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RÉSUMÉ (EN FRANÇAIS)

Il y a environ 40 ans, deux approches majeures pour l’étude des systèmes distribués ont
été développées. Une des approches, récompensée par le prix Gödel, a établi une perspec-
tive topologique sur le calcul distribué, exprimant la solvabilité des tâches distribuées à
travers des notions standards de topologie algébrique, en modélisant les espaces d’états
sous forme de complexes simpliciaux. Un complexe simplicial se compose d’un ensemble
de sommets et d’une famille de simplexes – intervalles, triangles, tétraèdres, etc. Dans le
contexte des systèmes distribués, les sommets représentent les états locaux possibles des
processus dans le système, tandis que les simplexes sont des combinaisons globales com-
patibles de ces états locaux. L’existence d’un protocole, c’est-à-dire d’un programme
qui résout une tâche, est alors considérée comme l’existence d’une fonction entre tels
complexes, qui préserve de manière appropriée la structure.

En parallèle, une application importante de la logique épistémique, un type de logique
modale, a apporté un point de vue alternatif sur la structure des systèmes distribués,
en utilisant la notion de connaissance pour décrire le comportement des processus dans
un système. Cette application a également remporté le prix Gödel. Dans ce contexte,
la solvabilité des tâches s’exprime en termes de formules logiques. Telles formules per-
mettent de formaliser dans un langage formel des expressions telles que “le processus A
sait que le processus B stocke la valeur 1”.

On s’est récemment rendu compte que ces deux approches sont étroitement liées et
que les modèles topologiques peuvent, en fait, servir de modèles de logique épistémique.
Cette thèse poursuit un programme de recherche visant à unifier ces deux approches en
étendant et en enrichissant l’équivalence.

Le premier objectif est de généraliser la sémantique actuelle de la logique épistémique
basée sur les complexes simpliciaux au cas des ensembles simpliciaux. La principale
différence entre les complexes simpliciaux et les ensembles simpliciaux réside dans le fait
que dans ces derniers, on peut avoir des simplexes qui partagent des sommets, mais ne
partagent pas des faces de dimension supérieure. Nous montrons qu’avec ces modèles, on
peut exprimer des connaissances de groupe non standard, c’est-à-dire des situations où
la connaissance d’un groupe vu dans son ensemble est strictement supérieure à l’union
des connaissances de ses membres. Le principal exemple vient de la cryptographie : une
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iv RÉSUMÉ (EN FRANÇAIS)

clé secrète peut être distribuée en plusieurs parties entre un groupe d’agents, de sorte
que personne ne connaisse par lui-même le message secret. Cependant, lorsque le groupe
combine ses connaissances, il peut déchiffrer le message.

On considère ensuite une variante multi-sortes de la logique épistémique, dans laque-
lle les propriétés de l’environnement et les propriétés locales des agents sont exprimées sé-
parément. Cette logique est interprétée dans les hypergraphes chromatiques, qui sont une
généralisation supplémentaire des complexes simpliciaux, nous permettant de souligner
le rôle des points de vue locaux des agents dans les systèmes distribués. Un avantage de
cette approche est qu’elle permet d’exprimer succinctement des modèles qui ne sont pas
nécessairement totalement tolérants aux pannes, mais juste résilients.

On étudie la dynamique de la connaissance dans les systèmes distribués en intro-
duisant une variante dynamique des hypergraphes chromatiques. Dans ces modèles, les
points de vue locaux des agents sont dotés d’une structure temporelle, ce qui permet de
modéliser l’évolution des connaissances dans le temps. Cela présente une version duale
des systèmes interprétés, étendant l’équivalence originale au cas dynamique. De plus,
on discute de la relation entre la connaissance et la concurrence dans ce contexte.

Enfin, on présente des résultats sur l’utilisation de catégories supérieures dans l’étude
des logiques modales multi-sortes. On montre que certaines logiques peuvent être représen-
tées comme des catégories enrichies sur des ordres partiels, et qu’il y a une classe naturelle
de modèles algébriques, par rapport à laquelle la logique est complète.
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PRELIMINARIES

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vector-based description of tasks . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Simplicial models of distributed computing . . . . . . . . . . . . . . . . . 4
1.4 Distributed computing and epistemic logic . . . . . . . . . . . . . . . . . . 10
1.5 Simplicial models of epistemic logic . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Introduction

Distributed computer systems are omnipresent. In various kinds: from global networks
of servers that ensure constant access to the internet to multicore processors found in
smartphones that almost everyone carries in their pocket — distributed systems are the
backbone of the modern world. But do we understand them well? Is there a theoretical
justification why they work and, sometimes, do not?

Interestingly, until mid-80’s, we did not even know whether certain, fairly basic prob-
lems in distributed computing could be solved at all [FLP85]. Fortunately, nowadays,
we have a plethora of theoretical tools that can be used to study distributed computing.
In particular, about 40 years ago, two groundbreaking approaches emerged.

On the one hand, in [HM90], Halpern and Moses provided a formal framework for
reasoning about knowledge in distributed systems. Behavior of agents that participate
in a system can often be informally specified using epistemic notions: “a process sends a
message when it knows that the previous message has been received”, “a server saves the
data when it does not know whether other servers have it”, and so on. The paper, now
considered a classic in computer science, uses epistemic logic to formalize such statements
and to reason about distributed systems. In particular, it explores how information
and common knowledge are needed for achieving coordinated action of agents and that
certain problems are, in fact, unsolvable.

On the other hand, Herlihy and Shavit developed a topological approach to the anal-
ysis of distributed tasks in [HS99]. The paper shows that the set of possible states of
processes, as well as the description of tasks and protocols, can be represented using
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2 CHAPTER 1. PRELIMINARIES

combinatorial topological structures called simplicial complexes. It turns out that the
solvability of a task can be characterized by the topological properties of the correspond-
ing simplicial complex.

Naturally, one might wonder about the relationship between these two approaches,
as both can yield similar results. A research direction aimed at unification of the
knowledge-based reasoning with topological models was initiated in [GLR18]. In this
paper, Goubault, Ledent, and Rajsbaum have shown that simplicial complexes can serve
as models for epistemic logic, and that unsolvability of certain tasks, which is usually
shown by topological means, can be expressed in epistemic logic. This thesis expands
these connections further.

Plan of the thesis and contributions. In the present chapter we recall the basics
of the topological and epistemic approaches to distributed computing, and discuss the
relationship between them. Nothing is novel here, except several remarks that generalize
some definitions.

In Chapter 2, we consider semi-simplicial sets, a type of structures that generalize
simplicial complexes, as models for epistemic logic. These models naturally allow in-
terpreting non-standard, or implicit, group knowledge, that is, situations when a group
of agents knows together more than the sum of their individual knowledge. We show
that these models are equivalent to a generalized kind of Kripke frames, which subsumes
equivalence results from [GLR21; GLR22; vDK] (Theorem 2.3.11). This allows us to
show completeness of the logic with respect to these simplicial models. We also iden-
tify pertinent subclasses of simplicial models, and provide a complete axiomatization
(Corollary 2.3.13). This chapter is an extended version of [Gou+23].

Next, in Chapter 3, we introduce a many-sorted epistemic logic that allows us to
reason about properties of agents and the environment separately. We show that this
logic is a conservative extension of the epistemic logic of [GLR21] (Theorem 3.3.7). The
semantics of this logic is given using hypergraphs, geometrical structures that allow
finer control over the interaction of agents and the environment. We show that the logic
is complete with respect to these models (Theorem 3.2.11). This chapter extends the
preprint [goubaultManysortedEpistemicLogic2023].

In Chapter 4, we discuss dynamic aspects of models of knowledge. In particular, we
show how several types of temporal-epistemic structures that appear in the literature are
related to each other (Theorem 4.1.20). We also extend the definition of models of true
concurrency, called higher-dimensional automata, in order to accommodate knowledge
and solve issues raised by Ledent in his thesis (Definition 4.3.6). In a similar vein, we
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extend the definition of hypergraphs from Chapter 3 with dynamics, and show how they
can be induced from temporal epistemic structures (Proposition 4.2.6).

The Appendix differs from the context of the main body of the thesis. There, we
exemplify how categories can be used for completeness theorems in modal logic. We show
algebraic completeness theorems for multi-sorted modal logic and its generalization for
enriched categories (Theorem A.1.13, Theorem A.2.15).

1.2 Vector-based description of tasks

Before diving into geometric and epistemic models of distributed systems, let us first
discuss the operational model we have in mind. For this exposition, we mainly follow
[HS99].

A distributed system consists of a set of processes that communicate with each other
through various means such as message passing or shared memory. The processes, often
referred to as agents, are trying to achieve some goal or to solve a certain problem. The
problem is usually formalized as a decision task. In such a task, each process has an
input value, and the goal is to decide on an output value. More abstractly, a process
starts in some initial state, and it should finish in some admissible final state, according
to the task specification. States of agents are called local, and the state of the system as
a whole is called global.

Fault-tolerant distributed computing is concerned with situations where some pro-
cesses may crash during the execution. The reason for crashes may be various, from
hardware failures to malicious attacks. We will use an abstract representation of a
crash, where a process simply stops participating in the computation.

Let SI and SO be the set of possible initial and final states of a process, respectively.

Definition 1.2.1. An (n + 1)-process input vector V I is an (n + 1)-component vector
whose i-th component is an element of SI or ⊥. We additionally assume that there is at
least one non-⊥ component.

Input vectors formalize possible global initial states of the system: each component
corresponds to the initial state of a process, and ⊥ means that the corresponding process
crashes at the beginning of the computation. The definition is similar for output vectors.
In general, a state of the system, not necessarily initial or final, is considered to be a
combination of local states of processes and, possibly, the state of the environment.

A process i is called participating in V if Vi ̸= ⊥. A pair of vectors V, V ′ is called
matching if for all 0 ≤ i ≤ n, Vi = ⊥ if and only if V ′

i = ⊥, where Vi denotes the i-th
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component of V . That is, the vectors match if they have the same set of participating
processes. A vector V is called a prefix of a vector V ′ if V is obtained from V ′ by
replacing some non-⊥ components with ⊥, namely, for all 0 ≤ i ≤ n, either Vi = V ′

i or
Vi = ⊥. A set of vectors is called prefix-closed if it contains all prefixes of its elements
(except the vector consisting of ⊥’s only). Notice that a set of vectors can be seen as a
partially ordered set with respect to the prefix relation.

In fault-tolerant distributed computing, we are interested in the case where the set
of possible vectors is prefix-closed. It corresponds to the fact that any process can crash
at any time, and the system should still be able to decide.

We can now formally define a task.

Definition 1.2.2. A task specification for a pair of prefix-closed sets of vectors I and O
is a relation ∆ ⊆ I × O that carries every input vector to a non-empty set of matching
output vectors. A decision task is a tuple (I,O,∆) consisting of a pair of prefix-closed
sets of vectors I and O and a task specification ∆ for I and O.

A well-known example of a decision task is the binary consensus problem. We define
it by giving only the maximal vectors: I and O are then the closure by taking prefixes.

Example 1.2.3. The binary consensus problem for n + 1 agents is a decision task
(I,O,∆), where the maximal vectors in I are of form [x0, . . . , xn], where xi ∈ {0, 1},
and there are just two maximal vectors in O: [0, . . . , 0] and [1, . . . , 1]. If the values
of participating processes in an input vector are the same, then the task specification
∆ assigns to it the corresponding matching output vector, otherwise an input vector
is assigned to both matching output vectors. The description formalizes the following
condition: if all processes start with the same value, then they must agree on this value.
In the case when processes start with different values, they may decide on either one of
them.

1.3 Simplicial models of distributed computing

As we saw in the previous section, the set of possible global states represented by vectors
is naturally a partially ordered set. This paves the way to the use of algebraic topology in
the study of distributed computing: the poset formed by the global states of a distributed
system can be seen as a simplicial complex. In this section, we discuss the basics of these
structures.
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Simplicial complexes

Definition 1.3.1. A simplicial complex K is a pair (V, S) that consists of a set V of
vertices and a set S ⊆ P•(V ) of non-empty finite subsets of V , called simplices, such
that

• S is closed under inclusion, that is, if X ∈ S and Y ⊆ X with Y ̸= ∅, then Y ∈ S;

• for every v ∈ V , the set {v} is in S.

A simplex is called a facet if it is not contained in any other simplex, that is, it
is maximal in S with respect to the inclusion order. The dimension (or degree) of a
simplex X is defined as |X| − 1: for example, a simplex consisting of a single vertex
is of dimension 0, a simplex consisting of two vertices is of dimension 1, and so on. A
simplicial complex is called pure if all its maximal simplices have the same dimension.

A simplicial complexK = (V, S) is a subcomplex of a simplicial complexK ′ = (V ′, S′)
if V ⊆ V ′ and S ⊆ S′, and this is denoted K ⊆ K ′.

Example 1.3.2. An example of a simplicial complex is depicted in Figure 1.1. In this
complex, the set of vertices V has six elements, they are depicted as white vertices. The
set of simplices S has 21 elements: 1 simplex of size 4 which is represented as the interior
of the tetrahedron, 5 simplices of size 3 that are depicted as green triangles, 9 simplices
of size 2 that are depicted as edges between vertices, and the six simplices of size 1 which
are the vertices.

Figure 1.1: A simplicial complex.

Definition 1.3.3. A simplicial map f : K → K ′ between two simplicial complexes
K = (V, S) and K ′ = (V ′, S′) is a map f : V → V ′ such that for every simplex X ∈ S,
f(X) = {f(v) | v ∈ X} ∈ S′, that is, the image of a simplex is a simplex.

A simplicial map is just a function on vertices, but it should preserve the structure
of simplices. From the perspective of distributed computing it can be seen as a function
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that associates another local state with each local state of an agent, but in a way that
respects the structure of global states.

In order to define an analogue of a task specification in the geometric setting, we
introduce carrier maps.

Definition 1.3.4. Given two simplicial complexes K = (V, S) and K ′ = (V ′, S′), a
carrier map fromK toK ′, denoted Φ : K → 2K′ , is a function that assigns a subcomplex
Φ(X) ⊆ K ′ to each simplex X ∈ K, such that if X ⊆ Y then Φ(X) ⊆ Φ(Y ).

Intuitively, a carrier map is a relation between simplicial complexes: a simplex X
is related to a simplex Y if Y ∈ Φ(X). The condition means that the carrier map is
monotone with respect to the inclusion order on simplices, that is, if X is a subsimplex of
Y , then Φ(X) is a subcomplex of Φ(Y ). There are various constructions and properties
of carrier maps. Given two carrier maps Φ,Ψ : K → 2K′ , Φ is said to be carried
by Ψ if for every simplex X ∈ K, Φ(X) ⊆ Ψ(X). A carrier map Φ : K → 2K′

is called rigid if for every simplex X ∈ K, Φ(X) is pure of the same dimension as
X. If we consider a subcomplex L ⊆ K, then we write Φ(L) = ⋃

X∈LΦ(X). Using
this notation, we can define the composition of carrier maps: given two carrier maps
Φ : K → 2K′ and Ψ : K ′ → 2K′′ , the composition Ψ ◦ Φ : K → 2K′′ is defined as
(Ψ ◦ Φ)(X) = Ψ(Φ(X)) = ⋃

Y ∈Φ(X)Ψ(Y ). A simplicial map defines a carrier map in a
natural way: given a simplicial map f : K → K ′, we define a carrier map Φf : K → 2K′

as the subcomplex Φf (X) induced by the simplex f(X). As such, a carrier map can be
post-composed and pre-composed with a simplicial map.

In fact, the notion of a carrier map is exactly the right notion of a relation between
simplicial complexes from the point of view of category theory. In the standard pre-
sentation, the definition is asymmetric: we associate a subcomplex with each simplex.
We can turn it into a symmetric version, with a carrier map defined as a set of pairs of
simplices that satisfy certain conditions.

The key here is to see that the set of simplices is itself a partially ordered set (which
in distributed computing is exactly the set of possible global configurations). Then, one
can consider a generalization of a relation between sets to a relation between posets,
called a monotone relation.

Recall that for a poset P , its opposite (or dual) P op is the poset with the same
underlying set, with x ≤ y in P op if and only if y ≤ x in P .

Definition 1.3.5 ([Bíl+11]). Given two posets X and Y , a monotone relation is an
order-preserving map R : Y op ×X → 2, where 2 is the poset {⊥ < ⊤}.
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For a pair of elements (x, y) ∈ X × Y op we write xRy if R(y, x) = ⊤, and we say
that the pair is related by R. Then, the condition of monotonicity can be reformulated
as follows: if x ≤ x′, xRy and y′ ≤ y, then x′Ry′.

Proposition 1.3.6. Let Φ : K → 2K′ be a carrier map between two simplicial com-
plexes. It defines a monotone relation Rel(Φ) : (S′)op × S → 2. Conversely, every
monotone relation between sets of simplices R : (S′)op × S → 2 defines a carrier map
ΦR : K → 2K′ . Moreover, the two constructions are inverse to each other.

Proof. Given a carrier map Φ : K → 2K′ , we define a monotone relation Rel(Φ) :
(S′)op × S → 2 as follows: for every pair of simplices X ∈ S and Y ∈ S′, XRY if and
only if Y ∈ Φ(X). The relation is indeed monotone: suppose that X ⊆ X ′, XRY and
Y ′ ⊆ Y . By monotonicity of Φ, X ⊆ X ′ implies Φ(X) ⊆ Φ(X ′), so every Y ∈ Φ(X) is
also in Φ(X ′). Thus, X ′RY . As Φ(X ′) is a subcomplex, Y ∈ Φ(X ′) implies Y ′ ∈ Φ(X ′).
So, X ′RY ′.

Conversely, given a monotone relation R : S × (S′)op → 2, we define a carrier map
ΦR : K → 2K′ as follows: for every simplex X ∈ S, ΦR(X) = {Y ∈ S′ | XRY }. It is
straightforward to check that ΦR is a carrier map.

The two constructions are inverse to each other by definition.

The proposition shows that carrier maps and monotone relations are essentially the
same thing when restricted to posets that are simplicial complexes. For carrier maps,
the definition is more geometric, and is given in terms of simplicial complexes and their
properties, while in for posets it is given in terms of order and monotonicity.

The composition of two monotone relations is defined as the usual composition of
relations: R ◦ S = {(x, z) | ∃y, (x, y) ∈ S ∧ (y, z) ∈ R}. It is easy to see that this
composition coincides with the composition of carrier maps.

Chromatic simplicial complexes

In distributed systems, processes often have unique identifiers that are used to distinguish
between them. On the side of simplicial complexes, this can be modeled by assigning a
color to each vertex. We fix now a set of colors A.

Definition 1.3.7. A chromatic simplicial complex K = (V, S, χ) consists of a simplicial
complex (V, S) together with a coloring map χ : V → A, such that no two vertices of
the same simplex have the same color, that is, for every X ∈ S, for any v, v′ ∈ X, if
χ(v) = χ(v′), then v = v′.
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Figure 1.2: A chromatic simplicial complex.

Alternatively, a chromatic simplicial complex may be seen as a simplicial complex
K together with a simplicial map χ : K → A that preserves the dimension of simplices,
where A is a simplicial complex with the set of vertices A and the set of simplices
consisting of all finite subsets of A.

Given a simplex X in a chromatic simplicial complex K, the set of colors of its
vertices is defined to be χ(X) = {χ(v) | v ∈ X}.

Definition 1.3.8. A chromatic simplicial map between two chromatic simplicial com-
plexes K = (V, S, χ) and K ′ = (V ′, S′, χ′) is a simplicial map f : K → K ′ such that for
every vertex v ∈ V , χ(v) = χ′(f(v)).

It is straightforward to see that every chromatic simplicial map is rigid.
The definition of a carrier map also extends to the chromatic case.

Definition 1.3.9 (Chromatic carrier map). A chromatic carrier map between two chro-
matic simplicial complexes K = (V, S) and K ′ = (V ′, S′), written Φ : K → 2K′ , assigns
a subcomplex of K ′ to every simplex X ∈ K, such that

• it is monotone: if X ⊆ Y then Φ(X) ⊆ Φ(Y );

• it is rigid: for every simplex X of dimension d, Φ(X) is pure of dimension d;

• it is color-preserving: for every simplex X, χ(X) = χ(Φ(X)).

Simplicial complexes in distributed computing

We now define the simplicial analogues of the notions of a task and a protocol.

Definition 1.3.10. A simplicial task specification is a triple (I,O,∆), where I and O
are pure chromatic simplicial complexes, and ∆ : I → 2O is a chromatic carrier map.

In the original formulation of the task specification in [HS99] (Definition 1.2.2), the
input and output complexes are always based on some sets of vectors. As such, vertices
of the complexes can always be labeled by the local values of processes.
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The simplicial reformulation of the binary consensus problem is the following.

Example 1.3.11. For clarity, let us consider the simplicial formulation of binary con-
sensus for two processes. The input is a chromatic simplicial complex I consisting of a
pair of vertices for both colors, corresponding to the two possible starting values of each
process, together with all possible four simplices, call them (0, 0), (0, 1), (1, 0) and (1, 1).
The output complex O consists of two 1-dimensional simplices, one for each possible
decision value 0 and 1, call them 0 and 1. The carrier map ∆ assigns to input simplex
(0, 0) a single simplex 0, similarly to (1, 1) only 1, and both 0 and 1 to (0, 1) and (1, 0).

So far, we have only discussed the way the problems are described. But how can
the behavior of a system be modeled using simplicial complexes? In the operational ap-
proach, processes are represented as automata interacting with a shared object. Because
of that, the properties of distributed systems become very implementation-dependent.
Using simplicial complexes one can model the behavior of a system in a purely geomet-
ric way, without referring to any particular implementation. The idea behind the next
definition is that if a simplex in a complex represents a global state of the system, then
its image under a carrier map to another simplicial complex can describe a (possibly
non-deterministic) evolution of the system to the end of an execution.

Definition 1.3.12. A simplicial protocol is a triple (I, P,Ψ), where I and P are pure
chromatic simplicial complexes, and Ψ : I → 2P is a chromatic carrier map.

The simplicial complex P is called the protocol complex and contains the information
about the possible global states of the system after the execution of the protocol.

Example 1.3.13. A simple example of a protocol is the following. A test-and-set object
is a shared object that can be in two states: free and taken. A process can test the
object, which will return the current state of the object. If the object is free, after being
tested for the first time, it becomes taken. Thus, if there are several processes trying
to access the object concurrently, only one of them can succeed: the winner will receive
the value free, and all other processes will receive the value taken. For three processes,
the initial complex is a simplex with three vertices, and the protocol complex consists of
three simplices of dimension 2, glued pairwise by vertices. This is depicted on Figure 1.2.
The carrier map Ψ sends the initial simplex to all simplices in the protocol complex.

In the simplicial setting, there is no formal difference between tasks and protocols:
both just relate two simplicial complexes. The difference lies in the asymmetry that
arises from the formalization of solvability.



10 CHAPTER 1. PRELIMINARIES

Definition 1.3.14. A protocol (I, P,Ψ) solves a task (I,O,∆) it there exists a chromatic
simplicial map δ : P → O, such that for all X ∈ I, δ(Ψ(X)) ⊆ ∆(X).

The idea is that a process must decide on its final value deterministically based on
its local state after the execution of the protocol. This is formalized by the existence of
a chromatic simplicial map δ. A simplicial map sends a vertex in P that corresponds
to this local view to a vertex in O that corresponds to the decision value. Since it is
a simplicial map, every global configuration is also sent to a global configuration. The
condition δ(Ψ(X)) ⊆ ∆(X)means that the decision value is in the set of possible decision
values for the given input value, according to the task specification.

We can also reformulate the definition in more abstract categorical setting. Recall
that a 2-category consists of a collection of objects, a set of 1-morphisms between objects,
and a set of 2-morphisms between 1-morphisms. An example of a 2-category is the
category of relations, whose objects are sets, 1-morphisms are relations, and 2-morphisms
are inclusions of relations. It is also known [KV16] that monotone relations on posets
form a 2-category, where 1-morphisms are monotone relations and 2-morphisms are
inclusions of relations. The 1-morphisms in this context are usually denoted as f : a↛ b.

By Proposition 1.3.6, both protocols and tasks can be seen as monotone relations.
Thus, we can reformulate the solvability definition as follows:

Definition 1.3.15. A protocol Ψ : I ↛ P solves a task ∆ : I ↛ O if there exists a
functional monotone relation δ : P → O such that δ ◦Ψ ⊆ ∆.

Remark 1.3.16. In fault-tolerant distributed computing, the set of vectors is prefix-
closed, and this is exactly why we can build the corresponding simplicial complex. When
this is not the case, the geometric representation changes: this is the subject of Chapter 3.

1.4 Distributed computing and epistemic logic

Distributed protocols are often informally described in terms of knowledge of partici-
pants: “Once Alice knows that Bob sent the message, she should call Eve”, “after I
know availabilities of others for the meeting, I can suggest a date” and so on. Such
reasoning was indeed informal until Halpern and Moses provided a thorough account on
applicability of a formal logical approach to analysis of protocols. The formal approach
in question is called epistemic logic. It is a kind of modal logic: its syntax is a (classical)
propositional logic with additional operators on formulas that models some idealized
notion of knowledge.
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In this section, we provide a brief introduction on the syntactic and semantics aspects
of epistemic logic. The main reference for this section is [Fag+95].

Syntax of epistemic logic

We fix a set of agents A and the set of atomic propositions Ap that describe some basic
facts. Then, the syntax of multi-agent epistemic logic is given by the following grammar.

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Ka ϕ p ∈ Ap, a ∈ A

The additional connectives are encoded as usual in propositional logic. The operator
Ka is the knowledge modality, and Kaϕ reads as “agent a knows that ϕ”. The knowledge
modality has a dual defined as K̂aϕ := ¬Ka¬ϕ, which reads as “agent a considers
possible that ϕ”. The system includes rules standard for normal modal logic: modus
ponens rule and the necessitation rule.

What are the axioms of knowledge? It is still a subject of discussion in the community
as to what are the right axioms. The standard approach, however, is well-established:
knowledge is modeled using axiom system S5. Let us go through the list of axioms.

The first axiom is axiom (K). This is the distributivity axiom: Ka(ϕ → ψ) →
(Kaϕ → Kaψ). Together with modus ponens rule the axiom says that knowledge is
closed under implication, that is if I know that ϕ implies ψ and I know ϕ, then I know
ψ. In a way, it partially encodes the deductive capabilities modulo knowledge.

The next axiom is axiom (T). Formally, it is stated like this: Kaϕ → ϕ. In the
context of epistemic logic this axiom is known as the axiom of veracity, or axiom of
truth: if I know something, then it is true. Taking the contrapositive, it means that
something which is false cannot be known. This axiom is precisely what distinguishes
knowledge from belief.

The penultimate axiom uses the dual of knowledge operator. The axiom called axiom
(B) is the following: ϕ→ KaK̂aϕ. It means that if something is true, then I know that
it is possible.

The last axiom in our list is axiom (4): Kaϕ→ KaKaϕ. It is known as the positive
introspection axiom. If the previous axioms seemed almost self-evident, this axiom can
be considered a deliberate choice. It says that if I know something, then I know that I
know it. Even more interestingly, one can show that this set of axiom implies the axiom
of negative introspection, called (5): ¬Kaϕ→ Ka¬Kaϕ.
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Relational semantics of epistemic logic

The semantics of epistemic logic is usually given by relational Kripke models. In such
models one has a set of possible worlds that represent epistemic alternatives, and knowl-
edge is interpreted via an equivalence relation on these alternatives.

Definition 1.4.1. An epistemic frame F = (W,∼) consists of a set of worlds W and
an equivalence relation ∼ on W . A multi-agent epistemic frame F = (W, {∼a}a∈A) for
a set of agents A consists of a set of worlds W and a family of equivalence relations
{∼a}a∈A on W .

Equivalence relations are usually called indistinguishability relations: if for an agent
a, w ∼a w′, from the point of view of a they are the same, that is they cannot be
distinguished.

Definition 1.4.2. A multi-agent epistemic model M = (W, {∼a}a∈A, V ) consists of an
epistemic frame (W,∼) and a valuation function V :W → 2Ap.

There are several possible definitions of morphisms between epistemic models. One of
them is called simulation: for a pair of multi-agent models M = (W, {∼a}a∈A, V ),M ′ =
(W ′, {∼′

a}a∈A, V ′), a simulation is a function f : W → W ′ such that for all w,w′ ∈ W ,
if w ∼a w

′ then f(w) ∼′
a f(w′) and if p ∈ V (w), then p ∈ V ′(f(w)). A slightly stricter

version of a morphism is considered in [GLR18]. There, for the needs of applications,
the preservation of relations between agents is kept, but the condition on valuations is
replaced with a stronger one: p ∈ V (w) if and only if p ∈ V ′(f(w)). These functions
compose, so models form a category.

Let now M = (W,∼, V ) be an epistemic model. We define the satisfaction relation
|=M as follows:

• M,w |= p if and only if p ∈ V (w);

• M,w |= ¬ϕ if and only if M,w ̸|= ϕ;

• M,w |= ϕ ∧ ψ if and only if M,w |= ϕ and M,w |= ψ;

• M,w |= Kaϕ if and only if for all w′ ∈W , if w ∼a w
′ then M,w′ |= ϕ.

The idea is that an agent knows ϕ in a world w if and only if ϕ is true for all other
worlds indistinguishable for the agent. For example, in a distributed system, a process
knows a fact if and only if this fact holds in all global states compatible with its local
state.
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Remark 1.4.3. In possible world semantics, an agent doesn’t know something only if
he is presented with epistemic alternatives. In a way, we can see it as a quantitative
ignorance: an agent is aware of all these alternatives as he considers each one of them
possible, but he just doesn’t know which one is “the real one”. There are certain incon-
veniences with this approach. Say, we want to model a situation where Bob does not
know a password. In the possible worlds approach, we have to consider as worlds all
possible passwords , and that Bob cannot distinguish between them. It becomes even
more complicated if we consider the multi-agent case: if an agent a does not know the
state of another agent b, we have to consider all possible states of the other agent from
the point of view of a. But some of these states of b may be in fact not permitted by
the design of the system, that is b may not be actually be in these states from its own
point of view. So, it means that agent a is always supposed to know the intrinsic rules
of the system, for example all the states other agents can be in.

On the other hand, these effects may be mitigated by a coarser modelling of systems.
In particular, if for analysis of the system we may care only about the fact that an agent
does not know a password. In this case, it is enough to have two worlds where the pass-
words are different, thus avoiding the need for a possibly infinite set of indistinguishable
worlds.

Knowledge in distributed computing

So far, we have only talked about situations where knowledge is static. In distributed
computing, however, knowledge is always changing: agents communicate with each
other, so new facts can be learned (or even forgotten) at any moment. One of the
ways to capture the dynamics of knowledge is via interpreted systems [HM90; Fag+95].

To start, we have a set W of global states of the system. Usually, one considers it to
be a subset of a hypercube: all possible combinations of local states of processes, together
with the states of the environment. Formally, if we denote local states of agents as La of
a ∈ A, and Le the set of possible states of the environment, then W ⊆ Le×

∏
a∈A La. A

run over W is a function r : N→W , that is, an infinite sequence of global states. A run
models a possible execution of a system as a sequential change of global states. For a
run r, and a time m, a pair (r,m) is called a point of the run. The global state in point
(r,m) is thus r(m), and local states in a point are defined by projections πa : W → La.
A system R over W consists of a set R of runs over W . The set of all points R × N is
denoted Pts(R).

Definition 1.4.4. An interpreted system I = (R, ℓ) consists of a system R of runs over
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a set W of global states, together with a valuation function ℓ : Pts(R)→ 2Ap, where Ap
is a set of atomic propositions.

The set of runs in an interpreted system describes the behavior of the system. Points
are equipped with a valuation function which assigns some atomic properties to them.
These properties may describe properties of agents or of the environment.

Local states of an agent naturally induce an equivalence relation on the set of global
states. Two global states w,w′ are indistinguishable by agent a, denoted w ∼a w

′ if
and only if the local states of the agent a coincide in w and w′, that is, the projections
πa(w) and πa(w′) are equal. This allows us to see that every interpreted system has
an underlying (static) multi-agent epistemic model. As such, interpreted systems can
interpret epistemic logic. For an interpreted system I and a point (r,m), the satisfaction
relation is defined as follows:

• I, r,m |= p if and only if p ∈ ℓ((r,m));

• I, r,m |= Kaϕ if and only if for all (r′,m′) such that πa(r(m)) = πa(r′(m′))
I, r′,m′ |= ϕ,

and the semantics of boolean connectives is defined as usual.
Surely, the point of supplying an epistemic frame (which underlies an interpreted

system) with a temporal structure is to be able to give semantics of a temporal-epistemic
logic, that is, a logic that has both epistemic and some temporal modalities. In the case
of interpreted systems, the language is essentially a union of the epistemic logic with
LTL [Pnu77]. Its syntax is defined in the following way:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Ka ϕ | ⃝ϕ | □ϕ | ϕUψ p ∈ Ap, a ∈ A

The⃝ modality means “on the next step of execution”, □ means “always”, and ϕUψ
means “ϕ holds until ψ holds”.

The semantics for temporal modalities extends the epistemic part as follows:

• I, r,m |=⃝ϕ if and only if I, r,m+ 1 |= ϕ;

• I, r,m |= □ϕ if and only if for all m′ ≥ m, I, r,m′ |= ϕ;

• I, r,m |= ϕUψ if and only if there exists m′ ≥ m such that I, r,m′ |= ψ and for
all m′′ such that m ≤ m′′ < m′, I, r,m′′ |= ϕ.
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Notice that the temporal aspect of this logic is linear and not branching. However,
when epistemic modalities are interpreted, we can “jump” from one run to another
via agents’ indistinguishability relations. Moreover, as we can now mix epistemic and
temporal modalities, we can describe possible interactions of knowledge with time. For
example, one can express “perfect recall”, called otherwise “no forgetting”, a property
that informally means that an agent does not forget any information, as follows: Ka⃝
ϕ→⃝Kaϕ.

For an extended review of the effects of different axiomatizations of knowledge-time
interaction we refer to [BvdH14].

A small example of the proof-theoretic reformulation

Epistemic analysis of distributed protocols is often done semantically: one usually con-
siders a particular model of a distributed system, and then shows that certain logical
properties hold in this model. Some theorems about knowledge are shown to hold in an
arbitrary model, but still using the semantic approach. An example of such a theorem
is the knowledge of preconditions principle [Mos16]. Let us recall it, in a reduced form,
here.

First, suppose there is a set of actions Act that can be performed by agents. The
set of atomic propositions then contains propositions doesa(α), where a ∈ A is an agent
and α ∈ Act is an action. When evaluated in an interpreted system, I, r,m |= doesa(α)
means that in an execution r and time m, agent a does α. A formula ψ is called a
necessary condition for doesa(α) in I if for all points (r,m), if I, r, t |= doesa(α) holds,
then I, r,m |= ψ holds. Then, an action α is called conscious for agent a in I if agent’s
local state completely determines whether the action is performed: if (r,m) ∼a (r′,m′),
then I, r,m |= doesa(α) if and only if I, r′,m′ |= doesa(α). Put differently, if action
is performed, then the agent knows it is performed, that is, I, r,m |= doesa(α) →
Kadoesa(α).

The principle then consists in the following.

Theorem 1.4.5 ([Mos16, Theorem 3.1]). Let α be a conscious action for a in I. If ψ
is a necessary condition for doesa(α) in I, then Kaψ is also a necessary condition for
doesa(α) in I.

Instead of the semantics-based approach, one can derive general properties using
purely proof-theoretic methods. Which one to choose always depends on the particular
situation, but in some cases it is interesting to see how the same statements can be
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shown, or interpreted, in different ways. For example, the knowledge of preconditions
principle can be reformulated as a meta-theorem of modal logic.

Proposition 1.4.6. If ⊢ ϕ→ ψ and ⊢ ϕ→ Kϕ, then ⊢ ϕ→ Kψ.

Proof. First, by necessitation, axiom (K) and modus ponens, from ⊢ ϕ → ψ, we have
⊢ Kϕ→ Kψ. From this and ⊢ ϕ→ Kϕ by cut rule, we have ⊢ ϕ→ Kψ.

In order to get back the knowledge of precondition principle, we substitute ϕ with
doesi(α). Then the first premise means that ψ is a necessary condition for α, and the
second premise means that the action is conscious. Using completeness of the logic
with respect to the Kripke models, the proposition implies the following. If in a model
doesi(α) → ψ is valid (ψ is a necessary condition for α), and doesi(α) → Kdoesi(α) is
valid (α is conscious), then doesi(α)→ Kψ is valid in the model too (knowledge of ψ is
a necessary condition for α).

1.5 Simplicial models of epistemic logic

A line of research that aims to unify simplicial and epistemic approaches was initiated
in [GLR18] by Goubault, Ledent, and Rajsbaum. The main observation is the follow-
ing: the categories of multi-agent epistemic frames and chromatic simplicial complexes
are isomorphic. Using this, one can transfer the notion of a valuation from frames to
simplicial complexes, thus obtaining a simplicial model of epistemic logic.

In this section, we briefly describe the content of [GLR18] and [GLR22]. The theo-
rems and definitions considered in this section are taken from there, and thus constitute
the core of the approach, which is generalized in [Gou+23], the results of which are
presented in Chapter 2.

Initially, it was shown that the category of proper multi-agent frames is isomorphic
to the category of pure simplicial complexes. Recall that a frame (W, {∼a}a∈A) is called
proper, if the intersection ∩a∈A ∼a is the identity on W , in other words, any pair of
worlds is distinguishable by somebody.

Theorem 1.5.1 ([GLR18]). The category of proper multi-agent epistemic frames for the
set of agents A is isomorphic to the category of pure of chromatic simplicial complexes
with the set of colors A.

For the details of the proof, we refer to the original paper. The most important idea
is the following. In a partial epistemic frame, we have a partial equivalence relation
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associated with each agent. In a chromatic simplicial complex, the relation “to share
a vertex of color a” is a partial equivalence relation too. The isomorphism works by
associating to every simplicial complex K a frame κ(K), where the set of worlds is the
set of facets of K, and w ∼a w

′ if and only if w and w′ share a vertex of color a. The
inverse of this construction is given by associating to every epistemic frame the simplicial
complex σ(F ) with the set of facets being the set of worlds of F , and two facets share a
vertex of color a if and only if the corresponding worlds are related by ∼a.

By transferring the definition of a valuation from frames to simplicial complexes, we
obtain the following.

Definition 1.5.2. A simplicial model M = (K, ℓ) consists of a pure chromatic simplicial
complex K, and a labeling ℓ that associates a set of atomic propositions with each facet
of K . A morphism of simplicial models f : M → M ′ is a chromatic simplicial map
f : K → K ′ such that for every facet X of K, if f(X) ⊆ Y , then p ∈ ℓ(X) if and only if
p ∈ ℓ(Y ).

The semantics of epistemic logic in simplicial models is defined in as follows. Fix a
simplicial model M and its facet X. Then:

• M,X |= p if and only if p ∈ ℓ(X);

• M,X |= ¬ϕ if and only if M,X ̸|= ϕ;

• M,X |= ϕ ∧ ψ if and only if M,X |= ϕ and M,X |= ψ;

• M,X |= Kaϕ if and only if for all facets Y ∈ K such that a ∈ χ(X∩Y ),M,Y |= ϕ,

whereX∩Y is an intersection of two facets, and a ∈ χ(X∩Y )means that the intersection
has a vertex of color a.

Then, we have the following proposition.

Proposition 1.5.3. Given a simplicial model M with its facet X, M,X |= ϕ if and
only if κ(M), X |= ϕ. Conversely, given a proper epistemic model N together with a
world w, N,w |= ϕ if and only if σ(N), w |= ϕ.

The main application of the equivalence between the categories is the logical ob-
struction method. Recall that solvability of distributed tasks is defined as existence of a
certain map between chromatic simplicial sets. In some cases, one can slightly change
the setting for solvability by reformulating everything in terms of simplicial maps only.
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One of the conditions for such cases is that every local view after execution of the pro-
tocol has a unique starting point, which can be interpreted as that processes do not
forget the history of their actions. More formally, now instead of the output complex
and the protocol complex together with a pair of carrier maps between them and the
initial complex, we consider an update complex I[A] and task complex I[T ] together with
simplicial maps I[A] → I and I[T ] → I. The solvability is then defined as existence of
a map δ : I[A]→ I[T ].

The logical obstruction method then helps with establishing that a given task in not
solvable by a given protocol by showing that no such map exists. The crucial component
is the knowledge gain lemma.

Theorem 1.5.4 ([GLR18]). Given a morphism of simplicial models f :M →M ′, and ϕ
a positive formula, that is, one that does not contain negations, except, possibly, in front
of atomic propositions, and contains only K modalities. Then, M ′, f(X) |= ϕ implies
M,X |= ϕ.

The method then consists in finding a formula taht holds in the task model but not in
the update model. It has been used to reinterpret the impossibility of binary consensus
in the original papers, and k-set agreement in [YN21] with further refinement using fixed
point logic in [Nis22].

The next logical step is to consider different variants of simplicial models and see
what their logical properties are. For example, what does it mean, logically, to have as
models simplicial complexes that are not pure, that is with facets of different dimensions?
This option was explored in [GLR22] by taking a similar route: a category of epistemic
frames that is isomorphic to the whole category of chromatic simplicial complexes was
found.

A binary relation is called a partial equivalence relation if it is symmetric and tran-
sitive.

Definition 1.5.5. A multi-agent partial epistemic frame F = (W, {∼a}a∈A) consists of
a set of worlds W and a family of partial equivalence relations {∼a}a∈A on W .

The idea behind the definition is that in certain worlds an agent can be just absent,
which is represented exactly by such worlds where w ̸∼a w. On the simplicial side that
corresponds to facets without vertices of color a.

Theorem 1.5.6 ([GLR22]). The category of proper partial epistemic frames is isomor-
phic to the category of chromatic simplicial complexes with the set of colors A.
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Can other variants of combinatorial topological structures that appear in mainstream
mathematics, such as simplicial sets, be seen as models for epistemic logic? And if so,
what kind of epistemic content do they have? With these questions, the main part of
the thesis starts.
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As we have seen in Section 1.5, in a simplicial complex, “to share a vertex” is a
partial equivalence relation on the set of simplices. It is a simple idea that links simplicial
complexes with relational models of epistemic logic. A natural question to ask is how
this idea can be generalized: what conditions on the Kripke frames can be dropped,
while still allowing to have a corresponding simplicial model?

In this chapter we consider two generalizations of the idea. First, we consider a
relation “to share a face”. Second, instead of simplicial complexes we consider semi-
simplicial sets. The first generalization corresponds to going from individual knowledge
of agents to knowledge of groups in epistemic logic called distributed knowledge. The
second generalization allows us to express situations where knowledge of a group is
greater than the sum of individual knowledge of agents.

Combined, the two generalizations provide a unified framework for the use of sim-
plicial structures as epistemic models: Theorem 2.3.11 subsumes equivalence theorems
shown for particular subcases in [GLR21; GLR22; vDK]. We identify these subcases
and provide a complete system of axioms for each one of them (Theorem 2.2.14, Theo-
rem 2.2.15). Surprisingly, models based on semi-simplicial sets happen to be equivalent
to the models based on complexes, from the logical point of view, as we show in Theo-
rem 2.2.24.
Plan of the chapter. We introduce syntax and axioms of the logic in Section 2.1.
In Section 2.2, we define the relational Kripke models for the logic, and show that the
logic is complete with respect to these models. We also consider subclasses of models
and corresponding axioms in the same section. In Section 2.3 we introduce simplicial
models and show that they are equivalent to the relational models. Similarly, we consider
subclasses of simplicial models and their topological properties. Finally, in Section 2.4
we discuss possible directions for further research.

This chapter is based on [Gou+23], joint work with Éric Goubault, Jérémy Ledent and Sergio
Rajsbaum.
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2.1 Multi-agent epistemic logic with absent agents

Syntax

Let A be a finite set of agents, and Ap a countable set of atomic propositions. We consider
the language LD of epistemic logic with distributed knowledge [Fag+95], generated by
the following BNF grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | DU ϕ p ∈ Ap, U ⊆ A

The derived operators ∨,→, true, false are defined as usual in propositional logic. We
also use the following operators:

Ka ϕ := D{a} ϕ D̂Uϕ := ¬DU¬ϕ

The operator DUϕ is read “the group of agents U (collectively) knows ϕ”, while its dual
D̂Uϕ means that the group U considers the formula ϕ possible. The operator Ka ϕ is the
standard knowledge operator of epistemic logic that stands for “agent a knows ϕ”. We
also consider a sublanguage LK that consists of formulas that contain only K operator,
that is, talk about individual knowledge only.

Axioms

For every modality DU , we use the usual axiomatization of normal modal logics: we have
all propositional tautologies, axiom (K), closure by modus ponens, and the necessitation
rule. Together with (K), we have several additional axioms:

• (K) DU (ϕ→ ψ)→ (DUϕ→ DUψ)

• (4) DUϕ→ DUDUϕ

• (B) ϕ→ DUD̂Uϕ

• (Mono) for U ⊆ U ′, DUϕ→ DU ′ϕ

• (Union) for U,U ′, D̂U true ∧ D̂U ′true→ D̂U∪U ′true

• (Empty) D∅ϕ→ ϕ

We abbreviate the resulting system as ECn, which stands for the logic of epistemic
coverings (as we will see). The first three axioms are standard for the logic of knowledge.
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However, in contrast with the more standard multi-agent epistemic logic S5n, we do not
have the truth axiom (T): DUϕ → ϕ. It is also in contrast with the logic of belief,
where the veracity of knowledge is substituted with a weaker axiom (D): Bϕ→ B̂ϕ. By
doing so, we model absence of agents: we think of an agent as being absent, or dead, if
it “knows” false, which does not necessarily allow deriving false, as it would be the case
with (T).

The axiom (Mono) is a standard axiom for distributed knowledge: it says that if a
group knows something, then any larger group also knows it. As we deal with situations
where agents may be present or absent in certain worlds, we need to have a special axiom
(Union) that says that if two groups exist, then their union also exists. The last axiom
is needed to model the fact that an empty group always exists.

Remark 2.1.1. In [vdHM92], Van der Hoek and Meyer have shown that if we consider
the axiom DU∪U ′ϕ→ DUϕ∨DU ′ϕ for distributed knowledge, then DU∪U ′ coincides with
DU or DU ′ . The axiom (Union) can be seen as a weaker version of this axiom, as it can
be rewritten as DU∪U ′false→ DU false ∨DU ′false.

Using the same approach as in [GLR22], we can express within the language LD the
fact that agents can be dead or alive. For any agent a ∈ A and group of agents U ⊆ A,
we define the following formulas:

dead(a) := Kafalse alive(a) := K̂atrue

dead(U) :=
∧
a∈U

dead(a) alive(U) := D̂U true

Note that dead(a) is equivalent to ¬alive(a), but dead(U) is not equivalent to ¬alive(U):
the formula ¬alive(U) is true when at least one agent in U is dead, whereas dead(U) is
true when all agents in U are dead.

Here are a few examples of valid formulas in ECn related to the life and death of
agents.

• ECn ⊢ dead(a)→ Kaϕ: dead agents know everything, including false facts. More
generally, whenever a ∈ U , ECn ⊢ dead(a)→ DUϕ.

• ECn ⊢ alive(a) → Ka alive(a): alive agents know that they are alive. The same
holds for a group U of agents.

• ECn ⊢ alive(U)→ (DUϕ→ ϕ): axiom (T) is verified when restricted to groups of
agents that are alive.
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2.2 Relational Kripke models

As we have seen in Section 1.4, the usual semantics of epistemic logic is given by Kripke
models, with a relation ∼a for each agent a. In the case of distributed knowledge, it is
also standard ([Fag+95]) to give the semantics of the group modality DU by considering
a relation ∼U generated by the relations of each agent a ∈ U . More specifically, ∼U is
defined to be the intersection ⋂

a∈U ∼a. This allows to interpret distributed knowledge
as the union of the knowledge of each agent in the group.

However, when one wants to show completeness of the logic with respect to these
models by the canonicity argument, it can be quickly seen that the canonical model
does not have this property. That is, in the canonical model, the relation ∼U is not
the intersection of the relations ∼a. Because of this, it is usually called a “pseudo-
model”. Thus, in order to get completeness, this pseudo-model needs to be “repaired”,
or “unraveled” (the technique that first appeared in [Sah75]), in a way that the resulting
model is (modally) equivalent to the original one, but has the desired property.

The original canonical pseudo-model is seen as an obstacle, but in fact it shows an
important fact: the logic is also complete with respect to the models where the relation
∼U is not the intersection of the relations ∼a. This was first shown (implicitly) by Van
der Hoek and Meyer in [vdHM92]. An even more curious fact was shown there: it is not
possible to give an axiom that would characterize the models where ∼U is exactly the
intersection of the relations ∼a.

In this section, instead of considering pseudo-models as a mere technical tool, we take
them as the main semantic target of our logic. The main contribution is the adaptation
to the setting where the group of agents is not constant, but can vary from world to
world. We show the completeness result for this setting and consider various subclasses
of models.

Generalized epistemic frames

As in [GLR22], we consider Kripke frames where the indistinguishability relation ∼ is
not an equivalence relation but just a partial equivalence relation. But we generalize one
step further by associating an indistinguishability relation not only for each agent, but
also for any set of agents, making it possible to interpret distributed knowledge in a very
general manner. A similar definition appears in [BS10], except that indistinguishability
relations are equivalence relations rather than PERs, and as a consequence condition (b)
below is not needed.
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Definition 2.2.1. A generalized epistemic frame is a structureM = ⟨M,∼⟩, where:

• M = {w0, w1, . . .} is a set of possible worlds,

• ∼ is a function that assigns to every group of agents U ⊆ A a PER ∼U ⊆M ×M
called the U -indistinguishability relation, with ∼∅ being an equivalence relation,

• the PERs ∼U satisfy the following conditions:

(a) compatibility:

∀U ′ ⊆ U, w ∼U w′ ⇒ w ∼U ′ w′

(b) closure under union of the groups of alive agents:

∀U,U ′ ⊆ A, (w ∼U w ∧ w ∼U ′ w)⇒ w ∼U∪U ′ w.

The two conditions on ∼U can be interpreted as follows. Condition (a) means that if
a group of agents cannot distinguish between two worlds, all together, then there is no
way a subgroup of agents can distinguish the same two worlds. Condition (b) implies
that in each world w, there is a maximal group of agents U such that w ∼U w. We call
such a U the group of alive agents in world w, and denote it by |w|. We say that an
agent a is alive in w when a ∈ |w| or, equivalently, when w ∼{a} w.

We write [w]U for the equivalence class of w with respect to ∼U . Usually, we write
w ∼a w

′ as shorthand for w ∼{a} w
′. Additionally, we say that a world w is a sub-world

of w′ when |w| ⊊ |w′| and w ∼|w| w
′.

Example 2.2.2. On Figure 2.1 is an example of a generalized epistemic frame. It
has seven worlds M = {w0, . . . , w5} ∪ {w′

1}. Not all relations are shown, but only the
generating ones. Sets of alive agents can be read off directly on the reflexive loops above
a world; in w5, no agent is alive, that is w5 ̸∼a w5 for all a ∈ A. The empty group can
distinguish w5 from other worlds: w5 ̸∼∅ wi, i ̸= 5. In world w4, agents a and c are alive,
and they can distinguish it from all other worlds, but the empty group cannot. In w2

and w3 all three agents are alive. Agents b and c cannot individually distinguish w2 from
w3, however, together they can: we have w2 ∼b w3 and w2 ∼c w3, but w2 ̸∼{b,c} w3. In
w1 and w′

1, agents a and b are alive, but even together they cannot distinguish them, as
we have w1 ∼{a,b} w

′
1. World w0 is a sub-world of both w1 and w′

1: only b is alive in w0

and it cannot distinguish w0 from w1 or w′
1.

Morphisms between epistemic frames are structure-preserving functions between the
sets of worlds.
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w2
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Figure 2.1: A generalized epistemic frame

Definition 2.2.3. Let M = ⟨M,∼⟩ and N = ⟨N,∼′⟩ be two generalized epistemic
frames. A morphism from M to N is a function f : M → N such that for all U ⊆ A,
for all u, v ∈M , u ∼U v implies f(u) ∼′

U f(v),

We write GEFA for the category of generalized epistemic frames with agents A.

Models and semantics of epistemic logic

We now use generalized epistemic frames as a model for the logic of distributed knowl-
edge. The missing piece of data is to label the worlds with atomic propositions, in order
to specify which facts about the system are either true or false in any given world.

Definition 2.2.4. A (generalized) epistemic modelM = ⟨M,∼, ℓ⟩ over the set of agents
A consists of a generalized frame ⟨M,∼⟩ together with valuation function ℓ : M →
P(Ap). A morphism of epistemic models f : M → N is a morphism of underlying
frames that preserves valuations, that is, if p ∈ ℓM (w), then p ∈ ℓN (f(w)). The category
of generalized epistemic models is denoted KMA.

Remark 2.2.5. Morphisms in KMA are in fact just functional simulations [BRV01].
They are different from the morphisms used in [GLR21]: there, the valuations of atomic
propositions were preserved and reflected, that is ℓM (s) = ℓN (f(s)), whereas in our
definition ℓM (s) is just a subset of ℓN (f(s)). They are also different from morphisms in
[GLR22]: there, morphisms can be seen as relations, as they are maps f :M →P(N).
This type of morphisms can be recovered by considering spans of functions.
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Given a generalized epistemic model, we can define the satisfaction relation.

M, w |= p iff p ∈ ℓ(w)
M, w |= ¬ϕ iff M, w ̸|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ

M, w |= DU ϕ iff M, w′ |= ϕ for all w′ ∈M such that w ∼U w′

We are going to show soundness and completeness of ECn with respect to generalized
epistemic models. In order to show completeness, we use the standard approach: by
providing a canonical model, see for example [BRV01].

Definition 2.2.6. The canonical generalized epistemic model Mc = ⟨M c,∼, L⟩ is de-
fined as follows:

• M c = {Γ | Γ is a maximal consistent set of formulas}.

• Γ ∼U ∆ iff DU ϕ ∈ Γ implies ϕ ∈ ∆.

• L(Γ) = Γ ∩ Ap.

Lemma 2.2.7 (Truth Lemma). For any formula ϕ and any maximal consistent set of
formulas Γ ∈M c, we have ϕ ∈ Γ iffMc,Γ |= ϕ.

Proof. We proceed by induction on ϕ. The base case of atomic propositions holds by
definition ofMc. For the boolean connectives, the proof is trivial.

Let us do the case of DUϕ. Assume that DUϕ is in Γ and let ∆ be an element of
M c such that Γ ∼U ∆. By definition of ∼, we have ϕ ∈ ∆, so by induction hypothesis
Mc,∆ |= ϕ. As ∆ is arbitrarily chosen, we have Mc,Γ |= DUϕ. Conversely, assume
that Mc,Γ |= DUϕ and suppose by contradiction that DUϕ ̸∈ Γ. Then the set ∆− =
{¬ϕ} ∪ {ψ | DUψ ∈ Γ} is consistent. Indeed, suppose ∆− is inconsistent. Then we
have a proof of ⊢ ψ1 ∧ · · · ∧ ψk → ϕ, where DUψi ∈ Γ for every i. Then, by axiom
K, we can prove ⊢ DUψ1 ∧ · · · ∧ DUψk → DUϕ. As Γ is maximal consistent, this
implies that DUϕ ∈ Γ, which contradicts the assumption. Thus, ∆− is consistent, and
by Lindenbaum’s Lemma, we can extend it to a maximal consistent set ∆ ⊇ ∆−. By
construction, Γ ∼U ∆, and by induction hypothesis, Mc,∆ ̸|= ϕ. This contradicts the
assumption thatMc,Γ |= DUϕ. Therefore, DUϕ ∈ Γ, and this concludes the proof.

Lemma 2.2.8. In the canonical generalized epistemic model Mc, for any Γ ∈ M c,
U ⊆ |Γ| iff alive(U) ∈ Γ.
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Proof. Suppose U ⊆ |Γ|, Γ ∼U Γ. Hence, Γ |= D̂U true, as there is Γ which is U -accessible
from Γ, which means that alive(U) is in Γ by the Truth Lemma. Conversely, assume
alive(U) ∈ Γ. Then, by Truth Lemma, Γ |= D̂U true, so there is ∆, such that ∆ ∼U Γ.
By symmetry and transitivity of ∼U , we have Γ ∼U Γ, so U ⊆ |Γ|.

Theorem 2.2.9. The logic ECn is sound and complete with respect to the family of
generalized epistemic models.

Proof. Soundness is straightforward to check: K is valid in any relational frame, the
axioms B and 4 correspond exactly to the fact that the indistinguishability relations ∼U

are PERs. Axiom Mono corresponds to condition (a) and axiom Union corresponds
to condition (b) in the definition of generalized epistemic frames.

For completeness, consider the canonical model Mc from Definition 2.2.6. Axioms
K,B and 4 ensure that ∼U is a PER, as in the standard treatment of completeness.
Similarly, axiom Mono ensures that the generated family of PERs is monotone: assume
U ⊆ U ′, Γ ∼U ′ ∆ and DUϕ ∈ Γ, then by Mono, DU ′ is also in Γ. As we assumed
Γ ∼U ′ , ϕ ∈ ∆, so Γ ∼U ∆. Axiom Union ensures that the condition (b) is satisfied.
Assume that Γ ∼U Γ, Γ ∼U ′ Γ and DU∪U ′ϕ ∈ Γ. First, we have that if Γ ∼U Γ, then
D̂U true ∈ Γ. Indeed, by contraposition we have that for any ψ, ψ ̸∈ Γ entails DUψ ̸∈ Γ.
In particular, as Γ is consistent, false ̸∈ Γ, so DU false ̸∈ Γ. By standard reasoning,
¬DU false ∈ Γ, as we intended. Hence, alive(U) ∧ alive(U ′) ∈ Γ. By Union and modus
ponens, alive(U ∪ U ′) ∈ Γ. As the formula alive(V ) → (DV ϕ → ϕ) is deducible when
V = U ∪ U ′, we have DU∪U ′ϕ→ ϕ ∈ Γ. As we assumed DU∪U ′ϕ ∈ Γ, by modus ponens
ϕ ∈ Γ, which shows that the canonical model is indeed a generalized epistemic frame.

Applying the Lindenbaum Lemma and the Truth Lemma, any consistent formula ϕ
holds in some state ofMc, and thus ϕ is satisfiable.

Subclasses of epistemic frames and axiomatization

Generalized epistemic models are very versatile. Depending on what kind of applications
we have in mind, we might want to impose some extra properties on the structure of
our models. For instance, in distributed computing, the model is usually assumed to
have group knowledge to be exactly the sum of knowledge of individual agents, because
a global state of the system is merely the sum of the local states of the agents, without
any extra information. Similarly, in some applications, we might want to assume that
agents never know whether other agents still participate or not; or, in opposite, they
always know the exact set of agents that are still participating.

We now define a number of interesting properties of epistemic frames.
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Definition 2.2.10. An epistemic frameM = ⟨M,∼⟩ is said to

• have trivial empty-group knowledge if ∀w,w′ ∈M. w ∼∅ w
′;

• have no empty worlds if ∀w ∈M. ∃a ∈ A. w ∼a w;

• be proper if (|w| = |w′| ∧ w ∼|w| w
′)⇒ w = w′;

• be maximal if ∀w ∈M. ∀U ⊆ |w|. U ̸= ∅ ⇒ ∃w′ ∈M. (U = |w′| ∧ w′ ∼U w);

• be minimal if ∀w,w′ ∈M. (|w| ⊊ |w′|)⇒ w ̸∼|w| w
′;

• be pure if ∀w ∈M. |w| = A;

• have standard group knowledge if ∀U⊆A. (∀a ∈ U. w ∼a w
′)⇒ w ∼U w′.

Let us explain the meaning of these properties. In a frame with trivial empty-group
knowledge, the empty group cannot distinguish any worlds. It models the idea that an
empty group cannot measure anything, so all worlds have the same properties for it.

If a frame has no empty worlds, then there is an alive agent in every world, i.e., every
possibility is observed by someone.

A frame is proper if every pair of worlds that has the same set of alive agents is
distinguishable by some subgroup of agents. This also corresponds to the principle of
observability: if even a maximal group cannot distinguish worlds, then they are the
same. Notice that this allows sub-worlds.

Example 2.2.11. In the figure below, the leftmost frame has trivial empty-group
knowledge, (w0 ∼∅ w1 ∼∅ w2), but also has an empty world w2, and is not proper
(w0 ∼{a,b} w1). The middle frame has non-trivial empty-group knowledge (w1 ̸∼∅ w2),
has no empty worlds, and is not proper. The rightmost frame has non-trivial empty-
group knowledge, has an empty world, but is proper (w0 ̸∼b w1).

w0

w2

a, b

∅

w1 ∅

a, b

a, b

w0

w2

a, b

w1

a, b

a, b

a
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w1

a

a, b



30 CHAPTER 2. EPISTEMIC LOGIC AND SEMI-SIMPLICIAL MODELS

A frame is maximal if every world has a non-empty sub-world. A certain intuition
comes from distributed computing: in a maximal frame, any number of agents may
crash during the execution of a program, as long as at least one of them remains alive.
Moreover, these crashes are undetectable.

A frame is minimal if there are no sub-worlds. Once again, this corresponds to a
situation in distributed computing where crashes are detectable, that is when a process
crashes, one of the remaining processes is aware of it.

A frame is pure if the set of alive agent in every world is the same. In such a situation,
crashes are not allowed at all, and all agents always participate.

By “standard group knowledge”, we mean that group indistinguishability relations
are generated by individual agents, that is, knowledge of the group is exactly the sum
of individual agents’ knowledge. Dually, in terms of relations, it means that two worlds
are indistinguishable precisely when everybody in the group cannot distinguish them.
More formally, for every group U , ∼U = ⋂

a∈U ∼a.

Example 2.2.12. In the figure below, the upper left frame is maximal, as it has all
sub-worlds. The upper right frame is minimal as it does not have sub-worlds at all. The
bottom left frame is pure as all its worlds have the same set of alive agents. The bottom
right frame has non-standard group knowledge, contrary to all previous examples, since
w0∼aw1, w0 ∼b w1, but w0 ̸∼a,b w1.

w0 w2

a, b

w1
a

a b

b
w0

a, c

w1
a

a, b
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a, b, c

w1
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We now show how to axiomatize the various sub-classes of epistemic models. As in
the previous section, we establish soundness and completeness for each type of epistemic
frames. The proof is modular: each property of the frames (Definition 2.2.10) corre-
sponds to an extra axiom. We denote by U c the complement of the set of agents U , that
is A \ U .

• (NE) ∨
a∈A alive(a);

• (P) alive(U) ∧ dead(U c) ∧ ϕ→ DU (dead(U c)→ ϕ);
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• (Max) for U ̸= ∅, alive(U)→ D̂Udead(U c);

• (Min) alive(U) ∧ dead(U c)→ DUdead(U c);

• (Pure) alive(A).

However, there are no axioms related to trivial empty-group knowledge and standard
group knowledge. This is because those two properties cannot be expressed in the
language LD: we will show that the logic is complete with respect to these models.
As a consequence, they can be assumed “for free”, without additional axiom. Indeed,
to show that the logic ECn is sound and complete with respect to frames with trivial
empty-group knowledge, we can use the strategy from [BS10]. The proof that standard
group knowledge requires no extra axiom is the subject of Theorem 2.2.24.

Remark 2.2.13. There are several interesting relationships between those axioms. Ax-
iom Pure, which says that all agents are alive in all worlds, has many consequences. It
entails the axioms NE, Min, and Union. Axiom P is greatly simplified and becomes
ϕ → DAϕ, where A is the set of all agents. Furthermore, ECn + Pure together entail
AxiomT, so that the logicKB4n becomes S5n when Pure is assumed. Another possible
interaction is P+Min, which can be reformulated together as alive(U)∧dead(U c)∧ϕ→
DUϕ. This axiom appears in [GLR22], in the particular case of U = {a}.

To demonstrate how to show soundness and completeness with those axioms, we
prove the following theorem.

Theorem 2.2.14. The logic ECn+NE+P+Max is sound and complete with respect
to proper maximal epistemic models with trivial empty-group knowledge and no empty
worlds.

Proof. For brevity, call an epistemic model with the properties from the theorem state-
ment a good maximal epistemic model. First, we show soundness. Suppose we are
given a good maximal model M. Axioms of ECn hold in M as it is an epistemic
model in particular. Axiom P holds in M because it is proper: assume that M, w |=
alive(U) ∧ dead(U c) ∧ ϕ, that is, M, w |= ϕ and |w| = U . Let w′ ∈ M such that
w′ ∼U w. Assume then thatM, w′ |= dead(U c), thus |w′| = U , and by properness ofM,
w = w′ andM, w′ |= ϕ. For axiom NE, as every world is non-empty, for some a ∈ |w|,
Kaϕ → ϕ holds. For axiom Max, suppose for some world w ∈ M , M, w |= alive(U),
that is U ⊆ |w|. AsM is maximal, there is always a world w′, such that w′ ∼U w and
|w′| = U . So ¬DU¬dead(U c) holds in w since dead(U c) holds in w′.
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Now we show completeness. We define the canonical modelMc as in Definition 2.2.6,
except that consistency now refers to the new logic. The proof of the Truth Lemma
(Lemma 2.2.7) can easily be adapted. Let ϕ0 be a consistent formula. We shall show
that ϕ0 is satisfiable in some good epistemic model. Let Mc be the canonical model
for the logic, as in Theorem 2.2.9. We need to show that the canonical model is a good
model. Recall that in the canonical model Γ ∼U ∆ iff for any ϕ, DUϕ ∈ Γ ⇒ ϕ ∈ ∆.
The modelMc is:

Proper Suppose |Γ| = |∆| = U and Γ ∼U ∆. We need to show that Γ = ∆, that is for
every formula ϕ, ϕ ∈ Γ iff ϕ ∈ ∆. Suppose ϕ ∈ Γ. Then, by axiomP, DU (dead(U c)→ ϕ)
is in Γ. By the definition of ∼U , it means that dead(U c) → ϕ ∈ ∆. By modus ponens,
ϕ ∈ ∆. Similarly, we can show that ϕ ∈ ∆ → ϕ ∈ Γ. Hence, Γ = ∆ and the canonical
model is proper.

Maximal Let U ⊊ |Γ|. We want to exhibit a sub-world ∆ of Γ, such that |∆| =
U . By Lemma 2.2.8, alive(U) ∈ Γ, so by axiom Max, maximality and consistency,
¬DU¬dead(U c) is in Γ. Then the set ∆− = {dead(U c)} ∪ {ψ | DUψ ∈ Γ} is consistent,
by the same reasoning as in the proof of the Truth Lemma. By Lindenbaum’s Lemma,
∆− can be extended to a maximal consistent set ∆. Moreover, ∆ ∼U Γ by construction,
so U ⊆ |∆|. Also, as dead(U c) ∈ ∆, |∆| ⊆ U . Hence, |∆| = U and ∆ is a sub-world of
Γ.

No empty worlds By axiom NE, maximality and consistency of any Γ, there is an
agent a ∈ A, such that alive(a) ∈ Γ. It entails that a ∈ |Γ|.

Trivial empty-group knowledge The canonical modelMc, however, does not have
trivial empty-group knowledge. Nevertheless, for every ϕ0, we can extract a sub-model,
Mc

0, which consists of the set {Γ ∈ M c | Γ ∼∅ Γ0}, where Γ0 is some maximal consis-
tent theory that contains ϕ0. By monotonicity of ∼, this restriction preserves all worlds
U -accessible from Γ0 and properties of ∼. Moreover,Mc

0 has trivial empty-group knowl-
edge. Thus, ϕ0 holds in at Γ0 in Mc

0, which is proper, maximal, has no empty worlds
and trivial empty-group knowledge.

Inspecting the proof, one can see that the axioms and properties of the model are
pairwise independent. Hence, any combination of those axioms yields a sound and
complete axiom system for the corresponding class of models. Another example, with
minimal models:
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Theorem 2.2.15. The logic ECn+NE+P+Min is sound and complete with respect
to proper minimal epistemic models with trivial empty-group knowledge and no empty
worlds.

Proof. Call an epistemic frame that satisfies properties from the statement of the theo-
rem a good minimal model. The proof of all clauses, except the correspondence between
axiom Min and minimality, is the same as in Theorem 2.2.14. So for soundness, let us
show the validity of axiom Min in any good minimal model. Consider a good minimal
modelM and a world w ∈ M. Assume that alive(U) ∧ dead(U c) holds in w. It means
that |w| is exactly U . Then by minimality of M, as w is not a subworld of any other
world, in any w′, such that w ∼U w′, we have |w′| = U . Hence,M, w′ |= dead(U c) and
M, w |= DUdead(U c), so axiom Min is valid.

For completeness, it remains only to verify that the canonical model Mc for this
logic is minimal. Consider Γ,∆ ∈ M c, such that |Γ| ⊊ |∆| and |Γ| = U . Suppose that
Γ ∼U ∆. By Lemma 2.2.8, alive(U) ∧ dead(U c) belongs to Γ. By modus ponens and
axiom Min, DUdead(U c) is in Γ. By definition of ∼U , dead(U c) ∈ ∆. But |∆| is strictly
bigger than U , thus there a ∈ U c such that a ∈ |∆|, so alive(a) ∈ ∆ which contradicts
with consistency of ∆. Thus, Γ ̸∼U ∆ as required.

For the case of pure models:

Theorem 2.2.16. The logic ECn+NE+P+Pure is sound and complete with respect
to proper pure epistemic models with trivial empty-group knowledge and no empty
worlds.

Proof. Extending the previous theorem, for soundness we just need to check validity of
axiom Pure in a pure model. Take an epistemic modelM that has properties from the
statement of the theorem. The formula D̂U true holds in any world w because w ∼a w

asM is pure.
For completeness, we need to verify that the canonical modelMc is pure. As alive(A)

is in any Γ in M c, by Lemma 2.2.8 we have |Γ| = A, soMc is pure.

The relationship between all the axiom systems that we consider is summarized in
Figure 2.2.

Standard group knowledge and bisimulations

The last property that we did not axiomatize is the standard group knowledge, or,
as we will see later from geometrical point of view, the distinction between simplicial
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Figure 2.2: Variants of epistemic logic

sets and simplicial complexes. In this section, we show that restricting to standard
group knowledge does not require any additional axiom. For that purpose, we use a
construction called unraveling, which turns a generalized epistemic modelM into a new
model U(M) that is bisimilar toM and has standard group knowledge.

LetM be a generalized epistemic model. A history inM is a finite sequence of the
form h = (w0, U1, w1, . . . , Uk, wk) for some k ≥ 0, such that wi−1 ∼Ui wi for all 1 ≤ i ≤ k
and Ui is a maximal such subgroup of agents. Notice that since epistemic models do not
necessarily have standard group knowledge, every pair of worlds w,w′ can have several
groups U maximal with respect to inclusion such that w ∼U w′. For example, if w ∼U w′,
w ∼U ′ w′ and both U,U ′ are maximal, then one has, in particular, two different histories
(w,U,w′) and (w,U ′, w′). We write last(h) = wk for the last element of a history, and
we write h→U h′ if h′ = (h, Uk+1, wk+1) with U ⊆ U ′.

Definition 2.2.17. The unraveling of M is a generalized epistemic model U(M) =
(H,∼u, ℓu) defined as follows:

• H is the set of histories of M ,

• ∼u
U is the transitive and symmetric closure of →U , i.e., ∼u

U = (→U ∪ ←U )∗,

• ℓu(h) = ℓ(last(h)).
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The unraveling construction is similar to the tree unraveling from [Sah75], adjusted
to the case of multiple relations related by monotonicity.

Lemma 2.2.18. Let M be a generalized epistemic model. Then its unraveling U(M)
is a generalized epistemic model.

Proof. It is easy to see that every ∼u
U is a PER, as it is transitive and symmetric closure.

If U ⊆ U ′, →U ′⊆→U by definition, so ∼u
U ′⊆∼u

U , that is ∼u satisfies the compatibility
condition. Now, suppose that h ∼u

U h and h ∼u
U ′ h. By definition of ∼u, it means that

there is a sequence of worlds inM such that last(h) ∼U · · · ∼U last(h), so, by transitivity
of ∼U , last(h) ∼U last(h). Similarly, last(h) ∼U ′ last(h). As M is a generalized epistemic
model, it follows that last(h) ∼U∪U ′ last(h). Thus, there is a history h′ = (h, U ∪
U ′, last(h)), and h ∼u

U∪U ′ h′. By transitivity and symmetry of∼u
U∪U ′ , we have h ∼u

U∪U ′ h,
thus concluding that U(M) is closed under union of the groups of alive agents.

Lemma 2.2.19. For every model M , its unraveling U(M) has standard group knowl-
edge.

Proof. We need to show that for any two h, h′ in U(M), if h ∼u
U h′ and h ∼u

U ′ h′, then
h ∼u

U∪U ′ h′. There are two cases: if h = h′ and h ̸= h′. For the first case, the statement
holds since U(M) is a generalized epistemic model by Lemma 2.2.18.

For the second case, notice first that →V respects the ordering of histories with
respect to the prefix relation: if h →V h′, then h is a prefix of h′. The prefix relation
forms a tree on the set of histories, and it implies that if h ∼u

V h′, then there is a unique
non-redundant path h←V · · · ←V h′′ →V · · · →V h′ from h to h′ that witnesses it, where
h′′ is the common prefix of h and h′. Moreover, this path is the same for any V ⊆ A.
We can write h = (h′′, V1, w1, . . . , Vn, wn) and h′ = (h′′, V ′

1 , w
′
1, . . . , V

′
m, wm). As it is the

same path for both U and U ′, U ∪U ′ ⊆ Vi and U ∪U ′ ⊆ V ′
j for all i, j. In particular, we

have that last(h) = wn ∼U∪U ′ · · · ∼U∪U ′ last(h′′) ∼U∪U ′ · · · ∼U∪U ′ w′
m = last(h′). Thus,

h ∼u
U∪U ′ h′, and U(M) has standard group knowledge.

Remark 2.2.20. In the proof we have also shown that if h ∼u
U h′, then last(h) ∼U

last(h′).

Definition 2.2.21. Given two generalized epistemic models M and N , we say that
morphism f :M→N is a (collective) functional bisimulation if the following conditions
hold:

• (atoms) for any w ∈M , ℓN (f(w)) = ℓM (w);
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• (forth) for all U ⊆ A, if w ∼M
U w′, then f(w) ∼N

U f(w′);

• (back) for all U ⊆ A, if f(w) ∼N
U v′, then there is w′ ∈ M such that f(w′) = v′

and w ∼M
U w′.

The definition we give is an extension of the standard notion of bisimulation, which
links structural similarity of models with validity of formulas. In particular, we have the
following proposition by adapting the standard construction (see [BRV01]). A similar
definition, together with the statement, appeared in [Roe07].

Proposition 2.2.22. If f : M → N is a functional bisimulation, then for any formula
ϕ, we have that M,w |= ϕ if and only if N, f(w) |= ϕ.

Proof. By induction on ϕ.

This is the essential proposition that allows us to show that ECn is sound and
complete with respect to frames with standard group knowledge.

Lemma 2.2.23. For every generalized epistemic model M , its unraveling U(M) is
bisimilar to M .

Proof. We shall show that last : U(M) → M is a functional bisimulation. First, by the
definition of ℓu, ℓu(h) = ℓ(last(h)), so the atomic proposition are preserved.

Suppose now that h ∼u
U h′. By Remark 2.2.20, last(h) ∼U h′, so (forth) condition is

satisfied.
For (back) condition, suppose that last(h) ∼U w′. Then there is a history h′ =

(h, U ′, w′), such that U ⊆ U ′. Clearly, h →U h′, so h ∼u
U h′, and the (back) condition

holds too, thus concluding that last : U(M)→M is a bisimulation.

Theorem 2.2.24. The logic ECn is sound and complete with respect to models with
standard group knowledge.

Proof. Soundness is straightforward, as models with standard group knowledge are gen-
eralized epistemic models in particular.

Consider the canonical model M c for ECn from Theorem 2.2.9. It is shown that M c

is a generalized epistemic frame. By Lemma 2.2.18, U(M c) is a generalized epistemic
frame, and by Lemma 2.2.19 it has standard group knowledge. For any formula ϕ,
there is Γ in M c, such that M c,Γ |= ϕ. Since last : U(M c) → M c is a bisimulation
by Lemma 2.2.23, for any h ∈ U(M c) such that last(h) = Γ, we have U(M c), h |= ϕ.
Thus, any formula ϕ is valid in a model with classic group knowledge, which concludes
completeness.



2.2. RELATIONAL KRIPKE MODELS 37

Principle of full communication

The principle of full communication was introduced in [vdHvLM99] as a measure of use-
fulness of an interpretation of a notion of group knowledge. Intuitively, group knowledge
complies with the principle if whenever some fact is considered to be group knowledge,
then it should be possible to establish this fact by means of communication between
agents.

To make the notion of full communication precise, recall some definitions. For now,
suppose that in the models we consider, the group knowledge is standard, that is ∼U=⋂

a∈U ∼a. This is an assumption in [Roe07; vdHvLM99].
The knowledge set of a group of agents U in a model is the set of formulas in LK

(that is with individual knowledge modalities only) that at least one agent in U knows
to be true in a given world:

KSU (M,w) = {ϕ ∈ LK | M,w |= Kaϕ for some a ∈ U}.

Then, it is said that a formula can be shown through communication by a group
of agents iff the formula is entailed by the knowledge set of the group. We say that
distributed knowledge complies with the principle of full communication if for all ϕ ∈ LK :

M,w |= DUϕ ⇒ KSU (M,w) ⊢ ϕ.

Here is an example of a model that complies with the principle of full communication,
and also describes a case of distributed group knowledge.

Example 2.2.25. Consider the following situation. Alice knows, that if it is going to
rain, than her neighbor Eve takes an umbrella. However, Alice does not know if it is
going to rain today or not. Bob knows that it is going to rain, but is not aware of Eve’s
rule. If we say that p means “it rains”, and q means “Eve took her umbrella”, then
the epistemic situation is formalized by the following set of formulas: Ka(p → q),Kbp.
Neither Alice nor Bob knows that Alice took her umbrella: ¬Kaq ∧ ¬Kbq. At the
same time, if Alice tells Bob about Eve’s rule, and Bob tells Alice that it rains, then
together they can conclude that q: D{a,b}q. The corresponding model is depicted below.
This model complies with the principle of full communication since q is entailed by
KS{a,b}(M,w) = {p, p→ q}.

¬p,¬q p, q ¬p, qa b
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The usual example of a model for which the full communication principle fails is the
following:

p ¬p

¬p p

a

b

b

a

It has four worlds, in two proposition p holds, in two holds its negation ¬p. Moreover,
we can see that this model has standard group knowledge: the group indistinguishability
relation is the intersection of the individual ones, and the group can distinguish all four
worlds. However, the full communication principle fails for this model: the knowledge
set of the group consists only of tautologies in every world, while the group knows which
proposition holds in every world.

Roelofsen in [Roe07] describes the exact class of models with standard group knowl-
edge for which the full communication principle holds.

Definition 2.2.26 ([Roe07]). A model M is called a full communication model if for
all worlds w ∈ M and all U ⊆ A, every LK-formula that is consistent with KSU (M,w)
is satisfiable in any w′ such that w ∼U w′.

A stronger, just sufficient condition was identified by Van der Hoek, van Linder, and
Meyer.

Definition 2.2.27 ([vdHvLM99]). A modelM is called distinguishing when for every
pair of worlds w,w′ there is a formula ϕw,w′ such thatM, w |= ϕw,w′ , butM, w′ ̸|= ϕw,w′ .

The following proposition shows how these two notions are related.

Proposition 2.2.28 ([Roe07]). A finite distinguishing model is a full communication
model.

Notice, however, that in this context the semantics of the distributed knowledge is
assumed to be generated by the indistinguishability relations of individual agents, that
is

M,w |= DUϕ iff ∀w′(∀a ∈ Uw ∼a w
′ ⇒M,w′ |= ϕ).

But what happens if we don’t have standard group knowledge? Then even to be finite
and distinguishing is not enough to comply with the principle. Consider the following
example.
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Example 2.2.29. Here is a finite, distinguishing model with non-standard group knowl-
edge where full communication fails.

p ¬p
a

b

The model is distinguishing as in the left world p holds, and in the right world ¬p
holds. The knowledge sets contain only tautologies, as agents know only tautologies, but
the group knows whether p or ¬p holds. Notice, this model is (collectively) bisimilar to
the previous one, which means that distinguishability of models is not invariant under
bisimulation.

We can even say that if group knowledge is non-standard, then the principle of
full communication is not relevant: this type of group knowledge appears exactly when
knowledge is not transferrable by communication, but appears when agents fuse into one
entity. Such effects may appear in quantum systems, for further discussion we refer to
[BS10].

At this point we might want to understand what kind of effects non-standard group
knowledge can express. One of the examples is an environment interaction. Suppose
agent a has a locked chest that either contains an orange or does not. The agent has no
possibility of knowing what the situation really is, unless she opens the box with a key.
Agent B has the key. Obviously, agent b also does not know whether the chest contains
an orange or not. We can model the situation by an epistemic frame with two worlds,
w0 and w1 and an atomic proposition p that means that the chest contains an orange.
We let p ∈ v(w0) and p ̸∈ v(w1), and w0 ∼a w1, w0 ∼b w1, thus modeling that neither a
nor b knows the real situation: this is exactly the model from Example 2.2.29. However,
if agent b brings the key to a, then they can unlock the chest and find out the real
situation: w0 ̸∼{a,b} w1. In this example we can see that non-standard group knowledge
may arise in the situations that do not concern the information held by agents, but
rather the tools they have, or levels of access to information.

2.3 Semi-simplicial models

In Section 1.5 we discussed simplicial models of epistemic logic. The correspondence
worked by restricting the class of epistemic Kripke structures: this allowed to find a
nice representation in terms of simplicial complexes. A natural question is to what
extent the conditions on frames can be relaxed. In this section, we will show that
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the correspondence can be extended to generalized epistemic frames from the previous
section. On the side of simplicial models, we will consider augmented semi-simplicial
sets, and epistemic coverings based on them.

Simplicial complexes and semi-simplicial sets

Let ∆+
inj be the category of possibly empty linear orders with injective maps between

them. We write [n] for the n + 1-element linear order [n] = {0 < . . . < n}, and
[−1] = ∅. The category of augmented semi-simplicial sets is defined as the presheaf
category ∆̂+

inj. Thus, its objects are functors F : (∆+
inj)op → Set, and morphisms are

natural transformations. The elements of F ([n]) are called n-simplices, and we use the
terms vertices, edges, and triangles for simplices of dimension 0, 1 and 2 respectively.

Less abstractly, an augmented semi-simplicial set F consists of a family of sets F ([n])
for every n ≥ −1, and a family of face maps ∂i : F ([n]) → F ([n − 1]) for i = 0, . . . , n,
satisfying the simplicial identities ∂i∂j = ∂j−1∂i for i < j.

For example, the simplicial set depicted in Figure 2.3 has 1 simplex of dimension
−1, 4 vertices, 6 edges and 2 triangles. So, accordingly, the sets F ([−1]), F ([0]), F ([1])
and F ([2]) are chosen to have 1, 4, 6 and 2 elements, respectively. There are three face
maps ∂i : F ([2])→ F ([1]) for i = 0, 1, 2 which assign to each triangle its three boundary
edges. The maps ∂i : F ([1]) → F ([0]) for i = 0, 1 assign to each edge its source and
target vertices.

Figure 2.3: A (semi-)simplicial set which is not a simplicial complex.

Notice the two differences with simplicial complexes: first, we have −1-simplices,
which can be thought as generalized connected components, and second, two simplices
can have the same set of vertices, but still be different. That is, simplices are not defined
by the set of their vertices.

Chromatic augmented semi-simplicial sets

As in the case of simplicial models [GLR21], our first step will be to decorate the vertices
of a simplicial set with colors, representing the names of the agents in A. The resulting
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structure is called a chromatic augmented semi-simplicial set, or cset for short. We
identify A with the linear order [n] = {0 < . . . < n}.

Let SA denote the standard (|A| − 1)-simplex, defined by:

• (SA)k = {(i0, . . . , ik) | 0 ≤ i0 < . . . < ik ≤ n},

• ∂j(i0, . . . , ik) = (i0, . . . , ij−1, ij+1, . . . , ik) ∈ (SA)k−1.

Given an augmented semi-simplicial set X, a coloring of X by the agents in A is simply
a map f : X → SA. Note that, since we work with semi-simplicial sets here, without
degeneracy maps, morphisms preserve the dimension of simplices. Thus, each simplex
of X is well-colored, in the sense that all vertices in a simplex are labelled with distinct
agents. We then define the category of chromatic augmented semi-simplicial sets to be
the slice category ∆̂+

inj/SA.
For the rest of the section, we can either see this category as a slice category, or

notice that, by the fundamental theorem of topos theory, the category of csets is once
again a presheaf category on a site Γ made of simplices of the standard n-simplex. As
with the site of semi-simplicial sets (see e.g., [Rie11]), Γ is the posetal category of subsets
of A with the inclusion partial order, defined below.

Definition 2.3.1. The category Γ is such that:

• objects are (possibly empty) subsets of A,

• there is a unique morphism δU,V : U → V in Γ whenever U ⊆ V . Composition
δV,W ◦ δU,V = δU,W is given by the fact that U ⊆ V ⊆W implies U ⊆W .

We write CsetA for the presheaf category on Γ. This category is equivalent to
∆̂+

inj/SA, hence a cset can equivalently be viewed as a functor F : Γop → Set. Given a
cset F ∈ CsetA, and a group of agents U ⊆ A, the elements of F (U) are called the U -
simplices. When there is no ambiguity, we write ∂U,V : F (V )→ F (U) for the boundary
operator F (δU,V ). For x a V -simplex, ∂U,V (x) is called the U -face of x. If it is clear
which V is considered, we simply write ∂U (x).

Given U ⊆ A, the standard U -simplex Γ[U ], is defined as the representable presheaf
Γ(−, U), image of U by the Yoneda embedding y : Γ→ CsetA.

In less categorical terms, a cset F consists of a family of sets F (U) for every U ⊆ A,
called U -simplices, together with a family of boundary operators ∂U,V : F (V ) → F (U)
for every U ⊆ V ⊆ A, such that ∂U,V ∂V,W = ∂U,W for every U ⊆ V ⊆W ⊆ A.
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Figure 2.4: The category Γ for three agents.

Example 2.3.2. A cset X is depicted in the figure below. We represent it as a simplicial
set together with colors on the vertices. Elements of X−1 are depicted as dashed regions
(and interpreted as generalized connected components). Elements of X0 are depicted as
vertices, X1 as edges, X2 as triangles, etc. The boundary operators ∂i give the equations
that permit to glue these simplices together, along lower dimensional simplices. The cset
in the picture below is composed of seven vertices (colored with three agents), eight edges,
two triangles, and two (−1)-simplices.

In the rest, by a (chromatic) simplicial complex we mean a cset in which if two
simplices share the same set of vertices, then they coincide. More formally, if for two
U -simplices s, s′ ∂a(s) = ∂a(s′) for all a ∈ U , then s = s′.

Epistemic coverings

The notion of a cset already allows us to relax the conditions on the frames. In particular,
we can consider frames with empty worlds, that is worlds where no agent is present:
these are represented by the (−1)-simplices of the cset. Similarly, we can represent non-
standard group knowledge by having simplices that share the same set of vertices, but
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are not equal. In this situation, no individual agent can distinguish the two simplices,
but a group of agents can.

However, we still can not represent a situation where no group of agents can distin-
guish a pair of worlds. In order to do so, we need to introduce the notion of an epistemic
covering. The idea of an epistemic covering is to capture the geometrical structure of
indistinguishability relations in a simplicial set, abstracting away from the notion of a
world. However, in order to interpret the logic in a fashion similar to Kripke structures,
we still need to keep a link with set-theoretical representation. That is, we want to
obtain a category of structures more topological than Kripke structures, but that still
would be isomorphic to the category of epistemic frames. We will do so by representing
a frame by a pair of chromatic semi-simplicial sets, together with a morphism between
them, where one cset represents worlds, thus preserving the necessary rigidness of a
frame, whereas the other cset represents the indistinguishability relations.

In a cset X, given a V -simplex t and a subset U ⊆ V , we say that s = ∂U (t) is
a subsimplex of t. We say that X is projective when for every simplex s ∈ X, there
is a unique maximal simplex ↑ s, such that s is a subsimplex of ↑ s. Categorically, a
projective cset is a disjoint union of representables.

Definition 2.3.3. An epistemic covering is a morphism f : E → B in CsetA such that
E is projective and f : E → B is surjective. Equivalently, a morphism f : E → B is an
epistemic covering if E is projective and every maximal simplex of B has a preimage.
We refer to E as total cset and to B as base cset.

Epistemic coverings form a category where a morphism from f :E→B to f ′ :E′→B′

is a pair of morphisms αE : E → E′, αB : B → B′, such that the following square
commutes:

E E′

B B′
αB

f f ′

αE

An epistemic covering f :E → B can be visually represented as an annotated cset by
taking the base cset B and writing on a simplex s the set of maximal simplices from E

that are mapped on s. In particular, as f is surjective, every maximal simplex in B must
have an annotation. For instance, the annotation on the example of a cset from previous
section represents an epistemic covering with the following maximal simplices in E: two
2-simplices w2, w3; three 1-simplices w1, w

′
1, w4 with f(w1) = f(w′

1); one 0-simplex w0;
one (−1)-simplex w5.
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w2 w3

w0
w4

w1, w
′
1

w5

Remark 2.3.4. There are two ways to produce an epistemic covering out of a given
cset X. We can take X as the base of the covering, but we need to choose the space E.
Choosing E amounts to deciding which simplices of X constitute the possible worlds.
There are two natural choices: either take all of the simplices of X, or take only the
maximal ones (a.k.a. the facets).

The first choice, that we call the “maximal” one, where E is the disjoint union of
all the simplices of X, yields a faithful functor from CsetA to eCovA. A morphism
g : X → Y is sent to the morphism of coverings ⟨αE , αB⟩, where αB = g and αE sends a
simplex s to t if g sends s to t. This functor is injective on objects, so it makes CsetA a
subcategory of eCovA, though not full. The maximal interpretation appears (implicitly)
in [vDK] for example, where a formula can be evaluated in every simplex of a model.

The second choice, where E is the disjoint union of the maximal simplices of X, is
the “minimal” one. It is the one that is studied in [GLR21; GLR22], where a formula
is only evaluated in a facet of a simplicial complex. However, this construction is not
functorial.

Isomorphism of categories

We want to show that the category of epistemic coverings and the category of generalized
epistemic frames are isomorphic. We first define the functor κ : eCovA → GEFA.

Let f : E → B be an epistemic covering. As E is projective, it can be represented as
a disjoint union of disconnected standard simplices, that is E = ⋃

U⊆A

⋃
EU

Γ[U ], where
EU are some sets. Then the set W of worlds in κ(f) = ⟨W,∼⟩ is exactly ⋃

U⊆AEU ,
that is every maximal simplex of E is interpreted as a world. To define the group
indistinguishability relations ∼U between the worlds of the corresponding frame, we
proceed as follows. We think of two simplices in E as U -indistinguishable, if their
images in B share a U -face. Formally, given two worlds ws, ws′ in κ(f), corresponding
to two maximal simplices s, s′ in E, we let ws ∼U ws′ if ∂U (f(s)) = ∂U (f(s′)).

Now we define this functor on morphisms. Suppose we are given a morphism of
epistemic coverings ⟨αE , αB⟩. Then, the morphism of epistemic frames κ(⟨αE , αB⟩) :
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κ(f)→ κ(f ′) sends a world ws to a world ws′ if the image of the maximal simplex s in
E is included in the maximal simplex s′ in E′.

Next, we construct the inverse functor σ : GEFA → eCovA. Given a generalized
frame ⟨M,∼⟩, we need to define two csets EM and BM together with a map m : EM →
BM . For every world w ∈M we associate a simplex of type |w| to EM , that is

EM =
⋃

w∈M
Γ[|w|].

It is slightly more intricate to build the base space BM of the covering. We construct
it as a presheaf on Γ, BM : Γop → Set. For every group U ⊆ A of agents, define BM (U) =
M/∼U , the quotient of M with respect to ∼U . The restriction ∂U,V : M/∼V → M/∼U

sends the equivalence class [w]V to [w]U . We need to verify that BM is indeed a cset.

Lemma 2.3.5. For any frame ⟨M,∼⟩, BM is a cset.

Proof. First, let us show that restriction maps are correctly defined. Consider ∂U,V for
U ⊆ V , and let w′ ∈ [w]U be another representative of the equivalence class [w]U . By
monotonicity, we have w ∼V w′ ⇒ w ∼U w′, so they also belong to the same equivalence
class [w]U = [w′]U . Thus, the function ∂U,V is correctly defined. To see that this is
functorial, given sets of agents U ⊆ V ⊆W , we need to prove that ∂U,V ◦ ∂V,W = ∂U,W ,
which is straightforward.

One can see that there is a canonical map m : EM → BM which sends a maximal
simplex w of EM , representing a world, to the corresponding equivalence class [w]|w| ∈
BM (|w|). This describes σ on objects by setting σ(⟨M,∼⟩) = m.

To define σ on morphisms, consider a morphism of epistemic frames g : M → N .
As both assignments of total spaces EM , EN and base spaces BM , BN are functorial one
needs to check that the induced square commutes.

Proposition 2.3.6. The functors κ and σ define an isomorphism of categories: κ ◦ σ =
idGEFA and σ ◦ κ = ideCovA .

Proof. Consider an epistemic frameM. Then κσ(M) has as its worlds the same worlds
as in M, as κ and σ just transfer this information. The relations ∼U are also just the
same: w ∼U w′ in κσ(M) iff the simplices ∂U (w), ∂U (w′) in Eσ(M) are sent to the same
simplex in Bσ(M), but this is the case exactly when w ∼U w′ in M. The same line of
argument works for σ ◦ κ, and extends to morphisms.
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Remark 2.3.7. In previous articles, the equivalences that Proposition 2.3.6 generalizes
have been called dualities. It is not a duality in the sense of category theory, as we have an
equivalence, and not a dual equivalence of categories. The isomorphism theorem rather
shows that Kripke frames already have an underlying topological structure which is being
exposed in the corresponding simplicial set, thus making it closer to dual polyhedra, or
as we will see in the next chapter, dual hypergraphs.

Subclasses of epistemic coverings

Definition 2.3.8. An epistemic covering f : E → B is said to

• have trivial empty-group knowledge if there is only one −1-simplex in B;

• have no empty worlds if all maximal simplices of E have dimension ≥ 0;

• be proper if no two maximal simplices of E have the same image in B;

• be maximal if every simplex in B is the image of a maximal simplex of E;

• be minimal if the image of a maximal simplex of E is always a maximal simplex
of B;

• be pure if all maximal simplices of E have dimension |A| − 1;

• have standard group knowledge if B is a simplicial complex.

The intuition behind the definitions is exactly the same as in the case of frames. We
give a few illustrative examples. In the picture on the next page, the top left covering has
trivial empty-group knowledge as there is only one (−1)-simplex in the base space (one
dashed region), but it has one maximal (−1)-simplex in the top space, so it has empty
worlds. The top right covering has no empty worlds as it has two maximal simplices
of dimension 1 and one 0-simplex in the top space. It, however, does not have trivial
empty-group knowledge as it has two (−1)-simplices in the base space. It is not proper
neither. The bottom covering is proper, as every simplex is annotated with at most one
world.
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w2w0, w1
w2

w0, w1

w2

w0

w1

In the examples below, the top left covering is maximal as every simplex is annotated,
that is, every simplex has a maximal simplex that is sent to it. The top right covering
is minimal because only maximal simplices are annotated. The bottom left covering is
pure, as all annotated simplices are of the same dimension. All of the examples above
have standard group knowledge since their base csets are in fact complexes. The bottom
right covering has non-standard group knowledge as its base cset is not a simplicial
complex.

w1
w0 w2 w1w0

w0 w1
w1

w0

As our terminology suggests, these properties of epistemic coverings are the geometric
counterparts of the ones of epistemic frames that we defined previously.

Lemma 2.3.9. The properties of Definition 2.2.10 agree with the ones of Definition 2.3.8
up to the isomorphism in Proposition 2.3.6. Namely, if f is a covering of a certain type,
then κ(f) is of the same type, and conversely for σ.



48 CHAPTER 2. EPISTEMIC LOGIC AND SEMI-SIMPLICIAL MODELS

Proof. We only show two cases, as the proofs are very similar and just a matter of
checking that we correctly translated the notions through the equivalence.

Consider a proper covering f : E → B. In the frame κ(f), two worlds w1, w2 are
indistinguishable by group |w1| = |w2| if and only if the simplices in E that correspond
to w1 and w2 are sent to the same simplex in B. But, as f is proper, no two simplices
have the same image, thus the frame is proper too. Now, consider a proper frameM. By
construction of the functor σ, two simplices s1, s2 in EM of the same color are sent to the
same simplex in Bσ(M), if and only for corresponding worlds w1, w2 inM w1 ∼|w1| w2.
ButM is proper, so it is never the case, thus σ(M) is proper too.

Consider a covering f : E → B with standard group knowledge. Suppose that
for a pair w1, w2 in the frame κ(f), w1 ∼a w2 for all a in some U . It means that
∂a(s1) = ∂a(s2), where s1 corresponds to w1 and s2 to w2. As B is a simplicial complex,
it follows that ∂U (s1) = ∂U (s2), so κ(f) has standard group knowledge. Take now a
frame M with standard group knowledge. Suppose there are two worlds w1, w2 in M

such that |w1| = |w2| = U and for all a ∈ U , [w1]a = [w2]a. Since M has standard group
knowledge, [w1]U = ⋂

a∈U [w1]a. Thus, [w1]U = [w2]U , which means precisely that if two
simplices in Bσ(M) have the same set of vertices, then they are equal.

Definition 2.3.10. An epistemic covering model X = ⟨f : E → B, ℓ⟩ consists of an
epistemic covering f : E → B, together with a labelling ℓ : max(E) → P(Ap) that
associates a set of atomic propositions ℓ(s) with each maximal simplex s of E. A
morphism of epistemic covering models α : X → Y is a morphism of epistemic coverings
that preserves the labelling: ℓ(s) ⊆ ℓ′(↑α(s)), where ↑α(s) is the maximal simplex of E
that contains α(s). We denote by ECA the category of epistemic covering models.

Given an epistemic covering model X = ⟨f, ℓ⟩ together with a maximal simplex s
in E, we can define the satisfaction relation X, s |= ϕ by mimicking what we did for
generalized epistemic models.

X, s |= p iff p ∈ ℓ(s)
X, s |= ¬ϕ iff X, s ̸|= ϕ

X, s |= ϕ ∧ ψ iff X, s |= ϕ and X, s |= ψ

X, s |= DU ϕ iff X, s′ |= ϕ for all maximal s′ ∈ E
such that ∂U (f(s′)) = ∂U (f(s))

Proposition 2.3.6 can be readily extended to show that the categories of models are also
isomorphic:
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Theorem 2.3.11. The category of epistemic covering models ECA is isomorphic to the
category of generalized epistemic models KMA.

Proof. We provide two functors κ, σ. On the underlying coverings and frames, they act as
in Proposition 2.3.6. We just need to extend them to valuations. For κ : ECA → KMA,
for each maximal simplex s in E, we have an associated world ws in κ(f). We set
ℓκ(f)(ws) = ℓ(s). Similarly, for σ : KMA → ECA, there is an associated maximal simplex
sw for every world w. We set ℓσ(M)(sw) = ℓ(w). The rest of the proof is the same as in
Proposition 2.3.6.

As expected, the satisfaction relations for both kinds of models yield the same result:

Lemma 2.3.12. Given a pointed epistemic covering model (X, s), we have X, s |= ϕ iff
κ(X), ws |= ϕ. Conversely, given a pointed generalized epistemic model (M,w), we have
M,w |= ϕ iff σ(M), sw |= ϕ.

Proof. We prove the first equivalence by induction on the structure of ϕ. The case of
atomic propositions comes from the fact that we keep the labelling ℓ(ws) = ℓ(s). The
case of boolean connectives is straightforward. For a formula of the form DUϕ one
can notice that we defined ws ∼U ws′ iff ∂U (f(s)) = ∂U (f(s′)), which coincides with
the semantics of DU . The second equivalence follows from the first one, together with
Theorem 2.3.11.

The corollary follows from Lemma 2.3.12.

Corollary 2.3.13. The logic ECn is sound and complete with respect to epistemic
covering models.

Corollary 2.3.13 can be specialized to subclasses of models in the same way as The-
orems 2.2.14 to 2.2.16. More interestingly, we also have completeness with respect to
simplicial models with standard group knowledge, analogously to Theorem 2.2.24. It
means that there is no formula of ECn that is valid in models where the base space is
a simplicial complex, but not valid in models where the base space is a simplicial set.
We get a geometric interpretation of the result from [vdHM92] that says that there is
no formula that can distinguish models with standard and non-standard group knowl-
edge: in the simplicial setting it means that epistemic logic cannot distinguish between
simplicial complexes and simplicial sets. The unraveling construction from the proof of
Theorem 2.2.24 thus has a topological meaning, as it can be seen as taking a universal
cover of a simplicial complex, akin to the universal cover of a topological space, as shown
in the figure on the next page.
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2.4 Conclusion and future work

Distributed knowledge as update

As we could see in this chapter, the notion of distributed group knowledge allows multiple
interpretations. In particular, it is not clear what we count as a group: should it be just
an arbitrary group of agents, or a group of agents that can communicate everything they
know to each other, or something else? Perhaps, we should consider a group of agents
as a separate entity? If so, how do we model this fusion?

One possible line of research is to consider distributed knowledge as a form of update.
We call this approach dynamic distributed knowledge∗, opposed to static distributed
knowledge.

Let us briefly recall the setting of dynamic epistemic logic. In DEL, the syntax of
epistemic logic is extended with an additional modal operator [α], which expresses that
after the action α is performed, the formula ϕ holds. On the semantics side, in order
to interpret [α]ϕ, in a world w of a model M , we need to define an update model M [α],
and a world w[α] that represent the knowledge of agents after the action was performed.
The satisfaction relation is then defined as M,w |= [α]ϕ iff M [α], w[α] |= ϕ. For more
details, we refer to [vDvdHK07].

We could try to apply the same idea to distributed knowledge. In this case, we would
have a modality [U ] of distributed knowledge, which we interpret as the knowledge after
the fusion, or full exchange of information, of agents in U . The semantics for this
modality is then defined as

M,w |= [U ]ϕ⇔M [U ], v |= ϕ,

for every v ∼U w, whereM [U ] is the update model that has the same set of worlds asM ,
but the accessibility relation of each agent a ∈ U is substituted with ∼U=

⋂
b∈U ∼b. We

can consider an even more general approach, where we allow the accessibility relation
of each group to be explicitly defined as part of the model. This modality has several

∗the name is suggested by Hans van Ditmarsch
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interesting properties. For example, some axioms that we would expect to hold for
distributed knowledge, such as [U ]ϕ→ ϕ, are not valid.

It is also interesting to study how this modality is related to resolution of distributed
knowledge [ÅW17], along with the topological content of this operation.

Belief in simplicial models

A question we have not addressed in this chapter is how to model belief in simplicial sets.
There are various approaches to belief in epistemic logic. If we do not want to consider
knowledge and belief at the same time, that is we want to change the modality K to
another modality B, one way is to relax the veracity axiom Kϕ→ ϕ to Bϕ→ B̂ϕ. This
corresponds to the position that knowledge is “justified true belief”, thus if we substitute
the truth axiom with a weaker option that allows beliefs be false, we get belief.

If we want to consider knowledge and belief at the same time, we can use plausibility
frames [BS08]. Let us recall the definitions.

Definition 2.4.1. A local plausibility frame is a tuple ⟨S, {⊴a}a∈A⟩, where S is a set of
worlds, and ⊴a is a preorder on S for every agent a.

From the preorder ⊴a we can recover the equivalence relation ∼a as the union ⊴a

∪ ⊴−1
a . Thus, our interpretation is that if for two worlds there is a chain of plausibility

comparisons, then the two worlds are in fact indistinguishable for the agent. We can
see local plausibility frames as usual epistemic frames, where each equivalence class with
respect to the indistinguishability relation is equipped with a plausibility preorder, and
worlds from different equivalence classes are incomparable.

This allows us to extend the isomorphisms of categories of epistemic frames and
simplicial models we presented in this chapter to the case of plausibility frames and
simplicial belief models. For simplicity, again, consider the case of pure models where
the set of present agents is the same in every world (equivalently, the indistinguishability
relations are equivalence relations).

Definition 2.4.2. A simplicial belief model is a pure simplicial epistemic model, such
that every vertex is equipped with a preorder on the set of adjacent simplices.

Example 2.4.3. Consider the model in Figure 2.5. It consists of six 2-simplices, and
every vertex is equipped with a preorder on the set of adjacent simplices. In fact, for
every agent, the local orders are total orders. For agent in the center, the worlds are
ordered clockwise, from one to six. Then, local orders do not necessarily coincide, for
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example, for agent the north-east world is more plausible than the south-east world,
while for agent it is the other way around.

2
165

4 3

21 2 1

2
1

112

1
2

2

Figure 2.5: An example of a simplicial belief model.

The study of the categorical structure of such models, in particular what is the suit-
able notion of morphism should be, is left for future work. It is easy to see, however, that
without morphisms, simplicial belief models and local plausibility frames are equivalent:
given a local plausibility frame, we can construct a simplicial belief model by taking the
set of worlds to be the set of equivalence classes with respect to the indistinguishability
relation, and the local orders are the plausibility preorders. Conversely, given a simpli-
cial belief model, we can construct a local plausibility frame by taking the set of worlds
to be the set of simplices, and the plausibility preorders are the local orders.

Nominal extension

Hybrid logic [AtC07] is an extension of modal logic with nominals. Nominals is an ad-
ditional sort of atomic propositions i, j, k, . . . that serve as names of worlds. In addition
to nominals, hybris logic has a satisfaction operator @i that gives access to the world
with corresponding name.

Formal semantics of hybrid logic is defined as follows. Suppose we are given a set of
atomic propositions Ap and a set of nominals Nom. Then, given a Kripke modelM, an
assignment is a function g that assigns to every nominal a world. The semantics is then
given for models and assignments as follows:

M, g,w |= p iff w ∈ ℓ(p)
M, g,w |= i iff w = g(i)
M, g,w |= ϕ ∧ ψ iff M, g,w |= ϕ and M, g,w |= ψ

M, g, w |= □ϕ iff M, g,w′ |= ϕ for all w′ such that w ∼ w′

M, g,w |= @iϕ iff M, g, g(i) |= ϕ
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The models of hybrid logic, when they are epistemic models, can be seen as simplicial
models with additional structure: we just equip a simplicial model with a function that
assigns a simplex to each nominal. By doing so, we break the modal equivalence of sim-
plicial models with standard and non-standard group knowledge. For example, in hybrid
logic, it is possible to express the fact that a model has at most two worlds[BRV01]: the
formula @i(¬j ∧ ¬k) → @jk. Consider the following model with non-standard group
knowledge: it has two worlds w,w′ where w ∼a w

′, w ∼b w
′ and w ∼a,b w

′. As it has
just two worlds, the formula is true in the model. However, its unraveled version with
standard group knowledge has an infinite number of worlds, so the formula is not true
in the model.

Relation with three-valued logic

In our approach to knowledge of dead agents we chose to model it by making dead
agents know everything: in particular, they know false. There is an alternative approach
to knowledge of dead agents, which is to add a relation between models and formulas,
which is called definability. This approach is taken in [RvDK23] and [vDK], where it
was called three-valued logic. Let us recall the setting.

The language is defined by the grammar ϕ ::= pa | ¬ϕ | ϕ ∧ ψ | Kaϕ. Models are
simplicial models, which reformulated in terms of this chapter, are maximal: a formula
can be interpreted in every simplex. The big difference is in valuations: the set atomic
proposition Ap is assumed to be partitioned by agents, that is Ap = ⋃

a∈A Apa. Then, a
valuation is a function ℓa from vertices of color a to P(Apa), and atomic propositions
of other agents are assumed to be false. If a simplex s has a vertex of color a in which
a proposition pa holds, we say that pa holds in the simplex s, denoted p ∈ ℓ(s).

Then, for a model X and a simplex s, the definability, denoted ▷◁ is defined as follows:

X, s ▷◁ pa iff s has a vertex of color a
X, s ▷◁ ¬ϕ iff X, s ▷◁ ϕ

X, s ▷◁ ϕ ∧ ψ iff X, s ▷◁ ϕ and X, s ▷◁ ψ
X, s ▷◁ Kaϕ iff X, s′ ▷◁ ϕ for some s′ which is a-adjacent to s

The satisfaction relation is then defined as follows:

X, s |= pa iff pa ∈ ℓ(s)
X, s |= ¬ϕ iff X, s ̸|= ϕ

X, s |= ϕ ∧ ψ iff X, s |= ϕ and X, s |= ψ

X, s |= Kaϕ iff X, s ▷◁ Kaϕ and for all a-adjacent s′, X, s′ |= ϕ
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In order to distinguish this satisfiability from the one defined in this chapter, we will
denote it by |=3.

We can define a translation of formulas from [RvDK23] to formulas of our two-valued
logic. First, we define a translation def?(ϕ) such that X, s |= def?(ϕ) iff X, s ▷◁ ϕ. It is
done by induction on ϕ:

def?(pa) = alive(a)
def?(¬ϕ) = def?(ϕ)
def?(ϕ ∧ ψ) = def?(ϕ) ∧ def?(ψ)
def?(Kaϕ) = K̂adef?(ϕ)

We then can see that X, s |=3 ϕ if and only if X, s |= def?(ϕ) ∧ ϕ.
The question is studied from another angle, more similar to hybrid logic, in the

upcoming “On Two- and Three-valued Semantics for Impure Simplicial Complexes” by
Randrianomentsoa, van Ditmarsch, and Kuznets.

Conclusion

In this chapter we considered a multi-agent epistemic logic with distributed knowledge.
We have shown completeness of the logic with respect to a class of generalized epistemic
Kripke models. This approach has two main differences from the standard case: agents
may be absent from some worlds, and the indistinguishability relation of groups is not
necessarily the intersection of the indistinguishability relations of its members. We also
considered simplicial models corresponding to the Kripke models, and showed that the
two categories are isomorphic.

However, at the end, this correspondence is somewhat unsatisfactory. If two ap-
proaches are equivalent, why prefer one over the other? What do simplicial structures
bring that Kripke models do not? Moreover, even though the epistemic coverings have
certain topological content, the construction is a bit convoluted, so it is not clear how to
use this structure for geometric reasoning. We address these issues in the next chapter.
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As we have seen in the previous chapter, simplicial models provide a semantics for
multi-agent epistemic logic. However, the fact that the category of epistemic coverings
is isomorphic to the category of epistemic frames is somewhat ambiguous. If the models
are entirely the same, why do we prefer one over the other? In this chapter, we will see
that simplicial models pave the way for a more general framework that exhibits a richer
structure. Namely, we will consider hypergraphs as a generalization of simplicial com-
plexes, and show that they provide a semantics for a many-sorted modal logic that allows
us to reason about local properties of agents and global properties of the environment
separately.

A hypergraph is a generalization of a graph, where instead of just edges between pairs
of vertices, one has hyperedges that can connect multiple vertices at once.

Definition 3.0.1. A (simple) hypergraph H is a pair (V,E), where V is the set of
vertices, and E is the set of hyperedges, which are subsets of V .

Recall that in Chapter 2, we described which simplices of a simplicial set were actually
worlds by having an annotation in the form of a covering. Hypergraphs allow to express
the same idea in a more direct way: we just do not have hyperedges that are not
worlds. This was not possible with simplicial complexes which are hypergraphs that are
downwards closed under inclusion, that is, if e ∈ E and e′ ⊆ e, then e′ ∈ E.

Hypergraphs also can be not extensional, that is, there can be multiple hyperedges
with the same set of vertices. In this case, we define a hypergraph as a pair of sets

This chapter is based on the preprint [goubaultManysortedEpistemicLogic2023], joint work
with Éric Goubault and Jérémy Ledent.

55



56 CHAPTER 3. HYPERGRAPHS FOR KNOWLEDGE

(V,E), and a binary relation ∈ between V and E. In epistemic systems, this allows us
to represent models that are not proper, that is when there are several worlds that are
not distinguishable by anybody.

We will consider a generalization of hypergraphs, where each vertex is assigned a
color, which corresponds to an agent. So, these structures are a generalization of chro-
matic simplicial complexes. Notice that in this case we consider a generalization for
complexes, and not semi-simplicial sets. We will then consider only individual knowl-
edge, and not group knowledge.

Now let us discuss the ideas behind the logic. A familiar example of a many-sorted
modal logic is CTL* [EH83] that has two sorts of formulas: path formulas and state
formulas. It is natural for such a logic to have two sorts as it talks about two types of
objects: possible states of the system and executions of the system. In the same way, we
consider a two-sorted logic that talks about two types of objects that exist in epistemic
multi-agent systems: agents and the environment. Corresponding sorts in the logic are
agent formulas and world formulas. The former are interpreted in the points of view of
agents (that is, vertices of hypergraphs), and the latter are interpreted in the worlds,
that are represented in the models as hyperedges. As agents are different and may play
different roles in the system, we have a separate sort for every agent. So, in total our
logic has |A|+ 1 sorts, one for each agent and an extra one for the environment.

The main observation is the following. Recall the semantics of the knowledge modal-
ity. It says that an agent a knows that ϕ in a world w precisely when ϕ holds in every
w′ which is indistinguishable from w by a. In a way, the only important thing is the
equivalence class of w with respect to ∼a, and not the actual world w. This suggests that
we can consider a logic where the knowledge modality is interpreted in the equivalence
classes of worlds, that is points of view, and not in the worlds. In addition, we can also
consider local atomic propositions that are relevant to the points of view of the agents.
So, we want to be able to have agent formulas that look like this: pa ∧ KaΦ, where pa
is an atomic proposition about agent a, and Φ is a world formula that describes some
global property of the environment.

We are dealing with situations where agent may be present or absent in a world.
Thus, we cannot talk about the knowledge of a specific agent in world formulas, or we
will run into the issue of how to define the knowledge of a dead agent. Instead, we will
have two modal operators that can test whether an agent exists in the world. This way,
we are forced to explicitly quantify over points of view on an agent in a given world, if
we want to talk about the knowledge of that agent. One modality is existential, denoted
Ea, and the other is universal, denoted Aa. The intuitive meaning of those operators is
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the following:

• Eaϕa: “there exists a point of view for agent a such that ϕa holds”.

• Aaϕa: “for every point of view of agent a, ϕa holds”.

Such an interpretation naturally suggests that we can have cases when an agent has
multiple points of view on the same world. This provides a connection with neighborhood
frames.

Related work. Recently, a single-sorted epistemic logic on hypergraphs was consid-
ered in [DLW23] to study weakly aggregative logics. There, vertices of hypergraphs are
not colored as they are interpreted as worlds, so these models lie in-between epistemic
frames and neighborhood frames. A framework that uses adjoint modalities was studied
in [SD09] in the context of epistemic modalities “agent is uncertain about” and “agent
has information that”. In interpreted systems [Fag+95], epistemic frames are generated
by explicitly modeling the local states of agents and global states of the environment.
However, at the level of syntax, no difference is made between local properties of the
agents, and global properties of the environment.

Plan of the chapter. In Section 3.1 we introduce the logic 2CH together with its
semantics in chromatic hypergraphs. In Section 3.2 we show that the logic is complete
with respect to these structures. The relation with the logic KB4 and partial epistemic
frames is shown in Section 3.3. In Section 3.4 we discuss further connections with Chu
spaces and neighborhood frames.

3.1 Two-level logic

Syntax

Fix a finite set A of agents. For each a ∈ A, we have a set Apa of atomic propositions
about agent a. We also have a set Ape of atomic propositions for the environment. We
use lowercase letters with subscripts ϕa, ψa, . . . to denote agent formulas, and uppercase
letters Φ,Ψ, . . . for world formulas.

Definition 3.1.1. The language of the logic 2CH is defined as follows. For each agent
a ∈ A, there is a sort of agent formulas generated by the following grammar:

ϕa ::= pa | ¬ϕ | ϕ ∧ ψ | K̂aΦ where pa ∈ Apa
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The sort of world formulas is generated by the following grammar:

Φ ::= pe | ¬Φ | Φ ∧Ψ | Eaϕa where a ∈ A and pe ∈ Ape

We will use standard propositional connectives like true, ∨, →, defined as usual.
There are also dual modalities: KaΦ := ¬K̂a¬Φ, and Aaϕa := ¬Ea¬ϕa. Modalities are
read as follows: K̂a means “agent a considers possible that”, Ka means “agent a knows
that”, Ea means “there exists a point of view of agent a such that”, and Aa means “for
all points of view of agent a”. We call K̂a and Ea existential modalities and Ka and Aa

universal modalities.
Notice that for world formulas, there are |A|modal operators to choose from, whereas

for agent formulas for a given agent, there is only one. Moreover, notice that the modal-
ities in world formulas are not binders, so Ea should not be read as “there exists an
agent a such that”. Here is an example of a syntactically well-formed world formula:
EaKaΦ∧AbKbΨ. This formula says that there exists a point of view of agent a such that
a knows Φ and for every point of view of b, b knows Ψ. Here is an example of an agent
formula which is not syntactically well-formed: KaΦ ∧ KbΨ.

Semantics

A hypergraph is a generalization of a graph, where instead of just edges between pairs
of vertices, one has hyperedges that can connect multiple vertices at once. In the intro-
duction, we defined simple hypergraphs (Definition 3.0.1), to explain the proximity with
simplicial complexes. In fact, we will be slightly more general than that, and allow mul-
tiple hyperedges to have the same set of vertices; this will allow us to model non-proper
behavior. Namely, a (non-simple) hypergraph H is a triple (V,E, P ), where V is the set
of vertices, E is the set of hyperedges, and P : E → 2V assigns to each hyperedge a set
of vertices.

In the context of multi-agent systems, we need to consider chromatic hypergraphs,
where each vertex is assigned an agent name. This could be done by adding an extra
piece of data χ : V → A, as in chromatic simplicial complexes from [GLR21], described
in Section 1.3, and the slice category for semi-simplicial sets from Chapter 2. Similarly
to the way it is done in Chapter 2, we can instead tweak the original definition of a
hypergraph a bit in order to make explicit the set of vertices assigned to each individual
agent.

Definition 3.1.2. A chromatic hypergraph H is a tuple (E, {Va, pa}a∈A), where:

• for all a ∈ A, Va is the set of views of agent a;
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• E is a set of hyperedges;

• for each agent a ∈ A, pa : E → Va is a surjective partial function. Additionally,
we require that for each e ∈ E, pa(e) is defined for at least one a ∈ A.

We will use the words view and vertex interchangeably, as well as world and hyperedge.
Given a world e ∈ E, when pa(e) is undefined, we say that agent a is dead in e. Otherwise,
a is alive in e, and we call pa(e) the view of a in e. Moreover, when pa(e) = v, we say
that v belongs to e, or that e contains v, and occasionally write v ∈a e. If a hyperedge
consists of views v0, . . . vn−1 then we say that these views are compatible. Let us explain
each condition imposed on pa.

• pa is surjective: every view belongs to at least one world.

• pa is partial: not all agents are required to be alive in a world.

• pa is functional: every world contains at most one view of each agent.

• pa(e) is defined for at least one a ∈ A: every world contains at least one live agent.

Remark 3.1.3. The main difference between chromatic hypergraphs and relational
models for epistemic logic is, as we will see, that worlds and points of view are of equal
importance. In multiple papers on simplicial semantics ([GLR18], [GLR22], [vDK]),
atomic propositions were associated either with vertices, or with facets, depending on
the context. When associated with vertices, properties are local to agents, which is
natural for distributed computing. On the other hand, the semantics is always defined
via Kripke frames, which forces one to (re)define valuations on the level of worlds. We
combine the two possibilities in one by capturing properties of both environments and
agents in the two-level syntax.

Example 3.1.4. Three examples of chromatic hypergraphs are depicted in Figure 3.1.
The three agents a, b, c are represented as colored shapes , , , respectively. In all
three hypergraphs, there is only one view per agent.

On the leftmost figure, all possible combinations of views are compatible, giving 7
hyperedges. Intuitively, in this situation, the agents do not know whether other agents
exist. A scenario like this is standard in distributed computing, where agents are pro-
cesses, and they do not know whether other processes are concurrently running.

The hypergraph depicted in the middle has a single hyperedge containing the three
views. In this situation, all agents know that everyone is alive, as it is the only possible



60 CHAPTER 3. HYPERGRAPHS FOR KNOWLEDGE

world. This represents a scenario where every agent has guarantees that the other two
agents are running.

The rightmost figure is a hypergraph with three hyperedges, each of which contains
two views. It represents a situation where the points of views are pairwise compati-
ble, but not all three of them are compatible. That is, there is no possible world that
realizes all three of them at once. This could model a scenario where each agent re-
ceives a message from one of the other two agents, but they do not know who sent
the message. Another interpretation might be in a quantum setting, as an example of
contextuality [Abr+15].

Figure 3.1: Three examples of chromatic hypergraphs

Definition 3.1.5. A chromatic hypergraph model is a tuple (H, {ℓa}a∈A, ℓe), where
H is a chromatic hypergraph, and ℓa : Apa → P (Va), ℓe : Ape → P (E) are valuation
functions.

From now on, we sometimes omit the adjective “chromatic” when clear from context.
We can now define the semantics of 2CH formulas with respect to chromatic hyper-

graph models. Given a hypergraph model H, the satisfaction relations are defined for
every sort by mutual induction. As expected, world formulas are interpreted in a world
e ∈ E, and agent formulas are interpreted in a point of view v ∈ Va of that agent.

H, v |=a pa iff v ∈ ℓa(pa)
H, v |=a ¬ϕ iff H, v ̸|=a ϕ

H, v |=a ϕ ∧ ψ iff H, v |=a ϕ and H, v |=a ψ

H, v |=a K̂aΦ iff H, e |=e Φ for some e ∈ E
such that pa(e) = v

H, e |=e pe iff e ∈ ℓe(pe)
H, e |=e ¬Φ iff H, e ̸|=e Φ
H, e |=e Φ ∧Ψ iff H, e |=e Φ and H, e |=e Ψ
H, e |=e Eaϕ iff H, v |=a ϕ for some v ∈ Va

such that pa(e) = v

Examples

Let us illustrate the semantics of 2CH on a few examples.
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Example 3.1.6. Consider again the three hypergraphs from Example 3.1.4, which we
denote by H1, H2, H3, from left to right. For now, we do not worry about atomic
propositions: we just need to assume that the sets Ap∗ are non-empty, in order to get
the constant true = p ∨ ¬p. Also, recall that the agents are depicted as a = , b = ,
and c = .

In the model H1, let us consider the hyperedge e = { , }. Then we have H1, e |=
Eatrue and H1, e |= Ebtrue, but H1, e ̸|= Ectrue. Indeed, the edge e does not contain a
point of view of agent c, i.e., pc(e) is undefined. In fact, the world formula “Eatrue” is
satisfied exactly in the worlds where agent a is alive. So let us write alive(a) := Eatrue,
so that H, e |= alive(a) iff e contains a point of view of a, that is, iff pa(e) is defined.

We can now talk about whether agents know that other agents are alive. Let v =
be the (unique) point of view of a in the model. In model H1, all combinations of
alive and dead agents are possible. So as expected, H1, v |= ¬Kaalive(b). In model H2

however, a knows that all agents are alive, since this is the only possible world: H2, v |=
Ka(alive(b) ∧ alive(c)). , in model H3 the situation is more complicated: a knows that
another agent is alive, but does not know which one. Thus, H3, v |= Ka(alive(b) ∨
alive(c)) ∧ ¬Kaalive(b) ∧ ¬Kaalive(c).

Example 3.1.7 (2-agent binary input model with solo executions). As an example
where atomic propositions play a role, we consider the situation where two agents are
given a binary input value, either 0 or 1. Moreover, there can be solo executions (a.k.a.
initial crash failures, in distributed computing), so that agents do not know if they are
running alone or not. As before, the agents are depicted as a = and b = . The
sets of atomic propositions are Apa = {0a, 1a}, Apb = {0b, 1b}, and Ape = {solo}. The
agent atomic propositions hold in the points of view indicated on the picture below. The
environment atomic proposition solo holds in the four singleton hyperedges where only
one agent is alive.

0a

1a

0b

1b

solo solo

Let v be the top-left vertex, where agent a has input value 0. Then by definition
H, v |= 0a. Moreover, a does not know whether agent b is alive: H, v |= ¬KaEbtrue,
which we could also reformulate as H, v |= ¬Kasolo, that is, a does not know whether
this is a solo execution. We can also say that a considers possible that b is alive with
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value 1: H, v |= K̂aEb1b. As a last example, we can express that a knows that if b is
alive, its value is either 0 or 1: H, v |= Ka(¬solo→ Eb(0b ∨ 1b)). Alternatively, we could
have used the operator Ab to express the same fact without relying on a property solo
of worlds: H, v |= KaAb(0b ∨ 1b).

3.2 Axiomatization

We have all standard axioms and rules of classical propositional logic in every sort, as
well as the following rules for modalities:

⊢E Φ

⊢a KaΦ
Nec-a

⊢a ϕ

⊢E Aaϕ
Nec-E

⊢ Φ→ Ψ

⊢ ♥Φ→ ♥Ψ
RM

⊢E Φ→ Aaψ

⊢a K̂aΦ→ ψ
============ Adj-1

⊢a ϕ→ KaΨ

⊢E Eaϕ→ Ψ
============ Adj-2

where ♥ is any modality. The first two rules are the usual necessitation rules. The third
rule is monotonicity of modalities. The last two rules are called adjunction rules, and
they describe the interaction between the two pairs of modalities.

We also have the following axioms for modalities:

• ⊢a ϕ→ K̂aEaϕ (surjectivity) every point of view belongs to some world;

• ⊢a K̂aEaϕ→ ϕ (functionality) every world has at most one point of view of a given
agent;

• ⊢E
∨

a Eatruea (non-emptiness) every world contains at least one point of view.

These axioms correspond exactly to the properties of the function that relates hy-
peredges and vertices in a chromatic hypergraph.

Proposition 3.2.1. The logic 2CH is sound with respect to chromatic hypergraph
models.

In this logic, we can show that the universal modalities satisfy axiom K:



3.2. AXIOMATIZATION 63

Proposition 3.2.2. For ♥ ∈ {Aa,Ka}, the axiom K♥ holds: ♥(ϕ→ ψ)→ (♥ϕ→ ♥ψ).

Proof. First, we show that universal modalities distribute over conjunction, that is ♥(ξ∧
η) ↔ (♥ξ ∧ ♥η). Left-to-right direction: we have that (ξ ∧ η) → ξ and (ξ ∧ η) → η.
Applying the RM rule, we get that ♥(ξ ∧ η) → ♥ξ and ♥(ξ ∧ η) → ♥η. From this,
the left-to-right direction follows. Right-to-left direction: denote the modality adjoint
to ♥ by ♠, that is, if ♥ = Aa then ♠ = K̂a and if ♥ = Ka then ♠ = Ea. We have that
♠♥ξ → ξ from ♥ξ → ♥ξ and the corresponding adjunction rule, similarly for η. From
this we have that ♠♥ξ∧♠♥η → ξ∧η. By the same proof as in the left-to-right direction,
we have that ♠(♥ξ ∧ ♥η) → ♠♥ξ ∧ ♠♥η. Thus, we have that ♠(♥ξ ∧ ♥η) → ξ ∧ η.
Applying the adjunction rule, we get that ♥(ξ ∧ η)→ ♥ξ ∧♥η, which is the right-to-left
direction.

The fact that K follows from the distribution of universal modalities over conjunction
is a standard proof: From ((ξ → η) ∧ ξ)→ η by RM we have ♥((ξ → η) ∧ ξ)→ ♥η. By
distribution, we have (♥(ξ → η) ∧ ♥ξ)→ ♥((ξ → η) ∧ ξ). Combining these two, we get
(♥(ξ → η) ∧ ♥ξ)→ ♥η, and thus ♥(ξ → η)→ (♥ξ → ♥η).

We give a list of useful formulas that are derivable in the logic 2CH.

Proposition 3.2.3. The following statements are derivable in the two-level logic 2CH:

1. Eaϕ→ Aaϕ

2. KaΦ→ KaEaKaΦ

3. EaKaΦ→ Φ

4. Φ→ AaK̂aΦ

5. ϕ→ KaEaϕ

6. KaΦ→ K̂aΦ

Proof. For the first formula, we just apply the adjunction rule to K̂aEaϕ → ϕ, which
is an axiom. In order to show the second formula, just apply the adjunction rule to
EaKaΦ → EaKaΦ, which is a tautology. Formulas 3, 4 and 5 are derived from KaΦ →
KaΦ, K̂aΦ → K̂aΦ, and Eaϕ → Eaϕ respectively by applying the adjunction rule. The
last formula is shown as follows: from formulas 3 and 4 we have EaKaΦ → AaK̂aΦ.
Applying the adjunction rule, we get K̂aEaKaΦ→ K̂aΦ. We also have KaΦ→ K̂aEaKaΦ,
which is an axiom. From the last two formulas, we get KaΦ→ K̂aΦ.

Here is an intuitive explanation of these formulas:

1. If ϕ holds in a point of view of a, then it holds in all points of view of a. That is,
there can be at most one point of view per world.
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2. This is a form of positive introspection: if an agent knows something, then he
knows that he knows it. However, we can put stress on the last “he”, that is, “if
he knows something, then he knows that he knows it”.

3. This is a form of veracity: if a fact about a world is known by someone, then it is
true.

4. If a certain fact holds in a world, then the agents in this world consider this fact
possible. This is related to negative introspection.

5. Agents know the local facts about themselves.

6. This is the usual modal axiom D. It reflects the fact that every point of view
belongs to at least one world.

In [GLR21], the use of local atomic propositions leads to a so-called assumption of
locality, Ka(pa,x) ∨Ka(¬pa,x): agents know the value of every local atomic proposition.
In hypergraph models, valuations are local by construction:

Proposition 3.2.4. For any pa ∈ Apa, the formula KaEapa ∨ KaEa¬pa is derivable in
2CH.

Proof. By adjunction rules, we have K̂aAapa → pa and pa → KaEapa. By cut rule,
we have K̂aAapa → KaEapa. This is equivalent to KaEapa ∨ KaEa¬pa by propositional
logic.

Note that the above proof does not use the fact that pa is atomic, so in fact, an agent
knows any formula about itself. That is, for any ϕ, KaEaϕ ∨ KaEa¬ϕ is derivable.

Completeness

The proof of completeness uses the standard canonicity argument, extended to the many-
sorted case. There is nothing surprising: the canonical model consists of the maximal
consistent sets of formulas, now of several sorts. These sets satisfy standard properties,
and together form a chromatic hypergraph.

Definition 3.2.5. A set of formulas S∗ of sort ∗ is inconsistent if false can be derived
from it. Otherwise, it is called consistent. A consistent set of formulas is maximal if it
is not a proper subset of any other consistent set of formulas.
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Proposition 3.2.6. Maximal consistent sets (MCS) of formulas of sort ∗ are closed
under modus ponens: for any formula ξ of sort ∗, either ξ ∈ S∗ or ¬ξ ∈ S∗, and every
(non-maximal) consistent set of formulas of sort ∗ is contained in a maximal consistent
set of formulas of sort ∗.

Definition 3.2.7. The canonical hypergraph model consists of the following:

• the set of hyperedges is E = {Se | Se is an MCS of sort e};

• for each agent a, the set of vertices is Va = {Sa | Sa is an MCS of sort a};

together with relations Ra ⊆ E × Va for every agent a, which are defined as follows:
SERaSa iff for all formulas Φ, if Φ ∈ SE , then K̂aΦ ∈ Sa. The valuation function is
defined by: ℓ∗(p∗) = {S∗ | p∗ ∈ S∗}.

Proposition 3.2.8. In the canonical model, if SERaSa, if KaΦ ∈ Sa, then Φ ∈ SE .

Lemma 3.2.9. The canonical model is a chromatic hypergraph, that is, Ra is surjective,
functional, and for any SE there is Sa such that SERaSa for at least one a.

Proof. First, suppose that SERaSa, SERaS
′
a, and Sa ̸= S′

a. It means that there is a
formula ϕ which is in Sa, but is not in S′

a. By adjoint axiom and modus ponens, KaEaϕ

is in Sa. By Proposition 3.2.8, Eaϕ is in SE . Using the definition of the canonical model,
K̂aEaϕ belongs to S′

a. From there, by functionality axiom and modus ponens, ϕ ∈ S′
a,

which is a contradiction. Thus, Sa = S′
a.

Second, we need to show that in the canonical model every vertex belongs to a
hyperedge. Assume this is not the case, that is, there is a vertex Sa that does not belong
to any hyperedge. It means that there is no maximal consistent set of formulas that
contains S = {Φ | KaΦ ∈ Sa}. In particular, it means that S is itself not consistent,
that is, there is a finite set of formulas {Φi} such that ∧

iΦi → false is derivable. By
applying necessitation, we get that Ka(

∧
iΦi → false) is derivable, thus belongs to Sa.

As Ka distributes over conjunction, and every AaΦi is in Sa, we get that Ka
∧

iΦi is in
Sa. Applying modus ponens, we get that Kafalse is in Sa. Using surjectivity axiom, we
get that false is in Sa, that is Sa is not consistent, which is a contradiction.

Lastly, we need to show that every hyperedge contains some vertex. Suppose it is not
the case, that is there is a hyperedge SE that does not contain any vertex. It means that
for every a, the set K̂aSE is not consistent. Thus, for all a, there is a finite set of formulas
{Φa

i } ⊂ SE , such that ∧
i K̂aΦa

i → false is derivable. We now show that this implies that
SE is not consistent. By applying necessitation, we get that Aa(

∧
i K̂aΦa

i → false) is
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derivable for every a. By (K) and modus ponens, we derive Aa(
∧
K̂aΦa

i ) → Aafalse.
Combining them all together, we have that ∧

a

∧
i(AaK̂aΦa

i ) →
∧

a Aafalse is derivable
too. The antecedent is in SE because every Φa

i is in SE and Φ → AaK̂aΦ is an axiom.
Thus, ∧a Aafalse is in SE , which means that SE is not consistent since ∨

a Eatruea is an
axiom, which is its negation. We have a contradiction, which means that every hyperedge
contains some vertex.

Lemma 3.2.10. In the canonical model, S∗ |=∗ ξ iff ξ ∈ S∗.

Theorem 3.2.11. The logic 2CH is complete with respect to chromatic hypergraph
models.

3.3 Hypergraphs and epistemic frames

Equivalence with partial epistemic frames

Let us recall first the definition of a partial epistemic frame, which has been one of the
main models used in the study of epistemic logics such as KB4 in [GLR22]:

Definition 3.3.1. Given the set of agents A, a partial epistemic frame M consists of
a set of worlds M together with a family of partial equivalence relations {∼a}a∈A, such
that for every w ∈ M , w ∼a w for at least one a ∈ A. A morphism of partial epistemic
frames is a function f : M → M ′ such that for every a ∈ A and w,w′ ∈ M , w ∼a w

′

implies f(w) ∼a f(w′).

We can transform a partial epistemic frame into a chromatic hypergraph, and vice
versa, using the following construction. Suppose we are given a partial epistemic frame
M. We construct a chromatic hypergraph η(M) by setting E = M and Va = M/∼a ,
that is the set of hyperedges is exactly the set of worlds, and the set of vertices of color
a is the set of equivalence classes of ∼a. We then set pa(w) to be [w]a, that is the
equivalence class of w under ∼a. It is easy to check that this indeed defines a chromatic
hypergraph.

Conversely, given a chromatic hypergraph H, we can construct a partial epistemic
frame κ(H). We set the set of worlds M to be equal to the set of hyperedges of H, and
e ∼a e

′ if and only if e and e′ share an a-colored vertex. This yields a partial equivalence
relation.

These maps can be seen as the dual hypergraph construction: ifH = (V,E) is a (non-
chromatic) hypergraph, then H∗ is the hypergraph (E, V ) where the hyperedges are the
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vertices of H and the vertices are the hyperedges of H. Partial epistemic frames can
be seen as hypergraphs that have colored hyperedges which are defined by equivalence
classes. The correspondence is exemplified in Figure 3.2.

η

κ

Figure 3.2: Example of correspondence between chromatic hypergraphs and frames.

In fact, η and κ can be extended to morphisms of partial epistemic frames and
chromatic hypergraphs, giving an equivalence of categories. First, we need to define the
corresponding morphisms of chromatic hypergraphs:

Definition 3.3.2. A morphism of hypergraphs f : H → H ′ is a family of functions
fa : Va → V ′

a for each agent a, together with a function fe : E → E′ such that for
all a ∈ A, if pa(e) = v then p′a(fe(e)) = fa(v). A morphism of hypergraph models
f : H → H ′ is a morphism of underlying hypergraphs, such that if e ∈ ℓe(pe), then
f(e) ∈ ℓe(pe), as well as if v ∈ ℓa(pa), then f(v) ∈ ℓa(pa).

Theorem 3.3.3. The category of partial epistemic frames is isomorphic to the category
of chromatic hypergraphs. In particular, for any chromatic hypergraph H, η(κ(H)) is
isomorphic to H, and for any partial epistemic frameM, κ(η(M)) is isomorphic toM.

Proof. We just need to show how η and κ are extended to morphisms. Functoriality
is then straightforward, and checking that η(κ(H)) ≃ H and κ(η(M)) ≃ M is also
straightforward. Let f : H → H ′ be a morphism of chromatic hypergraphs. Then
η(f) : η(H)→ η(H ′) just sends a world e to fE(e). This is indeed a morphism of partial
epistemic frames: suppose two worlds e and e′ in η(H) are ∼a-equivalent. It means that
in H these two hyperedges share a vertex, and thus in H ′ the two hyperedges fE(e) and
fE(e′) share a vertex, and thus fE(e) ∼a fE(e′).

Now let g : M → M′ be a morphism of partial epistemic frames. Then κ(g) :
κ(M) → κ(M′) sends a hyperedge w to g(w), thus κ(g)E is defined. We need to show
that it induces a map on vertices, and that the condition for morphisms is satisfied. As
g preserves ∼a, it induces a map on equivalence classes, which is exactly κ(g)a. Let w be
a hyperedge and v be a vertex in κ(M), such that pa(w) = v. It means that w belongs
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to the equivalence class corresponding to v inM. Thus, g(w) belongs to the equivalence
class corresponding to g(v) inM′, and thus pa(g(w)) = g(v).

Theorem 3.3.3 shows that chromatic hypergraphs and partial epistemic frames con-
tain exactly the same information. In particular, it means that, in fact, we can define
the semantics of 2CH in partial epistemic frames. It is just a bit inconvenient to do,
since we would have to attach agent atomic propositions and interpret agent formulas
in the equivalence classes of ∼a.

Instead, we can still embed partial epistemic models (with only world atomic propo-
sitions) into a subclass of chromatic hypergraphs models, such that Apa = ∅ for every
agent. From this, we can extend Theorem 3.3.3 to work at the level of models:

Corollary 3.3.4. The category of partial epistemic models is isomorphic to the category
of chromatic hypergraph models with empty sets of atomic propositions for agents.

Translation from KB4 to 2CH

We can use the equivalence of epistemic frames and hypergraphs for showing how the
logics KB4 and 2CH are related: we will show that 2CH is a conservative extension
of KB4 + NE, where axiom NE ensures that there is an alive agent in each world (see
[GLR22] for further details). From the semantic side, the worlds of epistemic frames are
the hyperedges of hypergraphs, thus the formulas of KB4 are to be translated to the
world formulas of 2CH. In particular, when defining the translation, we set the set of
world atomic propositions to be the set of atomic propositions of KB4. The translation
of formulas is defined recursively as follows:

⌜p⌝ := p ⌜¬Φ⌝ := ¬⌜Φ⌝ ⌜Φ ∧Ψ⌝ := ⌜Φ⌝ ∧ ⌜Ψ⌝ ⌜KaΦ⌝ := AaKa⌜Φ⌝

Proposition 3.3.5. For a partial epistemic frameM and a formula Φ of KB4,M, w |=
Φ iff η(M), η(w) |=e ⌜Φ⌝.

Proof. We show the statement by induction on the structure of Φ. For atomic propo-
sitions, as well as boolean connectives, the proof is trivial. For the modality, we have:
M, w |= KaΦ if and only if for all w′ ∈M such that w ∼a w

′,M, w′ |= Φ. By induction,
this is equivalent to for all w′ ∈M such that w ∼a w

′, η(M), η(w′) |= ⌜Φ⌝. By definition
of η, it is the same as for all hyperedges e ∈ η(M)E that share an a vertex with η(w),
η(M), e |= ⌜Φ⌝. This is equivalent to η(M), η(w) |= ⌜KaΦ⌝.

Corollary 3.3.6. Φ is valid in a partial epistemic frameM iff ⌜Φ⌝ is valid in η(M).
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Using this and Theorem 3.2.11, we can show that 2CH is a conservative extension
of KB4:

Theorem 3.3.7. For every KB4-formula Φ, ⊢KB4+NE Φ if and only if ⊢e ⌜Φ⌝.

Proof. By completeness, for KB4 we have ⊢KB4+NE Φ⇔ |= Φ. By Corollary 3.3.6, we
have |= Φ⇔ |=e ⌜Φ⌝. And by completeness for 2CH, we have |=e ⌜Φ⌝⇔ ⊢e ⌜Φ⌝.

As a corollary, we get that the combination of modalities AaKa satisfies axioms K,
B, and 4.

The crucial part of the proof of Theorem 3.3.3 hides in the way morphisms of chro-
matic hypergraphs are organized. In fact, in order to define a morphism, it is enough
to define a function between the sets of hyperedges, and check whether a condition is
verified. This condition is that if a hyperedge e has a vertex of color a, then its image
must have a vertex of the same color. In this way, the functions between vertices are
automatically induced, since there is at most one vertex of each color in a hyperedge.

For usual Kripke models of modal logic, the morphisms have a preservation property
for a particular class of formulas, namely, positive existential formulas (see [BRV01]). We
can adapt the lemma to chromatic hypergraphs. We call a formula positive existential
if it contains only atomic propositions, ∧, ∨ and existential modalities, that is E and K̂.
The lemma is then the following:

Lemma 3.3.8. If ϕ is a positive existential formula, then for any morphism of hyper-
graph models f : H → H ′, if H,w |=∗ ϕ, then H ′, f(w) |=∗ ϕ, where ∗ is either e or
a ∈ A, and w is either a hyperedge or a vertex, respectively.

Proof. By induction on ϕ. The base case of atomic propositions and boolean connectives
is straightforward. Suppose now that ϕ = Eψ. Then H, e |=a Eψ if and only if there is
va ∈a e, such that H, va |=a ψ. By induction, we have that H ′, f(va) |=a ψ. By definition
of morphism, we have that f(va) ∈a f(e). Thus, H ′, f(e) |=a Eψ. Similarly for K̂.

In the same way, we can see that formulas that contain only universal modalities
and where every atomic proposition is preceded by a negation are reflected along the
morphisms, that is, if H ′, f(w) |=∗ ϕ, then H,w |=∗ ϕ.

3.4 Hypergraphs, neighborhood frames and Chu spaces

In the definition of chromatic hypergraphs, we required that every hyperedge contains at
most one vertex of each color. Thus, in every world, an agent can have either 0 or 1 point
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of view. But what happens if we drop this condition and allow agents to have multiple
points of view about a given world? Technically, this can be achieved by replacing, the
partial function pa : E → Va by a relation pa ⊆ E × Va, i.e., get rid of the functionality
requirement.

This leads to a connection with neighborhood frames and Chu spaces. Let us first
recall the definitions.

Neighborhood frames

In the context of epistemic logic, neighborhood frames generalize epistemic frames by
allowing agents to have multiple points of view (or “frames of mind” [FH87]) on the
same world. The general definition of a multi-agent neighborhood frame is as follows.

Definition 3.4.1. A neighborhood frame is a pair M = (S, {Na}a∈A), where

• S is a set of states;

• for every agent a ∈ A, Na is a function that assigns to every state s ∈ S, a set
Na(s) ⊆P(S) called the a-neighborhoods of s.

The function Na associates a set of subsets of S with every world. These subsets are
analogous to equivalence classes in relational frames, but now one world can belong
to multiple classes at the same time. Thus, we can interpret the sets in Na(s) as the
possible points of view of agent a on state s: in one point of view U ∈ Na(s), the agent
thinks that the set of possible worlds is U , in another point of view V ∈ Na(s), the agent
thinks that the set of possible worlds is V , and so on.

Remark 3.4.2. In the case of a single agent, neighborhood frames generalize topological
spaces, and do so in two ways. First, the neighborhoods are not required to satisfy any
topological axioms, such as being closed under intersection. Second, the neighborhoods
are associated with each point of the space, and not the whole space: this way a point
does not have to belong to its own neighborhood.

Example 3.4.3. Suppose we have two processes, communicating through shared mem-
ory. The memory has two cells, and each cell stores a bit of information: 0 or 1. Pro-
cesses are given access to memory cells arbitrarily, and both can be assigned the same
cell. They know which cell is assigned to them, and they know the value that is stored in
this cell, that is, they read the value of the cell. Therefore, a process can have two points
of view on the same situation, depending on which cell it is given access to. Assume for
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example that the shared memory stores values (0, 1). Process a, when assigned the first
cell, knows that the memory stores 0, and when assigned the second cell, knows that
the memory stores 1. So the set of possible states is S = {(0, 0), (0, 1), (1, 0), (1, 1)}. In
state (0, 1), the two possible points of view of process a are described by neighborhoods:
Na((0, 1)) = {{(0, 0), (0, 1)}, {(0, 1), (1, 1)}}. The four states and the neighborhoods for
one agent are depicted in the figure below. The neighborhoods for the other agent are
the same.

Neighborhood semantics

Neighborhood frames are models of modal logic. As usual, we fix a set of atomic propo-
sitions Ap, and define valuation functions on frames.

Definition 3.4.4. A neighborhood model is a tuple M = (S, {Na}a∈A, ℓ), where M =
(S, {Na}a∈A) is a neighborhood frame and ℓ : Ap→P(S) is a valuation function.

These models are quite general. For example, axiom (K) is valid in every Kripke
frame, but this is not the case for neighborhood frames, similarly for the necessitation
rule. More formally, the minimal modal logic, which is not normal, is sound and complete
with respect to the class of all neighborhood frames. For a more detailed discussion of the
correspondence between various logical systems and neighborhood frames, see [Pac17].

In epistemic logic, we do not need the full generality, since we still want to capture
some properties of knowledge. The use of neighborhood frames, however, allows us to
deal with the problem of logical omniscience: we may have frames that do not validate
axiom (K), thus even when an agent knows ϕ and ϕ→ ψ, she does not necessarily know
ψ.

The way it works can be seen from the definition of the semantics.

Definition 3.4.5. Given a neighborhood model M = (S, {Na}a∈A, ℓ), and a state s ∈ S,
the satisfaction relation |= is defined as follows:

• M, s |= p iff s ∈ ℓ(p);
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• M, s |= ¬ϕ iff M, s ̸|= ϕ;

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ;

• M, s |= Kaϕ iff there is U ∈ Na(s), for all s′ ∈ U , M, s′ |= ϕ.

The knowledge modality is then interpreted not just as “in world s, agent knows
that”, but as “there is a point of view of agent on s such that agent knows that”. From
this we can see how axiom (K) can be invalidated: agent can have a point of view in
which she knows ϕ, and another point of view in which she knows ϕ→ ψ, but she does
not have a point of view in which she knows ψ.

Remark 3.4.6. The semantics above is not the only possible semantics for neighborhood
frames. There is another one, which is usually called strict when compared with the
semantics above. There, for a Kϕ to be true in a state w, it is required that w has a
neighborhood which is exactly the set of states satisfying ϕ. That is, M, w |= Kϕ iff
there is U ∈ Nw such that U = {w′|w′ |= ϕ}. See [AF09] for a detailed discussion.

For the rest of the chapter, we consider only neighborhood frames for which the
following condition holds: for every a ∈ A and for every s ∈ S, if Na(s) is not empty then
s ∈

⋂
Na(s). It is slightly different from another condition which is usually imposed on

neighborhood frames in epistemic context: for every s ∈ S, s ∈ ⋂
Na(s). The difference

is that we add a conditional “if Na(s) is not empty”. This corresponds to the idea that
an agent may be absent from a world, and thus not have any point of view on it. In
the standard setting it is usually assumed that every agent is present in every world.
Notice that the function Na : S →PP(S) induces a relation νa ⊆ S×P(S), such that
(s, U) ∈ νa if and only if U ∈ Na(s). This relation does not necessarily coincide with the
membership relation ∈⊆ S ×P(S). The condition above can be then reformulated as
follows: for every a ∈ A and for every s ∈ S, if (s, U) ∈ νa then s ∈ U .

We additionally ask that every point belongs to a neighborhood of some agent, and
that an empty set is never a neighborhood. These conditions correspond to the conditions
we imposed on chromatic hypergraphs.

Chu spaces

Another kind of structures we consider is Chu spaces. Similarly to neighborhood frames,
Chu spaces can be seen as a generalization of topological spaces. For an introduction,
see [Pra99], discussion of categorical Chu construction, see [Bar96], and for applications
in concurrency theory, see [Pra03].
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We concentrate on the simplest version, adapted to our multi-agent setting. Fix a
finite set of agent A.

Definition 3.4.7. A chromatic Chu space is a tuple M = (X, {Sa,∈a}a∈A), where

• X is a set of points, and

• for every agent a ∈ A, Sa is a set of states of agent a together with a relation
∈a⊆ X × Sa.

One can see that neighborhood frames are exactly extensional Chu spaces, that is,
Chu spaces where if two states v and v′ contain the same set of points, then v = v′.

Remark 3.4.8. It is known ([Bar98]), that the category of extensional Chu spaces is a
coreflective subcategory of the category of Chu spaces. We expect the proof to extend
to the case of chromatic Chu spaces.

Morphisms of Chu spaces are defined as follows.

Definition 3.4.9. A chromatic Chu transformation for a pair of chromatic Chu spaces
M = (X, {Sa,∈a}a∈A) and M′ = (X ′, {S′

a,∈′a}a∈A) is a family of functions f : X → X ′

and ga : S′
a → Sa for each agent a, such that for all a ∈ A, x ∈ X, and s′a ∈ S′

a,
x ∈a ga(s′a) iff f(x) ∈′a s′a.

Mildly generalized hypergraphs

We can now relax the condition from the definition of chromatic hypergraphs, and al-
low hyperedges to contain multiple vertices of the same color. This will lead us to a
connection with Chu spaces and neighborhood frames.

Definition 3.4.10. A chromatic hypergraph H is a tuple (E, {Va,∈a}a∈A), where:

• for all a ∈ A, Va is the set of views of agent a;

• E is a set of hyperedges;

• for each agent a ∈ A, ∈a⊆ Va×E is a total relation. Additionally, we require that
for each e ∈ E, for at least one a ∈ A there is va ∈ Va such that va ∈a e.

Though it is a bit confusing, we call these structures chromatic hypergraphs too.
Notice that we reversed the order of the relation: now the relation ∈a⊆ Va×E, and not
pa ⊆ E × Va.
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The proof of the completeness theorem 3.2.11 steadily adapts to this generalized
setting: we just need to omit the axioms K̂aEaϕ → ϕ that corresponded exactly to the
at most uniqueness of the vertex of each color in a hyperedge.

Given a chromatic hypergraph H, we can construct a Chu space χ(H). We set
X = E, and for each agent a ∈ A, we set Sa = Va. The relation χ(∈a) is the opposite
of ∈a, that is (e, va) ∈ χ(∈a) iff (va, e) ∈∈a. Of course, the Chu space we get satisfies
some additional conditions: for each x ∈ X, there is a ∈ A and sa ∈ Sa such that
(x, sa) ∈ χ(∈a), and for each a ∈ A and sa ∈ Sa, there is x ∈ X such that (x, sa) ∈ χ(∈a).
Let us call Chu spaces that satisfy these conditions epistemic Chu spaces.

Similarly, if we have an epistemic Chu space M = (X, {Sa,∈a}a∈A), we can construct
a chromatic hypergraph η(M), by setting E = X, Va = Sa, and η(∈a) =∈opa . It is easy
to see that these constructions are inverse to each other, so the semantics of 2CH can
be equivalently defined in terms of chromatic Chu spaces.

Proposition 3.4.11. For every chromatic hypergraph H, χ(η(H)) is isomorphic to H,
and for every epistemic Chu space M, η(χ(M)) is isomorphic to M.

Let us call a chromatic hypergraph separated if every two vertices va and v′a of color a
are contained in the same set of hyperedges are equal. If we consider separated chromatic
hypergraphs, then the Chu space χ(H) is extensional, and thus we get a correspondence
between separated chromatic hypergraphs and neighborhood frames.

Is this construction functorial? Unfortunately, for morphisms of hypergraphs defined
as in Definition 3.3.2, it is not. Notice the direction of the functions ga : S′

a → Sa in
the definition of a morphism of chromatic Chu spaces. They go from the target to the
source, whereas in the definition of a morphism of chromatic hypergraphs, the functions
fa : Va → V ′

a go from the source to the target.
What about neighborhood frames? We may consider morphisms that differ from

that of Chu spaces. Moreover, for the neighborhood frames, there is no one standard
notion of a morphism. Usually, especially in the context of coalgebras, morphisms are
taken to be bisimulations, and even then, there are several kinds of them, see [HKP07].

As morphisms of hypergraphs are not bisimulations (as they do not preserve validity
of all formulas), we may try to consider a notion of a morphism which should just
resemble the notion of a simulation. For the definition, we just keep the “forth” direction
of the definition of a monotonic bisimulation.

Definition 3.4.12. Given two neighborhood models M,M′, a (functional) simulation is
a function f : S → S′ such that if f(w) = w′ then:
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• (atoms) for all p ∈ Ap, if w ∈ ℓ(p), then w′ ∈ ℓ(p);

• (forth) if U ∈ Nw, then there is U ′ ∈ Nw′ such that for all x′ ∈ U ′ there is x ∈ U
such that f(x) = x′.

For this choice of morphisms, the construction is not functorial either. One way to
see this is to look what kind of formulas are preserved along the morphisms when models
are considered. In the case of chromatic hypergraphs, formulas that contain existential
modalities are preserved, as we have seen in Lemma 3.3.8. In the case of neighborhood
frames, formulas that contain theK modality are preserved (see [GS13]). However, as we
will see in a moment, the K modality can be seen as a combination of an existential and
a universal modality of 2CH. Thus, the morphisms of neighborhood frames preserve a
different class of formulas of 2CH, so they are not morphisms of chromatic hypergraphs.

Similarly to the case of relational frames, we can relate the semantics of epistemic
logic in neighborhood frames and in chromatic hypergraphs. We define a translation of
formulas in the following way:

⌜p⌝ := p ⌜¬Φ⌝ := ¬⌜Φ⌝ ⌜Φ ∧Ψ⌝ := ⌜Φ⌝ ∧ ⌜Ψ⌝ ⌜KaΦ⌝ := EaKa⌜Φ⌝

The main difference with the translation we had for relational frames, is that now
the modality Ka is translated to EaKa instead of AaKa. It captures the semantics in
neighborhood frames: for a formula KaΦ, we require that there is a point of view of
agent a such that for all worlds in this point of view, Φ holds. This translation is similar
to the one used in [HKP07], but instead of going to first-order logic we stay in the modal
case, and also can consider atomic propositions on neighborhoods.

The proof of the following proposition is similar to the proof of Proposition 3.3.5.

Proposition 3.4.13. For a neighborhood frame M and a formula Φ, M, w |= Φ iff
η(M), η(w) |=e ⌜Φ⌝.

3.5 Conclusion and future work

In this chapter, we introduced a new many-sorted modal logic for epistemic reasoning
in multi-agent systems. We gave its semantics in terms of chromatic hypergraphs, and
showed that it is sound and complete with respect to this semantics. We also showed
that this system is a conservative extension of KB4, and explored some connections
with neighborhood frames and Chu spaces.
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The perspective on epistemic logic uncovered by simplicial semantics does not appear
to be fully developed on the syntactical side. The main contribution of the chapter is
the further development of logical tools for local reasoning of agents through the use of
a two-level syntax.

Hypergraph invariants in distributed computing

Every chromatic simplicial complexes can be represented as a chromatic hypergraph.
The leftmost hypergraph from Figure 3.1 is an example: for every hyperedge, which in
the context of simplicial complexes we would call a simplex, all (non-empty) combina-
tions of its vertices are also hyperedges. This is exactly the definition of a simplicial
complex. Moreover, simplicial maps can be translated to morphisms of hypergraphs.
Thus, chromatic simplicial complexes form a subcategory of chromatic hypergraphs.
However, this subcategory is not full, as the definition of a morphism of chromatic hy-
pergraphs is slightly weaker and allows for more morphisms between hypergraphs. For
example, a hyperedge can be sent to a hyperedge that contains more vertices, whereas
simplices must be sent to simplices of the same dimension. However, if we consider only
morphisms that preserve the size of hyperedges, then the subcategory is reflective, as
the inclusion functor has a left adjoint.

Regardless of categorical relation of these two categories, it is interesting to consider
chromatic hypergraphs as a model of distributed computing, as they generalize simplicial
complexes and allow for a more flexible modeling of systems. There is also a non-trivial
theory of algebraic invariants of hypergraphs (see, for example, [Gri+19]), which can
be employed in the context of distributed computing similarly to the way it is used for
simplicial complexes.

Additional modalities

In this chapter, we considered only the modalities of individual knowledge. In distributed
computing, modalities of group knowledge are also important. Hence, it is interesting to
consider extensions of the logic with modalities such as common knowledge, everybody
knows, and so on. Since groups exist only in worlds, group modalities can be seen as
operators on world formulas, that themselves form world formulas. Once we decided
how we formalize knowledge of an agent, that is whether it is EaKa or AaKa, we can
define the modalities of group knowledge in the same way it is done in [HM90].
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For example, “everybody knows” can be defined in the language in the following way:

EAΦ =
∧
a∈A

EaKaΦ.

In hypergraphs, this corresponds to looking at the set of hyperedges that are adjacent
to a given hyperedge, and verifying that Φ holds in all of them.

Modality “somebody knows” is defined in the same way, but with a disjunction
instead of a conjunction:

SAΦ =
∨
a∈A

EaKaΦ.

Semantically, it corresponds to the fact that given a hyperedge e, Φ holds in at least one
adjacent hyperedge.

The modality of common knowledge cannot be defined in the language, as it is the
fixed point of the operator EA. Interpretation of the modality in hypergraphs, however,
is straightforward: it corresponds to considering a connected component of a hypergraph.
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So far in this thesis, we have considered only static models of knowledge. The main
point of the study of distributed systems, however, is to understand a behavior of a
system over time. One usually wants to show whether certain state of one agent, or of
the whole system, is achievable by performing actions or communicating messages. In
this context, knowledge that participants have helps to guide the system towards the
desired state, or to prove that it is impossible to reach.

At the same time, since agents in the system often act asynchronously, distributed
systems are naturally concurrent. Knowledge and concurrency, however, are formally
independent: one can have a system where all actions are fully concurrent, but par-
ticipants have perfect knowledge of the execution, or a system where all actions are
sequential, but agents do not know what actions were performed. In some situations,
however, knowledge and concurrency are intertwined. For example, the impossibility of
consensus in asynchronous systems arises exactly because agents do not know whether
other agents have sent their messages or not.

In this chapter, we provide a discussion, together with preliminary results, on various
interactions of knowledge, concurrency, and time.

Related work. A prominent approach to the dynamics of knowledge in distributed
systems is the framework of interpreted systems [Fag+95]. In this chapter we consider
an alternative approach based on histories of actions, akin to the one used in [Pac07].
Another way to describe the interaction of actions and knowledge is dynamic epistemic
logic [vDvdHK07]. In the same vein, the dynamics is studied using epistemic programs
in [Bal03]. To our knowledge, for the first time an intentional mix of the standard models
of concurrency with knowledge was considered in [KMP12].

79
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Plan of the chapter. In Section 4.1, we recall the definitions of existing models that
combine knowledge and time, and show how they are related. In particular, we show
a connection between epistemic temporal frames and epistemic transition systems. We
then extend the framework of chromatic hypergraphs in Section 4.2 to the dynamic case
by introducing a new model, and show how to build one from a given epistemic temporal
frame. Finally, we discuss how knowledge dynamics can be seen in the true concurrency
setting, and how true concurrency models can be enriched with knowledge in Section 4.3.

4.1 Epistemic-temporal frames

There are several ways to combine time and knowledge in a single framework. For a
thorough overview of the literature, see [BvdH14]. In this section, we will concentrate
on history-based structures, alternately known as epistemic-temporal frames, since they
are the most suitable for our purposes. For the moment, we consider its simplest version.

Let Σ be a set of actions. A history h is a sequence of actions from Σ. We say that
a set of histories H is a protocol if it is closed under prefixes, that is, if h ∈ H and h′ is
a prefix of h, then h′ ∈ H.

Definition 4.1.1. An epistemic temporal frame is a tuple (H,Σ, {∼i}i∈A), where H is
a protocol with the action set Σ, and for every agent i an equivalence relation ∼i on H.

The equivalence relations model the knowledge of agents in the system, the dynamics
of which is given by the set of histories. For example, if for agent i history ab is indis-
tinguishable from ba, then the agent does not know what was the order of actions. At
the same time, an agent may not distinguish between histories that consist of different
actions: a ∼i b, means that the agent does not know which one of the actions actually
happened.

Remark 4.1.2. This is not the only way to define knowledge in protocols based on
histories of actions. Another way, presented, for example, in [Pac07], is to consider
alphabets of observable actions Oi for every agent, together with maps λi : H → O+

i .
A history is mapped into a sequence of actions that an agent can observe, that is,
these functions describe the perception of “real” executions by agents. In this case, two
histories h, h′ are indistinguishable for an agent i if λi(h) = λi(h′).

Remark 4.1.3. Another well-established approach to the dynamics of knowledge in
distributed systems is interpreted systems, which is discussed in the introduction. The
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(modal) equivalence of history-based structures and interpreted systems is studied in
[Pac07].

We now give several examples of epistemic temporal frames. These examples describe
some well-known distributed objects (or instructions): test-and-set, compare-and-swap
and read-write registers.

Example 4.1.4 (Test-and-set with single bit.). We start with three actions {a1, a2, a3},
one for each agent. The histories we consider are one-shot, that is, every agent performs
its action only once. The set of histories H consists of six maximal histories together
with all their prefixes. The indistinguishability relation of every agent divides the set of
histories H into three equivalence classes: one where the agent does not yet know the
outcome, one where he knows that he was first to access the object, and one where he
knows that he was not the first. More formally, for agent i, the first class contains all
histories that do not contain ai, the second contains all histories that have ai on the first
place, and the last class has all histories that have ai on the second or the third place.
The frame is depicted in Figure 4.1.

a1

a2

a3

a3

a2

a2

a1

a1

a1

a3

a1

a3

a3

a2

a2

Figure 4.1: ETF for test-and-set

Example 4.1.5 (Compare-and-swap.). In this case, the corresponding frame is similar
to the previous one, except that now, when an agent knows it didn’t win, it also knows
which of two other agents won. That is, for every agent, the equivalence classes are
defined by the first action of the history (and coincide for everybody). The frame is
depicted in Figure 4.2.
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a1
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a2

Figure 4.2: ETF for compare-and-swap

Example 4.1.6 (Read-write registers). Suppose now that there are two agents that can
write to an assigned register and read from whole memory. That is, the set of actions is
{w1,w2, r1, r2}. An agent knows whether it wrote something to the register or not, and
also, after reading the memory, knows whether the other agent already performed its
writing action or not. The frame is depicted in Figure 4.3.

w1

w1

r1 w2

w2 r2 r1

r2 r2r1 r1

w1

w2

r2r1

r2

r2 r1

Figure 4.3: ETF for read-write registers

We will now define morphisms of epistemic temporal frames. First, a partial function
between sets of actions λ : Σ⇀ Σ′ extends to histories in the following way:

λ̂(he) =

λ̂(h)λ(e), if λ(e) is defined,

λ̂(h), otherwise.
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Definition 4.1.7. A morphism λ : F → F ′ of epistemic temporal frames is a partial
map between sets of actions λ : Σ⇀ Σ′, such that:

• for any h ∈ F , λ̂(h) ∈ F ′, and

• if h ∼a h
′, then λ̂(h) ∼′

a λ̂(h′).

Morphisms describe knowledge-aware simulations, or refinements of systems. If there
is a morphism from F to F ′ we can say that F refines F ′: if the image of an action in Σ
is not defined under λ, then in F ′ “nothing happens” for this action, so it can be seen as
a hidden transition. Additionally, morphisms need to preserve the indistinguishability
relations. Epistemic temporal frames and morphisms between them form a category,
denoted by ETF.

Example 4.1.8. There is a morphism of frames from test-and-set to compare-and-swap,
given by λ(a1) = a1, λ(a2) = a2, λ(a3) = a3. In this case, for every agent, if two histories
are not distinguishable in the first frame, then they are also not distinguishable in the
second frame.

Labeled transition systems

Now, let us take a step back, and forget for a moment about knowledge. In this sub-
section, we recall some definitions and theorems from the theory of labeled transition
systems: structures that are commonly used to model behavior of concurrent systems.
The definitions and proofs of theorems can be found in [NSW94] [WN93].

Definition 4.1.9. A labeled transition system (LTS) is a quadruple (S,Σ,→, s0), where
S is a set of states, Σ is a set of labels, →⊆ S×Σ×S is a transition relation and s0 ∈ S
is the initial state.

A morphism of LTSs is a pair (σ, λ), where σ : S → S′ and λ : Σ⇀ Σ′, such that:

• σ(s0) = s′0 and

• if (s, e, s′) ∈→ and λ(e) is defined, then (σ(s), λ(e), σ(s′)) ∈→′. Otherwise, if λ(e)
is undefined, then σ(s) = σ(s′).

The category of LTSs is denoted by TS.

Definition 4.1.10. An LTS is called deterministic if for every s ∈ S and e ∈ Σ, there
is at most one s′ ∈ S such that (s, e, s′) ∈→.
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Deterministic labeled transition systems form a full subcategory of the category of
LTSs. This category is denoted by dTS.

Definition 4.1.11. A synchronization tree is an LTS T = (S,Σ,→, s0) such that

• every state is reachable from the initial state,

• it is acyclic, and

• if (s′, e′, s) ∈→ and (s′′, e′′, s) ∈→, then e′ = e′′ and s′ = s′′.

Synchronization trees form a full subcategory of the category of LTSs, and this
category is denoted by Sync.

Definition 4.1.12. A language over set Σ consists of a pair (H,Σ), where H is a
nonempty subset of strings Σ∗ closed under prefixes.

Partial function λ : Σ→ Σ′ extends to strings in the following way:

λ̂(he) =

λ̂(h)λ(e), if λ(e) is defined,

λ̂(h), otherwise.

A morphism of languages λ : (H,Σ)→ (H ′,Σ′) consists of a partial function λ : Σ→ Σ′

such that λ̂(H) ⊆ H ′, where λ̂(H) = {λ̂(h) | h ∈ H}.

Theorem 4.1.13 ([NSW94]). There are the following pairs of adjoint functors:

• the inclusion functor L ↪→ dTS has a right adjoint;

• the inclusion functor L ↪→ Sync has a left adjoint;

• the inclusion functor dTS ↪→ TS has a left adjoint;

• the inclusion functor Sync ↪→ TS has a right adjoint.

The relation between the four categories is summarized in the following diagram.

L Sync

dTS TS

⊣

⊣
⊣

⊣
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What is the relation between ETFs and various kinds of transition systems? Here is a
simple observation: if we forget the equivalence relations in an ETF, we obtain a language
in the sense of Definition 4.1.12. That is, given an ETF F = (H,Σ, {∼i}i∈A), we build
a language L(F ) = (H,Σ) by forgetting the equivalence relations. This construction
extends to morphisms of ETFs: by definition, a morphism of ETFs is a morphism of
languages if we do not take into account the equivalence relations, so we obtain a functor
L : ETF→ L.

Going the opposite direction, if we are given a language (H,Σ), we can build an
ETF E(H,Σ) = (H,Σ, {=}i∈A). That is, the set of histories is H, the set of actions is
Σ, and for every agent i, the equivalence relation ∼i is the equality relation. It is also
easy to see that E extends to morphisms of languages: as the equality is the minimal
equivalence relation, it is automatically preserved by any morphism of languages, thus
we have a functor E : L→ ETF.

Proposition 4.1.14. The forgetful functor L : ETF → L is right adjoint to the free
functor E : L → ETF. Moreover, E is fully faithful, so languages form a coreflective
subcategory of ETFs.

Proof. We show that there is a natural bijection between morphisms E(H,Σ)→ F and
morphisms (H,Σ) → L(F ). For every morphism f : E(H,Σ) → F , we associate a
morphism g : (H,Σ) → L(F ) defined by g(e) = f(e). It is a morphism of languages
by definition. Conversely, given a morphism g : (H,Σ) → L(F ), we define a morphism
f : E(H,Σ) → F also by setting f(e) = g(e). It is straightforward that this is a
morphism of ETFs: since the relations on E(H,Σ) are equalities, they are automatically
preserved by f . It is also easy to see that these two constructions are inverse to each
other and natural.

The unit of adjunction η : idL ⇒ L ◦ E is a natural isomorphism since every com-
ponent η(H,Σ) : (H,Σ) → L(E(H,Σ)) is the identity morphism. Thus, E is fully faith-
ful.

Remark 4.1.15. The forgetful functor L has a further right adjoint that sends a lan-
guage to a frame where the indistinguishability relations are total relations, that is,
every two histories are indistinguishable for all agents. As such, languages also form a
reflective subcategory of ETFs. This is similar to the notion of cohesion in topos theory
[Law07]: epistemic relations in ETFs are additional structure over languages, akin to
topology on a set. The forgetful functor L forgets this structure, and the two adjoints
provide free and co-free constructions, like discrete and codiscrete topologies on a set.
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It is clear that a language itself carries no information about knowledge of the agents
that are participating in the system described by it. Hence, knowledge has to be modeled
by additional structure, such as the indistinguishability relations in ETFs. So why should
we stop at languages? We now define epistemic variants of structures used in concurrency
theory.

Definition 4.1.16. An epistemic transition system is a tuple (S,Σ,→, s0, {∼i}i∈A),
where (S,Σ,→, s0) is an LTS, and ∼i is an equivalence relation on S for every agent i.

Similarly to how transition systems generalize languages, epistemic transition sys-
tems generalize ETFs. We can also define a notion of morphism of epistemic transition
systems, and obtain a category TS∼. In the same way it is done for transition systems,
we define epistemic trees and deterministic epistemic transition systems as full subcate-
gories of TS∼ consisting of epistemic transition systems that are trees and deterministic,
respectively.

Definition 4.1.17. An epistemic transition system is called an epistemic tree if its
underlying transition system is a tree. The category of epistemic trees is denoted by
Sync∼. An epistemic transition system is called deterministic if its underlying transition
system is deterministic. The category of deterministic epistemic transition systems is
denoted by dTS∼.

Remark 4.1.18. Epistemic transition systems and epistemic trees were introduced in
[KMP12]. There, the main object of study were the trees, as they served as models for a
mix of Hennesy-Milner logic and epistemic logic. We will not concentrate on the logical
aspects of these systems.

These concurrent epistemic structures allow us to describe knowledge in concurrent
systems. Similarly to the non-epistemic case, the choice of the model depends on the
application: if one is concerned with how actions affect knowledge of agents, then lan-
guages or threes should be used; if the main goal is to understand the states of the
system and knowledge of agents about them, then epistemic transition systems will be
more useful.

Example 4.1.19. The example of the ETF for the read-write registers can be into an
epistemic transition system in the following way. In this case, we consider states of the
system, that is possible combinations of local memories of agents and the global memory
which is shared with them. In total, there are 13 possible states (including the initial
one). This is because certain combinations of actions lead to the same global state: for
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Figure 4.4: Epistemic transition system of read-write registers.

example, w1 and w2 result in the same state where the global state contains both writes
of two agents. The resulting epistemic transition system is depicted in Figure 4.4.

The categories of epistemic structures are related in a way similar to their non-
epistemic counterparts.

Theorem 4.1.20. There are the following pairs of adjoint functors:

• the inclusion functor ETF ↪→ dTS∼ has a right adjoint;

• the inclusion functor ETF ↪→ Sync∼ has a left adjoint;

• the inclusion functor dTS∼ ↪→ TS∼ has a left adjoint;

• the inclusion functor Sync∼ ↪→ TS∼ has a right adjoint.

Proof. We show just one of the adjunctions as the proofs are similar for the other three,
and all four are done essentially the same way as for systems without equivalence rela-
tions.

Consider first the inclusion functor i : Sync∼ ↪→ TS∼. Its right adjoint is the
unraveling functor un : TS∼ → Sync∼ which is defined as follows. Given an epis-
temic transition system T = (S,Σ,→, s0, {∼i}i∈A), we construct a synchronization tree
un(T ) = (Path(T ),Σ, un(→), s0, {∼i}i∈A), where Path(T ) is the set of paths in T that
start in s0. The transition relation un(→) is such that (p, e, p′) ∈ un(→) if there is a
path p = s0 → · · · → s and transition e with s→e s

′, and p′ = s0 → · · · → s→e s
′. The

equivalence relations ∼i are inherited from T by p ∼i p
′ if s ∼i s

′ for the last states of p
and p′.
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We shall show that there is a natural bijection between hom-sets HomTS∼(i(−),−)
and HomSync∼(−, un(−)). Suppose we are given a morphism f : i(S) → T . Notice
that every state s in i(S) defines a unique path in T that goes from the initial state
to f(s). By definition of the unraveling, it defines a morphism g : S → un(T ) that
sends every s from S to the corresponding path in un(T ). It is straightforward to check
that g is a morphism of epistemic trees. In the opposite direction, given a morphism
g : S → un(T ), we define a morphism f : i(S)→ T by sending every state s to the last
state of the path g(s). It is easy (though tedious) to check that these two constructions
are inverse to each other and natural.

4.2 Dynamic chromatic hypergraphs

In this section, we introduce a new dynamic model that we call dynamic hypergraphs.
It extends static chromatic hypergraphs by adding local transition systems for agents,
similarly to how interpreted systems extend Kripke models with runs. In this framework,
however, the main focus is on the evolution of local view of agents, rather than on the
dynamics of the global state of the system.

Suppose again that we are given a set of agents A, and for each agent i ∈ A, a set
of actions Σi. The local sets of actions are not necessarily disjoint, that is, agents can
have shared actions which serve as synchronization points.

We can now define the dynamic extension of chromatic hypergraphs.

Definition 4.2.1. A dynamic hypergraph is a triple (E, {Vi,→i}i∈A), where (E, {Vi}i∈A)
is a chromatic hypergraph and →i⊆ Vi×Σi× Vi is a transition relation for every agent.

In other words, we have a local transition system for every agent, and hyperedges
bind together local states of agents into global configurations. We assume that actions
are performed by agents, that is there are transitions between vertices, but no transitions
between hyperedges.

The following examples illustrate the definition. In figures, for simplicity, we will
denote hyperedges as simple edges of a graph. Transitions are depicted as arrows between
vertices.

Example 4.2.2 (Coarse-grained read-write registers). In this case, there are only two
actions, one for each agent: Σ1 = {a1}, Σ2 = {a2}. Action ai is performed by agent i
and stands for immediate snapshot: the agent writes its value to a register, and then
reads the value of the whole memory. From the point of view of the agent, the action is
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atomic and non-deterministic: after execution it will either know the value of the other
agent or not. This corresponds to having one initial vertex for both agents, and two final
vertices for both agents: one where the agent knows the value of the other agent, and
one where it does not. There are four hyperedges: one that contains the initial vertices
and three that contain the final vertices. The transitions are depicted in Figure 4.5.

Figure 4.5: Dynamic hypergraph of coarse-grained specification of read-write registers.

Example 4.2.3 (Fine-grained read-write registers). In this example two agents have
two actions: Σ1 = {w1, r1}, Σ2 = {w2, r2}. Action wi is performed by agent i and stands
for writing its value to a register, and ri stands for reading the memory. In total, there
are four points of view for an agent. The first one, the initial, where he has not done
anything yet. The second one where he has written his value, that is performed wi. The
last two are the following: one where he has learned the value of the other agent after
reading the memory, and one where he has not learned the value of the other agent after
reading the memory, both after performing ri. Again, from the point of view of the agent
the execution is non-deterministic: after performing ri he will either know the value of
the other agent or not. The hyperedges and transitions are depicted in Figure 4.6.

Figure 4.6: Fine-grained model of read-write registers.

Notice that here, even after executing ri, the agent does not know whether the other
agent has performed wj or rj . Thus, in order to introduce rounds, we need to have a
synchronization action. For that, we add a common action s to both local alphabets.
The action s is performed after reading the memory, and allows agents to know that other
agents completed their round. Corresponding hyperedges and transitions are depicted
in Figure 4.7.
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Figure 4.7: Fine-grained model of read-write registers with synchronization.

Example 4.2.4 (Test-and-set, compare-and-swap). Suppose there are three agents. For
both examples, every agent has one action, ai. In the case of test-and-set, every agent
has three possible states: the initial state s0i , the state swi where he knows that he was the
first to access the object, and the state sfi where he knows that he was not the first. There
is one initial hyperedge that contains s01, s02, s03, and three final hyperedges {sw1 , s

f
2 , s

f
3},

{sf1 , sw2 , s
f
3}, and {s

f
1 , s

f
2 , s

w
3 }. Every agent has two transitions from the initial state to

the final states, both labeled by ai. Notice that in this case, the hyperedges can be seen
as triangles that are pairwise connected by vertices. These vertices are exactly the states
of agents that do not know who was the first to access the object.

In the case of compare-and-swap, every agent has four possible states: the initial
state s0i , the state swi where he knows that he was the first to access the object, and two
states sj,ki where he knows that he was not the first, and that the other agent j or k was
the first. The hyperedges and transitions are similar to the case of test-and-set, the only
difference is that now triangles are disconnected.

The reader might have guessed that the dynamic hypergraphs are related to epistemic
transition systems. Indeed, given an epistemic transition system M , we can construct
a dynamic hypergraph χ(M), similarly to how given an epistemic Kripke structure one
can build a chromatic hypergraph. Vertices Vi of χ(M) of color i are the equivalence
classes M/∼i . The hyperedges are states of M , and vi ∈ s iff the world corresponding
to s is in the equivalence class corresponding to va. Every local set of action Σi is equal
to the set of actions of M . We put an arrow vi →e v

′
i between two vertices of color i if

in M there is a transition e from a world in the equivalence class va to a world in the
equivalence class v′a.

In other words, the local agent transition systems are just quotients of the base LTS
by the corresponding equivalence relations.

Definition 4.2.5 (Quotient of LTS). Given an LTS L = (S,Σ,→, s0) and an equivalence
relation ∼ on S, we define the quotient LTS L/∼ as follows. The set of states is the
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set of equivalence classes S/∼, with the initial state being the equivalence class of the
initial state of L. The transition relation of the quotient → /∼i is the following: there
is a transition labeled by e ∈ Σ from s to s′ if there is s1 ∈ s and s2 ∈ s′ such that
(s1, e, s2) ∈→.

Basically, for an epistemic LTS M = (S,Σ,→, s0, {∼i}i∈A), in order to construct the
corresponding dynamic hypergraph, we are taking a family of quotient LTSs {M/∼i}i∈A,
and then connect vertices together using the hyperedges.

Proposition 4.2.6. For every epistemic transition system M = (S,Σ,→, s0, {∼i}i∈A),
χ(M) = (S, {S/∼i ,→ /∼i}i∈A) is a dynamic hypergraph.

In this construction, all possible actions of the system are in local alphabets of
agents. We want, however, actions to be specific to agents, that is, an action which can
be performed only by agent i should not be in the alphabet of agent j. For example, in
the case of read-write registers, an agent cannot directly observe actions of other agents,
so it does not make sense to include them in the local set of actions. We can redefine χ
by instead including only the actions that change the epistemic state of agents. Given
an epistemic transition system, the local sets of actions in χℓ are then defined as follows:
Σi = {e ∈ Σ | ∃s ∈ S, ∃s′ ∈ S, s →e s

′ and s ̸∼i s
′}. That is, an action e is local

to agent i if it changes its point of view. This way, on the one hand, we do not have
transitions that go from a vertex to itself, and on the other, the alphabet contains only
actions that are relevant.

Definition 4.2.7. We call a dynamic hypergraph action-aware if for every local transi-
tion system

• there are no transitions from a vertex to itself, and

• all actions from the local alphabet are actually used.

Epistemic transition systems can also be similarly refined. Instead of considering
just a full set of possible transitions Σ, we additionally consider a set of local transitions
Σi for every agent i, such that Σi ⊆ Σ and Σ = ⋃

i∈AΣi. For convenience, we add
two conditions that describe the interaction of agents knowledge with their own actions.
Informally, the conditions go like this:

1. agents are always aware of their own actions, but

2. agents cannot directly observe actions of other agents.
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For the first, the intuition is that an agent always knows its very last action, and
can distinguish its state right before the action from the state right after the action.
An agent does not necessarily remember the whole history of its actions. For example,
suppose there are five states {s0, s1, s2, s3, s4} and four transitions, all labeled by local
actions, s0 → s1, s1 → s2, s0 → s3, s3 → s4. Then, the agent must distinguish s0 from
s1, s1 from s2, s0 from s3 and s3 from s4, but not necessarily s2 from s4. In other words,
this condition is not equivalent to having perfect recall.

For the second condition, the idea is that in order to observe actions of others, an
agent needs to perform an action itself. This is a reasonable assumption, as in distributed
computing, an agent can only observe the state of the system after it performed some
kind of “reading” or “receiving” action. The condition also does not mean that actions
of others cannot be observed at all. For example, in the case of read-write registers,
an agent can observe whether the other agent has performed a write action or not, but
actions with index j do not change the epistemic state of agent i.

Formally, the conditions are:

∀i ∈ A, ∀s ∈ S, ∀e ∈ Σi, ∀s′ such that s→e s
′ ⇒ s ̸∼i s

′ (∗)
∀i ∈ A, ∀s ∈ S, ∀e ∈ Σ \ Σi, ∀s′ such that s→e s

′ ⇒ s ∼i s
′ (∗∗)

On the side of dynamic hypergraphs, these conditions translate into the following
properties. The condition (∗) means that there are no transitions that go from a vertex
to itself: every local action changes the epistemic state of an agent. The condition (∗∗)
means that only local actions can change the epistemic state, and all effects of external
actions are considered as non-determinism from the point of view of an agent.

Example 4.2.8. The dynamic hypergraph of read-write registers in Figure 4.7 is ob-
tained by applying χℓ to the epistemic transition system from Example 4.1.19.

It is clear that one should have an adjunction between the categories of action-aware
dynamic hypergraphs and epistemic transition systems that satisfy conditions (∗) and
(∗∗). We leave this for future work.

The main observation about dynamic hypergraphs is the following: the epistemic
transition systems already contain the geometric information usually considered in the
topological approach to distributed computing, which is exposed in the corresponding
dynamic hypergraph. It can be formalized as follows.

Definition 4.2.9. In a dynamic hypergraph, two views vi, v′i of an agent i are said to
be related, if there is a path from vi to v′i in the local transition system of i.



4.2. DYNAMIC CHROMATIC HYPERGRAPHS 93

Definition 4.2.10. A (sub)set of views V is said to be achronal if for every vi, v′i ∈ V ,
vi and v′i are not related. A set of views V is said to be maximal achronal if it is a
maximal achronal subset of Vi with respect to inclusion. A set of hyperedges is said to
be achronal if the set of views consisting of its vertices for every color is achronal.

In the examples we considered, the terminal achronal sets, that is, such sets of hy-
peredges that every vertex in it does not have any outgoing transitions, are exactly the
protocol complexes of the corresponding protocols. For example, in the case of read-
write registers from Figure 4.7, the bottom line of vertices and edges forms the chromatic
subdivision of an interval. In the case of “test-and-set”, we have the three connected
triangles, and in the case of “compare-and-swap”, we have the three disconnected trian-
gles.

Logic

The obvious question is what kind of logic can be used to reason about dynamic hy-
pergraphs. As a tentative answer, we suggest a temporal extension of the many-sorted
epistemic logic from Chapter 3.

Definition 4.2.11. The syntax of the language is given by the following grammar:

ϕ ::= pa | ¬ϕ | ϕ ∧ ϕ | K̂aΨ |
−→
EGϕ |

−→
EFϕ |

−→
EXϕ

Ψ ::= Ψ ∨Ψ | ¬Ψ | Eaϕ

In this logic, we have a copy of CTL per agent. It allows to reason about the dynamics
from the perspective of an agent, and actions it may perform. As the views are connected
by hyperedges, there are modalities that allow to move between the views.

The semantics is given in the following way:

• H, va |= p iff p ∈ L(va);

• H, va |= ¬ϕ iff H, va ̸|= ϕ;

• H, va |= ϕ ∧ ψ iff H, va |= ϕ and H, va |= ψ;

• H, va |= K̂aΨ iff there is a hyperedge e such that va ∈ e and H, e |= Ψ;

• H, e |= Eaϕ iff there is a vertex va in e such that H, va |= ϕ;

• H, va |= −→EGϕ iff there is a path va0 →a v
a
1 →a . . . such that H, vai |= ϕ for all i;
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• H, va |= −→EFϕ iff there is a path va0 →a v
a
1 →a . . . such that H, vai |= ϕ for some i;

• H, va |= −→EXϕ iff H, va0 |= ϕ for some va0 such that va →a v
a
0 .

4.3 Knowledge and concurrency

The models of concurrency discussed in the first section of this chapter are not the only
ones that exist in the literature. Another approach to concurrency is provided by true
concurrency models, such as events structures [Win86] or higher-dimensional automata
[Pra91]. These models are based on the idea that actions can happen simultaneously,
and not as a non-deterministic choice of order of actions.

In this section we provide a preliminary discussion on how knowledge and concurrency
are related in distributed systems, and how geometric models of true concurrency can
be redefined in order to capture epistemic information.

Concurrency from distributed knowledge

It is interesting whether temporal epistemic models, such as ETFs, possess any infor-
mation about concurrency. In interleaving models of concurrency, such as transition
systems, a pair of actions a, b is considered to be happening in parallel if two possible
orderings of these actions ab and ba lead to the same state.

In an epistemic temporal frame, however, all possible histories are considered to be
different states, so we cannot say if two actions may happen simultaneously or not.
At the same time, there are indistinguishable histories for agents, and we can use this
information to define a notion of concurrency. We observe that sometimes concurrency
arises from ignorance: two actions may happen in parallel if nobody knows what was
the order of these actions.

Formally, given an ETF F = (H,Σ, {∼i}i∈A), we consider distributed knowledge
∼= ⋂

i∈A ∼i. The quotient H/∼ is then can be seen as a transition system, where the
equivalence classes are states, and the transitions are defined by the transitions in H.

Example 4.3.1. The observation is illustrated by the following example: the underlying
transition system of the ETS from Example 4.1.19 is exactly the quotient by distributed
knowledge of the ETF from Example 4.1.6.
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Higher-dimensional automata

Higher-dimensional automata constitute a geometric model of true concurrency. Con-
trary to interleaving models, in true concurrency models it is possible to capture actions
happening simultaneously, and not as a non-deterministic choice of order of actions.
An example of an interleaving model is a labeled transition systems, considered in Sec-
tion 4.1. Let us recall the definitions.

Definition 4.3.2. A precubical set consist of a graded set X = ∪n≤0Xn of n-cubes,
together with face maps δ{−,+}

i,n : Xn → Xn−1, i ∈ {0, . . . , n}, such that δαi,n−1δ
β
j,n =

δβj−1,n−1δ
α
i,n for all i ≤ j and α, β ∈ {−,+}.

Intuitively, a precubical set consists of a set of n-cubes, together with face maps that
specify how to glue them together, similarly how semi-simplicial sets consist of simplices
glued together along faces.

Suppose now that we have a set of actions Σ.

Definition 4.3.3. A higher-dimensional automaton is a tuple (X, s0, λ) where X is a
precubical set, s0 ∈ X0 is the initial state, and λ : X1 → Σ is a labeling function, such
that for every cube x ∈ Xn, n > 1, λ(δ−1,n(x)) = λ(δ+1,n(x)).

The idea behind the definition is to have a set of states X0 modelled by 0-cubes
in a precubical set, together with transitions that are represented by 1-cubes, that is
intervals. The transitions that can happen in parallel are edges of a cube: for example,
if action a can happen simultaneously with action b, then they are faces of a square. The
condition on the labelling of transitions is such that the opposite edges of a cube are
labeled by the same action. In particular, the HDAs that do not have cubes of dimension
higher than 2 are exactly the labeled transition systems.

Historically, HDA models are used for static analysis of concurrent systems. In other
words, we have a situation when only the source code of the system is given and the
set of possible real states is not known. Thus, we deal only with the stateless syntactic
structure of the system, its flow-control graph. In such models, every vertex corresponds
to a point of advancement in the (concurrent) program, and every edge corresponds to
an instruction in the code. We give several examples for systems that we considered
before, now in the form of HDAs. These examples were first introduced in [Led19] and
[GMT18].

Example 4.3.4 (Read-write registers). Suppose we have two processes that share a
read-write register. Each process i has just a simple program to execute: wi; ri, that is,
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it writes to the register, and then reads from it. The writing commands can happen
in parallel since every process is attributed an isolated register. Similarly, the reading
commands can happen in parallel. However, the reading and writing are in conflict and
cannot happen simultaneously.

The corresponding HDA is depicted in Figure 4.8.
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r2

w1

w1 r1

w2
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r1
w2

w1
r2

r1

Figure 4.8: HDA for read-write registers.

Example 4.3.5 (Test-and-set and compare-and-swap). Recall the description of test-
and-set and compare-and-swap from Example 4.1.4 and Example 4.1.5. In both cases,
there are three processes, each can perform a single action. The first access to the
object, in both cases, cannot be done in parallel with other actions. Because of that,
the cube on Figure 4.9 is empty inside and the faces that contain the first action in the
sequence are empty too. However, it does not matter what is the order of the access of
the last two processes, so the squares on the outer side of the cube are filled. As it was
noticed in [Led19], this construction provides the same model for both test-and-set and
compare-and-swap.

Figure 4.9: HDA for test-and-set and compare-and-swap

It is interesting to compare the expressivity of HDAs in the examples above with
epistemic models from Section 4.1. On one hand, the epistemic models express only
interleaving semantics, and thus cannot capture true concurrency. On the other hand,
as we can see in the examples, the HDAs do not have any epistemic structure, thus
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they cannot capture any knowledge of agents. Moreover, as these particular examples
do not take into account the full state of the system, but only how far in the execution
every process is, we cannot introduce any epistemic structure in them: there are just
not enough states to distinguish. Thus, as the first step, we need to introduce a stateful
counterpart.∗

The stateful HDA for read-write registers is depicted in Figure 4.10. Notice that this
is just the transition system from Example 4.1.19 with two squares filled in.
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Figure 4.10: Stateful HDA for read-write registers.

The stateful HDA for test-and-set is depicted in Figure 4.11. Nevertheless, it coin-
cides with the HDA for compare-and-swap.

Figure 4.11: Stateful HDA for test-and-set.

In fact, one of the questions that Ledent asks in his thesis [Led19] is whether it is
possible to reconstruct the protocol complex from the HDA models of the objects that
we use. This question is directly related to the problem of having the same HDA for
test-and-set and compare-and-swap. As one of the reasons why the answer is negative,
he suggests that an HDA models does not have an appropriate notion of a view. We
can fix it using a brute-force approach, simply by adding indistinguishability relations
on the set of states for every agent, similarly to epistemic transition systems.

∗The stateless/stateful dichotomy is inspired by [MS18].



98 CHAPTER 4. INCORPORATING TIME

Definition 4.3.6. An epistemic HDA is a tuple (X, s0, λ, {∼i}i∈A) where (X, s0, λ)
is an HDA and ∼i is an equivalence relation on X0 for every agent i. An epistemic
HDA is called agentive if the every agent is supplied with a set of actions Σi ⊆ Σ
and the labeling function λ is such that for every n-cube, n > 1, no two elements of
{λ(δ−k,n(x)) | k ∈ {1, . . . , n}} are in the same Σi.

Alternatively, the labelling for agentive HDAs can be defined as a pre-cubical map
λ : X → C(Σ0, . . . ,Σn), where pre-cubical C has one vertex, edges are elements of
Σ = ⋃

i∈AΣi, and higher cubes S are such that the opposite edges are always equal, that
is δ−j,n(S) = δ+j,n(S), and any pair δ−j,n(S), δ

−
k,n(S) belongs to different Σi.

The condition for an agentive epistemic HDA means that there is no autoconcurrency
of actions, that is, all actions that happen simultaneously are performed by different
agents.

These models allow us to fix the problem of having the same HDA for different
primitives: now we just need to specify what states are distinguishable. For the case of
compare-and-swap, every agent distinguishes all three final states, whereas for test-and-
set, two of them are indistinguishable.

It is also interesting to notice that now knowledge and concurrency may interact in
several ways. Suppose there are two agents i, j, and each can do only one action ai and
aj , respectively. Then there are four different possible situations, depicted in Figure 4.12.
In the first, the actions are not concurrent, and lead to two different states, depending on
the order. Both agents can distinguish the final states, so they know what was the order
of actions after the execution. In the second situation, the actions are not concurrent,
but the agents do not distinguish final states (depicted as green and blue lines), so they
do not know the order of actions. From their point of view, actions may be concurrent.
In the third case, both orders lead to the same global state, so agents have no means of
distinguishing what was the real sequence of actions. In the last case, actions are truly
concurrent, which leads to the same epistemic situation as in the previous two cases.

ai

ai

bi

bi

ai

ai

bi

bi

ai

ai

bi

bi

ai

ai

bi

bi

Figure 4.12: Interaction of knowledge and true concurrency

A morphism of epistemic HDAs (k, l) : E → E′ consists of a pre-cubical map
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k : E → E′ of underlying pre-cubical sets, that preserves the initial state and the indis-
tinguishability relations, together with a function between alphabets l : Σ → Σ′, such
that the labeling is respected by k, that is, for every edge e ∈ E1, l(λ(e)) = λ′(k1(e)).
We denote the category of epistemic HDAs by HDA∼.

It is known [GM12] that if we restrict morphisms of LTS to total functions between
alphabets, then there is an adjunction between the category of higher dimensional au-
tomata and the category of labelled transition systems. The adjunction is based on the
fact that LTSs are just one-dimensional HDAs. Doing the same for epistemic versions,
we extend it to the category of epistemic HDAs and the category of epistemic transition
systems.

Theorem 4.3.7. There is an adjunction between the categories of epistemic HDAs and
epistemic transition systems.

Proof. First we define a functor i : TS∼ → EHDA∼. Given an epistemic transition
system T = (S,Σ,→, s0, {∼i}i∈A), we associate a one-dimensional epistemic HDA i(T )
with it by setting the set of vertices to be S, the set of edges to be →, with the face
morphisms δ−1,1((s, e, s′)) = s and δ+1,1(s, e, s′) = s′, the initial state to be s0 and the
labeling function λ(s, e, s′) = e. The equivalence relations are the same as in T . The
definition of the functor extends to morphism in the obvious way.

The functor j : EHDA∼ → TS∼ is defined in the following way. Given an epistemic
HDA X = (X, s0, λ, {∼i}i∈A) with the set of labels Σ, we define an epistemic transition
system j(X) by setting the set of states to be X0, the set of actions to be Σ, the
initial state to be s0, the transition relation to be →= {(s, λ(x), s′) | x ∈ X1, δ

−
1,1(x) =

s, δ+1,1(x) = s′}, and the equivalence relations to be ∼i. Similarly, the functor is defined
on morphisms in the obvious way.

The functor j is right adjoint to i. In order to show this, we construct a natural
bijection between morphisms i(T ) → X in EHDA∼ and morphisms T → j(X) in
TS∼. To every morphism (k, l) : i(T ) → X we associate a morphism (σ, l) : T → j(X)
with it by setting σ(s) = f(s). It is clear that this is indeed a morphism of epistemic
transition systems: l is a total function between alphabets that respects transitions, the
indistinguishability relations are preserved too since they are preserved by k. In the
opposite direction, we associate a morphism (k, l) : i(T ) → X with every morphism
(σ, l) : T → j(X) by setting k(s) = σ(s). Similarly, it is a morphism of epistemic
HDAs, since σ preserves the indistinguishability relations and respects the labelling. Two
constructions are clearly mutually inverse, and naturality can be easily checked.
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4.4 Conclusion and future work

In this chapter, we suggested several ways of generalizing models of concurrency to
capture epistemic information. The most straightforward way is to just supplement
languages, transition systems or higher-dimensional automata with epistemic indistin-
guishability relations on the set of states. We have shown the relation between various
models arising in this way. We have also introduced dynamic chromatic hypergraphs.
These structures capture the knowledge of agents using the view-based approach, sim-
ilarly to chromatic simplicial complexes. We demonstrated that they can be naturally
constructed from epistemic transition systems.

Rounds, endofunctors and induced models

In many cases, distributed systems are round-based, especially in message-passing mod-
els. Executions in such systems are divided into rounds inside which agents asyn-
chronously perform actions. Iterated snapshot [BG97] is an example.

One of the way to model this situation from a categorical point of view it by using a
notion of an algebra. For a category C and an endofunctor F : C → C on it, an algebra is
an object c ∈ C together with a morphism α : F (c)→ c. In the topological approach to
distributed computing, the main category one works with is that of chromatic simplicial
complexes. Chromatic subdivision, which models wait-free computation using read-write
registers [HKR14], is, in fact, an endofunctor: it sends a complex to its subdivision and
a simplicial map of complexes to an induced simplicial map. Interestingly, for every
simplicial complex S, there is a map α : Sub(S) → S from its subdivision Sub(S),
which sends a simplex in the subdivision to the simplex it was divided from: from
computational perspective, this map sends a history to its previous step. Thus, there
is an algebra structure induced by chromatic subdivision on every simplicial complex.
This construction can be generalized to chromatic hypergraphs.

Notice that every morphism of chromatic hypergraphs induces a dynamic hyper-
graph. For f : H → H ′, we take the set of vertices of the corresponding dynamic
hypergraph D(f) to be the union of sets vertices of H and H ′, and the set of hyperedges
to be the union of sets of hyperedges of H and H ′. There is a transition between a vertex
v′ from H ′ to a vertex v from H iff f(v) = v′. By construction, every vertex has at most
one predecessor. Thus, every algebra α : F (H)→ H on chromatic hypergraphs induces
a dynamic hypergraph. For the case of subdivision, the induced dynamic hypergraph
models one round of communication.
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Similarly, every endomorphism of hypergraphs generates a dynamic hypergraph. In
this case, for a morphism f : H → H, D(f) has the same set of vertices and hyperedges
as H, and there is a transition from v to v′ if f(v′) = v. This construction is needed for
modeling possibly infinite executions. One can consider an infinite union I(H) = H ⊔
Sub(H)⊔Sub(Sub(H))⊔ . . . of iterated subdivisions. There is a map H ⊔Sub(I(H))→
I(H) that sends every iterated subdivision to its previous iteration (and the starting
hypergraph to itself). It is easy to see that in fact H ⊔ Sub(I(H)) is isomorphic to
I(H), so the map induces a dynamic hypergraph. This hypergraph models iterated
communication via read-write registers.

One question is whether other models can be represented as endofunctors on the
category of chromatic simplicial complexes and chromatic hypergraphs. It is also inter-
esting to see what kind of logical axioms these systems satisfy, especially in the language
suggested in Section 4.2. It is reasonable to suppose that the property of perfect recall
will appear in some form, since every point of view of an agent comes from a unique
predecessor. Possible links with dynamic epistemic logic are also interesting to explore:
steps between subdivisions can be seen as epistemic actions, so a relation between two-
level temporal epistemic logic and DEL is not too far-fetched, akin to the relation with
usual temporal epistemic logic [vBen+09; DLW11].

The standard questions of completeness, decidability and complexity of the two-level
temporal epistemic logic are also interesting to explore.





chapter 5

CONCLUSION

This thesis started with the aim to deepen the ties between the topological and epistemic
frameworks in distributed computing, first formalized in [GLR18]. The pursuit was
driven by the core question: if we can interpret knowledge in simplicial complexes, what
is the epistemic meaning of semi-simplicial sets?

The answer to this question is the main focus of Chapter 2, where we have shown that
semi-simplicial sets can be used to model non-standard (or implicit) group knowledge. A
surprising result was that epistemic logic cannot differentiate between these two classes
of models. In parallel, the question of how to accommodate varying number of agents
in the simplicial setting arose. We dealt with this by introducing epistemic coverings,
which are annotated semi-simplicial sets.

It quickly became clear that epistemic coverings are somewhat clumsy: for example,
if we are not interested in wait-free, but just t-resilience, then simplices of dimension
lower than t are redundant. We wanted to have a simple combinatorial structure that
would not have this redundancy. For this end, we introduced chromatic hypergraphs,
the central object of Chapter 3. Another inconvenience of simplicial models of epistemic
logic was related to atomic propositions: one always had to deliberately choose whether
to annotate local states of agents or global states. Hypergraphs provide an elegant
solution: we explicitly separate the local points of view of processes from states of the
environment on the level of logic by having a many-sorted language.

Upon examining the logical properties of chromatic hypergraphs, our focus shifted to
dynamics. We aimed to extend the simplicial or hypergraph approach with a temporal
dimension, akin to how interpreted systems extend static Kripke frames. For this, in
Chapter 4, we introduced hypergraphs equipped with temporal structure. This approach
is orthogonal to what has been done so far in the simplicial framework: there, one models
a step of a protocol as a function between two models; in dynamic hypergraphs one has
a transition system per process inside the models. Such structures arise naturally from
models that combine knowledge and concurrency, like epistemic transition system. So
it was natural to ask whether one can add knowledge to models of true concurrency.
Accidentally, such an extension provided a solution to a problem posed by Ledent in his
PhD thesis related to the modeling of various synchronization primitives using higher-
dimensional automata.
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There are several ways to continue this research program, many of which are listed at
the end of each chapter. From a broader point of view, the most important direction is
to understand the rules that govern the dynamic of knowledge in the simplicial or hyper-
graph settings. We now have a topological interpretation of local knowledge evolution
inside a model. Is there a complete axiomatization of a corresponding temporal-epistemic
logic? Can we logically characterize classes of tasks and protocols in this language using
only local flow of information? These are questions we plan to address in subsequent
work.

Further, is it possible to adapt modern mathematical theories to the study of dis-
tributed systems, similar to how simplicial complexes were brought to the field of dis-
tributed computing? For example, can we use cobordism theory for characterization
of task solvability? Formally, a cobordism consists of a manifold with boundary W , a
pair of two closed manifolds M,N together with embeddings M ↪→ W and N ↪→ W ,
such that the boundary of W consists of images of M and N . In the picture below, a
cobordism between a circle and a pair of circles is shown.

There is a certain resemblance between this cobordism and the dynamic hypergraph that
describes binary consensus problem. It is interesting to see whether we can represent
protocols and tasks in a distributed system as cobordisms, suitably adapted, such that
their boundaries would constitute initial and final states. Moreover, is it possible to
reformulate the solvability condition in these terms? We do not have answers to these
questions yet, but we believe that they are worth exploring.
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The leitmotif of the core chapters was the interaction of logics and models for them
via completeness theorems. It is natural to ask whether such results can be produced au-
tomatically: given a description of a modal logic, possibly multi-modal and many-sorted,
can one identify a class of models this logic is complete with respect to? Additionally,
as in practice one usually has a class of models in mind, can we canonically find a logic
that captures all important features of this class?

In this chapter, we describe an attempt to deal with this problem. We will use
categories to describe both languages and corresponding models at the same time. We
do so by using a mode theory, a category that on the one hand, specifies the sorts and
modalities and on the other hand serves as a mold for models. As models, however,
we have lattices, instead of set-based frames. Because of this, the results can hardly be
considered to be surprising: we simply extend the usual algebraic completeness to the
many-sorted case.

We also make use of enriched categories, which allow us to accommodate additional
axioms. Informally, the enrichment makes it possible to encode an ordering between
modalities in the mode theory. An example of such a relation is one of the axioms of
the logic of belief Bϕ→ B̂ϕ, that is, if I believe in ϕ, then I consider ϕ possible. In this
case, the modality B can be seen as included into B̂.

Related work. The logic of this chapter consists of modal sequents, instead of for-
mulas, which were first considered in [Dun95] for positive modal logic, in [GNV05] for
distributive modal logic, and more recently in [Bez+23] for non-distributive positive
modal logic. The approach of this chapter is also remotely related to modal type theory
[KG22; Shu23]. There, models for modal type theory are functors from a mode theory
to the category of categories. Since we are interested in propositional logic, we consider
instead functors to the category of distributive lattices.
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Plan of the chapter. In Section 1, we introduce mode theories, together with logic
and algebraic models induced by them. We show completeness of the logic with respect
to many-sorted algebras. In Section 2, we extend the setting by considered enriched
mode theories. This allows us to enlarge the kind of axioms we can express. Finally, in
Section 3, we discuss perspectives for further research.

A.1 Many-sorted algebras

In this section, we discuss how the standard notion of a category can manifest itself in
the study of many-sorted modal logic.

Syntax

Suppose we are given a set of sorts M , a set of atomic propositions Apa for every sort
a ∈ M , and a (possibly empty) set of modalities M(a, b) that change a sort from a to
b for every pair of sorts. Every sort has a special identity modality {ida}, which does
not change the sort. We ask for modalities to be composable: if there is a modality
{f} that changes the sort from a to b, and a modality {g} that changes the sort from
b to c, then there is a composed modality {g ◦ f} that changes the sort from a to c.
Additionally, composition of modalities is associative: {(h ◦ g) ◦ f} = {h ◦ (g ◦ f)}. The
identity modality is asked to be neutral with respect to composition: {ida ◦ f} = {f} =
{f ◦ ida}. Finally, there are equalities of modalities, that is, we can declare a pair of
(non-empty) sequences of composable modalities {f1}, . . . , {fn} and {g1}, . . . , {gk} to be
equal: {f1} ◦ · · · ◦ {fn} = {g1} ◦ · · · ◦ {gk}.

We call this data a mode theory and denote it M.

Remark A.1.1. It is clear that we just defined a small category whose objects are sorts,
and morphisms are modalities, together with a set of atomic propositions associated to
each object.

We now define a many-sorted language Lan = {Lana | a ∈ M} that consists of a
parametrized family of languages, where Lana is the language of formulas of sort a,
defined by the following grammar:

ϕa ::= p | truea | falsea | ϕ ∧ ϕ | ϕ ∨ ϕ | {f}ψb

a, b ∈M, f ∈M(b, a), p ∈ Apa, ψb ∈ Lanb
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Formulas are defined by mutual recursion over sorts: if a formula ϕ belongs to
Lana(M) and {f} is a modality from a to c, then {f}ϕ is of sort c and belongs to
Lanc(M).

Example A.1.2. The language of the logic K with a single box modality can be seen
as generated by a mode theory with one sort ∗, and a unique modality K(∗, ∗) = {□}.

Example A.1.3. Usually, CTL∗ is defined as having two sorts: state and path formulas,
and one says that state formulas are in particular path formulas. In fact, one can say
that there is a hidden modality ↓ that turns every state formula into a path formula.
Thus, a (very restricted) fragment of CTL∗ that contains only “for all paths” and “there
is a path” modalities A,E, can be presented as a mode theory that has two sorts s, p,
and three modalities A,E ∈ CTL∗(p, s) and ↓∈ CTL∗(s, p).

We define the logic based on a mode theory to be a collection of modal sequents
ϕ ⊢a ψ, which are just pairs of modal formulas of the same sort.

For every sort a ∈M, we have the axioms and rules in Figure A.1. They talk about
the logic internally to a sort.

ϕ ⊢a truea falsea ⊢a ϕ top and bottom

ϕ ⊢a ϕ
ϕ ⊢a ψ ψ ⊢a ξ

ϕ ⊢a ξ
identity and cut

ϕ ∧ ψ ⊢a ϕ ϕ ∧ ψ ⊢a ψ
ξ ⊢a ϕ ξ ⊢a ψ
ξ ⊢a ϕ ∧ ψ

conjunction

ϕ ⊢a ϕ ∨ ψ ψ ⊢a ϕ ∨ ψ
ϕ ⊢a ξ ψ ⊢a ξ
ϕ ∨ ψ ⊢a ξ

disjunction

ϕ ∧ (ψ ∨ ξ) ⊢a (ϕ ∧ ψ) ∨ (ϕ ∧ ξ) distributivity

Figure A.1: Internal mode axioms and rules

The rules and axioms that govern the modalities are in Figure A.2. The monotonicity
rule says that all modalities are monotone, if ϕ implied ψ in sort a, then for any modality
{f} from a to b, {f}ϕ implies {f}ψ. This rule is also known as Becker rule. The axiom
for identity modality says that it does not affect the formula (we use ϕ ⊣⊢a ψ as a
shorthand for ϕ ⊢a ψ and ψ ⊢a ϕ). The axiom for equivalence of modalities concerns
the sequences that are defined to be equal in the mode theory. Finally, the composition
axiom says that there is no difference between a successive application of two composable
modalities and an application of the composition.
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ϕ ⊢b ψ
{f}ϕ ⊢a {f}ψ

monotonicity

{ida}ϕ ⊣⊢a ϕ identity modality

{f1} . . . {fn}ϕ ⊣⊢a {g1} . . . {gk}ϕ equivalence of modalities

{f ◦ g}ϕ ⊣⊢a {f}{g}ϕ composition of modalities

Figure A.2: Modal axioms and rules

Definition A.1.4. Let ML(M) be the smallest parametrized set of modal sequents
closed under the axioms and rules from Figure A.1 and Figure A.2.

When a modal sequent ϕ ⊢a ψ belongs to ML(M), we say that it is derivable. Even
in this comparatively poor language, modalities have some properties. For example,
because of monotonicity and local rules for conjunction and disjunction, we have the
following proposition.

Proposition A.1.5. The following sequents are derivable.

1. {f}(ϕ ∧ ψ) ⊢ {f}ϕ ∧ {f}ψ;

2. {f}ϕ ∨ {f}ψ ⊢ {f}(ϕ ∨ ψ).

Proof. 1.

ϕ ∧ ψ ⊢ ϕ

{f}(ϕ ∧ ψ) ⊢ {f}ϕ

ϕ ∧ ψ ⊢ ψ

{f}(ϕ ∧ ψ) ⊢ {f}ψ

{f}(ϕ ∧ ψ) ⊢ {f}ϕ ∧ {f}ψ

2.

ϕ ⊢ ϕ ∨ ψ

{f}ϕ ⊢ {f}(ϕ ∨ ψ)

ψ ⊢ ϕ ∨ ψ

{f}ψ ⊢ {f}(ϕ ∨ ψ)

{f}ϕ ∨ {f}ψ ⊢ {f}(ϕ ∨ ψ)
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Algebraic models

We will define the semantics of the logic in many-sorted distributive lattices. A mode
theory can be seen as a category, so the models are functors from it to the category of
bounded distributive lattices. A functorM associates a lattice to every sort. The lattice
is then the domain of the interpretation of formulas of this sort. The only unexpected
thing is that the morphisms in the target category are not homomorphisms, but rather
monotone functions, which allows us to interpret arbitrary modalities. We denote the
category of bounded distributive lattices and monotone functions by DLm.

Definition A.1.6. A many-sorted algebra of a mode theory M is a functorM : M→
DLm.

In order to define the semantics of atomic propositions, we will use natural transfor-
mations.

Definition A.1.7. Given a pair of categories C and D, together with a pair of functors
F,G : C → D, a natural transformation α : F ⇒ G is a family of morphisms αc : F (c)→
G(c), such that for every morphism f : c→ c′ in C, the following diagram commutes.

F (c) F (c′)

G(c) G(c′)

F (f)

αc′

G(f)

αc

Now consider a discrete category AP, that is a category that has only identity
morphisms, objects of which are pairs (p, a), where a is a sort and p ∈ Apa. There is
a projection functor π : AP → M, which maps (p, a) to a. We also have a functor
1 : AP→ DLm, which maps (p, a) to the trivial distributive lattice {∗}. We then define
an assignment ℓ to be a natural transformation ℓ : 1⇒M◦ π.

AP

M DLm

π
1

M

ℓ

Explicitly, an assignment ℓ is a family of morphisms ℓ(p,a) : {∗} →M(a). Since AP
has only identity morphisms, the naturality condition is trivially satisfied.
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Definition A.1.8. A model is a many-sorted algebraM equipped with an assignment
ℓ : 1⇒M ◦ π.

Morphisms of models are natural transformations of functors, such that the compo-
nents are homomorphisms of distributive lattices.

Definition A.1.9. A morphism of many-sorted algebras F : M → N is a natural
transformation F :M ⇒ N , such that for every a ∈ M, the component Fa :M(a) →
N (a) is a homomorphism of distributive lattices. A morphism of models F :M→N is a
morphism of underlying algebras that preserves the interpretation of atomic propositions,
that is, for every a ∈M and p ∈ Apa, Fa(ℓMp,a(∗)) = ℓNp,a(∗).

An assignment ℓ induces an interpretation of all formulas ϕ ∈ Lan(M) in a model
M. The interpretation [−]Mℓ , which assigns an element of the algebra to every formula,
is defined inductively as follows.

• [p]Mℓ = ℓp,a(∗) for every atomic proposition p ∈ Apa;

• [truea]Mℓ = ⊤M(a);

• [falsea]Mℓ = ⊥M(a);

• [ϕ ∧ ψ]Mℓ = [ϕ]Mℓ ∧ [ψ]Mℓ ;

• [ϕ ∨ ψ]Mℓ = [ϕ]Mℓ ∨ [ψ]Mℓ ;

• [{f}ϕ]Mℓ =M(f)([ϕ]Mℓ ).

We then say that a modal sequent ϕ ⊢ ψ is valid in an algebraM, if for all assign-
ments ℓ onM, [ϕ]Mℓ ≤ [ψ]Mℓ .

It is easy to show that the logic is sound and complete with respect to these models.
Recall that we write ϕ ⊣⊢a ψ if ϕ ⊢a ψ and ψ ⊢a ϕ. Notice that ⊣⊢a is an equivalence
relation on Lana(M): it is symmetric by definitions, reflexive by the identity rule, and
transitive by the cut rule. We write La(M) for the set of equivalence classes of ⊣⊢a, and
[ϕ] for the equivalence class of ϕ. Every La(M) is a distributive lattice by the axioms
and rules on Figure A.1. In particular, [ϕ] ∧La(M) [ψ] = [ϕ ∧ ψ] and [ϕ] ∨La(M) [ψ] =
[ϕ ∨ ψ], ⊤La(M) = [truea] and ⊥La(M) = [falsea]. Moreover, for every modality {f}, a
function L(M)(f) : L(M)(a) → L(M)(b) that sends [ϕ] to [{f}ϕ] is monotone by the
monotonicity rule. Finally, there is an assignment ℓL that sends every atomic proposition
p ∈ Apa to [p]. Altogether, it constitutes the Lindenbaum algebra of the logic.
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Lemma A.1.10. For every pair of formulas ϕ,ψ ∈ Lana, ϕ ⊢a ψ if and only if [ϕ] ≤ [ψ]
in La(M).

Proof. Let us first notice that ϕ ⊢a ψ if and only if ϕ∧ψ ⊣⊢a ϕ: for right-to-left direction
just use the cut rule and one of conjunction axioms, for left-to-right direction the cut
rule and the conjunction rule, together with the identity axiom. By construction, this is
equivalent to [ϕ ∧ ψ] = [ϕ]. By the definition of the order in lattices, this is equivalent
to [ϕ] ≤ [ψ].

Lemma A.1.11. A sequent ϕ ⊢ ψ is valid in every algebra if and only if [ϕ] ≤ [ψ] in
the Lindenbaum algebra.

Proof. The proof amounts to showing that the Lindenbaum algebra is the initial object
in the category of models, that is, for any model there is a unique morphism of models
from the Lindenbaum algebra to it.

Suppose we are given an algebraM with an assignment ℓ. Then there is a morphism
of models e : L(M) → M, that for every atomic proposition p ∈ Apa sends [p] to
ℓp,a(∗), [ϕ ∧ ψ] to [ϕ]Mℓ ∧ [ψ]Mℓ , and so on. It is easy to see that this is indeed a
morphism of models. Moreover, it is unique: suppose there is another morphism of
models e′ : L(M)→M. Then for every atomic proposition p ∈ Apa, e′([p]) = ℓp,a(∗) =
e([p]). Then, by induction on formulas, e′([ϕ]) = e([ϕ]) for every formula ϕ. Also,
e([ϕ]) = [ϕ]Mℓ .

By monotonicity of lattice homomorphisms, we have that [ϕ] ≤ [ψ] implies e([ϕ]) ≤
e([ψ]), thus [ϕ]Mℓ ≤ [ψ]Mℓ . This is the “if” direction of the statement.

As the Lindenbaum algebra is a model itself, we have that the validity of a sequent
ϕ ⊢ ψ in it is equivalent to [ϕ] ≤ [ψ]. This concludes the proof.

Remark A.1.12. The proof is essentially a restatement of the fact that the Lindenbaum
algebra represents the syntax in the category of models, and that every assignment (or
valuation) is the unique morphism from it to the model.

Combined, these two lemmas give us the following theorem.

Theorem A.1.13 (Soundness and completeness). A sequent ϕ ⊢ ψ is derivable if and
only if it is valid in every algebra.
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A.2 Enriched categories

In this section, we accommodate more axioms in the setting by allowing axioms of type
{f1} . . . {fn}ϕ ⊢a {g1} . . . {gk}ϕ, instead of equivalences. On the side of categories,
this corresponds to the notion of a poset-enriched category, where instead of a set of
morphisms between two objects, we have a poset.

Syntax

As in the previous section, suppose we are given a set of sorts M and a set of atomic
propositions Apa for every sort, the set of modalities for every pair of sorts, identity
modalities and the composition. However, now, instead of an equality of modalities,
we allow inequalities: we can say that a modality {f} is smaller than {g}, and write
{f} ≤ {g}. We ask the set of modalities that turn formulas of sort a to formulas of
sort b to be a poset. That is, we have the following three conditions: (i) {f} ≤ {f}; (ii)
{f} ≤ {g} and {g} ≤ {h} implies {f} ≤ {h}; (iii) {f} ≤ {g} and {g} ≤ {f} implies
{f} = {g}. We also call this data a mode theory, but in order to distinguish it from the
previous case, we will denote it by M.

Definition A.2.1. Suppose we are given a mode theory M. For every a ∈ M, let
Lana(M) denote the language generated by the following grammar:

ϕa ::= p | truea | falsea | ϕ ∧ ϕ | ϕ ∨ ϕ | {f}ψb

a, b ∈M, {f} ∈M(b, a), p ∈ Apa, ψb ∈ Lanb(M)

That is, the language is the same as in the previous section. The only difference lies
in the axioms allowed.

Definition A.2.2. LetML(M) be the smallest parametrized set of modal sequents closed
under the axioms and rules from Figure A.1 and Figure A.2, where the equivalence of
modalities is replaced with the axiom {f}ϕ ⊢a {g}ϕ for every pair of modalities {f}, {g}
such that {f} ≤ {g}.

Adjoint modalities

Using the inequality axiom one can express properties of modalities that are often en-
countered in practice.
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Definition A.2.3. A pair of modalities {f}, {g} is called adjoint if and only if {ida} ≤
{g ◦ f} and {f ◦ g} ≤ {idb}. In this case, we say that {f} is left adjoint to {g}, and {g}
is right adjoint to {f}, and write {f} ⊣ {g}.

Example A.2.4. In the language of normal modal logic K one can add a dual modality
♢. This modality is not adjoint to □, however, the language can be extended with
backward-modalities ♦ and ■, such that ♦ is left adjoint to □ and ♢ is left adjoint to ■.

Example A.2.5. In the restricted CTL∗ from Example A.1.3, the modalities are pair-
wise adjoint: E ⊣ ↓ and ↓⊣ A.

Suppose that {f} ⊣ {g} in M. Then, in the corresponding logic we have the following
pair of axioms:

• ϕ ⊢a {g}{f}ϕ;

• {f}{g}ϕ ⊢b ϕ.

Proposition A.2.6. If f ⊣ g, then the following rule is admissible.

{f}ϕ ⊢ ψ

ϕ ⊢ {g}ψ
========

Proof.

ϕ ⊢ {g}{f}ϕ

{f}ϕ ⊢ ψ

{g}{f}ϕ ⊢ {g}ψ

ϕ ⊢ {g}ψ

Similarly for the other direction.

Remark A.2.7. Looking at the proof, we can notice that if instead of having both
inequalities from the definition of adjointness, we had only one of them, then the rule
from the statement would go only in one direction.

The following proposition show that adjoint modalities behave like box and diamond
modality.

Proposition A.2.8. If {f} ⊣ {g}, then the following sequents are derivable.

1. {g}ϕ ∧ {g}ψ ⊢ {g}(ϕ ∧ ψ);
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2. {f}(ϕ ∨ ψ) ⊢ {f}ϕ ∨ {f}ψ.

Proof. 1. We subdivide the proof into several steps.

a)

{f}{g}ϕ ∧ {f}{g}ψ ⊢ {f}{g}ψ {f}{g}ψ ⊢ ψ

{f}{g}ϕ ∧ {f}{g}ψ ⊢ ψ

b)

Proposition A.1.5

{f}({g}ϕ ∧ {g}ψ) ⊢ {f}{g}ϕ ∧ {f}{g}ψ

a)

{f}{g}ϕ ∧ {f}{g}ψ ⊢ ψ

{f}({g}ϕ ∧ {g}ψ) ⊢ ψ

c)

as in b)

{f}({g}ϕ ∧ {g}ψ) ⊢ ϕ

b)

{f}({g}ϕ ∧ {g}ψ) ⊢ ψ

{f}({g}ϕ ∧ {g}ψ) ⊢ ϕ ∧ ψ

{g}ϕ ∧ {g}ψ ⊢ {g}(ϕ ∧ ψ)

2. Similar.

Proposition A.2.9. If f ⊣ g, then the following sequents are derivable.

1. true ⊢ {g}true;

2. {f}false ⊢ false.

Proof. 1.

{f}true ⊢ true

true ⊢ {g}true

2. Similar.

The sequents from Proposition A.2.8 and Proposition A.2.9 can be understood as the
condition for the right adjoint modality to be normal, that is {g}(ϕ∧ψ) ⊣⊢ {g}ϕ∧{g}ψ
and {g}true ⊣⊢ true. In this case, {g} behaves like a box modality, so we can write [g].
Similarly, the left adjoint modality can be thought of as a diamond-like modality, and
we write ⟨f⟩.
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Algebraic models

Similarly to how in the previous section a mode theory was a category, in this section,
a mode theory with inequalities of modalities can be represented as a poset-enriched
category. We recall the basics of the theory of enriched categories instantiated for the
case of posets. For further details, see [Kel82] and [Rie14].

Definition A.2.10. A mode theory M is a poset-enriched category. Explicitly, it con-
sists of the following data:

• a set of objects Ob(M);

• for every pair of objects a, b ∈ Ob(M), a poset of morphisms Hom(a, b);

• together with monotone functions between posets

– composition ◦ : Hom(b, c)×Hom(a, b)→ Hom(a, c) and

– identity ida : {∗} → Hom(a, a)

for all a, b, c ∈ Ob(M), satisfying associativity and unitality axioms.

The category of bounded distributive lattices and monotone maps is naturally en-
riched over posets: for A,B ∈ DLm, and morphisms f, g : A→ B, f ≤ g iff f(a) ≤ g(a)
for every a ∈ A. In order to distinguish the enriched version of the category, we will
write DLm. Thus, the definitions of algebras, assignments, and models readily extend
to the enriched setting.

We first give the definition of a poset-enriched functor.

Definition A.2.11. A poset-enriched functor F : M → N consists of a map F :
Ob(M) → Ob(N) and a family of order-preserving functions for every pair of objects
a, b ∈ Ob(M) Fa,b : HomM(a, b) → HomN(F (a), F (b)), such that the following diagrams
commute.

HomM(b, c)×HomM(a, b) HomM(a, c) {∗} HomM(a, a)

HomN(F (b), F (c))×HomN(F (a), F (b)) HomN(F (a), F (c)) HomN(F (a), F (a))

Fb,c×Fa,b

◦

◦

Fa,c idF (a)

ida

Fa,a

Basically, enriched functors should preserve the structure of the posets of morphisms,
and respect composition and identity morphisms.
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Definition A.2.12. An algebra of a mode theory M is a poset-enriched functor M :
M→ DLm.

Basically, a multi-sorted algebra is a diagram of shape M in DLm. The enrichment
allows us to interpret inequalities of modalities as inequalities on Hom-posets. For ex-
ample, if we have f ≤ g in M, then in the modelM(f) ≤M(g) as monotone functions
between lattices.

The notion of a natural transformation between functors can be adapted for the
enriched setting.

Definition A.2.13. A poset-enriched natural transformation α : F ⇒ G between a pair
of poset-enriched functors F,G : M→ N is a family of functions αc : {∗} → N(F (c), G(c))
in the category of partial orders for every object c ∈M, such that for any pair of objects
c, c′ ∈M, the following diagram commutes in the category of partial orders:

M(c, c′)× {∗} N(G(c), G(c′))×M(F (c), G(c))

M(c, c′) M(F (c), G(c′))

{∗} ×M(c, c′) N(F (c′), G(c′))×M(F (c), F (c))

Gc,c′×αc

◦

αc′×Fc,c′

◦

Similarly to the non-enriched case, there is a discrete category AP, with objects being
pairs (p, a), where a is a sort and p ∈ Apa; there is a projection functor π : AP → M,
which maps (p, a) to a, and a functor 1 : AP → DLm, which maps (p, a) to the trivial
distributive lattice {∗}. We then define an assignment ℓ to be an enriched natural
transformation ℓ : 1⇒M◦ π.

AP

M DLm

π
1

M

ℓ

Definition A.2.14. A model is a multi-sorted algebra M equipped with a valuation
ℓ : 1⇒M◦ π.

The completeness theorem Theorem A.1.13 readily extends to the setting of poset-
enriched models and mode theories with inequalities. The definition of the Lindenbaum
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algebra stays the same, one just should notice that now it is an enriched functor, because
of the axiom induced by inequality of modalities. The proof of completeness is then
essentially the same, with relevant modifications for enrichment.

Theorem A.2.15. The logic ML(M) is sound and complete with respect to models
M : M→ DLm.

Negation

So far we have considered only the positive fragment of modal logic, that is a logic
without negation. Since negation is a unary operator on formulas, we can consider it
as a modality. Seen as such, negation is not monotone: the usual property of negation
is that it reverses the entailment, that is, if ϕ ⊢ ψ, then ¬ψ ⊢ ¬ϕ. Because of this,
we need to consider a different kind of mode theories with both monotone and antitone
modalities.

Definition A.2.16. A posetal category M with contravariance consists of

• a set of objects Ob(M);

• for every a, b ∈M, a pair of posets Hom+(a, b) and Hom−(a, b);

• for each a ∈M, a distinguished element ida ∈ Hom+(a, a);

• for each a, b, c ∈M, monotone composition functions

Hom+(b, c)×Hom+(a, b)→ Hom+(a, c)

Hom−(b, c)×Hom−(a, b)op → Hom+(a, c)

Hom+(b, c)×Hom−(a, b)→ Hom−(a, c)

Hom−(b, c)×Hom+(a, b)op → Hom−(a, c)

such that unitality and associativity diagrams commute.

Example A.2.17. Posets with Hom+(a, b) being the poset of order-preserving functions
between a and b, and Hom−(a, b) being the poset of order-reversing functions between
a and b is an example of locally posetal category with contravariance. Composition of
two monotone functions is monotone, as well as composition of two antitone functions.
On the other hand, composition of a monotone and an antitone function is antitone, in
any order.



118 APPENDIX A. TOWARDS ENRICHED CATEGORIES FOR MODAL LOGIC

Remark A.2.18. One can change the setting from poset-enriched to category-enriched
categories. The definition is essentially the same. This situation is studied and general-
ized in [Shu18].

Definition A.2.19. A mode theory with contravariance induces the following syntax:

ϕa ::= truea | falsea | ϕ ∧ ϕ | ϕ ∨ ϕ | {f} (ψb) | {g} (ψb) |
a, b ∈M, {f} ∈ Hom+(b, a), {g} ∈ Hom−(b, a)

We add a rule for antitone modalities:

ϕ ⊢a ψ

{g}ψ ⊢a {g}ϕ
Anti

Proposition A.2.20. The antitone modality has the following properties:

1. {g}ϕ ∨ {g}ψ ⊢ {g}(ϕ ∧ ψ);

2. {g}(ϕ ∨ ψ) ⊢ {g}ϕ ∧ {g}ψ.

Proof. 1.

ϕ ∧ ψ ⊢ ϕ

{g}ϕ ⊢ {g}(ϕ ∧ ψ)

ϕ ∧ ψ ⊢ ψ

{g}ψ ⊢ {g}(ϕ ∧ ψ)

{g}ϕ ∨ {g}ψ ⊢ {g}(ϕ ∧ ψ)

2. Similar.

In this setup we can capture back the definition of a De Morgan negation, that is
an operator which reverses disjunction and conjunction (¬(ϕ ∧ ψ) ⊣⊢ ¬ϕ ∨ ¬ψ and
¬(ϕ ∨ ψ) ⊣⊢ ¬ϕ ∧ ¬ψ) and such that ϕ ⊣⊢ ¬¬ϕ. In order to do that, we just add a
single modality for a sort, together with equality ¬¬ = {id}.
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A.3 Final remarks

In this chapter, we have shown how one can use enriched categories in order to specify
certain class of modal logics, and how to obtain the corresponding algebraic semantics.
However, the content presented in this chapter falls short of being satisfactory complete
for two reasons. First, we provide only algebraic semantics. For many modal logicians,
Kripke-style semantics is more appealing. Second, the scope of the axioms that can be
expressed in the logics of this chapter is limited. We aim to address these issues in the
future work.

Kripke-style completeness

Algebraic semantics is very convenient as in many cases the logic is almost automatically
complete with respect to the models. As we could see in this chapter, the proof is fairly
unsophisticated. Kripke semantics is usually of greater interest for modal logicians. The
underlying set-theoretic structure of frames, be it relational Kripke frames, neighbor-
hood structures or general frames, is appealing and easier to understand. It would be
interesting to see whether duality theorems (like Jónsson-Tarski duality) can be extended
to multi-sorted and enriched settings. This would be the main line of research in the
direction of Kripke-style completeness.

Many-sorted enriched algebraic theories

The range of axioms that can be expressed in logics of this chapter is quite limited.
It is enough to encode usual axioms such as (T) of (4), but we cannot express, for
example, the interaction axioms of positive modal logic, such as ♢ϕ∧□ψ ⊢ ♢(ϕ∧ψ) or
□(ϕ ∨ ψ) ⊢ □ϕ ∨ ♢ψ. One way to overcome this problem is to use multisorted enriched
Lawvere theories.

Definition A.3.1. A poset-enriched multisorted Lawvere theory is a poset-enriched cat-
egory L with finite products and a set of distinguished objects S, such that every object
of L is (isomorphic to) a finite product of objects from S.

Using standard (not multisorted, not enriched) Lawvere theories one can describe
algebraic theories, such as groups or distributive lattices categorically. Morphisms from
Xn toX define the set of n-ary operations that can be defined in the theory. For example,
for distributive lattices, there are two (except projections) morphisms ∧,∨ : X2 → X

that represent the binary operation in lattices. The properties of operations are encoded
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as equalities of morphisms. The set-theoretic models of the theory are product-preserving
functors from L to the category of sets. Moving to enriched multisorted setting, we can
add additional operations between sorts, that represent modalities of the logic, and
encode more axioms. Suppose we have two sorts a, b and two modalities □,♢ from b to
a. In a Lawvere theory, the axiom ♢ϕ ∧ □ψ ⊢ ♢(ϕ ∧ ψ) would be represented by the
following inequality of morphisms:

b

b× b a

a× a♢×□ ∧a

♢∧b
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Titre : Modèles géométriques de la logique épistémique
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Résumé : Il y a environ 40 ans, deux approches
majeures pour l’étude des systèmes distribués ont
été développées. Une des approches a établi une
perspective topologique sur le calcul distribué, ex-
primant la solvabilité des tâches distribuées à tra-
vers des notions standards de topologie algébrique,
en modélisant les espaces d’états sous forme de
complexes simpliciaux. En parallèle, une application
importante de la logique épistémique, un type de
logique modale, a apporté un point de vue alter-
natif sur la structure des systèmes distribués, en
utilisant la notion de connaissance pour décrire le
comportement des processus dans un système. On
s’est récemment rendu compte que ces deux ap-
proches sont étroitement liées et que les modèles
topologiques peuvent, en fait, servir de modèles de
logique épistémique. Cette thèse poursuit un pro-
gramme de recherche visant à unifier ces deux ap-
proches. Le premier objectif est de généraliser la
sémantique actuelle de la logique épistémique basée
sur les complexes simpliciaux au cas des ensembles
simpliciaux. Nous montrons qu’avec ces modèles,

on peut exprimer des connaissances de groupe non
standard, c’est-à-dire des situations où la connais-
sance d’un groupe vu dans son ensemble est stricte-
ment supérieure à l’union des connaissances de ses
membres. On considère ensuite une variante multi-
sortes de la logique épistémique, dans laquelle les
propriétés de l’environnement et les propriétés lo-
cales des agents sont exprimées séparément. Cette
logique est interprétée dans les hypergraphes chro-
matiques, qui sont une généralisation supplémentaire
des complexes simpliciaux, nous permettant de souli-
gner le rôle des points de vue locaux des agents dans
les systèmes distribués. On étudie la dynamique de
la connaissance dans les systèmes distribués en in-
troduisant une variante dynamique des hypergraphes
chromatiques. Dans ces modèles, les points de vue
locaux des agents sont dotés d’une structure tem-
porelle, ce qui permet de modéliser l’évolution des
connaissances dans le temps. De plus, on discute
de la relation entre la connaissance et la concurrence
dans ce contexte.

Title : On Geometric Models of Epistemic Logic

Keywords : modal logic, epistemic logic, distributed computing

Abstract : About 40 years ago, two major approaches
to the study of distributed systems were developed.
One approach established a topological perspective
on distributed computing, expressing solvability of dis-
tributed tasks through standard notions of algebraic
topology, by modelling spaces of states as simpli-
cial complexes. In parallel, a prominent application of
epistemic logic, a type of modal logic, provided an al-
ternative point of view on the structure of distributed
systems, by using the notion of knowledge to des-
cribe the behavior of processes in a system. It has
recently been realized that these two approaches are
closely related, and that the topological models can,
in fact, serve as models of epistemic logic. This the-
sis continues a research program aimed at unifica-
tion of these two approaches. Our first goal is to ge-
neralize the existing semantics of epistemic logic ba-
sed on simplicial complexes to the case of simplicial
sets. We show that with these models one can ex-

press non-standard group knowledge, that is situa-
tions when knowledge of a group seen as a whole
is strictly greater than the union of knowledge of its
members. We then proceed to study a many-sorted
variant of epistemic logic, where properties of the en-
vironment and local properties of agents are expres-
sed separately. This logic is interpreted in chroma-
tic hypergraphs, which are a further generalization of
simplicial complexes, allowing us to emphasize the
role of local points of view of agents in distributed sys-
tems. We also investigate the dynamics of knowledge
in distributed systems by introducing a dynamic va-
riant of chromatic hypergraphs. In these models, lo-
cal views of agents are supplemented with a temporal
structure, which allows us to model the evolution of
knowledge in time. Additionally, we discuss the rela-
tionship between knowledge and concurrency in this
setting.
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