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m’avoir tant appris sur les méthodes Monte Carlo, à Nizar pour m’avoir ouvert des portes sur des sujets
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Merci à tous les collègues de l’équipe de mathématiques financières, Nicolas Baradel, Charles Bertucci,
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Abstract: In this habilitation thesis, we present a selection of some of our recent contributions to the

field of volatility modeling and risk management and to the solution of numerical problems related to

risk computations in finance. A class of numerical problems we consider is the approximate simulation

of stochastic processes and of nested expectations by means of multilevel schemes, to which the first part

of the manuscript is dedicated. In a second part, we consider a problem of robust risk management for

volatility derivatives. We derive optimal super-replication stragegies for VIX options based on Vanilla

options on the underlying SP500 index and on VIX futures. In this part, we exploit tools from the theory

of optimal transport with martingale constraints. The last part of the document is devoted to asymptotic

expansion techniques for diffusions processes and other recent generations of financial models involving

fractional processes (rough volatility models). The involved mathematical tools are pathwise large deviations

and Malliavin calculus, the latter allowing to provide rigorous error estimates for the involved asymptotic

expansions.

Keywords: Stochastic analysis, Malliavin calculus, Large deviations, Multilevel simulation,

nested risks, robust hedging, volatility management, rough volatility, implied volatility surface,

local volatility surface, VIX derivatives

Résumé : Dans ce rapport de sythèse, nous présentons une seléction de certaines de nos contributions

récentes à des problèmes de modélisation et gestion des risques sur la volatilité des actifs, ainsi qu’au

traitement de certains calculs de risques liés à des portefeuilles de dérivés. Une catégorie de problème

numériques que nous traitons est la simulation approchée de processus stochastiques et de certaines espérance

embo1̂Itées à l’aide de la méthode multi-niveaux, à laquelle la première partie de ce manuscrit est consacrée.

Dans une deuxième partie, nous considérons un problème de couverture robuste de dérivés de volatilité.

Plus précisément, nous obtenons des stratégies optimales de sur-réplication pour les options sur l’indice VIX,

construites à partir d’options Vanilles sur l’indice SP500 sous-jacent et de contrats futures VIX. Dans cette

partie, nous exploitons des outils venant de la théorie du transport optimal avec contrainte de martingale.

La dernière partie de ce document est dediée à des problèmes de calcul asymptotique pour les processus

de diffusion et autres classes récentes de modèles de prix faisant intervenir des processus fractionnaires (les

modèles rough volatility). Les outils que nous employons ici viennent de la théorie de grandes déviations

trajectorielles ainsi que du calcul de Malliavin, ce dernier nous permettant de formuler des estimations

d’erreur pour les expansions asymptotiques.

Mots clés : Analyse stochastique, calcul de Malliavin, grandes déviations, simulation multi-

niveaux, risques embo1̂Ités, couverture robuste, risque de volatilité, volatilité rough, surface

de volatilité implicite, surface de volatilité locale, dérivés sur le VIX
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Chapitre 1

Introduction

Contents

1.1 Estimation of expectations in the presence of a bias : Monte Carlo and Multilevel

Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 An archetypal example : Euler scheme for SDEs . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The Multilevel method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Forward variance modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 A model class based on finite-dimensional Brownian motions . . . . . . . . . . . . . . . 7

1.2.1.1 Instantaneous volatility and consistent modeling of S . . . . . . . . . . . . . . 8

1.2.1.2 An explicit class of forward variance models . . . . . . . . . . . . . . . . . . . 9

1.2.2 On financial modeling with rough volatility . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Elements of Martingale Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Classical optimal transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Super-replication of exotic options and martingale optimal transport . . . . . . . . . . . 12

In this introductory chapter, we collect some basic results, present the most important objects and intro-

duce the main problems that will be studied in the rest of the manuscript.

1.1 Estimation of expectations in the presence of a bias : Monte Carlo

and Multilevel Monte Carlo methods

Suppose we want to estimate some quantity z P R with a random estimator pZ. We have the classical

bias-variance decomposition of the mean squared error

MSE � E
��
z � pZ�2

�
� pbiasq2 � variance

where

bias � E
� pZ�� z

and

variance � Var
� pZ�.

Unbiased estimation. A typical situation is the evaluation of expectations : we wish to evalue z � ErZs for

a, say, square-integrable random variable Z. Of course, if the random variable Z can be simulated exactly,

the empirical mean of independent an identically distributed (i.i.d.) samples pZmqm�1,...,M ,

pZM � 1

M

M̧

m�1

Zm ,
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offers an unbiased estimator of ErZs :

MSE � Var
� pZM� � 1

M
VarpZq .

In order to achieve a target mean squared error of order MSE � Opε2q for some given error tolerance ε ¡ 0,

we therefore have to choose M � VarpZq
ε2

. The computational cost of the empirical mean pZM is linear in M

(assuming each sample Zm has Op1q cost), so that, eventually, the computational cost of the empirical mean

is

Cunbiased � Opε�2q ,
for a target mean squared error MSE � Opε2q. Any unbiased estimator with linear cost squares this property.

Of course, in several situations, the involved random variable Z cannot be simulated exactly. This is typi-

cally the case when non-linear functions of expectations are involved, or when the solution of a continuous-

time stochastic differential equation is approximated via some discretization scheme.

Functions of expectations. Suppose that the aim is to evaluate a function of an expectation, say g
�
ErZs�

for a given function g. The estimator obtained composing g with the empirical mean,

pZM � g

�
1

M

M̧

m�1

Zm



,

is not unbiased any more : it is classical that, if g P C2
b , the estimator bias behaves as

E
�
g

�
1

M

M̧

m�1

Xm


�
� g

�
ErXs� � O�

1

M



as M Ñ8 ,

while the variance is still Var
�
g
�

1
M

°M
m�1Xm

		
� O �

1
M

�
. Consequently, the MSE still behaves as

MSE � O
�

1

M



(in other words : the bias is asymptotically negligible in front of the statistical error), and we are back to

the unbiased case : MSE � Opε2q is achieved setting M � Opε�2q, so that the computational cost of the

estimator is still C � OpMq � Opε�2q.

1.1.1 An archetypal example : Euler scheme for SDEs

Consider the Stochastic Differential Equation (SDE)

Xt � X0 �
» t

0
bps,Xsqds� σps,XsqdWs , t ¤ T ,

where bpt, xq and σpt, xq are, say, Lipschitz functions of x uniformly over t P r0, T s. The goal is to estimate

z � E rgpXT qs for a given function g ; when XT cannot be simulated exactly, one can appeal to the Euler

scheme with n time steps$&% pXn
tk�1

� pXn
tk
� b

�
tk, pXn

tk

� T
n
� σ

�
tk, pXn

tk

� �
Wtk�1

�Wtk

�
pXn

0 � X0 ,
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where tk � k TN . The estimator based on M i.i.d. samples p pXn,mq1¤m¤M of the Euler scheme with n steps is

pZM,n � 1

M

M̧

m�1

g
� pXn,m

T

	
.

If g is sufficiently smooth, the Euler scheme is known to have weak rate of convergence of order 1 : the

estimator bias behaves as

E
�
gp pXn

T q
�
� E rgpXT qs � O

� 1

n

	
.

The variance of pZM,n of course satisfies

Var

�
1

M

M̧

m�1

gp pXn,m
T q



� 1

M
Var

�
gp pXn

T q
	
¤ C

M
, @ n ¥ 1 .

Overall, we have

MSEp pZM,nq ¤ C

�
1

n2
� 1

M



.

In order to achieve a target mean squared error MSE � Opε2q for some given error tolerance ε ¡ 0, we have

to take

n � Opε�1q, M � Opε�2q
which yields the overall computational cost

C �Mn � Opε�3q ,

which is of course asymptotically much worse than the cost of order Opε�2q of an unbiased estimator. The

natural question at this point is : can we do better ? In other terms, can one design an alternative estimator

with a better computational complexity for the same target error level ?

1.1.2 The Multilevel method

We now aim at introducing the main ideas and notation for the so-called Multilevel method, introduced in

the field of Monte Carlo simulation of stochastic processes by the seminal work of Giles [48], building on

ideas of Heinrich [61, 62, 63]. In a nuthsell, the principle of the Multilevel method is to combine estimators

with different accuracy (different bias) and built with common random numbers, in such a way to profit

from cancellations between their biases (in the spirit of Richardson-Romberg extrapolation) and, at the

same time, to profit from variance reduction from the presence of control variates.

Let us present the construction of such an estimator more in details. In a general setting (encompassing

the problem of nested expectations in the previous section, and many other problems related for example to

the discretization of continous time stochastic processes), assume we can exactly simulate approximations

Zl of a random variable Z with increasing accuracty (that is, decreasing bias)

ErZls � ErZs Ñ 0 as lÑ8

but increasing computational cost. Let us fix a maximum level of approximation L P N. The telescopic sum

ErZLs � ErZ0s �
Ļ

l�1

ErZl � Zl�1s, (1.1.1)
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suggests to define the estimator

pZM0,...ML
� 1

M0

M0̧

m�1

Z
p0,mq
0 �

Ļ

l�1

1

Ml

Mļ

m�1

�
Z
pl,mq
l � Z

pl,mq
l�1

	
(1.1.2)

where Ml is the number of samples used to approximate ErZl � Zl�1s (with the convention Z�1 � 0).

Since it combines estimators (the inner empirical means 1
Ml

°Ml
m�1) associated to different levels of accuracy,pZM0,...ML

will be dubbed multilevel Monte Carlo estimator (MLMC, or simply ML, in short).

The random samples Z
pl,mq
l and Z

pl,mq
l�1 are constructed according to the following recipe :

� For every level l,
�
Z
pl,mq
l

�
m¤Ml

and
�
Z
pl,mq
l�1

�
m¤Ml

are i.i.d. samples of of Zl and Zl�1, respectively ;

� For every level l, Z
pl,mq
l and Z

pl,mq
l�1 constructed with common random numbers, so that the variance

at level l can be estimated via the strong error

Vl � VarpZl � Zl�1q ¤ ||Zl � Zl�1||22E
�pZl � Zl�1q2

�
¤ 2E

�pZl � Zq2�� 2E
�pZl�1 � Zq2�;

� There is independence among levels : all the random samples used at level l are independent from the

ones used at other levels.

The estimator (1.1.2) is parametrized by L and by the integers pMlql�0,...,L representing the simulation

budget allocated at each level. We are free to choose the value of such hyper-parameters according to an

optimality criterion, as we explain below.

Mean-squared error and complexity of the estimator. The computational cost of the Multilevel

estimator pZM0,...ML
is

C �
Ļ

l�0

Ml costpZlq.

In light of (1.1.1), it is clear that Er pZM0,...ML
s � ErErZLss, so that biasp pZM0,...ML

q � biaspZLq. By indepen-

dence among the levels, we have

MSE � pbiaspZLqq2 � variance � pbiaspZLqq2 �
Ļ

l�0

Vl
Ml

.

We can now fix an target error tolerance ε and look for the estimator with the lowest computational cost

among all those achieving the desired mean squared error. Doing so, we are left with the optimization

problem

min
M0,...,Ml

�
computational cost

�
under the constraint MSE � ε2 ,

that is

min
M0,...,Ml

Ļ

l�0

Ml costpZlq under pbiaspZLqq2 �
Ļ

l�0

Vl
Ml

� ε2 . (1.1.3)

The solution M�
0 , . . . ,M

�
l of (1.1.3) and the final cost value

°L
l�0M

�
l costpZlq of course depend on the

behaviour of costpZlq, biaspZLq and on the variance Vl � VarpZl � Zl�1q for the specific case at hand.

The following theorem, usually referred to as “The Multilevel Monte Carlo Theorem”, sums up the behavior

of the resulting optimal ML estimator according to the available estimates for the bias, variance and cost

at each level l.
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Theorem 1.1 (Giles 2008 [48]). Fix a parameter h ¡ 0 (representing accuracy) and the sequence

hl � h

2l
, l ¥ 1.

Assume there exists constants c1, c2, c3 and coefficients α, β, γ ¡ 0 such that

(i) |ErZls � ErZs| ¤ c1 h
α
l (bias estimate)

(ii) ||Zl � Zl�1||22 ¤ c2 h
β
l (strong error estimate)

(iii) costpZlq ¤ c3

�
1
hl


γ
(cost estimate)

Then, there exist a number of levels L and sample sizes pMlq0¤l¤L such that the ML estimator achieves

MSE � ε2 with computational cost

C �

$'''&'''%
O
�
ε�2� γ�β

α

	
if β   γ

O
�
ε�2plog εq2

	
if β � γ

O
�
ε�2

	
if β ¡ γ

Note that the strong error estimate in point (ii) allows to upper bound the variance at level l, via Vl ¤
||Zl � Zl�1||22. When applying Theorem 1.1 to the estimation problems considered in Chapters 2 and 3, we

aim at keeping track of the vaues of the constants α, β and γ, which will be explicitly displayed next to our

bias and variance estimates.

1.2 Forward variance modeling

We consider a market containing a (tradable or non-tradable) asset S, in which forward contracts – or future

contracts, according to the type of market – and European options on S are traded for arbitrary maturities

T . We denote F Tt , t ¤ T , the forward price of S quoted at time t for the maturity T .

• The spot log-contract on S, traded at time t for the maturity T , is the European option with payoff

� 2
T�t log ST

St
.

• The forward log-contract on S on the future time interval rT2, T1s, T2 ¥ T1, is the option with payoff

� 2
T2�T1

log
ST2
ST1

; such a contract can be traded at earlier times t ¤ T1.

Definition 1.1 (Log-contract forward variance). The forward variance V T1,T2
t of the log-contract over the

future interval rT1, T2s, observed at time t ¤ T1, is given by

V T1,T2
t � pricet

�
� 2

T2 � T1
log

�
ST2

ST1




. (1.2.1)

In (1.2.1) , the notation pricetpHq stands either for the observed market price of claim H, or for the price

generated by a model – accordingly, we speak of market forward variance or model forward variance. For

simplicity, in this manuscript we consider zero interest rates, and zero dividends and repo rates when the

asset S is tradable. If this is not the case, ST1 should be replaced inside (1.2.1) by the forward price F T2
T1

observed at time T1 for the maturity T2.
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Due to the elementary identity log
ST2
ST1

� log
ST2
St
�log

ST1
St

, we have, assuming linearity of the price operator

pricet, the following relationship between forward variances

V T1,T2
t � pT2 � tqV t,T2

t � pT1 � tqV t,T1
t

T2 � T1
, @t ¤ T1 ¤ T2.

Remark 1.1 (Forward variances are implied variances). It is interesting to note that, in (1.2.1), we define

a variance by means of a price. Is something missing in (1.2.1), in other words, are we missing a trans-

formation that maps a price into a variance parameter ? The answer is no, and this is clear once we have

considered the Black-Scholes price of the log-contract : in a Black–Scholes model with volatility parameter

σ, the log contract is worth

priceBS
t

�
� 2

T2 � T1
log

�
ST2

ST1




� � 2

T2 � T1

�
�1

2
σ2pT2 � T1q

	
� σ2.

This means that

b
V T1,T2
t in Definition 1.1 is precisely the unique volatility parameter σ has to be injected

inside the Black-Scholes formula in order to retrieve the price of the log-contract on the right hand side of

(1.2.1) ; in other words,

b
V T1,T2
t is the implied volatility (resp. V T1,T2

t the implied variance) of the forward

log-contract over rT1, T2s, observed at time t.

Remark 1.2. Forward variance can also be defined from Variance swaps quotes. In general, log-contract

forward variances V T1,T2
t and Variance swap forward variances Ṽ T1,T2

t do not coincide – simply because they

are implied variances of different contracts – even if their observed relative difference is typically small, see

[13, Chapter 5].

Being prices (or equivalenty, implied variances, see Remark 1.1), forward variance are observable. An

important example of a market quoting forward variances of log-contracts is the VIX market : when S is the

SP500 index, the VIX index quoted by the Chicago Board of Options Exchange (CBOE) at a given (present

or future) time T is

VIXT :�
b
V T,T�∆
T �

d
priceT

�
� 2

∆
log

�
ST�∆

ST




, (1.2.2)

where ∆ � 30 days is a fixed time horizon. Since the log-contract itself is not a traded object on the

CBOE, its price is quoted by static replication of the payoff lnpSq with call and put options ; the precise

way the continuous static replication formula is discretized over the observed option strikes and maturities

is described in the VIX White paper [26].

In practice, option prices are quoted only for a finite set of market maturities pTiqi�1,...,n. A stochastic

dynamic model could target the underlying asset S and the set of discrete forward variances pV Ti,Ti�1
t qi�1,...,n,

resulting in a n � 1-dimensional model. Instead of doing so, a more parsimonious approach, pioneered by

Dupire [34] and then intensively studied by Buheler [24] and Bergomi [14, 13], is to model for instantaneous

forward variances ξTt , defined by

ξTt � d

dT

�
pT � tqV t,T

t

	
, t ¤ T , (1.2.3)

assuming that, for every t, forward variances V t,T
t are differentiable with respect to their maturity parameter

T . Once a model for the instantaneous – and therefore, strictly speaking, unobserved – object ξut has been
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settled, the observed discrete forward variances are retrieved via integration over the parameter u,

V t,T
t � 1

T � t

» T
t
ξut du (1.2.4)

and

V T1,T2
t � 1

T2 � T1

» T2

T1

ξut du (1.2.5)

We note in passing the analogy with forward rate modeling, where instantaneous forward rates fpt, T q are

defined from bond prices.

Remark 1.3 (Modeling approaches). It can be instructive to situate the forward variance modeling consi-

dered in this section with respect to other existing modeling approaches.

1. Instantaneous volatility modeling : the target objects are the asset price St and its instantaneous

volatility σt, typically modeled via a stochastic differential equation for the couple pSt, σtq, a two-

dimensional object. Classical stochastic volatility models such as the Heston and the SABR model

follow this approach ; options on S have to be priced according to some numerical procedure and then

implied volatilities of vanilla options – or forward variances – have to be extracted from the numerically

computed prices.

2. Implied volatility surface modeling : the target objects of the stochastic modeling are the asset price

St and the implied volatility surface of Vanillas. This approach is ambitious, for it requires to model

the entire volatility surface, an infinite dimensional object parameterized by two variables (the option

maturity T and the strike price K), which is known to be a difficult task, see [81] and [13, chapter

4]. The challenge is to build an explicit random surface satisfying at every point t in time the static

no-arbitrage conditions for different values of T and K, while still satisfying the dynamic no-arbitrage

conditions for every fixed pT,Kq as t moves, and overall generating realistic joint dynamics for implied

volatilities and the underlying asset S.

Choosing to target instantaneous forward variances (and therefore integrated forward variances (1.2.5)), we

are jointly modeling the asset St and the prices of a one-dimensional family of derivatives (here, specifically :

log-contracts), as opposed to the two-dimensional implied volatility surface. This task is less ambitious than

the full implied volatility surface in the modeling approach 2 above, while still keeping a considerable amount

of flexibility and enhanced dynamical properties with respect to the simplied instantaneous volatility modeling.

Remark 1.4 (Forward variances are local martingales). According to Definition 1.1, for any choice of T1

and T2, the forward variance pV T1,T2
t qt¤T1 is the price of an option with fixed payoff ; as a consequence, within

a pricing model, forward variances (1.2.1) have to be modeled by local martingales under the pricing measure.

This appealing feature of forward variances simplifies the modeling problem with respect to the modeling of

implied volatilities of Vanilla options (which are not driftless) : we can freely specify the volatility of forward

variances, and then simply have to set their drift to zero.

1.2.1 A model class based on finite-dimensional Brownian motions

We want to set up a dynamic model for the random curve

T ÞÑ ξTt , T ¥ t,
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together with a model for the asset price S. According to Remark 1.4, we look for models in which instan-

taneous forward variances have zero drift.

For every fixed T , we can ask that pξTt qt¤T is the solution of the equation

ξTt � ξT0 �
» t

0
aT

�
s, ξTs

�
KpT, sq � dWs, t ¤ T (1.2.6)

where W a n–dimensional Brownian motion on a stochastic basis pΩ,F , pFtqt¥0,Pq, possibly with correlated

components xW i
t ,W

j
t y � ρij t, and K : r0,8q2 Ñ Rn is a deterministic kernel satisfying KpT, sq � 0 for

s ¡ T . The notation KpT, sq�dWs stands for
°n
i�1KipT, sqdW i

s . For every T , the function aT : r0, T s�RÑ R
plays the role of a local volatility function for the forward variance ξTt . Finally, pξT0 qT¥0 denotes the initial

instantaneous forward variance curve – an observable market parameter (up to the computation of the

derivative in (1.2.3)).

Note that (1.2.6) is a family of SDEs, indexed by the parameter T . For every fixed T , existence and

uniqueness of solutions are standard issues and can be guaranteed assuming appropriate conditions on the

function aT and the kernel K. Being the solution to (1.2.6), every forward variance pξTt qt¤T is a local

martingale and a Markov process.

According to the choice of the kernelK (and of the function aT p�q), the model (1.2.6) can admit a Markovian

representation of the forward variance curve, that is a representation of the form

ξTt � fpt, T,Xtq (1.2.7)

simultaneously for all t ¥ 0 and all T ¥ t, where pXtqt¥0 is some finite-dimensional Markov process. A

representation such as (1.2.7) in general simplifies the simulation and computational issues related to the

use of the model (1.2.6).

1.2.1.1 Instantaneous volatility and consistent modeling of S

Once the model (1.2.6) for forward variances has been fixed, we look for a joint model for the asset price

St. A possible choice is to use the stochastic volatility model

dSt � St

b
ξtt dBt (1.2.8)

where B is a Brownian motion adapted to Ft, possibly correlated with W . The diagonal process ξtt � ξTt
��
t�T

has to be well defined in order for (1.2.8) to make sense.

Suppose we want to price a log-contract under the model (1.2.8). If we generate the price of derivatives

with conditional expectations, by Itô’s formula applied to logpSq we have

pricemodel
t

�
� 2

T2 � T1
log

�
ST2

ST1




� E

�
� 2

T2 � T1
log

�
ST2

ST1


����Ft�
� 1

T2 � T1

» T2

T1

E rξuu |Ftsdu � 1

T2 � T1

» T2

T1

ξut du � V T1,T2
t .

(1.2.9)

Equation (1.2.9) shows that the prices of log-contracts in the asset price model (1.2.8) are precisely given by

the forward variances generated by the model (1.2.6) ; in other words, the couple of equations (1.2.6)–(1.2.8)

provides a consistent joint modeling of St and of all forwad variances ξut .
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The instantaneous variance in the asset price model (1.2.8),

Vt � ξtt � ξt0 �
» t

0
atps, ξtsqKpt, sq � dWs, t ¥ 0,

is a stochastic process that integrates the moving kernel Kpt, �q and the moving process atp�, ξt� q against

Brownian motion up to time t. We could refer to Vt as to a Volterra process due to the presence of the

integration kernel K, even if it is worth to notice that we have not obtained a Volterra process in the

terminology of Abi Jaber et al. [2], which would rather correspond to an equation of the form Vt � ξt0 �³t
0 aps, VsqKpt, sq � dWs.

1.2.1.2 An explicit class of forward variance models

The model class (1.2.6) is very wide – in general, it is not obvious how one would specify a local volatility

function aT p�q for each instantaneous forward variance (even though some efficient parametric examples can

be designed, such as the model family studied in section 5.3).

An effective instance of the model class (1.2.6) is obtained with the simple choice

aT pt, xq � x.

Moreover, we assume KpT, �q P L2
locpR�,Rnq for every T ¡ 0. In this setting, the explicit solution of (1.2.6)

is given by

ξTt � ξT0 exp

�» t
0
KpT, sq � dWs � 1

2

» t
0
KpT, sq � ρKpT, sqds



, t ¤ T , (1.2.10)

where
³t
0KpT � sq � ρKpT � sqds stands for

°n
i,j�1

³t
0KipT � sqρi,jKjpT � sqds.

It is clear that (1.2.10) defines a family of log-normal processes, indexed by the maturity parameter T .

Though it might seem excessively simple, (1.2.10) provides a first effective solution to the forward variance

modeling problem that still contains a good amount of flexibility via the choice of the kernel function K, the

number n of Brownian factors and their correlations ρij . From the point of view of simulation, an appealing

feaure of the model (1.2.10) is that only explicit functions of Gaussian random variables are involved (as

a consequence, instantaneous forward variances ξTt can be simulated exactly, even if integrated forward

variances (1.2.4)and (1.2.5) cannot, as we will discuss in detail in Chapter 2).

In fact, the model family (1.2.10) is widespread an used in practice ; it encompasses two of the main

examples in the literature :

 The n-factors Bergomi’s model [14], based on the exponential kernels

KipT, sq � ωi e
�kipT�sq, ωi, ki ¡ 0 i � 1, . . . , n . (1.2.11)

 The so-called rough Bergomi model of Bayer, Friz and Gatheral [9], corresponding to n � 1 and to

the power-law (or fractional) kernel

KpT, sq � η

pT � sq 1
2
�H , η ¡ 0, H P p0, 1{2q . (1.2.12)

A n factor version of this model can of course be considered, setting KipT, sq � ηi

pT�sq 1
2�Hi

, for possibly

different parameters ηi and Hi ; the original rough Bergomi model designed [9] corresponds to (1.2.12).
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In this setting, the instantaneous variance process induced by (1.2.10),

Vt � ξtt � ξt0 exp

�» t
0
Kpt, sqdWs � 1

2

» t
0
Kpt, sq2ds



� ξt0 exp

�
η

» t
0
pt� sqH�1{2dWs � η2

4H
t2H



,

(1.2.13)

is an explicit function of the Gaussian Volterra process» t
0
Kpt, sqdWs �

» t
0
pt� sqH�1{2dWs ,

which corresponds to the Riemann–Liouville Brownian motion. The process V admits a modification

with trajectories that are β–Hölder for every β   H   1{2, which explains the terminology “rough”

for the resulting stochastic volatility model (1.2.8). Several authors have reported that a small value

of H, namely H � 0.1, is appropriate to reconstruct the term structure of the at-the-money Vanilla

implied volatility skew observed on the SP500 market, see (1.2.14) below, cf. Alos et al. [6], Fukasawa

[41], Bergomi [13], and Bayer et al. [9].

1.2.2 On financial modeling with rough volatility

Without any ambition to exhaustively cover the numerous contributions to the field of rough volatility

modeling and rough volatility estimation that have appeared since the original insights of Alos et al. [6]

and Fukasawa [41] and the groundbreaking work of Gatheral, Jaisson and Rosenbaum [47], we would like to

schematically sum up here some of the main properties, advantages and possible disadvantages of the rough

volatility modeling framework.

A rough process such as (1.2.13) (possibly with other specifications of the kernel K, leading for example to

Mandelbrot’s fractional Brownian motion WH
t � ³t

0Kpt, sqdWs) can be used as a model for the instantaneous

realized volatility of an asset S, otherwise as a model for spot volatilities in an option pricing framework.

A rough volatility model for realized volatility

• has statistical evidence : the observed realized volatility of several stock indexes and of a number of

invidual stocks has been statistically estimated to be rough, see Gatheral et al. [47] and subsequent

work by Fukasawa, Takabatake and Westphal [44] and Bolko et al. [17] ;

• has microstructural foundations, in the sense that it can be seen as the scaling limit of models for

order flow dynamics at the order book level, see Jaisson and Rosenbaum [69], El Euch, Fukasawa and

Rosenbaum [36], Jusselin and Rosenbaum [72] ;

• has interesting forecasting properties for future realized volatilities, see again Gatheral et al. [47].

On the other side, a rough volatility pricing model

• has an appealing calibration power to the implied volatility surface of large stock indexes (a static

property), see again Bayer e al. [9] ;

• has a parsimonious parameterization when compared with other multi-factor stochastic volati-

lity or forward variance models. As an example, the at-the-money (ATM) implied volatility skew
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BkσBSpt, kq
��
k�0

of the asset price S, where t denotes the option maturity and k � log K
S0

the log-

strike, behaves as a power-law for short maturities, and the power-law decay is controlled by the single

parameter H :

BkσBSpt, kq
��
k�0

� const.
1

t1{2�H
as tÑ 0 . (1.2.14)

For comparison, the forward variance model (1.2.10) with exponential kernels (1.2.11) requires the

combination of at least two kernels Ki (hence of two independent Brownian motions) in order to achieve

a behavior analogous to (1.2.14) within a reasonable degree of accuracy (that is, from maturities of a

few weeks up to maturities of a few years), see [14, 13].

• Has, generally speaking, the desirable dynamical properties (joint dynamics of the asset price and

implied volatilities) of a stochastic volatility model ;

• on the other hand, it comes with additional complexity and computational cost with respect to tradi-

tional Markovian models.

It is worth to mention that other types of rough volatility models have been suggested, that fall out of the

model class (1.2.6). Instead of postulating a dynamic model for instantaneous forward variances ξTt which

then induces a dynamics on the instantaneous variance, it is possible to follow the (actually more restrictive)

opposite path. Following this approach, one can start assuming that the instantaneous variance V is the

solution of a Volterra stochastic differential equation (here in dimension one)

Vt � V0 �
» t

0
bpVsqKpt, sqds�

» t
0
σps, VsqKpt, sqdWs , (1.2.15)

and then define forward variances from ξTt � ErVT |Fts. The family of equations (1.2.15) includes the rough

Heston model of El Euch and Rosenbaum [37] and more general Affine Volterra models [2].

1.3 Elements of Martingale Optimal Transport

In Chapter 4, we will tackle a problem of super-replication of VIX option exploiting some methods from

optimal transport theory. Let us recall here the essential elements and results that will be used therein.

1.3.1 Classical optimal transport

Let X and be Y polish spaces. We denote PX (resp. PY ) the set of probability measures on X (resp. Y)

and consider two measures µ P PX and ν P PY .

The mass-transport problem of Monge (1781) is stated as follows : for a given cost function cpx, yq,
representing the cost to transport mass from the location x P X to the location y P Y, we look for the

transport map that minimizes the total transport cost of the mass distribution µ to the target distribution

ν, that is

PM :� inf

»
X
cpx, T pxqqdµpxq , (1.3.1)

over measurable maps T : X ÞÑ Y such that µ � T�1 � ν.

Seen as a problem for the variable T , (1.3.1) is highly non linear, due to the presence of T inside the (in

general non-linear) cost c and to the constraint µ � T�1 � ν. Nevertheless, it is well-known that (1.3.1) can
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be converted into a linear problem, hence simplified, when moving to its relaxed Monge-Kantorovich version

PMK :� inf

»
X�Y

cpx, yqdPpx, yq , (1.3.2)

where now one is looking for a solution over the set of probability measures P P PX�Y with given marginals

µ and ν, that is such that PpA � Yq � µpAq, PpX � Bq � νpBq. The difference with (1.3.1) is that the

Kantorovich formulation allows to potentially split mass from a location x to several locations y. The problem

(1.3.2) for the variable P has now both a linear objective and linear constraints.

Probabilistic formulation. Denoting pX,Y q the coordinate process on pX ,Yq we can rewrite (1.3.2) as

PMK � sup
PPPpµ,νq

EPrcpX,Y qs (1.3.3)

where we denote Ppµ, νq � tP P PX�Y : X
P� µ, Y

P� νu and we have considered a sup instead of an inf for

reasons that will be clear later on. It is not difficult to see that, due to the marginal law constraints µ and

ν, the set Ppµ, νq is tight and closed, hence weakly compact.

(1.3.2) – or (1.3.3) – is referred to as the primal problem of optimal transport. There is a dual problem

that is naturally related to (1.3.3),

DMK � inf
 
µpϕq � νpψq : ϕ P L1pµq, ψ P L1pνq,

ϕpxq � ψpyq ¥ cpx, yq, ( (1.3.4)

where µpϕq � ³
ϕpxqµpdxq and νpψq � ³

ψpyqνpdyq. It is easy to see that weak duality holds : we have

µpϕq � νpψq � EPrϕpXq � ψpY qs ¥ EPrcpX,Y qs for every admissible couple ϕ,ψ in (1.3.4) and every

admissible P in (1.3.3). Taking the inf over ϕ,ψ at the left hand side and the sup over P at the right hand

side, we obtain DMK ¥ PMK .

Applying Rockafellar’s convex duality, it is possible to see that (under some assumptions on the cost c)

strong duality DMK � PMK holds.

Theorem 1.2 (Kantorovich duality, see [83]). Assume that the cost function c is upper semi-continuous

and satisfies cpx, yq ¤ apxq � bpyq for some a P L1pµq and b P L1pνq. Then

DMK � PMK � EP�rcpX,Y qs (1.3.5)

for some P� P Ppµ, νq.

1.3.2 Super-replication of exotic options and martingale optimal transport

Now consider a discrete-time market containing a tradable asset

pS0, S1, S2q at times t0   t1   t2 ,

and assume that Vanilla options on S1 and S2 are liquidly traded. More specifically, we assume that call

options pS1 �K1q� and pS2 �K2q� can be bought at time t0 (today) at their market prices Cpt1,K1q and

Cpt2,K2q.
When S is a large-stock index, the prices of Vanillas are typically listed for a large number of strikes K.

We can therefore reasonably assume that the prices Cpt1,Kq and Cpt2,Kq are given for all positive strikes
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K ¡ 0. We can always think that this is achieved thanks to an interpolation/extrapolation of the finite set

of observed market prices with an arbitrage-free parametric (or non-parametric) option price surface (even

if we should keep in mind that such a procedure introduces a user-based choice in the reference prices, which

then cannot, stricto sensu, be considered “market prices” any more). It is well-known that the functions

Cpt1, �q and Cpt2, �q uniquely identify two measures µ P PR� and ν P PR� via

Cpt1,Kq �
»
ps1 �K1q�µpds1q, @K ¡ 0 , Cpt2,Kq �

»
ps2 �Kq�νpds2q, @K ¡ 0 .

In particular, µ and ν will have finite first moments,
³
xµpdxq � ³

yνpdyq   8.

By static replication, the price of any other European option ϕpS1q or ψpS2q with integrable payoff (whose

terminal value depends only on S1, otherwise only on S2) is given by

pricepϕpS1qq �
»
ϕps1qµpds1q . pricepψpS2qq �

»
ψps2qνpds2q .

Now consider an exotic option with payoff cpS1, S2q and maturity t2, for example a forward-start option

cps1, s2q � ps1 � s2q� or cps1, s2q � p s1s2 �Kq�. We can set up a semi-static hedging strategy by statically

holding options ϕpS1q and ψpS2q and by additionally delta-hedging with the underlying over the time interval

rt1, t2s. The resulting super-replication price of the option cpS1, S2q is then given by

D � inf
ϕ,ψ,h

tµpϕq � νpψqu (1.3.6)

where now the inf is over

ϕ P L1pµq, ψ P L1pνq, h P CbpRq : ϕps1q � ψps2q � hps1qps2 � s1q ¥ cps1, s2q . (1.3.7)

Note that µpϕq � νpψq � ³
ϕdµ � ³

ψdν represents the initial wealth of the hedging strategy, required to

purchase the options ϕpS1q and ψpS2q at time t0, and that the super-replication condition (1.3.7) takes into

account the additional wealth coming from the delta-hedge position hps1q that we hold between t1 and t2.

We denote D the problem (1.3.6), for analogy with (1.3.4). Note nevertheless that (1.3.6) is actually the

problem with start with in quantitative finance, rather than the primal problem of optimal transport (1.3.1).

The primal problem of martingale optimal transport. Denote pS1, S2q the coordinate process on X�Y � R2�.

Exactly as in the standard optimal transport case, the super-hedging problem (1.3.6) has a dual counterpart :

P � sup
PPMpµ,νq

EPrcpS1, S2qs , (1.3.8)

where

Mpµ, νq � tP P PR2 : S1
P� µ, S2

P� ν, EPrS2|S1s � S1u � Ppµ, νq
is the set of martingale measures over the path space R� � R� with given marginals µ, ν. Note that, while

Ppµ, νq always contains at least the product measure µ b ν, Mpµ, νq can be empty, but there is a useful

characterization of the non-emptiness of Mpµ, νq.
Theorem 1.3 (Strassen ’65). Let µ and ν be two measures on R. Assume

³ |x|µpdxq� ³ |y|νpdyq   8, then

Mpµ, νq � H if and only if µ ¨ ν for the convex order of probability measures, i.e.

µpfq ¤ νpfq
for all convex functions f .
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The existence of a maximizer P� for (1.3.8) is relatively easy to prove. Assuming that the measures µ and

ν in (1.3.8) have finite first moments and that the cost function c has sub-linear growth, it is not difficult

to see that Mpµ, νq is a closed subset of Ppµ, νq, so that Mpµ, νq is weakly compact, too. The existence of

a maximizer P� then follows from the continuity of the map P ÞÑ EPrcpS1, S2qs over Mpµ, νq.
More importantly, we have the martingale counterpart of the Kantorovich duality (1.3.5).

Theorem 1.4 (Duality for martingale optimal transport – Beiglböck, Henry-Labordère and Penkner [10]).

Assume the payoff c is is upper semi-continuous and satisfies cps1, s2q ¤ aps1q � bps2q for some a P L1pµq
and b P L1pνq. Then

D � P � EP�rcpS1, S2qs (1.3.9)

for some P� PMpµ, νq.

This ground-breaking result has been followed by a large number of further contributions, studying the

extension of the problem to the continuous-time framework or to more general super-hedging strategies. In

Chapter 4 of this manuscript, we will consider the application of the tools outlined above to a problem of

option hedging in the VIX market, which will lead us to define a martingale optimal transport problem

similar to (1.3.8), but with an additional constraint on top of the martingale condition.
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In this chapter, we study the efficient implementation of some non-linear nested Monte Carlo problems,

involving non-smooth functions of conditional expectations, that arise in the assessment of risks related

to derivative portfolios. Our main motivating example comes from a problem of derivative pricing in the

presence of Initial Margin valuation adjustments. The results presented in this chapter are taken from our

article Bourgey, De Marco, Gobet and Zhou [21].

We return to the problem of efficient estimation of expectations introduced in section 1.1. In addition to

the approximate simulation of SDEs via time discretization discussed in section 1.1.1, another important

example in quantitative finance is the evaluation of expectations of functions of conditional expectations,

that is the evaluation of

I � E
�
g
�
E rf pX,Y q |Xs�� , (2.0.1)

where f : Rd � Rd1 Ñ R and g : R Ñ R are given functions, and X,Y are random variables. We will focus

on the situation where X and Y are independent ; several computational problems in finance can be cast

under this form, see Examples 2.1 and 2.2 below.

Generally speaking, the evaluation of (2.0.1) is a two step problem : it requires the evaluation of (i) the

inner conditional expectation E rf pX,Y q |Xs, and (ii) of the outer expectation Ergp�qs.

2.1 Nested expectations

Nested expectations of the form (2.0.1) are typical in pricing problems for American-type derivatives, but

they also arise in a large variety of risk valuation problems (VaR or CVaR of a portfolio). In our work [21],

the analysis of estimators for (2.0.1) was motivated by the computation of valuation adjustements to the

price of a derivative in the presence of Initial Margin costs, as we explain in section 2.2.3.
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Example 2.1 (Expected exposure of a derivative portfolio). Consider a a derivative portfolio with initial

value f0 and some time horizon T . Assume Erf pX,Y q |Xs represents the future value of the portfolio, say

at some future time t ¤ T , conditional on the value of some market risk factors X at that moment. Here

Y represents the additional noise that will be added to the risk factors between time t and T , for example

under the forms of Brownian increments in a stochastic model –supposed to be independent from X. Then

E
��
f0 � Erf pX,Y q |Xs

	��
represents the exposure of the trade at time t. Here gpzq � pf0 � xq�.

Example 2.2 (Tail distribution of a loss process). Similar to Example 2.1, assume that LpXq �
Erf pX,Y q |Xs represents the loss of a derivative portfolio, conditional on the value of some market fac-

tor X. The aim is to evaluate the tail probability

P pLpXq ¥ aq � PpE rf pX,Y q |Xs ¥ aq � E
�
1ErfpX,Y q|Xs¥a

�
Here gpzq � 1z¥a is an indicator function.

Other similar examples come from risk management problems in insurance and are related for example to

stop-loss contracts, where gpzq � maxpa, zq.

2.1.1 Nested Monte Carlo estimator

It is rather natural to approximate (2.0.1) with the estimator

ÎM,n � 1

M

M̧

m�1

g

�
1

n

ņ

j�1

f
�
Xm, Y

m
j

�

(2.1.1)

where pXmqm¥1 and
�
Y m
j

�
j,m¥1

are independent i.i.d. families having the distributions of X and Y respec-

tively.

We are going to analyse the mean-squared error and the computation complexity of the estimator (2.1.1). If

the function g is sufficiently smooth, namely if g P C2
b , and the random variable fpX,Y q has finite moments

(which will be a standing assumption in this chapter, unless otherwise stated), then we have the classical

estimate

bias � E
�
ÎM,n

�
� I � O

�
1

n



. (2.1.2)

Since the variance of ÎM,n is of order 1
M , overall we get

MSE � E
��
ÎM,n � I

	2
�
¤ C

�
1

n2
� 1

M



,

for some constant C.

2.2 Multilevel method

The Multilevel method introduced in section 1.1.2 can be applied to the nested expectation problem (2.0.1).

As done in (2.1.1), as an approximation of the inner conditional expectation it is natural to consider

Zl � g

�
1

nl

nļ

j�1

f pX,Yjq


,
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where nl � 1
hl
� 2l ; in other words, we decide to double the number of points from a level to the following.

Consequently, in the Multilevel estimator (1.1.2) we can estimate ErZl � Zl�1s by means of the difference

Z
pl,mq
l � Z

pl,mq
l�1 � g

�
1

nl

nļ

j�1

f
�
X l
m, Y

l,m
j

	

� g

�
1

nl�1

nl�1̧

j�1

f
�
X l
m, Y

l,m
j

	


where
�
X l
m

�
l,mPN� and

�
Y l,m
j

�
j,l,mPN� are two independent families of i.i.d. random variables having the

distributions of X and Y respectively. Fully spelled out, the resulting Multilevel estimator reads

ÎM,n � 1

M0

M0̧

m�1

g

�
1

n0

n0̧

j�1

f
�
X0
m, Y

0,m
j

	


�
Ļ

l�1

1

Ml

Mļ

m�1

"
g

�
1

nl

nļ

j�1

f
�
X l
m, Y

l,m
j

	

� g

�
1

nl�1

nl�1̧

j�1

f
�
X l
m, Y

l,m
j

	
* (2.2.1)

where the number of outer and inner samples are now denoted by multi-indexes : M � pM0, ...,MLq,
n � pn0   ...   nLq. ÎM,n is a combination of nested MC estimators of the form (2.1.1).

Complexity analysis (for smooth functions g). The cost for one simulation of Zl �
g

�
1
nl

°nl
j�1 f pX,Yjq



is

costpZlq � nl ; γ � 1

We have already seen in (2.1.2) that, if g P C2
b , the bias of Zl behaves as

ErZl � Zs � O
�

1

nl



; α � 1

and the variance at level l as

Vl � VarpZl � Zl�1q � O
�

1

nl



; β � 1

An application of Theorem 1.1 yields a Multilevel estimator (2.2.1) achieving MSE � Opε2q with compu-

tational cost

CML �Mn � O�plog εq2 ε�2
�
.

It can also be seen (by inspection of the solution of the optimization problem (1.1.3)) that such an estimator

can be constructed setting n0 � Op1q, L �
Q� logpn0εq

logp2q
U
M0 � O

�� logpεqε�2
�

and Ml � M02�l (note that,

in this particular case, the product Mlnl is independent of l). We recognize a typical feature of Multilevel

estimators : the optimal choice is to allocate a larger part Ml of the simulation effort on coarser levels

(corresponding to small value of nl) and progressively smaller simulation effort on finer levels.

2.2.1 A further improvement : the antithetic Multilevel estimator

In some situations, that include our nested expectation problem (2.0.1), the complexity of the Multilevel

method can actually be nailed down to the asymptotically optimal complexity O
�
ε�2

�
– a rather striking

result.
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This of course requires to modify the construction of the ML estimator. If we are able to find and simulate

random variables pZl,l�1ql�1,9,L such that ErZl,l�1s � ErZl � Zl�1s, it is of course still true that

ErZLs � ErZ0s �
Ļ

l�1

ErZl,l�1s .

On the other side, if Zl,l�1 has smaller variance than Zl � Zl�1, the performance of the corresponding ML

estimator will be improved.

For the nested expectation problem, such an approximation is offered by

Zl,l�1 � g

�
1

nl

nļ

j�1

f pX,Yjq


� 1

2

�
g

�
1

nl�1

nl�1̧

j�1

f pX,Yjq


� g

�
1

nl�1

nļ

j�nl�1�1

f pX,Yjq




The resulting estimator, referred to as antithetic Multilevel estimator [49], is

ÎML
antith �

1

M0

M0̧

m�1

g

�
1

n0

n0̧

j�1

f
�
X0
m, Y

0,m
j

	

�

Ļ

l�1

1

Ml

Mļ

m�1

"
g

�
1

nl

nļ

j�1

f
�
X l
m, Y

l,m
j

	


� 1

2

�
g

�
1

nl�1

nl�1̧

j�1

f
�
X l
m, Y

l,m
j

	

� g

�
1

nl�1

nļ

j�nl�1�1

f
�
X l
m, Y

l,m
j

	

*
, (2.2.2)

which is rather long to write, but still straightforward to simulate.

Complexity analysis (for smooth functions g). Still assuming g P C2
b , it is easy to see that the

magnitude of the cost for constructing one simulation of Zl,l�1 and the overall bias are unchanged : we still

have

costpZl,l�1q � nl ; γ � 1

and, by construction,

E
�
ÎML

antith � Z
�
� ErZL � Z � Zs � O

�
1

nL



; α � 1

With respect to the original ML estimator (2.2.1), the variance at level l is now improved from O p1{nlq to

Vl � VarpZl,l�1q � O
�

1

n2
l



; β � 2

as detailed for example in Giles [49].

According to Theorem 1.1, the antithetic ML estimator (2.2.2) now can achieve MSE � Opε2q with

computational cost

Cantith � O
�
ε�2

�
.

Summing up, following the multivel construction it is possible (under some conditions on the function g

and the random variable fpX,Y q, that we will precisely state in the following sections) to combine biased

estimators in such a way to achieve the asymptotical complexity of an unbiased estimator.
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2.2.2 Irregular functions g

In several practical applications, the function g is not smooth everywhere. In the examples 2.2 and 2.2, we

have encountered functions of the form

gpxq � 1x¡a , gpxq � maxpx, aq .
Of course, the regularity of g impacts both the bias and the inner variance of Multilevel estimators, and

therefore the optimal tuning of the parameters L and Ml. In order to estimate the bias and overall the

performance of such estimators, there is a tradeoff between the smoothness of the function g and that of

the probability distribution of the underlying random variables – the less regularity on g, the stronger the

requirements we have to make on the underlying distribution.

2.2.2.1 The case of step functions gpxq � 1x¡a

In the existing literature, efforts have been made to evaluate the nested expectation I in (2.0.1) in the case

of limited regularity, where g is a step function g � 1ra,8q. This setting typically appears when evaluating

tail distributions and quantiles, as in Example 2.2. To our knowledge, one of the earliest works dealing

with this problem using nested Monte-Carlo methods is the seminal paper of Gordy and Juneja [53]. In

[53], it is assumed that for n ¥ 1, the couple of random variables
�
ErfpX,Y q|Xs,?n

�
1
n

°n
j�1 fpX,Yjq �

ErfpX,Y q|Xs
		

has a joint density gn with respect to the two-dimensional Lebesgue measure, and that

the partial derivatives Bygnpy, �q and B2
ygnpy, �q admit finite moments up to order four, uniformly in n.

Assumptions of this kind may look rather strong, and overall do not seem obvious to check : notably, a

control on the moments of the joint law that is uniform over n does not seem easy to achieve. Under these

conditions, the authors obtain the following behavior of the bias of Zl � g
�

1
nl

°nl
j�1 f pX,Yjq

�
:

ErZls � ErZs � O
�

1

nl



; α � 1 .

Considering that the strong error behaves as

||Zl � Zl�1|| � O
�

1

nβl

�
with β   1{2 ,

we are in case β   γ � 1 of Theorem 1.1, so that a Multilevel estimator has at best complexity Opε�2�p1�βqq
– which is worse than Opε�5{2q – for a target MSE of order Opε2q.

The analysis of the bias is pushed forward in the work of Giorgi, Lemaire and Pagès [51], where a higher

order expansion is derived. In order to do so, the authors have to assume stronger regularity conditions

on the densities of the underlying random variables : in [51], it is assumed that both couples of random

variables
�
ErfpX,Y q|Xs, 1

n

°n
j�1 fpX,Yjq �ErfpX,Y q|Xs

	
and pErfpX,Y q|Xs, Xq admit smooth densities

on R2 for n ¥ 1, and again that a certain number of their partial derivatives with respect to the first variable

exist and are continuous1. As a result of the bias expansion, the performance of the ML estimator can be

improved applying the weighted Multilevel method of Lemaire and Pagès [77].

As a comparison with our setting, our Assumption 2.3 does not require existence of densities and their

derivatives and therefore encompasses a more general framework than the one allowed in [53].

1More precisely, denoting respectively p1 and p2 the two densities, in order to derive a bias expansion at order R P N, [51]
assume existence of the partial derivatives B

plq
x p1px, yq for l � 0, ..., 2R� 1, B

plq
x p2px, yq for l � 0, ..., 2R, and that B

p2R�1q
x p1px, yq

is continuous.
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2.2.3 Our motivation : derivative pricing in the presence of Initial Margin valuation

adjustments

The linear risk-neutral pricing approach to the valuation of financial derivatives has undergone important

modifications in the last years, under the influence of market regulators : for several type of trades, investment

banks have to post collateral in an account supervised by a central counterparty (CCP, also called clearing

house) in order to secure their positions. Every day, the CCP requires the involved banks to deposit a

certain capital according to the risk exposure of their contracts. From the modeling point of view, taking

into account this type of regulatory capitals in the valuation of a derivative trade gives rise to non-linear

(backward stochastic– or partial–) differential equations.

One of these protection capitals is the Initial Margin (IM) deposit : in case of default of one of the CCP

members, the aim of this capital is to cover potential losses experienced during the liquidation period of

the defaulted member – concretely, the IM is materialized by the Value-at-risk or Conditional value-at-risk

(CVaR) of the member’s hedging portfolio over a time period ∆. To be more precise, let us consider the

following mathematical setting : consider an option with payoff ΦpST q and assume the stochastic model

dSt � µtStdt� σtStdWt for the underlying asset price, where σt � σpt, Stq. Taking into account the Initial

Margin adjustement, the option delta-hedging portfolio has the dynamical formulation

dV IM
t � rpV IM

t � δIM
t Stqdt�RCVaRα pVt � Vt�∆|Ftqdt� δIM

t dSt , (2.2.3)

where the Initial Margin cost is represented here by the conditional value-at-risk CVaRα of the future

portfolio increment over a time window ∆ (typical reference values are ∆ � 1 day or ∆ � 1 week), r is a

risk-free rate, assumed constant for simplicity, and R is the net interest rate of the account used to fund

the IM cost. Note that equation (2.2.3) is a Backward Stochastic Differential Equation (BSDE) for the

couple pV IM
t , δIM

t q containing a dependence with respect to the future law of the solution V IM
t ; existence

and uniqueness of solutions for such an equation are discussed in [3].

The simulation of the full equation (2.2.3) is not an easy task ; in view of numerical computations, since the

time window ∆ is small when expressed in annualized units, a possible approach is to apply an asymptotic

expansion for the solution of the BSDE as ∆ becomes small, as in Henry-Labordère [65, Section 4.2] and

Agarwal et al. [3]. Let us briefly present the approximation procedure followed in [65] and [3] . When ∆ � 0

(that is : no IM correction), the option price at time t is given by the classical risk-neutral valuation price

E
�
e�rpT�tqΦpST q

��St�, with first derivative δpt, Sq � BsE
�
e�rpT�tqΦpST q

��St � s
�
, where the expectation is

computed under a probability measure such that dSt � rtStdt� σtStdWt. Heuristically, for small values of

∆, the portfolio increment can be approximated by its delta component (otherwise said, by the increment

of the stochastic integral part)

V IM
t � V IM

t�∆ � �
» t�∆

t
δIMpu, SuqσuSudWu � �δIMpt, StqσtStpWt�∆ �Wtq

pdq� �δIMpt, StqσtSt �
?

∆G

(2.2.4)

where G � N p0, 1q. At the lower order in ∆, (2.2.4) suggests to approximate the IM correction in (2.2.3) with

CVaRα

�
V IM
t � V IM

t�∆|Ft
� � ?

∆Cα |δIMpt, Stq|σtSt, where Cα :� CVaRα pN p0, 1qq � e�
x2

2

p1�αq?2π

����
x�N�1pαq

is

the CVaR of a standard Gaussian random variable. Such an approximation procedure leads to approximate

equation (2.2.3) with the non-linear – but now standard – BSDE

dVt � rpVt � δtStqdt�R
?

∆Cα |δpt, Stq|σtStdt� δpt, StqdSt , (2.2.5)
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which can now be tackled with backward dynamical programming and Monte Carlo-based regressions. At

the lowest order in ∆, the IM correction to the standard risk-neutral price of the trade is therefore given by

RCα
?

∆E
�» T�∆

0
e�rtσtSt |δpt, Stq|dt

�
�: RCα

?
∆pT �∆q � I , (2.2.6)

where δpt, sq � BsE
�
Φ pST q

���St � s
�

is the reference standard risk-neutral portfolio delta (corresponding to

∆ � 0), and the integration upper bound indicates we assume that hedging operations are performed up tp

time T �∆. Note that the product of constants RCα
?

∆ pT �∆q is fixed once and for all ; the computational

problem boils down to an efficient evaluation of the expectation I � E
�

1
T�∆

³T�∆
0 e�rtσtSt |δpt, Stq|dt

�
.

To conclude this section, let us show that is possible to cast the term I in (2.2.6) under the form of a

nested expectation as (2.0.1). For simplicity, consider the Black-Scholes framework (2.3.4) where σt � σ.

Using the likelihood ratio method of Broadie and Glasserman [22], we can restore an expression of δpt, Sq
in terms of an expectation

epT�tqδpt, sq � BsE
�
Φ pST q

���St � s
�
� E

�
pΦ pST q � Φ pStqqHt,T

���St � s
�
,

where the integration weight Ht,T , given in the general framework by the integration by parts formula of

the Malliavin calculus, corresponds to Ht,T � WT�Wt

T�t in the Black-Scholes case. In the last expression, the

conditionally centered term �ΦpStqHt,T we have artificially introduced allows to reduce variance, playing

the role of a control variate. Taking advantage of the independence between St and the future Brownian

increments underpinning the integration weight Ht,T , it is easy to see that we can express Er|δpt, Stq|s under

the form (2.0.1). As an additional step in the evaluation of I in (2.2.6), instead of discretizing the time

integral over r0, T �∆s – which would produce a bias – we introduce an independent random variable with

uniform distribution over r0, T �∆s, and set

I � E
�

1

T �∆

» T�∆

0
σSt |δ pt, Stq|dt

�
� pT � δqE�σSU |δ pU, SU q|�.

Overall, the desired expectation I can be expressed under the form (2.0.1), using independent random

variables Y,Z � N p0, 1q and U � Upr0, T �∆sq, setting X � pU, S0e
pr�σ2

2
qU�σ?UZq, gpxq � |x| and defining

the appropriate function f , see [21, Proposition 3.1] for details.

In the setting above, the function g in (2.0.1) is given by the absolute value function

gpxq � |x| .

More generally, we can consider a continuous and piecewise C1
b function (see our Assumption 2.1 below for

precise conditions). With respect to previous works cited in section 2.2.2, we are in a situation of intermediate

regularity of the function g – less than C2, but more regular than a step function – thus allowing us to

drop restrictive assumptions on the distribution of the underlying random variables when studying the

nested expectation (2.0.1). Postponing precise conditions to the next section, it will be sufficient for us to

only exploit some (mild) regularity of the law of ErfpX,Y q|Xs in the neighbourhood of the singularities

of g, instead of considering the joint law of ErfpX,Y q|Xs and its estimator. In this respect, assumption

close to ours are considered in Giles and Haji-Ali [50], where g is a step function and the authors assume

that in a neighbourhood of the discontinuity point of the step function, the random variable ErfpX,Y q|Xs?
VarpfpX,Y q|Xq
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has a bounded density ; the resulting Multi-level estimator achieves mean-squared error ε2 with complexity

Opε�2| log ε|2q. Once again, we would like to point out that such conditions on the underlying distributions

are stronger that ours. In fact, our setting allows to treat the case of a butterfly option payoff (see Figure

2.1), for which the assumption of a bounded density seems difficult to check, while our milder Assumption

2.3 proves to be checkable in financial meaningful cases.

2.3 Our assumptions and results for the nested expectation problem

As pointed out above, the outer functions g we work with will have an intermediate regularity – not smooth,

but more regular than an indicator function.

With reference to the nested expectation problem (2.0.1), our assumptions are the following :

Assumption 2.1. g is continuous and piecewise C1 : precisely, there is a finite set of points

D � t�8 � d0   d1   ...   dθ   dθ�1 � 8u

such that on every pdi, di�1q, g is of class C1, g1 is bounded and Hölder continuous for some exponent

η P p0, 1s. g is continuous, piecewise C1
b and g1 is Lipschitz where it exists.

Assumption 2.2. There exists p ¡ 2 such that E r|f pX,Y q |ps   8.

Assumption 2.3 (Small ball estimate around the singularities). There exist positive constants ν, K and

z0 such that

P
�

distpEf pXq, Dq ¤ z
	
¤ K zν , @z   z0 , (2.3.1)

where Ef pXq � ErfpX,Y q|Xs and distpy,Dq :� min1¤i¤θ |y � di|.

Remark 2.1. Note that, if the random variable Ef pXq � ErfpX,Y q|Xs has a bounded density p,

then Assumption 2.3 trivially holds true with ν � 1, since in this case P pdistpEf pXq, Dq ¤ zq ¤°θ
i�1 P p|Ef pXq � di| ¤ zq ¤ 2θ||p||8z. On the other hand, Assumption 2.3 is more general : it is stated

in terms of the distribution of Ef pXq and does not require existence or regularity of a density for Ef pXq.

When gpxq � |x| (the Initial Margin case presented in the previous), the singularity is at x � 0. Within a

Black-Scholes model, for an option payoff such as a butterfly option – whose delta takes both positive and

negative values (see Figure 2.1), we are able to show the following

Lemma 2.1. For the problem of the lnitial Margin correction (2.2.6) to the butterfly option within the

model (2.3.4), assumptions 2.1, 2.2, 2.3 hold true with η � 1, any p ¡ 2 and ν � 1
2

�
1^ ∆

pT�∆qp1�Aq
	

for

any A ¡ 0. Therefore, the small ball probability estimate

P
�
St|δpt, Stq| ¤ z

	
¤ Kν z

ν

holds for the given value of ν   1, and Theorem 2.1 applies to this setting.

Turning to our main results, when the Assumptions 2.1–2.2–2.3 are in force, in [21] we prove the following

bias and variance estimates.
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Figure 2.1 – Black-Scholes deltas for some standard options. The butterfly option payoff is px� pK � aqq��
px� pK � aqq� � 2 px�Kq�.

Proposition 2.1 (Bias). The following estimate holds�����E
�
g

�
1

n

ņ

j�1

fpX,Yjq


� g pErfpX,Y q|Xsq

������ ¤ κ

n
1
2

�
1� pp�1qν

p�ν
^η

	 @n , (2.3.2)

for some positive constant κ.

With reference to Theorem 1.1, we have α � 1
2

�
1� pp�1qν

p�ν ^ η
	

Note that the smooth case with no singu-

larities (that is, g P C1
b with Lipschitz continuous derivative) corresponds to η � 1 and ν � 8. In this case,

the exponent for n at the denominator of (2.3.2) becomes α � 1
2p1 � pp � 1q ^ 1q. If p ¥ 2, this number is

worth 1
2 2 � 1. Therefore, in this case Proposition 2.1 provides the standard O

�
1
n

	
estimate for the bias in

the presence of a smooth function g.

Proposition 2.2 (Inner variance for the antithetic ML estimator). For every l ¥ 1, the variance at level l

is bounded by

Vl � VarpZl,l�1q ¤ κ̃

n
1� pp�2qν

2pp�νq
^η

l

, @ l ¥ 1 . (2.3.3)

for some positive constant κ̃.

With reference to Theorem 1.1, we have β � 1� pp�2qν
2pp�νq ^ η. It is worth and important to notice that, under

our standing assumptions, this number is always strictly greated than one. Once again, note that in the

smooth case (that is : g P C1
b with Lipschitz derivative, no singularities), we can take η � 1 and ν � 8.

The exponent for nl in (2.3.3) then becomes β � 1� p�2
2 ^ 1. If we are allowed to take pÑ8, this number

tends to 1� 1 � 2, which corresponds to a O
�

1
n2
l

	
estimate of the variance at level l.

We are in position to apply Theorem 1.1 and conclude on global convergence rates.

Theorem 2.1. Let Assumptions 2.1, 2.2 and 2.3 hold true, and consider an error tolerance ε ¡ 0. There

exist n0,M0, L such that the bound MSE � Opε2q as ε Ñ 0 is achieved with a computational complexity
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O
�
ε�2

�
, with the choice of parameters :

nl � n02l, Ml �M0 2
�
�

1� pp�2qν
4pp�νq

^ η
2

	
l
, 0 ¤ l ¤ L.

Remark 2.2. Note also that the optimal number of Monte-Carlo samples at level l is of the form Ml �
M02�p1�aql for a positive constant a, so that the computational cost at level l is proportional to nlMl �
n0M0 2�al � Opε�2q2�al : as usual in the ML framework, the most expensive levels are the coarsest ones.

As we have done for Propositions 2.1 and 2.2, it is instructive to consider the case corresponding to η � 1 in

Assumption 2.1. If we can take p to be large in Assumption 2.2, Ml approaches M0 2�
�

1� ν
4
^ 1

2

�
. When there

are no singularities, then we can take ν Ñ 8 in the small ball estimate (2.3.1) and obtain Ml � M0 2�
3
2
l.

When there is at least one singularity but we can still take ν � 1, then we obtain Ml � M0 2�
3
4
l. Overall,

Theorem 2.6 tells that, as soon as ν ¡ 0 and p ¡ 2, we can make the choice Ml � M02�p1�aql for some

positive a, which is still enough to achieve an overall cost of order O
�
ε�2

�
for the ML estimator.

2.3.1 Numerical experiments

The Black-Scholes asset price model

St � S0e

�
r�σ2

2

	
t�σWt , S0 ¡ 0, (2.3.4)

provides a simple (yet meaningful) setting where we can evaluate explicit reference values (or unbiased

estimates) for some of the involved nested expectations, which we can use to benchmark the accuracy of

multi-level estimators.

We fix the model parameters in (2.3.4) to r � 0.1, σ � 0.3, and consider four different Portfolios A,B, C,D,

described below. To estimate a reference value for I in (2.2.6) , we use an unbiased Monte-Carlo estimation

of ErgpEf pXqqs (recall that Ef pXq � ErfpX,Y q|Xs is explicit in the examples below) with nMC � 5 � 107

samples, and provide the associated 95%-confidence interval. We denote Φps,K, aq � ps� pK � aqq� � ps�
pK � aqq� � 2ps�Kq� the butterfly option payoff with strikes K � a, K, and K � a.

Portfolio A. We consider one butterfly option with payoff Φps, 100, 50q, and set S0 � 90. Here IA �
EgpEbutterflyf pXqq is worth 10.720� 0.002.

Portfolio B. We choose Portfolio A, but now with S0 � 30, which implies S0 ! K � 100 and therefore

the resulting samples will be far from the singularity of g with high probability (see Figure 2.2). Here

IB � 0.998� 5 � 10�4.

Portfolio C. We choose a more diversified portfolio, made of a linear combination of five different butterfly

options. The final payoff is of the form

2Φps, 10, 1q � 2Φps, 20, 2q � 2Φps, 40, 4q � Φps, 50, 5q � 1.5Φps, 80, 8q.

In Figure 2.3 one can observe that the Portfolio delta, as a function of s, now has several zeros (playing the

role of singularities for gpzq � |z|). We set S0 � 20 (close to the singularities) and have IC � 0.507� 0.0002

as a reference value.

Portfolio D. We choose Portfolio C, but now setting S0 � 100 (further away from the singularities of the

option’s delta, see Figure 2.3 again). Here ID � 1.263� 0.0004.
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(a) t � 0.1T (b) t � 0.5T (c) t � 0.9T

Figure 2.2 – Functions s Ñ ptpsq and s Ñ 0.1 � δtpsq (we scale the delta function for visual reasons) for

the Portfolios A,B and different values of t.

(a) t � 0.1T (b) t � 0.5T (c) t � 0.9T

Figure 2.3 – Functions sÑ δtpsq and sÑ ptpsq for the Portfolios C,D and different values of t.

In Figures 2.2 and 2.3 we plot the Portfolio delta (as a function of s) for different times t, together with the

probability density function of St, denoted pt. Note that in Figure 2.2, we have rescaled the delta so to fit

all the functions on the same graph. Observing the support of pt, we see that in Portfolios A and C there is

a high probability that δtpStq will change sign, as opposed to Portfolios B and D.

In Figure 2.4, we plot our estimates of the MSE’s of the three different estimators : the plain Nested Monte

Carlo estimator (2.1.1), the Multilevel estimator (2.2.1), and the enhanced antithetic Multilevel estimator

(2.2.2), in terms of their respective computational costs. We observe that the antithetic ML estimator gives

the best results in terms of size of the MSE for a fixed cost for the Portfolios A, C and D, for which we

have singularities in the delta. We retrieve a slope close to �1 for the ML estimator, whereas the other

estimators show a smaller slope (in absolute value), which is in line with the theoretical results. On the

other side, recall that Portfolio B was constructed in such a way that the probability of visiting the zeros of

the delta function is very small, so that the function g essentialy does not introduce any bias. In this case,

the three estimators provide similar results (and the antithetic estimator ML actually does not display the

best results anymore) : the use of a multilevel estimator in this setting does not seem to provide concrete

advantage with respect to a plain nested Monte Carlo procedure. In all the other situations, the antithetic

MLMC estimator has the best performance.
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(a) Portfolio A (b) Portfolio B

(c) Portfolio C (d) Portfolio D

Figure 2.4 – log pMSEq against log of the computational cost for the Portfolios A,B, C,D. ML stands for

the antithetic Multi-level estimator (2.2.2), ML2 for the non-antithetic ML estimator (2.2.1), and NMC for

the plain nested estimator(2.1.1).
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In this chapter, we consider the application of the Multilevel method to the simulation of forward variances

(that is : the prices of log-contracts, see section 1.2) in a stochastic model within the family (1.2.10), the

rough Bergomi model. The simulation of such objects requires the discretization of a stochastic process (the

forward variance curve), hence introducing a bias. We will see that, by means of the multilevel methodology,

the significant complexity of the basic Monte Carlo estimator (between Opε�4q and Opε�3q according to the

involved discretization scheme) can be reduced to the optimal complexity Opε�2q of an unbiased estimator

with mean squared error of order Opε2q. The results presented in this chapter are taken from our work

Bourgey and De Marco [18].

3.1 The computational problem

The forward variance modeling framework (1.2.10) has an appealing simplicity : being explicit functions of a

Gaussian process, instantaneous forward variances ξut can be simulated exactly. Nevertheless, this modeling

approach still rises some non-trivial computational issues : recall that the instantaneous forward variance

ξut is an unobservable object, while traded derivatives are written on integrated forward variances (1.2.4) or

(1.2.5). More specifically, the squared VIX index at time T is

pVIXT q2 � 1

∆

» T�∆

T
ξuT du � 1

∆

» T�∆

T
eX

u
T du , (3.1.1)

where we have defined

Xu
t :� log pξut q � Xu

0 �
1

2

» t
0
K pu, sq2 ds�

» t
0
K pu, sq dWs. (3.1.2)

In any forward variance model such as (1.2.10), then, the VIX is given by a continuous sum of log-normal

random variables ; the resulting distribution of VIXT is unknown (apart from the trivial case where K � 0)
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and the random variable VIXT cannot be simulated exactly. Within this modeling framework, the price at

time zero of an option on the VIX2 with payoff ϕ is given by

E
�
ϕ
�
VIX2

T

�� � E
�
ϕ

�
1

∆

» T�∆

T
eX

u
T du


�
. (3.1.3)

When ϕ pxq � p?x� κq� (resp. ϕ pxq � pκ�?
xq�), (3.1.3) provides the price of a VIX call option (resp.

put option) with strike κ and maturity T .

The problem (3.1.3) is close in spirit to the valuation of Asian options with payoff ϕpAT q � ϕ
�

1
T

³T
0 Yt dt

	
,

where Y represents an asset price. There is a vast literature on the numerical methods that can be used to

evaluate ErϕpAT qs when Y is modeled by a diffusion process. Yet, there is a fundamental and structural

difference with the pricing of a VIX option : while the Asian option payoff is based on the integral of a

continuous–time Markov process with respect to its time parameter, there is, in general, no finite–dimensional

Markovian structure underlying the problem (3.1.3), and this is precisely the case when K is a fractional

kernel as in the rough Bergomi model (1.2.12). In particular then, numerical approaches based on PDEs,

explored in the context of Asian options by [80, 89] and [33], are arguably out of the way (in a setting of

finite dimensional PDEs at least).

Instead, in this chapter we are going to consider Monte Carlo–based pricing of VIX derivatives, and notably

the application of the Multilevel Monte Carlo method presented in the previous chapter. In this respect,

our contribution can be seen as an extension to the setting of rough fractional processes of the work of

Ben Alaya and Kebaier [11], who studied the application of the Multilevel method to the problem of Asian

option pricing in a geometric Brownian motion model.

From now on (in this chapter), we are going to focus on the rough Bergomi model (1.2.12).

Time discretization. Given a grid with n P N� time steps

Gn :� tui :� T � i h, i � 0, . . . , nu , h :� ∆

n
, (3.1.4)

it is clear that the n � 1-dimensional random vector
�
Xui
T

�
i�0,...n

has Gaussian distribution N pµ,Cq with

mean µ � pµ puiqq0¤i¤n and covariance matrix C � pC pui, ujqq0¤i,j¤n given by

µ puiq :� E
�
Xui
T

� � Xui
0 � 1

2

» T
0
K pui, sq2 ds � Xui

0 � η2

4H

�
u2H
i � pui � T q2H

	
, (3.1.5)

and

C pui, ujq :� Cov
�
Xui
T , X

uj
T

� � » T
0
K pui, sqK puj , sqds � η2

» T
0
pui � sqH� 1

2 puj � sqH� 1
2 ds. (3.1.6)

The diagonal terms of the covariance matrix can be computed explicitly, C pui, uiq �
η2

2H

�
u2H
i � pui � T q2H

	
, while the off-diagonal terms can be expressed in terms of hypergeometric

functions1, which can be efficiently evaluated offline using standard numerical libraries (we used the

function scipy.special.hyp2f1 from the scipy library [84] in our numerical tests).

1More precisely, if i   j, we have

C pui, ujq � η2 puj � uiqH� 1
2

H � 1
2

�
u2H
i 2F1

�1

2
�H,

1

2
�H;

3

2
�H;� ui

uj � ui

�� pui � T q2H 2F1

�1

2
�H,

1

2
�H;

3

2
�H;� ui � T

uj � ui

��
.

where 2F1p�, �; �; �q is the hypergeometric function, see [79, Chapter 15].
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An approximate simulation of the VIX random variable – and more generally of any integrated forward

variance V T1,T2
t � 1

T2�T1

³T2

T1
eX

u
t du – can be obtained via discretization of the time integral (3.1.1). We

consider the following simulation schemes

Definition 3.1 (Discretization schemes for the VIX2
T ). The right-point rectangle scheme based on the grid

Gn is given by

VIX2,Rn

T :� 1

n

ņ

i�1

eX
ui
T , (3.1.7)

and the trapezoidal scheme by

VIX2,Tn
T :� 1

2n

ņ

i�1

�
eX

ui
T � eX

ui�1
T

	
. (3.1.8)

3.2 Discretization errors

In view of the application of the Multilevel method to the estimation of (3.1.3), we need to rely on asymptotic

estimates of the strong and weak error associated to the discretization schemes in Definition 3.1.

Proposition 3.1 (Lp strong error ; a slight extension of Proposition 2 in [67]). Assume the initial forward

variance curve u ÞÑ ξu0 � eX
u
0 is locally bounded. Then, for any T ¡ 0 and p ¡ 0,�

E
����VIX2

T �VIX2,Rn

T

���p�	 1
p � O

�
1

n



, (3.2.1)�

E
����VIX2

T �VIX2,Tn
T

���p�	 1
p � O

�
1

n1�H



, (3.2.2)

as nÑ8.

We note that Proposition 3.1 is not limited to H P p0, 1{2q – it holds for any value of H P p0, 1q in the

rough Bergomi model (1.2.12) – even if H   1{2 corresponds to the more interesting situation in practice.

Also note that, in general, the initial condition pξu0 qT¤u¤T�∆ for the instantaneous forward variance curve

is an arbitrary function ; in practical applications, ξu0 is bootstrapped from options data, or possibly from

the VIX futures term-structure (according to the use the stochastic model is intended for). In any of these

cases, the regularity of the curve u ÞÑ ξu0 is a user-based choice – typically, it is set to be either a continuous

or a piece-wise constant function. In any case, we find it is more than enough to assume that the function

ξ�0 is locally bounded.

As a refinement of Proposition 3.1, we also provide the exact asymptotics of the L2 strong error for the

rectangle scheme, which shows that the strong rate of convergence is precisely 1
n .

Theorem 3.1 (Exact asymptotics for the L2 strong error, rectangle scheme). Assume H P �0, 1
2

�
and that

the initial instantaneous forward variance curve is kept constant over the VIX time window, that is ξu0 � ξ0

for all u P rT, T �∆s. Then, as nÑ8,�
E
����VIX2

T �VIX2,Rn

T

���2�
1{2
� Λ pξ0, T,∆, Hq 1

n
(3.2.3)

where

Λ pξ0, T,∆, Hq :� ξ0

2

�
eη

2 T2H

2H � eη
2 pT�∆q2H�∆2H

2H � 2eη
2
³T
0 tH� 1

2 p∆�tqH� 1
2 dt


1{2
.
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Let us note that, in the proofs of Proposition 3.1 and Theorem 3.1 that we provide in [18], we exploit the

explicit Gaussian character of the process u ÞÑ Xu
T , which of course simplifies the analysis. On the other

side, what is less straightforward is to handle the fractional kernel 1
pu�sq1{2�H and its unbounded character

when u approaches T from above and s approaches T from below.

Remark 3.1. It is interesting to notice that the upper bound O
�

1
n

�
on the strong rate of convergence of the

rectangle scheme does not depend on the fractional index H ; the dependence with respect to H is only seen at

the level of a more accurate quadrature method such as the trapezoidal scheme in (3.2.2). For comparison, we

note the strong discretization error for the spot asset price dSt � St
?
Vt dBt is highly dependent on the value

of H in a model with instantaneous variance Vt with Hölder regularity index H. Neuenkirch and Shalaiko

[78] show that an Euler–Maruyama scheme for S based on n discretization points has a strong error of order

O
�

1
nH

	
when Vt � eXt and X is a fractional Ornstein–Uhlenbeck process. The more satisfactory strong rate

of convergence in Proposition 3.1 and Theorem 3.1 can be related to the higher regularity of the forward

variance curve u ÞÑ ξuT with respect to the low pathwise regularity of the instantaneous variance process V .

Other classical estimates for comparison. It can be instructive to compare Proposition 3.1 and Theorem

3.1 with the behavior of the strong error in the discretization of the time integral of other processes in some

– more standard – situations. Fix some time horizon T , and set ti � iTn for i P t1, . . . , nu.
• For the time integral of an Itô process Xt � X0 �

³t
0 bsds �

³t
0 asdWs, with, say, bounded coefficients

a and b, it is a standard exercice of stochastic calculus to show that

E
��» T

0
Xt dt� T

n

ņ

i�1

Xti


p�1{p
� O

�
1

n



.

In order to prove the estimate above, one can apply integration by parts on each sub-interval
³ti�1

ti
pXt�

Xtiqdt � � ³ti�1

ti
pti�1 � tiqdXt and then use Itô’s isometry.

• For the Asian option underlying 1
T

³T
0 Stdt, when St is a log-normal asset price, Lapeyre and Temam

[75] show that we still have

E
��

1

T

» T
0
Stdt� 1

n

ņ

i�1

Sti


p�1{p
� O

�
1

n



.

Weak error. The discretization bias for the price of a VIX option Erϕ �VIX2
T

�s with Lipschitz payoff ϕ

can, of course, be upper bounded by the L1 strong error multiplied by the Lipschitz constant of ϕ ; it is a

straightforward consequence of Proposition 3.1 (or Theorem 3.1 for the rectangle scheme) that���E �
ϕ
�
VIX2

T

�� ϕ
�

VIX2,Rn

T

	���� � O�
1

n



, (3.2.4)���E �

ϕ
�
VIX2

T

�� ϕ
�

VIX2,Tn
T

	���� � O�
1

n1�H



. (3.2.5)

In our numerical experiments in Figure 3.2 we can precisely observe the asymptotic behavior predicted by

(3.2.4)-(3.2.5), in the case of VIX call options.

Remark 3.2. A VIX call option with strike κ ¡ 0 corresponds to the payoff ϕpxq � p?x � κq�. In such

a case, the function ϕ is Lipschitz, for it coincides with the integral of its bounded derivative ϕ1 given by

ϕ1pxq � 1
2
?
x
¤ 1

2κ for x ¡ κ2 and ϕ1pxq � 0 for x   κ2.
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Figure 3.1 – Strong error of the discretization schemes for the VIX under the rough Bergomi model. Left :

L2 strong error, rectangle scheme VIX2,Rn

T , Monte Carlo estimate “�” and asymptotic expansion “�”, log-

log scale. Right : L2 strong error, trapezoidal scheme VIX2,Tn
T , Monte Carlo estimate “�” and straight lines

with slope �p1�Hq for comparison.

Remark 3.3 (Adaptive grids). Using a non-uniform discretization grid such as!
ui :� T �∆

�
i

n


a
, i � 0, . . . , n

)
, a ¡ 0, (3.2.6)

one can improve the asymptotic behavior of the weak error : according to [67, Corollary 1], the weak error

of the trapezoidal scheme based on the grid (3.2.6) is Opn�2q instead of Opn�p1�Hqq in (3.2.5), provided

that a ¡ 2
H�1 . It will be seen in section 3.3.2 that the optimal complexity O

�
ε�2

�
for an estimator with

mean-squared error ε2 can already be attained combining the multilevel method with a discretization scheme

based on the uniform grid Gn in (3.1.4). Appealing to the more complex mesh choice (3.2.6) is therefore not

necessary in order to construct estimators of VIX options with optimal rate of convergence.

3.3 Monte Carlo and Multilevel Monte Carlo simulation

3.3.1 Standard Monte-Carlo estimation

Once the simulation scheme VIX2,Dn
T corresponding to either the rectangle VIX2,Rn

T or the trapezoidal

scheme VIX2,Tn
T has been fixed, the plain Monte Carlo estimator of the expectation E

�
ϕ
�
VIX2

T

��
is

pPM,n � 1

M

M̧

m�1

ϕ
�
VIX2,Dn

T,m

�
, (3.3.1)

where Dn stands for either Rn (rectangle scheme) or Tn (trapezoidal scheme), and
�
VIX2,Rn

T,m

�
1¤m¤M are

i.i.d. independent copies of VIX2,Dn
T .

In the specific case of the rectangle scheme, according to Theorem 3.1, the estimator pPM,n has mean

squared error that satisfies

MSE � E
��

E
�
ϕ
�
VIX2

T

��� pPRn
M

	2
�
� bias2 � variance ¤ C

� 1

n2
� 1

M

	
,
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Figure 3.2 – Weak error of discretization schemes for the VIX under the rough Bergomi model. Left : weak

error for a VIX call option, rectangle scheme VIX2,Rn

T , and straight lines with slopes equal to �1 and �2 for

comparison. Right : weak error for a VIX call option, trapezoidal scheme VIX2,Tn
T , and straight lines with

slopes �p1�Hq and �2.

assuming that ϕ is Lipschitz so that (3.2.4) applies. If we want the mean-squared error to satisfy MSE ¤ ε2

for a given accuracy ε ¡ 0, we have to set M � O �
ε�2

�
and n � O �

ε�1
�
. The construction of VIX2,Rn

T

requires to sample the pn � 1q-dimensional Gaussian vector
�
Xui
T

�
i�0,...n

with given characteristics (3.1.5)

and (3.1.6). We consider exact simulation of
�
Xui
T

�
i

based on the Cholesky decomposition LnL
T
n of the

covariance matrix (3.1.6). We assume that, for the desired value of n, the required Cholesky matrix Ln has

been computed once and for all as offline work, so that sampling a pn � 1q-dimensional Gaussian vector

requires O
�
n2
�

operations due to the matrix multiplication LnG, with G � N p0, Idnq. The construction

of VIX2,Rn

T in (3.1.7) from
�
Xui
T

�
i

requires an additional sum over n points, at a cost O pnq. Overall, pPM,n

achieves MSE � Opε2q with

CostRn
MC � �

O
�
n2
��O pnq��M � O �

ε�4
�
,

which shows that the plain Monte Carlo estimator pPM,n is very costly when compared to an unbiased

estimator (with cost of order O
�
ε�2

�
).

The same analysis for the trapezoidal scheme VIX2,Tn
T leads to

CostTnMC � O
�
ε�2p1� 1

1�H q
	
.

Note that the exponent 2
�

1� 1
1�H

	
takes values between �4 (when H Ñ 0) and �3 (when H Ñ 1).

3.3.2 Multilevel scheme

We can combine different estimators of the form (3.3.1) following the Multilevel method presented in section

1.1.2. Let L P N�, and let n � pn0, . . . nLq and M � pM0, . . . ,MLq be integer multi-indexes representing

respectively an increasing sequence of time steps and a sequence of Monte Carlo sample sizes. For the ease

of notation, for all ` � 0, . . . , L we set

PD
` :� ϕ

�
VIX

2,Dnl
T

	
.
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Scheme Standard MC Multilevel MC

Rectangle Opε�4q Opln2pεqε�2q
Trapezoidal O

�
ε�2

�
1� 1

1�H

�	
Opε�2q

Table 3.1 – Summary of the different computational costs for the rectangle and trapezoidal schemes

combined with standard and multilevel Monte Carlo. The target MSE is Opε2q.

PD
` is therefore the approximation of the VIX option payoff ϕpVIX2

T q at level `, based on either the rectangle

scheme Dn � Rn or the trapezoidal scheme Dn � Tn. Setting

n` � n02`, ` � 0, . . . , L,

the construction of the VIX
2,Dnl
T at different levels is straightforward : once we have generated the pn`� 1q-

dimensional Gaussian sample pXui
T quiPGn` entering into PD

` for some ` ¥ 1, we can extract a pn`�1 � 1q-
dimensional Gaussian sample that we use to construct PD

`�1, by selecting the Xu2k
T for k � 1, . . . , n02`�1.

The multilevel estimator of the VIX option price ErϕpVIX2
T qs is therefore given by

pPD
M,n :� 1

M0

M0̧

m�1

P
D,p0,mq
0 �

Ļ

`�1

1

M`

M`̧

m�1

�
P

D,p`,mq
` � P

D,p`,mq
`�1

	
, (3.3.2)

where, according to the costruction detailed in section 1.1.2 : for every `, the random variables

pPD,p`,mq
` q1¤m¤M`

and pPD,p`,mq
`�1 q1¤m¤M`

are independent copies of PD
` and PD

`�1 respectively, and they

are constructed using the same Gaussian samples, according to the procedure described above.

Exploiting the strong and weak error estimates from the previous section, and applying the general Theorem

1.1 on the multilevel method, we can prove that it is possible to construct an estimator (3.3.2) achieving

MSED
M,n ¤ ε2 with computational complexity O

�
lnpεq2ε�2

�
when D is the right-point rectangle scheme and

with the optimal complexity rate O
�
ε�2

�
when D is the trapezoidal scheme.

Theorem 3.1 (Optimal Multilevel estimators for VIX options). Suppose that the payoff function ϕ is

Lipschitz, and consider n0 P N�. Then, for every tolerance ε ¡ 0 there exist an initial number of samples

M0,R and a number of levels LR (resp. M0,T and LT ) such that the rectangle (resp. trapezoidal) multilevel

estimator pPR
M,n (resp. pP T

M,n), defined in (3.3.2), has a mean-squared error satisfying MSE ¤ ε2 and a

computational complexity O
�

ln pεq2 ε�2
�

(resp. O
�
ε�2

�
), obtained setting

n` � n02`, M`,R �M0,R 2�2`, @ ` � 0, . . . , LR, (3.3.3)

for the rectangle scheme, and respectively

n` � n02`, M`,T �M0,T 2�p2�Hq`, @ ` � 0, . . . , LT , (3.3.4)

for the trapezoidal scheme.

3.3.3 Numerical experiments

In order to compare the four different estimators, namely the plain MC and the MLMC estimators based on

the rectangle and the trapezoidal schemes, we price an at-the-money VIX call option with maturity T � 0.5
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Figure 3.3 – Pricing of an ATM VIX call option with different estimators. The graph shows ln pMSEq against

ln pCostq for the Monte Carlo and the multilevel estimators based on the rectangle and trapezoidal schemes.

The option maturity is T � 0.5 and the model parameters are : H � 0.1, η � 0.5, X0 � lnpξ0q � ln
�
0.2352

�
.

The specification “without CV” in the title refers to the fact that the control variate presented in section

3.3.4 has not been used ; we display the performance of the estimators as defined in (3.3.2) and (3.3.1).

in the rough Bergomi model (1.2.12) with parameters H � 0.1, η � 0.5, X0 � lnpξ0q � ln
�
0.2352

�
. The

reference price is computed with an intensive MC simulation over 500 discretization points and 2�107 i.i.d.

samples. In [18], we also consider the case ∆ � 1 (as opposed to ∆ � 1
12 for the VIX), which corresponds to

a call option on the forward volatility
b
V T,T�1
T overlooking a one–year time window (the results being qua-

litatively analogous to the VIX case). We estimate the MSE for each method as 1
NMSE

°NMSE
j�1 pp̂j � pq2with

NMSE � 103, where p is the reference price and pp̂jq1¤j¤NMSE
are NMSE independent copies of either the

multilevel or the plain MC estimators. In Figure 3.3, we display the behavior of the resulting MSE (along

with the estimated 95%-confidence interval, materialized by the vertical error bars – which are rather small

hence barely visible) against the computational cost in a log-log plot. We retrieve the expected asymptotic

slopes : from our theoretical analysis, see Table 3.1, we expect a slope close to �1
2 for the plain MC estimator

with the rectangle scheme, and a slope close to �1�H
2�H for the MC estimator with the trapezoidal scheme.

Since 1�H
2�H � 1

2 � H
4 � OpH2q, for small values of H the two slopes are very close, in line with what is

observed in Figure 3.3 (recall we chose H � 0.1). For the multilevel method, we observe the expected slope

close to �1 for both estimators (we actually expect slightly less than �1 for the multilevel method with a

rectangle scheme, due to the logarithmic term in Opε�2 ln2pεqq). One can also see that, for a given cost, the

estimated MSE is smaller for the multilevel estimators than for the plain MC estimators.
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3.3.4 The additional contribution of an efficient control variate

Due to the structure of the problem, there is an efficient control variate technique (in the spirit of the control

variate for Asian option pricing in [73]), already exploited by [67]. Noticing that the discretization schemes

VIX2,Rn

T and VIX2,Tn
T in (3.1.7) and (3.1.8) are given by means of the exponentials eX

ui
T , it is reasonable to

consider as a control variate the exponential of the mean

VIX
2
T � e

1
n

°n
i�1X

ui
T . (3.3.5)

Such a choice is appropriate notably because the parameter ui is restricted to a small time window ∆ � 1
12 .

The key ingredient is that VIX
2
T is lognormal : the Gaussian random variable 1

n

°n
i�1X

ui
T � N �

µn, pσnq2�
has explicit characteristics µn and pσnq2 (see [18, section 2.2] for precise expressions). It is probably worth

to point out that a quantitative analysis of the difference between the true VIX random variable VIX2
T and

the control variate (3.3.5) will precisely be the object of a second study that we present in Chapter 5.

In practice, options on forward variance can be priced exploiting the additional contribution of the control

variate (3.3.5). When considering the right-point rectangle scheme (3.1.7), we estimate option prices on the

VIX2 with the controlled estimator

1

M

M̧

m�1

�
ϕ

�
1

n

ņ

i�1

eX
ui,m
T



� ϕ

�
e

1
n

°n
i�1X

ui,m
T

	�
� CVn, (3.3.6)

where
�
Xu1,m
T , . . . , Xun,m

T

�
1¤m¤M are M independent Monte Carlo samples of the Gaussian vector�

Xu1
T , . . . , Xun

T

�
and CVn :� E

�
ϕ
�
e

1
n

°n
i�1X

ui
T

	�
is explicitly given by a Black-Scholes formula (see [18,

section 2.2]). For the trapezoidal scheme (3.1.8), we use the same control variate.

In order to assess numerically the additional error reduction, we price the at-the-money call option conside-

red in the previous section combining the MC and MLMC estimator with the control variate. The controlled

MC estimator is given by (3.3.6) with ϕ pxq � p?x� κq�. In order to build an enhanced MLMC estimator,

we inject the right-point rectangle control variate (3.3.5) at each level 0 ¤ ` ¤ L of the multilevel scheme

(3.3.2). The results are presented in Figure 3.4, where we plot the empirical means of the estimators over the

NMSE independent runs, along with their 95% confidence interval. First, comparing the left and the right

graphs, we observe that the control variate significantly reduces the variance of each estimator, as expected.

Then, one can see that the MC estimator with a rectangle scheme is still the worst estimator, while the

MLMC estimator with a trapezoidal scheme still provides the best results – we also see that a standard MC

estimator based on the trapezoidal scheme with the additional contribution of the control variate has a very

satisfactory performance.
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Figure 3.4 – Average prices of call options on the VIX against ln pCostq for the MC and MLMC estimators

based on different discretization schemes, without any control variate (left) and with the introduction of the

control variate (3.3.5) (right).
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In this chapter, we focus on the computation of model-independent price bounds and super-replication

strategies for VIX options that are consistent with Vanillas on the underlying SP500 index and with the

VIX future. After showing a duality result, we derive analytical (a priori non-optimal) bounds on the VIX

option price and we characterize, in terms of an order condition between measures, the class of marginals

distributions of the SP500 index for which these analytical bounds are actually optimal. The results presented

in this chapter are taken from our work De Marco and Henry-Labordère [31] which, to our knowledge,

provided one of the first mathematical results towards the robust super-replication of VIX options.

4.1 Super-hedging of VIX options

We consider the problem of hedging an option on the VIX index (1.2.2). Though we could consider a

European option with arbitrary payoff, we will focus on a VIX call option pVIXt1 �Kq�, where t1 denotes

the option maturity and K the option strike.

Hedging instruments. The hedging strategy will of course depend on the instruments we are allowed

to trade on the VIX market and on the underlying SP500 market. In this chapter, we assume the hedging

strategy can be constructed using the following operations :

• Trading at time t0 � 0 in European options on the SP500 for maturities t1 and t2 � t1 �∆ � t1 � 30

days, with arbitray payoffs u1pSt1q and u2pSt2q. We assume these options can be traded on the SP500

market at time t0 for their market prices

pricemktpu1pSt1qq �
»
u1psqµpdsq , pricemktpu2pSt2qq �

»
u2psqνpdsq ,

where the marginal laws µ and ν are identified from the prices of Vanilla options on the SP500 for

maturities t1 and t2.
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transport problem

• Trading at time t0 � 0 in a future contract on VIXt1 , paying at t1 an amount equal to the value of

VIXt1 against its future price fixed at time t0, that we denote FVIX.

• Dynamic trading, between times t1 and t2, in the underlying index S.

• Dynamic trading, between times t1 and t2, of the forward log-contract introduced at the beginning of

section 1.2 : a contract paying the amount � 2
∆ log

St2
St1

at maturity t2, where ∆ � t2 � t1.

Note that, by definition of the VIX (1.2.2), the forward log-contract will satisfy

pricemkt
t1

�
� 2

∆
log

St2
St1



� VIX2

t1 , (4.1.1)

Our approach will be to look for a model-independent super-replication strategy for the VIX option. The

dual version of the problem will be connected to a martingale optimal transport problem as introduced in

section 1.3.2. When restricted to the space of measures P P R2� for the underlying SP500 index pSt1 , St2q,
this new problem will correspond to the maximization of the expectation of a VIX option payoff with

respect to a martingale measure P with marginals µ, ν and with the additional constraint on the VIX future

FVIX � EP
�b

EPr� 2
∆ lnSt2{St1 |St1s

�
. Note that this additional constraint, not present in the original

martingale optimal transport, is non-linear with respect to the measure P, making this optimal transport

problem more involved. Our strategy will be to extend the state space by introducing an autonomous variable

representing the value of VIXt1 , which will be linked to pSt1 , St2q by a consistency condition (corresponding

to the definition of the VIX (4.1.1)). As a result, we will be able to retrieve a linear problem, under the form

of a martingale optimal transport problem with an additional (now linear) constraint.

From now on, pSt1 , St2 ,VIXt1q denotes the identity function on R3�. We denote PpXq the set of probability

measures on a measurable space pX,βpXqq. We assume that µ and ν are two probability measures on R�
having the same finite mean

³
R�
xµpdxq � ³

R�
yνpdyq � S0 and satisfying the following condition

logpS1q P Lqpµq, logpS2q P Lqpνq, for some q ¡ 1. (4.1.2)

Exploiting the hedging instruments listed above, the robust super-hedging price of the VIX call option

pVIXt1 �Kq� is defined by

UB :� inf
u1PL1pµq,u2PL1pνq,λPR,∆S ,∆X

Eµru1pSt1qs � Eνru2pSt2qs � λFVIX (4.1.3)

over u1, u2, λ,∆S and ∆X such that

u1ps1q � u2ps2q � λ
?
x�∆Sps1, xqps2 � s1q �∆Xps1, xq

�
� 2

∆
ln

�
s2

s1



� x



¥ �?

x�K
��

@ ps1, s2,
?
xq P R3

� , (4.1.4)

where the functions ∆S ,∆X : R� �R� Ñ R are assumed to be bounded continuous functions on R2�. Note

that (4.1.4) defines a linear infinite-dimensional programming problem. The variable x should be interpreted

as the t1-value of a log-contract � 2
∆ ln s2

s1
, which corresponds to the square of the VIX index VIX2

t1 .

Interpretation at t1. The super-replication strategy (4.1.4) provides the option hedger with the following

recipe : at time t0, buy the options u1pSt1q and u2pSt2q and hold them statically until maturity, and enter

into a position on λ VIX futures contracts with maturity t1. At time t1, introduce an additional delta hedge
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position buying ∆S shares of the underlying S, and buying ∆X log-contracts � 2
∆ log

St2
St1

at their market

price, to be held until time t2.

Since the VIX option expires at t1, it it might seem strange to unwind the hedging position only at time

t2. Nevertheless, the interpretation of (4.1.4) is the following : the wealth generated by the hedging portfolio

on the left hand side of (4.1.4) at time t1 will be sufficient to super-replicate the VIX option. Indeed, we

have the following result : define

UB1 :� inf
u1,u2,λ

Eµru1pSt1qs � Eνru2pSt2qs � λVIX (4.1.5)

where the inf is taken over u1 P L1pµq, u2 P L1pνq and λ P R such that for all s1 P R� and all vixt1 P R�,

u1ps1q � EPru2pSt2qs � λvixt1 ¥ pvixt1 �Kq� , @ P P Ps1,vixt1
(4.1.6)

where Ps1,vixt1
is the set of probability measures on R� such that EPrSt2s � s1 and EP

�
� 2

∆ ln
�
St2
s1

	�
� vix2

t1 .

Condition (4.1.6) means that the VIX option pVIXt1 �Kq� can be super-replicated at t1 by exercising at

t1 both the European option with payoff u1ps1q and the VIX future, and selling the European option with

payoff u2pSt2q at the price EPru2pSt2q|St1 ,VIXt1s prevailing on the market at time t1, regardless of the

pricing measure the market will be using at that moment.

Proposition 4.1 (Proposition 2.6 in [31]). The two super-replication prices coincide : UB1 � UB.

4.1.1 Duality

We are going to state a duality result for the problem (4.1.3). The related measure set will be the set of all

measures P on the (pathspace) R3� whose first two components satisfy the martingale condition and have

µ, ν, and such that EPrVIXt1s � FVIX, that is

Mpµ, ν,FVIXq �
!
P P PpR3

�q : St1
P� µ, St2

P� ν

EPrVIXt1s � FVIX

EP rSt2 |St1 ,VIXt1s � St1

EP
�
� 2

∆
log

St2
St1

���St1 ,VIXt1

�
� VIX2

t1

)
.

(4.1.7)

It is not difficult to see that the moment condition (4.1.2) implies that the set Mpµ, ν,FVIXq is tight and

closed, hence weakly compact, see [31, Proposition 4.11] for details. We note that necessary conditions for

non-emptiness of Mpµ, ν,FVIXq are the convex order condition µ ¨ ν and, by Jensen’s inequality, the

condition FVIX ¤ σ1,2, where

σ2
1,2 � pricemkt

t0

�
� 2

∆
log

St2
St1



� � 2

∆

�
EνrlogpSt2qs � EµrlogpSt1qs

�
denotes the market price at time t0 � 0 of the forward log-contract.

Theorem 4.1 (Duality for VIX options, Theorem 3.1 in [31]). Let the VIX futures price FVIX be given.

Assume that µ, ν are probability measures on R� such that Mpµ, ν,FVIXq is non-empty. Then, the super-

replication price in (4.1.3) satisfies

UB � sup
PPMpµ,ν,FVIXq

EPrpVIXt1 �Kq�s � EP� �pVIXt1 �Kq�� (4.1.8)

for some P� PMpµ, ν,FVIXq.
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Theorem 4.1 tells that that the VIX option super-replication price is attained by a martingale measure, that

is a model, calibrated to the t1 and t2 Vanilla smiles and to the VIX future. Note that, as a crucial step, by

introducing a delta hedging on the forward log-contract, the problem (4.1.3) has been converted into a linear

programming problem. We prove the duality result (4.1.8) mimicking the proof of the Kantorovich duality

(1.3.9) in martingale optimal transport. Note that the existence of a maximizer P� follows from the continuity

of the map P ÞÑ EPrpVIXt1 �Kq�s over Mpµ, ν,FVIXq and the weak compactness of Mpµ, ν,FVIXq.
Remark 4.1. Guyon et al. [59] have shown a duality result for a structurally similar, even though simpler,

problem : the super-replication of VIX futures given options on the SP500 with maturities t1 and t2. With

respect to our setting, VIX options are not involved in their work.

Lower bound. Defining the option sub-replication price by

LB :� inf
u1PL1pµq,u2PL1pνq,λPR,∆S ,∆X

Eµru1pSt1qs � Eνru2pSt2qs � λFVIX

over u1, u2, λ,∆S and ∆X such that

u1ps1q � u2ps2q � λ
?
x�∆Sps1, xqps2 � s1q �∆Xps1, xq

�
� 2

∆
ln

�
s2

s1



� x



¤ �?

x�K
��

@ ps1, s2,
?
xq P R3

� ,

we have the analogous duality result : LB � minPPMpµ,ν,FVIXq EPrpVIXt1 �Kq�s, see [31, Theorem 3.1].

4.2 An analytical upper-bound : extremal moment problem

For given data µ, ν and FVIX, the dual problem

sup
PPMpµ,ν,FVIXq

EPrpVIXt1 �Kq�s (4.2.1)

and the original super-replication problem (4.1.3) can be approximated by finite dimensional problems and

tackled numerically. In (4.2.1), the measures µ and ν can be approximated by measures µn, νn with finite

support (on, say, n points), so that (4.2.1) is converted into a n3-dimensional problem (once the distribution

of VIXt1 has been discretized over n points, too) that can be tackled with standard methods such as the

simplex algorithm, or possibly with an additional entropic regularization and the Sinkhorn algorithm. In its

turn, (4.1.3) can be projected onto a finite-dimensional space of functions u1, u2,∆s,∆X and the constraint

(4.1.4) restricted to a finite set of points ; the resulting problem is again a finite-dimensional linear program,

which can be tackled with standard algorithms, as we do in section 4.3.

In this section, we follow a different route : we evaluate an explicit – while a priori sub-optimal – upper

bound UB ¥ UB. We will then be able to provide optimality conditions for UB in the next section.

Note that for every admissible P PMpµ, ν,FVIXq, one has

EPrVIXt1s � FVIX, and EPrVIX2
t1s � σ2

1,2 .

We can therefore relax (considerably) the problem (4.2.1), considering

UB :� sup
PPP1,2

EPrpX �Kq�s , (4.2.2)
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where X denotes the identity on R�, and now the sup is taken over the set

P1,2 :� tP P PpR�q : EPrXs � FVIX, EPrX2s � σ2
1,2u . (4.2.3)

It is clear that (4.2.2) defines an upper bound UB ¥ UB.

The problem (4.2.2) a typical example of “extremal moment problem” : we are maximizing the expectation

of a certain payoff under the constraint that some (here : the first and second) moments of the underlying

distribution are fixed. This type of problem has been widely studied in the actuarial science literature ; for

the case of piece-wise affine payoffs, see [25, 85, 86, 70] and the comprehensive review by Hürlimann [87].

Note that (4.2.2) is much easier to solve than (4.2.1). Let us explain how a solution can be constructed, for

we believe the procedure is instructive and enlightening.

Since the objective function P ÞÑ EPrpX�Kq�s is linear (hence, convex), by Bauer’s maximum principle we

can look for a solution to (4.2.2) within the extremal points of the convex set P1,2. Exploiting the following

characterisation :

Theorem 4.2 (Winkler [88]). P P P1,2 is an extreme point of P1,2 if and only if #supppPq ¤ 3,

it will be enough to search for a solution P with support on 2 or 3 points. It is not difficult to see that there

is no maximizer P charging three points ; a measure P supported by two points will always perform better,

due to the convexity of the payoff function px�Kq�.

Now, by standard weak duality, we have

UB ¤ infta σ2
1,2 � bFVIX� c : a x2 � b x� c ¥ px�Kq�,@x ¥ 0u .

It is therefore is sufficient to find a bi-atomic distribution Ppdxq � pδx0pdxq � p1 � pqδx1pdxq P P1,2 and

constants a, b, c that attain the equality. To do so, we ask that infxPR�ta x2 � b x � c � px �Kq�u � 0 is

attained at x0, x1. This condition implies the following algebraic equations for pp, x0, x1, a, b, cq :

px0 � p1� pqx1 � m1, px2
0 � p1� pqx2

1 � m2

ax2
0 � bx0 � c � px0 �Kq�, ax2

1 � bx1 � c � px1 �Kq�
2ax0 � b � 1x0¥K if x0 � 0, 2ax1 � b � 1x1¥K ,

(4.2.4)

with a ¡ 0. The following proposition reports the solution to (4.2.4) (which can be found for example in

Jansen et al. [70]) ; the second part of the proposition translates the dual solution pa, b, cq in terms of the

super-replicating strategy in (4.1.3).

Proposition 4.2 (Analytical upper bound). The unique maximizer for the problem (4.2.2) is given by the

bi-atomic measure

Ppdxq � pδx0pdxq � p1� pqδx1pdxq (4.2.5)

with $&% x0 � K � I; x1 � K � I; p � K�FVIX�I
2IpKq if K ¥ K�,

x0 � 0; x1 � σ2
1,2

FVIX ; p � σ2
1,2�VIX2

σ2
1,2

if K   K�,

where K� � σ2
1,2

2FVIX and I � IpKq �
b
σ2

1,2 � FVIX2 � pFVIX�Kq2. The value of the problem is then

UBpFVIX, σ2
1,2q � EPrpX �Kq�s �

#
1
2 pFVIX�K � Iq K ¥ K�

FVIX�K FVIX2

σ2
1,2

K   K�. (4.2.6)
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This bound is attained in (4.1.3) by the super-replication strategy

u1ps1q � � 2

∆
∆X ln

s1

S0
� ν, u2ps2q � 2

∆
∆X ln

s2

S0
, λ, ∆Sps1, 0q � 0, ∆Xps1, xq � ∆X , (4.2.7)

where for K ¥ K�, we have ∆X � � 1
4I , ν � �2KI�σ2

1,2�2KpFVIX�Kq
4I , λ � 1

2 � K
2I , and for K ¤ K�,

∆X � �K
�

FVIX
σ2

1,2


2

, ν � 0, λ � 1� 2K FVIX
σ2

1,2
.

Recall that the result above implies that the pathwise super-replication

u1ps1q � u2ps2q � λ
?
x�∆X

�
� 2

∆
ln

�
s2

s1



� x



¥ �?

x�K
��

(4.2.8)

holds for all ps1, s2,
?
xq P R3�. Note that the bound UB depends only on the market values FVIX and σ1,2

and it is well-defined if and only if the condition FVIX ¤ σ1,2 holds.

Let us also note that the construction of the solution (4.2.8) has explicitly taken advantage of the fact

that the log-contract defining the VIX value at t1 can be written as the difference of two European options,

i.e., ln s2 � ln s1. This would not be the case any more if we used the trapezoidal approximation of the

log-contract applied by the CBOE to define the true market VIX [26] (even if we can consider that the

log-contract still remains a reasonable approximation of the true VIX, due to the number of liquid strikes

traded on the SP500).

Numerical values and comparison with market data. The analytical upper bound UB is straightforward to

evaluate. In Figure 4.1, we have compared the value of UB (expressed in terms of VIX implied volatility)

against market implied volatilities for VIX options with expiry t1 � 16 Oct. 13 and pricing date t0 = 12 Jul.

2013. Surprisingly enough, market prices of VIX options are above our analytical upper bound UB ¥ UB,

for several values of the strike price K.

This surprising numerical result deserves some comments. The upper bound UB depends on the t � 0

value FVIX of the VIX future and on the value of the forward log-contract σ1,2. While FVIX is quoted by

the market, log-contracts are not directly traded, and they must be statically replicated using a strip of

Vanilla options, which entails

(i) a certain amount of uncertainty in the value of σ1,2, which is sensitive to the interpolation and extra-

polation method used for Vanilla option prices away from observed strikes (in other words : given the

same finite set of option prices, different users will come up with different values of σ1,2) ;

(ii) the presence of option transaction costs, notably for low and high strikes.

In order to see the impact of the pricing uncertainty and transaction costs in the value of σ1,2, we have

added �0.5% and �1.0% to the reference value of the forward log-contract σ1,2 � 18.15% that was used in

our tests. As the value of σ1,2 increases, the arbitrage opportunities evaporate, as expected.

Remark 4.2 (On the joint SP500-VIX calibration problem). Figure 4.1 seems to point to an unfeasability

of the joint calibration problem to SP500 and V IX options : if market prices for VIX options lie above

the maximum price UB generated by admissible martingale models calibrated to the marginal laws of St1
and St2 and to the VIX future, it will be impossible to find a model that fits the market VIX option quotes

(for otherwise this would contradict Theorem 4.1). But we should not forget a “compatibility issue” between

the SP500 and the VIX option markets. It is well known that a forward contract on VIX2
t1 (which is not
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Figure 4.1 – Analytical upper bound UB in Proposition 4.2 versus market values for VIX smiles observed

on 12 Jul. 2013, for maturity t1 =16 Oct. 13. The (square-root of the) log-contract price is σ1,2 � 18.15%,

and the VIX futures quote is FVIX � 18.05%.

traded on any of the two markets) can be synthesized in two different ways : from a strip of VIX options,

by statical replication of the payoff x2, or by trading a forward log-contract � 2
∆ log

St2
St1

, precisely as we

did in the construction of the super-replication strategy (4.1.4). Let us denote pricemkt,SP500pVIX2
t1q and

pricemkt,VIXpVIX2
t1q the prices of VIX2

t1 obtained according to the two different methods. It has been reported

by several authors, see for example Bergomi [13, Chapter 7], that the two prices of VIX2
t1 do not always

coincide (and their difference has sometimes been so large that arbitrage opportunities have appeared).

If the marginal laws µ, ν and the VIX option prices injected into a calibration procedure are such that the

condition

pricemkt,SP500pVIX2
t1q � pricemkt,VIXpVIX2

t1q (4.2.9)

is not satisfied, no model can possibly calibrate the given joint set of SP500 and VIX options. The condition

(4.2.9) is a necessary condition for the existence of a model that achieves the joint calibration, and it should

be ensured as a starting point, as explained in Guyon [57] – where a discrete-time model that does achieve

the joint calibration is found. Our superheding portfolio (4.1.4) is based on the construction of VIX2
t1 from

options on the SP500, and thefore the data for our problem are the VIX future quote and the value of

σ2
1,2 � pricemkt,SP500pVIX2

t1q, regardless of the value of pricemkt,VIXpVIX2
t1q obtained from VIX options.

In other words, at the time when the Figure 4.1 was generated, we did not check whether condition (4.2.9)

was satisfied or not, that is to say, we did not check how much the value of σ1,2 � 18.15% we used in our

formulas deviates from the price of VIX2
t1 that could be reconstructed from VIX options on the pricing date.

It is likely that an important deviation from conditions (4.2.9) was experienced on that day.
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Figure 4.2 – Example of densities µ (blue curve) and ν (red curve) satisfying conditions (4.2.10) and

(4.2.11) in Theorem 4.3 for the values of x0, x1 and p given in Proposition 4.2 when FVIX � 0.3, σ1,2 � 0.4

and K � FVIX (corresponding values are x0 � 0.035, x1 � 0.567 and p � 0.5).

4.2.1 Optimality

It is natural to ask if there are situation in which the (a priori sub-optimal) analytical upper bound UB is

actually optimal, that is, we have UB � UB. It turns out that we are able to give conditions on the data

pµ, ν,FVIXq that are equivalent to UB � UB. The resulting condition on the marginals µ, ν is an order

relationship.

Theorem 4.3 (Theorem 4.12 in [31]). Let µ, ν be probability measures in PpR�q with same finite mean,

satisfying condition (4.1.2) and such that σ2
1,2pµ, νq ¡ 0. Let FVIX P p0, σ1,2pµ, νqs. Denote UBpµ, ν,FVIXq

the value of (4.1.3) and UB
�
FVIX, σ2

1,2pµ, νq
�

the value of (4.2.2). The following are equivalent :

(i) UBpµ, ν,FVIXq � UB
�
FVIX, σ2

1,2pµ, νq
�

(ii) There exist two couples of measures pµ0, ν0q and pµ1, ν1q on R� such that

µ � pµ0 � p1� pqµ1, ν � pν0 � p1� pqν1, (4.2.10)

and »
f pz, logpzqq νipdzq ¥

»
f
�
y, logpyq � ∆

2
x2
i

	
µipdyq, i � 0, 1 , (4.2.11)

for every convex function f : R2 Ñ R, where the coefficients p, x0, x1 have been given in Proposition

4.2.

Note that condition (4.2.11) entails that the measures pµi, νiq increase in the convex order (take fpy, zq �
f̃pyq with f̃ convex in (4.2.11)), hence by (4.2.10) so do the measures pµ, νq. Given two distributions µ

and ν, it is arguably not straightforward how to check whether they satisfy (4.2.10)-(4.2.11), for (4.2.11)

involves checking a condition for all convex functions on R2. On the other hand, examples of a measures

µ, ν satisfying conditions (4.2.10)-(4.2.11) can be explicitly constructed, as done in Example 4.14 in [31] and

illustrated in Figure 4.2.
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K{FVIX UBnum � 100 UB� 100

0.90 30.56 30.56

0.95 27.13 27.13

1.00 25.31 25.31

1.05 25.59 25.59

1.10 27.33 27.33

1.15 29.70 29.70

Table 4.1 – Numerical approximation of the optimal bound UB in (4.1.8) for VIX options (expiry 16 Oct.

13, pricing date = 12 Jul. 2013) and comparison with the analytical upper bound UB. UBnum and UB are

expressed in terms of VIX implied volatilities.

4.3 Numerical experiments

We have computed the optimal bound UB for VIX options with expiry 16 Oct. 13 (pricing date = 12

Jul. 2013) by numerically solving the linear program (4.1.3) with a simplex method. More precisely, the

European payoffs u1 and u2 are decomposed over a basis of call options with payoffs
�psj �Kiq�

�
1¤i¤n and

a log-contract, and we have used a fourth-order polynomial approximation in s1 and x for the functions ∆S

and ∆X .

The upper bound UBnum for VIX options with different strikes K is reported and compared with UB

in Table 4.3, where both bounds are quoted in terms of VIX implied volatilities (�100). We see that UB

and UBnum are indistinguishable, indicating that the bound UB seems optimal. We have checked that the

numerical bound UBnum is not improved by increasing the range of liquid strikes and the rank of the

polynomial approximations used for ∆S and ∆X .

This numerical result suggests that – on the pricing date considered here – the market marginals µ and ν

are such that UB � UB (or, at least, such that UB and our numerical approximation of UB are indistingui-

shable), so that the optimality result proved in Theorem 4.3 seems to remain valid in this setting. Recall that

the super-replication strategy (4.2.7) with price UB only contains semi-static positions in log-contracts and

VIX futures, while the super-replicating portfolio (4.1.4) used to evaluate UBnum contains options uipStiq
with more general payoffs ; the closeness of the values of UB and UBnum indicates that, maybe not surpri-

singly, log-contracts seem to be the most relevant Vanilla instruments involved in the super-hedging of VIX

options.
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This chapter can be seen as a companion of Chapter 3. As we did there, we consider the problem of VIX

option pricing within a class of forward variance curve models. While Chapter 3 is centered on the efficient

– and specifically, multilevel – simulation of the VIX random variable in such setting, the focus of the

present chapter is on explicit approximation formulas for option prices, obtained via expansion procedures

for expectations. The results presented in this chapter are taken from our work Bourgey, De Marco and

Gobet [20].

The price of the VIX option (3.1.3) depends (among other model parameters) on the specification of the

initial forward variance curve u ÞÑ ξu0 over the time window pT, T �∆q. In the present chapter, we are going

to assume that

ξu0 � ξ0 is constant over u P pT, T �∆q.

This simple choice can usually be made in practice, for it is typically sufficent to consider variance curves

that are piece-wise constants between VIX maturities. The case of a generic and non-constant curve ξu0 is

considered in [20]. The restriction to a constant ξ0 allows us to simplify the presentation of most of the

results in this chapter. With reference to (1.2.10), let us set

Y u
T :� Xu

T �Xu
0 � �1

2

» T
0
Ku ptq2 dt�

» T
0
Ku ptqdWt. (5.0.1)

Notation for the present chapter. In this chapter, it will be convenient to slightly change the notation

for the integration kernel with respect to section 1.2, and denote

Kuptq � Kpu, tq for t ¤ u .
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Given the probability measure ν0pduq � du
∆ on the interval rT, T �∆s, we denote

ν0pfq �
» T�∆

T
fpuqν0pduq � 1

∆

» T�∆

T
fpuqdu (5.0.2)

the mean of an integrable functions f with respect to the measure ν0.

5.1 Our contribution in a nutshell

We go back to the VIX option pricing problem within the explicit class of forward variance models (1.2.10).

We have seen in Chapter 3 that the expectation (3.1.3) can be approximated by coupling a discretization

scheme with Monte Carlo or Multilevel Monte Carlo simulation. Asymptotic formulas for small VIX maturi-

ties T can also be investigated, as done in [4, 74]. In the present chapter, we explore an alternative approach

based on analytical approximations of the form

E
�
ϕ
�
VIX2

T

�� � Main term� Correction terms� Error. (5.1.1)

Both the main and the correction terms will be easily computable using elementary log-normal distributions.

In addition, we aim at providing error bounds in terms of the characteristics of the kernel K and the length

of the time-window ∆, covering the case of non-smooth payoffs ϕ.

A proxy for the mean of exponentials. It has been noted by several authors, from the early works of

Bergomi [14] to the more recent work of Bayer et al. [9], that the VIX in the exponential Gaussian models

(1.2.10) is not far from a log-normal random variable (as a result, the VIX implied volatility smile generated

by these models is unreasonably flat, see section 5.3 below for an improvement in this direction). More

precisely, exploiting the classical idea of replacing the arithmetic mean of exponentials with their geometric

mean, the law of

VIX2
T � ξ0

1

∆

» T�∆

T
eY

u
T du (5.1.2)

is arguably close to the law of

VIX2
T,P � ξ0 e

1
∆

³T�∆
T Y uT du , (5.1.3)

where the subscript P stands for proxy. Note that VIX2
T,P has the appealing property of being a log-normal

random variable,

ln
�
VIX2

T,P

� d� N �
µP, σ

2
P

�
where µP :� �1

2

³T
0

1
∆

³T�∆
T Kuptq2dudt and σ2

P :� ³T
0

�
1
∆

³T�∆
T

�
Kuptq�du�2

dt. Consequently, the approxi-

mate VIX option price E
�
ϕ
�
VIX2

T,P

��
is a Black-Scholes price. Such log-normal approximations of the VIX

random variable have already been exploited by several authors, for example as an approximation of VIX

futures in the rough Bergomi model by Jacquier, Martini and Muguruza [68], or as a way to generate a

log-normal control variate for the simulation of the VIX in [67], as we also did in Chapter 3.

In [20], our contribution is precisely to further approximate the residual correction term

E
�
ϕ
�
VIX2

T

��� E
�
ϕ
�
VIX2

T,P

��
.

We compute an explicit approximation of this correction performing an expansion around the log-normal

proxy ; the details of the procedure are explained in section 5.2.2. The effectiveness of the resulting price



5.2. The main elements of our approximation procedure 53

expansion hinges on the small value of the VIX time window ∆ (recall that ∆ � 1
12 for the VIX) ; in

more precise terms, we provide a Op∆αq estimate of the error term of the expansion, for some explicit

(model-dependent) α. We stress that our approach indeed does not rely on small-time asymptotics nor

small-parameter (such as small volatility-of-volatility) asymptotics, and can therefore be applied to any

option maturity and a wide range of parameter configurations.

Remark 5.1 (Evaluation of reference VIX option prices within the classical Bergomi model). Let us recall

that, for the standard Bergomi model, we have the Markovian representation of forward variances

VIX2
T �

1

∆

» T�∆

T
ξu0 f

u pT,XT qdu,

where

fupT, xq � exp
�
ωe�kpu�T qx� 1

2
ω2e�2kpu�T qVarpXT q

�
and pXtqt¥0 is the Ornstein–Uhlenbeck process Xt � �k ³t0Xsds � Ws, with VarpXT q � 1�e�2kT

2k 1k¡0 �
T1k�0. Consequently, in order to obtain reference values for VIX option prices in the one-factor Bergomi

model, instead of using a Monte Carlo estimator we can (and do) rely on a two-dimensional deterministic

quadrature : we couple a Gauss–Legendre scheme for the integration with respect to the time parameter u,

and a Gauss–Hermite scheme for the space dimension.

5.2 The main elements of our approximation procedure

Following Gobet and Miri [52], our approach is to introduce the interpolation

I pεq :� ξ0

» T�∆

T
eν0pY �

T q�εpY uT �ν0pY �
T qqdu

∆
, ε P r0, 1s, (5.2.1)

which is such that I p0q � VIX2
T,P and I p1q � VIX2

T . The function I allows us to write a representation of

the difference VIX2
T �VIX2

T,P. Under Assumptions 5.1 and 5.2 below, it is easy to see that the map ε ÞÑ I pεq
is smooth almost surely, with nth derivative given by

Ipnq pεq � ξ0

» T�∆

T
pY u
T � ν0 pY �

T qqn eν0pY �
T q�εpY uT �ν0pY �

T qqdu

∆
. (5.2.2)

Noticing that Ip1q p0q � 0, an application of Taylor’s theorem with integral remainder yields

VIX2
T �VIX2

T,P � I p1q � I p0q

�
» 1

0
p1� εq Ip2q pεq dε � Ip2q p0q

2
�
» 1

0

p1� εq2
2

Ip3q pεq dε.
(5.2.3)

The representations of I p1q � I p0q in the second line of (5.2.3) will allow us to quantify the difference

between VIX2
T and VIX2

T,P.

5.2.1 Strong error estimates between VIX2
T and its proxy VIX2

T,P

The first step in view of the derivation of option price expansions with quantitative error estimates is an

estimate of the Lp norm of the difference VIX2
T �VIX2

T,P.

Let us present the standing assumptions for this chapter.
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Assumption 5.1. The initial instantaneous forward variance curve u ÞÑ ξu0 is positive, bounded, and

bounded away from zero.

Assumption 5.2. The kernel K �p�q is such that
³T
0 K

uptq2dt   8 for every u P rT, T �∆s, for some ∆ ¥ 1.

Moreover, for any p ¡ 0, there exists a positive constant Cp such that

1

∆

» T�∆

T
ep

³T
0 Kuptq2dt du ¤ Cp (5.2.4)

for all ∆ ¤ ∆.

Assumption 5.2 is a mild technical condition, which essentially means that the moments of ξuT are integrable

over rT, T �∆s. As a consequence of Assumption 5.2, all the moments of the random variable VIX2
T are also

finite, by Jensen’s inequality. It is easy to check that Assumption 5.2 is satisfied by the one-factor Bergomi

model (1.2.11) and the rough Bergomi model (1.2.12).

In order to estimate the Lp norm of the difference VIX2
T �VIX2

T,P, we need some additional upper bounds

for the deterministic Lp norm of the difference between the diffusion coefficient Kuptq of the log-forward

variance logpξut q and its integral average ν0pK �ptqq (respectively, for the difference between the drift coefficient

pKuptqq2 and its integral average ν0pK �ptq2q). We require that these deterministic Lp norms go to zero as ∆

goes to zero with certain rates d1 and d2, see conditions (5.2.5) and (5.2.6).

Assumption 5.3. For any p ¡ 0, there exist positive constants d1, d2, C such that

�» T�∆

T

����» T
0

�
Ku ptq2 � ν0

�
K � ptq2

	�
dt

����p du

∆

	 1
p ¤ C∆d1 , (5.2.5)�» T�∆

T

����» T
0
rKu ptq � ν0 pK � ptqqs2 dt

����p du

∆

	 1
p ¤ C∆d2 , (5.2.6)

Moreover,

sup
∆
|µP| ¤ C,

1

C
¤ inf

∆
σP ¤ sup

∆
σP ¤ C. (5.2.7)

Under Assumptions 5.1, 5.2, and 5.3, we are able to prove the following

Theorem 5.1. For any p ¥ 1 we have��VIX2
T �VIX2

T,P

��
p
¤ cp ∆2d1^d2 , (5.2.8)

for some constant cp that does not depend on ∆.

5.2.2 Option price expansion

As discussed above, the leading order term in the approximation of the VIX option price ErϕpVIX2
T qs will

be given by the price on the proxy E
�
ϕ
�
VIX2

T,P

��
. Assuming for a moment that the payoff function ϕ is

smooth, a Taylor expansion around the point VIX2
T,P yields

E
�
ϕ
�
VIX2

T

�� � E
�
ϕ
�
VIX2

T,P

��� E
�
ϕ1

�
VIX2

T,P

� �
VIX2

T �VIX2
T,P

��� E0 (5.2.9)
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where the remainder E0 �
³1
0 p1� λqE�ϕ2 �λVIX2

T � p1� λqVIX2
T,P

� �
VIX2

T �VIX2
T,P

�2�
dλ will be treated

as an error term. The difference VIX2
T � VIX2

T,P can be expanded using (5.2.3) : recalling from (5.2.2) the

expression of the derivative Ip2q, we get

VIX2
T �VIX2

T,P � 1

2
Ip2q p0q �

» 1

0

p1� εq2
2

Ip3q pεqdε

� 1

2
VIX2

T,P

» T�∆

T
pY u
T � ν0 pY �

T qq2
du

∆
�
» 1

0

p1� εq2
2

Ip3q pεqdε ,

so that the second expectation on the right-hand side of (5.2.9) can eventually be written as

E
�
ϕ1

�
VIX2

T,P

� �
VIX2

T �VIX2
T,P

�� � E
�
ϕ1

�
VIX2

T,P

� 1

2
VIX2

T,P

» T�∆

T
pY u
T � ν0 pY �

T qq2
du

∆

�
� E1 (5.2.10)

where E1 � E
�
ϕ1

�
VIX2

T,P

� ³1
0
p1�εq2

2 Ip3q pεq dε
�

will be treated as a second error term.

Now, the random variable multiplying ϕ1
�
VIX2

T,P

�
inside (5.2.10) can be interpreted as the random weight

appearing after the application of an integration-by-parts formula to higher-order derivatives of ϕ – which

means that, in its turn, the expectation on the right-hand side of (5.2.10) can be rewritten in terms of a

combination of derivatives of the form Biε E
�
ϕ1

�
VIX2

T,P e
ε
��|ε�0. The important property of such higher-order

derivatives of the expectation E
�
ϕ
�
VIX2

T,P

��
is to be explicit – they are Black-Scholes Greeks. The final

expression of the expansion (5.2.9) will therefore contain a combination of a Black–Scholes price and some

of its partial derivatives.

Leaving the details of the approach sketched above to [20], let us state here the final expression we obtain for

the expansion (5.2.9) after the integration-by-parts procedure. We will make use of the following coefficients

pγiqi�1,2,3 :

γ1 :� 1

8

» T�∆

T

�» T
0

�
Ku ptq2 � ν0pK � ptq2q

�
dt
	2 du

∆
� 1

2

» T�∆

T

�» T
0
rKu ptq � ν0 pK � ptqqs2 dt

	du

∆
,

γ2 :� �1

2

» T�∆

T

�» T
0
ν0 pK � ptqq rKu ptq � ν0 pK � ptqqs dt

	�» T
0

�
Ku ptq2 � ν0pK � ptq2q

�
dt
	du

∆
,

γ3 :� 1

2

» T�∆

T

�» T
0
ν0 pK � ptqq rKu ptq � ν0 pK � ptqqs dt

	2 du

∆
.

(5.2.11)

Theorem 5.2 (Option price approximation). Let Assumptions 5.1, 5.2, and 5.3 be in force, and let ϕ : RÑ
R be a θ–Hölder continuous function for some θ P p0, 1s. The price of the VIX option with payoff ϕpVIX2

T q
satisfies

E
�
ϕ
�
VIX2

T

�� � E
�
ϕ
�
VIX2

T,P

��� 3̧

i�1

γi Biε E
�
ϕ
�
VIX2

T,P e
ε
����

ε�0
� Eϕ, (5.2.12)

where Eϕ is an error term such that |Eϕ| ¤c ∆3pd1^ d2
2
q.

Note that VIX futures correspond to ϕpxq � ?
x, VIX put options to ϕpxq � pκ�?

xq� and call options

to to ϕpxq � p?x� κq�. In all these cases, the function ϕ is 1
2–Hölder (and ϕ is even Lipschitz in the case

of call options with strictly positive strike κ, see Remark 3.2).

Remark 5.2. Although the payoff ϕ may fail to be smooth, condition (5.2.7) ensures that the lognormal

proxy VIX2
T,P is non-degenerate, with the effect of regularizing the map ε ÞÑ E

�
ϕ
�
VIX2

T,Pe
ε
��

, so that the

derivatives Biε E
�
ϕ
�
VIX2

T,Pe
ε
��

are well-defined.
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Remark 5.3. The adimensional coefficients pγiqiPt1,2,3u are defined by deterministic integrals with respect to

time variables. They depend on the option maturity T , on the time window ∆, and on the model parameters

ξ�0 and K, but not on the option payoff – which means that, in the case of call and put options, they

can be evaluated once and for all strikes. Assuming (as we did in the present chapter) that the initial

forward variance curve u ÞÑ ξu0 is constant over the VIX time window pT, T � ∆q, the γi’s actually have

analytical closed-form expressions in one-factor the Bergomi model (1.2.11), see [20, Proposition 7] for

precise expressions. In the rough Bergomi model (1.2.12), the γi’s do not seem to admit a closed-form

representation even when the initial variance curve ξu0 is constant, but in this case they can be written as

separable functions of the remaining model parameters η and H with an explicit dependence with respect to

η, see [20, Remark 12] for details.

As a direct corollary of Theorem 5.2, we obtain explicit expansion formulas for the price of calls, puts,

and futures on VIXT , for which ϕ is 1
2 -Hölder continuous and all the terms in (5.2.12) (apart from the error

term) are explicit – precise expressions are given in [20, Corollary 6].

The assumptions of Theorem 5.2 are satisfied in our main examples. In our reference examples –

the Bergomi model (1.2.11) and the rough Bergomi model (1.2.12) – we are able to check that the assumptions

of Theorem 5.2 hold true, with a precise knowledge of the rates d1 and d2 appearing in Assumption 5.3.

Proposition 5.1. In the one-factor Bergomi model (1.2.11) with parameter k ¡ 0, Assumption 5.3 holds

with d1 � 1 and d2 � 2. Consequently, Theorem 5.2 holds and the error term Eϕ in (5.2.12) is Op∆3q.

Proposition 5.2. Assume H P p0, 1qzt1
2u. In the rough Bergomi model, Assumption 5.3 holds with d1 �

1 ^ 2H and d2 � 2H. Consequently, Theorem 5.2 holds and the error term Eϕ in the expansion (5.2.12) is

Op∆3Hq.

Remark 5.4. (Limiting case : constant kernel) When the kernel K is constant, which corresponds to H � 1
2

in the rough Bergomi model and to k � 0 in the Bergomi model, we have VIX2
T � VIX2

T,P. Correspondingly,

in this case γi � 0 for every i P t1, 2, 3u, and the expansion (5.2.12) holds with zero error term Eϕ � 0.

The numerical tests provided in [20, section 2.5] show that the relative errors of the approximation formulas

provided by Theorem 5.2 are extremely accurate – absolute relative errors for the rough Bergomi model with

realistic parameters are less than 0.5% for futures contracts and less than 1.5% for at-the-money options,

while for the standard Bergomi model (still with typical market-implied parameter values), relative errors

are even smaller, less than (an impressive) 10�3% for the VIX futures, and less than 1% for at-the-money

options. Instead of displaying these results here, we prefer to move to an enhanced version of the model

class (1.2.10), for which we are also able to provide accurate approximation formulas.

5.3 Mixed (or “skewed”) exponential models

A class of models more general than (1.2.10), and capable of appropriately capturing the behavior of market

VIX smiles, was introduced in Bergomi [15], who observed that a simple yet efficient way to twist the

distribution of forward variances is to replace the exponential process ξut � ξu0 e
Y ut stemming from (1.2.10)

with a convex combination of two exponential functions. This observation yields the extended model family

ξut � ξu0

�
λ eα1ZuT� 1

2
α2

1VarpZuT q � p1� λqeα2ZuT� 1
2
α2

2VarpZuT q
�

(5.3.1)
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where ZuT is the common Gaussian factor

ZuT �
» T

0
KupsqdWs , (5.3.2)

the positive parameters αi ¡ 0 allow to tune the volatility of variances, and λ P r0, 1s plays the role of a

mixing coefficient.

Remark 5.5. When Kuptq � e�kpu�tq, (5.3.1) corresponds to the mixed one-factor Bergomi model introduced

in [15], and when Kuptq � pu � tqH� 1
2 , (5.3.1) yields the so-called mixed rough Bergomi model, introduced

simultaneously by De Marco [32] and Guyon [56].

The squared VIX is of course still defined by integrated instantaneous forward variances, we see that VIX2
T

is given by a convex combination of integral means of the form (5.1.2), that is

VIX2
T � λVIX2

T,1 � p1� λqVIX2
T,2 :� λ

1

∆

» T�∆

T
ξu0 e

Y uT,1du� p1� λq 1

∆

» T�∆

T
ξu0 e

Y uT,2du , (5.3.3)

where

Y u
T,j :�

» T
0
Ku
j ptqdWt � 1

2

» T
0
Ku
j ptq2 dt , j P t1, 2u , (5.3.4)

and

Ku
j ptq � αjK

uptq .
Following the approach of section 5.2, we approximate each integral mean with a log-normal random

random variable, so that VIX2
T is eventually approximated by

VIX2
T,P � λ ξ0 e

1
∆

³T�∆
T Y uT,1du � p1� λq ξ0 e

1
∆

³T�∆
T Y uT,2du

�: λVIX2
T,P,1 � p1� λqVIX2

T,P,2 .

The overall proxy VIX2
T,P is therefore a convex combination of correlated log-normal random variables. For

j P t1, 2u, we have

ln
�
VIX2

T,P,j

� d� N �
µP,j , σ

2
P,j

�
, (5.3.5)

where µP,j :� �1
2

³T
0 ν0

�
K �
jptq2

�
dt, σ2

P,j :� ³T
0 ν0

�
K �
jptq

�2
dt.

We have the following

Theorem 5.3. Let ϕ P C2
b . In the mixed rough Bergomi model obtained setting Kuptq � pu � tqH� 1

2 and

αj � ηj in (5.3.1)-(5.3.2), the price of the option with payoff ϕpVIX2
T q is given by

E
�
ϕ
�
VIX2

T

�� � E
�
ϕ
�
VIX2

T,P

��� 3̧

i�1

2̧

j�1

γi,jPi,j � Eϕ, (5.3.6)

where Eϕ is an error term satisfying |Eϕ| ¤c ∆3pd1^ d2
2
q with d1, d2 given in (5.2.5)-(5.2.6), and

E
�
ϕ
�
VIX2

T,P

�� � E
�
ϕ
�
ν pξ�0q

�
λ eµP,1�σP,1Z � p1� λqeµP,2�σP,2Z

���
, (5.3.7)

Pi,j � Bi�1
ε E rΨj pµP,j � σP,jZ � εqs|ε�0 , i P t1, 2, 3u, j P t1, 2u,

Ψ1 pxq � Byϕ
�
ν pξ�0q

�
λ ex�y � p1� λq e

η2
2
pη1�η2q

³T
0 ν0pK�ptq2qdt� η2

η1
x
�
����

y�0

, (5.3.8)

Ψ2 pxq � Byϕ
�
ν pξ�0q

�
λ e

η1
2
pη2�η1q

³T
0 ν0pK�ptq2qdt� η1

η2
x � p1� λq ex�y

�
����
y�0

. (5.3.9)
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In (5.3.6), the coefficients γ1,j, γ2,j and γ3,j, j P t1, 2u, are defined as in (5.2.11), replacing the kernel

K with the corresponding Kj. A similar expansion holds for the mixed standard Bergomi model, taking

Kuptq � e�kpu�tq and replacing ηi with ωi for i P t1, 2u in (5.3.8) and (5.3.9).

We note that the form of (5.3.7)-(5.3.8)-(5.3.9) is specific to the presence of a single Gaussian factor in

(5.3.1) – in other words, specific to the mixed one-factor Bergomi model where Ku
i ptq � ωie

�kpu�tq (same

value of k for the two kernels) and to the rough Bergomi model where Ku
i � ηipu � tqH� 1

2 (same value of

H). In these cases, the VIX proxy is a function of a single Gaussian random variable,

VIX2
T,P

d� ξ0

�
λ eµP,1�σP,1Z � p1� λq eµP,2�σP,2Z

�
, Z

d� N p0, 1q ,
so that all the expressions in Theorem 5.3 can be evaluated with efficient one-dimensional Gaussian qua-

dratures (we refer to [20, section 3.2] for more details).

5.3.1 Numerical tests for option price formulas and implied volatilities

Reference prices in the mixed rough Bergomi model are evaluated according to the Monte Carlo procedure

described in Chapter 3 : we discretize the VIX2
T,j in (5.3.3) for j P t1, 2u with a rectangle scheme and

simulate exactly the discretized variable for a large number n � 300 of discretization points. In the mixed

standard Bergomi model, we exploit the Markovian representation in Remark 5.1 for each term VIX2
T,j ,

j P t1, 2u, and apply a two-dimensional deterministic quadrature with respect to the parameter u and to

the space dimension.

We compare the resulting reference VIX implied volatilities with the approximate implied volatilities

computed with our expansion in Theorem 5.3. To test the approximation formulas on different VIX smiles,

we consider two different parameter scenarios in the rough and standard Bergomi models. We have considered

options maturities equal to 1, 3, and 6 months.

Implied volatility for the mixed rough Bergomi model. Recall that the mixed rough Bergomi model

is obtained by injecting Ku � pu� tqH� 1
2 and αi � ηi, i P t1, 2u, in (5.3.1). We set ξ0 � 0.2352 and H � 0.1 ;

the other model parameters can be found in Table 5.1. We evaluate the reference option prices with 106

Monte Carlo samples and 300 discretization points.

Scenario 1-month VIX futures 3-month VIX futures 6-month VIX futures

1 0.218650� 5� 10�6 0.206308� 5� 10�6 0.196890� 5� 10�6

2 0.229001� 3� 10�6 0.224244� 3� 10�6 0.220472� 3� 10�6

Scenario η1 η2 λ

1 1.4 0.7 0.3

2 0.9 0 0.6

Table 5.1 – Term structure of VIX futures and model parameters for scenarios 1 and 2 in the mixed rough

Bergomi model.

In Figure 5.1 we can see that, in the mixed model as well, our approximation formula proves to be very

accurate – the reference and the approximate implied volatilities are barely distiguishable on the graphs.

The related absolute relative errors are less than 1.6% for the parameter scenario 1 and less than 0.9% for

scenario 2.
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Figure 5.1 – VIX smiles in the mixed rough Bergomi model for T � 1, 3, 6 months (left), and corresponding

percentage relative errors between the reference implied volatilities and their approximations from Theorem

5.3 (right), for parameter scenarios 1 (top figures) and 2 (bottom figures).

Implied volatility for the mixed standard Bergomi model. We perform a similar numerical analysis

for the mixed one-factor standard Bergomi model, obtained setting Kuptq � e�kpu�tq and αi � ωi, i P t1, 2u,
in (5.3.1). We set ξ0 � 0.22 and k � 1. The other model parameters are given in Table 5.2.

Scenario 1-month VIX futures 3-month VIX futures 6-month VIX futures

3 0.172764 0.145976 0.130503

4 0.181527 0.165480 0.155141

Scenario ω1 ω2 λ

3 0.5 6 0.3

4 10 2 0.2

Table 5.2 – Term structure of VIX futures and model parameters for scenarios 3 and 4 in the mixed

standard Bergomi model.
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Figure 5.2 – VIX smiles in the mixed standard Bergomi model for T � 1, 3, 6 months (left figures),

and relative errors between the reference implied volatilities and their approximations (right figures) for

parameter scenarios 3 (top figures) and 4 (bottom figures).

As seen in Figure 5.2, the approximation formula from Theorem 5.3 turns out to be extremely accurate

for the mixed Bergomi model, too (absolute relative errors are now smaller than 5 � 10�2 % for parameter

scenario 3 and less than 2� 10�2 % for scenario 4).

A calibration test of both models to VIX market data, performed in [20, section 3.3], illustrates the

capability of the mixed exponential class (5.3.1) to appropriately fit the VIX implied volatility surface. The

use of our pricing formula (5.3.6) of course offers a considerable gain in terms of execution time with respect

to the reference pricing methods (in our tests, the full VIX implied volatility calibration with our expansion

(5.3.6) was 3.5 times faster than the calibration based on two-dimensional quadrature for the mixed Bergomi

model, and tens of times faster than the Monte Carlo-based calibration for the mixed rough Bergomi model).
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In this chapter, we wish to understand the behavior of the local volatility surface generated by a – possibly

rough – stochastic volatility model, at least asymptotically for short maturities and around the ATM point.

In particular, we will examine the validity of traditional approximations linking the implied and the local

volatility surfaces, such as the harmonic mean formula and the 1/2 skew rule, in the context of rough

stochastic volatility. An application of our results will be the extrapolation of local volatility surfaces for very

short maturities, as we discuss in section 6.2.3. The results presented in this chapter are taken from our

works De Marco and Friz [29], De Marco, Friz and Gerhold [30], De Marco [28], and Bourgey, De Marco,

Friz and Pigato [19].

6.1 The local volatility surface

Let pt,Kq ÞÑ P pt,Kq be an arbitrage-free put price surface on a single asset S, parametrized by the option

maturity t and strike price K. We assume that P is smooth, namely P P C1,2pp0,8q� p0,8qq. Let us recall

Dupire’s formula [35] defining the the local volatility function σloc from the put price surface P (assuming

zero interest, repository and dividend rates for the ease of notation) :

σlocpt, kq2 � 2
BtP pt,Kq

K2BKKP pt,Kq
����
K�S0ek

t ¡ 0, k P R. (6.1.1)

Note we define σloc as a function of time t and log-strike k � ln K
S0

P R. The celebrated result by Dupire

[35] states that the local volatility model St � S0 �
³t
0 Su σloc

�
u, log

�
Su
S0

		
dBu admits a weak solution that

reproduces the put option prices we started from, in the sense that ErpK � Stq�s � P pt,Kq for every t

and K. Some regularity conditions are required for this construction to make sense ; without ambitions to

provide minimal requirements, let us mention that it will be enough that the function σlocpt, kq is bounded
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and Lipschitz with respect to k uniformly in t (see [66] for a more general construction, related to Kellerer’s

Theorem).

Let σBSpt, kq denote the Black-Scholes implied volatility of the put price P pt,Kq|K�S0ek . Injecting the

identity P pt,Kq � PBSpt,K, σBSpt, kq inside (6.1.1), we obtain Dupire’s formula written in terms of the

implied volatility σBS,

σlocpt, kq2 � σBSpt, kq � 2 t BtσBSpt, kq�
t BkkσBS � 1

4 t
2 σBSpBkσBSq2 � 1

σBS

�
1� k BkσBS

σBS

	2	
pt, kq

. (6.1.2)

The computation leading from (6.1.1) to (6.1.2) is standard ; details can be found for example in Lee [76].

Short-time limit and the harmonic mean formula. Formally taking the short maturity limit tÑ 0

in (6.1.2), and assuming that the partial derivative BtσBS, BkσBS and BkkσBS remain bounded as tÑ 0, one

obtains the equation

σlocp0, kq2 � σBSp0, kq2�
1� k σ1BSp0,kq

σBSp0,kq
�2
, (6.1.3)

relating the short-time limits σlocp0, kq :� limtÑ0 σlocpt, kq and σBSp0, kq :� limtÑ0 σBSpt, kq of the local and

implied volatility surfaces, where we denote σ1BSp0, kq � BkσBSp0, kq. As already noted by Lee [76], if we

think the local volatility σloc to be given, equation (6.1.3) can be seen as an ODE for the function σBSp0, �q.
It is a simple exercice to check that (6.1.3) is solved by the harmonic mean function

σBSp0, kq � Hp0, kq :� 1
1
k

³k
0

1
σlocp0,yqdy

, k P R ,

which suggests that we can expect the harmonic mean Hpt, kq � 1
1
k

³k
0

1
σlocpt,yq

dy
of the short-dated the local

volatility σlocpt, �q to be a good approximation of the short-dated implied volatility σBSpt, �q. A rigorous proof

of the asymptotic statement

σBSpt, kq �
tÑ0

Hpt, kq (6.1.4)

can be found in Berestycki et al. [12], or in Gatheral et al. [46] based on small-time heat kernel asymptotics.

The “1/2 skew” rule of thumb. Assuming the local volatility function is differentiable at k � 0, it is not

difficul to see that, for fixed maturity t, the harmonic mean Hpt, kq satisfies the property

BkHpt, kq
��
k�0

� 1

2
Bkσlocpt, kq

��
k�0

.

If we assume that the short-time approximation property σBSpt, kq � Hpt, kq from (6.1.4) also holds for the

first derivative with respect to k, we obtain the so-called 1/2 skew rule

BkσBSpt, kq
��
k�0

� 1

2
Bkσlocpt, kq

��
k�0

as tÑ 0 , (6.1.5)

in other words
ATM implied vol skew

ATM local vol skew
� 1

2
as tÑ 0.
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6.1.1 A related model-free result : the harmonic mean property of the implied volatility

With a view on the asymptotic approximation (6.1.4), it is worth to point out the following model-free result

proved in [28] : any arbitrage-free implied volatility is in fact the harmonic mean of a positive function, for

any fixed maturity (and not only in the small-maturit limit).

Theorem 6.1 (Theorem 2.4 in [28]). Let σBS be an arbitrage-free implied volatility surface satisfying

σBSpt, kq ¡ 0 for every t ¡ 0 and k P R, and k ÞÑ σBSpt, kq P C1pRq. Then, there exists a unique strictly

positive function s : p0,8q � R Ñ R, with k ÞÑ spt, kq P C0pRq, such that σBSpt, �q is the harmonic mean of

spt, �q :

σBSpt, kq � 1
1
k

³k
0

1
spt,yq dy

@ k � 0, @ t ¡ 0 , (6.1.6)

and σBSpt, 0q � spt, 0q.

The proof of Theorem 6.1 is based on Fukasawa’s seminal result [40] about the strict monotonicity of the

Black-Scholes maps k ÞÑ d0pkq � � k?
tσBSpt,kq �

?
tσBSpt,kq

2 and k ÞÑ d1pkq � � k?
tσBSpt,kq �

?
tσBSpt,kq

2 , which

holds for every t and for any arbitrage-free implied volatility σBS.

The link of the function s in the harmonic mean representation (6.1.6) with the local volatility σloc as-

sociated to σBS can be inspected starting from Dupire’s formula (6.1.2). As expected, under appropriate

regularity conditions on the behavior of σBS for small maturities (which are actually not met in the case of

rough volatility models ! See our results and discussion in the next section), the two functions s and σloc can

be identified in the small time limit, but are different otherwise, see [28, Proposition 4.2 and Remark 4.3].

6.2 Local volatility under rough volatility

For reference, we recall the class of stochastic volatility models (1.2.8)-(1.2.10) induced by the forward

variance modeling framework considered in section 1.2,

dSt � St
a
Vt

�
ρdWs �

a
1� ρ2 dW s

	
Vt � ξt0 e

η
³t
0Kpt,sqdWs�η

2

2

³t
0 Kpt,sq2ds ,

(6.2.1)

where W, W̄ are two independent standard Brownian motions and ξt0 the deterministic initial forward va-

riance curve (a market parameter). Note that, with respect to the notation in section 1.2, we have factored

the dependence with respect to the vol-of-variance parameter η out of the kernel K. As already seen in

previous chapters, our leading example is obtained when

Kpt, sq �
?

2H

pt� sq1{2�H , H   1{2 .

The corresponding Gaussian process

xWt � pK � 9W qt �
» t

0
Kpt, sqdWs (6.2.2)

is the Riemann-Liouville Brownian motion, and in this case (6.2.1) corresponds to the rough Bergomi model

of Bayer et al. [9].
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In view of small-time asymptotic results, an important property of xWt that we will exploit is self-similarity

pxWε t, t ¥ 0q law� εHpxWt, t ¥ 0q .
Our precise assumptions on the model coefficients. Our main result for this section (Theorem 6.2

below) holds for the class of models

dXt � �1

2
Vtdt�

a
Vt

�
ρdWs �

a
1� ρ2 dW s

	
Vt � σ2

�» t
0
Kpt, sqdWs



� σ2

�xWt

�
,

(6.2.3)

where Xt � log St
S0

denotes the asset log-price and the smooth function σ : RÑ R satisfies the following

Assumption 6.1. There exist c1, c2, c3, c4 ¡ 0 such that

(C1) σpxq ¤ c3 exppc4|x|q (exponential upper bound)

(C2) σpxq ¥ c1 expp�c2|x|q (exponential lower bound)

for all x P R.

Our choice of kernel is the Riemann-Liouville kernel Kpt, sq �
?

2H
pt�sq1{2�H with H ¤ 1{2, even if we suspect

that our result could be extended to general self-similar Volterra processes.

With respect to the base model (6.2.1), we are able to handle more general functions than the exponential

σ2pxq � ex, even if we do not include an explicit time dependence in the function σ – strictly speaking then,

the model (6.2.1) where Vt � σ2
�
t,xWt

� � ξt0 e
ηxWt� 1

2
η2t2H is not covered by our main Theorem 6.2, even if

we can (and do) perform numerical tests for (6.2.1) indicating that Theorem 6.2 and its corollaries seem to

hold in this slightly more general setting as well.

Local volatility as Markovian projection. It is well-known that, when option price surface P is gene-

rated by a stochastic volatility model such as (6.2.3), the local volatility function (6.1.1) has a representation

as a conditional expectation [60, 23]

σlocpt, kq2 � E rVt|Xt � ks , k P R , (6.2.4)

which is usually referred to as “Markovian projection” of the stochastic volatility. Weak solvability and the

marginal mimicking-property of the local volatility model with diffusion coefficient defined by (6.2.4) was

proven in the seminal work of Gyöngy [60] under the assumptions that the original stochastic volatility

model has bounded drift and diffusion coefficients and uniformly elliptic diffusion matrix (which is not the

case for (6.2.3)), and then extended by Brunick and Shreve [23] who removed the boundedness and ellipticity

assumptions in Gyöngy’s result.

Additional notation for this section. The theory of pathwise Large Deviations we are going to exploit in

this section requires to introduce some additional notation. We denote AC the space of two-dimensional

absolutely continuous paths
!
ph, h̄q : r0, 1s Ñ R2 : ht �

³t
0
9hsds, h̄t �

³t
0
9̄hsds

)
, and H1 the Cameron–Martin

space

H1 �
!
ph, h̄q P AC : 9h, 9̄h P L2p0, 1q

)
equipped with the Cameron–Martin norm }h, h̄}2H1 �

³1
0p 9h2 � 9̄h2qdt. Using a notation analogous to (6.2.2),

we denote

ĥt � pKH � 9hqt �
?

2H

» t
0
pt� sqH�1{2dhs

the “fractional” path associated to h.
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6.2.1 Our toolbox : Large Deviations

We aim at short-time asymptotic results, which is why we target the family of time–changed processes

pXε2tqt¥0 as ε Ñ 0. Due to the time–scaling property of the Gaussian noise W � �
W,W,xW �

driving the

stochastic system (6.2.3), we have

pXε2t, t ¥ 0q d� pXε
t , t ¥ 0q ,

where the process Xε� now solves

Xε
t �

» t
0
σ
�
ε2HxWs

�
εd

�
ρdWs �

a
1� ρ2 dW s

	
� 1

2
ε2

» t
0
σ2
�
ε2HxWs

�
ds . (6.2.5)

The different time scales ε for the Brownian component pW,W q and ε2H for the fractional component xW
both come into play in (6.2.5). In the framework of Large Deviations theory, we are able to transfer a large

deviation principle from the Gaussian process ε̂W to the process X, but in the presence of a single scaling

parameter ε̂. It is still possible to apply this procedure to (6.2.5), but in order to do so, we have to rescale

the space dimension as well, considering the new process

X̃ε
t � ε2H�1Xε

t �
» t

0
σ
�
ε̂xWs

�
ε̂d

�
ρ dWs �

a
1� ρ2 dW s

	
� 1

2
ε̂1� 1

2H

» t
0
σ2
�
ε̂xWs

�
ds , (6.2.6)

where now ε̂ � ε2H .

It is well-known that a small noise Large Deviation Principle (LDP) holds for the family pX̃ε
1qε (hence for

ε2H�1Xε2) as εÑ 0, with speed ε̂2 � ε4H and rate function

Λpxq � inf

"
1
2}h, h̄}2H1 : Φ1ph, h̄q �

» 1

0
σ
�
ĥt
�
d
�
ρ ht �

a
1� ρ2 h̄t

� � x

*
. (6.2.7)

This result was first proved in the case where Vt � σpŴtq and σ is a function with linear growth in Forde and

Zhang [38]. The more general exponential growth condition (C1) in Assumption 6.1 is no obstruction for an

LDP to hold for the model (6.2.3), as was shown in Gulisashvili [54], where functions σp�q with exponential

growth are taken into account. Note that, in the deterministic map Φ1, the drift part of the stochastic

equation (6.2.6) has vanished. This is typical phenomenon in small-time large deviations for SDEs : the time

scale of the drift (ε̂1� 1
2H ) is much faster than the time scale of the stochastic integral part (ε̂2H), with the

consequence that the drift part of (6.2.6) is negligible in the limit.

It is clear that Λpxq|x�0 � 0, for in this case the Cameron-Martin path (or optimal control) attaining the

minimum in (6.2.7) is simply the null path h � h̄ � 0. For other values of x � 0, as soon as Λpxq   8, it

follows from the lower semi-continuity of the Cameron-Martin norm } � }2H1 , the compactness of its level sets

and the continuity of the map Φ1 that existence of a minimizer holds for (6.2.7) : we have

Λpxq � 1

2
}hx, h̄x}2H1

for some element phx, h̄xq of H1. Moreover, for x small enough, such a minimizer is known to be unique

[39] : we have Λpxq � 1
2}hx, h̄x}2H1 for a unique optimal control phx, h̄xq.

The time-space scaling described above naturally leads to consider asymptotics of distribution functions

(for the original process X), of option prices and volatility surfaces along a curve in the maturity–log-strike
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plane pt, kq, parametrized by H. Note indeed that, roughly speaking, fixing the value of X̃ε
1 in (6.2.6) amounts

to

X̃ε
1 � xÐÑ Xε2 � x ε1�2H � x t1{2�H ,

if we set ε2 � t in the last identity. More precisely, from the LDP (6.2.7), we have

�ε4H logP
�
Xε

1 ¥ x ε1�2H
�Ñ Λpxq, for x ¥ 0 as ε Ó 0, (6.2.8)

�ε4H logP
�
Xε

1 ¤ x ε1�2H
�Ñ Λpxq, for x ¤ 0 as ε Ó 0 , (6.2.9)

and this small-noise LDP eventually translates to a short-time LDP for the process Xε2 . In terms of call

and put prices, the resulting short-time result reads as follows (see [38, Corollary 4.13])

�t2H logE
�peXt � ex t

1{2�H q��Ñ Λpxq, for x ¡ 0 as t Ó 0, (6.2.10)

�t2H logE
�pex t1{2�H � eXtq��Ñ Λpxq, for x   0 as t Ó 0 . (6.2.11)

Remark 6.1 (Precise conditions for option price asymptotics). While the put price asymptotics (6.2.11)

always holds, the unboundedness of the call option payoff requires some additional condition for (6.2.10) to

hold : with reference to [39, Assumption A2], we will assume the following “1� moment condition” whenever

necessary :

Assumption 6.2. The process St � eXt is a martingale, and there exist p ¡ 1 and t ¡ 0 such that

ErSpt s   8.

It is known that such a condition on the moments of eXt is satisfied when σ has linear growth, cf. [38],

while in the case H � 1{2, the same is true under much weaker assumptions (notably : σp�q of exponential

growth and ρ   0 is enough, see [82, 71]). We expect similar results to hold for H   1{2, but they have not

been proved yet ; see the partial results available in Gassiat [45], where the martingale property of the rough

Bergomi model is proved, and in Gulisashvili [55].

Let us also recall that the option price asymptotics (6.2.10) and (6.2.11) imply the following asymptotic

formula for the Black–Scholes implied volatility

σ2
BSpt, x t1{2�Hq Ñ Σ

2pxq :� x2

2Λpxq for x � 0 as t Ó 0 , (6.2.12)

see [38] and the related work [42]. Equation (6.2.12) has an immediate consequence for the estimation of the

short-dated at-the-money implied volatility skew BkσBSpt, kq|k�0 (when it exists). Considering the following

finite difference approximation of the ATM implied volatility skew (which is always well-defined)

SBSpt, xq :� σBSpt, x t1{2�Hq � σBSpt,�x t1{2�Hq
2x t1{2�H

,

then (6.2.12) entails

SBSpt, xq � Σpxq � Σp�xq
2x

1

t1{2�H
as t Ó 0 , (6.2.13)

An asymptotic expansion of the function Σpxq as xÑ 0, derived in [39], eventually allows to provide more

explicit approximation formulas for the implied volatility surface σBSpt, kq and its skew for small maturities

t and around the at-the-money point x � 0.
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6.2.2 Our main result : asymptotics of the Markovian projection in the large deviations

regime

The tools presented in the previous section allow us to study the local volatility generated by the rough

volatility model (6.2.3) at the large deviations regime,

σ2
locpt, ktq � E rVt|Xt � kts ,

along the curve pt, ktq � pt, x t1{2�Hq for some fixed value of x.

Theorem 6.2 (Theorem 3.3 in [19]). Assume the growth conditions (C1) and (C2). Then, for x P Rzt0u
small enough,

σ2
loc

�
t, x t1{2�H

� � E
�
σ2
�xWt

����Xt � x t1{2�H
�
Ñ σ2

�
ĥx1

�
as t Ó 0 , (6.2.14)

where we recall that

ĥxt � pK � 9hxqt �
?

2H

» t
0
pt� sqH�1{2dhxs

is the fractional path coming from the minimizer phx, h̄xq of the rate function in (6.2.7).

Let us stress that Theorem 6.2 holds under the mild growth conditions of Assumption 6.1, while we do not

require the 1� moment condition in Assumption 6.2.

Numerical evaluation of the minimizing path hx. It can be shown, see [38], that the rate function (6.2.7)

satisfies

Λpyq � inf
!py � ρGphqq2

2 ρ̄2F phq � 1

2
x 9h, 9hy : 9h P L2p0, 1q

)
,

with F phq � xσ2pĥq, 1y � ³1
0 σ

2pĥtqdt and Gphq � xσpĥq, 9hy � ³1
0 σpĥtq 9htdt. This alternative representation

yields the rate function under the form of an unconstrained optimization problem (as opposed to the constrai-

ned optimization (6.2.7)), which can then be approximately solved by projection of the one-dimensional path
9h over an orthonormal basis t 9enun¥1 of L2, 9ht �

°
n¥1 an 9enptq. In practice, we truncate the sum at a certain

order N and minimize over the coefficients panq1¤n¤N ; we obtain an approximation of the minimizer hy

and therefore of ĥyt � pKH � 9hyqt �
³t
0Kpt, sq 9hsds. In our numerical experiments in section 6.2.4, we choose

the Fourier basis
 
9e1ptq � 1, 9e2nptq �

?
2 cosp2πn tq, 9e2n�1ptq �

?
2 sinp2πn tq, n P Nzt0u(, and observe that

truncation of the sum at N � 8 provides a good accuracy. In the present context, this method is typically

referred to as the Ritz method.

Some elements of the proof of Theorem 6.2. In order to prove Theorem 6.2, our starting point is a repre-

sentation formula for the conditional expectation (6.2.4) that follows from the integration by parts formula

of the Malliavin calculus,

ErVt|Xt � ys � ErVt δpXt � yqs
ErδpXt � yqs �

E
�
σpxWtq2 1Xt¥y

³t
0

1?
1�ρ2σ

�xWs

�dW s

�
E
�
1Xt¥y

³t
0

1?
1�ρ2σpxWsqdW s

� . (6.2.15)

When y � x t1{2�H and x � 0, we are able to study the asymptotics as t Ñ 0 of both the numerator and

the denominator of the rightmost expression in (6.2.15). This follows from an application of the Laplace

method on path space, building on ideas of Azencott [8] and Ben Arous [7], adapted to the rough volatility

framework by Friz et al [39]. Very roughly speaking, when t Ñ 0 the process xW inside the expectation

concentrates around the path ĥx associated to the minimizer hx of the rate function in (6.2.7). All the

resulting common terms at the numerator and denominator of (6.2.15) simplify, apart from the single term

σ
�
ĥx

�2
that only appears at the numerator.
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6.2.3 The consequence for the short-time local volatility skew

The at-the-money local volatility skew is defined by the first derivative Bkσlocpt, kq|k�0 (when it exists).

Denote

Σpxq2 :� σ2
�
ĥx1

�
the short-time limit of the Markovian projection in (6.2.14). Considering the following finite difference

approximation of the ATM local volatility skew,

Slocpt, xq :� σlocpt, ktq � σlocpt,�ktq
2 kt

� σlocpt, x t1{2�Hq � σlocpt,�x t1{2�Hq
2x t1{2�H

,

the asymptotic statement (6.2.14) immediately yields

Slocpt, xq � Σpxq � Σp�xq
2x

1

t1{2�H
(local vol skew) (6.2.16)

as tÑ 0, showing that, in addition to the ATM implied volatility skew in (6.2.13), the ATM local volatility

skew also displays an explosive power-law behavior.

It is now just a matter of simple algebra to work our the asymptotic behavior of the ATM skews of the

two surfaces. For reference and comparison with (6.2.16) , recall from (6.2.13) that

SBSpt, xq � Σpxq � Σp�xq
2x

1

t1{2�H
(implied vol skew)

Corollary 6.1 (The H � 3{2 skew rule). Under assumptions (C1), (C2) and (C3),

lim
tÑ0

SBSpt, xq
Slocpt, xq �

Σpxq � Σp�xq
Σpxq � Σp�xq

if ρ � 0 (otherwise the implied and local volatility ATM skews are zero). Based on asymptotic expansions as

xÑ 0 of the function Σpxq derived in [19], we have

lim
xÑ0

lim
tÑ0

SBSpt, xq
Slocpt, xq �

1

H � 3{2 . (6.2.17)

When H � 1{2, we are back to the classical 1{2 skew rule presented in section 6.1. Otherwise, we dub the

asymptotic result (6.2.17) the “H � 3{2 skew rule”.

Remark 6.2. Corollary 6.1 entails that the formal argument used to derive the 1/2 rule (6.1.5) in section 6.1

does not hold anymore for the implied and local volatility surfaces generated by a rough stochastic volatility

model. Notably, the boundedness of the partial derivatives BtσBS, BkσBS and BkkσBS falls short – but in such

a way that the limit of the ratio SBS
Sloc

can still be identified and explicitly computed. As a consequence of

(6.2.17), we also expect the short-time harmonic mean approximation (6.1.4) to break down in this context,

see our related numerical tests in Figure 6.4

Remark 6.3. Fukasawa [43] provides asymptotic expansions for the implied volatility σBSpt, x t1{2q generated

by a class of rough stochastic volatility models encompassing rough Bergomi (note the different curve, x t1{2 as

opposed to x t1{2�H , along which the volatility surface is evaluated, which hinges on the different asymptotic

method applied in [43]). The asymptotic expansion for the implied volatility in [43, Theorem 2.1] is precisely

expressed in terms of renormalized limit of the Markovian projection of the stochastic volatility model, see
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[43, Remark 2.1]. An adaptation of the arguments used in the proof of [43, Theorem 2.1] therefore allows to

relate the implied volatility skew and the local volatility in the rough volatility model and to derive, at least

formally, the “H+3/2” skew rule with an independent argument1.

An interesting connection with the “H+3/2” rule can also be found in[43, Theorem 2.1], where the short-

maturity limit of Skew Stickiness Ratio of Bergomi [16] is shown to satisfy

R � lim
τÑ0

E
�
log Sτ

S0
p?Vτ �

?
V0q

�
BkσBSpτ, kq|k�0E

��
log Sτ

S0

�2
� � H � 3

2
. (6.2.18)

Though they represent limits of different objects, it would be interesting to explore more in details the possible

connections between the limiting values in (6.2.18) and in (6.2.17).

Remark 6.4. Since the announcement of Theorem 6.2 and Corollary 6.1 at several conferences and meetings

during 2021, other authors have explored the validity of the “H+3/2 rule” in other rough or rough-like

stochastic volatility models. In his Master thesis [27] (under the supervision of Riccardo Longoni, Andrea

Pallavicini and Carlo Sgarra), Dall’Acqua provides numerical evidence for (6.2.17) in the framework of the

lifted Heston model of Abi Jaber [1] (a Markovian approximation of rHeston), and provides a formal proof

of the H+3/2 rule under the rough Heston model. In their recent preprint [5], Alos and co-authors proved

again, and with a different proof, the asymptotics (6.2.17) in a class of rough volatility models under some

regularity assumptions on the Malliavin derivatives of the involved processes, further providing an asymptotic

rule for the at-the-money second derivative Bkkp�q|k�0 of the local and implied volatility functions.

Short-maturity extrapolation of local volatilities. Eventually, Theorem 6.2 provides us with an

extrapolation recipe for local volatilities for very short maturities. Roughly speaking, fixed a (small) maturity

t and a log-moneyness level k, formally plugging y � k
t1{2�H

in the asymptotic statement

σ2
loc

�
t, x t1{2�H

�Ñ σ2
�
ĥx1

�
as tÑ 0

we obtain the approximate expression

σ2
loc

�
t, k

� � σ2
�
ĥx1

�|x� k

t1{2�H
for small t and small k.

The limiting function σ
�
ĥx1

�|y� k
t
T 1{2�H can therefore be used in order to extrapolate a local volatility surface

for very short maturities, in a way that is consistent with the behavior implied by a rough volatility model.

A specific context of application. The rough volatility model (6.2.3) can be enhanced with a leverage

function lpt, Sq
dSt � St lpt, Stq

a
Vt

�
ρdWs �

a
1� ρ2 dW s

	
.

yielding a Local-Stochastic Volatility model (LSV), whose calibration can be targeted with the particle

method of Guyon and Henry-Labordère[58]. The LSV model calibrated to a given Dupire local volatility

surface σDup corresponds to

lpt, Stq � σDuppt, Stqa
ErVt|Sts

.

In general, one wishes the leverage function lpt, Sq to be a small correction to the original stochastic volatility

model (in other words : as close as possible to l � 1). In practice, the local volatility σDup coming from

1Personal communication with Masaaki Fukasawa and Peter Friz.
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market data has to be extrapolated for values of t smaller than the shorter observed maturity, and the

choice of the extrapolation method is up to the user. If, for small t, the chosen extrapolation σDuppt,Kq
is qualitatively too different from the behavior of the conditional expectation ErVt|St � Ks in the rough

volatility setting (for example : the behavior of the ATM skew of σDup is far from the power law (6.2.16)),

then the leverage function will have to compensate, deviating from the unit function. Under the pure rough

volatility model (l � 1), Theorem 6.2 and Corollary 6.1 describe the behavior of the markovian projection

ErVt|Sts for small t : eventually, these statements give hints on how the market local volatility σDuppt, �q
should be extrapolated in order for lpt, �q not to deviate too much from the unit function.

Such a strategy for short-time local volatility extrapolation and the subsequent calibration of a LSV model

with lifted Heston backbone is precisely explored in [27].

6.2.4 Numerical tests

We wish to estimate the conditional expectation (6.2.4) for a specific instance of the model (6.2.3), using

Monte Carlo simulation. We consider the rough Bergomi model, for which the instantaneous variance process

is given by

Vt � ξ0 exp
�
η

» t
0

?
2Hpt� sqH�1{2dWs � η2

2
t2H

	
, (6.2.19)

where ξ0 � V0 is the spot variance ; since we focus on short-time asymptotics, only the short end ξ0 �
limuÑ0 ξ

u
0 of the variance curve will play a role in our estimations.

For a given time horizon t ¡ 0 and a number N of time-steps, the random vector plog Vtkq1¤k¤N , tk � k t
N ,

has a multivariate Gaussian distribution with known mean and variance, and can therefore be simulated

exactly via a Cholesky factorization of the covariance matrix. Of course, as already pointed out in Chapter

3, this method has a considerable complexity – cost OpN3q for the Cholesky factorization and OpN2q for the

matrix multiplication required to get one sample of pVtkq0¤k¤N – but our focus here is on the accuracy of our

estimations, rather than on their computational time. We construct approximate samples of the log-asset

price Xt � �1
2

³t
0 Vsds�

³t
0

?
VspρdWs � ρ̄dW̄sq using a forward Euler scheme on the same time-grid

XN
t � � t

2N

N�1̧

k�0

Vtk �
N�1̧

k�0

a
Vtk

�
ρpWtk�1

�Wtkq � ρ̄pW tk�1
�W tkq

	
.

Therefore, we obtain M i.i.d. approximate Monte Carlo samples pXN,m
t , V m

t q1¤m¤M of the couple pXN
T , Vtq,

from which our estimators of the implied volatility and local volatility (6.2.4) are constructed, as detailed

below. We estimate out-of-the-money put and call option prices by standard empirical means and evaluate

the corresponding implied volatilities σBS by Newton’s search.

The rough Bergomi model (6.2.19) parameters we used in our experiments are S0 � 1, η � 1.0, ρ � �0.7,

and ξ0 � 0.2352. We tested three different values of H P p0, 1{2s, namely H � 0.1, 0.3, and 0.5. We used

M � 1.5� 106 Monte Carlo samples and N � 500 discretization points.

Estimator of the implied volatility skew. A representation of the first derivative BkσBSpt, kq can be

obtained by differentiating the equation E
�pS0e

Xt � S0e
kq�� � CBS

�
k,
?
t σBSpt, kq

�
defining the implied

volatility σBS with respect to the log-moneyness k. Taking the derivative with respect to k at both sides

and using the expressions of the first-order Black–Scholes greeks BkCBSpk, vq and BvCBSpk, vq, one gets

BkσBSpt, kq �
Φ
�
d2pk, vq

�� P
�
Xt ¥ k

�
?
t φ

�
d2pk, vq

� ����
v�?t σBSpt,kq

,
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where d2pk, vq � �k
v � v

2 , and φ (resp. Φ) denotes the standard Gaussian density (resp. cumulative distribu-

tion). The representation above of the implied volatility skew allows to avoid finite difference methods and

only requires to estimate σBSpt, kq and PpXt ¥ kq, which we can do with the same Monte Carlo sample.

Estimator of the local volatility function. We have implemented and benchmarked two different

estimators of the conditional expectation (6.2.4) : on the one side, a Nadaraya–Watson estimator with

bandwidth δ,

σ2
locpt, kq � E rVt|Xt � ks �

°M
m�1 V

m
t Kδ

�
XN,m
t � k

�°M
m�1Kδ

�
XN,m
t � k

� , (6.2.20)

with a Gaussian kernel Kδpxq � expp�δx2q. On the other hand, it is a standard fact that, conditionally on

Ft � σpWu : u ¤ tq, the instantaneous variance Vt is known, while the log-price Xt is normally distributed

with mean �1
2

³t
0 Vsds� ρ

³t
0

?
VsdWs and variance p1� ρ2q ³t0 Vsds. This property yields a representation of

the Markovian projection σlocp�, �q as the ratio of two expectations (already exploited, for example, in [64]) :

σ2
locpt, kq � E rVt|Xt � ks � E rVt Πtpkqs

E rΠtpkqs (6.2.21)

where

Πtpkq � 1b³t
0 Vsds

exp

�
� 1

2p1� ρ2q ³t0 Vsds
�
k � 1

2

» t
0
Vsds� ρ

» t
0

a
VsdWs

	2


.

Estimator of the local volatility skew. Differentiating the right-hand side of (6.2.21) with respect to

k, we obtain a representation of Bkσlocpt, kq :

Bkσlocpt, kq �
B
Bk

�
ErVtΠts
ErΠts

	
2σlocpt, kq �

E rVtΠtsE
�

U³t
0 Vsds

Πt

�
� E

�
U³t

0 Vsds
ΠtVt

�
E rΠts

2p1� ρ2qE rVtΠts1{2 E rΠts3{2
, (6.2.22)

where Πt is a shorthand for Πtpkq, U � Upkq � k � 1
2

³t
0 Vsds � ρ

³t
0

?
VsdWs, and BΠt

Bk � � U
p1�ρ2q ³t0 Vsds Πt.

All the expectations appearing in (6.2.21) and (6.2.22) can be estimated based on the exact simulation

of the discretized variance path pVtkq1¤k¤N ; we approximate the integrals
³t
0 Vsds and

³t
0

?
VsdWs using

left-point Euler schemes. Note that the resulting non-parametric estimators based on (6.2.21) and (6.2.22)

do not contain any kernel bandwidth or other hyper-parameters to be tuned, which is a clear advantage

with respect to (6.2.20). We have nevertheless tested both estimators (6.2.20) and (6.2.21) for the regression

function, and found perfect agreement between the two in our tests.

In Figure 6.1, we plot the term structure of the ATM implied and local volatility skews, for three different

values of H and maturities up to T � 0.5 years. The power-law behavior observed for the local volatility

skew in Figure 6.1 is consistent with Corollary 6.1. Figure 6.2 shows the ratio of the implied volatility ATM

skew over the local volatility ATM skew, that is the ratio of the curves observed in Figure 6.1, for the

different values of H : the numerical results are in very good agreement with the “H � 3{2 rule” announced

in Corollary 6.1. Additionally, we note that the ratio of the two skews appears to be rather stable : its value

is almost constant for maturities up to T � 0.5 years, within our parameter setup.

An illustration of Theorem 6.2 is provided by Figure 6.3, where the function y ÞÑ σlocpt, y t1{2�Hq is seen

to approach its limit σ
�
ĥy1
�

when maturity decreases from t � 0.5 to t � 0.05. The residual error term

σlocpt, y t1{2�Hq � σ
�
ĥy1
�

is seen to depend on H, lower values of H begin associated to higher errors.
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Figure 6.1 – At-the-money implied and local volatility skews in the rough Bergomi model (6.2.19) for

H � 0.5 (red, top left figure), H � 0.3 (green, top right figure), and H � 0.1 (blue, bottom figure). The

maturity T on the x-axis is expressed in years.
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Figure 6.2 – Numerical evidence for the 1
H�3{2 ratio rule stated in Corollary 6.1 : we plot the ratio of the

at-the-money implied and local volatility skews BkσBSpT,kq|k�0

BkσlocpT,kq|k�0
for H P t0.1, 0.3, 0.5u against maturity T (in

years). The dashed lines correspond to the constant values 1
H�3{2 (blue for H � 0.1, green for H � 0.3, red

for H � 0.5).
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Figure 6.3 – Short-dated local volatility the rough Bergomi model (6.2.19) for H � 0.5 (top left fi-

gure), H � 0.3 (top right figure), and H � 0.1 (bottom figure). Recall that, according to Theorem 6.2,

σlocpT, y T 1{2�Hq Ñ σpĥy1q as T Ñ 0. The rate function minimizing path ĥyt is evaluated using the Ritz

projection method described in section 6.2.2 with N � 8 Fourier basis functions.
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Figure 6.4 – Numerical evidence for the failure of the harmonic mean formula within the rough Bergomi

model (6.2.19) (see Remark 6.2) : in the left figures, we compare the implied volatility σBSpT, kq and the

harmonic mean HpT, kq of the local volatility defined in section 6.1, for two different maturities T and for

H � 0.5 (red), H � 0.3 (green), and H � 0.1 (blue). In the right figures (same color conventions as the left

figures), we plot the ratio σBSpT,kq
HpT,kq of the two functions, expected to tend to 1 as T Ñ 0 when H � 0.5.
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