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Résumé v

Théorème des métriques bosselées au sens de Mañé pour les champs de vec-
teurs Hamiltonien non convexe

Résumé

Une propriété est générique au sensé de Mañé si, donné un Hamiltonien H : T ∗M → R, l’ensemble des
fonctions lisses u : M → R tel que H + u vérifie la propriété est un sous-ensemble générique de C∞(M).
Notre objectif est de savoir dans quelle mesure la non dégénérescence de toutes les orbites périodiques
dans un niveau d’énergie donné d’un Hamiltonien lisse non convexe est une propriété générique au sensé
de Mañé. Où la non-dégénérescence signifie que dérivée de l’application de Poincaré ne prend pas les
racines de l’unité comme une valeurs propre.
Pour atteindre cet objectif, nous obtiendrons un théorème de perturbation pour les aplication de Poincaré
similaire au théorème de Rifford et Ruggiero dans le cadre convexe, et une forme normale de type Fermi
sur les orbites d’un champ de vecteurs Hamiltonien non convexe. Ce sont deux outils applicables à l’étude
de la dynamique des champs de vecteurs Hamiltoniens non convexes. D’autre part, nous montrerons que
dans les cas convexes et non convexes, nous avons certainement besoin d’un mécanisme différent pour
prouver le théorème des métrique bosselées pour les orbites symétriques. Une orbite symétrique est une
orbite dont la projection sur les variétés de base comprend soit des points d’auto-intersection, soit des
points à vitesse nulle. Ce fait a été négligé dans les études précédentes.
Une étude détaillée des formes normales locales sur les segments d’orbite d’un champ de vecteurs Ha-
miltonien est donnée. Cela inclut une forme normale pour les Hamiltoniens convexes, une forme normale
pour les Hamiltoniens positivement homogènes qui implique la forme normale de Li-Nienberg pour les
métriques de Finsler, et comme nous l’avons mentionné une forme normale pour les Hamiltoniens non
convexes. De cette façon, nous éliminons la confusion qui existe dans la littérature entre la forme nor-
male de Li-Nirenberg et une forme normale souhaitée similaire pour les champs de vecteurs Hamiltoniens
convexes.

Mots clés : Hamiltonien non convexe, théorème des métriques bosselées, généricité au sens de Mañé

Bumpy metric theorem in the sense of Mañé for non-convex Hamiltonian vec-
tor fields

Abstract

A property (p) of smooth Hamiltonian vector fields is called Mañé-generic whenever the set of smooth
potentials u such that H + u satisfies the property (p) is a generic subset.
Given a non-convex smooth Hamiltonian H : T ∗M → R which is defined on the cotangent bundle of a
smooth manifold M, our goal in this thesis is to know that to what extent non-degeneracy of all periodic
orbits in a given energy level of H is a Mañé generic property. Where by a periodic non-degenerate orbit
we mean a periodic orbit that its associated linearized Poincaré map does not take roots of unity as an
eigenvalue.
To that end, we will achieve a perturbation theorem for linearized Poincaré maps similar to Rifford
and Ruggiero’s theorem in the convex setting, and a Fermi type normal form on orbits of a non-convex
Hamiltonian vector field. These are two applicable tools in the study of non-convex Hamiltonian vector
fields. At the other hand, we will show that in both convex and non-convex cases we certainly need a
different machinery to prove the bumpy metric theorem for symmetric orbits. A symmetric orbit is an
orbit that its projection on the base manifolds includes either self-intersection points or points with zero
velocity. This fact was overlooked in previous studies.
A detailed study of local normal forms on orbit segments of a Hamiltonian vector field is given. That
includes a normal form for convex Hamiltonians, a normal form for positively homogeneous Hamiltonians
that implies Li-Nienberg normal form for Finsler metrics, and as we mentioned a normal form for non-
convex Hamiltonians. In this way, we remove the confusion that exists in the literature between Li-
Nirenberg normal form and a similar desired normal form for convex Hamiltonian vector fields.

Keywords: non-convex Hamiltonians, bumpy metric theorem, Mañé-generic properties
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Introduction of the Thesis

A closed geodesic of a Riemannian metric is called non-degenerate if its associated linearized
Poincaré map does not have a root of unity as an eigenvalue. A Riemannian metric is called
bumpy whenever all its closed geodesics are non-degenerate. We are able to use a similar notion
of non-degeneracy for periodic orbits of a Hamiltonian vector field. Consider Rr(M) as the set
of all Cr Riemannian metrics on a smooth manifold M. We equip Rr(M) with the Whitney Cr

topology. Let Br(M) ⊂ Rr(M) be the set of all Cr bumpy metrics. The following theorem is
known as the bumpy metric theorem.

Theorem A. Assume that M is a given smooth manifold. For r ≥ 2, Br(M) is a Gδ dense
subset of Rr(M).

In other words, the bumpy metric theorem states that the property (p) explained as follows
(p) all closed geodesics are non-degenerate

is a Cr generic property of Rr(M) i.e. the set of all metrics that satisfy property (p) is a Gδ

dense subset of Rr(M). Note that a Gδ subset is a countable union of open subsets.
The bumpy metric theorem is stated by Abraham [Abr70], and a complete proof of it is achieved
after contributions of Abraham [AR67; Abr70], Klingenberg and Takens [KT72], and Anosov
[Ano83].

Consider Hr(T ∗M) as the set of all Cr Hamiltonians defined on the cotangent bundle of a
smooth manifold M. Assume that Hr(T ∗M) is endowed with Whitney Cr topology. An energy
level H−1(k) of a Hamiltonian H : T ∗M → R is regular whenever the Hamiltonian vector field of
H does not vanish on H−1(k). Concerned to Hr(T ∗M) where r ≥ 2, Robinson [Rob70a; Rob70b]
obtained a similar result as the bumpy metric theorem:

Theorem B. Assume that M is a smooth manifold and r ≥ 2. Let k ∈ R be given. If we define
Kr

k(T
∗M) as the set of Hamiltonians H ∈ Hr(T ∗M) such that H−1(k) is a regular energy level

and all periodic orbits in the k-energy level of H are non-degenerate, then Kr
k(T

∗M) is a Gδ

dense subset of Hr(T ∗M).

In this thesis, we study generic properties of H∞(T ∗M) with respect to a much more restric-
tive concept of genericity compared to genericity in terms of the Whitney topologies.
The idea of perturbing a given Hamiltonian H : T ∗M → R by adding a potential u ∈ C∞(M) is
suggested by Ricardo Mañé [Mn96]. Where by a potential we mean a function that only depends
on the based manifold. To put it another way, H +u where u ∈ C∞(M), is a Mañé perturbation
of a smooth Hamiltonian H : T ∗M → R.
Using the Legendre transformation, to a given smooth Riemannian metric g we can correspond
a quadratic Hamiltonian Hg(q, p) = ⟨p, p⟩q, where ⟨., .⟩q is the inner product on T ∗

qM induced
by the Riemannian metric g. Geodesics of the metric g are the canonical projections of orbits of
the Hamiltonian vector fields of Hg in a given non-zero energy level.
A smooth conformal perturbation of a Riemannian metric g is a perturbation of the form eb(q)g

1



Introduction of the Thesis 2

where b(q) ∈ C∞(M). Maupertuis’ principle (see [LR98], Theorem 1) implies that a C∞-small
conformal perturbation of a Riemannian metric is equivalent to perturbing its associated Hamil-
tonian via adding a C∞-small potential.

A property (p) is called Mañé generic for H∞(T ∗M) whenever for a given H ∈ H∞(T ∗M)
the set G =

{
u ∈ C∞(M) | H + u satisfies (p)

}
is a Gδ dense subset of C∞(M), where the

topology that we have considered on C∞(M) is the Whitney C∞ topology.
The following theorem is known as the bumpy metric theorem in the sense of Mañé for convex
Hamiltonians. A Hamiltonian H(q, p) : T ∗M → R is convex whenever its fiberwised Hessian i.e.
∂2p2H(q, p) is positive-definite for all (q, p) ∈ T ∗M.

Theorem C. Suppose that M is a given smooth manifold with dimension d + 1, where d ≥ 1,
and H : T ∗M → R is a convex smooth Hamiltonian. For a given k ∈ R, there exists a Gδ dense
subset G ⊂ C∞(M) such that for all u ∈ G, (H + u)−1(k) is a regular energy level and all closed
orbits in (H + u)−1(k) are non-degenerate.

Oliveira [Oli08] studied the case d = 1 of Theorem C above. A so-called perturbation theorem
—that is obtained later by Rifford and Ruggiero [RR12]— was missing to extend the outcome
of Oliveira’s studies to higher dimensions.

Definition 1. Assume that θ(t) =
(
Q(t), P (t)

)
is a periodic orbit of Hamiltonian vector field of

H : T ∗M → R. Moreover, suppose that T is the minimum period of θ(t). A time t0 is called neat
for θ(t) if Q̇(t0) ̸= 0 and Q(t0) is not a self-intersection of Q(t) i.e. there does not exist a time
s ̸= t0 modulo T such that Q(s) = Q(t0). If t0 is a neat time for θ(t), then we call θ(t0) a neat
point.

Both [RR12] and [Oli08] are implicitly assuming that, given a convex Hamiltonian H, all
closed orbits θ of Hamiltonian vector field of H are admitting a neat time. This assumption is
not true. For a Hamiltonian of the form H(q, p) = g(p, p)+u(q), where g is a Riemannian metric
and u is a potential, Kozlov [Koz76] proved the existence of periodic librations, where the term
libration refers to an orbit without any neat time. An orbit of a Hamiltonian vector field with
no neat time is also called a symmetric orbit. Look at Section 1 of [Dev76] for example where
features of symmetric orbits of reversible mechanical systems are studied.
We formulate the main assertion of [RR12] (Theorem 1.2 of [RR12]) as Theorem D below, making
explicit the unstated assumption.

Definition 2. Assume that H : T ∗M → R is a smooth Hamiltonian which is defined on the
cotangent bundle of a smooth manifold M . Suppose θ(t) is an orbit of the Hamiltonian vector
field of H. We use the notation C∞

θ (M) for the set of admissible potentials concerned to θ which
is defined as follows

C∞
θ (M) :=

{
u ∈ C∞(M) | u

(
π ◦ θ(t)

)
= 0, du

(
π ◦ θ(t)

)
= 0, for all t ∈ R

}
.

A perturbation alike H+u is an admissible perturbation with respect to θ whenever u ∈ C∞
θ (M).

In the following theorem, Sp(2d) refers to the set of all symplectic matrices of dimension
2d× 2d, and by a regular periodic orbit we mean a periodic orbit that is not a stationary point.

Theorem D (Perturbation theorem for convex Hamiltonians). Suppose that H : T ∗Rd+1 → R
is a smooth convex Hamiltonian and θ(t) ∈ H−1(k) is a regular periodic orbit of Hamiltonian
vector field of H. Moreover, assume that θ(t) admits a neat time. Consider

Pu(θ,Σ) : Σ ∩ (H + u)−1(k) → Σ ∩ (H + u)−1(k), u ∈ C∞
θ (Rd+1),
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as the restricted Poincaré map with respect to θ and Hamiltonian vector field of H + u, where Σ
is a transverse section to θ(t). The map F (θ,H + u) defined as

C∞
θ (Rd+1) ∋ u 7→ dPu ∈ Sp(2d)

is weakly open.

A mapping is weakly open, if the image of every non-empty open set has a non-empty interior.
For a given periodic orbit θ(t) of a Hamiltonian vector field, by the restricted Poincaré map in the
above statement we mean the restriction of the Poincaré map to the energy level that includes
θ(t).

Once more, consider a Hamiltonian of the form H(q, p) = g(p, p)+u(q) where g is a Rieman-
nian metric and u is a potential. In Section 2.3 we will demonstrate that Theorem D does not
hold for a periodic symmetric orbit of such a Hamiltonian H. That means "θ(t) admits a neat
time" is a necessary assumption for Theorem D. In consequence, contrary to what is believed in
the literature, Theorem C is still open. In this thesis, we do not attempt to prove Theorem C
for the case of periodic librations.

The proof given in [RR12] of Theorem D is founded on Lemma C1 of [FR15]; A local normal
form on orbit segments that is similar to Fermi coordinates for Riemannian metrics. See [Kli78],
[GMK68], and Section 5 of [Con10] for Fermi coordinates.
Lemma C1 of [FR15] asserts that a Fermi type symplectic coordinates for a Hamiltonian H(q, p) :
T ∗M → R is achievable by performing only homogeneous fibered symplectic change of coordinates
i.e. change of coordinates of the form Ψ(q, p) =

(
φ(q), [dφ−1(q)]T p

)
where φ is a diffeomorphism.

A symplectomorphism is called fibered whenever it preserves the vertical fibrations. A fibered
symplectomorphism is homogeneous if it preserves the zero section, and it is vertical if it is of
the form Ψ(q, p) =

(
q, p + dg(q)

)
where g is a real valued C2 function. In Chapter 1, we prove

that Lemma C1 of [FR15] is wrong. Furthermore, we obtain an alternative normal form that is
weaker than Lemma C1 of [FR15] but it is sufficient to save the proof of Theorem D which is
given in [RR12].

Besides homogeneous fibered symplectic change of coordinates, the alternative normal form
allows to perform vertical fibered symplectomorphisms, and conformal reparametrizations i.e.
multiplying a function that only depends on the position variable to the Hamiltonian.

Theorem 1 (Alternative normal form). Assume that H(q, p) : T ∗Rd+1 → R is a given convex
smooth Hamiltonian. Consider θ(t) =

(
Q(t), P (t)

)
as a given orbit of the Hamiltonian vector

field of H such that Q̇(0) ̸= 0 and H(θ) = k. There exist a smooth fibered symplectomorphism
Ψ(q, p) : T ∗Rd+1 → T ∗Rd+1, a positive real number δ, and a smooth function z(q) : Rd+1 → R
such that

(
Q(t), P (t)

)
:= Ψ−1(θ) is an orbit of the Hamiltonian vector field of

H(q, p) := z(q)
(
H ◦Ψ(q, p)− k

)
.

Moreover, for all t ∈ [−δ, δ], we have
(1) Q(t) = te1, e1 = (1, 0d)

(2) P (t) = 0

(3) ∂2p1p̂
H(te1, 0) = 0

(4) ∂2qpH(te1, 0) = 0

(5) ∂2p̂2H(te1, 0) = I.

In the above theorem we are using the notation q = (q1, q̂) ∈ R× Rd, and p = (p1, p̂) ∈ R× Rd.
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Li and Nirenberg [LN05] have obtained a local normal form for Finsler metrics (see [LN05],
Lemma 3.1) that is similar to Fermi coordinates. Lemma C1 of [FR15] employs Li-Nirenberg
normal form to acquire a similar normal form for convex Hamiltonians which are not necessarily
homogeneous with respect to momentum variable. In Section 1.3, using our original methods, we
prove a normal form for positively homogeneous Hamiltonians; See Theorem 1.3.1 which implies
the Li-Nirenberg normal form. The proof of this normal form helps to clarify the differences
between the Li-Nirenberg normal form and a similar desired normal form for non-homogeneous
Hamiltonians.

Using geometric control methods, Rifford and Ruggiero [RR12] are not only giving a bright
perspective of the perturbation theorem, but also an essential contribution to Theorem C. The
normal form given in Theorem 1 aids to reduce Theorem D to a control problem.
Consider ϕt(x, u) as the Hamiltonian flow of H + u, and θ(t) as a given regular periodic orbit of
H. In the coordinates given by Theorem 1, let Rt

u : Λ0∩(H+u)−1(0) → Λt∩(H+u)−1(0), be the
perturbed restricted transition map where Λt is defined as Λt := {q1 = t}, and u ∈ C∞

θ (Rd+1).
Using the definition of the Hamiltonian flow, we have the equation

d

dt
∂xϕ

t(0, u) = J∂2x2(H + u)(te1, 0)∂xϕ
t(0, u), J =

[
0 I
−I 0

]
, (1)

which is known as the Jacobi equation in some contexts. Equation (1) can be seen as a control
problem where −∂2q2u(te1) is the control. In the coordinate system introduced by Theorem 1, we
can view equation (1) as two uncoupled equations. In Section 2.2.1, we will show that the solution
of one of these uncoupled equations is identical to the differential of the perturbed transition
map at 0, namely dRt

u(0). In Riemannian dynamics, a similar application of Fermi coordinates
is discussed in Section 5 of [Con10].

One of our goals in this thesis is to know that to what extent Theorem D holds after re-
moving the assumption of convexity. The following definition has a central role in our study of
Hamiltonians that are not necessarily convex.

Definition 3. A smooth Hamiltonian H : T ∗M → R is fiberwised iso-energetically non-degenerate
at a point (q, p) ∈ T ∗M if

det

[
∂2p2H(q, p) ∂pH(q, p)

[∂pH(q, p)]T 0

]
̸= 0.

In other words, Hamiltonian H : T ∗M → R is fiberwise iso-energetically non-degenerate at
a point (q, p) ∈ T ∗M whenever p is a regular point of the function H(q, .) : T ∗

qM → R, and the
Hessian of H(q, .) is non-degenerate on the kernel of its differential ker

(
dH(q, .)

)
. For a given

smooth Hamiltonian H : T ∗M → R, define

ΓH :=

{
(q, p) ∈ T ∗M | det

[
∂2p2H(q, p) ∂pH(q, p)

[∂pH(q, p)]T 0

]
= 0

}
. (2)

Note that H is iso-energetically non-degenerate at (q, p) if and only if (q, p) /∈ ΓH .
For a convex Hamiltonian H : T ∗M → R, the set ΓH is all the points (q, p) ∈ T ∗M such that
∂pH(q, p) = 0. Therefore, whenever a smooth Hamiltonian H is convex, exactly one point per
fiber belongs to ΓH .

The purpose of Chapter 2 is to prove Theorem 3 below which we call the perturbation theorem
for non-convex Hamiltonians.
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Theorem 3. Suppose that θ(t) ∈ H−1(k) is a regular periodic orbit of a smooth Hamiltonian
H : T ∗Rd+1 → R. We consider

Pu(θ,Σ) : Σ ∩ (H + u)−1(k) → Σ ∩ (H + u)−1(k), u ∈ C∞
θ (Rd+1),

as the restricted Poincaré map with respect to θ(t) and Hamiltonian vector field of H + u, where
Σ is a transverse section to θ(t). Assume that θ(t) admits a neat time t0 such that θ(t0) /∈ ΓH .
Then, the map F (θ,H + u) defined as

C∞
θ (Rd+1) ∋ u 7→ dPu ∈ Sp(2d)

is weakly open.

We prove Theorem 3 using a generalization of the alternative normal form for non-convex
Hamiltonians. See Theorem 1.4.1. Our proof of Theorem 3 relies on similar geometric control
methods as Rifford and Ruggiero [RR12] have applied.
Note that for a convex Hamiltonian H, if t0 is a neat time for an orbit θ(t) of the Hamiltonian
vector field of H, then the condition θ(t0) /∈ ΓH is automatically satisfied. Therefore, Theorem D
is a particular case of Theorem 3.
In Section 2.3, we demonstrate that the assumption "θ(t) admits a neat time t0 such that
θ(t0) /∈ ΓH" is a necessary assumption for Theorem 3.

Before we introduce the genericity results of this thesis we wish to give a brief chronological
review of related studies about generic properties of dynamical systems.
Kupka [Kup64] and Smale [Sma63] have studied typical properties of the set of Cr vector fields
defined on a compact manifoldM, namely X r(M). They independently proved that hyperbolicity
of all closed orbits, and transversality of all heteroclinic intersections are Cr generic properties
for X r(M) where r ≥ 1. Peixoto [Pei67] reproves the same result —which is known as Kupka-
Smale theorem— with different methods and generalized it for X r(M) where M is a non-compact
manifold. Abraham [AR67] gives a new proof of the Kupka-Smale theorem after obtaining the
parametric transversality theorem. It is important to note that hyperbolicity of all closed orbits
in a given energy level is not a generic property of Hamiltonian vector fields; See [MP70; Rob70a;
Rob70b] for more details.
As we saw earlier, parallel studies in the context of Mañé genericity are much more recent.
Inspired by [KT72], Carballo and Miranda [CM13] shows that for a given closed orbit θ of a convex
Hamiltonian H, the ℓ-jets of the map F (θ,H + u) —that we have defined in Theorem D— are
weakly open for all ℓ ≥ 1. The proof given in [CM13] depends on conclusions of [RR12]. Lazrag,
Rifford and Ruggiero [LRR16; Laz14] proves that the restriction of the same map F (θ,H + u)
to C2 potentials is an open mapping.

In Chapter 3, we prove two genericity results, Theorem 4 and Theorem 5 below. These
theorems are immediately concluding Theorem 6 which we can consider as a bumpy metric
theorem in the sense of Mañé for non-convex Hamiltonians.

Theorem 4. Assume that H : T ∗M → R is a smooth Hamiltonian defined on the cotangent
bundle of a closed smooth manifold M. Let Υ ⊂ Sp(2d) be a given Fσ nowhere dense subset
invariant under congugacy. For a given k ∈ R, there exists a Gδ dense subset G ⊂ C∞(M) such
that for all u ∈ G the k-energy level of H + u is regular; Moreover, if θ(t) ∈ (H + u)−1(k) is
a periodic orbit that admits a neat time t0 such that θ(t0) /∈ ΓH , then the linearized restricted
Poincaré map associated to θ and Hamiltonian vector field of H + u does not belong to Υ.

Note that a subset is called Fσ if it is the complement of a Gδ subset.
The proofs given by Oliveira [Oli08] and Anosov [Ano83] of bumpy metric theorems are
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including three main phases: Besides a machinery to perturb the linearized Poincaré map asso-
ciated to a given periodic orbit (Theorem 4.5 in [Oli08] and Theorem 2 in [KT72]), both proofs
in [Ano83] and [Oli08] are applying the parametric transversality theorem which is a general-
ization of Thom’s transversality theorem. See Theorem 19.1 of [AR67]. Furthermore, Anosov
and Oliveira are applying an induction on recurrence of periods of orbits; Look at the proof of
Lemma 3.6 in [Oli08] for example.
The proof that we give for Theorem 4 in Section 3.2.1 has a crucial dependence on the perturba-
tion theorem for non-convex Hamiltonians. However, we do not use induction on recurrence of
periods, and we prove a variant of parametric transversality theorem tacitly during the proof of
Theorem 4. In this way, the proof of Theorem 4 would be comprehensible after recalling a few
standard facts in general topology. Nevertheless, we face a new challenge to prove the bumpy
metric theorem in the non-convex setting. That is to investigate, given a smooth Hamiltonian H,
to what extent all non-symmetric orbits of H + u are admitting a neat time in the complement
of ΓH where u is a generic smooth potential. See Theorem 5 below in which we refer to the
following hypothesis.
Hypothesis 1. The subset ΓH ⊂ T ∗M is contained in a countable union of submanifolds of
positive codimension which are transversal to the vertical fibrations.

Theorem 5. Let H : T ∗M → R be a smooth Hamiltonian defined on the cotangent bundle of
a smooth manifold M. Assume that ΓH satisfies Hypothesis 1. There exists a Gδ dense subset
G ⊂ C∞(M) such that for all u ∈ G, the Hamiltonian vector field associated to H + u has the
following property:

For each orbit θ(t) of H + u and each time t0 such that ∂pH
(
θ(t0)

)
̸= 0, there exist an open

neighborhood I ⊂ R around t0 so that θ(I \ t0) ∩ ΓH = ∅.

If t0 is a neat time of an orbit θ(t) of Hamiltonian vector field of H, then there exists an
open segment of θ(t) such that it includes t0 and it consists of neat points only. That is to say
admitting a neat time is an open condition for an orbit θ(t). Hence, Theorem 5 instantly implies
that the property (g) described below is a Mañé-generic property for Ĥ∞(T ∗M) which denotes
for all Hamiltonians H ∈ H∞(T ∗M) such that ΓH satisfies Hypothesis 1.

(g) all orbits that are admitting a neat time are also admitting a neat time in the complement
of ΓH ⊂ T ∗M.

In other words, for a given Hamiltonian H ∈ Ĥ∞(T ∗M), the set of potentials {u ∈ C∞(M) |
H+u satisfies (g)} is a Gδ dense subset of C∞(M). Therefore, Theorem 4 and Theorem 5 imply
the following theorem.

Theorem 6. Assume that H : T ∗M → R is a smooth Hamiltonian defined on the cotangent
bundle of a smooth manifold M. Suppose that ΓH satisfies Hypothesis 1. Let Υ ⊂ Sp(2d) be a
Fσ nowhere dense subset invariant under congugacy. For a given k ∈ R, there exists a Gδ dense
subset G ⊂ C∞(M) such that for all u ∈ G the Hamiltonian H + u has the following property:

(H + u)−1(k) is a regular energy level. Furthermore, if θ(t) ∈ (H + u)−1(k) is a periodic
orbit that admits a neat time, then the linearized restricted Poincaré map associated to θ(t) and
Hamiltonian vector field of H + u does not belong to Υ.

If we choose Υ ⊂ Sp(2d) as the subset of all matrices that are taking a root of unity as their
eigenvalues, then the above theorem for such subset Υ is what we are able to consider as a bumpy
metric theorem in the sense of Mañé for non-convex Hamiltonians.

The results of this thesis is already published in research articles [AB21] and [AB22]. From
time to time, the notations and presentation of the statements and proofs in this thesis are
slightly different compared to the articles.
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Li and Nirenberg [LN05] achieved a local normal form on geodesics of Finsler metrics. See
Lemma 3.1 in [LN05] which is equivalent to Corollary 1.3.2 below. As we mentioned in the
introduction of this thesis, Lemma C.1 of [FR15] attempts to apply Li-Nirenberg normal form
to obtain a similar normal form for convex Hamiltonians. We represent Lemma C.1 of [FR15]
as Proposition 1.2.6 below.
In Section 1.2, we prove that the statement of Lemma C.1 in [FR15] is wrong. Furthermore, we
introduce an alternative normal form weaker than Lemma C.1 in [FR15] but applicable to save
the proof of Theorem D given in [RR12] which is based on the wrong normal form.
In Section 1.3, Theorem 1.3.1 gives a normal form for homogeneous Hamiltonians. We prove
Theorem 1.3.1 using the methods that we develop during the chapter and we show that it
implies Li-Nirenberg normal form.
We devote Section 1.4 to obtain an extension of the alternative normal form for non-convex
Hamiltonians. See Theorem 1.4.1 which we apply to prove the perturbation theorem for non-
convex Hamiltonians in the next chapter.

In the first two chapters of this thesis, since we are studying local properties of Hamiltonian
vector fields, without loss of generality we state all the results for Hamiltonians that are defined
on cotangent bundle of an Euclidean space instead of cotangent bundle of a smooth manifold.

7
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1.1 Preliminaries

1.1.1 Fibered symplectomorphisms

Definition 1.1.1. A symplectomorphism Ψ : T ∗Rd+1 → T ∗Rd+1 is fibered if it preserves the
vertical fibrations. In other words, Ψ is fibered if and only if Ψ(q, p) =

(
φ(q), G(q, p)

)
where

φ : Rd+1 → Rd+1 is a diffeomorphism.

In the context of this thesis, it is necessary to restrict ourselves to perform only fibered symplectic
changes of coordinates. Otherwise, a given function that depends only on the variable q would
depend on the variable p after performing a symplectic change of coordinates, and that means
the set of potentials would depend on coordinate system.

Definition 1.1.2. A fibered symplectomorphism Ψ(q, p) : T ∗Rd+1 → Rd+1 is homogeneous if it
preserves the zero section. In other words, Ψ is homogeneous if and only if

Ψ(q, p) =
(
φ(q), [dφ−1(q)]T p

)
,

where φ : Rd+1 → Rd+1 is a diffeomorphism.
A fibered symplectomorphism Ψ is vertical if Ψ(q, p) =

(
q, p+dg(q)

)
for a C2 function g : Rd+1 →

R.

The following lemma approves that each fibered symplectomorphism is either homogeneous,
vertical, or a composition of a homogeneous (vertical) symplectomorphism with a vertical (ho-
mogeneous) symplectomorphism.

Lemma 1.1.3. Given a diffeomorphism φ : Rd+1 → Rd+1, a function Ψ : T ∗Rd+1 → T ∗Rd+1

defined as Ψ(q, p) :=
(
φ(q), G(q, p)

)
is a symplectomorphism if and only if G satisfies

G(q, p) = [dφ−1(q)]T p+ dg(q),

for a C2 function g : Rd+1 → R.

Proof. By definition of a symplectomorphism, Ψ satisfies the following

dΨJ [dΨ
]T

= J, J =

[
0 I
−I 0

]
. (1.1.1)

We expand the left side of (1.1.1) to have[
dφ 0
∂qG ∂pG

] [
0 I
−I 0

] [
[dφ]T [∂qG]

T

0 [∂qG]
T

]
=

[
0 I
−I 0

]
⇒

[
o dφ[∂qG]

T

−∂pG[dφ]T −∂pG∂qG+ ∂pG[∂qG]
T

]
=

[
0 I
−I 0

]
;

Therefore,

dφ[∂pG]
T = I, (1.1.2)

−(∂pG)∂qG+ ∂pG[∂qG]
T = 0. (1.1.3)

From (1.1.2), we have ∂pG(q, p) = [dφ−1(q)]T which implies

G(q, p) =
[
dφ−1(q)

]T
p+ f(q), (1.1.4)
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where f : Rd+1 → Rd+1 is a C1 function. After differentiating equation (1.1.4) with respect to q
and p variables we conclude the following equations

∂pG(q, 0) = [dφ−1(q)]T , (1.1.5)
∂qG(q, 0) = df(q). (1.1.6)

Now we rewrite (1.1.3) on the points (q, 0)

−∂pG(q, 0)∂qG(q, 0) + ∂pG(q, 0)[∂qG(q, 0)]
T = 0. (1.1.7)

Replacing equations (1.1.5) and (1.1.6) into (1.1.7) yields

[dφ−1(q)]T [df(q)]T = [dφ−1(q)]T df(q) ⇒ [df(q)]T = df(q).

Hence, since [df(q)]T = df(q), by Poincaré lemma a C2 function g : Rd+1 → R exists such that
f = dg which allows us to rewrite (1.1.4) as G(q, p) = [dφ−1(q)]T p+ dg(q).

1.1.2 Homogeneous Lagrangian and Hamiltonians, Finsler metrics

For a convex Hamiltonian H : T ∗Rd+1 → R, recall the Legendre-Fenchel duality which corre-
sponds to H the Lagrangian L : TRd+1 → R defined as

L(q, v) = sup
p∈T∗

q Rd+1

{
⟨p, v⟩ −H(q, p)

}
. (1.1.8)

Definition 1.1.4. Consider a Lagrangian L(q, v) : TRd+1 → R+ which admits only positive
values. For a fixed β ∈ N∪{0}, L is called (positively) β-homogeneous or (positively) homogeneous
of degree β if for each (r ∈ R+) r ∈ R \ {0},

L(q, rv) = rβL(q, v).

L is called a Finsler metric if it satisfies the following three properties
(1) L is smooth on v ̸= 0
(2) L is positively 1-homogeneous
(3) L is even with respect to the v variable i.e L(q,−v) = L(q, v)
(4) L2 is convex i.e. ∂2v2L2(q, v) is positive-definite for all (q, v) ∈ Rd+1.

Similarly, we say H(q, p) : T ∗Rd+1 → R+ is (positively) β-homogeneous if

H(q, rp) = rβH(q, p). (1.1.9)

Lemma 1.1.8 below determines the relation between orders of homogeneity of a convex Hamil-
tonian and its corresponding Lagrangian. To prove this lemma, we use Euler’s theorem for ho-
mogeneous functions. Further in this chapter, we apply Euler’s theorem in Section 1.3 where we
prove a normal form for homogeneous Hamiltonians.

Theorem 1.1.5 (Euler’s theorem for homogeneous functions). Lagrangian L(q, v) : TRd+1 →
R+ is β-homogeneous if and only if〈

v, ∂vL(q, v)
〉
= βL(q, v). (1.1.10)
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Similarly, a Hamiltonian H(q, p) : T ∗Rd+1 → R+ is β-homogeneous if and only if〈
p, ∂pH(q, p)

〉
= βH(q, p). (1.1.11)

Remark 1.1.6. If L(q, v) : TRd+1 → R+ is a Finsler metric then it satisfies〈
v, ∂vL(q, v)

〉
= L(q, v). (1.1.12)

However, a Lagrangian that satisfies (1.1.12) is not necessarily even with respect to the variable
v.

Corollary 1.1.7. If L(q, v) be a positively β-homogeneous Lagrangian, then ∂vL(q, v) is posi-
tively homogeneous of degree β − 1 with respect to v-variable.
For a homogeneous Hamiltonian H(q, p) of degree β, ∂pH(q, p) is positively (β−1)-homogeneous
with respect to p-variable.

Proof. Differentiation (1.1.11) with respect to p yields
〈
p, ∂2p2H(q, p)

〉
+ ∂pH(q, p) = β∂pH(q, p),

so we have 〈
p, ∂2p2H(q, p)

〉
= (β − 1)∂pH(q, p). (1.1.13)

From equation (1.1.13) above and Euler’s theorem we conclude that ∂pH(q, p) is positively ho-
mogeneous of order β − 1.

Lemma 1.1.8. Assume that Lagrangian L(q, v) : TRd+1 → R+ is smooth, convex, and positively
β1-homogeneous where β1 > 1. If H(q, p) is the dual Hamiltonian of L, then H is positively β2-
homogeneous where 1

β1
+ 1

β2
= 1.

Proof. By Corollary 1.1.7, p = ∂vL(q, v) is positively (β1 − 1)-homogeneous with respect to
v-variable. For a given r > 0 the Legendre-Fenchel duality gives

L(q, rv) = rβ1L(q, v) = sup
p∈T∗

q Rd+1

{〈
rβ1−1p, rv

〉
−H(q, rβ1−1p)

}
= sup

p∈T∗
q Rd+1

{
rβ1⟨p, v⟩ − r(β1−1)β2H(q, p)

}
. (1.1.14)

After multiplying r−β1 to (1.1.14) we have

L(q, v) = sup
p∈T∗

q Rd+1

{
⟨p, v⟩ − r(β1−1)β2−β1H(q, p)

}
.

We have assumed that H is the corresponding Hamiltonian of L; Therefore, from the above
equation and Legendre-Fenchel duality we conclude that (β1 − 1)β2 − β1 = 0 which implies that
1
β1

+ 1
β2

=1.
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1.2 Local normal form on orbits of a convex Hamiltonian

In this section, first we introduce the alternative normal form, and afterwards we prove that
the statement of Lemma C1 in [FR15] is not correct.

1.2.1 The alternative normal form

In the statement of the following theorem we are using the notation q = (q1, q̂) ∈ R×Rd and
p = (p1, p̂) ∈ R× Rd.

Theorem 1.2.1 (Alternative normal form). Assume that H(q, p) : T ∗Rd+1 → R is a given
convex smooth Hamiltonian. Consider θ(t) =

(
Q(t), P (t)

)
as a given orbit of the Hamilto-

nian vector field of H such that Q̇(0) ̸= 0 and H(θ) = k. There exist a smooth fibered sym-
plectomorphism Ψ(q, p) : T ∗Rd+1 → T ∗Rd+1, a positive real number δ, and a smooth function
z(q) : Rd+1 → R such that

(
Q(t), P (t)

)
:= Ψ−1(θ) is an orbit of the Hamiltonian vector field of

H(q, p) := z(q)
(
H ◦Ψ(q, p)− k

)
. Moreover, for all t ∈ [−δ, δ], we have

(1) Q(t) = te1, e1 = (1, 0d)

(2) P (t) = 0

(3) ∂2p1p̂
H(te1, 0) = 0

(4) ∂2qpH(te1, 0) = 0

(5) ∂2p̂2H(te1, 0) = I.

Remark 1.2.2. Assertions (1) and (2) imply
(6) ∂2q1qH(te1, 0) = 0, for all t ∈ [−δ, δ].

Proof of the remark. From (1) and (2) we have ∂qH(te1, 0) = P (t) = 0 for all t ∈ [−δ, δ].
Therefore, ∂2q1qH(te1, 0) = 0.

Proof of (1). Because Q̇(0) ̸= 0, the mapping t 7→ Q(t) is an embedding near t = 0. Therefore,
there exists τ > 0 and a diffeomorphism φ0 : Rd+1 → Rd+1 such that φ0

(
Q(t)

)
= te1 for all

t ∈ [−τ, τ ]. Define
Ψ0(q, p) :=

(
φ0(q), [dφ

−1
0 ]T p

)
, H := H ◦Ψ0.

The Hamiltonian H satisfies (1).

In the proofs of (2) to (5) below, let τ be the same as proof of (1). Moreover, assume that for
all t ∈ [−τ, τ ] the given orbit θ(t) satisfies θ(t) =

(
te1, P (t)

)
.

To preserve assertion (1) in the following proofs, we use only admissible symplectomorphisms:

Definition 1.2.3. A fibered symplectomorphism Ψ(q, p) =
(
φ(q), G(q, p)

)
is admissible whenever

φ is identity on the segment
{
te1 | t ∈ [−τ, τ ]

}
, where τ is introduced in the proof of (1).

Remark 1.2.4. An admissible homogeneous symplectomorphism Ψ(q, p) =
(
φ(q), [dφ−1]T p

)
satisfies

dφ(te1)e1 = e1,
(
[dφ−1(te1)]

T p
)
1
= p1, for all p ∈ (Rd+1)∗, (1.2.1)

where (.)1 denotes for the first component of a vector.

Proof of (2). Let v(q1) : R → R be a smooth function such that v′(t) = P 1(t) for all t ∈ [−τ, τ ].
Where we used the notation P = (P 1, P̂ ) ∈ R∗ × (Rd)∗. Define

Ψ1(q, p) :=
(
q, p+ du(q)

)
, u(q1, q̂) := v(q1) + P̂ (q1)q̂.
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Then for all t ∈ [−τ, τ ], we have Ψ−1
1

(
te1, P (t)

)
=

(
te1, P (t)− du(te1)

)
= (te1, 0).

Proof of (4). Suppose Ψ1 is already performed. Define the vector field

V (q) := ∂pH(q, 0).

Because V (0) = Q̇(0) ̸= 0, using tubular flow theorem (see [PMM12] Theorem 1.1), there exist an
open neighborhood U ⊂ Rd+1 around 0 and a diffeomorphism φ2 : U → U such that (φ2)∗V = e1
which means that the push-forward of V by φ2 is the constant vector field e1 on U . Define

Ψ2(q, p) :=
(
φ2(q), [dφ

−1
2 (q)]T p

)
, H := H ◦Ψ2.

Then, we have ∂pH(q, 0) = e1 for all q ∈ U which implies that ∂2qpH(q, 0) identically vanishes on
U .

Proof of (3). Assume that we have performed Ψ1 ◦ Ψ2. Recall from proof of (2) that an open
neighborhood U ⊂ Rd+1 around 0 exists such that V (q) := ∂pH(q, 0) = e1 for all q ∈ U .
Set D(t) := ∂2p̂2H(te1, 0). Note that since H is convex, ∂2p2H(te1, 0) is positive-definite for all
t ∈ R, so in particular D(t) is invertible for all t ∈ R. Define

φ3(q) := (q1 + l(q1).q̂, q̂),

where l : R → Rd is given by
l(t) := [D(t)]−1∂2p1p̂H(te1, 0). (1.2.2)

Furthermore, define

Ψ3(q, p) := (φ3(q), [dφ
−1
3 (q)]T p), H := H ◦Ψ3.

Using the definition of φ3 one can compute [dφ−1
3 (q)]T as follows

[dφ−1
3 (q)]T =

[
[1 + l′(q1).q̂]

−1 0
−[1 + l′(q1).q̂]

−1l(q1) Id

]
. (1.2.3)

Where we have denoted by l′ the derivative of l. From (1.2.3) and definition of Ψ3 we get

Ψ3(te1, p) =
(
te1, p1, p̂− p1l(t)

)
. (1.2.4)

Equation (1.2.4) in above implies that

∂p̂(H ◦Ψ3)(te1, p1, p̂) = ∂p̂H(te1, p1, p̂− p1l(t)). (1.2.5)

We have

∂2p1p̂H(te1, 0) = ∂2p1p̂(H ◦Ψ3)(te1, 0)

= ∂2p1p̂H(te1, 0)− ∂2p̂2H(te1, 0)l(t) (1.2.6)

= ∂2p1p̂H(te1, 0)−D(t)[D(t)]−1∂2p1p̂H(te1, 0) = 0. (1.2.7)

So H satisfies (3). Note that we have obtained (1.2.6) after differentiating the right side of (1.2.5)
with respect to p1 at p = 0. Equation (1.2.7) is the result of replacing D(t) with ∂2p̂2H(te1, 0),

and l(t) with its equivalent in (1.2.2).
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Although H satisfies (3), once we performed Ψ3 we have lost assertion (4): Note that

V (q) := ∂pH(q, 0) = dφ−1
3 (q)V (q)

=

[
[1 + l′(q1).q̂]

−1 0
−[1 + l′(q1).q̂]

−1l(q1) Id

]
e1

= ([1 + l′(q1).q̂]
−1, 0),

so ∂q̂V 1(te1) = ∂2q̂p1
H(te1, 0) is equal to −l′(t) which does not necessarily vanish.

We regain (4) using a conformal reparametrization. Define

f(q) :=
1

V 1(q)
, H(q, p) := f(q)

(
H(q, p)− k

)
. (1.2.8)

For t ∈ [−τ, τ ], the Hamiltonian H defined above admits (te1, 0) as its 0-energy orbit. Moreover,
V (q) := ∂pH(q, 0) is a unit vector field on U , so H satisfies (4).
Since f(te1) = 1 for all t ∈ [−τ, τ ], we can easily verify that H preserves assertion (3).

Later in this chapter, in the proof of Proposition 1.2.8, we will see that it is impossible to
regain (4) in the above proof using a further fibered symplectomorphism.

Proof of (5). Consider Ψ1 ◦ Ψ2 ◦ Ψ3 as the local coordinates around 0. Based on proof of (3),
the fiberwise Hessian of H has the following block form

∂p2H(te1, 0) =

[
d11(t) 0

0 D(t)

]
, t ∈ [−τ, τ ], (1.2.9)

where we have set d11(t) := ∂2
p2
1
H(te1, 0), and D(t) := ∂2p̂2H(te1, 0).

Because H is convex, all matrices in the set {D(t) | t ∈ [−τ, τ ]} are positive-definite. Therefore,
there exists a smooth curve M(q1) : R → GL(d) such that

D(t) =M(t)MT (t), t ∈ [−τ, τ ]. (1.2.10)

Define
φ4(q) :=

(
q1,M(q1)q̂

)
, Ψ4(q, p) :=

(
φ4(q), [dφ

−1
4 (q)]T p

)
, H := H ◦Ψ4.

Denote by Ṁ the derivative of M . We have

dφ−1
4 (q) =

[
1 0

−M−1(q1)Ṁ(q1)q̂ M−1(q1)

]
,

so

[dφ−1
4 (q)]T =

[
1 −q̂T ṀT (q1)[M

−1(q1)]
T

0 [M−1(q1)]
T

]
.

In particular,

[dφ−1
4 (te1)]

T =

[
1 0
0 [M−1(t)]T

]
.

We claim that
∂2p̂2H(te1, 0) = I. (1.2.11)
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To prove the claim (1.2.11), we write the Taylor expansion of H with respect to p-variables
around (te1, 0), where t ∈ [−τ, τ ]:

H(te1, p) = H ◦Ψ4(te1, p) = H
(
te1, [dφ

−1
4 (te1)]

T p
)

= p1 + pT
[
1 0
0 M−1(t)

] [
d11(t) 0

0 D(t)

] [
1 0
0 [M−1(t)]T

]
p+O3(p)

= p1 + pT
[
d11(t) 0

0 Id

]
p+O3(p). (1.2.12)

Equation (1.2.12) confirms what we have asserted earlier in equation (1.2.11).
In a neighborhood of q = 0 we have

V (q) := ∂pH(q, 0) = dφ−1
4 (q)∂pH(q, 0) = dφ−1

4 (q)e1 =
(
1,−M−1(q1)Ṁ(q1)q̂

)
.

Therefore,
∂2q̂p̂H(te1, 0) = −M−1(t)Ṁ(t), t ∈ [−τ, τ ], (1.2.13)

which implies that ∂2pqH(te1, 0) does not necessarily vanish near t = 0. That means assertion (4)
is lost again. In order to obtain (4), we apply the vertical symplectomorphism

Ψ5(q, p) :=
(
q, p+ dg(q)

)
,

where g : Rd+1 → R is a smooth function that satisfies

dg(te1) = 0, ∂2q̂2g(te1) =M−1(t)Ṁ(t), t ∈ [−τ, τ ]. (1.2.14)

A desired function g exists only if

M−1(t)Ṁ(t) ∈ S(d) for all t ∈ [−τ, τ ], (1.2.15)

where S(d) denotes for the set of symmetric d × d real matrices. So we need to prove that a
factorization D = M(t)MT (t) exists such that (1.2.15) holds. This is proven in Lemma 1.2.5
below. We define H := H ◦Ψ5, then we have

∂2p̂q̂H(te1, 0) = ∂2q̂p̂H(te1, 0) + ∂2p̂2H(te1, 0)∂
2
q̂2g(te1)

= −M−1(t)Ṁ(t) + I
(
M−1(t)Ṁ(t)

)
(1.2.16)

= 0.

So H satisfies (4). Note that in order to deduce (1.2.16), we used (1.2.14), (1.2.13) and (1.2.11).
Because vertical symplectomorphisms has no effect on fiberwise Hessian, we have

∂2p̂2H(te1, 0) = ∂2p̂2H(te1, 0) = I.

Hence, H also satisfies (5).

Lemma 1.2.5. A smooth curve M(t) : [−τ, τ ] → GL(d) exists such that for all t ∈ [−τ, τ ],
we have D(t) = M(t)MT (t), and M−1(t)Ṁ(t) ∈ S(d). Where for t ∈ [−τ, τ ], we have set
D(t) := ∂2p̂2H(te1, 0).

Proof. We will demonstrate that the desired curve M(t) : [−τ, τ ] → GL(d) is the solution of the
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differential equation {
Ṁ(t) = 1

2

(
Ḋ(t)

)[
M−1(t)

]T
M(0) = [D(0)]

1
2

, t ∈ [−τ, τ ]. (1.2.17)

Suppose M is the solution of the above equation, then we have

M−1(t)Ṁ(t) =
1

2
M−1(t)Ḋ(t)[M−1(t)]T . (1.2.18)

By definition, Ḋ(t) is symmetric for all t ∈ [−τ, τ ], so we conclude that

M−1(t)Ḋ(t)[M−1(t)]T ∈ S(d), for all t ∈ [−τ, τ ]. (1.2.19)

Therefore, based on (1.2.18) and (1.2.19), it is obvious that M−1(t)Ṁ(t) is symmetric for all
t ∈ [−τ, τ ].
It remains to prove that D(t) =M(t)MT (t). Since M−1(t)Ṁ(t) ∈ S(d), we have

M−1(t)Ṁ(t) = [Ṁ(t)]T [M−1(t)]T . (1.2.20)

MultiplyingM(t) from the left and [M(t)]T from the right to (1.2.20) yields the following equation

Ṁ(t)[M(t)]T =M(t)[Ṁ(t)]T . (1.2.21)

Based on (1.2.17) and (1.2.21)

Ḋ(t) = 2Ṁ(t)[M(t)]T

= Ṁ(t)[M(t)]T +M(t)[Ṁ(t)]T , t ∈ [−τ, τ ]. (1.2.22)

Equation (1.2.22) and the initial condition M(0) = [D(0)]
1
2 imply that D =M(t)MT (t).

Here we aim to adjust the proofs of (1) to (5) with the notation that we have used in the
statement of Theorem 1.2.1. Define

Ψ1 := Ψ3 ◦Ψ0 ◦Ψ1 ◦Ψ2, Ψ2 := Ψ4 ◦Ψ5, Ψ := Ψ1 ◦Ψ2,

and
φ1 := φ0 ◦ φ1 ◦ φ2 ◦ φ3, φ2 := φ4 ◦ φ5.

Moreover, define z(q) := f ◦ φ2(q), where

f(q) :=
1

∂p1

(
H ◦Ψ0 ◦Ψ1 ◦Ψ2

)
(q, 0)

.

Based on the proofs of (1) to (5) in above, there exists δ > 0 such that for all t ∈ [−δ, δ],(
Q(t), P (t)

)
:= Ψ−1(θ) and the Hamiltonian H defined as follows

H(q, p) :=
[
f(q)

(
(H ◦Ψ1)(q, p)− k

)]
◦Ψ2 = (f ◦ φ2)(q)

(
(H ◦Ψ1 ◦Ψ2)− k

)
= z(q)

(
H(q, p) ◦Ψ− k

)
satisfy assertions (1) to (5) of the Theorem 1.2.1.
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1.2.2 The normal form claimed by Figalli and Rifford
Now we restate the Lemma C1 of [FR15] in Proposition 1.2.6 below. Proposition 1.2.8 that

follows in this section shows that Proposition 1.2.6 is false.

Proposition 1.2.6. Assume that H(q, p) : T ∗Rd+1 → R is a smooth convex Hamiltonian and
θ(t) =

(
Q(t), P (t)

)
is a given orbit of Hamiltonian vector field of H such that Q̇(0) ̸= 0. There

exist a real number δ > 0, and a homogeneous symplectomorphism Ψ(q, p) : T ∗Rd+1 → T ∗Rd+1

such that for all t ∈ [−δ, δ] we have
(1) Q(t) = te1, e1 = (1, 0d)

(2) P (t) = 0

(3) ∂2p1p̂
H(te1, 0) = 0

(4) ∂2qpH(te1, 0) = 0

(5) ∂2p̂2H(te1, 0) = I,

where H := H ◦Ψ and
(
Q(t), P (t)

)
:= Ψ−1

(
θ(t)

)
.

Remark 1.2.7. We have replaced
(2)′ P (t) = e1.

in the original statement of Lemma C1 in [FR15] with (2) above. More explanation is given
below.

Let us first note the differences between the above proposition —which is equivalent to Lemma
C1 of [FR15]— and Theorem 1.2.1. Besides homogeneous symplectomorphisms, the statement
of the alternative normal form allows us to use vertical symplectomorphisms, in addition, the
alternative normal form permits to reparametrize the Hamiltonian vector field with a function
that only depends on q-variable. At the other hand, in Proposition 1.2.6, our only tool to main-
tain the assertions is homogeneous symplectic changes of coordinates.
A homogeneous symplectomorphism preserves the zero section, so in general, both (2) and (2)′

are not obtainable by an admissible homogeneous symplectic change of coordinates. Further-
more, given a regular orbit θ(t) =

(
Q(t), P (t)

)
, an admissible homogeneous symplectomorphism

preserves the first coordinates of P (t), namely P 1(t). To see the reason of that, it is enough to
recall equation (1.2.1):

([dφ−1(te1)]
T p)1 = p1, for all p ∈ (Rd+1)∗.

So once P 1(t) is given, it cannot be changed by an admissible homogeneous symplectic change
of coordinates.
Acquiring (2) or (2)′ would be easy using vertical symplectomorphisms. See proof of (2) of The-
orem 1.2.1. Applying vertical symplectomorphisms is also necessary for assertions (4) and (5) to
hold simultaneously. Look at the proof of assertion (5) of Theorem 1.2.1.
As we will see in the next subsection, having (2)′ instead of (2) in similar normal forms is conve-
nient whenever we are working with homogeneous Hamiltonians; Otherwise, we prefer to work
with normal forms that are satisfying (2) instead of (2)′. As we already explained, associated to
our methods, there is not much of a difference between proving (2) or (2)′.
Above all, the major issue of Proposition 1.2.6 is that whenever the map t 7→ ∂2q̂p1

H(te1, 0) is
not identically equal to zero it cannot be converted to the null function via fibered symplecto-
morphisms that are preserving (1),(2) and (3). We state this more precisely in the following
Proposition.
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Proposition 1.2.8. Let H(q, p) : T ∗Rd+1 → R be a given smooth convex Hamiltonian. Assume
that for some δ > 0, θ(t) = (te1, 0) where t ∈ [−δ, δ], is an orbit segment of the Hamiltonian
vector field of H. Suppose that we have

∂2p1p̂H(te1, 0) = 0, for all t ∈ [−δ, δ]. (1.2.23)

Furthermore, assume that ∂2q̂p1
H(0) ̸= 0. Then there is not exists an admissible fibered symplectic

change of coordinates Ω(q, p) : T ∗Rd+1 → T ∗Rd+1, Ω−1(te1, 0) = (te1, 0), such that H := H ◦ Ω
preserves equation (1.2.23) (i.e. ∂2p1p̂

H(te1, 0) = 0 for all t ∈ [−δ, δ]), and satisfies ∂2q̂p1
H(0) = 0.

Proof of Proposition 1.2.8

First, we show that the value of ∂2q̂p1
H(0) is invariant under any vertical symplectic change

of coordinates of the form that follows

Ω(q, p) =
(
q, p+ dg(q)

)
, dg(te1) = 0. (1.2.24)

Note that condition dg(te1) = 0 is necessary for Ω to satisfy Ω−1(te1, 0) = (te1, 0). Since we have

∂p1

(
H ◦ Ω

)
(q, p) = ∂p1

H
(
q, p+ dg(q)

)
,

then for all t ∈ [−δ, δ], we can write

∂2q̂p1

(
H ◦ Ω

)
(te1, 0) = ∂2q̂p1

H(te1, 0) +

n∑
i=1

∂2pip1
H(te1, 0)∂

2
q̂qig(te1). (1.2.25)

Recall from the assumptions of the Proposition 1.2.8 that ∂2p̂p1
H(te1, 0) = 0, so we can rewrite

equation (1.2.25) as

∂2q̂p1

(
H ◦ Ω

)
(te1, 0) = ∂2q̂p1

H(te1, 0) + ∂2p2
1
H(te1, 0)∂

2
q̂q1g(te1). (1.2.26)

Because ∂q̂g(te1) = 0 for all t ∈ [−δ, δ], we obtain

∂2q1q̂g(te1) = 0, t ∈ [−δ, δ]. (1.2.27)

After inserting (1.2.27) into (1.2.26) we get

∂2q̂p1

(
H ◦ Ω

)
(te1, 0) = ∂2q̂p1

H(te1, 0), t ∈ [−δ, δ].

We just proved that, for all t ∈ [−δ, δ], the value of ∂2q̂p1
H(te1, 0) is invariant under vertical

symplectic change of coordinates of the form (1.2.24). So in particular, if the value of ∂2q̂p1
H(0)

is non-zero it cannot be changed by vertical symplectomorphisms of the form (1.2.24).
To complete the proof of Proposition 1.2.8, we also need to show that ∂2q̂p1

H(0) does not vanish
after performing any admissible homogeneous symplectic change of coordinates that preserves
(1.2.23). To do so, first we need to prove the following lemma.

Lemma 1.2.9. Consider an admissible homogeneous symplectomorphism

Ω(q, p) =
(
φ(q), [dφ−1(q)]T p

)
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that preserves (1.2.23). Then dφ(te1) has the following block form

dφ(te1) =

[
1 0d
0d ∗

]
,

for all t ∈ [−δ, δ], where δ is the same constant as in Proposition 1.2.8

Proof. Since Ω is admissible, by (1.2.1) we have

[dφ(te1)]e1 = e1,
(
[dφ−1(te1)]

T p
)
1
= p1 for all p ∈ (Rd+1)∗.

Therefore, [dφ−1(te1)]
T must have the triangular block form

[dφ−1(te1)]
T =

[
1 0d
b(t) B(t)

]
, (1.2.28)

for some b(t) : [−δ, δ] → Rd, and B(t) : [−δ, δ] → GL(d). Note that

dφ(te1) =

[
1 −bT (t)[B−1(t)]T

0 [B−1(t)]T

]
. (1.2.29)

If we set H := H ◦ Ω, D(t) := ∂2p̂2H(te1, 0), and d11(t) := ∂2
p2
1
H(te1, 0), then we can write

∂2p2H(te1, 0) = ∂2p2

(
H ◦ Ω

)
(te1, 0) = [dφ−1(te1)]∂

2
p2H(te1, 0)[dφ

−1(te1)]
T

=

[
1 [b(t)]T

0 [B(t)]T

] [
d11 0
0 D(t)

] [
1 0
b(t) B(t)

]
=

[
∗ [b(t)]TD(t)B(t)

[B(t)]TD(t)b(t) [B(t)]TD(t)

]
. (1.2.30)

By assumption, Ω preserves (1.2.23), so (1.2.30) implies that

[b(t)]TD(t)B(t) = 0 ⇒ b(t) = 0. (1.2.31)

In the above equation, note that D(t) is invertible because H is convex; Moreover, after recalling
equation (1.2.28) and the fact that φ is a diffeomorphism, we see that B(t) is invertible as well.
Finally, from (1.2.31) and (1.2.28) we conclude that

[dφ−1(te1)]
T =

[
1 0
0 B(t)

]
⇒ dφ(te1) =

[
1 0
0 [B−1(t)]T

]
. (1.2.32)

We continue the proof of Proposition 1.2.8. Assume that Ω =
(
φ(q), [dφ−1(q)]T p

)
is an

admissible homogeneous symplectomorphism that preserves (1.2.23). Set V (q) := ∂pH(q, 0),
and let V be the push-forward of V by Ω. We have

V (φ(q)) = dφ(q)V (q). (1.2.33)

Let a(q) be the first coordinate of φ(q). Moreover, denote by V1 and V 1 the first coordinates of
V and V respectively. From equation (1.2.33), we have

V 1

(
φ(q)

)
= ∂qa(q)V (q).
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Therefore, if we set ∂q̂φ(te1) =: Z(t) we can write the following

∂q̂V 1(te1)Z(t) = ∂2q̂qa(te1)V (te1) + ∂qa(te1)∂q̂V (te1). (1.2.34)

Note that for all t ∈ [−δ, δ], we have
V (te1) = e1. (1.2.35)

Besides, because of Lemma 1.2.9, we know that dφ must have a block form similar to (1.2.32)
which gives ∂qa(te1) = e1, and in particular ∂q̂a(te1) = 0, for all t ∈ [−δ, δ]. So we have

∂2q1q̂a(te1) = lim
ϵ→0

∂q̂a((t+ ϵ)e1)− ∂q̂a(te1)

ϵ
= 0, t ∈ [−δ, δ]. (1.2.36)

Based on equations (1.2.34), (1.2.35), and (1.2.36) we can write

∂q̂V 1(te1)Z(t) = ∂2q̂qa(te1)e1 + e1∂q̂V (te1) = ∂2q̂q1a(te1) + ∂q̂V1(te1)

= ∂q̂V1(te1). (1.2.37)

Because Z(t) is invertible by its definition, from equation (1.2.37) we conclude that if ∂q̂V 1(0) =
∂2q̂p1

H(0) ̸= 0 then ∂q̂V1(0) = ∂2q̂p1
H(0) ̸= 0. That means whenever the value of ∂2q̂p1

H(0) is
non-zero it will not vanish after an admissible homogeneous symplectic change of coordinates.

1.3 Normal form for homogeneous Hamiltonians

We prove a normal form for homogeneous Hamiltonians. See Theorem 1.4.1 below. Then, we
show that Theorem 1.4.1 implies the Li-Nirenberg’s normal form which we represent as Corollary
1.3.2. Our purpose in this section is to remove the confusion that exists in the literature between
Li-Nirenberg’s normal form and a similar normal form for convex Hamiltonians.

Theorem 1.3.1 (Normal form for homogeneous Hamiltonians). Assume that H : T ∗Rd+1 → R+

is a positively β-homogeneous Hamiltonian where β ≥ 1. Suppose that H is convex and smooth
on p ̸= 0. Let θ(t) =

(
Q(t), P (t)

)
be a given orbit of Hamiltonian vector field of H such that

Q̇(0) ̸= 0 and H
(
θ(t)

)
= k. There exist δ > 0, and a smooth homogeneous symplectomorphism

Ψ(q, p) : T ∗M → T ∗M such that for H := H ◦ Ψ and
(
Q(t), P (t)

)
:= Ψ−1

(
Q(t), P (t)

)
the

following assertions are true for all t ∈ [−δ, δ]
(1) Q(t) = te1, e1 = (1, 0d)

(2) P (t) = (βk, 0d)

(3) ∂2p1p̂
H(te1, βk, 0d) = 0

(4) ∂2qpH(te1, βk, 0d) = 0.

Proof of (1). This proof is the same as proof of (1) of Theorem 1.2.1.
Since we have Q̇(0) ̸= 0, the mapping t 7→ Q(t) is an embedding near t = 0. So there exist τ > 0,

and a diffeomorphism φ0 : Rd+1 → Rd+1 such that φ0

(
Q(t)

)
= te1 where t ∈ [−τ, τ ]. So to

have (1), it is enough to apply the homogeneous symplectic change of coordinates Ψ0 defined as
follows

Ψ0(q, p) :=
(
φ0(q), [dφ

−1(q)]T p
)
.

In the proofs of (2) to (5), we assume that for all t ∈ [−τ, τ ] the given orbit θ(t) satisfies
θ(t) =

(
te1, P (t)

)
. Furthermore, in order to preserve (1), we only use admissible homogeneous
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symplectic changes of coordinates. See Definition 1.2.3 to recall what we mean by an admissible
homogeneous symplectomorphism.

Note that for a given η ∈ [−τ, τ ], P (η) does not vanish. Otherwise, by homogeneity of H
we have H

(
ηe1, P (η)

)
= 0 which contradicts with the assumption that H admits only positive

values. Let P 1(t) denote the first component of P (t), then for all t ∈ [−τ, τ ] we have

P 1(t) = P (t).e1

= P (t).∂pH
(
te1, P (t)

)
= βH

(
te1, P (t)

)
(1.3.1)

= βk. (1.3.2)

where we have conclude (1.3.1) by Euler’s theorem for homogeneous functions (Theorem 1.1.5).
Because β is assumed to be greater or equal than 1 and k is nonzero, equation (1.3.2) implies
that P 1(t) does not vanish for all t ∈ [−τ, τ ].

Proof of (2) and (3) . We define

φ1(q) :=
(
q1 + l(q1).q̂, q̂

)
, Ψ1(q, p) :=

(
φ1(q), [dφ

−1
1 (q)]T p

)
,

for l(q1) : R → Rd that is given by

l(t) :=
P̂ (t)

P 1(t)
, t ∈ [−τ, τ ].

Where we have used the notation P =
(
P 1, P̂

)
∈ R×Rd. Right above this proof we have reasoned

that why P 1(t) ̸= 0 for all t ∈ [−τ, τ ].

By definition of φ1, we have [dφ−1
1 (q1, 0)]

T =

[
1 0d

−l(q1) Id

]
which implies that

Ψ1(q1, 0d, p1, p̂) = (q1, 0d, p1, p̂− p1l(q1)).

Therefore, because P̂ (t)− P 1(t)l(t) = 0, we have

Ψ1(te1, P (t)) = (te1, P 1(t), 0d), t ∈ [−τ, τ ]. (1.3.3)

Equation (1.3.2) gives P 1(t) = βk for all t ∈ [−τ, τ ]. Hence, we can rewrite (1.3.3) as

Ψ1(te1, P (t)) = (te1, βk, 0d), t ∈ [−τ, τ ],

and that finishes the proof of (2).
In order to obtain (3), there is no need for a further symplectic change of coordinates. We

will show that H := H ◦Ψ1 automatically satisfies (3). Euler’s theorem implies that the mapping
p 7→ ∂p̂H(te1, p) is positively (β − 1)-homogeneous. Therefore, for all t ∈ [−τ, τ ] we have

∂2p1p̂H(te1, P 1, 0d) = lim
ϵ→0

∂p̂H(te1, P 1 + ϵ, 0d)− ∂p̂H(te1, P 1, 0d)

ϵ

= lim
ϵ→0

(P 1 + ϵ)β−1∂p̂H(te1, e1)− P β−1
1 ∂p̂H(te1, e1)

ϵ

= lim
ϵ→0

(
(P 1 + ϵ)β−1 − P β−1

1

)
d
dt Q̂(t)

ϵ
= 0.
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In above, Q̂ denotes for the second component in the decomposition Q =
(
Q1, Q̂

)
∈ R × Rd.

Note that Q(t) = te1 where t ∈ [−τ, τ ], so d
dt Q̂(t) = 0 for all t ∈ [−τ, τ ].

Proof of (4). Suppose Ψ1 is already performed. Consider the vector field V (q) := ∂pH(q, βk, 0d).

Because V (0) = Q̇(0) ̸= 0, by tubular flow theorem there exists an open set U ⊂ Rd+1 and a
diffeomorphism φ2 : U → U such that V := (φ2)∗V is the unit vector field e1 on U . Therefore,
after defining

Ψ2(q, p) :=
(
φ2(q), [dφ

−1
2 (q)]T p

)
, H := H ◦Ψ2,

we have
∂pH(q, βk, 0d) = e1, for all q ∈ U . (1.3.4)

Differentiating (1.3.4) with respect to q finishes the proof.

The particular case of β = 2 of Theorem 1.3.1 implies the Li-Nirenberg normal form.

Corollary 1.3.2 (Li-Nirenberg normal form). Assume that
(
Q(t), Q̇(t)

)
is a geodesic of a given

Finsler metric L(q, v) : TRd+1 → R+. That means
(
Q(t), Q̇(t)

)
solves the Euler-Lagrange equa-

tion
d

dt
∂vL

(
Q(t), Q̇(t)

)
= ∂qL

(
Q(t), Q̇(t)

)
. (1.3.5)

There exists δ > 0, and a non-singular changes of coordinates

Ξ(q, v) : TRd+1 → TRd+1,

(q, v) 7→
(
φ(q), dφ(q)v

)
, φ : Rd+1 → Rd+1 is a diffeomorphism,

such that for L defined as L := L◦Ξ and
(
Q(t), Q̇(t)

)
:= Ξ−1

(
Q(t), Q̇(t)

)
the following assertions

are true for all t ∈ [−δ, δ]
(a) Q(t) = te1, Q̇(t) = e1

(b) ∂qL(te1, e1) = 0

(c) ∂vL(te1, e1) = (c, 0d), for some constant c ∈ R+

(d) ∂2v1v̂L(te1, e1) = 0

(e) ∂2vqL(te1, e1) = 0.

The Euler-Lagrange equations for L and L2 are the same, so L and L2 share the same
geodesics. Furthermore, Lemma 1.1.8 implies that the dual Hamiltonian of L2 is 2-homogeneous.
In this way, we can apply the case β = 2 of Theorem 1.3.1 to conclude the above corollary.

Proof. Assume that H is the dual Hamiltonian with respect to L2, and
(
Q(t), P (t)

)
is the orbit in

the phase space corresponded to
(
Q(t), Q̇(t)

)
. By Theorem 1.3.1, there exists a real number δ > 0

and a homogeneous symplectomorphism Ψ(q, p) =
(
φ(q), [dφ−1(q)]T p

)
such that φ

(
Q(t)

)
= te1

for all t ∈ [−δ, δ], and [dφ−1(te1)]
TP (t) = (c′, 0d) =: P (t) for some constant c′ ∈ R+. So if we

define
L2 := L2 ◦ Ξ, Ξ(q, v) =

(
φ(q), dφ(q)v

)
.

We have
∂vL

2
(
te1, e1

)
= P (t) = (c′, 0d).

Since ∂vL2 = 2L∂vL and L admits only positive values we proved part (c) of the corollary. From
equation (1.3.5) and (c) we immediately conclude part (b).
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Part (d) would be a consequence of (c) and homogeneity of L. By Euler’s theorem for homoge-
neous functions (also look at the Remark 1.1.6), since L(q, v) is positively 1-homogeneous, the
mapping v 7→ ∂v̂L(q, v) is positively homogeneous of degree zero, so we have

∂2v1v̂L(te1, e1) = lim
ϵ→0

∂v̂L(te1, 1 + ϵ, 0d)− ∂v̂L(te1, 1, 0d)

ϵ

= lim
ϵ→0

∂v̂L(te1, 1, 0d)− ∂v̂L(te1, 1, 0d)

ϵ
= 0.

It remains to prove (e). Define H := H ◦Ψ, then because ∂qL2(q, v) = ∂qH(q, p) we are able to
obtain the following

∂2vqL
2(q, v) = ∂2pqH(q, p)∂2v2L2(q, v). (1.3.6)

By definition of a Finsler metric, L2 is convex. So in particular, ∂2v2L2(q, v) is invertible for all
(q, v) ∈ TRd+1. Hence, from equation (1.3.6) and part (4) of Theorem 1.3.1 we conclude that

∂2vqL
2(te1, e1) = 0 for all t ∈ [−δ, δ]. (1.3.7)

Note that L admits only positive values; Moreover, we have ∂2vqL2 = 2∂vL∂qL + 2L∂2qvL, and
∂qL(te1, e1) = 0 for all t ∈ [−δ, δ]. Therefore, equation (1.3.7) implies that ∂2vqL(te1, e1) = 0 for
all t ∈ [−δ, δ].

1.4 Normal form for non-convex Hamiltonians

Our motivation to prove the normal form given in Theorem 1.4.1 below lies in the purpose
of generalizing the perturbation theorem (Theorem D) for non-convex Hamiltonians. We will
use Theorem 1.4.1 in Section 2.2.1 during the proof of Theorem 3. Besides, Theorem 1.4.1 has
direct applications in the proof of Theorem 4. See the proof of Lemma 3.2.3 in Section 3.2.1 for
example.

Theorem 1.4.1 (Normal form for non-convex Hamiltonians). Suppose H(q, p) : T ∗Rd+1 → R
is a smooth Hamiltonian. Consider θ(t) =

(
Q(t), P (t)

)
as an orbit of Hamiltonian vector field

of H such that H(θ) = k. Moreover, assume that θ(0) /∈ ΓH . There exist δ > 0, a smooth fibered
symplectic diffeomorphism Ψ : T ∗Rd+1 → T ∗Rd+1, and a smooth function z(q) : Rd+1 → R such
that

(
Q(t), P (t)

)
:= Ψ−1(θ) is an orbit of Hamiltonian vector field of H := z(q)(H ◦Ψ− k), and

for all t ∈ [−δ, δ] we have
(1) Q(t) = te1,

(2) P (t) = 0

(3) ∂2p1p̂
H(te1, 0) = 0,

(4) ∂2qpH(te1, 0) = 0,

(5) ∂2p̂2H(te1, 0) = D,
where D is a constant diagonal matrix with only 1 and -1 entries.

Remark 1.4.2. Assertions (1) and (2) yield
(6) ∂2q1qH(te1, 0) = 0, t ∈ [−δ, δ].

Proofs of (1),(2) and (4) are the same as the proofs of similar assertions in Theorem 1.2.1.
However, to avoid ambiguities, in the proof of Theorem 1.4.1 we do not refer to the proof of
Theorem 1.2.1.
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Note that Theorem 1.4.1 is in fact a generalization of the alternative normal form. To see the
reason, it is enough to compare the statements of the two normal forms and recall that a convex
Hamiltonian H is iso-energetically non-degenerate at θ(t0) if θ(t0) is a neat point, where θ(t) is
assumed to be an orbit of Hamiltonian vector field of H.

Proof of (1). The assumption θ(0) /∈ ΓH implies that ∂pH
(
θ(0)

)
= Q̇(0) ̸= 0. Therefore, since

the mapping t 7→ Q(t) is an embedding near t = 0, there exists τ > 0, and a diffeomorphism
φ0(q) : Rd+1 → Rd+1 such that φ0

(
Q(t)) = te1 for all t ∈ [−τ, τ ]. Consider the homogeneous

symplectomorphism as follows

Ψ0(q, p) :=
(
φ0(q), [dφ

−1
0 (q)]T p

)
.

The Hamiltonian H defined as H := H ◦Ψ0 satisfies (1).

In proofs of (2) to (5), assume that θ(t) is given as
(
te1, P (t)

)
, where t ∈ [−τ, τ ].

Proof of (2). Define u : Rd+1 → Rd+1 as u(q1, q̂) := v(q1) + P̂ (q1).q̂ where v(t) : R → R is a C1

function such that v′ = P 1. Consider the vertical symplectic change of coordinates

Ψ1(q, p) :=
(
q, p+ du(q)

)
.

Because du(te1) = P (t), we have Ψ−1
1

(
te1, P (t)

)
= (te1, 0). That means H := H ◦ Ψ1 satisfies

(2).

Note that we are able to prove assertions (1) and (2) using the assumption ∂pH
(
θ(0)

)
̸= 0.

Assuming that ∂pH
(
θ(0)

)
does not vanish is weaker in compare with the assumption θ(0) /∈ ΓH ,

and we have assumed the latter in the statement of Theorem 1.4.1. In Section 3.2.2, the proof of
Lemma 3.2.4, we apply assertions (1) and (2) of the normal form around a point with non-zero
velocity at which a non-convex Hamiltonian is not necessarily fiberwise iso-energetically non-
degenerate. At the other hand, the weaker assumption ∂pH

(
θ(0)

)
̸= 0 is not enough to prove

assertions (3) and (5); That would be obvious once we give a proof for (3) and (5).

Proof of (4). Assume that Ψ1 which we introduced in the proof of (2) is the local coordinates
around θ(0). Define the vector field

V (q) := ∂pH(q, 0).

Because Q̇(0) is non-zero, by tubular flow theorem there exist an open neighborhood U ⊂ Rd+1

around q = 0, and a diffeomorphism φ2(q) : U → U such that (φ2)∗V is the constant vector field
e1 for all q ∈ U . Define

Ψ2(q, p) :=
(
φ2(q), [dφ

−1
2 (q)]T p

)
, H := H ◦Ψ2.

Then we have
∂pH(q, 0) = e1, for all q ∈ U . (1.4.1)

Differentiating (1.4.1) with respect to q implies (4).

Proof of (3). Take Ψ2 ◦Ψ1 as the local coordinates around θ(0). Set

D(t) := ∂2p̂2H(te1, 0), t ∈ [−τ, τ ]. (1.4.2)
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After recalling the definition of ΓH in equation (2), because θ(0) /∈ ΓH and ∂pH
(
θ(0)

)
= e1, it

would be easy to verify that D(0) is invertible. In consequence, we are able to choose τ1 ∈ (0, τ)
such that D(t) ∈ GL(d) for all t ∈ [−τ1, τ1]. Define

φ3(q) :=
(
q1 + l(q1).q̂, q̂

)
, Ψ3(q, p) :=

(
φ3(q), [dφ

−1
3 (q)]T p

)
, H := H ◦Ψ3,

where l(q1) : R → Rd is given as follows

l(t) = [D(t)]−1∂2p1p̂H(te1, 0), t ∈ [−τ1, τ1].

Afterwards, we have

[dφ−1
3 (te1)]

T =

[
[1 + l′(q1).q̂]

−1 0
−[1 + l′(q1).q̂]

−1l(q1) Id

]
,

which yields
Ψ3(te1, 0) =

(
te1, p1, p̂− p1l(t)

)
. (1.4.3)

From (1.4.3) we conclude that ∂p̂(H ◦Ψ3)(te1, p1, p̂) = ∂p̂H(te1, p1, p̂− p1l(t)). Therefore,

∂2p1p̂H(te1, 0) = ∂2p1p̂(H ◦Ψ3)(te1, 0)

= ∂2p1p̂H(te1, 0) + ∂2p̂2H(te1, 0)l(t)

= ∂2p1p̂H(te1, 0)−D(t)[D(t)]−1∂2p1p̂H(te1, 0) = 0.

So H satisfies (3). However, H does not necessarily satisfy (4): Note that in a neighborhood of
q = 0 we have

V (q) = ∂pH(q, 0) = dφ−1
3 (q)∂pH(q, 0) = dφ−1

3 (q)e1 = ([1 + l′(q1).q̂]
−1, 0),

and there is no obligation for ∂q̂V 1(te1) = ∂2q̂p1
H(te1, 0) = −l′(t) to vanish. Where as before, V 1

denotes for the first component of the vector V .
To achieve (4), we translate H by −k, and then we conformally reparametrize H − k with

the function f(q) := 1
V 1(q)

. If we define

H(q, p) := f(q)
(
H(q, p)− k

)
,

then the Hamiltonian vector field of H takes (te1, 0), where t ∈ [−τ1, τ1], as its orbit segment;
Moreover, H satisfies both (3) and (4).

Proof of (5). Let Ψ3 ◦ Ψ2 ◦ Ψ1 be the local coordinates around θ(0). Suppose that there exists
an open neighborhood U ⊂ Rd+1 around q = 0 such that ∂pH(q, 0) = e1 for all q ∈ U . Set
d11(t) := ∂p2

1
H(te1, 0), and D(t) := ∂2p̂2H(te1, 0).

Based on proof of (3), we can find τ1 > 0 such that
{
te1 | t ∈ [−τ1, τ1]

}
⊂ U , and D(t) ∈ GL(d)

for all t ∈ [−τ1, τ1]. So τ2 ∈ (0, τ1) exists such that all matrices in the set {D(t) | t ∈ [−τ2, τ2]}
are having the same signature. Hence, a diagonal constant matrix D with only ±1 entries, and
a smooth curve M(t) : [−τ2, τ2] → GL(d) exist so that

D(t) =M(t)DMT (t). (1.4.4)

Define
φ4(q) :=

(
q1,M(q1)q̂

)
, Ψ4(q, p) :=

(
φ4(q), [dφ

−1
4 (q)]T p

)
,
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then for the Hamiltonian H defined as H := H ◦Ψ4 we claim the following

∂2p̂2H(te1, 0) = D. (1.4.5)

To prove (1.4.5), we write the Taylor expansion of H with respect to p-variables around (te1, 0),
where t ∈ [−τ2, τ2]:

H(te1, p) = H ◦Ψ4(te1, p) = H
(
te1, [dφ

−1
4 (te1)]

T p
)

= p1 + pT dφ−1
4 (te1)∂p2H(te1, 0)[dφ

−1
4 (te1)]

T p+O3(p)

= p1 + pT
[
1 0
0 M−1(t)

] [
d11(t) 0

0 D(t)

] [
1 0
0 [M−1(t)]T

]
p+O3(p)

= p1 + pT
[
d11(t) 0

0 D

]
p+O3(p). (1.4.6)

Equation (1.4.6) implies what we have claimed earlier in (1.4.5).
Although H satisfies (3), we will observe that (4) is not valid for H: First, note that

dφ4(q) =

[
1 0

Ṁ(q1)q̂ M(q1)

]
⇒ dφ−1

4 (q) =

[
1 0

−M−1Ṁ(q1)q̂ M−1(q1)

]
.

Therefore,

∂pH(q, 0n) = dφ−1
4 (q)∂pH(q, 0n) = dφ−1

4 (q)e1

=
(
1,−M−1(q1)Ṁ(q1)q̂

)
, q ∈ U . (1.4.7)

From (1.4.7) we conclude that

∂2q̂p̂H(te1, 0) = −M−1(t)Ṁ(t), t ∈ [−τ2, τ2]. (1.4.8)

Note that M−1(t)Ṁ(t) might not vanish identically on (te1, 0) where t ∈ [−τ2, τ2]. Assertion (4)
would be retained by the vertical symplectomorphism

Ψ5(q, p) :=
(
q, p+ dg(q)

)
,

where g : Rd+1 → R satisfies

∂2q̂2g(te1) = DM−1(t)Ṁ(t), dg(te1) = 0, for all t ∈ [−τ2, τ2]. (1.4.9)

After defining H := H ◦Ψ5, we have

∂2p̂q̂H(te1, 0) = ∂2p̂q̂H(te1, 0) + ∂2p̂2H(te1, 0)∂
2
q̂2g(te1)

= −M−1(t)Ṁ(t) +D2M−1(t)Ṁ(t) = 0. (1.4.10)

In above, note that D2 = I; Moreover, to achieve (1.4.10) we have replaced ∂2p̂2H(te1, 0),

∂2p̂q̂H(te1, 0), and ∂2q̂2g(te1) with their equivalences in equations (1.4.5), (1.4.8), and (1.4.9) re-
spectively.
We skipped to mention that a desirable function g exists only if

DM−1(t)Ṁ(t) ∈ S(d), for all t ∈ [−τ2, τ2]. (1.4.11)
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The following lemma justifies the existence of a smooth curve M(q1) : R → GL(d) that satisfies
both of the conditions that we have seen in (1.4.4) and (1.4.11).

Lemma 1.4.3. A smooth curve M : R → GL(d) exists such that for all t ∈ [−τ2, τ2] we have

D(t) =M(t)DMT (t), and DM−1(t)Ṁ(t) ∈ S(d).

Proof. Let M(t) be the solution of{
Ṁ(t) = 1

2

(
Ḋ(t)[M−1(t)]TD

)
M(0) =M0

, t ∈ [−τ2, τ2]. (1.4.12)

where M0 satisfies D(0) =M0DM
T
0 . From equation (1.4.12) We have

DM−1(t)Ṁ(t) =
1

2
DM−1(

d

dt
D)(M−1)TD,

and the right hand side of the above equation is symmetric for all t ∈ [−τ2, τ2].
It remains to prove that the solution of (1.4.12) satisfies the condition (1.4.11). Equation (1.4.12)
immediately implies that

Ḋ(t) = 2Ṁ(t)DMT (t). (1.4.13)

Because DM−1Ṁ is symmetric, we have

DM−1Ṁ = ṀT (M−1)TD ⇒M−1Ṁ = DṀT (M−1)TD

⇒M−1ṀD = DṀT (M−1)T

⇒ ṀDMT =MDṀT . (1.4.14)

From (1.4.14) and (1.4.13), we conclude that Ḋ(t) = ṀDMT +MDṀT . Therefore,

D(t) =M(t)DMT (t) + C

for some constant matrix C. Since D(0) =M(0)DMT (0), the matrix C is null.

Proof of (6). (1) and (2) imply that ∂qH(te1, 0n) = P (t) = 0, for all t ∈ [−δ, δ]. Therefore,
∂2q1qH(te1, 0) = 0.
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Our goal in this chapter is to prove Theorem 3 using the normal form for non-convex Hamil-
tonians given in Theorem 1.4.1. Theorem 3 has a crucial importance in the proof of the bumpy
metric theorem that we will give in Chapter 3. See the proof of Proposition 3.2.1 where we apply
Theorem 3.
If we review the statements of Theorem 3 and Theorem D, we observe that Theorem 3 is implying
the other theorem in which convexity is assumed. That is because a convex Hamiltonian is iso-
energetically non-degenerate at neat points. Notice the assumption "θ(t) admits a neat time t0
such that θ(t0) /∈ ΓH" in the statement of Theorem 3. In the framework of convex Hamiltonians
the mentioned assumption is equivalent to "θ(t) admits a neat time".
Our proof of Theorem 3 benefits from similar geometric control methods as invoked by Rifford
and Ruggiero [RR12]. We begin this chapter with a review of some background about control
theory on symplectic linear maps.
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2.1 Background in geometric control theory

We wish to study the control problem

Ẋw(t) = Y (t)Xw(t) +

k∑
i=1

wi(t)Bi(t)Xw(t), for a.e. t ∈ [0, τ ], Xw(0) = X̄ ∈ Sp(2d). (2.1.1)

Where in above, Sp(2d) is the set of symplectic matrices of dimension 2d× 2d. Moreover, Y (t)
and Bi(t), where i ∈ {1, 2, . . . , k}, are belonging to the Lie algebra of Sp(2d). By definition, the
Lie algebra of Sp(2d) is TISp(2d) i.e. the tangent space to Sp(2d) at identity. The Lie algebra
of Sp(2d) is the set of matrices M ∈ M(2d) such that JM is symmetric, where M(2d) denotes

for the set of all real matrices of dimension 2d× 2d. Recall that J =

[
0 I
−I 0

]
.

The Lie algebra of Sp(2d) is identical to a space known as the Hamiltonian matrices which we
denote by sp(2d).
The control problem (2.1.1) is invariant under Sp(2d). That is to say for an initial state X̄ ∈
Sp(2d), the solution of (2.1.1) is a curve that remains in Sp(2d).
For a given w ∈ L1

(
[0, τ ];Rk

)
, and an initial state Xw(0) = X̄, the control problem (2.1.1)

admits a unique maximal solution

Xw(t) : IX̄,w ⊆ [0, τ ] → Sp(2d).

In above, IX̄,w which depends on both w and X̄, is the domain of definition of the maximal
solution Xw(t). As a convention, whenever we write X(t) without an index we refer to the
solution of the homogeneous system associated to (2.1.1) i.e.

Ẋ(t) = Y (t)X(t), X(0) = X̄. (2.1.2)

The aim of this section is to provide sufficient conditions for local controllability of Xw(τ). We
soon will give a precise meaning to the notion of local controllability.

Define CX̄ as the set of controls w ∈ L1
(
[0, τ ];Rk

)
such that IX̄,w = [0, τ ]. By definition,

CX̄ ⊆ L1
(
[0, τ ];Rk

)
is open. Consider the end-point mapping fX̄(w) : CX̄ → Sp(2d) defined as

fX̄(w) := Xw(τ). Whenever dfX̄(w)(v) is surjective i.e. dfX̄(w)
(
L1([0, τ ];Rk)

)
= TXw(τ)Sp(2d),

we say fX̄ is controllable of first order at w. We intend to convey the same meaning when we
say fX̄ is locally controllable at w.
Note that for any given w ∈ CX̄ , differential of the end-point mapping at w is the linear operator

dfX̄(w)(v) :L1
(
[0, τ ];Rk

)
→ TXw(τ)Sp(2d)

v 7→ Gv(τ),

where Gv(t) is the solution of the following Cauchy problem{
Ġv(t) = Y (t)Gv(t) +

∑k
i=1 vi(t)Bi(t)Xw(t) for a.e. t ∈ [0, τ ],

Gv(0) = 0.
(2.1.3)

Concerned to the problem (2.1.1), the following Lemma which has been proven in Section
2 of [RR12], and Section 2.5 of [Laz14], provides sufficient conditions for local controllability of
the end-point mapping. The notation Oγ(x, r) in the lemma indicates the Euclidean open ball
of dimension γ centered at x with radius r.
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Lemma 2.1.1 (Sufficient conditions for controllability of first order). Let fX̄(w) : CX̄ → Sp(2d)
be the end-point mapping associated to the control problem (2.1.1) where X̄ ∈ Sp(2d) is given
such that 0 ∈ CX̄ . Assume that Y (t), Bi(t) ∈ sp(2d) are smooth linear maps defined on [0, τ ] ⊂ R.
Moreover, for j ∈ N, define {Bj

1}, . . . , {B
j
k} : [0, τ ] → sp(2d) as

B1
i (t) := Bi(t),

Bj+1
i (t) := [Bj

i (t), Y (t)] + Ḃj
i ,

where [., .] is the Lie bracket on sp(2d). If there exists t̄ ∈ [0, τ ] such that

span
{
Bj

i (t̄)|i ∈ {1, 2 . . . , k}, j ∈ N
}
= sp(2d), (2.1.4)

then
(a) we have dfX̄(0)

(
L1([0, τ ];Rk)

)
= TX(τ)Sp(2d) that means fX̄ is locally controllable at

w ≡ 0.
(b) there exists µ, ν > 0, p := 2d(2d+1)

2 smooth controls w1, w2, . . . wp : [0, τ ] → Rk supported
on (0, τ), and a smooth map W = (W1,W2, . . . ,Wp) : O

4d2(
X(τ), µ

)
∩Sp(2d) → Op(0, ν),

such that W
(
X(τ)

)
= 0 and

fX̄

( p∑
j=1

Wj(Z)w
j

)
= Z, for all Z ∈ O4d2(

X(τ), µ
)
∩ Sp(2d).

We wish to note a few remarks before running into the proof of Theorem 2.2.1.
First, we introduce the Frobenius inner product ⟨A,B⟩ := Tr(ATB) over M(2d). To given
matrices A,B ∈ M(2d), the Frobenius inner product assigns the trace of ATB.

Consider the homogeneous differential equation associated to the Cauchy problem (2.1.3) as
follows {

Ż(t) = Y (t)Z(t)

Z(0) = I,
t ∈ [0, τ ]. (2.1.5)

Note that if Z is the solution of (2.1.5), then d
dtZ

−1(t) = −Z−1(t)Y (t).
Equation (2.1.6) below is obtained based on the well known relation between solutions of a
non-homogeneous differential equation and its associated homogeneous equation. See Hartman
[Har82], Corollary 2.1 in Chapter IV.

dfX̄(0)(v) =

k∑
i=1

Z(τ)

∫ τ

0

vi(t)Z
−1(t)Bi(t)X(t)dt, v ∈ L1([0, τ ];Rk). (2.1.6)

Proof of (a). Assume that the mapping v 7→ dfX̄(0)(v) is not surjective. Then, after endowing
TX(τ)Sp(2d) with the Frobenius inner product, we are able to choose a non-zero matrix N in the
orthogonal complement of dfX̄(0)

(
L1([0, τ ];Rk)

)
⊂ Sp(2d). For such N, we have〈

N, dfX̄(0)(v)
〉
= 0, for all v ∈ L1([0, τ ];Rk), (2.1.7)

where
〈
., .

〉
is the Frobenius inner product.

We replace dfX̄(0)(v) in equation (2.1.7) with its equivalence from equation (2.1.6), then for all
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v = (v1, v2, . . . , vk) ∈ L1([0, τ ],Rk), we have

k∑
i=1

∫ τ

0

vi(t)
〈
N,Z(τ)Z−1(t)Bi(t)X(t)

〉
dt = 0.

Therefore,
〈
N,Z(τ)Z−1(t)Bi(t)X(t)

〉
is identically equal to zero for all i ∈ {1, 2, . . . , k}. In

particular, we have 〈
N,Z(τ)Z−1(t̄)Bi(t̄)X(t̄)

〉
= 0, for all i ∈ {1, 2, . . . , k}. (2.1.8)

We wish to prove that
〈
N,Z(τ)Z−1(t)Bj

i (t)X(t)
〉

identically vanishes for all i ∈ {1, 2, . . . , k} and
all j ∈ R. Differentiating

〈
N,Z(τ)Z−1(t)Bi(t)X(t)

〉
= 0 with respect to t yields the following〈

N,−Z(τ)Z−1(t)Y (t)Bi(t)X(t)
〉
+

〈
N,Z(τ)Z−1(t)Ḃi(t)X(t)

〉
+
〈
N,Z(τ)Z−1(t)Bi(t)Y X(t)

〉
= 0.

Hence,
〈
N,Z(τ)Z−1(t)

(
Ḃi(t) + [Bi(t), Y (t)]

)
X(t)

〉
=

〈
N,Z(τ)Z−1(t)B2

i (t)X(t)
〉
= 0. By induc-

tion, we conclude that〈
N,Z(τ)Z−1(t)Bj

i (t)X(t)
〉
≡ 0, for all j ∈ N, and all i ∈ {1, 2, . . . , k}. (2.1.9)

Assume that we have

Z(t)Z−1(τ)NX−1(t) ∈ sp(2d) for all t ∈ [0, τ ], (2.1.10)

then based on assumption (2.1.4), Z(t)Z−1(τ)NX−1(t̄) belongs to

span
{
Bj

i (t̄)|i ∈ {1, 2 . . . , k}, j ∈ N
}
.

Therefore, if (2.1.10) is true then (2.1.9) implies that ⟨N,N⟩ = 0 which contradicts with the
assumption that N is non-zero.
We finish the proof by showing that (2.1.10) holds. That is to say JZ(t)Z−1(τ)NX−1(t) is
symmetric. From equations (2.1.5) and (2.1.2) we conclude that Z(t) = X(t)X̄−1. So we have

JZ(t)Z−1(τ)NX−1(t) = JX(t)X̄−1Z−1(τ)NX−1(t)

= JX(t)X̄−1X̄X−1(τ)NX−1(t)

= JX(t)X−1(τ)NX−1(t). (2.1.11)

If we replace J in the right side of (2.1.11) with [X−1(t)]TXT (τ)JX(τ)X−1(t), we have

JZ(t)Z−1(τ)NX−1(t) = [X−1(t)]T
(
XT (τ)JN

)
X−1(t). (2.1.12)

Note that X−1(t) ∈ Sp(2d) for all t ∈ [0, τ ], and Sp(2d) forms a group. That is why X(τ)X−1(t)
is symplectic and we have [X−1(t)]TXT (τ)JX(τ)X−1(t) = J.
Recall that N ∈ TX(τ)Sp(2d), and TX(τ)Sp(2d) = {X(τ)M |M ∈ sp(2d)}. Therefore, there exist
M ∈ sp(2d) such that X−1(τ)N =M. So we conclude that

JX−1(τ)N ∈ S(2d).

Because X−1(τ) ∈ Sp(2d), we have JX−1(τ) = XT (τ)J. So XT (τ)JN is symmetric as well as
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JX−1(τ)N. Since XT (τ)JN ∈ S(2d), the right side of (2.1.12) is symmetric.

Proof of (b). Since
{
w ∈ C∞(

[0, τ ];Rk
)
| supp(w) ⊂ (0, τ)

}
⊂ L1([0, τ ];Rk) is dense, based on

part (a) there exists p smooth controls

wj : [0, τ ] → R, supp(wj) ⊂ (0, τ), j ∈ {1, 2, . . . , p},

such that
span{df(0)(wj) | j = 1, . . . , p} = TX(τ)Sp(2d).

Choose γ > 0 such that
∑p

j=1 λjw
j ∈ CX̄ , for all λ = (λ1, λ2, . . . , λp) ∈ Op(0, γ) and all

wj ∈ C∞([0, τ ];Rk). Define F : Op(0, γ) → Sp(2d) as

F (λ) := fX̄

( p∑
j=1

λjw
j

)
, λ ∈ Op(0, γ).

F is smooth and F (0) = X(τ). So by the inverse function theorem, there exists µ, ν > 0 and a
smooth mapping

W = (W1,W2, . . .Wp) : O
4d2(

X(τ), µ
)
∩ Sp(2d) → Op(0, ν), W

(
X(τ)

)
= 0,

such that

fX̄

( p∑
j=1

Wj(Z)w
j

)
= Z, ∀Z ∈ O4d2(

X(τ), µ
)
∩ Sp(2d).

2.2 Proof of the perturbation theorem

As it stated in Theorem 3, consider H : T ∗Rd+1 → R as a smooth Hamiltonian. Let θ(t) be
a given periodic orbit of H such that it admits a neat time t0, and θ(t0) /∈ ΓH .
Assume that Σ is a transverse section to θ(t) at t0. Without loss of generality we can assume that
t0 = 0, and θ(t) is in the zero energy level of H. Consider Pu(θ,Σ) : Σ ∩H−1(0) → Σ ∩H−1(0)
as the restricted Poincaré map with respect to θ(t) and the Hamiltonian vector field of H + u,
where u ∈ C∞

θ (Rd+1). Recall Definition 2 which clarifies the notation C∞
θ (Rd+1).

We have defined
F (θ,H + u) : C∞

θ (Rd+1) → Sp(2d)

as the mapping u 7→ dPu. We wish to prove that F is weakly open.
If F (θ, Hz + u) : C∞

θ (Rd+1) → Sp(2d) is weakly open so is F (θ,H + u) : C∞
θ (Rd+1) → Sp(2d)

where z(q) : Rd+1 → R is a smooth non-zero function such that θ is an orbit of the Hamiltonian
vector field of H

z . That is because, concerned to θ, H and H
z are sharing the same Poincaré

maps. Besides, a symplectic change of coordinates does not affect Pu(θ,Σ). Hence, with no loss
of generality we can assume that H satisfies the assertions of Theorem 1.4.1. That is to say there
exists δ > 0 such that

H−1(0) ∋ θ(t) = (te1, 0), for all t ∈ [−δ, δ];
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Moreover, J∂2x2H(te1, 0) has the following block form for all t ∈ [−δ, δ]

Y(t) := J∂2x2H(te1, 0) =

[
0 D(t)

−K(t) 0

]
, (2.2.1)

where the block forms of K(t) and D(t) are as follows

K(t) =

 0 . . . 0
... K(t)
0

 , K(t) := ∂2
q̂2H(te1, 0), D(t) =

 d11(t) . . . 0
... D
0

 , d11(t) := ∂2
p21
H(te1, 0),

and D is a constant diagonal matrix with only +1 or −1 entries on its diagonal.

2.2.1 Linearized restricted transition map
For t ∈ [0, δ], we define Λt := {q1 = t}. Concerned to the orbit segment (te1, 0), where

t ∈ [0, δ], consider the one-parameter family of restricted transition maps

Rt : Λ0 ∩H−1(0) → Λt ∩H−1(0).

For a given t ∈ [0, δ], Rt is defined in a neighborhood of 0 and the image of x ∈ Λ0 ∩ H−1(0)
under the map Rt is where the Hamiltonian flow at the point x encounters the section Λt.
Note that because of the properties of the normal form given in Theorem 1.4.1 we have dH(te1, 0) =[
0
e1

]
which implies the following 〈

dH(te1, 0), x
〉
= p1. (2.2.2)

Equation (2.2.2) in above implies that {p1 = 0} is the tangent space to the zero energy level of
H along the orbit segment (te1, 0), where t ∈ [0, δ]. Therefore, the differential of Rt with respect
to x can be viewed as a map from {q1 = 0, p1 = 0} to itself :

dRt : {q1 = 0, p1 = 0} → {q1 = 0, p1 = 0}.

We consider Rt
u : Λ0 ∩ (H + u)−1(0) → Λt ∩ (H + u)−1(0) as a one-parameter family of

restricted transition maps with respect to θ(t) and the Hamiltonian vector field of H + u, where
u ∈ C∞

θ (Rd+1). Equation (2.2.2) is invariant under adding an admissible potential to H. That is
to say if u ∈ C∞

θ (Rd+1), then
〈
d(H +u)(te1, 0), x

〉
= p1. Moreover, for each admissible potential

u, we have (H + u)(te1, 0) = 0. So {p1 = 0} is the tangent space to (H + u)−1(0) along the orbit
segment (te1, 0), where t ∈ [0, δ]. In conclusion, likewise dRt, the differential with respect to x of
the perturbed restricted transition map, namely dRt

u, is a map from {q1 = 0, p1 = 0} to itself :

dRt
u : {q1 = 0, p1 = 0} → {q1 = 0, p1 = 0}.

We indicate the differentials at x = 0 of dRt and dRt
u by L(t) and Lu(t) respectively. Both L(t)

and Lu(t) are valued in Sp(2d).
After recalling the definition of Y(t) from equation (2.2.1), consider the differential equation

Ẇ (t) = Y(t)W (t), W (0) = I, t ∈ [0, δ]. (2.2.3)

which is known as the Jacobi equation (see [Con10]). In the following computations, using the
definition of the Hamiltonian flow of H, we show that W (t) is equal to the differential of the
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Hamiltonian flow at x = 0. That means W (t) = ∂xϕ
t(0).

∂t∂xϕ
t(x) = ∂x∂tϕ

t(x) = ∂xJdH
(
ϕt(x)

)
⇒ ∂t∂xϕ

t(0) = Y(t)∂xϕt(0).

In what follows, we are considering the linearized Hamiltonian system of H along (te1, 0), where
t ∈ [0, δ], and the initial point belongs to {q1 = 0, p1 = 0}

ẋ(t) = Y(t)x(t), x(0) = x0 ∈ {q1 = 0, p1 = 0}. (2.2.4)

If W (t) solves the differential equation (2.2.3), then the mapping x0 7→W (t)x0 is the flow of the
system (2.2.4).

As it is usual in this thesis we use the notations x = (q, p), x1 = (q1, p1), and x̂ = (q̂, p̂) for
symplectic coordinates where q = (q1, q̂) ∈ R×Rd, and p = (p1, p̂) ∈ R∗ × (Rd)∗. Because of the
intrinsic properties of dRt, it is convenient to decompose coordinates as x = (x1, x̂) = (q1, p1, x̂)
in the proof of Lemma 2.2.1 below. By writing x = (q1, p1, x̂) we do not mean to change the
label of the dual symplectic coordinates (q, p), but we aim to study the impact of the restricted
transition maps on x1-coordinates and x̂-coordinates separately.
In the statements of Lemma 2.2.1 and Corollary 2.2.2 below, we define Y (t) := J∂2x̂2H(te1, 0),

and Yu(t) := J∂2x̂2(H + u)(te1, 0) where u ∈ C∞
θ (Rd+1). Note that since we are working in the

coordinates of Theorem 1.4.1, the block forms of Y (t) and Yu(t) are as follows

Y (t) =

[
0 D

−K(t) 0

]
, Yu(t) =

[
0 D

−Ku(t) 0

]
,

where
K(t) := ∂2q̂2H(te1, 0), Ku(t) := K(t) + ∂2q̂2u(te1),

and D is a diagonal matrix which has only +1 or −1 entries on its diagonal.

Lemma 2.2.1. Assume that a smooth Hamiltonian H : T ∗Rd+1 → R takes (te1, 0) ∈ H−1(0)
as an orbit segment where t ∈ [0, δ] for some δ > 0, and H satisfies the assertions (3) to (5) of
Theorem 1.4.1 on this orbit segment. Then, L(t) := dRt(0) solves the differential equation

L̇(t) = Y (t)L(t),

where Y (t) := J∂2x̂2H(te1, 0), and Rt : {q1 = 0} ∩ H−1(0) → {q1 = t} ∩ H−1(0) is the one-
parameter family of restricted transition maps associated to the segment (te1, 0), t ∈ [0, δ].

Proof. The block form of Y(t) allows us to rewrite the system (2.2.4) as two uncoupled systems

(1)

{
q̇1(t) = d11(t)p1(t)

ṗ1(t) = 0
, (2)

d

dt
x̂(t) = Y (t)x̂, x(0) = x0 ∈ {q1 = 0, p1 = 0}. (2.2.5)

We let L(t) be the solution of the following differential equation

L̇(t) = Y (t)L(t), L(0) = I,

then we show that L(t) is equivalent to dRt(0).
The map x̂0 7→ L(t)x̂0 is the flow associated with system (2) in (2.2.5) above. At the other hand,
recall that for W (t) = ∂xϕ

t(0), the map x0 7→W (t)x0 is the flow subjected to the system (2.2.4).
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Therefore, because systems (1) and (2) in (2.2.5) are uncoupled we can write

W (t)

 0
0
x̂0

 =

 0
0

L(t)x̂0

 .
We write the linear approximation of the Hamiltonian flow of H around 0 ∈ T ∗Rd+1

ϕt(q1, p1, x̂) = ϕt(0) +W (t)

q1p1
x̂

+O2(x) =

t0
0

+W (t)

q1p1
x̂

+O2(x).

The restriction of the above approximation to {q1 = 0, p1 = 0} is

ϕt(0, 0, x̂) =

t0
0

+W (t)

00
x̂

+O2(x̂) =

t0
0

+

 0
0

L(t)x̂

+O2(x̂). (2.2.6)

The right side of (2.2.6) is nothing but the linear approximation of Rt around 0. We conclude that
∂x̂ϕ

t(0) = dRt(0), but from (2.2.6), we have ∂x̂ϕt(0) = L(t). In conclusion, L(t) = dRt(0).

Corollary 2.2.2. Assume that H : T ∗Rd+1 → R is smooth and for some δ > 0, θ(t) = (te1, 0) ∈
H−1(0) where t ∈ [0, δ], is an orbit segment of the Hamiltonian vector field of H. Moreover,
suppose that H satisfies the assertions (3) to (5) of Theorem 1.4.1 on θ(t) for all t ∈ [0, δ].
For u ∈ C∞

θ (Rd+1), suppose that Rt
u : {q1 = 0} ∩ (H + u)−1(0) → {q1 = t} ∩ (H + u)−1(0)

is the one-parameter family of restricted transition maps with respect to the orbit segment θ(t),
t ∈ [0, δ], and the Hamiltonian vector field of H+u. Then Lu(t) := dRt

u(0) solves the differential
equation

L̇u(t) = Yu(t)Lu(t),

where Yu(t) := J∂2x̂2(H + u)(te1, 0).

To conclude Corollary 2.2.2 from Lemma 2.2.1, it is enough to show that if a smooth Hamil-
tonian H : T ∗Rd+1 → R takes θ(t) = (te1, 0), where t ∈ [0, δ], as an orbit segment and it
satisfies the assertions of Theorem 1.4.1 on this segment, so does H + u where u ∈ C∞

θ (Rd+1).
If u ∈ C∞

θ (Rd+1), then (te1, 0) is an orbit segment in the zero energy level of H +u as well. Fur-
thermore, we have ∂2q1qu(te1) = 0 for all t ∈ [0, δ]. Therefore, in comparison between Yu(t)
and Y(t), the only difference appears in the minor blocks Ku(t) = ∂2q̂2(H + u)(te1, 0) and
K(t) = ∂2q̂2H(te1, 0). That means H + u, where u ∈ C∞

θ (Rd+1), satisfies assertions of Theo-
rem 1.4.1 on θ(t) for all t ∈ [0, δ].

2.2.2 Perturbed transition maps from the viewpoint of control theory

Corollary 2.2.2 declares that dRt
u(0) =: Lu(t) is the solution of the following differential

equation
L̇u(t) = Yu(t)Lu(t), Lu(0) = I, u ∈ C∞

θ (Rd+1), (2.2.7)
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where Yu(t) := J∂2x̂2(H + u)(te1, 0). Equation (2.2.7) in above can be viewed as the control
problem

Ẋw(t) = Y (t)Xw(t) +

d∑
i,j=1
i≤j

wij(t)

[
0 0

E(ij) 0

]
Xw(t), t ∈ [0, δ], Xw(0) = I, (2.2.8)

where wij represents the coordinates of the control w ∈ C∞([0, δ],S(d)). Moreover, E(ij) is the
symmetric d×d binary matrix that its only non-zero components are placed at ij and ji entries.
It is easy to see that

{
E(ij) | i, j ∈ {1, 2, . . . , d}

}
is a basis for S(d) which denotes for the set of

symmetric matrices of dimension d× d.
In the proof of the Proposition 2.2.3 below, using Lemma 2.1.1 we will show that there

exists an open dense subset U ⊂ C∞
θ (Rd+1) such that for each ū ∈ U the end-point mapping

f : C∞(
[0, δ];S(d)

)
→ Sp(2d) associated to the control problem

Ẋw(t) = Yū(t)Xw(t) +

d∑
i,j=1
i≤j

wij(t)

[
0 0

E(ij) 0

]
Xw(t), t ∈ [0, δ], Xw(0) = I, (2.2.9)

is controllable of first order at w ≡ 0. That is equivalent to say that the differential of f at w ≡ 0
is onto i.e.

df(0)
(
C∞(

[0, δ];S(d)
))

= TX (δ)Sp(2d), (2.2.10)

where in the right hand side of (2.2.10), X (t) denotes for the solution of the following homoge-
neous equation

Ẋ (t) = Yū(t)X (t), X (0) = I.

Recall that the end-point mapping with respect to the control problem (2.2.9) is defined as
w 7→ Xw(δ), where Xw(t) is the solution of (2.2.9).

Proposition 2.2.3. There exists an open dense subset U ⊂ C∞
θ (Rd+1) such that for a given

ū ∈ U, the end-point mapping w 7→ Xw(δ) associated to the control problem

Ẋw(t) = Yū(t)Xw(t) +

d∑
i,j=1
i≤j

wij(t)

[
0 0

E(ij) 0

]
Xw(t), t ∈ [0, δ], Xw(0) = I,

is locally controllable at w ≡ 0.

Proof. Let t̄ ∈ [0, δ] be given. Based on Lemma 2.2.1, it is enough to prove that

span
{
B1

ij(t̄), B
2
ij(t̄), B

3
ij(t̄), B

4
ij(t̄) | i, j ∈ {1, 2, . . . , d}

}
= sp(2d), (2.2.11)

where

B1
ij(t) =

[
0 0

E(ij) 0

]
,

Br
ij(t) = [Br−1

ij (t), Yū(t)], r = 2, 3, 4.
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We have

B2
ij(t̄) =

[
−DE(ij) 0

0 E(ij)D

]
,

B3
ij(t̄) =

[
0 −2DE(ij)D

−E(ij)DKū(t̄)−Kū(t̄)DE(ij) 0

]
,

B4
ij(t̄) =

[
3DE(ij)DKū(t̄) +DKū(t̄)DE(ij) 0
−E(ij)DK′

ū(t̄)−K′
ū(t̄)DE(ij) −E(ij)DKū(t̄)D − 3Kū(t̄)DE(ij)D

]
.

Note that B̃4
ij(t̄) defined as follows is in the span of B1

ij(t̄) and B4
ij(t̄)

B̃4
ij(t̄) =

[
= 3DE(ij)DKū(t̄) +DKū(t̄)DE(ij) 0

0 −E(ij)DKū(t̄)D − 3Kū(t̄)DE(ij)D

]
.

Since span
{
B1

ij(t̄), B
2
ij(t̄), B

3
ij(t̄), B̃

4
ij(t̄) | i, j ∈ {1, 2, . . . , d}

}
⊆ sp(2d), in order to prove (2.2.11)

we just need to show that

dim
(
span

{
B1

ij(t̄), B
2
ij(t̄), B

3
ij(t̄), B̃

4
ij(t̄) | i, j ∈ {1, 2, . . . , d}

})
=

2d(2d+ 1)

2
.

As DE(ij)D is a basis for S(d), the dimension of span
{
B1

ij(t̄), B
3
ij(t̄) | i, j ∈ {1, 2, . . . , d}

}
is

equal to d(d+ 1). Therefore, because we have

span
{
B1

ij(t̄), B
3
ij(t̄)|i, j ∈ {1, 2, . . . , d}

}
∩ span

{
B2

ij(t̄), B
4
ij(t̄) | i, j ∈ {1, 2, . . . , d}

}
= 0,

equation (2.2.11) holds whenever

span
{
B2

ij(t̄), B̃
4
ij(t̄)|i, j ∈ {1, 2, . . . , d}

}
=

2d(2d+ 1)

2
− d(d+ 1) = d2. (2.2.12)

Define G :=
{
− E(ij), 3E(ij)DKū(t̄) +Kū(t̄)DE(ij) | i, j ∈ {1, 2, . . . , d}

}
, then (2.2.12) is true

if G spans M(d) which denotes for the space of real d× d matrices.
Note that M(d) = S(d)⊕S−(d) —where S−(d) denotes for the anti-symmetric d×d matrices—
and G already includes a basis for symmetric matrices. Define

Z(ij) := E(ij)DKū(t̄)−Kū(t̄)DE(ij), i < j, i, j ∈ {1, 2, . . . , d},

which is the skew-symmetric part of 3E(ij)DKū(t̄) + Kū(t̄)DE(ij) in the decomposition alike
M = 1

2 (M +MT )− 1
2 (M −MT ), for M ∈ M(d). Consider the linear function

Ω : S(d) →
(
S−(d)

) d(d−1)
2

that the coordinates of its image are defined as

Ωij(S) :=
(
E(ij)DS − SDE(ij)

)
i, j ∈ {1, 2, . . . , d}, i < j.

For S0 such that DS0 = diag(1, 2, . . . , d), it is easy to check that detΩ(S0) ̸= 0; In fact, Ωij(S0)
are equal to (j − i)E(ij) which are linearly independent. Since detΩ(S0) ̸= 0, we conclude that
the determinant of Ω is not identically equal to zero. Therefore, the set R defined as follows

R :=
{
S ∈ S(d) | coordinates of Ω(S) are forming a basis for S−(d)

}
,

is the complement of an Algebraic set. Hence, R is an open dense subset of S(d).
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We define
U := {u ∈ C∞

θ (Rd+1) | Ku(t̄) ∈ R}.

Note that for each ū ∈ U, equation (2.2.12) is true. So to finish the proof, it remains to show
that U is an open and dense subset of C∞

θ (Rd+1). Consider the map g(u) : C∞
θ (Rd+1) → S(d)

defined as g(u) := Ku(t). Because g(u) is open and continuous, and R ⊂ S(d) is open and dense,
then g−1(R) = U is an open and dense subset of C∞

θ (Rd+1).

2.2.3 Proof of Theorem 3
Proposition 2.2.3 and part (b) of Lemma 2.2.1 imply that there exists an open dense subset

U ⊂ C∞
θ (Rd+1) and a finite dimensional subspace F ⊂ C∞(

[0, δ];S(d)
)

such that for a given
ū ∈ U, the map

F ∋ w 7→ Xw(δ)

is a C1 submersion near w ≡ 0. Where Xw(t) is the solution of the control problem (2.2.9).
Suppose that T is the minimum period of θ(t). We define

Y := {u ∈ C∞
θ (Rd+1) | d2u

(
π ◦ θ(]δ, T + δ[)

)
= 0}.

There exists a finite dimensional subspace E ⊂ Y such that the map h : E → F defined as
h(u) := ∂2q̂2u(te1) is a linear isomorphism where t ∈ [0, δ]. In consequence, the map

E ∋ u 7→ Lū+u(δ)

is a C1 submersion near u ≡ 0.
We wish to prove that the map F (θ,H + u) : C∞

θ (Rd+1) → Sp(2d) defined as u 7→ dPu is
weakly open.
For a given u0 ∈ C∞

θ (Rd+1), there exist linear symplectic maps

Vu0 : TΣ ∩ TH−1(0) → TΛ0 ∩ TH−1(0), Qu0 : TΛδ ∩ TH−1(0) → TΣ ∩ TH−1(0),

such that dPu0 = Vu0Lu0(δ)Qu0 .
Let O ⊂ C∞

θ (Rd+1) be a given open subset. Since U ⊂ C∞
θ (Rd+1) is open and dense, O ∩ U is

a non-empty open subset of C∞
θ (Rd+1). We choose ū ∈ O ∩ U. There exists a finite dimensional

subspace E ⊂ Y such that the map E ∋ u 7→ Lū+u(δ) is a C1 submersion near u ≡ 0. Therefore,
dPū+u = VūLū+uQū is a C1 submersion near u ≡ 0.

2.3 Two remarks on assumptions of Theorem 3

In this section we wish to show that "θ admits a neat time t0 such that θ(t0) /∈ ΓH" in the
statement of Theorem 3 is a necessary assumption.

First we show that admitting a neat time is a necessary assumption. Consider the smooth
Hamiltonian

H(q, p) = gq(p, p) + u(q), (2.3.1)

where g is a Riemannian metric and u(q) is a potential. Assume that θ is a periodic symmetric
orbit of H. Recall that an orbit is called symmetric if it does not admit any neat time. As we
mentioned in the introduction of this thesis, Kozlov [Koz76] proves the existence of a periodic
symmetric orbit for such a Hamiltonian H of the form (2.3.1).
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A map ℜ : T ∗M → T ∗M is a reversing involution of the phase space if for a given αq ∈ T ∗
qM

it satisfies ℜ(αq) = −αq. A Hamiltonian H(q, p) : T ∗Rd+1 → R is called reversible whenever
H = H ◦ ℜ, where ℜ is a reversing involution on T ∗M. Note that for a reversible Hamiltonian
H, if

(
Q(t), P (t)

)
is an orbit of the Hamiltonian vector field of H, then

(
Q(−t),−P (−t)

)
is also

an orbit.
Let ϕt be the Hamiltonian flow of a reversible Hamiltonian H, then for each x ∈ T ∗M, the flow
satisfies the following (

ϕt ◦ ℜ ◦ ϕt
)
(x) = ℜ(x), (2.3.2)

where ℜ is a reversing involution on T ∗M.
The Hamiltonian H given in equation (2.3.1) is reversible. That is simply because gq(p, p) is

quadratic with respect to p-variable.
To have a geometric intuition of periodic symmetric orbits of a reversible Hamiltonian H,

note that if θ(t) =
(
Q(t), P (t)

)
is a periodic symmetric orbit of H with minimal period T, then

θ(t) where t ∈ [0, T ], meets the zero section exactly twice. These intersection points are those
points where the orbit θ(t) has zero velocity i.e. points at which Q̇(t) vanishes. Except from
these two points, θ(t) where t ∈ [0, T ], meets each vertical fibration exactly twice.

Definition 2.3.1. For d ≥ 1, N ∈ Sp(2d) is a reversible symplectic matrix if it satisfies

NRN = R, where R =

[
Id 0
0 −Id

]
2d×2d

.

Proposition 2.3.2. Assume that H : T ∗M → T ∗M is a smooth reversible Hamiltonian defined
on cotangent bundle of a smooth (d + 1)-dimensional manifold M where d ≥ 1. Suppose that
θ(t) ∈ H−1(k) is a symmetric periodic orbit of Hamiltonian vector field of H. Let

P : {p1 = 0} ∩H−1(k) → {p1 = 0} ∩H−1(k)

be the restricted Poincaré map with respect to θ(t), then the differential of P is a reversible
symplectic matrix.

If θ(t) is a periodic symmetric orbit of H : T ∗M → R, then θ(t) is a periodic symmetric orbit
of H + u where u ∈ C∞

θ (M). The set of all reversible symplectic matrices is a submanifold of
Sp(2d) with positive codimension. Therefore, assuming Proposition 2.3.2, the image of the map
F (θ,H + u) defined as

C∞
θ (M) ∋ u 7→ dPu,

for a periodic symmetric orbit θ of a reversible Hamiltonian H, has no interior in Sp(2d). Hence,
Theorem 3 does not hold for such orbits.

Proof of Proposition 2.3.2. Let ϕt be the Hamiltonian flow of H, and τ(x) : {p1 = 0} → R+ be
the first return time to the section {p1 = 0}. We wish to solve the equation(

ϕs(x) ◦ ℜ ◦ ϕτ(x)
)
(x) = ℜ(x), x ∈ {p1 = 0}, (2.3.3)

where s(x) : x ∈ {p1 = 0} → R+ is unknown and ℜ(x) : T ∗M → T ∗M is a reversing involution.
Consider the mapping p1(x) : T ∗M → R that gives the p1-coordinate of a given point x ∈ T ∗M.
For each x ∈ {p1 = 0}, we have(

p1 ◦ ℜ ◦ ϕτ(x)
)
(x) = 0, x ∈ {p1 = 0}. (2.3.4)
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Therefore, from equations (2.3.2) and (2.3.4) we conclude that τ(x) solves the equation (2.3.3).
Hence, for x ∈ {p1 = 0} we have

(
ϕτ(x) ◦ ℜ ◦ ϕτ(x)

)
(x) = ℜ(x) which implies that

P ◦ ℜ ◦ P = ℜ. (2.3.5)

Differentiating (2.3.5) gives

(dP )R(dP ) = R, where R =

[
Id 0
0 −Id

]
2d×2d

.

We proved that dP is a reversible symplectic matrix.

To complete this section, we will study an example of a Hamiltonian vector field that all its
orbits are periodic and they are admitting neat points only, but they are all included in ΓH .
Let M = S1 × Rd, where S1 is the unit circle. We define H(q, p) : T ∗M → R as H(q, p) = p1.
The Hamiltonian system associated to H is as follows

q̇1 = 1,
d

dt
q̂ = 0, ṗ = 0.

Therefore, all orbits are periodic orbits that are consisting of neat points only and they are all
included in ΓH . Note that the Poincaré map of a given orbit of the above system is fixing the
q-coordinates, so the first block line of the linearized Poincaré map of a given orbit is [I, 0], and
this block line is invariant under admissible perturbations. Such matrices with first block line
[I, 0] have no interior in Sp(2d). So the map F (θ,H + u) for an orbit θ of the Hamiltonian H is
not weakly open.
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The aim of this chapter is to prove Theorem 4 and Theorem 5. Then, as we have explained
in the introduction of this thesis, Theorem 6 would be an immediate consequence which in the
context of this thesis we name it as bumpy metric theorem.

3.1 Background

3.1.1 Preliminaries on projection map
In this section we study the projection map πY : X ×Y → Y where X and Y are topological

spaces. Our goal is to show that whenever X is a countable union of compact subsets, the image
of every Fσ subset under πY is Fσ; See Lemma 3.1.3 below. The mentioned fact would be a
consequence of the so-celled tube lemma which can be found in standard text books of general
topology, look at Munkres [Mun00] Lemma 26.8 for example.
Assume that X and Y are two topological spaces. Consider the product space X × Y with the
product topology. For a singleton {y0} ⊂ Y, the subset X×{y0} ⊂ X×Y is called a slice. Given
a slice X × {y0} ⊂ X × Y, if Uy0

⊂ Y is an open set containing y0, then X ×Uy0
is called a tube

around the slice X × {y0}.

Lemma 3.1.1 (Tube lemma). Let X and Y be two topological spaces and assume that X is
compact. Consider the product space X × Y, and suppose that O ⊂ X × Y is an open subset
containing the slice X × {y0} ⊂ X × Y. There exists an open subset Uy0 such that y0 ∈ Uy0 , and
the tube X × Uy0

is contained in O.

40
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Proof. Let
⋃

α(Tα × Eα) be an open covering of X × {y0} such that
⋃

α(Tα × Eα) ⊂ O and
Tα × Eα are basis elements of the product topology concerned to the product space X × Y.
Because X × {y0} is homeomorphic to X and X is a compact space, we conclude that the slice
X × {y0} ⊂ X × Y is compact. Therefore, X × {y0} can be covered by finite elements among
Tα × Eα, namely Ti × Ei, where i ∈ {1, 2, . . . n}. After eliminating those elements Tj × Ej such
that y0 /∈ Ej , we still have a finite covering

⋃
i(Ti × Ei), where i ∈ {1, 2 . . . ,m} and m ≤ n. We

define Uy0 :=
⋂

i Ti, then X × Uy0 is the desired tube.

Lemma 3.1.2. Assume that X and Y are two topological spaces and X is compact. Consider
πY : X × Y → Y as the projection map (x, y) 7→ y. Let C be a closed subset of X × Y, then
πY (C) ⊂ Y is closed.

Proof. Suppose that y0 is in the complement of πY (C) ⊂ Y. Then, Cc contains the slice X×{y0}.
Note that Cc is an open subset of X × Y, and by assumption X is compact. So based on the
tube lemma there exists an open set Uy0

⊂ Y such that y0 ∈ Uy0
and X×Uy0

is contained in Cc.
Therefore, we have πY (X×Uy0

) ⊂ πY (Cc) which implies that Uy0
is contained in the complement

of π(C) ⊂ Y. We proved that a given point y0 in the complement of πY (C) is an interior point,
so πY (C) ⊂ Y is closed.

Once again, consider the projection map πY : X × Y → Y where X and Y are topological
spaces and X is compact. Moreover, assume that F ⊂ X × Y is a given Fσ subset. Then,
Lemma 3.1.1 implies that πY (F) ⊂ Y is Fσ: Since F ⊂ X × Y → Y is Fσ we can write
F =

⋃
i Ci as a countable union of closed sets Ci ⊂ X × Y where i ∈ N. Therefore, we have

π(F) = π(
⋃

i Ci) =
⋃

i π(Ci). Because of Lemma 3.1.1, π(Ci) ⊂ Y is closed for all i ∈ N, so we
have just wrote π(F) as a countable union of closed subsets which means π(F) is an Fσ subset
of Y.

Now consider the same projection map πY : X × Y → Y, but this time assume that X is a
countable union of compact sets. For such a map, using Lemma 3.1.1 we can deduce that the
image of each closed subset is an Fσ subset.

Lemma 3.1.3. Assume that X and Y are two topological spaces and X is a countable union of
compact sets. Consider πY : X × Y → Y as the projection map (x, y) 7→ y. If C ⊂ X × Y is a
given closed subset, then π(C) ⊂ Y is Fσ.

Proof. By assumption, we can write X as a countable union of compact subsets Xi ⊂ X, where
i ∈ N,

X =
⋃
i∈N

Xi.

For each i ∈ N, let πY
∣∣
Xi×Y

be the restriction of πY to Xi × Y, then Lemma 3.1.2 assures that
πY

∣∣
Xi×Y

(C) ⊆ Y is closed. We can write πY (C) as πY (C) =
⋃

i πY
∣∣
Xi×Y

(C). Since πY
∣∣
Xi×Y

(C) is
closed for all i ∈ N, we conclude that πY (C) is an Fσ subset of Y. Note that if we have Xi×Y ⊆ C
for some i ∈ N, then πY

∣∣
Xi×Y

(C) = Y which is automatically closed in Y .

With a similar argument as we had right after Lemma 3.1.2 we can show that for the projection
map πY : X × Y → Y where X is a countable union of compact sets, the image of every Fσ

subset is an Fσ subset. Assume that F ⊂ X × Y is a given Fσ subset of X × Y, then there exist
closed subsets Ci ⊂ X × Y such that F =

⋃
i Ci, where i ∈ N. We have πY (

⋃
i Ci) =

⋃
i πY (Ci),

and Lemma 3.1.3 guarantees that πY (Ci) ⊂ Y is Fσ for all i ∈ N. Since πY (F) is a countable
union of Fσ subsets of Y , it is itself an Fσ subset.
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3.1.2 Introductory definitions and lemmas
For this chapter it is useful to clarify the definition that we have in mind of a topological

manifold: A second countable Hausdorff topological space that is locally homeomorphic to an
Euclidean space. With this definition, every manifold is a countable union of compact subsets.
See Chapter 4 of [Sha17].
Assume that H : T ∗M → R is a given smooth Hamiltonian defined on the cotangent bundle
of a smooth manifold M. Consider ϕt(x, u) as the Hamiltonian flow associated to H + u, where
u ∈ C∞(M). With a look back to the statement of Theorem 4, without loss of generality suppose
that k is given as 0.
We define ∆(x, u) : T ∗M ×C∞(M) → C∞(M) as the projection map to the second variable i.e.
the mapping (x, u) 7→ u.

Let Z be the subset of T ∗M × C∞(M) defined as follows

Z := {(x, u) ∈ T ∗M × C∞(M) | (H + u)(x) = 0, d(H + u)(x) = 0}. (3.1.1)

Note that Z is a closed subset of T ∗M × C∞(M).
Because T ∗M is a countable union of compact subsets and Z ⊂ T ∗M × C∞(M) is closed, from
Lemma 3.1.3 we conclude that ∆(Z) ⊂ C∞(M) is an Fσ subset. That is to say the set of
potentials u ∈ C∞(M) for which the 0-energy level of H + u is not regular is an Fσ subset of
C∞(M). Assume that u0 ∈ C∞(M) is given, then Sard’s theorem implies that for any open
neighborhood Uu0

⊂ C∞(M) of u0, there exists a ∈ R+ such that u0+a ∈ Uu0
and 0 is a regular

value of H+u0+a. We just proved one of the assertions of Theorem 4 that is the set of potentials
{u ∈ C∞(M) | (H + u)−1(0) is a regular energy level} is a Gδ dense subset of C∞(M).

Let Υ be a given nowhere dense Fσ subset of Sp(2d).
We say a periodic orbit is non-degenerate of order one if 1 is not an eigenvalue of its associated
linearized restricted Poincaré map. Similarly, a periodic orbit is called non-degenerate of order
m if its associated linearized restricted Poincaré map does not take ℓ

√
1 as an eigenvalue for all

ℓ ∈ {1, 2, . . . ,m}.
We define subsets P6 ⊂ P5 ⊂ P4 ⊂ P3 ⊂ P2 ⊂ P1 ⊂]0,∞[×T ∗M × C∞(M) as following

P1 :=
{
(s, x, u) ∈]0,∞[×T ∗M × C∞(M) | x is a s-periodic point

of Hamiltonian vector field of H + u and (H + u)(x) = 0
}
,

P2 :=
{
(s, x, u) ∈ P1 | x is a periodic point with minimal period s

}
,

P3 :=
{
(s, x, u) ∈ P2 | t = 0 is a neat time of the orbit θ(t) := ϕt(x, u)

}
,

P4 :=
{
(s, x, u) ∈ P3 | x /∈ ΓH},

P5 := {(s, x, u) ∈ P4 | θ(t) := ϕt(x, u) is non-degenerate of order one
}
,

P6 :=
{
(s, x, u) ∈ P5 | the linearized Poincaré map of θ(t) := ϕt(x, u) does not belong to Υ

}
.

Note that P1 contains ]0,∞[×Z and it is a closed subset of ]0,∞[×T ∗M ×C∞(M). At the other
hand, P2 is disjoint from ]0,∞[×Z.

The product space ]0,∞[×T ∗M×C∞(M) is a metrizable space. In general, due to Tychonoff
[Tyc26], every second countable T3 (regular Hausdorff) space is metrizable, and a finite product of
metrizable spaces is metrizable as well. Here, ]0,∞[×T ∗M is a product of two smooth manifolds,
so it is metrizable. In addition, C∞(M) is a Férechet space (see Definition 1.6 in [GG73]), so it
is metrizable. In conclusion, The product space ]0,∞[×T ∗M × C∞(M) is metrizable.

A subset F of a topological space X is locally closed if for each x ∈ F there exists an open
neighborhood Vx ⊂ X such that Vx ∩ F is a closed subset of Vx. Equivalently, F ⊂ X is locally
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closed if it is the intersection of a closed and of an open subset of X.
Assume that X is a metrizable topological space, then each locally closed subset of X is an

Fσ subset. To illustrate this fact, first note that all closed subsets are Fσ. So it is enough to
show that a given open subset U ⊂ X is Fσ. Suppose that metric d induces the topology of X.
For n ∈ N, define U 1

n
:=

{
B(x, 1

n ) | x ∈ U
}
, where B(x, r) := {y ∈ X | d(y, x) < r} is the open

ball of ratio r centered at x. Writing U 1
n

as U 1
n
= {x ∈ U | d(x,X \ U) ≥ 1

n} shows that U 1
n

is
closed for each n ∈ N. Since we have U =

⋃
n∈N U 1

n
, we conclude that U is an Fσ subset of X.

Suppose that X is a topological space and we have A ⊂ B ⊂ X in such a way that B is
locally closed in X, and A is locally closed in B. We aim to show that A is locally closed in X.
Since B ⊂ X is locally closed, we can write B = O1 ∩ F1 where F1 ⊂ X is closed and O1 ⊂ X is
open. Similarly, there exists an open subset O2 ⊂ X and a closed subset F2 ⊂ X such that

A = (B ∩O2) ∩ (B ∩ F2). (3.1.2)

Replacing B = O1 ∩F1 in equation (3.1.2) above gives A = (O1 ∩O2)∩ (F1 ∩F2), so A is locally
closed in X.

Lemma 3.1.4. The sets Pi \ Pi+1, for 1 ≤ i ≤ 4, are Fσ subsets of ]0,∞[×T ∗M × C∞(M).

Proof. We aim to prove that P1 \ P2 is a closed subset of P1. Then the closed inclusions
P1 \ P2 ⊂ P1 ⊂]0,∞[×T ∗M ×C∞(M) imply that P1 \ P2 is a closed —thus an Fσ— subset of
]0,∞[×T ∗M × C∞(M).
Consider a sequence (sk, xk, uk) ∈ P1 \ P2 converging to (s, x, u) ∈ P1. We will prove that
(s, x, u) /∈ P2. Denote by Sk the minimal period of xk. There exists a sequence of integers ik ≥ 2
such that sk = ikSk. Moreover, there exists an extraction ϕ : N → N such that sϕ(k) = iϕ(k)Sϕ(k)

where iϕ(k) is either a constant sequence or it tends to +∞. In the first mentioned case, if c ≥ 2 is
the constant value of the subsequence iϕ(k), then we have Sϕ(k) → s

c . So the point x is s
c -periodic

which implies that s is not the minimal period of x. Therefore, by definition of P2, we conclude
that (s, x, u) /∈ P2. In the second case, we have (x, u) ∈ Z where the subset Z ⊂ T ∗M ×C∞(M)
is defined in (3.1.1). Recall that P2 is disjoint from ]0,∞[×Z. Hence, in both cases (s, x, u) does
not belong to P2.

We will prove that P2 \ P3 is closed in P2. Assume that (sk, xk, uk) ∈ P2 \ P3 converges to
(s, x, u) ∈ P2. Denote by Qk(t) the projected (H + uk)-orbit of xk and let Q(t) be the limit of
Qk(t). Since 0 is not a neat time for Qk(t), we can assume by taking a subsequence that either
Q̇k(0) = 0 for each k or there exists times τk ∈] − sk/2, 0[∪]0, sk/2] such that Qk(0) = Qk(τk).
The first case immediately gives Q̇(0) = 0. In the second situation, if the sequence τk has an
accumulation point τ ̸= 0 then we have Q(τ) = Q(0). Recalling that s is the minimal period of
x and τ < s, the equation Q(τ) = Q(0) implies that 0 is not a neat time for Q(t). Otherwise, if
τk → 0, the equation Qk(τk) = Qk(0) gives Q̇(0) = 0, so once again 0 is not a neat time for Q(t).

We have proved that P2 \ P3 is a closed subset of P2, so P3 is open in P2. Therefore,
there exists an open subset O1 of ]0,∞[×T ∗M × C∞(M) such that P3 = P2 ∩ O1. Earlier in
this proof, we showed that P1 \ P2 is closed in P1 which implies that P2 is open in P1, so
there exists an open subset O2 ⊂]0,∞[×T ∗M × C∞(M) such that P2 = P1 ∩ O2. Hence, after
recalling that P1 is a closed subset of ]0,∞[×T ∗M×C∞(M) we conclude that P2 = P1∩O2 and
P3 = P1 ∩O1 ∩O2 are locally closed subsets of ]0,∞[×T ∗M ×C∞(M). Since P2 \ P3 is closed
—thus locally closed— in P2, and P2 ⊂]0,∞[×T ∗M × C∞(M) is locally closed, we conclude
that P2 \P3 is a locally closed subset of ]0,∞[×T ∗M×C∞(M). Because ]0,∞[×T ∗M×C∞(M)
is metrizable and P2 \ P3 is locally closed, P2 \ P3 is an Fσ subset of ]0,∞[×T ∗M × C∞(M).

The definitions of P4 and P5 are immediately implying that P4 is open in P3, and P5 is open
in P4. Because the inclusions P5 ⊂ P4 ⊂ P3 ⊂ P2 ⊂ P1 are all open and P1 is a closed subset
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of ]0,∞[×T ∗M ×C∞(M), a similar reasoning as the above paragraph implies that P5 \ P4 and
P3 \ P4 are both Fσ subsets of ]0,∞[×T ∗M × C∞(M).

3.2 Proof of the bumpy metric theorem

3.2.1 Proof of Theorem 4
Let us define Π : ]0,∞[×T ∗M × C∞(M) → C∞(M) as the projection to the third variable

i.e the mapping (s, x, u) 7→ u. Because ]0,∞[×T ∗M is a countable union of compact subsets,
Lemma 3.1.3 guarantees that the image of an Fσ subset under the map Π is an Fσ subset of
C∞(M).
To prove Theorem 4, we will show that Π(P4 \ P6) is a nowhere dense Fσ subset of C∞(M).
That is equivalent to prove that Π(P5 \ P6) and Π(P4 \ P5) are both nowhere dense Fσ subsets
of C∞(M). We will accomplish these tasks in Propositions 3.2.1 and 3.2.2 below.
Separability of the product space ]0,∞[×T ∗M ×C∞(M) allows us to conclude Proposition 3.2.1
and 3.2.2 after proving them in a neighborhood of a given point (s0, x0, u0) ∈]0,∞[×T ∗M ×
C∞(M).
Theorem 3 has a central role in the proof of Proposition 3.2.1. Besides, we apply the normal
form given in Theorem 1.4.1 in the proof of Proposition 3.2.2.

Proposition 3.2.1. The set Π(P5 \ P6) is a nowhere dense Fσ subset of C∞(M).

Proof. For a given (s0, x0, u0) ∈]0,∞[×T ∗M ×C∞(M), assume that Y ⊂]0,∞[×T ∗M ×C∞(M)
is an open neighborhood of (s0, x0, u0). Define P5

loc := P5 ∩Y, and P6
loc := P6 ∩P5

loc. We denote
by (P6

loc)
c the complement of P6

loc ⊂ P5
loc.

Define F (s, x, u) : P5
loc → Ω ⊂ Sp(2d) as the map which associates to each periodic point its

restricted linearized Poincaré map. Where Ω is the image of P5
loc under F. By definition of P6,

we have (P6
loc)

c = F−1(Υ ∩ Ω). Because F is continuous, and by Theorem 3 it is weakly open,
we conclude that (P6

loc)
c is a nowhere dense Fσ subset of P5

loc.
First order non-degeneracy of periodic orbits has a continuous dependence on the parameter u.
Hence, provided by reducing Y if necessary, the restriction of Π to P5

loc is a homeomorphism onto
its image Π(P5

loc) which is an open subset of Π(Y). The set Π(P5
loc \ P6

loc) can be seen as the
image of (P6

loc)
c under the homeomorphism Π

∣∣
P5

loc

. Therefore, since (P6
loc)

c is a nowhere dense
Fσ subset of P5

loc, so is Π(P5
loc \ P6

loc) ⊂ Π(Y).
Because ]0,∞[×T ∗M × C∞(M) is a separable space, we deduce that Π(P5 \ P6) is a nowhere
dense Fσ subset of C∞(M).

Proposition 3.2.2. The set Π(P4 \ P5) is a nowhere dense Fσ subset of C∞(M).

Proof. We have already proved that Π(P4 \ P5) ⊂ C∞(M) is Fσ in Lemma 3.1.4, so it remains
to show that Π(P4 \ P5) is a nowhere dense subset of C∞(M). Let (s0, x0, u0) ∈ P4 be given
where x0 = (q0, p0). Without loss of generality assume that u0 = 0, and x0 = 0 is the origin
of the local coordinates given in Theorem 1.4.1. We consider the section {q1 = 0} which is
transverse to θ(t) := ϕt(x0, u0) at θ(0). Due to properties of the local coordinates, θ(t) has zero
energy; Furthermore, since dH(0) = (e1, 0), the tangent space to {H = 0} at the point x0 = 0 is
{p1 = 0}.
If u belongs to a sufficiently small neighborhood C∞

loc(M) ⊂ C∞(M) of u = 0, then x̂ = (q̂, p̂)
are symplectic local coordinates of the section

Λ(u) :=
{
(q, p) ∈ R2d+2 | q1 = 0, (H + u)(q, p) = 0

}
.
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Let R2d
loc ⊂

{
x̂ | x(x̂, u) ∈ Λ(u)

}
be an open neighborhood around x̂ = 0, where x(x̂, u) ∈ Λ(u)

denotes for the point that has coordinates x̂.
Consider

τ(x̂, u) : R2d
loc × C∞

loc(M) → R

as the first return time and
ψ(x̂, u) : R2d

loc × C∞
loc(M) → R2d

loc

as the first return map. In fact, ψ(x̂, u) is the x̂ coordinates of the point ϕ
(
τ(x̂, u), x(x̂, u), u

)
where x(x̂, u) ∈ Λ(u).
Let S be the set of solutions of the equation

ψ(x̂, u) = x̂. (3.2.1)

Moreover, define S5 as the set of non-degenerate solutions of (3.2.1); More precisely,

S5 :=
{
(x̂, u) ∈ S | 1 is not an eigenvalue of ∂x̂ψ(x̂, u)

}
.

Note that (x̂, u) ∈ S if and only if (τ(x̂, u), x(x̂, u), u) ∈ P1. By Lemma 3.1.4, the inclusion
P4 ⊂ P1 is open, so up to reducing R2d

loc and C∞
loc(M) we conclude that (x̂, u) ∈ S if and only if

(τ(x̂, u), x(x̂, u), u) ∈ P4.
We define

P4
loc := P4 ∩

{(
τ(x̂, u), ϕt(x(x̂, u), u), u

)
| t ∈ R, (x̂, u) ∈ S

}
which is an open neighborhood of (s0, 0, 0) ∈ P4. By definition of P4

loc, we have

Π(P4
loc) = ∆(S),

where Π and ∆ are projections to the third variable and to the second variable respectively.
Since (x̂, u) ∈ S5 if and only if

(
τ(x̂, u), x(x̂, u), u

)
∈ P5, we conclude that

Π(P4
loc \ P5) = ∆(S \ S5).

So we reduced the claim of the proposition to:

∆(S \ S5) is a nowhere dense subset of C∞(M). (3.2.2)

Our strategy to prove the claim (3.2.2) above is to show that S is a submanifold of R2d
loc ×

C∞
loc(M), and S5 is the set of regular points of the map ∆

∣∣
S i.e. the restriction of the projection

map ∆ to S. Applying Sard’s theorem then completes the proof. However, first we wish to
restrict our setup to a finite dimensional space of C∞(M) which allows us to use the notion of
Fréchet differential instead of Gateau differential with respect to u.

Lemma 3.2.3. For a given open neighborhood U ⊂ M of q0, there exists a finite dimensional
subspace E ⊂ C∞(M) formed by potentials supported inside U and null on the orbit θ, such that
∂uψ(0, 0) sends E onto R2d.

Assuming the above lemma, we finish the proof of Proposition 3.2.1 considering ∂u as the
notion of Fréchet derivative. By Lemma 3.2.3, ∂uψ(0, 0)E = R2d. Therefore, up to reducing the
neighborhoods R2d

loc and C∞
loc(M) if necessary, we have

∂uψ(x̂, u)E = R2d, for all (x̂, u) ∈ R2d
loc × C∞

loc(M).
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Let Eloc ⊂ E be a neighborhood of 0. For a given v ∈ C∞
loc(M), define Ψv : R2d

loc ×Eloc → R2d as

Ψv(x̂, u) := ψ(x̂, u+ v)− x̂.

If Eloc is a sufficiently small neighborhood of 0, then Ψv is a submersion. In consequence, the
set N := Ψ−1

v (0) is a submanifold, and
{
(x̂, u) ∈ N | ∂x̂Ψv(x̂, u) is not invertible

}
is the set of

singular points of the map ∆
∣∣
N

; See Proposition 2.2 of [BM15].
If v+ u belongs to ∆(S \ S5), then u is a critical value of ∆

∣∣
N

: Suppose that v+ u ∈ ∆(S \ S5),

then there exists x̂ ∈ R2d
loc such that (x̂, v+ u) ∈ (S \ S5), so (x̂, u) ∈ N is a critical point of ∆

∣∣
N

which implies that u is a critical value of ∆
∣∣
N

. By Sard’s theorem, there exist regular values of
∆
∣∣
N

arbitrarily close to 0, so v does not belong to the interior of ∆(S \ S5). Since this holds for
all v ∈ C∞

loc(M), we conclude that ∆(S \ S5) is nowhere dense.

Assume that ∂uϕt(x, u)(h), where h ∈ C∞(M), is the Gateau differential of ϕt(x, u) with
respect to u at the point (t, x, u) ∈]0,∞[×T ∗M × C∞(M). We have

∂uϕ
t(x, u)(h) = ∂xϕ

t(x, u)

∫ t

0

[∂xϕ
s(x, u)]−1

[
0

−dh
(
π ◦ ϕs(x, 0)

)] ds. (3.2.3)

In order to obtain (3.2.3), note that ∂uϕt(x, u)(h) satisfies the differential equation

∂t∂uϕ
t(x, u)(h) = J∂2x2(H + u)

(
ϕt(x, u)

)
∂uϕ

t(x, u)(h) +

[
0

−dh
(
π ◦ ϕt(x, 0)

)] . (3.2.4)

We are able to verify equation (3.2.4) above via the following computations

∂t∂uϕ
t(x, u) = ∂u∂tϕ

t(x, u) = ∂u
[
Jd(H + u)

(
ϕt(x, u)

)]
= ∂x

[
Jd(H + u)

(
ϕt(x, u)

)]
∂uϕ

t(x, u)

+ ∂u[Jd(H + u)
(
ϕt(x, u)

)]
= J∂2x2(H + u)

(
ϕt(x, u)

)
∂uϕ

t(x, u) +

[
0

−dh
(
π ◦ ϕt(x, 0)

)] .
Furthermore, we have

∂t∂xϕ
t(x, u) = J∂2x2(H + u)

(
ϕt(x, u)

)
∂xϕ

t(x, u), (3.2.5)

which is similar to equation (2.2.3) in the previous chapter. Note that the differential equation
(3.2.5) is the non-homogeneous equation associated to (3.2.4), so equation (3.2.3) would be the
result of the well-known relation between solutions of a linear non-homogeneous ordinary differ-
ential equation and its corresponding homogeneous equation. Once again we refer to Chapter
IV of Hartman [Har82], Corollary 2.1.

Proof of Lemma 3.2.3. We work in the local coordinates given by Theorem 1.4.1 around x = 0,
so J∂2x2H(te1, 0) has the block form alike (2.2.1). Therefore, equation (3.2.3) is uncoupled with
respect to x1 = (q1, p1) and x̂ = (q̂, p̂) coordinates.
Let ψt(x̂, u) : {q1 = 0, H + u = 0} → {q1 = t, H + u = 0} be the one-parameter family of
restricted transition maps between {q1 = 0} and {q1 = t}. Note the difference between the
notations ψ(x̂, u) and ψt(x̂, u) which are referring to the return map and the one-parameter
family of transition maps respectively.
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ψt(x̂, u) is the x̂-coordinates of ϕt
(
x(x̂, u), u

)
where x(x̂, u) ∈ Λ(u) denotes for the point with

coordinates x̂. Therefore, for a fixed σ near 0

∂uψ
σ(0, 0)(h) = ∂x̂ϕ

σ(0, 0)

∫ σ

0

[∂x̂ϕ
s(0, 0)]−1

[
0d

−∂q̂h(se1)

]
ds.

Take ηϵ(t) supported in ]0, σ[ as an smooth approximation of Dirac delta distribution δ(t). More
precisely, limϵ→0+ ηϵ(t) = δ(t) where the limit is in the sense of distribution. For 1 ≤ i, j ≤ d, let
hij ∈ C∞(M) be given such that

−∂q̂hij(te1) = ηϵ(t)ej + η′ϵ(t)D
−1ei,

where η′ϵ(t) is the derivative with respect to t of ηϵ(t), andD = ∂2p̂2H(te1, 0) is a constant diagonal
matrix with only +1 or −1 entries; Look at the block form expression of J∂2x2H(te1, 0) in (2.2.1)
again. For this proof we only need to use the fact that D is invertible.
Provided ϵ > 0 be sufficiently near zero, we show that ∂uψσ(0, 0)(hij) is a basis for R2d. After
setting V (t) := ∂x̂ϕ

t(0, 0), we have

∂uψ
σ(0, 0)(hij) = V (σ)

∫ σ

0

V −1(s)

[
0

ηϵ(s)ej + η′ϵ(s)D
−1ei

]
ds

= V (σ)

∫ σ

0

V −1(s)

[
0

ηϵ(s)ej

]
ds+ V (σ)

∫ σ

0

V −1(s)

[
0

η′ϵ(s)D
−1ei

]
ds. (3.2.6)

It is clear that we have

V (σ)

∫ σ

0

V −1(s)ηϵ(s)

[
0
ej

]
ds ≈ V (σ)V −1(0)

[
0
ej

]
. (3.2.7)

Now we compute the other term V (σ)
∫ σ

0
V −1(s)

[
0

η′ϵ(s)D
−1ej

]
ds, in the right hand side of the

equation (3.2.6):

V (σ)

∫ σ

0

V −1(s)

[
0

η′ϵ(s)D
−1ei

]
ds = −V (σ)

∫ σ

0

−V −1(s)J∂2x̂2H(se1, 0)

[
0

ηϵ(s)D
−1ei

]
ds

= V (σ)

∫ σ

0

V −1(s)

[
0 D

−K(s) 0

] [
0

ηϵ(s)D
−1ei

]
ds

= V (σ)

∫ σ

0

V −1(s)ηϵ(s)

[
ei
0

]
ds

≈ V (σ)V −1(0)

[
ei
0

]
. (3.2.8)

Equations (3.2.6), (3.2.7) and (3.2.8) imply that ∂uψσ(0, 0)(hij) ≈ V (σ)V −1(0)

[
ei
ej

]
. In conclu-

sion, because V (σ)V −1(0) is invertible, ∂uψσ(0, 0)(hij) forms a basis of R2d.
Consider the map Gσ(x̂) as the restricted transition map from {q1 = σ} to {q1 = 0} along

the periodic orbit. For potentials u that their supports are disjoint from {te1 | t ∈ [σ, s0]} we
can write the restricted Poincaré map ψ(x̂, u) as

ψ(x̂, u) = Gσ

(
ψσ(x̂, u)

)
.
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Then, because ∂uψσ(0, 0) is onto we conclude that ∂uψ(0, 0) = ∂x̂Gσ(0) ◦ ∂uψσ(0, 0) is onto.

One of the key points of the proof of Lemma 3.2.3 is that the matrix ∂2p̂2H(se1, 0) viewed
in the coordinates given in Theorem 1.4.1 is invertible for all s ∈ [0, σ]. That is precisely the
expression in coordinates of fiberwise iso-energetically non-degeneracy at 0.

3.2.2 Proof of Theorem 5
We prove Theorem 5 which is the last step that we need to take to achieve the bumpy metric

theorem. For a given n ∈ N we define

R(n) :=
{
(x, u) ∈ T ∗M × C∞(M) | ∂pH(x) ̸= 0, ϕ([− 1

n
,
1

n
]× {x} × {u}) ⊂ ΓH

}
,

where occasionally we have preferred the notation ϕ(t, x, u) over ϕt(x, u) which we have frequently
used during this thesis. Proving Theorem 5 is the matter of showing that ∆

(⋃
n∈N R(n)

)
is a

nowhere dense Fσ subset of C∞(M).
By definition, for a given n ∈ N, R(n) is a locally closed subset of T ∗M × C∞(M). Note that
∂pH(x) ̸= 0 is an open condition for the points (x, u) ∈ T ∗M × C∞(M), and for a given n ∈ N,

{
(x, u) | ϕ([− 1

n
,
1

n
]× {x} × {u}) ⊂ ΓH

}
is a closed subset of T ∗M ×C∞(M). For a given n ∈ N, since R(n) ⊂ T ∗M ×C∞(M) is locally
closed and T ∗M×C∞(M) is metrizable, we conclude that R(n) is an Fσ subset of T ∗M×C∞(M).
In consequence, ∆

(⋃
n∈N R(n)

)
=

⋃
n∈N ∆

(
R(n)

)
⊂ C∞(M) is an Fσ subset. Where we used

the fact that the image of an Fσ subset under ∆ is Fσ, and union of countable Fσ subsets is Fσ.
It remains to show that ∆

(⋃
n∈N R(n)

)
is nowhere dense which we conclude after proving

that ∆
(
R(n)

)
is nowhere dense for a given n ∈ N. Because T ∗M×C∞(M) is separable, assuming

that n ∈ N is given, it would be enough to show that for a given (x0, u0) ∈ R(n) neighborhoods
(T ∗M)loc ⊂ T ∗M of x0 and C∞

loc(M) of u0 exists such that ∆
((
(T ∗M)loc ×C∞

loc(M)
)
∩R(n)

)
is

nowhere dense.
Let n ∈ N, and k > 2d+ 2 be given. Consider

0 < σ0 < σ1 < σ2 < . . . < σk < σk+1 <
1

n
.

Define Φ : T ∗M × C∞(M) → (T ∗M)k as

Φ(x, u) :=
(
ϕ(σ1, x, u), . . . , ϕ(σk, x, u)

)
.

The lemma that follows is the key to prove Theorem 5.

Lemma 3.2.4. Assume that (x0, u0) ∈ T ∗M × C∞(M) such that ∂pH(x0) ̸= 0. The times σi,
where 0 ≤ i ≤ k + 1, can be chosen in a way that a finite dimensional subspace E ⊂ C∞(M)
exists for which the map Fu0

: T ∗M × E → (T ∗M)k defined as Fu0
(x, u) := Φ(x, u0 + u) is

transverse to (ΓH)k at the point (x0, 0).

With assuming the above lemma, we give a proof of Theorem 5. Suppose a point (x0, u0) ∈
T ∗M × C∞(M) such that ∂pH(x0) ̸= 0 is given. By the above lemma, there exists a fi-
nite dimensional subspace E ⊂ C∞(M) so that the map Fu0

(x, u) is transverse to (ΓH)k at
(x0, 0). Because transversality is an open property, there exists neighborhoods (T ∗M)loc of x0



3.2. Proof of the bumpy metric theorem 49

and C∞
loc(M) of u0 such that the map Fu1(x, u) is transverse to (ΓH)k at each point (x1, 0) when-

ever (x1, u1) ∈ (T ∗M)loc × C∞
loc(M). Therefore, F−1

u1

(
(ΓH)k

)
is a submanifold of (T ∗M)loc × E;

Moreover, the codimension F−1
u1

(
(ΓH)k

)
in (T ∗M)loc × E is the same as the codimension of

(ΓH)k ⊂ (T ∗M)k. Note that we have used a well known conclusion of the preimage theorem, look
at page 28 of [Gui+74]. By assumption, ΓH ⊂ T ∗M has positive codimension which implies that
the codimension of (ΓH)k in (T ∗M)k is at least k. So codimension of F−1

u1

(
(ΓH)k

)
⊂ (T ∗M)loc×E

is at least k. Therefore, because (T ∗M)loc has dimension 2d + 2, and we have k > 2d + 2, by
Sard’s theorem the projection of F−1

u1

(
(ΓH)k

)
to E is nowhere dense. Hence, there exists ũ ∈ E

arbitrary close to 0 such that ũ does not belong to ∆
(
F−1
u1

(
(ΓH)k

))
. For such ũ, there is not

exists x ∈ (T ∗M)loc such that Φ(x, u1 + ũ) ∈ (ΓH)k. Accordingly, for such ũ there is not exists
x ∈ (T ∗M)loc such that (x, u1 + ũ) ∈ R(n); Since that holds for each u1 ∈ C∞

loc(M) we conclude
that ∆

((
(T ∗M)loc × C∞

loc(M)
)
∩R(n)

)
is nowhere dense.

Proof of Lemma 3.2.4. Without loss of generality we assume that u0 = 0. Because ∂pH(x0) ̸= 0,
there exists δ > 0, and a local coordinates around x0 such that it maps x0 to 02d+2 and we
have ϕt(0, 0) = (te1, 0) in the local coordinates for all t ∈ [−δ, δ]. Note that H is not necessarily
fiberwise iso-energetically non-degenerate at x0, that is why here in this proof —in contrary to
the proof of Lemma 3.2.3— we are not able to use the local coordinates given in Theorem 1.4.1.
However, with a review of the proofs of assertions (1) and (2) of Theorem 1.4.1, we recall that
the condition ∂pH(x0) ̸= 0 (which is weaker than x0 /∈ ΓH) is enough to conclude the assertions
(1) and (2) of Theorem 1.4.1.
Because x0 is a neat point, we can reduce δ if necessary in order to assure that π ◦ θ(t) has no
self-intersection, where t ∈ [0, δ]. Afterwards, we choose k+1 distinct σi ∈ [0, δ], for 1 ≤ i ≤ k+1.

Based on equation (3.2.3), we have

∂uϕ
t(0, 0)(h) = ∂xϕ

t(0, 0)

∫ t

0

[∂xϕ
s(0, 0)]−1

[
0

−dh
(
π ◦ ϕs(0, 0)

)] ds.
Consider ηiϵ(t) as the approximation of the Dirac delta distribution at the time σi, namely δi(t),
in a way that supp ηiϵ ⊂]σi−1, σi[. That means as ϵ approaches σi from left, the limit of ηiϵ(t) in
the sense of distribution is equal to δi(t).
Let hij ∈ C∞(M) be given such that

−dhij(te1) = ηiϵ(t)ej ,

where for 1 ≤ j ≤ d + 1, ej is the standard basis of Rd+1. Define lj := (0, ej) ∈ Rd+1 × Rd+1,
and W (t) := ∂xϕ

t(0, 0), then we have

∂uϕ
σi(0, 0)(hij) ≈ lj .

Furthermore, for all i′ > i, we have

∂uϕ
σi′ (0, 0)(hij) ≈W (σi′)W

−1(σi)lj .

So we have

∂uΦ(0, 0)(hij) ≈
( i − 1︷ ︸︸ ︷
02d+2, . . . , 02d+2, lj ,W (σi+1)W

−1(σi)lj , . . . ,W (σk)W
−1(σi)lj

)
=: ϑij .

Since W (t) is invertible for all t ∈ [0, δ], the vectors ϑij ∈ (R2d+2)k are making a basis for the
subspace (0d+1 × Rd+1)k which is transverse to (ΓH)k.
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Théorème des métriques bosselées au sens de Mañé pour les champs de vec-
teurs Hamiltonien non convexe

Résumé

Une propriété est générique au sensé de Mañé si, donné un Hamiltonien H : T ∗M → R, l’ensemble des
fonctions lisses u : M → R tel que H + u vérifie la propriété est un sous-ensemble générique de C∞(M).
Notre objectif est de savoir dans quelle mesure la non dégénérescence de toutes les orbites périodiques
dans un niveau d’énergie donné d’un Hamiltonien lisse non convexe est une propriété générique au sensé
de Mañé. Où la non-dégénérescence signifie que dérivée de l’application de Poincaré ne prend pas les
racines de l’unité comme une valeurs propre.
Pour atteindre cet objectif, nous obtiendrons un théorème de perturbation pour les aplication de Poincaré
similaire au théorème de Rifford et Ruggiero dans le cadre convexe, et une forme normale de type Fermi
sur les orbites d’un champ de vecteurs Hamiltonien non convexe. Ce sont deux outils applicables à l’étude
de la dynamique des champs de vecteurs Hamiltoniens non convexes. D’autre part, nous montrerons que
dans les cas convexes et non convexes, nous avons certainement besoin d’un mécanisme différent pour
prouver le théorème des métrique bosselées pour les orbites symétriques. Une orbite symétrique est une
orbite dont la projection sur les variétés de base comprend soit des points d’auto-intersection, soit des
points à vitesse nulle. Ce fait a été négligé dans les études précédentes.
Une étude détaillée des formes normales locales sur les segments d’orbite d’un champ de vecteurs Ha-
miltonien est donnée. Cela inclut une forme normale pour les Hamiltoniens convexes, une forme normale
pour les Hamiltoniens positivement homogènes qui implique la forme normale de Li-Nienberg pour les
métriques de Finsler, et comme nous l’avons mentionné une forme normale pour les Hamiltoniens non
convexes. De cette façon, nous éliminons la confusion qui existe dans la littérature entre la forme nor-
male de Li-Nirenberg et une forme normale souhaitée similaire pour les champs de vecteurs Hamiltoniens
convexes.

Mots clés : Hamiltonien non convexe, théorème des métriques bosselées, généricité au sens de Mañé

Bumpy metric theorem in the sense of Mañé for non-convex Hamiltonian vec-
tor fields

Abstract

A property (p) of smooth Hamiltonian vector fields is called Mañé-generic whenever the set of smooth
potentials u such that H + u satisfies the property (p) is a generic subset.
Given a non-convex smooth Hamiltonian H : T ∗M → R which is defined on the cotangent bundle of a
smooth manifold M, our goal in this thesis is to know that to what extent non-degeneracy of all periodic
orbits in a given energy level of H is a Mañé generic property. Where by a periodic non-degenerate orbit
we mean a periodic orbit that its associated linearized Poincaré map does not take roots of unity as an
eigenvalue.
To that end, we will achieve a perturbation theorem for linearized Poincaré maps similar to Rifford
and Ruggiero’s theorem in the convex setting, and a Fermi type normal form on orbits of a non-convex
Hamiltonian vector field. These are two applicable tools in the study of non-convex Hamiltonian vector
fields. At the other hand, we will show that in both convex and non-convex cases we certainly need a
different machinery to prove the bumpy metric theorem for symmetric orbits. A symmetric orbit is an
orbit that its projection on the base manifolds includes either self-intersection points or points with zero
velocity. This fact was overlooked in previous studies.
A detailed study of local normal forms on orbit segments of a Hamiltonian vector field is given. That
includes a normal form for convex Hamiltonians, a normal form for positively homogeneous Hamiltonians
that implies Li-Nienberg normal form for Finsler metrics, and as we mentioned a normal form for non-
convex Hamiltonians. In this way, we remove the confusion that exists in the literature between Li-
Nirenberg normal form and a similar desired normal form for convex Hamiltonian vector fields.

Keywords: non-convex Hamiltonians, bumpy metric theorem, Mañé-generic properties
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RÉSUMÉ

Une propriété est générique au sensé de Mañé si, donné un Hamiltonien H : T ∗M → R, l’ensemble des fonctions lisses
u : M → R tel que H + u vérifie la propriété est un sous-ensemble générique de C∞(M).
Notre objectif est de savoir dans quelle mesure la non dégénérescence de toutes les orbites périodiques dans un ni-
veau d’énergie donné d’un Hamiltonien lisse non convexe est une propriété générique au sensé de Mañé. Où la non-
dégénérescence signifie que dérivée de l’application de Poincaré ne prend pas les racines de l’unité comme une valeurs
propre.
Pour atteindre cet objectif, nous obtiendrons un théorème de perturbation pour les aplication de Poincaré similaire au
théorème de Rifford et Ruggiero dans le cadre convexe, et une forme normale de type Fermi sur les orbites d’un champ
de vecteurs Hamiltonien non convexe. Ce sont deux outils applicables à l’étude de la dynamique des champs de vecteurs
Hamiltoniens non convexes. D’autre part, nous montrerons que dans les cas convexes et non convexes, nous avons
certainement besoin d’un mécanisme différent pour prouver le théorème des métrique bosselées pour les orbites sy-
métriques. Une orbite symétrique est une orbite dont la projection sur les variétés de base comprend soit des points
d’auto-intersection, soit des points à vitesse nulle. Ce fait a été négligé dans les études précédentes.
Une étude détaillée des formes normales locales sur les segments d’orbite d’un champ de vecteurs Hamiltonien est
donnée. Cela inclut une forme normale pour les Hamiltoniens convexes, une forme normale pour les Hamiltoniens positi-
vement homogènes qui implique la forme normale de Li-Nienberg pour les métriques de Finsler, et comme nous l’avons
mentionné une forme normale pour les Hamiltoniens non convexes. De cette façon, nous éliminons la confusion qui existe
dans la littérature entre la forme normale de Li-Nirenberg et une forme normale souhaitée similaire pour les champs de
vecteurs Hamiltoniens convexes.

ABSTRACT

A property (p) of smooth Hamiltonian vector fields is called Mañé-generic whenever the set of smooth potentials u such
that H + u satisfies the property (p) is a generic subset.
Given a non-convex smooth Hamiltonian H : T ∗M → R which is defined on the cotangent bundle of a smooth manifold
M, our goal in this thesis is to know that to what extent non-degeneracy of all periodic orbits in a given energy level of
H is a Mañé generic property. Where by a periodic non-degenerate orbit we mean a periodic orbit that its associated
linearized Poincaré map does not take roots of unity as an eigenvalue.
To that end, we will achieve a perturbation theorem for linearized Poincaré maps similar to Rifford and Ruggiero’s theorem
in the convex setting, and a Fermi-like normal form on orbits of a non-convex Hamiltonian vector field. These are two
applicable tools in the study of non-convex Hamiltonian vector fields. At the other hand, we will show that in both convex
and non-convex cases we certainly need a different machinery to prove the bumpy metric theorem for symmetric orbits.
A symmetric orbit is an orbit that its projection on the base manifolds includes either self-intersection points or points with
zero velocity. This fact was overlooked in previous studies.
A detailed study of local normal forms on orbit segments of a Hamiltonian vector field is given. That includes a normal
form for convex Hamiltonians, a normal form for positively homogeneous Hamiltonians that implies Li-Nienberg normal
form for Finsler metrics, and a normal form for non-convex Hamiltonians. In this way, we remove the confusion that exists
in the literature between Li-Nirenberg normal form and a similar desired normal form for convex Hamiltonian vector fields.
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Non-convex Hamiltonians, Bumpy metric theorem, Mañé generic properties
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