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Chapter 1

Overview

The Coulomb interaction between electrons in conjunction with the quantum-mechanical nature

of these elementary particles gives rise to fascinating phenomena observed in crystalline materials,

such as the unconventional high-Tc superconductivity, Mott metal-insulator transition, heavy-

fermion behavior, and colossal magnetoresistance. In order to understand their origin the so-

called "correlation e�ects", i. e. the interplay of electronic movement and the local Coulomb

repulsion in solids, had been studied for many years in the framework of simpli�ed models like

the Anderson and Hubbard model. Meanwhile, a quantitative description of weakly-interacting

itinerant electronic states in simple and many transition metals as well as in band insulators,

had been achieved by ab initio methods based on the density-functional theory (DFT) that fully

take into account the complex ionic potential and multiband hopping. However, many-electron

e�ects within DFT are treated by highly simpli�ed static approximations employing an auxiliary

independent-particle framework.

During the last twenty something years a synergy between those two e�orts has led to

a breakthrough in quantitative �rst-principles modeling of real correlated materials. This

framework [Anisimov et al., 1997b, Lichtenstein and Katsnelson, 1998] combines the stan-

dard DFT treatment for itinerant states with a much more precise and fully dynamical ap-

proach to single-site correlations on localized, typically f or d, ionic shells. It has been

successfully applied to well-known prototypical examples of the strongly-correlated behavior,

like the α-γ transition in Ce [Held et al., 2001b, Amadon et al., 2006], the α-δ transition

in Pu [Savrasov et al., 2001, Shim et al., 2007], spectral properties of transition-metal oxides

[Held et al., 2001a, Pavarini et al., 2004, Biermann et al., 2005], the heavy-fermion state in

Ce intermetallics [Shim et al., 2007, Pourovskii et al., 2014a] or the bad-metal behavior in

iron pnictides and 4d "Hund's metals" [Haule and Kotliar, 2009, Hansmann et al., 2010,

Mravlje et al., 2011, de' Medici et al., 2011], to name just a few. However, electronic cor-

relations substantially impact the behavior of a much wider range of crystalline materials of

fundamental and technological interest. A dynamical treatment of correlation e�ects in such

materials resolves long-standing puzzles and provide a consistent picture of spectral, magnetic,

thermodynamic and transport properties within the same framework.

This review focuses on two classes of materials representing, in a sense, two opposite limits
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for many-electron e�ects in real solids: on the one hand, an itinerant transition metal, iron,

on the verge of non-Fermi-liquid behavior; on the other hand, local-moment systems with their

atomic-like 3d and 4f shells. Both cases can be partially treated within the standard DFT

framework supplemented in the case of local-moment compounds with a static Hartree-Fock

correction for the on-site Coulomb repulsion. However, in this review we will try to demonstrate

that a much more consistent and re�ned theoretical description is achieved by taking into account

the dynamics of local many-electron e�ects.

The review begins with the methodological Chapter 2 outlining main features of the em-

ployed ab initio approach (a more throughout presentation to be found in several reviews,

[Kotliar et al., 2006, Georges, 2004, Held, 2007]). It is based on supplementing the one-

particle description of DFT with a screened on-site Coulomb repulsion between localized d and f

states; the resulting many-electron lattice problem is then solved using the single-site dynamical

mean-�eld theory (DMFT) [Metzner and Vollhardt, 1989, Georges and Kotliar, 1992,

Georges et al., 1996].

Chapter 3 reviews the role of many-body e�ects in the electronic structure and physical

properties of iron under applied pressure and at high temperatures. Signi�cant electronic corre-

lations arise in this transition metal in spite of a relatively large width of its 3d band and result

in a rich pressure-temperature phase diagram. In particular, Chapter 3 discusses the impact of

correlations on the pressure-stabilized hexagonal ε phase as well as on various iron phases at the

extreme pressure and temperature of the solid inner core of Earth.

Strongly-localized 4f states of lanthanide ions can be rather successfully described within the

ab initio DMFT framework using a simple quasi-atomic approximation for electronic correlations,

which is the �rst subject of Chapter 4. It focuses, in particular, on technologically-important

hard-magnetic rare-earth based intermetallics, where the crystal-�eld splitting of 4f shells de-

termines the single-ion magnetic anisotropy of lanthanide ions, as well as on the impact of

crystal-�eld e�ects on the electronic structure of rare-earth semimetals. In the same Chapter we

also present a linear response theory, which is based on the same quasi-atomic approximation, for

evaluating complex spin, orbital and multipolar inter-site exchange interactions in local-moment

compounds.

Finally, in Chapter 5 we summarize the main results presented in this review. We also outline

some perspective directions for future research on the role of electronic correlations in various

classes of materials building up on the progress achieved to date.



Chapter 2

Ab initio methodology for correlated

crystalline materials

Contents

2.1 DFT+U Hamiltonian and its construction . . . . . . . . . . . . . . . . . 5
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First-principles techniques based on the density functional theory

(DFT)[Hohenberg and Kohn, 1964, Kohn and Sham, 1965] have over the years developed

into a sophisticated and reliable tool for predicting the structural stability and ground-state

properties of crystalline materials. DFT-based methods excel at predicting relative structural

stabilities in 4d and 5d transition metals (TM), their alloys and intermetallic compounds

as a function of the composition and pressure conditions. Forces, phonon spectra in those

systems are also quantitatively well captured within DFT. The standard DFT approach is

somewhat less useful in assessing electronic excitations in solids. However, for itinerant metallic

systems the Kohn-Sham band structure is found to provide a good semi-quantitative description

of photoemission data; in the case of semiconductors DFT has a well-known tendency to

underestimate fundamental band gaps, while the dispersion of the valence and conduction band

are usually found to be in good agreement with experiment.

Though its predictive power for the structural stability of itinerant-electron systems is quite

impressive, DFT, in conjunction with standard local or semi-local exchange-correlation function-

als, has a clear tendency to predict too small volumes and too large bulk modula for transition-

metal oxides (TMO) [Andersen et al., 1980], lanthanide and late actinide metals (see, e.g.

[McMahan et al., 1998] and references therein) as well as for a wide range of lanthanide and

actinide compounds. This overbinding is due to the fact that TM d states in TMO oxides as well

as f states in lanthanide and actinide compounds are predicted by DFT to form partially-�lled

metallic bands and, hence, to contribute to the cohesion. Such picture is in clear disagreement
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with experiments �nding many TMO to be insulating [Imada et al., 1998], while valence f states

in lanthainides and heavy actinides are typically found to form sharp quasi-multiplet features at

high binding energies with the Fermi surface being due to itinerant spd bands [Lang et al., 1981].

In the cases when one does observe metallic d-like bands in TMO, those metallic states are typ-

ically formed by heavily renormalized quasipartilces with the e�ective masses up to an order

of magnitude larger as compared to the ones extracted from the slope of corresponding DFT

bands. TMO also exhibit other, non-quasiparticle, spectral features found at binding energies

of the order of few eV [Sawatzky and Allen, 1984, Fujimori et al., 1992]; those feature are

completely absent from the Kohn-Sham band structure. Even much larger mass enhancements

of the order of handreds bare electron masses are observed in f -like quasiparticle bands found

in many Ce, Yb and U intermetallics [Hewson, 1993]. These "heavy-fermion" bands co-exist

at low (usually, below 100 K) temperatures with the usual quasi-multiplet f -electron features

at high binding energies; with increasing temperature the "heavy-fermion" spectral weight in

the vicinity of the Fermi level disappears. Hence, a rather poor description of the ground-state

properties of TMO and f -electron compounds provided by standard DFT techniques is associ-

ated with the loss of any qualitative resemblance between the Kohn-Sham band picture and the

experimental photoemission spectra.

The origin for insulating behavior of TM oxides, as was qualitatively understood by N. Mott

[Mott, 1949] at the end of 40s, is a quasi-atomic nature of TM d states in those compounds,

where the hopping of d-electrons is reduced due to an increasing distance between TM atoms as

compared to corresponding metals. Therefore, the d-electron bandwidth in TMO often becomes

smaller than the Coulomb repulsion U between d electrons located on the same site. One may

easily show that an electron hop between two neighboring TM ions initially in their ground-

state occupancy N increases the Coulomb repulsion energy by about U . Correspondingly, an

on-site repulsion large compared to the d-electron bandwidth impedes the hopping thus forcing

an insulating behavior. In other words, an on-site Coulomb interaction comparable to the rele-

vant bandwidth leads to correlated movement of electrons; such correlated electrons cannot be

reduced to non-interacting quasiparticles, for which the only e�ect of interaction is a modest

mass enhancement. In the large-U limit quasiparticles completely disappear; one �nds a lat-

tice of partially-�lled localized d or f -shells with charge �uctuations suppressed and low-energy

interaction between neighboring ions stemming from virtual hopping processes. Characteristic

localized occupied and empty features (lower and upper Hubbard bands) separated by a gap of

the order of U are then observed in the photoemission spectra (PES ) of the system.

The e�ect of d bandwidth being reduced in TM-oxides compared to that in pure TMs is well

captured in corresponding Kohn-Sham band structures; the weak f−f hoping in rare-earht (RE)
compounds is also clearly re�ected in a small (less than 1 eV) bandwidth of the corresponding
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Kohn-Sham bands. However, the actual Mott phenomena of an on-site Coulomb repulsion

leading to the impeded hopping in such narrow-band systems is completely missed by DFT, due

to a de�cient description of electronic correlation e�ects by static and local exchange-correlation

(XC) functionals.

The de�ciency of the local-density approximation (LDA) for XC e�ects in narrow-band d

and f valence bands was rather quickly realized after band-structure DFT calculations for real

simple materials became routine since the end of 70s. First route for correcting this de�ciency

was based on relaxing the local approximation and, in particular, led to a semi-local generalized-

gradient approximation (GGA) [Perdew and Wang, 1992, Perdew et al., 1996a] for the XC

potential. GGA is not a signi�cant improvement for strongly-correlated TMO and RE sys-

tems, DFT-GGA still predicts narrow metallic bands pinned at the Fermi level with the corre-

sponding overbinding error in the ground-state properties. More recent hybrid XC functionals

[Becke, 1993, Perdew et al., 1996b] open a gap between occupied and empty localized states

in TMO and lanthanide compounds. However, in the hybrid XC approach the gap formation is

associated with a symmetry breaking due to a magnetic order, though the Mott phenomenon

is well known to occur also in the paramagnetic state. A characteristic electronic structure of

correlated metals combining the high-energy Hubbard bands with metallic quasiparticles is not

reproduced by advanced XC functionals.

Another route was to single out narrow-band d and f states for a di�erent treatment as

compared to itinerant wide bands that are well described within LDA or GGA. The simplest

approach of this kind consists in treating the "o�ending" partially-�lled d and f shells as core

states. A more theoretically sound method is based on subtracting the so-called "self-interaction

correction" (SIC) [Perdew and Zunger, 1981] that removes an unphysical interaction between

an electron and its own Coulomb potential included within LDA or GGA. The SIC correction

e�ectively forces the localization of that electron, hence, the number of localized states is in fact

an input parameter.

2.1 DFT+U Hamiltonian and its construction

A much more sophisticated treatment of electron correlation e�ects is based on supplementing

the quadratic Kohn-Sham Hamiltonian H0 with explicit local Coulomb interaction, the resulting

"DFT+U" Hamiltonian [Anisimov et al., 1991, Anisimov et al., 1997a] reads

ĤDFT+U = Ĥ0 + ĤU − EDC =
∑
kν

εkνc
†
kνckν +

∑
i,

1,2,3,4

〈12|U |34〉f †i1f
†
i2fi4fi3 − EDC , (2.1)
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where c†kν(ckν) is the creation(annihilation) operator for the Kohn-Sham state ψkν at k-point k

and the band index ν, f †i,α(fi,α) is the operator creating (annihilating) localized states wiα on

the correlated shell in the unit cell i1, α ≡ 1, 2, ... is a compound index for relevant quantum

numbers labeling one-electron orbitals within that shell (for example, α ≡ {mσ}, where m is

the orbital quantum number and σ is the spin). The last term, EDC , is the double-counting

correction that will be discussed below.

The interacting term in the DFT+U Hamiltonian is naturally de�ned in the real space,

as the interaction is assumed to act between orbitals localized on the same atomic site.

A su�cient localization of the orbitals wiα at the correlated site is thus necessary for the

DFT+U Hamiltonain to be physically sensible. For extended orbitals the intersite inter-

actions are comparable to U ; neglecting them in (2.1) thus becomes a poor approximation

[Ayral et al., 2013, Hansmann et al., 2013]. However, in solids one cannot de�ne d or f or-

bital as in an isolated atom, as such de�nition makes sense near the nucleus, where the crystalline

potential is approximately spherical, but not in the interstitial.

There exists a number of approaches for constructing such bases representing local-

ized correlated states in solids. For example, one may employ a basis-independent

framework [Marzari and Vanderbilt, 1997, Marzari et al., 2012, Anisimov et al., 2005,

Lechermann et al., 2006, Amadon et al., 2008] de�ning the localized orbitals wiα as Wannier

functions constructed from a subset W of Kohn-Sham bands:

wiα(r) =
∑

k∈BZ
wkα(r + Ri)e

−ikRi =
∑
k∈BZ
v∈W

e−ikRiψkν(r + Ri)Pνα(k), (2.2)

where the subset W comprises KS bands with a substantial contribution due to correlated

orbitals, Ri is the lattice vector of the unit cell i, P̂ (k) is a complex matrix such that the

resulting orbitals form an orthonormalized basis, 〈wiα|wjβ〉 = δijδαβ . In fact, matrices P̂ (k)

possessing such properties are well-known to be not uniquely de�ned, the resulting gauge free-

dom in P̂ (k) can be exploited to obtain a well-localized basis of Wannier functions. Direct

minimization of the spread of wiα in the real space is employed to construct the maximally-

localized Wanniers basis[Marzari and Vanderbilt, 1997]. Another, a projective construction

of localized Wannier functions, avoiding the explicit spread minimization, was proposed by

[Amadon et al., 2008] and implemented in conjunction with the linearized augmented planewave

(LAPW) band structure method by [Aichhorn et al., 2009]. One may also mention a hybrid

method of [Andersen and Saha-Dasgupta, 2000, Pavarini et al., 2004], in which Wannier

functions are constructed from outward solutions of the radial Schrödinger equation and their

energy derivatives on a chosen grid of energies. Another approach [Grechnev et al., 2007]

1For simplicity here and below we consider the case of a single correlated site per unit cell
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makes use of the fact that some DFT band structure techniques expand Kohn-Sham states ψkν

in a basis containing, among others, suitable "atomic-like" functions for a given correlated shell;

such functions are then employed as a correlated-subspace basis. A somewhat older method of

[Savrasov and Kotliar, 2004] writes the whole Hamiltonian (2.1) using atomic-like basis func-

tions instead of ψkν and employs a subset of them to represent correlated orbitals; this approach

is applicable only for few band-structure techniques employing such suitable basis functions.

Once the basis of correlated orbitals wiα is chosen one needs to determine the on-site Coulomb

repulsion between them. In principle, one may easily evaluate matrix elements of the bare

Coulomb interactions u(r) = 1/r between such orbitals. The bare Coulomb repulsion is, how-

ever, known to be a very poor approximation for the local interaction in solids entering in

eq. 2.1. For example, the average over its matrix elements between Ni 3d orbitals in NiO

evaluates to about 20−25 eV [Sakuma and Aryasetiawan, 2013]. Experimentally, though,

one �nds that the splitting between occupied and empty 3d localized features seen in the

PES/inverse-PES spectra, which is, to a �rst approximation, the average 〈U〉, amounts only

to about 9 eV [Reinert and H�ufner, 2005]2. This discrepancy is, of course, due to the fact

that the on-site interaction between localized orbitals in solids is strongly screened by itinerant

states. Hence, one should view the Hamiltonian (2.1) as a low-energy description of the cor-

related system, where the interactions between localized states wiα and itinerant bands, which

are not explicitly included, have been integrated out. In result, the e�ective Coulomb repul-

sion u(r, r′, ω) acquires a frequency dependence, which is then passed to matrix elements in the

correlated-orbitals basis:

〈12|U |34〉(ω) =

∫
drdr′w∗i1(r)w∗i2(r′)u(r, r′, ω)wi3(r)wi4(r′), (2.3)

with the low-frequency limit of 〈12|U |34〉(ω) giving a value of on-site repulsion that is strongly

reduced by screening; it is relevant for the low-energy physics described by (2.1) . The high-

frequency limit of 〈12|U |34〉(ω) approaches the bare Coulomb value; this high-frequency tail of

〈12|U |34〉(ω) may a�ect the low-energy physics producing an additional enhancement of quasi-

particle renormalization [Casula et al., 2012b]; it also induces high-energy plasmonic spectral

features [Casula et al., 2012a].

Due to this complex e�ect of screening the local Coulomb repulsion is rather di�cult to

evaluate from �rst principles and often treated as a parameter. A more consistent and truly

ab initio approach is based on evaluating the screening of local repulsion between a given set

of local orbitals wiα from the Kohn-Sham band structure. One popular approach of this kind,

the constrained random-phase approximation (cRPA) [Aryasetiawan et al., 2004], separates

2The optical gap of about 4 eV in this compounds is of the charge-transfer (O 2p→ Ni 3d) type.
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the polarization function Π(ω) = Πc(ω) + Πr(ω) evaluated within RPA into the contribution

Πc(ω) due to transitions within the subset of correlated bands W and Πr(ω) due to all other

transitions. Then the relevant interaction is obtained by screening the bare Coulomb repulsion

v(r) with Πr and then projecting u(r, r′, ω) into the subspace of wiα using (2.3). The cRPA

method is a powerful technique that is able to obtain all matrix elements of 〈12|U |34〉(ω) with

their frequency dependence. However, cRPA is not particularly well suited for the case of a

signi�cant entanglement between the correlated W and itinerant band subspaces. It is di�cult

to de�ne a consistent separation of the polarization into Πc(ω) and Πr(ω) in this case, though

some versions of cRPA to handle this entanglement have been formulated [Miyake et al., 2009,

Seth et al., 2017].

An alternative approach to �rst-principles evaluation of the local interaction is based

on the assumption that a quantitatively correct static screening of the on-site interac-

tion is already included at the DFT level through the local XC potential. This ap-

proach named constrained LDA (cLDA) [Dederichs et al., 1984, Hybertsen et al., 1989,

Cococcioni and de Gironcoli, 2005] constrains the charge on the localized shell of interest

on a single site within a supercell with other states unconstrained, hence, allowed to screen the

on-site interaction. The band energy of corresponding "constrained" KS states is then evaluated

as a function of its orbital occupancy allowing to extract the direct Coulomb repulsion parame-

ter U and Hund's rule coupling JH . The method was shown to provide reasonable values of the

static interaction, though it is not free from uncertainties.

The Kohn-Sham band structure, which is the quadratic part of the DFT+U Hamiltonian

(2.1), is that of non-interacting electrons moving in an e�ective potential. However, this potential

contains, among other terms, the Hartree and XC potentials corresponding to the electron density

of the Kohn-Sham states. Hence, the Kohn-Sham bands are not truly that of a non-interacting

system. In particular, the e�ect of the screened Coulomb interaction u(r, r′, ω) acting between

correlated orbitals is included in a static mean-�eld way by LDA; this fact is used by the cLDA

method described above to extract the value of this interaction. As the same interaction explicitly

enters into (2.1), it is necessary to remove this static mean-�eld contribution from the same

Hamiltonain to avoid counting it twice. Hence, the corresponding double-counting correction

(DC) is included as the last term into (2.1).

Though the local screened interaction is certainly included in some form by XC potentials

determining its exact contribution is a highly nontrivial problem. Local and semi-local XC

potentials are functions of the full charge density and also non-linear; they cannot be represented

as a superposition of contribution due to di�erent orbitals. Hence, the problem of formulating

a theoretically sound expression for the DC term has not been fully solved to date. There

exist a number of di�erent DC formulae [Anisimov et al., 1991, Czy
zyk and Sawatzky, 1994,
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Lichtenstein et al., 2001, Park et al., 2014b, Haule, 2015]. The most widely used ones are

derived by assuming that XC potentials include the local Coulomb interaction in an orbitally-

independent form. That form is given by the Hartree-Fock potential due to the on-site interaction

term in (2.1) for a particular limit of the correlated-shell occupancy matrix. It is assumed to

be uniform within the "around-mean-�eld" (AMF) approach [Anisimov et al., 1991], which is

usually employed for weakly and moderately-correlated metals. The alternative "fully-localized-

limit' (FLL) form [Czy
zyk and Sawatzky, 1994] assumes the most non-uniform occupancy

matrix for a given shell �lling and is generally employed for strongly-correlated systems like

Mott insulators. The contribution due to this term into the one-electron potential for a given

orbital α is given by

Σα
DC =

∂EDC
∂ρα

|ρ̂DC , (2.4)

where the derivative over the orbital occupancy ρα is taken at the shell's occupancy matrix ρ̂DC

corresponding to a given limit (AMF, FLL, etc.).

2.2 Dynamical mean-�eld theory

Once all terms in the Hamiltonian (2.1) are determined the next step is, obviously, solv-

ing it to obtain the ground-state and excited properties of a given real system. This

represents a formidable problem, as one may notice that this Hamiltonian can be viewed

as a multi-band generalization of the famous one-band Hubbard model (HM) for which

no exact solution is known for the relevant 2d and 3d cases. A breakthrough in the

study of HM was achieved in the beginning of 90th in the framework of dynamical

mean-�eld theory (DMFT) [Metzner and Vollhardt, 1989, Georges and Kotliar, 1992,

Georges et al., 1996]. Though initially the DMFT formalism was written for the one-band HM,

here we present its formulation for the Hamiltonian (2.1) in view of applications to realistic ma-

terials. The DMFT framework focuses on the one-electron Green's function (GF) de�ned in the

Kohn-Sham space and imaginary-time domain3 as Gνν′(k, τ − τ ′) = −〈T[ckν(τ)c†kν′(τ
′)]〉, where

T is the time-ordering operator. Its Fourier transform G(k, iωn) is the GF in the imaginary-

frequency domain, where iωn = iπ(2n−1)T is the fermionic Matsubara grid for the temperature

T . Correlation e�ects arising due to the interaction U term of (2.1) are encoded in the Kohn-

Sham space by the electronic self-energy ΣKS(k, iωn) = P̂ †(k)Σ(k, iωn)P̂ (k) , where P̂ (k) are

projector matrices (2.2) to the correlated subspace, Σ(k, iωn) is the self energy in that subspace

spanned by the localized orbitals (2.2). The interacting lattice GF is thus obtained by inserting

3The imaginary time/frequency domain is often used in DMFT calculations for the technical reasons outlined
in Sec. 2.2.1, though it is not necessary.
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Σ(k, iωn) through the Dyson equation:

G−1(k, iωn) = G−1
0 (k, iωn)− P̂ †(k) (Σ(k, iωn)− ΣDC) P̂ (k), (2.5)

into the non-interacting lattice GF G0 given by the �rst term of (2.1), with the DC for the

self-energy de�ned by (2.4).

The DMFT is based on the key observation of [Metzner and Vollhardt, 1989] that one

may de�ne a (non-trivial) in�nite-dimensional limit of (2.1), and that the electronic self-energy

becomes purely local in this limit, i. e., k-independent4, Σ(k, iωn)
d→∞−−−→ Σ(iωn). Such single-site

self-energy is given by the summation over irreducible (skeleton) Feynman diagrams involving

only the single-site GF and the local vertex Û . The coupling between a representative correlated

shell o and an e�ective electronic "bath" representing the rest of system is then given by the

bath Green's function:

G−1
0 (iωn) =

[∑
k

P̂ (k)G(k, iωn)P̂ †(k)

]−1

+ Σ(iωn) = iωn − ε̂−∆(iωn), (2.6)

where ε̂ are bare (non-interacting) single-site level positions, ∆(iωn) is the hybridization func-

tion due to hopping between the site and electronic bath. The single-site problem in the

correlated subspace is completely de�ned by (2.6) and on-site Coulomb replusion Ĥ
(o)
U =∑

1,2,3,4
〈12|U |34〉f †1f

†
2f4f3 (omitting the irrelevant site index o). The lattice problem is thus

mapped into an auxilary quantum impurity problem (QIP) [Georges and Kotliar, 1992] for

a single correlated shell, which is fully analogous to the standard Anderson impurity model

(AIM). However, in contrast to the usual AIM, ∆(iωn) is not given by the hybridization of non-

interacting bands; it should be rather viewed as a dynamical mean-�eld implicitly depended on

the single-site self-energy through eqs. (2.5-2.6). By solving the QIP, i. e., by summing (all or

subset of) local Feynman diagrams one obtains the impurity GF and self-energy:{
G(iωn), Ĥ

(o)
U

}
→ {Gimp(iωn),Σimp(iωn)} . (2.7)

One then employs the standard recipe to close the mean-�eld cycle as shown in Fig. 2.1: the

obtained impurity self-energy is inserted for all correlated shells, Σ(k, iωn) ≡ Σimp(iωn) allowing

to update the chemical potential µ and to recalculate the mean �eld G0 by eqs. (2.5-2.6). This

cycle is iterated until the self-consistency is reached: the QIP solved for the mean-�eld G0 results

in the same self-energy Σ that was used to obtain this mean-�eld through (2.5-2.6). Alternatively,

4In the case of DFT+U Hamiltonian (2.1) this approximation is applied to the self-energy Σ(k, iωn) in the
correlated subspace, while ΣKS can still be k dependent due to the projectors P̂ (k).
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the same self-consistency condition is represented by Gimp(iωn) = Gloc(iωn), where

Gloc(iωn) =
∑
k

P̂ (k)G(k, iωn)P̂ †(k) (2.8)

is the local GF of lattice problem. The problem de�ned by the Hamiltonian (2.1) is thus ex-

actly solved in the limit of in�nite lattice connectivity, as can be also shown explicitly, see

[Georges et al., 1996]. As for any mean-�eld approach the usefulness of DMFT method is

based on its ability to describe the realistic 3d lattices, for which the single-site approximation

Σ(k, iωn) → Σ(iωn) appears to be rather reasonable, though it is not quantitatively exact. At

the same time the single-site dynamics due to electronic correlations is fully included in DMFT;

this explains its success in reproducing such non-perturbative phenomena as the Mott transi-

tion. The method captures not only the insulating U/W → ∞ and non-interacting U/W → 0

limits (whereW is the bandwidth of non-interacting bands εvk in (2.1)) but also all intermediate

regimes given by �nite U/W .

Figure 2.1: Schematic diagram of the DFT+DMFT method. The initial input from the DFT
part is the quadratic KS Hamiltonain Ĥ0 and projectors P̂ between the KS space and correlated
subspace. The right-hand side represents the DMFT cycle with the lattice problem mapped
into the quantum-impurity one using eq. 2.6; the calculated impurity self-energy subsequently
is inserted back to the lattice, eq. 2.5. The updated DMFT density matrix can be inserted back
to the DFT part (dashed arrow) to take into account modi�cations of the charge density and,
therefore, Ĥ0, due to correlations; this results in a DFT+DMFT framework that is self-consistent
in the charge density.

For 2d and quasi-2d systems the single-site DMFT is generally not an adequate approxima-

tion. The k dependence of the self-energy is key to describe, for example, the physics of layered

cuprate superconductors, in particular, their PES [Damascelli et al., 2003]. This problem was

addressed by cluster extensions of the single-site DMFT, which were formulated in both the real

and reciprocal spaces [Potthoff et al., 2003, Maier et al., 2005, Ferrero et al., 2009]. The
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single-site QIP (2.7) is thus generalized to the corresponding cluster problem. Such generalization

increases dramatically the computational cost of solving the QIP, hence, the cluster methods are

not generally applicable to full d and f shells; they have been extensively applied to quasi-1band

systems like layered cuprates. Another more recent e�ort in development of extended-DMFT

frameworks [Rubtsov et al., 2008, Held et al., 2008, Ayral and Parcollet, 2015] is based

on applying the single-site approximation to two-electron correlation functions (like the vertex

function) while keeping the k-dependence of the one-electron self-energy. These approaches are

promising for applications to multiband systems, though they are still currently too heavy for

applications in the cases considered in this review, when many-electron e�ects for the full d or

f shell need to be taken into account.

2.2.1 The quantum impurity problem

The QIP problem schematically given by eq. 2.7 is a true many-electron problem, though a single-

site one, and represents, in fact, a numerical "bottleneck" of the DFT+DMFT framework. In

the imaginary-time path integral formalism (see e.g. [Negele and Orland, 1988]) it reads

Gαα′(τ0 − τ1) =
1

Z

∫
D[f, f †]fα(τ0)f †α′(τ1) exp[−S], (2.9)

where D[f, f †] is the path integration over all impurity degrees of freedom and

Z =

∫
D[f, f †] exp[−S] (2.10)

is the impurity partition function, S is the impurity action:

S =
∑
α1α2

∫
dτ

∫
dτ ′f †α1

(τ)
[
G−1

0 (τ − τ ′)
]
α1α2

fα2(τ ′) +

∫
dτĤ

(o)
U (τ). (2.11)

Many-body methods to evaluate (2.9) represent a large research �eld initiated by early studies of

AIM and very actively developed at present, in particular, to provide e�cient quantum-impurity

"solvers" for the DMFT framework. They will not be reviewed here in any details; we will only

brie�y outline main strategies for solving the QIP and provide some useful references.

The methods dealing with QIP can be divided into numerically-exact and approximate an-

alytical kinds. Among the former one may especially mention stochastic quantum Monte Carlo

(QMC) methods; a breakthrough in this domain has been achieved by so-called "continuous-

time" (CT) QMC methods [Prokof'ev and Svistunov, 1998] (see review [Gull et al., 2011]

on its applications to the fermionic QIP). The most popular CT-QMC approaches are based on

an expansion of the partition function (2.10) in powers of Ĥ
(o)
U [Rubtsov et al., 2005] or, alter-
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natively, in powers of the hybridization function ∆(τ), see eq. 2.6, [Werner et al., 2006]. One

subsequently sums up various diagrammatic contributions into GF (2.9) and other correlation

function in accordance with their relative weight in Z by employing a Monte Carlo importance

sampling. In contrast to the older QMC approach of Hirch and Fye [Hirsch and Fye, 1986]

based on discretization of the integrals over τ in (2.11) the CT-QMC approach is free from the

discretization error and can treat more complex interaction vertices Ĥ
(o)
U . All these QMC meth-

ods work in the imaginary-time/imaginary-frequency domain, hence, the resulting GF needs to

be analytically continued to the real-energy axis to obtain an experimentally-observable real-

frequency spectra.

The hybridization-expansion CT-QMC technique employed as a quantum-impurity solver

in the DFT+DMFT calculations of Chapter 3. This approach is su�ciently computation-

ally e�cient to solve the QIP for the whole Fe 3d shell. Particularly, the case of simpli�ed,

"density-density" Coulomb vertex Ĥ
(o)
U reducible to the form

∑
αα′ Uαα′ n̂αn̂α′ allows to em-

ploy the fast "segment-picture" algorithm [Werner et al., 2006, Gull et al., 2011], reducing

the computational e�ort very signi�cantly. The density-density approximation neglects some

potentially important matrix elements of the Coulomb vertex5 and thus introduces a system-

dependent error. In the case of moderately-correlated metal like iron it does not a�ect the qual-

itative picture, but is still quantitatively important (see Appendix A); for strongly-correlated

systems as, for example, FeSe [Aichhorn et al., 2010] this approximation may lead to quali-

tatively wrong results. Calculation with the full 4-index vertex are much more computation-

ally demanding, but still nowdays possible thanks to a recent development of fast algorithms

[L�auchli and Werner, 2009, Gull, 2008].

Another popular numerically-exact approach, the exact diagonalization technique

[Caffarel and Krauth, 1994], see also [Lu et al., 2014, Go and Millis, 2017] for more re-

cent developments. It is based on representing the hybridization function by a set of auxiliary

discrete levels {εb} mixing with the impurity states, ∆αα′(ω) ∼
∑

b

VbαV
†
bα′

ω−εb . The resulting large

Hamiltonian including both impurity and bath states is subsequently diagonalized by Lanczos

or similar techniques allowing to compute the impurity GF from obtained eigenvalues and eigen-

states. Among the exact methods one should also mention the numerical renormalization-group

and density-matrix renormalization-group methods [Bulla et al., 2008, Hallberg, 2006].

Analytical approaches are generally applicable only in certain regimes (strong or weak cou-

pling). Weak-coupling methods are suitable for metallic phases; they are based on the stan-

dard Wick theorem and subsequent summation of a certain subset of Feynmann diagrams, like,

for example, the �uctuation-exchange approximation [Katsnelson and Lichtenstein, 1999,

5For example, the "spin-�ip" contributions to Ĥ
(o)
U of the form f†m↑f

†
m′↓fm′↑fm↓ cannot be reduced to a

density-density form.
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Drchal et al., 2005, Pourovskii et al., 2005]. Strong-coupling methods employ the hy-

bridization as a small parameter, they are brie�y described in Sec. 4.1. Among

numerous other analytical methods one may also mention the "slave" particle ap-

proach [Kotliar and Ruckenstein, 1986, de'Medici et al., 2005, Lechermann et al., 2007,

Rohringer et al., 2018] providing an economical and numerically e�cient treatment of the

quasiparticle renormalization in multiband systems. The obvious advantage of these analytical

techniques is their computational e�ciency. They can also easily evaluate the GF and, hence,

the measurable one-electron spectra, at the real-frequency axis.

Finally, the simplest approach to solving the QIP consists in employing the static Hartree-

Fock approximation; in this case DFT+DMFT is reduced to the popular LDA+U method

[Anisimov et al., 1991, Anisimov et al., 1997a].

2.3 Charge density and total energy

As a result of the DMFT cycle (Fig. 2.1) one obtains the converged interacting lattice GF (2.5)

in the KS space. The corresponding density matrix

Nk
νν′ =

∑
n

Gνν′(k, iωn)eiωn0+
(2.12)

gives the contribution of KS bands in W to the charge density. Therefore, the charge density

n(r) is a�ected by many-electron e�ects through the DMFT self-energy Σ(iωn) entering into

G(k, iωn); the KS one-electron potential being a functional of n(r) is thus modi�ed as well.

Hence, the one-electron part H0 of the DFT+U Hamiltonain (2.1) comes out to be implicitly

dependent on Σ(iωn).

This observation led to formulation of the charge self-consistent DFT+DMFT frame-

work, in which n(r) and H0 are consistently updated to take into account the im-

pact of correlations as shown in the left-hand side of Fig. 2.1. In practice, N̂k in

the KS basis is submitted back to the DFT part; the corresponding contribution to

n(r) is then calculated through the expansion of ψkν in the basis of a given band-

structure method. Several such self-consistent DFT+DMFT frameworks have been imple-

mented recently [Savrasov and Kotliar, 2004, Min�ar et al., 2005, Pourovskii et al., 2007,

Haule et al., 2010, Aichhorn et al., 2011, Gr�an�as et al., 2012, Park et al., 2014a].

In this self-consistent framework the DMFT self-consistency condition, Gloc ≡ Gimp, as well
as the relation between the KS potential and electronic density are derived by extremization of

the following DFT+DMFT grand potential [Kotliar et al., 2006] :
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Ω [n(r), Gloc,∆Σ, ε̂] =− Tr ln [iωn + µ−H0 −∆Σ]− Tr [Gloc∆Σ]

+
∑
R

[Φimp[Gloc(R)]− ΦDC [Gloc(R)]] + Ωr[n(r)]

≡ ∆Ω [Gloc,∆Σ, VKS ] + Ωr[n(r)],

where ∆Σ is the di�erence between the impurity self-energy Σimp and the double counting cor-

rection (2.4), Φimp[Gloc(R)] is the DMFT interaction energy functional for the site R, ΦDC [GlocR ]

is the corresponding functional for the double-counting correction. The last term Ωr[n(r)] de-

pends only on the electronic charge density n(r) and comprises the electron-nuclei, Hartree

and exchange-correlation contribution, while all other terms collected in ∆Ω [Gloc,∆Σ, VKS ] do

not have an explicit dependence on n(r). From the zero-temperature limit of (??) one derives

[Amadon et al., 2006] the following expression for the total energy:

EDFT+DMFT =
∑
kν

εkνN
k
νν + 〈HU 〉 − EDC + Een[n(r)] + EH [n(r)] + Exc[n(r)], (2.13)

where Een, EH , Exc are the standard DFT electron-nuclei, Hartree and exchange-correlation

contributions evaluated from the charge density n(r) that includes the DMFT correction. The

interaction energy 〈HU 〉 can be evaluated from the self-energy using the Migdal formula 〈HU 〉 =
1
2 Tr [ΣimpGimp], alternatively, the expectation value 〈f †1f

†
2f3f4〉 can be directly measured, e. g.,

by using QMC quantum-impurity solvers.

Instead of the self-consistent charge density n(r) one may employ in (2.13) the DFT one,

nDFT (r) resulting in the so-called "one-shot DMFT" scheme. The impact of the self-consistency

in charge density on the DFT+DMFT total-energy and spectra has been studied in a number of

works [Pourovskii et al., 2007, Aichhorn et al., 2011, Amadon, 2012, Leonov et al., 2015,

Bhandary et al., 2016], though a consistent assessment for the full range of correlation strength

is still lacking. However, the charge-density self-consistency seems to important for localized

systems as γ-Ce and Ce oxides [Pourovskii et al., 2007] and VO2 [Leonov et al., 2015]. The

possible reason pointed out by [Bhandary et al., 2016] is that the occupancy of ψkν states is

very di�erent in the localized limit as compared to a metallic band structure predicted by DFT.

In the former case the KS states kν of correlated bands will be all roughly half-�led due to the

contribution of corresponding lower Hubbard band. In DFT the KS states kν are occupied below

EF and empty above, hence, the occupancy varies strongly in the k space. Another important

e�ect of the charge-density self-consistency is an overall lower sensitivity of the result to the

choice of DC; changes in DC seem to be compensated by the corresponding modi�cations in

VKS [Aichhorn et al., 2011].
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3.1 Introduction

Iron is a key material for our civilization since the advent of "Iron Age" at about 1000 BC.

The technological utility of iron originates in a vast phase space provided by iron-based alloys,

allowing for divers microstructures to be produced with small variations in the composition

and an appropriate thermal treatment. In particular, the rich zoo of steels is composed by three

stable phases - the ferrite (body-centered cubic, bcc, α) austenite (face-centered cubic, fcc, γ) and

cementite (orthorhombic carbide Fe3C) - in addition to various metastable phases, for example,

the body-centered tetragonal martensite α′ (see, e.g., [Bhadeshia and Honeycombe, 2006]).

This multitude of phases observed in iron-based alloys and compounds stems from the complex

physics of pure iron, which features three distinct allotropes at the ambient pressure: ground-

states bcc α-Fe transforms into fcc γ-Fe at 1185 K; the fcc phase subsequently transforms to yet

another bcc phase, δ-Fe, at 1667 K. Though α and δ-Fe have the same bcc crystal structure,

their physics is quite di�erent, with the vibrational entropy believed to be playing the key role in

stabilization of the later [Neuhaus et al., 2014]. Iron is a classic itinerant ferromagnet, and the
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ferromagnetic order is well recognized to be crucial in stabilizing α-Fe [Zener, 1955]. However,

as noted above, the α phase still exists above the Curie temperature of 1044 K. The fcc γ

phase is paramagnetic in its bulk form stable only at high-temperatures. However, γ-Fe can be

stabilized in small precipitates in an fcc matrix, e.g., in Cu, down to zero temperature, and at low

temperatures it exhibits a complex non-commensurate antiferromagnetic order [Tsunoda, 1989].

Figure 3.1: The pressure-temperature phase diagram of iron in the moderate pressure range
up to 50 GPa. The superconducting transition temperature for ε-Fe is multiplied by 100. The
yellow horizontal dashed line in the α-Fe region indicates its ferromagnetic Tc.

Under applied pressures above 10 GPa α-Fe transforms into another allotrope, hexagonal

close-packed ε-Fe [Bancroft et al., 1956, Jamieson and Lawson, 1962]. This phase is found

to be stable at room temperature up to highest pressures reached to date [Mao et al., 1990]; ab

initioDFT calculations predict iron to remain in the ε phase up to pressures of the order of 10 TPa

[Stixrude, 2012]. Experimental studies of ε-Fe under moderate pressures reveal a superconduct-

ing dome in the range of pressures from 10 to 30 GPa with the maximum value of superconducting

Tc of about 2 K [Shimizu et al., 2000]; this superconductivity is likely of non-conventional nature

and mediated by spin-�uctuations [Mazin et al., 2002]. No magnetic order has been detected

in ε-Fe down to temperatures as low as 8 K [Cort et al., 1982, Papandrew et al., 2006]. A

puzzling non-Fermi-liquid (nFL) temperature scaling ∝ T 5/3 of the low-temperature resistivity

of ε-Fe was also reported [Holmes et al., 2004, Yadav et al., 2013].

This rich phase diagram (Fig. 3.1) with several allotropes exhibiting various magnetic orders,

a non-conventional superconductivity as well as instances of a nFL behavior in the ε-phase hint
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at a complex many-electron physics of iron metal. Many-electron e�ects in iron are expected to

arise due to the on-site Coulomb repulsion between rather localized 3d states hybridized with

itinerant 4s bands. The typical width W of the iron 3d band is in the range of 5 to 6 eV at

ambient-moderate pressures; the estimated value of the local Coulomb interaction parameter U

(Slater F 0) is in the range from 2.3 to 6 eV, in accordance with cLDA [Anisimov et al., 1991,

Cococcioni and de Gironcoli, 2005, Belozerov and Anisimov, 2014] and cRPA

[Miyake and Aryasetiawan, 2008,Miyake et al., 2009] calculations. In spite of a large spread

in the theoretical estimates of U , one may conclude that the ratio U/W in Fe is less than or equal

to 1. Taking into account only the e�ect of U ≤ W one would expect rather weak electronic

correlation e�ects in a multiband system away from half-�lling [Han et al., 1998]. Indeed, the

strength of electronic correlations in iron is found to be much more sensitive to Hund's coupling

JH , which value is in the range of 0.85 to 1 eV. In this respect the physics of iron is close to that of

"Hund's metals" [de' Medici et al., 2011, Haule and Kotliar, 2009, Georges et al., 2013],

in which the strength of correlations away from half-�lling is determined mainly by JH . In

particular, model studies point out to a key role of JH in stabilizing the ferromagnetic phase in

multiband systems away from half-�lling [Frésard and Kotliar, 1997]. Another important

aspect is the interplay between the local Coulomb interaction, characterized by large JH , and

crystal-�eld splitting of Fe 3d states. This interplay is particularly striking in the bcc α phase,

where the partial eg density-of-states (DOS) features a large peak pinned at the Fermi level due

to a van Hove singularity [Maglic, 1973, Irkhin et al., 1993]. Correspondingly, this high DOS

at the Fermi level in nonmagnetic α-Fe explains its tendency towards the ferromagnetism in

accordance with the Stoner criterion.

The Stoner ferromagnetism of α-Fe is well captured by DFT calculations in conjunction with

the local spin-density approximation (LSDA) exchange-correlation functional predicting the the-

oretical ordered moment of 2.2 µB that agrees well with experiment. Though DFT-LSDA in-

correctly predicts γ-Fe to be the ground states [Wang et al., 1985], this error is corrected by

semi-local exchange-correlation potentials like GGA [Singh et al., 1991, Amador et al., 1992].

However, the existence of paramagnetic bcc phase is a signi�cant challenge for the density-

functional theory. Direct DFT calculations predict too small volume and too high bulk modulus

for non-magnetic α-Fe; moreover, this non-magnetic phase is mechanically and dynamically

unstable within DFT [Hsueh et al., 2002, Leonov et al., 2012], in clear disagreement with ex-

periment. DFT calculations predict paramagnetic γ-phase to be dynamically unstable as well

[Leonov et al., 2012]. A number of methods has been developed in the DFT framework to

remedy its de�ciency in describing paramagnetic phases. Several such techniques were sub-

sequently applied to iron, like the disordered local-moments method [Gyorffy et al., 1985,

Okatov et al., 2009, Zhang et al., 2011], the spin-statistical-averaging method of Körmann et
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al. [Körmann et al., 2008], or the spin-wave approach of [Ruban and Razumovskiy, 2012], for

a recent review of such techniques see, e.g., [Abrikosov et al., 2016]. However, these techniques

represent the paramagnetic state by a certain combination of systems with static local moments;

their applicability to the cases like ε-Fe, where no static magnetic order or local-moment be-

havior is observed at any T , is not obvious. Moreover, such approaches are useful to describe

the thermodynamics of local-moment paramagnets, but they are not designed to capture their

spectral or transport properties. And even for ferromagnetic α-Fe the DFT electronic structure

is only in a rough qualitative agreement with experimental photoemission spectra, missing, in

particular, the observed quasiparticle renormalization of the 3d bands by 40-50% and a lifetime

damping of quasiparticle states [Sch�afer et al., 2005] .

This inability of pure DFT to fully capture the physics of iron at ambient condition,

in particular, of high-temperature paramagnetic α-Fe as well as the γ and δ phases has

prompted a number of DFT+DMFT studies of this system. In particular, Leonov and

coworkers applied DFT+DMFT in conjunction with a quantum Monte Carlo impurity

solver to obtain total energies and phonon dispersions in paramagnetic α and γ phases

[Leonov et al., 2011, Leonov et al., 2012]. Their calculations predicting dynamically and

thermodynamically stable paramagnetic α-Fe in the range of temperatures from Tc to 1.3Tc,

in qualitative agreement with experimental phase diagram. Leonov et al. have subse-

quently extended their phonon-dispersion calculations of the bcc phase to the temperature

range of existence of δ-Fe [Leonov et al., 2014b] �nding it dynamically unstable in the

harmonic approximation, this result was very recently challenged by another DFT+DMFT

study [Han et al., 2018]. Theoretical DFT+DMFT calculations of the one-electron spectra of

iron [Katsnelson and Lichtenstein, 1999, Lichtenstein et al., 2001, Min�ar et al., 2005,

Grechnev et al., 2007, S�anchez-Barriga et al., 2009, Hausoel et al., 2017,

Han et al., 2018] have been mostly con�ned to the ferromagnetic α phase, for

which experimental angular-resolved photoemission (ARPES) spectra are avail-

able [Sch�afer et al., 2005, S�anchez-Barriga et al., 2009]. [Katanin et al., 2010] and

[Igoshev et al., 2013] also studied the one-electron spectral function and magnetic

susceptibilities of the paramagnetic α and γ phases. Overall, the most recent stud-

ies [S�anchez-Barriga et al., 2009, Hausoel et al., 2017, Han et al., 2018] �nd a reasonable

agreement between the theoretical k-resolved spectral function and experimental ARPES

spectra, though discrepancies for some high-symmetry directions are still present. Hence,

[S�anchez-Barriga et al., 2009] concluded that a purely-local single-site DMFT self-energy is

not su�cient to obtain a quantitative agreement with ARPES. Similarly, a semi-quantitative

agreement with the experimental ARPES was obtained by including both local non-local

many-electron e�ects within a weak-coupling quasiparticle GW approach [Sponza et al., 2017].
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Hence, a combination of non-perturbative treatment of the on-site correlations with a weak-

coupling approach to non-local ones (see, e.g., [Biermann et al., 2003, Tomczak et al., 2017])

is probably necessary to fully account for one-electron spectra of ferromagnetic α-Fe.

Correlation e�ects in iron under moderate and high pressure have been compara-

tively less studied with DFT+DMFT until recently. The present chapter focuses on

this topic, reviewing, in particular, the results presented in our several recent papers

on the subject [Glazyrin et al., 2013, Pourovskii et al., 2013, Pourovskii et al., 2014b,

Vekilova et al., 2015, Pourovskii et al., 2017]. First, we consider the hcp ε phase, which

puzzling ground-state and transport properties in the moderate pressure range of 10 to 60 GPa

were shortly described above. The subsequent section deals with properties of the α, γ and ε

iron and iron-nickel alloy at the volume of 7.05 �A/atom and at temperatures up to 6000 K. These

density and temperature are expected for the inner core of Earth, hence, the phase stability and

transport properties of iron at such conditions are of a particular relevance to the geophysics.

Though high density is expected to diminish the relative importance of potential energy, we still

�nd a rather signi�cant impact of the local interaction between 3d electrons on the electronic

structure, phase stability as well as on magnetic and transport properties.

3.2 ε-Fe under moderate pressure: equation of state, resistivity

and electronic topological transitions

As noted above, DFT successfully captures the magnetic state α-Fe; DFT calculations also

predict the ground-state properties of this phase in good agreement with experiment. In con-

trast, the same theory fails to account even for basic ground-state properties of ε-Fe. Within

the local-spin and generalized-gradient approximations for the exchange-correlation potential

it predicts a rather strong antiferromagnetism, with the iron moment of about 1.5 µB at the

volume of 73 (a.u.)3/atom, corresponding to that of the ε-phase at the α → ε transition point

[Steinle-Neumann et al., 2004]. No antiferromagnetic phase has been observed experimentally

in ε-Fe down to 8 K [Cort et al., 1982, Papandrew et al., 2006] (though [Monza et al., 2011]

observed a magnetic signal in X-ray emission spectroscopy, which they ascribed to anitferromag-

netic �uctuations). If the nonmagnetic ground state is imposed, DFT total energy calculations

predict an equation of state that drastically disagrees with experiment. The bulk modulus is over-

estimated by more than 50%, and the equilibrium volume is underestimated by 10% compared

to the experimental values [Steinle-Neumann et al., 1999]. Another puzzling experimental

observation is a large enhancement in the resistivity across the α-ε transition. The room tem-

perature total resistivity of ε-Fe is twice as large as that of the α phase [Holmes et al., 2004].

The electron-phonon-scattering contribution to resistivity calculated within GGA is in excel-
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lent agreement with the experimental total resistivity for the α phase [Sha and Cohen, 2011],

however, these calculations predict virtually no change in the resistivity across the transition

to antiferromagnetic hcp-Fe. All these discrepancies between DFT calculations and experiment

point out to a possible important role of dynamic correlations in ε-Fe.

Figure 3.2: a). DFT+DMFT total energy vs. volume per atom for α (ferromagnetic, solid
blue line, and paramagnetic, dot-dashed black line) and ε (dashed red line) Fe. The error bars
are the CT-QMC method stochastic error. The orange long dash-dotted straight line indicates
the common tangent construction for the α − ε transition. b). Equations of states (EOS) for
ferromagnetic α (low pressure) and paramagnetic ε (high pressure) Fe. Theoretical results are
obtained by �tting the DFT+DMFT (thick line) and GGA (thin line) total energies, respectively,
using the Birch-Murnaghan EOS. The experimental EOS of iron shown by green �lled squares
is from [Dewaele et al., 2006]. Adapted from [Pourovskii et al., 2014b]

The evolution of electronic correlations across the α → ε transition as well as its impact on

the equation of state and electrical resistivity were studied by [Pourovskii et al., 2014b] using

the self-consistent DFT+DMFT approach outlined in Ch. 2; the quantum impurity problem was

solved using the hybridization-expansion CT-QMC method introduced in Sec. 2.2.1. In order to

achieve the necessary accuracy with a manageable computational cost the non-density-density

terms in the Coulomb vertex were neglected, see Appendix A. This local Coulomb interaction

vertex between Fe 3d states was parametrized by U = F 0 =4.3 eV and JH=1 eV. These values

of the interaction parameters were chosen on the basis of the previous cRPA calculations for

iron by [Miyake et al., 2009]; their value of U =3.4 eV for α-Fe was increased by about 25%

to e�ectively account for the high-frequency tails of the Coulomb vertex [Casula et al., 2012b].

The value of JH was �xed at the top of the accepted range of 0.85 to 1.0 eV to reproduce the

value of magnetic moment in α-Fe at the ambient conditions.

Overall, DFT+DMFT total energy calculations of [Pourovskii et al., 2014b] provide a com-

prehensive and quantitatively correct picture for the ground-state properties of both phases in-

cluding their ground-state volumes, bulk moduli as well as the pressure dependence of the c/a
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ratio in ε-Fe. In particular, they predict a ferromagnetic α-Fe ground state and a transition

α → ε phase at 10 GPa, in agreement with experiment (Fig. 3.2a). The calculated di�erence

in total energy between the ferromagnetic and paramagnetic states of α-Fe is of about 10 mRy

(1500 K), in a good correspondence to its experimental Curie temperature of 1043 K. The Birch-

Murnaghan equations of states (EOS) �tted to DFT+DMFT total energies of α and ε-Fe agree

well with the corresponding experimental EOS (Fig. 3.2b). One observes a particularly signi�cant

improvement for the case of ε-Fe, for which the DFT-GGA framework performs quite poorly. In

contrast, the DFT+DMFT corrections to EOS of ferromagnetic α-Fe are rather small; as noted

in Sec. 3.1, the DFT in conjunction with GGA already describes the ground-state properties of

this phase quite well.

Figure 3.3: The ratio of the average inverse quasiparticle lifetime 〈Γ〉 to temperature (the left
axis) and the average mass enhancement 〈m∗〉/m0 (the right axis) vs. volume per atom. The solid
lines (�lled symbols) and dashed lines (hatched symbols) are 〈Γ〉/T and 〈m∗〉/m0, respectively.
The values for α and ε phases are shown by blue squares and red circles, respectively. The
black stars indicated their corresponding atomic volumes at the transition point. Adapted from
[Pourovskii et al., 2014b]

The fact that many-body corrections to the ground-state properties are much more signi�cant

in the case of ε-Fe as compared to α-Fe hints at stronger dynamic electronic correlations in the

former. Indeed, the average mass enhancement 〈m∗〉 and the inverse quasiparticle lifetime

Γα = −Zα=Σα(ω = 0), (3.1)

where α is the m and spin quantum numbers labeling Fe 3d orbitals, Zα =
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[1− d=Σα(iω)/dω|ω→0] is the quasiparticle residue, extracted from the DMFT self-energy ex-

hibit a large increase at the α → ε transition (Fig. 3.3). This enhancement of dynamic corre-

lations is due to the suppression of the static magnetic order at this transition. In fact, para-

magnetic α-Fe is a strongly-correlated non-Fermi-liquid system, with a particularly large value

of Γ for localized eg states [Katanin et al., 2010, Pourovskii et al., 2013]. In contrast, only

a modest Fermi-liquid renormalization of Fe 3d DFT band structure is detected by ARPES for

the ferromagnetic phase [Sch�afer et al., 2005]; their value for the mass enhancement of about

40-50% agrees reasonably with the DFT+DMFT prediction of 1.6 for 〈m∗〉 for the ambient

conditions (Fig. 3.3).

A step-wise increase of the inverse quasiparticle lifetime Γ at the α → ε transition point

should result in a corresponding step-wise increase of the electron-electron-scattering contribu-

tion to the electrical resistivity. Indeed, DFT+DMFT calculations for the transport presented in

the same paper 1 predict such a jump with the electron-electron contribution enhanced by a factor

of 3, from 0.5 µΩ·cm in α-Fe to 1.5 µΩ·cm in the ε phase. The jump in total resistivity ρ at the

transition observed experimentally [Holmes et al., 2004, Yadav et al., 2013] features an overall

qualitative shape of the resistivity vs. pressure in iron strongly resembling the DFT+DMFT

one. However, the experimental jump in ρ at the α→ ε transition for the room temperature is

an order of magnitude larger than 1 µΩ·cm predicted by our calculations. The present approach,

apparently, misses the main source of this resistivity enhancement. The fact that the resistivity

jump is still well resolved at T =4 K lends a strong support to its electron-electron-scattering

origin. A strongly nonFL behavior of ε-Fe in the temperature range from 2 to (at least) 30 K, in

conjunction with a non-conventional superconducting state at lower T points out at important

intersite correlations, e.g. spin �uctuations, which are neglected by the single-site DFT+DMFT

framework. Alternatively, one may suggest that local non-density-density interaction terms ne-

glected in [Pourovskii et al., 2014b] have a crucial impact on the low-energy behavior of the

self-energy Σ(ω) and, hence, at the transport. This problem is an interesting subject for future

works.

No experimental ARPES of ε-Fe has been reported to date due to the obvious di�culty

of performing such measurements at a high pressure of tens GPa. [Glazyrin et al., 2013]

studied the impact of pressure on the electronic structure of the ε phase by measuring a set

of quantities readily accessible at high pressure conditions, namely, the Debye sound veloc-

ity, Mössbauer central shift and hexagonal cell c/a ratio, in pure Fe and in Fe0.9Ni0.1. All

three quantities are found to exhibit a distinct peculiarity at about 40 GPa. One sees, for

example, a clear change of slope in the evolution of c/a vs. P as well as a peculiarity in

the Mössbauer central shift at this pressure, which is especially pronounced in the case of

1See Sec. 3.3.2 for a brief summary of the formalism for transport calculations
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Figure 3.4: Experimental pressure dependence of (a) hcp phase c/a ratio and (b) the Mössbauer
centre shift based on several experimental datasets for pure iron (red circles) and for Fe0.9Ni0.1
alloy (blue circles). The centre shift values are given relative to pure α iron. Straight grey lines
in (a) are guides for the eye. Adapted from [Glazyrin et al., 2013].

Fe0.9Ni0.1 (Fig. 3.4). As discussed by [Glazyrin et al., 2013] peculiarities simultaneously ap-

pearing in all three quantities can be qualitatively explained by an electronic topological tran-

sition (ETT) due to the appearance of new Fermi-surface hole pockets at a given pressure

[Vaks and Trefilov, 1991,Novikov et al., 1999,Katsnelson and Trefilov, 2000]. The re-

sulting peculiarities in these quantities are proportional to the change of DOS at the Fermi level,

δN(EF ), due to the ETT.

In order to precisely identify the ETT at the origin of observed peculiarities

[Glazyrin et al., 2013] calculated the DFT+DMFT k-resolved spectral function A(k, ω) =

− 1
π=G(k, ω + iδ)) from the analytically-continued lattice GF (2.5) as a function of volume.

A(k, ω) obtained by DFT+DMFT clearly features the emergence of new hole pockets at the Γ

and L high symmetry point (Fig. 3.5a and 3.5b). The corresponding critical pressure for the

ETT is found to be in the range of 40-80 GPa, depending on the chosen value of U . In contrast,
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Figure 3.5: The DFT+DMFT k-resolved spectral function A(k, ω) ( in units of Vat/eV), where
Vat is the volume per atom) of ε-Fe at volumes Vat of 8.9 �A3/atom (a) and 10.4 �A3/atom (b)
corresponding to pressures of 69 and 15.4 GPa, respectively. The energy zero is taken at the
Fermi level. The hole-like bands at the Γ and L points at volume 8.9 �A3/atom (indicated by the
white arrows) are below EF at V=10.4�A3/atom. The corresponding DFT band structures are
shown in c and d, respectively. The corresponding DFT+DMFT Fermi surfaces for two volumes
are shown in e and f, respectively. Adapted from [Glazyrin et al., 2013].

the DFT band structure features those hole pockets (Fig. 3.5d) already at 10.4 �A3/at, which is

the atomic volume of ε-Fe at the α → ε transition. Hence, DFT does not predict any ETT to

occur in the ε phase in its experimental range of existence.

This signi�cant shift of ETT to lower volumes/higher pressures in DFT+DMFT compared

to pure DFT are mainly due to many-electron corrections to the overall position of the valence d

bands with respect to the s ones, leading to a relative shift of states with a signi�cant s contribu-

tion with respect to the rest. A similar signi�cant impact of many-body corrections was recently

predicted even for such weakly correlated system as the osmium metal [Feng et al., 2017]. They

found the transition pressures for a series of ETTs to be in a better agreement with experiment

when DMFT corrections were included. One may notice, however, that the relative shift of

"correlated" d vs. "uncorrelated" s states is sensitive to the choice of the DC correction. Both

[Pourovskii et al., 2014b] and [Feng et al., 2017] employ the "around mean-�eld" form of DC,

which is believed to be appropriate for such relatively itinerant systems.

On the experimental side, [Dewaele and Garbarino, 2017] have very recently reported

new measurements of the equation of state and c/a ratio of ε-Fe. The experimental equation of

state is found to be in good agreement with calculations of [Pourovskii et al., 2014b]. Though

no sign of peculiarity was observed in the c/a ratio by [Dewaele and Garbarino, 2017],

one may notice that the scatter of their points is signi�cantly larger than that of

[Glazyrin et al., 2013].



3.3. Many-electron e�ects in iron and iron-nickel alloy at the Earth's inner core

conditions 27

3.3 Many-electron e�ects in iron and iron-nickel alloy at the

Earth's inner core conditions

The wealth of available data on seismic wave propagation, planetary density and gravita-

tional �eld, abundance of elements in the Solar system lends strong support to the hypoth-

esis of iron being one of principal component of Earth and Earth-like planets [Birch, 1952,

Dziewonski and Anderson, 1981, Lowrie, 2007]. In particular, the solid inner and liquid

outer cores of Earth are believed to consist mainly of iron. The measured Earth interior density

pro�le as well as data on the meteorite composition favor a picture of a solid Earth's inner core

(EIC) composed of iron alloyed with about 10% of nickel and non-negligible quantities of light

elements like Si, S, or O. Inside the EIC the matter is subjected to pressure P in the range of

330 to 360 GPa at temperature T of about 6000 K, though the relevant range of T for the in-

ner core is still actively debated [Boehler, 1993, Alfé et al., 1999, Belonoshko et al., 2000].

The temperature of solid phase inside EIC is close to its melting point. The phase stability and

properties of solid iron and iron-rich alloys at such extreme conditions are of high importance for

the geophysics as they represent a key input to geophysical models of Earth's core dynamics and

its evolution. In particular, the interpretation of seismic data is largely based on the assumed

phase diagram for relevant iron-rich alloys at the core's conditions [Tkal�ci�c, 2015]. The models

of core evolution in time are constrained by the accepted range of values for the thermal and

electrical conductivities [Buffett, 2012, Pozzo et al., 2012]. Therefore, signi�cant research ef-

forts, both experimental and theoretical, are focused on reliably determining the nature of Fe

phases stable in the relevant (P ,T ) range and their physical properties.

Iron and its alloys at extreme conditions have been studied experimentally using the dy-

namical shock-wave compression and, more recently, with the static heated diamond anvil cell

method. As noted in the previous section, these studies have established the stability of ε-

Fe up to the pressure range of EIC at the room temperature [Mao et al., 1990]. The situa-

tion is less clear for the high-T region, where some recent experiment [Tateno et al., 2010,

Tateno et al., 2012, Anzellini et al., 2013] found the ε-phase to remain stable in the relevant

pressure range up to the EIC temperatures, while other studies [Dubrovinsky et al., 2007,

Hrubiak et al., 2018] observed bcc α-Fe to emerge at high temperatures approaching the melt-

ing point. [Tateno et al., 2010] claimed to reach the EIC conditions and observed only the

ε phase in the studied range of P from 100 GPa to the highest pressure of 377 GPa and T

from 2000 to 5700 K. However, their interpretation of the data was subsequently disputed by

[Dubrovinsky et al., 2011], who suggested that the EIC temperature was not in fact reached

by [Tateno et al., 2010]. Overall, currently there is no experimental consensus regarding the

stable phase of Fe at EIC conditions.
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The theory input is particularly valuable in such situation, hence, a number of DFT based

simulations of Fe and its alloy has been published in the last two decades. These studies

treated lattice vibrations in the quasi-harmonic approximation [Mikhaylushkin et al., 2007,

Stixrude, 2012] or with the full ab initio molecular dynamics approach [Vo�caldo et al., 2003,

Godwal et al., 2015, Belonoshko et al., 2017]. The results of these calculations are also in-

conclusive, with all three known phase of iron predicted to be stable at EIC conditions by di�erent

authors. The di�erence in DFT free energy between those phases is found to be decreasing with

increasing temperature and pressure. Thus the relative stability becomes sensitive to small dif-

ferences in the calculational setup like the size of simulation supercell or the density of k-mesh

employed in the Brillouin zone integration [Godwal et al., 2015, Belonoshko et al., 2017]. In

particular, the non-magnetic α phase dynamically unstable at low temperature is claimed by

[Belonoshko et al., 2017] to be stabilized by an unconventional high-T di�usion mechanism;

in contrast, [Godwal et al., 2015] found α-Fe to be dynamically unstable at the EIC condi-

tions. The free-energy di�erence between γ and ε-Fe becomes extremely small close to the

melting temperature in accordance with [Mikhaylushkin et al., 2007], who predicted γ-Fe to

be stable at the EIC conditions, while [Stixrude, 2012] found the ε-phase to be more stable.

In all these ab initio simulations the standard DFT framework in the conjunction with LDA

or GGA exchange-correlation potential was employed thus neglecting dynamical correlation ef-

fects. This approximation is usually justi�ed (see, e. g., [Stixrude, 2012]) by the fact that the

local Coulomb repulsion U between iron 3d states is smaller than the e�ective 3d bandwidth,

especially at high pressure. Though this statement is correct even at the ambient pressure, this

does not mean that correlation e�ects in iron are negligible. As noted in the previous section,

the strength of local many-electron e�ects in iron is much more sensitive to the Hund's rule

coupling JH , which is expected to be quite insensitive to pressure. High temperature stabilizing

high-entropy states may strengthen the tendency towards a nonFL behavior or the formation of

local magneitc moments. Hence, the role of many-electron e�ects needs to be evaluated with

explicit calculations.

This problem was addressed in [Pourovskii et al., 2013] by DFT+DMFT calculations for

the all three phases, α, γ and ε, for the volume of 7.05 �A/atom, corresponding to the density

of EIC, and for temperatures up to 5800 K by employing the same self-consistent in the charge

density full-potential DFT+DMFT framework as in the studies of ε-Fe described in the previous

section. This work evaluated the impact of many-electron e�ects on the electronic structure, mag-

netic susceptibility and relative stability of the three Fe phases. All DFT+DMFT calculations

were done for the corresponding perfect �xed lattices. The lattice vibrations play a paramount

role at the extreme temperatures inside the EIC, but including their e�ect within a kind of

DFT+DMFT-based molecular dynamics is prohibitively costly at present. The �xed-lattice cal-
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culations of [Pourovskii et al., 2013], however, allowed evaluating the structural dependence

of correlation e�ects, assessing (though quite roughly) their impact on the electronic free energy

"landscape" in the structural coordinates. A subsequent work of [Vekilova et al., 2015] carried

out similar calculations for Fe-rich FeNi alloys in order to assess the impact of Ni substitution on

many-electron e�ects. A later study [Pourovskii et al., 2017] concentrated on the ε-phase eval-

uating its electronic state as well as electrical and thermal conductivities. The results obtained

in these works for the electronic structure, magnetism, thermodynamic stability and transport

are reviewed below together with relevant calculations of other authors.

3.3.1 Electronic structure and magnetic susceptibility of iron and iron-nickel

alloys

The ratio Γ/T (see eq. 3.1) calculated at the EIC atomic volume as a function of T in

[Pourovskii et al., 2013] is shown in Fig. 3.6 for all relevant irreducible representations of the

three phases. One may readily notice a qualitative di�erence in the behavior of Γ between these

phases. The temperature scaling Γ/T ∝ T expected in the case of a good FL is clearly observed

for the ε-phase. In contrast, Γ/T for the bcc iron eg states features a linear and steep rise for

T < 1000 K and then behaves non-linearly, indicating a non-coherent nature of those states at

high temperatures. The bcc Fe t2g and fcc Fe eg electrons are in an intermediate situation with

Figure 3.6: The ratio of the inverse quasiparticle lifetime Γ to temperature T vs. T . The
solid red, dashed blue and dash-dotted green curves correspond to 3d states in fcc, bcc, and
hcp Fe, respectively. They are split by the crystal �eld into t2g (diamonds) and eg (circles)
representations in the cubic (bcc and fcc) phases, and two doubly-degenerate (E′ and E′′, shown
by diamonds and squares, respectively) and one singlet (A′1, circles) representations in the hcp
phase, respectively . A non-linear behavior of Γ/T for bcc Fe eg states is clearly seen. Adapted
from [Pourovskii et al., 2013].
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Figure 3.7: The DFT+DMFT k-resolved spectral function A(k, ω) (in Vatom/eV) for bcc (a), fcc
(b), and hcp (c) Fe at volume Vat =7.05 �A3/atom and temperature 5800 K. A non-quasiparticle
eg band is seen in the vicinity of the Fermy energy along the N − Γ − P path in (a). Adapted
from [Pourovskii et al., 2013].

some noticeable deviations from the FL behavior.

The same conclusions can be drawn from the k-resolved spectral function A(k, ω) plotted in

Fig. 3.7 for the temperature of 5800 K. The bcc phase features a low-energy eg band along the

N − Γ − P path that is strongly broadened, thus indicating destruction of quasiparticle states.

The non-FL behavior of eg states in α-Fe is explained by the narrow peak in its partial density

of states (PDOS) induced by a van Hove singularity in the vicinity of EF . Such narrow peak

in PDOS located at EF leads to suppression of the low-energy hopping and to the correspond-

ing enhancement of correlations[Mravlje et al., 2011]. In hcp Fe the electronic states in the

vicinity of EF are sharp (their red color indicating high value of A(k, ω)), hence ε−Fe exhibits
a typical behaviour of a FL with large quasi-particle life-times in the vicinity of EF . γ-Fe is in

an intermediate state, with some broadening noticeable in the eg bands at EF in the vicinity of
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the Γ and W points.

The conclusion of [Pourovskii et al., 2013] on the FL nature of ε-Fe was subse-

quently challenged by [Zhang et al., 2015], who recalculated ε-Fe at the EIC volume within

DFT+DMFT 2 and found a strongly non-FL linear dependence of Γ vs. T . In contrast to

[Pourovskii et al., 2013] employing the density-density approximation to the local Coulomb

vertex de�ned by U =3.4 eV and JH =0.94 eV, [Zhang et al., 2015] used the full rotationally-

invariant form for the vertex parametrized by a higher value of U = 5 eV and almost the

same JH . Therefore, in order to convincingly establish the nature of electronic state in ε-Fe

[Pourovskii et al., 2017] performed new DFT+DMFT calculations for the ε-phase with the

full rotationally-invariant Coulomb interaction and explored the range of U from 4 to 6 eV.

These calculations predicted almost perfect quadratic FL temperature scaling of Γ.

A signi�cant problem in the analysis of DFT+DMFT results carried out in

[Pourovskii et al., 2013, Zhang et al., 2015] stems from the fact that the DMFT self-energy is

calculated by CT-QMC on imaginary-frequency Matsubara points. The analytical continuation

needed to obtain real-frequency data from this imaginary-frequency self-energy Σ(iω) is known

to be a mathematically ill-de�ned problem and quite sensitive to the details of its implementa-

tion. Even the extrapolation of Σ(iω) to ω =0 needed to evaluate Γ, eq. 3.1, becomes rather

less reliable for high temperatures, where the �rst Matsubara point ω1 = iπkBT is signi�cantly

shifted away from the real axis.

Hence, [Pourovskii et al., 2017] also assessed the FL nature of ε-Fe by analyzing the

imaginary-frequency self-energy without resorting to any analytical continuation. This is done

by employing the so-called "�rst-Matsubara-frequency" rule. As demonstrated, e. g., by

[Chubukov and Maslov, 2012], in a Fermi liquid the imaginary part of electronic self-energy at

the �rst Matsubara point within a local approximation like DMFT must be proportional to the

temperature, i.e. Im[Σ(iπkBT )] = λT , where λ is a real constant. In Fig. 3.8a Im[Σ(iπkBT )] is

plotted as a function of temperature for all inequivalent orbitals in hcp and bcc Fe. One clearly

sees that in the ε phase Im[Σ(iπkBT )] is almost perfectly proportional to T , in contrast to bcc

Fe, where it exhibits signi�cant deviations from the "�rst-Matsubara-frequency" rule. This de-

viation is especially pronounced for the eg states of the bcc phase, which are indeed of a strongly

non-FL nature, as discussed above.

[Pourovskii et al., 2017] also veri�ed the scaling of the full analytically-continued DMFT

self-energy , which in a FL state exhibits the quadratic frequency dependence at low ω with

Σ(ω) = C · (ω2 + (πkBT )2). The constant of proportionality C can be written as 1/(ZπkBT0)

with the characteristic scale T0 ∼ 10TFL, where TFL is the temperature where resistivity ceases to

2[Zhang et al., 2015] was subsequently retracted by the authors ([Zhang et al., 2016]) due to a numerical
mistake in their transport calculations. However, this retraction does not concern their conclusions on a non-FL
nature of ε-Fe at the EIC conditions.
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Figure 3.8: Fermi-liquid scaling of the DMFT self-energy in ε-Fe. a. The imaginary part
of the DMFT self-energy at the �rst Matsubara point ω1 = iπkBT vs. temperature for hcp
and bcc Fe. Note that Im[Σ(iπkBT )] being proportional to T is a signature of a Fermi-liquid
[Chubukov and Maslov, 2012] . The lines are the linear regression �ts to the calculated points
for corresponding 3d orbitals of Fe. b. The rescaled imaginary part of the DMFT self-energy
at the real axis Im[Σ(ω)]/(πkBT )2 vs. ω/(πkBT ). One sees that all self-energies collapse
into a single curve described by a parabolic �t (the dotted line) de�ned by the quasiparticle
weight Z =0.7 and the characteristic Fermi-liquid temperature scale T0 =12 eV. Adapted from
[Pourovskii et al., 2017].

follow a strict T 2 temperature dependence [Berthod et al., 2013]. Indeed, one sees in Fig. 3.8b

that the real-frequency self-energies for di�erent temperatures collapse into a single curve when

plotted as Im[Σ(ω)]/(πkBT )2 vs. ω/(πkBT ). The value of kBT0 = 12 eV extracted from this

plot corresponds to a TFL ≈14000 K, which is signi�cantly higher than the range of temperatures
expected inside the EIC. This analysis of both the Matsubara and real-ferquency self energy of

ε-Fe has thus convincingly con�rmed its FL state. We will see in Sec. 3.3.2 that this results has

a direct bearing on the transport properties of ε-Fe at the EIC conditions.

The temperature dependence of uniform susceptibility χ was also calculated
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Figure 3.9: The uniform magnetic susceptibility in paramagnetic state versus temperature. The
error bars are due to the CT-QMC stochastic error. The dashed lines with corresponding �lled
symbols are �ts to the enhanced Pauli law, see the text. Inset: the inverse uniform magnetic
suscptibility of bcc Fe is shown in red (empty circles), the blue dot-dashed and green (�lled
circles) lines are �ts to the Curie-Weiss and enhanced Pauli law, respectively. Adapted from
[Pourovskii et al., 2013].

[Pourovskii et al., 2013] by evaluating the response to a small external �eld. The ob-

tained temperature dependence (see Fig. 3.9) is consistent with the results on electronic

structure discussed above. A Pauli behavior found for the FL ε and γ phases, while the non-FL

bcc α exhibits a Curie-Weiss behavior well described by the �t χ = 1
3

µ2
eff

T+Θ with µeff =2.6 µB

and Θ =1396 K (see inset in Fig. 3.9). Alternatively, one may try to account for the same

dependence with an enhanced Pauli law, χ = χ0/(1 − I ∗ χ0), where I is the Stoner parameter

and the strong temperature dependence of χ stems from a narrow peak at EF in the eg PDOS

due to the van Hove singularity. However, the enhanced Pauli-law �t describes the behavior of

χ less well than the Curie-Weiss one, the di�erence is clear for lower T <3 below 2500 K. Hence,

from these calculations one may infer the existence of a rather large local magnetic moment in

the bcc phase at the EIC conditions. One may expect a signi�cant contribution to the α-phase

free energy due to the corresponding magnetic entropy.

The EIC is expected to contain, apart of iron, also non-negligible contributions of

other transition metals, mainly of nickel as evidenced by the composition of metallic me-

teorites. The contribution of nickel is evaluated to 5-10% based on geochemical mod-

els [McDonough and s. Sun, 1995] The impact of Ni substitution on many-electron e�ects

in iron at the EIC conditions is hence an important subject and has been studied by

[Vekilova et al., 2015, Hausoel et al., 2017]. In particular, [Vekilova et al., 2015] employed
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Figure 3.10: The inverse quasiparticle lifetime Γ as a function of T for three inequivalent sites,
Fe1 (six Ni and six Fe nearest neighbors) , Fe2 (all nearest neighbors are Fe) and Ni, in the hcp
Fe3Ni supercell.

the same computational framework as [Pourovskii et al., 2013] and modeled the random Fe3Ni

alloy by the smallest supercells capable to accommodate 25% of Ni substitution. These super-

cells comprise two, one, and two conventional cells in the case of bcc, fcc, and hcp lattices,

respectively. In order to model more realistic lower Ni concentrations one would have to employ

larger supercells with the corresponding heavy increase in the computational e�ort. In addition,

[Vekilova et al., 2015] made use of di�erent environment of two inequivalent Fe sites in their

bcc and hcp supercells , with only one of those having Ni nearest neighbors, to evaluate the e�ect

of Ni nearest neighbors on correlations on iron sites. Many-electron e�ects on Ni were included

in the same way as for Fe with the corresponding local Coulomb interaction speci�ed by the

same values of U = 3.4 eV and JH =0.9 eV.

The e�ect of Ni nearest neighbors (NN) on electronic correlations on Fe sites was found to be

structure-dependent. In the bcc phase it results in signi�cant deviations from the Curie-Weiss

behavior for the uniform susceptibility χ and reduced Γ for the eg states. Overall the presence of

Ni NNs reduced the degree of "non-Fermi-liquidness" for the bcc eg states. The opposite e�ect

was found for the hcp phase, where the presence of Ni NNs enhanced the uniform susceptibility

and Γ (Fig. 3.10). These e�ects can be related to modi�cations of corresponding Fe PDOS due

to the presence of Ni NNs. Namely, in the case of bcc one observes a smearing of the eg peak at

EF , conversely, in the case of ε-Fe a characteristic dip in PDOS in the vicinity of EF becomes
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more shallow.

[Vekilova et al., 2015] found rather weak correlation e�ects on Ni sites at the EIC condi-

tions. As shown in Fig. 3.10, Γ for Ni features a non-FL behavior with a rather slow increase in

the studied range of T .

Many-electron e�ects in Ni and FeNi alloys under extreme conditions were subsequently stud-

ied in a recent work by [Hausoel et al., 2017]. The authors used a DFT+DMFT technique that

is similar to the one used in [Pourovskii et al., 2013,Vekilova et al., 2015] and mainly focused

on non-FL properties of Ni t2g states, this question was not addressed by [Vekilova et al., 2015].

They modeled random Fe1−xNix alloys (x =0.05, 0.20) at the EIC density within the coherent-

potential approximation (CPA). The advantage of CPA is that one can treat any concentration

x with the same computational cost, however, the local environment e�ects, which seems to

be quite important as one sees in Fig. 3.10, are neglected. [Hausoel et al., 2017] predicted a

strong enhancement of Γ due to the Ni substitution as compared to pure ε-Fe for the studied

range of temperatures up to 2000 K. This result is in agreement with Fig. 3.10, if one compares

the magnitude of Γ for the iron site Fe2 without Ni NNs with that for Ni at T <2000 K. How-

ever, one also sees that Γ of Ni exhibits a slow almost linear-in-T scaling, while Γ of Fe2 scales

quadratically with T , hence at the EIC temperature of about 6000 K the scattering due to the

iron sites dominates and the Ni contribution is relatively weaker.

3.3.2 Electron-electron scattering and transport in ε-Fe

Transport properties of iron at the extreme conditions are of signi�cant importance for geo-

physics. In particular, the thermal conductivity of the iron-rich matter inside the liquid outer

core of Earth is a key parameter determining the stability of the geodynamo generating the

Earth' magnetic �eld. This geodynamo runs on heat from the growing solid inner core and

on chemical convection provided by light elements issued from the liquid outer core on so-

lidi�cation [Pozzo et al., 2012]. The power supplied to drive the geodynamo is proportional

to the rate of inner core growth, which in turn is controlled by heat �ow at the core-mantle

boundary [Lay et al., 2008]. It is this heat �ow that critically depends on the thermal con-

ductivity of liquid iron under the extreme pressure and temperature conditions in the Earth's

core. For a long time there has been agreement that convection in the liquid outer core pro-

vides most of the energy for the geodynamo and has been doing so for at least 3.4 billion

years [Olson, 2013, Stacey and Loper, 2007]. Recently, such a view has been challenged

by �rst-principles calculations [de Koker et al., 2012, Pozzo et al., 2012], suggesting a much

higher capacity for the liquid core to transport heat by conduction and therefore less ability to

transport heat by convection [Olson, 2013]. The calculated conductivities have been found to be

two to three times higher than the earlier generally accepted estimates, urging for reassessment



36 Chapter 3. Electronic correlations in iron under extreme conditions

of the core thermal history and power requirements [Pozzo et al., 2012].

Convection also plays a crucial role in the current theory of the EIC dynamics, as a radial

motion of the inner core matter is invoked to explain the observed seismic anisotropies of the

inner core [Romanowicz et al., 1996, Buffett, 2009, Monnereau et al., 2010]. However, ab

initio calculations of [Pozzo et al., 2014] similarly predict a too high thermal conductivity for

hexagonal close-packed (hcp) ε-iron to sustain this convection.

The �rst-principles calculations for liquid and solid iron of [de Koker et al., 2012,

Pozzo et al., 2012, Pozzo et al., 2014] employed the standard density-functional-theory (DFT)

framework in which electron-electron repulsion is not properly accounted for as dynamical many-

body e�ects are neglected. Hence, the contribution to resistivity from the electron-electron scat-

tering (EES) of d-electrons due to correlations was not taken into account in those calculations.

In order to elucidate how large the EES contribution to the electrical and thermal resistivity at

Earth's core conditions [Pourovskii et al., 2017] extended their DFT+DMFT approach to cal-

culations of the electrical and thermal conductivities of pure ε-Fe at the EIC density. Using the

analytically-continued DMFT self-energy (see Fig. 3.8b) they evaluated the conductivity from

the corresponding DFT+DMFT spectral function using the Kubo linear-response formalism de-

scribed in [Kotliar et al., 2006, Aichhorn et al., 2016]. Namely, the electrical and thermal

conductivity read

σαα′ =
e2

kBT
K0
αα′ , (3.2)

καα′ = kB

[
K2
αα′ −

(K1
αα′)

2

K0
αα′

]
, (3.3)

where α is the direction (x, y, or z), kB is the Boltzmann constant. The kinetic coe�cients Kn
αα′

can be calculated from the real-energy DFT+DMFT spectral function A(k, ω) and the velocities

of Kohn-Sham states, vα(k), the later is evaluated by DFT band structure methods as described,

e. g., in [Ambrosch-Draxl and Sofo, 2006] for the case of LAPW method.

The contributions of electron-electron scattering into the electrical resistivity and thermal

conductivity of ε-Fe obtained by [Pourovskii et al., 2017] are displayed as a function of T in

Figs. 3.11a and 3.11b, respectively. First, one sees that the electrical resistivity ρ features a

clear T 2 FL dependence, as expected on the basis of the analysis of its DMFT self-energy as

discussed in Sec. 3.3.1. Second, its magnitude of 1.6· 10−5 Ω·cm at T =5800 K is rather insignif-

icant compared to the electron-phonon-scattering contribution of about 5.3·10−5 Ω·cm predicted

by DFT calculations of [Pozzo et al., 2014]. This indicates that the electron-electron scatter-

ing should not strongly in�uence the electrical resistivity in hcp-Fe at Earth's core conditions.

Third, the electron-electron-scattering thermal conductivity κe−e of 540 Wm−1K−1 T =5800 K
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Figure 3.11: Calculated electron-electron-scattering contribution to the electrical and thermal
resistivity of hcp iron at Earth's core density. a. Electrical resistivity. Blue �lled circles and
hashed squares are DFT+DMFT results for ρxx and ρzz , respectively. Green empty and hashed
diamonds are the corresponding resistivities calculated by the Boltzmann-transport code Boltz-
Trap [Madsen and Singh, 2006] assuming a Fermi-liquid with the scattering rate Γ/Z =0.09 eV.
b. Thermal conductivity. Blue �lled circles and hashed squares are DFT+DMFT results for κxx
and κzz, respectively. Green lines/symbols are the corresponding conductivities obtained from
the calculated electrical conductivity using the Wiedemann-Franz law with the standard Lorenz
number of 2.44·10−8 WΩK−2. Adapted from [Pourovskii et al., 2017].
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is not high and comparable to the corresponding value due to the electron-phonon scattering

κe−ph ≈300 Wm−1K−1 obtained by [Pozzo et al., 2014]. Hence, in contrast to ρ the electron-

electron scattering contribution to the thermal conductivity is quite important. By including

both the electron-electron and electron-phonon scattering e�ects the total conductivity is reduced

to about 190 Wm−1K−1, hence, the corresponding resistivity is enhanced by about 60%.

An important observation of [Pourovskii et al., 2017] is that the DFT+DMFT electron-

electron-scattering thermal conductivity of ε-Fe is signi�cantly lower than the one calculated

from the corresponding contribution to ρ = 1/σ in accordance with the Wiedemann-Franz

law, κ/(σT ) = π2

3

(
kB
e

)2
= L0 (where the standard Lorenz number L0 is 2.44·10−8WΩK−2),

see Fig. 3.11b. By employing simple analytical calculations in the Boltzmann formalism

[Herring, 1967] showed that the quadratic FL frequency dependence of the imaginary part

of the self-energy and, hence, of the quasiparticle life-time

1/τ(ε) = 1/τ(ε = 0) ·
(
1 + ε2/(πkBT )2

)
,

leads to a substantial reduction of the Lorenz number

κ/(σT ) = L0/1.54 = LFL.

The stronger e�ect of the frequency-dependence of τ(ω) on the thermal conductivity as compared

to σ is due to the additional power ε2 in the numerator of the transport integrals for κ, see

[Ashcroft and Mermin, 1976]. Hence, the enhancement of the electron-electron-scattering

contribution to the thermal resistivity obtained within DFT+DMFT stems directly from the

Fermi-liquid state of the ε-Fe phase at the EIC conditions.

The reduction of the thermal conductivity due to the electron-electron scattering predicted

by [Pourovskii et al., 2017] is still insu�cient to explain the stability of convection by it-

self. On the other hand, the extremely low values of κtot ∼50 Wm−1K−1 may not be required

to reconcile theoretical calculations of the thermal conductivity with geophysical observations

[O'Rourke and Stevenson, 2016, Hirose et al., 2017].

Moreover, the impact of alloying and lattice vibrations have not been to date taken into

account in the DFT+DMFT transport calculations. For example, the DFT+DMFT calcula-

tions for Fe-Ni alloy at the inner core conditions discussed in the previous section point out at

an important local environment e�ects that may a�ect the electron-electron scattering in real

material of the EIC. The impact of all those e�ects on transport properties of the EIC matter

remains to be evaluated.
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3.3.3 Many-electron e�ects and structural stability

The stable phase of pure iron at the EIC conditions has not been clearly identi�ed experimentally;

neither have ab initio DFT calculations resulted in an unambiguous prediction due to a small

energy di�erence between the three phases, as described in the introduction of Sec. 3.3. Hence,

corrections due to the many-electron e�ects neglected by DFT can have a qualitative impact on

the nature of stable iron phase at the EIC conditions.

A quantitative estimation for the contribution of correlations to the electronic free energy of

the three phases was obtained by [Pourovskii et al., 2013] together with their other magnetic

and electronic properties (see Sec. 3.3.1). Their �xed-lattice calculations neglected the contri-

bution of lattice vibrations to the phase stability, which are expected to be very signi�cant at

such extreme temperatures. However, such calculations are still able to assess the structural

dependence of this contribution.

In spite of the simplifying �xed-lattice approximation evaluating the electronic free energy

within the DFT+DMFT framework remains a highly non-trivial task. The total-energy calcu-

lations in this framework have nowadays become quite standard as described in Sec. 2.3. Such

DFT+DMFT calculations evaluating the total energy using eq. 2.13 have been applied, for ex-

ample, by Leonov el al. [Leonov et al., 2011] to study the α-γ phase transition in iron.

In contrast, the partition function and, correspondingly, free energy cannot be generally

directly sampled by the usual Metropolis algorithm. In the context of DMFT quantum impurity

problem solved by CT-QMC or other numerical technique, it is the contribution of DMFT

functional Φimp[Gloc(R)] into (??), which is the sum of all local skeleton diagrams constructed

with the local GF Gloc(iωn) and the on-site vertex, that cannot be computed directly. Di�erent

types of the numerical thermodynamic integration are employed instead, in particular, the one

from an analytical high-temperature limit [Haule and Birol, 2015]. Such integration remains

non-trivial in the present case of Fe at the EIC conditions, as the temperature T ≈6000 K is

still low compared to other energy scales like the bandwidth or U . [Pourovskii et al., 2013]

employed instead the numerical thermodynamic integration over the coupling strength λ ∈ [0 : 1],

where the corresponding free energy is de�ned Fλ = − 1
β ln Tr

(
exp[−β(Ĥ0 + λĤint)]

)
, H0 is

the one-electron part of the DFT+U Hamiltionian (2.1), Ĥint = ĤU − EDC is the interacting

part. The coupling constant integration results in the following expression for the many-body

correction:

∆F = F − FDFT =

∫ 1

0

〈λĤint〉λ
λ

dλ, (3.4)

where FDFT is the electronic free energy in DFT. In derivation of Eq. 3.4 one neglects the

λ dependence of the one-electron part, and, hence, the charge density renormalization due to
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Figure 3.12: Many-body correction to the total (black dashed line) and free (red solid line)
energy for the three phases of Fe at the volume of 7.05 �A/atom at T=5800 K (upper panel) and
2900 K (lower panel). The error bars are due to the CT-QMC stochastic error. Adapted from
[Pourovskii et al., 2013].

many-body e�ects. In practice, the integrand in (3.4) was evaluated numerically with 〈λĤint〉λλ

computed for a discrete mesh in λ ∈ [0 : 1] by performing DFT+DMFT simulations with the

Coulomb interaction scaled accordingly. This method was subsequently applied in DFT+DMFT

calculations of [Bieder and Amadon, 2014] to evaluate the free energy of the cerium metal.

The resulting DMFT correction to the free energy for the three phases is plotted in Fig. 3.12

togehter with the correction to the total energy calculated given by the di�erence of (2.13) and

EDFT . Within rather signi�cant error bars the magnitude of ∆F is the same for bcc and hcp

Fe, which are suggested as stable phases of iron [Vo�caldo et al., 2003] and iron-based alloys

[Lin et al., 2002, Dubrovinsky et al., 2007] at the Earth's inner core conditions. Though the

correlation strength (as measured, for example, by the inverse quasiparticle lifetime Γ, Fig. 3.6),

is higher for α-Fe, this is apparently compensated by a higher value of U predicted for the ε-
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phase by cRPA calculations of the same work [Pourovskii et al., 2013]. The magnitude of ∆F

is, however, at least several mRy smaller in the case of fcc Fe, showing that the many-body

correction may signi�cantly a�ect relative energy di�erences among iron phases at the Earth

core conditions. One may also notice that the entropic contribution T∆S = ∆E −∆F becomes

much more signi�cant at the higher temperature, and its contribution is almost twice larger in

the case of the bcc phase compared with two others. This is in agreement with the local-moment

behavior of this phase predicted by DFT+DMFT calculations, as described in Sec. 3.3.
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4.1 Introduction

A very wide range of crystalline materials exhibits a particular behavior stemming from de-

grees of freedom due to localized partially-�lled d (f -electron) shells on transition-metal (rare-

earth) ions. In such compounds charge �uctuations are suppressed due to a large value of

the on-site Coulomb repulsion as compared to the bare bandwidth W of the relevant d (or

f) band, W � U . The corresponding degrees of freedom are hence due to spin, orbital or

high-order multipolar moments for a given ground-state shell occupancy. Experimentally this

behavior will be generally associated with a Curie response to an external magnetic �eld at

high temperatures and the corresponding contribution to the system's entropy. High tem-

peratures here are de�ned in comparison to the temperature scale To at which the local mo-

ments will order due to an inter-site coupling generated as a low-order perturbative term
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in W/U . The most important mechanisms for such ordering are the superexchange (SE)

in correlated insulators [Anderson, 1950] and Ruderman-Kittel-Kasuya-Yosida (RKKY) cou-

pling [Ruderman and Kittel, 1954, Kasuya, 1956, Yosida, 1957] in metals. The condition

W � U is rather loose in the later metallic case, as the Kondo screening of local moments (see,

e.g., [Hewson, 1993, Coleman, 2002] for review) characterized by the scale TK may become

larger than the energy gain due to the local spin ordering. Below TK the hybridization between

localized and conduction states is well know to give rise to a partial delocalization of the for-

mer resulting in the formation of strongly renormalized quasiparticle bands in the vicinity of

the Fermi level. The Kondo scale is given by TK ∝ exp(−1/JKρF ), where JK ∝ V 2/U is the

on-site antiferromagnetic coupling between the localized and conduction electron spins, ρF is the

conduction-electron density of states at EF , and V is the on-site hybridization matrix element

between the localized and conduction states. The energy gain due to a magnetic order induced

by RKKY interactions can be shown to be ERKKY ∝ J2
KρF and it becomes smaller than TK with

increasing V (e. g., by pressure) as �rst demonstrated by [Doniach, 1977]. Correspondingly, in

the case of metals the localized-moment regime is de�ned by ERKKY � TK or, for the case of

ERKKY . TK , by high temperatures T � TK .

The rich variety of local-moment phenomena in actual compounds stems from the high de-

generacy of d or f shells and its interplay with the crystalline environment. In particular, the

crystal-�eld (CF) splitting plays a crucial role in determining the nature of local degrees of free-

dom in such systems. In localized transition-metal (TM) compounds, e.g. oxides, the orbital

magnetic moment is quenched by the CF that is larger than the second Hund's rule coupling

determined by the value of JH . The CF in these systems is not determined solely by the ac-

tual electrostatic potential of crystalline environment, but includes also a large contribution of

the "ligand �eld", i. e., of the hybridization between TM d and ligand p states. The orbital

physics in such compounds is due to an anisotropic shape of CF orbitals leading to a directional-

dependent superexchange [Goodenough, 1955, Kanamori, 1959] and strong coupling of the

orbital order to the lattice distortions [Kugel' and Khomskii, 1982]. In contrast, the crystal-

�eld splitting ξcf is typically the smallest single-ion energy scale in the rare-earth (RE) 4f shells,

i. e., ξcf � λSO � JH � U , where λSO is the spin-orbit coupling.

As mentioned above, the e�ect of hybridization in the local-moment state can be well de-

scribed by a low-order perturbation theory in W/U , while the CF potential can be considered as

essentially one-electron. Hence, the local-moment physics looks rather trivial compared to truly

non-perturbative problems like the Mott or heavy-fermion phenomena. Though this is correct

on the model level, our ability to quantitatively account for observed phenomena in real local-

moment system is still quite limited, as compared, for example, with a quite impressive success

of DFT in describing the ground-state properties of ferromagnetic 3d metals (for example, α-Fe,
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see Sec. 3.1). As described in Chap. 2, these di�culties are well understood to be caused by the

static mean-�eld treatment of localized d (in TM compounds) and f (in REs) shells by local or

semi-local exchange-correlation potentials. A popular ad hoc approach, in particular in the case

of RE 4f states, consists in treating them as "open-core"; this approach predicts the ground-

state volumes and balk moduli of elementary rare-earth metals in good agreement with experi-

ment [Delin et al., 1998]. However, the "spilling" of localized states outside of the core is then

completely neglected; the calculated valence density of states misses, obviously, all f -electron

features. A much more consistent approach is based on the explicit treatment of the on-site

Coulomb repulsion by methods beyond the standard DFT framework introduced in Chap. 2.

The simplest approach of this kind, LDA+U [Anisimov et al., 1991, Anisimov et al., 1997a],

successfully captures the localization phenomena. However, the LDA+U is a single-electron

framework, where the localization is (incorrectly) caused by the symmetry breaking. Atomic

multiplets, which are sets of many-electron states degenerated in the case of spherical symmetry,

are not present in LDA+U; spectral and magnetic properties of high-T phases, correspondingly,

cannot be directly calculated.

The more general DFT+DMFT framework has thus signi�cant advantages over DFT+U

as the many-electron physics of localized shells in a crystalline environment can be fully taken

into account. In the case of localized-moment one has, as noted above, a natural small pa-

rameter, W/U . Hence, a number of approximate analytical techniques based on the expan-

sion around the strong-coupling limit and partial resummation of the resulting diagrams can

be employed to solve the DMFT quantum impurity problem (Sec. 2.2.1), for example, the

�rst-order expansion in the hybridization [Dai et al., 2005, Jia-Ning et al., 2010], non-crossing

[Bickers, 1987] and one-crossing [Pruschke and Grewe, 1989, Haule et al., 2001] approxi-

mations. This chapter focuses on the simplest strong-coupling method, the so-called Hubbard-I

approximation (HIA) [Hubbard, 1963], in which the hybridization function is completely ne-

glected in the DMFT quantum impurity problem. In result, the later is reduced to the diago-

nalization of a single-shell Hamiltonian Ĥat =
∑

ab εabf
†
afb + ĤU , where ε̂ is the non-interacting

level positions [Lichtenstein and Katsnelson, 1998]. In the DMFT framework ε̂ obtained by

a high-frequency expansion of the bath Green's function (2.6) reads:

ε̂ = −µ+ 〈Ĥ0〉ff − ΣDC (4.1)

where µ is the chemical potential, 〈Ĥ0〉ff is the Kohn-Sham Hamiltonian projected to the basis

of 4f Wannier orbitals (2.2) and summed over the Brillouin zone, ΣDC is the double counting

correction term (2.4).

The single-shell Hamiltonian Ĥat commutes with the number operator and can be diagonal-
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ized separately for each occupancy (with the largest Hilbert space of ∼ 103 states in the case of

an f shell) and the atomic GF is then computed in the Lehmann representation

Gαβat (iωn) =
∑
ΓΓ′

〈Γ|fα|Γ′〉〈Γ′|f †β|Γ〉
iωn − EΓ′ + EΓ

(XΓ +XΓ′), (4.2)

where |Γ〉 and |Γ′〉 are many-electron eigenstates of Ĥat, EΓ and XΓ = e−βEΓ

Z are the corre-

sponding eigenenergies and Boltzmann weights, respectively, α and β label 4f orbitals, Z is the

partition function.

The method is very fast but is not fully consistent in the DMFT sense. The main DMFT

condition is not satis�ed, Gat ≡ Gimp 6= Gloc, because the hybridization function contributes to

the local GF of the lattice problem (2.8) but not to the impurity GF Gimp. The width of Hubbard

bands due to hybridization e�ects is thus underestimated in the HIA spectral function, A(k, ω) =

=G(k, ω+iδ) [Dai et al., 2005]. In spite of these inconsistencies this DFT+DMFT in conjunction

with the HIA (abbriviated below as DFT+HubI) has been rather successfully used in calcula-

tions of the total-energy of localized Ce compounds [Pourovskii et al., 2007, Amadon, 2012]

as well as the spectral function of di�erent RE and actinide systems [Lebègue et al., 2005,

Lebègue et al., 2006, Pourovskii et al., 2009, Shick et al., 2009, Locht et al., 2016]. In the

later case the DFT+HubI spectral function basically represents a quasi-atomic multiplet struc-

ture of f shell superimposed on the conduction-electron band structure provided by DFT. The

e�ect of the solid-state environment on the 4f spectra is included in such calculations through

the input screened value of U (the value of JH in RE ions is known to be almost completely

independent of the crystalline environment and is tabulated, e.g., in [Carnall et al., 1989]),

the self-consistent f level positions ε̂ introduced above and an (underestimated) broadening of

the multiplet peaks due to hybridization e�ects. The method's limitations discussed above are

not so signi�cant for quasi-atomic RE 4f shells, and, for example, the DFT+HubI descrip-

tion of the spectroscopic features of RE metals compares quite satisfactory with the experiment

[Locht et al., 2016]. The method has also been applied, in conjunction with an additional

correction for the value of p− d semiconducting gap, to evaluate the color of RE-based semicon-

ductors [Tomczak et al., 2013].

This chapter discusses the application of DFT+HubI to somewhat more subtle prob-

lems, where one deals with comparable and competing energy scales arising due to the in-

teraction between a localized atomic shell and its crystalline environment. Those scale are,

in particular, the CF and exchange �eld (EF); their interplay with the spin-orbit coupling

determines the key single-ion anisotropy of RE ions in rare-earth-based hard magnetic in-

termetallics [Buschow, 1991]. A DFT+HubI-based approach to their ab initio evaluation

[Delange et al., 2017] is presented in Sec. 4.2. The CF and EF interplay determines the low-



4.2. Crystal-�eld and exchange-�eld e�ects in lanthanide compounds 47

energy eigenstates of Ĥat and, through Gat (4.2), the atomic self-energy and, therefore, the

spectral function A(k, ω). Hence, the high-energy multiplet features forming Hubbard bands

are also in�uenced by small CF and EF splitting; the same interplay is also shown to impact

the exchange splitting of conduction states forming the Fermi surface [Pourovskii et al., 2009].

These phenomena are considered in Sec. 4.2.4.

Another key energy scale in real localized compounds is the inter-site exchange (ISE) arising,

as shortly described above, in perturbation treatment around the atomic limit as a ∝ W 2/U .

The ISE is often comparable to ξcf in RE compounds [Fulde and Loewenhaupt, 1985] or

to the spin-orbit splitting in TM Mott insulators leading to a complex interplay between the

single-site physics and ordering phenomena. In crystal-�eld dominated RE compounds ξcf is

substantially larger than the inter-site interactions and only the lowest CF level is relevant. The

low-energy order parameter in such cases can be still highly nontrivial in the case of a non-

Kramers ion or a quadrupole lowest CF level resulting in an ordering of high-rank multipole

moments [Santini et al., 2009, Cameron et al., 2016]. In the case of TM compounds the ISE

couples orbital and spin moments of neighboring sites leading to Kugel-Khomskii-type Hamil-

tonains [Kugel' and Khomskii, 1982]; in 5d TM systems its interplay with a SO coupling leads

to exotic magnetic phases [Jackeli and Khaliullin, 2009]. A reliable evaluation of such ISE

coupling various local degrees of freedom in real insulating materials is therefore of high impor-

tance. A theory for ab initio evaluation of the ISE on the basis of DFT+HubI approximation

was proposed by [Pourovskii, 2016]. It is described in Sec. 4.3.

4.2 Crystal-�eld and exchange-�eld e�ects in lanthanide com-

pounds

Experimental values of crystal-�eld (CF) are directly obtained by measuring dynamic

response functions due to transitions between CF levels (inelastic neutron scattering

[Fulde and Loewenhaupt, 1985], dipole-forbidden inter-multiplet optical transitions in in-

sulators [Carnall et al., 1989]). Another set of measurements probes only the occupied CF

levels: the static magnetic susceptibility (see, e.g., [Dunlap et al., 1984]), magnetic form-factor

[Boucherle et al., 1982], Schottky anomaly in the speci�c heat (e.g., [Radousky et al., 1983]).

In these techniques the actual CF splitting is inferred from the temperature dependence of the

signal. The X-ray spectroscopy was recently successfully employed to determine CF ground-state

wave function in lanthanide compounds [Hansmann et al., 2008, Willers et al., 2012]. Gen-

erally, full calculations of the corresponding response functions are necessary to account for CF

e�ects in di�erent experimental probes. However, in the quasiatomic approximation employed by

DFT+HubI the CF and exchange-�eld splitting will be determined solely by the corresponding
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one-electron term of the following single-site Hamiltonian:

Ĥat = Ĥ1el + ĤU = Ê0 + λ
∑
i

sili + 2µBBexŜ
a
f + Ĥcf + Ĥ

(o)
U , (4.3)

where the one-electron part of the Hamiltonian corresponds to the �rst four terms on the right-

hand side, namely, a uniform shift, spin-orbit, exchange-�eld, and crystal �eld terms, Ĥ
(o)
U is

the on-site Coulomb interaction. The exchange �eld Bex due to a magnetic TM sublattice is

explicitly included in (4.3) in anticipation of the subsequent discussion on RE-based magnetic

intermetallics. It is coupled to the projection Ŝaf of RE spin along a given direction a.

A more complete treatment of CF e�ects should generally include the impact due to hy-

bridization, which is particularly important in TM Mott oxides. This can be accomplished

by employing a cluster Hamiltonian that includes TM ion d shell with the nearest-neighbor

oxygen p orbitals providing the "ligand �eld" (see, e. g., [Haverkort et al., 2012] and ref-

erences therein); the renormalization of CF spitting due to hybridization e�ects can be also

inferred from the full solution of single-site DMFT quantum impurity problem by exact methods

[Poteryaev et al., 2008]. Below we show that the impact of hybridization on CF is still signif-

icant even for the 4f shell of rare-earth ions, but it can be e�ectively included by constructing

"extended" Wannier functions representing the RE 4f orbitals in a solid.

By making use of the known angular character of 4f orbitals wiσ(r) centered on a given RE

cite i one may show that the CF term can be written as

Ĥcf =
∑
kq

LqkT̂
q
k , (4.4)

where

T̂ 0
k = Ĉ0

k ; T̂
±|q|
k =

√
±1
[
Ĉ
−|q|
k ± (−1)|q|Ĉ

|q|
k

]
are Hermitian combinations of the Wybourne's operators Ĉqk(r) =

√
4π/(2k + 1)Ykq(r)

[Wybourne and Meggers, 1965], Ykq(r) are spherical harmonics for a given angular quan-

tum number k ≤ 2l = 6 and its orbital projection q. Lqk is the corresponding CF parameter

(CFP). The number of Lqk is strongly reduced by the point-group symmetry; few parameters

are su�cient to completely determine CF in relatively high-symmetry tetragonal and hexagonal

compounds considered below.

The notation for CFPs are somewhat confusing, as several di�erent conventions are used

in the literature. In particular, the very popular Steven's operator formalism [Stevens, 1952]

employs another notation of CFPs, Aqk〈r
k〉, which can be conveted to the Wyborne's notation by

a set of positive prefactors λkq = Aqk〈r
k〉/Lqk. The Steven's approach substantially reduces the

computational e�ort in evaluating the matrix elements of Ĥcf within the ground-state multiplet
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of a 4f ion. With modern computers diagonalizing full Hat is rather easy task and the usefulness

of Steven's approach is less obvious, however, Aqk〈r
k〉 convention remains very popular in the

literature. The conversion factors between Steven's and Wybourne's CFPs can be found, for

example, in [Newman and Ng, 1989].

The one-electron CF contribution is hence given by the matrix elements of one-electron Kohn-

Sham (KS) potential in the basis wiα(r). The actual CFPs can then be obtained by �tting an ab

initio Ĥ1el in (4.3) to the sum of (4.4) for a given point-group symmetry and other one-electron

terms (E0, λ, Bex). For spin-polarized systems the CFPs can be assumed to be spin-dependent

and extracted separately for each spin.

Therefore, �rst-principles calculations of CFPs essentially boil down to constructing

"proper" 4f orbitals and evaluating a "proper" KS potential acting on them. In prac-

tice, such quantitatively accurate ab initio calculations of CF turn out to be a challeng-

ing task. The DFT description of 4f states as metallic bands pinned at the Fermi level

generally leads to poor agreement with experimental CF ([Daalderop et al., 1992], see also

[Richter et al., 1992, Hummler and F�ahnle, 1996]). First, the KS states occupancy (and,

hence, the charge density and KS potential) due to such partially-�lled metallic bands is quite

di�erent from that due the lower Hubbard band in the correct physical picture of localized 4f

states [Bhandary et al., 2016], see Sec. 2.3. Second, an unphysical contribution due to the

local-density-approximation (LDA) self-interaction error is always present in the KS potential.

This self-interaction contribution di�ers between 4f orbitals due to a non-uniform occupancy

of 4f orbitals thus directly impacting the CF potentials [Brooks et al., 1997]. Both problems

can be cured by treating 4f states as an open core and directly removing their self-interaction

[Steinbeck et al., 1994, Novak and Kuriplach, 1994]. However, the e�ect due to 4f states

mixing with other bands is then neglected, resulting in poor agreement when such hybridiza-

tion is important, e.g., for RE oxides [Nov�ak, 2013]; the treatment of 4f orbital's tails ex-

tending beyond the core region also becomes rather ambiguous. A mixed scheme proposed

by [Nov�ak et al., 2013a] �rst generates the KS potential using the "4f -in-core" self-consistent

calculations; the 4f orbitals are then represented by Wannier functions to compute the ma-

trix elements of Ĥ1el, an additional parameter is employed to correct for the hybridization of

4fs with a selected set of itinerant bands. This scheme was rather successfully employed for a

number of RE systems [Nov�ak et al., 2013b, Nov�ak et al., 2014b, Nov�ak et al., 2014a]. An-

other approach by [Zhou and Ozoli�n², 2009, Zhou and Ozoli�n², 2011] is based on constrained

DFT+U calculations: the CF splitting is evaluated from a set of DFT+U total energies with the

density matrix of localized shell constrained to corresponding CF levels.
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4.2.1 Self-interaction-suppressed DFT+Hubbard-I approach

The description of localized 4f states provided by DFT+HubI are expected to be quite suitable

for capturing crystal-�eld e�ects. In the present implementation 4f orbitals are represented

by projected Wannier functions (2.2) [Amadon et al., 2008, Aichhorn et al., 2009] naturally

including the tails; the charge density is derived from an electronic structure with 4f states

forming the Hubbard bands at high binding energies as described in Sec. 2.3. No arti�cial sym-

metry breaking is introduced and the paramagnetic state is correctly described, in contrast with

the DFT+U approach. Calculations of CFPs thus amount to self-consistent in the charge density

DFT+HubI calculations with subsequent �tting of the resulting ab initio level positions (4.1) to

the form of Ĥ1el in (4.3) with CF given by (4.4). However, such direct standard DFT+HubI cal-

culations lead to rather poor agreement with experiment, as illustrated by Table 4.1, where the

CFPs obtained by DFT+HubI for Sm 4f in the well-known hard-magnetic intermetallic SmCo5

are compared to experiment. The direct DFT+HubI method predicts, in particular, the wrong

positive sign for the key A0
2〈r2〉 CFP. Such a positive value of A0

2〈r2〉 would mean an in-plane

anisotropy for Sm ion, in contradiction to a strong easy-axis anisotropy of SmCo5 determining

its hard-magnetic behavior. This is due to the DFT self-interaction problem described above,

which is not corrected by the standard DFT+HubI framework.

In order to address this problem [Delange et al., 2017] proposed to enforce an uniform

occupancy of all states within the 4f ground state multiplet in self-consistent DFT+Hub-I cal-

culations. Namely, the imaginary-frequency Hubbard-I Green's function (4.2) was rede�ned as

follows:

Gαβat (iωn) =
1

M

∑
Γ∈GSM
∆/∈GSM

(〈Γ|fα|∆〉〈∆|f †β|Γ〉
iωn + EΓ − E∆

+
〈∆|fα|Γ〉〈Γ|f †β|∆〉
iωn − EΓ + E∆

)
(4.5)

where the eigenstates |Γ〉 and |∆〉 with eigenenergies EΓ and E∆ belong to the ground-state

multiplet (GSM) and excited multiplets respectively, M is the degeneracy of the GSM. In other

words, to obtain Eq. 4.5 the standard Boltzmann weight in (4.2) is substituted with the uniform

weight X̃Γ = 1/M for the GSM and X̃∆ = 0 for exited multiplets in the spectral representation

of the Green's function1.

This approach can be also seen as replacing eq. 4.1 by

ε̂ = −µ+ 〈Ĥ0〉ff − ΣDC − 〈VKS [nspd(r) + n4f (r)]〉ff + 〈VKS [nspd(r) + n̄4f (r)]〉ff (4.6)

where VKS [n] is the Kohn-Sham potential evaluated from the total electronic density n(r). n4f (r)

designates the projected electronic density belonging to the RE's 4f orbitals, n̄4f (r) is the same

1In RE systems the range of temperatures of interest is generally much lower than the inter-multiplet splitting,
hence, the contribution of excited multiplets into the partition function Z can be neglected.
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DFT+HubI PM DFT+HubI FM DFT+HubI direct

A0
2〈r2〉 -140 -313 -262 278 331

A0
4〈r4〉 -40 -40 -55 -30 -37

A0
6〈r6〉 33 35 25 38 25

A6
6〈r6〉 -684 -731 -593 -945 -806

Bex (T ) - 227 235

[Tils et al., 1999] [Tie-Song et al., 1991] [Givord et al., 1979]

A0
2〈r2〉 -326 -330 -200

A0
4〈r4〉 - -45 0

A0
6〈r6〉 - 0 50

A6
6〈r6〉 - 0 0

Bex (T ) 260 327.5 260.5

[Richter et al., 1995] [Hummler and F�ahnle, 1996] [Novak and Kuriplach, 1994]

A0
2〈r2〉 -760 -509 -160

A0
4〈r4〉 -37 -20 -33

A0
6〈r6〉 11 2 40

A6
6〈r6〉 290 -55 168

Bex (T ) - 279 -

Table 4.1: Top table: CF parameters (in K) and exchange �eld (in Tesla) in ferromagnetic
(FM) and paramagnetic (PM) SmCo5 calculated by the self-interaction-suppressed DFT+HubI
method by [Delange et al., 2017]. The "DFT+HubI direct" column lists results of standard
DFT+HubI approach employing (4.2) instead of (4.5) and (4.7) . For comparison, measured
(middle table) and calculated (bottom table) values from several groups are also given.

density, spherically averaged, and nspd(r) designates all the remaining density, belonging to all

atoms' s, p and d orbitals. Hence, one e�ectively tunes the double-counting correction to remove

the unphysical contribution due to self-interaction of 4f orbitals into the splitting of ε̂.

Another problem is speci�c to the case of rare-earth based hard magnetic intermetallics.

These systems are well described by so-called "two-sublattice model" [Campbell, 1972,

Buschow, 1991], where the RE spins are aligned by a strong exchange �eld generated by the

ferromagnetic order on TM (Fe, Co or Ni) sublattice. This coupling is included through a (semi-

)local exchange-correlation potential (e. g., LSDA), which is expected to be suitable for itinerant

TM ferromagnetism. However, once 4f states become spin-polarized the 4f magnetic density

will generate through LSDA an exchange �eld coupled to the RE spins themselves. The interac-

tion term in (4.3) already contains the Hund's rule coupling JH between 4f orbitals, hence, the

LSDA exchange �eld due to the 4f magnetization density acting on the these orbitals represents

double counting. In the case when the LSDA exchange �eld is smaller than the 4f inter-multiplet
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splitting it is e�ectively removed by employing (4.5). To remove this double counting in a gen-

eral case [Delange et al., 2017] directly suppressed the 4f contribution to the magnetization

density from the DFT+DMFT density matrix at each k-point:

Ñk = Nk +
1

2
P †(k)

(
T nff (k)T † − nff (k)

)
P (k) (4.7)

where Nk is the density matrix in the Bloch basis (2.12), P (k) is the projector (2.2) between the

Wannier and Bloch spaces, nff (k) = P (k)NkP †(k) is the density matrix in the 4f orbitals basis,

T is the time-reversal operator. The averaged density matrix Ñk is then used to recalculate the

electron density at the next DFT iteration, see Sec. 2.3. The resulting exchange �eld Bex in (4.3)

is subsequently extracted from converged DFT+HubI level positions ε̂ together with CFPs.

The CFPs and Bex for SmCo5 evaluated using the sef-interaction-suppressed DFT+HubI

scheme [Delange et al., 2017] are listed in Table 4.1. The calculated lowest-order CFP A0
2〈r2〉

agrees well with experimental measurements in the ferromagnetic phase. These calculations also

predict rather strong dependence of A0
2〈r2〉 on the magnetic state of SmCo5; this is apparently

stemming from a strong modi�cation of the Co 3d density of states by its strong ferromagnetism.

The fact that the electronic structure of Co 3d has a such signi�cant impact on the CF on Sm

points out to an important contribution to CFP due to the 4f -3d mixing. Another unexpected

result is a large magnitude of the A6
6〈r6〉 CFP, which magnitude is rather di�cult to extract

from NIS experiments [Hummler and F�ahnle, 1996]. The Sm 4f eigenstates and their splitting

obtained by [Delange et al., 2017] are also in good agreement with experimental values inferred

from magnetic form factor measurements [Givord et al., 1979, Laforest, 1981].

4.2.2 Crystal �eld and single-ion magnetic anisotropy in RFe12X inter-

metallics

The approach described above was applied by [Delange et al., 2017] to the "1−12" family

of RFe12X compounds that has recently attracted signi�cant interest [Körner et al., 2016,

Suzuki et al., 2016, Harashima et al., 2015, Hirayama et al., 2015, Miyake et al., 2014].

These compounds crystallize in the ThMn12-type tetragonal structure. Upon doping with

light elements X such as nitrogen they exhibit hard magnetic properties (large magnetiza-

tion, Curie temperature, and strong anisotropy [Suzuki et al., 2016, Harashima et al., 2015,

Hirayama et al., 2015] ) comparable to those of the top high-perfomance hard magnet

Nd2Fe14B, in spite of the reduced concentration of rare earth elements. [Delange et al., 2017]

evaluated the e�ect of N and Li interstitials on the CFPs, exchange �eld on RE sites (Nd or

Sm) and the resulting RE single-ion anisotropy. The calculated lowest order CFP A0
2〈r2〉 and
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Figure 4.1: Crystal �eld parameters A0
2〈r2〉 (average over up and down spins in the FM phase)

and anisotropy coe�cient K1 for RFe12X, with R=Nd, Sm and X is either empty, N or Li.
The proportional numbers in compounds formulas are omitted for brevity. Adapted from
[Delange et al., 2017].

corresponding anisotropy coe�cient

K1 = −3J(J − 1

2
)αJA

0
2〈r2〉nR, (4.8)

where J is the total angular momentum for the rare earth 4f shell, nR is the concentration of

rare earth atoms, αJ is the corresponding Steven's factor, for all considered systems are shown

in Fig. 4.1.

A strong e�ect of the interstitial on the CFP A0
2〈r2〉, which is increased the N interstitial

and decreased by the Li one, is clearly seen in Fig. 4.1 and is in agreement with experimen-

tal results �nding a strong uniaxial magnetic anisotropy in NdFe12N [Hirayama et al., 2015]

and SmFe12 [Hirayama et al., 2017], but an in-plane anisotropy in SmFe12N and NdFe12

([Harashima et al., 2015] and references therein). These "1−12" tetragonal compounds are

not stable in their bulk stoichometric compositions, hence, the experimental results were ob-

tained in thin �lms grown on a substrate and/or by substitutional doping of Fe sublattice by
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Ti or Co. In order to understand the origin of the e�ect of interstitials [Delange et al., 2017]

analyzed the leakage of the 4f Wannier orbitals to nearest-neighbors sites and found it to be

strongly orbital-dependent due to the anisotropic shape of 4f orbitals. In particular, the 4f

orbital for the magnetic quantum number m = 0 leaks to the N(Li) interstitial ligand site re-

sulting in an upward (downward) shift of its energy due to the ligand's electrostatic potential

and hybridizational mixing with the ligands orbitals. The m = 0 level position is positively

correlated with the value of A0
2〈r2〉 as one may infer from the matrix form of T̂ 0

2 operator in

the f angular basis. Hence, its positive (negative) shift due to a N(Li) interstitial leads to the

corresponding shift of A0
2〈r2〉.

[Delange et al., 2017] also calculated the temperature dependence of the single-ion

anisotropy without resorting to the lowest-order approximation (4.8) and employing instead

the direct diagonalization of ab initio Hamiltonian (4.3) obtained by DFT+HubI. Interestingly,

the hypothetical SmFe12Li compound was found to be an excellent hard magnet, with its tem-

perature stability of anisotropy being far superior to that of existing perspective hard magnet

NdFe12N. Unfortunately, alkali metals do not mix with iron [Kubaschewski, 1982], hence, sta-

bilizing SmFe12Li in its bulk tetragonal phase might not be possible.

4.2.3 Localization of Wannier 4f orbitals and crystal-�eld parameters

In the DFT+HubI framework the hybridization function is neglected; the crystal-�eld splitting

is fully contained in the single-site non-interacting level position matrix ε̂ given by eq. 4.1. Yet,

as described above, the hybridization with ligand orbitals of the N and Li interstitials is seen

to strongly a�ect the calculated CFPs for the RFe12X compounds. This seemingly paradoxical

result stems from the representation of RE 4f orbitals in solids by extended Wannier orbitals

(WO). The degree of extension for the 4f WO wiα(r) is determined by the range of bands W
included into the projective construction of WO in (2.2). This extension is most signi�cant in

the case of a narrow range W including only bands of the target character (e.g., 3d, 4f). In this

case an admixture of other characters (e.g., N 2p to 4f -like bands in RFe12N) leads to extension

of the resulting WOs to the corresponding sites (i.e., the N interstitial in the example above).

Two limits are useful to consider in the present case: the "small window" WO basis con-

structed from KS bands of mainly 4f character and the "large window" basis that includes all

KS bands with some 4f contribution. In the case of 4f states entangled with other bands, as

in the TM-RE intermetallics considered above, the former limit can (approximately) be de�ned

by an energy range of few eV comprising mainly 4f -like bands, which are pinned in the vicinity

of EF within DFT. The "large window" limit will in addition include all TM 3d, RE 5d and the

interstitial ligand states.

The real-space Nd 4f WO wm(r) for the orbital quantum number m = 0 in paramagnetic



4.2. Crystal-�eld and exchange-�eld e�ects in lanthanide compounds 55

Figure 4.2: Nd Wannier orbital m = 0 in NdFe12Li constructed with a large window [−20, 20] eV
(left) and a small window [−2, 2] eV (right). Adapted from [Delange et al., 2017].

NdFe12Li constructed for those two limits using W of [−2 : 2] and [−20 : 20] eV, respectively, is

depicted in Fig 4.2. A noticeable leakage of the "small-window" extended WO to the Li site as

well as smaller contributions due to Fe 3d are clearly seen; in contrast, the "large-window" WO

is restricted at the Nd site. By expanding the small-window WO wm(r) in a basis of localized

"large-window" ones constructed for all valence bands [Delange et al., 2017] could quantify the

contribution of di�erent non-4f characters into wm(r) as a function of m.

The admixture of states hybridizing with RE 4f into the corresponding extended WOs allows

to e�ectively include the impact of hybridization on CFPs within the DFT+HubI approach. This

impact is expected to be more important in RE oxides and similar compounds that features a

signi�cant mixing of RE 4f and ligand p orbitals [Nov�ak, 2013].

In order to assess it the self-interaction-corrected DFT+HubI method has been also ap-

plied to the ROCl rare earth oxychloride series. The tetragonal oxyclorides ROCl are

wide-gap semiconductors; in contrast to the TM-RE intermetallics considered above, the

CF splitting in ROCl is accessible to optical measurements probing weak 4f -4f transitions

[Höls�a and Lamminm�aki, 1996]. In these calculations both localized and extended WOs were

employed for the sake of comparison. The extended ones were constructed including only the

manifold of narrow RE 4f bands pinned at the EF . A wide range, W ∈[−6 : 11.5] eV, which

includes also the O 2p, Cl 3p and RE 5d bands (see Fig. B.1 in Appendix B), was employed

to construct the localized WOs. Other relevant parameters of these calculations are detailed in

Appendix B.

The CF (4.4) on the RE site in ROCl is speci�ed by �ve parameters Lqk (designated as

Bq
k in [Höls�a and Lamminm�aki, 1996]): L0

2, L
0
4, L

4
4, L

0
6, and L4

6. The calculated CFPs are

compared to the measured ones in Fig. 4.3. One may notice a good agreement with experiment

for DFT+HubI calculations employing extended WOs. This agreement is especially good for the
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Figure 4.3: Crystal-�eld parameters (in cm−1) in ROCl oxychlorides (where R =Nd,
Sm, and Dy) calculated by the self-interaction-suppressed DFT+HubI method using ex-
tended and localized WOs. The experimental values are from optical measurements of
[Höls�a and Lamminm�aki, 1996].

lowest rank CFP L0
2; some signi�cant discrepancies are however observed for the rank-6 CFPs

in the case of DyOCl. As noted above, high-rank CFPs are most di�cult to measure precisely

experimentally. In contrast, one observes a signi�cant systematic underestimation of L0
2 by the

method with localized WOs, a less pronounced underestimation is also noticeable for the rank-4

CFPs. Overall, the di�erence between DFT+HubI results with localized and extended WOs is

very signi�cant pointing to a large contribution of hybridization e�ects to the CF e�ect in these

compounds.
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4.2.4 Crystal-�eld e�ects in the electronic structure of rare-earth compounds

A signi�cant advantage of the DFT+HubI method with respect to less direct DFT/DFT+U

approaches of [Nov�ak et al., 2013a, Zhou and Ozoli�n², 2011] is its ability to simultaneously

evaluate the impact of CF splitting on the electronic structure of RE compounds as measured

by photoemission (PES) experiments and Fermi-surface probes like the de Haas-van Alphen

and Shubnikov-de Haas (SdH) e�ects. Once the one-electron level positions ε̂ are obtained,

e. g. by the self-interaction-suppressed DFT+HubI calculations described above, the atomic

GF is evaluated from ε̂ in accordance with eqs. 4.3 and 4.2. The resulting atomic self-energy

is subsequently inserted back to the lattice, eq. 2.5, to evaluate the spectral function A(k, ω).

At temperatures smaller than the magnitude of CF splitting atomic-like multiplet features of

4f typically seen in PES of RE compounds will be due to one-electron exitations from the CF

ground state. Hence, the interplay of CF with exchange (or external magnetic) �elds will have

a direct impact on A(k, ω) obtained within DFT+HubI.

The impact of CF e�ects on the one-electron spectra in the RE semimetal ErAs was assessed

by DFT+HubI calculations of [Pourovskii et al., 2009]. The Er local moments in the rock-salt

lattice structure of this compound spontaneously order antiferromagnetically at TN =4.5 K,

but this antiferromagnetism was suppressed by a large external magnetic �eld of about 5 T

employed in Shubnikov-de Haas (SdH) experiments of [Bogaerts et al., 1996] thus resulting in

a ferromagnetic alignment of Er moments. The DFT+HubI calculations for this compound under

such applied �eld show, however, that the �eld is not su�cient to overcome the CF splitting

Figure 4.4: Band structure and density of states (DOS) of ErAs from DFT+U (left);
DFT+DMFT k-resolved and integrated spectral functions at an applied �eld of 5T (right).
The total is black line, the partial Er 5d, Er 4f and As 4p contributions are displayed by the
red, green, and blue curves respectively. Adapted form [Pourovskii et al., 2009].
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Figure 4.5: The low-energy electronic structure of ErAs within the DFT+U(top) and
DFT+DMFT (bottom) approaches. The spin polarization is along the z axis, thus the cu-
bic symmetry is lifted, and the band structure along x(y) and z axis are not equivalent. The
corresponding X high-symmetry points of the fcc Brillouin zone are designated as Xx, Xy, and
Xz, respectively (inset at the right-hand side). The overlapping semi-metallic As 4p and Er 5d
bands near EF are shown on the left-hand side. They are followed to the right by the cross sec-
tions of the hole pockets at the Γ point in the xy and xz planes, and the longitudinal e ‖ (in the
ΓXyW plane) and transverse e ⊥ (in the XyWW plane) cross sections of the electronic pocket.
The exchange splittings of the pockets are clearly seen. Adapted form [Pourovskii et al., 2009].

of Er 4f states, resulting in only partially-polarized Er 4f band2. The DFT+HubI spectra is

compared in Fig. 4.4 to that obtained within the DFT+U method. The later is not only missing

various multiplet peaks but also incorrectly predicts a fully-polarized Er 4f band.

A ferromagnetic order of RE spins Ŝf leads to a measurable exchange splitting of the Fermi

surface due to a double-exchange term like IfcŜf Ŝc, where Ŝc is the conduction electron spin on

the same site (see, e. g. [Jensen and Mackintosh, 1991]). As described above, the CF e�ect

freezes a partially-polarized state of the Er 4f shell in DFT+HubI, and, hence, the exchange

�eld 2µBIfc〈Ŝf 〉 acting on the conduction-electron spin. In result, DFT+DMFT calculations

of [Pourovskii et al., 2009] predict a markedly smaller exchange splitting of the semimetalic

Er 5d and As 3p bands compared to the Hund's rule state found by DFT+U (Fig. 4.5) and

quasiparticle GW calculations of [Chantis et al., 2007]; these DFT+DMFT predictions are in

good quantitative agreement with the SdH experiment.

Vice versa the spin-polarization of itinerant bands generates an exchange �eld acting on 4f

2DFT+HubI calculations of [Pourovskii et al., 2009] employed the atomic-sphere approximation (ASA) for
the crystalline potential. This approximation largely removes the self-interaction between 4f states, but in
contrast to the more recent self-interaction-suppressed scheme (Sec. 4.2.1) it also neglects physical non-spherical
contributions due to other states to the exchange-correlation potential. ErAs is a cubic compound in which
the rank-2 CFPs are zero by symmetry, and the ASA treatment of [Pourovskii et al., 2009] was found to be
su�cient to reproduce its CF in a good agreement with experiment.
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shells. In the case of hard-magnetic RE-iron intermetallics described in Sec. 4.2.2 the ferromag-

netic order on Fe sublattice induces a spin polarization of conduction electrons (mainly RE 5d)

leading to an exchange �eld ~Beff = 2µBIfc〈Ŝc〉 acting on the RE spin, see eq. 4.3. This term

can be described in the DFT framework e.g. within LSDA as in [Delange et al., 2017]. Again,

due to the crystal-�eld e�ect one obtains only partial polarization of the 4f Hubbard bands in

the DFT+HubI spectral function. Correspondingly, for example, the ordered Nd spin magnetic

moment in NdFe12N is reduced to 1.6 µB as compared to the Hund's rule value of 3 µB.

4.3 Linear response to two-site �uctuations and inter-site ex-

change interactions

As brie�y outlined in the introduction to this chapter, inter-site exchange (ISE) interactions

represent a key energy scale in localized systems. In conjunction with the magneto-elastic cou-

pling they are at the origin of ordering phenomena in these compounds. ISE interactions may

couple not only spins, but also orbital [Kugel' and Khomskii, 1982] and higher rank multipole

degrees of freedom [Santini et al., 2009]. Experimental measurements of exchange interactions

are particularly di�cult in the case of such orbital or multipolar order parameters, as the con-

ventional neutron-scattering spectroscopy is not sensitive to them, e. g., one cannot directly

see multipolar excitations by inelastic neutron scattering measurements. Hence, transitions to

multipole-ordered phases are �rst seen only in thermodynamical functions, while the actual order

parameter remains "hidden", as in the prototypical examples of CeB6 [Cameron et al., 2016],

URh2Si2 [Mydosh and Oppeneer, 2011], or NpO2 [Santini et al., 2009]. An orbital order in

TM compounds usually manifests itself by a distortion of a high-symmetry paramagnetic lat-

tice structure; it is generally not possible to experimentally disentangle the purely electronic

contribution of superexchange and that due to the lattice Jan-Teller mechanism.

Direct ab initio evaluation of phase diagrams for such complex systems as a function of tem-

perature and external parameters (pressure, applied �eld) is not generally feasible at present.

In particular, while the DFT+DMFT method is able to treat local correlations at �nite tem-

peratures, typical low symmetries of ordered phases and low temperatures of interest as well as

a vast space of possible order parameters render direct predictive DFT+DMFT calculations in

this case rather di�cult. Moreover, the single-site DMFT method su�ers from the usual mean-

�eld drawbacks overestimating ordering temperatures, especially for low-dimensional systems

(see, for example, [Rohringer et al., 2011, Hirschmeier et al., 2015, Sch�afer et al., 2015,

Ayral and Parcollet, 2015, Horvat et al., 2017]).

A promising two-step approach for a �rst-principles description of orbital and multipo-

lar ordering phenomena consists in using the DFT+DMFT method to evaluate an e�ective
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low-energy Hamiltonian due to ISE interactions between localized shells. Those Hamilto-

nians can then be solved by a variety of methods developed for Heisenberg-like models in

order to predict the ordered phase as a function of external parameters like pressure or

temperature. This kind of techniques have been previously developped within the stan-

dard DFT framework [Prange and Korenman, 1979,Wang et al., 1982, Oguchi et al., 1983,

Liechtenstein et al., 1987, Bruno, 2003, Ruban et al., 2004] mainly for evaluating e�ective

spin Hamiltonians. Some DFT+DMFT generalizations of this approach have been also developed

[Katsnelson and Trefilov, 2000, Secchi et al., 2015].

The key idea of Lichtenstein et al. [Liechtenstein et al., 1987,

Katsnelson and Lichtenstein, 2000, Kvashnin et al., 2015] is to evaluate the �rst

order change of the DFT (or DFT+DMFT) grand potential Ω due ot simultaneous ti-

tling of spins on two neighboring sites R and R′ in otherwise a completely ordered

phase, ∆Ω ≈ V RR′δφ(R)δφ(R′), where δφ(R) is the in�nitesimal titling angle for the

spin at the site R. The ISE V RR′ is then shown using the so-called "force theorem"

[Mackintosh and Andersen, 1980] to be equal to
∫
dωTr [∆R(ω)GRR′(ω)∆R′(ω)GR′R(ω)],

where ∆R(ω) is the on-site exchange splitting, GRR′(ω) is the intersite GF describing the

propagation of electron between the corresponding sites.

The approach of Lichtenstein et al. has been successfully applied to a wide

range of materials using both the DFT and DFT+DMFT frameworks, the initial paper

[Liechtenstein et al., 1987] is cited about 800 times as of 2018. However, their use of an

ordered state as a reference can be a disadvantage for applications to correlated materials. As

noted above, symmetry-broken low-T phases are generally less accessible within DFT+DMFT.

The method is also not so easily extended to more complex order parameters like orbital or

multipolar ones. The corresponding ordered phase should be �rst obtained by full self-consistent

calculations to subsequently evaluate its response to "titling" of "generalized spins". Hence, while

a rather heavy formalism for such generalization has been developped [Secchi et al., 2015] it has

not been so far applied to realistic materials. A DFT+U formalism based on �ipping high-rank

multipole moments in an ordered state was recently applied to magnetic and quadrupolar order

in UO2 [Pi et al., 2014].

[Pourovskii, 2016] proposed an approach for evaluating ISE interactions directly from

DFT+DMFT calculations of symmetry-unbroken paramagnetic phase. This method is based

on evaluating the response of DFT+DMFT grand potential (??) to simultaneous �uctuations

of the correlated shell density matrix on two neighboring sites. In the spirit of "force theorem"

the e�ect of small �uctuations on Ωr[n(r)] is neglected, then one may show that only the con-

tribution of �rst term in (??) is nonzero for a two-site �uctuation as all other terms in (??) are
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site-diagonal. The resulting expression for the grand-potential response reads:

δ2Ω

δρ(R)δρ(R′)
=
∑
n

Tr

[
GRR′(iωn)

δΣR′(iωn)

δρ(R′)
GR′R(iωn)

δΣR(iωn)

δρ(R)

]
, (4.9)

where, analogously to the Lichtenstein interactions, GRR′ is the inter-site GF describing the

propagation of electron between the sites R and R′, δρ(R) is the �uctuation of density matrix

at the site R with respect to its value in the paramagnetic state.

The response of DMFT self-energy to the �uctuation of density matrix δΣR
δρ(R) was evaluated

by [Pourovskii, 2016] within the HIA. In the localized limit, where the charge �uctuations

are neglected and the magnitude ISE is assumed to be small compared to the inter-multiplet

splitting, the �uctuation δρ(R) was restricted in this approach to the ground-state multiplet

(GSM) of a given shell. The GSM contribution in the quasi-atomic GF is �rst separated out,

Gat = Tr
[
ρ̂GSM Ĝ

]
+G1

at, where the Green's function matrix Ĝ describes the transition from/to

GSM as GΓΓ′
αβ (τ) = −

〈
Γ|T[fα(τ)f †β(0)]|Γ′

〉
, where the notation is as in eq. 4.5. The rest is

collected in G1
at. The GSM density matrix, ρ̂GSM , is diagonal within the HIA, its elements are

the Boltzmann weights of quasi-atomic eigenstates in the symmetry-unbrocken paramagnetic

state, see (4.2). De�ning the �uctuations of diagonal δρΓΓ and o�-diagonal δρΓΓ′ elements in

ρ̂GSM such that its trace is conserving one derives for the variational derivative of Gat with

respect to such �uctuations the following equation:

δGat
δρ̂ΓΓ′

= GΓ′Γ − δΓΓ′
Tr[Ĝ]

M
. (4.10)

The corresponding response of the atomic self-energy, δΣat

δρ̂ΓΓ′ , is then obtained from (4.10)

through the Dyson equation. Inserting resulting δΣat
δρ̂ΓΓ′ into eq. 4.9 one thus obtains the re-

sponse of Ω to �uctuations within the GSM on two sites, δ2Ω
δρΓ1Γ2 (R)δρΓ3Γ4 (R′)

. As discussed in

[Pourovskii, 2016] one may then identify (suppressing the Γ label for brevity):

δ2Ω

δρ12(R)δρ34(R′)
= 〈13|V RR′ |24〉, (4.11)

where the RHS is the corresponding matrix element of a low-energy interaction V RR′ between

the corresponding density-matrices of two sites.

One may transform these density-matrix ISE into a more conventional form of those be-

tween the corresponding on-site dipole and multipole operators (dipole, quadrupole etc.). The

advantage of this form is that the expectation values and correlation functions of those oper-

ators are directly accessible to experimental probes (like the neutron scattering in the case of

dipole magnetic moments). Moreover, the symmetries of the problem are often directly apparent
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leading to a compact form of the low-energy Hamiltonian3. The density matrix of a given GSM

with the quantum number J can be equivalently represented by a set of (2J + 1)2 multipole

moments [Blum, 1996, Santini et al., 2009], ρ̂(J) =
∑

K,Q〈OKQ(J)〉ÔKQ, where 〈OKQ(J)〉 is
the state multipoles with the rank K = 0, 1, ..2J and component Q = −K...K, ÔKQ is the

corresponding self-adjoint spherical tensor. These state multipoles are in fact experimentally

observable multipole moments, e.g. the vector (K = 1) moments 〈O11̄(J)〉, 〈O10(J)〉, and
〈O11(J)〉 are the expectation values of Ĵy, Ĵz, and Ĵx, respectively, divided by

√
2. One may

introduce the corresponding ISE V QQ′

KK′ (RR′) between such multipoles on two di�erent sites

as
∑

KK′
QQ′

V QQ′

KK′ (RR′)ÔKQ(R)ÔK′Q′(R
′). Using the orthogonality properties of the spherical

tensors [Pourovskii, 2016] showed that ISE can be transformed from the density-matrix to

multipole-multipole interaction form as follows:

∑
m1m2
m3m4

〈m1m3|V RR′ |m2m4〉Om2m1
KQ (J)Om4m3

K′Q′ (J) = V QQ′

KK′ (RR′). (4.12)

where m is the magnetic quantum number for a given J .

In the case of TM systems the spin and orbital degrees of freedom of the relevant

TM shell are often encoded by spin s and pseudospin τ quantum numbers, respectively

[Kugel' and Khomskii, 1982]. One may then represent the density matrix by double tensors,

which are direct products of the type ÔKQ(s)× ÔK1Q1(τ) of the corresponding spherical tensors

for the s and τ spaces. A mapping of the density-matrix ISE into spin/pseudospin ones is then

derived analogously to (4.12) .

Overall, ISE calculations in the approach of [Pourovskii, 2016] consist in evaluating the vari-

ational derivatives of self-energy by (4.10) in conjunction with the Dyson equation and the inter-

site GF GRR′ by a Fourier transform of the lattice GF. All possible interactions 〈12|V RR′ |34〉
between two sites that are allowed within a given GSM are subsequently computed by (4.9) and

mapped to the multipole form by (4.12). The method hence obtains all possible interactions

between multipoles allowed within the GSM; one does not need to identify the relevant ones in

advance.

This approach was benchmarked by applying it to 1-band and two-band eg Hubbard models

on the simple-cubic 3d lattice. In the former case it was shown analytically to lead to J = −4t2/U

for the Heisenberg nearest-neighbor interaction, which is a well known result for t � U . The

obtained interactions, hence, exhibit the ∼ 1/U scaling expected for correlated insulators. The

method is not applicable for metals, where the condition t� U is obviously not satis�ed. ISE for

3For example, in the case of spin Ŝ being the low-energy degree of freedom in a translational-invariant system
without spin-orbit, the values of all (2S + 1)4 matrix elements (4.11) are determined by a single Heisenberg
constant J coupling the corresponding spin moments.
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the two-band eg model map to a spin-orbital Kugel-Khomskii (KK) Hamiltonian; the values of

resulting spin, orbital, and spin-orbital ISE as a function of the ratio JH/U are in close agreement

with previous analytical calculations of [Ole�s et al., 2000].

4.3.1 Ab initio Kugel-Khomskii Hamiltonian and spin-orbital order in KCrF3

The formalism presented above was applied by [Pourovskii, 2016] to evaluate an ab initio

spin-orbital KK-type Hamiltonian for the chromium �uoride KCrF3. This compound represents

a typical example of a Mott insulator with spin and unquenched orbital degrees of freedom

ordering at di�erent temperature scales. Its paramagnetic high-temperature phase adopts the

conventional cubic peroxide structure [Margadonna and Karotsis, 2007]. The 3d shell of the

Cr2+ ion is in the t32ge
1
g con�guration with the spin of single eg electron aligned to that of the

half-�lled t2g subshell by the Hund's rule coupling, similarly to the peroxide manganese LaMnO3.

The relevant low-energy degrees of freedom are thus the S = 2 spin and eg orbital. The later

is encoded by the 1/2-pseudospin τ , with its values +1/2 and −1/2 designating the t32g[x
2 − y2]

and t32g[3z
2− r2] orbital states of Cr3+, respectively. Hence, in the paramagnetic phase the total

degeneracy of the GSM of Cr3+ is equal to (2τ + 1)(2S + 1) = 10.

All the corresponding matrix elements (4.11) between those states on neighboring Cr ions

were evaluated for several �rst coordination shells. The obtained ISE were subsequently con-

verted to the tensor/operator formalism as outlined above. The ISE interactions obtained for

next nearest and more distant neighbors are at least an order of magnitude smaller than the

nearest-neighbor (NN) ones and were neglected. The calculated NN superexchange(SE) Hamil-

tonian between two nearest neighbors i and j along the [001] direction was found to be of the

following form

Ĥ
[001]
eff =Jss

∑
α

ŜiαŜjα + Jττ τ̂iz τ̂jz + Jsq
∑
α

[
Ŝiα(Ŝjατ̂jz) + (Ŝiατ̂iz)Ŝjα

]
+ (4.13)

Jqq
∑
α

(Ŝiατ̂iz)(Ŝjατ̂jz) + ...,

where Jss, Jττ , Jsq, and Jqq are the spin-spin, orbital-orbital, spin-(spin-orbital) and (spin-

orbital)-(spin-orbital) interactions; some smaller terms are omitted for brevity 4. The calculated

SE interactions for two values of Hubbard U at �xed Hund's rule coupling JH =0.75 eV 5 are

listed in Table 4.2. One may see that the orbital-orbital interaction is the dominant one (notice,

4As expected, the calculated e�ective Hamiltonians for the [100] and [010] bonds are related by the cubic

symmetry to Ĥ
[001]
eff and can be obtained from it by corresponding rotations in the τ space.

5The values of 3.75 eV and 0.75 eV were obtained for U(= F 0) and JH , respectively, by [Autieri et al., 2014]
using the cLDA approach.
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Table 4.2: Calculated Cr-Cr nearest-neighbor interactions along the [001] direction, in meV .
U (eV) Jss Jττ Jsq Jqq
3.75 0.94 37.3 -1.77 7.12
5 0.96 24.7 -1.43 4.93

however, that for a proper comparison of the magnitude of terms in (4.13) one needs to take into

account the di�erent lengths of spins S = 2 and pseudospins τ = 1/2).

The calculated KK Hamiltonian (4.13) was subsequently solved within the mean-�eld approx-

imation obtaining ordered phases of cubic KCrF3 as a function of temperature. The resulting

evolution of the speci�c heat vs. T and identi�ed ordered phases are depicted in Fig. 4.6. Two

phase transitions are clearly identi�ed: the high-temperature one at TOO of 340 K is due to

ordering of the eg orbitals into the G-type antiferro-orbital (AFO) structure shown in 4.6b

(all NN having opposite orbital states, i.e. the ordered vector k = [1/2, 1/2, 1/2] ). The low-

Figure 4.6: a. Speci�c heat (per formula unit of KCrF3) as a function of temperature ob-
tained by solving the Hamiltionian (4.13) using the mean-�eld approximation (implemented by
MCPHASE package [Rotter, 2004]) with the values of superexchange interactions calculated
at U = 3.75 eV. b. The G-type antiferro-orbital order obtained below TOO = 340 K (plotted by
XCrysDen [Kokalj, 2003], the real-space representation of the orbitals are generated with the
help of the wplot [Kune² et al., 2010] program). c. The A-type antiferromagnetic phase, stable
below TN = 102 K, obtained with the interactions calculated with U = 3.75 eV d. The C-type
antiferromagnetic phase obtained using the interactions calculated with U = 5 eV. Adapted from
[Pourovskii, 2016].
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temperature transition at TN of about 100 K is due to subsequent ordering of the S = 2 spins;

the A-type antiferromagnetic (AFM) layered structure obtained for U =3.75 eV is displayed in

Fig. 4.6c. This structure consists of an AFM stacking of ferromagnetically-ordered [100] lay-

ers. Increasing the value of U to 5 eV results in orbital ordering into the same AFO structure

at lower TOO of 225 K. The AFM structure obtained in that case is however di�erent; it is

of C-type consisting of an anitferromagnetic stacking of ferromagnetically-ordered [110] layers

(Fig. 4.6 d). One may analyze ordering energies for di�erent magnetic structures for cubic

KCrF3 in the presence of fully-saturated G-type AFO. Such analysis shows that the stability

of layered AFM structure with respect to the G-type AFM and ferromagnetic phases is con-

trolled by the ratio of Jss/Jττ . A more subtle mechanism is responsible for stabilization of the

A-type AFM with respect to the C-type one; it is shown by [Pourovskii, 2016] to be due to the

spin-orbital coupling Jsq leading to canting of the G-type AFO once the A-type AFM structure

sets in. The relative strength of Jss, Jqq and Jsq SE interactions is determined by the JH/U

ratio [Feinberg et al., 1998, Ole�s et al., 2000], hence, increasing U at �xed JH results in the

observed change of AFM structure.

Experimentally the onset of G-type orbital order in KCrF3 is accompanied by signi�cant

tetragonal distortions [Margadonna and Karotsis, 2007]; this Jahn-Teller contribution plays,

apparently, the leading role as the experimental TOO = 973 K is much higher than the one

obtained by [Pourovskii, 2016] by including only the superexchange contribution; the same

conclusion was obtained by direct DFT+DMFT calculations of KCrF3 with a CT-QMC im-

purity solver [Autieri et al., 2014]. KCrF3 subsequently undergoes a monoclinic distortion at

250 K [Margadonna and Karotsis, 2006] and orders into the A-type AFM structure shown

in Fig. 4.6 at 80 K [Xiao et al., 2010]. Hence, the magnetic order and TN are well reproduced

by SE Hamiltonian (4.13) once the G-type orbital order sets in. Overall, this �rst application of

the DFT+HubI based approach of [Pourovskii, 2016] for evaluating ISE in a realistic system

demonstrates its ability to capture the hierarchy of complex spin-orbital SE interactions. It also

allows to disentangle the lattice and purely electronic contribution to ordering phenomena in

TM systems. This approach was also subsequently applied by [Horvat et al., 2017] to evaluate

purely spin-spin SE interactions in layered TM oxides and �uorides.





Chapter 5

Conclusions and perspectives

In the previous two chapters we have reviewed recent studies employing a framework combining

�rst-principles DFT approach with the single-site DMFT treatment of electronic correlations. In

these works the impact of dynamical many-electron e�ects has been evaluated in two opposite

limits: in correlated metallic systems exempli�ed by iron, and, on the other hand, in local-

moment TM and lanthanide compounds.

Chap. 3 focused on correlation e�ects in various phases of iron at high-pressure conditions.

In particular, a signi�cant enhancement of dynamical correlations at the pressure-induced α→ ε

phase transition is predicted by these calculations. This enhancement is explained by the fact

that dynamical correlations are strongly suppressed by the static spin polarization in ferromag-

netic α-Fe; this polarization is absent in paramagnetic hcp ε-Fe. In result, our calculations

predict large many-body corrections to the equation of state of the ε-phase and a signi�cant

electron-electron scattering contribution to its electrical resistivity for the moderate pressure

range up to 50 GPa. We also predict an electronic topological transition to occur in this inter-

mediate pressure range thus explaining observed peculiarities in the evolution of its hexagonal

cell parameters, Debye velocity and Mössbauer central shift.

Applying the same framework to the geophysically-important regime of the Earth's inner

core conditions we �nd a strong structural dependence of electronic correlations ranging from an

almost ideally Fermi-liquid hcp ε-phase to strongly non-Fermi-liquid bcc α-Fe. The many-body

correction to the electronic total and free energies is consequently also strongly structurally de-

pendent. The strength of correlations in iron is found to be sensitive to the local environment and

signi�cantly a�ected by the presence of Ni nearest neighbors. Finally and quite unexpectedly,

the predicted "dull" Fermi-liquid state of ε-Fe leads to a signi�cant suppression of the Lorenz

number resulting in an enhanced contribution of the electron-electron scattering to the thermal

resistivity. This enhancement of the thermal resistivity as compared to electrical one is di-

rectly related to a strong (quadratic) frequency dependence of the Fermi-liquid electron-electron

scattering rate.

All these results have been obtained by the numerically-exact continuous-time quantum

Monte Carlo (CT-QMC) method, which is equally reliable for all considered regimes of cor-

relations (e. g., Fermi-liquid/non-Fermi-liquid, paramagnetic/ferromagnetic phases). However,
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this approach is computationally heavy thus restricting its applicability to more di�cult cases

like highly-degenerate f shells of rare-earth elements, strong spin-orbit coupling, low-symmetry

systems and complex magnetic orders.

In Chap. 4 we focus on precisely such kind of systems - local-moment lanthanide and TM

compounds. We demonstrate that DFT+DMFT, even in conjunction with the simplest quasi-

atomic many-body approach, the Hubbard-I approximation, provides quite coherent and quan-

titative description of some magnetic and electronic properties of these systems. In particular,

DFT+Hubbard-I is a reliable tool for evaluating the crystal-�eld splitting on localized 4f shells in

lanthanides. The hybridization contribution to CF is e�ectively accounted for by representing the

4f states by extended Wannier orbitals, while the unphysical DFT self-interaction contribution

to CF can be also e�ciently suppressed within DFT+Hubbard-I . The calculated crystal-�eld

splitting is in good quantitative agreement with experiment for SmCo5 and rare-earth oxychlo-

rides ROCl. Applying the same approach to perspective hard-magnetic intermetalics of the

RFe12X family we �nd a strong sensitivity of CF to the interstitial X directly impacting the key

single-ion rare-earth contribution to the magnetic anisotropy. The interplay of CF with exchange

or external magnetic �elds impacts both high and low-energy electronic structure of lanthanide

compounds and is shown to be detectable in photoemission and Fermi-surface measurements.

Finally, inter-site exchange coupling in local-moment systems like superexchange and RKKY,

though not captured by the standard DFT+Hubbard-I, can be extracted using a linear re-

sponse technique presented in Sec. 4.3. This method is based on evaluating the response of

DFT+DMFT grand potential to simultaneous �uctuations on two localized shells with respect

to their symmetry-unbroken paramagnetic state. Using this approach one may calculate not

only standard Heisenberg-like spin-spin interactions, but also couplings between orbital and

multipolar local degrees of freedom as demonstrated by employing it to obtain an ab initio

Kugel-Khomskii Hamiltonian for a realistic TM �uoride.

Perspectives:

Further development of the work presented in this review will be focused on more precise

treatment of many-electron e�ects and their interplay with other degrees of freedom in these

systems.

In particular, the present DFT+DMFT framework is still too simpli�ed to fully account for

the complex physics of iron under pressure. Some promising directions for further research on

this exciting system are listed below:

• The use of full rotationally-invariant Coulomb interaction instead of its simpli�ed density-

density form may be important, e.g., in the case of iron and its alloys. Non-density-

density spin-�ip terms of the local vertex were found by [Pourovskii et al., 2014b] to be
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essential to account for the collapse of static antiferromagnetism in this phase. The e�ect

of rotationally-invariant interaction in ε-Fe thus needs to be fully investigated 1.

• A very signi�cant contribution of the electron-electron scattering to the electrical resis-

tivity of ε-Fe and its non-Fermi-liquid behavior at low temperatures, as well as a non-

conventional (spin-�uctuation-paring) superconductivity experimentally observed in this

phase, hint at important inter-site correlations, which can be included only by approaches

beyond the single-site approximation. Hopefully, the recent progress in development of

extended-DMFT frameworks [Rohringer et al., 2018] will eventually make accessible the

most important two-particle quantities (e.g., the full k and ω-dependent magnetic suscep-

tibility or vertex corrections to the transport) for realistic multi-band systems with possibly

signi�cant intersite correlation, like ε-Fe in the moderate pressure range.

• The density-density approximation for the local vertex is not qualitatively important in

the case of EIC conditions2. The non-local correlations are also expected to be less impor-

tant away from magnetic instabilities and with a lower strength of correlations at the high-

density of the EIC matter. In contrast, the �xed-lattice approximations is quite severe when

one considers temperatures just below the melting. Correspondingly, future studies of the

impact of lattice vibrations on electronic correlations and vice versa are in this case of high

importance. Fully consistent DFT+DMFT ab initio molecular dynamics will remain pro-

hibitively computationally expensive for some time, therefore, one still needs to make use of

the usual approximation of evaluating the electronic structure at �xed ionic coordinates. In

order to assess the e�ect of lattice distortions on many-electron e�ects one may thus employ

a set of supercells representing characteristic deviations from the perfect atomic positions

expected for a given phase at relevant temperatures. Conversely, the impact of electronic

correlations on lattice vibrations, at least in the harmonic approximation, can be studied us-

ing the recently formulated DFT+DMFT schemes for calculation of forces and phonon dis-

persions [Leonov et al., 2012, Leonov et al., 2014a,Haule and Pascut, 2016]. Eventu-

ally, the impact of light elements inclusions needs to be also included in realistic simulations

of the EIC matter.

In the case of localized compounds an obvious limitation of the framework presented in

Chap. 4 is the Hubbard-I approximation. This approximation drastically restricts the range of

applicability for the DFT+DMFT; a full solution of the quantum impurity problem is necessary

1Preliminary calculations with such local vertex were not successful due to a persistent sign problem
[Seth, 2016]

2In particular, the inclusion of rotationally-invariant local interaction the study of ε-Fe by
[Pourovskii et al., 2017] led only to some quantitative changes compared to the previous study within the
density-density approximation, see also Appendix A.
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for more general systems deviating from strictly localized limit.

This concerns, of course, Ce and Yb systems, for which the Kondo phenomenon can-

not be neglected. In particular, Ce-based hard-magnetic intermetallics have attracted a lot

of attention recently [Zhou et al., 2014, Goll et al., 2014]; in order to predict theoretically

their magnetic anisotropies one needs to fully include the e�ect of Kondo screening for the

Ce 4f shell [Capehart et al., 1993]. The magnetism and one-electron spectra of Ce-based

heavy-fermion compounds at low temperatures has been recently evaluated by DFT+DMFT

in conjunction with the CT-QMC method [Matsumoto et al., 2009, Pourovskii et al., 2014a,

Goremychkin et al., 2018]. However, the magnetic anisotropy is a sensitive quantity and it

is not clear whether one will be able to quantitatively evaluate it using stochastic many-body

techniques like the CT-QMC. Analytical strong-coupling approaches brie�y described in Sec. 4.1

can thus be also employed for such systems. The impact of heavy-fermion phenomenon on

the structural stability of Ce-based intermetallics has not been so far studied by advanced ab

initio approaches; this question is certainly of high interest for technological applications. In

general, the interplay of TM ordered magnetism and heavy-fermion physics is not restricted

to Ce systems, among Yb compounds one may mention, e. g., the YbMn6Ge6−xSnx system

[Mazet et al., 2013].

The approach for evaluating inter-site exchange interactions (ISE) presented in Sec. 4.3 has

been to date formulated only in the framework of Hubbard-I approximation and applied to

a very limited set of systems. There one may point out several perspective directions both

for applications of the existing framework and for its generalization beyond the quasi-atomic

approximation:

• The existing method can be applied to a number of classical multipolar-ordered systems,

like actinide dioxides [Santini et al., 2009], cerium hexaboride [Cameron et al., 2016],

Pr-based skutterudites [Shiina, 2004] etc. Such phenomena have so far been studied by

a combination of experiment and simpli�ed theoretical models; the input from ab initio

methods has been rather limited [Pi et al., 2014]. The present technique might be able

to reliably extract inter-site multipolar exchange couplings in these systems, to asses their

sensitivity to lattice distortions, pressure etc.

• There is no obvious theoretical limitation to extending the present technique beyond the

Hubbard-I approximation. Such generalization should be based on evaluating the response
δΣR
δρ(R) of the DMFT self-energy to a �uctuation of the on-site density matrix (see eq. 4.9),

which should be accessible as a two-particle correlation function, e. g., by CT-QMC and

other exact techniques.

• The generalization described above should make the method applicable to a wide range
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of compounds, where a magnetic (multipolar) order coexists/competes with the heavy-

fermion behavior. Extracting the inter-site exchange experimentally is especially challeng-

ing in such cases as it is intertwined with the Kondo local-moment screening. As example

of perspective systems to study with the generalized technique one may point out RKKY

interactions in the "115" and "112" families of Ce/Yb compounds as well as the famous

"hidden" order in URu2Si2.

In addition, to evaluate various physical properties of interest one needs eventually to solve

the derived low-energy quantum Hamiltonian. It would be, of course, preferable to advance

beyond the single-site mean-�eld approximation to include intersite and quantum e�ects, es-

pecially for low-dimensional or frustrated systems. For this task one may consider employ-

ing a rich range of techniques developed in the �eld of quantum magnetism, from non-linear

spin-waves [Chernyshev and Zhitomirsky, 2009] and Swinger bosons [Auerbach, 1994] to

di�erent quantum Monte Carlo methods [Sandvik, 2010].





Appendix A

The impact of density-density

approximation: Fe at the inner core

conditions

In this appendix we illustrate the impact of density-density approximation for the local Coulomb

interaction by performing DFT+DMFT calculations with and without this approximation for the

bcc α and hcp ε iron phases at the Earth's core condition. Self-consistent in the charge density

DFT+DMFT calculations (Sec. 2.3) were thus carried out for the perfect bcc and hcp lattices at

the atomic volume of 7.05 �A/atom expected for the inner core of Earth and the temperature of

5800 K. The on-site Coulomb interaction was de�ned by the parameters U =5.0 eV, JH =0.93 eV

previously used in the study of ε-Fe by [Pourovskii et al., 2017]; the same choice for the energy

window ( [-10.8 eV, 4.0 eV] around the Fermi level) was also employed for the Kohn-Sham states

used to construct Wannier orbitals representing Fe 3d states. The DMFT impurity problem was

solved by the hybridization-expansion quantum Monte Carlo impurity solver using its segment-

picture version [Werner et al., 2006, Gull et al., 2011] in case of the density-density (Ising)

vertex and the implementation of [Seth et al., 2016] in the case of full rotationally-invariant

Figure A.1: Left panel: The imaginary part of DMFT self-energy on the Matusbara grid for the
non-degenerate orbitals of the Fe 3d shell in the bcc structure calculated with the rotationally-
invariant (�lled symbols) and density-density (empty symbols) local Coulomb interaction, re-
spectively. Right panel: the same for the hcp structure.
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conditions

one.

The resulting DMFT self-energies for both phases are compared in Fig. A.1. For both bcc

and hcp-Fe the use of density-density approximation results in a systematic underestimation

of the magnitude of scattering |ImΣ(iωn)|, which is, however, more pronounced in the case of

more correlated bcc. Qualitative features, like the eg orbitals markedly more correlated than

the t2g ones in bcc-Fe as well as a uniform Fermi-liquid behavior of all orbitals in hcp, are well

captured within the density-density approximation. We have also calculated the transport using

the approach outlined in Sec. 3.3.2 and these self-energies analytically continued to the real-

energy axis. The electrical and thermal conductivities for bcc are found to be overestimated by

40% and 29%, respectively, due to the density-density approximation. As expected, the impact

of this approximation for the less-correlated hcp phase is smaller and amounts to 33% and 23%,

respectively. Hence, though the use of full vertex does not lead to qualitative changes it is still

found to be important for quantitative results.



Appendix B

DFT+Hubbard-I calculations of

rare-earth oxychlorides ROCl

The ROCl oxychlorides (R =Nd, Sm, Dy) were calculated using their experimental lattice struc-

tures measured by [Höls�a et al., 2002]. The tetragonal unit cell of these compounds (space

group P4/nmm) exempli�ed by SmOCl is shown in Fig. B.1. The extended Wannier orbitals

representing RE 4f states were constructed using only 4f -like KS bands located in the vicinity

of the Fermi level, as shown in Fig. B.1. The localized Wannier orbitals were constructed using

a wide range of bands enclosed by the energy window W ∈[−6 : 11.5] eV, i. e., using all the

bands shown in Fig. B.1.

Figure B.1: Left panel: the unit cell of SmOCl. Right panel: the DFT band structure of SmOCl.
The extended Wannier orbitals for Sm 4f are constructed only from the 4f -like KS bands located
in the vicinity of the Fermi level (in red). The splitting between two manifolds of those 4f bands
is due to the spin-orbit coupling. All other bands displayed (in blue) are included (together with
the 4f ones) in the construction of localized Wannier orbitals.

The local Coulomb interaction between RE 4f orbitals was speci�ed by the Hund's rule

coupling JH equal to 0.77, 0.85, and 0.99 eV for Nd, Sm, and Dy ions, respectively, the Slater
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parameter F 0 = U = 7.5 eV was employed all ions. The chosen value of U is in the middle

of a typical range from 5 to 10 eV expected for RE compounds; the values of JH , which are

known to be almost completely independent of the crystalline environment, are taken from

[Carnall et al., 1989]. Crystal-�eld e�ects exhibit a weak dependence on U and JH as long

as these parameters remain larger than other relevant energy scales of the problem (i. e., the

spin-orbit coupling and crystal �eld itself), as explicitly veri�ed by [Delange et al., 2017].

Self-consistent in the charge density DFT+HubI calculations were carried employing the self-

interaction-suppressed scheme (eq. 4.5) with the corresponding degeneracies of 10, 6, and 16 of

the ground-state multiplets for the Nd, Sm, and Dy ions, respectively. The LDA exchange cor-

relations was employed and the spin-orbit included in the second variation procedure. The fully-

localized-limit double counting correction [Czy
zyk and Sawatzky, 1994] was used throughout

and evaluated with the nominal 4f occupancies of RE ions [Pourovskii et al., 2007].
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Glossary

AFM : Antiferromagnetic

AIM : Anderson Impurity Model

ARPES : Angular-Resolved Photoemission Spectroscopy

CF : Crystal Field

CFP : Crystal-Field Parameter

cLDA : constrained Local Density Approximation

cRPA : constrained Random Phase Approximation

CT-QMC : Continuous-Time Quantum Monte Carlo

DC : Double Counting

DFT : Density Functional Theory

DMFT : Dynamical Mean-Field Theory

EIC: Earth's Inner Core

EF: Exchange Field

ETT : Electronic Topological Transition

FL : Fermi Liquid

GF : Green's Function

GGA : Generalized Gradient Approximation

GSM : Ground-State Multiplet

HIA : Hubbard-I Approximation

HubI : Hubbard-I

ISE : Inter-Site Exchange

KS : Kohn-Sham

LDA : Local Density Approximation

LSDA : Local Spin-Density Approximation

PDOS : Partial Density of States

PES : Photoemission Spectroscopy

QIP : Quantum Impurity Problem

RE : Rare Earth

SE : Superexchange

SIC : Self-Interaction Correction

SO : Spin-Orbit

TM : Transition Metal

TMO : Transition-Metal Oxide

WO : Wannier Orbital

XC : Exchange and Correlation
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