Étude expérimentale et numérique de la durabilité du gypse dans les structures géotechniques : approche couplée hydro-mécanique et chimique - Archive ouverte HAL
Thèse Année : 2023

An experimental and digital model of the gypse's durability in geotechnical structures : coupled hydro-mechanical and chemical approach

Étude expérimentale et numérique de la durabilité du gypse dans les structures géotechniques : approche couplée hydro-mécanique et chimique

Résumé

The extension of anthropogenic activities leads to the development of infrastructure in areas rich in gypsum and subject to the hazards of land movements and cavities. Indeed, gypsum, a rock from the evaporite family, is commonly encountered and exploited by excavation or tunneling. This exploitation can generate over time phenomena of rising fontis. In addition, gypsum formations can also play a “soap board” role in triggering landslides and causing pathologies on geotechnical structures. If gypsum is particularly studied by geochemists through dissolution kinetics tests given the high solubility of this material (2.5 g/L at 20°C) and its variability depending on physicochemical conditions, the permeability properties of gypsum remain less well known. Although this low permeability rock has a porous structure allowing fluid circulation, it is often considered impermeable and subject to simple dissolution by regression of its contact surface, without formation of an alteration gradient. This thesis work aims to study the flow of a fluid (water) in a gypsum material or on its surface while the material dissolves. This study includes both an experimental approach via measuring the evolution of hydromechanical properties and a numerical approach via coupled thermo-hydro-mechanical and chemical modeling (THMC). Firstly, six gypsum facies, more or less heterogeneous in their mineralogical composition, were collected and characterized in terms of porosity and mechanical properties. This part made it possible to highlight the variability of properties depending on a given facies. For example, the porosity of around 1% for the albastroid form can vary up to 10% for the saccharoid facies.3 facies were then retained to undergo alteration by percolation over maximum periods of 2 months. The evolution of their morphology was analyzed and quantified using porosimetric and non-destructive measurement methods (speed of sound, resonance frequency) depending on the facies and their microstructural properties. Percolation tests show in particular the non-systematic establishment of preferential dissolution paths in saccharoid gypsums. This evolution is associated with several parameters including the diameter of access to the pore. In the case of facies with a significant fraction of secondary mineral phases such as clays or carbonates (calcite), we observe the same preferential path process earlier. An erosion test on gypsum board was also developed to monitor the degradation of the material and to look for clues as to the initiation of this phenomenon. In parallel, dissolution tests on powder were carried out to measure the dissolution kinetics parameters for each facies, by varying the stirring speeds of the suspensions, the temperature and the particle size of the powders tested. Measurements of gypsum sensitivity to flow and degradation show that saccharoid gypsum is more sensitive than matrix gypsum. All the chemical parameters (dissolution rate particularly at very low flow speed) and mechanical parameters (porosity, pore diameter, elastic modulus, etc.) obtained experimentally respectively on the powders and the percolated specimens fed into a model of evolution of the mechanical and hydraulic properties of gypsum materials in the presence of a dissolution process (coupling of effects). The model was implemented in the Disroc finite element calculation code to simulate the evolution of the mechanical stability of a geotechnical structure subjected to an undersaturated fluid flow, infiltrating into a gypsum pocket
L'extension des activités anthropiques conduit au développement d'infrastructures dans des zones riches en gypse et soumises aux aléas mouvements de terrain et cavité. En effet le gypse, une roche de la famille des évaporites, est couramment rencontré et exploité par excavation ou creusement de galeries. Cette exploitation peut générer au fil du temps des phénomènes de remontée de fontis. De plus, les formations gypseuses peuvent également jouer un rôle de «planche à savon» dans le déclenchement de glissements de terrain et entrainer des pathologies sur les ouvrages géotechniques. Si le gypse est particulièrement étudié par les géochimistes au travers d'essai de cinétique de dissolution compte tenu de la grande solubilité de ce matériau (2,5 g/L à 20°C) et de sa variabilité en fonction des conditions physico-chimiques, les propriétés de perméabilité du gypse restent moins bien connues. Bien que cette roche à faible perméabilité dispose d'une structure poreuse permettant une circulation de fluide, elle est souvent considérée comme imperméable et faisant l'objet d'une simple dissolution par régression de sa surface de contact, sans formation de gradient d'altération. Ce travail de thèse vise à étudier l'écoulement d'un fluide (eau) dans un matériau gypseux ou à sa surface alors que le matériau se dissout. Cette étude comporte à la fois une approche expérimentale via une mesure de l'évolution des propriétés hydromécaniques et une approche numérique via une modélisation couplée thermo-hydro-mécanique et chimique (THMC). Dans un premier temps, six faciès de gypse plus ou moins hétérogènes dans leur composition minéralogique, ont été collectés et caractérisés sur le plan de la porosité et des propriétés mécaniques. Cette partie a permis de mettre en évidence la variabilité des propriétés en fonction d'un faciès donné. Par exemple, la porosité de l'ordre de 1 % pour la forme albastroïde peut varier jusqu'à 10% pour les faciès saccharoïdes.3 faciès ont été retenus ensuite pour subir une altération par percolation sur des périodes maximales de 2 mois. L'évolution de leur morphologie a été analysée et quantifiée en utilisant des méthodes de mesures porosimétriques et non destructives (vitesse du son, fréquence de résonance) en fonction des faciès et de leurs propriétés microstructurales. Les essais de percolation montrent en particulier la mise en place non systématique de chemin préférentiel de dissolution dans les gypses saccharoïdes Cette évolution est associée à plusieurs paramètres dont le diamètre d'accès au pore. Dans le cas des facies avec une fraction importante de phases minérales secondaires comme les argiles ou les carbonates (calcite), on observe le même processus de chemin préférentiel de manière plus précoce. Un essai d'érosion sur plaque de gypse a également été développé pour suivre la dégradation du matériau et pour rechercher des indices quant à l'initiation de ce phénomène. En parallèle des essais de dissolution sur poudre ont été réalisés pour mesurer les paramètres de cinétique de dissolution pour chaque faciès, en faisant varier les vitesses d'agitation des suspensions, la température et la granulométrie des poudres testées. Les mesures de sensibilité du gypse à l'écoulement et la dégradation montrent que le gypse saccharoïde est plus sensible que le gypse matriciel. L'ensemble des paramètres chimiques (taux de dissolution notamment à vitesse d'écoulement très faible) et mécaniques (porosité, diamètre de pore, module élastique…) obtenus expérimentalement respectivement sur les poudres et les éprouvettes percolées ont alimenté un modèle d'évolution des propriétés mécaniques et hydrauliques des matériaux gypseux en présence d'un processus de dissolution (couplage des effets). Le modèle a été implémenté dans le code de calculs aux éléments finis Disroc pour simuler l'évolution de la stabilité mécanique d'un ouvrage géotechnique soumis à un écoulement de fluide sous saturé, s'infiltrant dans une poche de gypse
Fichier principal
Vignette du fichier
TH2023UEFL2061.pdf (8.57 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04552630 , version 1 (19-04-2024)

Identifiants

  • HAL Id : tel-04552630 , version 1

Citer

Thibault Coppee. Étude expérimentale et numérique de la durabilité du gypse dans les structures géotechniques : approche couplée hydro-mécanique et chimique. Matériaux. Université Gustave Eiffel, 2023. Français. ⟨NNT : 2023UEFL2061⟩. ⟨tel-04552630⟩
103 Consultations
37 Téléchargements

Partager

More