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Abstract
Multiple robot systems are widely applied in our real life. As a special type of mo-
bile system, tethered robots play a crucial role in special contexts, particularly in
challenging conditions, where cables provide stable access to power and network
connectivity. However, constraints imposed by cables also introduce new challenges
for motion planning in these applications. This thesis focuses on planning problems
for a team of tethered robots, addressing two major problems: non-crossing Anony-
mous Multi-Agent Path Finding (AMAPF) and Multiple Tethered Coverage Path
Planning (MTCPP).

The goal of non-crossing AMAPF is to find a set of non-crossing paths such that
the makespan is minimal. The study is carried out in two cases, considering whether
the robots are treated as point-sized or not. This hypothesis significantly influences
the computation of makespan. The problem is abstracted to the Euclidean Bipar-
tite Assignment problem and we show that bounds can be efficiently computed by
solving linear assignment problems. We introduce a variable neighborhood search
method to improve upper bounds, and a Constraint Programming model to com-
pute optimal solutions. The approach is experimentally evaluated on three different
kinds of instances.

The MTCPP problem is addressed by initially partitioning the workspace into
equitable connected subregions, enabling each robot to operate independently in its
assigned area. We propose an approach based on the additively weighted Voronoi
diagram, ensuring an equitable partitioning that enforces relative star-convexity of
each subregion to the associated anchor point, thereby avoiding cable entanglement.
For the coverage path planning of each robot, the Spanning Tree Coverage method
is shown to effectively solve the problem while respecting cable constraints.





Résumé
Les systèmes de multiples robots ont été largement appliqué dans notre vie. En
tant que type particulier de système mobile, les robots à câble jouent un rôle cru-
cial dans des contextes spécifiques et des conditions difficiles, où le câble offre un
accès stable à l’énergie et à la connectivité réseau. Cependant, les contraintes im-
posées par le câble introduisent également de nouveaux défis pour la planification
des mouvements dans ces applications. Cette thèse se concentre sur les problèmes de
planification pour une équipe de robots à câble, abordant deux problèmes majeurs:
le Anonymous Multi-Agent Path Finding (AMAPF) sans croisement et le Multiple
Tethered Coverage Path Planning (MTCPP).

L’objectif du AMAPF sans croisement est de trouver un ensemble de trajectoires
non croisées de manière à minimiser la longueur du plus long chemin (makespan).
L’étude est divisée en deux cas, selon que l’on néglige la taille du robot ou non.
Cette hypothèse influence significativement le calcul du makespan. Le problème est
abstrait sous la forme d’un couplage bipartite euclidien, et nous montrons que des
bornes peuvent être efficacement calculées en résolvant des problèmes d’affectation
linéaires. Nous introduisons une méthode de recherche à voisinage variable pour
améliorer les bornes supérieures, et un modèle de programmation par contraintes
pour calculer des solutions optimales. L’approche est évaluée expérimentalement
sur trois types différents d’instances.

Le problème MTCPP est abordé en partitionnant initialement l’espace de tra-
vail en sous-régions équitables connectées, permettant à chaque robot de fonction-
ner indépendamment dans sa zone assignée. Nous proposons une approche basée
sur le diagramme de Voronoi pondéré de manière additive, assurant une partition
équitable qui impose la étoile-convexité relative de chaque sous-région par rapport
au point d’ancrage associé, évitant ainsi l’emmêlement des cables. Pour la plani-
fication de la trajectoire de couverture de chaque robot, la méthode Spanning Tree
Coverage permet de résoudre efficacement le problème tout en respectant les con-
traintes du câble.
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Chapter 1

Introduction

1.1 Motivation and Challenges

In recent years, multi-robot systems (MRS) have become increasingly prevalent in
real-world applications. Depending on the type of vehicles involved, whether aerial,
ground-based, or a combination of both, a MRS typically comprises Unmanned
Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs). UAVs are exten-
sively used in surveillance, search and rescue operations, and agricultural tasks,
while UGVs are primarily deployed in various service scenarios, including indus-
trial manufacturing and warehouse transportation. The implementation of a coop-
erative MRS enhances the overall efficiency of these vehicles during missions. A
crucial aspect in achieving safe and coordinated navigation within a MRS is path
planning. This involves generating paths and movements that enable mobile vehi-
cles to navigate from one state to another while avoiding static and dynamic obsta-
cles in their environment.

(a) (b)

FIGURE 1.1: The H2020 project BugWright2 (a) and the crawlers used
to clean industrial surfaces (b).

This thesis is implemented under the context of the European H2020 project Bug-
Wright21, which aims to deploy autonomous robots to conduct inspection tasks on
hulls of large ships. In this thesis, we work on a fleet of crawlers operating on hull
surfaces, which are mobile, wheel-mounted robots powered by a cable, as in illus-
trated in Fig. 1.1. Tethered robots are widely applied in the industrial applications,

1H2020 project BugWright2: Autonomous Robotic Inspection and Maintenance on Ship Hulls and
Storage Tanks, 2020-24 (see https://www.bugwright2.eu/)

https://www.bugwright2.eu/


2 Chapter 1. Introduction

where robots are attached to anchor points by flexible cables, allowing them contin-
uous access to essential resources such as energy, fluids, and network connectivity.

Traditional path planning in robotics deals with mobile robots that can be ab-
stracted as points, circles, or other regular polygons. However, planning paths for
tethered robots introduces additional complexities due to the constraints associated
with the cables. The approach to handling these constraints depends on the assump-
tions made about the cables. If the cable’s thickness cannot be ignored, the robot is
typically modeled as a chain of cylinder-like bodies. In this scenario, the core chal-
lenge lies in computing valid configurations for the movement of joints. Alterna-
tively, if the cable can be simplified to a line, computational geometry techniques
can be applied to address cable-related constraints, such as avoiding cable entan-
glements. In our context, we adopt the second assumption, and we suppose also
that the cables are kept taut by a recoiling system that pulls on cables when robots
move back. In addition to the geometrical constraints related to the cables, the char-
acteristics of the environment can also bring new constraints. For example, in some
scenarios, the workspace contains areas that cannot be accessible by the cables, since
the cables might be vulnerable to some tough conditions, like high temperature and
electromagnetic interference. Consequently, for a feasible solution, the robot can
only take a path ensuring that its cable never passes through these forbidden areas.

In a multi-robot system, while the cooperation between robots can be efficient in
some complex tasks, the constraint to avoid the conflicts among the robots makes
the planning harder. The multi-agent path finding problem (MAPF) is abstracted to
address the challenge [Ma+17]. Both theoretical and engineering foundations have
been established in this field. However, the MAPF problem for tethered robots is still
a new challenge to be explored. The main difference is that in a classical MAPF prob-
lem, the collision between two robots take place temporarily and can be avoided by
planning a new path or executing the "waiting" action. While for tethered robots, the
cable’s entanglements can not be simply solved, as the cable of one robot is treated
as an obstacle for others. Base on this context, two principal problems are addressed
in this thesis.

1.1.1 Multiple Tethered Robots Path Finding

In this problem, we consider a team of n tethered robots initially located at their
anchor positions and n target points. These target points are assumed to be reached
by the robots, but they are not specifically assigned to a particular robot in advance.
The objective is to compute a set of collision-free paths for the robots and minimize
the makespan, i.e., the arrival time of the last robot. This definition extends the
classic Anonymous Multi-Agent Path Finding (AMAPF) problem [Ste+19].

When the cable is viewed as a line, the problem transforms into a geometric prob-
lem: in a 2D plane, given two sets of points, how to establish a one-to-one matching
and connect the paired points by a segment in a way that avoids any intersections
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between segments. In the presence of obstacles in the workspace, segments are re-
placed by polylines. An optimal solution involves finding a bipartite matching, and
a set of non-crossing segments (polylines), such that the length of the longest seg-
ment (polyline) is minimized. In this problem, we assume that the cable length is
unlimited, otherwise the objective no longer makes sense.

In scenarios with obstacles, an additional consideration is the physical size of
the robots. Specifically, in the simplified problem formulation, the definition of
makespan, which considers the length of the longest path, is underestimated. In
real-world applications, when two robots pass through the same point or along the
same edge of an obstacle, motion coordination is necessary to prevent cable entan-
glement. In such cases, a practical solution is to impose an ordering on their mo-
tions [ZP19] and incorporate a waiting time to ensure a safety distance between two
robots.

1.1.2 Multiple Tethered Robots Coverage Path Planning

As a specific application case, the coverage path planning (CPP) for a multi-tethered-
robot system is studied in this thesis. CPP is a fundamental problem in robotics, with
applications ranging from automatic floor cleaning, area patrol, and rescue search.
While extensive research works have been conducted on classical robots, our focus is
on exploring the dynamics and challenges posed by tethered robots, offering novel
insights to the field. Our research interests in this problem are twofold: firstly, in the
single tethered robot planning problem, adapting traditional coverage path plan-
ning approaches to meet cable constraints; secondly, in the scope of multiple teth-
ered robots, figuring out how to avoid cable entanglement among different robots
while searching for an optimal solution that minimizes the makespan.

The spanning tree coverage algorithm (STC) is widely applied when solving
robots coverage problem [SR14]. Its main principle is to construct a Hamiltonian
cycle circumnavigating a spanning tree in a structured grid graph. However, apply-
ing this method to tethered robots could violate the cable length constraint in some
cases. Additionally, in the presence of forbidden areas in the workspace, finding
a non-repetitive path that allows coverage of the maximum area remains a NP-
complete problem.

In the context of multiple robots tackling a coverage task, a common strategy in-
volves initially partitioning the surface into a set of equitable connected subregions,
allowing each robot to operate independently on its assigned area. This approach
minimizes collisions among robots and optimizes the makespan. However, for teth-
ered robots, an equitable subdivision alone is not sufficient. In nonconvex subre-
gions, even if a robot moves inside, its cable could still cross the subregion of other
robots. While addressing this issue in a scheduling problem is a solution, it tends to
be computationally expensive. Our objective is to find a partition that enforces cer-
tain shape constraints on these subregions, thereby preventing cable entanglement.
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1.2 Thesis Overview

1.2.1 Thesis Contribution

All the results reported in this thesis are based on perfect perception of the environ-
ment. We assume that the robots’ initial positions are known and that the map of the
environment is available a priori. The proposed algorithms serve as global planners,
and are implemented offline, in a centralized manner. The main contributions of this
thesis comprise the following items.

• The thesis introduces a new variant of MAPF problem for tethered robots, as
Non-Crossing AMAPF problem. The problem structure and constraints de-
pend on the physical size of robots. It is firstly addressed by assuming that
the robots are all point-sized. This problem is related to an Euclidean bipartite
matching problem, and a feasible upper bound can be computed in polynomial
time, by solving the Linear Sum Assignment Problem (LSAP). Additionally, an
approach based on the sequential combination of Variable Neighborhood Search
(VNS) and Constraint Programming (CP) is introduced for optimally solving the
problem.

• We extend the Non-Crossing AMAPF problem to non point-sized robots. In
this case, motion synchronization is emphasized to ensure a safety distance
that prevents collision and cable entanglements. Motion constraints are trans-
lated into precedence constraints, which imply waiting times when computing
the makespan. The solution of LSAP is proven to avoid deadlocks and always
provides a valid upper bound. When computing the optimal solution, the VNS
procedure is improved by considering non-shortest paths as neighbors, and a
lazy constraint generation approach is proposed for solving the CP model.

• The thesis proposes the adoption of the STC algorithm for tethered robot cover-
age path planning (TCPP). The STC method is shown to meet these cable con-
straints, by applying Dijkstra’s algorithm during the spanning tree search. A
new constraint is introduced that considers forbidden areas within the workspace
where the cable cannot pass. The presence of forbidden areas complicates the
problem’s complexity, and it is demonstrated that the TCPP problem incor-
porating forbidden areas is NP-complete. Various approximate methods are
introduced and compared to efficiently compute a lower bound for this prob-
lem.

• A solution is proposed for the multiple tethered robot coverage path plan-
ning problem (MTCPP). The key principle is to design a polygon partition-
ing algorithm that enforces each subregion to be relatively star-convex to the
corresponding anchor point, in order to avoid cable entanglement. A survey



1.3. Publications 5

on existing polygon partitioning methods is conducted, showing that the ap-
proach based on the additively weighted Voronoi diagram can efficiently solve this
problem.

1.2.2 Thesis Organization

The content of this thesis is organized as follows:
Chapter 2 provides an overview of basic geometric concepts and notions com-

monly applied in the context of tethered robots. Additionally, it surveys various
planning problems associated with tethered robots found in the existing literature.

In Chapter 3, a general introduction to two mathematical programming meth-
ods used for solving combinatorial problems is presented: Constraint Programming
(CP) and Integer Linear Programming (ILP). The chapter also outlines basic solution
procedures for each method.

Chapter 4 formulates the Non-Crossing AMAPF problem. The results presented
in this chapter are based on the assumption that the robots are point-sized.

Chapter 5 extends the work in Chapter 4 by considering the physical size of
robots. Within this new setting, the problem is reformulated to incorporate a prece-
dence constraint on robots’ motion.

Chapter 6 focuses on the CPP problem for a single tethered robot. The problem
is exploited from two perspectives. Firstly, a fundamental solution is introduced to
address the cable length constraint by adapting the STC algorithm. Secondly, the
constraint of forbidden areas within the workspace is considered.

Chapter 7 extends the coverage path planning work to the scope of multiple
tethered robots. A qualitative comparison of different approaches is provided based
on workspace characteristics.

Finally, Chapter 8 summarizes the main results obtained in the thesis and sug-
gests potential directions for further research.

1.3 Publications

Most of the content of Chapters 4 and 5 has been published in:

• Xiao Peng, Olivier Simonin, and Christine Solnon. “Solving the Non-Crossing
MAPF with CP”. In: CP 2021-27th International Conference on Principles and
Practice of Constraint Programming. 2021, pp. 1–17.

• Xiao Peng, Olivier Simonin, and Christine Solnon. “Non-Crossing Anony-
mous MAPF for Tethered Robots”. In: Journal of Artificial Intelligence Re-
search (JAIR) 78 (2023).

We plan to submit the content of Chapters 6 and 7 to two journals in the next months.
In addition, the following publication was produced as a side work not directly re-
lated to the thesis project and not described in this document.
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• Xiao Peng and Christine Solnon. “Using Canonical Codes to Efficiently Solve
the Benzenoid Generation Problem with Constraint Programming”. In: 29th
International Conference on Principles and Practice of Constraint Program-
ming 2023, pp. 1–17.
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Chapter 2

Context

Contents
2.1 Geometry Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Homotopy class . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Homotopic shortest path . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Detecting crossing paths . . . . . . . . . . . . . . . . . . . . . 13
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The path planning problem for tethered robots has gained considerable atten-
tion in the literature. Compared to the classical path finding problem, the main
challenge with tethered robot comes from the constraints associated with the cable.
For example, the robots’ movement is constrained by the cable length and the cable
is prohibited to get crossed. In this Chapter, we introduce firstly in Section 2.1 the
key geometric concepts commonly used in these applications, along with relevant
computational geometry algorithms. In Section 2.2, we categorize existing works in
the literature in terms of their application scenarios as well as types of robots. For
each category, we provide an overview of the methodologies employed to address
each specific problem.

2.1 Geometry Basis

2.1.1 Notations and definitions

We consider robots move on a 2 dimensional workspaceW ⊂ R2. This workspace
is defined by a bounding polygon B and a setO of obstacles: every obstacle inO is a
polygon within B, andW is connected, composed of every point in B that does not
belong to an obstacle inO. Without loss of generality, we assume that B is convex: if
the bounding polygon is not convex, then we can compute its convex hull B and add
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to O the obstacles corresponding to the difference between the bounding polygon
and B. We denote VO the set of vertices of obstacles in O, and we assume that these
vertices belong toW (and therefore, obstacle boundaries belong toW). An example
of workspace is displayed in Fig. 2.1(left).

In the applications of tethered robots, the robot is typically attached to a fixed
anchor point. In most cases, the cable is assumed to be kept taut by a recoiling
mechanism [SR14]. However, there are also works that consider scenarios with a
slack cable [MH17], and some studies focus on robots with a snake-like structure
[WBB21]. In our project, we assume that the cable remains taut while the robot is
moving.

Given two points u, v ∈ W , we denote uv the straight line segment that joins
u to v, and |uv| the Euclidean distance between u and v (i.e., |uv| is the length of
uv). We say that a segment crosses an obstacle if uv ̸⊂ W . Given two segments
uv and u′v′, we say that they are incident if they have one common endpoint (i.e.,
|{u, v} ∩ {u′, v′}| = 1), and we say that they cross if they share one point (called the
crossing point) which is not an endpoint (i.e., {u, v} ∩ {u′, v′} = ∅ and uv ∩ u′v′ ̸=
∅).

�
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FIGURE 2.1: Left: example of workspace. Right: the associated visi-
bility graph.

Given three points u, v, w ∈ W , we denote ∠uvw the angle between vu and vw,
and we denote ∡uvw the size of this angle measured in degrees when considering a
counterclockwise order from vu to vw.

Definition 2.1.1 (Path). A path in W is composed of a chain of incident segments
u0u1, u1u2, . . . , ui−1ui, which is represented by the vertex sequence π = ⟨u0, u1, u2

, . . . , ui⟩. The length of a path π is denoted as |π| and is the sum of the lengths of its
segments, i.e., |π| = ∑i

j=1 |uj−1uj|.

Given two paths πi and πj, we denote πi.πj the path obtained by concatenating
πj at the end of πi. We use set operators to denote vertex membership and path
inclusion: u ∈ π denotes the fact that path π contains vertex u (i.e., ∃πi, πj, π =

πi.⟨u⟩.πj) and πi ⊆ π denotes the fact that path π contains the subpath πi (i.e.,
∃πj, πk, π = πj.πi.πk). Given a set Π of paths and a vertex u, we denote Πu the set
of all paths of Π that contain u, i.e., Πu = {π ∈ Π | u ∈ π}.
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Definition 2.1.2 (Cable configuration). Let r be the anchor point where the cable is
attached. The configuration of the cable as the robot moves to point t can be repre-
sented as a sequence of vertices q = ⟨r, u1, u2, ..., ui, t⟩. Each internal point uj, j ∈ [1, i]
corresponds to an obstacle vertex VO, and no segment of the cable crosses an obsta-
cle. We say that q is valid if (i) q is not self-crossing, (ii) its length does not exceed
cable length, (iii) the cable is taut.

We suppose that the robot initially locates at the anchor point. As the length
of a robot path cannot be smaller than the length of its cable configuration, we can
simplify our problem by assuming that the path of a robot is its cable configuration,
namely, the robot always moves along a taut path. Hence, we search for paths in a
visibility graph [LW79] defined below.

Definition 2.1.3 (Visibility graph [LW79]). Given a workspaceW , a set of n anchor
points A, and a set of n targets T , the visibility graph is the directed graph Gvis =

(Vvis, Evis) such that vertices are either points of A and T or obstacle vertices, i.e.,
V = A∪ T ∪ VO, and edges correspond to segments that do not cross obstacles and
that do not contain any other vertex, i.e.,

E = {(u, v) ∈ (A∪ VO)× (T ∪ VO) | uv ⊂ W ∧ ∀w ∈ V \ {u, v}, w /∈ uv}

The graph is directed because edges starting from targets or ending on anchor points
are forbidden.

An example of visibility graph is illustrated in Fig. 2.1(right). In [LW79], it is
shown that visibility graphs can still be used when robots have a non-negligible size
as obstacles may be expanded to compensate for robot sizes. In our problem, the
robot size has no significant impact on the geometric properties of the cable. Even
though the location of the cable does not perfectly overlap the trajectory along which
the robots move, the cable can remain taut and the topological relationship between
the cables (crossing or not) is not affected.

A path in the visibility graph Gvis is a sequence of vertices ⟨u0, . . . , ui⟩ such that
(uj−1, uj) ∈ Evis, ∀j ∈ [1, i]. This path also corresponds to a chain of segments and its
length is the sum of the lengths of its segments. We only consider elementary paths,
i.e., a vertex cannot occur more than once in a path. Indeed, if a path is not elemen-
tary, then it can be replaced by a shorter elementary path obtained by removing its
cycles.

Given an anchor point a ∈ A and a target t ∈ T , we denote sp(a, t) a shortest
path from a to t in the visibility graph.

2.1.2 Homotopy class

As the workspaceW is continuous, there exists an infinite number of cable configu-
rations from an anchor point r to a target t. We use the notion of homotopy class to
distinguish how a curve moves around the different obstacles (see Fig. 2.2).
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Definition 2.1.4 (Homotopy class [Bha10]). Two curves are homotopic if there exists
a continuous deformation between them without crossing obstacles, and a taut path
is the shortest path of an homotopy class.

The homotopy class of a curve is represented by its h-signature [SH15]. The idea
is that we set a reference point pi ∈ Oi for each obstacleOi, and extend it as a vertical
ray ri towards y = +∞. For each curve γ in the workspace, its homotopy class is
expressed by a word h(γ) composed of a sequence of letters. Each letter of h(γ)
encodes a crossing between the curve γ and one of these rays. Since the curve γ is
directed, intersecting a ray from left to right is different from the right to left. The
word h(γ) is defined as follows. We start with the empty string Λ; then each time
γ intersects a ray ri from left to right (resp. right to left), we concatenate the letter ti

(resp. t−1
i ). We finally reduce the word by deleting factors of the form tit−1

i or t−1
i ti

in it.

Example 2.1.1 (Example of h-signature). Consider the curve γ1 in Fig. 2.2. As it
crosses the extended ray of O1 from right to left and crosses it again from left to
right, and then crosses the extended ray of O2 from right to left, the resulted word
is t1t−1

1 t−1
2 . After reduction, we obtain t−1

2 . Similarly the signature of γ2 and γ′2 is Λ;
the signature of γ3 is t−1

1 t−1
2 .

O1

O2

γ1

γ2

γ′2 γ3

r

t

FIGURE 2.2: Illustration of homotopy. Orange arrows are the rays
used to compute homotopy classes. Curves γ2 and γ′2 are homotopic

while γ1, γ2 and γ3 are mutually not.

The h-signature is a homotopy invariant of a curve and two curves are homotopic
if they connect the same endpoints and have identical h-signatures. Besides, we can
also learn that the concatenation rule is preserved for h. If a curve is a concatenation
of two curves, as γ = γ1 ◦ γ2, then h(γ) = h(γ1) ◦ h(γ2) holds, where ◦ is the
concatenation on words followed by the reduction operation.

Following this notion, suppose that the initial configuration of the cable is qs,
when the robot moves from s to t along the path πs→t, the final configuration of
the cable at t can be considered as the homotopic taut path of h(qs) ◦ h(πs→t). In
Section 2.1.3, we talk about algorithms that shorten a path to a taut path of the same
homotopy class.
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2.1.3 Homotopic shortest path

In our settings, the cable is considered to keep taut. Interestingly, the shortest path
between any two points in the workspace is in fact a taut path. A taut path is also re-
ferred to as the homotopic shortest path, and we use H(π) to denote the homotopic
shortest path for a given path π. Let X be a taut path from s to u (corresponding to
the initial cable configuration when the robot is at point u), Y be a taut path from u
to v, and Z be the cable configuration when the robot arrives at point v by follow-
ing path Y (see Fig. 2.3). It can be observed that X,Y and Z are all polylines. The
following properties have been proved in [BVX15].

(a). X, Y and Z are all homotopic shortest paths.

(b). The polygon formed by their subpaths does not contain any points from A ∪
T ∪ VO in its interior. Specially, it can be expressed as a pseudotriangle△abv,
where ab, bv and av are all convex chains with respect to the exterior of△abv.

(c). Following a, for any point t ∈ ab, let vt be the shortest path contained in△abv,
then |vt| ≤ |av| and |vt| ≤ |bv|.

s

q1

q2

q3 q5

u v

q4

FIGURE 2.3: The geometric illustration of cable configurations and
homotopic shortest path. X = sq1q2q3u, Y = uq5v, and Z = sq1q4v.

Specifically, the property (c) is interesting when considering the constraint that
the tether cannot exceed its maximum length ℓmax. It suffices to ensure |X| ≤ ℓmax

and |Z| ≤ ℓmax, then Y is an admissible path. The geometric properties are all in-
ferred based on the the fact that the workspace and the obstacles are all polygonal.
In [Yan+22], this hypothesis is generalized to any convex workspace.

Moreover, the common tasks in the path planning problem for tethered robots
listed below can be regarded as the same.

• Given the initial and final cable configuration, compute the shortest path;

• Given the initial cable configuration and the path, compute the target cable
configuration;

• Given a non taut path, shorten it to the homotopic shortest path.
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As for the third task, we can imagine a path av.vb that connects X and Y and is ho-
motopic to Y. The computation of Y is exactly a shortening process of a non taut
path to a taut one. It can be solved by using the funnel algorithm proposed by Her-
shberger and Snoeyink [HS94].

FIGURE 2.4: An example of the funnel algorithm. We have a given
path π (in blue), which can be reduced to its homotopic short-
est path ⟨A, O1−4, O1−3, O2−1, O2−2, O2−3, B⟩ (in orange). The re-
sulting funnel is displayed in green, where its boundary is com-
posed by a tail ⟨A, O1−4, O1−3, O2−1, O2−2, O2−3⟩, a left side bound-
ary ⟨O2−3, O2−4, O1−4⟩ and a right side boundary ⟨O2−3, O3−1, O3−3⟩.

The funnel algorithm Given a path π, the funnel algorithm computes the shortest
path homotopic to π, denoted as H(π). The general idea is to find a convex hull, also
called funnel that contains the shortest path. An example 1 is shown in Fig. 2.4. We
briefly summarize the algorithm. It processes in two steps. Firstly, the workspace is
decomposed into a set of triangles by a triangulation operation. The boundary of the
funnel is constituted by the edges from these triangles, and its left side and right side
correspond respectively to two homotopic shortest paths. Then, we start from the
first vertex of π, and check the intersection of each line segment with these triangles.
If π intersects with a triangle and leaves it immediately through the same edge, then
the boundary can be tightened. The objective is to construct the tightest boundary
that contains the homotopic shortest path of π. Once this funnel is found, we can
simply connect the last vertex of π with the vertices on the tail of the funnel in order
to build the shortest path. In terms of complexity, let |VO | be the number of vertices
of the polygons, k be the length of π, and Nπ be the number of times that π crosses a
triangulation edge. The triangulation process requires O(|VO | log |VO |) time by the
method of [HM85]. The preprocessing steps, including workspace triangulation and
visibility graph computation, are executed just once, and the computation of H(π)

can be completed in O(Nπ + k) time [HS94].

1We reuse the example from https://medium.com/@reza.teshnizi/
the-funnel-algorithm-explained-visually-41e374172d2d, where a more detailed explanation
with animation can be found.

https://medium.com/@reza.teshnizi/the-funnel-algorithm-explained-visually-41e374172d2d
https://medium.com/@reza.teshnizi/the-funnel-algorithm-explained-visually-41e374172d2d
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The method mentioned above is an exact approach. In some cases we only need
to know the upper bound of the length of H(π), or when the workspace contains
circular obstacles, it becomes too expensive to calculate an accurate solution. In
such cases, the approximated methods are proposed. For example, in [KBK14], it
executes a function CurveShorten to shorten a path and leads to an approximation
of H(π). The general idea is to sample the points on the path and sequentially join
the vertices using straight line segments until the line segment intersects an obstacle.
If an intersection occurs, we then try to connect the last traced point to subsequent
points until we reach the final point. The resulting solution has a longer euclidean
distance than H(π).

2.1.4 Detecting crossing paths

Whenever two paths π1 and π2 have a non-empty intersection, we need to decide
whether they are crossing or not. The different cases of non-empty intersection paths
are illustrated in Fig. 2.5. The case in Fig. 2.5(a) is trivial: when two paths share a
same point that does not belong to any obstacle, then they are crossing.

When the intersection corresponds to an obstacle vertex, the two paths may be
crossing or not, as illustrated in Fig. 2.5(b) and 2.5(c). To decide whether they are
crossing or not, we consider the following lemma which is an adaptation of [HL97]
to our context.

FIGURE 2.5: Different cases of two paths with a non empty intersec-
tion (angle sizes are represented by green arrows). (a): The paths
are trivially crossing because the intersection is a point that does not
belong to an obstacle. (b) and (c): the intersection is a single obsta-
cle vertex w. (b) corresponds to non-crossing paths (∡u1wu2 < 180◦

and ∡v1wv2 > 180◦), whereas (c) corresponds to crossing paths (both
angles are lower than 180◦). (d) and (e): the intersection is a se-
quence of segments from w to z. (d) corresponds to non-crossing
paths (∡u1wu2 > 180◦ and ∡v1zv2 < 180◦), whereas (e) corresponds

to crossing paths (both angles are lower than 180◦).

Definition 2.1.5 (Intersecting paths). Let us consider two paths π1 = ⟨u1, w, v1⟩ and
π2 = ⟨u2, w, v2⟩ such that {u1, v1} ∩ {u2, v2} = ∅ (i.e., the intersection of π1 and
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π2 contains the single vertex w). π1 and π2 are crossing if and only if ∡u1wu2 and
∡v1wv2 are either both lower than 180◦ or both greater than 180◦.

This may be extended in a straightforward way to the case where the intersection
is a sequence of segments π3 instead of a single vertex, i.e., π1 = ⟨u1⟩.π3.⟨v1⟩ and
π2 = ⟨u2⟩.π3.⟨v2⟩ and {u1, v1} ∩ {u2, v2} = ∅. Let w and z be the first and last
vertices of π3, respectively. In this case, the two paths are crossing if and only if
∡u1wu2 and ∡v1zv2 are either both lower than 180◦ or both greater than 180◦, as
illustrated in Fig. 2.5(d) and 2.5(e).

Hence, we can decide whether two paths are crossing or not in O(k2) where k is
the maximum number of segments in a path. Indeed, we first check in O(k2) that
there is no crossing segments (there areO(k2) pairs of segments and we check if two
segments are crossing in constant time). Then, we search for all common subpaths in
O(k), and for each common subpath we check that there is no crossing by measuring
two angles in constant time.

2.2 Tethered Robot Path Planning Problem

2.2.1 The shortest path problem

The single tethered robot planning problem focuses on navigating a robot through
an obstacle-filled workspace while satisfying cable constraints such as length limi-
tations and avoiding entanglements. Numerous studies have tackled this problem
by aiming to find the shortest path given the initial cable configuration and the tar-
get point [Xav99; SH15; BVX15] (where the target cable configuration is undefined).
More precisely, given an anchor point r, a starting point s, an initial cable configura-
tion which is a homotopic shortest path from r to s, and a target point t, the goal is to
find a shortest path from s to t such that the cable length limit ℓmax is not exceeded.
These methods can be categorized into the two following classes.

The geometric methods

The first family is based on the geometric simplification. When the workspace is
convex and the obstacles are polygonal, the properties presented in Section 2.1 can be
applied to find the optimal solution. In [Xav99], Xavier introduced an algorithm that
allows one to compute an optimal solution by searching for all admissible paths with
respect to the limited cable length. The pseudocode of this algorithm is displayed in
Algorithm 1 and is illustrated in Fig. 2.6.

Let X be the initial cable configuration. We denote Xu,v the section of the path
lying on X between points u and v, where u and v denote two distinct points on X.
Additionally, we refer to SP(a, b) as the untethered shortest path between any a and
b within the workspace, determined using common shortest path algorithms such
as Dijkstra’s. As a preliminary step, this algorithm requires a full knowledge of the
workspace’s visibility details and takes the visibility graph Gvis as an input.
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Algorithm 1: SHORTESTPATH(Gvis, X, t, ℓmax) [XAV99]
Input: The visibility graph Gvis = (V , E) where the workspace is

represented, the initial cable configuration X: a polyline that connects
r (the anchor point) and s (the start point), the target point t, and the
maximum cable length ℓmax

Output: The shortest path from s to t
1 Traverse from s to r, find all sections {Si}
2 for each section Si = Xxi−1,xi do
3 Find Vi corresponding to Si
4 for each vertex v ∈ Vi do
5 Compute the taut path H(Xr,xi ◦ xiv ◦ SP(v, t))
6 if |H(Xr,xi ◦ xiv ◦ SP(v, t))| ≤ ℓmax then
7 Compute a candidate path πcand ← H(Xs,xi ◦ xiv ◦ SP(v, t))
8 if |πcand| < |πopt| then update πopt ← πcand;
9 end

10 end
11 end
12 Return πopt

(a) (b) (c) (d)

FIGURE 2.6: An illustration of Algorithm SHORTESTPATH. (a) A prob-
lem instance and the associated visibility graph. (b) X is divided into
a set of sections {Si}. (c) At the event point c, the terminal O4−1 be-
comes visible, the green path refers to Xs,x3 ◦ x3O4−1 ◦ SP(O4−1, t). (d)

The optimal path in ⟨s, O1−1, O2−2, t⟩ (in blue).

To outline the procedure, we initiate traversal of X from point s to r in a reverse
manner. For each point u ∈ X, Gvis aids in identifying the set of vertices that are vis-
ible from u. For example, the vertices set at s is {O1−1, O1−4, O1−5, O2−1, O2−3}. The
key concept involves partitioning X into a set of sections {Si} such that for every
point on {Si}, this visible vertex set remains consistent, as depicted in Fig. 2.6(b). The
distinct event points, denoted by the blue points xi, mark the instances of change,
with x0 = s and x#xi = r. Each section Si is represented as Xxi−1,xi . Within each
section Si, we establish a set of vertices Vi, which includes (i) every visible vertex if
i = 0; and (ii) any visible vertex that was not visible in the preceding section. For
instance, in Fig. 2.6(c), V3 = O4−1 since O4−1 becomes visible after traversing x3. For
each such vertex v, we connect it to t via the shortest path SP(v, t). Subsequently,
a candidate path can be generated as H(Xs,xi ◦ xiv ◦ SP(v, t)), which is admissible
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if the corresponding target cable configuration H(Xr,xi ◦ xiv ◦ SP(v, t)) does not ex-
ceed ℓmax (see lines 5-7). The optimal solution is the shortest one among all these
candidate paths.

The complexity of this algorithm is O(klkn3), where kl is the number of loops in
X, k = #X and n = |V| (for a detailed analysis see Section 3.3 of [Xav99]). This com-
plexity has been improved to O(kn2 log n) in [BVX15] by (i) using a binary search
to reduce the number of computed event points; (ii) preprocessing X with a special
data structure to speed up the taut path computation.

The graph search based methods

Motion planning using homotopy class has been frequently applied to solve the
tether robots path planning problem. In a traditional shortest path finding problem,
we have a graph G that represents the accessibility between the adjacent locations,
like Region Adjacency Graph, and graph search based methods, such as A* and Dijk-
stra’s can be applied to compute the optimal solution. The homotopy-augmented
graph is an important notion that incorporates the homotopy information into the
graph representation [IS10], and it can be defined as follows.

Definition 2.2.1 (Homotopy-augmented graph [KBK14]). Let G = (V , E) be a dis-
crete representation of the workspace, r be a fixed initial point (in our context, it
refers to the anchor point), the homotopy-augmented graph Gh = (Vh, Eh) of G is
defined such that every vertex in the form of v = (q, w) ∈ Vh, where q ∈ V and w
is the homotopy of the path taken from r to reach v, and every edge e connects two
adjacent vertices (q1, w1) and (q2, w2) if (q1, q2) ∈ E with w2 = w1 ◦ h(q1q2).

The interest of Gh lies in its ability to expand the representation of the configura-
tion space by introducing a new dimension that tracks the topology of paths leading
to a particular state. This expansion facilitates the fulfillment of cable-related con-
straints, such as limited cable length and the prohibition of cable crossings, by check-
ing the validity of each state as well as the connectivity of two states. Depending on
the structure of G, Gh can be constructed based on the grid graph [KBK14; Bha10],
the visibility graph [SH15], or the Probabilistic Roadmap (PRM)[KF11; MH17]. More-
over, the utilization of the homotopy-augmented graph extends beyond just tethered
robots. It has been also used to generate topological heuristics for some other robot
path planning challenges [WSB23; Ran+20].

The homotopy-augmented graph can be constructed using Dijkstra’s algorithm
[KBK14]. Starting from (r, Λ), we explore all other reachable nodes that satisfy the
cable constraints. For example, let (vi, wi) a node in Gh, then for every adjacent node
vj with (vi, vj) ∈ E , (vj, wj) can be added to Gh if the cable configuration at vj with
homotopy class vj = wi ◦ h(vivj) is less than ℓmax and not self-crossing.

However, a limitation of the homotopy-augmented graph is its exponential growth
with the increase in obstacles. The number of homotopy classes to reach each vertex
depends on many factors, such as the cable crossing obstacles in different directions
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and the visiting orders of these obstacles. Additionally, the number is limited by
cable length ℓmax and non-crossing constraints. In Fig. 2.7, we demonstrate an exam-
ple of homotopy-augmented visibility graph, denoted as Ghvis. Each node in Ghvis

corresponds to a feasible cable configuration. In this example, two obstacles exist
in the workspace, yielding a visibility graph with 10 vertices and a corresponding
Ghvis containing 44 vertices. To address this challenge, heuristics play a crucial role
in designing effective path finding algorithms.

The search for the shortest path from a start point to a target point involves
running an A* algorithm from the source node representing the initial cable con-
figuration. The search terminates upon reaching a node encoding the target point.
While the Euclidean distance to the target is a common admissible heuristic, it can
lead to local minima traps. To counteract this, a solution proposed by [KL15] in-
troduces the Topology-based Multi-Heuristic A* as a variant of Multi-Heuristic A*
(MHA*) [Ain+16]. The core idea of MHA* is to apply multiple arbitrarily inadmis-
sible heuristics independently to explore the different regions of the search space,
while preserving guarantees of completeness and sub-optimality bounds via a con-
sistent heuristic. The topology-based MHA* can be efficient when dedicatedly solv-
ing the shortest path planning problems for tethered robots. In their work, the single
admissible heuristic is chosen as the Euclidean distance to the target, and the other
additional heuristics are designed based on different topological paths whose num-
ber is proportional to the number of obstacles.
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FIGURE 2.7: An example of the homotopy augmented visibility graph
Ghvis associated with the workspace in Fig. 2.1.

.

2.2.2 Enumeration of non-homotopic paths

Another type of common task for tethered robots is to enumerate the non homotopic
paths given the initial and target points, i.e., to search for a set of paths each of which
is the shortest path within a different homotopy class. An exhaust search frame,
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like depth-first-search (DFS) can be applied to enumerate the paths. In Algorithm 2,
we display an algorithm based on DFS that is adjusted to enumerate the different
homotopic shortest paths subject to these cable constraints. Especially, in line 6, we
define a function CHECKVALID() to check the validity of the current path after the
addition of a new vertex. This function will check firstly whether the newly added
edge intersects with other segments, and it also ensures that it is kept taut. Taking the
example in Fig. 2.5(a), for a taut path, the convex angle formed by three successive
vertices u1, w, u2 must contain the two segments on the obstacle and incident to w.
Since the path p is extended incrementally, we check only the last three vertices
of p each time it is called. In this algorithm, we also introduce a variable Nmax to
control the number of paths to be enumerated. In some cases, calculating all the
paths may be unnecessary and costly, and only the shortest ones are of interest in
real applications.

Algorithm 2: KNONHOMOTOPICPATHS(Gvis, s, t, ℓmax, Nmax)

Input: The visibility graph Gvis = (Vvis, Evis), the start point s, the target
point t, the maximum cable length ℓmax, and Nmax the number of
paths to be generated

Output: The generated path list Π
Global Variables: A list of paths: Π, initialized to be empty; a set of |Vvis|

Boolean variables isVisited, initialized to false.
1 Let p be an empty path
2 DFSENUMERATEPATHS(p, Gvis, s, t, ℓmax, Nmax)
3

4 Function DFSENUMERATEPATHS(π, Gvis, u, v, ℓmax, Nmax):
5 isVisited[u]← true, add u to π
6 if CHECKVALID(π) and |π| ≤ ℓmax then
7 if u == v then
8 add π to Π
9 if #Π > Nmax then update Π and ℓmax

10 else
11 for each w from the successors of u and isVisited[w] == false do
12 DFSENUMERATEPATHS(π, Gvis, w, v, ℓmax, Nmax)
13 end
14 end
15 else
16 π.pop(), isVisited[u]← false, return
17 end

In [Yan+22] the author introduced a method that allows one to enumerate k
shortest non-homotopic paths. It is a kind of online planner, since no prior envi-
ronment information, neither topological nor geometric, is known. In this work, a
hierarchical topological tree is proposed as a novel representation of the workspace,
which has the following two properties: (i) it exhaustively explores all topologies in
the workspace, (ii) the concatenation of edges in this tree is proven to be a homo-
topically shortest path. A noteworthy contribution of this work is the incorporation



2.2. Tethered Robot Path Planning Problem 19

of a branch pruning mechanism. This mechanism effectively identifies partially con-
structed paths that cannot be extended to yield optimal k-shortest paths. By safely
terminating path finding along these non-viable paths, the approach avoids the need
to compute all possible paths and subsequently selects the k-shortest ones, therefore
the computation time can be significantly reduced. Moreover, the approach can be
generalized to handle a wide types of obstacles, not just polygonal ones. Addition-
ally, the method demonstrates its capability to take into account the size of robots.
However, in such cases, the path length is approximately computed.

FIGURE 2.8: Example of discarding non-k-optimal paths.

It is worth noting that Algorithm 2 can be improved by integrating insights
gleaned from [Yan+22]. In simple terms, we can safely eliminate some nodes dur-
ing the exhaustive search process. As illustrated in Fig. 2.8, the aim is to find the
two shortest non-homotopic paths from s to t. Here, we encounter three partially
constructed, distinct, and non-homotopic paths denoted as τ1, τ2, τ3 all converging
at point q, with |τ1| < |τ2| < |τ3|. In this case, we can safely discard the interme-
diate path node τ3, as it cannot be extended to form the 2 optimal paths. It is cru-
cial to recognize that this conclusion rests on the geometric insight that these three
paths must navigate around point q and converge in a specific direction. Therefore,
while distance optimality is a significant factor, the geometric characteristics, par-
ticularly when considering the non-crossing constraints, must be equally taken into
account when sorting these intermediate states. Besides, like A∗, for these unex-
panded nodes, a cost can be assigned as the sum of the cost to the current node and
a heuristic cost to the target point based on the Euclidean distance. If the cost of a
node exceeds the value of the k paths already found, then we can safely prune this
node.

In Chapters 4 and 5, when searching for an optimal solution to our specific prob-
lems, the enumeration of all paths becomes essential. Section 4.3.5 will showcase
a specific application case where only a subset of candidate paths needs enumera-
tion. While the improved version promises better theoretical efficiency, it involves
additional computations on the heuristics, especially when Nmax tends to be large
number. In both cases, the vanilla implementation of Algorithm 2 proves sufficient.
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2.2.3 Multiple tethered robot path planning

Multi-Agent Path Finding (MAPF) is a very active research topic which has impor-
tant applications for robotics in industrial contexts such as transport in fulfillment
centers or autonomous tug robots, for example. The goal of MAPF is to find a set of
collision-free paths from starting points to target points. Usually, there is an objec-
tive function to optimize such as the duration of the longest path (called makespan),
the sum of all path durations, or the number of agents that cannot reach their tar-
gets within a given makespan [Ma+18]. The problem isNP-hard in the general case
[YL13a]. Classical MAPF problems are often solved by using a two-level approach
called Conflict Based Search (CBS) [Sha+15]: path searching at the low level and reso-
lution of path conflicts at the high level.

In the case of anonymous MAPF (AMAPF), the target of each agent is not known,
i.e., there is a set of targets and each agent must be first assigned to a target be-
fore searching for paths [Ste+19]. Regardless of whether the goal is to minimize
the makespan or the sum of all paths’ costs, AMAPF can be generally reduced to a
Network Flow problem, and solved in polynomial time by applying the maximum
flow algorithms [For56; YL13b]. However, both CBS and the Network Flow-based
method are limited in handling agents’ collisions occurring at an instant or over a
short period of time and cannot effectively address the topological constraints asso-
ciated with cables.

When considering the case of multiple tethered robots, the challenge is that ca-
bles can easily get tangled, and avoiding cable crossings makes the planning harder.

One-to-many settings

[Sin90] introduces the tethered robot problem where robots may have to visit several
points in a workspace that does not contain any obstacle. In their settings, there are n
robots and m stations (equivalent to targets and m ≥ n), and each robot must visit the
m stations. Each time a station is assigned to a robot, and within each assignment, the
robots move simultaneously from their anchor points to the assigned target points,
then back to their anchor points along the tether position. The objective is to find a
set of m assignments that each assign the n robots one by one to n of the stations,
subject to the following two constraints: (1) in each assignment, no cable crosses
itself, (2) among the m assignments, each robot is assigned to each station exactly
once. This problem has been approached by formulating it as a bipartite drawing
problem, where the goal is to find rectilinear drawings of a complete bipartite graph
Kn,m whose edges are colored with m colors so that no two edges of the same color
cross or have a common vertex. As such a solution does not always exist, depending
on the location of anchor points and stations, the author has studied some special
cases where solutions do exist.
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Motion coordination

In the work of [HL96; HL97], the workspace does not contain obstacles and robots
cannot cross cables but they may push and bend the cables of other robots. Ev-
ery robot is assigned to a unique target point. Since the interaction between robot
and cable is allowed, the path (or the cable location) is no longer a simple straight
line, but rather a sequence of segments. In this case, the primary objective involves
searching for a set of feasible target cable configurations, denoted as C = {C1, ..., Cn},
with one for each robot, in other words, a set of non-intersecting curves connecting
a set of point pairs in the plane. In order to reach C, it is necessary to coordinate
the robots’ movements: (i) find the paths corresponding to C, (ii) order the robots’
movements to avoid collisions if two paths share a common vertex. This planning
task is formulated as a computational geometry problem, and an algorithm with a
time complexity of O(n3 log n) has been proposed. In addition, Hert & Lumelsky
describe efficient algorithms for detecting whether two paths are crossing or not,
from a purely geometric standpoint. The procedure that we use for detecting path
crossings (described in Section 2.1.4) is adapted from this work. When the objective
is to minimize the sum of all path lengths, it is proved to be NP-hard. A simi-
lar methodology has been also applied to address planning challenges within a 3D
workspace [HL99], where the initial and target points lie in a common 2D surface,
and the anchor points are located in another parallel 2D surface. When the robot
moves from one point to another, the cable configuration is a 3D straight line seg-
ment, and the surface swept by the cable is a triangle. An ordering between robots’
movements allows to avoid entanglement.

[ZP19] considers the same problem as [HL96], but the workspace may contain
obstacles and there is no objective function to optimize: they simply search for a
valid schedule such that robots do not cross cables. To avoid crossings, precedence
constraints and waiting times are introduced, and a precedence graph is used to
detect deadlocks. Zhang & Pham propose algorithms for iteratively removing dead-
locks. However, there is no guarantee that all deadlocks can be suppressed, and
robots are constrained to diverge from straightline motions whenever there are non
resolved deadlocks.

2.2.4 Coverage path planning

Coverage Path Planning (CPP) is a fundamental problem in robotics, and it has many
applications such as automatic floor cleaning, area patrol, or rescue search. CPP can
be formulated as follows. Given a planar 2D workspace with convex polygonal
obstacles, and the size of a mobile robot, find a shortest coverage cycle that fully
covers the workspace and returns to its starting point. To solve this problem, we
usually discretize the workspace into a 4-connected grid graph g such that each cell
of the grid has the same size as the robot. In this case, if there exists a Hamiltonian
cycle in g, we actually have a shortest coverage path as each cell is traversed exactly
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once. The complexity of deciding of the existence of a Hamiltonian cycle depends
on the properties of g: it is in O(1) for rectangular grids with no obstacles whereas
it becomes NP-complete in case of obstacles [IPS82].

STC algorithm

Spanning Tree Coverage (STC) may be used to compute an approximate solution
in polynomial time [GR01]: we construct a graph G4 such that each vertex of G4

corresponds to a non-overlapping group of 2× 2 adjacent cells in g, and edges of G4

correspond to adjacency relations between these 2× 2 cell groups; if each cell of g
belongs to exactly one 2× 2 cell group, then there exists a Hamiltonian cycle in g if
and only if G4 is connected and, given a spanning tree T of G4, a Hamiltonian cycle
in g can be constructed by circumnavigating T, as illustrated in Fig. 2.9.

(a) (b) (c)

FIGURE 2.9: Illustration of the STC algorithm. (a) An example of a
workspace discretized in a grid g. (b): The vertices of G4 are repre-
sented by the black circles, and each of them is at the center of the 4
cells surrounding it. In this example, G4 does not cover the top row
of grid cells. (c) A spanning tree of G4 is displayed in orange and the
path in blue is an approximate solution that visits all cells but those
in the top row exactly once: the red cells are visited twice by a forth

and back path.

Tethered coverage problem

In the state of the art of Tethered Coverage (TC) problem, existing algorithms can be
broadly categorized as online or offline, depending on the level of knowledge about
the environment. The paper [SR14] presents an offline TC algorithm that addresses
this problem when the robot has a complete knowledge of the environment. Their
approach involves decomposing the environment into "split cells" and "corridor"
structures. These split cells are stored in a stack, and whenever the robot reaches a
new split cell, it conducts a complete coverage of the corresponding corridor. Once
the coverage is finished, the robot proceeds to the next split cell, repeating the pro-
cess for the remaining corridors. Ultimately, the robot returns to the anchor point
with its cable fully retracted.
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The work in [Mec+17] presents a solution to the offline TC problem using a
specific decomposition of the environment derived from the "Morse-based Cellular
Decomposition" [AC02]. The grid map is divided into interconnected rectangular
shapes around the obstacles, and each shape is covered using a zig-zag motion pat-
tern. However, it is important to note that their primary objective is to cover all the
accessible areas, and there is no specific focus on minimizing the overall length of
the coverage path.

The online version of TC problem has been also studied in [Sha+19; SR14] where
the robot has no prior knowledge of the environment. Under this settings, the envi-
ronment is incrementally explored while a tree map is simultaneously built to keep
track of the frontiers of uncovered area. In [SR14], an approximation algorithm is
proposed with a factor 2L

D compared to the minimum path length for the coverage,
and this result is improved to 2(1− 1

N ) in [Sha+19], where L is the cable length, D is
the cell size, and N is the total number of accessible obstacle-free cells.

2.3 Discussion

In this chapter, we provided an extensive review of the geometry foundations in the
tethered robots path planning problem, as well as its diverse application scenarios
in the literature. Table. 2.1 summaries the different applications, categorized based
on the task type, such as shortest path search (SP), coverage path planning (CPP)
or travelling salesman problem (TSP), and the types of robots employed in these
applications, ranging from a single robot to multiple robots, drones and axel rovers.

The path planning problem for tethered robots generally presents inherent chal-
lenges, making it notably complex to solve. In addition to traditional graph search
based and geometric methods, Chapter 3 will introduce some mathematical pro-
gramming techniques used to tackle these complexities.
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SP CPP TSP Others

single robot

[Xav99], [SH15],
[BVX15], [SP20],

[KBK14], [Bha10],
[SH15], [KL15],

[TS14], [YXW22],
[IS10], [TBN13]

[SR14],
[Sha+19],
[Mec+17]

[MH17],
[YXW22]

[WB18]

duo robots [TS21]
[Bha+15],
[Su+22]

multiple robots [PSS21], [PSS23] [Sin90]
[HL96], [HL97],
[HL99], [ZP19]

single drone [PD22] [Xia+18]

multiple drones
[Cao+23a],
[Cao+23b]

axel rover [ANB11]

TABLE 2.1: Summary of tethered robots applications in the literature.
SP: shortest path search; CPP: coverage path planning; TSP: traveling

salesman problem.
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In this chapter, we explore two widely used declarative approaches for solv-
ing combinatorial problems: Constraint Programming (CP) and Integer Linear Pro-
gramming (ILP). Declarative modeling involves describing problems through a set
of variables and a set of constraints defining relations between variables. We will
provide a comprehensive overview of the fundamental concepts and the solving
procedures associated with each approach.

3.1 Constraint Programming

3.1.1 Basic Notions

Definition 3.1.1 (Constraint [RVW06]). Let X = (x1, x2, ..., xk) be a k-tuple of vari-
ables, and for each variable xi, let D(xi) be the domain of xi, i.e., the set of values that
may be assigned to xi. A constraint c on X is a subset of the Cartesian product of the
domains of the variables in X, i.e., c ⊆ D(x1)× ...×D(xk). X is called the scope of c.

In this chapter, we consider only the constraints where each involved variable
has a finite domain. A constraint c may be defined in extension, by listing all tuples
in c, or in intention, by using mathematical operators. For example, when D(x1) =

D(x2) = D(x3) = {0, 1, 2}, to constraint x3 to be equal to the sum of x1 and x2, we
may either define a constraint in extension

(x1, x2, x3) ∈ {(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 0, 1), (1, 1, 2), (2, 0, 2)}

or a constraint in intention x1 + x2 = x3.
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Definition 3.1.2 (Variable assignment). A variable x1 is said to be assigned whenever
its domain is reduced to a singleton, i.e., D(xi) = {vi}. In this case, we note v(xi) the
single value in D(xi).

Definition 3.1.3 (Constraint satisfaction). A constraint c defined on a tuple (x1, ...xk)

is satisfied if all its variables are assigned and the tuple (v(x1), ..., v(xk)) belongs to
c.

Definition 3.1.4 (Constraint Satisfaction Problem (CSP) [RVW06]). A constraint sat-
isfaction problem (CSP) is defined by a triple P = ⟨X, D, C⟩ where

• X = {x1, x2, ..., xn} is a set of n variables.

• For each variable xi ∈ X, D(xi) is its domain.

• C is a set of constraints.

A solution of a CSP is an assignment of all variables that satisfies all the constraints
in C simultaneously. If no solution exists, the CSP is said to be inconsistent.

Example 3.1.1 (8-queens). Let us consider the 8-queens problem: how to place the
8 queens on 8 × 8 chessboard so that no two queens share the same row, column
or diagonal. It can be formulated as the following CSP. There are 8 variables X =

{x1, x2, ..., x8}, for each variable xi, its domain is D(xi) = {1, 2, ..., 8}. Assigning xi

to a value j ∈ D(xi) means placing a queen in row j and column i. For any two
variables xi and xj, we post a constraint that ensures that the queens at columns i
and j are not in a same row or diagonal, i.e.,

xi ̸= xj ∧ xi + i ̸= xj + j ∧ xi − i ̸= xj − j

One possible solution is given by {x1 = 1, x2 = 7, x3 = 5, x4 = 8, x5 = 2, x6 = 4, x7 =

6, x8 = 3}.

Definition 3.1.5 (Constrained Optimization Problem (COP) [RVW06]). A constrained
optimization problem (COP) is a CSPP defined on a set of of variables X = {x1, x2, ..., xn},
together with an objective function f :D(x1)× ...× D(xn) → R that assigns a value to
each assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the value of
f (d).

3.1.2 CSP Solving

The constraint satisfaction problem is NP-complete in the general case. Solving a
CSP requires an exhaustive search, where all potential assignments should be enu-
merated. This search stops either upon finding a feasible solution, or when it con-
cludes that no solution exists after a complete search. This blind enumeration tech-
nique can be improved by applying two orthogonal techniques: ordering heuristics
and constraint propagation.
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Ordering heuristics

The search space is usually explored with a depth first search (DFS). More precisely,
at each node of the search:

• if some constraints are not satisfied, then we backtrack;

• otherwise, if all variables are assigned, then we have found a solution;

• otherwise, we choose an unassigned variable xi, and a value vi in D(xi), and
we recursively explore two nodes, corresponding to xi = vi and xi ̸= vi, re-
spectively (alternatively, we may create one branch for each possible value in
D(xi)).

Variable ordering heuristics are used to choose the next variable to assign. For ex-
ample, classical variable ordering heuristics are minDomain or wdeg [Bou+04] which
associates weights with constraints in order to identify critical variables.

Value ordering heuristics are used to choose the value vi in the domain of xi. For
example, if the goal is to minimize a sum of variables, we may first try to assign
small values to variables involved in the sum.

Propagate

In the search phase, when a variable is instantiated, inferences can be made to tighten
the domains of other variables involved in the same constraints as this variable. This
process is known as constraint propagation.

Constraint propagation removes values which are locally inconsistent. For ex-
ample, when a variable x is assigned to 1, we can propagate the constraint x ̸= y by
removing from the domain of y the value 1. Whenever constraint propagation wipes
out a domain, this implies that the current node cannot be extended to a solution and
the search can backtrack.

Different levels of constraint propagation may be considered, each of them en-
suring a different level of local consistency. A classical local consistency is the Gen-
eralized Arc Consistency.

Definition 3.1.6 (Generalized Arc Consistency (GAC) [RVW06]). A constraint C is
generalized arc consistent if for every variable xi and every value v ∈ D(xi), there
exists a tuple (d1, d2, ..., dk) ∈ D(x1)× D(x2)× · · · × D(xk) ∩ C such that di = v. A
CSP is GAC if each of its constraints is GAC.

There exist also some other levels of consistency, such as node consistency and
path consistency [Mac77; Lec96]. The choice of consistency level is a trade-off be-
tween the filtering quality and efficiency, and it also depends on the nature of the
constraint.

There are different methods to establish (G)AC, such as AC3 and AC2001 [RVW06].
The general idea of AC3 is to examine each constraint once, and re-examine a con-
straint if a variable in its scope has changed. The complexity of AC3 is inO(ed3) time
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and O(e) space, where e is the number of arcs 1 (linear to the number of constraints
in case of binary constraints) and d is the size of the largest domain.

Example 3.1.2 (AC Example). Consider a CSP example, where X = {x1, x2, x3},
D(x1) = D(x2) = D(x3) = {1, 2, 3, 4}, with two constraints c1 : x1 < x2 and c2 :
x2 < x3. This CSP problem can achieve AC by executing the following steps.

1. Remove 4 from D(x1) since no value v2 exists from D(x2) such that (4, v2)

satisfies the constraint C1.

2. Remove 4 from D(x2), similarly.

3. Remove 1 from D(x2) to make x1 < x2 consistent.

4. Remove {1, 2} from D(x3), similarly.

5. Remove 3 from D(x1), as a consequence of step 2.

As a result, these domains can be reduced to D(x1) = {1, 2}, D(x2) = {2, 3},
D(x3) = {3, 4}.

In some applications, the utilization of global constraints can better address the
structure of a problem, especially when specifying a complex relationship over a set
of variables. For instance, Example 3.1.1 can also be modeled using the global con-
straint AllDifferent(x1, x2, ..., x8). The application of global constraints becomes par-
ticularly interesting if it can improve the filtering process. Consider the AllDifferent
constraint, which can be decomposed into a set of binary constraints in polynomial
time, and we can filter domains to ensure GAC for each of these constraints. How-
ever, this does not ensure the generalized arc consistency of the global constraint.
For example, if D(x1) = D(x2) = (a, b) and D(x3) = (a, b, c), the three difference
constraints x1 ̸= x2, x2 ̸= x3, and x1 ̸= x3 are already arc consistent. However
the global alldifferent constraint is not GAC as the tuples that satisfy the alldifferent
constraint are (a, b, c) and (b, a, c), therefore, we should remove a and b from D(x3).

The complexity of enforcing GAC for global constraints varies based on the na-
ture of the constraint. In [Rég94], an efficient algorithm is outlined to enforce GAC
on AllDifferent by linking it to the problem of finding maximal matchings in a bi-
partite graph, solvable in polynomial time. Additionally, there are specialized al-
gorithms like STR2 [Lec11] dedicated for enforcing GAC on specific constraints like
table constraint. However, enforcing GAC some constraints (such as NValue2) isNP-
hard [Bes+07]. In these cases, while enforcing full GAC might be computationally
expensive, enforcing a weaker level of consistency remains feasible.

1An arc refers to a variable-constraint pair (xi, c) where xi ∈ X(c).
2NValue(N, X = ⟨x1, x2, ..., xn⟩) counts the number of different values assigned to the variables in

X and sets it equal to N.
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3.1.3 Implementation of Global Constraints with Choco

Choco[PFL16] is a java library for CSP, which is widely used in the community of
constraint programming. This section provides a brief introduction about how to
implement a global constraint in Choco.

When designing a global constraint, two fundamental methods must be imple-
mented.

• void propagate (int evtmask): This method serves as a primary filtering algo-
rithm of the propagator, starting from scratch. It gets invoked once during the
initial propagation.

• ESat isEntailed(): It is used to check the state of the constraint according to
the current status of the variables. It returns ESat.TRUE if the constraint is
known to be always satisfied whatever happen on the variables from now on,
ESat.FALSE if it is violated, and ESat.UNDEFINED if no definitive conclusions
can be drawn.

In addition, for some constraints, we can also implement an incremental propa-
gator, reacting to changes in specific variables, if necessary.

• void propagate (int varIdx, int mask): The modification of a certain variable
(denoted by varIdx) allows to filtering the inconsistent values in other variable
domains. It is called if a particular variable "varIdx" is changed since the last
call.

Besides the variables directly constituting the constraint, in some cases, it is nec-
essary to define and maintain several intermediate variables with a storable data
structure. Choco provides objects, like IStateInt and IStateIntVector, which are de-
fined by a primitive value and an associated timestamp. These objects help in back-
tracking the variables to their previous states.

3.2 Integer Linear Programming

Integer Linear Programming (ILP) is a specical case of COP where all constraints are
linear inequalities and the objective function is linear. The standard form of an ILP
model is defined as follows.

min cTx

s.t. Ax = b

x ≥ 0 integer

where b, c ∈ Rn and A ∈ Rm×n.
The ILP model represents a specialized case of linear programming, the differ-

ence being that variables in an ILP model must take integer values. In many ap-
plications, fractional solutions are not desirable; for example, the 0-1 programming
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approach is commonly used to solve problems such as the knapsack problem. In
addition, when dealing with graph constraints, the ILP formulation often exhibits
inherent simplicity.

Example 3.2.1 (GMSTP on an undirected graph [MLT95]). Consider the generalized
minimum spanning tree problem (GMSTP) (we will see its application in Chapter
7) on an undirected graph G = (V, E), where V is partitioned into m mutually ex-
clusive node sets, as V = V1 ∪ V2 ∪ ... ∪ Vm. Each edge e = (i, j) ∈ E is assigned
with a positive cost ce. The objective of GMSTP is to find a minimum-cost tree T that
spans a subset of nodes, including exactly one node from each node set. We define
a variable xe for each edge e, such that xe = 1 if edge e is included in T and 0 if not.
Additionally, yi = 1 indicates that node i is selected and 0 otherwise. For any subset
of nodes S ⊂ V, we denote δ(S) = {e ∈ E | #e ∩ S = 1} as the collection of edges
incident to exactly one node in S. The GMSTP can be formulated as the following
ILP.

min ∑
e∈E

cexe

s.t. ∑
i∈Vk

yi = 1 all 1 ≤ k ≤ m

// To ensure that T is connected

∑
e∈δ(S)

xe ≥ yi + yj − 1 i ∈ S and j /∈ S, ∀S ⊂ V

∑
e∈E

xe = m− 1

yi, xe ∈ {0, 1} all e ∈ E, i ∈ V

(3.1)

Solving ILP is NP-complete in the general case. The two most common meth-
ods for ILP solution are Branch and Bound [LW66] and the cutting-plane method
[Gom58]. The Branch and bound is based on the principle that the feasible solutions
sets can be divided into small subsets of solutions represented as a tree structure.
Systematic evaluation is performed on these subsets until the best solution is found.
The branching step divides the subsets and the bound step aims at pruning useless
branches by solving relaxations of the problem.

The cutting-plane method is derived from the simplex algorithm [Dan90]. The
general idea is to create linear relaxations on the integer constraints, and solve it on
Rn. If this solution is not an integer point, a hyperplane (cutting plane) is added
as an additional linear constraint, separating this solution from all feasible integer
points. The new problem is then solved and the process is repeated until an integer
solution is found.
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3.3 Discussion

In this chapter, we have introduced the fundamental concepts of Constraint Satis-
faction Problems and Integer Linear Programming, both of which are widely used
in solving combinatorial optimization problems. In this thesis, our primary focus
lies on the non-crossing AMAPF problem for tethered robots, that will be elaborated
upon in Section 4 and Section 5. We will show how this problem can be addressed by
CP models. We also explore the potential utilization of global constraints to express
the computation of makespan in Chapter 5. Furthermore, in Chapter 6, within the
context of searching a coverage path based on a spanning tree, we will formulate the
tree constraint using an ILP model.
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In Chapter 2, we have presented the geometric basis for the tethered robot path
planning problem. In this chapter, we introduce a new MAPF problem for teth-
ered robots, as NC-AMPAF problem, which aims to find paths for multiple tethered
robots while ensuring theirs cable do not cross. In this work, we assume that these
robots are considered as point-sized, and our problem is formulated in a discrete
visibility graph (see in Section 4.1).

In Section 4.2, we first consider the case where the workspace has no obstacle. We
show that the NC-AMAPF problem without obstacle is a special kind of assignment
problem in a bipartite graph, and we show how to efficiently compute lower and
upper bounds by solving well known assignment problems. We also introduce a
Variable Neighbourhood Search (VNS) approach, to improve the upper bound, and a
Constraint Programming (CP) model, to compute the optimal solution.

In Section 4.3, we consider the case where the workspace has obstacles. We prove
that optimal solutions of assignment problems still provide bounds in this case. We
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(a) (b) (c)

FIGURE 4.1: (a): Example of workspace W with four anchor points
(in blue) and four targets (in red). (b): Visibility graph with paths that
are not solution of the NC-AMAPF because the green path crosses the
pink path and the black path crosses the blue path. Besides, the black
path is not taut. (c): Visibility graph with paths that are solution of the
NC-AMAPF, even though the green and pink paths share a segment,

and the black and blue paths share a vertex.

also show that the optimal solution of the NC-AMAPF problem may contain some
paths that are not shortest paths. Hence, we introduce an approach for enumerating
all relevant paths and, finally, we introduce a CP model for computing the optimal
solution.

In Sections 4.2 and 4.3, we report experimental results on randomly generated
instances and show that our approach scales well enough to solve realistic instances
within a few seconds.

4.1 Definition of the NC-AMAPF Problem

We consider an anonymous MAPF problem with a set of n robots such that each
robot is attached with a flexible cable to an anchor point in a workspace W ⊂ R2,
and a set of n targets. The goal is to find a path inW for each robot from its anchor
point to a different target so that the longest path is minimised and robots never
have to cross cables.

In this chapter, we assume we have point-sized robots. In other words, robots are
small enough and cables are thin enough to allow a robot to slightly push the cable
of another robot when it has to pass between this cable and an obstacle, provided
that cables do not cross. For example, if the black robot (starting from 3) in Fig. 4.1(c)
arrives on the vertex of obstacleO4 before the blue robot (starting from 4) then, when
the blue robot arrives on this vertex, it can slightly push the black cable to continue
its path between O4 and the black cable.

Let us now formally define our problem.
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Definition 4.1.1 (NC-AMAPF problem). An instance of the NC-AMAPF problem
for tethered robots is defined by:

• a workspaceW ;

• a set A ⊆ W of n different anchor points (also corresponding to starting
points);

• a set T ⊆ W of n different targets such that A∩ T = ∅;

A solution is a couple (m, Π) such that:

• m : A → T is a bijection that assigns a different target to each anchor point;

• Π is a set of n paths such that (i) for each anchor point a ∈ A, Π contains a
path from a to its assigned target m(a); (ii) paths in Π do not cross.

Given a solution s = (m, Π), we denote makespan(s) the makespan the length of
the longest path in s, i.e., makespan(m, Π) = maxπ∈Π|π|. An optimal solution is a
solution s = (m, Π) such that makespan(s) is minimal.

When the workspaceW has no obstacle, we will show that our problem is equiv-
alent to the bottleneck matching problem with edge-crossing constraints which has
been shown to be NP-hard by [Car+15]. Hence, our problem is also NP-hard in
the more general case whereW contains obstacles.

4.2 NC-AMAPF Problem without Obstacles

In this section, we consider the case where the set O of obstacles is empty. In this
case, VO = ∅ and the visibility graph Gvis is the complete bipartite graph such that
Vvis = A∪ T and Evis = A×T (every edge of Evis is included inW as the bounding
polygon is convex).

In Section 4.2.1, we show how to compute lower and upper bounds by solving
well known assignment problems. In Section 4.2.2, we show how to improve the
upper bound by performing variable neighbourhood search. In Section 4.2.3, we
introduce a CP model and, in Section 4.2.4, we experimentally evaluate these ap-
proaches.

4.2.1 Computation of Bounds by Solving Assignment Problems

An assignment problem aims at finding a one-to-one matching between tasks and
agents [BÇ99; Pen07]. In our context, tasks correspond to targets and agents to
robots, and a matching is a bijection m : A → T . We say that an edge (a, t) of
the visibility graph Gvis is selected whenever m(a) = t. The NC-AMAPF problem
without obstacles is a special case of assignment problem:

• there is an additional constraint that ensures that no two selected edges cross,
i.e., ∀{ai, aj} ⊆ A, aim(ai) ∩ ajm(aj) = ∅;
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• there is an objective function that aims at minimising the maximal cost of a
selected edge, i.e., maxai∈A |aim(ai)|.

There exist many other assignment problems [BÇ99; Pen07]. The most well
known one is the Linear Sum Assignment Problem (LSAP) that aims at minimising
the sum of the costs of the selected edges. The LSAP can be solved in polynomial
time (e.g., by the Hungarian algorithm [Kuh55]). Interestingly, the solution of the
LSAP cannot have crossing edges whenever edge costs are defined by Euclidean
distances [Put79]. Indeed, if two selected edges cross, then we can obtain a better as-
signment by swapping their targets so that the two edges no longer cross. Hence, the
solution of the LSAP provides an upper bound to the NC-AMAPF problem without
obstacles.

The assignment problem that aims at minimising the maximal cost of a selected
edge is known as the Linear Bottleneck Assignment Problem (LBAP), and this problem
can also be solved in polynomial time (e.g., by adapting the Hungarian algorithm).
However, when adding the constraint that the selected edges must not cross, the
problem becomes NP-hard [Car+15]. Hence, the solution of the LBAP provides a
lower bound to the NC-AMAPF problem without obstacles.

4.2.2 Variable Neighbourhood Search

The upper bound computed by solving an LSAP may be tightened by performing
local search. We consider a basic VNS framework [MH97] described below.

• The neighbourhood of a matching m contains every non crossing matching
obtained by permuting the targets of k anchor points, and it is explored in
O((n−1

k−1) · k!): we first search for the longest edge (a, m(a)); then, we enumer-
ate subsets of A \ {a} that contain k − 1 anchor points and, for each subset
(to which a is added), we consider every permutation of the targets without
crossing edges, until finding a permutation whose longest edge is smaller than
(a, m(a)).

• k is initialised to 2, and the search is started from the matching computed by
solving the LSAP. We iteratively perform improving moves, by replacing the
current matching with one of its neighbours that has a shorter longest edge.
When we reach a locally optimal matching (that cannot be improved by per-
muting the targets associated with k anchor points), we increase k. When an
improving move is performed, k is reset to 2.

• The search is stopped either when a given time limit l is reached or when k
becomes greater than a given upper bound kmax. (In the classical VNS frame-
work, the current solution is perturbated and k is reset to its lowest possible
value when k becomes greater than its upper bound kmax. We do not consider
this perturbation phase here.)
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4.2.3 Constraint Programming Model

Finally, let us introduce a CP model for the NC-AMAPF problem without obstacles.
Without loss of generality, we assume that all edge lengths have integer values: if
this is not the case, then we can multiply every length by a given constant factor
c > 1 and then round it to the closest integer value so that for each couple of edges
((u, v), (u′, v′)) such that |uv| < |u′v′|, we have round(c ∗ |uv|) < round(c ∗ |u′v′|).
In this case, the optimal solution of the integer problem is also an optimal solution
of the original problem.

Let ub be an upper bound to the optimal solution. The variables are:

• an integer variable xi is associated with every anchor point ai ∈ A, and the
domain of this variable contains every target that is within a distance of ub
from ai, i.e., D(xi) = {t ∈ T : |ait| < ub};

• an integer variable y represents the maximal length of a selected edge, and its
domain is [0, ub].

The constraints are:

• for each pair of anchor points {ai, aj} ⊆ A, we post a table constraint (xi, xj) ∈
Tij where Tij is the table that contains every couple (t, t′) ∈ D(xi)×D(xj) such
that t ̸= t′ and the segment ait does not cross the segment ajt′;

• for each anchor point ai ∈ A, we post the constraint y ≥ |aixi|;

• we post an allDifferent({xi : ai ∈ A}) constraint. This constraint is redundant
as table constraints prevent assigning a same value to two different xi vari-
ables. However, preliminary experiments have shown us that this improves
the solution process for a wide majority of instances.

The goal is to minimise y.

4.2.4 Experimental Evaluation

We evaluate our algorithms on randomly generated instances. For all instances, the
bounding polygon is the square B = [0, 200]2. To generate an instance with n robots,
we randomly generate n anchor points and n targets that all belong to B and such
that the distance between two points is always larger than 4. For each value of n, we
generate 50 different instances and report average results on these instances for all
figures and tables.

We consider the following approaches:

• LB refers to the computation of a lower bound by solving an LBAP (see Sec-
tion 4.2.1).

• UBi with i ∈ {1, 3, 5, 7} refers to the computation of an upper bound by first
solving an LSAP (see Section 4.2.1) and then improving it by VNS with l =
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FIGURE 4.2: Left: Evolution of the optimal makespan (Opt), the lower
bound (LB) and upper bounds (UBi with i ∈ {1, 3, 5, 7}) when increas-
ing the number n of robots. Right: Evolution of the gap to optimality
(in percentage) with respect to time for UBiCP with i ∈ {1, 3, 5, 7}, on

average for the 50 instances with n = 50 robots.

60 seconds and kmax = i (see Section 4.2.2). Note that when i = 1, VNS is
immediately stopped as k is initialised to 2 and the search is stopped when k
becomes greater than kmax.

• UBiCP refers to the sequential combination of UBi, for computing an upper
bound ub, and CP (with the model described in Section 4.2.3) for computing
the optimal solution.

LB and UBi are implemented in Python. The CP model is implemented in MiniZinc
[Net+07] and solved with Chuffed [CS14]. All experiments are run on an Intel Core
Intel Xeon E5-2623v3 of 3.0GHz×16 with 32GB of RAM.

On the left part of Fig. 4.2, we compare the optimal makespan with the lower
bound computed by LB, and upper bounds computed by UBi with i ∈ {1, 3, 5, 7}.
We observe that the optimal makespan decreases as the number n of robots increases.
Indeed, when n gets larger, anchor and target points tend to be located more densely
and this makes it easier to assign anchor points to closer targets. LB is always strictly
smaller than the optimal makespan, i.e., the solution of the LBAP always contains
crossing segments.

UB1 corresponds to the solution of the LSAP, and this upper bound is much
larger than the optimal makespan. VNS strongly decreases this upper bound, and
the larger kmax the smaller the bound. Note that when kmax ≥ n, VNS actually finds
the optimal makespan as it explores all possible permutations of the n targets (pro-
vided that we do not limit time, i.e., l = ∞). Hence, when n = 5, the solution of UB5

is equal to the optimal makespan.
However, if UBi finds smaller bounds when increasing i, it also needs more time.

This is shown on the right part of Fig. 4.2, for instances that have n = 50 robots. We
display the evolution of the average gap to optimality in percentage (i.e., s−s∗

s∗ where
s∗ is the optimal makespan and s is the current makespan) with respect to CPU time.
For UB1CP, the upper bound ub is very quickly computed by solving the LSAP, but
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TABLE 4.1: Scale-up properties with respect to the number n of
robots. For each n ∈ {20, . . . , 60}, we report CPU times of UBiCP
(in seconds), for i ∈ {1, 3, 5, 7}: t1 is the time spent to solve the LSAP
and improve the upper bound with VNS when kmax = i and l = 60s;
t2 is the time to generate the MiniZinc model; t3 is the time spent by
Chuffed; ttot = t1 + t2 + t3 is the total time (in blue when minimal).
Chuffed is limited to 3600s and the time of a run is set to 3600 when
this limit is reached. In this case, t3 is a lower bound of the actual time

(and we display ≥ before the time).

n
UB1CP UB3CP UB5CP UB7CP

t1 t2 t3 ttot t1 t2 t3 ttot t1 t2 t3 ttot t1 t2 t3 ttot
20 0.001 0.4 0.1 0.5 0.01 0.2 0.1 0.3 0.0 0.2 0.1 0.3 0.8 0.2 0.1 1.1
30 0.002 1.4 ≥35.4 36.9 0.01 0.9 0.4 1.3 0.1 0.6 0.1 0.9 2.3 0.6 0.2 3.1
40 0.004 3.4 12.4 15.8 0.02 2.1 1.4 3.5 0.3 1.8 0.6 2.6 7.2 1.6 0.5 9.2
50 0.003 6.7 ≥127.2 133.9 0.03 4.1 13.6 17.7 0.5 3.1 7.5 11.1 7.6 2.8 7.7 18.2
60 0.008 16.8 ≥529.3 546.1 0.06 9.4 ≥197.6 207.4 1.3 6.1 27.0 34.4 16.8 5.7 25.5 48.1

it is 38% as large as the optimal makespan. ub is used to filter variable domains of xi

variables. However, as ub is not very tight, the construction of the table Tij for every
couple of variables (xi, xj) is time consuming. This construction phase corresponds
to the horizontal part of the curve. Once the CP model has been constructed, Chuffed
finds better solutions and finally proves optimality. When increasing kmax, the time
spent by VNS to improve ub increases but, as a counterpart, the time spent to build
the CP model and the time spent by Chuffed to solve it also decreases.

Table 4.1 allows us to study scale-up properties when increasing the number n of
robots. The time spent by UBi (t1) strongly increases when i increases: from 0.008s
when i = 1 to more than 16s when i = 7 for n = 60. This was expected as the
time complexity of VNS is exponential with respect to kmax. The time limit l = 60s
is never reached by VNS when i ≤ 5 whereas it is reached when i = 7: for 7 (resp.
1 and 1) instances when n = 60 (resp. 50 and 40). However, when increasing i, UBi

computes better bounds and this reduces the time needed to generate the model (t2)
and to solve it (t3). When i = 1, the time limit of 3600s is reached by Chuffed for 6
(resp. 1 and 1) instances when n = 60 (resp. 50 and 30). It is also reached once when
i = 3 and n = 60. A good compromise is observed with UB5CP.

4.3 NC-AMAPF Problem with Obstacles

Let us now consider the case where the workspace contains obstacles. In this case,
the visibility graph is no longer a bipartite graph, and a path from an anchor point
to a target may contain more than one edge. Besides, with the existence of obstacles,
there might exist more than one possible path, even when restricting our attention to
paths in the visibility graph, and an optimal solution may contain paths that are not
shortest paths, as illustrated in Fig. 4.3. As a consequence, our problem is no longer
a simple bipartite matching problem: we must not only choose a different target for
each anchor point, but also choose paths.
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FIGURE 4.3: The solution displayed on the left only uses shortest
paths, and its makespan is larger than the solution displayed on the

right (the green right path is longer than the black path).

The number of paths between two points grows exponentially with respect to the
number of obstacles. However, if we have an upper bound on the maximal length
of a path, we can reduce the number of paths. Hence, we show how to compute
upper bounds on the makespan in Section 4.3.1. In Section 4.3.2, we show how to
compute all relevant paths. In Section 4.3.3, we describe a CP model. In Section 4.3.4,
we describe our benchmark and in Section 4.3.5 we experimentally evaluate our
approach.

4.3.1 Computation of Bounds

When there are obstacles, the visibility graph Gvis associated withW , A and T is no
longer a bipartite graph. However, we can build a bipartite graph G′vis = (V ′vis, E ′vis)

such that V ′vis = A∪ T and E ′vis = A× T , and define the cost of an edge (a, t) ∈ E ′vis

as the length of the shortest path from a to t in Gvis. In this case, we can compute a
lower bound by solving the LBAP in G′vis.

Let us now show that we can also compute an upper bound by solving the LSAP
in G′vis, as a straightforward consequence of the following theorem.

Theorem 4.3.1. Let m : A → T be an optimal solution of the LSAP in G′vis and, for
each anchor point ai ∈ A, let πi be the shortest path that connects ai to m(ai) in the
visibility graph. For each pair of different anchor points {ai, aj} ⊆ A, either πi and
πj are not crossing, or they can be replaced by two non crossing paths π′i and π′j such
that |πi|+ |πj| = |π′i |+ |π′j|.

Proof. Let us suppose that there exist two crossing paths πi and πj. There are two
cases to consider, depending on whether πi and πj contain two crossing segments
or not.

Case 1: πi and πj contain two crossing segments uivi and ujvj. Let us show that this
implies that m does not minimise the sum of the selected edge costs. There are
two sub-cases to consider.

Subcase a: uivj and ujvi do not cross obstacles, as illustrated in Fig. 4.4a.
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(a) (b)

(c) (d)

FIGURE 4.4: Top (Case 1): πi (in red) and πj (in blue) contain two
crossing segments uivi and ujvj. (a): uivj and ujvi (in green) do not
cross obstacles and |uivj| + |ujvi| < [uivi| + |ujvj|. (b): uivj and
ujvi (dotted lines) cross obstacles but πij = ⟨ui, p, vj⟩ and πji =
⟨uj, n, m, vi⟩ (in green) do not cross obstacles and |πij| + |πji| <
|uivi| + |ujvj|. Bottom (Case 2): πi (in red) and πj (in blue) cross at
a common vertex. (c): By swapping wi and wj we obtain non crossing
paths which are not shortest paths (|⟨uj, p, wi⟩| < |uj, v, wi⟩|). (d): By
swapping wi and wj we obtain non crossing paths that have the same

length.

Let π
p
i (resp. πs

i ) be the prefix (resp. suffix) of πi that precedes (resp. suc-
ceeds) uivi, i.e., πi = π

p
i · ⟨ui, vi⟩ · πs

i where · denotes path concatenation.
Similarly, let πj = π

p
j · ⟨uj, vj⟩ · πs

j . Let x be the crossing point between
uivi and ujvj. We have:

|uivi| = |uix|+ |xvi| and |ujvj| = |ujx|+ |xvj|. (4.1)

The triangle inequality implies that

|uivj| < |uix|+ |xvj| and |ujvi| < |ujx|+ |xvi|. (4.2)

From Eq. (4.1) and (4.2), we infer that

|uivj|+ |ujvi| < |uivi|+ |ujvj|. (4.3)

When swapping vi and vj, πi and πj are replaced by the two paths π′i =

π
p
i · ⟨ui, vj⟩ · πs

j and π′j = π
p
j · ⟨uj, vi⟩ · πs

i . From Eq. (4.3), we have |π′i |+
|π′j| < |πi|+ |πj|. This is in contradiction with the fact that m minimises
the sum of the costs of the selected edges in G′ as the costs of edges
(ai, m(aj)) and (aj, m(ai)) in G′ are smaller than or equal to |π′i | and |π′j|,
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respectively (they may be strictly smaller if π′i or π′j are not shortest paths
in G).

Subcase b: uivj and ujvi cross obstacles, as illustrated in Fig. 4.4b.

In this case, we cannot simply exchange the two crossing segments to
obtain two non crossing paths. However, let πij be the path from ui to vj

corresponding to the convex hull of all vertices that belong to the triangle
defined by ui, vj and x. This path is displayed in green in Fig. 4.4b. We
can show that |πij| < |uix|+ |xvj| by recursively exploiting the triangle
inequality (see [Ber+08]). Similarly, there exists a path πji between uj and
vi such that |πji| < |ujx|+ |xvi|. Therefore, |πij|+ |πji| < |uivi|+ |ujvj|.
Like in Subcase a, this is in contradiction with the fact that m minimises
the sum of the costs of the selected edges in G′.

Case 2: πi and πj do not contain crossing segments but they cross at some vertex v.
Let π be the longest path that is common to both πi and πj, i.e., πi = π

p
i ·π ·πs

i

and πj = π
p
j · π · πs

j . We can exchange πs
i and πs

j to obtain two paths π′i =

π
p
i · π · πs

j and π′j = π
p
j · π · πs

i . There are two sub-cases to consider.

Subcase c: π′i and/or π′j are not shortest paths, as illustrated in Fig. 4.4c. In
this case, we can obtain a better assignment by matching ai with m(aj) and
aj with m(ai). This is in contradiction with the fact that m is the optimal
assignment.

Subcase d: π′i and π′j are shortest paths, as illustrated in Fig. 4.4d. In this case,
we can obtain an assignment which has the same cost as m by matching
ai with m(aj) and aj with m(ai), and π′i and π′j no longer cross at vertex v.
If they cross at some other vertex, we can recursively apply the same rea-
soning to either show that π′i and π′j are not shortest paths and exhibit a
contradiction (Subcase c), or show that there exist two non crossing paths
that have the same length as π′i and π′j (Subcase d).

Hence, we can compute an upper bound by solving the LSAP in the bipartite
graph G′vis. If some paths are crossing in the optimal solution, then we can exchange
sub-paths in the crossing paths in order to obtain a solution with no crossing paths
(and the same objective function value), as explained in Subcase d of Theo. 4.3.1.

Like for the NC-AMAPF without obstacles, this upper bound may be improved
by VNS, as explained in Section 4.2.2. We only have to adapt the procedure that
explores the neighbourhood of a matching, in order to check that permutations do
not contain crossing paths (instead of crossing edges). Note that this test is done in
quadratic time with respect to the number of edges in a path (whereas it is done in
constant time when there is no obstacle).
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4.3.2 Relevant Paths Enumeration

The non crossing assignment in G′vis that minimises the makespan may not be the op-
timal solution of the original problem as edges of G′vis correspond to shortest paths,
and as the optimal solution may use non shortest paths. To find the optimal solu-
tion, for each couple (a, t) ∈ A× T , we must consider all relevant paths from a to t
in the visibility graph G′vis, where a path π is relevant if it satisfies the three following
constraints:

(C1) Given an upper bound ub on the optimal makespan (or on the maximal length
of the cable anchored at a), π must be shorter than ub, i.e., |π| < ub;

(C2) π must be elementary and not self-crossing;

(C3) π must be a taut path (as defined in Section 2.1.2).

Before enumerating all relevant paths, we remove from the visibility graph every
edge that cannot belong to a taut path, thus obtaining the reduced visibility graph
[Lat12]. Then, all relevant paths starting from an anchor point a are enumerated
by performing a depth first search starting from a, and pruning branches whenever
a constraint is violated, as described in Algorithm 2. To check constraint (C3), we
perform a local geometric test in constant time.

4.3.3 Constraint Programming Model

Let ub be an upper bound to the optimal solution, and let P be the set of relevant
paths as defined in the previous section (paths in P are numbered from 1 to #P). For
each path π ∈ P, a(π), t(π), and l(π) denote the origin, the target, and the length of
π, respectively. The CP model has the following variables:

• an integer variable xi is associated with every anchor point ai ∈ A, and its
domain contains every target that may be reached from ai, i.e., D(xi) = {t(π) :
π ∈ P ∧ a(π) = ai};

• an integer variable zi is associated with every anchor point ai ∈ A, and its
domain is the set of all paths starting from ai, i.e., D(zi) = {π ∈ P : a(π) = ai};

• an integer variable y represents the maximal length of a selected path.

The constraints are:

• for each pair of anchor points {ai, aj} ⊆ A, we post a table constraint (zi, zj) ∈
Tij where Tij is the table that contains every couple (π, π′) ∈ D(zi) × D(z′i)
such that t(π) ̸= t(π′) and path π does not cross path π′;

• for each anchor point ai ∈ A, we post the constraint y ≥ l(zi);
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FIGURE 4.5: Workspaces Wo with o ∈ {5, 10, 15, 20} (obstacles are
displayed in green).

• we channel xi and zi variables by posting xi = d(zi) and we post an allDifferent({xi : ai ∈ A})
constraint. This constraint is redundant as table constraints prevent selecting
two paths that have a same target. However, preliminary experiments have
shown us that this improves the solution process for a wide majority of in-
stances.

The goal is to minimise y.

4.3.4 Description of Benchmarks

To study the sensibility of our algorithms to different configurations, we generate
instances according to a random model that has three parameters o, n, and d which
are described below. For all instances, the bounding polygon is the square B =

[0, 200]2.
The first parameter o is used to set the number of obstacles. For each value of

o ∈ {5, 10, 15, 20}, we have randomly generated one set Oo of o obstacles such that
each obstacle is a rectangle1 whose height and width belong to [1, 40], and such that
the distance between two obstacle vertices is larger than 10. For each value of o, the
workspace is defined byWo = B \ Oo. These workspaces are displayed in Fig. 4.5.

The second parameter n is used to set the number of robots. For U instances, we
set the number of robots n to 40, whereas for B instances it is set to 20 because these
instances are harder, as explained later.

The third parameter d is used to generate anchor points and targets inWo, and
we consider three different kinds of distributions d ∈ {U, B}, in order to study the
impact of this distribution on bound quality and instance hardness:

• when d = U (Uniform), anchor points and targets are randomly generated in
Wo according to a uniform distribution;

• when d = B (Bipartite), anchor points (resp. targets) are randomly generated
on the left (resp. right) part ofWo, by constraining their abscissa to be smaller
than 60 (resp. greater than 140).

1We have made experiments with other kinds of obstacles and obtained similar conclusions as with
rectangular obstacles.
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FIGURE 4.6: Evolution of the optimal makespan (Opt), the lower
bound (LB) and upper bounds (UB, with i ∈ {1, 3, 5, 7}) when in-
creasing the number of obstacles from 5 to 20. Left: U instances (with

n = 40). Right: B instances (with n = 20).

For the two distributions, we ensure that the distance between two points is always
larger than 4 by rejecting any point that does not satisfy this constraint. We believe
that setting this minimum distance is suitable considering the sizes of the workspace
and the obstacles.

For each value of o and each kind of distribution, we have generated 30 instances.

4.3.5 Experimental Evaluation

In Fig. 4.6, we display the optimal makespan, the lower bound computed by LB,
and upper bounds computed by UBi with i ∈ {1, 3, 5, 7}, for U and B instances. In
both cases, we observe that the number of obstacles has no significant effect on the
optimal makespan. However, the optimal makespan is much smaller for U instances
than for B instances: For U instances, it is smaller than 80 whereas for B instances
it is close to 180. This was expected as anchor points are constrained to be far from
targets in B instances.

For U instances, UB1 is much larger than UB3 which is always larger than UB5.
UB5 and UB7 have close values, and UB7 is also close to the optimal solution. Re-
sults are quite different for B instances, where UB1 and UB7 have very close values.
In other words, VNS does not improve much the upper bound for B instances, what-
ever the value of kmax. However, the optimal solution is much smaller than the upper
bounds computed by UBi. This means that for B instances we more often need to
use non shortest paths to improve the solution than for U instances (remember that
VNS only considers shortest paths).

In Fig. 4.7, we display the evolution of the gap to optimality (in percentage) with
respect to time, and in Tables 4.2 and 4.3 we display the time spent by each step of
the solving process.

For U instances, LSAP is rather long to solve (see row t1 in the tables): around
3s when o = 5, and 13s when o = 20. This comes from the fact that the function
that decides whether two paths are crossing or not has a quadratic time complexity
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FIGURE 4.7: Evolution of the gap to optimality (in percentage) with
respect to time for UBiCP with i ∈ {1, 3, 5, 7}, on average for 30 in-
stances. Top left: U instances with o = 5. Top right: U instances with
o = 20. Bottom left: B instances with o = 5. Bottom right: B instances

with o = 20.

with respect to the number of vertices in the paths, and this number increases when
increasing the number of obstacles. UB3CP, UB5CP, and UB7CP improve the upper
bound computed by LSAP with VNS, and we observe a quick drop of the curves.
Then, we observe an horizontal part which corresponds to the time needed to enu-
merate all relevant paths and to generate the CP model. The time needed to enumer-
ate all paths (t3) strongly increases when increasing the number of obstacles. This
was expected as the number of paths grows exponentially with respect to the num-
ber of obstacles. t3 slightly decreases when increasing kmax because the smaller the
bound computed with VNS, the less relevant paths (see row RP). The time needed to
generate the CP model (t4) decreases when increasing kmax (because this decreases
the number of relevant paths) and it increases when increasing m (because this in-
creases the number of vertices in a path and, therefore, the time needed to decide
whether two paths are crossing). Finally, after the horizontal part (corresponding to
t3 and t4), the curves drop again because CP improves the bound. As expected, the
time needed by CP to compute the optimal solution (t5) decreases when increasing
kmax (because the initial bound is smaller, and therefore tables are smaller), and it in-
creases when increasing the number of obstacles (because this increases the number
of relevant paths).
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TABLE 4.2: Results of UBiCP with i ∈ {1, 3, 5, 7} for U instances with
n = 40 and o ∈ {5, 10, 15, 20} (average on 30 instances). t1 = time
to solve the LSAP; t2 = time of VNS when kmax = i; t3 = time to
enumerate all relevant paths for each anchor-target pair; t4 = time
to generate the CP model; t5 = time to solve the CP model; ttot =
t1 + t2 + t3 + t4 + t5; IM = number of Improving Moves for VNS; RP
= maximum number of Relevant Paths between an anchor point and

a target.

UB1CP UB3CP UB5CP UB7CP
m 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
t1 2.8 5.9 9.4 13.0 2.8 5.8 9.3 12.8 2.8 5.9 9.3 12.9 2.8 5.9 9.3 12.9
t2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.2 0.3 8.7 4.8 5.5 7.3
t3 4.4 10.2 21.5 33.7 3.9 8.5 14.5 21.6 3.7 8.0 14.7 21.1 3.4 7.9 14.2 20.7
t4 5.4 9.7 39.3 75.6 3.2 3.0 4.0 8.4 2.0 2.0 4.4 7.0 1.2 1.8 3.4 6.7
t5 122.5 23.2 47.6 184.3 2.5 7.6 1.1 9.1 1.3 0.3 1.3 0.8 0.4 0.3 1.7 0.8
ttot 135.1 49.0 117.8 306.5 12.3 24.9 29.1 51.8 10.0 16.3 30.0 42.0 16.6 20.6 34.2 48.3
IM 0 0 0 0 1.4 4.0 1.7 2.0 2.6 4.0 3.4 3.8 4.6 4.6 4.4 4.6
RP 2.5 2.8 3.9 4.7 2.2 2.4 3.1 3.0 2.0 2.2 2.8 2.7 1.9 2.6 2.6 2.5

TABLE 4.3: Results of UBiCP with i ∈ {1, 3, 5, 7} for B instances with
n = 20 and o ∈ {5, 10, 15, 20}.

UB1CP UB3CP UB5CP UB7CP
m 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
t1 0.8 1.6 2.6 3.5 0.8 1.6 2.6 3.6 1.0 1.6 2.6 3.5 1.0 1.6 2.6 3.6
t2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.5 0.5 0.6 45.7 41.7 37.6 50.6
t3 3.5 12.2 42.0 96.2 3.4 11.8 40.2 95.5 4.2 12.0 40.4 93.6 4.3 12.0 40.5 93.6
t4 15.6 32.4 94.6 339.6 13.8 27.6 81.2 329.0 16.4 28.3 79.1 315.9 16.7 28.2 78.9 317.6
t5 0.4 0.7 1.6 5.6 0.4 0.6 1.3 5.3 0.5 0.6 1.3 5.0 0.4 0.6 1.3 5.1
ttot 20.3 46.9 140.7 445.2 18.4 41.6 125.3 433.4 22.6 43.0 123.8 418.7 68.1 84.0 160.9 470.4
IM 0 0 0 0 0.3 0.2 0.3 0.2 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2
RP 6.8 8.0 13.3 23.3 6.4 7.8 12.6 22.9 6.3 7.8 12.4 22.7 6.4 7.8 12.4 22.7

Now, let us look at B instances. These instances only have n = 20 robots (instead
of 40 for U instances) because they are harder. This comes from the fact that the
bound computed by UBi is much larger, as seen in Fig. 4.6. This increases the number
of relevant paths, as seen when looking at row RP: when o = 20, this number is
larger than 20 for B instances whereas it is smaller than 5 for U instances. Also the
number of vertices in a path increases. Hence, the time needed to enumerate all
relevant paths (t3) is much larger for B instances than for U instances (e.g., when
o = 20 and kmax = 7, 94s for B and 21s for U). Also, the time needed to generate
the CP model (t4) is much larger (e.g., when o = 20 and kmax = 7, 318s for B and
7s for U). However, the time spent by VNS (t2) is much smaller (e.g., when o = 20
and kmax = 7, 4s for B instead of 13s for U) because n is twice as small for B than
for U. Finally, the time needed to solve the CP model increases when increasing m,
but it does not decrease when increasing kmax. This comes from the fact that VNS
does not improve much the upper bound, whatever the value of kmax (as seen in
Fig. 4.6). Row IM displays the number of improving moves performed by VNS, and
we observe that this number is close to 0 for B instances.

For both B and U instances, we observe a good compromise between the time
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TABLE 4.4: Impact of the parameter p on the time needed to enumer-
ate relevant paths (t3), to generate the CP model (t4), and to solve it
(t5), and on the gap to optimality (in percentage) for B instances when

kmax = 5 and o = 20.

p=1 p=2 p=4 p=8 p=16 no limit
t3 0.0 65.5 76.6 87.1 93.2 93.6
t4 1.9 8.2 34.4 121.7 265.5 315.9
t5 0.1 0.2 0.6 2.2 4.1 5.0
ttot = t1 + t2 + t3 + t4 + t5 6.9 78.0 115.8 215.1 367.9 418.7
gap to optimality 10.8% 5.9% 0.9% 0.0% 0.0% 0.0%

spent by VNS to improve the bound, and the time spent to enumerate relevant paths,
build the CP model and solve it when kmax ∈ {3, 5}.

As observed on row RP of Tables 4.2 and 4.3, the number of relevant paths be-
ing searched for each anchor/target pair increases as m gets larger. Theoretically,
this number exponentially grows with the number of obstacles. When the optimal
makespan is small and the upper bound computed by VNS is close enough to it, the
actual number of relevant paths is rather small (e.g., smaller than 3 for U instances
when kmax ≥ 5). However, for B instances, this number is greater than 20 when
o = 20, and the time needed to enumerate these paths and generate the CP model
becomes greater than 400s. To overcome this problem, we can introduce a parame-
ter p and limit the number of relevant paths to p (keeping the p best ones whenever
the number of relevant paths is greater than p). Of course, in this case we no longer
guarantee optimality as it may happen that the optimal solution uses a path that has
been discarded. In table 4.4 we display the results of UB5CP for different values of p
on B instances when o = 20. Not surprisingly t2, t3, t4 are all reduced as p decreases,
while the average gap to optimality increases up to more than 10% for p = 1. In
our experiment, p = 8 ensures that an optimal solution can always be found, and
divides by 2 the total time.

4.4 Conclusion

We have introduced a new MAPF problem which is motivated by an industrial ap-
plication where tethered robots cannot cross cables. We have shown that we can
compute feasible solutions that provide upper bounds in polynomial time, by solv-
ing LSAPs, even when the workspace has obstacles. We have also introduced a
VNS approach that improves the feasible solution of LSAP by iteratively permuting
k targets, and a CP model that solves the problem to optimality. Finally, we have
proposed to sequentially combine VNS and CP, thus allowing us to use the upper
bound computed by VNS to filter domains.

Experimental results on randomly generated instances have shown us that the
number of obstacles has a strong impact on the solving time. When there is no ob-
stacle, there is exactly one path between every origin/target pair of points, and this
path is a straight line segment. When increasing the number of obstacles, the number



4.4. Conclusion 49

of paths between two points grows exponentially, even when limiting our attention
to taut paths. Hence, it is important to have good upper bounds on the optimal so-
lution in order to reduce the number of candidate paths. Also, when increasing the
number of obstacles, the number of vertices in a path increases linearly, and this has
an impact on the time needed to decide whether two paths are crossing or not.

We have reported experiments on randomly generated instances that allow us
to control the number of obstacles and the number of robots. We have considered
two models for generating anchor and target points, and we have observed that the
distribution of the points has a strong influence on the solution process. In particular,
when anchor points and targets are constrained to belong to two opposite sides of
the workspace, this increases the hardness of the problem because this increases the
makespan and, therefore, the number of relevant paths and the number of vertices
in a path. We have introduced a parameter to control the number of paths and the
solving time, at the price of the loss of optimality.

In Chapter 5, we will extend the work to non-point-sized agents by consider-
ing robots with a body, generating complementary constraints on their motions and
their cables.





51

Chapter 5
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In Chapter 4, we introduced the NC-AMAPF problem. In this preliminary study,
we considered bodiless robots so that two robots could share a same subpath with-
out having to include waiting times. Based on this simplifying assumption, we
showed that the NC-AMAPF can be formulated as Euclidean bipartite matching
problem. In this chapter, we extend this work to non point-sized robots. In this case,
we must synchronize robots in order to ensure a safety distance that prevents the
collisions and entanglements of cables (usually, this safety distance is larger than the
size of the robots). As a consequence, robots may have to wait at some points, as
illustrated in Fig. 5.1(a-c), and these waiting times must be taken into account when
computing the makespan. Also, deadlocks may occur, as illustrated in Fig. 5.1(d).



52 Chapter 5. Non-Crossing AMAPF for non point-sized robots

FIGURE 5.1: (a): a1 and a2 are the anchor points of 2 robots that both
have to go to points b and c before reaching their final targets t1 and
t2 (gray polygons are obstacles). (b): The red robot could arrive first
on point b (because it is closer), but it has to wait for the blue robot
to pass point b (because the blue robot cannot travel between the red
cable and point b if the red robot has already passed point b). (c):
Then, the blue robot could arrive first on point c (because it left point
b first), but it has to wait for the red robot to pass point c. (d): When
the anchor point and the target of the blue robot are exchanged, a
deadlock occurs because the red robot must wait for the blue one to

pass b first, while the blue one cannot pass c before the red robot.

In Sections 5.1 and 5.2, we present all the basic elements and formally define
the NC-AMAPF for non point-sized tethered robots. The main difference with the
NC-AMAPF introduced in Chapter 4 is that we add precedence constraints between
robots that share a same subpath in order to take into account the fact that a safety
distance must be maintained between them to avoid collisions and cable entangle-
ments. This new setting definitely changes the definition of the makespan as we
may have to introduce waiting times to satisfy precedence constraints.

In Section 5.3, we introduce an algorithm that exploits a precedence graph to
suppress deadlocks by reassigning targets. We also prove that the optimal solution
of LSAP cannot contain deadlocks. This allows us to compute two different upper
bounds of the optimal solution: the first one is computed by solving the LSAP; the
second one is computed by first solving the LBAP and then using our new algorithm
to remove deadlocks, if any.

In Section 5.4, we introduce a VNS approach to improve the upper bounds com-
puted in Section 3. This algorithm is similar to the VNS approach introduced in
Chapter 4, but it enlarges the neighborhood by taking into account non-shortest
paths, as the optimal solution may contain non-shortest paths in order to avoid
crossings.

In Section 5.5, we extend the CP model of Chapter 4 to include waiting times
due to interactions between pairs of robots when computing the makespan. This
CP model relaxes constraints due to interactions of more than two robots, and we
show how to lazily generate constraints to compute the optimal solution. We also
introduce a dichotomous approach to avoid computing useless paths.



5.1. Preliminaries 53

5.1 Preliminaries

5.1.1 Removing crossings

In Theorem 4.3.1, we have shown that whenever two paths πi and πj are crossing,
we can always replace them by two non crossing paths π′i and π′j such that |πi| +
|πj| ≥ |π′i | + |π′j|. The basic idea is to exchange the end of πi with the end of πj,
starting from the crossing point, and to replace the resulting paths with taut paths
whenever they are not taut.

Given a set of paths with crossings, these pairwise exchanges of path ends may
be iterated until all crossings have been removed. The resulting set of non-crossing
paths has a total length smaller than or equal to the initial set of crossing paths.

5.1.2 Detecting deadlocks

In Chapter 4, we considered bodiless robots, i.e., we assumed that a robot can always
travel between the cable of another robot and an obstacle. With this simplifying as-
sumption, a set of non-crossing paths is always a consistent solution. In this chapter,
we take into account the fact that a safety distance must be maintained between two
robots when they pass through the same sub-path, to avoid collisions and cable en-
tanglements. This is done by constraining robots to pass shared obstacles in a given
order, as illustrated in Fig. 5.1. This order depends on the relative path positions
with respect to the obstacle: if πi is closer to the obstacle than πj, then the robot
associated with πi must reach the vertex before the robot associated with πj. For ex-
ample, in Fig. 5.1(a), the blue path is closer to the triangle than the red path whereas
the red path is closer to the rectangle than the blue path. Given two paths that share
a same obstacle vertex, we can decide in constant time which one is the closer to the
obstacle, as described in [ZP19]. This may be extended to the case of two paths that
share some sub-path, by ensuring that paths never cross. For example, in Fig. 5.2,
once we have decided that π1 ≺d π2, we can propagate the relative positions of π1

and π2 at vertex b, i.e., π2 is above π1 and, therefore, π2 ≺b π1. We use this to define
total orders among paths that traverse a same obstacle vertex.

Definition 5.1.1 (Total order ≺u). Let Π be a set of non-crossing paths, and u ∈ VO
be a vertex of an obstacle o ∈ O. We denote ≺u the strict total order on Πu such that
∀{πi, πj} ⊆ Πu, πi ≺u πj if and only if πi is closer to o than πj (as defined in [ZP19]).
In this case, the robot associated with πi must visit u before the robot associated with
πj, and we say that πi has a higher priority than πj for vertex u.

These total orders are used to define a precedence graph which is similar to the
Pair Interaction Graph of [ZP19]. This precedence graph models precedence con-
straints between path steps, where a path step is a couple (u, πi) that represents the
visit of a vertex u by the robot associated with a path πi. Besides the precedence
constraints induced by total orders, this graph also models precedence constraints
due to the fact that a robot must visit vertices in the order defined by its path.
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a1, π1 h, π1 b, π1 d, π1 e, π1 t1, π1

a2, π2 d, π2 b, π2 h, π2 g, π2 t2, π2

a3, π3 b, π3 k, π3 e, π3 f , π3 t3, π3

FIGURE 5.2: Deadlock example. Left: Three paths π1 =
⟨a1, h, b, d, e, t1⟩ in black, π2 = ⟨a2, d, b, h, g, t2⟩ in red, and π3 =
⟨a3, b, k, e, f , t3⟩ in blue. The robot associated with π1 should pass h
after the robot associated with π2 because π2 ≺h π1, meanwhile, the
robot associated with π2 cannot pass d until the robot associated with
π1 has passed it because π1 ≺d π2. Right: The corresponding prece-
dence graph (vertical edges are in green whereas horizontal edges
have the same color as their corresponding path). This graph contains
the cycle c = ⟨(h, π1), (b, π1), (d, π1), (d, π2), (b, π2), (h, π2), (h, π1)⟩

(displayed in bold).

Definition 5.1.2 (Precedence graph). Let Π be a set of non-crossing paths. The prece-
dence graph associated with Π is the directed graph GΠ = (VΠ, EΠ) such that ver-
tices correspond to path steps, i.e., VΠ = {(u, πi) | πi ∈ Π ∧ u ∈ πi}, and edges cor-
respond to precedence constraints between path steps, i.e., EΠ = {((u, πi), (v, πi)) | πi ∈
Π ∧ ⟨u, v⟩ ⊆ πi} ∪ {((u, πi), (u, πj)) | u ∈ VO ∧ {πi, πj} ⊆ Πu ∧ πi ≺u πj}. Edges
((u, πi), (v, πi)) between two path steps in a same path are called horizontal edges
whereas edges ((u, πi), (u, πj)) between two path steps in two different paths are
called vertical edges.

Two paths that both visit two vertices may have different precedence constraints
on these two vertices. For example, let us consider the paths π1 and π2 displayed in
Fig. 5.2. Both paths visit vertices h and d. However, π2 ≺h π1 (because π2 is closer to
the left most obstacle than π1) whereas π1 ≺d π2 (because π1 is closer to the middle
obstacle than π2). As π1 must visit h before d whereas π2 must visit d before h, a
deadlock occurs.

More generally, deadlocks occur if and only if the precedence graph contains
cycles, as cyclic precedence constraints cannot be satisfied. These deadlocks may be
detected in linear time with respect to the size of GΠ by performing a depth first
search [Cor+09].

5.1.3 Computing the makespan

We aim at minimizing the makespan, i.e., the arrival time of the latest robot including
waiting times due to the fact that robots must pass shared obstacles in a given order.
This may be computed by exploiting the precedence graph. To this aim, we define a
cost function cΠ : EΠ → R+ such that:
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• the cost of an horizontal edge associated with a path segment is the time needed
to travel through this segment, i.e., ∀((u, πi), (v, πi)) ∈ EΠ, c((u, πi), (v, πi)) =

|uv|;

• the cost of a vertical edge associated with a priority at a vertex is the time that
a robot should wait to let another robot pass before it, i.e., ∀((u, πi), (u, πj)) ∈
EΠ, c((u, πi), (u, πj)) = dt where dt is a parameter corresponding to the du-
ration for traveling the safety distance (which depends on the size of robots,
among other things).

The makespan is equal to the size of the longest path in GΠ when considering cost
function cΠ. It may be computed in linear time with respect to the size of GΠ by
topologically sorting vertices of VΠ and then relaxing edges of EΠ according to this
topological order [Cor+09]. We do not define the exact locations of the waiting times
as this does not affect the computation of the overall makespan. Obviously, robots
must wait before starting to follow shared sub-paths and the choice of waiting loca-
tions should be considered when planning robot actions, which is not in the scope
of this work.

5.2 Problem Statement

In case where the body size of robots is considered, we extend the formulation of
NC-AMAPF problem defined in Def. 4.1.1 by adding the following elements.

• a positive value dt ∈ R+ corresponding to the time a robot must wait to let
another robot pass before it at some shared point.

• for a solution (m, Π), an additional constraint that Π must not contain dead-
locks.

In Section. 4.3.4, we randomly generated instances in terms of the parameter
triple (o, n, d) where o represents the number of obstacles, n denotes the number of
robots and d is used to describe the distribution of anchor points and targets. Based
on this benchmark, we generate a new distribution termed "Alternate".

• when d = A (Alternate) anchor points are randomly generated with their ab-
scissa being equally constrained in [0, 20] ∪ [40, 60] ∪ [120, 140], and targets are
equally distributed in [80, 100] ∪ [140, 160] ∪ [180, 200].

For each value of n, o, and d, we have randomly generated 30 instances (all in-
stances with a same value of o share the same workspace). For all instances, the
value of dt is set to 4 (see Section 5.6 for a discussion on the impact of this parameter
on instance hardness). Examples of instances are displayed in Fig. 5.3.

All experiments reported in this chapter are run on Grid5000 [Bal+13] with an
AMD EPYC 7642 with 512GB of RAM.
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FIGURE 5.3: Instance examples with n=30, o=20, and d=U (left), B
(middle), and A (right).

5.3 Computation of bounds for the makespan

In Chapter 4, we considered the NC-AMAPF problem with bodiless robots and we
showed how to efficiently compute an upper bound by solving an LSAP in in the
complete bipartite graph GA,T = (A, T ,A× T ), and a lower bound by solving an
LBAP.

When taking into account the physical shape of robots, a set of non-crossing
paths is not necessarily solution because it may imply deadlocks, as illustrated in
both Fig. 5.1(d) and Fig. 5.2. In this section, we first introduce an algorithm that
removes all deadlocks from a set of paths by iteratively exchanging targets, and we
show that this algorithm decreases the path length sum. Then, we show how to
compute a lower bound and two different upper bounds by exploiting LSAP and
LBAP solutions. Finally, we experimentally compare these bounds.

5.3.1 Algorithm for removing deadlocks

To remove deadlocks, we remove cycles in the precedence graph GΠ by exchanging
targets. Given a cycle c in GΠ, let Πc denote the set of paths involved in c, where
a path πi ∈ Π is involved in c if c contains a vertex (u, πi). Given a path πi ∈ Πc,
let inc(πi) (resp. outc(πi)) denote the set of vertices of πi that have an incoming
(resp. outgoing) vertical edge in c, i.e.,

inc(πi) = {u ∈ πi : ∃πj ∈ Πc \ {πi}, ⟨(u, πj), (u, πi)⟩ ⊆ c}
outc(πi) = {u ∈ πi : ∃πj ∈ Πc \ {πi}, ⟨(u, πi), (u, πj)⟩ ⊆ c}

For example, let us consider the precedence graph GΠ and the cycle c displayed in
Fig. 5.2: inc(π1) = {h} and outc(π1) = {d}.

Property 5.3.1. Let Π be a set of paths and c be an elementary cycle in GΠ. For each
path πi ∈ Πc, the number of vertical edges of c that end on a vertex of πi is equal
to the number of vertical edges of c that start from a vertex of πi, i.e., #inc(πi) =

#outc(πi).
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Algorithm 3: REMOVECYCLE(Π, c)
Input: A set Π of non-crossing paths and an elementary cycle c in GΠ such

that, for each path πi involved in c, #inc(πi) = #outc(πi) = 1
Output: A set of non-crossing paths Π′ with the same sets of anchor and

target points as Π and such that GΠ′ no longer contains cycle c
1 Π′ ← Π \Πc
2 for each path πi ∈ Πc do
3 Let ((u, πj), (u, πi)) ∈ c be the incoming vertical edge of πi

4 Let πi1 and πi2 be the prefix and suffix of πi such that πi = πi1.⟨u⟩.πi2
5 Let πj1 and πj2 be the prefix and suffix of πj such that πj = πj1.⟨u⟩.πj2

6 Let π′i = πi1.⟨u⟩.πj2

7 if π′i is not a taut path then
8 Replace π′i with the shortest path from the first vertex of π′i to the last

vertex of π′i and in the same homotopy class as π′i
9 end

10 Add π′i to Π′

11 end
12 Remove crossings from Π′ as explained in Section 5.1.1

Proof. This is a straightforward consequence of the fact that (i) c is a cycle and (ii)
every horizontal edge connects two vertices in a same path. Indeed, each time the
cycle reaches a path πi ∈ Πc, using a vertical edge that ends on a vertex of inc(πi), it
must use a vertical edge that starts from a vertex of outc(πi) to leave πi.

Property 5.3.1 ensures that, whenever #inc(πi) = #outc(πi) = 1 for each path
πi ∈ Πc, there are exactly #Πc vertical edges, and these vertical edges define a per-
mutation on the paths of Πc. In this case, we can remove cycle c by replacing the
target of each path πi with the target of the previous path πj in the permutation, as
described in Algorithm 3. More precisely, the new path π′i is composed of the prefix
of πi that ends on the vertex u such that inc(πi) = {u}, and the suffix of πj that starts
from u (lines 3-6). This new path is valid as it is composed of two valid sub-paths
that share a same vertex U. However, it may not be taut and, in this case, we have
to replace it by its corresponding taut path (lines 7-8). It may be possible that the
new taut paths contain crossings and, in this case, we use the procedure described
in Section 5.1.1 to remove all crossings (line 10).

For example, let us consider the precedence graph GΠ displayed in Fig. 5.2. This
graph contains two different elementary cycles.

• Let us suppose that REMOVECYCLE is called with c = ⟨(h, π1), (b, π1), (d, π1), (d, π2),
(b, π2), (h, π2), (h, π1)⟩. The vertical edge of c that reaches π1 is ((h, π2), (h, π1)).
Hence, the new path π′1 is composed of the prefix of π1 that ends on h and
the suffix of π2 that starts from h, i.e., π′1 = ⟨a1, h, g, t2⟩. The vertical edge
of c that reaches π2 is ((d, π1), (d, π2)). Hence, the new path π′2 is composed
of the prefix of π2 that ends on d and the suffix of π1 that starts from d, i.e.,
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a1, π1 b, π1 g, π1 d, π1 t1, π1

a2, π2 e, π2 b, π2 d, π2 f , π2 t2, π2

a3, π3 f , π3 e, π3 t3, π3

a1, π1 b, π1 g, π1 d, π1 t1, π1

a2, π2 e, π2 b, π2 d, π2 f , π2 t2, π2

a3, π3 f , π3 e, π3 t3, π3

FIGURE 5.4: Illustration of Algorithm 4. Left: A precedence graph
with an elementary cycle c displayed in green. inc(π2) = {e, d},
outc(π2) = {b, f }, π2,3 = ⟨e, b, d, f ⟩. Right: The precedence graph
obtained after replacing the sub-path c′ from (e, π2) to ( f , π2) (dis-

played in yellow on the left) with ⟨(e, π2), (b, π2), (d, π2), ( f , π2)⟩.

π′2 = ⟨a2, d, e, t1⟩. These two paths are not taut, and their associated taut paths
are ⟨a1, g, t2⟩ and ⟨a2, t1⟩.

• Let us suppose that REMOVECYCLE is called with c = ⟨(b, π1), (d, π1), (d, π2), (b, π2),
(b, π1)⟩. The vertical edge of c that reaches π1 is ((b, π2), (b, π1)). Hence,
the new path π′1 is ⟨a1, h, b, h, g, t2⟩. The vertical edge of c that reaches π2 is
((d, π1), (d, π2)). Hence, the new path π′2 is ⟨a2, d, e, t1⟩. These two paths are
not taut, and their associated taut paths are ⟨a1, g, t2⟩ and ⟨a2, t1⟩.

It may be possible that new deadlocks are introduced by Algorithm 3, either
when paths are replaced with taut paths, or when crossings are removed. In this
case, we have to call again Algorithm 3 in order to remove them. The following
property ensures that such an iterative process eventually stops.

Property 5.3.2. Let Π′ = REMOVECYCLE(Π, c). We have: ∑πi∈Π |πi| > ∑π′i∈Π′ |π′i |

Proof. Let us first note that the cycle c necessarily contains at least two horizontal
edges because vertical edges correspond to total order relations that cannot contain
cycles.

Now, let us consider Algorithm 3 without lines 7-8 (i.e., non taut paths are not
replaced with taut paths). In this case, every horizontal edge of c no longer appears
in the new paths and we have ∑πi∈Π |πi| = ∑π′i∈Π′ |π′i |+ ∑⟨(u,πi),(v,πi)⟩⊂c |uv|. As c
contains at least two horizontal edges, we have ∑πi∈Π |πi| > ∑π′i∈Π′ |π′i |.

Finally, let us consider Algorithm 3 with lines 7-8. Replacing a non taut path
with a taut path can only reduce the length of the path because a taut path is the
shortest path within the same homotopy class. This may introduce some crossings,
but we have shown in Section 5.1.1 that path length sums can only be reduced when
removing crossings. Hence, we still have ∑πi∈Π |πi| > ∑π′i∈Π′ |π′i |.

Algorithm 4 exploits Algorithm 3 to build a valid solution given a set of paths
that may contain crossing paths or deadlocks. It first removes crossing paths using
the approach described in Section 5.1.1 (line 1). Then, while the precedence graph
GΠ contains cycles, it searches for an elementary cycle c (with a simple depth-first-
search, for example) and iteratively simplifies c until #inc(πi) = #outc(πi) = 1 for
every path πi involved in c (lines 4-9). To simplify c, we search for a path πi such
that #inc(πi) = #outc(πi) > 1, and we shortcut c by replacing its sub-path that goes
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Algorithm 4: BUILDSOLUTION(m, Π)

Input: A bijection m : A → T and a set Π of n paths such that, ∀a ∈ A, Π
contains a path from A to m(a)

Output: A solution to the NC-AMAPF problem
1 Remove crossings from Π as explained in Section 5.1.1
2 while GΠ contains cycles do
3 Search for an elementary cycle c in GΠ
4 while there exists a path πi involved in c such that #inc(πi) > 1 do
5 Let πi,1 be the longest prefix of πi such that ∀w ∈ πi,1, w ̸∈ inc(πi)
6 Let πi,2 be the longest suffix of πi such that ∀w ∈ πi,2, w ̸∈ outc(πi)
7 Let πi,3 = ⟨u1, . . . , uk⟩ be the sub-path of πi such that πi = πi,1.πi,3.πi,2
8 Let c′ be the sub-path of c that starts on (u1, πi) and ends on (uk, πi)
9 Replace c′ with ⟨(u1, πi), (u2, πi), . . . , (uk, πi)⟩

10 end
/* For each path πi involved in c, we have

#inc(πi) = #outc(πi) = 1 */
11 Π← REMOVECYCLE(Π, c)
12 end
13 Update m with respect to Π and return (m, Π)

from the leftmost vertex u1 ∈ inc(πi) to the rightmost vertex uk ∈ outc(πi) with the
sub-path of πi that joins u1 to uk. This removes at least one vertex from both inc(πi)

and outc(πi). An example is depicted in Fig. 5.4. In some cases, the number of paths
involved in c is also decreased, but this number cannot become smaller than two as c
still contains at least two vertical edges (one that ends on u1 and one that starts from
uk) and a vertical edge necessarily involves two different paths. Hence, the loop lines
4-9 is ensured to reach a cycle c such that #inc(πi) = #outc(πi) = 1 for every path
πi ∈ Πc in at most v/2− 2 iterations, where v = ∑πi∈Πc

#inc(πi) is the initial number
of vertical edges in c. Finally, the cycle is removed by using Algorithm 3 (line 10).
Property 5.3.2 ensures that the loop lines 2-9 is performed a finite number of times:
As each cycle removal decreases the total path length, the process necessarily stops
with a deadlock free situation.

5.3.2 Computation of Makespan Bounds from LSAP and LBAP solutions

We denote GA,T = (A, T ,A × T ) the complete bipartite graph such that the cost
of an edge (a, t) ∈ A × T is |sp(a, t)| (i.e., the length of the shortest path from a
to t in the visibility graph). Let us now show how to compute lower and upper
bounds for our NC-AMAPF problem by solving assignment problems in GA,T . Let
mLSAP : A → T be the optimal solution of LSAP without crossings, and ΠLSAP be
the corresponding set of paths, i.e., ΠLSAP = {sp(a, mLSAP(a)) : a ∈ A}. Similarly, let
mLBAP denote the optimal solution of LBAP and ΠLBAP = {sp(a, mLBAP(a)) : a ∈ A}.

The following property shows us that sLSAP = (mLSAP, ΠLSAP) may be used to
build a solution of the NC-AMAPF problem.
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Property 5.3.3. The precedence graph GΠLSAP contains no cycle.

Proof. Let us suppose that GΠLSAP contains cycles. In this case, we could use Algo-
rithm 4 to remove these cycles. However, this would decrease the sum of all path
lengths, which is in contradiction with the fact that mLSAP minimizes the sum of all
path lengths.

Hence, sLSAP is a solution of our NC-AMAPF problem and, therefore, makespan(sLSAP)

is an upper bound.
sLBAP = (mLBAP, ΠLBAP) provides a lower bound to our NC-AMAPF problem and

it is the optimal solution whenever paths in ΠLBAP do not cross nor do they share ver-
tices. However, sLBAP is not a solution if ΠLBAP contains crossings or deadlocks. In
this case, we may use Algorithm 4 to remove all crossings and deadlocks (in other
words, BUILDSOLUTION(sLBAP) is a solution) so that makespan(BUILDSOLUTION(sLBAP))

is an upper bound.
To summarize relations between bounds, if opt denotes the optimal makespan of

our NC-AMAPF problem, we have:

opt ≤ makespan(sLSAP)

max
πi∈ΠLBAP

|πi| ≤ opt ≤ makespan(BUILDSOLUTION(sLBAP))

However, makespan(sLSAP) and makespan(BUILDSOLUTION(sLBAP)) are not compara-
ble.

5.3.3 Experimental evaluation

Algorithms have been implemented in Python.
In Fig. 5.5, we display the gap between the optimal makespan opt and the lower

bound lbLBAP = maxπi∈ΠLBAP |πi|, the upper bound ubLSAP = makespan(sLSAP), and
the upper bound ubLBAP = makespan(BUILDSOLUTION(sLBAP)). This gap is com-
puted as a percentage (i.e., we display 100 ∗ b−opt

opt for each bound b, where opt is
computed with the exact methods introduced in Section 5.5), and on average for
30 instances per combination (n, o, d). lbLSAP is usually rather close to the optimal
solution, especially for U instances, and the bound tends to move away from the
optimal solution when increasing n, especially for B and A instances. The number
of obstacles o does not seem to have a strong influence on the quality of the lower
bound.

There is no clear winner between the two upper bounds. When d = U, ubLBAP

tends to be closer to opt than ubLSAP, whereas when d = B the two bounds are very
close and, when d = A, ubLSAP is better than ubLBAP for 8 (o, n) combinations (among
12). In Fig. 5.6, we display scatter plots to compare the two upper bounds on a
per instance basis when n = 30. For U instances, the gap of ubLBAP is equal to 0%
for 8 instances whereas it is greater than 125% for two instances, and the gap of
ubLSAP is equal to 0% for 9 instances whereas it is equal to 112% for one instance.
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FIGURE 5.5: Gap in percentage (y-axis) between the optimal
makespan and lbLBAP, ubLSAP, and ubLBAP when n ∈ {10, 20, 30} (x-
axis), o ∈ {5, 10, 15, 20} (from left to right), and d = U (Top), B (Mid-
dle), or A (Bottom). Every point corresponds to an average value over

30 instances.

For B instances, gaps are always smaller than 25%. For both B and A instances, the
difference between the two bounds is less important than for U instances.

In Table 5.1, we display the time needed to compute all shortest paths from an-
chor points to targets, and the time needed to compute the two upper bounds (when
excluding the time needed to compute paths). For U instances, we always spend
more time to compute all shortest paths than to compute a bound. Times increase
when increasing the number of obstacles o or the number of robots n, but bounds
are always computed within a few tenths of a second. For A instances, the time
needed to compute ubLSAP is larger than for U instances (e.g., 0.4s instead of 0.02s
when n = 30 and o = 20), and this time is even larger for B instances (e.g., 1.4s
when n = 30 and o = 20). This comes from the fact that the optimal solution
of LSAP for U instances nearly never contains crossing paths, whereas it more of-
ten contains crossing paths for A and B instances. For example, when n = 30 and
o = 20, the average number of crossing paths is equal to 0.6 (resp. 3.2 and 10) for U
(resp. A and B) instances (and replacing these crossing paths by non-crossing paths
is time-consuming). This conclusion also holds for ubLBAP, as we can observe that the
computation time also increases with m and o for all types of instances. However,
compared to ubLSAP, ubLBAP takes more time, notably, when n = 30, this difference
can go up to several seconds for A and B instances. We know that the optimal so-
lution of LBAP is computed without considering the non-crossing constraints, so
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TABLE 5.1: Time (in seconds) needed to compute all shortest paths
(tpath), and the two bounds ubLSAP and ubLBAP (when excluding the
time needed to compute shortest paths), on average over the 30 in-

stances per combination (n, o, d).

n=10 n=20 n=30
o=5 o=10 o=15 o=20 o=5 o=10 o=15 o=20 o=5 o=10 o=15 o=20

d=U

tpath 0.03 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4
ubLSAP 0.0 0.0 0.01 0.01 0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.02
ubLBAP 0.02 0.03 0.1 0.1 0.05 0.1 0.1 0.2 0.1 0.2 0.3 0.3

d=B

tpath 0.03 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4
ubLSAP 0.01 0.04 0.1 0.2 0.04 0.2 0.5 0.7 0.1 0.4 1.0 1.4
ubLBAP 0.1 0.3 0.7 1.3 0.3 0.8 2.4 4.3 0.7 1.8 4.9 8.3

d=A

tpath 0.03 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4
ubLSAP 0.0 0.0 0.03 0.02 0.01 0.05 0.1 0.1 0.04 0.1 0.3 0.4
ubLBAP 0.04 0.1 0.6 0.3 0.2 0.4 1.0 1.4 0.4 1.0 2.4 3.8

there are more crossings to remove. When n = 30 and o = 20, this average number
is equal to 11.3 (resp. 44.2 and 58.1) for U (resp. A and B) instances. We do not report
times needed to solve LBAP (and compute lbLBAP): this time is always smaller than
0.03s and is negligible with respect to other times.

In conclusion, ubLSAP is more efficiently computed than ubLBAP, while the two
bounds are rather comparable in quality. Therefore, we use the result of ubLSAP as an
initial upper bound.

5.4 Improving the upper bound with VNS

In Section 4.2.2, we have introduced a VNS approach for improving the solution
sLSAP that minimizes the sum of costs. To adapt this VNS to the case where robots
have physical shapes, we simply have to forbid deadlocks and to modify the compu-
tation of the makespan by integrating waiting times in case of shared vertices. This
VNS approach is denoted OLDVNS.
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Algorithm 5: NEWVNS(m, Π, kmax)

Input: an initial solution (m, Π), and a parameter kmax ∈N

Output: an improved solution (m, Π)
1 k← 2
2 while k ≤ kmax do
3 let πmax be the path of Π with the latest arrival time and amax its anchor

point
4 C ← {π ∈ Π : π is in the same connected component as πmax in GΠ}
5 if #C < k then
6 add to C the k− #C paths whose anchors are the closest to amax
7 end
8 for each S ⊆ C such that #S = k and πmax ∈ S do
9 let AS be the set of anchor points of paths in S

10 for each permutation σ : AS → AS such that
∀a ∈ AS , |sp(a, m(σ(a)))| < makespan(m, Π) do

11 for each a ∈ AS do
12 compute the set Πa of every taut path π from A to m(σ(a))

such that |π| < makespan(m, Π), and π does not cross any
path in Π \ S

13 end
14 for each set S ′ which contains exactly one path of Πa, ∀a ∈ AS do
15 if Π′ = (Π \ S) ∪ S ′ is valid and improving then
16 replace Π with Π′ and update m consequently
17 set k to 2, and go to line 2
18 end
19 end
20 end
21 end
22 increment k
23 end
24 return (m, Π)

In Fig. 4.3, we showed that optimal solutions may contain non-shortest paths.
For some instances (in particular those generated with d ̸= U), optimal solutions
widely use non shortest paths and have much shorter makespans than solutions
computed with shortest paths only (as done by OLDVNS). For this reason, we in-
troduce a new VNS approach, denoted NEWVNS, which takes into account non-
shortest paths as described in Algorithm 5.

NEWVNS starts the search from an initial solution (m, Π) (which may be sLSAP or
BUILDSOLUTION(sLBAP), for example). At each iteration of the loop lines 2-16, it ex-
plores the neighborhood of the current solution (m, Π). This neighborhood contains
couples (m′, Π′) such that Π′ is obtained from Π by replacing a set S of k paths with
a set S ′ of k new paths (which are not necessarily shortest paths). Obviously, S must
contain the path πmax with the latest arrival time (corresponding to the makespan),
as this is a mandatory condition to reduce the makespan. The search for S ′ is done
in four steps:
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Step 1 (lines 4-6): As it is time-consuming to compute new paths, the neighborhood
is deliberately reduced by constraining paths of S to belong to a limited set of
candidate paths C which contains all paths in the same connected component
as πmax in GΠ. If there are less than k paths in C, it is completed by selecting
the paths whose anchor points are the closest to the anchor point of πmax.

Step 2 (lines 7-9): For each subset S of k paths in C (including πmax), we enumer-
ate every permutation σ of the k anchor points of S such that the length of
the shortest path from any of these k anchor points A to m(σ(a)) is smaller
than the current makespan (otherwise the permutation cannot lead to a shorter
makespan).

Step 3 (lines 10-11): For every anchor point A involved in S , we compute the set Πa

of all paths from A to the new target m(σ(a)) associated with A, while limiting
the search to taut paths that do not cross paths of Π \ S and that have a length
smaller than the current makespan.

Step 4 (lines 12-15): We search for a new set S ′ of k paths in Πa such that the k new
paths are non-crossing and the makespan of (Π \ S) ∪ S ′ is smaller than the
makespan of Π. If such an improving set of paths is found, the current solution
is updated, and a new improving move is searched with k = 2.

If no improving neighbor is found in the loop lines 7-15, then k is increased to enlarge
the neighborhood.

5.4.1 Experimental evaluation

Algorithms have been implemented in Python1.
In Fig. 5.7, we display the evolution of the gap to optimality (in percentage) of

bounds computed by OLDVNS and NEWVNS when kmax ∈ {1, 3, 5, 7} and when the
initial solution is sLSAP. OLDVNS and NEWVNS both return sLSAP when kmax = 1
as k is initialized to 2 and the search is stopped whenever k > kmax. Increasing kmax

decreases the makespan, but we observe larger improvements from 1 to 3 than for 3
to 5 and then to 7. We have made experiments with values of kmax larger than 7 and
observed that this does not allow us to significantly improve the makespan.

For U instances, we obtain a better upper bound with OLDVNS which only con-
siders the shortest paths, while NEWVNS works better for B and A instances. This
difference is due to two reasons. First, compared to OLDVNS, NEWVNS takes into
account non-shortest paths. For A and B instances, we more often need to use non
shortest paths to improve the solution than for U instances. Second, for the neigh-
borhood construction, in NEWVNS, we restrained the number of anchor points, or
the location ranges where they can be, as well as the location ranges of targets are
fixed. For B instances, the anchor points and targets are located in a bipartite way,

1Our implementation of the work in Chapter 5 is publicly available at https://gitlab.inria.fr/
xipeng/tethered-amapf-jair2023.git.

https://gitlab.inria.fr/xipeng/tethered-amapf-jair2023.git
https://gitlab.inria.fr/xipeng/tethered-amapf-jair2023.git
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FIGURE 5.7: Evolution of the gap to optimality in percentage with re-
spect to time (in seconds) for OLDVNS (top row) and NEWVNS (bot-
tom row) when kmax ∈ {1, 3, 5, 7}: average value over 30 instances
when n = 30, o = 20, and d = U (left), B (middle), and A (right).
Scales on y-axis are different for U, B, and A instances (from the left
to the right), whereas they are identical for OLDVNS and NEWVNS.

so the optimal solution could also follow a symmetric match along the Y axis. This
means that our new neighborhood is smaller but more effective than the previous
one. A instances also follow a bit of bipartite symmetry, so it works too. For U in-
stances, as anchors and targets are uniformly distributed, exchanging with nearby
points can easily violate the non-crossing constraint and it becomes harder to get
a better solution: in this case, performing an exhaustive search among all anchor
points (as OLDVNS does) is more effective.

Since OLDVNS and NEWVNS show complementary performance, we combine
them by running OLDVNS first then followed by NEWVNS (each step is limited
to 60s) in order to improve the robustness when tackling different instances, and we
call this combined method COMBINEDVNS. The switching time of 60 seconds is cho-
sen to find a compromise between the quality of the solution and the time required
for resolution. From Fig. 5.7, we can observe that when oldVNS and newVNS are
run individually, the optimality gap curves for each tend to converge around 60 sec-
onds. We have tested other combination methods, and this sequential combination
performs better in terms of robustness and efficiency.

In Fig. 5.8, we show the evolution of the gap to optimality (in percentage) of
bounds computed by OLDVNS, NEWVNS, and COMBINEDVNS when kmax = 7.
For U instances, we see that running NEWVNS after OLDVNS slightly improves
the bound. For B instances, the curve drops slowly in the first phase (which corre-
sponds to OLDVNS), until the 60s time limit is reached, then it continues to improve
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FIGURE 5.8: Evolution of the gap to optimality in percentage with
respect to time (in seconds) for COMBINEDVNS (which runs OLDVNS
for 60s and then NEWVNS for 60s) when kmax = 7: average value
over 30 instances when n = 30, o = 20, d = U (left), B (middle), and

A (right).

the bound, and even reaches a level lower than the simple NEWVNS does. This con-
clusion also holds for A instances, and we can see that COMBINEDVNS has a clear
advantage over OLDVNS and NEWVNS.

5.5 Computation of the optimal solution with CP

In this section, we first introduce a relaxed CP model, where interactions between
more than two paths are ignored. Then, we show how to lazily generate constraints
due to interactions between more than two paths in order to compute the optimal
solution, and we introduce a dichotomous approach to reduce the number of candi-
date paths that must be pre-computed. Finally, we report experimental results.

5.5.1 Relaxed CP model

Since the optimal solution may use non-shortest paths, to find the optimal solution
we must compute all relevant paths that may belong to the optimal solution. These
paths must be taut, elementary, and non self-crossing. As there is an exponential
number of paths with respect to the number of obstacle vertices, we add a limit l
to the length of the paths. Obviously, we can set l to the best known upper bound,
as the makespan cannot be smaller than the length of the longest selected path. Let
ub denote this best known upper bound, computed with approaches described in
the previous sections. By default, we assume that l = ub (we shall describe in Sec-
tion 5.5.3 a dichotomous approach where l is set to values smaller than ub). Given
a length bound l, Πl denotes the set of all taut, elementary, and non self-crossing
paths of length smaller than l. Paths in Πl are numbered from 1 to #Πl . For each
path π ∈ Πl , a(π) and t(π) denote the anchor point and the target of π, respec-
tively.

In this CP model, we use the same variables as in Section 4.3.3: for each anchor
point ai ∈ A, the integer variable xi represents the target matched with ai, the integer
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Algorithm 6: LAZYAPPROACH(ub, Πl)

Input: an initial upper bound ub, and a set Πl of candidate paths
Output: the optimal makespan

1 letM be the CP model described in Section 5.5.1
2 whileM has a solution s do
3 if G{s(zi):ai∈A} contains a cycle c then
4 add toM a nogood constraint that forbids c
5 else
6 let π be the longest path in G{s(zi):ai∈A}
7 if |π| < ub then ub← |π|; add toM the constraint Obj < ub;
8 else add toM a nogood constraint that forbids π;
9 end

10 end
11 return ub

variable zi represents the path used to reach xi from ai, and the integer variable Obj 2

represents the makespan. Based on the previous model, we introduce new variables
for taking into account waiting times due to vertices shared by two paths: for each
pair of anchor points {ai, aj} ⊆ A, the integer variable Mi,j represents the makespan
of the two paths zi and zj, including the waiting times due to vertices shared by
zi and zj, i.e., the length of the longest path in the precedence graph G{zi ,zj}. The
domain of this variable is D(Mi,j) = [0, ub[.

zi and Mi,j variables are related thanks to table constraints. For each pair of
anchor points {ai, aj} ⊆ A, we pre-compute the table Ti,j that contains every triple
(πi, πj, ms) ∈ D(zi) × D(zj) ×N such that (i) t(πi) ̸= t(πj), (ii) path πi does not
cross path πj, (iii) G{πi ,πj} has no cycle, (iv) ms is the length of the longest path in
G{πi ,πj}, and (v) ms < ub. For each pair of anchor points {ai, aj} ⊆ A, we post the
table constraint (zi, zj, Mi,j) ∈ Tij, and we post the constraint Obj ≥ Mi,j.

The solution that minimizes Obj is a lower bound of the optimal makespan be-
cause some constraints have been relaxed. Indeed, table constraints ensure that there
is no deadlock between two paths and Obj takes into account waiting times due to
pairs of paths that have common vertices. However, deadlocks may be due to a cir-
cular dependency between more than two paths. Also, in the case of dependency
chains of more than two paths, the makespan may be larger than all Mi,j variables
(e.g., when π1 and π2 share a vertex and π2 and π3 share another vertex, the actual
makespan may be larger than M1,2 and M2,3). In the next section, we introduce an
approach that lazily generate constraints to compute the optimal solution.

5.5.2 Lazy constraint generation

Lazy constraint generation is often used when there are too many constraints. This
is the case for our problem, as we should add a constraint for each possible subset of

2In Section 4.3.3, we use y to denote the largest path length. Here we use Obj for this new definition
of makespan.



68 Chapter 5. Non-Crossing AMAPF for non point-sized robots

anchor points in order to ensure that the paths associated with these anchor points
do not create deadlocks3. In Algorithm 6, we describe an approach based on lazy
constraint generation. We enumerate all solutions of the model described in Section
5.5.1. Each time a solution s is found, we compute the precedence graph G{s(zi):ai∈A}
(where s(X) denotes the value assigned to a variable X in solution s). If s implies
a deadlock, i.e., the precedence graph contains a cycle, we search for a cycle c in
the precedence graph, we compute the set of anchor points involved in c, and we
add a nogood constraint to prevent the search from enumerating again the paths
associated by s to these anchor points (lines 3-4). If there is no deadlock, we search
for the longest path π in the precedence graph (line 6): the makespan corresponds
to the length of this path. If this makespan is smaller than ub, we have found a new
improving solution and we constrain Obj to be smaller than this makespan (line
7). Otherwise, we search for all anchor points involved in π and we add a nogood
constraint to prevent the search from enumerating again the paths associated by s to
these anchor points (line 8).

5.5.3 Dichotomous Approach

A main issue is related to the initial bound l. This bound limits the length of the
paths computed in the set Πl used to generate the relaxed CP model. The larger l,
the more time needed to compute paths in Πl, the larger the domains of zi variables
and the more triples in Ti,j tables. The upper bound ub computed with COMBINED-
VNS is often quite close to the optimal solution (the average gap is smaller than 10%
for U and B instances, and smaller than 20% for A instances when kmax = 7). How-
ever, in most cases, ub is much larger than the longest selected path in the optimal
solution because waiting times are added. As a consequence, when setting l to ub,
a considerable number of paths of Πl do not contribute to the optimal solution. To
avoid this unnecessary computation, we use a dichotomous approach for setting l,
as described in Algorithm 7.

lb and ub are the lower and upper bounds of Obj, respectively (lb is initialized to
makespan(sLBAP) and ub to an upper bound computed by LSAP or COMBINEDVNS). α

is a parameter used to control when to switch from dichotomous search to a classical
search. While the gap between ub and (lb + ub)/2 is larger than α ∗ ub, we set l
to (lb + ub)/2, we compute the set Πl and launch LAZYAPPROACH (lines 2-4). If
the bound returned by LAZYAPPROACH is smaller than l, then we have found the
optimal solution (line 5); otherwise, we increase the lower bound of Obj to l as we
know that the optimal solution is greater than or equal to l (line 6). When the gap
between ub and (lb + ub)/2 becomes smaller than α ∗ ub, we stop the dichotomous

3Another possibility is to design a global constraint for ensuring that the selected set of paths does
not contain deadlocks. We have implemented a propagator for this global constraint (see Appendix
A), that incrementally detects cycles in the precedence graph. However, experimental results showed
us that this approach is less efficient than a lazy approach, on most instances.
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Algorithm 7: DICHOTOMOUSAPPROACH(lb, ub, α)

Input: a lower bound lb, an upper bound ub, and a parameter α ∈ [0, 1]
Output: the optimal makespan

1 while (ub− (lb + ub)/2) > α ∗ ub do
2 l ← (lb + ub)/2
3 Compute the set Πl of all paths of length smaller than l
4 ub← LAZYAPPROACH(ub, l)
5 if ub ≤ l then return ub;
6 lb← l
7 end
8 Compute the set Πub of all paths of length smaller than ub
9 return LAZYAPPROACH(ub, Πub)
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approach and run LAZYAPPROACH with the set Πub of all paths of length smaller
than ub.

5.5.4 Experimental results

Algorithm 6 has been implemented in Java, using the Choco CP library [PFL16].
Algorithm 7 has been implemented in Python.

The sequential lazy approach described in Section 5.5.2 is denoted SEQ and the
dichotomous approach described in Section 5.5.3 is denoted DICHO. For DICHO, the
rate α is set to 0.05 (i.e., we switch to SEQ when the gap between ub and (lb+ ub)/2 is
smaller than or equal to 5%). For each approach X ∈ {SEQ,DICHO}, the bound l is ei-
ther initialized with makespan(sLSAP) (denoted LSAP+X) or with the bound computed
by COMBINEDVNS with kmax = 7 (denoted VNS+X).

In Fig. 5.9, we display the ratio of solved instances with respect to time for the
four approaches X+Y with X ∈ {SEQ,DICHO} and Y ∈ {LSAP,VNS} (CPU times in-
clude the time for computing the initial bound l with Y). For each instance type
d ∈ {U, B, A}, there are 360 instances (30 instances per value of o ∈ [5, 10, 15, 20]
and n ∈ [10, 20, 30]). DICHO is more successful than SEQ. This is more particu-
larly sensible when the upper bound is computed with LSAP as, in this case, the
initial upper bound is much greater. When the upper bound is computed with VNS,
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VNS+SEQ and VNS+DICHO obtain very close results for U and B instances. However,
VNS+DICHO is much more successful than VNS+SEQ for A instances for time limits
greater than 100s (corresponding to the time spent by COMBINEDVNS to compute
the upper bound when kmax = 7). This comes from the fact that the upper bound
returned by COMBINEDVNS is quite close to the optimal solution for U and B in-
stances (less than 5% for U instances, and less than 6% for B instances), whereas the
gap is equal to 18% for A instances (see Fig. 5.8).

In Fig. 5.10, we display the evolution of the gap to optimality (in percentage)
with respect to time. For LSAP+SEQ and LSAP+DICHO, the curve is horizontal at the
beginning of the solution process. This corresponds to the time needed to compute
paths of Πl . This horizontal part is shorter for LSAP+DICHO (especially for B and
A instances), as paths are computed up to (lb + ub)/2 instead of ub for LSAP+SEQ.
VNS+SEQ and VNS+DICHO have identical gaps at the beginning of the search pro-
cess. This corresponds to the 120 seconds spent by COMBINEDVNS to improve the
upper bound. After 120s, VNS+DICHO has smaller gaps than VNS+SEQ, and it is the
best performing approach for most instances.

An NC-AMAPF instance has a parameter dt which corresponds to the time needed
by a robot to let another robot pass before it at some shared vertex. In all experi-
ments, this parameter has been set to four. We made experiments with other values
of dt and observed that it has an impact on instance hardness: the higher dt, the
greater the upper bound (computed with VNS) and, therefore, the more expensive
the computation of all paths of length smaller than the upper bound. However,
the relative performance of the different considered approaches are not drastically
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changed when dt is changed.

5.6 Conclusion

In this chapter, we extend the work of Chapter 4 on non-crossing AMAPF by consid-
ering the impact of robots’s physical size. We show that motion constraints can be
translated into precedence constraints, that imply waiting times when computing
the makespan. We prove that the solution of LSAP cannot contain deadlocks and
always provides a valid upper bound for the new problem. We propose as well an
alternative way to calculate an upper bound from the LBAP solution. Experimen-
tal results show us that the two upper bounds have rather similar qualities but the
LSAP upper bound is more quickly computed.

We introduce a novel VNS approach that also considers non-shortest paths as
neighbors, and we show that it has complementary performance with the VNS ap-
proach in Section 4.2.2. We propose to combine them sequentially to improve robust-
ness in practice. To solve the problem optimally, we firstly introduce a relaxed CP
model that disregards interactions between more than two robots, thus it provides
theoretically a lower bound. Then a lazy constraint generation approach is applied
to compute the optimal solution.

In this problem, one of the main issues affecting efficiency is related to the ini-
tial upper bound used to generate the CP model. The larger the upper bound, the
greater the number of candidate paths and the heavier the CP model, which requires
more time to solve optimally. To avoid unnecessary path computations, we adopt
a dichotomous approach to choose an appropriate upper bound. Experimental re-
sults on randomly generated instances have shown us that a sequential combination
of VNS and CP enables efficient computation of solutions for this novel variant of
AMAPF problem. Additionally, we have introduced parameters in each method to
effectively control efficiency and solving time, thereby enhancing its generalization
capability for solving diverse instances.
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In Chapter 4 and Chapter 5, we focused on solving the anonymous multiple teth-
ered robots path finding problems, which essentially involve finding a set of shortest
paths. In this chapter, we shift our attention to another common task referred to as
Coverage Path Planning for a single Tethered robot, denoted as TCPP. Compared
with the classic CPP problem, the main challenge is related to the constraints with
the cable, e.g. the cable has a limited length and cannot cross itself. In addition, we
consider scenarios where the workspace might contain forbidden zones, where the
robot and its cable are forbidden to pass. This restriction could be due to potential
damage to the robot and its cable or the presence of humans who might be impacted
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by the robot or cable. A main difference between a forbidden area and an obstacle
comes from the fact that the cable is blocked by obstacles (wrapping around them),
whereas it is not blocked by forbidden areas. In such cases, the robot needs to follow
a path that prevents the cable from crossing these zones, as depicted in Fig. 6.1.

⌣

�

cell
obstacle
forbidden area

⌣ robot
� anchor

cable
path

FIGURE 6.1: Example forbidden areas. The red solid line is an in-
valid configuration because the tether overlaps the forbidden area.
The robot can choose to bend around the obstacles to reach the target

with the cable always being inside the workspace.

In Section 6.1, we formally define the TCPP problem and propose the adapta-
tion of the STC algorithm to find an solution for this new problem. By discretizing
the workspace as a special graph structure called G4, a new objective problem is
formulated to find a maximum tree in G4, ensuring that the corresponding cable
configuration at each vertex satisfies the constraints.

Section 6.2 focuses on a theoretical analysis of the problem’s complexity. In gen-
eral case, we demonstrate that the problem can be solved in polynomial time and
introduce an algorithm that combines the Dijkstra method with spanning tree gen-
eration. Based on that, we introduce a new constraint involving forbidden areas in
the workspace. We prove that this new problem belongs to the class ofNP-complete
problem through a reduction from a Planar 3-SAT instance.

In Section 6.3, we present an exact approach for solving the problem when for-
bidden areas are present. It involves enumerating all possible cable configurations
and representing them as a graph structure. In this method, we implement an ILP
model to solve it.

In Section 6.4, we introduce four heuristic models aimed at efficiently finding
a lower bound for the problem. These models are tested on randomly generated
instances, and the results are presented in Section 6.5. The findings indicate that
the modelM3h, based on a Fixed Parameter Tractable (FPT) heuristic, performs the
best. Additionally, we examine how the problem’s hardness evolves when varying
the cable length and the number of obstacles in the workspace.
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6.1 Problem Statement

6.1.1 Notations and Definitions

Consider a workspaceW ⊆ R2 which is defined by a finite region B consisting of a
set of polygonal obstacles O =

⋃
jOj and holes1 H =

⋃
jHj, andW = B \ {O ∪H}.

We denote VO the set of obstacle vertices. In this work we discretize the workspace
into a 4-connected grid graph g such that each cell of the grid has the same size as
the robot’s footprint, as described in Section 2.2.4.

Let us consider a connected graph G4 = (V4, E4) such that each vertex of G4

corresponds to a non-overlapping group of 2× 2 adjacent cells in g, and edges of
G4 correspond to adjacency relations between these 2× 2 cell groups. An example
is depicted in Fig. 2.9. In this work, we assume that g can be perfectly transformed
into G4, i.e., there are no remaining cells in g. For this purpose, we assume that the
obstacles and holes are all in the form of blocks of 2× 2 cell groups, which can be
both convex and concave.

We assume that a tethered robot is initially located at its anchor point r. Let Xs, Xt

be respectively the initial and target cable configuration, and πs−>t a path allowing
to move from s to t.

6.1.2 Computing the Cable Configuration

In Section 2.1.3, we have introduced different methods to compute Xt given Xs and
πs−>t. In a workspace with polygonal obstacles, determining the shortest path
between two configurations takes O(kp|VO |2 log |VO |) time, where kp denotes the
number of vertices of Xs, and |VO | is the number of obstacle vertices. Algorithm
8 presents an approach to incrementally update the cable configuration on a grid
graph when the robot moves between two adjacent vertices u and v, where uv is a
segment rather than a polyline as in the general case. Specifically, let Xs = q0q1...qku.
When the robot moves from u to v, the cable either detaches some vertices on Xs (case
in Fig. 6.2(b)) or bends around new obstacles (case in Fig. 6.2(a)), but never combines
them as in Fig. 2.3(left). Therefore, to compute Xt, the algorithm backtracks on the
vertices Xs \ {u} until the last vertex qi+1 visible to v is found. If qi+1 = qk, then
the algorithm searches for other obstacle vertices within the pseudotriangle △qkuv
(line 5). This step takes O(|VO | log |VO |) time with a preprocessing by computing
the visibility graph of the workspace.

If Xs is valid and the movement u → v does not traverse any holes, Algorithm 8
ensures that Xt will never cross any holes neither (in our discretization scheme, we
suppose that the width of a hole is at least of 2 grid cells). Since the length of a cable
configuration is the sum of its segments, it can be also incrementally updated in time
O(kp). Consequently we can efficiently compute and check whether Xt is valid in
O(|VO | log |VO |+ kp) time.

1In computational geometry, the term "holes" generally refers to the interior boundaries within an
enclosed shape. In the context of our problem, "holes" specifically denote forbidden areas.
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Algorithm 8: NEXTCONFIG(Xs, v)
Input: The cable configuration Xs = q0q1...qku, and the target point v
Output: The cable configuration Xt when arriving at v

1 backtrack Xs from qk, until a vertex qi not visible to v, then stop
2 if i < k then
3 return q0q1...qi+1v
4 else
5 find all obstacle vertices z0, ..., zm in the interior of△qkuv and order them

by angle relative to u
6 return q0, ...qkz0, ...zmv
7 end

q0

q1

q2

q3

q4

u v

q0

q1

q2

u v

(a) (b)

FIGURE 6.2: Examples of cable configuration in a grid graph. (a):
Xs = q0q1q2u, Xt = q0q1q2q3q4v. (b): Xs = q0q1q2u, Xt = q0q1v.

In general, kp is smaller than |VO |. The process of computing the cable config-
uration and verifying its validity is a fundamental operation in our problem. To
simplify matters, we represent its complexity as α(|VO |), where α(|VO |) is a polyno-
mial function in terms of |VO |.

6.1.3 Definition of the CPP Problem for Tethered Robots

Definition 6.1.1 (TCPP problem). The problem of Tethered Coverage Path Plan-
ning Problem (TCPP) involves a tethered robot operating within a workspace W
described in Section 6.1.1, where an anchor point r ∈ W is fixed and a cable of
maximum length ℓ is attached. In this context, we consider a discretized graph g
associated with W . The goal of TCPP is to find a shortest cycle that fully covers g
and returns to its starting point, subject to the following constraints: (i) at each ver-
tex v ∈ π, the corresponding cable configuration Xv remains valid, i.e., it does not
exceed the cable length, it does not cross itself and it does not cross any holes in H;
and (ii) when the robot returns to the anchor point, the cable is fully retracted.

According to the definition above, if there exists a Hamiltonian cycle in g, we
actually have a shortest coverage path as each cell is traversed exactly once. The
complexity of deciding of the existence of a Hamiltonian cycle depends on the prop-
erties of g: it is in O(1) for rectangular grids with no obstacles whereas it becomes
NP-complete in case of obstacles [IPS82].
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� � �

(a) (b) (c)

FIGURE 6.3: (a): A Hamiltonian cycle in graph g that encircles an
obstacle results in the cable getting crossed at some point if the robot
starts off in the direction of the red arrow. (b)(c): By constructing
a Hamiltonian cycle based on a spanning tree of G4 (highlighted in
orange), it is ensured that the cable can be completely retracted when
the robot returns to its initial position. The Hamitonian cycle in (b)

can avoid cable entanglements, while (c) not.

In this work, we consider to apply Spanning Tree Coverage (STC) to compute
an optimal solution when the workspace can be perfectly discretized into G4

2. The
motivation comes from the fact that there exists a Hamiltonian cycle in g if and only
if G4 is connected and given a spanning tree T of G4, a Hamiltonian cycle in g can
be simply constructed by circumnavigating T, as illustrated in Fig. 2.9. Another rea-
son is that the Hamiltonian cycle constructed in this way can always ensure that
the cable is fully retracted and and the self-crossing can be avoided if the spanning
tree used to construct the Hamiltonian cycle is approriately selected, while the other
Hamiltonian cycles cannot retract the cable and may also lead to cable entangle-
ments, as illustrated in Fig. 6.3. In Section 6.2.1, we will discuss how to generate
such a spanning tree in order to meet cable constraints.

In the upcoming section, we will demonstrate that the existence of a spanning
tree satisfying the cable-related constraints is not guaranteed in all cases, particularly
when considering forbidden areas within the workspace. Consequently, our focus
shifts to finding a general tree structure in G4 that satisfies the constraints, which
may not necessarily be a spanning tree capable of generating a coverage path in g.

Definition 6.1.2 (Coverage Tree). Consider a graph g obtained by discretizing a
workspaceW , and let G4 = (V4, E4) be a connected graph derived from g. A coverage
tree is an arborescence rooted at the source vertex r, which covers a subset of vertices
from V4, such that the corresponding cable configuration at each vertex is valid.

Definition 6.1.3 (Maximum Coverage Tree Problem(MCT)). Given (W , G4, r), com-
pute a coverage tree T = (VT, ET) of G4 that maximize |VT|.

Therefore, the primary challenge lies in finding a coverage tree that maximizes
the number of vertices covered. This is essential in order to discover the shortest
coverage path for our original TCPP problem.

2In the case where the workspace cannot be perfectly structured into G4—meaning that there are
residual cells of g unaffected—STC can still provide a highly satisfactory approximation by introducing
an additional cost for unaffected cells, as stated in Section 2.2.4.
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Algorithm 9: DIJKSTRACOVERAGE(G4, r, ℓ)
Input: A graph G4, the source r and the maximal cable length ℓ
Output: An arborescence T rooted at r such that for each vertex v ∈ T, the

path from r to v minimizes the cable configuration and whose
length does not exceed ℓ

1 for each vertex v in G do
2 initialise dist[v] to +∞, prev[v] to unde f ined, con f ig[v] to empty
3 end
4 let Q be the set of all vertices in G4
5 dist[r]← 0
6 while Q is not empty do
7 u← vertex in Q with minimum dist[u], remove u from Q
8 if the distance of con f ig[u] is larger than ℓ then break;
9 for each neighbor v of u still in Q do

10 q← NEXTCONFIG(con f ig[u], v), let alt be the length of q
11 if alt < dist[v] then
12 dist[v]← alt, prev[v]← u, con f ig[v]← q
13 end
14 end
15 end
16 T ← prev \ {w | dist[w] > ℓ}

6.2 Complexity Study

In this section, our objective is to investigate the complexity of the MCT problem.
We will specifically focus on how the complexity of this problem is influenced by the
properties of the workspace, with a particular emphasis on the presence of forbidden
areas. We will analyze and discuss the complexity for each case separately.

6.2.1 MCT Problem without Forbidden Areas

We consider firstly that the workspace contains only obstacles. In this case, the size
of the coverage tree is restricted by the cable length. When the cable length is limited
to ℓ, some cells may become out of reach. This occurs when the shortest path from
the anchor point to these cells exceeds ℓ. In such case, these out-of-reach cells are
discarded.

There are several ways to compute a coverage tree in G4, like a breadth-first-
search (BFS). However, the length of a path in g may be longer than the correspond-
ing cable length as the cable is kept taut by a system that pulls on it. A shortest path
in g does not necessarily leads to a shortest cable length, as illustrated in Fig. 6.4.
As a consequence, using a BFS to compute a spanning tree in G4 is not enough to
ensure that the corresponding Hamiltonian path in g will never exceed the cable
length. In Algorithm 9, we show how to adapt Dijkstra’s algorithm to compute a
coverage tree in G4 that minimizes, for each reachable vertex v, the cable length be-
tween the anchor point and v. Like the classical Dijkstra algorithm [Cor+09], we
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FIGURE 6.4: Example of paths (in blue) and cable positions (in red).
The blue solid path is smaller than the blue dashed path. However,
when cables are kept taut, the red solid cable length (29.44 units,
where 1 unit = the discretizing size) is longer than the red dashed

cable length (29.28 units).

maintain an arborescence that gives for each vertex v the vertex that is visited just
before v, denoted prev[v], and we maintain the best known distance from the root
r to v, denoted dist[v]. However this distance is not the length of the path used
to reach v (as defined in prev), but the length of the cable configuration when v is
reached from prev[v]. This length is computed by calling NextCon f ig, as defined in
Algorithm 8. This allows us to compute in polynomial time an optimal solution that
satisfies the cable length constraint.

Another advantage to construct a coverage tree such that the Euclidean distance
from the anchor point to each vertex is minimized ensures that the resulted Hamil-
tonian path will never lead to any cable entanglements (see Fig. 6.3 (b)).

Theorem 6.2.1. When there are no forbidden areas in the workspace, the MCT prob-
lem can be optimally resolved within O(|V4| log |V4|α(|VO |)).

Proof. Algorithm 9 is an adaption of the classical Dijkstra’s algorithm, and its prin-
ciples are similar. Consequently, it has a time complexity of O(|V4| log |V4|), as the
number of edges in G4 is in O(|V4|). Additionally, each invocation of NextCon f ig
(defined in Algorithm 8) requires O(α(|VO |)) time, resulting in an overall complex-
ity of O(|V4| log |V4|α(|VO |)). It is important to note that the value of |V4| is limited
by the cable length ℓ in this expression.

6.2.2 MCT Problem with Forbidden Areas

More generally, when the workspace contains forbidden areas, we show that the
presence of these forbidden areas increases the complexity of the problem of decid-
ing whether it is possible to find a coverage tree with at least k vertices. We prove
that this problem becomes NP-complete by a reduction from planar 3-SAT [Lic82].

The decision problem associated with the MCT problem is defined as follows.
Instance: A workspaceW and the associated graph G4, root node r, an integer k
Question: Does there exist a coverage tree T of G4 rooted at r that contains at

least k vertices?
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Theorem 6.2.2. In case of forbidden areas, the decision problem associated with the
MCT problem is NP-complete.

Proof. The problem belongs toNP . Starting from the source and following T, the ca-
ble configuration at each vertex can be incrementally computed from its predecessor
according to Algorithm 8. It can be checked whether a given tree T has a size greater
than k, and subsequently, whether each vertex satisfies the conditions specified in
Definition 2.1.2 (Cable configuration), all within polynomial time.

To prove the NP-hardness, we reduce the Separable Planar 3-SAT problem to
our problem, and the former has been proved to be NP-Complete [Lic82]. An in-
stance of Separable Planar 3-SAT is defined by a triple (X, F, µ) such that:

- X = {x1, ..., xn} is a set of n boolean variables;

- F = C1 ∧ ... ∧ Cm, a conjunction of m clauses, where Cj = lj,1... ∨ lj,k a disjunc-
tion of 2 or 3 literals;

- every variable xi occurs in 2 or 3 clauses and at least once positively and once
negatively;

- µ : X ∪ F → R2 is is a plane embedding that associates 2D coordinates to every
variable and every clause such that (i) it is possible to draw lines between ev-
ery clause and its variables without line crossings, and (ii) when drawing a line
that goes through all clauses, thus separating the space in two parts, every pos-
itive occurrence of a given variable are located in the same part whereas every
negative occurrence of this variable are located in the other part, as illustrated
on the top of Fig. 6.6 (see [Sol+15] for more details).

From a Separable Planar 3-SAT instance (X, F, µ), a maximum coverage tree in-
stance is constructed as follows.

• For each variable xi, the workspaceW contains a "T"-shaped gadget where the
empty zone can be considered as the outside ofW or forbidden zones (see the
gadget for xi in Fig. 6.5(a) and 6.5(b)). In this particular workspace, the robot
sits initially at the anchor point r. We cannot find a coverage tree to visit all the
free cells, as a choice must be made to either discover the vertices on the top
or on the bottom. For example, in Fig. 6.5(a), the vertex u cannot be connected
to w, otherwise, in order to reach u, the cable will be outside of the workspace.
According the direction to expand the tree at the blue cell, we label the gadget
as xi or ¬xi.

• For each clause Cj = lj,1 ∨ lj,2 ∨ lj,3, we construct a gadget (see Fig. 6.5(c)) which
corresponds to the junction of the gadgets of Cj’s literals. The junction vertex
(blue cell) is connected to a large extended area of size K that can be reached
from it. That area is convex and does not contain any forbidden areas. When
the junction vertex can be reached from more than one "arm" of these literal
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FIGURE 6.5: Gadgets. Black cells are obstacles; forbidden areas are
displayed in grey. (a): gadget for xi when xi is set to true; (b): gadget
for xi when xi is set to false; (c) gadget for a clause with three literals;

(d) gadget for a clause with two literals.

gadgets, we connect it to only one of them, otherwise, a cycle occurs in the
coverage tree. In addition, the clause gadget ensures that when the blue cell is
connected by an arm, it cannot continue to expand the other two arms in the
opposite direction.

• For each clause Cj = lj,1 ∨ lj,2, a similar gadget can be constructed as shown in
Fig. 6.5(d).

These gadgets of variable X are arranged in a straight line, with the two "arms"
of each gadget being positioned respectively towards above and below them. The
separable embedding µ of the planar graph associated with (X, F) ensures that the
clause gadgets are properly nested so that the arms between variables and clauses
do not cross each other. This condition is important because if there is any other
crossing vertex except the junction vertex, there must be a cycle in the solution. This
is why we use an instance of Separable Planar 3-SAT to make this reduction, rather
than the classical 3-SAT. We make K greater than the total number of the vertices
in order to reach these extended areas associated to each clause. This condition can
be satisfied if we scale properly the length of each arm and the bridge parts. After
such a workspaceW has been constructed, then we set k = mK. Fig. 6.6 displays an
example of the reduction from the Separable Planar 3-SAT instance to a workspace
for coverage task. The construction can be done in polynomial time in the size of F.
We now prove that F is satisfiable iff G has a coverage tree of size greater than k.
⇒ Let {x̃1, ..., x̃n} be a truth assignment of X satisfying F. For each variable xi,

the robot chooses an arm oriented towards above or below to discover. A true clause
Cj means that at least one of its literal is set to true, this is to say, the robot can follow
at least one arm to reach to the extended area of size K associated to Cj. Therefore,
the resulting coverage tree has a size greater than k.
⇐ On the other hand, if the workspace that we construct in this way has a

solution T with #T >= k, it forces the robot to reach all the extended areas associated
to the clauses, since we assume that K is greater than the total size of free vertices of
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X = {x1, x2, x3, x4, x5}
F = (¬x1 ∨ x2 ∨ ¬x4)

∧ (x1 ∨ ¬x2 ∨ x3)
∧ (x2 ∨ ¬x3 ∨ ¬x4)
∧ (x3 ∨ x4 ∨ ¬x5)
∧ (¬x1 ∨ x5)
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FIGURE 6.6: Proof by a reduction from a Separable Planar 3-SAT in-
stance. Top right: the embedding graph of X where the edges marked
in red is a satisfiable solution for X. Bottom: the workspace for cov-
erage constructed from X and the corresponding optimal solution (in
red). Each blue block represents an extended area of K cells which
can be reached by the robot, as illustrated in the dashed box. Empty

areas are considered as forbidden zones.
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the variable gadgets and that of junction area in each clause. To make a clause true,
the robot can choose to follow either the arm above or below. If it follows an arm
corresponding to a positive (resp., negative) form of the variable x̃i belongs to this
clause, let x̃i = true (resp., false). If the robot does not follow any arm, it means that
the value of xi is irrelevant, and we choose x̃i = true by convention. The resulting
assignment satisfies F.

6.3 Configuration Enumeration Based Approach (ModelM0)

We begin by introducing an exact approach to address the MCT problem with for-
bidden areas. In the proof of Theorem 6.2.2, it becomes evident that the complexity
of the maximum coverage tree problem arises due to certain vertices being reach-
able only with specific cable configurations, in the presence of forbidden areas. The
challenge lies in the fact that selecting a configuration to reach one cell may be in-
compatible with reaching another cell. To compute an optimal coverage tree, it is
necessary to explore all possible cable configurations to reach each cell. The inter-
connections between these configurations can be effectively represented as a graph,
similar to the homotopy-augmented graph.

Let us first introduce the notion of consistent configuration, that corresponds
to a valid cable configuration from the anchor point to a vertex of G4: a sequence
s = q1q2...qk is a consistent configuration if (i) q1 = r, (ii) qk ∈ V4, (iii) ∀i ∈ [2, k− 1],
qi ∈ VO, (iv) s is the shortest path in its homotopy class, (v) s is non self-crossing,
and (vi) the length of s does not exceed ℓ.

Definition 6.3.1 (The configuration graph). The configuration graph associated with
G4 is the graph Gc f g = (Vc f g, Ec f g) such that Vc f g is the set of all consistent configura-
tions, Ec f g = {(q1...qk, q′1...q′l) ∈ Vc f g×Vc f g | (qk, q′l) ∈ E4 and q′1...q′l is homotopic to
q1...qkq′l}.

Each vertex in the configuration graph corresponds to a consistent configuration
to reach some cell, and each edge connects two adjacent cells through a safe path.
As illustrated in Fig. 6.7, for instance, there could be three possible configurations to
reach cell 13: r13, rABCD13 and rDCBA13, while two configurations exist for cell
14, namely r14 and rDCB14. When the cable configuration at cell 13 is rABCD13, the
robot cannot advance to cell 14 without causing a self-crossing of the cable. The size
of Vc f g is at least proportional to |V4| because the workspace comprises |V4| cells. As
discussed in Section 2.2, the number of homotopy classes to reach each cell depends
on various factors, including cable length, the number of obstacles, and their visiting
order. Consequently, the computational complexity is not solely a function of |V4|
and ℓ, but rather we directly utilize |Vc f g| to describe it.
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FIGURE 6.7: Example of Gc f g. Top left: a workspace that contains
an obstacle ABCD. The anchor point is at r. The robot must take the
path ⟨r, 1, 2, 9, 8, 7, 6, 5⟩ in order to reach the cell 5. Similarly, the cell 11
can be only reached by the path ⟨r, 3, 4, 7, 8, 9, 10, 11⟩. Top middle: the
visibility graph Gvis. Top right: the associated prefix configuration
graph. Bottom: The corresponding configuration graph. The tree
composed of these red edges is an optimal solution for this example.

To efficiently enumerate all the consistent configurations, we introduce a tree-
structured graph representing the set of valid subconfigurations that allows to con-
struct Gc f g.

Definition 6.3.2 (The prefix configuration graph). Let Gvis = (Vvis, Evis) be the vis-
ibility graph associated with the workspace and the anchot point. The prefix con-
figuration graph is the directed graph Gp = (Vp, Ep) such that Vp is the set of all
cable configuration prefixes, i.e., Vp = {q1...qk | ∃qk+1 ∈ V4 and q1...qk+1 ∈ Vc f g},
Ep = {(q1...qk, q1...qkqk+1) ∈ Vp × Vp | (qk, qk+1) ∈ Evis}.

An example of Gp is illustrated in Fig. 6.7 (top right). The prefix configuration
graph can be constructed by performing a DFS on Gvis. Starting from r, each node
of Gp represents a consistent cable configuration and can be incrementally discov-
ered by adding an edge of Evis to its parent node. To add an edge (qk, qk+1) ∈ Evis

to the configuration q1. . . qk associated with a parent node, it is necessary to check
that (qk, qk+1) does not cross q1. . . qk and that q1. . . qk+1 is a taut path, which requires
linear time in terms of |VO | if the visibility graph is ready. The exploration process
terminates when the length of the consistent configuration exceeds ℓ. Both Gc f g and
Gp serve as representations to encode the homotopy complexity of the workspace.
Gc f g is associated with each cell in G4, while Gp corresponds to each obstacle vertex.
As a result, the cardinality of Gp and Gc f g, denoted as |Gp| and |Gc f g| respectively,
differs by a magnitude of |V4| times. To construct Gc f g from Gp, it is necessary to
determine all the cells in G4 that are visible from each vertex of Gp.

We define Vc = {q1...qk ∈ Vc f g | qk = c} as the set of configurations that
can reach a cell c. As a result, Vc f g can be represented as a collection of clusters:
Vc f g =

⋃
c∈V4

Vc. Let GC = (VC, EC) denote the quotient graph that characterizes
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the overall connections between different clusters. Here, VC is the set {V1, . . . , V|V4|},
and (Vi, Vj) ∈ EC if there exists vi ∈ Vi and vj ∈ Vj such that (vi, vj) ∈ Ec f g.

The interest of constructing Gc f g and GC is that our initial problem of finding a
maximal coverage tree in G4 is transformed into identifying a maximal tree Tc f g =

(VTc f g , ETc f g) in Gc f g, such that: (i) Tc f g is rooted at r; (ii) for each cell c ∈ V4, |VTc f g ∩
Vc| ≤ 1. Constraint (ii) implies that for each cell, we can select at most one con-
figuration to reach it. An optimal solution refers to any maximum tree that meets
conditions (i) and (ii).

We propose using integer linear programming to solve this problem. We adopt
the local-global formulation proposed in the Section 4.4 of [Pop20]. The 0-1 variable
xe = xij equals 1 iff the edge e = (i, j) ∈ Ec f g is selected, i.e. appears in the solution
tree Tc f g, and the 0-1 variable zi for the vertex i ∈ Vc f g equals 1 when the solution
tree Tc f g contains vertex i. The 0-1 vector y describes a spanning tree on GC: yij = 1
means that (Vi, Vj) ∈ EC. For every triple of nodes (k, i, j), λkij equals to 1 if j is the
parent of i when the tree is rooted at k, otherwise 0. The integer linear program is:

max ∑
i∈Vc f g

ze

s.t. ∑
i∈Vk

zi ≤ 1 ∀k ∈ K = {1, ..., |VC|} (6.1a)

zroot = 1 (6.1b)

∑
j∈Vr

xij ≤ zi ∀r ∈ K, ∀i ∈ Vc f g \Vr (6.1c)

∑
e∈Ec f g

xe = ∑
i∈Vc f g

zi − 1 (6.1d)

∑
i∈Vl ,j∈Vr

xij ≤ ylr ∀l, r ∈ K, l ̸= r (6.1e)

∑
i,j

yij = |VC| − 1 (6.1f)

yij = λkij + λkji ∀1 ≤ k, i, j ≤ |VC|, i ̸= j (6.1g)

∑
j

λkij = 1 ∀1 ≤ k, i, j ≤ |VC|, i ̸= k (6.1h)

ykkj = 0 ∀1 ≤ k, j ≤ |VC| (6.1i)

yij, λkij ≥ 0 ∀1 ≤ k, i, j ≤ |VC| (6.1j)

xe, zi ∈ {0, 1} ∀i ∈ Vc f g, ∀e ∈ Ec f g (6.1k)

Compared to the GMSTP problem described in Example 3.2.1 (see Chapter 3),
this problem does not require a vertex to be selected in each cluster, as indicated in
constraint (6.1a). In addition, our problem is to maximize the objective function, as
opposed to minimizing it in the GMSTP. The cluster constraint is addressed through
constraints (6.1a)-(6.1d). Constraints (6.1f)-(6.1k) ensure that y constitutes a span-
ning tree. Constraint (6.1e) requires the solution being part of y, thereby containing
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no cycles. In ensuring that y is a tree structure, the introduction of the auxiliary
variables λ avoids the elimination of all sub-tours from the solution, instead of ex-
plicitly enumerating them. Besides, it is worth noting that constraint (6.1f) becomes
unnecessary in our case, given our objective of maximizing the objective function,
favoring the inclusion of more edges in y while retaining its tree structure.

6.4 Approximation Algorithms

The exact methods described above can be difficult to solve for some hard instances
(see Section 6.5). We introduce some approximation methods in this section.

6.4.1 ModelM1

The graph Gc f g in which we search for a maximum tree is not directed. A first re-
laxation may be obtained by directing its edges, using the length of cable configu-
rations to define edge orientations. More precisely, given a non directed configura-
tion graph Gc f g, we define the directed graph Ĝc f g = (V̂c f g, Êc f g) such that Êc f g =

{(q1. . . qk, q′1. . . q′l) ∈ Ec f g | the length of q1. . . qk is smaller than the length of q′1. . . q′l}.
Note that Ĝc f g is a Directed Acyclic Graph (DAG) as it is not possible to have a cycle
of decreasing configuration lengths.

It can be proven that a lower bound may be computed by finding the maximum
arborescence in Ĝc f g due to the fact that Ĝc f g is a subgraph of Gc f g. An example
illustrating the suboptimality of this solution is shown in Fig. 6.8. In the optimal
solution, cell q can only be reached via the configuration rABEFGDq which passes
through u, and consequently v cannot be connected to u and must be connected to
w. In such way, it can be observed that rABCDv is smaller than rABCw, but the
edge (rABCw, rABCDv) /∈ Êc f g. This implies that working with Ĝc f g may yield a
suboptimal solution. However, investigating this lower bound is still valuable, as it
can be of good quality for certain instances, and can be solved more efficiently than
the exact solution, as we will explore further in the subsequent sections.

The ILP model can be also used to solve the relaxed problem. In comparison to
the model described in Section 6.3, we can simplify the tree constraint and eliminate
the variables y since Ĝc f g is a DAG.
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FIGURE 6.8: An example showing that the search of a maximum tree
in Ĝc f g is a suboptimal solution. Left: the cyan path is an optimal
solution found in Gc f g that can cover all the cells in the workspace.
Right: a partition (incomplete) of the workspace associated with Gq.
The small regions between I2, I5 and the obstacle with apex D can be

ignored compared to the discretization precision.

max ∑
i∈V̂c f g

zi

s.t. ∑
i∈Vk

zi ≤ 1 ∀k ∈ K = {1, ..., |V4|}

(6.2a)

zroot = 1 (6.2b)

% Each node (except the root) has one parent node

∑
j∈Vr

xij = zi ∀r ∈ K, ∀i ∈ V̂c f g \Vr

(6.2c)

∑
e∈Êc f g

xe = ∑
i∈V̂c f g

zi − 1 (6.2d)

%The two nodes of a selected edge are selected

xij ≤ zizj ∀e = (i, j) ∈ Êc f g

(6.2e)

xe, zi ∈ {0, 1} ∀i ∈ V̂c f g, ∀e ∈ Êc f g (6.2f)

In the case of a DAG, the tree constraint can be simply ensured by constraints
(6.2c)-(6.2e). Constraint (6.2e) can be formulated with linear constraints by introduc-
ing the auxiliary variables we associated to each edge e. For each edge e = (i, j) ∈
Êc f g, it necessitates satisfying:
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xe ≤ we

we ≤ zi

we ≤ zj

zi + zj − 1 ≤ we

6.4.2 A Fixed-Parameter Tractable (FPT) Algorithm (ModelM2)

As shown above, the size of Vc f g is proportional to |V4|, and the complexity of com-
puting an optimal solution is at least exponential to |V4|. Consider the case where a
large workspace contains only few obstacles. Since proximately distributed cells
generally have the same type of accessibility (or homotopy class), we need only
make choice at some critical cells and their neighbors can be reached with the same
homotopy class. In this section we will introduce a more compact representation
of Gc f g by constructing its quotient graph with respect to the equivalence relation
defined below.

Definition 6.4.1 (The equivalence relation on Vc f g). For each cell c ∈ V4, let Π(c) =
{π | π · c ∈ Vc f g} be the set of prefix cable configuration to reach c. Two configura-
tions π1 · c1, π2 · c2 ∈ Vc f g are equivalent if π1 = π2 and Π(c1) = Π(c2). We denote
π1 · c1 ∼ π2 · c2.

Definition 6.4.2 (Quotient graph of Gc f g). Let Vp be the set of consistent configura-
tion prefixes, and Part(V4) be the set containing all subsets of V4. The quotient graph
of Gc f g is the graph Gq = (Vq, Eq) such that

- Vq = {(π, I) ∈ Vp × Part(V4) | ∀c1, c2 ∈ I, π · c1 ∼ π · c2}

- Eq = {((π1, I1), (π2, I2)) ∈ Vq × Vq | ∃c1 ∈ I1, c2 ∈ I2 such that (π1 · c1, π2 ·
c2) ∈ Ec f g}

A geometrical illustration3 of Gq is showed in Fig. 6.9. Let π be a prefix config-
uration, we denote P(π) = {v ∈ V4 | π · v ∈ Vc f g}. For example, P(rD) = I6.
When the workspace and obstacles are all polygonal, P(π) should also be polygo-
nal. These polygons intersect and are split into a set of disjoint and smaller poly-
gons, like P(r) = I0 ∪ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 and P(rDC) = I7 ∪ I4 ∪ I8. Each vertex
(π, I) ∈ Gq corresponds to the subregion of all cells in I when they are reached from
π. The connectivity between two adjacent subregions (π1, Ii) and (π2, Ij) forms an
edge in Eq.

Let I = {Ii | ∃πi ∈ Vp such that (πi, Ii) ∈ Vq} be the partitioning of G4 associated
with Vq. We define VI = {(π, I) ∈ Vq} as a cluster that contains all the vertices
originated at I. Then Vq can be written as the disjoint union of a set of clusters⋃

I∈I VI .

3For visualization matters, this partition is incomplete and some areas are not taken into account,
as the same case for Fig. 6.8.
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FIGURE 6.9: Example of a partition (incomplete) of the workspace.
Left: the workspace is divided into a set of disjoint subregions, num-
bered from 0 to 9. We note the kth subregion as Ik, and I0 is where the

root is located. Right: the corresponding Gq.

Observation 6.4.1. From the definition of Gq, we can learn that for any vertex (π, I) ∈
Vq, if there exists c ∈ I that appears in the objective coverage tree with π · c being
the associated cable configuration, then the other cells in I can be also covered in the
same way since I is connected.

This property implies that instead of searching for a maximum tree in Gc f g, we
could first find a maximum tree Tq in Gq and then connect the cells contained in
each vertex of Tq in polynomial time. With this in mind, we can explore how to
build Tq from Gq and whether Tq allows to construct an optimal solution for our
original problem. To ascertain this, it is crucial to investigate the arrangement of
these partitions in I.

Consider five adjacent regions Iu1 , Iu2 , Iv1 , Iv2 , Iw in I as illustrated in Fig. 6.10.
Any two regions, for instance, Iu1 and Iw, can be connected if there exist π1 and
π2 such that ((π1, Iu1), (π2, Iw)) ∈ Eq. Let us assume we have four edges in Eq:
e1 = ((π1, Iu1), (π2, Iw)), e2 = ((π2, Iw), (π3, Iv1)), e3 = ((π4, Iu2), (π2, Iw)), and e4 =

((π2, Iw), (π5, Iv2)). We observe that the presence of e1 and e2 in Tq may not always
be compatible with the presence of e3 and e4. Their relationship can be classified into
two modes, as illustrated in Fig. 6.10.

• The exclusive mode. In this case, to construct an optimal solution, the presence
of e1 and e2 will prohibit e3 and e4. Consider the example in Fig. 6.9. If the
objective tree covers the cells in (r, I5), then it must pass through (r, I4). In this
case, the tree can cover partial cells in (rDC, I4), but cannot reach (rDC, I8), or
vice versa. If it covers (rDC, I8), then it cannot cover (r, I5), without creating
a cycle. In other words, if the coverage tree covers (r, I5), whether it covers
(rDC, I4) or not will not contribute to the size of the tree. To address this,
an exclusive constraint is applied to VI4 , assuming the tree either completely
covers the nodes of (r, I4) or (rDC, I4).

• The sharing mode. In this case, the cells of Iw are partitioned into two parts:
one part is connected to Iu1 and Iv1 , while the other is connected to Iu2 and
Iv2 . As illustrated in Fig. 6.8 (right), in the optimal solution, we observe that
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FIGURE 6.10: Illustration of two types of connectivity between ver-
tices in Gq. (a) The exclusive mode: if Iu1 and Iv1 are connected
through Iw, then Iu2 and Iv2 cannot be connected, and vice versa. (b)
The sharing mode: Iu1 and Iu2 can be respectively connected to Iv1

and Iv2 through Iw simultaneously.

(rABC, I0) → (rABC, I1) → (rABC, I2) → (rABC, I3) → (rABCD, I4) and
(rABEF, I5)→ (rABEF, I2)→ (rABEFG, I1)→ (rABEFGD, I0)→ (rABEFGD, I6).
This implies that I0, I1, and I2 are shared by two different branches in Tq, and
cannot be exclusively covered by a single configuration, as in the exclusive
mode, in order to achieve an optimal solution.

Based on Observation 6.4.1, we can derive a lower bound for our original prob-
lem by reformulating it as a tree search problem in Gq. In this reformulation, we
assign a cost to every (π, I) ∈ Vq as |I|, and the objective is to find a tree Tq =

(VTq , ETq) ⊂ Gq that maximizes ∑(π,I)∈VTq
|I|. However, there are two constraints to

consider: (i) Tq is rooted at (r, Ir) where r ∈ Ir; (ii) for each I ∈ I, #VTq ∩VI ≤ 1. The
constraint (ii) implies that only the exclusive mode is allowed and Tq can completely
cover at most one node in each cluster VI . We adopt this heuristic strategy to avoid
refining each node, as required in the sharing mode.

The number of clusters in Vq refers to computing the number of partitions illus-
trated in Fig. 6.9, thus should be polynomial to the number of obstacle vertices, i.e.,
|VO |β 4. Compare toM0, the complexity of this approach involves an exponential
term dependent on |VO |β, rather than |V4|.

We propose to apply the same ILP model as that of M0 to solve this problem.
The only difference is that in this case, the objective function becomes: max ∑i∈Vq

cizi

where ci is the number of cells in the ith vertex of Vq.

6.4.3 ModelM3 andM3h

We can further relax this problem by converting Gq into a DAG, similar to what has
been done with Gc f g. To achieve this, we can define a precedence order between any
two neighboring vertices in Vq as follows.

4The exact value of β is unknown. These partitions are formed by the edges of the visibility graph,
whose number is bounded by |VO |2. Depending on the shape of each partition, e.g. a triangular
partition is formed by 3 edges, the number of triangular partitions must be less than (|VO |

2

3 ). In fact, the
number of partitions should be well below this number for geometric constraints.



6.4. Approximation Algorithms 91
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FIGURE 6.11: Illustration of Ĝq, corresponding to the example in
Fig. 6.9.

Definition 6.4.3 (Region order ≺r). For any edge ((π1, I1), (π2, I2)) ∈ Eq, we define
≺r as a strict order on Vq where (π1, I1) ≺r (π2, I2) if the minimum length of cables
configurations in (π1, I1) is shorter than that of (π2, I2).

Note that ≺r signifies a strict ordering, indicating that no vertex can precede its
own predecessor. In case where (π1, I1) and (π2, I2) have the same shortest cable
configuration length, a predefined order is used to break the equality. Consequently,
Gq can be reduced to a DAG, denoted as Ĝq, as depicted in Fig. 6.11. A lower bound
can be computed by searching for a maximum arborescence T̂q in Ĝq. We can apply
the same model asM1 introduced in Section 6.4.1 to address this problem, and we
refer to this model asM3.

We can also strengthen this model by considering some heuristics. Let (π1, I1)

and (π2, I2) be two vertices in T̂q, and π1 ̸= π2, then in some cases, it follows that π1

and π2 cannot intersect each other. For example, in Fig. 6.8, the vertices (rABCD, I4)

and (rABEFGD, I0) are not compatible due to the intersection of rABCD and rABEFGD
at point D, which would results in cycles in the coverage tree.

For each vertex v ∈ {r} ∪ VO, we enumerate all the consistent prefix configura-
tions from r to v as Π(v) = {π · v ∈ Vp}. Let ΠT̂q

= {π | (π, I) ∈ T̂q} be the set of
prefix configurations issued with T̂q, then the heuristic that any two prefix configu-
rations π1, π2 ∈ ΠT̂q

cannot intersect can be interpreted as the following constraints
in Gp:

• (i) For each vertex v ∈ {r} ∪ VO, at most one prefix configuration is selected
from Π(v).

• (ii) if a prefix configuration rq1q2..qk ∈ Vp is selected, then all its sub-configurations
rq1q2...ql with l < k are also selected.

• (iii) If two intersecting edges u1v1, u2v2 ∈ Evis intersect at a point other than
their ends (e.g., BH and CE in Fig. 6.9), then it is not possible to simultane-
ously select any two prefix configurations π1 and π2 such that u1v1 or v1u1 is
a segment of π1 and u2v2 or v2u2 is a segment of π2.

Based on (i)(ii), we can simplify (iii) by enumerating all the forbidden node pairs
F = {(π1 · u1v1, π2 · u2v2) | u1v1 intersects u2v2} and adding a constraint to prevent
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rBH rBHG rBHGF rBHGFE

rD

rDC
rDCB rDCBA

rDCE rDCEF rDCEFG rDCEFGH
rDH rDHG rDHGF rDHGFE rDHGFEC

rDHGFB rDHGFBArF
rFG

rFGH

rFGHE

rFGHD rFGHDA rFGHDAB rFGHDABC

rFGHB rFGHBA rFGHBAD rFGHBADC

FIGURE 6.12: An example of the prefix configuration graph Gp asso-
ciated with the workspace in Fig. 6.9.

.

these forbidden pairs to be simultaneously selected as shown in (6.3c). In fact, the
selected nodes together form a subtree of Gp rooted at r, as highlighted in red in
Fig. 6.12.

We introduce the 0-1 variable wi which equals 1 iif πi ∈ Vp is selected. Let
Ri = {(πi, Ik)} ⊂ Vq the set of subregions that are reached with πi. Then we can
formulate the above constraints as follows. In the constraint (6.3d), zj is a 0-1 variable
for the presence of a vertex qj ∈ Vq in the solution T̂q. We channel zj and wi by
the inequality since wi = 1 is a necessary condition for any element from Ri to be
selected.

wi ≥ wj ∀(i, j) ∈ Ep (6.3a)

∑
πj∈Π(u)∩Vp

wj ≤ 1 ∀u ∈ Vvis (6.3b)

wi1 + wi2 ≤ 1 ∀(i1, i2) ∈ F (6.3c)

zj ≤ wi ∀qj ∈ Vq ∩ Ri, ∀i ∈ {1, ..., |Vp|} (6.3d)

wi ∈ {0, 1} ∀i ∈ Vp (6.3e)

We denote the new model based onM3 with these additional constraints from
(6.3a) to (6.3e) asM3h. It is important to note that the solution computed byM3h
is a lower bound of the result ofM3. In the next section, we will show thatM3h is
more efficient for some hard instances.

6.5 Experimental results

So far, we have introduced 5 models to compute exact or approximate solutions.

• M0: search for an arborescence in Gc f g.

• M1: transform Gc f g to a DAG Ĝc f g by defining an order between any two
configurations, then search for an arborescence in Ĝc f g.
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• M2: construct a quotient graph Gq of Gc f g.

• M3: transform Gq to a DAG Ĝq.

• M3h: add some heuristics to restrictM3.

M0 is an exact model and all the other four models can provide lower bounds.
We use optM0 , lbM1 , lbM2 , lbM3 and lbM3h to denote the solutions computed by these
methods.

Theorem 6.5.1. optM0 ≥ lbM1 and optM0 ≥ lbM2 ≥ lbM3 ≥ lbM3h

Proof. This relationship is straightforward from the principle of these models.

6.5.1 Description of Benchmarks

To analyze the factors affecting the complexity of this problem, we generated 6
workspaces by incorporating randomly positioned rectangular obstacles and for-
bidden areas, as depicted in Figure 6.13. The bounding polygon for workspace (a) is
defined as the rectangle [0, 25]× [0, 20], and the other 5 workspaces are bounded by
[0, 70]× [0, 60]. Another variable in our problem is the location of the anchor point,
and by choosing different anchor points in each workspace, we generate a total of 10
scenarios, as described in Table 6.1.

In sections 6.3 and 6.4, we have presented five methods for addressing this prob-
lem, comprising one exact approach and four approximate approaches. For each
method and each scenario, we fix a limit ℓmax on the maximum cable length value,
as defined in Table. 6.1. When increasing the cable length, the problem becomes
harder, and we have chosen limits that make it possible to solve the problem, for
each model.

For each scenario described in Table. 6.1, we have generated a set of instances of
increasing difficulty by increasing the value of the cable length ℓ from 10 to ℓmax, by
steps of 10, resulting in 24 instances for M0, 78 for M2, and 107 for M1, M3 and
M3h. Specifically, for workspace (c), we assigned a shorter cable length due to the
presence of forbidden areas that restrict the reachable region. In this case, a longer
cable length would not improve the coverage ratio in any way.

For each method, the overall solving time is composed of ILP model building
time and ILP solving time, and we will report them separately. Specifically, the
building time includes the time to enumerate all consistent cable configurations, and
to construct graphs, like Ĝc f g forM1 and Ĝq forM3h. The ILP models are solved us-
ing the Gurobi Solver [Gur23], and the computation time is limited to 3600 seconds.
All experiments reported here are implemented in Python and run on a computer
with an Intel Core Intel Xeon E5-2623v3 processor operating at 3.0 GHz with 16 cores
and 32GB of RAM.
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FIGURE 6.13: The 6 simulated workspaces tested in our experimental
analysis. In each workspace, the gray rectangles are the obstacles, the
forbidden areas are filled with slash lines, and the green points are
the anchor points. Workspaces are discretized, and the blue points

depict the vertices in G4.

S W R N f ree
M0 M2 M1,M3,M3h

ℓmax Nmax
Nmax
N f ree

ℓmax Nmax
Nmax
N f ree

ℓmax Nmax
Nmax
N f ree

I0 (a) A0 96 50 96 1.0 50 96 1.0 50 96 1.0
I1 (b) A1 848 20 169 0.199 60 728 0.858 100 848 1.0
I2 (b) A2 848 20 157 0.185 60 786 0.927 100 848 1.0
I3 (c) A3 870 20 194 0.223 50 492 0.566 50 492 0.566
I4 (d) A4 880 10 81 0.092 100 880 1.0 100 880 1.0
I5 (d) A5 880 10 81 0.092 120 880 1.0 140 880 1.0
I6 (e) A6 820 50 247 0.301 140 705 0.86 140 705 0.86
I7 (e) A7 820 30 257 0.313 110 816 0.995 150 820 1.0
I8 ( f ) A8 862 20 141 0.164 50 495 0.574 140 856 0.993
I9 ( f ) A9 862 10 63 0.073 40 593 0.688 100 856 0.993

TABLE 6.1: The scenarios tested in the experimental evaluation. Each
line successively gives: the scenario name S, the workspace W, the
anchor position R (as defined in Fig. 6.13), the number N f ree of cells
(excluding obstacles and forbidden areas) in W, and the maximum
cable length ℓmax of the cable depending on the considered model.
For each length, we give the number Nmax of cells that can be reached

with this length, and the coverage ratio Nmax
N f ree

.
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6.5.2 Computational Performance

We denote ub an upper bound of this problem, which counts all the cells that can
be reached by a certain cable configuration under the given cable length, hence it
can be larger than the optimal solution. Each model computes a lower bound lbx (x
represents the model) and these lower bounds are not necessarily equal. To evaluate
the quality of these bounds, we calculate the bound gap gx = ub−lbx

ub for each method,
where ub represents the upper bound. The results reveal that

• For M3h, 39.3% of the instances have a bound gap of 0, indicating optimal-
ity, and 74.8% of the instances have a bound gap below 0.05. The maximum
observed gap is 0.197.

• ForM1 andM3, similar conclusions are drawn, with 40.2% and 39.3% of the
instances, respectively, having a bound gap of 0, and 73.8% and 72.9% of in-
stances below 0.05.

• ForM0 andM2, 91.7% and 85.9% of the instances, respectively, yield a bound
gap of 0, with all instances falling below 0.05. These results are not surprising
given that these methods solve fewer instances.

In addition, when comparing the values of these lower bounds, the conclusion
in Theorem 6.5.1 is also supported by the experimental results.

In Figure 6.14, we present a comparison of the solving times for the five models
described earlier. Since each model is tested on a different number of instances, and
they compute different bounds, the comparison is conducted by pairing the models
as follows: M0 vs M1, M1 vs M3h, M2 vs M3, and M3 vs M3h. We evaluate
them based on the bound gap gx and the instance hardness, as measured by the
cable length. For each pair, these two models are compared on the same subset of
instances. However, from a pair to another, the subset of instances may be different.

In each row of Fig. 6.14, we set a different threshold value for gx. For instance, the
first row represents the results when gx ≤ 0.2, while the last row is the case where
the optimal solution is obtained. Additionally, we segment the cable length into five
ranges, each represented by different colors and shapes. Generally, a longer cable
length indicates a more challenging instance.

The comparison reveals that M3 performs comparably to M3h, with the latter
outperforming it on the most challenging instances. This illustrates the effective-
ness of the heuristics introduced inM3h, which accelerates the resolution process.
Following M3 are M1 and M2, while M0 can solve the fewest instances and at
a higher cost. These results align with the complexity analysis conducted in Sec-
tion 6.4.2, where the FPT method proves to be more efficient when |V4| ≫ |VO |β,
which often corresponds to instances characterized by large scale but a small num-
ber of obstacles. Additionally, the effectiveness of the greedy approach applied to a
DAG as opposed to an undirected graph is evident when comparingM0&M1 and
M2&M3.
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FIGURE 6.14: Comparison of the 5 ILP models’ solving times with
regard to solution quality and instance hardness. For each scatter
plot, we display a point (x, y) for each instance such that x is the time
ofM0 (resp. M1,M2, andM3) and y is the time ofM1 (resp. M3h,
M3, andM3h) in the first (resp. second, third, and fourth) column.
We consider the time needed to find a gap smaller than or equal to
a threshold value gx such that gx = 0.2 (resp. 0.1, 0.01, and 0) on
the first (resp. second, third and fourth) row. Colours and shapes are
different depending on the cable length: blue + when 10 ≤ l ≤ 30,
orange⃝ when 40 ≤ l ≤ 60, green△ when 70 ≤ l ≤ 90, red □ when

100 ≤ l ≤ 120 and black ♢ when 130 ≤ l ≤ 150.
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(a) (b)

FIGURE 6.15: Examples of workspace partitions resulting from the
FPT methods (M3 andM3h). (a): the cable length is set to 20. (b): the

cable length is set to 50.

6.5.3 Scalability Analysis

In Fig. 6.16, we present the evolution of the solving times (the second column) ofM1

andM3h with respect to the cable length for each scenario. To better understand the
factors impacting solving time, we display the graph size (the number of vertices,
as shown in the first column of Fig. 6.16) in each method, in more detail, |V̂c f g| in
M1 and |V̂q| inM3h. The difficulty of an instance is influenced by factors such as
the workspace scale, anchor point position, and the number of obstacles. Generally,
larger workspaces require more time to solve, especially when the cable length limit
is sufficiently large. We observe that the graph size of both V̂c f g and V̂q increases
exponentially with cable length and number of obstacles. This effect is evident when
comparing instances I2 and I3.

It is observed that the performance of M3h is degraded as the cable length in-
creases. Consider the example of instance I9, when the cable length has reached 140,
the difference between the graph size of Ĝc f g and Ĝq is narrowed, and so is the solv-
ing time. In fact, as the number of homotopy classes expands with the cable length,
the weight of each vertex of Ĝq, which is equivalent to the size of the corresponding
partition of Ĝc f g decreases. In other words, the partitions of Ĝc f g become finer and
Ĝq is closer to Ĝc f g. An example is illustrated in Fig. 6.15. When the cable length is set
to 20, the accessible area can be divided into 8 connected components (where points
of the same color form an component, and delimited by a blue circle), the largest of
which has a size of 43. When the cable length is increased to 50, the workspace can
be reached anywhere, resulting in 42 components, and the maximum size of these
components is 9. This demonstrates how the partitions become more refined as the
cable length increases.

Even though it is the presence of forbidden zones that renders the problemNP-
complete, the problem’s complexity depends on the number of obstacles rather than
the number of forbidden zones. With more obstacles, a longer cable length allows to
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explore more homotopy classes, and thus the graph size increases and so does the
solving time. Another factor that could have an impact on the hardness of problem
is the anchor position, as we can compare the result of I6 with I7, and I8 with I9. If
the obstacles are intensely distributed and the anchor point is just near the center of
these obstacles, then this creates many more homotopy classes.

In addition to the ILP solving times, in the third column of Fig. 6.16, we also
display the time it takes to build these ILP models. Generally, this model building
time is relatively smaller compared to the ILP solving time. It increases with the
cable length ℓ when ℓ is small, and then it eventually reaches a saturation phase as
a longer cable cannot generate more consistent cable configurations due to the non-
crossing constraint. However, in the presence of more obstacles in the workspace,
this model building time increases exponentially, as can be observed in the results
for instances I8 and I9 (see the last row in Fig. 6.16. When ℓ is small, it takes less time
to construct Ĝq than Ĝc f g because |V̂c f g| > |V̂q|. As ℓ becomes larger, |V̂q| gets closer
to |V̂c f g|, and connecting two vertices in Ĝq is more computationally expensive than
connecting two simple vertices in Ĝc f g. This is because we have to find the boundary
cells and check their connectivity in Ĝq. It explains why the time for I8M3h exceeds
that for I8M1 when ℓ increases, and the same reason applies to instance I9.

In this study, we only provide a qualitative analysis of these results, as we believe
that the hardness of an instance is the result of several topological factors combined,
and that it is therefore difficult to discuss each factor separately. Our aim is to show
in which cases a TCPP instance can be hard, and how to calculate a good approxi-
mate solution for it.

6.6 Discussion

In this work, we primarily focus on the rectangular obstacles, for the sake of simpli-
fying the computation of cable configurations. However, our methodology can be
also extended to obstacles of arbitrary shape. There are several cases that should be
taken into account.

• Non-Rectangular Obstacles: In cases where obstacles have non-rectangular
shapes, as depicted in Fig. 6.17(a), cells which are (partially) occupied are ig-
nored, and those near the obstacles (shown in red) cannot be included in G4

directly, but can still be connected to G4, and can be covered with an additional
cost. This approach, while not optimal, allows coverage of these challenging
regions, as discussed in Section 2.2.4.

• Non-Convex Obstacles: Fig. 6.17(b) illustrates a scenario with a non-convex
obstacle. It is always possible to explore the workspace strategically in order
to construct a G4 as large as possible. The left cells (shown in red) can either be
ignored or covered with an additional cost.
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FIGURE 6.16: Evolution of graph sizes and solving times (y-axis with
a log scale) with respect to the cable length (x-axis). In each figure,
IxMy means the instance Ix solved by modelMy. First column: the
number of vertices in Gc f g (modelM1) and Gq (modelM3h). Second
column: resolution times of the ILP models. Third column: building

times of ILP models.
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FIGURE 6.17: Discretization issues related to the shape of obstacles
and forbidden zones. In each scenario, the vertices of G4 are repre-

sented by bold black dots.

• Discretization Issues: In addition to the shape of obstacles, there is another
issue related to the discretization, as depicted in Fig. 6.17(c). The center of the
green cells group, corresponding to a vertex of G4, can be reached from the
anchor point. However, if the robot moves along the coverage path, it may
happen that the cable length exceeds its limit or that the cable goes out of the
workspace. This typically occurs with cells located at the boundary of forbid-
den zones or the outer boundary of the workspace. To simplify our planning,
we overlook these situations and assume that these cells are reachable in our
planning process.

6.7 Conclusion

In this work, we revised the CPP problem for tethered robots, considering the spe-
cific constraints imposed by the cable, such as its limited length and the requirement
to prevent entanglement. We investigated the feasibility of applying the widely used
STC method, which has proven successful in solving the classical CPP problem. Our
findings demonstrate that the STC method can be easily adapted to meet these two
constraints.

When searching for a spanning tree within the STC method, the BFS algorithm
does not consistently guarantee compliance with the cable length limit. To address
this, we propose to apply the Dijkstra’s algorithm instead, which can effectively re-
solve the problem within polynomial time. Based on this result, we introduce a new
constraint that considers forbidden areas within the workspace where the cable is
prohibited from passing through. The presence of forbidden areas significantly al-
ters the complexity of the problem since the workspace is no longer convex. Notably,
we demonstrate that TCPP problem incorporating forbidden areas isNP-complete.

The challenge posed by these forbidden areas is that certain cells can be only
reached via specific homotopy classes. To overcome this challenge, we employ the
concept of the homotopy augmented graph, which represents all possible cable con-
figurations within a graph structure Gc f g. We select the most favorable homotopy
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classes to form the solution. Based on this approach, we explore the different heuris-
tics to reduce the search space, such as transforming Gc f g into a directed graph. An
original contribution in this work is that we propose a heuristic by defining a quo-
tient graph of Gc f g that groups the neighboring cells which can be reached by the
same set of homotopy classes as a new vertex. A theoretical analysis shows this new
heuristic can reduce the size of search space which depends on the number of the
obstacle vertices, rather the number of cells in the workspace. Thus this method is
referred as a FPT algorithm where the parameter is the number of obstacle vertices.
Based on the different heuristics, we present five ILP models to address the prob-
lem, comprising one exact approach and four approximate approaches. Our results
indicate that the approximate approaches are generally more efficient than the ex-
act approach, and the gap between the obtained lower bound and upper bound is
limited to 20%.

The hardness of a TCPP instance in case of forbidden areas is impacted by the
workspace scale, the cable length and the number of obstacles (|O|). Notably, for the
factor |O|, the more obstacles there are in the workspace, the more homotopy classes
there are to explore, so the larger the search space. Our tests on simulated instances
show that when |O| is not very large, the M3h model, based on the FPT method,
with an additional heuristic on the choice of cable configuration, is the most efficient.
When |O| gets larger, as |VO | increases with |O|, its performance degenerates and
approaches that of a non-FPT method. In future research, we intend to investigate
alternative parameterized algorithms to address this challenge. Furthermore, while
the surface of forbidden areas does not significantly affect the problem’s hardness,
it does impose limitations on the maximum coverage areas. In Chapter 7, we aim to
explore the potential utilization of multiple tethered robots for the coverage task.
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In Chapter 6, we have presented the Coverage Path Planning (CPP) problem
for a single tethered robot. This chapter aims to extend the scope to a system of
Multiple Tethered robots and propose solutions for the MTCPP problem, as the pri-
mary objective of this project. Extensive literature exists on the multi-robot coverage
path planning problem (MCPP). Typically, the general approach involves solving
the problem in two steps [MO07]: firstly, dividing the workspace into partitions and
allocating them optimally to the robots considering relevant constraints such as ca-
pacity and initial location; secondly, allowing each robot to operate independently
within its assigned area. The advantage of this method is the avoidance of collision
risks and no need for communications among robots, which is considered as a key
challenge in the application of multiple robots systems. We aim to adapt this strat-
egy for coverage tasks with tethered robots, specifically employing the STC method
and leveraging the findings from Chapter 6 for the second step. This chapter focuses
primarily on workspace partitioning and allocation methods for tethered robots.

To the best of our knowledge, this work is the first to consider the multiple teth-
ered robot coverage problem. Compared with robots without cables, the constraints
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associated with cables pose new challenges for the planning. Even if each robot
operates independently within its assigned area, cable entanglement is possible, es-
pecially in nonconvex subregions. Additionally, the anchor point of each robot is
fixed and should belong to its designated subregion, which is not always the case in
some optimal partitioning approaches [Pav+11; Pal+19].

In this chapter, we compare existing polygon partitioning methods and conduct a
qualitative comparison among them, primarily in terms of solution quality and com-
putational efficiency. Our strategy involves applying these methods in our context
to meet the geometric constraints for tethered robots. In Section 7.1, we formally de-
fine the new partitioning problem for tethered robots, introducing shape constraints
for each subregion. Section 7.2 provides an overview of existing polygon partition-
ing approaches for robots without cables, demonstrating that the additively weighted
Voronoi diagram generally exhibits superior performance, though it is not yet widely
adopted in the robotics community. These partitions also satisfy shape constraints,
effectively solving the problem for tethered robots. Section 7.3 includes simulated
instances for qualitative comparison. This work is still ongoing and further quanti-
tative studies are expected in future work.

7.1 Problem Statement

We consider a workspace W , defined by a finite region B consisting of a set of ob-
stacles O = ∪jOj, whereW = B \ O. Let X = {x1, ..., xn} be a set of anchor points
inW . The objective is to find a subdivision ofW into a set of equal-area subregions
{P1, ..., Pn}, whereW =

⋃
1≤i≤n Pi, Pi ∩ Pj = ∅ for any two parts Pi and Pj, and such

that xi ∈ Pi for each point xi ∈ X. This problem is also referred to as locus-based
equal-area division problem[AP10].

Most workspace partitioning approaches are designed for robots without cables.
In that case, the collision avoidance is already ensured, and thus the geometric prop-
erties of the partitioning are not an issue. While for tethered robots, an indepen-
dently assigned area is not sufficient to avoid the cable entanglements. The shape of
each subregion can also be crucial, specifically, a convex partition (where each sub-
region Pi is convex) can ensure that the cables never cross, as the result of Voronoi
diagram shown in Fig. 7.1(a)(we will discuss it later in Section 7.2.3). However, the
convexity is a strong property which can be hard to achieve and is not necessary
in some cases, as shown in Fig. 7.1(b): a star-shaped nonconvex polygon can also
ensure that the cable never gets out of its area. Furthermore, other constraints as-
sociated with the characteristics of the workspace, like the obstacles, can also affect
the properties of a subregion (see in Fig. 7.1(c)). We use the notions of visibility and
reachability to generalize these properties.

Definition 7.1.1 (visibility). Any two points u, v ∈ W are said to be visible if there is
a line segment that joins u and v and is entirely contained inW . For a point x ∈ W ,
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the visible polygon V(x) is a collection of all the points inW that can be visible from
x. We also say that V(x) is relatively star-convex to x.

In a more general case, with the presence of obstacles in the workspace, the no-
tion of reachability is defined, and it can be used as a metric to evaluate the quality of
partition. The reachability is also called relatively star-convexity [CCD13].

Definition 7.1.2 (Reachability). A point q ∈ W is said to be reachable from p if there
exists a taut path from p to q that is contained in W . The set of all points q ∈ P
reachable from p is the reachability set R(p) with respect to p.

(a) (b) (c)

FIGURE 7.1: Different cases of reachability. Each figure represents an
example of partitioning with the different subregions distinguished
by color. (a): the Voronoi diagram1. (b): the central subregion is of
star-convex shape with respect to r. (c): the subregion on the left
is nonconvex. t can be reached from r by the path π1 which bends

around the obstacle and does not pass through the blue area.

In the context of addressing the partitioning problem for tethered robots, our
objective is to find an equitable subdivision such that each subregion is relatively
star-convex to its anchor point.

7.2 Methodologies

Existing works on the area partitioning problem commonly incorporate three con-
straints:

• Locus-based: each subregion contains one predefined point.

• Equal-area: each subregion has an equal surface area.

• Convexity: each subregion is convex.

Finding an optimal solution that simultaneously satisfies all three constraints is
not trivial. This section provides an overview of current research on the locus-based
equal-area division problem and explores the feasibility of satisfying the convexity

1This picture is cited from https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram
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constraint. Additionally, in the presence of the locus-based constraint, we relax the
convexity requirement to be relatively star-convex in relation to a point.

Existing works on the locus-based equal-area division problem fall into two pri-
mary categories: geometry-based division and optimization-based division. The
main methods investigated are ham-sandwich-based polygon division, DARP, and Voronoi-
based partition. We assume that the bounding region of the workspace, i.e., B, is
convex, and the nonconvex case will be discussed in Section 7.4.

We provide a concise explanation of each method and present a general compar-
ison between them.

7.2.1 Ham-Sandwich Based Polygon Division

First, we introduce a geometric method. In this method, we assume that B constains
no obstacles andW is a convex polygon. Literally, if we consider a sandwich consist-
ing of one slice of ham and two slices of bread, arbitrarily placed, there always exists
an angle under which the three slices can be cut into two equal halves, all at once.
Mathematically, the generalized ham sandwich theorem deals with the existence of
a (n− 1)-hyperplane that simultaneously cuts into two n-subsets in Rn with finite
Lebesgue measure [ST42]. This concept is widely applied to polygon division prob-
lems [AP10; CAY10]. Since the ham-sandwich theorem is intended for a 2-partition
scenario, extending it to the case of n-partition is straightforward when n is a power
of 2, by recursively applying this theorem. For a general integer value of n, the con-
clusion is completed by considering the case of 3-partition, and the existence of a
3-cutting is proven in [BKS00].

Theorem 7.2.1 (Equitable 3-cutting [BKS00]). Let n1,n2, and n3 be three positive in-
tegers with n1 + n2 + n3 = n. Let g and h be two positive integers. For any n ∗ g red
points and n ∗ h blue points in the plane in general position, there exists a partition
of the plane into 3 convex subregions such that the i-th subregion contains ni ∗ g red
points and ni ∗ h blue points.

This implies that if n is odd, there exists an equitable 3-partition (1, ⌊ n
2 ⌋, ⌊ n

2 ⌋).
Then the following conclusions are forthright for the existence of an n-partition.

Theorem 7.2.2 (Equitable n-subdivision [BKS00]). Given ng red points and nh blue
points in the plane in general position, there exists a subdivision of the plane into n
convex polygonal regions each of which contains g red and h blue points, and it can
be computed in O(N4/3 log3 N log n) time where N = n(g + h).

Theorem 7.2.3 (Equitable n-subdivision, continuous version [BKS00]). Let µ1 and µ2

be measurable functions R2 → [0, ∞) with
∫∫

R2 µidA = 1. For any integer n > 0,
there exists a subdivision of the plane into n convex regions P1, ..., Pn such that

∫∫
Pj

µidA =
1
n

for i = 1, 2 and j ∈ [1, n]
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In our problem, we focus on the case on a 2-dimension plane, where W is a
convex polygon with m vertices, and X is set of n anchor points in general position.
We define µ1 is an atomic measure and µ2 a density function. An equitable convex
partition of W and X can be found in O(nN log N) time where N = m + n, by
recursively searching the 2-partition and 3-partition cuts [CAY10].

7.2.2 DARP

In [KCK17], a discrete algorithm, named DARP, is proposed to optimally divide a
surface into n robot-exclusive regions. The surface has no specific requirements on
its shape and might contain obstacles. In this algorithm, the surface is discretized
into a finite set of equal grid cells, and each grid cell is assigned to the robots ac-
cording to metrics like the distance function and the robots’ reachability level. The
principle of DARP is to optimize the grid cell assignment problem such that the
target subregions have quasi-equal size.

Some notations in DARP are defined as follows. Let L be the grid map to be
divided (for sake of simplicity, we assume B is a rectangle in this case), which is as-
sumed to be a matrix of size rows× cols, where Lx,y = 0 if the cell (x, y) is occupied by
an obstacle, otherwise Lx,y = 1 for the free cells. For each robot ri, an evaluation ma-
trix Ei of the same size as L is maintained, which characterizes the reachability from
the initial position of ri to the other cells and it is initialized by their distance. An
assignment matrix A is defined as Ax,y = arg min

i∈{1,...,n}
Ei(x, y), ∀(x, y) ∈ L, that assigns a

grid cell to the robot that reaches it with the minimum cost. The area assigned to the
ith robot is Li = {(x, y) ∈ L : A(x, y) = i} and its size is noted as ki = |Li|. There are
two constraints to be considered in this problem.

Equitable division
In order to compute an equitable division, they evaluate the fairness by

J =
1
2

n

∑
i=1

(ki − k f )
2 (7.1)

where k f := |L|
n denotes the fair assignment. The core idea of this algorithm is that

we introduce a vector scalar m of length n to "correct" each Ei as Ei = miEi. mi can
be seen as a correction factor in the objective function. A cyclic coordinate descent
method is applied to optimize J. Each robot’s contribution Ji =

1
2 (ki − k f )

2 is proven
to be a convex function to mi. At each iteration, the update rules proceeds as

mi ← mi − η
∂Ji

∂mi

← mi − η(ki − k f )
∂ki

∂mi

(7.2)
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The values ∂ki
∂mi

are negative and nearly identical, hence the update policy can be
approximated as follows:

mi ← mi + c(ki − k f ) (7.3)

with c a positive tunable parameter. In [KCK17], the author demonstrate that this
process ultimately converge to an optimal value J(m∗) and where all ki are nearly
equal.

Spatial connected areas
The other constraint to be satisfied is that each area Li must be connected. For those
robots who occupy more than one distinct connected areas, a corrective multiplier is
defined as

Ci|x,y = min
r∈Ri

(||(x, y)− r||)−min
q∈Qi

(||(x, y)− q||) (7.4)

where Ri denotes the connected area assigned to ri and where ri’s initial position
lies, and Qi denotes the union of the other grid cells assigned to ri. It works as a
penalization term to reward the cells around the Ri and penalize the cells around
the other connected components. In this way, if all grid cells assigned to ri belong to
the same closed shape region, then Ci will be the all-one-matrix. Finally, the update
of Ei is computed as

Ei ← Ci ⊙ (miEi) (7.5)

where ⊙ denotes the element-wise product.

7.2.3 Voronoi-Based Partition

The partitioning problem can be also approached by means of computing the Voronoi
diagram. Given a planar region W and a set of points X = {x1, ..., xn} ⊂ W , the
Voronoi diagram is a partition ofW defined as

Pi = {x ∈ W : ||x− xi|| ≤ ||x− xj||, ∀j} (7.6)

An additively weighted Voronoi diagram is a generalization of (7.6) by introduc-
ing a vector of positive weights w, and the properties of each partition Pi might be
changed due to w, as a larger weight wi indicates a larger area assigned to xi.

Pi = {x ∈ W : ||x− xi|| − wi ≤ ||x− xj|| − wj, ∀j} (7.7)

Besides, according to the distance function chosen (most cases we use euclidean
distance), different variants of partitions can be defined. For example, the diagram
defined in (7.8) is called power diagram.

Pi = {x ∈ W : ||x− xi||2 − wi ≤ ||x− xj||2 − wj, ∀j} (7.8)
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The locus-based equitable partition problem can be viewed as a kind of assign-
ment problem. Let d(x, xi) be the distance between a point x and xi, f (x) be a density
function, and c = (c1, ..., cn)T be a predefined quotas vector parameter, interpreted
as the target "capacity" or the surface of each assigned area, then it can be formulated
as a special case of the Monge-kantorovich transportation problem [Amb+03].

minimize
I1(·),...,In(·)

n

∑
i=1

∫∫
W

f (x)d(x, xi)Ii(x)dA

subject to
∫∫
W

f (x)Ii(x)dA = ci, ∀i

k

∑
i=1

ci = 1, ci > 0

k

∑
i=1

Ii(x) = 1, ∀x ∈ W

Ii(x) ∈ {0, 1}, ∀i, x

(7.9)

where Ii(.)’s are indicator functions, and its support can be relaxed to [0,+∞). The
objective function to minimize is regarded as "workload" in the transportation prob-
lem. This optimization problem is convex and can be approached by Lagrangian
multiplier method, where the solution is in the following form according to the The-
orem 2 in [JER12].

I∗i (x) =

0 if d(x, xi)− λ∗i > d(x, xj)− λ∗j for some j

1 if d(x, xi)− λ∗i < d(x, xj)− λ∗j for all j ̸= i
(7.10)

where λ∗ is the dual vector. The result can be interpreted as assigning a point x to
xi with index i where d(x, xi)− λ∗i has the minimum value. It can be observed that
the diagram generating models defined in (7.6)-(7.8) are special cases of (7.10). To
compute an equitable division, there are several points to be considered.

• f (x) and c: f (x) is a continuous density function that is set to a constant value
1, and ci =

1
n , ∀i ∈ [1, n] in our case.

• d(x, xi): The distance function takes the shortest path between x and xi inW ,
based on the euclidean distance, and we adopt the L1 norm. When there are no
obstacles, d is computed as d(x, xi) = ||x − xi||, consequently, in such scenar-
ios, the boundaries separating different areas are characterized by hyperbolic
arcs. The difference between the norms of order 2 and order 1 is depicted in
Figure. 7.2(a) and (b). In case of L2 norm, the boundary is a line orthogonal
to xixj and intersects it at point p, charaterized by ||x − xi||2 − ||x − xj||2 =

wi − wj = ||xi − p||2 − ||xj − p||2. The position of the boundary line depends
on the value of wi−wj, and it might be at the location of the dotted line (which
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FIGURE 7.2: Examples of different d(x, xi). (a): d is defined as the
distance of L1 norm. The boundary is generated by the equality case
in (7.7). (b): the case corresponding to L2 norm(defined in (7.8)). (c):

the case of L1 with the presence of obstacles.

intersects xixj at p′). In this way, xi and xj are all on the same side of the bound-
ary, and the constraint that each initial point is contained in its subregion can-
not be satisfied.

• the obstacles in the workspace: we assume that all obstacles are polygonal.
This simplification facilitates the computation of the shortest path. Let ⟨xi, p1,
p2, ..., pk, x⟩ be the shortest path between x and xi, then d(x, xi) = ||xi − p1||+
∑k

j=2 ||pj − pj−1||+ ||x − pk|| where p1, p2.., pk are all the obstacle vertices. In
this case, equation (7.10) may not be sufficient to reach a complete partition-
ing of the workspace, because there are certain regions, denoted as R′ ⊂ W
where equality holds in equation (7.10). In other words, there exist indices
i and j and an area R′ ⊂ W such that for every point x ∈ R′, we have
d(x, xi)− λ∗i = d(x, xj)− λ∗j = min

k∈[1,n]
d(x, xk)− λ∗k , as illustrated in Fig. 7.2(c)

where R′ is marked in green. These R′ regions must start at a reflex vertex on the
obstacles (such as the point p2), and they can be further subdivided into a set
of interconnected and relatively star-convex subregions. The topological con-
nections among these subregions can be effectively represented using a tree
structure. By applying a DFS, these subregions can be reassigned to each xi in
order to achieve an equitable final partitioning, as explained in Fig.4 of [JER12].

Enforcing shape constraints
Since the objective defined in (7.7) aims to minimize the overall "workload", the
subregions computed through this method must be connected. The definition of
d(xi, x) specifically considers the shortest path connecting x and xi, the relatively
star-convexity is guaranteed by the same reason that an optimal (bipartite) Euclidean
matching has no crossing-edges. A more detailed explanation refers to section 2.2
and 2.3 in [CD13].

Resolution of the problem (7.9)
As mentioned earlier, this constrained optimization problem can be approached by
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Lagrange multiplier method. In general, the value of those λ∗i can be obtained by
Newton’s method [KMT19]. However it should be pointed out Newton’s method
does not work if d is defined as unsquared Euclidean distance [HS20]. In case of
L1 norm, it can be efficiently solved by using an analytic-center cutting plane method
(ACCPM) [JER12], or an alternative method is to use a decentralized supergradient
agent-based control scheme to iteratively update λi by

λ
j+1
i ← λ

j
i + ϵ(

∫∫
Rj

i

f (x)dA− 1
n
) (7.11)

where λ
j
i is the value of component λi at iteration j, Rj

i denotes the region assigned
to xi and ϵ is the step coefficient. As can be observed that (7.11) is quite similar to
(7.3), we will compare this method with DARP in the next section.

Another possibility is to solve problem in a discrete scheme: W is divided into m
equal-sized grid cells, and we reformulate (7.9) as a classic linear assignment prob-
lem:

minimize
I∈Rm×n

+

∑
i,j

Ii,jDi,j

subject to I1 = a

IT1 = c

I ≥ 0

(7.12)

where D ∈ Rm×n
+ is the metric cost matrix defining the shortest Euclidean distance

between each grid cell and each xi, a is an histogram that represents the weight of
each grid cell (analogue to the density function f ) and c = 1

n . This linear program-
ming has a polynomial complexity in terms of m.

7.3 Simulation Results

We report the simulation results and compare these three methods described above.
We carried out tests on 5 scenarios, taking into account factors, such as the pres-
ence of obstacles, the location of anchor points, the density function imposed on the
workspace and also compare the results with the work [Pal+19]. In our simulation,
the workspace is a bounding rectangle and represented by a matrix of pixels.

• Scenario 1 (Fig. 7.3): a convex workspace of 40× 40 without obstacles, and 5
anchor points (marked with black points);

• Scenario 2 (Fig. 7.4): a convex workspace of 100× 100 without obstacles, and
10 anchor points;

• Scenario 3 (Fig. 7.5): a nonconvex workspace of 40× 40 with obstacles (in gray),
and 7 anchor points;
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• Scenario 4 (Fig. 7.6): three nonconvex workspaces of 160× 200 with obstacles,
introduced in [Pal+19] 2;

• Scenario 5 (Fig. 7.7): a non-uniform density function is applied on the workspaces,
as f (x, y) = 0.9995(80 + 0.1y)(0.5 + 0.0025y). A visualization of the normal-
ized f (x, y) is shown in Figure 3 of [Pal+19].

For simplicity’s sake, we refer to the three partition methods as follows: the Ham-
Sandwich Theorem based method is denoted as HST, the Voronoi diagram based
method as Voronoi, and the DARP method. HST is a continuous method, while
DARP and Voronoi compute in a discrete way by assigning each grid cell to an an-
chor point. In particular, the solution of Voronoi is computed by solving (7.12) using
the Python package POT [Fla+21]. DARP and Voronoi are implemented in Python
and executed on an Intel Core Intel Xeon E5-2623v3 of 3.0GHz×16 with 32GB of
RAM, while HST is run on Matlab Online. This work is still ongoing and we pro-
vide just some qualitative comparisons for these three methods.

Firstly we present two examples illustrating different partitioning algorithms in
scenarios where there are no obstacles within the workspace. As depicted in Fig-
ure 7.3, the equitable partitions produced by the HST method result in a collection
of convex polygons. In the Voronoi method, the boundaries exhibit a hyperbolic-like
shape, and the resulting subregions are relatively star-convex to their corresponding
anchor points. However, the property of relative-convexity is not guaranteed in the
case of DARP. As observed, certain areas within the pink and green subregions are
not visible from their anchor points due to the presence of the red subregion.

(a) (b) (c)

FIGURE 7.3: Scenario 1 - Comparison between the three partitioning
methods in case without obstacles in the workspace. (a): HST; (b):

DARP; (c): Voronoi.

For Scenario 2, as shown in Fig. 7.4, we display only the result of HST and
Voronoi, which can be computed promptly, while the DARP method fails to find
a solution within 20000 iterations and 640 seconds. The convergence speed of DARP
heavily depends on the distribution of anchor points, especially when they are densely

2There are four environments presented in their article, and the data for the environment "Maze" is
not available, hence is not reported here.
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distributed. It becomes challenging for DARP to simultaneously satisfy the connec-
tivity constraint and equitable division under these circumstances. DARP operates
on the principle of iteratively assigning cells based on gradient values and control
variables. Notably, connectivity is not explicitly penalized in its objective function,
which solely considers the discrepancy in the size of each subregion. Consequently,
DARP can be sensitive to specific cells and may become trapped in local minima,
particularly when anchor points are densely concentrated, as observed in this case
with anchor points at the lower-left corner.

(a) (b)

FIGURE 7.4: Scenario 2 - The case where the anchor points are densely
located. (a): HST; (b): Voronoi.

(a) (b)

FIGURE 7.5: Scenario 3 - Example of partitioning in the presence of
obstacles. (a):DARP; (b):Voronoi.

In Scenario 3, we consider the case where obstacles are present. Given that HST
cannot deal with the cases with obstacles, we display only the results of DARP and
Voronoi in Fig. 7.5. In the result of Voronoi, each subregion can be fully reached
from its anchor point. However the solution of DARP cannot ensure that, as in some
subregions, the cable should go through the partitions of other robots, in order to
reach some points in its partition. One advantage of DARP is that if a solution can be
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(a) (b) (c)

(d) (e) (f)

FIGURE 7.6: Scenario 4 - Example of partitioning in the three different
environments introduced in [Pal+19]: (a)&(d): Open rooms; (b)&(e):
Rooms; (c)&(f): Spiral. The results in the top row are computed by

DARP, and the row below by Voronoi.

found, the connectivity of a subregion is always guaranteed, while some polynomial
time post-processing might need for the solution of Voronoi (as explained in section
7.2.3).

In Scenario 4 and Scenario 5, we evaluate DARP and Voronoi using the envi-
ronments introduced in [Pal+19]. In their work, partitions are computed based on
power diagram. However, one drawback of power diagram is that the resulting sub-
regions might be disconnected. To handle this issue, they proposed a control policy
to adjust the locations of generators (equivalent to anchor points in our context) in
order to achieve an equitable and connected partition. It’s worth noting that they do
not provide theoretical support to guarantee the convergence of the control law to a
connected partition. Consequently, their algorithm might need to be executed mul-
tiple times with different initial conditions until a satisfactory connected partition is
achieved. Additionally, their method does not ensure the relative-convexity of the
subregions. In our application, we assume that the anchor points are fixed, and ei-
ther DARP or Voronoi can compute a feasible solution. Certainly, when we compare
the results in Fig. 7.6(b) and (e), it becomes evident that the Voronoi method pro-
vides a solution with a better quality in terms of the reachable area from the anchor
point.

In Scenario 5, we extend the applicability of Voronoi on a workspace with a non-
uniform density function. It turns out that the desired partition properties can still
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(a) (b) (c)

FIGURE 7.7: Scenario 5 - The results computed by the Voronoi-base
method when the non-uniform density function is applied. (a): Open

rooms; (b): Rooms; (c): Spiral.

be perserved as guaranteed by the theoretical basis. Specifically, in this scenario,
where cells closer to the bottom of the map have a larger value of f , we can ob-
serve in Fig. 7.7 that the surface areas of the yellow, purple, and blue subregions
are smaller than those of the red and green subregions. The weighted DARP has
been explored in a study [IR22], and the weighted Ham-Sandwich cuts has also been
studied in [BL05]. Further comparisons between these methods are expected to be
conducted in future work.

FIGURE 7.8: Illustration of Voronoi solution where the subregions are
not compact.

Issues with Voronoi
One drawback associated with Voronoi is that the solution computed by solving
(7.12) may include unconnected areas. An example is illustrated in Fig. 7.8. In this
instance, a non-fair target capacity is applied, where we set c = [0.1, 0.2, 0.1, 0.1, 0.3,
0.05, 0.15], so that the resulting partition has a different area for each subregion. It
can be observed that the red subregion and the pink one are not compacted, as there
are some red and pink cells appear in the green subregion. This problem has been
explained in Section 7.2.3 and illustrated in Fig. 7.2(c), where there is some ambiguity
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that a cell can be assigned to either of the anchor points, the overall cost is still
optimal. One straightforward solution is to arrange these outlier cells: swap the
red outlier cells with these green cells at the boundary between the red and green
subregions, and proceed in the same way to handle the pink outlier cells. It worth
noting that this arranging method is not ad hoc, where a general assigning strategy
has been mentioned earlier in Section 7.2.3. Although a post-processing step may
be required in certain situations, it does not compromise the theoretical guarantee
that resulting subregions within Voronoi are star-convex.

7.4 Equitable division in nonconvex polygon

The earlier work is built on the assumption that B is convex. However, in the non-
convex case where the boundary of ∂B includes reflex vertices, certain constraints
need to be reevaluated. Consider a concave polygonal workspace denoted as P,
with these reflex vertices. In such scenarios, it is possible that a partition fully reach-
able from some anchor points may not exist. However, if we view the envelope of
the workspace as "walls" or obstacles, meaning the cable can be blocked by these
reflex vertices, it still remains valuable to find a partition for a nonconvex polygon.

In the case of DARP, this new setting does not affect its functionality, and it can
work as long as the unoccupied cells are connected. For the Voronoi-based method,
we can generalize the concept of a shortest path between two points, allowing it
to include the reflex vertices on ∂P. A study presented in [BBK06] demonstrates
that there always exists a geodesic that can divide a general polygon into two equal
halves. This conclusion can be extended to the existence of an n-equal relatively
star-convex subdivision within a general polygon.

7.5 Conclusion

In this chapter, we have summarized three existing methods for computing locus-
based equitable partitions of polygons. We conducted a qualitative comparison
among these methods, considering various aspects such as workspace properties,
solution quality, complexity, and extensibility to cope with other potential constraints,
as displayed in Tab. 7.1.

In general, DARP and Voronoi exhibit broader applicability as they can operate
on workspaces of any shape and handle scenarios with obstacles. However, HST
requires that the workspace is polygonal and that the anchor points are in gen-
eral positions. Regarding partitioning quality, HST generates subregions that are
all convex polygons and are relatively star-convex when the bounding hull of the
workspace is nonconvex. In terms of computational complexity, HST is the fastest,
capable of being computed in polynomial time. On the other hand, both DARP and
Voronoi rely on optimization methods, with Voronoi being significantly more effi-
cient than DARP. Voronoi achieves quicker convergence to the optimal solution by
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DARP HST Voronoi
workspace any shape polygonal any shape
obstacles ✔ ✘ ✔

anchors ✔ in general position ✔

partition any shape convex polygonal relatively star-convex
complexity + +++ ++
extensibility ++ + ++++

TABLE 7.1: Comparision between three partitioning methods

minimizing the "workload" based on the Euclidean shortest path in the objective
function. However for DARP, the shortest path distance information is primarily
used to update control variables, serving as a heuristic to guide the objective func-
tion optimization. DARP is less efficient and easier to get trapped in local minima,
especially in the presence of several specific challenging grid cells. All three methods
can be extended to compute weighted partitions when the workspace is equipped
with a non-uniform density function. Furthermore, DARP and Voronoi can compute
non-equitable divisions with respect to target "capacities". Voronoi, formulated as a
continuous optimization problem, is more practical when it comes to adding new
constraints to enhance desired geometric properties within the resulting subregions.

In multi-robot system applications, the power diagram is frequently applied to
compute a partition, where the initial robot positions do not need to be fixed, and
disconnections in the resulting solution can be resolved by adjusting the initial po-
sition of the robots. We demonstrate that computing a Voronoi diagram based on
the L1 norm distance can effectively address this problem. We believe that these
findings have broad applications in the field of multi-robot systems. Our work is
the first to consider the task of multiple tethered robot coverage, and our approach
of initially computing a locus-based equitable relatively-convex partition offers an
efficient solution to avoid cable tangling. This greatly simplifies the coverage path
planning task, as explored in Chapter 6.

7.6 Open Problems

In our application scenarios, besides the equal-area constraint, the constraints as-
sociated with the cable must also be taken into account, such as the cable length
constraint, which can be interpreted as the diameter constraint that requires each
sub-region to have a limited radius, and the reachability constraint in case of the
presence of forbidden areas in the workspace.

7.6.1 Diameter Constraint

Let ℓ be the maximum cable length, for each anchor point xi, a point x can be as-
signed to it must satisfy the condition d(x, xi) ≤ ℓ, and it can be addressed by adding
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FIGURE 7.9: 2-partition for a concave polygon. In each row: the first
two figures display respectively the visible polygons for the blue and
red point within P; the third figure illustrates an equitable partition
along with the visible polygon in each subregion; and the forth figure
shows an alternative equitable partition which that results in a larger

sum of visible polygon surfaces.

a constraint in (7.9):

Ii(x) = 0, ∀i : d(x, xi) > ℓ (7.13)

As for its solution, it should depend on the value of ℓ: if ℓ has a large or small
value, then (7.13) can be easily satisfied or no solution exists; otherwise, the solution
will be like a collection of hyperbolic and circular curves. It will then be interesting
to study whether the geometric properties of each sub-region can still be preserved,
such as connectivity and relative star convexity. To our knowledge, a similar prob-
lem has been discussed in [CD13] while their basic problem is to find a partition that
minimizes the maximum workload among these subregions.

7.6.2 Reachability Constraint

In case that the workspace is a concave polygon, and the bounding hull can be seen
as "walls", namely, all the exterior area out of P are forbidden areas. Given a par-
tition {P1, ..., Pn}, we denote the visible polygon in Pi as V(Pi, xi) and its surface as
A(V(Pi, xi)). Since such equitable partition is not unique, we can consider a new
problem that seeks an equitable partition {P1, ..., Pn} that maximizes the total visible
areas ∑n

i=1A(V(Pi, xi)). An example of 2-partition for a concave polygon is demon-
strated in Fig. 7.9.
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7.6.3 Anchor points placement

From Chapter 6, we can learn that in the case of forbidden zones, the area covered
by a tethered robot is highly dependent on the location of its anchor point. In certain
scenarios, if the anchor points are mobile and can be relocated, it becomes inter-
esting to optimize their placement to achieve maximum coverage. Similar work is
discussed in [Gan07], where the problem targets multi-agent deployment for visi-
bility coverage in a non-convex polygonal environment with holes. Specifically, for
a single agent, it proposes a gradient-based control policy to guide the agent to an
optimal position along a trajectory where the visible area is nondecreasing. A possi-
ble extension of this concept involves considering the distinct impacts of forbidden
zones (holes) and obstacles. In such cases, the objective shifts from maximizing the
visible area to maximizing the reachable area.
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Chapter 8

Conclusion

8.1 Summary

The goal of this thesis is to design efficient planning algorithms for a multiple teth-
ered robots system to accomplish a coverage task over a large surface. As stated in
Chapter 2, the challenges in this planning problem are issued with the cable con-
straints. Specially, the following constraints have been considered:

• The cable has a limited length;

• The cable cannot be self-crossing;

• The cable is kept taut when robots navigate in the workspace;

• The cable is vulnerable to some forbidden areas.

Our ultimate objective settles in coverage path planning, a complex task in robotics,
where robots are tasked with covering the entire workspace rather than a single tar-
get point. However we believe that it is essential to initially address the fundamental
non-crossing AMAPF problem, detailed in Chapters 4 and 5, where initial positions
and target points are given. The challenge in this problem lies in collision avoidance
as the cable is regarded as obstacles. With the assumption that the cable is regarded
as line and the size of robots is ignored, Chapter 4 abstracts this problem into a ge-
ometrical challenge. The methodology used in Euclidean bipartite matching, such
as LSAP, is proven to provide an upper bound for this problem. A VNS approach
is introduced to improve the upper bound computed by LSAP, followed by a CP
model to solve it optimally. The basis of non-crossing AMAPF involves coupling
a bipartite matching problem that assigns each anchor point to an optimal target,
and a path planning problem for each assigned anchor-target pair. Our strategy is
to enumerate all the paths with respect to the upper bound improved by VNS, and
then CP shows its strength to filter the inconsistent assignments and path choices.

The complexity of this problem depends on the number of robots, obstacles and
their distributions in the workspace. In Chapter 5, when extending this work to non
point-sized robots, a new definition of makespan is formulated that incorporates the
precedence constraints on robots’ motion and a safety distance to avoid cable en-
tanglements. The precedence graph is introduced to represent all the precedence
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constraints in a solution, and a deadlock occurs if it contains a cycle. The challenge
in this new problem is that the resulting paths in a feasible solution are not only
non-crossing, but also cannot cause any deadlocks. We adopt the same procedure
as before to solve this problem. The solution of LSAP is proven to contain no dead-
locks, providing an upper bound. Expressing this new makespan explicitly in a CP
model can be challenging, and the lazy constraint generation method is proposed
to handle the deadlock constraint. Additionally, a major factor impacting resolu-
tion efficiency is the upper bound used to generate the CP model. We propose a
dichotomous search to choose an appropriate upper bound, avoiding unnecessary
path computations.

Given that avoiding cable entanglements is a crucial constraint in multiple teth-
ered robots path planning, our strategy for solving the coverage task involves as-
signing each robot a separated area of operation to reduce the risk of entanglement.
Chapter 6 firstly investigates the coverage path planning for a single tethered robot
(TCPP). We show that the Spanning Tree Coverage (STC) algorithm can efficiently
solve this problem in polynomial time. Specifically, the solution produced by this
method ensures no cable self-crossing occurs, and the cable can be fully retracted
when the robots returns to its anchor point. To satisfy the cable length constraint,
we propose the application of Dijkstra’s algorithm during the spanning tree search.
Additionally, considering that the cable may be vulnerable to the forbidden areas,
we demonstrate that the TCPP problem, when incorporating forbidden areas, be-
comesNP-complete. The problem’s hardness is influenced by the workspace scale,
cable length, and the number of obstacles. We provide various ILP models to com-
pute approximate solutions for the problem.

Finally, Chapter 7 explores different polygon partitioning approaches. In our ap-
plication context, two constraints are identified: each subregion must contain an an-
chor point and its shape should be relatively star-convex to the anchor point. Three
methods are evaluated theoretically and experimentally on simulated instances. The
results shows that partitioning based on the additively weighted Voronoi diagram per-
forms the best to solve our problem.

8.2 Future Work

The work presented in this thesis is accomplished based on some hypothesis, which
simplifies real industrial constraints to a certain extent. We also discuss some open
questions that remain to be solved. The following paragraphs explores the major
perspectives for future research.

8.2.1 Avoiding Paths Enumeration

When solving the non-crossing AMAPF problem, we adopted a strategy of enumer-
ating all candidate paths that could contribute to the solution. The results show that
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this step can be very expensive for some difficult instances, especially when the gap
between the upper bound solved by VNS and the lower bound by LBAP is large.
Instead of precomputing all paths and then selecting compatible ones, we could di-
rectly search for a solution in the visibility graph. Geometric constraints associated
with paths, such as non-intersection, as well as their precedence relationships could
be partially relaxed in the model (a path is a sequence of edges, and the constraints
can be locally satisfied at each vertex by imposing constraints on edge selection). It
is worth evaluating the interest of this approach for computing tighter bounds.

8.2.2 Initial Locations Being not at Anchor Points

In the non-crossing AMAPF problem, we assume that the robots are always located
at their anchor point. This simplification ensures that the path we are looking for is
also the cable position, however, this assumption does not always hold in practical
applications. A potential avenue for future research involves considering scenarios
where the initial locations do not coincide with the anchor points. In such cases, dur-
ing collision checks, the area swept by the cables forms a triangle if the anchor point,
initial position, and target point are not collinear; otherwise, it becomes a segment.
Fig. 8.1 illustrates examples of this, where two robots fixed to anchor points a1 and a2

respectively move from s1 (or s2) to t1 (or t2). Examples (a)-(f) depict scenarios with-
out obstacles, while (g) includes obstacles. In each case, if the two (pseudo)triangles
△a1s1t1 and △a2s2t2 (in (g), △a1s1t1 is a pseudotriangle) intersect, cable entangle-
ment may occur. To prevent this, coordinated motion strategies are necessary, de-
pending on different triangle intersection situations and the relative positions of a,
s, and t (as exemplified in (b) and (e)), as shown in Fig. 8.1.

In general, the intersection between a pair of triangles can be abstracted as cross
intersection or parallel coplanar triangle intersections [SLM13]. Addressing this geo-
metric problem through constraints could be interesting. By proposing specific coor-
dinated motion strategies for distinct cases, a combined makespan can be computed.
Exploring this new variant of the non-crossing AMAPF problem holds potential for
further investigation.

8.2.3 Coverage Path with Minimum Turns

In the coverage path planning problem, our primary goal is to search for a shortest
coverage path that enables robots to thoroughly explore the entire workspace. An-
other commonly considered factor in this problem is the number of turns, as robots
need to decelerate during turns and turning motions can be time consuming. Gen-
erally, the challenge of coverage path planning with the minimum number of turns
is known to be an NP-hard problem [Ark+05].

In the scheme of using the STC algorithm to generate a coverage path, assuming
the workspace can be perfectly structured to a G4 (refer to Chapter 2), the resulting
coverage path is already optimal in terms of path length. However, there is room for
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FIGURE 8.1: Illustrations of triangle intersections and corresponding
coordinated robot motions. (a): Unrestricted movement of R1 and R2;
(b)(c): Sequential order required, where R1 must not pass point p until
R2 has left p, and a similar constraint applies at intersection point q;
(d): R1 moves toward a1 to clear collision point q before R2 reaches
q; (e) R2 retreats toward a2 after reaching t2 to allow collision-free
arrival of R1 at t1; (f): A scenario combining various conflict types;

(g): Intersection of two pseudotriangles.

improvement by further minimizing the number of turns. The number of turns can
be expressed as a variable dependent on the degree of each vertex in the spanning
tree that is used to construct the coverage path, as illustrated in Fig. 8.2. This problem
has been studied in [Lu+22], and a heuristic method based on ACO (ant colony
optimization) is introduced to search for a spanning tree to optimize the number of
turns, though without optimality guarantee.

However, three fundamental questions arise. First, despite the general problem
of finding a coverage path with minimum turns being NP-hard, is the problem of
minimizing the number of turns in an STC-based coverage path is still NP-hard?
Their work lacks a rigorous proof in this regard. Second, it is worthwhile to explore
constraint programming techniques, such as tree constraints [BFL05] or SAT solvers,
to optimally solve this problem. Third, in a workspace that can be perfectly struc-
tured into a G4, there are other types of Hamiltonian cycles not based on STC (an
example is illustrated in Fig. 6.3, Chapter 6). Is it possible that a different kind of
Hamiltonian cycle, not based on STC, results in a better solution?

Eventually, within the context of tethered robots, integrating the objective of min-
imizing turns with cable constraints could open up a valuable avenue for further
research.

8.2.4 Partitioning with Forbidden Areas

As discussed in Section 7.6, the partitioning problem for multiple tethered robots can
incorporate the diameter constraint to meet the cable length constraint. In specific
workspaces with forbidden areas, finding a solution that maximizes the reachable
area becomes an interesting challenge.
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(a) (b)

FIGURE 8.2: Minimum turns problem with a coverage path gener-
ated by STC. The number of turns at each vertex is contingent on its
degree. Consider these encircled vertices in (a), where a vertex of de-
gree 4 can result in 4 turns, while vertices of degree 3 and degree 1
can produce 2 turns. For a vertex of degree 2, there are two cases to
be considered, either 2 (blue) or 0 (green). (a): a random solution with

56 turns; (b): a solution with the minimum turns, 30.

8.2.5 Modeling Workspace with 3D Meshes

To address real industrial constraints associated with platform and hardware speci-
fications, incorporating heterogeneous velocity in the robots’ motion model during
trajectory planning will be essential. Additionally, the models and methods pre-
sented in this paper are built on the assumption of a planar workspace, making
them less adaptable to curved surfaces. Extending this work to 3D meshes would be
interesting.
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Appendix A

Global Constraint for Detecting
Deadlocks

As explained in Chapter 5, when the physical size of robots are considered, an op-
timal solution for the non-crossing AMAPF problem should not create any dead-
locks for robots’ motion. Detecting deadlocks and computing the makespan relies
on topological sorting of the precedence graph, a graph operation challenging to ad-
dress in a CP model. This is why, in Section 5.5.1 and Section 5.5.2, we introduced
a relaxed CP model for the original problem and proposed an approach based on
lazy constraints generation to solve it. As we have discussed in Section 3.1, the use
of global constraint can handle certain specific problems that cannot be addressed
by ordinary constraints. In this section, we present some supplementary results ob-
tained by solving the same CP model using a global constraint.

A.1 Incremental Topological Sorting

In this problem, the main interest of implementing a global constraint is to detect
deadlock as early as possible rather than conducting an a posteriori check after the
entire solution is generated. To achieve this, we implement an incremental topolog-
ical sorting algorithm in the propagators.

Given a directed acyclic graph G = (V, E), a topological sorting of G aims to
find an ordering ord of the vertices in V, such that for every edge (u → v) ∈ E, u
precedes v in the ordering, as ord(u) < ord(v). Typically, this can be accomplished
by a depth-first-search. In our problem, we consider a dynamical implementation of
this process, this is to say, maintaining a topological ordering of G in the presence
of edge deletions and insertions. Consider the examaple illustrated in Figure. A.1:
{y, x, y, a, c} represents an ordered sequence of vertices in G, and their topological
ordering is preserved by the edges {y → a, a → c, b → x}. The objective is to
determine the new ordering after adding a new edge x → y in G.

In [PK07] Pearce & Kelly proposed an algorithm for dynamic topological sorting
that shows practical efficiency. Other incremental algorithms discussed in [Hae+12],
exhibit varying performance depending on the density of graph, and require a rather
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affected region

y a b c x

affected region

b x y a c

? ? ? ? ?

affected region

b x y a c

FIGURE A.1: An example from [PK07]: The vertices are places from
left to right in topological order. A new edge x → y is added to the
graph. We can find δF

xy = {y, a, c} and δB
xy = {b, x} with depth first

search. For a correct ordering, vertices in δB
xy must be repositioned

left of δF
xy, and we obtain {b, x, y, a, c}. Then we allocate the ordered

vertices in the previous ordering list from the lowest available index
to the highest, and the other unaffected vertices remain unchanged.
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sophisticated data structure to handle Query, Insert and Delete operations in con-
stant amortized time. To balance simplicity of data structures and practical perfor-
mance, we implement the Pearce and Kelly algorithm in our approach. The principle
behind Pearce & Kelly algorithm involves correcting the ordering by locally reorga-
nizing the orders of affected vertices when an edge x → y is added to graph. The
method operates as follows.

• Comparison: We compare x and y in the current ordering list, if ord(x) <

ord(y), then the relationship between them is already preserved and there is
no need to correct the ordering list.

• Two-Way Search: When ord(x) > ord(y), the algorithm use a two-way search
to identify affected vertices: a forward search to find all the vertices in affected
region δxy that can be reached from y (denoted as δF

xy), and a backward search
to find all the vertices in δxy that can reach x (denoted as δB

xy). If x is reached
during the forward search as x ∈ δF

xy, it indicates that a circuit must exist.

• Sorting: The elements of x ∈ δF
xy and δB

xy are sorted to preserve their original
order.

• Repositioning: Subsequently, the algorithm repositions vertices in δF
xy and δB

xy

to ensure that all vertices in δB
xy have higher priority than those in δF

xy, and the
other vertices remain unaffected.

A.2 Incremental Deadlock Check

In our problem context, we have a set of paths Π = {π1, π2, ..., πn} to check if a
cycle exists in the precedence graph GΠ = (VΠ, EΠ) based on Π (see Section 5.1.2).
Here, a deadlock in our problem is the same as a cycle in GΠ. Rather than adding
every node of a path in GΠ, we consider only the critical nodes, specifically, the
first node of a path and the nodes shared by multiple paths. This avoids redundant
vertices, reducing computational cost when maintaining a topological ordering in
the graph. Let’s introduce an incremental approach to detect deadlocks, as described
in Algorithm 10.

The principle of Algorithm 10 is to maintain a set of paths already checked, de-
noted as Πk, along with its associated precedence graph GΠk , and incrementally
check the effects of a newly added path πk+1. When πk+1 is processed, we first
add its first node into GΠk , and then check if it intersects with every path in Πk. If
an intersection is detected, the process terminates with Inconsistency; otherwise, if
there are nodes in common, we add these nodes (labeled by the path they belong to)
and the resulting edges according to their precedence relationship in GΠk . There are
three basic operations to be explained here.

• AddVertex: When a vertex is added, it is assigned the lowest priority order to
avoid affecting the previous ordering.
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FIGURE A.2: The illustration for Example A.2.1.

• AddEdge: The algorithm Pearce & Kelly is applied to check this new edge. If
cycles are found, the algorithm stops; otherwise a new ordering is constructed
by local correction.

• UpdatePath: Since we only add some critical nodes of each path in the graph,
each time a common node c between πi and πk+1 is found, it is necessary to
update the precedence relationship between c with other nodes already discov-
ered on πi and πk+1 respectively. In Example A.2.1, when path π2 is processed,
nodes (v2, π1) and (v4, π1) are added to the graph, along with two edges 1→ 4
and 4→ 6. In particular, when path π3 is processed, on path π1, we have edges
1 → 4, 4 → 6, 4 → 9 and 9 → 6. The edge 4 → 6 becomes redundant but is
retained as it does not affect the resulting topological ordering.

Algorithm 10: INCREMDEADLOCKCHECK(Πk, GΠk , πk+1)

Input: The set of paths already checked Πk; the precedence graph based on
Πk: GΠk = (VΠk , EΠk); the path to be checked: πk+1.

Output: The updated precedence graph GΠk+1 or Inconsistency in case path
intersections or a deadlock are found.

1 for each path πi ∈ Πk do
2 if πk+1 does not intersect with πi then
3 Find all common nodes Ci,k+1 = {c|πi ≺c πk+1 or πk+1 ≺c πi}
4 for each node c ∈ Ci,k+1 do
5 AddVertex((c, πi))
6 AddVertex((c, πk+1))

/* According to the precedence relationship found in
line 3. If a cycle occurs, the process returns
Inconsistency. */

7 AddEdge((c, πi), (c, πk+1))
8 end
9 UpdatePath(πi)

10 UpdatePath(πk+1)
11 else
12 Return Inconsistency
13 end
14 end
15 Πk+1 ← Πk
16 Return ΠK+1
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Example A.2.1. Consider the example illustrated in Fig A.2. There are three paths
π1, π2 and π3, following the precedence relationships: π2 ≺v2 , π2 ≺v4 π1 and π1 ≺v3

π3. We process them one at a time. The evolution of the precedence graph and the
ordering list is as follows.

1. V = ∅, E = ∅, order = []

2. V = {1 : (v2, π2), 2 : (v2, π1), 3 : (v4, π2), 4 : (v4, π1)}
E = {1→ 3, 3→ 4, 2→ 4}
order = [1, 2, 3, 4]

3. V = {1 : (v1, π1), 2 : (v6, π2), 3 : (v2, π2), 4 : (v2, π1), 5 : (v4, π2), 6 : (v4, π1), 7 :
(v8, π3), 8 : (v3, π3), 9 : (v3, π1)}
E = {2→ 3, 1→ 4, 3→ 5, 5→ 6, 4→ 6, 7→ 8, 9→ 8, 4→ 9, 9→ 6}
order = [1, 2, 3, 4, 5, 9, 6, 7, 8]

Once GΠ has been constructed, the overall makespan can be computed as shown
in Section 5.1.2. Note that when checking for deadlocks, there is no need to add the
first and last nodes of each path into GΠ. However, when computing the makespan,
this information must be taken into account. If a new node or edge is added, it is
necessary to visit all the vertices starting from the first node that is affected in the
ordering list. In the worst case, the time complexity is O(EΠ).

A.3 Global Constraint of Makespan

Following the notations defined in Section 5.5.1, where for each anchor point ai ∈ A,
the integer variable xi represents the target assigned to ai, the integer variable zi rep-
resents the path selected to reach xi from ai, and the integer variable Obj represents
the makespan; We introduce a global constraint GlobalMakespan({z1, ..., zn}, Obj),
which is satisfied if Obj equals to the longest path in GΠ(z1,...,zn) where GΠ(z1,...,zn)

represents the precedence graph constructed based on the candidate paths set corre-
sponding to {z1, .., zn}.

To propagate this variable, we maintain a set variable pathpool to track all the
paths zi that have been checked. Each time a variable zi is instantiated, we firstly
verify whether it intersects the paths already in pathpool. A failure is triggered if
an intersection is found. Otherwise, GΠ(pathpool) is incrementally updated by Algo-
rithm 10. We trigger a failure if a deadlock is found or the resulted makespan exceeds
the upper bound of Obj; otherwise the lower bound of Obj is updated.

A.4 Experimental Results

In Fig. A.3, we compare the global constraint approach and the lazy constraint gen-
eration approach based on their solving times for the same CP model, denoting the
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FIGURE A.3: Comparison of solving time by global constraint and
lazy constraint generation approach: Each point (x, y) corresponds to
an instance with n = 30, where x-axis represents the solving time by
lazy constraint, and y-axis represents that of global constraint. The
color of point depends on o. U(resp. B and A) instances are displayed

on the left (resp. middle, right).

solving times as tgc and tlazy, respectively. The evaluation of their performance in-
volves starting the resolution process with the same solution from the VNS step, and
the dichotomous search is not applied. The results are presented on a per-instance
basis when the number of robots n = 30, and the number of obstacles o varies in the
range of [5, 10, 15, 20]. The solving time is limited to 3600 seconds.

For the majority of instances (U instances), the difference between the two meth-
ods is not evident, as most instances can be resolved within 10 seconds. The lazy
constraint approach successfully solves all instances within 1 hour, while there are
two instances that cannot be solved by the global constraint. When considering B
instances and A instances, the lazy constraint approach shows better performance.
Specifically, 90.0% of B instances show tlazy < tgc, and this percentage for A instances
is 80.0%. Notably, for B instances, there are 8 instances unsolved by the global con-
straint compared to only 1 instance for the lazy constraint approach. Similarly, for
A instances, there are 19 instances unsolved by the global constraint, whereas only
8 remain unsolved by the lazy constraint approach.
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Les systèmes de multiples robots ont été largement appliqué dans notre vie. En tant que type particulier de système 
mobile, les robots à câble jouent un rôle crucial dans des contextes spécifiques et des conditions difficiles, où le câble 
offre un accès stable à l'énergie et à la connectivité réseau. Cependant, les contraintes imposées par le câble 
introduisent également de nouveaux défis pour la planification des mouvements dans ces applications. Cette thèse se 
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Anonymous Multi-Agent Path Finding (AMAPF) sans croisement et le Multiple Tethered Coverage Path Planning 
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du robot ou non. Cette hypothèse influence significativement le calcul du makespan. Le problème est abstrait sous la 
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améliorer les bornes supérieures, et un modèle de programmation par contraintes pour calculer des solutions optimales. 
L'approche est évaluée expérimentalement sur trois types différents d'instances. Le problème MTCPP est abordé en 
partitionnant initialement l'espace de travail en sous-régions équitables connectées, permettant à chaque robot de 
fonctionner indépendamment dans sa zone assignée. Nous proposons une approche basée sur le diagramme de 
Voronoi pondéré de manière additive, assurant une partition équitable qui impose la étoile-convexité relative de chaque 
sous-région par rapport au point d'ancrage associé, évitant ainsi l'emmêlement des cables. Pour la planification de la 
trajectoire de couverture de chaque robot, la méthode Spanning Tree Coverage permet de résoudre efficacement le 
problème tout en respectant les contraintes du câble.
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