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ABSTRACT

Hyperspectral imagery has emerged as a powerful tool for monitoring remote areas
and accurately identifying materials within a scene, contributing significantly to our
understanding of the environment. While it finds applications in fields as diverse as
precision farming, astronomy and plastics recycling, there are still considerable challenges
to address for its wider adoption. Traditionally confined to domain experts, the increasing
volume of hyperspectral data requires more efficient processing methods than manual
labor can provide to assist decision-makers effectively.

The rise of deep learning, primarily driven by advancements in understanding natural
images from the computer vision research community, has introduced new techniques
able to automatically handle the inherent complexity of hyperspectral images in tasks
such as land cover classification, image restoration, spectral unmixing or data fusion. The
main ingredients for the success of artificial neural networks include a massive quantity
of data, improved computing hardware and advances in learning algorithms. Moreover,
these purely data-driven systems rely on sophisticated design choices based on prior
knowledge about the task at hand. Yet, the rationale behind deep model predictions is often
missing, hindering their usability in key scientific applications where accountability is
crucial. Conversely, model-based learning methods rely on a set of core assumptions that
the predictor uses to output a value given an unseen input, allowing the prediction to be
logically explained and providing a potentially useful pattern to inform end-users. Model-
based deep learning has emerged as a candidate to combine the merits of both approaches,
effectively addressing the drawbacks associated to each paradigm. In a nutshell, this hybrid
framework integrates principled mathematical models within data-driven systems.

In this thesis, we contribute novel algorithms based on sparse and archetypal signal
decomposition designed to address hyperspectral image restoration and spectral unmixing,
two fundamental tasks prevalent in applications leveraging hyperspectral data. Inspired by
the aforementioned research direction, we developed efficient learning methods that are
mathematically grounded from a signal processing standpoint.

We begin by introducing T3SC, a novel deep unfolding architecture derived from
a sparse coding model, specifically tailored to overcome challenges posed by hyper-
spectral images. This algorithm unrolling approach, mixing deep learning and classical
model-based image processing principles, enables efficient end-to-end training of model
parameters without requiring massive data.

Moving on to spectral unmixing, a critical step in further analyzing hyperspectral
images, we first develop an efficient approach for blind linear unmixing, EDAA, based
on archetypal analysis. Under this framework, the spectra of the materials of interest, i.e.
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endmembers, are modeled as convex combinations of pixels present in the scene. Our
method achieves state-of-the-art results on a broad range of unmixing datasets by leverag-
ing an adequate model selection procedure and without requiring extensive hyperparameter
tuning.

Our next contribution extends the archetypal analysis framework to the semi-supervised
unmixing setting, assuming knowledge of the number of materials of interest in the scene.
Despite the non-convex nature of the associated minimization problem, our approach,
SUnAA, demonstrates its viability in tackling hard unmixing scenarios in which traditional
sparse unmixing techniques tend to fail.

Finally, we conduct a comprehensive comparison of various unmixing techniques
across diverse scenarios, highlighting the advantages of supervised, semi-supervised, and
blind unmixing categories depending on the experimental setup. To facilitate exploration
and application of these methods, we provide an open-source Python package named
HySUPP.

All these contributions have led to the development of an open-source software pack-
age, enhancing accessibility, reproducibility and usability in the hyperspectral research
community.

Keywords: machine learning, signal processing, hyperspectral imaging, image restora-
tion, spectral unmixing, sparse coding, algorithm unrolling, archetypal analysis.
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RÉSUMÉ

L’imagerie hyperspectrale est devenue un puissant outil pour surveiller les zones éloignées
et identifier avec précision les matériaux présents dans une scène, contribuant ainsi de
manière significative à notre compréhension de l’environnement. Bien qu’elle trouve des
applications dans des domaines aussi variés que l’agriculture de précision, l’astronomie
et le recyclage des plastiques, il reste encore des défis considérables à relever pour son
adoption à plus grande échelle. Traditionnellement réservé aux experts du domaine, le
volume croissant de données hyperspectrales nécessite des méthodes de traitement plus
efficaces que celles que le travail manuel peut fournir pour aider les décideurs de manière
pertinente.

L’essor de l’apprentissage profond a introduit de nouvelles techniques capables de
gérer automatiquement la complexité inhérente des images hyperspectrales dans des tâches
telles que la classification des sols, la restauration d’images et le démélange spectral. Les
principaux ingrédients du succès des réseaux de neurones artificiels tiennent en l’abondance
de données, l’amélioration des capacités de calculs informatiques ainsi qu’aux progrès
dans les algorithmes d’apprentissage. De plus, ces systèmes qui reposent exclusivement sur
les données nécessitent des choix de conception sophistiqués fondés sur une connaissance
préalable de la tâche à accomplir. Pourtant, la justification des prédictions des modèles
profonds fait souvent défaut. À l’inverse, les méthodes d’apprentissage dites classiques,
fondées sur des modèles, reposent sur un ensemble d’hypothèses de base que le prédicteur
utilise pour générer une valeur à partir d’une nouvelle entrée, permettant d’expliquer
logiquement la prédiction et fournissant un modèle potentiellement utile pour informer
les utilisateurs. Le nouveau paradigme intitulé model-based deep learning a pour but de
combiner les avantages de chaque approche. Cette démarche hybride intègre des principes
mathématiques hérités de la littérature du traitement du signal au sein de systèmes qui
reposent sur les données à disposition pour l’apprentissage.

Dans cette thèse, nous proposons de nouveaux algorithmes qui reposent sur la notion
de décomposition parcimonieuse et archétypale du signal, et qui ont été spécifiquement
conçus pour traiter la restauration d’images hyperspectrales et le démélange spectral. En
s’inspirant de la direction de recherche prélablement présentée, nous avons développé des
méthodes d’apprentissage efficaces qui s’appuient sur principes de modélisation propres
au traitement du signal.

Nous commençons par présenter T3SC, une nouvelle architecture dite déroulée, qui
repose sur un modèle de codage parcimonieux, conçue pour surmonter les défis spécifiques
posés par les images hyperspectrales. Cette approche hybride, mêlant apprentissage
profond et principes classiques de traitement d’images permet un entraînement efficace de
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bout en bout des paramètres du modèle sans nécessiter une quantité massive de données.
Dans le cadre du démélange spectral, une étape critique dans l’analyse plus appro-

fondie des images hyperspectrales, nous développons d’abord une approche efficace pour
le démélange linéaire dit aveugle, EDAA, fondé sur l’analyse archétypale. Sous cette for-
mulation, les spectres des matériaux d’intérêt sont modélisés sous forme de combinaisons
convexes de pixels présents dans la scène. Notre méthode permet d’obtenir des résultats
état-de-l’art sur une large gamme de jeux de données en tirant parti d’une procédure de
sélection de modèle adéquate et sans nécessiter un réglage fastidieux des hyperparamètres.

Notre contribution suivante étend le cadre d’analyse archétypale au contexte de
démélange semi-supervisé. Malgré la nature non convexe du problème de minimisation
associé, notre approche, SUnAA, démontre sa pertinence dans la résolution de scénarios
de démélange difficiles dans lesquels les techniques traditionnelles de démélange dites
parcimonieuses ont tendance à échouer.

Enfin, nous effectuons une comparaison complète de diverses techniques de démélange
dans plusieurs scénarios simulés, mettant en évidence les avantages des catégories de
démélange supervisé, semi-supervisé et aveugle en fonction de la configuration expéri-
mentale. Pour encourager l’adoption de ces méthodes, nous proposons un package Python
open source nommé HySUPP.

Toutes ces contributions ont conduit au développement d’un logiciel libre dédié,
améliorant l’accessibilité et la reproductibilité au sein de la communauté d’utilisateurs et
de chercheurs en imagerie hyperspectrale.

Mots-clés: apprentissage machine, traitement du signal, imagerie hyperspectrale, restau-
ration d’images, démélange spectral, codage parcimonieux, analyse archétypale.
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1

INTRODUCTION

Hyperspectral (HS) imaging, also referred to as image spectrometry, stands as a significant
advancement within geoscience and remote sensing (RS) owing to its ability to precisely
identify a broad range of materials thanks to their spectral fingerprints. In the past decade,
substantial efforts have been directed towards the processing and analysis of HS data,
predominantly under the guidance of domain experts. Nevertheless, as the quantity of data
continues to grow, new challenges arise to alleviate expensive and tedious manual labor,
in order to ultimately enhance productivity. Consequently, there is a pressing need for
the development of more efficient and automated methods to address diverse applications
of HS RS. Examples of such tasks include large-scale land cover mapping, HS image
restoration, HS unmixing, data fusion and multimodal data analysis.

Boosted by the recent advances in deep learning for computer vision, earth observation
(EO) has witnessed a surge of deep models aiming to improve prediction performance
over classical model-based image processing methods. While the latter techniques have
proven effective under highly idealized assumptions, their limited modeling capability
often fail to grasp intricate real-world scenarios due to the existence of unknown, uncertain
and unpredictable factors [Hong et al., 2021]. On the other hand, deep learning models
benefit from extensive modeling capacity enabling them to handle considerably more
complex scenes at the cost of potential overfitting. That being said, the effectiveness
of deep models primarily hinges on their ability to leverage prior knowledge through
advanced network architecture design, empirical training techniques and huge amounts of
annotated data. Moreover, deep networks tend to lack interpretability, a desirable property
of learning models for scientific applications, due to their “black box" nature. Ideally, a
reliable prediction model should not only perform accurately but also be able to explain its
predictions. To address this limitation, the field of explainable artificial intelligence (XAI)
has emerged as a burgeoning area of research.

Concurrently, at the crossroad between model-based methods and deep learning stands
the emerging field of model-based deep learning [Shlezinger et al., 2023] whose aim is
to combine the advantages of both approaches, by embedding principled mathematical
models within data-driven systems. These hybrid approaches are generally task-specific,
yet they may be relevant to a multitude of research domains provided that one has access
to some level of reliable mathematical modeling. One of the key strategies within model-
based deep learning that we will delve into is algorithm unrolling or deep unfolding
[Monga et al., 2021], aiming to transform iterative optimizers into trainable parameterized
architectures.

Unrolling methods were first proposed to develop fast neural network approximations
for sparse coding [Gregor and LeCun, 2010]. The core concept revolves around training a
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1. INTRODUCTION

non-linear, feed-forward predictor with a specific architecture and a fixed depth to produce
the best possible approximation of the sparse code. Unrolling methods have gained
substantial popularity owing to their capacity to craft efficient, high-performance, and
interpretable network architectures, all achieved with reasonably sized training datasets.

In this thesis, we present our contributions aligned with the aforementioned research
directions, with a particular emphasis on their applications in HS imaging. Building
upon recent advancements in the restoration of natural images, we introduce a novel
trainable two-layered spectral-spatial sparse coding model to tackle HS denoising. We
then shift our focus to blind HS unmixing, offering an efficient solution for an archetypal
analysis formulation within a pure model-based framework. Next, we develop a new
mixing model tailored for semi-supervised HS unmixing, addressing library mismatch.
Finally, we provide a comprehensive overview of image processing and machine learning
techniques for HS unmixing, complemented by a Python package designed to facilitate the
reproducibility of research findings in the field of unmixing. For a deeper dive into these
contributions, please refer to Section 1.1. The remaining sections of this chapter offer an
essential groundwork for the upcoming chapters. First, we provide some background on
HS imaging in Section 1.2. Next, we delve into the realm of HS restoration in Section 1.3.
Lastly, in Section 1.4, we introduce the fundamental components of HS unmixing.

1.1 Contributions of the thesis
This thesis makes significant contributions to the field of HS image processing, with a
particular emphasis on the creation of data and computationally efficient methodologies.
Each of these contributions has resulted in the development of a corresponding open-source
software package. These contributions are presented hereafter.

Chapter 2 introduces a new trainable network architecture, called T3SC, derived from
a sparse coding model tailored to address the specificity of HS images in the context of
denoising. We extend the approach developed by [Lecouat et al., 2020b] for natural images
restoration by adopting a two-layer model as a mean to provide a shared architecture for
different HS sensors. Beyond mere quantitative outcomes, we believe that our work sheds
light on the efficiency of our models in learning a relatively concise set of parameters,
while achieving state-of-the-art results. This efficiency is especially critical due to the
limited availability of training data for HS denoising and the challenges associated with
training deep learning models for this purpose.

T. Bodrito∗, A. Zouaoui∗, J. Chanussot, and J. Mairal. A trainable spectral-spatial
sparse coding model for hyperspectral image restoration. In Advances in Neural
Information Processing Systems (NeurIPS), 2021

(∗equal contributions: Théo and I started this fruitful collaboration at the start of my
PhD. Théo handled the implementation while I was involved in the design of the
architecture based on my previous experience with trainable sparse coding models
tailored to natural images classification. Unfortunately, I could not assist Théo
towards the end of the project due to serious health issues. Théo successfully im-
proved the original design by developing a noise adaptive sparse coding component
and proposed a self-supervised extension that are not mentioned in this manuscript.)
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1.1. Contributions of the thesis

In Chapter 3, our attention turns to another critical task inherent to HS image processing:
spectral unmixing. We introduce a novel algorithm based on archetypal analysis for blind
hyperspectral unmixing. Our approach, called EDAA, leverages an entropic gradient
descent strategy, steering the optimization process within the geometry induced by the
negative entropy function. This framework is tailored to accommodate the constraints
imposed by the linear mixing model. Notably, thanks to an efficient GPU-compatible
implementation, we propose a model selection procedure that enhances the robustness of
our method to hyper-parameter choices, all the while maintaining reasonable computational
complexity. Finally, our work highlights the effectiveness of the archetypal analysis
formulation as a viable approach to tackle blind HS unmixing.

A. Zouaoui, G. Muhawenayo, B. Rasti, J. Chanussot, and J. Mairal. Entropic descent
archetypal analysis for blind hyperspectral unmixing. In IEEE Transactions on
Image Processing, 2023

Chapter 4 further exploits archetypal analysis in the context of semi-supervised HS
unmixing. Our novel formulation, called SUnAA, assumes that the spectra of the materials
of interest, or endmembers, are a convex combination of endmembers provided by a
spectral library, with the added knowledge that the number of endmembers in the scene is
known. Unlike most conventional sparse unmixing methods, the objective function in this
formulation is non-convex. As a result, we employ an iterative approach to minimize this
objective, leveraging the active set algorithm proposed in [Chen et al., 2014].

B. Rasti∗, A. Zouaoui∗, J. Mairal, and J. Chanussot. SUnAA: Sparse Unmixing
using Archetypal Analysis. In IEEE Geosciences and Remote Sensing Letters, 2023

(∗equal contributions: Behnood and I started collaborating one year into my PhD.
Behnood shared with me his acute knowledge of spectral unmixing while I con-
ducted the experimental study. Inspired by EDAA presented in Chapter 3, Behnood
formulated SUnAA and I investigated several optimization methods and eventually
selected the active-set optimization algorithm that best suited the semi-supervised
unmixing setup.)

Chapter 5 serves as a comprehensive overview of both advanced and conventional
unmixing approaches. We offer a critical comparison between advanced and conventional
techniques depending on the level of prior knowledge available about the endmembers.
We thoroughly assess the performance of various unmixing techniques using a diverse set
of unmixing datasets, encompassing both simulated and real-world examples. Notably,
we highlight the advantages of the three main unmixing categories - supervised, semi-
supervised, and blind - in different unmixing scenarios. Finally, we provide an open-source
Python package, named HySUPP, that contains an exhaustive list of unmixing methods, in
order to foster research results reproducibility.
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B. Rasti, A. Zouaoui, J. Mairal and J. Chanussot. Image Processing and Machine
Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python
Package. arXiv preprint arXiv:2308.09375, 2023

Behnood played a leading role in this comprehensive work. He completed the
overview by himself while I designed and implemented the toolbox. In Chapter 5 I
primarily focus on my own contributions related to the HySUPP toolbox and leave
aside the significant survey on the existing spectral unmixing works by Behnood.

1.2 Background on Hyperspectral Imaging
Hyperspectral (HS) imaging consists of measuring the electromagnetic spectrum at each
pixel location within a scene by using multiple contiguous spectral bands. Thanks to its
richer spectral information compared to traditional RGB images, HS imaging enables more
precise materials identification. This capability has led to a diverse array of applications in
fields such as astronomy, agriculture, biomedical imaging and geosciences. However, this
technology also presents numerous challenges. As a relatively new analytical technique,
the potential of HS imaging has not yet been fully realized.

1.2.1 Characteristics
HS imaging falls within the broader category of techniques commonly known as spectral
imaging. The term “hyperspectral" has gained prominence over its counterpart, “spec-
troscopy". NASA played a pivotal role in developing this technology in the mid-1980s. HS
imaging is closely related to multispectral (MS) imaging. HS imaging uses continuous and
contiguous wavelength ranges (e.g., 400 to 1000 nm in 5 nm intervals), while MS imaging
focuses on specific, selected wavelengths at discrete locations (e.g., 400-425, 550-570,
760-790, and 990-1010 nm, resulting in a four-band MS image).

In this thesis, we develop methods specifically tailored to HS imaging, drawing inspi-
ration from various research domains, including computer vision, machine learning and
signal processing.

1.2.2 Acquisition
HS sensors acquire data in the form of a series of images, with each image corresponding to
a specific narrow wavelength range within the electromagnetic spectrum, often referred to
as a spectral band. These individual images are combined to construct a three-dimensional
HS datacube (x, y, λ) for subsequent analysis. In this context, x and y denote the two
spatial dimensions of the scene, while λ represents the spectral dimension.

There are four main techniques for acquiring the three-dimensional dataset of a HS
cube. The choice of technique ultimately depends on the specific application, given that
each technique has context-dependent advantages and drawbacks.

Spatial scanning Each two-dimensional sensor output represents a full slit spectrum
(x, λ). A push broom scanner is commonly used to obtain slit spectra by projecting a strip
of the scene onto a slit and dispersing the slit image with a prism or a grating. To ensure
accurate image reconstruction, this technique requires stable mounts or precise pointing
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Figure 1.1: Hyperspectral imaging acquisition techniques.

information. It finds practical applications in remote sensing (RS) and scanning materials
in motion on a conveyor belt.

Spectral scanning Each two-dimensional sensor output represents a monochromatic
map of the scene (x, y). Optical band-pass filters are commonly used to capture the scene
by cycling through one after another while the platform remains stationary. However, it
is important to note that spectral smearing can occur when objects within the scene are
not stationary. While these sensors can be deployed on aircraft, it is often necessary to
employ techniques that extract spatial features from each monochromatic image to realign
the pixels and correct for any misalignment caused by the movement of the platform.

Snapshot HS devices designed for snapshot or non-scanning operations provide the
complete datacube in a single capture, without the need for scanning. In this approach, a
single snapshot captures a perspective projection of the entire datacube, from which its
three-dimensional structure can be subsequently reconstructed. While various systems
have been developed with a focus on increased light throughput and reduced acquisition
time, it is worth noting that this approach often entails high computational demands and
manufacturing costs.

Spatiospectral scanning Each two-dimensional sensor output represents a wavelength-
coded spatial (x, y) map of the scene (i.e. with λ = λ(y)). This method uses a camera at
some non-zero distance behind a basic slit spectroscope. Spatiospectral scanning combines
some of the benefits of both spatial and spectral scanning techniques, effectively mitigating
some of the drawbacks associated with each approach.

In this thesis, our techniques are designed to operate seamlessly across various acquisi-
tion modes, as they directly process the HS datacube. However, in the section dedicated
to image restoration, we concentrate on addressing a specific issue, namely stripe noise.
These artifacts commonly arise from defective spatial scanners.
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1.2.3 Applications
Hyperspectral remote sensing (HS RS) finds diverse applications across numerous fields.
Initially designed for mining and geology, its utility has since expanded into a wide
range of areas, including ecology, waste sorting, and historical manuscript research. The
accessibility of this technology to the public has grown steadily. Leading organizations
like NASA and USGS have compiled catalogs containing spectral signatures of various
minerals and made them easily accessible to researchers through online repositories. In
what follows, we provide a brief overview of some significant applications of HS imaging.

Agriculture HS imaging serves as a valuable tool for a variety of agricultural applica-
tions. It can be employed to identify different plant species and establish early warning
systems for disease outbreaks. Furthermore, research efforts are focused on utilizing
HS imaging to detect the chemical composition of plants, facilitating the monitoring of
nutrient and water levels in irrigated wheat systems. HS cameras also offer the capability
to identify stress caused by heavy metal accumulation in plants, providing an earlier and
faster alternative to traditional post-harvest wet chemical methods.

Astronomy HS imaging plays a crucial role in astronomy, enabling the acquisition of
spatially-resolved spectral images. Given the significance of spectral data as a diagnostic
tool, the ability to obtain a spectrum for each pixel enhances the range of scientific inquiries
that can be addressed in this field.

Ecology The imperative to monitor greenhouse gas emissions from various industrial
sources, including coal and oil-fired power plants and landfills, has become increasingly
critical in recent times. By leveraging the distinctive spectral signatures of methane (CH4),
researchers can compile a comprehensive list of the largest emitters on a global scale,
facilitated by satellite-based monitoring systems with worldwide coverage.

Food processing In the food processing industry, the synergy of HS imaging with
advanced software empowers digital sorters to detect and eliminate defects and foreign
materials that would otherwise remain unseen by conventional camera and laser sorting
systems. A key advantage of this approach is its non-destructive nature. Consequently, this
technology holds the potential to address a multitude of persistent product quality issues,
offering a promising solution for the industry.

Historical studies The Archimedes Palimpsest is a significant parchment codex that
holds two invaluable works by Archimedes (the Ostomachion and the Method of Mechani-
cal Theorems), which were previously believed to have been lost. It also contains the sole
surviving original Greek edition of his work, On Floating Bodies. In the Middle Age, the
manuscript was overwritten with a religious text. Shortly before its latest acquisition in
1998, counterfeit images were painted over portions of the text, obscuring their content.
However, by analyzing 12-band multispectral (MS) images, researchers were able to
unveil the concealed texts underneath the forged pictures, as well as decipher previously
unreadable portions of the manuscript.

Waste sorting and recycling HS imaging plays a pivotal role in waste sorting and
recycling by offering insights into the chemical composition of materials. This capabil-
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ity proves invaluable in distinguishing between various substances with different fabric
compositions, including the identification of natural, animal, and synthetic fibers. HS
cameras can seamlessly integrate with computer vision systems, enabling the automated
separation of plastic waste products and packaging by distinguishing between different
types of plastics.

In this thesis, we do not focus on a specific application. Rather, we tackle research
problems, namely image restoration and spectral unmixing, that are fundamental and
pervasive across all applications within the realm of HS imaging.

1.2.4 Challenges
Acquistion and storage The primary drawbacks of HS imaging revolve around cost
and complexity. To effectively analyze HS data, it requires powerful computing resources,
sensitive detectors, and substantial data storage capabilities. The data storage requirement
is especially notable because uncompressed HS cubes constitute large, multidimensional
datasets, often exceeding hundreds of megabytes in size. These factors collectively
contribute to the elevated costs associated with acquiring and processing HS data. Fur-
thermore, researchers are confronted with the challenge of programming HS satellites
to autonomously sift through data and transmit only the most critical images. This is
essential, as the transmission and storage of such voluminous data can prove to be both
technically challenging and financially burdensome.

Processing In recent years, a multitude of HS RS missions have been launched with the
aim of advancing our comprehension of Earth and its environment. As the availability
of RS data continues to expand, originating from satellite and airborne sensors on both
large and global scales, traditional data processing and analysis tools have encountered
limitations, unable to keep pace with the demands of the big data era. Consequently,
data-driven signal and image processing, along with machine learning (ML) models, have
drawn increasing attention among researchers within the RS community.

Complexity HS imaging often faces limitations in either spectral or spatial resolution.
Moreover, a multitude of factors, including physical and chemical atmospheric effects,
environmental conditions (e.g., soil interference, fluctuations in illumination, unpredictable
shadows cast by clouds or buildings, variations in topography, and intricate noise patterns),
have historically hindered traditional RS techniques, leading to predominantly qualitative
analysis. However, this paradigm has shifted in recent times with the emergence of non-
convex optimization techniques, such as deep learning. These advanced approaches have
demonstrated their capability to effectively address increasingly complex scenarios.

Interpretability Nonetheless, a significant drawback consists in the inherent lack of
interpretability coming from these deep networks, which has emerged as a major concern
for decision-makers. Hence, there is a pressing need to develop techniques that are not
only efficient but also interpretable, tailored to address the diverse spectrum of research
problems specific to HS imaging.

This thesis focuses on two fundamental tasks related to HS data: image restoration and
spectral unmixing. These tasks are presented in the following sections, accompanied by a
comprehensive list of related works.
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1.3 Image Restoration
Hyperspectral (HS) signals contain a wealth of information compared to RGB images.
However, this advantage comes with the challenge of managing intricate degradations
originating from multiple sources, including sparse noise patterns like stripes, as well as
photon and thermal noise [Kerekes and Baum, 2003, Rasti et al., 2018]. Consequently,
HS image denoising serves as a pivotal pre-processing step to increase image quality,
facilitating subsequent tasks such as semantic segmentation and spectral unmixing.

Another substantial challenge arises from the scarcity of extensive, high-quality ground-
truth datasets and the sheer diversity of sensor types employed in HS imaging. This
complexity poses significant hurdles in training ML models, such as convolutional neural
networks (CNNs), for restoration tasks.

To navigate the scarcity of ground-truth data, the most successful approaches typically
incorporate robust prior knowledge directly into the model architecture. This prior knowl-
edge may manifest as low-rank representations of input patches [Fan et al., 2018, Gong
et al., 2020, Rasti et al., 2017, Wang et al., 2021, Zhao and Yang, 2015], sparse coding
techniques [Dabov et al., 2007, Fu et al., 2015, Gong et al., 2020], or leveraging image
self-similarities [Maggioni et al., 2013, Peng et al., 2014, Zhuang and Bioucas-Dias, 2017].
These strategies have proven successful in the realm of RGB image processing [Buades
et al., 2005] and are adapted to address the unique challenges posed by HS data.

We are now in shape to delve into the multitude of approaches employed for restoring
HS data. Our journey begins with an examination of model-based techniques, followed by
an introduction to data-driven methods. Subsequently, we will explore hybrid approaches
and eventually focus on the more specific algorithm unrolling techniques.

1.3.1 Model-based approaches
HS denoising can be framed as an inverse problem, wherein the goal is to determine the
model parameters that describe the noisy observation. Given a noisy observation Y, our
objective is, in fact, to recover the clean signal, denoted as X, which has been degraded by
an unknown forward operator F . This relationship can be expressed as:

Y = F (X). (1.1)

To approach this problem, we introduce a model denoted asM, characterized by parame-
ters θ. This model allows us to approximate the inverse operator of F :

X ≈Mθ(Y). (1.2)

Classical signal processing models for grayscale image denoising such as BM3D
[Dabov et al., 2007] may be applied independently to each spectral band of HS signals.
Not surprisingly, such an approach fails to capture relations between different channels
and multi-band techniques have been shown to perform better. An extension of BM3D to
volumetric data is proposed with BM4D [Maggioni et al., 2013], which is more relevant
for HS imaging. GLF [Zhuang and Bioucas-Dias, 2017] builds upon the same principles
as BM3D – namely, exploiting self-similarities by grouping 3D patches and collaborative
filtering – while introducing subspace identification and data-adaptive filtering based on
principal component analysis. GLF appears to be a very strong baseline, but is unfor-
tunately very computationally demanding at test time. Tensor-based methods such as
LLRT [Chang et al., 2017] are able to exploit the underlying low-rank structure of HS
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signals [Fan et al., 2018, Rasti et al., 2017, Zhang et al., 2014] and have shown particularly
effective when combined with a non-local image prior as in NGMeet [He et al., 2020].
Finally, other approaches adapt traditional image processing priors such as total variation
[Yuan et al., 2014, Wang et al., 2021], or wavelet sparsity [Othman and Qian, 2006, Rasti
et al., 2014] to HS denoising, but they tend to perform worse than GLF, LLRT, or NGMeet,
see [Kong et al., 2020] for a survey on denoising techniques for HS imaging.

1.3.2 Data-driven approaches
Sparse coding and dictionary learning

Dictionary learning [Olshausen and Field, 1996] is an unsupervised learning technique
consisting of representing a signal as a linear combination of a few elements from a
learned dictionary, which has shown to be very effective for various image restoration tasks
[Elad and Aharon, 2006, Mairal et al., 2007]. Several approaches have then combined
dictionary learning and low-rank regularization. For instance, 3D patches are represented
as tensors in [Peng et al., 2014] and are encoded by using spatial-spectral dictionaries
[Tucker, 1966]. In [Zhao and Yang, 2015], 2D patches are extracted from the band-
vectorized representation of the 3D HS data and sparsely encoded on a dictionary, while
encouraging low-rank representations with a trace norm penalty on the reconstructed
image. The low-rank constraint can also be enforced by designing the dictionary as the
result of the matrix multiplication between spatial and spectral dictionaries learned by
principal component analysis as in [Fu et al., 2015]. However, these methods typically
compute sparse representations with an iterative optimization procedure, which may be
computationally demanding at test time.

Deep learning

Like BM3D above, convolutional neural networks for grayscale image denoising (e.g.,
DnCNN [Zhang et al., 2017]) may also be applied to each spectral band, which is of
course sub-optimal. Because deep neural networks have been highly successful for RGB
images with often low computational inference cost, there have been many attempts to
design deep neural networks dedicated to HS denoising. For instance, to account for the
large number of hyperspectral bands, several approaches based on CNNs are operating on
sliding windows in the spectral domain, [Maffei et al., 2020, Shi et al., 2021a, Yuan et al.,
2019], which allows training models on signals with different number of spectral bands,
but the sliding window significantly increases the inference time. More precisely, attention
layers are used in [Shi et al., 2021a], while more traditional CNNs are used in [Maffei
et al., 2020], possibly with residual connections [Yuan et al., 2019]. Recently, an approach
based on recurrent architecture was proposed in [Wei et al., 2020] to process signals with
an arbitrary number of bands, achieving impressive results for various denoising tasks.

1.3.3 Hybrid approaches
SMDS-Net [Xiong et al., 2020] adopts a hybrid approach between sparse coding and deep
learning models by adapting the RGB image restoration method of [Lecouat et al., 2020b]
to HS images. SMDS-Net first denoises the input image with non-local means [Buades
et al., 2005], then performs subspace projection in the spectral domain using HySime
[Bioucas-Dias and Nascimento, 2008], before sparsely encoding 3D patches (cubes) with
a trainable version of Tensor-based ISTA [Qi et al., 2016]. Although this method reduces
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considerably the number of parameters in comparison to vanilla deep learning models, the
spectral sliding window approach lacks interpretability since the same denoising procedure
is applied across different bands, which may not suffer from the same level of noise.

1.3.4 Algorithm Unrolling
Algorithm unrolling, or deep unfolding, has found applications in recent years across a
broad spectrum of domains, with computational imaging, including hyperspectral imaging,
standing out as a prominent area of interest. Many computational imaging research
problems revolve around solving inverse problems, where retrieving the original data or
image from observed measurements can be highly complex. Traditional approaches to
tackle these inverse problems have often followed a model-based strategy. Within this
paradigm, various techniques have emerged, such as sparse coding and low-rank matrix
pursuit, which aim to find parsimonious representations of the underlying data. Model-
based techniques often require iterative approaches due to the scarcity of closed-form
solutions. These iterative algorithms form a rich domain of research, providing a robust
foundation and ample prospects for the application of algorithm unrolling techniques.

For instance, SMDS-Net [Xiong et al., 2020] harnesses the power of algorithm un-
rolling, a technique initially introduced in the seminal work of [Gregor and LeCun, 2010].
The primary aim of algorithm unrolling is to establish a connection between iterative algo-
rithms and neural network architectures. Figure 1.2 offers a high-level visualization of this
framework, wherein each iteration of the algorithm corresponds to a distinct layer within
the network. Concatenating these layers effectively constructs a deep neural network.
The process of passing data through this network is equivalent to executing the iterative
algorithm for a finite number of iterations. Furthermore, the algorithm’s parameters, in-
cluding model parameters and regularization coefficients, directly translate into network
parameters. Consequently, this network can be trained through backpropagation, leading to
model parameters that are learned from real-world training datasets. This trained network
can be naturally perceived as a parameter-optimized algorithm, effectively addressing the
interpretability limitations commonly encountered in conventional neural networks.

LISTA for image denoising with dictionary learning

We now focus on the Learned Iterative Shrinkage and Thresholding Algorithm (LISTA)
applied to image denoising with dictionary learning.

A classical approach introduced by [Elad and Aharon, 2006] for image denoising
consists in considering the set of small overlapping image patches (e.g., 8 × 8 pixels)
from a noisy image, and compute a sparse approximation of these patches onto a learned
dictionary. The clean estimates for each patch are then recombined to produce the full
image.

Formally, let us consider a noisy image y ∈ Rc×h×h with c channels and two spatial
dimensions. We denote by y1,y2, . . . ,yn the n overlapping patches from y of size
c× s× s, which we represent as vectors in Rm with m = cs2. Assuming that a dictionary
D = [d1, . . . ,dp] ∈ Rm×p is given – we will discuss later how to obtain a “good"
dictionary – each patch yi is processed by computing a sparse approximation:

min
αi∈Rp

1

2
∥yi −Dαi∥22 + λ ∥αi∥1 , (1.3)

where ∥.∥1 is the ℓ1-norm, which is known to induce sparsity in the problem solution
[Mairal et al., 2014], and αi is the sparse code representing the patch yi, while λ > 0
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Output

Input
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Interpretable Layers

Figure 1.2: A high-level overview of algorithm unrolling inspired from [Monga et al.,
2021]. Given the iterative algorithm ISTA pictured on the left, a corresponding deep
network can be generated by cascading the algorithm iterations S. The iteration step S
is executed a number of times, resulting in as many network layers. Each iteration S
depends on the ISTA parameters C,D, and λ, which are transferred into learnable weights
of the network. Instead of determining these parameters through cross-validation and
analytical derivations, C,D, and λ are learned from training data sets through end-to-end
training. In this way, the resulting network can achieve better performance than the original
iterative algorithm. In addition, the network layers naturally inherit interpretability from
the iteration procedure.

is a regularization parameter controlling sparsity. Note that the ℓ0-penalty, which counts
the number of non-zero elements, could also be used, leading to a combinatorial problem
whose solution is typically approximated by a greedy algorithm. After solving the n
problems (1.3), each patch yi admits a “clean" estimate Dαi. Because each pixel belongs
to several patches, the full restored image x̂ is obtained by averaging these estimates.

Finding a good dictionary can be achieved in various manners. In classical dictionary
learning algorithms, D is optimized such that the sum of the loss functions (1.3) is as small
as possible, see [Mairal et al., 2014] for a review. Adapting the dictionary with supervision
is also possible [Mairal et al., 2012], as discussed next.

The proximal gradient descent method called Iterative Shrinkage and Thresholding
Algorithm (ISTA) [Figueiredo and Nowak, 2003, Daubechies et al., 2004] is a popular
method for solving the optimization problem (1.3) iteratively. In its simplest form, ISTA
performs the following iterations:

α
(t+1)
i = Sλ

[
α

(t)
i + ηD⊤

(
yi −Dα

(t)
i

)]
, t = 0, 1, . . . , (1.4)

where η is a positive parameter controlling the iteration step size, and Sλ(.) is the soft-
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thresholding operator defined elementwise as

Sλ(u) = sign(u) ·max {|u| − λ, 0} . (1.5)

In essence, ISTA combines a gradient step of
∣∣∣∣y −Dα

∣∣∣∣2
2

with a projection onto the
ℓ1 ball.

LISTA corresponds to an adaptation of ISTA by recasting its iteration into a single
network layer. This layer encompasses various analytic operations, including matrix-vector
multiplication, summation, and soft-thresholding. These operations are reminiscent of
those found in a neural network. Executing LISTA for T iterations is akin to cascading T
such layers, effectively creating a T -layer deep network.

Within this unrolled network, various parameter substitutions can be made, such as
introducing C ∈ Rm×p and turning the scalar regularization parameter λ into a vector
λ ∈ Rp to effectively transform (1.4) into

α
(t+1)
i = Sλ

[
α

(t)
i +C⊤

(
yi −Dα

(t)
i

)]
, t = 0, 1, . . . , (1.6)

as done in [Simon and Elad, 2019, Lecouat et al., 2020b], where Sλ corresponds to the
vectorized soft-thresholding operator defined in (1.5). Lastly, another dictionary W is
used to obtain a clean estimate Wα

(T )
i for each patch yi, where T is the number of LISTA

steps. The reason for allowing a different dictionary W than D is to correct the potential
bias due to ℓ1-minimization. These substitutions expand the representation power of the
unrolled network and provide a more generalized parametrization compared to the original
ISTA.

Finally, the denoised image x̂ is reconstructed by averaging the patch estimates:

x̂ =
1

m

n∑
i=1

RiWα
(T )
i , (1.7)

where Ri is the linear operator that places the patch x̂i at position i in the image, and we
assume – by neglecting border effects for simplicity – that each pixel admits the same
number m of estimates.

The unrolled network’s parameters, namely C, D, W, and λ, are optimized by
training with a set of pairs of noisy/clean images in a supervised fashion. We remark
that the estimate x̂ is obtained from a noisy image y by a sequence of operations that are
differentiable almost everywhere, as in typical neural networks with rectified linear unit
activation functions, which allows the use of backpropagation to update the network’s
parameters. A typical loss, which we optimize by stochastic gradient descent [LeCun et al.,
2002], is then:

min
C,D,W,λ

Ex,y

[
∥x̂(y)− x∥2

]
, (1.8)

where (x,y) is a pair of clean/noisy images drawn from some training distribution from
which we can sample, and x̂(y) is the clean estimate obtain from (1.7), given the noisy
image y.

It is worth noting that empirical evidence suggests that the number of layers T in the
trained LISTA can be significantly smaller than the number of iterations required for ISTA
to converge to a solution that corresponds to a given input observation [Gregor and LeCun,
2010].
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1.4 Spectral Unmixing

Spectral unmixing is a crucial processing technique in hyperspectral (HS) remote sensing
(RS). The ability to separate and identify distinct materials within an image is made
possible by the continuous spectra recorded by HS sensors. Employing endmembers, which
represent distinctive spectral signatures of macroscopic materials, unmixing algorithms
can disentangle the blended spectral data into its individual components. Nevertheless, the
inherent challenges of low spatial resolution, multiple scattering, and intimate mixture
typically yield measured spectra within a pixel that is a complex mixture of pure spectra
from constituent materials, making unmixing a challenging task. Figure 1.3 illustrates the
spectral mixing occurring at the pixel level within a scene captured by a HS camera.

Figure 1.3: Illustration of pure and mixed pixels within an HS image from [Rasti et al.,
2023a]. In this context, each pixel comprises a spectrum generated by concatenating
spectral bands, with each spectrum corresponding to reflectance at a specific wavelength.
The top and bottom pixels are considered pure, as they consist of a single macroscopic
material. In contrast, the middle pixel represents a mixture of tree and soil components.

In the realm of HS RS, a mixing model serves as a representation of the observed
spectral pixel, encapsulating the interplay between endmembers and their corresponding
fractional abundances within the pixel’s spatial domain. Unmixing, in turn, involves the
estimation of these fractional abundances. This estimation can occur through various
means, such as direct estimation or extraction of endmembers or reliance on a pre-existing
library of endmembers. Additionally, unmixing may encompass the determination of the
number of endmembers present in the scene. The nature of the mixing model can be either
linear or nonlinear, depending on the interaction between incident light and the materials
present within the scene or sample. This thesis mainly focuses on the linear mixing model
(LMM), whereby the endmembers are assumed to be linearly mixed.

In the subsequent sections, we will delve deeper into the underlying assumptions of
the LMM. We will then introduce various unmixing scenarios based on the level of prior
knowledge available regarding the endmembers. Following that, our focus will shift to
archetypal analysis as a model formulation for linear unmixing. Lastly, we will explore
the different optimization strategies employed for conducting unmixing in HS imaging.
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1.4.1 Linear mixing model
The LMM assumption holds true when each incident light ray interacts with a single
material prior to reaching the HS sensor. It is a common and valid assumption in Earth
Observation (EO) applications, especially in macroscopic scenarios. In these scenarios, the
sensor’s spatial resolution plays a pivotal role, as pixels may encompass multiple materials,
leading to spectra that are mixtures of various substances.

Figure 1.4 provides a simplified illustration of the sensing process using a satellite
equipped with a HS sensor. The sensor records a pixel containing three distinct materi-
als: water, tree, and soil. At the sensor level, radiance is converted to reflectance, and
atmospheric corrections are applied to compensate for atmospheric absorbance and light
scattering effects. This correction results in reflectance values ranging from zero to one.
Additionally, two physical constraints are imposed on the abundance fractions, namely
the abundance non-negativity constraint (ANC) and the abundance sum-to-one constraint
(ASC).

Figure 1.4: Illustration of the linear unmixing pipeline from [Rasti et al., 2023a]. (a)
Sensing a mixed pixel; (b) Reflectance of the mixed pixel; (c) Schematic of linear unmixing.

Formally, assuming the sensor records p spectral bands, the LMM states that a p-
dimensional pixel y is represented as a linear combination of the endmembers within the
pixel. Let E = [e1, . . . , er] ∈ Rp×r be a matrix containing r endmembers, then:

y = Ea+ n, s.t.
r∑

i=1

ai = 1, ai ≥ 0, i = 1, 2, . . . , r, (1.9)

where a is a r-dimensional vector corresponding to the abundance fractions associated
to each endmembers, and n is a p-dimensional random vector encompassing noise and
model error.

Using matrix notations, we can represent the n pixels by Y = [y1, . . . ,yn] ∈ Rp×n.
The LMM now writes as

Y = EA+N, s.t. A ≥ 0, 1⊤
r A = 1⊤

n , (1.10)

where N ∈ Rp×n denotes the noise and model error, A = [a1, . . . , an] ∈ Rr×n is the
abundance matrix containing the fractional abundances of each endmembers at every pixel,
and 1d is a d-dimensional vector of ones.

In this configuration, the LMM assumes a known and fixed number of endmembers,
denoted as r. In this context, the LMM can be interpreted as a low-rank mixture model,
where the rank corresponds to the number of endmembers. Estimating the number of
endmembers present in a scene is a challenging task that falls outside the scope of this
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thesis. It is important to note that this information is not always required for unmixing.
Alternatively, one can consider the redundant linear mixture model, which can be expressed
as:

Y = DX+N s.t. X ≥ 0. (1.11)

Here D = [d1, . . . ,dm] ∈ Rp×m represents a spectral library containing m endmembers,
and X = [x1, . . . ,xn] ∈ Rm×n represents the unknown abundances to be estimated. It
is worth noting that the dictionary D is often overcomplete, meaning that p < m, and
it should be well-designed to include the endmembers present in the scene. When a
well-designed dictionary is employed, X often exhibits sparsity properties because the
pixels in the scene are usually composed of only a small number of dictionary elements, or
atoms.

1.4.2 Unmixing scenarios
Unmixing techniques can be categorized into three main groups based on the level of prior
knowledge about endmembers. Supervised and unsupervised (blind) approaches employ
the low-rank mixing model. while semi-supervised unmixing relies on the redundant linear
model. It is important to clarify that the terminology used for these configurations should
not be confused with the supervision setups commonly encountered in classical machine
learning. In this context, we exclusively refer to methods that do not have access to ground-
truth abundances. Therefore, all learning-based approaches are inherently unsupervised
when it comes to learning.

Supervised unmixing assumes that a set of endmembers, denoted as E ∈ Rp×r, is
known in advance, leaving only the task of estimating the abundances. In contrast, blind
unmixing aims to simultaneously estimate both endmembers and abundances without
prior knowledge other than assuming the number of endmembers, r, to be known. Semi-
supervised unmixing leverages an existing library of endmembers, which should be
sufficiently well-designed to include the materials present in the scene. When the dictionary
D ∈ Rp×m is overcomplete (p < m), the goal in semi-supervised unmixing is often
to achieve sparse estimates for the abundances, leading to its categorization as sparse
unmixing. Figure 1.5 provides an illustration of the three main types of unmixing.

Figure 1.5: Illustration of different types of linear unmixing from [Rasti et al., 2023a].
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Supervised unmixing

In supervised unmixing, we assume that the endmembers are known, and the goal is to
estimate the abundance matrix A ∈ Rr×n. These endmembers can be obtained through
various means, including field or laboratory measurements, selection from an existing
spectral library, or direct extraction from the data. However, selecting endmembers from a
spectral library may not always yield optimal abundance estimations due to variations in
the imaging setup.

Alternatively, endmembers can be directly extracted or estimated from the data points
using geometrical approaches. This extraction process can be challenging because the
recorded data may not contain pure pixels, which are pixels containing a single macroscopic
material, for all the materials present in the scene. While many endmember extraction
techniques are built on the assumption of having pure pixels, this assumption may not hold
in practice.

It is important to note that we consider methods involving a sequential process of end-
member extraction and subsequent abundance estimation to be categorized as supervised
unmixing. In general, abundance estimation does not affect endmember estimation due to
the order in the processing chain.

Blind unmixing

In contrast, blind unmixing encompasses approaches that simultaneously estimate both
endmembers and abundances. This field of research comprises various paradigms and
techniques. It is worth noting that blind unmixing methods often face challenges related
to their inherent non-convexity. As a result, the optimization procedures used in these
methods can be sensitive to initialization. Therefore, it is common practice to initialize the
endmember estimates using a geometrical endmember extraction approach to provide a
starting point for the optimization process.

Semi-supervised unmixing

Finally, semi-supervised unmixing relies on the availability of an endmember library,
making the selection or construction of this library a critical step in the process. Blindly
selecting a library without careful consideration and additional processing steps can lead
to suboptimal results. Two major paradigms are commonly used in semi-supervised
unmixing: Multiple Endmember Spectral and Mixture Analysis (MESMA [Roberts et al.,
1998]) and sparse unmixing. MESMA was developed to address spectral variability by
incorporating endmember variability into the library. In this setup, the spectral library
is designed to represent the variability of the endmembers present. On the other hand,
sparse unmixing, introduced in [Bioucas-Dias and Figueiredo, 2010], seeks a sparse
solution based on the available library. In both paradigms, the library must adequately
represent the materials present in the scene, meaning it should contain all the endmembers
present. Various methods can be used to obtain such a library, including field or laboratory
measurements, construction using observed data (often assuming the existence of pure
pixels), and construction using physical models.

1.4.3 Archetypal Analysis
Now, we turn our attention to archetypal analysis (AA), a natural formulation for blind
unmixing under the assumption of the LMM. AA essentially represents endmembers as
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convex combinations of a few pixels found in the HS image. In real HS data, pure pixels,
which contain a single material and are essential for traditional endmember extraction
techniques, are often missing due to various factors such as atmospheric conditions,
changes in illumination, and environmental influences. In the AA framework, not only
are pixels viewed as linear combinations of estimated endmembers under the LMM, but
the estimated endmembers themselves are modeled as convex combinations of pixels.
AA, initially introduced by Cutler and Breiman in 1994 [Cutler and Breiman, 1994], is a
specific case of non-negative matrix factorization (NMF) [Lee and Seung, 2000, Paatero
and Tapper, 1994], a popular approach for blind unmixing. AA has the advantage to be
more interpretable than NMF because the basis elements (i.e., endmembers) are directly
constructed from the data points (i.e., pixels). In addition, since the estimated endmembers
generally correspond to averaging the contributions of several pixels, the resulting spectra
appear more robust to noise and spectral variability than pure pixel methods that only rely
on a single pixel per endmember. However, AA usually suffers from a high data fitting
error because the basis elements are constrained to be contained in the convex cone of the
data points [De Handschutter et al., 2019].

Non-negative matrix factorization

Formally, within the LMM framework presented in (1.10), we investigate the blind un-
mixing scenario where both the mixing matrix, denoted as E, and the abundance matrix,
referred to as A, are unknown. The only prior knowledge assumed is the number of
endmembers present in the scene, denoted as r. As E represents the reflectance of the
materials of interest across p spectral channels, it is essential that its elements are non-
negative, satisfying E ≥ 0. Similarly, A, which contains the abundances for each pixel in
its columns, must also adhere to non-negativity constraints. Furthermore, each column
of A = [a1, . . . , an] ∈ Rr×n should sum to one, ensuring that it forms a valid probability
distribution. This condition is equivalent to stating that each column of A belongs to the
simplex ∆r, defined as:

∆r =

{
a ∈ Rr s.t. a ≥ 0 and

r∑
j=1

a[j] = 1

}
. (1.12)

The LMM (1.10) yields the classical optimization problem

arg min
E,A

1

2
∥Y − EA∥2F ,

s.t. E ≥ 0,

ai ∈ ∆r for 1 ≤ i ≤ n,

(1.13)

which is a variant of NMF. In essence, NMF involves decomposing a matrix representing
the HS signal into the product of two matrices, both containing non-negative entries. One
matrix represents the endmembers, and the other represents the abundances for each pixel,
typically with the constraint that the abundances sum to one. Various NMF variants have
been proposed for blind unmixing.

For instance, the Minimum Volume Constrained Non-Negative Matrix Factorization
(MVC-NMF) method [Miao and Qi, 2007] incorporates a minimum volume term for
endmembers, eliminating the pure pixel assumption. Minimum Dispersion Constraint NMF
(MiniDisCo) [Huck et al., 2010] introduces a regularization function known as dispersion
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to encourage endmembers with minimum variance, thus preventing degenerate solutions
and enhancing unmixing robustness, particularly for flat spectra. Another framework
proposed in [Zhuang et al., 2019] combines a data fidelity term with a minimum volume
regularization term for endmembers, offering flexibility in the choice of regularization
form. The authors also present an approach for automatic regularization parameter tuning.

Furthermore, various regularization functions have been designed for abundances in
NMF, as seen in [Zymnis et al., 2007, Yang et al., 2010, Yao et al., 2019]. It is important
to note that standard NMF employs a least-squares objective function as in (1.13), which
may not be optimal for handling noise and outliers in the data. Consequently, alternative
approaches like general loss-based NMF [Peng et al., 2020] and self-paced NMF [Peng
et al., 2021] have been proposed. These methods employ different optimization criteria
that can enhance robustness when dealing with noisy data and outliers.

Modeling assumptions

The AA formulation we consider introduces a constraint that enforces endmembers to be
expressed as convex combinations of the pixels within the HS image Y. In other words,
there exists a matrix B = [b1, . . . ,br] ∈ Rn×r such that E = YB, and the columns of B
are constrained to lie within the simplex ∆n. This results in the following optimization
problem:

arg min
B,A

1

2
∥Y −YBA∥2F ,

s.t. bj ∈ ∆n for 1 ≤ j ≤ r,

ai ∈ ∆r for 1 ≤ i ≤ n.

(1.14)

In the context of the LMM (1.10), we observe that individual pixels within the HS image
are represented as linear combinations of archetypes, which are essentially the endmembers.
Notably, these archetypes are expressed as convex combinations of individual pixels found
in the data under the AA formulation (1.14). This unique characteristic enhances model
interpretability, as the estimated endmembers can be directly related to the pixels present
in the scene.

Building upon the interpretability of AA, [Zhao and Yang, 2015] introduces a kernel-
ized variant of AA. This kernelized AA offers enhanced modeling flexibility, albeit at the
expense of an additional hyperparameter – the bandwidth of the Radial Basis Function
(RBF) kernel functions. Importantly, they adopt the relaxation form from [Mørup and
Hansen, 2012] to handle scenarios where endmembers lie outside the convex hull of the
data.

Drawing inspiration from the robust AA formulation introduced in [Chen et al., 2014],
which incorporates the Huber loss to mitigate the impact of noise and outliers, [Sun et al.,
2017] proposed a Robust Kernel Archetypal Analysis (RKADA) method for blind HS
unmixing. Their approach refines the standard AA formulation (1.14) by introducing a
binary sparse constraint on pixel contributions. Consequently, this method ensures that
each endmember corresponds to actual pixels rather than a sparse linear combination of all
pixels.

In a recent development, [Xu et al., 2022] put forth an ℓ1 sparsity-constrained AA
algorithm aimed at increasing the sparsity of the abundances. Lastly, the Near-Convex
Archetypal Analysis (NCAA) method [De Handschutter et al., 2019] was introduced to
combine the strengths of both AA and NMF. NCAA requires endmembers to be linear
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combinations, rather than convex combinations, of the pixels, offering a unique approach
to the unmixing problem.

Extension to semi-supervised unmixing

Both NMF (1.13) and AA (1.14) offer viable solutions for addressing blind unmixing
scenarios. However, the semi-supervised unmixing setup, relying on the redundant LMM
(1.11), requires a different approach.

In conventional sparse unmixing, the endmember library D is assumed to be fixed, and
the primary focus lies on estimating the (redundant) abundances. Nevertheless, even with a
carefully pruned and well-designed spectral library, it is challenging to perfectly represent
the spectral signatures of materials in real-world datasets. Several factors, including noise,
atmospheric effects, illumination variations, and intrinsic material variations, can affect
endmembers and induce scaling factors compared to those provided by the library.

To address this challenge, we build upon the AA formulation by assuming that the
endmembers present in the scene can be modeled as a convex combination of the library
spectra. This assumption introduces an additional matrix B = [b1, . . . ,br] ∈ Rm×r,
where the endmembers in the scene can be expressed as DB. It is important to note that
one additional assumption is required in this formulation: the number of endmembers of
interest, r, is presumed to be known.

This formulation leads to the following optimization problem:

arg min
B,A

1

2
∥Y −DBA∥2F ,

s.t. bj ∈ ∆m for 1 ≤ j ≤ r,

ai ∈ ∆r for 1 ≤ i ≤ n.

(1.15)

In this setup, A = [a1, . . . , an] ∈ Rr×n represents the abundances of the scene’s
endmembers, while B introduces a flexibility that allows the scene’s endmembers to be
a combination of library spectra. This approach accommodates the complexities and
variations introduced by real-world data, providing a more accurate representation of the
materials present in the scene. It is worth noting that the redundant abundances can easily
be recovered by considering BA ∈ Rm×n.

1.4.4 Optimization
Up until now, we have delved into the modeling assumptions within the AA framework
without focusing on the practical aspect of solving the resulting optimization problems.
Solving (1.14) and (1.15) poses a challenge since the objective function is not jointly
convex in both (B,A). However, it exhibits convexity with respect to one variable when
the other is held fixed, as demonstrated in [Mørup and Hansen, 2012].

Given this characteristic, it is natural to consider an alternating minimization scheme
between B and A. This approach is known to asymptotically converge to a stationary point
of the problem, as shown in [Bertsekas, 1997]. However, due to the non-convex nature
of the objective function, the choice of the optimization algorithm plays a crucial role.
Different optimization procedures may lead to distinct stationary points, which can vary
in terms of statistical estimation quality. This phenomenon, often referred to as “implicit
bias", has garnered significant attention in machine learning, particularly in the context of
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deep learning models [Pesme et al., 2021], and it may be important in HS unmixing as
well, as detailed in Chapter 3.

As highlighted by [Cutler and Breiman, 1994], when fixing all variables but a column
ai of A and minimizing with respect to ai, the problem becomes a quadratic problem (QP)
defined as:

min
ai∈∆r

∥yi − Zai∥22 , (1.16)

where Z is equal to YB or DB depending on the unmixing setup. Similarly, a QP can
be obtained when fixing all variables but one column bj of B, as shown in [Chen et al.,
2014]. The primary challenge here lies in finding efficient methods to solve QP subject to
simplex constraints. Therefore we focus on finding an algorithm for solving:

min
a∈∆r

[
f(a) = ∥y − Za∥22

]
, (1.17)

which is a smooth (least-squares) optimization problem with a simplicial constraint. Now,
we will outline two efficient approaches to address (1.17), with the first one optimized for
CPU and the second one designed for GPU acceleration.

Active-set algorithm

While it is possible to employ general QP solvers, achieving significantly faster conver-
gence becomes feasible by devising dedicated algorithms that can harness the inherent
“sparsity" of the solution in (1.17) [Bach et al., 2012].

In the work by [Chen et al., 2014], the authors introduce an active-set algorithm
[Nocedal and Wright, 1999] designed to capitalize on the sparsity of the solution. They
observe that, at the optimum, typically only a small subset A of the variables will be
non-zero. Active-set algorithms take an aggressive approach to leverage this property.
Given a current estimate a within ∆r at a particular iteration, they define a subset A =
{j s.t. a[j] > 0} and find a direction q ∈ Rr by solving the reduced problem defined as:

min
q∈Rr
∥y − Z(a+ q)∥22 s.t.

r∑
j=1

q[j] = 0 and qAC = 0, (1.18)

where AC represents the complement of A within the index set {1, . . . , r}. Subsequently,
they obtain a new estimate a’ = a+γq by moving a in the direction of q and ensuring that
a’ remains within ∆r through the choice of γ ∈ [0, 1]. The algorithm iteratively updates
the set A until it converges to an optimal solution within ∆r. This strategy is elaborated in
Algorithm 2 of [Chen et al., 2014] and we will describe in Chapter 4 how to leverage this
algorithm in the context of semi-supervised unmixing.

Entropic gradient descent

An alternative approach for efficiently addressing (1.17) is to utilize an optimization
method known as entropic gradient descent. This approach exhibits superior theoretical
convergence properties compared to projected gradient descent when optimizing over the
simplex [Beck and Teboulle, 2003]. Notably, entropic descent eliminates the need for
orthogonal projections onto the simplex and the complexities associated with active-set
rules. As a result, it becomes feasible to harness the computational power of modern
GPUs.
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As noted in [Beck and Teboulle, 2003], the entropic descent algorithm (EDA) is
simply a gradient descent method with a particular choice of a Bregman-like distance
[Bregman, 1967] generated by a specific function, namely the negative entropy. As
explained in [Teboulle, 1992], the choice of an appropriate distance-like function tailored
to the geometry of the constraints, here the simplex, provides theoretical benefits in terms
of convergence rates.

Formally, the negative entropy function h is defined as follows: for a ∈ Rr,

h(a) =
r∑

j=1

ajln(aj) if a ∈ ∆r, +∞ otherwise, (1.19)

with the convention that 0 ln 0 ≡ 0.
h exhibits desirable properties, such as convexity on ∆r. This enables us to consider

Dh, the Bregman divergence [Bregman, 1967] with respect to h, defined, for u and v in
Rr:

Dh(u,v) = h(u)− h(v)−∇h(v)⊤(u− v), (1.20)

which is also called the Kullback-Leibler divergence. By convexity of h, we naturally have
Dh(u,v) ≥ 0.

To solve (1.17), we now consider the following iterates, given ak ∈ ∆r,

ak+1 ← arg min
a∈∆r

{
∇f(ak)⊤(a− ak) +

1

ηk
Dh(a, a

k)

}
, (1.21)

where ∇f(ak) denotes the gradient of f , which is convex and Lipschitz continuous, at
ak ∈ ∆r.

If Dh was simply a squared Euclidean norm, we would recover a projected gradient
descent algorithm. Instead, by using the Bregman distance function Dh induced from
the negative entropy (1.19), we obtain the entropic descent method. Here Dh measures
the distance between two vectors in ∆r. As such, the next iterate ak+1 should aim for
the optimal balance between taking a gradient step and moving the least from the current
iterate ak according to the geometry induced by h, with ηk controlling this trade-off. The
negative entropy h yields explicit steps that effectively enforce the simplicial constraints.
As demonstrated in Chapter 3, it is possible to show that the update (1.21) is equivalent to
the following one, for all j in {1, . . . , r},

ak+1
j =

ak
j e

−ηk∇f(ak)j∑r
l=1 a

k
l e

−ηk∇f(ak)l
, (1.22)

where ak
j is the j-th entry of the vector ak and similarly, ∇f(ak)j is the j-th entry of

∇f(ak).
It is thus easy to see that the iterates (ak)k∈N stay in the simplex ∆r, and it is possible

to show (see [Beck and Teboulle, 2003]) that the sequence (ak)k∈N converges to the set of
solutions of (1.17) with the appropriate step sizes ηk. Interestingly, the update (1.22) can
be implemented efficiently by using the softmax function, assuming the entries of ak are
positive:

ak+1 = softmax
(
log(ak)− ηk∇f(ak)

)
, (1.23)

where log(ak) is the vector carrying the logarithm of each entry of ak. This update
immediately suggests a high compatibility with GPUs and we will describe in Chapter 3
how to leverage this approach to tackle blind unmixing.
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2

MODEL-BASED DEEP LEARNING FOR

HYPERSPECTRAL IMAGE RESTORATION

Chapter abstract: Hyperspectral imaging offers new perspectives for diverse
applications, ranging from the monitoring of the environment using airborne or
satellite remote sensing, precision farming, food safety, planetary exploration, or as-
trophysics. Unfortunately, the spectral diversity of information comes at the expense
of various sources of degradation, and the lack of accurate ground-truth “clean”
hyperspectral signals acquired on the spot makes restoration tasks challenging. In
particular, training deep neural networks for restoration is difficult, in contrast to
traditional RGB imaging problems where deep models tend to shine. In this chapter,
we advocate instead for a hybrid approach based on sparse coding principles that
retains the interpretability of classical techniques encoding domain knowledge with
handcrafted image priors, while allowing to train model parameters end-to-end
without massive amounts of data. We show on various denoising benchmarks that
our method is computationally efficient and significantly outperforms the state of
the art.

The source code is freely available at https://github.com/inria-thoth/T3SC.

The chapter is based on the following publication:

T. Bodrito∗, A. Zouaoui∗, J. Chanussot, and J. Mairal. A trainable spectral-spatial
sparse coding model for hyperspectral image restoration. In Advances in Neural
Information Processing Systems (NeurIPS), 2021
∗equal contributions
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2.1. Introduction

2.1 Introduction
Hyperspectral (HS) imaging enables measurements of the electromagnetic spectrum of a
scene on multiple bands (typically about a hundred or more), which offers many perspec-
tives over traditional color RGB imaging. For instance, the high-dimensional information
present in a single pixel is sometimes sufficient to identify the signature of a particular
material, which is of course infeasible in the RGB domain. Not surprisingly, HS imag-
ing is then of utmost importance and has a huge number of scientific and technological
applications such as remote sensing [Bioucas-Dias et al., 2013, Goetz, 2009, Manolakis
et al., 2016], quality evaluation of food products [Elmasry et al., 2012, Feng and Da-Wen
Sun, 2012, Liu et al., 2017], medical imaging [Akbari et al., 2012, Fei, 2020, Lu and Fei,
2014], agriculture and forestry [Adão et al., 2017, Lu et al., 2020, Mahesh et al., 2015],
microscopy imaging in biology [Gowen et al., 2015, Studer et al., 2012], or exoplanet
detection in astronomy [Gonzalez et al., 2018].

In this chapter, we propose a fully interpretable machine learning model for HS images
that may be seen as a hybrid approach between deep learning techniques, where parameters
can be learned end-to-end with supervised data, and classical methods that essentially rely
on image priors. Since designing an appropriate image prior by hand is very hard, our
goal is to benefit from deep learning principles (here, differentiable programming [Baydin
et al., 2018]) while encoding domain knowledge and physical rules about HS data directly
into the model architecture, which we believe is a key to develop robust approaches that
do not require massive amounts of training data.

More precisely, we introduce a novel trainable spectral-spatial sparse coding model
with two layers, T3SC, which performs the following operations: (i) The first layer
decomposes the spectrum measured at each pixel as a sparse linear combination of a few
elements from a learned dictionary, thus performing a form of linear spectral unmixing
per pixel, where dictionary elements can be seen as basis elements for spectral responses
of materials present in the scene. (ii) The second layer builds upon the output of the first
one, which is represented as a two-dimensional feature map, and sparsely encodes patches
on a dictionary in order to take into account spatial relationships between pixels within
small receptive fields. To further reduce the number of parameters to learn and leverage
classical prior knowledge about spectral signals [Wang et al., 2021], we also assume
that the dictionary elements admit a low-rank structure – that is, dictionary elements
are near separable in the space and spectrum domains, as detailed later. Even though
dictionary learning has been originally introduced for unsupervised learning [Mairal et al.,
2014, Olshausen and Field, 1996], we adopt an unrolled optimization procedure inspired
by the LISTA algorithm [Gregor and LeCun, 2010], which has been very successful in
imaging problems for training sparse coding models from supervised data [Lecouat et al.,
2020b, Lecouat et al., 2020a, Simon and Elad, 2019, Xiong et al., 2020].

Our motivation for adopting a two-layer model is to provide a shared architecture
for different HS sensors, which often involve a different number of bands with different
spectral responses. Our solution consists of learning sensor-specific dictionaries for the
first layer, while the dictionary of second layer is shared across modalities. This allows
training simultaneously on several HS signals, the first layer mapping input data to a
common space, before processing data by the second layer.

We experimentally evaluate our HS model on standard denoising benchmarks, showing
a significant improvement over the state of the art (including deep learning models and more
traditional baselines), while being computationally very efficient at test time. Perhaps more
important than pure quantitative results, we believe that our work also draws interesting
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conclusions for machine learning. First, by encoding prior knowledge within the model
architecture directly, we obtain models achieving excellent results with a relatively small
number of parameters to learn, a conclusion also shared by [Lecouat et al., 2020a, Lecouat
et al., 2020b] for RGB imaging; nevertheless, the effect is stronger in our work due to the
scarcity of training data for HS denoising and the difficulty to train deep learning models
for this task. Second, we also show that interpretable architectures are useful: our model
architecture can adapt to different noise levels per band and modify the encoding function
at test time in a principled manner, making it well suited for solving blind denoising
problems that are crucial for processing HS signals.

2.2 Method
Building on Section 1.3 which presents some preliminaries on sparse coding and algorithm
unrolling for HS image restoration, we are now in shape to introduce a trainable layer
encoding both sparsity and low-rank principles.

2.2.1 A Trainable Low-Rank Sparse Coding Layer

Spatial-Spectral Representation

As shown in [Chakrabarti and Zickler, 2011, Fu et al., 2015], HS patches can be well
reconstructed by using only a few basis elements obtained by principal component analysis.
The authors further decompose these into a Cartesian product of separate spectral and
spatial dictionaries. In this chapter, we adopt a slightly different approach, where we
consider a single dictionary D = [d1, . . . ,dp] in Rm×p as in Section 1.3 with m = cs2,
but each element may be seen as a matrix of size c × s2 with low-rank structure. More
precisely, we enforce the following representation:

∀j ∈ 1, . . . , p, dj = vec (Uj ×Vj) , (2.1)

where Uj is in Rs2×r, Vj is in Rr×c, r is the desired rank of the dictionary elements, and
vec(.) is the operator that flattens a matrix into a vector. The hyperparameter r is typically
small with r = 1, 2 or 3. When r = 1, the dictionary elements are said to be separable in
the spectral and spatial domains, which we found to be a too stringent condition to achieve
good reconstruction in practice.

The low-rank assumption allows us to build models with a reduced number of parame-
ters, while encoding natural assumption about the data directly in the model architecture.
Indeed, whereas a classical full-rank dictionary D admits cs2p parameters, the decompo-
sition (2.1) yields dictionaries with (s2 + c)rp parameters only. Matrices C and W are
parametrized in a similar manner.

Convolutional variant and implementation tricks

Whereas traditional sparse coding reconstructs local signals (patches) independently ac-
cording to the iterations (1.6), another variant called convolutional sparse coding (CSC)
represents the whole image by a sparse linear combination of dictionary elements placed at
every possible location in the image[Simon and Elad, 2019]. From a mathematical point of

24



2.2. Method

view, the reconstruction loss for computing the codes αi given an input image y becomes

min
{αi∈Rp}i=1,...,n

1

2

∥∥∥∥∥y − 1

m

n∑
i=1

RiDαi

∥∥∥∥∥
2

+
n∑

i=1

p∑
j=1

λj|αi[j]|. (2.2)

An iterative approach for computing these codes can be obtained by a simple modifi-
cation of (1.6) consisting of replacing the quantity Dα

(t)
i by the i-th patch of the recon-

structed image 1
m

∑n
i=1RiDα

(t)
i . All of these operations can be efficiently implemented

in standard deep learning frameworks, since the corresponding operations corresponds to
a transposed convolution with D, followed by convolution with C, see[Simon and Elad,
2019] for more details. In this chapter, we experimented with the CSC variant (2.2) and SC
one (1.3), both with low-rank dictionaries, which were previously described. We observed
that CSC was providing slightly better results and was thus adopted in our experiments.
Following[Lecouat et al., 2020b], another implementation trick we use is to consider a
different λj parameter per dictionary element, which slightly increases the number of
parameters, while allowing to learn with a weighted ℓ1-norm in (2.2).

2.2.2 The Two-Layer Sparse Coding Model with Sensor-Specific
Layer

One of the main challenge in hyperspectral imaging is to train a model that can generalize
to several types of sensors, which typically admit different number of spectral bands.
Whereas learning a model that is tuned to a specific sensor is perfectly acceptable in
many contexts, it is often useful to learn a model that is able to generalize across different
types of HS signals. To alleviate this issue, several strategies have been adopted such as
(i) projecting signals onto a linear subspace of fixed dimension, with no guarantee that
representations within this subspace can be comparable between different signals, or (ii)
processing input data using a sliding window across the spectral domain.

In this chapter, we address this issue by learning a two-layer model, presented in
Figure 2.1, where the first layer is tuned to a specific sensor, whereas the second layer
could be generic. Note that the second layer carries most of the model parameters (about
20× more than in the first layer in our experiments). Formally, let us denote by α in
Rp×h×w the sparse encoding of an input tensor y in Rc×h×w as previously described. A
sparse coding layer Φ naturally yields an encoder and a decoder such that:

Φenc : y 7→ α, and Φdec : α 7→ 1

n

n∑
i=1

RiWαi. (2.3)

Given a noisy image y, the denoising procedure described in the previous section with one
layer can be written as

x̂(y) = Φdec ◦ Φenc(y).

Then, a straightforward multilayer extension of the procedure may consist of stacking
several sparse coding layers Φ1, . . . ,ΦL together to form a multilayer sparse coding
denoising model:

x̂(y) = Φdec
1 ◦ · · · ◦ Φdec

L ◦ Φenc
L ◦ · · · ◦ Φenc

1 (y).

The model we propose is composed of two layers, as shown in Figure 2.1. The first layer
encodes spectrally the input HS image, meaning that it operates on 1× 1 patches, whereas
the second layer encodes both spectrally and spatially the output of the first layer.
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Figure 2.1: Architecture of T3SC: we propose a two-layer sparse coding model which is
end-to-end trainable. The first layer performs a sensor-specific spectral decomposition,
while the second layer encodes both spectral and spatial information.

Table 2.1: Simplified comparison between learning-free and learning-based approaches.

Data req. training inference adapt. to new data complex noise
learning-free no req. no training slow easy poor
learning-based clean data slow fast complicated good perf.

2.3 Experiments
We now present various experiments to demonstrate the effectiveness of our approach
for HS image denoising, but first, we discuss the difficulty of defining the state of the art
in this field. We believe indeed that it is not always easy to compare learning-free from
approaches based on supervised learning. These two classes of approaches have very
different requirements/characteristics, making one class more relevant than the other one in
some scenarios, and less in others. Table 2.1 summarizes their characteristics, displaying
advantages and drawbacks of both approaches.

Benchmarked models

Keeping in mind the previous dichotomy, we choose to compare our method to traditional
methods such as bandwise BM3D [Dabov et al., 2007] (implementation based on [Mäkinen
et al., 2019, Mäkinen et al., 2020]), BM4D [Maggioni et al., 2013], GLF [Zhuang and
Bioucas-Dias, 2017], LLRT [Chang et al., 2017], NGMeet [He et al., 2020]. We also
included deep learning models in our benchmark such as HSID-CNN [Yuan et al., 2019],
HSI-SDeCNN [Maffei et al., 2020], 3D-ADNet [Shi et al., 2021a], SMDS-Net [Xiong
et al., 2020] and QRNN3D [Wei et al., 2020]. Results of HSID-CNN, HSI-SDeCNN and
3D-ADNet on Washington DC Mall (available in the Appendix) are taken directly from
the corresponding papers, as the train/test split is the same. Otherwise, the results were
obtained by running the code obtained directly from the authors, except for SMDS-Net,
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2.3. Experiments

where our implementation turned out to be slightly more effective. Note that the same
architecture for our model was used in all our experiments (see Appendix).

Datasets

We evaluate our approach on two datasets with significantly different properties.

• ICVL [Arad and Ben-Shahar, 2016] consists of 204 images of size 1392× 1300 with
31 bands. We used 100 images for training and 50 for testing as in [Wei et al., 2020]
but with a different train/test split ensuring that similar images – e.g., picture from
the same scene – are not used twice.

• Washington DC Mall is perhaps the most widely used dataset1 for HSI denoising and
consists of a high-quality image of size 1280× 307 with 191 bands. Following[Shi
et al., 2021a], we split the image into two sub-images of size 600 × 307 and
480× 307 for training and one sub-image of size 200× 200 for testing. Even though
the test image does not overlap with train images, they nevertheless share common
characteristics. Interestingly, the amount of training data is very limited here.

Specific experiments were also conducted with the datasets APEX[Itten et al., 2008],
Pavia2, Urban[Rickard et al., 1993] and CAVE[Yasuma et al., 2010], which appear in the
supplementary material.

Normalization

Before denoising, HSI images are normalized to [0, 1]. For remote sensing datasets, we
pre-compute the 2nd and 98th percentiles for each band, on the whole the training set. Then,
normalization is performed on train and test images by clipping each band between those
percentiles before applying bandwise min-max normalization, similar to [Audebert et al.,
2019, Maffei et al., 2020]. For the close-range dataset ICVL, we simply apply global
min-max normalization as in [Xiong et al., 2020, Wei et al., 2020].

Noise patterns

We evaluate our model against different types of synthetic noise:

• i.i.d Gaussian noise with known variance σ2, which is the same on all bands.

• Gaussian noise with unknown band-dependent variance: We consider Gaussian
noise with different standard deviation σj for each band, which is uniformly drawn
in a fixed interval. These standard deviations change from an image to the other and
are unknown at test time.

• Noise with spectrally correlated variance: We consider Gaussian noise with standard
deviation σj varying continuously across bands, following a Gaussian curve, see
details in the appendix.

1https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
2http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes
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• Stripes noise : similar to [Wei et al., 2020], we applied additive stripes noise to
33% of bands. In those bands, 10-15% of columns are affected, meaning a value
uniformly sampled in the interval [−0.25, 0.25] is added to them. Moreover, all
bands are disturbed by Gaussian noise with noise intensity σ = 25.

Metrics

In order to assess the performances the previous methods, we used five different indexes
widely used for HSI restoration, namely

• Mean Peak Signal-to-Noise Ratio (MPSNR), which is the classical PSNR metric
averaged across bands;

• Mean Structural Similarity Index Measurement (MSSIM), which is based on the
SSIM metric [Wang et al., 2004];

• Mean Feature Similarity Index Measurement (MFSIM) introduced in [Zhang et al.,
2011];

• Mean ERGAS[Du et al., 2007];

• Mean Spectral Angle Map (MSAM)[Alparone et al., 2007].

We use MPSNR and MSSIM in the main chapter and report the other metrics in the
appendix.

Implementation details

We trained our network by minimizing the MSE between the ground truth and restored
images. For ICVL, we follow the training procedure described in [Wei et al., 2020]: we
first center crop training images to size 1024 × 1024, then we extract patches of size
64× 64 at scales 1:1, 1:2, and 1:4, with stride 64, 32 and 32 respectively. The number of
extracted patches for ICVL amounts to 52962. For Washington DC Mall, we do not crop
training images and the patches are extracted with stride 16, 8 and 8, for a total of 1650
patches. One epoch in Washington DC Mall corresponds to 10 iterations on the training
dataset. Basic data augmentation schemes such as 90◦ rotations and vertical/horizontal
flipping are performed. Code and additional details about optimization, implementation,
computational resources, are provided in the supplementary material. As reported in
Table 2.4, augmenting the number unrolled iterations improves the denoising performances
at the expense of inference time. Since the Spectral-Spatial SC layer is the most time-
consuming, the number of unrolled iterations chosen for the first and second layers are 12
and 5 respectively.

2.4 Discussion and Conclusion
Quantitative results on synthetic noise

We present in Table 2.2 the results obtained on the ICVL dataset (results on DCMall are
presented in the appendix). Our method uses the vanilla model of Section 2.2.2 for the
experiments with constant σ or correlated noise.
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2.4. Discussion and Conclusion

Table 2.2: Denoising performance on ICVL with various types of noise patterns. The first
four rows correspond to i.i.d. Gaussian noise with fixed σ per band. The next three rows
corresponds to a noise level that depends on the band, taken uniformly on small interval.
This is a blind-noise experiment since at test time, the noise level is unknown. The last
two rows correspond to the scenarios with correlated σ across bands, and with stripe noise,
respectively. See main text for details.

σ Metrics Noisy BM3D BM4D GLF LLRT NGMeet SMDS QRNN3D T3SC

5
MPSNR 34.47 46.17 48.85 51.25 51.86 52.74 50.91 48.80 52.62
MSSIM 0.7618 0.9843 0.9916 0.9949 0.9951 0.9960 0.9944 0.9918 0.9959

25
MPSNR 21.44 37.86 39.89 43.16 43.43 44.74 42.83 44.20 45.38
MSSIM 0.1548 0.9269 0.9510 0.9695 0.9746 0.9796 0.9700 0.9782 0.9825

50
MPSNR 16.03 34.22 34.22 39.26 39.69 41.08 39.25 41.67 42.16
MSSIM 0.0502 0.8654 0.8654 0.9197 0.9504 0.9602 0.9382 0.9655 0.9677

100
MPSNR 10.85 30.43 32.47 34.79 36.39 37.55 35.64 37.19 38.99
MSSIM 0.0144 0.7557 0.8155 0.7982 0.9182 0.9311 0.8815 0.9140 0.9439

[0-15]
MPSNR 33.89 45.81 45.35 50.57 48.50 41.67 48.23 52.07 53.31
MSSIM 0.6386 0.9767 0.9735 0.9948 0.9899 0.9078 0.9900 0.9957 0.9967

[0-55]
MPSNR 23.36 39.06 38.43 44.22 41.13 32.94 41.76 47.13 48.64
MSSIM 0.2601 0.9231 0.9074 0.9818 0.9580 0.7565 0.9620 0.9884 0.9911

[0-95]
MPSNR 19.06 36.17 35.55 41.43 38.44 29.40 38.94 43.98 46.30
MSSIM 0.1614 0.8760 0.8540 0.9674 0.9354 0.6609 0.9357 0.9753 0.9859

Corr.
MPSNR 28.85 42.73 42.13 47.05 45.76 38.06 45.98 48.90 49.89
MSSIM 0.4740 0.9599 0.9070 0.9881 0.9824 0.8536 0.9835 0.9911 0.9923

Strip.
MPSNR 21.20 34.88 37.70 42.06 39.38 39.78 41.98 44.60 44.74
MSSIM 0.1508 0.8641 0.9198 0.9628 0.9258 0.9333 0.9655 0.9806 0.9805

Our supervised approach achieves state-of-the-art results (or is close to the best per-
forming baseline) on all settings. GLF performs remarkably well given that this baseline
is learning-free.

A visual result on ICVL is shown in Figure 2.2 for stripes noise. Inference times are
provided in Table 2.3, showing that our approach is computationally efficient.

Results on real noise

We also conducted a denoising experiment on the Urban dataset, reporting a visual result
in Figure 2.3. Deep models were pre-trained on the APEX dataset, which has the same
number of channels as Urban (even though the sensors are different), with band-dependent
noise with σ ∈ [0− 55]. We show that learning-based models trained on synthetic noise
are able to transfer to real data.

Comments on the additional results presented in the appendix

The appendix also contains (i) results on the DCMall dataset including additional baselines
mentioned above; (ii) error bars for parts of our experimental results in order to assess
their statistical significance; (iii) an experiment when learning simultaneously on several
datasets with different types of sensors showing that the second layer can be generic and
effective at the same time; (iv) additional visual results; (v) various ablation studies to
illustrate the importance of different components of our method.
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Table 2.3: Inference time per image on ICVL with σ = 50; SMDS, QRNN3D and T3SC
are using a V100 GPU; BM4D, GLF, LLRT and NGMeet are using an Intel(R) Xeon(R)
CPU E5-1630 v4 @ 3.70GHz. Note that unlike GLF, NGMeet, and LRRT, learning-based
approaches such as QRNN3D and our approach require a training procedure, which may
be conducted offline. The cost of such a training step was about 13.5 hours for our method
and 19 hours for QRNN3D on a V100 GPU.

BM3D BM4D GLF LLRT NGMeet SMDS QRNN3D T3SC

Inference time (s) 1677 2382 5565 24384 2686 74.3 3.6 5.8

Table 2.4: Impact of the number of unrolled iterations per layer on denoising performances
and inference time. This experiment was carried out on ICVL with σ = 50.

Unrolled iterations per layer 1 2 5 12
MPSNR 40.16 41.48 42.15 42.45

Inference time (s) 0.38 1.44 5.27 14.91

(a) Groundtruth (b) Noisy (c) LLRT (d) NGMeet

(e) GLF (f) SMDS-Net (g) QRNN3D (h) T3SC

Figure 2.2: Denoising results with Gaussian noise σ = 25 on ICVL with bands 9, 15, 28.

Broader impact

This chapter addresses the problem of denoising the signal, which is a key pre-processing
step before using hyperspectral signals in concrete applications. As such, it is necessarily
subject to dual use. For instance, HS imaging may be used for environmental monitoring,
forestry, yield estimation in agriculture, natural disaster management planning, astronomy,
archaeology, and medicine. Yet, HS imaging is also used by the petroleum industry
for finding new oil fields, and has obvious military applications for surveillance. We
believe the potential benefits of HSI for society are large enough to outweigh the potential
harm. Nevertheless, we are planning to implement appropriate dissemination strategies to
mitigate the risk of misuse for this work (notably with restrictive software licenses), while
targeting a gold standard regarding the scientific reproducibility of our results.
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2.4. Discussion and Conclusion

(a) Input (b) BM4D (c) LLRT (d) NGMeet

(e) GLF (f) SMDS-Net (g) QRNN3D (h) T3SC

Figure 2.3: Visual result on a real HSI denoising experiment on Urban dataset with bands
1, 108, 208.
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APPENDIX

2.5 Implementation details
In this section, we provide additional implementation details, which are useful to reproduce
our experiments (note that the code is also provided).

Noise with spectrally correlated variance. For each band i ∈ {0, . . . , c − 1}, the
standard deviation of the Gaussian noise is defined as :

σi = β exp

[
− 1

4η2

(
i

c
− 1

2

)2
]

with β = 23.08 and η = 0.157.

Preprocessing. A basic centering step is used for each input patch of our model. More
precisely, for the first layer, each band of the input hyperspectral image is centered
independently prior to patches extraction, and means are added back after decoding. For
the second layer, patches are centered independently for each band (and similarly, the
means are added back after decoding).

Code and patch sizes The hyperparameters of our model are presented in Table 2.5.

Layer Patches size Code size Unrolled iterations Rank

Spectral SC 1× 1 64 12 1
Spectral-Spatial SC 5× 5 1024 5 3

Table 2.5: Architecture of our model

Table 2.13 shows that the combination of both layers is more effective than each layer
independently.

Initialization All parameters are initialized with He initialization [He et al., 2015].

Blocks inference In order to apply our model to large images, we split them into blocks
of size 256× 256 with an overlap of 6 pixels. Each block is denoised independently. The
output image is obtained by aggregating the denoised blocks. Pixels comprised in several
blocks are averaged.
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2.6. Additional quantitative results

Optimization Our models are trained with batch size of 16 for 60 epochs. We use the
Adam optimizer, the initial learning rate is 3× 10−4, and is divided by two at epoch 30
and 45.

2.6 Additional quantitative results

Washington DC Mall dataset. Results for this dataset are presented in Table 2.6.
Additional baselines are presented in Table 2.7. The conclusions are similar to those
already drawn in the main paper.

Table 2.6: Denoising performances on Washington DC Mall.

σ Metrics Noisy BM3D BM4D GLF LLRT NGMeet SMDS QRNN3D T3SC

5
MPSNR 34.31 35.10 41.13 39.57 41.83 37.57 42.83 43.42 43.85
MSSIM 0.9821 0.9875 0.9962 0.9953 0.9968 0.9928 0.9971 0.9973 0.9978

25
MPSNR 20.70 24.51 31.08 35.25 34.95 35.38 35.64 35.04 36.74
MSSIM 0.7688 0.8859 0.9690 0.9883 0.9863 0.9886 0.9889 0.9864 0.9912

50
MPSNR 15.25 20.80 26.69 31.77 30.94 31.88 31.76 31.72 33.12
MSSIM 0.5314 0.7508 0.9220 0.9761 0.9704 0.9759 0.9765 0.9741 0.9819

100
MPSNR 10.48 17.65 22.51 27.81 26.82 27.86 28.02 27.41 29.48
MSSIM 0.2888 0.5427 0.8141 0.9475 0.9322 0.9460 0.9491 0.9375 0.9618

[0-15]
MPSNR 33.32 34.62 37.22 39.89 40.04 37.40 40.77 43.72 41.83
MSSIM 0.9551 0.9746 0.9903 0.9950 0.9951 0.9926 0.9958 0.9971 0.9968

[0-55]
MPSNR 22.45 26.11 29.04 38.37 33.36 32.55 34.31 38.44 39.28
MSSIM 0.7450 0.8683 0.9504 0.9934 0.9811 0.9780 0.9859 0.9925 0.9945

[0-95]
MPSNR 18.18 23.06 25.77 36.98 30.07 29.21 30.80 35.84 37.20
MSSIM 0.5889 0.7688 0.9033 0.9914 0.9643 0.9589 0.9718 0.9877 0.9920

Corr.
MPSNR 28.48 30.50 33.69 37.96 37.77 36.56 38.54 39.84 40.79
MSSIM 0.9085 0.9515 0.9637 0.9928 0.9921 0.9911 0.9934 0.9944 0.9960

Strip.
MPSNR 20.47 24.08 29.07 35.27 34.13 34.94 35.24 35.25 36.34
MSSIM 0.7621 0.8672 0.9433 0.9877 0.9833 0.9876 0.9876 0.9874 0.9906

Table 2.7: Denoising performances on Washington DC Mall with additional baselines.
σ Metrics Noisy BM3D BM4D GLF LLRT NGMeet 3D-ADNet HSID-CNN HSI-SDeCNN SMDS-Net QRNN3D T3SC

5
MPSNR 34.31 35.10 41.13 39.57 41.83 37.57 42.08 41.68 39.98 42.83 43.42 43.85
MSSIM 0.9821 0.9875 0.9962 0.9953 0.9968 0.9928 0.9968 0.9966 0.9954 0.9971 0.9973 0.9978

25
MPSNR 20.70 24.51 31.08 35.25 34.95 35.38 33.78 33.05 33.44 35.64 35.04 36.74
MSSIM 0.7688 0.8859 0.9690 0.9883 0.9863 0.9886 0.9825 0.9813 0.9822 0.9889 0.9864 0.9912

50
MPSNR 15.25 20.80 26.69 31.77 30.94 31.88 29.73 28.96 29.61 31.76 31.72 33.12
MSSIM 0.5314 0.7508 0.9220 0.9761 0.9704 0.9759 0.9587 0.9536 0.9608 0.9765 0.9741 0.9819

100
MPSNR 10.48 17.65 22.51 27.81 26.82 27.86 24.74 25.29 25.75 28.02 27.41 29.48
MSSIM 0.2888 0.5427 0.8141 0.9475 0.9322 0.9460 0.9064 0.9014 0.9121 0.9491 0.9375 0.9618

Study of statistical significance for the ICVL dataset. In order to evaluate the statistical
significance of our results, we present some results in Table 2.8 for some of our models
and baselines, by running models with five different random seeds. Note that we did not
conduct such a study for all results in this paper in order to keep the computational cost of
the project reasonable. The conclusions of the paper remain unchanged.
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Table 2.8: Denoising performances on ICVL with multiple seeds

σ Metrics Noisy GLF NGMeet SMDS QRNN3D T3SC

5
MPSNR 34.47± 0.01 51.25± 0.01 52.74± 0.01 50.78± 0.09 49.54± 1.28 52.62± 0.01
MSSIM 0.7619± 0.0001 0.9951± 0.0001 0.9961± 0.0001 0.9943± 0.0001 0.9924± 0.0021 0.9960± 0.0001

25
MPSNR 21.43± 0.01 43.16± 0.01 44.74± 0.01 42.63± 0.11 44.20± 0.16 45.37± 0.02
MSSIM 0.1548± 0.0002 0.9696± 0.0001 0.9797± 0.0001 0.9687± 0.0009 0.9780± 0.0009 0.9825± 0.0001

50
MPSNR 16.03± 0.01 39.26± 0.01 41.09± 0.01 39.09± 0.08 41.47± 0.14 42.16± 0.01
MSSIM 0.0503± 0.0001 0.9198± 0.0002 0.9603± 0.0001 0.9359± 0.0012 0.9639± 0.0012 0.9677± 0.0001

100
MPSNR 10.85± 0.01 34.78± 0.01 37.55± 0.01 35.59± 0.04 38.38± 0.60 38.99± 0.01
MSSIM 0.0144± 0.0001 0.7981± 0.0004 0.9312± 0.0001 0.8781± 0.0017 0.9370± 0.0114 0.9439± 0.0002

[0-15]
MPSNR 33.94± 0.09 50.68± 0.11 41.57± 0.14 48.00± 0.13 52.10± 0.12 53.10± 0.12
MSSIM 0.6381± 0.0013 0.9950± 0.0001 0.9065± 0.0022 0.9899± 0.0001 0.9958± 0.0001 0.9966± 0.0001

[0-55]
MPSNR 23.41± 0.09 44.41± 0.12 32.93± 0.09 41.42± 0.18 47.26± 0.12 48.57± 0.28
MSSIM 0.2621± 0.0025 0.9820± 0.0004 0.7534± 0.0031 0.9593± 0.0015 0.9889± 0.0004 0.9915± 0.0005

[0-95]
MPSNR 19.11± 0.09 41.62± 0.11 29.40± 0.12 38.86± 0.06 44.07± 0.08 46.24± 0.24
MSSIM 0.1644± 0.0031 0.9667± 0.0007 0.6601± 0.0051 0.9352± 0.0004 0.9758± 0.0003 0.9863± 0.0005

CAVE dataset. We report denoising performances of T3SC on the CAVE Dataset in
Table 2.9 To evaluate T3SC, the dataset was divided in four splits : three were used for
training and one for testing. The values reported for T3SC are averaged across all rotations
of the test split.

Table 2.9: Denoising performances on CAVE dataset with Gaussian noise.

σ Metrics Noisy NGMeet T3SC

5 MPSNR 35.05 47.96 49.16
25 MPSNR 21.99 42.44 42.77
50 MPSNR 16.37 38.89 39.7
100 MPSNR 10.96 34.99 36.48

Joint training across heterogeneous datasets. In Table 2.10, we study the problem of
training a single model on three different datasets, APEX, DC Mall, and Pavia, involving a
different number of channels. As mentioned in the paper, this model involves a common
second layer and a spectral dictionary per dataset. These result show that most of the model
parameters (which are present in the second layer) can in fact be shared across datasets
without significant loss of accuracy when compared to the training of three different models
(thus involving three times more parameters).

Table 2.10: Results for joint training experiment

Training procedure Model Metrics APEX DC Mall Pavia Center

Independant trainings
QRNN3D

MPSNR 33.19 31.72 30.56
MSSIM 0.9619 0.9741 0.9569

T3SC
MPSNR 34.91 33.12 31.32
MSSIM 0.9730 0.9819 0.9617

Joint training
QRNN3D

MPSNR 31.95 30.97 29.12
MSSIM 0.9501 0.9690 0.9428

T3SC
MPSNR 34.74 33.08 31.30
MSSIM 0.9711 0.9819 0.9616

Additional metrics. Additional metrics are provided for the ICVL and DCMall datasets,
respectively in Tables 2.11 and 2.12. The conclusions of the paper are unchanged.
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σ Metrics Noisy BM3D BM4D GLF LLRT NGMeet SMDS QRNN3D T3SC

5
MFSIM 0.9953 0.9978 0.9986 0.9994 0.9995 0.9996 0.9993 0.9987 0.9996
MERGAS 6.18 1.48 1.10 0.84 0.7740 0.69 0.87 1.14 0.70
MSAM 0.2460 0.0518 0.0390 0.0267 0.0229 0.0211 0.0307 0.0412 0.0223

25
MFSIM 0.9218 0.9773 0.9829 0.9944 0.9942 0.9954 0.9921 0.9967 0.9970
MERGAS 27.33 3.86 3.21 2.13 2.19 1.77 2.20 1.86 1.65
MSAM 0.5989 0.1286 0.1005 0.0595 0.0459 0.0384 0.0717 0.0537 0.0406

50
MFSIM 0.8100 0.9488 0.9488 0.9851 0.9851 0.9863 0.9782 0.9928 0.9925
MERGAS 51.48 5.88 5.88 3.33 3.92 2.71 3.33 2.50 2.40
MSAM 0.7546 0.1964 0.1964 0.1029 0.0682 0.0505 0.1033 0.0571 0.0549

100
MFSIM 0.6471 0.8942 0.9008 0.9679 0.9637 0.9661 0.9456 0.9835 0.9824
MERGAS 95.97 9.11 7.96 5.59 6.22 4.08 5.04 4.20 3.46
MSAM 0.8619 0.2984 0.2228 0.1847 0.0919 0.0679 0.1441 0.1009 0.0761

[0-15]
MFSIM 0.9876 0.9954 0.9963 0.9991 0.9985 0.9965 0.9984 0.9995 0.9996
MERGAS 10.11 1.91 2.07 0.98 1.17 4.53 1.20 0.79 0.69
MSAM 0.3412 0.0680 0.0672 0.0328 0.0311 0.1772 0.0408 0.0265 0.0234

[0-55]
MFSIM 0.9087 0.9743 0.9768 0.9950 0.9900 0.9755 0.9890 0.9984 0.9985
MERGAS 33.34 4.17 4.73 2.07 3.02 14.69 2.50 1.39 1.20
MSAM 0.6478 0.1443 0.1412 0.0687 0.0636 0.4086 0.0784 0.0427 0.0370

[0-95]
MFSIM 0.8291 0.9524 0.9560 0.9911 0.9798 0.9536 0.9772 0.9969 0.9972
MERGAS 54.92 5.83 6.73 2.86 4.64 24.82 3.46 2.17 1.58
MSAM 0.7720 0.2001 0.1928 0.0992 0.0813 0.5574 0.1042 0.0622 0.0471

Corr.
MFSIM 0.9704 0.9902 0.9923 0.9981 0.9968 0.9919 0.9969 0.9990 0.9991
MERGAS 14.20 2.61 3.74 1.46 1.63 6.37 1.55 1.12 1.02
MSAM 0.4617 0.0934 0.1540 0.0468 0.0416 0.2550 0.0515 0.0316 0.0291

Strip.
MFSIM 0.9068 0.9579 0.9736 0.9926 0.9871 0.9880 0.9900 0.9968 0.9965
MERGAS 28.14 7.65 4.65 2.52 4.34 4.32 2.44 1.78 1.77
MSAM 0.6067 0.2197 0.1442 0.0764 0.1272 0.1298 0.0790 0.0439 0.0534

Table 2.11: Additional metrics on ICVL
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σ Metrics Noisy BM3D BM4D GLF LLRT NGMeet SMDS QRNN3D T3SC

5

MFSIM 0.9534 0.9578 0.9772 0.9824 0.9817 0.9785 0.9802 0.9824 0.9814
MERGAS 3.12 2.84 1.50 1.96 1.46 2.50 1.38 1.26 1.19
MSAM 0.0862 0.0775 0.0427 0.0495 0.0395 0.0569 0.0373 0.0349 0.0329

25

MFSIM 0.8213 0.8676 0.9394 0.9661 0.9629 0.9655 0.9639 0.9614 0.9673
MERGAS 14.96 9.50 4.55 2.91 3.31 2.94 2.87 3.08 2.50
MSAM 0.3087 0.1753 0.1044 0.0684 0.0726 0.0671 0.0676 0.0709 0.0599

50

MFSIM 0.7174 0.7861 0.8974 0.9495 0.9439 0.9484 0.9464 0.9487 0.9542
MERGAS 28.00 14.51 7.44 4.24 4.89 4.28 4.45 4.38 3.68
MSAM 0.4785 0.2175 0.1438 0.0890 0.0925 0.0864 0.0944 0.0880 0.0768

100

MFSIM 0.6000 0.6821 0.8240 0.9188 0.9065 0.9209 0.9170 0.9100 0.9329
MERGAS 48.42 20.83 11.98 6.54 7.58 6.66 6.52 7.01 5.51
MSAM 0.6566 0.2700 0.1939 0.1183 0.1193 0.1147 0.1205 0.1297 0.0977

[0-15]

MFSIM 0.9338 0.9455 0.9690 0.9831 0.9774 0.9761 0.9787 0.9828 0.9782
MERGAS 5.42 4.29 2.29 2.10 1.89 2.53 1.68 1.36 1.48
MSAM 0.1358 0.1052 0.0610 0.0509 0.0487 0.0582 0.0438 0.0368 0.0395

[0-55]

MFSIM 0.8196 0.8642 0.9261 0.9766 0.9554 0.9523 0.9603 0.9714 0.9748
MERGAS 18.46 10.41 5.56 2.37 3.86 4.19 3.22 2.37 2.05
MSAM 0.3563 0.1879 0.1171 0.0572 0.0798 0.0961 0.0731 0.0581 0.0518

[0-95]

MFSIM 0.7471 0.8057 0.8837 0.9725 0.9377 0.9339 0.9473 0.9613 0.9689
MERGAS 29.42 14.25 8.15 2.68 5.36 6.14 4.60 3.07 2.50
MSAM 0.4899 0.2274 0.1466 0.0632 0.0973 0.1262 0.0962 0.0719 0.0604

Corr.

MFSIM 0.9028 0.9229 0.9519 0.9783 0.9713 0.9693 0.9721 0.9790 0.9768
MERGAS 8.25 5.91 4.07 2.29 2.44 2.67 2.10 1.92 1.65
MSAM 0.2049 0.1368 0.1106 0.0559 0.0593 0.0661 0.0540 0.0481 0.0436

Strip.

MFSIM 0.8177 0.8621 0.9365 0.9663 0.9604 0.9649 0.9639 0.9619 0.9651
MERGAS 15.38 10.20 4.84 3.00 3.55 3.09 2.99 3.02 2.62
MSAM 0.3152 0.1886 0.1101 0.0698 0.0794 0.0705 0.0700 0.0702 0.0623

Table 2.12: Additional metrics on DCMall

Ablation study. In this paragraph, we present an ablation study, demonstrating in Ta-
ble 2.13 that our two-layer model outperforms single-layer models.

Metrics Noisy Spec SpecSpat Spec + SpecSpat

MPSNR 16.03 30.96 40.13 42.17
MSSIM 0.0502 0.6884 0.9533 0.9677
MFSIM 0.8100 0.9708 0.9849 0.9925
MERGAS 51.48 8.84 3.00 2.39
MSAM 0.7546 0.1300 0.1021 0.0547

Table 2.13: Combination of sparse coding layers: we denote by Spec the Spectral Sparse
Coding layer and by SpecSpat the Spectral-Spatial Sparse Coding layer. This experiment
was run on ICVL with σ = 50.

2.7 Visual examples

Finally, we show additional visual examples in Figure 2.4 and 2.5.
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2.8. GPU resources

(a) Groundtruth (b) Noisy (c) LLRT (d) NGMeet

(e) GLF (f) SMDS-Net (g) QRNN3D (h) T3SC

Figure 2.4: Simulated Gaussian noise (σ = 100) on DCMall

(a) Groundtruth (b) Noisy (c) LLRT (d) NGMeet

(e) GLF (f) SMDS-Net (g) QRNN3D (h) T3SC

Figure 2.5: Visual results for the denoising experiment with stripes noise on ICVL with
bands 9, 15, 28.

2.8 GPU resources
The total number of GPU hours involved in this project is around 19k hours on NVIDIA
Tesla V100 16Go, including preliminary experiments, model design, final experiments and
running baseline methods.
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3

ENTROPIC DESCENT ARCHETYPAL

ANALYSIS FOR BLIND HYPERSPECTRAL

UNMIXING

Chapter abstract: In this chapter, we introduce a new algorithm based on archety-
pal analysis for blind hyperspectral unmixing, assuming linear mixing of endmem-
bers. Archetypal analysis is a natural formulation for this task. This method does
not require the presence of pure pixels (i.e., pixels containing a single material)
but instead represents endmembers as convex combinations of a few pixels present
in the original hyperspectral image. Our approach leverages an entropic gradient
descent strategy, which (i) provides better solutions for hyperspectral unmixing than
traditional archetypal analysis algorithms, and (ii) leads to efficient GPU implemen-
tations. Since running a single instance of our algorithm is fast, we also propose an
ensembling mechanism along with an appropriate model selection procedure that
make our method robust to hyper-parameter choices while keeping the computa-
tional complexity reasonable. By using six standard real datasets, we show that our
approach outperforms state-of-the-art matrix factorization and recent deep learning
methods.

The source code is freely available at https://github.com/inria-thoth/EDAA.

The chapter is based on the following publication:

A. Zouaoui, G. Muhawenayo, B. Rasti, J. Chanussot, and J. Mairal. Entropic descent
archetypal analysis for blind hyperspectral unmixing. In IEEE Transactions on
Image Processing, 2023
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3.1. Introduction

3.1 Introduction
Hyperspectral (HS) imaging [Landgrebe, 2002, Plaza et al., 2009, Schaepman et al.,
2009, Goetz et al., 1985, Green et al., 1998] consists of measuring the electromagnetic
spectrum in a scene by using multiple narrow spectral bands. Thanks to its richer spectral
information compared to traditional RGB images, HS images enable more accurate materi-
als identification, leading to a broad range of applications including crop monitoring in
agriculture [Adão et al., 2017], waste sorting [Karaca et al., 2013], food safety inspection
[Gowen et al., 2007], or mineralogy[Fox et al., 2017].

Remote sensing [Clark et al., 2003, Bioucas-Dias et al., 2013], such as airborne or
satellite imagery, yields HS images whose pixels capture several objects or materials.
As such, each pixel can include several pure spectral components (called endmembers),
mixed in different proportions [Ghamisi et al., 2017]. Any further analysis hence requires
identifying and disentangling endmembers present in a scene before estimating their
respective proportions, or fractional abundances, within each pixel of the HSI [Parra et al.,
1999]. Since the endmembers spectrum signatures are not known beforehand and must be
estimated from data, this operation is named blind HS unmixing [Keshava and Mustard,
2002, Bioucas-Dias et al., 2012] owing to its link with blind source separation [Comon
and Jutten, 2010].

In this chapter, we adopt a linear mixing model since it is often relevant in remote
sensing scenes where mixtures occur between macroscopic materials. Therefore, we
assume that each observed pixel can be represented as a linear combination of endmembers
and some additive noise. In other words, we are interested in tackling unsupervised linear
HS unmixing [Parra et al., 1999].

Further assumptions on the nature of endmembers are generally needed to estimate
meaningful spectra. For instance, it can be assumed that there exists at least one pure pixel
for each material present in the scene. The problem then requires finding these pure pixels
within the original image. The pure pixel assumption is at the core of several geometrical
endmember extraction methods including pixel purity index (PPI) [Boardman et al., 1995],
N-FINDR [Winter, 1999] and vertex component analysis (VCA) [Nascimento and Dias,
2005]. Once endmembers have been extracted, abundances can be estimated by minimizing
the least squares errors between the original input spectra and the linearly reconstructed
spectra as long as the abundances fractions satisfy the two physical constraints stating
that they should be non-negative and sum to one for each pixel [Heinz and Chein-I-
Chang, 2001]. That being said, pure pixels are often missing in real scenarios. In the
absence of pure pixels and in the case of linear models, endmembers and abundances can
be simultaneously estimated by solving a constrained or penalized non-negative matrix
factorization problem (NMF) [Lee and Seung, 2000]. For example, the authors of [Zhuang
et al., 2019] have proposed a formulation that involves a data fidelity term and a minimum
volume regularization term on endmembers, whose minimization consists in alternating
between solving for endmembers and abundances.

In this work, we do not assume the existence of pure pixels as they are often missing
in real data, since, for instance, the spectral signatures of endmembers in HS images can
be significantly affected by various changes in atmospheric, illumination, and environ-
mental conditions within the scene[Borsoi et al., 2021]. There are multiple strategies that
can be employed to tackle spectral variability such as (i) augmenting the linear mixing
model[Hong et al., 2018], (ii) using a tensor-based approach, like the Sparsity-Enhanced
Convolutional Decomposition (SeCoDe) method[Yao et al., 2021], (iii) performing un-
mixing in orthogonal subspaces as in[Ren et al., 2023]. Instead, we mitigate the effect
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of spectral variability by (i) normalizing each pixel by the ℓ2-norm of its spectrum as
a pre-processing step and (ii) modeling endmembers as convex combinations of pixels
present in the scene. Not only HS pixels are linear combinations of the estimated end-
members under the linear mixing model, but the estimated endmembers are also convex
combinations of pixels. This corresponds to the archetypal analysis (AA) formulation
introduced by Cutler and Breiman in [Cutler and Breiman, 1994]. AA has the advantage to
be more interpretable than NMF because the basis elements (i.e. endmembers) are directly
constructed from the data points (i.e. pixels). In addition, since the estimated endmembers
spectral signatures generally correspond to averaging the contributions of several pixels,
the resulting estimation appears to be more robust to noise and spectral variability than
pure pixel methods that only select one pixel per endmember. However, AA usually suffers
from a high data fitting error because the basis elements are constrained to be contained in
the convex cone of the data points[De Handschutter et al., 2019].

The contributions and innovations of this article are as follows:

1. We propose a new hyperspectral unmixing algorithm relying on entropic gradient
descent for archetypal analysis. Our approach (i) provides solutions for hyperspec-
tral unmixing as good as traditional alternating optimization schemes based on
projected gradient methods or active set algorithms, and (ii) allows more efficient
GPU implementations.

2. The efficiency of our method enables us to make a key practical contribution,
consisting of an ensembling mechanism along with an appropriate model selection
procedure, which makes our method almost parameter-free and thus easy to use (the
only sensitive parameter is the number of endmembers we want to estimate).

3. Our approach, available in an open-source package1, outperforms state-of-the-art
matrix factorization and deep learning methods on six standard real datasets.

The remainder of this chapter is organized as follows. Section 3.2 introduces our
method. Section 3.3 presents experimental results highlighting the performance of our pro-
posed approach. Finally, we conclude the article and underline future research directions
in Section 3.4.

3.2 Method
In this section, we present our model formulation before describing its optimization. Next,
we mention implementation details required to run our approach. Finally, we explain how
to leverage our efficient GPU implementation and propose a procedure to make our model
robust to hyper-parameter choices and thus easy to use in practice.

3.2.1 Model formulation

Under the linear mixing model (LMM) presented in (1.10), we recall the archetypal
analysis formulation introduced in (1.14):

1Code is available at https://github.com/inria-thoth/EDAA
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3.2. Method

arg min
B,A

1

2
∥Y −YBA∥2F ,

s.t. bj ∈ ∆n for 1 ≤ j ≤ r,

ai ∈ ∆r for 1 ≤ i ≤ n,

(3.1)

where B = [b1, . . . ,br] ∈ Rn×r is the pixel contributions matrix such that the endmembers
matrix becomes YB, and the columns of B are constrained to lie within the simplex ∆n,
A = [a1, . . . , an] ∈ Rr×n is the abundance matrix, and its columns are constrained to lie
within the simplex ∆r. Finally, Y ∈ Rp×n is the HS image containing n spectra of length
p, cast in two dimensions obtained by flattening the spatial dimensions.

3.2.2 Optimization
As explained in Section 1.4.4, solving (3.1) is difficult since the objective function is not
jointly convex in (A,B). However, it is convex with respect to one of the variables when
the other one is fixed, as demonstrated in [Mørup and Hansen, 2012]. We have seen in
Section 1.4.4 that we essentially need to tackle a quadratic program (QP) under simplicial
constraints – e.g., (1.17) , that we recall here:

min
a∈∆r

[
f(a) = ∥y − Za∥22

]
, (3.2)

where y is in Rp, Z is in Rp×r, a is in Rr, and f is a convex Lipschitz continuous function
with a gradient at a ∈ ∆r denoted by ∇f(a).

In this chapter, we adopt entropic gradient descent as our optimization scheme. As
introduced in Section 1.4.4, it corresponds to considering the following update: for all j in
{1, . . . , r},

ak+1
j =

ak
j e

−ηk∇f(ak)j∑r
l=1 a

k
l e

−ηk∇f(ak)l
, (3.3)

where ak
j is the j-th entry of the vector ak and similarly, ∇f(ak)j is the j-th entry of

∇f(ak), and ηk corresponds to a step size.
We now detail the calculation that leads to (3.3). We start by writing the Lagrangian of

(3.2) corresponding to the constraint
∑r

j=1 aj = 1 using the definition of Dh (1.20), the
Bregman divergence [Bregman, 1967] endowed by the negative entropy function h (1.19):

L(a, ν) = ∇f(ak)⊤a+
1

ηk

d∑
j=1

ajln(aj)−
1

ηk

d∑
j=1

ajln(ak
j ) + ν

(
d∑

j=1

aj − 1

)
. (3.4)

Next, for j ∈ {1, . . . , r}, we consider the derivative of L with respect to the j-th
component of a ∈ ∆r:

∇aj
L(a, ν) = ∇f(ak)j +

1

ηk
ln(aj)−

1

ηk
ln(ak

j ) + ν +
1

ηk
, (3.5)

By considering the equation∇aj
L(a, ν) = 0, we obtain:

ln(aj) = ln(ak
j )− ηk∇f(ak)j − ηkν − 1, (3.6)

and
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ak+1
j = ak

j e
−ηk∇f(ak)je−ηkν−1. (3.7)

As a result, ak+1
j ≥ 0 and it remains to choose ν such that

∑r
j=1 a

k+1
j = 1 as done in

(3.3),
Assuming that the entries of ak are positive, (3.3) can be efficiently implemented by

using the softmax function:

ak+1 = softmax
(
log(ak)− ηk∇f(ak)

)
, (3.8)

where log(ak) is the vector carrying the logarithm of each entry of ak.
We are now in shape to describe the alternating optimization scheme, by performing,

alternatively, K1 updates of entropic gradient descent for minimizing A when B is fixed,
and vice versa using K2 updates. This strategy is presented in Algorithm 1. Formally, by
replacing the generic function f with the functions corresponding to the two optimization
sub-problems, we obtain the following updates:

Ak+1 = softmax
(
log(Ak) + ηk1B

⊤Y⊤(Y −YBAk)
)
, (3.9)

Bk+1 = softmax
(
log(Bk) + ηk2Y

⊤(Y −YBkA)A⊤) , (3.10)

where log(Ak) is the matrix carrying the logarithm of each entry of Ak while softmax
is applied in parallel on the columns of log(Ak)+ηk1B

⊤Y⊤(Y−YBAk). Note that when
A and B are initialized with positive values, these iterates keep them positive. In addition,
our optimization strategy does not require inverting any matrix contrarily to ADMM-based
approaches[Bioucas-Dias and Figueiredo, 2010].

Algorithm 1 Entropic Descent Archetypal Analysis (EDAA)

1: Input: ℓ2-normalized data Y in Rp×n; r (number of endmembers); T (number of
outer iterations); K1 (number of inner iterations for Â); K2 (number of inner iterations
for B̂).

2: Initialize Â ∈ Rr×n using (3.12).
3: Initialize B̂ ∈ Rn×r using (3.13).
4: Set η1 according to (3.14).
5: Set η2 according to (3.15).
6: for t = 1, . . . , T do
7: for k = 1, . . . , K1 do
8: Â← softmax

(
log(Â) + η1B̂

⊤Y⊤(Y −YB̂Â)
)

9: ▷ log is applied element-wise;
10: ▷ softmax is applied along the first dimension.
11: end for
12: for k = 1, . . . , K2 do
13: B̂← softmax

(
log(B̂) + η2Y

⊤(Y −YB̂Â)Â⊤
)

14: end for
15: end for
16: Ê← YB̂
17: Return Ê, Â ▷ Estimated endmembers, abundances.
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3.2.3 Implementation details
Normalization The input image Y = [y1, . . . ,yn] is ℓ2-normalized for each pixel: for
all i in {1, . . . , n},

yi ←
yi

∥yi∥2
, (3.11)

where yi denotes the i-th pixel. This step is important to gain invariance to illumination
changes.

Initialization We initialize the abundance matrix A uniformly,

Â0 =
1

r
1r1

T
n , (3.12)

where 1d denotes a d-dimensional vector of ones. This corresponds to the maximal entropy
configuration for each pixel. The entropy for each pixel will naturally decrease as a result
of the optimization, but the high entropy of the initialization will have a regularization
effect.

The initialization of the pixel contribution matrix B is then also close to uniform.
Nevertheless, we introduce a small random perturbation which is necessary to break the
symmetry between the columns of B (otherwise, the updates of A and B will keep them
invariant). Concretely, the entries of B are randomly sampled according to the uniform
distribution on [0, 1], U[0,1]. Next, they are rescaled by a factor 0.1. Finally, we apply the
softmax function on each column so that the columns of B belong to the simplex ∆n, for
j in {1, . . . , r},

b0
j = softmax(0.1 u), (3.13)

where u ∼ U[0,1]n . In practice, we observe that such an initialization leads to a matrix B̂0

that is very close to a uniform initialization 1
n
1n1

T
r .

Step sizes We use constant step sizes η1 and η2, for A and B respectively.

η1 =
γ

σ2
max

, (3.14)

where γ is a value in S = {0.125, 0.25, 0.5, 1, 2, 4, 8} and σmax is the largest singular
value of the matrix YB0. We recover the classical convergence of gradient descent with
fixed step size [Nesterov, 2003] up to the factor γ, since σ2

max corresponds to the Lipschitz
constant of the sub-problem related to (3.1) when minimizing w.r.t A, B being fixed.
Having γ in S allows us to use slightly different step sizes and yields better performance
in practice. Note that our model selection procedure, presented later, will automatically
choose the right parameter γ, thus removing the burden for the user of having to deal with
an extra hyper-parameter. Finally, η2 is simply a rescaled version of η1 to account for the
matrices being of transposed dimensions:

η2 =

√
r

n
η1. (3.15)

Hyperparameters For all experiments, if not stated otherwise, we set T = 100 and
K1 = K2 = 5 as it provides a good trade-off between convergence speed and unmixing
accuracy. Note also that these hyper-parameters are robust to different real datasets as
detailed in section 3.3.
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3.2.4 Model selection procedure
As stated above, the initialization of the matrix B is random, leading to different solutions
for each run of the algorithm since the overall optimization problem is non convex. Besides,
we allow for different step-sizes γ, which we draw randomly from the set S in practice.
Since the convergence of the algorithm is very fast (see experimental section for concrete
benchmarks), we are able to provide a large diversity of solutions given a dataset by running
M times our method with different random seeds, while keeping the global computational
complexity reasonable. A major question we address next is then how to select optimally
the best solution in terms of unmixing accuracy.

For this, we take inspiration from classical model selection and sparse estimation
theory[Hastie et al., 2009]. First, we measure the fit of each solution in terms of residual
error ∥Y −YBA∥1, choosing the ℓ1-norm which is known to be more robust to outliers
than the mean squared error. Second, we select the set of solutions that are in the same
ball park as the best solution we have obtained in terms of ℓ1 fit. This selection process is
illustrated by the red dotted line in Figure 3.1, while the precise criterion is described in
Algorithm 2.

From the subset of solutions with good fit, we then choose the one whose endmembers
have the best incoherence, a desired property, which is classical in the theory of sparse
estimation[Elad and Bruckstein, 2002, Gribonval and Nielsen, 2003, Mairal et al., 2014].
Indeed, dictionaries (here endmembers) with more incoherence will benefit from better
theoretical guarantees in terms of estimation of abundances, making it a natural criterion
for model selection in the context of unmixing. Formally, the coherence is simply defined
as the maximal pairwise spectral correlation between the estimated endmembers. More
precisely, for Ê = [ê1, . . . , êp] the endmembers matrix, the coherence µ is defined as:

µ = max
k ̸=k′
⟨êk, êk′⟩, (3.16)

where ⟨.⟩ denotes the inner product.
To the best of our knowledge, this is the first time the coherence µ is used as a model

selection criterion for archetypal analysis. Our experiments, see next section, show that it
is highly effective.

In summary, we automatically select the model whose endmembers have the lowest
maximal pairwise spectral correlation among the ones that have a good ℓ1 fit. This strategy
is illustrated in figure 3.1 and described in Algorithm 2. In the experiments, the number of
runs M was set to 50.

3.3 Experiments
We have performed experiments on one simulated dataset with different noise and purity
levels as well as six standard real datasets whose descriptions are given below.

3.3.1 Data description
1. Simulated dataset: For our study, we chose six endmembers from the USGS

library and generated a 1000-pixel data cube using the methodology outlined
in[Ambikapathi et al., 2011]. This approach allowed us to vary the purity level of
the pixels by adjusting the parameter ρ, which is used in Table 3.1. Specifically,
lower values of ρ correspond to pixels that are less pure, while higher values indicate
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(a) Samson (b) Jasper Ridge

(c) Urban4 (d) Urban6

(e) APEX (f) WDC

Figure 3.1: Illustration of the model selection procedure on six datasets using M = 50
runs. Runs are illustrated by blue dots and the selected one is in black. The selected run is
the one with lowest coherence µ under the dashed red line representing the ℓ1 fit threshold,
see Alg. 2.

greater purity. By manipulating this parameter, we were able to simulate a range of
real-world scenarios and evaluate the robustness of our algorithm under different
conditions.

2. Samson: The Samson2 hyperspectral image is a 95x95 pixels sub-region of a larger
image captured using 156 bands spanning from 401 to 889 nm. Three main materials
have been identified: Tree, Soil and Water. Note that we use a different ground truth
from [Rasti et al., 2022] that we selected for its sharper details on the abundances.

2downloaded at https://rslab.ut.ac.ir/data
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Algorithm 2 Model Selection Procedure

1: Input: M (number of runs); ℓ2-normalized data Y in Rp×n; r (number of endmem-
bers); T (number of outer iterations); K1 (number of inner iterations for Â); K2

(number of inner iterations for B̂).
2: for m = 1, . . . ,M do
3: Set random seed sm.
4: Êm, Âm ← EDAA(Y, r, T,K1, K2, sm) ▷ See (1)
5: fitm ← ||Y − ÊmÂm||1
6: Compute coherence µm on Êm. ▷ See (3.16)
7: end for
8: fitmin ← min{fit1, . . . ,fitM}
9: I ← {m | fitm ≤ 1.05× fitmin} ▷ Subset of models.

10: best← argmin{µi, i ∈ I}
11: Return: Êbest, Âbest.

3. Jasper Ridge: The Jasper Ridge2 hyperspectral image is a 100x100 pixels sub-region
of a larger image initially captured using 224 bands spanning from 380 to 2500 nm.
In total, 198 bands remain as 26 were removed as a pre-processing step due to dense
water vapor and atmospheric effects. Four main materials have been identified: Tree,
Dirt, Water and Road.

4. Urban4 and Urban6: The Urban2 hyperspectral image is a 307x307 pixels image
collected by the Hyperspectral Digital Image Collection Experiment (HYDICE)
[Rickard et al., 1993] sensor using 210 bands spanning from 400 to 2500 nm. In
total, 162 bands remain as 48 were removed as a pre-processing step due to dense
water vapor and atmospheric effects. There exists three versions of this dataset w.r.t.
the number of endmembers. In this study, we focus on the two extremes: Urban4
contains 4 endmembers (Asphalt Road, Grass, Tree and Roof) and Urban6 contains
two additional materials: Dirt and Metal, making it more challenging.

5. APEX: The APEX [Schaepman et al., 2015] hyperspectral image that we consider
in this paper is a 111x122 pixels cropped region3 of a larger image captured over
285 bands spanning from 413 to 2420nm. Four main materials were identified:
Road, Tree, Roof and Water. Note that the ground truth abundance map for water
appears to contain shadows due to the sunlight direction (see figure 3.3). This is a
common issue when dealing with real remote sensing data and we cannot expect the
semi-automated ground truth abundances map generation to be perfect.

6. Washington DC Mall: The Washington DC Mall (WDC) hyperspectral dataset3 con-
sists in a 319x292 pixels image captured by the HYDICE [Rickard et al., 1993]
sensor over 191 bands spanning from 400 to 2400 nm. Six main materials were
identified: Grass, Tree, Roof, Road, Water and Trail.

According to [Zhu, 2017] (Samson, Jasper Ridge and Urban) and [Rasti et al., 2022]
(APEX and WDC), the endmembers spectra were manually selected from the images
and the ground truth abundances were set by the fully constrained least squares (FCLS)
unmixing algorithm. Illustrations of the datasets and their ground truth endmembers are
available in the supplementary material.

3downloaded at https://github.com/BehnoodRasti/MiSiCNet
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3.3.2 Experimental setup
We compare our approach to nine competitive methods from different unmixing categories:

• Geometrical unmixing baseline: FCLS [Heinz and Chein-I-Chang, 2001] using
VCA [Nascimento and Dias, 2005] to extract endmembers. Our implementation
of the FCLS algorithm uses the DecompSimplex routine implemented in SPAMS4.
This method relies on the active-set algorithm [Nocedal and Wright, 1999] that
enables significantly faster convergence than generic quadratic programming solvers
by leveraging the underlying sparsity of the abundances as noted by [Chen et al.,
2014].

• Deep learning unmixing: Endnet5 [Ozkan et al., 2018] using VCA [Nascimento and
Dias, 2005] to initialize the endmembers, MiSiCNet6 [Rasti et al., 2022] and the
deep unrolling network ADMMNet7 [Zhou and Rodrigues, 2021].

• NMF-based blind unmixing: minimum-volume-constraint non-negative matrix fac-
torization (MVCNMF)8[Miao and Qi, 2007], non-negative matrix factorization
quadratic minimum volume (NMF-QMV)9 [Zhuang et al., 2019] using the boundary
term as the quadratic minimum volume penalty, near-convex archetypal analysis
(NCAA)10[De Handschutter et al., 2019] and AA [Cutler and Breiman, 1994] using
the implementation from[Chen et al., 2014] developed in SPAMS.

The approach denoted as AA involves solving (3.1) using an active-set method
to optimize the convex sub-problems. This method is a conventional alternating
approach that uses a fixed initialization (A and B entries are set to 0) and a fixed
number of iterations (T = 100). While AA is a well-known method, it has not
been thoroughly evaluated on various real-world unmixing datasets. Therefore, we
include it as a competing method in our study to compare its performance with other
state-of-the-art algorithms. By using AA, we can also assess the improvements
in optimization achieved by EDAA since the underlying model (3.1) is the same
for both methods. This comparison enables us to gain insights into the benefits of
EDAA for hyperspectral unmixing.

• Finally, we include a recent technique addressing spectral variability: SeCoDe11[Yao
et al., 2021].

To quantitatively evaluate the performance of the selected methods, we consider two
metrics that are computed both globally and individually for each endmember. On one
hand, we measure the quality of the generated abundances by means of the abundances
root mean square error (RMSE) in percent between the ground truth and the estimated
abundances:

4http://thoth.inrialpes.fr/people/mairal/spams/
5implementation at https://github.com/burknipalsson/hu_autoencoders
6implementation at https://github.com/BehnoodRasti/MiSiCNet
7no implementation available online
8implementation found here
9implementation at https://github.com/LinaZhuang/NMF-QMV_demo

10implementation found here
11implementation at https://github.com/danfenghong/IEEE_TGRS_SeCoDe
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RMSE(A, Â) = 100×

√√√√ 1

rn

r∑
i=1

n∑
j=1

(
Ai,j − Âi,j

)2
. (3.17)

On the other hand, we assess the quality of the estimated endmembers spectra by using
the spectral angle distance (SAD) in degrees between the ground truth and the generated
endmembers:

SAD(E, Ê) =
180

π
× 1

r

r∑
i=1

arccos

(
⟨ei, êi⟩
||ei||2||êi||2

)
, (3.18)

where ei denotes the i-th column of E, i.e.,the spectrum of the i-th endmember.

3.3.3 Unmixing experiments

Table 3.1: Abundances RMSE and endmembers SAD for the simulated dataset with
different noise and purity levels. The best results are shown in bold. The second best
results are underlined.

Methods ρ
RMSE SAD

SNR (dB) SNR (dB)
20 30 40 20 30 40

FCLS [Heinz and Chein-I-Chang, 2001]
0.7 16.53 17.15 17.97 7.20 7.18 7.38

0.85 12.96 11.44 10.15 3.86 3.05 2.45
1.0 8.03 4.43 3.31 1.84 0.58 0.17

MiSiCNet [Rasti et al., 2022] (λ = 0.1)
0.7 10.60 8.64 8.31 3.94 1.88 1.58

0.85 13.76 8.62 7.68 4.70 1.20 0.75
1.0 15.08 6.42 3.73 5.11 1.12 0.39

ADMMNet [Zhou and Rodrigues, 2021]
0.7 15.49 16.92 16.68 11.44 13.76 13.48

0.85 17.18 19.54 19.58 8.52 10.23 9.93
1.0 21.13 16.57 16.60 9.03 6.26 6.55

MVCNMF [Miao and Qi, 2007]
0.7 15.80 9.75 15.53 6.85 2.52 6.85

0.85 9.88 9.80 9.54 1.85 1.16 0.76
1.0 6.84 7.03 3.55 1.12 0.78 0.17

NMFQMV [Zhuang et al., 2019]
0.7 10.11 8.32 7.36 4.96 4.76 3.32

0.85 10.58 7.11 6.79 2.91 1.18 0.98
1.0 11.24 6.62 3.80 3.25 1.54 0.41

SeCoDe [Yao et al., 2021]
0.7 13.49 13.36 13.62 16.06 16.38 16.54

0.85 13.56 14.76 14.69 14.62 15.79 15.73
1.0 7.88 4.74 4.35 7.76 5.07 4.76

NCAA [De Handschutter et al., 2019]
0.7 14.62 13.43 14.64 8.32 8.00 7.44

0.85 12.15 7.66 7.19 5.72 2.56 1.10
1.0 11.61 3.20 3.25 5.37 1.70 0.71

AA (T = 100)
0.7 17.67 17.23 17.18 7.61 6.71 6.43

0.85 9.44 8.23 8.04 2.55 2.09 1.86
1.0 5.13 2.98 2.75 0.88 0.45 0.34

EDAA (K1 = K2 = 30)
0.7 14.35 13.75 14.91 5.50 5.01 6.52

0.85 8.84 8.37 8.37 2.63 2.18 1.92
1.0 5.82 4.26 2.89 0.96 0.51 0.33

Table 3.1 presents the results of our unmixing accuracy evaluation on the simulated
dataset. Our analysis indicates that the performance of the AA variants (active-set based
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and EDAA) is lower in scenarios where the pixels are highly mixed (ρ = 0.7) when
compared to geometrically motivated methods, such as MiSiCNet, MVCNMF and NMF-
QMV, which do not rely directly on the pixel values to estimate the endmembers. However,
it is worth noting that the EDAA method performs better than the plain AA method in
this setting, thanks to its advanced model selection. In the case where pure pixels are
present (ρ = 1.0), the AA model formulation (3.1) yields the best results, as it estimates
the endmembers as convex combinations of the pixels. This approach is more robust to
noise than the FCLS method. For the medium case (ρ = 0.85), both AA and EDAA exhibit
better performance than MiSiCNet and NMF-QMV for low Signal-to-Noise Ratio (SNR)
due to their greater robustness to noise. However, they are outperformed by MiSiCNet
and NMF-QMV for high SNR, as there are no pure pixels available for these methods to
leverage.

Table 3.2: Abundances RMSE on six real datasets. The best results are shown in bold. The
second best results are underlined.

FCLS Endnet MiSiCNet ADMMNet MVCNMF NMF-QMV SeCoDe NCAA AA (T = 100) EDAA

Samson

Soil 11.28 11.61 6.47 18.41 6.62 13.67 7.67 12.37 6.16 5.74
Tree 9.13 7.72 5.38 14.32 3.47 8.40 6.68 4.87 4.00 3.77

Water 5.05 6.86 3.47 6.67 4.66 11.61 2.57 7.80 2.30 2.59
Overall 8.88 8.97 5.25 14.00 5.08 11.44 6.05 8.89 4.44 4.24

Jasper Ridge

Dirt 21.23 18.26 21.68 21.58 20.19 19.97 20.62 18.85 9.29 7.32
Road 24.72 29.40 24.94 21.37 24.28 26.13 21.42 23.95 8.04 7.61
Tree 11.20 4.00 3.41 13.19 9.80 14.55 9.57 3.34 7.43 6.63

Water 13.61 22.38 7.07 13.92 17.83 19.81 9.38 10.36 6.10 5.69
Overall 18.52 20.70 16.98 17.96 18.79 20.53 16.31 16.18 7.80 6.85

Urban4

Road 30.54 12.04 10.30 19.45 12.89 20.25 12.84 11.58 11.13 8.62
Grass 32.99 17.94 12.35 22.17 14.00 20.22 24.34 7.57 11.47 9.28
Roof 15.40 11.28 8.01 13.31 10.98 13.29 13.20 10.46 7.30 6.37
Tree 20.02 11.69 8.78 16.45 13.63 21.56 26.36 7.63 8.51 6.27

Overall 25.78 13.52 10.00 18.15 12.93 19.11 20.17 9.48 9.76 7.75

Urban6

Road 31.61 17.44 19.18 24.43 21.86 24.81 18.56 17.51 13.84 11.39
Grass 23.62 31.47 18.84 32.86 28.19 27.97 20.97 11.25 11.88 18.61
Roof 13.00 9.35 7.41 14.07 11.40 16.39 20.82 13.31 11.20 6.01
Tree 16.14 15.50 11.72 22.71 16.12 19.95 26.67 10.52 9.71 9.85
Dirt 25.06 30.67 23.95 22.33 20.42 24.31 20.18 26.71 10.99 15.94

Metal 12.99 25.21 33.67 11.20 17.35 13.40 12.05 8.93 17.73 15.86
Overall 21.54 23.09 16.27 22.41 19.92 21.74 20.34 15.88 12.83 13.63

APEX

Road 33.31 29.32 32.66 35.81 32.14 31.43 29.11 34.83 20.11 16.54
Tree 20.97 18.18 19.97 27.25 23.96 24.62 22.25 21.98 14.58 14.48
Roof 14.15 15.88 18.42 15.88 15.24 14.73 14.11 14.58 13.06 11.27
Water 18.03 17.47 16.88 17.16 17.86 17.99 16.77 17.62 16.80 16.83

Overall 22.77 20.90 22.86 25.35 23.23 23.10 21.35 23.55 16.36 14.94

WDC

Grass 30.90 27.35 31.61 39.87 37.79 34.69 30.55 34.78 35.88 32.53
Tree 22.42 35.98 23.64 26.66 28.55 19.90 34.44 27.19 17.17 11.46
Road 27.90 38.49 34.91 21.00 20.77 22.49 22.15 20.06 39.86 13.97
Roof 8.71 27.04 11.98 9.95 6.96 19.81 10.17 18.21 20.52 29.31
Water 17.76 12.94 14.72 20.44 12.93 20.34 21.23 24.83 24.03 9.63
Trail 12.80 12.63 12.07 14.09 11.26 12.36 15.35 11.83 16.83 13.19

Overall 21.57 27.64 23.39 24.00 22.42 22.60 23.81 24.89 27.24 20.46

Tables 3.2 and 3.3 report the unmixing accuracy in terms of abundances RMSE (3.17)
and endmembers SAD (3.18) on six standard real datasets. The datasets are arbitrarily
ranked based on their difficulty. For a fair comparison, all methods were evaluated on the
ℓ2-normalized data (3.11) which induces slight changes compared to the results reported
in [Rasti et al., 2022].

Overall EDAA obtains the best abundances RMSE on five out of six real datasets. The
results on Urban6 fall in favor of plain AA but the gap is moderate (12.83 vs 13.63) given
that EDAA is more than seven times faster (594 versus 75 seconds) than plain AA on this
dataset (see table 3.4).

Note however that plain AA performs poorly on WDC where the ground truth endmem-
bers are highly correlated. We argue that our model selection technique is instrumental
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Table 3.3: Endmembers SAD on six real datasets. The best results are shown in bold. The
second best results are underlined.

FCLS Endnet MiSiCNet ADMMNet MVCNMF NMF-QMV SeCoDe NCAA AA (T = 100) EDAA

Samson

Soil 2.76 0.61 1.21 7.48 1.08 4.90 0.79 4.57 0.78 1.64
Tree 3.05 1.93 3.38 2.48 2.54 5.34 1.96 2.42 1.80 1.98

Water 7.15 1.48 5.36 6.68 4.82 11.14 2.56 5.15 1.38 1.31
Overall 4.32 1.34 3.32 5.55 2.81 7.13 1.77 4.05 1.32 1.64

Jasper Ridge

Dirt 13.03 1.63 4.26 21.90 9.41 12.40 9.94 4.08 2.54 2.74
Road 40.39 32.85 20.04 46.06 36.38 45.66 45.87 41.84 5.26 3.10
Tree 11.16 1.39 1.27 10.78 8.28 14.46 12.42 2.25 4.68 4.23

Water 13.24 3.21 4.18 13.14 10.40 14.53 6.44 5.00 3.03 2.80
Overall 19.46 9.77 7.44 22.97 16.12 21.77 18.67 13.29 3.88 3.22

Urban4

Road 15.40 6.40 5.73 27.68 9.00 14.51 17.28 9.44 3.70 6.01
Grass 24.18 3.09 5.84 18.58 7.32 16.39 7.25 4.81 1.80 2.14
Roof 47.56 3.76 16.10 33.08 27.80 36.31 30.08 23.98 15.64 10.49
Tree 19.82 2.32 4.60 11.34 6.39 22.48 16.17 1.44 3.47 2.81

Overall 26.74 3.89 8.07 22.67 12.63 22.42 17.69 9.92 6.15 5.36

Urban6

Road 13.43 3.26 7.47 35.54 23.96 26.60 32.28 18.95 4.26 4.85
Grass 22.30 4.13 10.97 29.20 12.60 21.63 13.34 7.36 3.44 2.17
Roof 15.65 17.76 13.97 41.57 28.09 15.55 42.86 27.14 21.18 13.70
Tree 20.70 7.72 9.99 16.67 12.93 23.31 25.85 5.62 8.76 8.92
Dirt 69.81 17.42 19.57 36.46 19.59 23.60 27.66 37.21 9.87 13.33

Metal 39.35 7.04 9.75 39.91 5.78 68.73 57.78 11.13 7.59 4.52
Overall 30.21 9.56 11.95 29.20 17.16 29.90 33.30 17.90 9.18 8.64

APEX

Road 40.23 14.46 33.02 49.02 44.02 54.53 48.91 37.26 4.80 6.83
Tree 14.13 7.53 3.16 17.57 7.49 16.06 16.37 6.50 7.56 7.68
Roof 8.25 4.36 11.31 11.41 5.34 7.98 8.13 4.41 7.44 7.50
Water 7.15 2.83 6.02 4.01 3.16 9.71 4.06 9.06 2.32 2.21

Overall 17.44 7.30 13.38 20.50 15.00 22.07 19.37 14.31 5.53 6.06

WDC

Grass 17.40 3.54 17.46 43.51 11.01 34.36 25.43 15.33 17.10 8.11
Tree 23.73 12.85 12.36 23.58 20.73 17.70 50.57 25.36 8.17 1.81
Road 32.56 26.76 33.20 39.15 16.95 17.28 21.96 16.06 35.29 7.67
Roof 34.84 13.70 28.87 31.47 4.77 44.87 46.46 33.94 16.19 50.97
Water 4.78 1.75 1.57 11.60 5.43 19.74 30.22 4.64 3.62 1.08
Trail 9.94 1.49 3.24 24.85 13.57 9.60 28.89 11.41 4.28 4.75

Overall 20.54 10.02 16.11 29.03 12.08 23.93 33.92 17.79 14.11 12.40

in avoiding collapsing runs in which endmembers spectra are highly correlated. This is
underlined by the overall competitive SAD results obtained by EDAA across datasets.
It should be noted that the SAD metric alone is not sufficient to assess the unmixing
performance as a good SAD score does not necessarily lead to better abundance maps.
Thus it is not contradictory to have slightly worse SAD scores yet better looking abundance
maps.

The FCLS baseline based on VCA obtains rather poor results except for WDC. This is
likely due to the pure pixel assumption. Indeed, VCA selects a single pixel to represent
the endmembers spectra, which is too stringent in real scenarios where spectral variability
is ubiquitous.

Despite its quadratic minimum volume boundary term, NMF-QMV generally obtains
worse results than the FCLS baseline. Since it operates the unmixing in a subspace,
NMF-QMV cannot prevent the endmembers spectra from having negative values, which
breaks the physical interpretability of the estimates and subsequently harms the unmixing
performance. This phenomenon can be observed in figures 3.2, 3.3 and 3.4 for several
endmembers. The associated abundances show that NMF-QMV produces maps that are
too uniform and lack sparsity.

In contrast, MVCNMF is a strong baseline as it does not operate in a subspace.
When it comes to deep learning based methods, Endnet achieves very good results in

terms of SAD but tends to create overly sparse abundances which hinders its performance
in terms of abundances RMSE. For instance, as can be seen in figure 3.2, the Road
endmember is overlooked by Endnet even though EDAA recovers it neatly. Likewise, in
figure 3.3, the Road endmember spreads too much compared to EDAA which appears
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Figure 3.2: Estimated endmembers (a) and abundances (b) on the Jasper Ridge dataset.
Ground truth abundances are displayed on the right-most column.

closer to the ground truth.
MiSiCNet gives better unmixing results than Endnet in terms of abundances RMSE

except for APEX although the SAD results falls in favor of Endnet except for Jasper Ridge.
This is likely due to Endnet using the spectral angle distance on the input data in its loss
which helps in achieving better SAD accuracy. However a good SAD is not sufficient to
obtain good abundance maps, an area where MiSiCNet tends to shine as it incorporates
spatial information by using convolutional filters and implicitly applying a regularizer on
abundances.

ADMMNet obtains rather poor results on all datasets, which is likely due to using
ADMM to blindly solve the linear mixing model rather than leveraging a known library.

SeCoDe works reasonably well on the Samson dataset due to its implementation
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Figure 3.3: Estimated endmembers (a) and abundances (b) on the APEX dataset. Ground
truth abundances are displayed on the right-most column.

available online that has been tailored to this dataset. However it does not perform as
well on other datasets, which is likely due to requiring precise hyperparameters tuning
depending on the data at hand.

NCAA obtains reasonable results due to its fine-tuning procedure but its computational
cost is prohibitive as we will be discussing next.

Finally, the plain AA method leveraging an active-set algorithm is a very competitive
method for five out of six datasets, yet its performance drops significantly when dealing
with the hardest mixing scenario that is WDC.

For example, in figure 3.2 only AA and EDAA are able to uncover the Road endmember
in Jasper Ridge whereas all the other techniques fail.

Unlike EDAA, AA does not rely on a random initialization of the estimates as they
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Figure 3.4: Estimated endmembers (a) and abundances (b) on the WDC dataset. Ground
truth abundances are displayed on the right-most column.

are set to zeros in practice. Instead, EDAA requires starting from feasible points w.r.t. the
optimization sub-problems. In addition, the initial estimates in EDAA should not contain
any zeros due to the presence of the logarithm in (3.8). Thanks to the entropic gradient
descent speed, it is possible to fit several models that have been randomly initialized as
described in 3.2.3 and use the model selection procedure presented in Algorithm 2 which
selects the model that exhibits the lowest coherence among the pool of candidates that are
well fitted. Notably, this approach prevents the estimated endmembers from collapsing
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into degenerate solutions that would end up being perfectly correlated. This likely explains
why the performance of plain AA on WDC drops as the endmembers are highly correlated.

Additional qualitative results for the Samson, Urban4 and Urban6 datasets can be
found in the supplementary material. Moreover, we have also included the results on a
250×191 pixels subset of the Cuprite dataset, which is more challenging and does not
come with ground truth abundance maps.

3.3.4 Computational cost
Table 3.4 reports the processing times for the different unmixing algorithms on the six
real datasets. MVCNMF, NMF-QMV, SeCoDe and NCAA were implemented in Matlab
(2020b) while FCLS, Endnet, MiSiCNet, ADMMNet and the AA variants were imple-
mented in Python (3.8). NMF-QMV, MVCNMF, SeCoDe, NCAA, FCLS and AA run on
CPU whereas Endnet, MiSiCNet, ADMMNet and EDAA run on GPU. The processing
times were obtained using a computer with an Intel(R) Xeon(R) Silver 4110 processor
(2.10 GHz), 32 cores, 64GB of memory, and a NVIDIA GeForce RTX (2080 Ti) graphical
processing unit. The table shows that FCLS is clearly faster than the other unmixing
techniques, however it is a supervised method that relies on an endmembers extraction
algorithm. In this case, VCA is used which is also fast. The deep learning methods are the
slowest techniques despite running on GPU. Interestingly, EDAA requires a lower com-
putational cost than NMF-QMV and AA although our approach consists in aggregating
50 runs obtained iteratively. For example, it takes on average 1.5 seconds for EDAA to
perform a single unmixing task on the Urban6 dataset, which is three times faster than
FCLS. This demonstrates the efficiency of EDAA which allows us to use an adequate
model selection procedure over several runs. Note that the processing time of NCAA is
prohibitive due to its fine-tuning component despite using a fast projected gradient method.

Table 3.4: Processing times in seconds on six real datasets. The best results are in bold and
the second best underlined. EDAA includes the model selection procedure over M = 50
runs.

FCLS Endnet MiSiCNet ADMMNet MVCNMF NMF-QMV SeCoDe NCAA AA (T = 100) EDAA
Samson 0.3 ≈ 560 ≈ 80 55.2 3.8 20.1 24.2 113.1 33.0 11.2

JasperRidge 0.4 ≈ 680 ≈ 90 54.1 8.0 22.3 28.6 501.4 43.6 9.6
Urban4 3.6 ≈ 720 ≈ 411 504.6 25.4 112.5 475.1 3529.9 415.7 66.3
Urban6 4.4 ≈ 1000 ≈ 417 507.5 45.0 158.4 707.7 4880.8 593.7 75.2
APEX 0.6 ≈ 720 ≈ 92 80.0 11.3 27.2 56.1 441.5 75.4 15.4
WDC 4.0 ≈ 1000 ≈ 409 535.8 55.1 174.4 524.7 4179.0 493.1 81.0

3.3.5 Ablation study
Finally, we study the sensitivity to hyper-parameters for Algorithm 1 and 2 in figure 3.5
where the Y-axis corresponds to the overall abundances RMSE. Given a fixed computa-
tional budget of 1000 updates, figure 3.5 (a) shows that the hyper-parameters of EDAA are
robust provided that the number of runs M in the model selection is large enough (here
100). Only the two extremes configurations (K1 = K2 = 1, T = 500 and K1 = K2 = 50,
T = 10) are slightly worse, especially on Urban6. For the remaining experiments, we
use K1 = K2 = 5. In figure 3.5 (b), we see that the number of outer iterations is quite
stable except for WDC which requires more updates (1000, i.e.,T = 100). Finally, we
study the importance of the number of runs M from which to select the best candidate in

54



3.4. Conclusion

figure 3.5 (c). We observe that the model selection procedure requires at least 50 runs to
obtain very good performances, hence we use M = 50 in our unmixing experiments. On
unknown datasets where real-time unmixing is not required, it is advised to use a large
number of runs (at least 100) to ensure that the model selection procedure yields a good
candidate. Detailed results for both abundances RMSE and SAD metrics are available in
the supplementary material.
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Figure 3.5: Sensitivity analysis to the hyperparameters in Algorithms 1 and 2 measured
in global abundances RMSE: (a) Varying inner and outer iterations K1, K2 and T for a
constant number of updates (1000) and runs M = 100, (b) Varying outer iterations T
using K1 = K2 = 5 and (c) Varying number of runs M using K1 = K2 = 5 and T = 100.

3.4 Conclusion
We have proposed a new algorithm based on archetypal analysis for blind hyperspectral
unmixing. We have shown how to take advantage of its efficient GPU implementation
in order to develop an adequate model selection procedure to obtain state-of-the-art
performances. Remarkably, our simple and easy-to-use approach considerably improves
the unmixing results on a comprehensive collection of standard real datasets. In addition,
we have made our results reproducible by releasing an open source codebase which also
includes the plain archetypal analysis variant presented in this study. While this paper was
under review, we also investigated in[Rasti et al., 2023b] the problem of semi-supervised
unmixing by using a variant of archetypal analysis, showing that such a framework may
be useful beyond the problem of blind unmixing that we address here. Finally, it is worth
noting that our approach does not consider the spatial structure of the data. This feature
suggests that a natural extension to our approach would be to incorporate missing spatial
information, which could potentially improve the accuracy of our results.
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APPENDIX

3.5 Datasets description
In this section, we provide illustrations of the unmixing datasets used in the experiments.
Each dataset is described with a false-color RGB image alongside the ℓ2-normalized
ground truth endmembers.
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Figure 3.6: Samson dataset: (a) False colors RGB image (Red: 83rd band, Green: 43,
Blue: 9) (b) ℓ2-normalized ground truth endmembers.

3.6 Additional results
We provide qualitative results on the Samson, Urban4 and Urban6 datasets in figures 3.11,
3.12 and 3.13.

Cuprite dataset In order to evaluate the performance of the selected methods, we
provide qualitative results on a 191 × 250 pixels subset of the Cuprite dataset, which is
only accompanied by a geological map of the main materials present in the scene (see
Fig.3.14(a)). Recovering the spectral signatures of interest in this dataset is a challenging
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Figure 3.7: JasperRidge dataset: (a) False colors RGB image (Red: 130th band, Green: 50,
Blue: 5) (b) ℓ2-normalized ground truth endmembers.
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Figure 3.8: Urban dataset: (a) False colors RGB image (Red: 130th band, Green: 70, Blue:
30) (b) ℓ2-normalized ground truth endmembers for Urban6. Urban4 corresponds to the
first 4 materials.

task due to the similarity of their spectral signatures and the presence of significant spectral
variability. All methods were asked to output abundance maps for r = 5 unknown
endmembers. As shown in Fig.3.14(b), all methods successfully recovered the three
dominant materials of interest, namely Chalcedony, Alunite, and Kaolinite. However, we
observed that MiSiCNet, AA, and EDAA produced sharper abundance maps than FCLS
and NMFQMV. It is worth noting that we could not provide results for Endnet due to its
outdated code base. Moreover, we had to increase the number of outer iterations for EDAA
to 1000 to obtain meaningful results, while AA iterations could be kept at 100. Finally, we
found that the ℓ1 fitting criterion was not satisfactory and had to be replaced with ℓ2 for
this particular dataset.
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Figure 3.9: APEX dataset: (a) False colors RGB image (Red: 200th band, Green: 100,
Blue: 10) (b) ℓ2-normalized ground truth endmembers.
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Figure 3.10: Washington DC Mall dataset: (a) False colors RGB image (Red: 150th band,
Green: 75, Blue: 20) (b) ℓ2-normalized ground truth endmembers.

Ablation study We report the detailed results obtained in the ablation study. For each
dataset, the overall abundances RMSE and SAD are computed for all configurations. Table
3.6 underlines the importance of the number of runs M in the model selection procedure.
Table 3.5 studies the sensitivity of the outer iterations T in EDAA when we decrease
the computational budget. Finally, table 3.7 studies the sensitivity of the inner and outer
iterations K1, K2 and T in EDAA given a fixed computational budget.
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Figure 3.11: Estimated endmembers (a) and abundances (b) on the Samson dataset. Ground
truth abundances are displayed on the right-most column.
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Figure 3.12: Estimated endmembers (a) and abundances (b) on the Urban4 dataset. Ground
truth abundances are displayed on the right-most column.
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Figure 3.13: Estimated endmembers (a) and abundances (b) on the Urban6 dataset. Ground
truth abundances are displayed on the right-most column.

61



3. ENTROPIC DESCENT ARCHETYPAL ANALYSIS FOR BLIND HYPERSPECTRAL UNMIXING

Ch
al

ce
do

ny

FCLS MiSiCNet NMFQMV AA EDAA

Al
un

ite
Ka

ol
in

ite

0.0

0.2

0.4

0.6

0.8

1.0

(a) Geological Map (b) Estimated abundance maps

Figure 3.14: Abundance maps of three dominant minerals estimated using different blind
unmixing techniques applied to the Cuprite dataset.

Table 3.5: Sensitivity to the number of outer iterations T of Algorithm EDAA with
K1 = K2 = 5. The abundances RMSE and SAD metrics are computed globally. The best
results are in bold and the second best are underlined.

T = 100 T = 75 T = 50

Samson
RMSE 4.24 4.34 3.97
SAD 1.64 1.69 1.46

Jasper Ridge
RMSE 6.85 5.90 6.44
SAD 3.22 3.06 3.19

Urban4
RMSE 7.51 7.46 7.72
SAD 5.87 5.01 4.67

Urban6
RMSE 13.52 13.54 13.99
SAD 7.95 7.85 7.93

APEX
RMSE 14.66 14.38 14.12
SAD 6.29 6.58 6.99

WDC
RMSE 20.47 22.81 22.89
SAD 12.33 16.97 16.87
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Table 3.6: Sensitivity to the number of runs M of the model selection procedure with
K1 = K2 = 5 and T = 100. The abundances RMSE and SAD metrics are computed
globally. The best results are in bold and the second best are underlined.

M = 10 M = 20 M = 50 M = 100

Samson
RMSE 5.05 3.90 4.24 4.24
SAD 1.94 1.43 1.64 1.64

Jasper Ridge
RMSE 10.27 10.27 6.85 6.85
SAD 3.73 3.73 3.22 3.22

Urban4
RMSE 8.17 8.06 7.75 7.51
SAD 5.43 5.41 5.36 5.87

Urban6
RMSE 16.50 16.50 13.63 13.52
SAD 8.16 8.16 7.92 7.95

APEX
RMSE 23.84 24.17 14.94 14.66
SAD 12.57 12.88 6.06 6.29

WDC
RMSE 24.39 24.39 20.46 20.47
SAD 11.52 11.52 12.40 12.33

Table 3.7: Sensitivity to hyperparameters of EDAA for a constant number of updates
(1000). The abundances RMSE and SAD metrics are computed globally. The best results
are in bold and the second best are underlined.

K1 = K2 = 1, T = 500 K1 = K2 = 5, T = 100 K1 = K2 = 10, T = 50 K1 = K2 = 20, T = 25 K1 = K2 = 50, T = 10

Samson
RMSE 4.42 4.24 4.15 4.48 4.34
SAD 1.65 1.64 1.61 1.78 1.68

Jasper Ridge
RMSE 6.70 6.85 7.80 7.59 8.79
SAD 3.48 3.22 4.28 3.12 4.79

Urban4
RMSE 7.40 7.51 7.43 7.90 9.49
SAD 5.72 5.87 5.53 6.05 5.46

Urban6
RMSE 17.92 13.52 12.35 12.71 17.92
SAD 11.71 7.95 8.74 8.52 8.79

APEX
RMSE 14.25 14.66 14.20 14.15 16.46
SAD 8.17 6.29 7.73 8.06 5.26

WDC
RMSE 22.91 20.47 22.16 20.92 21.20
SAD 12.59 12.33 16.05 13.46 13.51
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4

SPARSE UNMIXING USING ARCHETYPAL

ANALYSIS

Chapter abstract: This chapter introduces a new sparse unmixing technique us-
ing archetypal analysis (SUnAA). First, we design a new model based on archetypal
analysis. We assume that the endmembers of interest are a convex combination of
endmembers provided by a spectral library and that the number of endmembers of
interest is known. Then, we propose a minimization problem. Unlike most conven-
tional sparse unmixing methods, here the minimization problem is non-convex. We
minimize the optimization objective iteratively using an active set algorithm. Our
method is robust to the initialization and only requires the number of endmembers
of interest. SUnAA is evaluated using two simulated datasets for which results
confirm its better performance over other conventional and advanced techniques in
terms of signal-to-reconstruction error. SUnAA is also applied to the Cuprite dataset
and the results are compared visually with the available geological map provided
for this dataset. The qualitative assessment demonstrates the successful estimation
of the minerals abundances and significantly improves the detection of dominant
minerals compared to the conventional regression-based sparse unmixing methods.

The source code is freely available at https://github.com/inria-thoth/SUnAA.

The chapter is based on the following publication:

B. Rasti∗, A. Zouaoui∗, J. Mairal, and J. Chanussot. SUnAA: Sparse Unmixing
using Archetypal Analysis. In IEEE Geosciences and Remote Sensing Letters, 2023
∗equal contributions
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4.1. Introduction

4.1 Introduction
Spectral unmixing estimates the abundances of pure spectra of materials called endmem-
bers. Depending on the prior knowledge available about endmembers, the unmixing
problem can be divided into three main categories: (1) Supervised Unmixing, (2) Blind Un-
mixing and (3) Semi-supervised or Sparse Unmixing. In supervised unmixing, abundances
are estimated by relying on known endmembers whereas blind unmixing estimates both
the endmembers and the abundances simultaneously. Semi-supervised unmixing relies on
a library of endmembers that ideally contains the endmembers present in the scene and
is often formulated as a sparse regression problem, thus it is known as sparse unmixing.
Abundances can typically be estimated by enforcing sparsity-promoting penalties. J. M.
Bioucas-Dias originally proposed this idea in [Bioucas-Dias and Figueiredo, 2010] where
sparse unmixing by variable splitting and augmented Lagrangian (SUnSAL), and the
constrained SUnSAL (C-SUnSAL) were introduced. Both SUnSAL and C-SUnSAL use
the ℓ1 penalty to promote sparsity on the abundances. SUnSAL assumes the ℓ2 norm for
the fidelity term augmented to the ℓ1, while C-SUnSAL assumes the ℓ2 norm as a constraint
to minimize ℓ1. SUnSAL solves the minimization problems using the alternating direction
method of multipliers (ADMM) [Eckstein and Bertsekas, 1992].

SUnSAL was later improved in [Iordache et al., 2012] by adding the total variation
(TV) penalty (SUnSAL-TV) to the minimization problem in order to incorporate spatial
information. We should note that SUnSAL-TV does not hold the abundances sum-to-one
constraint (ASC) due to the conflict with the ℓ1 penalty. Collaborative sparse [Iordache
et al., 2014a] unmixing enforces the sum of ℓ2 norms on the abundances to promote sparsity.
Double reweighted sparse unmixing [Wang et al., 2017] and spectral–spatial weighted
sparse unmixing (S2WSU) [Zhang et al., 2018a] exploit the weighted ℓ1 norm to promote
sparsity. The former also uses the TV penalty to capture spatial information. Multiscale
sparse unmixing algorithm (MUA) [Borsoi et al., 2019] captures spatial correlations by
performing sparse regression on segmented pixels using either a binary partition tree
(BPT), the simple linear iterative clustering (SLIC), or the K-means algorithm. In [Ince,
2020], SLIC was chosen for the segmentation, and sparse unmixing was performed using
superpixel-based graph Laplacian regularization. A library pruning-based sparse unmixing
called multiple signal classification collaborative sparse unmixing (MUSIC-CSR) was
proposed in [Iordache et al., 2014b]. The library was pruned using an orthogonal projection
where HySime [Bioucas-Dias and Nascimento, 2008] was used to obtain the subspace bases
to reduce the noise effect. Then collaborative sparse regression was used for abundance
estimation.

A common drawback of the sparse unmixing techniques mentioned above is that the
estimated fractional abundances do not necessarily describe the aerial fraction of each
pure material on the ground due to the absence of ASC. Indeed, the ℓ1 penalties cannot
be applied to the abundances while holding the ASC. This issue was addressed in sparse
unmixing using convolutional neural network (SUnCNN) [Rasti and Koirala, 2022]. In
[Rasti and Koirala, 2022], it was shown that the problem of selecting a suitable prior
for a sparse regression could be moved to the optimization on the parameters of a deep
encoder-decoder network while the ASC can be enforced using a softmax layer. However,
selecting suitable hyperparameters for deep networks is often challenging. In [Lin and
Gader, 2022], an asymmetric encoder-decoder architecture is used for sparse unmixing.
Instead of softmax, a sparse variation of softmax is used to avoid the full support of
softmax while enforcing ASC.

In conventional sparse unmixing, the endmembers library is fixed, and the abundances
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estimation is of interest. However, even a pruned and well-selected spectral library cannot
flawlessly represent the endmembers of materials in a real-world dataset. There are
several factors, such as noise, atmospheric effects, illumination variations, and the intrinsic
variation of materials which may affect the endmembers and induce scaling factors for the
endmembers present in the scene compared to the ones from the library. To address this
issue, we assume that endmembers of interest can be modeled by a convex combination of
the library endmembers. This corresponds to the formulation of archetypal analysis (AA)
[Cutler and Breiman, 1994]. Recently, archetypal analysis has been successfully harnessed
for blind unmixing in [Zouaoui et al., 2023]. In [Xu et al., 2022], ℓ1 sparsity-constrained
archetypal analysis was proposed for blind unmixing where the sparsity was enforced on
the abundances. In this chapter, we propose solving sparse unmixing using archetypal
analysis (SUnAA). In the proposed model, an additional matrix is introduced, which
defines the contributions of the endmembers from the library to the estimated spectra
of endmembers present in the scene. Here the ASC can be enforced but the resulting
proposed minimization is jointly non-convex. The optimization problem is solved using
an active set algorithm, leading to a parameter-free technique, besides the number of
endmembers of interest that is required. The experimental results confirm that SUnAA
outperforms conventional and deep learning-based sparse unmixing techniques in terms
of signal-to-reconstruction error (SRE) for two simulated datasets and visually for the
Cuprite dataset. The major contributions of this chapter are summarized as follows: 1) we
propose a new model based on archetypal analysis for sparse unmixing: we assume that
the unknown endmembers are a convex combination of the library endmembers, 2) we
propose a non-convex optimization for sparse unmixing: unlike the conventional sparse
unmixing which is based on sparse regression and convex optimization, we show that
the proposed non-convex optimization leads to accurate abundances estimation, and 3)
we adopt a parameter-free active set algorithm to minimize the proposed optimization
problem.

4.2 Method

4.2.1 Conventional sparse unmixing
As introduced in Section 1.4, in semi-supervised unmixing, the linear mixing model states
that the observed spectra are modeled as a linear combination of the library endmembers:

Y = DX+N, (4.1)

where Y ∈ Rp×n denotes the n observed spectra over p channels and N ∈ Rp×n is the
model error and noise. D ∈ Rp×m denotes the spectral library containing m endmembers.
X ∈ Rm×n is the unknown, potentially redundant, fractional abundances to estimate. This
setup is often referred to as sparse unmixing since the (redundant) fractional abundances
X are estimated by applying sparsity-enforcing penalties/constraints, using the following
sparse regression formulation:

arg min
X

1

2
∥Y −DX∥2F + λ

n∑
i=1

||xi||q,

s.t. X ≥ 0,

1T
mX = 1T

n

(4.2)
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where X = [x1, . . . ,xm]. The ℓq norm is often selected to be a (weighted) sparsity
promoting norm. For instance, SUnSAL [Bioucas-Dias and Figueiredo, 2010] solves
problem (4.2) for q = 1 using ADMM [Eckstein and Bertsekas, 1992]. However, [Iordache
et al., 2012] suggests using SUnSAL without ASC due to the conflict with ℓ1.

4.2.2 SUnAA
Inspired by archetypal analysis [Cutler and Breiman, 1994], we propose a new model
formulation for sparse unmixing, provided that the number of endmembers of interest, r,
is known:

(B̂, Â) = arg min
B,A

∥Y −DBA∥2F , (4.3a)

s.t. B ≥ 0, (4.3b)

1T
mB = 1T

r , (4.3c)
A ≥ 0, (4.3d)

1T
r A = 1T

n , (4.3e)

where B ∈ Rm×r corresponds to the contributions of the endmembers from the library
D and A ∈ Rr×n is the (low-rank) abundance matrix. We should note that AA uses
Y instead of D in (4.3b). It is worth mentioning that D turns the blind scenario into a
semi-supervised scenario, which could be more efficient in the highly mixed scenario
without pure pixels.

In (4.3), we assume that the unknown endmembers of interest are a convex combination
of the library endmembers. This is our primary assumption to compensate for the library
mismatch. In addition, we assume that the number of endmembers is known. Therefore, we
enforce non-negativity and sum-to-one constraints on B. Equivalently to abundance non-
negativity constraint (ANC 4.3d) and abundance sum-to-one constraint (ASC 4.3e), we call
the constraints on B endmember non-negativity constraint (ENC 4.3b) and endmember
sum-to-one constraint (ESC 4.3c).

It is important to note that the minimization problem (4.3) is not jointly convex in
(B,A). However it is convex with respect to one of the variables when the other is fixed,
hence (4.3) can be solved by alternating between two steps inside a cyclic descent scheme.
First, the A-step when B is fixed. Second, the B-step, by fixing A. In this paper, we adopt
the algorithm proposed in [Chen et al., 2014]. Here, we explain briefly solutions to the
sub-problems proposed. A-step: Assuming B is fixed and E = DB, the sub-problem
corresponds to

Â = arg min
A

∥Y − EA∥2F .

s.t. A ≥ 0,

1T
r A = 1T

n

(4.4)

(4.4) is a smooth least-squares optimization problem with a simplicial constraint. As
noted by [Chen et al., 2014], generic quadratic programming solvers could be used but
significantly faster convergence can be obtained by designing a dedicated algorithm that
can leverage the underlying sparsity of the solution. Following [Chen et al., 2014] we use
an active set algorithm to solve (4.4). B-step: Assuming A is fixed, problem (4.3) writes
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as follows:
B̂ = arg min

B
∥Y −DBA∥2F .

s.t. B ≥ 0,

1T
mB = 1T

r

(4.5)

Solving (4.5) is not as straightforward as (4.4) since it does not correspond to the
standard quadratic form. However, following [Chen et al., 2014], we consider solving (4.5)
separately for every column bj of B = [b1, . . . ,br] by fixing all other variables in order
to obtain a quadratic program:

arg min
bj

∣∣∣∣∣∣∣∣ 1

∥aj∥22
(Y −DBoldA)aj⊤ +Dbj,old −Dbj

∣∣∣∣∣∣∣∣2
F

,

s.t. bj ≥ 0,

1T
mbj = 1

(4.6)

where bj,old is the current value of bj before the update, and aj in R1×n is the j-th row of
A.

Note that the first and second terms are fixed, therefore the same active set algorithm
can be used to solve (4.6). The pseudo-code for the algorithm used to solve (4.3) is
given in Algorithm 3. As for initialization, we uniformly initialize matrices B and A,
i.e.,B(0) = (1m1

T
r )/m and A(0) = (1r1

T
n )/r.

Algorithm 3 SUnAA
1: Input: Y (HS data); D (Endmember library); r (number of endmembers); T (number

of iterations).
2: Initialization: B(0) ← (1m1

T
r )/m and A(0) ← (1r1

T
n )/r

3: for t = 1, . . . , T do
4: E← DB
5: Â = ActSet(Y,E) ▷ A-step
6: for j = 1, . . . , r do ▷ B-step
7: Ỹ ← 1

∥aj∥22
(Y −DBoldA)aj⊤ +Dbj,old

8: b̂j ← ActSet(Ỹ,D)
9: end for

10: end for
11: Ê← DB̂
12: Return: Â: Abundances, Ê: Endmembers, B̂: Endmembers contributions.

4.3 Experiments
We compare SUnAA with seven sparse unmixing techniques: SUnSAL [Bioucas-Dias
and Figueiredo, 2010], SUnSAL-S (SUnSAL with ASC and without sparsity penalty,
i.e.,λ = 0), SUnSAL-TV [Iordache et al., 2012], S2WSU [Zhang et al., 2018b], MUA
(using BPT segmentation) [Borsoi et al., 2019], MUSIC-CSR [Iordache et al., 2014b], and
SUnCNN [Rasti and Koirala, 2022] applied to two simulated datasets and Cuprite. All the
parameters are set as default for the competing methods. The results are mean values over
ten experiments.
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4.3.1 Simulated datasets

Two synthetic datacubes (DC1 and DC2) were used for simulated experiments. For DC1, a
synthetic library composed of 240 spectral signatures selected from the USGS library with
a minimum pair-spectra angle of 4.44°is used. DC1 was simulated using a linear mixing
model with 5 endmembers selected from the library and 75×75 pixels. The abundance
maps are composed of five rows of square regions uniformly distributed over the spatial
dimension. DC2 is a challenging simulated dataset with no pure pixels and two mixed
pixels on the facet of the data simplex (more details in [Rasti et al., 2022]). It contains
105×105 pixels, simulated by the linear combination of six endmembers from the USGS
library. Two endmembers show no absorption features throughout the wavelength and are
similar but scaled versions of each other, making the scenario even more challenging.

For the quantitative evaluation, we use the SRE in dB

SRE(X, X̂) = 20 log10
∥X∥F

∥X− X̂∥F
. (4.7)

Three levels of additive noise, i.e.,20, 30, and 40 dB are considered in the simulated
experiments.

Tables 4.1 and 4.2 compare the results obtained by applying different sparse unmixing
techniques to DC1 and DC2, respectively, in terms of SRE. For DC1, SUnAA outperforms
the other techniques for SNR=30 and 40 dB, and for SNR=20 dB gives the second-best
results after MUA. SUnCNN shows the second-best performance in terms of SRE. MUA
shows the best performance for low SNR, i.e.,20 dB. However, it performs poorly for
high SNRs. SUNSAL and SUnSAL-S yield very low SREs. S2WSU, MUSIC-CSR and
SUnSAL-TV perform moderately, however, S2WSU provides better performances for
higher SNRs.

The results for DC2 show that SUnAA outperforms the other techniques for all SNRs
considerably. All the other techniques give low SRE. This could be attributed to the
complexity of the dataset. Since the library may have several scaled versions of one
endmember, the conventional sparse regression might not lead to a sparse solution. A
remedy to this problem is to prune the library by removing the spectra with small spectral
angle distances. However, in the case of complex datasets such as DC2, the endmembers
may be removed from the library, which also leads to poor estimation.

Overall, comparing the SRE reveals that SUnAA outperforms the other techniques.
SUnAA also show consistent performances with respect to the noise level and datasets.
All the other methods fail for the complex dataset. For the simple datasets, SUnCNN
gives the second-best performance. MUA outperforms the other techniques for very low
SNR, i.e.,20 dB, which could be attributed to the segmentation applied before the sparse
regression in MUA. However, this might cause oversmoothing in the abundances. S2W
performs moderately and better than SUnSAL models. SUnSAL-TV outperforms SUnSAL
and SUnSAL-S due to the TV penalty, which exploits spatial information.

Fig. 4.1 and 4.2 provide a visual comparison of the abundance maps estimated for
endmember 1 of DC1 and DC2, respectively. As can be seen, both MUA and SUnSAL-TV
oversmooth the abundances, particularly for low-SNRs. MUA also introduces artifacts,
which is not desirable. This is due to the segmentation step in MUA and the absence of
parameter selection for the TV regularizer in SUnSAL-TV.
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Table 4.1: Sparse unmixing experiments applied to DC1 in terms of SRE. The best
performances are shown in bold. The second best are underlined.

SNR SUnSAL SUnSAL-S SUnSAL-TV S2WSU MUA MUSIC-CSR SUnCNN SUnAA

20 dB 4.86 4.31 9.76 7.99 13.19 6.07 11.15 11.52
30 dB 8.94 8.47 14.39 15.52 18.28 13.36 20.63 21.27
40 dB 13.83 13.15 20.84 28.16 21.12 24.39 30.62 31.23

Figure 4.1: The fractional abundance of endmember 1 of DC1. From top to bottom SNR=
20, 30, and 40 dB.

Table 4.2: Sparse unmixing experiments applied to DC2 in terms of SRE. The best
performances are shown in bold. The second best are underlined.

SNR SUnSAL SUnSAL-S SUnSAL-TV S2WSU MUA MUSIC-CSR SUnCNN SUnAA

20 dB 3.04 1.41 2.49 2.76 6.95 2.51 4.45 9.54
30 dB 3.72 2.42 7.42 6.57 6.90 4.43 5.08 10.76
40 dB 5.96 3.74 6.76 7.43 7.31 5.45 5.96 11.74

4.3.2 Cuprite dataset
We used a subset of 250×191 pixels of the Cuprite dataset for real-world experiments.
The minerals in that region are well-studied and are therefore suitable for evaluating the
abundance maps qualitatively. Fig. 3.14 (a) depicts the geological ground reference for the
dominant minerals. We use a library D ∈ R188×498, which is composed of 498 spectral
pixels from the USGS library. The water absorption and noisy bands were removed, hence
the final pixels are of dimension p = 188.

Fig. 4.3 (b) demonstrates the abundance maps estimated by using different unmix-
ing techniques applied to Cuprite. We showed three dominant minerals in the scene,
i.e.,Chalcedony, Alunite, and Kaolinite, corresponding to library endmembers 297, 420
and 465. For SUnAA, those abundances appear as 15, 13, and 11th. Note that we select
r = 16.

Fig. 4.3 (b) shows that all conventional sparse unmixing techniques and SUnCNN
perform similarly. It can be observed that SUnSAL-TV and MUA oversmooth the mineral
abundances, which could be attributed to the total variation penalty in SUnSAL-TV and
the segmentation-based framework in MUA, which cannot preserve the textures. On the
other hand, SUnAA provides sharper maps. Compared to the geological map of USGS
(Fig. 4.3 (a)), SUnAA considerably outperforms the other techniques for the detection
of Chalcedony and Alunite. In the case of Kaolinite, all techniques perform similarly,
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Figure 4.2: The fractional abundance of endmember 1 of DC2. From top to bottom SNR=
20, 30, and 40 dB.

however, SUnAA shows slightly better performance compared to the other techniques,
particularly for the southern region.

The substantial improvements of SUnAA can be attributed to the proposed model
formulation leveraging archetypal analysis. Fig. 4.4 depicts the estimated endmembers
corresponding to the three minerals (Chalcedony, Alunite, and Kaolinite). Comparing the
estimated endmembers with the corresponding ones from the library, i.e.,297, 420 and 465,
reveals that they are scaled versions. In real-world applications, the captured datasets are
affected by noise, atmospheric effects, illumination variations, and the intrinsic variation
of materials [Borsoi et al., 2021]. Therefore, expecting the measured endmembers from a
library to represent the materials in a real-world dataset is unrealistic. On the other hand,
using archetypal analysis, we can achieve a linear combination of the endmembers from
the dictionary to better represent the endmembers present in the scene.

(a) Geological Map (b) Estimated abundance maps

Figure 4.3: Abundance maps of three dominant minerals estimated using different sparse
unmixing techniques applied to the Cuprite dataset.

4.4 Conclusion
We proposed a sparse unmixing technique using archetypal analysis called SUnAA.
SUnAA models the endmembers of interest as a convex combination of endmembers
from a library. We proposed a non-convex optimization to simultaneously estimate the
endmembers contributions and abundances. The proposed iterative algorithm is based
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(a) Chalcedony (b) Alunite (c) Kaolinite

Figure 4.4: Endmembers of three dominant minerals estimated using SUnAA applied to
the Cuprite dataset compared with the ones from USGS library.

on an active set method and is parameter-free. We evaluated SUnAA on two simulated
and Cuprite datasets. The experimental results confirm that SUnAA leads to accurate
abundances estimation and significantly outperforms the conventional sparse unmixing
techniques. Additionally, experiments on a real-world dataset suggest that SUnAA can
better detect existing minerals in a given scene.
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4.5 Urban dataset
The Urban hyperspectral image contains 307x307 pixels captured by the Hyperspectral
Digital Image Collection Experiment (HYDICE) [Rickard et al., 1993] sensor in 210 specr-
tral bands ranging from 400 to 2500 nm. After removing 48 noisy and water absorption
bands 162 bands remain. The dataset have 4 endmembers, Asphalt Road, Grass, Tree, and
Roof. The library D ∈ R162×402 is composed of 402 spectral pixels obtained from the
dataset.

Table 4.3 compares the sparse unmixing experiments applied to Urban in terms of
SRE. As can be seen, SUnAA and SUnCNN perform similarly and outperform the other
techniques. SUnSAL-S performs better than the other methods for this dataset. Fig. 4.5
visually compares the estimated abundances using different sparse unmixing techniques
with the ground reference map.

We should note that, in this experiment, we use r = 5 for SUnAA. We notice that the
library includes endmembers close to the zero endmember, often used for shadow removal,
and SUnAA picks this endmember for r = 4. Therefore, we select r = 5, and since the
ground truth abundances do not include the shadow abundance, we remove this from the
abundances and normalize the abundances to be sum to one.

Table 4.3: Sparse unmixing experiments applied to Urban in terms of SRE. The best
performances are shown in bold. The second best are underlined.

SNR SUnSAL SUnSAL-S SUnSAL-TV S2WSU MUA MUSIC-CSR SUnCNN SUnAA

Urban 1.73 7.10 2.07 1.58 2.65 2.24 7.74 7.77

4.6 Processing time
Table 4.4 gives the processing times for different unmixing techniques applied to Urban
and Cuprite datasets. SUnSAL, SUnSAL-S, SUnSAL-TV, S2WSU, and MUA were imple-
mented in Matlab (2020b) and MUSIC-CSR, SUnCNN, and SUnAA were implemented in
Python (3.8). The reported processing times were obtained using a computer with Intel(R)
Xeon(R) Silver 4112 CPU 2.60GHz, eight cores, 64GB of memory, and an NVIDIA TI-
TAN RTX with 24GB of memory. The table shows that MUA is the most and SUnSAL-TV
is the least efficient method for both datasets. SUnAA is competitive to MUA in the case
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Figure 4.5: The fractional abundance of Urban datasets using different sparse unmixing
techniques.

of Urban and outperforms the other techniques. However, in the case of Cuprite, SUnAA
is not as efficient. We should note that the increase in the processing time of SUnAA is
due to the column-wise update of matrix B. Therefore, the higher number of endmembers
will decrease the algorithm’s speed.

Table 4.4: Processing times of different sparse unmixing techniques applied to real datasets.

HS SUnSAL SUnSAL-S SUnSAL-TV S2WSU MUA MUSIC-CSR SUnCNN SUnAA

Urban 672.5 1550.4 2107.9 606.5 216.0 1975.1 320.8 306.2

Cuprite 224.0 203.4 1109.2 389.8 160.8 318.4 904.8 703.5
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5

HYPERSPECTRAL UNMIXING PYTHON

PACKAGE

Chapter abstract: Spectral pixels are often a mixture of the pure spectra of the
materials, called endmembers, due to the low spatial resolution of hyperspectral
sensors, double scattering, and intimate mixtures of materials in the scenes. Un-
mixing estimates the fractional abundances of the endmembers within the pixel.
Depending on the prior knowledge of endmembers, linear unmixing can be divided
into three main groups: supervised, semi-supervised, and unsupervised (blind) linear
unmixing. Advances in image processing and machine learning substantially af-
fected unmixing. This chapter provides a critical comparison between advanced and
conventional techniques from the three categories. We compare the performance of
the unmixing techniques on three simulated and two real datasets. The experimental
results reveal the advantages of different unmixing categories for different unmixing
scenarios. Moreover, we provide an open-source Python-based package, HySUPP,
to reproduce the results.

The source code is freely available at https://github.com/inria-thoth/HySUPP.

The chapter is based on the following publication:

B. Rasti, A. Zouaoui, J. Mairal and J. Chanussot. Image Processing and Machine
Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python
Package. arXiv preprint arXiv:2308.09375, 2023
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5.1 Introduction

5.1.1 Key trends in hyperspectral unmixing
Hyperspectral unmixing has undergone various developmental stages, as illustrated in
figure 5.1. In its early years, from 1992 to 2008, this research topic received minimal
attention, with an annual publication count of no more than 18. However, starting from
2009 and continuing until 2016, there was a steady increase in interest, with the number
of publications even surpassing 200 in 2016. Since 2017, hyperspectral unmixing has
remained a prominent and dynamic area of research, driven by the emergence of deep
learning techniques for unmixing. In 2022, this field reached its fourth most prolific year
on record, with 164 publications.
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IEEE Xplore search results for 'Hyperspectral Unmixing' from 1992 to 2022

Figure 5.1: Publications over time based on IEEE Xplore keyword search tool using
“Hyperspectral Unmixing" as input.

During the period when hyperspectral unmixing gained popularity, the primary scien-
tific programming language of choice was MATLAB, as depicted in figure 5.2. However,
in recent times, there has been a steady increase in interest and adoption of Python, while
MATLAB’s popularity has waned. This shift can be attributed, in part, to the growing
trend of open science, where open-sourcing scientific code has become widely embraced.
Consequently, the present scenario suggests that developing and releasing an open-source
unmixing package in Python is more advantageous than doing so in MATLAB, even
though it may involve the translation of existing unmixing code from MATLAB to Python.

5.1.2 Existing overview publications and unmixing packages
An early survey on hyperspectral unmixing was given in [Keshava and Mustard, 2002],
which discusses basic geometrical and statistical methods. In [Bioucas-Dias et al., 2012],
linear model-based unmixing techniques were divided into three categories: geometrical,
statistical, and sparse regression-based approaches. A Matlab toolbox is available at1.

1https://openremotesensing.net/
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Figure 5.2: Worldwide interest in scientific programming languages over time according
to Google Trends in the “Science" category.

However, the toolbox is incomplete, and some methods, such as dependent component
analysis (DECA), are missing. In recent years, deep learning and neural networks have
become state-of-the-art for many tasks in machine learning and image processing. Con-
sequently, many unmixing approaches were proposed based on shallow and deep neural
networks. A comparison of autoencoder-based networks was drawn in [Palsson et al.,
2022]. The authors discussed autoencoder-based architectures divided into five categories,
i.e., Sparse Nonnegative Autoencoders, Variational Autoencoders, Adversarial Autoen-
coders, Denoising Autoencoders, and Convolutional Autoencoders. They further discuss
the choice of different modules, such as different activation functions or loss functions,
and they compared shallow networks to deep ones. They also provide a TensorFlow-based
Python package that is available on GitHub. However, the package is limited to blind un-
mixing approaches based on autoencoders. It does not discuss or compare the supervised,
semi-supervised, and more conventional blind unmixing methods.

In [Chen et al., 2023], some model-based and neural network-based unmixing ap-
proaches were explained but without experimental comparisons. A list of resources for the
approaches was given.

A survey on endmember variability in Spectral Mixture Analysis (SMA) was given
in [Somers et al., 2011]. In [Zare and Ho, 2013], an overview of unmixing methods that
address endmember variability was given. A comprehensive overview of the unmixing
methods that address spectral variability was recently provided in [Borsoi et al., 2021], and
a list of Matlab codes was also given. In [Plaza et al., 2011], an overview of endmember
extraction approaches was given. Review papers on hyperspectral remote sensing data
analysis briefly discussed the unmixing methods [Bioucas-Dias et al., 2013, Ghamisi et al.,
2017]. In [Heylen et al., 2014], a survey of nonlinear unmixing methods is given.

There are other open-source tools such as HyperMix [Jimenez and Plaza, 2015], Spec-
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tral Python (SPy) 2, Spectral Library Tool 3, PySptools4, that include basic algorithms for
estimation of the number of endmembers, endmember extraction, abundance estimation,
and some library tools, and library-based methods. Thus, there is a need for a compre-
hensive package that covers the methodologies across different unmixing categories and
contains state-of-the-art image processing and machine learning techniques.

5.1.3 Contributions
This chapter covers the following:

• Categorizing the unmixing approaches depending on the prior knowledge available
about endmembers. Linear unmixing can be divided into three main categories:
supervised, semi-supervised (library-based), and unsupervised (blind) unmixing.

• Comparing the unmixing methods in terms of prior knowledge of the endmembers
and draw conclusions that can help researchers to select an appropriate unmixing
method to tackle real-world challenges. We compare conventional and deep learning-
based unmixing approaches in those categories for three simulated and two real-
world datasets. For the simulated datasets, we consider three scenarios: a simple,
pure pixel dataset, a dataset with spectral variations, and a challenging dataset with
no pure pixel. Such comparisons provide insight to researchers into which category
to use for their application. Additionally, the comparisons reveal the drawbacks of
the categories, which motivate the developers to investigate new ideas to address
them.

• Providing an open-source HyperSpectral Unmixing Python Package (HySUPP).
HySUPP is the first open-source python-based hyperspectral unmixing package to
include supervised, semi-supervised, and blind unmixing methods. The package
will benefit the geoscience and remote sensing community, including researchers,
developers, lecturers, and students. The package installation is straightforward since
HySUPP relies on a few dependencies. In addition, all the methods can be run using
a single command line instruction.

5.2 HySUPP Toolbox
HySUPP exhibits a list of highly desirable properties summarized as follows: i) complete-
ness, ii) reproducibility, iii) extensibility and iv) homogeneity. It implements common best
practices and enables simple benchmarking of unmixing techniques thanks to user-friendly
command line instructions.

5.2.1 Features
Completeness As a practitioner, the ability to explore and experiment with different
unmixing techniques is crucial since no single approach can consistently outperform
others in all unmixing scenarios. Thus, ensuring the completeness of our toolbox becomes
essential. Our toolbox is designed to cover all three types of unmixing - supervised,

2https://www.spectralpython.net/
3https://spectral-libraries.readthedocs.io/en/latest/
4https://pypi.org/project/pysptools/
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5.2. HySUPP Toolbox

semi-supervised, and unsupervised - while striving to be as representative as possible
of the various unmixing approaches, although aiming for exhaustive inclusion would be
impractical. Currently, HySUPP provides access to a diverse set of 20 different unmixing
methods, including 6 supervised, 6 semi-supervised, and 8 unsupervised techniques.

Reproducibility Ensuring experimental reproducibility is crucial when exploring various
unmixing techniques, as it guarantees the robustness of the conclusions drawn by users.
In line with this principle, our toolbox offers the ability to seed experiments, facilitating
reproducibility through repeatable noise generation. Additionally, HySUPP automatically
saves estimates outputs, providing users with a convenient way to review and compare
results, thus enhancing the reliability of their research findings.

Extensibility HySUPP’s architecture is designed to support the effortless integration of
new methods, providing a platform for future advancements in hyperspectral unmixing.
Leveraging configuration files, we empower researchers to conduct experiments with ease
and flexibility, enabling them to effortlessly incorporate their own models into the toolbox.

Homogeneity The uniformity of HySUPP’s codebase ensures consistency across differ-
ent components, enhancing its overall usability and reliability. More specifically, we use
common methods for models and common attributes for datasets.

Best practices We offer a straightforward yet potent method to monitor the objective
function of each approach using Python’s tqdm library. Furthermore, our pipeline in-
corporates precise endmember auto-alignment through the utilization of the munkres
algorithm, provided ground truth abundance maps are accessible. This enhancement
ensures the accurate computation of unmixing performance. By establishing these best
practices, we streamline the implementation process and foster a collaborative environ-
ment where researchers can easily build upon existing work and share their contributions
effectively.

Benchmarking Owing to its rich set of features, HySUPP enables users to easily bench-
mark all implemented methods on their dataset of choice. Our toolbox currently provides
3 synthetic datasets corresponding to different unmixing scenarios. Moreover, we in-
corporate 4 distinct metrics to thoroughly evaluate unmixing accuracy across methods.
Finally, leveraging mlxp[Arbel, 2023] results query tool, we empower users to analyze
and visualize their results in an appealing and informative manner.

5.2.2 Example
The following command line instruction provides an example on how to run a semi-
supervised unmixing technique, SUnCNN[Rasti and Koirala, 2022], on the DC1 dataset
using an optional custom value for the signal-to-noise ratio (SNR):

$ python unmixing.py mode=semi data=DC1 model=SUnCNN noise.SNR=30

Table 5.1 lists unmixing methods included in HySUPP with their corresponding depen-
dencies. We highlighted our main contributions and the link to the original implementations.
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Table 5.1: The list of unmixing methods included in HySUPP with their corresponding
dependencies. We highlighted our main contributions and the link to the original imple-
mentations.

Method Source Python Dependencies GPU Contributions

FCLSU[Heinz and Chein-I-Chang, 2001] pysptools ✓ numpy, cvxopt Refactor into a SupervisedUnmixingModel sub-class
SiVM[Heylen et al., 2011] github ✓ numpy Refactor into a BaseExtractor sub-class

SISAL[Bioucas-Dias, 2009] github ✓ numpy Refactor into a BaseExtractor sub-class
UnDIP[Rasti et al., 2021] github ✓ torch ✓ Refactor separate scripts into a single model

VCA[Nascimento and Bioucas-Dias, 2003] github ✓ numpy Replace scipy dependency by numpy. Add random seed

CLSUnSAL[Iordache et al., 2014a] github ✓ numpy Implementation based on SUnSAL
MUA_SLIC[Borsoi et al., 2019] github ✓ numpy, skimage MATLAB code translation using skimage’s SLIC

S2WSU[Zhang et al., 2018b] github ✓ numpy, scipy MATLAB code translation
SUnAA[Rasti et al., 2023b] github ✓ numpy, spams Refactor to match SemiUnmixingModel sub-class

SUnCNN[Rasti and Koirala, 2022] github ✓ torch ✓ Refactor separate scripts into a single model
SUnSAL[Bioucas-Dias and Figueiredo, 2010] github ✓ numpy Refactor into SemiUnmixingModel sub-class

ADMMNet[Zhou and Rodrigues, 2021] - ✓ torch ✓ Implemented from scratch
BayesianSMA[Dobigeon et al., 2009] webpage matlab.engine numpy Python wrapper around existing MATLAB code

CNNAEU[Palsson et al., 2020] github ✓ torch ✓ Convert existing keras implementation into torch
EDAA[Zouaoui et al., 2023] github ✓ torch ✓ Refactor to match BlindUnmixingModel sub-class
MiSiCNet[Rasti et al., 2022] github ✓ torch ✓ Refactor separate scripts into a single model

MSNet[Yu et al., 2022] github ✓ torch ✓ Refactor to match BlindUnmixingModel sub-class
NMFQMV[Zhuang et al., 2019] github matlab.engine numpy Python wrapper around existing MATLAB code

PGMSU[Shi et al., 2021b] github ✓ torch ✓ Refactor to match BlindUnmixingModel sub-class

5.3 Experiments
We use three simulated and one real datasets. The simulated datasets were designed
according to different mixing scenarios briefly explained in Table 5.2. We avoid using the
widely used benchmark datasets such as Samson and Jasper since their abundances are
generated synthetically. For real-world experiments, we use the Cuprite dataset, a well-
studied site with geological reference maps. The simulated experiments were carried out
for 30 dB SNR. The tuning parameters were fine-tuned for the methods up to some levels.
We should note that some methods have several parameters to be tuned; therefore, searching
for the optimum is cumbersome. All the results are averaged over 10 experiments, and the
standard deviations are shown by error bars. In experiments, we compare 20 unmixing
methods from different categories as follows. For supervised methods, we used three
endmember extraction/estimation techniques, i.e., VCA, SiVM, and SISAL with FCLSU
and UnDIP. All six combinations of them were considered. For blind unmixing, we
use PGMSU, MSNET, CNNAEU, ADMMNet, BayesianSMA, NMFQMV, MiSiCNet,
and EDAA. For sparse unmixing, we used SUnSAL, CLSUnSAL, MUA_SLIC, S2WSU,
SUnCNN, and SUnAA. The codes for all those methods were provided in HySUPP for
reproducibility.

For the quantitative evaluation, we use the SRE in dB for estimated abundances given
by

SRE(X, X̂) = 20 log10
∥X∥F

∥X− X̂∥F
. (5.1)

5.3.1 Data description
Synthetic Datasets with Spatial Structure

We simulated three data cubes (DC1, DC2, and DC3). DC1 was simulated using a linear
mixing model with 5 endmembers selected from the USGS library and 75×75 pixels. The
abundance maps are composed of five rows of square regions uniformly distributed over
the spatial dimension. This dataset contains pure pixels for all endmembers. DC2 has
100×100 pixels and was simulated using a linear mixing model with 9 endmembers. The
abundance maps were sampled from a Dirichlet distribution centered at a Gaussian random
field to have piece-wise smooth maps with steep transitions. Therefore, DC2 contains
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5.3. Experiments

spectral variations. For DC1 and DC2, an endmember library D ∈ R188×240, composed of
240 spectral signatures were selected from the USGS library with a minimum pair-spectra
angle of 4.44°. DC3 was simulated with no pure pixels, and it has two mixed pixels
on the facet of the data simplex. DC3 is composed of 105×105 pixels using the linear
combination of six endmembers. For DC3, we use a library D ∈ R188×498 composed of
498 spectral pixels from the USGS library. Note that we remove the water absorption and
noisy bands, and therefore, the final pixels are of dimension p = 188.

Cuprite Dataset

The Cuprite dataset used in this paper contains 250× 191 pixels. Cuprite is a well-
studied mineral site, and the dominant minerals are demonstrated using a geological
ground reference therefore, the estimated abundance maps by different techniques can be
compared visually. We use the same library as explained for DC3.

Table 5.2: Specifications of the synthetic datasets used in the experiments.

# endmembers (r) # atoms in D (m) # pixels (n) Main features

DC1 5 240 5625 (75 × 75) Pure pixels
DC2 9 240 10000 (100 × 100) Pure pixels, Spectral variability
DC3 6 498 11025 (105 × 105) No pure pixels, 2 points on the data simplex facets

5.3.2 Synthetic datasets
Figure 5.3 demonstrates the unmixing results in terms of abundance SRE in DB for
different techniques applied to DC1, DC2, and DC3. The outcomes of the results can be
summarized as follows:

Presence of pure pixels For the pure pixel scenario, supervised techniques perform
very well (Fig. 5.3, DC1). Overall, they perform better than the semisupervised and blind
techniques. This confirms the importance of geometrical information for endmember
extraction/ estimation techniques when there are pure pixels in the dataset. This is further
confirmed in blind methods where MiSiCNet and NMFQMV, which exploit geometri-
cal information, outperform the other blind techniques and provide competitive results
compared to supervised ones. Sparse techniques show moderate results except SUnAA,
which outperforms all the other techniques. The results confirm that the sparse unmixing
techniques are not suitable when there are pure pixels for the endmembers in the dataset.
We should mention that SUnAA does not match the characteristics of conventional sparse
techniques. Even though SUnAA relies on a library, it uses a nonconvex optimization to
estimate endmembers.

Spectral variability On the other hand, for DC2, which contains spectral variations, as
can be seen from Fig. 5.3, sparse unmixing techniques outperform the supervised and
blind techniques. The results confirm that sparse unmixing techniques are more suitable
for capturing the spectral variability. SUnAA outperforms the other technique. Note that
SUnAA is a parameter-free technique. Supervised techniques outperform blind techniques
due to the presence of pure pixels.
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Absence of pure pixels In the case of missing pure pixels (Fig. 5.3, DC3), blind
unmixing techniques that exploit geometrical information outperform the other techniques.
Sparse unmixing provides very poor results. Although SUnAA considerably significantly
outperforms the performance of sparse unmixing techniques, it is very far from the best
performance which is obtained by MiSiCNet. Among supervised techniques, SISAL (+
FCLSU/UnDIP) shows competitive results because it uses geometrical information to
estimate the endmembers.
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Figure 5.3: Comparing abundance SRE (↑) in dB using different unmixing techniques
applied to (from top to bottom) synthetic DC1, DC2, and DC3.
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5.3.3 Real data
We selected three methods per category to conduct unmixing on the Cuprite dataset. Blind
unmixing: MiSiCNet, MSNet and NMFQMV. Semi-supervised: SUnAA, MUA_SLIC,
S2WSU. Supervised: UnDIP combined with SISAL, SiVM and VCA. We describe the
hyperparameters that were fine-tuned for the following techniques. The hyperparameters
set as default are omitted.

• MiSiCNet: λ = 100, projection=True.

• MSNet: α = 0.1, β = 0.1.

• MUA_SLIC: β = 30, λ1 = 0.001, λ2 = 0.001, slic_size = 200.

• S2WSU: λ = 0.001.

• SISAL: τ = 1e-6.

Fig. 5.4 (b) visually compares the estimated abundances for three dominant minerals,
i.e., Chalcedony, Alunite, and Kaolinite. The comparison with the geological reference
map Fig. 5.4 (a) reveals that the estimated abundances obtained by semisupervised
methods show more resemblance to the reference map for all three minerals. SUnAA
visually outperforms the other techniques, particularly in the case of Chalcedony. The
blind unmixing methods can better estimate Chalcedony compared to MUA_SLIC and
S2WSU. This could be attributed to the mismatch of the endmember with the library’s
endmembers for this mineral. It is worth mentioning that SUnAA does not entirely rely
on the library, and it estimates the endmember. Therefore, it can compensate for such
a mismatch. More importantly, SUnAA is a parameter-free technique. We should note
that selecting optimum parameters for the unmixing techniques is not a trivial task in
real-world applications since the abundance RMSE cannot be computed.

(a) Geological Ref. Map (b) Estimate abundances

Figure 5.4: Estimate abundances obtained by applying different unmixing techniques to
Cuprite compared with the geological reference map.

5.4 Discussion and Conclusion
Assuming that we have captured a spectral dataset and now have an unmixing problem in
hand, we need to estimate the abundances of materials. The main question is which method
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to choose and which group of methods to select to tackle the problem. Indeed, the first step
is to evaluate our problem and see if the linear mixing model or its variations are suitable
for our problem. This decision needs prior knowledge of the physics of the problem.
For instance, if you are dealing with intimate mixtures or close-range and microscopic
scenarios, you should use nonlinear models. If you are dealing with macroscopic Earth
observation problems, then linear models or their variations will be suitable. In some
research, nonlinear models perform better than linear ones, however, one may pay attention
to the selection of the model in a real-world application. Usually, linear models are more
general.

Here, we clarify the keys to the success of each category. The success of supervised
(or sequential) unmixing lies in the confidence of the endmember measured, extracted, or
estimated (pure/no pure scenario). Therefore, we should not use the supervised method if
we are not confident about the endmembers. In other words, supervised methods perhaps
are the best choice for endmembers with high confidence. When we have prior information
on the material in the scene and a well-designed endmember library, semi-supervised
unmixing could be successful. Semi-supervised are also suitable to capture the spectral
variability. The success of semi-supervised unmixing lies in the quality of the endmember
library. Blind unmixing methods should be selected when there is no library, no pure
pixels in the data set (including highly mixed scenarios), or the confidence of the measure,
selected, or estimated endmembers is low. They should be used with caution, and the
estimated endmembers should always go through physical interpretation.
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CONCLUSION AND PERSPECTIVES

In this thesis, we have developed novel algorithms based on sparse and archetypal signal
decomposition aimed at addressing essential challenges in hyperspectral data analysis,
specifically focusing on image restoration and spectral unmixing. First, we introduced
a novel sparse coding-based unfolding algorithm designed for the representation of hy-
perspectral images. Furthermore, we leveraged an established model-based framework
known as archetypal analysis to tackle various unmixing scenarios, offering valuable
insights and solutions for spectral unmixing tasks. To facilitate the practical application of
these methods, we have also developed a Python-based toolbox tailored for hyperspectral
unmixing. This toolbox empowers practitioners to readily evaluate and compare multiple
unmixing techniques on their own datasets, enhancing accessibility and usability in the
hyperspectral research community.

6.1 Contributions summary
Here we summarize the contributions presented in this thesis.

Unfolding sparse coding to restore hyperspectral images Our first contribution in-
vestigated data-efficient and interpretable models for hyperspectral image restoration, by
encoding prior knowledge used in the dictionary learning literature into an end-to-end
trainable network architecture. In Chapter 2, we introduced a novel two-layered model-
based deep learning method called T3SC. The primary objective of T3SC is to provide
effective denoising of hyperspectral images while maintaining interpretability. The effi-
ciency of our approach proved to be key to handle the limited availability of training data
for hyperspectral denoising. In addition, our principled architecture, namely the sensor
specific first spectral layer followed by a sensor agnostic spectral-spatial layer, is tailored
to the specificity of hyperspectral images that are typically acquired by various sensors
with different characteristics.

Modeling spectral unmixing using archetypal analysis Our second and third contri-
butions draw significant inspiration from the interpretability offered by the archetypal
analysis framework. In Chapter 3 we demonstrated the viability of archetypal analysis for
blind hyperspectral unmixing within the linear mixing model. To efficiently tackle this
challenge, we introduced a novel optimization scheme known as entropic gradient descent,
specifically tailored for solving the archetypal analysis formulation. Notably, our approach
is highly compatible with GPU computation, and its computational efficiency enables

85



6. CONCLUSION AND PERSPECTIVES

us to develop a robust model selection procedure that mitigates the challenges posed
by hyperparameter choices. In Chapter 4 we extended our approach to semi-supervised
unmixing, emphasizing its advantages in addressing discrepancies between endmembers
extracted from a library and those encountered in the actual scene. To facilitate the opti-
mization process, we employed an active-set algorithm that leverages the inherent sparsity
of solutions within the quadratic program, while enforcing simplicial constraints.

Enabling simple benchmarks for hyperspectral unmixing Finally, in Chapter 5, we
draw a critical comparison of different unmixing techniques, classified into supervised,
semi-supervised and blind unmixing categories. To enhance accessibility and usability,
we introduced an open-source Python toolbox that offers users a wide array of unmixing
techniques suitable for their specific datasets. This toolbox facilitates benchmarking
across a range of popular approaches using both simulated and real datasets, enabling a
comprehensive assessment of their respective merits and limitations.

6.2 Future research and perspectives
Based on the contributions of this thesis, several questions and research directions arise
and would be interesting to investigate in the future.

Remaining challenges in spectral unmixing Despite significant advancements, spectral
unmixing remains one of the most challenging tasks in hyperspectral analysis. Below, we
briefly outline some of the primary challenges encountered in spectral unmixing:

• Linear models, while generally versatile, may experience a significant drop in
performance when applied to different datasets.

• The selection of appropriate parameters significantly impacts the effectiveness of
unmixing methods, and optimizing them for real-world datasets is particularly
challenging.

• Linear unmixing methods often exhibit degraded performance as the number of
endmembers increases, potentially failing on datasets with numerous endmembers.

• Spectral variability poses a major challenge, as it can significantly reduce the
performance of linear unmixing techniques.

• The absence of real datasets with ground truth is a significant impediment.

• Multi-temporal and multi-source spectral unmixing tasks present additional com-
plexities.

• Given the large volume of HS data, scalable unmixing approaches are crucial for
global monitoring.

These challenges highlight the ongoing efforts and research needed to enhance the
robustness and adaptability of spectral unmixing methods in various applications.
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