, a thermodynamic instability leads to a dynamical
instability, which is manifested by a pole crossing to the upper half complex frequency plane, [233]. This
explains results reported in bottom-up holographic models [234, 235].
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(87) matches the gapless quasinormal modes in the holographic model of [84], see figure 2.

While this was not clear at the time when [84] appeared, but as we explained in the previous

sections, the effects of background strain that are inherent to these holographic models can

be hidden away in a redefinition of the momentum static susceptibility χππ. Also, what

(94)-(96) are really computing are the linear combinations of the sort (88). The match

between the longitudinal dispersion relations and the holographic quasinormal modes in a

slightly different holographic (massive gravity) model has been demonstrated in [76, 81].
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Figure 2. Match between the dispersion relation of transverse hydrodynamics modes (87) (solid

lines) and the gapless quasinormal modes in the holographic model of [84] (dots) at various tem-

peratures.

In homogeneous holographic models, it is very well understood how to encode for quantum

critical infrared fixed points with broken translations, [135, 243]. Near such critical phases,

it was observed [84] that some of the transport coefficients are not independent

ξµ = −
(

µ

χπjq

)
σo , ξ =

(
µ

χπjq

)2

σo , (97)

where for relativistic phases χπjq = soTo − pel. Effectively, the Goldstone relaxation pro-

cesses are governed by the incoherent (i.e. without momentum drag) diffusivity σo, which

also controls the thermal diffusivity with open circuit boundary conditions, [82, 102]. This

saturates the entropy bound ξ2µ ≤ σoξµ obeyed by these coefficients.

This can be understood as arising from the dominance of the following effective interaction

between the momentum and the heat current jiq in the infrared Hamiltonian:

∆H =
1

χπjq

∫
ddx πij

i
q . (98)

This in turn implies that

u̇i = i [H, ui] =
jiq
χπjq

. (99)
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Figure 3. Low-temperature saturation of the entropy bound by the diffusive transport coeffi-

cients in (97), from [84] (notwithstanding some small notational changes compared to the present

manuscript).

Plugging this in the Kubo formulæ for ξµ and ξ, (90), (91), and evaluating them, leads to

(97).

The reader may wonder why the specific coupling (98) appears rather than some arbitrary

linear combination of the electric and heat currents. It is plausible that this is an artifact

of the homogeneous holographic Q-lattice/massive gravity models, where the heat current

plays a distinguished role in relaxation processes, [78, 244]. Whether this remains true

in homogeneous helical models [72, 212] or in inhomogeneous models [213–215] is an open

question. An obvious avenue for future research would be to work out what the analytical

‘horizon’ formulae for the diffusive transport coefficients are, in analogy to (94)-(96) for the

homogeneous model of [84]. Another interesting question is how the temperature dependence

of these transport coefficients changes when there is no background strain – this may already

be seen for σo in the models of [74, 229] and it would be interesting to determine whether

this is an artifact of these models.33

E. Emergent higher-form symmetries and topological defects

Ordinary, 0-form symmetries (such as a global U(1)) give rise to conserved, one-form

currents (e.g. ∇µJ
µ = 0 in relativistic notation). The associated conserved charges are

point-like objects. [246] pointed out the existence of more general symmetries associated to

33 Probe brane models can also display spontaneous breaking of translations, [220, 221]. Importantly, because
of the presence of an additional long-lived mode [159–161, 245] (see the discussion in section IVA), the
hydrodynamics presented in this section does not apply directly to these holographic models.
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differential forms of a higher rank. A prototypical example is the U(1) of electromagnetism

in four spacetime dimensions. There, the Bianchi identity can be reformulated as the conser-

vation equation of a magnetic U(1) symmetry by Hodge dualizing the Maxwell field strength

Jµν = 1/2 ϵµνρσFρσ. The charge Q =
∫
Σ
⋆J counts the number of magnetic lines across a

codimension-2 surface Σ, and its associated conserved current is now a two-form ∇µJ
µν = 0.

Among various applications, this provides a starting point for a consistent formulation of

magnetohydrodynamics [247].

A similar treatment can be applied to phases with a spontaneously broken global U(1)

symmetry (superfluids). Keeping to relativistic notation, the absence of topological defects

(vortices) implies that derivatives commute, ∇[µ∇ν]ϕ = 0, where ϕ here is the superfluid

phase. Defining Jµν = ϵµνρ∇ρϕ leads to an emergent conservation equation for the higher-

form symmetry U(1)w associated to the conservation of winding planes, ∇µJ
µν = 0, [157].

Indeed, the condensate vanishes at the location of a defect and its phase is not defined there.

The phase picks up a nonzero winding number around a defect, n = 1/(2π)
∮
dϕ ̸= 0.

For superfluids, [157] showed that this emergent symmetry is in fact anomalous: upon

coupling to a background gauge field, its conservation equation is broken by a mixed anomaly

given by the electric field. This is a mixed anomaly as it is the source of the microscopic

U(1) which breaks the conservation of the emergent U(1)w.

Emergent symmetries are often anomalous and their higher-form generalizations are no

exception, [246, 248]. Such anomalies give rise to anomaly matching conditions, which

put strong constraints on the hydrodynamic gradient expansion, [157], and give rise to

dissipationless transport, [249]. It would be interesting to derive analogous constraints on

the hydrodynamics of broken translation phases. Preliminary investigations of the higher-

form symmetry formulation34 of these phases can be found in [79, 93].

In the condensed phase, the winding operators Wij =
∫
d2x∇iuj are conserved and mea-

sure elastic deformations of the crystal/density wave. They lead to undamped propagation

of uniform bulk and shear strains, e.g.35

η(ω) ≡ i

ω
GR

τxyτxy(ω, q = 0) = η +G
i

ω
. (100)

This infinite dc ‘shear conductivity’ is the analogue of dissipationless charge transport in

superfluids.

34 This differs from the dual formulations of [46, 250].
35 Notice the difference with the Kubo formula in Eq.(89) in which the divergent 1/ω term would not appear.
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At finite temperatures, bound pairs of defects/anti-defects (dislocations or disclinations)

nucleate. Above the Berezinsky-Kosterlitz-Thouless temperature, thermal fluctuations lead

to their unbinding and they become mobile – the BKT phase transition, [251–254].36 Mobile

defects relax the windings, and the corresponding emergent symmetry is explicitly broken.

This leads to relaxation of the longitudinal and transverse phonons,

λ̇∥,⊥ = −Ω∥,⊥λ∥,⊥ + . . . (101)

This equation is valid when the anisotropic rates Ω∥ and Ω⊥ are small, close to the BKT

phase transition. The phase relaxation rates are set by the viscosities of the normal phase

and the density of free defects nf , e.g. Ω⊥ ∼ nf/ηnormal, [254].
37 ‘Climb’ motion of dis-

locations is usually suppressed compared to ‘glide’, i.e. Ω∥ ≪ Ω⊥. In the language of

higher-form symmetries, the emergent higher-form symmetry counting winding planes is

broken by irrelevant operators (the defects), [157].

Evaluating (100) again, the viscosities of the condensed phase are finite but large, η(ω =

0) = η +G/Ω⊥.

VI. PSEUDO-SPONTANEOUS BREAKING OF TRANSLATIONS

The total momentum of the system is always conserved, due to the translation invari-

ance of the ambient spacetime in which the crystal lives. Thus, the emergent continuous

translation symmetry at long distances in crystalline solids cannot be explicitly broken. In

systems at finite density such as metals, the conduction electrons (or more generally the

charge carriers at strong coupling) can be considered in some regimes (typically, low enough

temperatures) to be weakly-coupled to lattice degrees of freedom and other sources of in-

elastic scattering. The electron momentum then becomes approximately conserved, with

an emergent electronic translation symmetry in the infrared broken by irrelevant operators

(such umklapp, impurities). In an electronic charge density wave or Wigner crystal phase,

electronic translations are spontaneously broken and give rise to a spatially modulated elec-

tronic density of states (see [68] for a review). New Goldstone degrees of freedom emerge,

called phasons or sometimes phonons by abuse of terminology (not to be confused with the

phonons of the underlying lattice).

36 See [43–46, 250] for the quantum case.
37 See [64] for a memory matrix calculation of these rates.
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It then becomes interesting to study how the weak explicit breaking mentioned above af-

fects the dynamics of the Goldstones. These acquire both a small mass qo
38 and a damping

Ω, leading to a nonzero real and imaginary part in their q = 0 dispersion relation, respec-

tively. Phenomenologically, the spontaneous, spatially modulated phase is no longer free to

slide and is pinned at a frequency ωo ∼ csqo proportional to the mass of the Goldstone –

which now has a finite correlation length. Correspondingly, there is a gap in the real part of

the the frequency-dependent conductivity with a peak at a frequency ω ∼ ωo, representing

the energy cost to de-pin the density wave.39

Pinning of charge density waves is an old subject, [256, 257], and was confirmed in many

experiments on quasi one-dimensional materials, [68]. It was revived in recent years, spurred

on by a combination of mounting experimental evidence on the role of charge density wave

phases or fluctuations across the phase diagram of cuprate high Tc superconductors, [51–56,

58–60] (see [57] for a review); theoretical developments on the application of hydrodynamics

and related effective field theoretic descriptions of transport to strongly-correlated electronic

materials, [15, 34, 258, 259]; and the development of holographic methods for phases with

broken translations.

Following the initial work of [64], which incorporated pinning by explicit breaking of

translations and damping by defects into hydrodynamics, a number of groups set out to

investigate these phases using holographic methods. The original expectation was that

these systems would display a pinning frequency ωo and a momentum relaxation rate Γ,

but no phase relaxation rate Ω, as none of these holographic models included mobile elastic

defects.40 It then initially came as a surprise when it was recognized that they exhibited a

finite phase relaxation rate governed by the pseudo-Goldstone mass and diffusivity Ω = Gq2oξ,

[65, 262] with further confirmations in [77, 78, 230, 263–265].

The main theoretical achievement of this collective effort is the construction of a hydro-

dynamic theory of pseudo-spontaneously broken translations, [67, 69], which explains the

observations above and which we now describe. For simplicity we will consider states without

background strain throughout this section, but this can be incorporated straightforwardly,

[69].

38 By a similar mechanism that leads to the Gell-Mann Oakes Renner (GMOR) relation [255] for pion masses
in QCD.

39 If disorder or lattice effects are strong, the density wave is strongly-pinned and locked at impurity sites.
40 Though see [260, 261] for a holographic construction of phases with static discommensurations.
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A. Hydrodynamics

When translations are weakly broken explicitly, the free energy at quadratic order in

fluctuations now includes a mass term for the Goldstone modes41

δf (2) =
B +G

2

(
∇iδϕi

)2
+
G

2
(∇× δϕ)2 +

Gq2o
2

δϕiδϕ
i (102)

which shifts the unpinned static susceptibility matrices χo,∥ and χo,⊥ as

χ−1
o 7→ χ−1 = χ−1

o +∆χ−1 , (103)

where ∆χ−1 is a matrix whose only nonzero elements are (∆χ−1)λ∥λ∥
= (∆χ−1)λ⊥λ⊥

=

Gq2o/q
2. As a result, the static susceptibility matrix χ becomes nonlocal.

The charge and energy conservation equations in (73) remain unchanged. On the other

hand, since translations are broken explicitly, momentum is no longer conserved

π̇i +∇jτ
ji = −Γπi −Gq2oδϕ

i . (104)

The Γ term is allowed on general grounds and captures momentum relaxation, while the

second term encodes the effects of the mass of the Goldstone, and can be derived by com-

puting π̇i = i[H, πi] including a mass deformation (102) in the Hamiltonian H and using

the commutator (75).

The constitutive relations and the Josephson equation can all contain terms linear in ϕi

without any spatial gradient, since the shift symmetry is broken. These terms are constrained

by locality and Onsager relations. After imposing these constraints, the constitutive relations

and the Josephson equation read

ji =− σo∇iµ− αo∇iT + ξµh
i ,

j̃iq
T

= −αo∇iµ− κ̄o
T
∇iT + ξTh

i ,

τ ij =− η σij − ζ∇ · vδij ,

ϕ̇i =vi + ξµ∇iµ+ ξT∇iT − ξ hi

(105)

where hi = ∂f/∂ϕi = Gq2oδϕ
i−∇jh

ji and in the absence of background strain the transport

coefficients are no longer matrices. These dissipative corrections ensure that the equations

41 The mass term can be thought to originate from expanding a cosui deformation of the Hamiltonian of
the system to quadratic order in fluctuations, so the ui are still compact scalars.
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of motion remain local [67] and that the divergence of the entropy current is positive, [69].

Translating the hi terms to fields ϕi generates new relaxation terms in the constitutive

relations and Josephson equations, proportional to q2o and various dissipative transport co-

efficients; ξµ, ξT and ξ. For instance, the Josephson equations take the form

δ̇ϕi = −Ω δϕi +O(∇i) (106)

where the damping term

Ω = Gq2oξ (107)

is universally determined by the Goldstone mass and ξ. The parameter ξ is a diffusive

transport coefficient of the translation invariant theory which enters in the attenuation of

sound and diffusive modes of section V and encodes dissipation of the Goldstone mode in

the thermal bath over long distances.

In the framework of effective theories, (107) is a direct consequence of locality [67] or the

second law of thermodynamics [69] with external sources on.42

In the presence of explicit breaking, Ω captures the relaxation of the pseudo-Goldstone

mode in the surrounding bath of thermal excitations. In [265], it was shown that in the

absence of a gap the time-dependent Ginzburg-Landau equation gives a good account of the

dynamics of these systems near Tc. For one-dimensional systems with quasi-perfect nesting

of the modulation wavevector and gapping of the Fermi surface, the charge density wave

formation is described by the Peierls instability, [68]. The gap equation is BCS-like and the

density of uncondensed electrons is exponentially suppressed at low temperatures. In this

case, there are very few thermal excitations that the pseudo-Goldstone can relax into and

we expect the damping Ω to be suppressed, which explains why it has not been discussed

in previous literature, [68]. In other words, in the absence of a thermal bath, the Goldstone

mode is gapped and cannot ‘leak’ to arbitrarily low energies.

Pinning also introduces new relaxation parameters in the constitutive relations for the

currents

ji = nvi + Ωnδϕ
i +O(∇) ,

jiq
T

= svi + Ωsδϕ
i +O(∇) (108)

with

Ωn = Gq2oξµ , Ωs = Gq2oξT . (109)

42 Analogous relations apply for other symmetry-broken phases, such as superfluids [67, 69, 266], QCD in
the chiral limit [267, 268], nematic phases, (anti-)ferromagnets [67].
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With translations broken explicitly weakly, the quasi-normal modes of the system have

both an imaginary and a real gap

ω± = ±
√

G

χππ

qo −
i

2

(
Γ +Gq2oξ

)
+O

(
q2, g3

)
. (110)

In the equation above, we have assumed the scaling qo ∼ g, Γ ∼ g2, where g is the source

of the microscopic operator breaking translations explicitly. This assumption can be lifted,

and then the dispersion relation takes a more complicated form. The expression (110)

makes manifest the damped oscillator behavior of the system, with a pinning frequency

ωo ≡ qo
√
G/χππ, and two contributions to the damping rate: Gq2oξ takes a universal form in

terms of parameters of the effective field theory, while Γ does not. The only gapless modes left

are two diffusive modes transporting charge and thermal fluctuations. Their expressions, as

well as the leading q-dependence of the gapped modes can easily be computed with (105) in

hand, but their expressions are not particularly illuminating and we leave it to the interested

reader to write them down.

In [69], extra coefficients have been reported when coupling to external sources. Since

these terms originate from extra freedom in how currents are coupled to external sources

when symmetries are explicitly broken, they only appear in the numerator of retarded

Green’s functions and do not affect the poles. In particular, they do not affect the relations

(107) and (109). It is also not known at the time of writing this manuscript how they affect

the electric conductivity, which will be our primary focus in the next section. For simplicity,

we will then omit these terms and refer to [69] for details. This is justified to some extent by

the fact that these terms are either absent from or can be redefined away in the holographic

models with pseudo-spontaneous breaking investigated so far, [65, 75, 77, 78, 262, 266] (see

discussion below (113)).

B. Charge transport in pinned crystals

In a translation-invariant system at nonzero density, the electric conductivity is infinite

in the dc limit σdc ≡ σ(ω = 0). This is because at nonzero density the electric current,

which is a fast mode, overlaps with the (electronic) momentum density, which is conserved.

This is manifested in a nonzero cross-susceptibility χJP between the charge and momentum

operators. Hence the electric current cannot relax, which manifests itself as a divergence of
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the zero frequency conductivity. This can be proven rigorously on general grounds using the

memory matrix formalism, see e.g. [18]. This continues to be true when translations are

spontaneously broken (e.g. for an electronic charge density wave in a clean system). Using

the hydrodynamics equations of the previous sections, the conductivity can be obtained

from the Ward identity for charge conservation:43

σ(ω) ≡ i

ω
GR

jj(ω, q = 0) =
i

ω
lim
q→0

ω2

q2
GR

nn(ω, q) (111)

and is found to be

σ(ω) = σo +
n2
o

χππ

i

ω
. (112)

The ω = 0 pole in the imaginary part is physical and cannot be removed by contact terms.

As announced, its residue is directly proportional to the off-diagonal susceptibility χJP = no,

which is identified as the charge density of the system. It gives rise to a delta function in

the real part through Kramers-Krönig relations. There is also a finite contribution to the

real part, captured by the transport coefficient σo. It is always nonzero except in a Galilean-

invariant system, where it vanishes as a consequence of the Ward identity for Galilean boosts,

ji = πi (where for simplicity we set the electric charge and particle mass to unity in this

formula). Intuitively, it is the contribution to electric transport of ‘incoherent’ processes

(meaning which do not give rise to dissipationless current) [102]. It has no equivalent in

a simple quasi-particle picture. It would also be present in a translation-invariant fluid

without Galilean boosts, and there it transports fluctuations of entropy per unit charge

δ(n/s) diffusively, [18] (when translations are spontaneously broken, the eigenmode is more

complicated due to the coupling to the longitudinal Goldstone).

When translations are explicitly broken, the electronic momentum is no longer conserved.

In the regime where it relaxes slowly enough to be kept in the effective field theory as a light

mode, the conductivity is strongly modified. It is helpful to first consider the case without

spontaneous breaking, [269]. The only relaxation parameter is the momentum relaxation

rate Γ, and the electric conductivity becomes

σ(ω) = σo +
ñ2

χ̃ππ

1

Γ− iω
+O(Γ0) . (113)

The ω = 0 pole is now located at ω = −iΓ and is identified with slowly-relaxing momentum.

In real space, we expect ⟨πi(t)⟩ ∼ πi
0e

−Γt. The real part of the conductivity shows a sharp

43 While in hydrodynamics the continuity equation is a dynamical equation for the time evolution of vevs
of operators, the Ward identity is a consequence of the U(1) symmetry and is more fundamental. It is an
operator equation which can be used inside Green’s functions.
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peak centered at zero frequency (the Drude peak), of width Γ and weight ñ2/(χ̃ππΓ). Here

we have defined tilded quantities (eg ñ = no +Γn1 + . . .) to signal that the Drude weight is

expected to receive O(Γ) corrections when translations are explicitly broken. Such correc-

tions were computed in [270] in the ‘axion’ holographic model of [271] and can be rewritten

in the form (113) by redefining the Drude weight appropriately. A first comparison with the

results of [69] specialized to the pure explicit case shows that these match to some of the

new transport coefficients discussed in this work, [272].

In the weakly-relaxing regime, Γ ≪ Λ (Λ being the thermalization scale), the dc conduc-

tivity σdc = σo + ñ2/(χ̃ππΓ) ≃ n2
o/(χππΓ) is large and completely dominated by this ‘Drude’

contribution. The system is a hydrodynamic metal where the electronic momentum relaxes

by inelastic scattering off impurities or by Umklapp processes.

By contrast, when translations are pseudo-spontaneously broken, the frequency-dependent

conductivity becomes

σ(ω) = σo +

n2
o

χππ
(iω − Ω) + 2noΩn +

Ω2
n

ω2
o
(Γ− iω)

(ω + iΓ)(ω + iΩ)− ω2
o

. (114)

Compared to the case without spontaneous breaking of translations, we observe new contri-

butions to inelastic scattering, proportional to q2o and contained in the ωo, Ω and Ωn terms.

The lineshape interpolates between a Lorentzian centered at ωo when Ω and Ωn can be

neglected (matching previous hydrodynamic treatments of the collective zero mode, [68]),

and a Drude-like peak centered at ω = 0 when the damping rates become more important,

as is illustrated in figure 4.

The dc conductivity

σdc = σo +

n2

0

χππ
Ω− 2noΩn − Ω2

n

ω2
o
Γ

ΓΩ + ω2
o

(115)

is non-vanishing due to the nonzero symmetry-breaking terms Ω, Ωn and to the ‘non-

Galilean’ transport coefficient σo. Previous hydrodynamic treatments (see e.g. [68]) usually

assume the Galilean limit, where the coefficients σo, ξµ and consequently Ωn would be zero,

but did not account for Ω in the dynamics of the collective mode. Here, in the Galilean

limit (setting no = ne and χππ = mn, where e is the electron unit charge, n the density and

m the mass), the resistivity ρ ≡ 1/σ(ω = 0) is

ρGalilean =
m

ne2
Γ +

1

(ne)2ξ
. (116)
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Figure 4. Schematic representation of the ac conductivity (114) in the Galilean limit when Ω is

dialed from large (blue solid line) to small (red solid line), keeping all other parameters fixed. The

transfer of spectral weight from the zero frequency Drude-like peak to the off-axis peak is evident.

In other words, we do not expect a translation-broken phase such as a charge density wave to

be necessarily insulating: the inelastic scattering of the Goldstone into the bath of thermal

excitations provides a conduction channel. In electronic charge density wave materials, such

as those reviewed in [68], the Fermi surface may only be partially gapped in the charge den-

sity wave phase. The second term in (116) captures the inelastic scattering of the Goldstone

mode into these uncondensed electrons. Instead, if the Fermi surface is fully gapped, Ω = 0

and the collective mode does not contribute to dc transport, as in [68]. Said otherwise, in

the absence of gapless thermal excitations, there is a finite energy cost to make the density

wave slide.

The resistivity (116) takes a Drude-like form with a ‘transport scattering rate’

1

τtr
= Γ +

1

(mn)ξ
. (117)

In general, this picture is misleading, as there is no single pole located at ω = −i/τtr as

in the Drude model (113). Rather, both poles (110) give important contributions to the

lineshape. When the Goldstone damping rate is large compared to Γ and ωo, the poles are

located at

ω− = −i
(
Ω− ω2

o

Ω
+ . . .

)
, ω+ = −i

(
Γ +

ω2
o

Ω
+ . . .

)
, (118)

where the dots denote subleading 1/Ω corrections. The ω− pole recedes deep in the lower-half

plane and drops out of the effective theory, while the ω+ one remains long-lived. Accordingly,

the ac conductivity becomes Drude-like, as in the blue solid line of figure 4. In [65], this

process takes place at very low temperatures.
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Above Tc, we also expect to recover a Drude-like conductivity as in (113), dominated by

a single pole ω ≃ −iΓ. In [265], it was shown that this occurs through a vanishing of the

residue of the ω− pole, while Ω remains finite through the phase transition. Above Tc, there

is no condensate but Ω captures the fluctuations of the order parameter.

Moving away once again from the Galilean limit, the dc conductivity (115) no longer

depends on the explicit symmetry-breaking parameter qo after inserting the relations (107)

and (109). At low temperatures, inelastic scattering off impurities is expected to dominate

the momentum relaxation rate, and does not contribute any temperature dependence Γ ∼
T 0. Then, the primary temperature dependence of the resistivity originates from incoherent

scattering processes encapsulated in the diffusive transport coefficients σo, ξµ and ξ, in sharp

contrast to metallic phases. In a metal, extrinsic processes dominate the resistivity through

the scattering rate, ρdc ∼ Γ, while when translations are pseudo-spontaneously broken,

intrinsic ones do.

C. Holography

The explicit breaking of translations in holographic models has been the subject of sus-

tained attention over the past fifteen years. Early papers mostly focused on incorporating

the effects of weak breaking of translations in hydrodynamics and computing the rate of

momentum relaxation using memory matrix methods, [37, 269, 273–275]. Non-perturbative

results became available a little later thanks to two types of developments.

Holographic lattices breaking translations explicitly were constructed numerically in [276,

277],44 using advanced numerical methods to solve Einstein’s equations allowing for inho-

mogeneous spatial dependence (see [281–283] for reviews of these methods). Spacetimes

with a randomly disordered source at the boundary have been constructed analytically in a

perturbative expansion in the strength of (marginal) disorder in [284–286], as well as non-

perturbatively using numerical methods, and revealed an emergent Lifshitz scaling geometry

at low temperatures. This behavior may only be transient at intermediate energy scales and

not the true ground state, [287, 288].

Homogeneous models provide another particularly appealing avenue. In these holographic

setups, translations are broken but the background metric and the dual stress tensor remain

44 See [240, 278–280] for further numerical constructions of holographic lattices.
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homogeneous (independent of the spatial coordinates). This property is due to existence of

specific global structures which mix with spacetime symmetries, leading to a tremendous

simplification in the computations of physical observables. The homogeneous models fall

into different classes: (I) de Rham-Gabadadze-Tolley (dRGT) massive gravity theory [289],,

(II) ‘axion’ models [134, 135, 271, 290], (III) Q-lattices [291], (IV) higher-forms models

[162]45, (V) helical lattices [203, 243, 293, 294]. Irrespective of the specific holographic

model employed, in the regime of weak explicit breaking, the low energy dynamics match

well with the field theory expectations for a metallic phase with slowly-relaxing momentum,

[92, 258, 269, 273, 275, 295].

Pseudo-spontaneous breaking of translation symmetry has been implemented in several

holographic models in the past years [65, 70–72, 75, 77, 78, 230, 260, 263–265, 296–298].

Independently of the concrete model at hand, this limit is always achieved by introducing

on top of the purely spontaneous state a small space-dependent source for a boundary

operator which is therefore responsible for the explicit translation symmetry breaking.46

This body of work firmly established the validity of the hydrodynamic theory of pseudo-

phonons presented above 47 and more specifically of the relation (107). Recent works [67, 69]

further confirmed that this relation is not an artifact either of the homogeneity of the

holographic models used or of the large N limit inherent to the holographic approach. In the

left panel of figure 5, we show the excellent match between the ac conductivity computed

in the holographic model of [65]48 and the hydrodynamic prediction (114). In the right

panel, we show the match between the quasinormal modes computed numerically and the

hydrodynamic prediction for the poles including the relation (107).

Holographic models can easily account for phases which are either insulating, where the

resistivity diverges towards low temperatures, [72, 260], or metallic, [65], with a vanishing

resistivity at low temperatures. The former case is in some respects more similar to conven-

tional charge density wave systems, in the sense that a gap forms and the damping rate Ω

does not make a large contribution to the dc conductivity, as evidenced from the negligible

value of the dc conductivity compared to the height of the off-axis peak in the ac conductiv-

ity, [263]. An important difference is that the gap is algebraic, and the resistivity diverges

45 Static black hole solutions including matter in the form of free scalar and p-form fields first appeared in
the gravity communityt in [292].

46 In some of the examples, this boundary operator is the same which breaks translations spontaneously.
47 For the reasons mentioned in footnote 33, the hydrodynamics of probe brane setups are of a different

nature.
48 This is the same model as in (93), but now the scalar φ has a source φs such that the vev of the operator

dual to φ is much larger than its source, corresponding to the pseudo-spontaneous regime.56
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Figure 5. Left: comparison between the holographic (solid lines) and hydrodynamic (dashed lines)

ac conductivity at various temperatures. Right: comparison between the holographic quasinormal

modes (solid lines) and the hydrodynamic prediction (dashed lines) together with (107).

like a power-law. In the helical, homogeneous setup of [263], this scaling is rooted in the

critical behavior of the infra-red geometry, in the near-horizon, near-extremal limit. Indeed,

as is well-known in holographic models, such critical geometries leave a strong imprint on the

scaling of transport observables at low temperatures, [135, 243]. It is then surprising that

the resistivity continues to scale in the inhomogeneous construction of [260], even though

there is no evidence so far of scaling behavior in the geometry. A better understanding of

this result remains an open question.

In the metallic case, an inverse transfer of spectral weight is observed [65] as the off-

axis peak in the ac conductivity smoothly interpolates back to a Drude-like peak at zero

frequency upon lowering the temperature, as depicted in figure 5. This is accompanied by

a non-trivial motion of the poles in the lower half complex frequency plane. At low enough

temperature, the poles are once again purely imaginary, and the width of the Drude-like

peak is controlled by the pole closest to the real axis. Its partner quickly recedes down the

axis and becomes incoherent. Whether this behavior can be reproduced in a more realistic,

inhomogeneous state is not known. Nonetheless, it bears intriguing resemblance to what

is observed experimentally in cuprate high Tc superconductors and many other strongly-

correlated materials, as we will describe in section VIII.

Given that Ω = Gq2oξ and Ωn = Gq2oξµ, the same effective interaction we described in

section VD around (98) operates near homogeneous holographic quantum critical phases

with pseudo-spontaneously broken translations (keeping in mind further checks are needed
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in more complicated holographic models).49 This further implies that the low-temperature

resistivity is controlled by a single, diffusive transport coefficient σo of the clean state, with

subleading contributions from explicit symmetry breaking (assuming disorder and umklapp

processes to be irrelevant and/or contribute no significant temperature dependence to the

momentum relaxation rate), ρdc ≃ (sT/µno)
2/σo + µΓ/no. As the transport coefficient σo

can be computed in terms of data at the black hole horizon, it is sensitive to the scaling

properties of the low temperature critical phase, and hence so is the resistivity. This does

not suffice to explain the results of [260] but resonates with the scaling form of the low

temperature resistivity uncovered there.

When the spontaneous spatially modulated structure is coupled to an explicit lattice, one

expects their periodicities to become commensurate for sufficiently large lattice strength.

This phenomenon is beyond homogeneous constructions, [299]. Instead, more realistic inho-

mogeneous constructions display commensurability effects [300]. The black hole horizon is

strongly spatially modulated by the spontaneous structure, which is weak in the ultraviolet

near the boundary (since it is not sourced) but important in the infrared. The explicit lat-

tice is strong in the ultraviolet but irrelevant (weak) in the infrared. The commensurability

that develops between these two structures is a reflection of a strong UV-IR mixing upon

increasing the UV lattice strength and turns the system into a Mott insulator, [260], albeit

with an algebraic rather than exponential gap and reminiscent of underdoped cuprates.

VII. PINNED WIGNER CRYSTALS

The interplay between magnetic fields and broken translations gives rise to a rich variety

of physical phenomena, of great interest both experimentally and theoretically. In suffi-

ciently large magnetic fields, the ground state of two-dimensional electrons systems such

those arising in GaAs/GaAlAs heterostructures is expected to be a Wigner solid [302, 303].

Re-entrant insulating phases between quantum Hall plateaux [304, 305] are also naturally

interpreted as Wigner solids, as evidenced by threshold behavior in their nonlinear conduc-

tivity [305–307].

In the presence of an external magnetic field, phases with spontaneously broken trans-

49 Recently, [? ] examined this issue in Bianchi VII and inhomogeneous models. However their conclusions
rely on fitting ac thermoelectric conductivities on the functional form predicted by hydrodynamics rather
than determining all coefficients appearing in hydrodynamics and comparing this to the exact numerics.
Moreover in these models the consequences for thermoelectric of the breaking PT symmetry have not
been determined. Further work seems needed to draw more definitive conclusions.
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lations feature a complex structure of low-energy excitations. As the magnetic field breaks

time reversal and parity symmetry, the longitudinal and transverse phonons are no longer

independent degrees of freedom, [φi, φj] ̸= 0, and hybridize into a gapless magnetophonon

and a gapped magnetoplasmon. The reduction of the number of independent Goldstones

follows from general arguments, [309–311]. The magnetophonon is a type-II Goldstone bo-

son with quadratic dispersion Re(ω) ∼ k2, [308]. In the following, we will assume that

we are at sufficiently large magnetic field and focus on frequencies and wavevectors small

enough that the magnetoplasmon gap, set by the cyclotron frequency, is large, and only the

magnetophonon is retained in the effective field theory.

Early accounts of the dynamics of two-dimensional pinned charge density waves in pres-

ence of an external magnetic field are given in [312, 313]. Their hydrodynamics were revisited

recently in [67, 83, 314]. In the presence of pinning and a magnetic field, new relations of

the type (107) arise.

More precisely, in a magnetic field, the ‘magnetic momenta’ Pi = Pi +
∫
d2xnAi do not

commute: [Pi, Pj] = −iϵijBN , where N is the charge operator. As we now describe, this is

a consequence of the following non-dissipative effective Lagrangian for the magnetophonon:

L = ϵijφiφ̇j −
1

2
φi

[
ωpkδ

ij − µijab∇a∇b + . . .
]
φj + siφi . (119)

where the leading time derivative term is allowed as parity and time reversal symmetries are

broken by the nonzero magnetic field, and where ωc ≡ nB/χππ is the cyclotron frequency.

The pinning term ωo ̸= 0 captures the leading effects of translation symmetry breaking. The

stiffness tensor µijab encodes the elastic response. By isotropy and PT symmetry, it takes

the form

µijabk
akb =

[
κkikj + µk2δij

]
, (120)

where the stiffnesses must satisfy κ, κ+ µ > 0 for the matrix of static susceptibilities to be

positive definite.50

Let us concentrate on the first term, which is the leading term in the absence of pinning

ωo = 0. Upon quantization, this gives the canonical commutator [φi(x), φj(y)] = −iϵijδ(x−
y). The φi transform under translations xi 7→ xi−ci the usual way φi 7→ φi+ci, which leads

through Noether argument to the conserved densities πi ∼ ϵijφj. Then P i =
∫
d2xπi =

√
nB
∫
d2xϵijφj reproduces the magnetic algebra above.

50 We are changing our notation for the elastic moduli in order to avoid confusion with the magnetic field
B.
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Defining the ‘source’

hi ≡
∂f

∂φi

=
[
δijωpk − µijab∇a∇b + . . .

]
φj , (121)

the equation of motion from (119) provides the non-dissipative ‘Josephson relation’ for the

magnetophonon

φ̇i = ϵij (sj − hj) , (122)

so that in the static limit sj = hj. This can be solved to find the dispersion relation

ω(k) = ±
√

(ωpk + k2µ) (ωpk + k2(µ+ κ)) . (123)

In the absence of pinning we find a pair of gapless propagating modes with dispersion relation

ω ∼ ±k2 characteristic of magnetophonons and type II Goldstones. In this limit, (123) gives

the pinned magnetophonon gap ω = ±ωpk, which remains small for small disorder strength

and large magnetic field.

We are now ready to formulate the general dissipative hydrodynamic theory of magne-

tophonons coupled to charge fluctuations. We will ignore heat fluctuations for simplicity,

these can be incorporated by a straightforward extension of what follows. The slow hydro-

dynamic modes are therefore just the charge density n, which satisfies a continuity equation

ṅ +∇ · j = 0, and the magnetophonon φi. The general Josephson relation consistent with

isotropy is then

φ̇i = ϵij (sj − hj)− (Ωδij − µ̃ijab∇a∇b)φj + (γ)ij (Ej −∇jµe) +Dϕsi + . . . , (124)

where µ̃ijab contains dissipative transport coefficients and has the same structure as the

stiffness tensor in (120), and (γ)ij ≡ γδij +
√
n/Bϵij. The last term is fixed by observing

that it is equal to χϕyjx and using Pi =
√
nBϵijφ

j. A hydrodynamic coefficient is dissipative

if it needs to change sign for the above expression to be invariant under PT. These terms

are (Ω, µ̃, γ, Dϕ), which contribute to entropy production.

The current constitutive relation takes the form

ji = (σo)ij (Ej −∇jµe) + γij (sj − hj) , (125)

where the second term is fixed by Onsager relations (PT symmetry).

Locality of the equations of motion with sources turned on fixes

Ω = Dϕωpk , µ̃ijab = Dϕµ
ijab (126)
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These are analogous relations to those found at zero magnetic field. The Josephson equation

now takes the simple form:

φ̇i = ϵij (sj − hj) + (γ)ij (Ej −∇jµe) +Dϕ(si − hi) + . . . . (127)

The frequency-dependent electric conductivities are

σxx(ω) = σo +

√
n

B
ωpk

(1− a2)(−iω + Ω)− 2aωpk

(−iω + Ω)2 + ω2
pk

, (128a)

σxy(ω) = σH
o +

√
n

B
ωpk

−2a(−iω + Ω) + (a2 − 1)ωpk

(−iω + Ω)2 + ω2
pk

. (128b)

The physical meaning of the various terms is apparent: σo and σ
H
o describe current dissipa-

tion into modes other than the magnetophonon, Ω is the phase relaxation rate, setting the

width of the peak, ωpk is the pinning frequency, a ≡ γ
√
B/n determines the deviation from

a strict Lorentzian form.

In [83], we considered the match between the hydrodynamic ac conductivity and exper-

imental measurement in GaAs heterojunctions, [301, 317, 318], in which Wigner crystal-

lization occurs at large enough magnetic fields in between Quantum Hall plateaux. The ac

conductivity data can be fitted to (128), and gives a very good match, see figure 6. This

implies that the hydrodynamic theory we have just written down gives quantitatively correct

account of the dynamics in the Wigner solid phase and of the approach to its melting point.

In the presence of gapless charged degrees of freedom, whose contribution to the current

is given by σo, we expect a new relaxation channel for the magnetophonon to open. An

especially universal coupling is to the current operator:

Hdis =
√
B/n

∫
d2xϵijφi(x)jj(x) . (129)

The factor of ϵ is necessary for the coupling to respect PT symmetry. This interaction leads

to φ̇i = ji
√
B/n, which is exactly the relationship obtained by using (127) together with

(125) to solve for ϕ̇ in terms of j in the absence of sources and dissipation.

Recalling that φ̇k=0
i = i[Hdis, φ

k=0
i ], together with the Kubo formulae (in the clean system

without disorder):

Dϕ = lim
ω→0

1

ω
ℑGR

ϕ̇xϕ̇x
(ω) , (130a)

γ = lim
ω→0

1

ω
ℑGR

jxϕ̇x
(ω) , (130b)
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Figure 6. Fits of the magnetophonon resonance. Blue curves are fits to (128). Gray is data.

Curves are offset relative to each other, absolute offset has not been fit and is not shown (see main

text). Left: Temperature dependence of the resonance in a sample with ν = 0.128 and B = 18T,

data from [315]. Centre: Filling fraction dependence of the resonance in a sample (‘sample P’)

with n = 7.7× 1010 cm−2 and T = 80mK, data from [301]. Right: Temperature dependence of the

resonance in a sample with ν = 0.16 and B = 10.3T, data from [316].

the coupling (129) implies that

Dϕ =
B

n
σo , γdis =

σo√
n/B

. (131)

In turn the contribution to the damping rate Ω from pinning (126) becomes

Ωdis =
Bωpkσo

n
. (132)

This relaxation mechanism into a hydrodynamic current is reminiscent of the analogous

mechanism in holographic systems discussed in sections VD and VIC.

Topological defects are expected to give an independent contribution to Ω. These rates

can be computed using the memory matrix formalism along the lines of [64, 158, 319], giving
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the Bardeen-Stephen-like expressions

Ωvor =
2x

σn

n

B
ωpk , γvor = x

√
n

B

σH
n

σn
. (133)

Here x is the fraction of the total area covered by mobile vortex cores, while σn and σH
n are

the longitudinal and Hall conductivities of the normal state in the core. At low temperatures

one can expect that σH
n = n/B, leading to the relation Ωvor/ωpk = 2γvor/

√
n/B = 2avor.

More generally, even when the cores are not large, one still expects Ω ∼ γ ∼ x.

The discussion of dissipation mechanisms above led to the expressions (132) and (133)

for the dissipative parameters. These in turn lead to the relations

Ωdis

adis ωpk

= 1 ,
Ωvor

avor ωpk

= 2 . (134)

Interestingly, these values seem to account well for fits to the experimental results at low

temperatures or strong magnetic fields, see figure 7.
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Figure 7. Ratio of coefficients suggests different dissipative mechanisms are at work in

the less disordered and more disordered samples. Left: The low temperature/low filling behavior of

the cleaner samples (leftmost and center plots in Fig. 6) is consistent with dissipation into mobile

dislocations, shown as a dashed black line. Right: The low temperature behavior of the more

disordered sample (rightmost plot in Fig. 6) is consistent with the universal phase dissipation into

currents, shown as a dashed black line.

There are several avenues for future research. The results presented above are mostly

based on [83]. The more recent works [67, 69]. [67] used locality of the equations of motion

in the presence of external sources to constrain the dissipative coefficients of the theory with

pinning. This led to the relation (126) for the damping rate Ω in the presence of pinning.
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On the other hand, the contribution of vortices is simply modeled through an Ωφ term. It

is not obvious how this term should be modified in order to consistently account for pinning

and locality.

[69] pointed out new transport coefficients in the presence of pinning, arising from the

ambiguity of coupling to external sources when the symmetries are only approximate. These

terms should also be present with a nonzero magnetic field. Homogeneous holographic

models with broken translations and a magnetic field have been studied in [231, 320, 321].

It remains to be seen if these coefficients can identified in these constructions.

VIII. TRANSPORT IN STRANGE METALS AND PSEUDO-SPONTANEOUS

BREAKING OF TRANSLATIONS

Can the physics of pseudo-spontaneous breaking of translations shed light on the phe-

nomenology of high Tc superconductors, in particular on their strange metallic phase? Trans-

port experiments famously measure a resistivity linear in temperature [30] which extends

for optimally doped samples from above room temperature to the lowest temperatures ex-

perimentally available when superconductivity is suppressed by an external magnetic field.

This observation brings two important puzzles. The absence of resistivity saturation at

high temperatures violates the Mott-Ioffe-Regel bound [322, 323] and precludes any notion

of quasiparticle-based transport, calling for other descriptions of transport in systems with

short-lived excitations [15]. Charge transport in conventional metals with long-lived quasi-

particles is often analyzed with the Drude model. Applying this framework to the resistivity

of strange metals identifies a ‘Planckian’ scattering rate, [32], which on theoretical grounds

can be argued to be the shortest relaxation timescale consistent with Heisenberg’s uncer-

tainty principle, [7, 22] – see [23] for a recent review on Planckian dissipation in metals and

bounds on transport.

At low temperatures, the persistence of a T -linear component in the resistivity over a

range of doping [324, 325] clashes both with the Fermi liquid prediction of a T 2 resistivity,

which is only fully recovered beyond the superconducting dome for very overdoped samples,

and with conventional expectations of transport in the vicinity of a quantum critical point,

[7], where quantum critical behavior is expected in a quantum critical cone at nonzero

temperatures, but which should shrink to a point at zero temperature.
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The slope of the T -linear resistivity appears to be of the same order of magnitude across

different materials, [325], which hints at a universal mechanism underpinning this phe-

nomenon. Extrapolations of the resistivity to zero temperature show that the disorder of

the sample does not play an important role, with values of the residual resistivity varying

sometimes over an order of magnitude or more across materials. Additional support for

this comes from ion-irradiation transport experiments [326–329], which show that resistivity

curves simply shift upwards without any change in the slope of the T -linear component when

disorder is increased.

Transport experiments also report a T 2 scaling of the cotangent of the Hall angle, [330],

and a magnetoresistance linear in the magnetic field over a range of dopings at large magnetic

fields, [331–333], prompting suggestions that the scattering rate should also be linear in

field at high fields. This is once again at odds with quasiparticle-based transport and the

Boltzmann equation, which predicts that the resistivity and the Hall angle are controlled by

the same transport timescale, and that the magnetoresistance is quadratic in field.51 Instead,

the different temperature dependencies of the resistivity and Hall angle are often interpreted

in a two-timescale scenario, [334–336]. More generally, there is some experimental support

for two sectors contributing to transport, one coherent and the other incoherent, [333, 337,

338].

Figure 8. Location of the off-axis peak (left) and peak width (center) times the Planckian timescale

τP = ℏ/(kBT ) at high temperatures in bad metals, demonstrating Planckian dissipation. Refer-

ences on the right can be found in [63].

51 In overdoped Nd-LSCO and LSCO, the Fermi surface is strongly anisotropic due to the close proximity of
a van Hove singularity. The resistivity data is well-fitted by an isotropic, linear in T inelastic scattering
rate (whose origin remains unexplained) and an anisotropic scattering rate arising from the anisotropic
Fermi surface, [? ]. It has been argued that in these materials, Boltzmann transports predicts that the
anisotropic scattering rate also gives rise to the linear in field behavior of the magnetoresistance, and so
that the isotropic scattering rate does not depend on field, [? ]. This is specific to the La-based cuprate
family and likely does not extend to other cuprates where the Fermi surface does not have the same level
of anisotropy, and also does not apply to the strange metallic regime, [? ].

65



Turning to optics, the ac in-plane conductivity in the strange metal regime above the

temperature at which superconductivity sets in is Drude-like, with a peak centered at zero

frequency and a width of order T . At higher temperatures, a number of compounds reveal a

transfer of spectral weight and the zero frequency peak moves off-axis to a nonzero frequency,

[63, 323]. This happens as the resistivity crosses the Mott-Ioffe-Regel limit. Moreover, the

peak location and width both scale approximately linearly with temperature, as shown on

figure 8, suggesting another manifestation of Planckian dissipation.

The ac conductivity also features an infrared contribution [339–341] extending beyond

the peak, which scales as |σ(ω)| ∼ ω−2/3, [342, 343]. This is weaker than the expected Drude

scaling |σ(ω)| ∼ ω−1. This resonates with the two-component analysis of transport, however

fits to optics data typically assume that the dc conductivity solely originates from the Drude

component, ascribing a frequency dependence to the infrared component which vanishes as

ω → 0. It would be interesting to investigate to what extent this constraint in fitting optics

can be relaxed and cross-referenced to dc transport data.

These experimental facts pose an immediate conundrum when attempting to interpret

them in the framework of a metal with slowly-relaxing momentum. The ac conductivity

at not too high temperatures suggests a Drude analysis may work, but fails to account for

the appearance of an off-axis peak at higher temperatures or for the infrared non-Drude

contribution. The ac conductivity of a slowly-relaxing metal is given in (113). If momentum

relaxes weakly, Γ must be small compared to some parameter determining the scale at which

other degrees of freedom start to be important, usually temperature. But this theoretical

assumption contradicts the experimental observation that Γ ∼ O(T ), raising the question of

which scale plays the role of cut-off of the low-energy effective theory. Moreover, for slowly-

relaxing momentum, the dc conductivity is dominated by the ‘coherent’ contribution from

the Drude peak, σcoh ∼ n2
o/(χππΓ) +O(Γ0). However in this picture Γ strongly depends on

disorder strength, [18], and so this is not supported by experimentally, since the slope of the

resistivity does not change under irradiation by ions, [326–329].

While experimentally difficult to establish, the notion of coherent and incoherent charge

transport in a slowly-relaxing metal is easy to understand from a theoretical standpoint. All

that is required is to give up Galilean invariance, which imposes that the electric current is

equal to the momentum density – thereby killing any incoherent contribution to transport.

Doing so, new processes are allowed that conduct charge but do not drag momentum, and
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neatly encapsulated in appearance of the transport coefficient σo in the dc conductivity

(113). These processes naturally appear in hydrodynamics [102], memory matrix approaches

[18, 258] and in holographic models [270].

Relaxing Galilean invariance is not enough though, as in a metal with slowly relaxing

momentum such incoherent processes inevitably give contributions to transport (of order

Γ0) subleading compared to the coherent contribution (of order 1/Γ). There are several

avenues one can think of to suppress the coherent contribution to transport:

i) suppress the Drude weight through some emergent particle-hole symmetry that would

effectively set no = 0;

ii) assume strong explicit breaking of translations;

iii) more radically, require that χππ → +∞, [249];

iv) short-circuit the large contribution from slowly-relaxing momentum by assuming trans-

lations are spontaneously broken, [63].

Strange metals arise in doped Mott insulators, which leads to disregard i) (in contrast to

the example of graphene near the charge neutrality point). The ability to synthesize very

clean samples with a low residual resistivity [332] also works against ii). iii) was recently

considered [249]. There, the authors argue that strange metals arise in the vicinity of an

ordered phase where the order parameter has the same symmetries as loop currents [218]

and that this would lead to the divergence of all susceptibilities in the same symmetry

sector. It is interesting to note that holographic checkerboards, [216, 217, 225], naturally

feature such current loops intertwined with translation symmetry breaking thanks to the

bulk Chern-Simons terms.

Finally, let us consider (iv) how pseudo-spontaneous translation symmetry breaking may

shed light on transport in strange metals. Further motivation for this is found in recent

reports of charge density fluctuations across the phase diagram, [51–60], rather than re-

stricted to the underdoped regime as previous experiments suggested, [2]. This is backed up

by numerical (Determinant Quantum Monte Carlo) studies of the Hubbard model which also

report intertwined charge and spin stripes at optimal doping and in the overdoped regime,

[61]. [344] made a direct link between the T -linear resistivity and fluctuating charge density

waves by showing that the suppression of static charge order through strain (leaving only
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the fluctuations) restores the T -linearity of the resistivity. Theoretical arguments on the

impact of fluctuating charge density wave order on strange metal transport have been given

in [62–67] (see as well the earlier references [43–45, 345] where the emphasis is more on the

underdoped range).

Let us first discuss the ac conductivity in a pinned crystal, (114). It is straightforward

to see that the frequency dependence deriving from this formula interpolates between a

Drude-like peak centered at ω = 0 if pinning qo is sufficiently weak compared to the typical

frequency scales set by Γ and Ω, and an off-axis peak once pinning becomes stronger. The

precise inequality can be derived from (114), asking when all maxima in Re σ(ω) are for

ω = 0 or complex frequencies:

ω2
o >

Ω3

Γ + 2Ω
(135)

If we assume the same scaling as under equation (110), ωo ∼ g, Γ ∼ g2, Ω ∼ g2, then to

leading order in small g, the location of the peak ωpeak ≃ ωo+O(g
3). If charge density wave

fluctuations are (at least partially) responsible for the strange metallic behavior, it would be

natural to assume that ωo ∼ T and this would lead to an approximately linear temperature

dependence of the off-axis peak location. As the temperature is decreased below the energy

scale set by disorder, we might expect the inequality (135) to be violated, upon which the

peak returns on-axis.

In spectroscopic experiments, whether an off-axis peak develops at high temperatures

seems very material-dependent – materials where this behavior is seen are compiled in [63],

see figure 8. For some of these materials, several data points as a function of temperature are

available, but not quite enough to resolve the temperature dependence of the peak location

as it is returning on-axis, which would be very helpful to determine more precisely.

In YBa2Cu4O8, the ac conductivity interpolates from Drude-like to an off-axis peak upon

Zn-disordering, [346]. This is in qualitative agreement with charge transport in the pseudo-

spontaneous regime, since stronger disorder will lead to an increase in the pseudo-Goldstone

mass qo and in the pinning frequency ωo. It would be interesting to better understand the

effects of Zn-doping on pinning charge density wave fluctuations in scattering experiments,

[347–349], especially in light of the results in [52]. In [348], it was shown that Zn-doping

gradually kills static spin-stripe order, leaving only charge density fluctuations. As we have

already commented on, destroying static spin-stripe order through strain [344] restores T -

linearity in the resistivity.
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This is as far as effective approaches can take us, since to determine how the frequency

dependence of the conductivity varies in any given system requires a microscopic calculation

or an experimental measurement. In gauge/gravity duality models, the peak can remain

off-axis at all temperatures in the ordered phase, [72, 260, 263, 265], or interpolate between

being on-axis and off-axis, [65, 75].

Turning now to dc transport, it is clear that by looking at the dc conductivity of a

pinned crystal (115) alone, it will be hard to disentangle the individual contributions of

various scattering processes.52 This said, we can distinguish two types of processes:

❼ First, extrinsic processes, encapsulated in the momentum relaxation rate Γ. This is

through this relaxation coefficient that e.g. disorder or umklapp processes feed in the

dc conductivity. Their scaling is expected to be sensitive to irrelevant deformations

and to the details of the disorder distribution, leading to scattering rates Γext ∼
T (g/T∆g)2 ≪ T , [37, 143, 275]. For this reason, it is unlikely they are the origin of

the T -linear resistivity.

❼ Second, intrinsic processes, coming from dissipation into the bath of thermal, critical

excitations, encapsulated in transport coefficients such as σo, ξµ and ξ.

These are much stronger candidates as the source of T -linear resistivity. Gauge/gravity

duality allows to easily calculate these transport coefficients and verify that indeed

they their temperature dependence reflects the scaling properties of the underlying

critical phase, [82, 102, 143]. These results have inspired scaling theories to explain

transport data in cuprates, such as [140, 351]. A crucial extra ingredient compared

to previous attempts at a scaling theory (e.g. [141]) is the introduction of anomalous

scaling dimensions for the charge density at the critical point, [133, 135, 139, 352].53

As we have already emphasized in section VIB, introducing pseudo-spontaneous breaking

of translations short-circuits the extrinsic contribution to the resistivity, which is now ρdc ∼
O(Γ0) rather than O(1/Γ) in a metal. The order O(Γ0) terms are determined by σo, ξµ and

ξ, are intrinsic and are dominant against the extrinsic O(Γ) terms. From (114) and (115),

52 See [350] for an attempt at fitting the hydrodynamic theory of pinned charge density waves in a magnetic
field to magnetotransport data in a cuprate. While this analysis has the merit of fitting a consistent
set of data on a single material, the set of data used does not allow to unambiguously determine all the
parameters in the effective theory.

53 Holographic models combining explicit breaking of translations and these new scaling laws met with
difficulties, [353–356], including matching all scaling laws and or suppressing the coherent, extrinsic con-
tribution to the conductivity from momentum without resorting to strong explicit breaking. This task
is made harder by the experimental hurdle of producing thermoelectric transport data displaying clean
scaling laws over sufficiently large ranges of temperature.
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it is clear that they contribute both to the coherent (the peak) and to the incoherent (the

infrared band) parts of the conductivity.This gives further motivation to revisit the two-

component analysis of ac conductivity data, which customarily assumes that the infrared

band does not contribute to the dc conductivity.

It is reasonable to assume that the temperature dependence of Γ ∼ γ0 + γ2T
2 + . . ., cap-

turing the expected temperature dependence of disorder (the zero temperature residual re-

sistivity) and umklapp (the Fermi liquid-like behavior recovered outside the superconducting

dome). What might the temperature dependence of intrinsic processes be? This is a difficult

question, barring a concrete microscopic model of cuprates. The scaling theories alluded to

above give one possible answer, but have not been extended to the pseudo-spontaneous case

yet.

An alternative relies on theoretical arguments by which diffusivities D in strongly-

correlated systems tend to saturate a Planckian bound, [15],

D ≳ v2τP l , τP l =
ℏ

kBT
. (136)

Here v is some characteristic velocity, which is sometimes argued to the Fermi velocity,

the Lieb-Robinson velocity or the butterfly velocity (see e.g. [146]). Through this general

mechanism, applied to the diffusive transport coefficients σo, ξµ and ξ, we may expect various

disorder-independent, T -linear contributions to the resistivity, split between the coherent and

incoherent terms. This resonates with the analysis of the magnetoresistance data of [333],

which found necessary to include a T -linear component in both coherent and incoherent

contributions.

The diffusivity σo is directly related to the thermal diffusivity, [143]. Energy diffusion is

likely to be universal in a critical phase. Indeed, measurements of this observable in hole-,

[357], and electron-doped cuprates, [358], as well as in crystalline insulators, [359, 360], all

suggest that the thermal diffusivity in these materials is close to a Planckian bound.

The reader may legitimately wonder why the same ought to hold for the Goldstone

diffusive coefficient ξ. The Goldstones are weakly-coupled in the low energy effective field

theory, [10, 191, 361], and so it does not naturally follow that they relax on Planckian scales

(the attenuation of superfluid phonons being a case in point). On the other hand, in sections

VD, VIC and VII, we have highlighted a dissipation mechanism into hydrodynamic currents

at play both in holographic systems and in 2d electron gases hosting Wigner crystal phases.
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This mechanism links the Goldstone diffusivity ξ to the thermal diffusivity, which itself is

likely to be close to a Planckian bound in a strongly-correlated system.

Pseudo-spontaneous breaking of translations thus appears to be a promising avenue to

understand various features of strange and bad metals. While it is difficult to be more

conclusive at this stage, further analyses of experimental data, revolving around the influence

of disorder on charge density fluctuations, a systematic analysis of charge, heat and magneto-

transport data on the same compound, and a refinement of the two-component analysis of

optics data, may give further support to this hypothesis or disprove it.

Appendix A: Positivity of entropy production

In this Appendix, we give more details on the steps leading to the Lorentz invariant

constitutive relations (84). Using (81) together with the first law of thermodynamics

Tds = dε− µdn− vidπ
i − hijd (∇iuj) (A1)

as well as the equations of motion, the divergence of the entropy current is found to be

T ṡ+ T∇i

(
jiq
T

)
= ũj

(
Kj +∇ihij

)
− j̃iq

∇iT

T
− j̃i∇iµ−∇ivj τ̃

ij , (A2)

with

jiq = Tsvi + j̃iq , j̃iq = j̃iε − µj̃i + hijũ
j − vj τ̃

ij . (A3)

Here we have turned on an external source for the ui, fel 7→ fel −Kiu
i, which we take to be

first order in gradients Ki ∼ O(∇).

The right-hand side must be positive so that entropy is not destroyed by dissipative

processes. This constrains the constitutive relations to take the following form:54

j̃i = −σij
o ∇jµ− αij

o ∇jT − γijµ
(
Kj +∇khkj

)
,

j̃iq
T

= −ᾱij
o ∇jµ− κ̄ijo

T
∇jT − γijT

(
Kj +∇khkj

)
,

τ̃ ij = −ηijkl∇(kvl) ,

ũi = ξijµ ∇jµ+ ξijT ∇jT + ξijh
(
Kj +∇khkj

)
.

(A4)

54 The ideal equations of motion are used to remove all time derivatives in the constitutive relations, and we
choose a frame such that the conserved densities are not corrected at first order in gradients. See [9, 193]
for a discussion on the role of frames in relativistic hydrodynamics, and [96–101] for hydrodynamics
without boosts.
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Turning on the external source Kj is necessary to remove terms like ∇jh
k
k, which otherwise

would appear to be allowed. In the main text and in the remainder of this Appendix, we

now turn off the external sources.

The Onsager relations can be imposed either on the matrix of retarded Green’s function

S ·
(
GR(ω,−q)

)T
= GR(ω, q) · S , (A5)

or, as is often simpler, directly on the M · χ matrix

S · (M(−q) · χ)T =M(q) · χ · S , (A6)

whereM is defined from the equations of motion and with S being the matrix of time-reversal

eigenvalues of the corresponding fields (n, ε, π∥, λ∥, π⊥, λ⊥). Here S = diag(1, 1,−1, 1,−1, 1).

The M · χ matrix reads

M · χ =




σoq
2 αoq

2 iqn γµq
2 0 0

ᾱoq
2 κ̄o

T
q2 iqs γT q

2 0 0

iqn iqs (ζ + η)q2 −iq 0 0

ξµq
2 ξT q

2 −iq ξq2 0 0

0 0 0 0 ηq2 −iq
0 0 0 0 −iq ξq2




. (A7)

The Onsager relations further fix

γµ = ξµ , γT = ξT (A8)

Recall that all the transport coefficient matrices and tensors are decomposed as e.g. σij
o =

σ(o)δ
ij + σ(u)u

ij, and the final coefficient appearing in (A7) is a linear combination of σ(o)

and σ(u), for instance σo = σ(o) + (uo/2)σ(u).

At linearized level, it is enough for us to impose positivity of (A7), but in general, one

should instead require the quadratic form on the right-hand side of (A2) to be positive

definite. Positivity of (A7) follows if all eigenvalues are positive, which in turn is equivalent

to all principal minors of this matrix being positive. The following constraints are sufficient

to that effect

σo , κ̄o , η , ζ + η ≥ 0 ,

σoκ̄o ≥ Tα2
o , σoξ ≥ ξ2µ , κ̄oξ ≥ Tξ2T .

(A9)
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The Lorentz boost Ward identity implies that jiε = πi. At ideal level, using (81) this fixes

χππ = ε+ p− pel , (A10)

while at first order in gradients, from (A4) and (A8), the following relations between the

longitudinal transport coefficients

TξT + µξµ − pelξ = 0

Tαo + µσo − pelξµ = 0

µαo + κ̄o − pelξT = 0 ,

(A11)

or in matrix form:

αij
o +

µ

T
σij
o +

1

T
hikξ

kj
µ = 0

κijo +
µ

T
αij
o +

1

T
hikξ

kj
T = 0

ξijT +
µ

T
ξijµ +

1

T
hikξ

kj
h = 0 .

(A12)

The constitutive relations then become

j̃i = −Tσij
o ∇j

µ

T
− γijµ ∇khkj ,

j̃iq
T

=
(
µσij

o + hilξljµ
)
∇j

µ

T
−
(
µξijµ + hilξ

lj
h

)
∇khkj

T
,

τ̃ ij = −ηijkl∇(kvl) ,

ũi = Tξijµ ∇j
µ

T
+ ξijh ∇khkj

T
.

(A13)

In the Galilean limit, the Galilean boost Ward identity enforces ji ∝ πi and instead:

σij
o = 0 , αij

o = 0 , ξijµ = 0 . (A14)
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T-linear resistivity and planckian dissipation in overdoped cuprates, Nature Physics 15

(2019) 142.

[326] F. Rullier-Albenque, A. Legris, H. Berger and L. Forro, Effect of electron irradiation in

Bi2Sr2CaCu2O8 and Bi2Sr2CuO6 superconductors, Physica C: Superconductivity 254

(1995) 88–92.

[327] F. Rullier-Albenque, P.A. Vieillefond, J.F. Marucco, D. Colson, V. Viallet and P. Lejay,

Electron irradiation effects in YBa2Cu3O6+x and HgBa2Ca2Cu3O8+δ crystals, Physica C:

Superconductivity 282–287 (1997) 1199–1200.

[328] F. Rullier-Albenque, P.A. Vieillefond, H. Alloul, A.W. Tyler, P. Lejay and J.F. Marucco,

Universal Tc depression by irradiation defects in underdoped and overdoped cuprates,

95

https://doi.org/10.1142/S0217979207042860
https://doi.org/10.1142/S0217979207042860
https://doi.org/10.1038/nphys322
https://doi.org/10.1038/nphys322
https://doi.org/10.1142/S0217979207042860
https://doi.org/10.1142/S0217979207042860
https://doi.org/10.1103/PhysRevB.97.220506
https://doi.org/10.1007/JHEP11(2021)011
https://arxiv.org/abs/2107.00519
https://doi.org/10.1007/JHEP05(2021)270
https://arxiv.org/abs/2101.06230
https://doi.org/10.1080/14786430410001716944
https://doi.org/10.1038/s41567-018-0334-2
https://doi.org/10.1038/s41567-018-0334-2
https://doi.org/10.1016/0921-4534(95)00552-8
https://doi.org/10.1016/0921-4534(95)00552-8
https://doi.org/10.1016/S0921-4534(97)00765-X
https://doi.org/10.1016/S0921-4534(97)00765-X


Europhysics Letters (EPL) 50 (2000) 81–87.

[329] F. Rullier-Albenque, H. Alloul and R. Tourbot, Influence of pair breaking and phase

fluctuations on disordered high Tc cuprate superconductors, Physical Review Letters 91

(2003) 047001.

[330] T.R. Chien, Z.Z. Wang and N.P. Ong, Effect of Zn impurities on the normal-state Hall

angle in single-crystal YBa2Cu3−x ZnxO7−δ, Physical Review Letters 67 (1991) 2088–2091.

[331] I.M. Hayes, N.P. Breznay, T. Helm, P. Moll, M. Wartenbe, R.D. McDonald et al.,

Magnetoresistance near a quantum critical point, arXiv:1412.6484 [cond-mat] (2014) .

[332] P. Giraldo-Gallo, J.A. Galvis, Z. Stegen, K.A. Modic, F.F. Balakirev, J.B. Betts et al.,

Scale-invariant magnetoresistance in a cuprate superconductor, Science 361 (2018) 479–481.

[333] J. Ayres, M. Berben, M. Culo, Y.-T. Hsu, E. van Heumen, Y. Huang et al., Incoherent

transport across the strange metal regime of highly overdoped cuprates, Nature 595 (2021)

661–666.

[334] P.W. Anderson, Hall effect in the two-dimensional Luttinger liquid, Physical Review Letters

67 (1991) 2092–2094.

[335] P. Coleman, A.J. Schofield and A.M. Tsvelik, Phenomenological Transport Equation for the

Cuprate Metals, Physical Review Letters 76 (1996) 1324–1327.

[336] P. Coleman, A.J. Schofield and A.M. Tsvelik, How should we interpret the two transport

relaxation times in the cuprates?, Journal of Physics: Condensed Matter 8 (1996)

9985–10015.

[337] S. Licciardello, N. Maksimovic, J. Ayres, J. Buhot, M. Culo, B. Bryant et al., Coexistence

of orbital and quantum critical magnetoresistance in FeSe1−xSx, Physical Review Research

1 (2019) 023011.

[338] M. Culo, C. Duffy, J. Ayres, M. Berben, Y.-T. Hsu, R.D.H. Hinlopen et al., Possible

superconductivity from incoherent carriers in overdoped cuprates, SciPost Phys. 11 (2021)

12.

[339] S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura and S. Tajima, Optical spectra of

La2−xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane,

Phys. Rev. B 43 (1991) 7942.

[340] M.A. Quijada, D.B. Tanner, F.C. Chou, D.C. Johnston and S.W. Cheong, Optical

properties of single-crystal la2Cuo4+δ, Phys. Rev. B 52 (1995) 15485.

96

https://doi.org/10.1209/epl/i2000-00238-x
https://doi.org/10.1103/PhysRevLett.91.047001
https://doi.org/10.1103/PhysRevLett.91.047001
https://doi.org/10.1103/PhysRevLett.67.2088
https://doi.org/10.1126/science.aan3178
https://doi.org/10.1038/s41586-021-03622-z
https://doi.org/10.1038/s41586-021-03622-z
https://doi.org/10.1103/PhysRevLett.67.2092
https://doi.org/10.1103/PhysRevLett.67.2092
https://doi.org/10.1103/PhysRevLett.76.1324
https://doi.org/10.1088/0953-8984/8/48/020
https://doi.org/10.1088/0953-8984/8/48/020
https://doi.org/10.1103/PhysRevResearch.1.023011
https://doi.org/10.1103/PhysRevResearch.1.023011
https://doi.org/10.21468/SciPostPhys.11.1.012
https://doi.org/10.21468/SciPostPhys.11.1.012
https://doi.org/10.1103/PhysRevB.43.7942
https://doi.org/10.1103/PhysRevB.52.15485


[341] M.A. Quijada, D.B. Tanner, R.J. Kelley, M. Onellion, H. Berger and G. Margaritondo,

Anisotropy in the ab-plane optical properties of Bi2Sr2CaCu2O8 single-domain crystals,

Phys. Rev. B 60 (1999) 14917.

[342] D.v.d. Marel, H.J.A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli et al.,

Powerlaw optical conductivity with a constant phase angle in high Tc superconductors,

Nature 425 (2003) 271–274 [cond-mat/0309172].

[343] J. Hwang, T. Timusk and G.D. Gu, Doping dependent optical properties of

Bi2Sr2CaCu2O8+d, Journal of Physics: Condensed Matter 19 (2007) 125208.

[344] E. Wahlberg, R. Arpaia, G. Seibold, M. Rossi, R. Fumagalli, E. Trabaldo et al., Restored

strange metal phase through suppression of charge density waves in underdoped

YBa2Cu3O7 − δ, Science 373 (2021) 1506 [2009.08398].

[345] L. Taillefer, Scattering and pairing in cuprate superconductors, Annual Review of

Condensed Matter Physics 1 (2010) 51

[https://doi.org/10.1146/annurev-conmatphys-070909-104117].

[346] D.N. Basov, B. Dabrowski and T. Timusk, Infrared Probe of Transition from

Superconductor to Nonmetal in YBa2(Cu1−xZnx )4O8, Phys. Rev. Lett. 81 (1998) 2132.

[347] A. Suchaneck, V. Hinkov, D. Haug, L. Schulz, C. Bernhard, A. Ivanov et al.,

Incommensurate Magnetic Order and Dynamics Induced by Spinless Impurities in

YBa2Cu3O6.6, Phys. Rev. Lett. 105 (2010) 037207.

[348] Z. Guguchia, B. Roessli, R. Khasanov, A. Amato, E. Pomjakushina, K. Conder et al.,

Complementary Response of Static Spin-Stripe Order and Superconductivity to

Nonmagnetic Impurities in Cuprates, Phys. Rev. Lett. 119 (2017) 087002.

[349] P.M. Lozano, G.D. Gu, J.M. Tranquada and Q. Li, Experimental evidence that zinc

impurities pin pair-density-wave order in La2−xBaxCuO4, Phys. Rev. B 103 (2021)

L020502.

[350] A. Amoretti, M. Meinero, D.K. Brattan, F. Caglieris, E. Giannini, M. Affronte et al.,

Hydrodynamical description for magneto-transport in the strange metal phase of Bi-2201,

Phys. Rev. Res. 2 (2020) 023387 [1909.07991].

[351] A. Karch, K. Limtragool and P.W. Phillips, Unparticles and Anomalous Dimensions in the

Cuprates, JHEP 03 (2016) 175 [1511.02868].

[352] G. La Nave, K. Limtragool and P.W. Phillips, Fractional Electromagnetism in Quantum

97

https://doi.org/10.1103/PhysRevB.60.14917
https://doi.org/10.1038/nature01978
https://arxiv.org/abs/cond-mat/0309172
https://doi.org/10.1088/0953-8984/19/12/125208
https://doi.org/10.1126/science.abc8372
https://arxiv.org/abs/2009.08398
https://doi.org/10.1146/annurev-conmatphys-070909-104117
https://doi.org/10.1146/annurev-conmatphys-070909-104117
https://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-070909-104117
https://doi.org/10.1103/PhysRevLett.81.2132
https://doi.org/10.1103/PhysRevLett.105.037207
https://doi.org/10.1103/PhysRevLett.119.087002
https://doi.org/10.1103/PhysRevB.103.L020502
https://doi.org/10.1103/PhysRevB.103.L020502
https://doi.org/10.1103/PhysRevResearch.2.023387
https://arxiv.org/abs/1909.07991
https://doi.org/10.1007/JHEP03(2016)175
https://arxiv.org/abs/1511.02868


Matter and High-Energy Physics, Rev. Mod. Phys. 91 (2019) 021003 [1904.01023].

[353] R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange

metals, Phys. Rev. B 89 (2014) 245116 [1311.2451].

[354] M. Blake and A. Donos, Quantum Critical Transport and the Hall Angle, Phys. Rev. Lett.

114 (2015) 021601 [1406.1659].

[355] A. Amoretti, M. Baggioli, N. Magnoli and D. Musso, Chasing the cuprates with dilatonic

dyons, JHEP 06 (2016) 113 [1603.03029].

[356] E. Blauvelt, S. Cremonini, A. Hoover, L. Li and S. Waskie, Holographic model for the

anomalous scalings of the cuprates, Phys. Rev. D 97 (2018) 061901 [1710.01326].

[357] J. Zhang, E.M. Levenson-Falk, B.J. Ramshaw, D.A. Bonn, R. Liang, W.N. Hardy et al.,

Anomalous thermal diffusivity in underdoped yba2cu3o6+x, Proceedings of the National

Academy of Sciences 114 (2017) 5378

[https://www.pnas.org/content/114/21/5378.full.pdf].

[358] J. Zhang, E.D. Kountz, E.M. Levenson-Falk, D. Song, R.L. Greene and A. Kapitulnik,

Thermal diffusivity above the mott-ioffe-regel limit, Phys. Rev. B 100 (2019) 241114.

[359] K. Behnia and A. Kapitulnik, A lower bound to the thermal diffusivity of insulators,

Journal of Physics: Condensed Matter 31 (2019) 405702.

[360] C.H. Mousatov and S.A. Hartnoll, On the Planckian bound for heat diffusion in insulators,

Nature Physics 16 (2020) 579–584 [1908.04792].

[361] D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199.

98

https://doi.org/10.1103/RevModPhys.91.021003
https://arxiv.org/abs/1904.01023
https://doi.org/10.1103/PhysRevB.89.245116
https://arxiv.org/abs/1311.2451
https://doi.org/10.1103/PhysRevLett.114.021601
https://doi.org/10.1103/PhysRevLett.114.021601
https://arxiv.org/abs/1406.1659
https://doi.org/10.1007/JHEP06(2016)113
https://arxiv.org/abs/1603.03029
https://doi.org/10.1103/PhysRevD.97.061901
https://arxiv.org/abs/1710.01326
https://doi.org/10.1073/pnas.1703416114
https://doi.org/10.1073/pnas.1703416114
https://arxiv.org/abs/https://www.pnas.org/content/114/21/5378.full.pdf
https://doi.org/10.1103/PhysRevB.100.241114
https://doi.org/10.1088/1361-648x/ab2db6
https://doi.org/10.1038/s41567-020-0828-6
https://arxiv.org/abs/1908.04792
https://arxiv.org/abs/hep-ph/0204199


Titre : Holographie, hydrodynamique et systèmes de matière condensée fortement corrélés

Mots clés : Théories des champs effectives; dualité entre théories de jauge et de gravitation; brisure spon-

tanée de symétrie; métaux étranges.

Résumé : Dans les systèmes de matière condensée

conventionnels, les interactions sont faibles et les

excitations à basses énergies formées de quasi-

particules, qui sont simplement des électrons ha-

billés par les interactions. Les métaux ordinaires

sont donc bien décrits par la théorie du liquide de

Fermi, de même que les supraconducteurs ordinaires

par la théorie de Bardeen-Cooper-Schrieffer. Toute-

fois, lorsque les interactions sont fortes, les quasi-

particules ont une durée de vie très courte et ne

constituent pas une base appropriée pour la descrip-

tion de la dynamique aux basses énergies. L’hydro-

dynamique et ses extensions offrent une autre pers-

pective, dont l’hypothèse de départ est que l’équilibre

local s’établit rapidement. On peut alors caractériser

le système par la dynamique d’un petit nombre de va-

riables collectives avec une longue durée de vie, qui

découlent des symétries présentes.

La dualité entre gravitation et théorie de jauge sup-

pose qu’un état thermal à densité non-nulle dans

une théorie des champs fortement couplée peut être

décrit de manière équivalente par un trou noir chargé.

Cela permet donc de reformuler la dynamique d’un

système fortement couplé comme un problème gra-

vitationnel de résolution des équations d’Einstein en
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l’origine des propriétés de transport de chaleur et de
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