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RÉSUMÉ

Des machines présentant une capacité de parler proche de celle de l’humain sont
présentes dans beaucoup de fictions : HAL dans l’Odyssée de l’espace, C3PO dans Star
Wars, ou plus généralement dans toute œuvre de science-fiction impliquant des interac-
tions homme/machine. Mais contrairement à ce que ces références peuvent laisser penser,
la synthèse de la parole, pleinement expressive et adaptée au contexte, n’est pas encore
un problème totalement résolu.

La construction de machines générant de la parole à partir d’un texte, tâche désignée
sous le nom de synthèse vocale, a une longue histoire. Mais durant ces dernières décennies,
les progrès de l’informatique et des technologies numériques ont permis un très rapide
progrès de ces méthodes de génération de la parole, notamment grâce à l’avènement des
réseaux de neurones et de l’apprentissage profond.

De telles technologies facilitent la production de contenus audio, comme des livres
audio, la vocalisation de contenus en ligne, ou le développement d’assistants virtuels.
Plus généralement, la synthèse vocale améliore l’accessibilité aux contenus écrits pour les
personnes ayant une déficience visuelle, et ouvre la voie a des expériences plus immersives
et interactives. À une époque où il suffit de dire “Ok Google” ou “Hey Siri” pour entamer
une conversation avec un appareil tenant dans une poche, la synthèse vocale presque
indistinguable de l’humain est reconnue comme étant atteinte. Cependant, le contrôle des
attributs de la voix reste insuffisant, ce qui suscite un grand intérêt dans les récentes
activités de recherche.

Le mécanisme de production de la voix ayant beau être bien compris, il est encore
difficile d’en décrire précisément les caractéristiques subjectives telles que les attributs de
la voix (claire, brillante, sombre, rauque...) ou la façon de parler (ton, émotion, souffle...).
Cela constitue un obstacle de plus vers la synthèse vocale totalement contrôlable et adapt-
able à volonté. Un tel système est l’objectif ultime à atteindre pour réaliser une synthèse
vocale personnalisable, la création de voix originales pour le doublage, un parfait clonage
de la voix ou une synthèse vocale pleinement adaptée au contexte.
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Aperçu bibliographique

Parole et synthèse

La parole est un moyen de communication séculaire, née du développement du conduit
vocal de l’être humain il y a maintenant des milliers d’années. La parole est un moyen
commode pour exprimer ses idées avec du son, permettant la transmission efficace de
connaissances et d’idées. Aiguisée au fil des siècles, à travers des cultures nombreuses et
variées, la parole est le moyen de communication privilégié pour un locuteur afin d’encoder
des mots, transmettre ses émotions, ses intentions ou tout simplement son identité.

Ces grandes quantités et variétés d’information transitant dans la parole posent un
véritable défi dans la description formelle de la parole et son analyse. Trouvant ses origines
dans les poumons, un flux d’air devient audible une fois passé par les cordes vocales, et
façonné par les résonateurs supraglottiques, comme la langue et les lèvres, pour produire
un large éventail de sons possibles. Ce flux d’air subit des variations de pression et ré-
sonne le long du système articulatoire, lui conférant des propriétés acoustiques décrivant
la forme d’onde perçue par un auditeur. La perception et l’interprétation de cette onde
sonore par l’humain dessinent un sujet à part entière. Les mots prononcés, formant la
partie linguististique de la parole, sont décodés sous forme de catégories (phonèmes, syl-
labes). L’état mental et les intentions d’un locuteur sont interprétés via des indications
prosodiques, faisant partie de l’information paralinguistique. Les traits anatomiques d’un
locuteur, englobés dans la part extralinguistique de l’information transportée par la pa-
role, sont intuitivement assimilés, permettant aux individus de se reconnaître entre eux.

Les informations linguistiques, paralinguistiques et extralinguistiques, se distinguent
donc par la nature de l’information encodée, et également par l’échelle temporelle des vari-
ations permettant de les transmettre, et de les comprendre. Les phonèmes et les syllabes
sont formés de variations à très court terme, de l’ordre d’une dizaine de millisecondes. Les
composants paralinguistiques, prosodie, émotion, style d’élocution, se transmettent par
des variations plus long terme, couvrant plusieurs mots, ou des phrases entières. Enfin, les
traits extralinguistiques, plus stables, liés à l’anatomie, aux spécificités et aux irrégularités
de l’appareil phonatoire de chacun, peuvent être considéré constants, au moins le temps
d’une étude conventionnelle.

De plus, une même phrase trouve une infinité de manières d’être prononcée, tout
comme les émotions ou la prosodie n’ont pas une manière unique d’être exprimées. Ce
manque d’invariance dans la parole est à la base de la complexité de sa modélisation : au-
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cune caractéristique objective, acoustique ou articulatoire, n’a encore été identifiée comme
suffisamment stable pour déterminer de manière exacte les attributs subjectifs de la pa-
role. C’est cette intrication entre descripteurs objectifs et subjectifs qui est aujourd’hui
au cœur des enjeux des travaux en cours et à venir sur le traitement automatique de la
parole.

Ainsi, l’apprentissage automatique a montré un très grand potentiel pour modéliser
les ondes sonores et gérer ce manque d’invariance dans la production de la parole. Avec
l’arrivée en force des réseaux de neurones depuis ces dernières années, des systèmes ex-
trêmement performants en termes de transcription, reconnaissance du locuteur, ou de
synthèse vocale, ont fait leur apparition. Plusieurs solutions développées dans l’industrie
ont atteint la maturité pour être déployées et proposées au grand public, rendant au-
jourd’hui le traitement de la parole augmentée par l’intelligence artificielle accessible à
tous.

Bien que la génération de la parole pour la machine ait atteint des performances
proches de l’humain, le contrôle fin des attributs de la voix reste encore limité. Grâce aux
méthodes de conversion de la voix, des systèmes sont capables d’extraire une caractéris-
tique donnée (identité du locuteur, prosodie) d’un énoncé, pour l’injecter dans un autre.
Mais sans énoncé de référence, il reste compliqué de personnaliser chacun des attributs de
la voix, de manière intuitive, et à volonté. Autrement dit, les réseaux de neurones actuels
ne sont pas encore capables de comprendre les différents composants perceptuels de la
parole, et leurs relations, ce qui limite leur usage dans les cas où il serait souhaitable
d’avoir la main sur des aspects précis de l’énoncé à générer.

Démêler les intrications du monde

Le manque d’interprétabilité et de structure dans les abstractions apprises par les
réseaux de neurones, appelées espaces latents, est un problème bien connu, faisant l’objet
de beaucoup d’études. Il s’agit de comprendre les prédictions des modèles appris, pour
en vérifier le bon fondement, éviter les biais liés aux données d’apprentissage, et rendre
les modèles proposés robustes et fiables dans le cadre d’applications critiques. Comme
avancé par Bengio et al. (2013) [13], une bonne représentation doit comporter certaines
propriétés, dont celle d’être démêlées. En effet, il est supposé qu’étant donné un ensemble
d’observations (un corpus d’images, d’énoncés), il existe un ensemble de facteurs générat-
ifs, ne comportant pas de relations causales (voir Pearl [173]), à l’origine du processus de
génération du “monde observable”, dont on ne dispose que d’échantillons. Une représenta-
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tion dite démêlée, est alors capable d’extraire ces facteurs génératifs, et de les aligner avec
certaines dimensions latentes. Ces représentations latentes deviennent alors interprétables,
car il devient possible d’isoler certaines variations liées aux données dans un sous-ensemble
de l’espace latent appris, et peuvent être employées pour diverses tâches sous-jacentes.
Cela rend l’apprentissage de représentations démêlées une manière d’abstraire un ensem-
ble d’observations dans un espace de représentation polyvalent et agnostique. Il s’agit
d’un axe de recherche encore récent, mais très prometteur en matière d’interprétabilité,
de généralisation, et de contrôle dans des contextes de génération de données, comme l’est
la synthèse vocale.

Il convient de soulever un problème majeur de la notion de démêlage, qui est l’absence
d’une définition formelle et consensuelle du démêlage, ce qui rend difficile l’apprentissage
de représentations démêlées, et rend vague la manière de mesurer le degré de démêlage
d’un modèle donné. Plusieurs pistes existent afin de donner un cadre plus formel au
démêlage, via la notion de symétrie (Higgins et al (2018) [85]) ou de causalité (Suter et
al. (2019) [213]), mais n’indiquent pas comment apprendre des représentations démêlées.

Un type de modèle ayant montré une bonne capacité de démêlage est l’autoencoder
variationnel (VAE). Ce type de réseau de neurones a pour but de modéliser les facteurs
génératifs via un espace latent, encodant les données observées sous une forme compacte,
et optimisé pour être suffisamment informatif à propos des données pour les reconstruire
dans une phase de décodage. Le pouvoir démêlant du VAE trouve ses origines dans la di-
vergence de Kullback-Leibler de la fonction objectif du VAE, qui encourage l’indépendance
statistique des composantes de l’espace latent. Partant de cette observation, de nom-
breuses extensions du VAE sont proposées (β-VAE, β-TCVAE, FactorVAE...), afin de
renforcer davantage cette propriété démêlante.

Enfin, en l’absence de définition précise du démêlage, un grand nombre de métriques
pour en mesurer le degré sont proposées par la littérature. Ces métriques ont des fonc-
tionnements divers et variés, mais ont pour point commun l’inconvénient de nécessiter la
connaissance des facteurs à démêler. Cela rend l’application de telles métriques non-viable
dans des contextes totalement non-supervisés, ce qui est le cas du démêlage des attributs
subjectifs de la voix : les corpus sont souvent annotés en identité, genre, parfois émotion,
mais rarement avec des étiquettes plus précises et subjectives (voix rauque, sombre, claire,
ou ton calme, stressé, ironique). C’est pourquoi la plupart des études sur l’apprentissage
de représentations démêlées sont restreintes à des données synthétiques, où les données
sont entièrement expliquées par des facteurs génératifs connus, étant très souvent des
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images synthétiques.

Contributions en bref

Vers le démêlage de la parole

Afin d’éprouver les modèles de démêlage proposés par la littérature, des expérimenta-
tions préliminaires ont été menées sur des corpus d’images synthétiques. Plusieurs valeurs
d’hyperparamètres et de taille de l’espace latent sont testés, pour donner un aperçu de
leur effet, et valider les intuitions données par les différentes extensions du VAE. Un sous-
ensemble des nombreuses métriques existantes est également éprouvé, pour avoir une idée
de leurs comportements, et évaluer l’accord entre métriques. Il en ressort que les modèles
appris sont capables, dans une certaine mesure, de démêler correctement certains facteurs
génératifs, mais qu’il reste difficile de s’y retrouver parmi les nombreuses métriques, qui
manifestent différents degrés d’optimisme sur le score à attribuer aux modèles, et qui
parfois sont en désaccord.

Dans le but d’aller vers le démêlage des attributs de la parole, un corpus de voyelles
synthétiques est ensuite introduit, diSpeech [247], permettant de combler le manque d’un
jeu de données de “parole” analogue aux corpus synthétiques utilisés pour la vision par
ordinateur. diSpeech est composé de cinq facteurs génératifs : les trois premiers formants
F1, F2, F3, permettant de couvrir l’espace des voyelles françaises ; la fréquence fonda-
mentale F0, pour contrôler la hauteur ; et le taux de décroissance de F0, qui introduit
une variation temporelle et permet la génération de voyelles plus réalistes. Des valeurs
sont fixées empiriquement pour chacun de ces facteurs, et l’ensemble des combinaisons
possibles sont générées pour former le corpus complet. À noter que diSpeech est extensi-
ble en définissant d’autres valeurs pour ces facteurs, et même d’autres facteurs parmi les
paramètres de Klatt, le synthétiseur utilisé pour générer les voyelles à partir de ces fac-
teurs 1. Ainsi, le démêlage du corpus proposé est expérimenté, et un exemple d’application
est décrit, où la capacité de démêlage des voyelles du corpus réaliste TIMIT est éprouvé
à l’aide d’un modèle pré-entraîné sur diSpeech.

Pour mener cette entreprise de combler le fossé entre le démêlage et le traitement de la
parole, des expériences sont réalisées sur les corpus de parole réaliste Bref120 et TIMIT,

1. Le code pour générer diSpeech est disponible sur GitHub : https://github.com/
Orange-OpenSource/diSpeech
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avec un autoencoder variationnel factorisé et hiérarchique (FHVAE). Ce modèle est égale-
ment basé sur un VAE, mais plus avancé, car il factorise l’espace latent en deux représen-
tations distinctes, et introduit une structure hiérarchique en conditionnant l’apprentissage
de l’un par l’autre, afin de représenter la nature multi-échelle des attributs de la parole.
Pour évaluer le démêlage de ce modèle, les annotations disponibles de Bref120 et TIMIT
sont employés pour appliquer les métriques de démêlage, mais les résultats restent mitigés,
et des biais dues aux corrélations entre facteurs faussent les conclusions de la métrique
utilisée.

Mesurer le démêlage

Un problème régulièrement soulevé tout au long des expériences menées est la difficulté
d’interpréter et d’estimer la fiabilité des métriques. La métrique DCI [55] est recommandée
par la littérature, étant donné qu’elle mesure plusieurs propriétés du démêlage, et qu’elle
permet une lecture détaillée pour chaque facteur et pour chaque latent.

Il apparaît alors crucial de s’assurer que les métriques utilisées sont fiables, et ne révè-
lent pas d’incohérences dans la pratique. Un processus est alors proposé, la “décimation
de latents”, visant à vérifier que les scores annoncés par DCI sont bien cohérents. Des
incohérences sont révélées sur le corpus diSpeech, et une nouvelle métrique, MIDCI, est
proposée afin d’améliorer la cohérence sous la décimation de latents [246]. Cette nouvelle
métrique se base sur la mesure d’information mutuelle entre latents et facteurs, et assigne
des scores de démêlage moins optimistes que DCI, mais plus réalistes au regard du procédé
de décimation de latents.

En creusant davantage cette idée de séparation de l’information des facteurs parmi
les latents, une métrique basée sur la décomposition partielle de l’information (PID) est
proposée. Cette mesure présente l’avantage de prendre en compte les corrélations entre
facteurs et entre latents, en décomposant les interactions impliquant plus de deux variables
en plusieurs morceaux élémentaires d’information, et en ne gardant que ceux identifiés
comme relevant du démêlage. Ainsi, le degré de démêlage d’un facteur est défini comme
étant la somme des quantités d’information uniquement capturées par chaque latent,
en écartant les informations apprises de manière redondante ou générées par synergie
entre latents. Cela laisse ainsi la possibilité aux facteurs complexes d’être appréhendés
par plusieurs latents, tant que ces derniers transportent des variabilités distinctes. Bien
que prometteuse, le calcul de cette mesure n’est pas trivial, car plusieurs manières de
calculer le PID existent et ne donnent pas les mêmes résultats. Le calcul de mesure doit
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également faire face à une complexité exponentielle au regard du nombre de variables
et de réalisations possibles, comme la plupart des mesures émanant de la théorie de
l’information. L’application de cette métrique, afin d’en montrer les vertus, est donc le
sujet d’investigations à venir.

Conclusion

La parole est le moyen de communication le plus sophistiqué de l’être humain, et
également le plus intriqué. Au delà du contenu linguistique, beaucoup plus d’information
transite par la parole, à propos de l’état émotionel du locuteur, ou de ses intentions, et
à propos de lui-même, son identité, ses origines régionales, etc. Alors que l’apprentissage
profond démontre d’impressionnants résultats sur des tâches spécifiques et bien cadrés
grâce à l’apprentissage supervisé, la récente tendance générale est d’utiliser une grande
quantité de données non-annotées, dans une approche auto-supervisée. Cette nouvelle ère,
où règnent les modèles pré-entraînés puis adaptés sur des tâches subsidiaires, est témoin de
grandes avancées dans l’efficacité du traitement de la parole par l’intelligence artificielle.
Cependant, malgré tous ces progrès, l’“appréhension” des attributs subjectifs de la parole
reste difficilement atteignable avec les systèmes actuels.

Bien que le système de production de la parole soit aujourd’hui bien compris, il reste
difficile de cerner formellement les attributs subjectifs de la parole. Ce manque de tax-
onomie des caractéristiques de la voix rend difficile la modélisation des variations ap-
préhendées de manière intuitive par l’humain (voix rauque ou claire, ton ironique ou
sincère, état détendu ou stressé, etc.). D’un autre côté, des travaux de recherche visant
à démêler de manière automatique les facteurs génératifs d’un ensemble d’observations
parviennent à séparer des composantes indépendantes au sein de données, et de les
contrôler dans un mécanisme de génération. Des résultats encourageants avec ce type
d’approche sont démontrés par la littérature, mais leur capacité à démêler les attributs
de la parole reste limité.

C’est pourquoi la thèse présentée dans ce manuscrit vise à combler le fossé subsistant
entre les systèmes de traitement et de synthèse de la voix d’un côté, et les avancées en
matière de démêlage de l’autre. Le corpus de voyelles synthétique diSpeech est ainsi pro-
posé, afin de donner à la communauté scientifique un support pour repousser les limites
des algorithmes de démêlage sur des signaux de parole. Le problème toujours ouvert sur
la manière de mesurer le démêlage est également soulevé, et un procédé de décimation
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de latents est introduit, pour assurer la cohérence des métriques existantes. La métrique
MIDCI est alors développée, afin d’améliorer la consistance du DCI au regard de la déci-
mation de latents, tout en conservant les atouts du DCI.

Pour conclure, cette thèse s’inscrit dans la récente tendance à vouloir rendre plus
structurés, explicables et contrôlables les réseaux de neurones, à la capacité et complexité
toujours croissantes, alors que les bien nommés grands modèles de langage (LLMs) entrent
dans le quotidien du grand public et sont, à l’heure de la rédaction de ce manuscrit, déjà
en train de marquer un tournant dans le rapport de l’homme à l’intelligence artificelle.
Le traitement de la parole par intelligence artificielle n’est pas en reste : de nombreuses
solutions commencent à émerger dans l’industrie, proposant du clonage de la voix, de la
traduction conservant l’empreinte vocale, de la synthèse de plus en plus contrôlable pour
la création de contenus, etc. Des défis restent cependant à relever pour atteindre un vérita-
ble contrôle sur les attributs subjectifs de la parole, afin de pouvoir proposer une synthèse
véritablement adaptée à différents contextes et environnements. Ainsi, l’apprentissage pro-
fond repousse toujours davantage les limites de la complexité et de la capacité à assimiler
de l’information, mais l’enjeu des prochaines avancées majeures résidera dans la capacité
des systèmes à démêler les intrications du monde observable, pour bâtir des modèles plus
rationnels, fiables, robustes, et alignés avec l’intuition humaine.
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ABSTRACT

The past few years’ advances in deep learning have brought unprecedented perfor-
mances in a wide range of tasks and modalities. Among the factors of those break-
throughs is the learning of informative and contextual hidden representations within
models, reached by means of well-defined architectures and training procedures.

Speech analysis and synthesis models are plainly concerned by neural network devel-
opments. An increasing number of close-to-human accuracy speech analysis (ASR, ASV,
etc.) and near-natural speech generation (conversion, TTS, etc.) models are proposed by
the research community, and multiple tools leveraging such technologies are emerging in
the industry and are reaching the public.

Nevertheless, the increasing complexity and size of neural networks are causing a sig-
nificant lack in their interpretability. Moreover, well-structured representations are not en-
forced by design in developed models. Hence, disentangled representations have emerged,
which aim to prioritize representations structured by design related to data explanatory
factors, which hopefully are aligned with human perceptions, i.e., interpretable. Such a
paradigm to learn representations can be expected to properly recognize and split speech
attributes (speaker identity, gender, emotion, expressivity, etc.), which may be leveraged
for speech synthesis purposes. However, disentanglement learning is a research topic still
in its early stages, needing simple and synthetic data to be developed. It is also lacking a
clear and consensual definition and, consequently, a metric to quantify it.

Thus, this thesis endeavors to bridge the gap between speech processing and dis-
entanglement, examining how state-of-the-art disentangling models can be employed to
automatically recover speech attribute-related information and ultimately improve control
over synthesized speech. To this end, a synthetic dataset of vowels is proposed to experi-
ment and compare existing disentanglement models and metrics. Disentanglement of real
speech is also experimented, and limitations are pointed out. Metrics to measure disentan-
glement are then studied, and unexpected metric behaviors are exposed. Furthermore, an
information theoretic-based metric is introduced, which we believe to encourage beneficial
properties for learned representations regarding the disclosed inconvenient behaviors and,
in the long run, voice attributes.
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NOTATIONS

Numbers and arrays
a scalar value, random variable realisation
A scalar matrix

tr(A) trace of matrix A

det A determinant of matrix A

Sets
A set of scalar values
A set of vector-valued random variables
A domain set

Dataset of observations
x(i) i-th observed data from a dataset
X a dataset of observations

Probability and information theory

a scalar random variable
ai element i of random vector a
a vector-valued random variable

Cov(x) covariance matrix of x
E[x] expectation for x

N (x; µ, Σ) normal distribution with mean µ and covariance matrix Σ
H(x) entropy of x
Hk(x) entropy of x with base k logarithm
I(x; y) mutual information between x and y
Ip(x; y) mutual information between x and y over distribution p
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Notations

T C(x) total correlation over the components of x
DKL(p∥q) Kullback-Leibler divergence of p and q

U(t; s1) unique information of source variable s1 regarding target variable t
R(t; s1 : s2) redundant information between s1 and s2 regarding t
S(t; s1 : s2) synergistic information of s1 and s2 regarding t

x ⊥⊥ y x and y are statistically independent
x ⊥̸⊥ y x and y are statistically dependent

do(x = x) interventional effect of setting x to the value x

Functions
∥.∥p p-norm
log x natural logarithm of x

f(x; θ) function of x parameterized by θ
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INTRODUCTION

Human-like talking machines have rooted references in widespread popular fictions:
HAL in Space Odyssey, C3PO in Star Wars, or essentially any science fiction film with
human-machine interactions. Unlike what those famous references might suggest, human-
like expressive and contextually tailored speech synthesis is not (yet) a solved problem.

The building of machines that generate words and sentences from text, a task known
as Text-to-Speech (TTS), has a long story. But recent advances in computer science and
digital technologies have triggered a rapid advancement of speech synthesis methods.
Such technologies facilitate the production of audio content, such as audio books, the
vocalization of online content, and the development of virtual assistants. More broadly,
TTS improves accessibility to written content for people with disabilities and inspires
more engaging and interactive experiences. In an age where starting a conversation with
a pocket-sized device is as simple as saying “Ok Google” or “Hey Siri”, near-natural speech
generation is well acknowledged to be reached. But there is still a lack of control over voice
attributes, which is of great interest in recent efforts.

The voice production mechanism is well understood, but it is still hard to precisely
describe subjective features such as voice characteristics (bright, shining, dark, hoarse,
etc.) or the way of speaking (tone, emotion, breathiness, etc.). This does not ease a fully
tunable and controllable generation of speech. Such a system is the ultimate goal to reach
in order to achieve customizable TTS, tunable voice dubbing, zero-shot voice cloning, or
context-tailored speech synthesis.

Speaking machines

Speech synthesis is the process by which synthetic speech is generated, originally from
a given text to enunciate. First attempts to build systems able to produce speech-like
sounds were based on manually operated mechanical instruments. Wolfgang von Kempelen
built in the late 18th century the first “speaking machine” [103] by modeling human’s
vocal tract, with bellows as lungs to supply an airflow and pipes to produce vowels and
consonants. Kempelen’s speaking machine paved the way for the development of more
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advanced speech synthesizers, as The Voder [54], an electronic formant synthesis system
i.e., based on vocal tract’s resonant frequencies modeling, with keys to control formants
and a foot pedal to control pitch, developed in the late 30s. However, months of practice
were needed to properly operate such a system.

Then computer-based systems were developed, enabling richer sound synthesis and
whole sentence generation. Among them, Votrax’s speech synthesis system [61] is worth
a mention. It is an articulatory synthesizer, i.e., vocal tract is modeled with a set of
rules and algorithms to generate output articulations and transitions corresponding to an
input phoneme sequence. Votrax is also known to have achieved the first computer-assisted
pizza delivery ordering in 1974. Achieving more natural results, Unit selection synthesis
is another type of system based on the concatenation of prerecorded sounds [95].

State-of-the-art synthesis is nowadays achieved with Statistical Parametric Speech
Synthesis (SPSS) [243] models, which estimate acoustic features from linguistic features
to generate audible waveforms with a vocoder, i.e., a component built to map acoustic
features (spectrogram) to a sound wave. Such models were originally based on Hidden
Markov Models (HMM), but neural networks progressively took over, currently being the
core technology of modern speech synthesis systems [216].

As in many domains, artificial intelligence has recently shown very impressive results
in speech generation. Research efforts in neural-based speech synthesis are increasingly
dynamic, and recent breakthroughs in deep learning have made it possible to reach un-
precedented results in TTS. Hence, the industry has already released a wide range of tools
and solutions to generate speech, powered by neural networks.

Raise of deep learning for speech synthesis

Deep learning’s seminal works date back to the 1940s, designated as cybernetics. But
it is only over the past decades that improvements in hardware, computation capacities,
and data availability have led to deep learning’s groundbreaking performances in many
research fields, such as computer vision, natural language processing, healthcare, and, at
the heart of our interests, speech processing.

In “classical” machine learning approaches, handcrafting an efficient set of features for
a given task is mandatory, but might take years of human expert effort. Neural networks
avoid such obstacles, as their core concept is precisely based on the automatic learning
of abstract representations from observed examples. Such models are called “deep” as
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they build up an internal hierarchy of concepts, gaining in abstraction and complexity
as a model grows deeper. In other words, neural networks have the ability to learn their
own features from data samples and organize them into interconnected layers. Deeper
layers capture increasingly abstract concepts out of shallower layers conveying simpler
concepts [68].

With a growing community of researchers and industries over the past few years,
deep learning has experienced a wide range of developments and improvements in model
architectures (CNN [128], ResNet [79], LSTM [88]...), computational efficiency (regular-
ization, hardware acceleration, parallelization...), optimization algorithms (SGD [131],
Adam [116], Adagrad [53]...) and so on. Among the major breakthroughs, self-supervised
representation learning paradigm advocates training procedures that can leverage a huge
amount of unlabeled samples while extracting meaningful information by means of care-
fully designed objective functions. Self-attention introduced by Transformer model [224] is
also worth to mention, as it brings contextually relevant token generation, enabling highly
realistic sequence generation. The mentioned developments, and many others, have led
to impressive results demonstrated by generative models since the achievement of highly
natural multimedia content generation: image, audio, video, or text. Such models have
been widely mediatized, namely GPT [166] or DALL-E 2 [183].

Neural networks have demonstrated a great potential for TTS, learning appropriate
matching between linguistic and acoustic features, as Tacotron 2 [205]. Neural networks
also exhibit strong capacities as vocoders, i.e., to predict waveforms from acoustic features,
as WaveNet [165]. Fully end-to-end systems are also developed, as JETS [144], negating the
need to articulate two components, unifying acoustic model and vocoder, in a standalone
pipeline.

However, in an utterance, non-verbal features, e.g., speaker’s own traits, prosody, or
rhythm, are not to be neglected as they can convey much more besides linguistic content.
Fortunately, deep learning has also shown remarkable capabilities to manipulate such
complex variabilities, but still with limitations.

Controllable speech synthesis

The non-verbal characteristics of an utterance can tell us a lot about the speaker (e.g.,
sex, age, emotional state) and his intentions (e.g., statement, question, irony). Speaker
identity can be characterized by its anatomical configuration, e.g., vocal folds, tongue, and
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lip settings. Prosodic attributes can be described with acoustic feature variations, e.g.,
pitch, formants, rhythm, and tone. All in all, non-verbal information is tied to physical
cues and can thus, in essence, be expressed through objective descriptors.

From a perceptual viewpoint, the description of speech with common and known to
all terms, is mainly based on adjectives borrowed from other senses (e.g., bright, dark,
warm, smooth) or tied to the perceived emotional state (happy, stressed, afraid) or intent
(e.g., question, irony, command, hesitation). Hence, the subjective descriptors of speech
are actually complex entanglements of objective features.

Consequently, achieving speech synthesis by controlling acoustic features to match a
perceptual expectation requires profound expert knowledge of phonetics and is quite time-
consuming. Even manually tricking the output of a text-to-speech model is a laborious
effort. Thus, deep learning-based synthesis techniques handle such subjective concerns by
adding non-verbal annotations (e.g., speaker identity, emotion). Then conditioning syn-
thesis models on those labels enables control over perceptual characteristics in synthesis.

More recently, self-supervised models learned on huge amounts of unannotated speech
segments are able to extract non-verbal attributes through meaningful representations.
Speaker identity might be provided during training in order to discard it from learned
representations and prioritize prosodic aspects. Then Voice Conversion (VC) is achieved
when non-verbal features from a target segment are extracted and injected into a source
segment.

Leveraging the high representational power of deep learning, non-verbal-related tasks
have benefited from major advances. Speaker identity is successfully controlled by recent
VC models, and expressivity is well addressed by Expressive Voice Conversion systems.
Even Cross-lingual Voice Conversion is being achieved, allowing anyone to seemingly
speak another language fluently. Such solutions are already being proposed by industrials
such as Coqui 2, Elevenlabs 3, or Respeecher 4.

However, to reach context-adapted synthesis and natural vocal human-machine in-
teractions, understanding and control over non-verbal features are required. With the
principles outlined above, current deep learning models do not provide the means to eas-
ily tune fine-grained subjective characteristics. VC is achieved, but the speaker embedding
invoked to convey the speaker identity (e.g., X-vector [208]) are only abstract numerical
representations, which do not explicitly describe what constitutes speaker’s individuality.

2. https://coqui.ai
3. https://elevenlabs.io
4. https://www.respeecher.com
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Such implicit speaker representations do not let one design a voice from scratch with
the desired attributes. Similarly, expressive VC is possible only through implicit repre-
sentations, which can hardly be manipulated to customize prosody for a specific context.
The very recent advances in prompting techniques, arising from the fast-growing trend
of Large Language Models (LLMs), are worth mentioning. Those approaches enable the
very accurate synthesis from textual descriptions of non-verbal aspects and background
noise, yet they do not provide fine-grained control over the generated speech.

Note that for supervision or evaluation purposes, annotating speech segments with
perceptual labels is a hard and tedious task. Subjective descriptors do not dispose a
formal definition, and each person has their own interpretation. The lack of an agreed-
upon way to describe a voice and speech hence appears as an additional difficulty towards
controlling non-verbal elements in synthesis.

Problem statement

As mentioned earlier, acoustic features are too punctual and entangled to properly
synthesize subjective descriptors at will. Hence, one may expect neural networks to be
able to learn intermediary representations, which might find correspondences with human
intuitions. This leads to the quest for interpretable deep representations that disentangle
non-verbal speech attributes.

Such a paradigm is emerging in recent studies, especially in image processing. Disen-
tanglement learning refers to the automatic discovery of explanatory factors of variations
within data. This suggests the explicit modeling and separation of hidden variables that
“generate” observed data, leading in some sense to an understanding of world’s structure.
The comprehension of generative factors in images, e.g., color, shape, or spatial position,
is of particular interest for an agent exploring and interacting with a simulated or real
world.

Speech is also concerned. As pointed out before, verbal, speaker, and prosodic infor-
mation are non-trivial aspects often factorized to control one without affecting others.
The troubles encountered when trying to distinguish perceptual characteristics of speech
might also find answers in a learning procedure dedicated to the automated discernment
of speech explanatory temporal patterns, which hopefully would let one control them in
synthesis. For instance, if the aforementioned implicit speaker embeddings were disen-
tangling speaker’s voice signature facets, they might become meaningful and efficiently
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leveraged to control speaker identity in VC systems.
Besides a growing interest in disentangling model development and analysis, the de-

picted task is still lacking a clear and consensual definition. This arises from the difficulty
of establishing a clear training objective and an appropriate quantitative measure of disen-
tanglement. Until now, disentanglement has been an implicit target in model optimization
schemes, not guaranteed to be reached or to match perceptual expectations. Disentan-
glement is mainly evaluated with visual and qualitative assessments. A wide range of
quantitative metrics are also proposed, each measuring different characteristics, making
it difficult to decide which one to use. Those metrics are also based on the knowledge of
ground-truth factors to disentangle, limiting their usage to synthetic or simple cases.

Disentanglement as an objective to learn speech representations is at the core of some
research efforts, but few of them are truly leveraging the theoretical endeavors supplied
in disentanglement studies. This is disclosing a gap between speech attribute processing
and disentanglement learning, which will be our main concern during the incoming parts
of this manuscript, i.e., how to bridge the gap towards speech disentanglement.

Key findings

Among the contributions of the thesis portrayed in this manuscript, diSpeech, a corpus
of synthetic vowels, lays the groundwork for the aforementioned endeavor. It constitutes
an appropriate playground to analyze the behavior of existing disentanglement models and
metrics regarding the acoustic features of vowels, i.e., formants and pitch. Experiments on
diSpeech and real speech segments underline the difficulty of asserting disentanglement
through both metrics and listening: metrics exhibit discrepancies between one another,
and listening to every single synthesis when exploring directions of a learned latent space
(traversals) is a tedious and highly subjective labor.

The complexity of disentanglement assessment being exposed, a Latent Decimation
procedure is proposed in order to estimate consistency over metrics. We consider that a
metric claims a degree of disentanglement for each representation dimension regarding
a given factor of variation. If we iteratively remove dimensions and train a predictor
each time, we can expect the predictor’s accuracy to have some correlation with the
informativeness of the removed dimension. The procedure checks for the existence of such
an agreement.

In light of the metrics comparison and lack of consistency, a new metric is coined,
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MIDCI. It combines two existing metrics to keep their pros without their cons, and ex-
periments show that it exhibits more consistent behaviors under the latent decimation
procedure.

Finally, promising perspectives are developed towards the definition of an information
theory-based metric, more precisely by leveraging on Partial Information Decomposition
(PID) theory. So far, proposed metrics consider each dimension separately or are inherent
to predictors that may be biased. Hence, there is a clear lack of consideration of latent
dimension interactions and redundancies, which are precisely managed by PID measures.

Thesis outline

To properly go through the various findings and proposals related in this manuscript,
Chapter 1 provides an overview of speech synthesis methods, starting from a broad de-
scription of speech and then digging into text-to-speech and non-verbal attributes control.
Chapter 2 handles the other shore by surveying disentanglement objectives, methods, met-
rics, and challenges. In addition, it is believed that the unified discussion about speech
attribute intricacies in Chapter 1 and the Variational Autoencoder (VAE) framework with
its interpretations and its multiple disentanglement deviations provided in Chapter 2 are
of great value as a standalone contribution in the quest of what constitutes voice, why
disentanglement happens, and how to bring them together.

Contributions are then described, starting with Chapter 3, which introduces diS-
peech [247] and speech disentanglement experiments and results. Chapter 4 relies on
preceding findings to propose an in-depth metric analysis procedure, a.k.a., latent deci-
mation, the metric MIDCI [246], and evidence of a PID-based metric relevance. Parts of
the work described in this manuscript were published in the following articles:

— [247] Zhang, Olivier et al., « diSpeech: A Synthetic Toy Dataset for Speech Dis-
entangling », in: ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 8557–8561

— [246] Zhang, Olivier et al., « An extension of disentanglement metrics and its ap-
plication to voice », in: Proc. INTERSPEECH 2023, 2023, pp. 2878–2882, doi:
10.21437/Interspeech.2023-383
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Chapter 1

SPEECH AND SYNTHESIS BACKGROUNDS

The primary material of our concerns in this manuscript is speech. It is a secular means
of communication dawned from human’s vocal tract development hundreds of thousands
of years ago. Speech provides a convenient way to express thoughts with sounds, enabling
the effective sharing of knowledge and ideas. Sharpened by centuries of development
through sprawling cultures, speech is the privileged medium for a speaker to encode
words, transmit its emotional state, its intentions, or merely its identity.

This wide range of information poses challenges in the formal description and analysis
of speech. Originating from the lungs, an airflow becomes audible upon passing through
vocal folds and shaped by the supraglottal vocal tract (e.g., tongue, lips) to produce a vast
variety of sounds. As the airflow sustains pressure variations and resonances along the vo-
cal tract, it acquires acoustic features that describe the sound wave frequencies received by
the listener [132]. The perception and interpretation of such a sound wave by humans is a
full-fledged topic. Spoken words are retrieved by decoding the heard signal into quantized
categories (i.e., phonemes and syllables). Mental state and intents of a speaker are inter-
preted through prosodic cues. Anatomical traits of a speaker are perceptually assimilated,
allowing individuals to recognize each other. In short, anatomy, acoustics, and perception
are intricate but complementary descriptors of speech, as detailed in Section 1.1.

Furthermore, the lack of invariance [4] is an intrinsic complication of speech: no in-
variant feature (acoustic, anatomical) of speech has yet been identified to properly encode
perceived features (phoneme, emotion). The high variability of a single speaker and be-
tween speakers to encode a same phoneme or emotion is the main challenge in achieving
both recognition and synthesis based on perceptual features.

This manuscript is focused on non-linguistic characteristics in speech synthesis. Multi-
ple methods were developed, but yet none of them have been able to suitably disentangle
speech intricacies. In order to design new approaches able to find the parallels between
a sound wave and human’s interpretation, speech synthesis systems and the involved
challenges are described in Section 1.2.
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1.1. Speech attributes

1.1 Speech attributes

It is fascinating to see the number of domains involved in speech production and
understanding, e.g., anatomy, acoustics, phonetics, auditory, or psychoacoustics. It is also
interesting to notice that several layers of information are conveyed by speech. By “speech
information” is meant any knowledge transmitted, intentionally or non-intentionally, by
way of the sound wave and which can be deduced by a listener, e.g., speaker identity,
textual content, or prosody. As one is speaking, all those pieces of information are diluted
in the sound stream. And yet, it remains intuitive for a speaker to properly encode all
parts together, as well as for a listener to correctly decode, distinguish, and interpret each
part.

The encoding and decoding processes are the main concerns of speech synthesis and
recognition systems, respectively. To clarify the points covered in this manuscript as well
as the underlying pitfalls, it is necessary to decompose speech.

1.1.1 Speech breakdown

In order to suitably describe what is speech, a breakdown of speech components is pro-
posed in Figure 1.1. Speech production is mainly driven by the spoken content, but the
unspoken content should not be neglected to completely comprehend an uttered message.
Berckmoes and Vingerhoets (2004) [14] consider two facets of the information conveyed
by speech: verbal and vocal channels, i.e., verbal and non-verbal content. Diving further
into non-verbal content, one may distinguish speaker’s own characteristics (e.g., sex, age,
regional origins) [201] from the prosodic variations: state (e.g., health, sleepiness, intox-
ication) [200] and intentions (e.g., statement, question, apology) [199]. To summarize,
Figure 1.1 refines speech information into 3 categories [134, 203, 161]: Linguistic: the ver-
batim, i.e., what is said; Paralinguistic: style, prosody, or tone-related variations, i.e., how
is it said; Extralinguistic: speaker’s related characteristics, i.e., who is speaking.

Now, if we examine the produced sound wave, time scale is what can differentiate
those information parts. Finer-grained pieces of information are linguistic cues, phonemes
being the most punctual events lasting tens to hundreds of milliseconds. Syllables, words,
and whole sentences are formed from sequences of such short-term variations. Zooming
out to coarser and more transitory variations, paralinguistic cues become visible. They are
observable as mid-term variations of sound waves. Two subcategories can be identified:
speaker intents, i.e., the message that the speaker intends to convey (which might be
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Figure 1.1 – Speech breakdown

different from the actual spoken message), and state, i.e., how the speaker is doing. The
latter is considered temporally coarser than the former [199], as what nuances mood and
emotion. In other words, expressed intentions are conveyed by shorter-term variations than
psychological or physiological states. Coarsest variations lay when zooming out further,
pertaining to speaker traits e.g., identity, age, sex, weight, impairment, or disorder. Such
cues are considered near-constant, as they change during one’s lifetime but remain fairly
stable within the scope of a conventional study.

Regarding the perception of speech (i.e., from a decoding perspective), coarse-to-fine
informational influences lay in the proposed time granularity-based ordering. We define
“perception” as the procedure by which a human mentally interprets, represents, and
organizes information from a heard speech. Extralinguistic influences linguistic cues via
intrinsic physiological attributes (e.g., speaker’s identity or sex define pitch range) or
personal elocution preferences (e.g., regional or social origins may influence pronuncia-
tion and linguistic variations). Paralinguistic impacts linguistic (e.g., tone 1, pitch or am-
plitude variations influence the phoneme cues). Personality and propensities may differ
significantly from speaker to speaker, affecting paralinguistic cues.

Considering how speech is produced (i.e., from an encoding viewpoint), linguistic con-
tent is accomplished via articulation, i.e., the orchestration of vocal tract organs to shape
airflow to produce consonants and vowels. Paralinguistic content is then expressed (inten-

1. One may rightly notice that in tonal languages, tone is a linguistic factor as well [141].
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tionally or not) through prosodic variables, e.g., pitch, amplitude, and rhythm. Physical
configuration determines extralinguistic features and, by their very nature, cannot be ma-
nipulated by the speaker. Impressionists might trick this statement, but are out of the
concerns of this manuscript, yet it would not be without interest to investigate which tech-
niques are using impressionists to mimic, and question them about how they apprehend
and analyze, a target voice.

With this insight of speech’s nature, we can dive into the main interest of the work
described in this manuscript, which pertains to the description of speech. While physical
attributes and phenomena are well defined, formalizing perceptual descriptors remains a
challenge.

1.1.2 Concrete and perceptual entanglement

The natures of information encoded by a speaker are depicted in Figure 1.1: extralin-
guistic, paralinguistic, and linguistic. In order to analyze and understand a heard sound
wave, i.e., deduce the underlying information from the signal, a proper description is es-
sential. As speech is by essence a subjective means of communication, relations between
measurable physical phenomena and perception are highly convoluted.

Objective description

Speech in its conventional form intrinsically conveys linguistic content, which in an
utterance can be retrieved through a segmental [34] analysis, i.e., the identification of
bounded units within the sound wave. As linguistic content is produced by very short-
term air pressure variations, acoustic features of the resulting wave are accurate descrip-
tors to identify the encoded phonemes. Indeed, a time-frequency analysis can reveal the
high energy frequencies, i.e., the formants of a speech signal. Formants are well-known
and used acoustic features, easily distinguishable in time-frequency analysis (spectro-
gram), which can be used to determine a pronounced vowel or consonant. Physiologically,
phoneme production is well detailed by articulatory depictions: vowels are categorized
following tongue (height, backness) and lips (roundness) positioning, and consonants by
the constriction place (e.g., labial, coronal), manner (e.g., plosive, fricative), or phona-
tion (voiced/voiceless) [132], and all these variations yield modifications of the formants.
However, the encoding of a sequence of phonemes in the sound wave implies phonemic
variations due to coarticulation phenomena. Phonemes are intermixed, preventing a triv-
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ial mapping between phonemes and speech segments, and giving rise to the full-fledged
psycholinguistics question of how a listener comes to accurately decode such a complex
sound stream [142].

Coarser speech variations (suprasegmental [34]) are non-trivial to hold. Prosody does
not enjoy a formal depiction to express how a sentence has to be said among the numerous
possibilities. Punctuation does offer some hints, but is definitely too restricted to cover
the whole “shades of meaning conveyed by prosody” [76]. The suprasegmental nature of
paralinguistic content leads to complications in the proposal of an abstract representation
to transcribe prosody, whereas the linguistic content does own such representations, as
the International Phonetic Alphabet (IPA) to transcribe phonemes into phones, due to
its segmental encoding. Hence, prosody is best described through acoustic variations, as
pitch, loudness, or duration [81]. Hirst and Di Cristo [87] express the difference between
lexical and non-lexical cues, further studied by Gussenhoven [73]: lexical cues (tone) are
affecting word parts (e.g., stress, duration); non-lexical cues (intonation) are utterance-
scaled modulations (e.g., pitch contour, rhythm). Lieberman and Michaels (1962) [143],
and Huttar (1968) [97] experimentally showed the importance of pitch, amplitude, or
duration in the recognition of emotional content. Prosody is quite harder to describe
through articulatory measures, but is in the interest of some studies [29, 60, 127].

The main physiological characteristic that differentiates one speaker from another is
the vocal folds. Their elasticity, mass, shape, asymmetry, or wetness might affect for-
mants’ bandwidth and frequency. But other parts of the speech production system are
involved in the specificity of an individual’s voice. In the respiratory system, lung size
and elasticity, and airway dimensions may vary from one to another, leading indirectly
to variations in speech sound production, e.g., subglottal pressure fluctuations impacting
pitch range, distribution, and contour. Vocal tract configuration is also an essential source
of variations among speakers. For instance, vowel formants are altered by sizes, propor-
tions, width of pharynx and mouth, as illustrated in Figure 1.2 from Stevens (1971) [210].
Fricative consonants rely on hard palate and teeth shape. The nasal cavity configuration is
also a source of fluctuation in the production of nasal consonants. Overall, an individual’s
physiological configuration leaves measurable acoustic traces. The third formant provides
a clue of the vocal tract length, and the fourth and fifth formants are relatively stable
across vowels, originating from resonances occurring in nearly static regions of the vocal
tract [210]. Morphology and body size (height, weight, BMI) have also influences on vocal
tract configuration [59] and thus on acoustic cues [32]. Speaker’s preferences of elocution
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(e.g., rhythm [40]) or dialect [39] are also relevant clues. For speaker recognition and iden-
tification purposes, leveraging on such acoustic features may lead to valuable results [194],
but higher-level features such as Mel-Frequency Cepstral Coefficients (MFCC), Perceptual
Linear Prediction (PLP) [83], and Linear Prediction Cepstrum Coefficients (LPCC) [154]
were developed and demonstrated better performances [136].

(a) (b) (c) (d)

Figure 1.2 – Examples of vocal tract configuration variations, from Stevens (1971) [210]:
(a) Reference configuration; (b) Dimensions scaled down; (c) Pharyngeal portion ratio

increased; (d) Longer and narrower larynx tube

Since everything in speech arises from the articulatory system, speech can be under-
taken in terms of physiological characteristics. Time-dependent variations are, however,
tedious to quantify through vocal tract organ movements. Hence, acoustic features are
more relevant descriptors and easier to acquire and analyze. But as a listener, one may
have their own perception and apprehension of the speaker’s traits, state, and intents.

Subjective description

Despite its technical sophistication, speech is undoubtedly human’s most efficient
means of communication. Beyond the linguistic content, a listener can instantly recog-
nize a known speaker or distinguish between unknown ones. He can instinctively discern
untold emotions and intents, even from other languages. In addition, when hearing an ut-
terance, one has the innate intuition, akin to a sense of “physical empathy”, of how it was
produced [33]. All in all, speech is intuitive to produce, understand and learn, therefore
inherently subjective.

Nevertheless, a formal characterization of speech may be necessary for various pur-
poses. Forensic speaker identification relies on an expert’s perception to judge whether
multiple recordings are of the same person, sometimes drawing conclusions that contradict
the assumptions of a naive listener [190]. Clinical diagnosis of vocal pathology and dys-
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phonic patients is processed with listener ratings. Speech synthesis is evaluated through
subjective tests to assess heard characteristics, e.g., naturalness, similarity with a target
voice, or emotion.

The challenging task of perceptual assessment of voice characteristics has extensively
been studied, through what phoneticians use to call Voice Quality. No formal definition
of voice quality is acknowledged in the concerned works, thence we can consider Trask’s
(1996) [222] definition:

voice quality n. The characteristic auditory coloring of an individual’s voice,
derived from a variety of laryngeal and supralaryngeal features and running
continuously through the individual’s speech.

By the term “coloring”, one can promptly notice the subjective character of the task.
Voice quality further appears to be the perceived aftermath of extralinguistic features
in produced speech. It seems, therefore, appropriate to investigate how phoneticians are
addressing this very topic.

Substantial efforts have been carried out to perceptually assess voice quality, especially
to establish suitable protocols for detecting speech disorders. The protocol GRBAS [86]
stands among the most used. It comprises five characteristics to be rated: Grade, i.e.,
the overall voice quality alteration; Roughness, i.e., vocal fold perturbations; Breathiness,
i.e., air leakage from glottal closure; Aesthenia, i.e., speaking weakness; Strain, i.e., la-
ryngeal tension Dejonckere et al. (1996) [38] proposed an extension, GRBASI, with the
additional characteristic Instability, i.e., voice quality fluctuation over time. Vocal Profile
Analysis (VPA) [135] is also a widely used protocol, including between 30 and 40 ar-
ticulatory settings (supralaryngeal, laryngeal, prosodic, and optionally muscular tension
features) following the considered version [196]. Another popular protocol is Buffalo III
Voice Profile [235], which rates nine characteristics relating to tone, pitch, loudness, reso-
nance, tension, and speaking rate. The Stockholm Voice Evaluation Approach (SVEA) [75]
and the Consensus Auditory Perceptual Evaluation (CAPE-V) [104] are also noteworthy
protocols from the literature, rating similar aspects of voice quality.

The numerous proposed schemes of perceptual assessment of voice characteristics re-
flect the complexity of such a task. The first obstacle is merely the definition of aspects to
rate. Voice quality is, by nature, multidimensional. Thereby, the considered aspects must
cover all relevant articulatory settings while remaining comprehensible and clear enough to
avoid understanding mismatches between listeners and perceptually distinguishable from
other co-occurring phenomena to be isolated and rated properly. Defined aspects must
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also be as independent as possible in order to avoid redundancies, cumbersome rating
processes, and evidence overweighting [125, 106, 196].

The scaling scheme of rating is also a decisive choice [126]. Most of the mentioned
protocols rely on Equal-Appearing Interval (EAI), which defines a discrete scale of n

(generally ≤ 10) points to grade the presence/severity of a characteristic. Visual Analog
Scale (VAS) provides a simple line of 100 or 200mm for each aspect, extremities repre-
senting its absence and extreme presence. It has been argued to be more reliable than
EAI, as it matches listener’s continuum perception of vocal characteristics [12]. Direct
Magnitude Estimation (DME) enables listeners to assign arbitrary numbers, often with
reference to a particular magnitude (e.g., 100), thereby providing additional freedom of
scaling. Conversely, a bipolar rating reduces the rating of each aspect to two opposites
(high-low, weak-strong, rough-smooth), making the choice easier. Finally, paired compari-
son relies on the relative ranking of two recordings with respect to a given aspect, avoiding
the formalization of a ground scale [65].

The intrinsic subjectivity of the perceptual assessment of speech characteristics in-
eluctably implies intrarater and interrater agreement and reliability issues to be consid-
ered. Interrater agreement quantifies the degree of consensus among the raters regarding
a particular speaker. Interrater reliability ensures that ratings are consistent from rater to
rater, i.e., raters exhibit similar/proportional variations across voices [218]. For intrarater
agreement and reliability, analogous properties are measured, but regarding a single rater
and multiple recordings of a same speaker. According to Kreiman et al. (1993) [126],
agreement and reliability can vary from an experiment to another, depending on the con-
text. Besides the choice of protocol and scale scheme, raters’ background can have an
influence: experienced listeners appear more reliable [41]. Training sessions prior the true
rating are recommended, with discussions among listeners to reach an agreed definition
of the characteristics to rate [12], or by providing anchor references [126, 49]. However,
no consensual rater training procedure was found yet [172].

Heretofore, voice quality was considered with clinical concerns. But this manuscript
is interested in voice quality in its broad sense, not specifically focused on pathological
voices. The assessment of characteristics of nondysphonic voices with the depicted proto-
cols has been conducted. For instance, San Segundo and Mompean (2017) [195] showed
that the voice similarity of monozigotic twins can be on average established with a simpli-
fied version of VPA protocol. GRBASI protocol was used by Delvaux and Pillot-Loiseau
(2020) [41] to assess the characteristics of healthy voices. They observed that the raters
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did not find the rating scheme non-adapted to normal population.

The depicted approaches are focused on the speaker, i.e., on the description of voice
regarding perception. But the listener’s perception is also of great interest, i.e., the de-
scription of the perception regarding a voice. The auditory process is out of the scope of
the present work, but the way one interprets voice aspects, what makes the perceptual
similarity or dissimilarity of voices, what makes a voice pleasant or unpleasant, are points
that have to be considered to achieve context-tailored voice synthesis. Towards this ap-
proach, Voiers (1964) [225] attempts to determine the number and nature of perceptual
dimensions needed to distinguish voices for non-expert listeners. The rating scale is com-
posed of 49 bipolar characteristics, and the rating form was derived into eight versions
with variations in characteristic order and orientation (e.g., cool-warm, warm-cool). After
analysis, four orthogonal factors are found to carry 88% of the total rating variance and
are interpreted as: clarity, roughness, magnitude, and animation. The effect of charac-
teristic order and orientation was not significant, but speaker order does exhibit some
influences on four characteristics: loud-soft, large-small, soft-hard, and repeated-varied.
Gelfer (1988) [65] studies the agreement among expert and non-expert listeners over a
developed and proposed bipolar rating scales of 17 items (e.g., low-high, loud-soft). Gal-
lardo and Weiss (2018) [62] propose Nautilus Speaker Characterization (NSC), a corpus
of 300 German speakers collected, labeled with interpersonal characteristics and naïve
descriptors. Resulting most informative dimensions are provided for males and females.
Weiss and Estival (2018) [232] also investigated the assessment of vocal perceptual dimen-
sions of non-expert listeners. Direct comparison of three voices is performed: the listener
chooses two similar voices and advises their perceived similar characteristics. The rater
also reports its perceived dissimilar characteristic with the third voice. After analysis of
similarities and dissimilarities following the raters, perceptual dimensions are proposed,
e.g., calmness-activity, factual-emotional, maturity-immaturity. One dimension remained
unnamed, too hard to be interpreted. It is worth noting that dimensions were found to
be different depending on the language (German/English) and the speaker gender.

Besides finding the most informative characteristics of voice, the inferred speaker state
and traits from voice are also relevant to investigate. Kramer (1963) [123] reviews percep-
tual assessments from voice of physical characteristics (age, height, photographs, body de-
scription), aptitudes and interests (intelligence, leadership, political preferences), and per-
sonality traits (dominance, intro-extroversion, sociability). Results are reported as mainly
mitigated, and the significant interrater agreement but low accuracy of characteristic in-
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ference points out the prominence of stereotypes in judgments. Scherer (1978) [197] also
examines personality inference from voice quality. Extroversion is found to be correlated
with voice energy cues such as vocal effort and dynamic range. Other characteristics could
not be accurately inferred from voice quality. Krauss et al. (2002) [124] study listeners’
capacity to infer anatomical traits from voice: age, height, weight, and the guessed corre-
sponding photo from a pair of photos.

Altogether, the definition of a consensual list of perceptual characteristics to com-
pletely (but not redundantly) describe a speaker’s state, traits, and intents remains
an elusive effort. Attempts towards such a purpose may leverage Poyatos (1991)[178]’s
description of paralinguistic aspects through a list of 10 qualifiers: breathing, laryn-
geal, esophageal, pharyngeal, velopharyngeal, lingual, labial, mandibular, articulatory,
and tension. Corresponding types of perceived characteristics are also depicted. Schultz
(2007) [202] proposes a list of speaker characteristics relevant for human-machine vocal
interactions and a taxonomy distinguishing physiological from psychological aspects.

Objective and subjective descriptors intricacy

A great deal of effort has been made to describe speech using objective (articulatory,
acoustic) and subjective (perceptual) cues. However, the relationship between them is
still opaque [80]. Acoustic-perception and physiology-perception correlations have been
explored but remain hard to understand and interpret [125]. Moreover, Kent (1996) [106]
points out that a listener might miss some cues that are differentiable acoustically (au-
ditory illusion) or, conversely, might hear non-existing speech variations (verbal trans-
formation), further complicating the endeavor. A substantial list of voice qualifiers with
their acoustic correlates is provided by Memon (2020) [158], which definitely illustrates
the entanglement between perceptual descriptors and acoustic cues.

Hopefully, one may expect recent advances in machine learning methods enabling the
automatic learning of acoustic-perception mapping. Obin et al. (2014) [163] and Obin
and Roebel (2016) [162] investigated this clue by designing an automatic voice casting
system based on a multi-label classification system to learn voice signatures and find per-
ceptually similar acted voices. Subjective classes are defined, assumed to represent the
perceptual clues in voice similarity assessment, and the probabilities inferred by distinct
classifiers, one for each class, are concatenated to form a vocal signature. The learned
paralinguistic space is successfully leveraged to find similar voices among a database of
actors, and outperforms speaker verification-based representations. Dealing with percep-
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tual characteristics seems feasible for speech synthesis. The following Section 1.2 will
review the multiple approaches to generate speech, in order to portray how non-verbal
characteristics are controlled by State-of-the-art methods.

1.2 Speech synthesis

Speech is the most natural, common, and efficient means of communication used by
humans to express their ideas and thoughts. It is less formal than text, but definitely
more personal, persuasive, and impactful. The synthesis of speech thus appears as a
praiseworthy goal. Vocalization of written content improves accessibility for people with
visual impairments, and inclusivity for persons with speech disorders. Speech synthesis
can also be used for entertainment purposes, e.g., to create unique and deep voices for
characters or bring back to life a famous personality. Moreover, speech generation leads
to more engaging human-machine interactions through conversational agents, personal
assistants, or chatbots.

But speech is also human’s most complex means of expression, as far more information
than the linguistic content can be conveyed. Even humans sometimes hardly understand
unspoken intents. A speaker may also disclose unintentionally his emotional or psycho-
logical state. As described in Section 1.1, speech carries a lot of information, of multiple
natures, with different time scale influences. It is therefore a true challenge to successfully
and independently handle all aspects during speech synthesis.

Thanks to recent advances in artificial intelligence, the intelligibility and quality of
speech synthesis have achieved near-natural performances. The huge modeling capacity
of Deep Neural Networks (DNNs) has enabled the assimilation of voice acoustic charac-
teristics and variations pertaining to a textual transcription, and the generation of the
corresponding utterance. The rise of self-supervised learning paradigm, and end-to-end
model architectures, allow the use of vast amounts of unlabeled data and negate the
painful crafting of efficient features (linguistic, acoustic). Therefore, verbal content is ac-
knowledged to be synthesized in a near-natural quality.

Despite the accelerating progress of artificial intelligence, truly natural interaction with
machines has not been achieved yet. While computers speak with a great naturalness,
they still struggle to properly adapt non-verbal attributes. To address this issue, Voice
Conversion (VC) systems rely on a reference utterance from which the extralinguistic
(e.g., speaker identity) or paralinguistic (e.g., prosody, emotion) contents are extracted
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and adjusted with the linguistic content of a target utterance. Apart from this, some
methods do allow the finer-grained control over some aspects, but still in a limited range.

All in all, the achievement of speech synthesis is essentially a matter of information
transmission. As stated by Claude Shannon:

“Information is the resolution of uncertainty”

Accordingly, the aim of TTS is to properly transmit text information to the output speech.
But as described in Section 1.1, speech conveys much more information than its linguistic
content. Along with some unpredictable noise, a same sentence has an infinite number of
possible realizations, an issue referred to as the one-to-many issue, or lack of invariance [4].
The main purpose of TTS systems is thus twofold: to ensure the transmission of input
information (text, speaker identity, prosody), and to deal with the remaining uncertainty
to produce speech, as natural as possible.

To cover the synthesis of the various information in speech, Subsection 1.2.1 describes
statistical parametric speech synthesis models. Subsection 1.2.2 further introduces how
neural networks achieve near-natural text-based speech synthesis. Finally, Subsection 1.2.3
depicts how non-verbal information is handled, with VC or finer control over voice at-
tributes.

1.2.1 Statistical parametric TTS

At the very least, linguistic information is required to deduce the short-time variations
encoding the phoneme sequence in the resulting waveform. Among the early approaches
in TTS, concatenative speech synthesis systems rely on a database of prerecorded pieces
of speech, and analyze a text input to concatenate the suited sequence of units. The pieces
of speech might be of different sizes (e.g., phones 2, diphones, words, sentences), which
affects the synthesis procedure: large units lead to natural synthesis but provide limited
flexibility, and small units are more flexible but lead to degraded naturalness [215]. One
of the most common size of unit is diphone. Diphones [45] are units joining the middles
of two phonemes and have the advantage of properly conveying phonemic coarticulation
phenomena and allophone variations following the context. All existing diphones must be
recorded to form a diphone inventory, and signal processing algorithms must be applied to
ensure smooth transitions between units and control the resulting prosody, i.e., pitch and

2. The phonemes, i.e., abstract linguistic units, are distinguished from phones, i.e., their actual real-
ization in a sound wave.
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duration (PSOLA [24], TD-PSOLA, and FD-PSOLA [159]). However, storing a single re-
alization of each diphone cannot cover all contextual variabilities, and pitch and duration
manipulations are not sufficient to generate those variants. Resorting to signal processing
techniques is also prone to signal degradation and distortion. It sounds hence natural to
extend the unit database to allow non-uniform-sized units [192] to be considered at a time,
e.g., sentences, words, syllables, or phonemes. By leveraging a large amount of annotated
data, each phoneme can find multiple corresponding units. Unit selection [96] method-
ology provides an optimal combination of (non-uniform) units, which jointly minimizes
the distance with the target diphones (target cost) and the acoustic mismatch between
concatenated units (concatenation cost). Paralinguistic features may also be annotated or
predicted (stress, Part of Speech (POS) tagging), which can be leveraged to help during
the selection process [217].

Concatenative speech synthesis, however, exhibits significant drawbacks. Such systems
are usually limited to single-speaker recordings, and one may build a whole new units
database to generate speech with another voice. Concatenative synthesis is recognized for
its lack of flexibility and difficulty in adjusting to different speaking styles and producing
new or unusual sounds.

Statistical Parametric Speech Synthesis (SPSS) systems address these issues: they
strongly rely on an intermediate information representation: acoustic features. Linguistic
features (phoneme sequence, POS tagging) are extracted in the same way as concatenative
approach, but an acoustic model is employed to compute acoustic features. A third com-
ponent, a vocoder, then predicts the resulting waveform to be heard. Until a decade ago,
the most commonly used approach for such a purpose was to combine a Hidden Markov
Model (HMM) with a decision tree. The HMM models the acoustic features sequencing
(states) and their duration (transitions) [220, 155]. Duration is proposed to be modeled
with multidimensional Gaussian distributions, clustered with a decision tree [238] based
on linguistic characteristics and contextual information (e.g., surrounding phonemes or
POS). This approach enhances the naturalness and controllability of the speaking rate.
Acoustic features might also be modeled through Gaussian distributions and clustered
with decision trees [239] in order to reduce the number of states, and provide flexibility
in that new sounds and contexts can be addressed if properly clustered by the decision
tree. In this context, the generated acoustic feature sequences are usually mel-cepstral co-
efficients, synthesized with Mel-Log Spectrum Approximation (MLSA) filter [98]. Hybrid
approaches jointly leveraging unit selection and HMMs/decision trees are also worth to
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mention [243].
This parametric setting greatly enhances the coherence of the synthesis, and negates

the need to store a lot of prerecorded speech fragments. It is, however, prone to noise
and artifacts. HMMs and decision trees may struggle to model context dependencies, and
the averaging of multiple HMM states leads to the over-smoothing of generated acoustic
features [113]. To remedy those issues, components were progressively replaced by DNNs.

1.2.2 Neural-based synthesis

Among the major advancements that allowed DNNs predominance for speech syn-
thesis, Recurrent Neural Networks (RNNs) can model the underlying dynamic patterns
within sequential data, Long-Short-Term-Memory (LSTM) [88] and Gated Recurrent Unit
(GRU) [31] being the most used recurrent models. Sequence-to-sequence (seq2seq) [214]
paradigm enables the generation of a sequence from another sequence, without making
assumptions about the input sequence length. From image processing efforts have emerged
Convolutional Neural Networks (CNNs) [128], which efficiently models neighborhood pat-
terns, which was found to be a relevant way to deal with speech. Attention mechanism [10]
is also a key concept, which introduces the notion of weighted context when considering
an element of a sequence. It has been further extended to Transformer [224], more com-
plex and non-autoregressive (hence parallelizable and faster to compute, but requires more
memory and computing resources). Generative Adversarial Network (GAN) [69] is another
powerful generative model, comprising two components: a generator and a discriminator.
The former is trained to generate fake data, and the latter is optimized to discriminate
real data from generated fake ones. This adversarial scheme leads to high-quality data
generation. Variational Auto-Encoder [115] is also a well-used generative model, able to
approximate with an inference model the distribution of a real dataset through a latent
space with a simple (Gaussian) prior distribution, and generate highly realistic data with
a neural decoder by sampling from the learned distribution. A last generative model worth
to mention is Inverse Autoregressive Flow [117], consisting of a series of invertible trans-
formations modeled by autoregressive neural networks over a simple distribution to build
a more complex one.

Acoustic feature generation supplied by HMM-based models, as depicted in Subsec-
tion 1.2.1, was demonstrated to be efficiently handled with DNNs [242, 77] with similar
complexity. Better performances are achieved for multi-speaker speech synthesis with a
single encoding module [57]. Considering contextual information to leverage the sequential
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nature of speech is demonstrated to further improve naturalness, with bidirectional [58]
or unidirectional [241] LSTMs.

Later on, DNNs were further leveraged to entirely build synthesis systems. Following
the seq-2-seq paradigm, Tacotron [230] and Tacotron 2 [205] are popular acoustic mod-
els, directly predicting (mel-)spectrogram from characters, and integrating an attention-
based alignment procedure. DeepVoice [6] relies on Connectionist Temporal Classification
(CTC) [71] to directly predict phoneme labels from unsegmented speech waveforms during
training in order to optimize duration and pitch prediction components. DeepVoice 2 [5]
extends DeepVoice 1 and Tacotron to multi-speaker synthesis by conditioning duration,
pitch prediction and vocoder components with speaker embeddings. DeepVoice 3 [176]
is fully-convolutional and attention-based rather than RNN-based, hence parallelizable
and faster for training and inference. To further speed up computation, FastSpeech [186]
is only composed of non-autoregressive procedures, achieving up to 38x faster waveform
generation than autoregressive models. It introduces Feed-Forward Transformer (FFT)
block, which generates a mel-spectrogram from a phoneme sequence based on multi-head
attention and 1D convolution (Conv1D), and has a controllable length regulator, i.e., the
voice speech can be modified. FastSpeech, however, is trained with sequence-level knowl-
edge distillation [112], i.e., the mel-spectrogram prediction and the duration predictor are
optimized regarding a pre-trained autoregressive teacher model (Transformer TTS [139])
outputs. But relying on a teacher model makes the training a complicated procedure,
and some information might be lost by the simplified teacher outputs. Thus, FastSpeech
2 [185] alleviates such issues by directly using ground-truth data for optimization.

Once the acoustic features (i.e., mel-spectrogram) are generated from linguistic fea-
tures (i.e., character or phoneme sequence), neural vocoder models are employed to convert
them into audible waveforms. Relying on dilated causal convolutions to deal with tem-
poral context dependencies and get a wide receptive field, WaveNet [165] stands among
the first neural-based vocoders. WaveRNN [102] introduces several acceleration proce-
dures to reach real-time inference speed with a dual softmax layer, weight sparsification
and sequence subscaling, without degrading performances. However, the autoregressive
scheme involves slow inference speed. Hence, Parallel WaveNet [164] tries to speed up
inference while preserving the same performances, by using a pre-trained WaveNet as
a teacher to learn through distillation an IAF-based student architecture. Furthermore,
GANs were successfully leveraged to speed up inference while synthesizing high-quality
speech. WaveGAN [47] stands as the first approach to generate speech with an unsu-
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pervised GAN architecture. It uses 1D transposed convolution and phase shuffling oper-
ations to properly model speech variations, and can generates realistic sounds (speech,
birds, piano) in a fully parallel way. Other GAN-based vocoders were further developed
and widely used, as Parallel WaveGAN [236], based on a non-autoregressive version of
WaveNet (non-causal convolutions) as a generator and a multi-resolution Short Time
Fourier Transform (STFT) analysis to model the time-frequency patterns of speech and
deal with the time/frequency resolution trade-off of STFT. HiFi-GAN [121] is also a very
popular vocoder, with convolution-based generator and discriminators using multiple di-
lation rates, periods and scales to learn speech patterns at several resolutions.

In summary, substantial efforts were conducted to build two-staged synthesis mod-
els: acoustic models to convert linguistic to acoustic features, and vocoders to generate
waveforms from acoustic features. Furthermore, autoregressive models do not need ex-
plicit prediction of the alignment between linguistic and acoustic features, but are, as
mentioned, computationally slow. Hence, the described parallel models also require an
external module to deduce the alignment. Each component is developed and learned sep-
arately, which requires supervision and annotations to train each stage. In order to simplify
the training process, and leverage the modeling power of data-driven learned hidden repre-
sentations, fully end-to-end models have been of great interest in recent studies to directly
generate waveforms from character and phoneme sequences. For instance, ClariNet [175],
similarly to Parallel WaveNet, learns an IAF-based student model with a pre-trained
teacher WaveNet, but which is directly conditioned on hidden states, leading to better
performances than with acoustic features. However, alignment is still done autoregres-
sively. Hence EATS [48] is a feed-forward GAN-based end-to-end model, trained from
scratch to predict in parallel its own hidden features, their alignment and the output
speech waveform from text or phoneme sequences. Alignment is learned with the help
of a soft Dynamic Time Warping (DTW) loss, to mimic human’s variations of speaking
rate over utterances. VITS [110] is also employing an adversarial training scheme, with
a Variational Autoencoder (VAE) conditioned on input phoneme sequence and predicted
alignment, followed by a flow-based model to transform the simple Gaussian prior to a
more complex distribution. The durations are stochastically predicted with a Monotonic
Alignment Search (MAS) [111] algorithm and a flow-based model. VITS2 [122] further
improves naturalness and multi-speaker setting handling with adversarial training of the
stochastic duration predictor, a Transformer block added to the normalizing flow models,
and a speaker-conditioned text encoder. Finally, EdenTTS [152] implicitly models align-
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ment with a guided aligner module, i.e., the scaled-dot attention terms are weighted by
an energy matrix which enforces diagonal alignment, to help the training of the duration
predictor module. It therefore does not require ground-truth alignment, at the expense of
quality degradation.

Altogether, parallel and end-to-end models are faster and less complex, but are hard
to properly train, i.e., jointly predicting in parallel and handling the mismatch between
character sequence and waveform sample scales [216]. However, TTS models have reached
near-natural speech synthesis quality. In a sense, sound waves are successfully generated
from linguistic content (i.e., characters/phoneme sequences). The challenge now resides
on how to deal with the remaining non-verbal attributes of speech. Multi-speaker TTS
systems [230] deal with this concern by injecting paralinguistic and extralinguistic infor-
mation in the synthesis procedure, for instance with speaker representations extracted
from Automatic Speaker Recognition (ASV) models. On the other hand, VC aims to
replace the non-verbal information of a reference utterance into a target one, without al-
tering the linguistic information. Essentially, VC is a problem of filtering and replacement,
whereas TTS is a matter of information forecasting. However, both approaches tend to
converge towards similar architectures, and the sole remaining boundary between TTS
and VC is whether text is provided as input to the model or not.

1.2.3 Controlling non-verbal aspects

Broadly speaking, non-verbal speech aspects can be controlled implicitly or explicitly.
Implicit control refers to expressive TTS and VC techniques, where target speech record-
ings are used to extract non-verbal attributes (e.g., speaker identity, prosody, speaking
rate) to be injected into a source utterance. On the other hand, attributes can be explicitly
controlled in a more fine-grained manner. It is merely referred to as controllable speech
synthesis.

A straightforward solution is to consider speaker identity, i.e., extra-linguistic features.
This aspect can be addressed in multi-speaker TTS systems by conditioning on speaker
embeddings, as DeepVoice 2, which learns its own set of speaker embeddings to be incor-
porated in several layers of a Tacotron [230] acoustic model. Such methods limit the syn-
thesis to speakers seen during training. Hence, speaker embeddings are usually extracted
from pretrained Automatic Speaker Recognition (ASV) models to perform multi-speaker
TTS for seen and unseen speakers during training, viz. zero-shot TTS. For instance, Jia
et al. (2018) [101] employ d-vectors [223] to be concatenated with text embeddings in a
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Tacotron 2 [205] model. Among the very recent advances, VALL-E [226] extracts audio
codes from an EnCodec [37] model, to perform SOTA zero-shot TTS with only three
seconds of enrollment recording of an unseen voice. To gain control over para-linguistic
aspects in TTS, style transfer approaches are introduced, leveraging learned style/prosody
embeddings, as GST [229], Skerry-Ryan et al. (2018) [207], or An et al. (2022) [3].

With the advantage of leveraging large amounts of untranscribed speech data, Voice
Conversion (VC) aims to convert a given voice to sound like another, without altering
the linguistic content. Hsu et al. (2016) [91] leverage a VAE to learn speaker-independent
phonetic representations from a source utterance and a one-hot vector to specify the
targeted speaker identity. To improve the preservation of the content targeted, Saito et al.
(2018) [193] leverage Phonetic Posteriorgrams (PPGs) [212], extracted from an Automatic
Speech Recognition (ASR) model. Towards conversion from and to unseen speakers during
training, viz. any-to-any or zero-shot VC, AutoVC [179] advocates the importance of
tuning the information bottleneck by finding the suited content embedding size, to reduce
the leakage of speaker-related information, while preserving content-related information.
VQMIVC [227] further improves the factorization of information pertaining to content,
speaker, and also pitch variations through Mutual Information (MI) minimization and
vector quantization.

As one may notice, throughout the very recent advancements, the boundary between
TTS and VC approaches is becoming increasingly blurred, especially in zero-shot TTS and
any-to-any VC. Both tasks tend to be accomplished by similar model architectures, leading
to an unification of the methodologies, as pointed out by Zhang et al. (2019) [245]. Roughly
speaking, both tasks lean on the factorization of the various sources of variations, mainly
being restricted to linguistic content, speaker identity, and style/prosody/expressivity,
embodied by deep embeddings learned by proper encoders. Hence, the distinction between
TTS and VC only lies in the modality from which linguistic content comes from: text for
TTS or source utterance for VC. According to this idea, VITS [110] can perform VC
through inversion of the flow-based decoder. More recently, YourTTS [22] extends VITS
to jointly achieve zero-shot multi-speaker TTS and any-to-any VC with an H/ASP [82]
speaker encoder.

While the growing and sharp interest in TTS and VC leads to ever-improving natu-
ralness and speaker similarity in synthesized speech, the non-verbal facets are addressed
in an implicit manner. Therefore, encoded features are informative, but unstructured and
not interpretable. To tackle this lack of transparency, models able to explicitly control
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such aspects are proposed. FastSpeech 2 [185] can control, in addition to speaker identity
and duration in FastSpeech [186], pitch and energy, through predictor modules, in order
to better model speech variations and deal with the one-to-many issue. During training,
reference duration, pitch and energy values are extracted from ground-truth data, and
are made controllable during inference. Based on the same endeavor, SpeechSplit [180]
and SpeechSplit 2.0 [23] are VC models, which unsupervisedly factorize content, rhythm
and pitch by means of signal processing operations. Raitio et al. (2020) [182] propose a
mono-speaker TTS model which explicitly and supervisedly models four prosodic features:
pitch, phone duration, energy and spectral tilt, to control them in synthesis. Raitio et al.
(2022) [181] extended their work by adding utterance-wise prosodic features, in a hierar-
chical way, to provide global and local control over para-linguistic aspects. Nansy++ [30]
separately encodes pitch, periodic amplitude, aperiodic amplitude, timbre and linguis-
tic features to supply a self-supervised framework able to perform TTS, VC and voice
design through an ECAPA-TDNN [42]-based age and gender extraction. Finally, Con-
trolVC [25] enables the temporal control of rhythm by a speed curve and Time-Domain
Pitch-Synchronous Overlap and Add (TD-PSOLA), and pitch by pitch contour manipu-
lation.

Despite the very promising results, the explicit control of non-verbal attributes through
supervised or self-supervised TTS/VC frameworks remains sophisticated and restricted to
raw acoustic features, far from one’s intuitive representation of speech. Speaker identity is
not yet further decomposed beyond gender and age, but extralinguistic attributes might
be way more refined, as discussed in Subsection 1.1.1. Carried by recent breakthroughs
in text-guided generation of text (e.g., GPT-3 [17]) and images (e.g., DALLE-2 [183]),
controlling speech non-verbal attributes from textual description is an emerging trend. It
supplies a convenient way to intuitively describe the desired voice, with one’s own words.
At the outset of this research direction, PromptTTS [72] employs a style encoder contain-
ing a BERT [43] model, pre-trained to predict gender, pitch, rhythm, energy and emotion
from a style prompt. Informative style embeddings are thus extracted, to be coupled
with the content encoding and synthesize expressive speech. PromptStyle [146] further
improves style modeling by guiding the prompt-based style encoder with a speech-based
style encoder. Pertaining to a Voice Conversion desideratum, Kuan et al. (2023) [129]
leverage an EnCodec [37] in a VALL-E [226]-like fashion to use the textual prompt as
style guidance to infer the desired style and emotion in the source utterance.

All in all, non-verbal attributes can be controlled in an implicit way in TTS and VC
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by mimicking and replacing in a source utterance the speaker identity, prosody or emo-
tion transmitted by a target utterance, but without deeper knowledge and control over
the converted aspect. In this regard, methods are advanced to acquire finer control over
paralinguistic and extralinguistic cues in TTS and VC, but are tied to acoustic features,
hence necessitating signal processing skills to be manipulated, besides being cumbersome
to adjust. Oppositely, text prompt-guided synthesis techniques arising from recent pro-
gresses in Large Language Models (LLMs) are auspicious methods towards user-friendly
speech customization and voice design procedures. But in the middle, few efforts have been
conducted to build intermediate models, with fine-grained control over intuitive speech
facets, not limited to knotty acoustic features. Such intermediate approaches are expected
to disentangle speech attributes, in a way less restrictive than described controllable TTS
and VC models, but far more detailed than text-guided ones. Amongst the few approaches
standing in between, FHVAE [92], Capacitron [11], and GMVAE-Tacotron [93] leverage
disentanglement learning techniques and hierarchical modeling to self-supervisedly extract
and control non-verbal characteristics.

To summarize, implicitly handling non-verbal speech attributes in TTS or VC has
the advantage of enabling a close to natural transfer of attributes (e.g., speaker identity,
prosody), but do not let one easily control them. Conversely, controllable speech synthesis
methods are able to modify fine-grained speech characteristics, but might be tedious
to be properly used. The recent trend of prompt-based methods provides easy-to-use
controllable synthesis through natural language, but does not let one cautiously shape the
produced speech. Overall, designing and training such models presents a challenge that lies
at the heart of recent research and industry concerns. A promising hint to automatically
model paralinguistic and extralingusitic aspects and gain better control over them in
synthesis is disentanglement learning, a growing research field covered in Chapter 2.
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Chapter 2

DISENTANGLEMENT LEARNING

BACKGROUND

Reality favors symmetry.

Jorge Luis Borges

Among recent deep learning-related investigations, disentanglement has emerged with
the very appealing ambition to address the lack of structure, and thus interpretability,
within learned neural network representations. While still in its early stages, disentangle-
ment learning forms a full-fledged research area.

In principle, every task is about discerning relevant information within a complex and
noisy environment. The more complex the environment and the task, the more diluted the
useful patterns among the overwhelming variations and distractions. Empowered by neural
networks’ growing modeling capacity, artificial intelligence excels in the discovery of such
hidden underlying patterns. While supervised learning relies on ground-truth annotations
to retrieve the relevant information, unsupervised learning alleviates this constraint by
allowing the processing of massive amounts of unlabeled data. Self-supervised learning
is a very popular paradigm to train a model without supervision, by deducing the label
directly from the raw data, or employing the raw data itself as the label, typically in
an autoencoding scheme, i.e., encoding an input data in a compact format, and trying
to reconstruct the original input with a decoding stage. Representation learning, which
aims to project observations of a given environment in an abstract representation space,
greatly benefits from self-supervised approaches, enabling the learning of more agnostic
insights, before doing any specific task.

Learning insightful and agnostic representations, while alleviating the resort to an-
notations, has been a trendy paradigm in recent research efforts. By way of proof, the
International Conference on Learning Representations (ICLR) has become one of the
quickest-growing artificial intelligence conferences since its inception in 2013, with almost
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5000 submissions in 2023. It is nowadays an unmissable appointment for deep learning
enthusiasts, focused on representation learning advancements. Eminent conferences in
machine learning such as International Conference on Machine Learning (ICML), Neural
Information Processing Systems (NeurIPS) or International Joint Conference on Artificial
Intelligence (IJCAI) also exhibit sessions dedicated to representations. Speech processing
also benefits from such investigations, gathered in dedicated sessions in conferences such as
INTERSPEECH or International Conference on Acoustics, Speech, and Signal Processing
(ICASSP).

With such recent advances in mind, Bengio et al. (2014) [13] stated that learned rep-
resentations are still not able to efficiently organize relevant information about data, and
should “identify and disentangle the underlying explanatory factors hidden in the observed
milieu of low-level sensory data”. It is hence suggested that a “good representation” should
disentangle factors of variations and exhibit the hierarchical structure of explanatory fac-
tors. Such a representation may thus provide improved robustness to small data variations
and enhanced transfer to multi-task settings, as “general-purpose” relevant information
is appropriately disentangled from noise and from each other.

Learning disentangled representations remains a recent undertaking. By way of proof,
this paradigm is still lacking a formal definition, hence leaving unclear how to measure
the degree of disentanglement. Multiple works are proposing metrics, assessing their own
definition and properties, relying on synthetic data, as the ground truth factors still have
to be known to measure their disentanglement. It is thus still troublesome to decide which
metric to use, and investigations upon real data are still challenging.

Since Bengio et al.’s seminal work [13], one may observe an increasing interest towards
this endeavor. Figure 2.1 shows the number of publications with the terms “disentangle”,
”disentanglement”, or “disentangling” in their title published each year in some lead-
ing conferences in Artificial Intelligence (AI). Conferences about AI advances in general:
ICLR, ICML, NeurIPS, and IJCAI, are marked with circles. Speech-related conferences:
ICASSP and INTERSPEECH with crosses. As many efforts towards disentanglement are
carried by image processing research efforts, computer vision conferences are also reported
in Figure 2.1 with triangle markers, namely International Conference on Computer Vision
(ICCV) and Computer Vision and Pattern Recognition (CVPR). Globally, the number of
concerned articles has clearly expanded over the years. It is, however, worth to mention
that Figure 2.1 only provides a clue of the number of publications concerned with disen-
tanglement, as some may actually study disentangled representations while not explicitly
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Figure 2.1 – Number of papers with “disentanglement” in title per conference

mentioning this term in their title, and the mentioned conferences are far to exhaustively
cover all research efforts.

In order to properly go through disentanglement learning, Section 2.1 draws the global
picture of what disentanglement is and which benefits one may expect from it. Thereafter,
Section 2.2 overviews the various deep learning approaches leveraged to disentangle. Sec-
tion 2.3 introduces the synthetic corpora typically used in disentanglement studies. Finally,
Section 2.4 describes some metrics proposed to objectively measure the degree of disen-
tanglement, and conclusions are drawn in Section 2.5 about disentanglement learning and
how it can help speech understanding and synthesis.

2.1 Disentangling disentanglement

As previously mentioned, learning disentangled representation is a recent endeavor,
explicitly incepted by Bengio et al. (2014) [13]. They disclose the limitations of tradi-
tional learned representations and highlight the advantages of disentanglement principles.
However, they leave open the issues of formally defining disentanglement and developing
models that can effectively learn to disentangle.

Subsection 2.1.1 outlines the concept of representation learning and its shortcomings,
hopefully filled with disentanglement principles. Subsection 2.1.2 attempts to outline the
contours of which properties should be expected from a disentangled representation. Sub-
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section 2.1.3 discloses the ambiguity often encountered between what can be referred to
as “information factorization” and disentanglement as it is actually considered in this
manuscript.

2.1.1 Pink elephant

Prior insight into disentangled representation involves acknowledging the principles of
conventional neural-based representations. Let X = {xi}i∈N a set of observed data, lying in
a high-dimensional space X . Observations X are populating X following a distribution
p(x), which is assumed to be governed by a generative process which involves a set of
generative factors f = {fi}i∈N. Neural representation learning therefore aims to build
an abstract latent space z = {zi}i∈N through non-linear transformations, capturing as
much information as possible about factors. Therefore, a model unsupervisedly learned
following a representation learning paradigm is likely to produce an informative latent
space, to be leveraged by downstream tasks. Let y = {yi}i∈N be the generic notation of
the target discrete or continuous label, or the target sample to generate, pertaining to the
concerned downstream task.

Furthermore, a sense of orthogonality is assumed between generative factors, i.e., ob-
servations generated under values taken by a factor fi should generalize under all settings
of other factors {fi′}i′ ̸=i. This does not require statistical independence between factors,
especially within a finite set of observations. They are expected to influence disjoint prop-
erties, potentially correlated but not causally tied. One might rightly not expect to see
a pink elephant, but an image representation model properly learned should generalize
faced with such an input, by decoupling the abstract concepts of color and type of animal.

Conventional representation learning is demonstrated to be effective for various speech-
related downstream tasks. By way of evidence, SUPERB [237] and LeBenchmark [56]
are popular benchmarking frameworks proposed to evaluate and compare speech self-
supervised representation models in achieving multiple tasks, e.g., Automatic Speech Recog-
nition (ASR), Automatic Speaker Verification (ASV) or Automatic Emotion Recognition
(AER), which demonstrate the widespread interest in such methods, e.g., Wav2vec [198,
9], WavLM [27] or HuBERT [94]. Furthermore, some studies are analyzing the internal
structure of speech representation models [168, 170, 169, 140], which assessed how acous-
tic, linguistic, and paralinguistic information are differently captured depending on layer
depth in a self-supervised pre-trained model. But the bare structure of the representations
still remains mostly uncharted: are the learned concepts explicitly exhibited, or are they
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Figure 2.2 – Shared statistical strength between tasks (from Bengio et al. (2014) [13])

diluted within intricate nonlinear relations between latent dimensions?
It is hence argued in Bengio et al.’s initiative work [13] that representation learning may

greatly benefit from a more structured knowledge organization: a learning algorithm able
to disentangle factors of variations f in its hidden representation z might be efficiently
leveraged for multiple downstream tasks, as each task may be fulfilled by subsets of
explanatory factors, and each factor might be relevant for several tasks. Coming back to
the pink elephant in the room, a disentangled representation is believed to be a convenient
support for an image classifier to predict an animal or its color, or for a generative model
of images to properly generate any animal in any color, if only one knows how to sample
z accordingly.

More broadly, the aim of disentangled representation learning is to advocate the “shar-
ing of statistical strength”, in one hand between the unsupervised phase and underlying
supervised tasks by easing the discarding of irrelevant information, and in the other hand
across tasks in a multi-task setting. Borrowed from Bengio et al. (2014) [13], Figure 2.2
illustrates such phenomena, with explanatory factors {fi}i∈{1,...,7} disentangled in learned
representation from observed input x, and used by tasks y1, y2 and y3. Overlapping sub-
sets of factors used by each task embodies the statistical strength shared among tasks,
which is believed to help generalization of learned abstract representation space.

For the aforementioned reasons, representation learning approaches are lacking know-
ledge organization on purpose in learned latent spaces. Based on this insight, some efforts
have been conducted to disentangle speech representations [93, 11, 211, 74], targeting
interpretability in learned representations and explicit controllability of speech attributes
in synthesis. While not providing a formal definition of a disentangled representation,
Bengio et al. more generally provide some hints of expected properties required to reach
such task-agnostic representations.
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2.1.2 Discovering world’s hidden mechanisms

From the properties hinted by Bengio et al. (2014) [13], what they suggest to be a
“good” representation should exhibit the following properties:

Smoothness : close observations should lead to close points in the representation space,
i.e., x1 ≈ x2 ⇒ h(x1) ≈ h(x2) given a learned function h. Smoothness emphasizes
robustness of representations, e.g., against adversarial examples [70].

Sparsity : only relevant information is extracted from observations. In other words, lever-
aging the high modeling capacity of deep neural networks allows the learning of
abstract concepts, discarding irrelevant and noisy information, i.e., learned repre-
sentations are insensitive to small variations of input.

Distributed : multiple features are learned, and can be independently varied, i.e., they
are not mutually exclusive. Such representations are sufficiently expressive to model
similarities across concepts and generalize to configurations unseen during training.

Disentanglement : as many sources of variations as possible should be disentangled.
With the assumption that observed data are generated from complex interactions
of hidden source factors, subsidiary tasks are likely to be tied to those explanatory
factors, either directly or through simple transformations and combinations. Since
target tasks, and thus relevant factors, are still unknown when learning a represen-
tation space, the challenge remains in the definition of the prior belief on the nature
of useful factors to extract.

Retrospectively, it remains unclear how to define formally what generative factors are.
Bengio et al. describe them as the sources of variations whose states and interactions
explain a given environment. Goodfellow et al. [68] are portraying factors as separate
unobservable sources of influence affecting observable quantities.

Higgins et al. (2018) [85] are following a symmetry-based approach to provide a
definition of disentangled representation, where underlying factors to disentangle within
an environment are properties which might be altered under interactions, while leaving
other properties unchanged, hence said to be invariant under symmetric transformations
e.g. an object can be characterized by its shape, color, weight, spatial positioning, and can
be moved from one place to another without altering its shape, color, or weight. It is worth
noting the connection with distributed representation principle, which reflects by essence
the real-world symmetry transformations: different concepts can be described through
a shared set of (symmetric) abstract properties, which can be independently controlled
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without affecting each other. While the symmetrical nature of the universe [148] is out of
the scope of this manuscript, one may intuit that apprehensible mechanisms of our world
are those ruled by symmetries, which form the basis of animals and humans reasoning
about how they perceive and interact with their surroundings, i.e., comprehension of
world mechanics are instinctively tied to properties, among which any can be altered
while leaving others unchanged. In a sense, disentangle the properties pertaining to a set
of observations amounts to find those symmetries.

Goodfellow et al. [68] are also depicting disentanglement through the prism of causal-
ity [173], a point further explored by Suter et al. (2019) [213]. Learning algorithms are
expected to separate on different representation dimensions the various data causes of
variations. Factors of variations are hence assumed to be causally independent, i.e., in-
dependently affecting observations and not exhibiting causal effects between each other,
which follows the distributed representation property. Although it is hard to prevent
mutual causations between underlying factors, one may resort to a set of confounders
c = {ci}i∈N to maintain causal independence while defining an environment. More explic-
itly, explanatory factors are generally mutually dependent, i.e., ∀i, j ∈ N2 such that i ̸= j,
the observation of fj influences the value of fi:

p(fi | fj) ̸= p(fi) or fi ⊥̸⊥ fj, (2.1)

with fi ⊥̸⊥ fj denoting the statistical independence between fi and fj. But factors become
mutually independent when conditioned on confounders i.e.:

p(fi | fj, c) = p(fi|c) or fi ⊥⊥ fj | c. (2.2)

Furthermore, the observation of a data sample x = x does render factors dependent i.e.:

p(fi | fj, x) ̸= p(fi | x = x) or fi ⊥̸⊥ fj | x = x. (2.3)

More importantly, the intervention on fj does not impact fi i.e.:

p(fi | do(fj = f)) = p(fi) or fi ⊥⊥ do(fj = f), (2.4)

the do operator differentiating the observation of a realization (i.e., f = f) and the
intervention on the system towards a specific state (i.e., do(f = f)). The action on the
system do(f = f) has the effect of preventing (causal) inference of upstream variables,
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Figure 2.3 – Data generation process

while seeing that f = f lets one infer the probability of the causes of what is observed. To
borrow Pearl’s [173] illustration, observing that the sprinkler is on provides a hint on the
current season, while manually turning it on prevents the forecast of the ongoing season.
This hence leads to the distinction between (2.1) and (2.4). Figure 2.3 illustrates with
a Bayesian network the causal generation processes of x by factors {fi}i∈{1,...,m} under
confounders {ci}i∈N, with the predicted latent variables {zi}i∈{1,...,n}. It is believed that
learning such causal mechanisms ensures the disentanglement of agnostic explanatory
factors, since, according to Goodfellow et al. [68], “the laws of the universe are constant”,
which is echoing with the aforementioned symmetry principle.

In practice, learning disentangled representations is usually reduced to the fulfillment
of more rudimentary properties. While investigating related studies and efforts towards
the definition of disentanglement metrics [84, 109, 55, 188], one may notice that the
achievement of disentanglement can be summarized into the assessment of 3 criteria [21],
which are henceforth designated as: modularity, completeness and informativeness.
Modularity (sometimes misleadingly referred to as disentanglement) refers to how much
each latent dimension is informative about only 1 factor, i.e., to what degree each latent
corresponds to only 1 factor. Complementarily, completeness (sometimes referred to as
compactness) assesses how much each factor is explained by only 1 latent dimension, i.e.,
to what degree each factor finds only 1 corresponding factor in the representation space.
Informativeness (sometimes called explicitness) is finally ensuring that factors are effec-
tively explained by latent space, i.e., factor states can be predicted from latent values. Fig-

56



2.1. Disentangling disentanglement

f3f2 f4f1 f5

z1 z2 z3 z4 z5 z6 z7 z8 z9

[ ]

[ ]
Completeness

Modularity

z =

f =

Figure 2.4 – Modularity and completeness criteria
(from Eastwood and Williams (2018) [55])

ure 2.4 illustrates modularity and completeness criteria for given factors f = {fi}i∈{1,...,5}

and a learned latent representation z = {zi}i∈{1,...,9}, plain and dashed lines materializing
latent informativeness/factor explainability relationships. Latent z6 is acknowledged to
exhibit high modularity if it is only informative about factor f4, i.e., dashed relationships
with f3 and f5 are negligible relative to the plain relationship with f4. Similarly, factor f1

manifests good completeness if dashed relations with z2 and z4 are weak compared to the
plain relationship with z3. Altogether, achieving disentanglement comes down to seeking
a bijective mapping between latents z and factors f .

It is also worth highlighting the controversy about the completeness criterion. Ridge-
way and Mozer (2018) [188] raise the very relevant point that enforcing completeness
is likely to be counterproductive in the discovery of explanatory factors. For instance,
a factor characterizing any rotation might be explained through its angle θ ∈ [0°, 360°],
which expresses a better completeness than using its sin and cos, while being just as much
descriptive. More broadly, one may find some interest in modeling a complex factor in
multiple latent directions.

Lastly, the unsupervised disentanglement of representations is a promising endeavor,
that advocates leveraging data itself to learn underlying factors in a general-purpose first
stage, before handling downstream supervised tasks in a subsequent stage [13]. Such a
semi-supervised scheme is however an elusive undertaking: following the prominent inves-
tigations about unsupervised learning of disentangled representations from Locatello et
al. (2019) [149], one should not solely rely on great amounts of unlabeled data to extract
task-agnostic features. Defining the proper inductive bias is a mandatory phase, in order
to infuse prior knowledge about relevant underlying factors to disentangle and incoming
downstream tasks. All in all, the choices of neural network architecture, hyperparameters,
and regularization strategies are the exploitable inductive biases to adjust the definition
of salient sources of variations depending on the context [68]. Learning disentangled repre-
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sentation should indeed follow a data-driven procedure, but not without carefully defining
prior knowledge to implement through inductive bias.

Despite the absence of a consensual and formal definition of disentanglement at hand,
one can find substantial hints in the aforementioned references [13, 68, 85, 149], which
are converging to the intent of learning disentangled representations able to discern the
explanatory features, symmetrical properties, and causal factors of variation hidden within
a set of observations into distinct latent space directions. With these clues in mind, recent
years have witnessed a great deal of investigation towards such interests (Figure 2.1).
Although, for the sake of clarity, a distinction between the notion of disentanglement in
use throughout this manuscript on the one hand, and the one used in some other published
articles on the other hand, seems necessary and is advanced hereafter in Subsection 2.1.3.

2.1.3 Distinction from information factorization

Among the publications displaying an interest in disentanglement, a great part of
them do not actually share the same concepts followed in this manuscript, being the sep-
aration of factors of variations in individual latent dimensions. This distinct paradigm
can be referred to as information factorization, where learned hidden features are
explicitly separated into multiple representations i.e. extracted information is factorized
on purpose into distinct and separated latent spaces. For instance, some works factorize
(a.k.a., “disentangling”) linguistic and speaker information, by learning two separated
representations, to perform Voice Conversion [244]. Information factorization is definitely
“disentanglement” in its broad sense, but not as we interpret it in this manuscript. How-
ever, information factorization is designated as “disentanglement” in a lot of studies,
including many of those considered in Figure 2.1. This is hence reducing the number of
publications specifically dealing with generative factors disentanglement, but it remains
interesting to note that the notion of disentanglement in its broadest sense (i.e., building
more structured representations, in any way, regarding underlying information) is gain-
ing attention over the years. Henceforth, let disentanglement refer to the separation of
generative factors into distinct latent dimensions, and factorization to the separation of
information towards distinct representations.

Figure 2.5 illustrates instances of information factorization implementations. Factor-
ization can be performed through a model-driven approach, for instance, with multiple
encoders to learn separate representations, i.e., factorized latent spaces, as portrayed in
Figure 2.5a: two encoders are separately learning their own representation of input data
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Figure 2.5 – Information factorization illustrations

x, while being jointly optimized. To efficiently discriminate the information captured by
each latent space, each side of the bifurcation is characterized by different inductive biases
b1 and b2 e.g., architecture, regularization, loss function, and so on. For example, in Fig-
ure 2.5a, if b1 is a speaker recognition task loss, and b2 a transcription task loss, linguistic
and extralinguistic information are factorized into their respective representation.

One may also rely on known common or different properties between data samples
to force them to be close or far from each other in learned latent spaces. Such a data-
driven scheme is depicted in Figure 2.5b, where two different inputs x1 and x2 are fed
into the model. If properties are known to be different or similar (e.g. gender, speaker
identity, emotion), the relative distance or shape of their respective representations can
be enforced to meet desired behaviors regarding the known characteristics. Using different
properties to compare both representations, i.e., different data-driven inductive biases
b1 and b2, can lead to semantically well-separated latent spaces. For instance, knowing
that data samples x1 and x2 are coming from the same (resp. different) speaker, but
with different (resp. same) emotions, one can learn speaker and emotion embeddings by
setting b1 to minimize (resp. maximize) the distance between x1 and x2 representations,
and letting b2 maximize (resp. minimize) the distance between x1 and x2 representations.
Contrastive learning [107] stands among such principled, data-driven, inductive biases.
Overall, information factorization leverages prior knowledge about data to influence and
explicitly factorize information flow, to help downstream tasks focus on relevant cues.

Amongst the instances of efforts leveraging information factorization for speech pro-
cessing, Yuan et al. (2021) [240] are following the same principle as in Figure 2.5a by
learning a content encoder and a style encoder, to perform style transfer. Polyak et al.
(2021) [177] employ three self-supervised encoders to factorize content, F0, and speaker
identity in distinct representations, enabling controllable speech synthesis via F0 ma-
nipulation and VC. StyleVC [50] also uses 3 unsupervised encoders to separate speaker,
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style, and content information, to jointly perform VC and expressive VC. Williams et al.
(2021) [233] exploit gradient reversal [63] to discard supervisedly speaker information and
learn a phoneme representation on the one hand and speaker embedding on the other
hand. DRVC [228] uses Figure 2.5b data-driven inductive prior principle, to discriminate
content from speaker information. Cascade Deep Factorization (CDF) [138] is a fine ex-
ample of a more advanced model-driven inductive bias principle: learned representations
are reinjected further in the model, to enforce the scrapping of already captured features,
and guide the modeling of remaining, “residual”, information in another representation
space. A hierarchical structure of features is hence built, which can be assumed to ac-
curately model real-world factor relationships, wherein concepts may be tied to more
abstract ones [13]. This concept of building abstract knowledge from shallower ones is at
the basis of deep learning formulation, with the ready difference that abstract concepts
are not explicitly desired interpretable in conventional deep learning hidden layers. Li et
al. (2018) [138] are further exploiting CDF by splitting linguistic, speaker and emotional
features from speech, with supervision. To close the walk, AutoVC [179] relies on the infor-
mation injection principle, by conditioning the decoding stage with a speaker embedding,
hence enforcing the encoding stage to supply only the remaining speech information, to
perform VC.

Although it is not aligned with the principles of interest in this manuscript, informa-
tion factorization is not incompatible with hints introduced in Subsection 2.1.2. It does
make sense and have advantages to rely on inductive biases to explicitly control informa-
tion flow throughout a model. This can aid disentanglement by performing preliminary
filtering to prune the excessive amount of stimuli within data. One can consider factor-
ization as coarse disentanglement of information, and this manuscript is concerned with
finer disentanglement of individual underlying factors. To give an example of how both
approaches can complement each other and be efficiently combined, FHVAE [92] relies on
a pair of self-supervised hierarchical latent spaces, with suited temporal-based inductive
biases, to factorize short-term and long-term variabilities of speech, while disentangling
speech factors in latent dimensions. FHVAE will be leveraged Chapter 3, to study its
ability to disentangle speech attributes from realistic speech data. Hence, the incoming
discussions are about disentanglement as it was described previously in Subsection 2.1.2.
Subsequently, Section 2.2 covers the neural-based approaches to disentangle factors of
variations.
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2.2 Neural networks for generative factors discovery

In order to extract the underlying source factors of variations, one needs to model
their relationship with observable samples. Autoencoding generative models are good
candidates towards this purpose, as they learn to encode data salient variabilities necessary
to reconstruct input samples in a decoding stage. With minimal knowledge about data,
self-supervised generative models can learn insightful abstract representations, and their
disentanglement can be enforced with a suitable regularization scheme.

Among the various existing generative models, the Variational Autoencoder (VAE) [115]
stands as the most promising framework to achieve disentanglement. Its derivation is suc-
cinctly described in Subsection 2.2.1. Then Subsection 2.2.2 presents the subtleties be-
hind the reconstruction accuracy/latent informativeness trade-off when training a VAE.
Finally, Subsection 2.2.3 foreshadows why VAE is a suitable framework for disentangle-
ment, and goes through the extensive investigations undertaken to explicitly enforce the
disentanglement capacity of VAEs.

2.2.1 Variational Autoencoder (VAE)

A set of observed samples x ∈ X, of dimensionality n can be considered as the real-
ization of a collection of random variables x, dawning from a hidden generative process
governed by l ground-truth factors of variations f = {fi}i∈{1,...,l}. The purpose of Bayesian
inference is to model this unobservable generative process, by means of m latent features
z = {zi}i∈{1,...,m}. Assuming that latent variables z belong to a family of prior distributions
pθ(z) parameterized by θ, an accurate modeling of factors f through latents z is achieved
if observations are likely to be generated by latents, i.e., if a high likelihood pθ(x|z) is
reached. In order to model the generative process, one has to maximize the likelihood
probability of the observations marginalized over the latent space:

pθ(x) =
∫

Z
pθ(x|z)pθ(z)dz. (2.5)

However, the marginal likelihood pθ(x) is typically intractable. Hence, variational infer-
ence principle leverages an approximation of the posterior distribution qϕ(z|x) ≈ pθ(z|x),
which belongs to a family of distributions parameterized by ϕ. Borrowed from Kingma
and Welling (2013) [115], a directed graphical model in Figure 2.6 depicts the overall
model, with latent variable z in a white node, observed variable x in a shaded node, gen-
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z
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θϕ

Figure 2.6 – VAE graphical model

erative model parameterized by θ represented with solid lines and inference model with
parameter ϕ embodied by dashed lines.

To infer latent features from observations, one has to minimize the dissimilarity be-
tween the posterior pθ(z|x) and its variational surrogate qϕ(z|x), usually with the Kull-
back–Leibler divergence:

DKL(qϕ(z|x)∥pθ(z|x))

=
∫

Z
qϕ(z|x) log qϕ(z|x)

pθ(z|x)dz

=
∫

Z
qϕ(z|x) log qϕ(z|x)

pθ(z, x)dz + log pθ(x)

=
∫

Z
qϕ(z|x) log qϕ(z|x)

pθ(z) dz −
∫

Z
qϕ(z|x) log pθ(x|z)dz + log pθ(x)

=DKL(qϕ(z|x)∥pθ(z)) − Ez∼qϕ(z|x)[log pθ(x|z)] + log pθ(x)
= log pθ(x) − Ez∼qϕ(z|x)[log pθ(x|z)] + DKL(qϕ(z|x)∥pθ(z))

⇐⇒ log pθ(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z)] − DKL(qϕ(z|x)∥pθ(z)). (2.6)

Hence, as the marginal log-likelyhood log pθ(x) is fixed with respect to qϕ(z|x), and
based on the Kullback-Leibler divergence non-negativity, it appears that minimizing the
distance between the true posterior pθ(z|x) and the variational approximation qϕ(z|x) is
equivalent to maximizing the Evidence Lower Bound (ELBO), which is the corner stone
of VAE’s principle:

LELBO(θ, ϕ; x) = Ez∼qϕ(z|x)[
︷ ︸︸ ︷
log pθ(x|z) ] − DKL(qϕ(z|x)∥pθ(z))︸ ︷︷ ︸. (2.7)

reconstruction error

posterior deviation from prior
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The prominent works of Kingma and Welling (2013) [115] and Rezende et al. (2014) [187]
propose to model the inference model qϕ(z|x) and the generative model pθ(z|x) with
probabilistic encoder and decoder deep neural networks, respectively. Thus, the varia-
tional parameters ϕ and the generative parameters θ are jointly estimated from the data
through Stochastic Gradient Descent (SGD) optimization. For tractability concerns, one
typically lets the latent prior distribution pθ(z) be a standard Gaussian, the variational
approximate posterior qϕ(z|x) a multivariate Gaussian with diagonal covariance matrix
Σ = σ2 ∗ Im conditioned on x and ϕ, and the generative model pθ(x|z) a multivariate
Gaussian with diagonal covariance conditioned on z and parameters θ learned by a neural
network decoder:

pθ(z) = N (z; 0, Im), (2.8)
qϕ(z|x) = N (z; µ(x, ϕ), Σ(x, ϕ)), (2.9)
pθ(x|z) = N (x; µ(z, θ), Σ(z, θ)). (2.10)

Note that under (2.8), the prior pθ(z) is free of parameter, i.e., is not conditioned on θ.
For convenience, the variational approximate posterior qϕ(z|x) will be henceforth referred
to as simply posterior, and pθ(z|x) as the true posterior.

The expectation of the log-likelihood in the ELBO (2.7) can be interpreted as the
reconstruction error between input x and the predicted mean µ, as (xi − µi)2 appears
with the following deviation of the log-likelihood:

log pθ(x|z) = −n

2 log 2π − 1
2 log det Σ − 1

2(x − µ)⊺Σ−1(x − µ)

= −1
2

n∑
i=1

log 2π + log σ2
i + (xi − µi)2

σ2
i

. (2.11)

Hence, log pθ(x|z) can be thought as a reconstruction error cost, as it is optimizing the
model to a learned latent space through qϕ(z|x) sufficiently informative to be leveraged
by the decoder pθ(x|z) to accurately reconstruct the input x, following an autoencod-
ing training scheme. In this respect, many implementations of VAE are considering a
deterministic decoder pθ(x|z) using the squared L2 distance or the Mean Squared Error
(MSE) between input x and the predicted reconstruction x̂ = µ(z, θ) in place of the
log-likelihood. According to (2.11), the squared L2 distance or the MSE are equivalent
to log-likelihood with a fixed unit likelihood covariance Σ = In, up to a factor n

2 and a
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constant c [191]:

log pθ(x|z) = −1
2

n∑
i=1

log 2π + (xi − µi)2

= −1
2∥x − x̂∥2

2 + c

= −n

2 MSE(x, x̂) + c. (2.12)

The Kullback-Leibler term in the ELBO is to be interpreted as a regularization term
in the optimization process. Intuitively, enforcing the posterior distribution qϕ(z|x) to
match the standard Gaussian prior distribution pθ(z) increases the probabilistic overlap
between the individual posterior distributions, by tightening the learned latent space, i.e.,
reducing the spreading of the posterior means and broadening the posterior variances [20,
156, 2].

An interesting consequence of the DKL term is that it advocates a distributed learned
latent space. In the setting framed by (2.8) and (2.9), the Kullback-Leibler divergence
between the variational posterior qϕ(z|x) and the prior pθ(z) in the ELBO (2.7) can be
expressed in a very tractable and simple way:

DKL(qϕ(z|x)∥pθ(z))
=DKL(N (z; µ(x, ϕ), Σ(x, ϕ))∥N (z; 0, Im))

=Ez∼qϕ(z|x)

[
−1

2 log det Σ + 1
2

(
z⊺z − tr(Σ−1(z − µ)⊺(z − µ))

)]
= − 1

2 log det Σ + 1
2Ez∼qϕ(z|x)

[
z⊺z − tr(Σ−1Σ)

]
= − 1

2 log det Σ − 1
2m + 1

2Ez∼qϕ(z|x) [z⊺z]

= − 1
2 log det Σ − 1

2m + 1
2

m∑
i=1

Ez∼qϕ(z|x)[z2
i ]

= − 1
2 log det Σ − 1

2m + 1
2

m∑
i=1

(
σ2

i + µ2
i

)

= − 1
2

m∑
i=1

(
log σ2

i + 1 − µ2
i − σ2

i

)
. (2.13)

It appears that the squared amplitudes of the mean µ are penalized, i.e., ∑m
i=1 µ2

i = ∥µ∥2
2

is to be minimized. It is thence believed that a scenario where multiple dimensions are
slightly deviating from the standard Gaussian zero mean is privileged over having a single

64



2.2. Neural networks for generative factors discovery

dimension strongly straying from N (z; 0, Im). In other words, high values of µi are more
penalized than small values, leading to the distribution of the information capacity among
latent components 1. It results in a latent space with information driven to be scattered
across dimensions rather than concentrated into few ones.

Furthermore, a low Kullback-Leibler divergence in the ELBO induces a latent space
less discriminative and informative about data. To concurrently reduce the reconstruction
error term, the model has to focus on salient information useful to reproduce the input,
to be passed through the information bottleneck [219] embodied by the Kullback-Leibler.
Another consequence is that close observations are encouraged to have close latent rep-
resentations, i.e., reducing the log likelihood is also achieved by smoothing out the latent
space. Hence, the optimization of both terms of the ELBO pushes similar data samples to
be located in the same vicinity in the latent space. Therefore, the DKL term regulates the
structure and the informativeness of the latent space, and ensures that abstract features
are learned, hopefully related to the true data generative factors. Put another way, a too
high DKL leads to an unstructured, lookup table-like and thus irrelevant latent space.
By considering the expectation of the Kullback-Leibler term over observations, one can
explicit its regularization function [2, 90, 109]:

Ex∼pθ(x)
[
DKL(qϕ(z|x)∥pθ(z))

]
=

∫
X

∫
Z

pθ(x)qϕ(z|x) log qϕ(z|x)
pθ(z) dzdx

=
∫

X

∫
Z

pθ(x)qϕ(z|x) log qϕ(z)
pθ(z)dzdx +

∫
X

∫
Z

qϕ(x, z) log qϕ(z|x)
qϕ(z) dzdx

=
∫

Z
qϕ(z) log qϕ(z)

pθ(z)dz +
∫

X

∫
Z

qϕ(x, z) log qϕ(x, z)
qϕ(z)pθ(x)dzdx

=DKL(qϕ(z)∥pθ(z)) + Iqϕ
(x; z), (2.14)

with I(·; ·) being the Mutual Information (MI). Hence, based on the Kullback-Leibler non-
negativity, over a set of observations, the Mutual Information (MI) between observed data
x and latent variables z is upper bounded by the Kullback-Leibler term in the ELBO.
Given that the MI term Iqϕ

(x; z) is the informativeness of the latent space regarding
the input dataset, its upper bound Ex∼pθ(x)

[
DKL(qϕ(z|x)∥pθ(z))

]
can be interpreted as

the information capacity of the latent space. In simpler terms, the actual amount of

1. Alike Ridge regression [89], the L2 regularization encourages the distribution of the parameter
amplitudes.
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]
− DKL(N (z; µ, σ2 ∗ Im)∥N (z; 0, Im))

Figure 2.7 – VAE model framework

information filled in the latent space about the data cannot exceed the vessel volume of
information allowed by the DKL term:

Iqϕ
(x; z) ≤ Ex∼pθ(x)

[
DKL(qϕ(z|x)∥pθ(z))

]
, (2.15)

The overall VAE model framework is illustrated in Figure 2.7. During the training
stage, the input data x is fed to the encoder qϕ(z|x) to predict a mean vector µ and
a (log)-covariance diagonal σ2. A latent vector z is sampled from N (z; µ, σ2 ∗ Im), as
represented by dashed arrows, and is fed to the decoder pθ(x|z) to predict the reconstruc-
tion x̂. The sampling procedure is made differentiable by means of the reparameterization
trick [115], in order to keep the whole model optimizable through gradient descent. The
optimization of such a model is performed by maximizing the ELBO (2.7), which leads to
the minimization of the reconstruction error (2.11) and the approximation of the posterior
towards the prior distribution (2.13), as embodied by red arrows. During the inference
stage, latent samples can be drawn from the prior pθ(z) to generate new data samples
through pθ(x|z). For any downstream task, one can also feed true data samples to the
encoder qϕ(z|x) to produce representations, typically in a deterministic way by keeping
the most probable point, i.e., z = µ(x, ϕ). Further details about the deviations, VAE
framework and looser discussions about the ELBO can be found in [115, 187, 114, 46, 68,
52, 15, 2, 20, 156].

VAEs are a powerful framework for estimating arbitrary data distributions pθ(x) by
approximating the posterior distribution qϕ(z|x) of latent variables z. However, the in-
vestigation of the ELBO (2.7) demonstrates that without a good balance between the
two concurrent terms, the model may converge to a suboptimal solution. The trade-off
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between reconstruction and information capacity should therefore be carefully addressed,
as developed in Subsection 2.2.2.

2.2.2 Information capacity: A Latent Space Odyssey

Navigating across the latent space is a perilous journey. As it will be described, one
must cautiously balance the trade-off between reconstruction accuracy and information
capacity, or they may fall into the abyss of the posterior collapse. At the end of this
venture, a disentangled latent space may be discovered as the quest’s reward.

The ELBO trade-off

It has been demonstrated that in its initial formulation, the VAE comprises drawbacks
that might lead to undesirable outcomes. Given that the amount of information pertaining
to a dataset, i.e., its entropy, varies following the data complexity, modality, sequentially,
long- and short-term dependencies and so on, the information bottleneck materialized
by the Kullback-Leibler term in the ELBO (2.7) has to be adjusted accordingly. The
appropriate amount of information to be transmitted in the latent space is hence to
be targeted. In this view, β-VAE [84] introduces a multiplier β to the DKL penalty,
controlling the informative bottleneck pressure exercised throughout the encoder. The
objective function to maximize becomes:

Lβ(θ, ϕ; x, β) = Ez∼qϕ(z|x)[log pθ(x|z)] − βDKL(qϕ(z|x)∥pθ(z)). (2.16)

The challenge remains in finding the adapted value of β which balances the trade-off
between information capacity and reconstruction accuracy. As a matter of fact, poor
reconstruction is observed with too great values of β [84]. The visible reason for this trade-
off is that in the objective function (2.16), a high value of β leads to an overweighting
of the DKL cost and an underrating of the reconstruction error loss during training. In
addition to this, (2.15) reveals that minimizing the DKL penalty involves the reduction
of the mutual information between data and latent variables, leading to an uninformative
latent space.

Based on the decomposition (2.14), InfoVAE [248] proposes to decouple the penalty
on the latent space informativeness from the aggregated posterior factorization, with an
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objective function not expressed as but equivalent to:

LInfoVAE(θ, ϕ; x, α, λ) = Ex∼pθ(x),z∼qϕ(z|x)[log pθ(x|z)] − λDKL(qϕ(z)∥pθ(z)) − αIqϕ
(x, z)
(2.17)

Following this expression of the InfoVAE objective function to maximize, the factorization
of the latent space can hence be enforced by penalizing further DKL(qϕ(z)∥pθ(z)) through
a greater λ, without degrading the relevance of the latent space Iqϕ

(x, z).
Another perceptive to interpret the effect on the encoding capacity of the latent space

when manipulating the β can be discerned by examining (2.11). If one posits a fixed value
of variance σ2 = ς2 in likelihood Gaussian distribution pθ(x|z) = N (x; µ(z, θ), ς2 ∗ In),
then the choice of this value plays the same role as tuning β in (2.16) with an MSE or L2

reconstruction loss in place of log-likelihood, up to a constant and a factor with respect
to the MSE both function of ς2, as developed by Rybkin et al. (2021) [191]:

Lσ(θ, ϕ; x, ς) = −∥x − x̂∥2
2

2ς2 − DKL(qϕ(z|x)∥pθ(z)) + c(ς) (2.18)

≡

Lβ-MSE(θ, ϕ; x, β) = −∥x − x̂∥2
2 − βDKL(qϕ(z|x)∥pθ(z)) + c. (2.19)

Thus, the many implementations using β-VAE with a Gaussian decoder and assuming an
MSE penalty are implicitly and equivalently using a raw VAE as defined in (2.7), with an
assumed fixed value of decoder variance ς2(β). Built on this insight, Rybkin et al. propose
σ-VAE [191], which automatically calibrates the latent information capacity by learning
the decoder variance.

Informativeness bounds

Another insightful perspective on the problem can be conferred by rethinking the
mutual information between the data and the latent space. By combining the expectation
over data of the inequality (2.6) and the decomposition of (2.14), one can deduce that:

Ex∼pθ(x)[log pθ(x)] ≥ Ex∼pθ(x),z∼qϕ(z|x)[log pθ(x|z)] − Iqϕ
(x; z)

⇔ −Ex∼pθ(x)[log pθ(x)] ≤ −Ex∼pθ(x),z∼qϕ(z|x)[log pθ(x|z)] + Iqϕ
(x; z)

⇔ H(x) + Ex∼pθ(x),z∼qϕ(z|x)[log pθ(x|z)] ≤ Iqϕ
(x; z). (2.20)
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Associated with (2.15), one can meet the findings of Alemi et al. (2018) [2], who demon-
strated that the information capacity of the latent space is lower bounded by the entropy
of the data discounted by the mean negative reconstruction error, and upper bounded by
the mean posterior deviation from the prior:

︷ ︸︸ ︷
H(x) + Ex∼pθ(x),z∼qϕ(z|x)

[
log pθ(x|z)︸ ︷︷ ︸

]
≤

︷ ︸︸ ︷
Iqϕ

(x; z) ≤ Ex∼pθ(x|z)
[

DKL(qϕ(z|x)∥pθ(z))︸ ︷︷ ︸
]
.

(2.21)

data amount of information

negative reconstruction error

latent space informativeness

posterior deviation from prior

Thus, only the posteriors’ shift from the prior can bring some information capacity to
the latent space, and the latent space amount of information should at least explain the
reconstruction ability of the model. In other words, if the information capacity exhibited
by the posteriors’ shift from the prior is lower than the data amount of information,
one cannot expect to reconstruct without degradation due to the loss of information.
This interpretation highlights the importance of finding a proper balance between the
lower and upper bounds of the latent information capacity, to get representations both
informative and insightful about data.

Posterior collapse

The very extreme case of DKL(qϕ(z|x)∥pθ(z)) = 0 means that no matter the input
observation x, it will be projected to a standard Gaussian distribution. The latent space
hence becomes clueless about the dataset, as it becomes impossible to discriminate latent
points all coming from the same distribution N (z; 0, Im). It is a well-known pitfall referred
to as posterior collapse, and is illustrated through a simple 2D latent space example in
Figure 2.8. Before being trained, the encoder is randomly projecting observations into the
latent space, as shown by Figure 2.8a. Resulting posteriors are represented by Gaussians:
dots are predicted means µ, and dashed ellipses are predicted variances σ2. Thus, each
point encompassed by its ellipse is a predicted posterior qϕ(z|x) given input x, from
which a latent z can be sampled. Two classes are considered, represented in blue and
orange. If a good balance is found between reconstruction and disentanglement, a well-
formed latent space as in Figure 2.8b can be learned, with posteriors scattered enough
to be disctinguishable between each other, but suitably aggregating around a centered
Gaussian to minimize the Kullback-Leibler cost. The fair degree of overlapping allows a
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(a) Initial latent space (b) Informative and
disentangled latent space

(c) Collapsed latent space

Figure 2.8 – Posterior collapse illustration

smooth latent space, and the classes are disentangled along the vertical axis. Conversely, a
latent space fallen into posterior collapse is represented in Figure 2.8c, with all posteriors
being predicted to be nearly-standard Gaussians. Such a latent space is uninformative,
and arises from a too-strong pressure exerted by the information bottleneck.

Even so, it is worth to note that the overpressure exerted on the information ca-
pacity is not the only reason why posterior collapse may happen. As explained by Dai
et al. (2020) [35], multiple sources may cause the posterior to collapse. Among them, a
too powerful decoder, typically an autoregressive RNN, may be able to perfectly model
data distribution pθ(x|z) = pθ(x), thus achieving a high marginal log-likelihood log pθ(x),
while ignoring the latent space. The posterior hence falls towards its prior qϕ(z|x) = pθ(z),
leading to an annealed regularization term DKL(qϕ(z|x)∥pθ(z)) = 0 and clueless represen-
tations. The discovery is launched by Bowman et al. (2017) [16], and is the topic of a great
deal of efforts to prevent the decoder from locally modeling data information and ensure
that the approximated latent distribution encodes meaningful information 2, through ar-
chitecture constraints [28], ELBO decomposition [248, 145], DKL annealing [16, 18] (as
β-VAE), or optimization scheme adjustments [36, 78, 7].

Towards disentanglement

Altogether, representations learned according to the VAE framework (Subsection 2.2.1)
are believed to exhibit properties advised by Bengio et al. [13]. Optimizing the ELBO
implies jointly restricting the broadness of the latent space towards the standard Gaus-
sian (through the Kullback-Leibler divergence term) while preserving semantic vicini-
ties (through the reconstruction error penalty). A good trade-off between both penalties,

2. More discussions and insights about posterior collapse in [2, 150, 151, 35].
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thanks to the approaches advanced above, leads to a smooth and distributed latent space.
In addition, it is believed that VAEs exhibit some prerequisite properties to achieve the
automatic discovery of generative factors in their latent space, in a disentangled manner,
as it will be elaborated in Subsection 2.2.3.

2.2.3 Enforcing disentanglement: The Way We Make Contact

The Variational Autoencoder is a very suitable framework to estimate some data
distribution and learn well-structured latent spaces. In addition to the properties reported
in Subsection 2.2.1, a great deal of research efforts are studying the disentanglement ability
of VAEs, and more specifically with variants built on top of VAE.

Above all, the Kullback-Leibler divergence between the posterior and the prior dis-
tributions in the ELBO (2.7) is pressing the posterior to match a standard multivariate
Gaussian distribution. One may notice that while the posterior is optimized to approxi-
mate a factorized distribution and have a diagonal covariance matrix, latent dimensions
tend to be mutually independent. To compile with insights depicted in Subsection 2.2.1,
a VAE is learning a smooth latent space, restricted to capture salient information, dis-
tributed across independent dimensions. It is clear that such a representation space
would optimally meet those criteria if its dimensions align with the underlying generative
factors of variations f , as defined in Subsection 2.1.2. True generative factors may not be
independent in reality, but it is a fair assumption to start from, akin to Naive Bayes clas-
sifier or Independent Component Analysis (ICA) [108]. VAE framework hence stands as a
good candidate to learn disentangled representations. Rolínek et al. (2019) [189] further
demonstrate that the factorized decoder distribution leads to the local orthogonality of the
latent space, thus dimensions are implicitly optimized to convey independent variations,
i.e., data principal components.

Based on the previous discussions in Subsection 2.2.1 and Subsection 2.2.2, it appears
that the β-VAE [84] can provide a convenient way to control the disentanglement ability
of a model, by controlling the enforcement of the independence between latent dimensions
with β, but not without intricacies described in Subsection 2.2.2. Thus, a higher value of β

enforces statistical independence between latent directions, but degrades reconstruction
accuracy. In other words, imposing a small DKL brings disentanglement through the
first term of (2.14), but also reduces the informativeness of the latent space about the
observation through the second term.

Following this intuition, (CCI-VAE) [20] explicitly relaxes the constraint on the infor-
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mation capacity by a value κ, which is gradually increased during training. This procedure
enforces the latent space to absorb the most salient factors of variations in initial steps,
and grants extra capacity in further training steps to capture other factors that may also
contribute to the reduction of the reconstruction error. An hyperparameter γ analogous
to β in β-VAE (2.16) lets one control the information bottleneck pressure:

LCCI-VAE(θ, ϕ; x, γ, κ) = Ez∼qϕ(z|x)[log pθ(x|z)] − γ|DKL(qϕ(z|x)∥pθ(z)) − κ|. (2.22)

Moreover, by further decomposing the information capacity upper bound in (2.15),
one can reveal that it is equal to the total correlation over latent dimensions, added by
the latent dimension-wise deviation from the unidimensional prior distribution:

DKL(qϕ(z)∥pθ(z)) = Ez∼qϕ(z)

[
log qϕ(z)∏m

i=1 pθ(zi)
+

m∑
i=1

log qϕ(zi) − log
m∏

i=1
qϕ(zi)

]

= DKL(qϕ(z)∥
m∏

i=1
qϕ(zi)) +

m∑
i=1

DKL(qϕ(zi)∥pθ(zi))

= T C(z)︸ ︷︷ ︸ +
m∑

i=1
DKL(qϕ(zi)∥pθ(zi))︸ ︷︷ ︸. (2.23)

total correlation dimension-wise DKL

It hence appears that disentanglement is actually carried out by the total correlation
term, as it imposes independence between latent dimensions. FactorVAE [109] and β-
TCVAE [26] built on this result, by penalizing further the total correlation with a pa-
rameter γ, enforcing disentanglement without altering further the reconstruction ability
through Iqϕ

(x; z) as β-VAE:

Lβ-TCVAE(θ, ϕ; x, β) = Ex∼pθ(x),z∼qϕ(z|x)[log pθ(x|z)] − Iqϕ
(x; z) (2.24)

−
m∑

i=1
DKL(qϕ(zi)∥pθ(zi))

− βT C(z).

Kumar et al. (2018) [130] emphasize disentanglement with another approach, by in-
troducing in the objective function a penalty over the covariance of the marginal posterior
distribution qϕ(z), to be regulated towards the identity matrix. The aggregated posterior
is optimized to match a factorized prior, to accentuate the statistical independence be-
tween latent dimensions and hopefully learn disentangled factors. To do so, Kumar et al.
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start with the law of total covariance:

Covqϕ(z)(z) = Epθ(x)[Covqϕ(z|x)(z)] + Covpθ(x)(Eqϕ(z|x)[z])
= Epθ(x)[Σ(x, ϕ)] + Covpθ(x)(µ(x, ϕ)), (2.25)

to define DIP-VAE-I objective function by regularizing Covpθ(x)(µ(x, ϕ)):

LDIP-VAE-I(θ, ϕ; x, λod, λd) = LELBO(θ, ϕ; x) − λod

m∑
i ̸=j

[
Covpθ(x)(µ(x, ϕ))

]2

ij

− λd

m∑
i=1

([
Covpθ(x)(µ(x, ϕ))

]
ii

− 1
)2

. (2.26)

In addition, DIP-VAE-II is defined by penalizing directly Covqϕ(z)(z):

LDIP-VAE-II(θ, ϕ; x, λod, λd) = LELBO(θ, ϕ; x) − λod

m∑
i ̸=j

[
Covqϕ(z)(z)

]2

ij

− λd

m∑
i=1

([
Covqϕ(z)(z)

]
ii

− 1
)2

. (2.27)

The presented models: β-VAE, CCI-VAE, β-TCVAE, FactorVAE and DIP-VAE-I/II
all provide convenient hyperparamaters to calibrate the latent dimension independence,
and let one connect with the disentanglement capacity of the learned latent space. They
effectively demonstrate disentanglement behaviors and improvements over the basic for-
mulation of VAE, in an unsupervised principle, i.e., fully automatic discovery of underlying
factors. However, as discussed at the end of Subsection 2.1.2, it is argued by Locatello et
al. (2019) [149] that one should not expect to efficiently disentangle some data without
resorting to inductive biases to guide the disentanglement. They actually demonstrate
the limitations of the models introduced earlier, and conclude on the importance of in-
corporating prior knowledge about data, by means of specific neural architectures, or
(semi-)supervision.

According to this idea, Guided-VAE [44] proposes in its supervised version to explicitly
drive latent space dimensions to learn some given tasks, with classifiers optimized through
excitation and inhibition losses. Each task is assigned a latent dimension, and the exci-
tation loss maximizes the prediction accuracy of the selected latent, while the inhibition
penalty prevents other latents from predicting the task. A semi-supervised extension of
VAE is advanced by Kingma et al. (2014) [118], wherein a categorical latent variable is
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inserted to represent the partially annotated data, sampled from posterior inference when
not observed. Another semi-supervised VAE is proposed by Paige et al. [167], which al-
lows one to consider latent variables from which some labels are partially observed and
available, hence providing a semi-supervised training framework. To achieve speech syn-
thesis, FHVAE [92] leverages the prior knowledge of multi-scaled temporal information
of speech, to factorize the latent space into two distinct representations, each exhibiting
disentanglement behaviors. Capacitron [11] leverages the knowledge of transcription and
speaker identity to condition the latent space posterior distribution, which is hierarchically
factorized to embody local and global variations. CCI-VAE principle is also exploited to
explicitly control the information capacity of both latent spaces. GMVAE-Tacotron [93]
capitalizes on observed annotations (e.g., speaker identity) to learn two latent spaces, one
for the unobserved factors, optimized as in the regular VAE, and a second one conditioned
on the observed factor to learn a Gaussian mixture prior distribution, each component
representing a class.

To summarize, the VAE framework, augmented with substantial proposed modifica-
tions and refinements, can learn insightful representations with mutually independent la-
tent dimensions. However, it remains unclear if those latent directions can efficiently align
with true generative factors. For instance, FHVAE [92], Capacitron [11], and GMVAE-
Tacotron [93] are well-designed speech disentanglement models, and some speech at-
tributes seem to be disentangled when going through individual latent dimensions and
listening to the synthesized speech. But apart from this manual latent manipulation and
subjective listening, no quantitative method is leveraged to objectively assess the disen-
tanglement of speech attributes. To this end, some metrics are developed to quantitatively
assess the degree of disentanglement of the proposed approaches. But as the true under-
lying factors of variations are generally unknown in real data, one has to rely on synthetic
data to actually use those metrics. Some widely used synthetic corpora are depicted in
Section 2.3.

2.3 Synthetic corpora

In order to determine the disentanglement potential of developed models, a proper
framework is necessary, where the true explanatory factors are known. This is why the
great majority of the concerned studies use synthetic corpora, to inspect the behavior of
their approach within playgrounds, which is simple but totally explained by a small set
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(a) Shape

(b) Scale

(c) Orientation

(d) Position x

(e) Position y

Figure 2.9 – dSprites factors of variation

of variables.
The simple and extensively used synthetic corpus dSprites [157] is considered as a base-

line dataset to investigate disentanglement model performances. It comprises 5 factors,
shown in Figure 2.9 through samples drawn from the corpus. It is a corpus of black and
white images, with different shapes (Figure 2.9a), at different scales (Figure 2.9b), with
multiple orientations (Figure 2.9c), and at different x (Figure 2.9d) and y (Figure 2.9e)
coordinates.

Cars3D [184] is a collection of generated 3D models of cars, as it can be noticed in
Figure 2.10. The 3 generative factors are: the view elevation (Figure 2.10a), azimuth
(Figure 2.10b) and the car type (Figure 2.10c).

Furthermore, SmallNORB [137] is a corpus of 3D modeling of toys comprising 4 gen-
erative factors, as one can observe in Figure 2.11. There are 5 types of toy shapes (Fig-
ure 2.11a), with different views of elevation (Figure 2.11b), azimuth (Figure 2.11b) and
lightning (Figure 2.11d).

Some other corpora frequently used are worth to mention, as Shapes3D [19] and
MPI3D [67]. In such synthetic corpora, generative factors are completely independent:
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(a) Elevation

(b) Azimuth

(c) Car type

Figure 2.10 – Cars3D factors of variation

(a) Category

(b) Elevation

(c) Azimuth

(d) Lighting

Figure 2.11 – SmallNORB factors of variation

all combinations of factor values are generated, and one has no influence on the other,
i.e., the complete grid of possible factor combinations is browsed. Hence, one has to keep
in mind that this non-natural exhaustiveness might bias the conclusions of the resulting
trained models. Other more realistic datasets are therefore often used to mitigate this phe-
nomenon, such as CelebA [147], 3D chairs [8], or 3D faces [171]. They are more complex,
as the true underlying factors are unknown, and all the combinations of the generative
factors cannot be covered. It is consequently more difficult to disentangle them, but they
also allow experiments closer to real-world applications. They are mostly used for manual
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and subjective assessments through reconstruction visualizations.
Nonetheless, it remains useful to rely on synthetic data, especially to employ the

various disentanglement metrics proposed to objectively rate the alignment of latent di-
mensions with the known generative factors. Some instances of such available metrics are
described in Section 2.4.

2.4 Measuring disentanglement

The many ways believed to learn disentangled representations have been covered in
Section 2.2. Although those models arise from well principled formulations, their disentan-
glement capacity is implicitly ensued by the optimization towards a factorized marginal
posterior i.e. independence of latent dimensions. Consequently, no natural and obvious
procedure arises to objectively measure the degree of disentanglement of a given model.

One can rely on the generative ability of the VAE framework to go through the learned
latent space and visualize the impact of each dimension on the reconstruction. It is a pro-
cedure called latent space traversal, broadly used to visually demonstrate the disentangle-
ment power of a proposed model. Some instances of traversals can be found in the next
chapter, Table 3.12 and Table 3.13. But traversals do not scale to large investigations,
especially with speech synthesis, as it is tedious to listen to every single reconstruction
while smoothly traversing each latent direction. In such listening assessments of speech
disentanglement, one is looking for continuous transformations of speech attributes. But
it might be troublesome to acknowledge which attribute is being altered, and put a precise
word on a perceived modification. This echoes with the troubles encountered in percep-
tual assessment of speech, discussed in Section 1.1.2. Listeners are also prone to semantic
satiation [100] when listening over and again to nearly identical synthesis: some latent
dimensions might not exhibit any modification on synthesized speech when traversed,
hence verbal transformation effect [231] i.e. auditory illusions of phonetic distortions due
to mental tiredness, are likely to be experienced and annihilate the relevance of the eval-
uation.

Thence, the evaluation of speech attributes disentanglement has to be performed using
methodical and objective approaches. In this sense, a plethora of metrics have been pro-
posed, each defining and measuring its own properties. While some metrics are consistent
with each other, some contradictions arise. This issue stems from the lack of a consen-
sual definition, as discussed in Subsection 2.1.2. Authors fill in the missing points of the
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informal shared concept of disentanglement with their own interpretations and require-
ments, following their context, leading to disparate metrics and potential inconsistencies.
As pointed out by Carbonneau et al. (2021) [21], metrics mostly do not correlate when
compared for model selection, and do not exhibit the same behaviors in totally simulated
scenarios. Adbi et al. (2019) [1] noticed that metrics were not consistent with manual
traversal assessments. Understanding such discrepancies is of great interest in developing
more reliable metrics, which is part of the concerns of Chapter 4.

Metrics, however, remain the best means to acquire insight when investigating the
alignment of latent dimensions with some generative factors. They are worth of interest
to discern the boundaries of our comprehension of how information is structured within
deep latent representations, and what is expected from them. Following the taxonomy
introduced by Carbonneau et al. (2021) [21], one can distinguish 3 types of supervised
metrics: predictor-based ones described in Subsection 2.4.1, information theory-based in
Subsection 2.4.2, and intervention-based in Subsection 2.4.3. Still, according to Carbon-
neau et al., and as described in Subsection 2.1.2, metrics usually assess one property
among: modularity, completeness and informativeness. However, the common limitation
of those metrics is the mandatory knowledge of the true generative factors to disentangle:
one still needs to know what to disentangle to appraise if a model disentangles well. A
very limited number of unsupervised metrics have been proposed, which are described in
Subsection 2.4.4. In the incoming definitions, a set of m latents z = {zi}i∈{1,...,m} and a
set of l factors f = {fj}j∈{1,...,l} are considered.

2.4.1 Predictor-based

An instinctive way to measure the alignment of each latent variable with underlying
factors is to try to predict factor values from the learned latent space, with regressors for
continuous factors or classifiers for discrete ones. Hence, completeness is achieved if each
factor can be predicted from a single latent (or a closed subset of latents following the
definition of completeness, as discussed in Section 2.1). In the other way round, a high
modularity is reached if each latent is relevant to predict only one factor. Finally, the
informativeness naturally arises from the factor prediction accuracy.

Composed of 3 metrics, DCI [55] stands for Disentanglement, Completeness and In-
formativeness. On a first stage, an m × l importance matrix R is built, with Rij being
the relative weight assigned to latent zi in the prediction of factor fj. To compute the
disentanglement score, a.k.a., modularity, one has to follow the following process. For
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each latent zi, let Pi be the probability distribution of latent zi being important in the
prediction of each factor. Then, let Pij be the probability of latent zi being important in
the prediction of factor fj:

Pij = Rij∑l
k=1 Rik

(2.28)

Let Hl(Pi) the entropy of distribution Pi, with base l logarithm (denoted as logl) for
normalization purpose, to ensure that Hl(Pi) = 1 if Pi is uniformly distributed:

Hl(Pi) = −
l∑

j=1
Pij logl Pij (2.29)

The disentanglement score of each latent zi has the following definition, which ranges
between 0 and 1, the higher the better:

Di = 1 − Hl(Pi) (2.30)

To each latent i is assigned a weight ρi, defined as the latent’s total importance against
the total importance conveyed in R, to discard uninformative latents:

ρi =
∑l

j=1 Rij∑m,l
k=1,j=1 Rkj

(2.31)

The overall disentanglement D is the weighted average of latents disentanglement:

D =
m∑

i=1
ρiDi (2.32)

Completeness is computed using the importance matrix in the other way round,
throughout the following steps. For each factor fj, let Qj the probability distribution
of factor fj being explained by each latent. Then, let Qij the probability of factor fj being
explained by latent zi:

Qij = Rij∑m
k=1 Rkj

(2.33)

Let Hm(Qj) the entropy of distribution Qj, with base m logarithm:

Hm(Qj) = −
m∑

i=1
Qij logm Qij (2.34)
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The completeness score of each factor fj is defined as:

Cj = 1 − Hm(Qj) (2.35)

Overall completeness score C is the average of factors completeness:

C = 1
l

l∑
j=1

Cj (2.36)

Finally, informativeness of each factor Ij is deduced from the prediction accuracy of each
predictor. It is advised by Carbonneau et al. (2021) [21] to use a random forest model
as the factor regressor or classifier from latents. The overall informativeness is the mean
informativeness over factors.

The Separated Attribute Predictability (SAP) score [130] similarly to DCI builds an
importance matrix R, where Rij is the R2 score of a linear regression or the classification
accuracy of the prediction of factor fj from latent zi. Then, for each factor, the difference
between the top 2 values is retained and averaged to get the overall SAP score. This
metric, therefore, gauges the completeness of a latent space.

Furthermore, Expliciteness [188] measures the informativeness of a representation
space, and is defined as the mean Area Under the Curve (AUC) of Receiver Operat-
ing Characteristic (ROC) curves, obtained from logistic regressions performed on each
factor class (one-versus-rest).

Considering the prediction accuracy of factors from latents seems to be a logical ap-
proach. But one has to be aware that those procedures might be highly dependent on
hyperparameters, and subject to (regressor or classifier) predictor-related biases. Such
methods, therefore, have to be carefully manipulated when used as metrics for disentan-
gling model selection.

2.4.2 Information theory-based

Another way to measure the dimension/factor alignment is to rely on information
theory-based quantities, as mutual information, to estimate the amount of information
conveyed by each latent direction.

The Mutual Information Gap (MIG) [26] is a measure of completeness, and also relies
on an importance matrix R, in which Rij is the mutual information between latent zi

and factor fj. It is then built on the same concept as SAP score [130], by considering the
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differences between the two greatest mutual information quantities, for each factor. Gaps
are normalized by the respective factor entropy, and averaged to get the global MIG score:

MIG = 1
l

l∑
j=1

I(fj; za) − I(fj; zb)
H(fj)

(2.37)

with za and zb being the most and second most informative latents for each factor fj.

Modularity score as introduced by Ridgeway et al. (2018) [188] relies on the same
mutual information-based importance matrix as MIG, but is a measure of modularity,
by computing for each latent zi the normalized MSE between the greatest importance,
obtained from factor k, and the remaining mutual information values:

δi = 1
R2

ik

MSE(Rik, Rij,j ̸=k) (2.38)

The modularity of zi is then 1−δi, and the overall modularity is the averaged value across
latents.

UniBound [221] is a more advanced information theory-based metric, in that it em-
ploys Partial Information Decomposition (PID) [234] to propose a metric similar to MIG
but with a finer insight. PID provides a principled framework to decompose the informa-
tion pertaining to more than 2 variables, into comprehensible and interpretable partial
information pieces. More precisely, the amount of information conveyed by a set of source
variables s about a target variable t can be decomposed into unique, redundant and
synergistic pieces of information. Figure 2.12 illustrates how those partial informations
partition the total mutual information between 2 sources s1 and s2 and a target t. The
two circles represent the individual mutual information I(t; s1) and I(t; s2), and the over-
all ellipse embodies the overall information conveyed by both sources about the target,
I(t; s1, s2). The information shared by sources, i.e., redundantly conveyed by both sources,
is the quantity R(t; s1 : s2) illustrated by the overlap of the circles. For each source, there
is a remaining amount of information, not overlapping with each respective counterpart,
i.e., the unique information of each source. Those quantities are noted U1 = U(t; s1) and
U2 = U(t; s2). Finally, the information provided by the combination of the sources i.e.
only accessible by observing both variables, is the synergistic information S(t; s1 : s2).

With this insight in mind, it becomes clear that MIG is overestimating the amount of
information disentangled by the most informative latent. All in all, the intent of MIG is to
obtain the information uniquely carried by the most informative latent. But MIG is only
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U1 U2R

S

I(t; s)

I(t; s1) I(t; s2)

Figure 2.12 – PID illustration

discounting the information coming from the second most important latent. Therefrom,
some redundant information overlapping with other latents and information uniquely
captured by other latents are not discounted by the gap. To address this issue, Tokui and
Sato [221] propose to consider the gap between the most important latent and all other
latents:

UniBound = 1
l

l∑
j=1

maxi[I(fj; zi) − I(fj; z\i)]
H(fj)

(2.39)

Information theory-based metrics have the advantage of not directly relying on hy-
perparameters to be computed, though they are dependent on the quantization scheme
applied to enable discrete mutual information usage. The choice of mutual information
estimation might also influence the resulting measure.

2.4.3 Intervention-based

By fixing one factor and randomly drawing others, intervention-based metrics assess
whether a dimension of the encoded latent space remains stable throughout samples.
In other words, such a metric ensures that while fixing a factor, a latent variable stays
invariant with respect to interventions on factors.

Zdiff [84], a.k.a., β-VAE score, constitutes a batch of pairs of latent representations,
each pair being encoded from data samples sharing a common generative factor, while
others are drawn randomly. This is used to build a classification problem, where the
mean of the absolute difference of the generated pairs forms one input value, while the
associated fixed factor is the label. A set of such batches is created, to train a simple
linear classifier to predict which factor was fixed to generate each batch based on mean
absolute differences. This metric hence grants a good score when, for each factor, at least
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one latent direction remains consistent to factor’s fluctuations, and robust to variations
of other factors. Zdiff hence measures the modularity of a latent space. However, failure
modes have been identified with this metric [109, 204], reconsidering its relevance.

Zmin-var [109], a.k.a., FactorVAE score slightly modifies the Zdiff procedure, in an at-
tempt to address its drawbacks. Given a fixed factor, a batch of latent representations
is generated, normalized by the latent empirical standard deviation across the dataset.
Then, the dimension with smaller variance within the batch is retained, and forms a train-
ing point with the fixed factor as label to be predicted by a majority-vote classifier. Dead
latent dimensions are pruned when computing the empirical standard deviation across
the dataset, in order to ignore them when selecting the dimension with smaller variance.

Finally, Interventional Robustness Score (IRS) [213] specifies a causal framework to
define the modularity of latent components. Therefore, the proposed metric relies on the
causal effects of nuisance factors’ perturbations on individual latent dimensions, knowing
that a drawn relevant factor is kept fixed. More formally, let zk a latent component, fi a
realization of factor fi and fJ a realization of the remaining factors fJ (J = {1, . . . , l}\{i}).
IRS is based on the Post Interventional Disagreement (PIDA), being the expected absolute
distance from zk under realization fi when experiencing a perturbation fJ :

PIDA(k|fi, fJ) =
∣∣∣∣ E[

zk|do(fi)
]

− E
[
zk|do(fi, fJ)

] ∣∣∣∣, (2.40)

the do operator being described in Subsection 2.1.2. The perturbation maximizing this
distance is considered:

MPIDA(k|fi, J) = sup
fJ

PIDA(k|fi, fJ), (2.41)

and weighted by each fi realizations:

EMPIDA(k|i, J) = Efi
[MPIDA(k|fi, J)]. (2.42)

The IRS is then the normalization by the maximal deviation from expected zk under any
variations of factors f , with a slight modification to get a score ranging between 0 and 1,
the higher the better:

IRS(k|i, J) = 1 − EMPIDA(k|i, J)
EMPIDA(k|∅, {1, . . . , l}) . (2.43)
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Then, the factor fi minimizing the normalized expected maximum perturbation on zk

under all other factors f{1,...,l}\{i} variations is kept to get the modularity Dk of zk:

Dk = max
i∈{1,...,l}

IRS({k}|{i}, {1, . . . , l}\{i}). (2.44)

While having the advantage of not making prior assumptions on the relationships
between latents and factors, intervention-based metric behaviors are strongly grounded in
the sampling schemes, i.e., the number and size of batches, to estimate expected distances
and variances.

2.4.4 Unsupervised metrics

The numerous proposed approaches testify the lack of a formal and consensual def-
inition of disentanglement. They are bounded by the knowledge of the true generative
factors, which is a significant obstacle towards the experimentation of disentanglement
models in real and complex scenarios. Few attempts have yielded unsupervised metrics
for disentanglement assessment, and they are mainly developed in and for image process-
ing contexts.

Unsupervised Disentanglement Ranking (UDR) [51] is based on Rolínek et al.’s (2019) [189]
founding that if a given model converges until disentanglement, it will always do so
through similar latent spaces, up to signed permutations. Based on this principle, UDR
performs pair-wise comparisons over a large set of trained latent spaces, and assigns a
high disentanglement for models that find many other models with a similar latent space.

Variation Predictability (VP) [249] metric proposes to compare pairs of decoded data,
generated from latent representations with only one differing dimension. A classifier is
trained to predict the differing latent direction, based on the difference between each
pair. The accuracy of the predictor is considered as the disentanglement score. Hence, if
variations of each latent component are easily recognizable, the latent space is assumed
to be disentangled.

Pertaining to computer vision concerns, Traversal Perceptual Length (TPL) [250]
leverages a VGG16 [206] model to compute the accumulated perceptual distance between
generated images while traversing a model. It is hence assumed that when traversed,
disentangled representations should lead to smooth variations on generated images, i.e.,
small perceptual differences. This metric has the advantage of not relying on a swarm
of models to train, but is more suited for image evaluation. Likewise, Perceptual Path
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Length (PPL) [174] also employs deep visual representations from computer vision neural
networks to estimate the perceptual similarity between generated images. Nevertheless,
both metrics are believed to be more related to the smoothness of the latent space than
its disentanglement.

While UDR relies on a bunch of trained models, other metrics assume that percep-
tual distances can be estimated by way of output differences or deep features. The latter
perceptual-based metrics are promising research directions for future unsupervised disen-
tanglement metrics, however, no analogous evaluation scheme has yet been proposed for
speech disentanglement assessment.

2.5 Opening the pod bay doors

Ultimately, extensive research on disentanglement learning and assessment has led
to a wealth of insights, with a diverse range of principles and approaches depending on
the desiderata. With the expansion of unsupervised learning of general-purpose speech
representations [9, 94, 27], it becomes clear that artificial intelligence is reaching a strong
capacity to extract meaningful knowledge from utterances. Disentanglement strives to
go one step further, by supplying explicit and interpretable representations, and is a
promising paradigm towards the understanding of the very intricate speech attributes.

The properties advocated by Bengio et al. (2013) [13] of latent representations, namely
smoothness, distributness, and disentanglement, have been argued in Section 2.2 to be
achievable by disentanglement learning through VAEs. Although the fine-grained dis-
entanglement of speech characteristics is still limited, some studies exhibit encouraging
results, especially for controllable synthesis [92, 93, 11]. Nevertheless, finding the appro-
priate inductive biases and conditioning schemes with available knowledge to acquire full
control over speech synthesis is a challenging problem that is the topic of many ongoing
academic and industrial investigations.

As described in Section 2.4, quantifying the disentanglement of a model is all but
trivial. Additional complexities pertaining to speech attributes and quality assessment
make the evaluation of speech disentanglement an open problem, i.e., traversing latent
dimensions requires the listening of every generated utterance, leading to a tedious manual
evaluation, prone to semantic satiation and auditory illusions. Hence, there is currently
no reliable and scalable appraisal scheme for speech disentanglement.

In short, learning to disentangle is a difficult undertaking per se, and the challenge of
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adapting these methods to the particularities of speech is all the greater. Hence, a gap
is still to be bridged between disentanglement learning and speech processing, and this
manuscript is only gently opening the pod bay doors of the great odyssey towards latent
spaces aligned with speech intricacies. Upcoming parts, Chapter 3 and Chapter 4, will
depict the contributions made to this enterprise provided within the scope of the present
thesis.
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Chapter 3

TOWARDS SPEECH ATTRIBUTES

DISENTANGLEMENT

Along Chapter 1 were detailed the various variations pertaining to speech, broadly
in terms of linguistic, paralinguistic, and extralinguistic facets according to Section 1.1.
Neural methods leveraged to address those aspects are depicted in Section 1.2, but their
ability to efficiently and independently control each attribute is still limited. Hence, Chap-
ter 2 introduced promising hints to disentangle individual characteristics and control them
in synthesis.

Procedures to learn an abstract representation space able to align salient factors of
variations with distinct dimensions have gained a lot of interest over the past years. Disen-
tanglement learning is now a full-fledged research area, aiming to automatically distinguish
and separate independent properties of observed data. It discards irrelevant information
for underlying tasks, and overall provides interpretable representations, leverageable in
generative models for controlled data synthesis.

Learning disentangled representations, however, remains a challenge. No formal defi-
nition is yet accepted, leading to the lack of a well-defined metric, and the knowledge of
ground-truth factors to disentangle is still necessary, limiting studies to synthetic datasets.
In order to unveil the involved complications, Section 3.1 describes preliminary experi-
ments conducted on synthetic image corpora.

Together with the temporal intricacies of speech perceptual properties, learning disen-
tangled speech representations is even more challenging. To investigate solutions towards
this purpose, one may benefit from a well-defined frame for speech, such as synthetic
image corpora. To this end, diSpeech is introduced in Section 3.2, with the results of
experiments conducted using it.

Despite the growing number of materials focused on disentanglement principles, ap-
plications to realistic data struggle to recover the same results as on synthetic data.
Authentic utterances inherently convey more variabilities, which are still hard to formally
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Model Hyperparameter nb latents
VAE {8, 16, 32}

β-VAE β {2, 4, 8, 16, 32, 64, 128}

{8, 16}
β-TCVAE β {2, 4, 8, 16, 32, 64, 128}
FactorVAE γ {2, 4, 8, 16, 32, 64, 128}

CCI-VAE γ {2, 8, 32, 128}
κ {5, 10, 25, 50, 100}

Table 3.1 – Models hyperparameter settings

define and hierarchize (Section 1.1). In addition, if such an aspect could be precisely
defined, it cannot be completely covered based solely on observations, making its disen-
tanglement further complex. In an attempt towards disentanglement of real speech data,
Section 3.3 reports the results and the behaviors observed from more advanced speech
disentanglement models trained on real utterances.

3.1 Synthetic image datasets disentanglement

The most convenient medium to investigate the disentanglement abilities of a gener-
ative model is images. As described in Section 2.3, synthetic image datasets are typically
used to assess an algorithm’s efficiency, as one can literally observe the captured informa-
tion by traversing each representation dimension and examining the generated variations.
Such corpora are suited playgrounds to prospect the behavior of disentanglement models
and metrics.

Hence, Subsection 3.1.1 details the experimental setup, methodology and expectations,
whereas Subsection 3.1.2 presents the results and Subsection 3.1.3 draws the conclusions.

3.1.1 Setup and expectations

For those preliminary experiments, synthetic image corpora described in Section 2.3
are leveraged, namely dSprites [157], Cars3D [184] and SmallNORB [137]. The very
first experiments are conducted with the basic VAE framework, as described in Subsec-
tion 2.2.1. Using synthetic corpora and the materials provided by disentanglement_lib [149],
several numbers of latent dimensions (nb latents ∈ {8, 16, 32}) are tested to appraise the
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Parameter Value

Training Batch size 256
Training steps 300000

Adam optimizer

β1 0.9
β2 0.999
ϵ 1e-08
α 1e-04

Table 3.2 – Training parameters

effect on disentanglement metrics: DCI [55], MIG [26], IRS [213], Zdiff [84] and Zmin-var [109].
The degree of accordance between metrics can also be assessed in this preliminary set of
experiments. In addition, some traversals are inferred to visualize the actual information
captured by each latent direction, and testify the coherence with metrics.

To go further towards the disentanglement of the synthetic corpora, some of the more
advanced models described in Subsection 2.2.3 are tested, with multiple settings of hy-
perparameters and number of latent dimensions. The trained models are β-VAE [84],
β-TCVAE [26], FactorVAE [109] and CCI-VAE [20], with the hyperparameters presented
in Table 3.1. The hyperparameters β and γ regulate the information bottleneck pressure.
Values among {2, 4, 8, 16, 32, 64, 128} are tested, to assess the effect of the bottleneck on
the latent space structure. For CCI-VAE, κ controls the information capacity, explicitly
let to the latent space (see Subsection 2.2.3 and equation (2.22)). Multiple values of κ,
within {5, 10, 25, 50, 100} are tested, also to explore the effect on the learned represen-
tations. In addition, two sizes of latent space, 8 and 16 components are used. Following
disentanglement_lib, models are implemented with a convolutional encoder and de-
coder. Hence, only the optimization scheme, i.e., the ELBO, differentiates the various
models. All models follow the same training scheme and an Adam optimizer [116] setting,
as displayed in Table 3.2.

While the basic VAE model is likely to reach a good reconstruction loss, better disen-
tanglement abilities are expected from its deviations: β-VAE, β-TCVAE, FactorVAE, and
CCI-VAE, especially for salient factors of variation. This assumption is assessed through
disentanglement metrics and some traversals. One can expect to determine the best-
performing model and setting thanks to those disentanglement metrics. Consistency be-
tween metrics and with observed traversals is also to be verified, as metrics reliability is
discussed by Carbonneau et al. (2021) [21] and debated by Locatello et al. (2019) [149].
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3.1. Synthetic image datasets disentanglement

nb latents dSprites Cars3D

8

16

32

SmallNORB

8

16

32

Table 3.3 – Reconstructions of VAE with 8, 16 and 32 latent dimensions on dSprites,
Cars3D and SmallNORB. Real image samples are displayed below their respective

corpus name, and the corresponding reconstructions are listed below.

3.1.2 Results

Reconstructions of VAEs trained on dSprites, Cars3D, and SmallNORB can be found
in Table 3.3. Pictures right below corpus names are original samples drawn from the
corpora, and the images listed below are the corresponding reconstructions, each line
representing a model with different number of latent dimensions (nb latents). For the
models trained on dSprites and Cars3D, reconstructions are fairly good, regardless of the
number of latent. Reconstructions are, however, fuzzier for SmallNORB, which can be
explained by its greater complexity. Nevertheless, the lighting, rotation, and global shape
of the objects are still recognizable. Overall, all models have converged towards states
where their latent spaces are fairly informative about the data.

In order to acquire a deeper understanding of the information conveyed by the learned
latent spaces, traversals are displayed in Table 3.4, from models trained with 8 latent
components. Each line is a distinct latent direction, being traversed between -2 and 2,
with 6 steps. When a dimension is traversed, other ones are set to 0. Traversals clearly
uncover different behaviors among corpora. Factors of dSprites do not seem to be prop-
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erly disentangled, i.e., variations along individual dimensions are irregular and somewhat
random. The good reconstruction over dSprites does not translate into an insightful latent
space. Concerning Cars3D, factors seem to be smoothly varying along some axis, but still
in an entangled way. With SmallNORB, the dimension 0 clearly and smoothly controls
the lighting. Despite the fuzzy reconstruction quality, dimension 2 seems to capture the
object category. Other dimensions appear to capture some variations, but reconstructions
are too noisy to come to further conclusions. Hence, despite the absence of any mechanism
to enforce disentanglement, VAE exhibits some disentanglement behaviors, yet they are
limited.

To settle VAE’s disentanglement capability, metrics resulting from the same VAE mod-
els are presented in Table 3.5. The first point arising from the bar plots is the discrepancy
between metrics. Zdiff always forecasts a very optimistic disentanglement, while MIG is
noticeably pessimistic. It also appears that the number of latent dimensions does not
have a significant influence on the disentanglement scores. Overall, it remains difficult to
conclude on the disentanglement ability of the raw VAE models through metrics.

Lets now examine the disentanglement of other models, designed to favor disentangled
representations. As depicted in Subsection 3.1.1, 4 models are tested: β-VAE, β-TCVAE,
FactorVAE, and CCI-VAE; and a set of hyperparameters are tested for each of them,
leading to a substantial amount of models to investigate. To get a clearer picture, Table 3.6,
Table 3.7 and Table 3.8 show the disentanglement metrics and the reconstruction loss over
dSprites, Cars3D, and SmallNORB, respectively. Models trained with 8 latent dimensions
are depicted in the left column, and those with 16 dimensions in the right one. Then,
each line is a different model, and in each figure, metrics are plotted against information
bottleneck hyperparameters, β or γ, following the model. CCI-VAE has additional lines
and figures, as it comprises a second hyperparameter κ, the information capacity. The
black dashed line is the reconstruction loss, which represents the mean distance between
original inputs and reconstructions, reached at the end of the training.

The disentanglement of dSprites, measured in Table 3.6, remains hard to assess through
metrics, as in Table 3.5 i.e. some metrics reach high scores while others are quite low, in
almost all situations. However, common variation patterns can be discerned for some hy-
perparameter settings. For instance, β-VAE seems to reach better scores with 8 latents
and β = 32, or FactorVAE with 8 latents and γ = 32. However, reconstruction error
highly increases when the information bottleneck pressure controlled by β or γ are too
important, which reveals the trade-off between information bottleneck and reconstruction
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Latent Traversal frames
-2 dSprites 2 -2 Cars3D 2

0

1

2

3

4

5

6

7

-2 SmallNORB 2

0

1

2

3

4

5

6

7

Table 3.4 – Traversals of VAE with 8 latent dimensions
trained on dSprites, Cars3D and SmallNORB

capacity.
Regarding disentanglement metrics on Cars3D, in Table 3.7, intervention-based ones

clearly appear to be very optimistic compared to others, more reserved. Zdiff and Zmin-var

reach high scores, while IRS stands around 0.5, and others rarely rise above 0.4. In DCI,
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VAE Metrics
Corpus nb latents = 8 nb latents = 16 nb latents = 32

dSprites

I D C MIGIRS Zdiff
Zmin-var
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0.4
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metric

sc
or

e

I D C MIGIRS Zdiff
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metric
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e

I D C MIGIRS Zdiff
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e

Cars3D
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e

I D C MIGIRS Zdiff
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SmallNORB

I D C MIGIRS Zdiff
Zmin-var

0

0.2

0.4

0.6

0.8

1

metric

sc
or

e

I D C MIGIRS Zdiff
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I D C MIGIRS Zdiff
Zmin-var

0
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1

metric
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e

Table 3.5 – Metrics of VAE trained on dSprites, Cars3D and SmallNORB

Informativeness (I) reaches high scores, but actually measures a global quantity of infor-
mation, and not some degree of disentanglement (see Subsection 2.4.1 for more details
about DCI). As with dSprites, it is hard to decide which model performs the best disen-
tanglement, but some peaks can be identified when varying the information bottleneck
pressure, with β or γ. As with dSprites, too high values of β or γ degrade the reconstruc-
tion ability of the models.

With SmallNORB, in Table 3.8, Disentanglement and Completeness from DCI, and
MIG scores express poor disentanglement performances. Here again, no model distinctly
stands out from the crowd regarding disentanglement metrics. It is also worth noting that
the reconstruction error is constantly high. Basic VAE was already struggling to properly
reconstruct images from SmallNORB, hence, it is not surprising that enforcing further
disentanglement can only worsen the reconstruction error.

In general, higher disentanglement scores are reached on dSprites and Cars3D. But it
remains hard to determine the best-performing model regarding the metrics. Good scores
are reached in some settings, but often at the cost of a very degraded reconstruction
accuracy.
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dSprites Metrics vs β or γ

Model nb latents = 8 nb latents = 16
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Legend ■ I ■ D ■ C ■ MIG
■ IRS ■ Zdiff ■ Zmin-var ■ Reconstruction loss
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dSprites Metrics vs β or γ

Model nb latents = 8 nb latents = 16
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Table 3.6 – Metrics of β-VAE, β-TCVAE, FactorVAE and CCI-VAE on dSprites
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Cars3D Metrics vs β or γ

Model nb latents = 8 nb latents = 16
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Cars3D Metrics vs β or γ

Model nb latents = 8 nb latents = 16
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Table 3.7 – Metrics of β-VAE, β-TCVAE, FactorVAE and CCI-VAE on Cars3D
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SmallNORB Metrics vs β or γ
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Table 3.8 – Metrics of β-VAE, β-TCVAE, FactorVAE and CCI-VAE on SmallNORB
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At this point, it is interesting to investigate some reconstructions of the learned mod-
els, especially to ensure the effect of the information bottleneck pressure controlled by
β or γ, and the information capacity controlled by κ in CCI-VAE, as described in Sub-
section 2.2.3. To illustrate those effects, such reconstructions on Cars3D are displayed in
Table 3.9, with increasing β in β-VAE and increasing κ in CCI-VAE with fixed γ = 128,
both with 8 latent dimensions. As expected, increasing β in β-VAE reduces the recon-
struction quality. Around β = 32, the bottleneck pressure becomes too important, and
progressively prevents the car color information from being transmitted, and the gener-
ated images become noisy. One can also observe that increasing κ in CCI-VAE improves
the reconstruction quality, which is consistent with the idea that κ explicitly represents
the amount of information authorized to be conveyed by the latent space.

Overall, higher scores than raw VAE are reached on dSprites and Cars3D with the
considered variants, which confirms the intuitions of disentanglement enforcement devel-
oped in Subsection 2.2.3. No real improvements are found on SmallNORB, which might
reveal inappropriate model architecture or tested hyperparameter values. To confirm the
improvement of disentanglement announced by the metrics, Table 3.10 shows for each
corpus traversals of β-TCVAE with β = 8 and 8 latents, empirically selected regarding its
fair reconstruction/disentanglement trade-off in Table 3.6, Table 3.7 and Table 3.8, to be
compared from Table 3.4. First of all, dSprites seems well disentangled: latent 0 controls
the scale of the sprite, 2 and 4 the vertical and horizontal positions, respectively. The type
of shape and the orientations seem to be conveyed by latents 3, 5, and 6, but they are
more fuzzy to distinguish. Subsequently, Cars3D is harder to analyze, but it is clear that
some factors are conveyed along dimensions, even not figuring among Cars3D’s ground
truth generative factors (illustrated in Figure 2.10). The azimuth is captured by latent 0,
while elevation seems to be controlled by latent 1, which also conveys the car orientation
(left or right). The color appears to be separated from the concept of car type in latent
7, while also being captured by latents 3 and 5, which also control the car type factor.
Other less obvious factors seem to be varying along remaining latents, as the car round-
ness in latent 2, and the windows darkness in latent 6. This is an interesting behavior
that demonstrates the limitation of supervised disentanglement metrics, which may not
reflect such factors being captured, not standing among pre-defined generative factors,
yet is relevant and insightful. Finally, visualizations are less convincing for SmallNORB.
Generated images are noisy, but one can recognize the lighting changing along latent 0. It
is quite fuzzy, but the object shape, azimuth, and orientation factors seem to be somehow
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β β-VAE κ CCI-VAE

2 5

4 10

8 25

16 50

32 100

64

128

Table 3.9 – Reconstructions on Cars3D of β-VAE , both with 8 latent dimensions. Real
image samples are displayed below model names, and the corresponding reconstructions

are listed below.

entangled in latents 3, 6 and 7. More generally, smooth variations along latent dimensions
can be observed, in some cases disentangling gound-truth generative factors, entangling
some of them, or even capturing other relevant variations.

3.1.3 Conclusions

Thanks to the described experiments, one can appraise the disentanglement capac-
ity of VAE-based models, the influence of models’ hyperparameters, and the behavior of
disentanglement metrics. Experiments also pointed out the difficulty to draw clear con-
clusions: which model to choose? in which hyperparameter settings? how to deal with the
reconstruction/disentanglement trade-off? how to efficiently ensure that relevant factors
are captured, even unsupervised ones? Visualization and traversals are of good help, but
one definitely cannot rely on such manual assessments when handling multiple models
and complex data, such as speech.

Furthermore, results displayed in Table 3.6, Table 3.7 and Table 3.8 demonstrate dis-
agreements between metrics. Some are far more optimistic (Zdiff, Zmin-var) than others
(MIG, Disentanglement, Completeness), and in a few cases, they exhibit inverse varia-
tions. This comforts the discussions of Carbonneau et al. (2021) [21], who also witnessed
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Latent Traversal frames
-2 dSprites 2 -2 Cars3D 2

0

1
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-2 SmallNORB 2

0
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3

4

5

6

7

Table 3.10 – Traversals of β-TCVAE with 8 latent dimensions
trained on dSprites, Cars3D and SmallNORB

contradictory behaviors between metrics.
All in all, disentanglement learning is definitely not an easy task to investigate. Models

are implicitly enforcing disentanglement, simple data with known factors is still required,
and metrics are not trivial to interpret. Thence, to pave the way towards the disentan-
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glement of real speech data, a synthetic speech corpus, analogous to the ones used in this
section, would be a great help. This is rightly the concern of Section 3.2, which introduces
such a synthetic corpus for speech purposes, and some experiments conducted on it.

3.2 diSpeech : a synthetic toy dataset for speech dis-
entangling

In this section is described diSpeech [247], the first synthetic speech dataset intended
for speech disentanglement experiments. Therefore, in diSpeech, “di” stands for “disentan-
glement”. As a first step, this dataset is constrained by synthesizing only vowel waveforms
lasting one second.

The purpose of this corpus is to provide a suitable playground for machine learning
speech disentanglement models, with known and well-distributed acoustic features. As
described in Section 1.1, speech intricacies prevent one to formally define a closed set
of distinct perceptual attributes, e.g., quality, prosody, emotion, identity. Acoustic cues
are more alienated from perception, but are better descriptors of speech. Consequently,
as a first stone to pave the way to the disentanglement of perceptual facets of speech,
the introduced corpus uses acoustic features as generative factors, and is based on open
source implementations, as described in Subsection 3.2.1. Subsection 3.2.2 depicts disen-
tanglement experiments performed on diSpeech, along with visualizations and analysis
results. Towards realistic speech, Subsection 3.2.3 portrays experiments conducted on
TIMIT vowel disentanglement with a model trained on TIMIT and inferred on diSpeech.
Discussions are provided in Subsection 3.2.4, perspectives in Subsection 3.2.5, and the
overall conclusions are presented in Subsection 3.2.6.

3.2.1 Corpus description

The proposed corpus of synthetic vowels diSpeech is composed of five generative fac-
tors: the first three formants F1, F2, F3; the fundamental frequency F0; and F0’s fade
rate, which is merely refer to as fade. Mel-spectrograms illustrating those attributes are
shown in Figure 3.1. The minimum and maximum values used for each factor are displayed
in Table 3.11.

To synthesize vowels, Klatt Synthesizer [119] is utilized, which is a formant-based
synthesizer that provides a complete set of parameters potentially able to generate quite
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(a) F1

(b) F2

(c) F3

(d) F0

(e) Fade

Figure 3.1 – diSpeech factors of variation

F1 F2 F3 F0 fade
min 275 779 2579 50 0
max 830 2585 3815 200 99

Table 3.11 – Range of values for diSpeech generative factors

realistic speech. More precisely, tdklatt is used, an open source Python implementation of
Klatt Synthesizer 1.

For the experiments to follow in this manuscript, 15 equally spaced values are dis-

1. https://github.com/guestdaniel/tdklatt
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cretized for each factor within the ranges defined in Table 3.11. All combinations of
the 15 possible values of the 5 factors are used, hence, the total number of samples is
155 = 759375.

The first three formants are employed to properly cover the vowel space. The min-
imum and maximum values reached by each formant are determined based on [66], as
reported in Table 3.11. Since all the combinations of the 15 equally spaced values for each
formant are used, and not only the reference vowel formant values from Georgeton et al.
(2012) [66], “intermediate” vowels, or “vowel-like” allophones are also generated. For the
sake of conciseness, they are simply referred to as vowels in this manuscript.

The fade factor represents the difference between F0’s initial and final values. It also
provides temporal variations, leading to more “natural-sounding” vowels. More precisely,
the fade factor is a percentage (∈ [0, 99]), defining the proportion of the initial F0 value
the vowel will reach at its end. For instance, F0 can be constant (fade = 0) or linearly
decreasing to 50% of its initial value (fade = 50).

Furthermore, the generative factors to be used and their values are explicitly defined
here for reproducibility matters. But Klatt synthesizer actually supports a large set of
parameters, that can be tuned to generate other vowel variations and, more generally,
phonemes or entire sentences. Hence, in the corpus generation code, publicly available on
GitHub 2, there is no constraint on the parameters to tune, enabling any parameter to
be considered as a generative factor. It means that diSpeech can (and is intended to) be
extended to consonants, words, or sentences and is not limited to vowels.

In order to extract meaningful features from vowel audios, and also to seamlessly run
experiments as in Section 3.1 with disentanglement_lib [149], the synthesized vowels
are processed to obtain inputs homologous to dSprites [157] or Cars3D [184] i.e. 64×64
images. From vowels of 1 second with a sample rate of 16kHz, log mel-spectrograms are
computed with 64 mel filters (between 80Hz and 7600Hz), and a FFT of length 1024 and
hop length 252. Mel-spectrograms highlighting the variations of each factor are displayed
in Figure 3.1, where the value of each factor is increasing from left to right, within their
respective range (Table 3.11). Formant variations are shown in Figure 3.1a, Figure 3.1b
and Figure 3.1c, F0 in Figure 3.1d and fade in Figure 3.1e.

2. https://github.com/Orange-OpenSource/diSpeech
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3.2.2 Synthetic vowels disentanglement

With a new dataset of synthetic vowels in hands, the disentanglement ability of β-
VAE [84] can be experimented, the best value of the hyperparameter β estimated, and
factors successfully disentangled identified. A β-VAE is trained on diSpeech with several
values of β ∈ {1, 2, 3, 5, 10, 20}, and a latent space of 10 dimensions.

The disentanglement of each model can be qualified with visualization assessments.
Table 3.12 on page 114 stores the generated mel-spectrograms through traversals (see Sec-
tion 2.4) of each dimension for each trained model. Overall, models with β ∈ {1, 2, 3, 5, 10}
seem to exhibit latent dimensions capturing factor-related variations. F1 can be noticed
to be moving up over latent 5 for β = 1, latent 8 for β = 2 and 3, latent 0 for β = 10,
and moving down along latent 6 for β = 5. Similar observations in other latent compo-
nents can be made for F2 and F3. Fade is observed with decreasing/increasing energy
at the end of reconstructions over models with β ∈ {1, 2, 3, 5}. Gaps between harmonics
appear/disappear when traversing some latent dimensions in models with β ∈ {1, 2, 3},
hence disentangling F0.

Visualizations through traversals show that a too great value of β leads to a less
informative learned latent space, which can be interpreted as the posterior collapse pitfall.
F0 and fade are the most complex attributes to capture, as they are left out when β reaches
5 and 10, respectively. Otherwise, the generative factors defined in diSpeech seem to be
disentangled, unless the proper values of β are used. But it remains hard to deduce the
optimal value of β that better addresses the disentanglement/posterior collapse trade-off
(see Subsection 2.2.2).

Therefore, in order to objectively assess the best value of β, evaluations are launched
with metrics provided by disentanglement_lib, namely DCI [55], SAP score [130],
Z-diff [84], FactorVAE score [109], IRS [213], MIG [26], and Modularity and Explic-
itness [188]. Those scores, depending on the value of β, are plotted in Figure 3.2. In
particular, the three metrics constituting the DCI (Disentanglement, Completeness and
Informativeness) are emphasized in solid lines, as their relevance has been assessed by the
literature and previous experiments. At first sight, metrics seem not to agree on the dis-
entanglement quality. SAP score and especially MIG badly rate disentanglement, whereas
Expliciteness and Modularity are giving good scores. Nevertheless, the overall variations
of the metrics indicate that for most of them, higher values are reached for β = 2.

With a focus on DCI importance matrix in Figure 3.3, a factor-wise analysis can
be performed to directly visualize the relative importance of each latent to predict each
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Figure 3.2 – β-VAE disentanglement metrics on diSpeech depending on β

factor. The factor-wise analysis can be observed for each value of β ∈ {1, 2, 3, 5, 10, 20},
and one may notice that accordingly to Figure 3.2, values of β greater than 5 lead to
degraded overall disentanglement. As what can be observed in Table 3.12, β-VAE fails to
capture F0 and fade with β greater than 5. Overall, fade and F0 seem always entangled
together.

With a focus on β = 2 in Figure 3.3b, it clearly appears that latents 1, 6, and 7 are
important to predict F3, F2, and F1, respectively, confirming the insights inferred visually
from Table 3.12. Figure 3.3b also shows that F0 and fade are learned but entangled
together in latents 2 and 3, which does not clearly appear in traversals. This is, however,
not surprising, as both factors are strongly correlated. The fade rate is also introducing
temporal variations, hence making it more difficult to model.

This experiment shows that β-VAE successfully achieves disentanglement of formants
on diSpeech. They are correctly learned and aligned each on distinct latent axes, as
indicated by single peaks in Figure 3.3, while F0 and fade are entangled together. Hence,
DCI allows one to objectively identify disentangled/entangled factors and corresponding
disentangling/entangling latents. The disentanglement of synthetic vowels being assessed,
one may wonder if similar behaviors can be observed with real vowels, which is in the
interest of Subsection 3.2.3.

108



3.2. diSpeech : a synthetic toy dataset for speech disentangling

0 1 2 3 4 5 6 7 8 9

Latent index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Im
p

or
ta

nc
e

F1
F2
F3
F0
fade

(a) β = 1
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(b) β = 2
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(c) β = 3
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(d) β = 5
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(e) β = 10
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(f) β = 20

Figure 3.3 – Factor-wise DCI importance matrix analysis of β-VAE trained on diSpeech

3.2.3 Real vowels disentanglement

One main obstacle of real speech disentanglement is the absence of knowledge of
generative factors. It is thus proposed to use diSpeech to compute DCI of models trained
on real vowels. Hence, β-VAE models are trained on TIMIT’s isolated vowels (always
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Figure 3.4 – DCI depending on β for β-VAE trained on diSpeech (solid) and on TIMIT’s
vowels then inferred on diSpeech (dashed)

with 10 latent dimensions), symmetric-padded to reach 1 second, and preprocessed as
in diSpeech to have equivalent inputs. Multiple values of β are tested, focused around 2
(β ∈ {1, 1.5, 2, 2.5, 3}).

Latent space traversals of each model can be found in Table 3.13. While for all models,
some latent dimensions seem to capture relevant information (F0, formants, amplitude),
it is mostly hard to clearly discern which variations are captured. Variations also appear
to be entangled along some dimensions.

Hence, a better insight can be disclosed by taking a learned β-VAE and encoding
diSpeech. One is then able to measure disentanglement learned on TIMIT’s vowels, rel-
ative to diSpeech’s factors. Figure 3.4 shows that β-VAEs trained on diSpeech’s reach
better DCI values than when trained on TIMIT, which is expected: there is no guarantee
that a model trained on TIMIT will be unsupervisedly following diSpeech’s factors, and
observing latent traversals on TIMIT’s models in Table 3.13 confirms that they are not
well disentangled. But the theoretical Disentanglement score for a totally entangled latent
space tends to be 0, as experienced by Carbonneau et al. (2021) [21] in subsection 5.2.
Thus, the non-zero DCI values reached by TIMIT’s models suggest a partial disentangle-
ment, as can be observed in Table 3.13: some latents somehow capture variations from
single formants, while still being a bit entangled with other factors. TIMIT dataset also
includes, by its very nature, far more variations than the five factors defined in diSpeech:
prosody, timbre, emotion, and so on. diSpeech’s factors are hence less salient in TIMIT,
which explains why they display attenuated scores.

As with diSpeech, a more detailed analysis can be made with DCI importance matrix.
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(b) β = 1.5
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(c) β = 2
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(d) β = 2.5
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(e) β = 3

Figure 3.5 – Factor-wise DCI of β-VAE trained on TIMIT

Figure 3.5 shows the resulting factor-wise analysis of the trained β-VAE models. It is
confirmed that overall, disentanglement performances are below what was observed with
diSpeech. Factors are less well captured, especially F0 and fade with values of β > 1, while
factors are still partially disentangled for β ≤ 2. Overall, F2 seems to be the easiest factor
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to disentangle, while other latents tend to be entangled in multiple latent dimensions
when β is increasing.

Even if β-VAE does not disentangle perfectly TIMIT’s vowels, relative to the de-
fined factors, diSpeech is shown to allow the computation of disentanglement scores for
models trained on real speech, which is unprecedented. One may note that all vowel
phonemes of TIMIT’s phonetic transcription were used as extracted samples. Hence,
diphtong phonemes are also included during models’ training, increasing training data
complexity and divergence with respect to evaluation data. Regarding Table 3.13, diph-
tong variations seem however to be successfully captured in latents 2 and 3 with β = 1,
disclosing the limitations of using a corpus with pre-defined factors for disentanglement
studies.

3.2.4 Discussions

As pointed out in experiment descriptions, β-VAE is not able to achieve a truly efficient
disentanglement on TIMIT’s vowels, compared to performances on diSpeech or more
generally on other synthetic image corpora. As mentioned in Subsection 3.1.3, speech
disentanglement has specific obstacles, due to time dependencies and complex relations
between generative factors. Defining a set of perfectly independent factors is already not
trivial. On the other hand, assuming independence may lead to exploitable results, as
does naive Bayes classifier.

As speech attributes are hard to annotate and subjective, unsupervised disentangle-
ment is a promising approach to automatically extracting relevant and interpretable fea-
tures for tasks with few annotations. But there is no guarantee that models will align with
expected factors, or if one does not set expectations, identifying disentanglement factors
is not simple. On top of that, nothing ensures that a latent will learn useful features.
It is also noteworthy that nothing prevents factors from being captured by more than
one latent (e.g., rotation as angle or sin and cos components). Completeness is hence not
an absolute score to blindly follow, but more an indication to carefully interpret. This
emphasizes the importance of also monitoring the modularity (Disentanglement in DCI)
property of a model, i.e., ensuring that only one factor is captured by each latent. All
those elements to be considered reflect the complexity of the analysis of disentanglement
models.

Furthermore, experiments were performed with convolution-based β-VAE, which may
not have the capacity to handle time dependencies and speech-related complexities previ-

112



3.2. diSpeech : a synthetic toy dataset for speech disentangling

Latent Traversal frames

-5 β = 1 5 -5 β = 2 5

0

1

2

3

4

5

6

7

8

9

-5 β = 3 5 -5 β = 5 5

0

1

2

3

4

5

6

7

8

9

113



Part II, Chapter 3 – Towards speech attributes disentanglement
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Table 3.12 – Traversals of β-VAE trained on diSpeech
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Latent Traversal frames
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Table 3.13 – Traversals of β-VAE trained on TIMIT

ously mentioned. Leveraging more advanced models, such as those described in Chapter 2
and autoregressive models, would lead to better results.

3.2.5 Perspectives

Conducted experiments show that generative factors of synthetic vowels can be partly
disentangled with a β-VAE. But it also appears that transfer to evaluate TIMIT real
vowel disentanglement is complicated.

Extending diSpeech towards more realistic content, with other phonemes (e.g., con-
sonants), variable durations, combinations of phonemes, and so on, would hopefully lead
to a more reliable disentanglement evaluation on real data, a wider coverage of speech
factors, and a fairer approximation of speech complexities.

As the disentanglement process is unsupervised, and hence data-driven, the generative
factors can be well disentangled or not, depending on the way they appear in the input
audio features. Choosing MFCC instead of mel-spectrograms may have an influence on
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disentanglement performances. Similarly, the evaluation of the reconstruction error could
be modified to better reflect the similarity between spectrograms (e.g., MCD [120]).

Hierarchical dependencies issues inherent to speech could be addressed by variants of
β-VAE, such as VQ-VAE, AnnealedVAE, NVAE or novel strategies parallelizing “multi-
βs”. Note also that a well-defined latent space, for instance, inspired by Poincaré embed-
dings [160], could be helpful.

3.2.6 Conclusion

In this section, a new corpus of synthetic phonemes called diSpeech has been presented.
It has been designed to study disentanglement of voice attributes. Its first declination relies
on synthetic vowels, parameterized by the fundamental frequency, its fade rate, and the
first three formants. It has been used in disentanglement experiments based on β-VAE
model.

It results in a clear disentanglement of formants, whereas the remaining two factors
stay partly entangled, emphasizing the influence of the nature of a generative factor on
its disentanglement.

diSpeech paves the way towards disentanglement evaluation on real speech, as shown
in experiments on TIMIT’s vowels in Subsection 3.2.3. Forthcoming studies and improve-
ments of the corpus and methodology have finally been proposed.

3.3 Real speech disentanglement

The disentanglement ability of VAE framework and its variations have been demon-
strated on corpora of synthetic images in Section 3.1, and on a corpus of synthetic vowels in
Section 3.2. This section steps further towards real speech disentanglement, by leveraging
a more advanced VAE-based model: FHVAE [92], trained on TIMIT [64] and Bref120 [133]
corpora.

While encouraging results have been found with synthetic images and vowels, it is
uncertain if similar behaviors can be obtained from real speech data. As one has no ac-
cess to true generative factors of variations, one can only rely on available annotations
(e.g., speaker identity, gender, accent) to employ supervised metrics. One can also lever-
age traversals, but repetitive listening tests along each latent dimension are a tedious
task, and are prone to semantic satiation, i.e., mental tiredness, negating the reliability of
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Figure 3.6 – FHVAE architecture

traversal evaluations. Hence, Subsection 3.3.1 describes the leveraged model framework
FHVAE. Subsection 3.3.2 succinctly details the training corpora TIMIT and Bref120, Sub-
section 3.3.3 provides the training setup, and Subsection 3.3.4 the experiments performed
with the supervised metric DCI [55] over available annotations.

3.3.1 Factorized Hierarchical VAE (FHVAE)

Among the few attempts to disentangle speech attributes in an self-supervised fashion,
Factorized Hierarchical VAE (FHVAE) is a promising yet simple framework, as illustrated
in Figure 3.6. The information flow is factorized into 2 latent spaces, z1 and z2, in a
hierarchical manner, as z2 models utterance level variations, and the prediction of z1 is
conditioned on z2 to let z1 ignore global features and capture finer-grained information.

In the FHVAE framework, utterances are considered as sequences of 200ms seg-
ments. Let a dataset X of d utterances X, i.e., X = {X(i)}i∈{1,...,d}, each utterance being
split into segments x, i.e., X(i) = {x(i,j)}j∈{1,...,Ni}, Ni being the total number of seg-
ments in sequence X(i). In other words, let x(i,j) the j-th segment among Ni of sequence
X(i), the latter being the i-th utterance among the d of dataset X. The set of training
data is composed of shuffling segments x, regardless of the originated sequence. Segments
are preprocessed to n-dimensional mel-spectrograms. The model is hence optimized with
batches of segments, which provides a very scalable framework for substantial datasets
and long utterances. As in VAE formulation, segments x are supposed to follow a dis-
tribution pθ(x), and it is assumed that their generative process involves m-dimensional
latent variables z1 and z2, such that the likelihood pθ(x|z1, z2) is a multivariate Gaussian
distribution (3.1), with mean µx and covariance diagonal σ2

x conditioned on latent vari-
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ables z1 and z2 i.e. predicted from learned decoder neural networks fµx and fσ2
x . Latent

z1 is assumed to model segmental variations, and follows a centered Gaussian distribution
(3.2), parameterized by a covariance diagonal σ2

z1 , being a hyperparameter. Concerning
z2, it is also assumed to follow a Gaussian prior distribution pθ(z2|µ2) (3.3), parameterized
by a hyperparameter σ2

z2 and conditioned on µ2, which itself follows a centered Gaussian
prior (3.4) parameterized by σ2

µ2
. µ2 is intended to be conditioned on a sequence index

i, which identifies the sequence X(i) pertaining to the considered segment x, as it will be
explained further. In the forthcoming experiments, covariance diagonal hyperparameters
are defined as σ2

z1 = 1, σ2
z2 = 0.25 and σ2

µ2
= 1, similarly to Hsu et al.’s [92] experiments.

pθ(x|z1, z2) = N (x; fµx(z1, z2), fσ2
x(z1, z2) ∗ Im) (3.1)

pθ(z1) = N (z1; 0, σ2
z1 ∗ Im) (3.2)

pθ(z2|µ2) = N (z2; µ2, σ2
z2 ∗ Im) (3.3)

pθ(µ2) = N (µ2; 0, σ2
µ2

∗ Im) (3.4)

Following variational inference methodology (see Subsection 2.2.1), true posterior dis-
tributions are approximated with parameterized multivariate Gaussian distributions. z1 is
conditioned on input segment x and latent variable z2 (3.5). This dependence between z1

and z2 induces a hierarchical structure of the latent spaces, intended to model the multi-
scale nature of speech attributes, i.e., explicitly separate utterance level and frame level
variations. Posterior parameters µz1 and σ2

z1 are predicted from encoder neural networks
gµz1

and gσ2
z1

. The second latent z2 is similarly approximated by a Gaussian distribution
(3.6), which is parameterized by encoder neural networks gµz2

and gσ2
z2

trained to predict
mean µz2 and variance σ2

z2 given an input segment x. µ2’s surrogate posterior distribution
is a Gaussian distribution (3.7), parameterized by a fixed covariance diagonal σ2

µ̃2
and a

learned deterministic function gµµ2
which maps each utterance index i to a mean vector

µ̃2.

qϕ(z1|x, z2) = N (z1; gµz1
(x, z2), gσ2

z1
(x, z2) ∗ Im) (3.5)

qϕ(z2|x) = N (z2; gµz2
(x), gσ2

z2
(x) ∗ Im) (3.6)

qϕ(µ2|i) = N (µ2; gµµ2
(i), σ2

µ̃2
∗ Im) (3.7)

A crucial point is the role of µ2, that is, to introduce the knowledge of which utterance
X(i) the segment x is coming from. Hence, z2 is encouraged to learn utterance-related
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variations. Furthermore, Hsu et al.’s implementation directly considers the posterior mean
µ̃2 as the prior mean µ2 without sampling from the posterior qϕ(µ2|i), i.e., µ

(i)
2 = gµµ2

(i) =
µ̃

(i)
2 , which is equivalent to setting a null covariance σ2

µ̃2
= 0. The posterior approximation

qϕ(µ2|i) becomes a shifted Dirac-delta function δ(µ2 − µ̃2). In other words, qϕ(µ2|i) is a
trainable lookup table of prior means µ̃2, one for each sequence.

All in all, encoder functions gµz1
, gσ2

z1
, gµz2

and gσ2
z2

; and decoder functions fµx and
fσ2

x ; are LSTM-based neural networks, as specified in Figure 3.6. The utterance index i

can be seen as a kind of unsupervised label, but one may design a very similar system
where the lookup table gµµ2

is indexed following a given annotation (e.g., speaker identity,
gender), leading to a latent z2 conditioned on a supervised label, hence trained to capture
its variations. The ELBO to maximize deriving from this architecture has the following
form [92]:

LFHVAE(θ, ϕ; x, i) = Eqϕ(z1,z2|x)

[
log pθ(x|z1, z2)

]
− Eqϕ(z2|x)

[
DKL(qϕ(z1|x, z2)∥pθ(z1)

]
− DKL(qϕ(z2|x)∥pθ(z2|µ(i)

2 ))

+ 1
Ni

log pθ(µ(i)
2 ). (3.8)

With this framework, Hsu et al. successfully performed speaker verification, voice
conversion and denoising by manipulating the sequence level latent z2, and observed
smooth transformations when traversing dimensions of z1 (formants, phonetic cues) and
z2 (pitch, formant ranges). FHVAE thus exhibits the potential to disentangle real speech
factors, especially in z2 for utterance level annotations, which is the hypothesis stressed
in Subsection 3.3.4 with the training data described in Subsection 3.3.2.

3.3.2 Training data

Experiments with FHVAE have been conducted on Bref120 [133] and TIMIT [64]
datasets. Bref120 is a 236-hour corpus of French reading speech with over 120 speakers
(55 males and 65 females), with around 50 to 60 sentences per speaker. Two recording
channels are available, with one clearly noisier than the other. TIMIT is a very widely
used speech dataset consisting of 630 speakers of American English, which includes both
read and spontaneous speech.
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Corpus Labels Classes
Bref120 channel clean, noisy

speaker identity 120
gender male, female
height [1.50, 1.92]
weight [38, 90]

education junior high school, trade school,
high school degree, 2 year university,
4 year university or more, unknown

smoker yes, no
age [17, 68]

native language German-Russian, Arabic,
Spanish, French,

Luxembourger, Portuguese
TIMIT gender male, female

speaker identity 630
region New England, Northen, North Midland,

South Midland, Southern, New York City,
Western, army brat 3

age [21,75]
height [1.45, 1.98]

ethnicity white, black, American Indian,
Spanish-American, oriental, unknown

education high school, associate degree,
bachelor’s degree, master’s degree,

PhD, unknown

Table 3.14 – Bref120 and TIMIT leveraged annotations

Both are supplying annotations, detailed in Table 3.14. Bref120 comprises nine labels:
channel type, speaker identity, gender, height, weight, education level, smoker, age, and
native language. In the described experiments, the native language label has been ignored,
as it appears to be highly imbalanced (≈ 90% of French natives). TIMIT contains seven
labels: gender, speaker identity, region, age, height, ethnicity, and education level.
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A great diversity of annotations is available, among which many are categorical ones
(e.g., speaker identity, channel, education), while others are treated as continuous vari-
ables (e.g., height, weight, age). They are all considered constant across utterances and
speakers, hence one can expect FHVAE’s latent z2 to be more susceptible to capture
those variations. Experiments described in Subsection 3.3.4 assess if some of them are
disentangled by FHVAE, thanks to DCI [55] metric. However, for some labels, it is quite
uncertain that they can be efficiently conveyed and retrieved from speech, e.g., education,
height, and weight. It is hence unlikely for FHVAE to disentangle such outsider factors,
but they are nonetheless leveraged in experiments. Thus, salient factors are expected to
be disentangled: channel type, gender, age, and regional accent in TIMIT.

3.3.3 Training setup

The same training protocol described by Hsu et al. (2017) [92] is followed in the
experiments depicted in this manuscript. Encoder and decoder LSTM layers are composed
of 256 hidden units, and are followed by fully connected layers to predict means and
variances of variational distributions. Latents z1 and z2 are both 32-dimensional. Adam
optimizer is leveraged, with β1 = 0.95, β2 = 0.999, ϵ = 1e − 8, and learning rate set to
3e − 4. Speech utterances are sampled at 16kHz then preprocessed into mel-spectrograms
with 400 FFT frequencies, a hop length of 160, and 80 mel-coefficients. Utterances are
segmented into sequences of 200ms segments. As each mel-spectrogram frame temporally
conveys 10ms, each segment is an 80 × 20 matrix. Batches of such segments of size 256
are constituted for training, for 100 epochs.

With the discussions provided in Subsection 2.2.3 about the trade-off between re-
construction and disentanglement, controlling the information bottleneck was considered
during the experiments. To this end, the very same idea advanced by Rybking et al.
(2021) [191] with σ-VAE, as illustrated in (2.19), is adopted. Hence, multiple values of
decoder covariance diagonal σ2

x are tested: 1, 0.1, and 0.01. The basic setting where it is
predicted from a fully connected layer is also retained, i.e., σ2

x = fσ2
x(z1,z2). To this extent,

it is expected to observe better disentanglement performances with a higher σ2
x.

3. Army brat are children of military personnel, known to frequently move from a region to another.
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3.3.4 Evaluations

As extensively discussed in Section 2.4, measuring disentanglement is to this day still
only feasible when the generative factors are known. Some unsupervised metrics have been
proposed, but pertain to computer vision concerns, or require legions of trained models
to be reliable (UDR). Hence, to evaluate FHVAE disentanglement on real speech data,
the supervised metric DCI has been used to measure the disentanglement of available
annotations of Bref120 and TIMIT. To get an insight into label disentanglement along
models training, Table 3.15 and Table 3.16 contain the Completeness of annotations,
depending on the training epoch, for both latents z1 and z2, and for the multiple decoder
covariance σ2

x settings, as described in Subsection 3.3.3. The Completeness is previously
argued in Subsection 3.2.4 to be hard to interpret, as several latent dimensions might
capture a same factor, but it is believed that Completeness remains a useful indicator
and efficient criteria to oversee the behavior of a model regarding multiple factors to
disentangle. The log likelihood pθ(x|z1, z2) on the validation set, along epochs, is also
plotted, which corresponds to the negative reconstruction error. Hence, the higher the log
likelihood, the better the reconstruction quality.

In Bref120, the channel type is clearly well disentangled regarding Table 3.15, by
z1 in early stages, and by z2 in further steps. Subsequently, gender, height, and weight
labels reach Completeness around 0.5, which uncovers the correlations between those
annotations: height and weight are likely to be correlated with one’s gender. With this
bias in mind, it is unlikely that FHVAE actually learned variations truly related to one’s
height or weight. Consequently, channel type and gender let aside, poor disentanglement
is achieved with the remaining labels. The disentanglement/reconstruction trade-off seems
to be well balanced for σ2

x = 0.1: Completeness scores remain stable at the end of the
training, while achieving similar log likelihood (around −30) than predicted covariance
fσ2

x
(z1, z2). Other values of σ2

x exhibit degraded reconstruction performances.
Concerning TIMIT, very poor results can be observed in Table 3.16. Latent z2 manages

to capture gender and height annotations, but as with Bref120, this might result from
correlation between gender and height. Here again, a good disentanglement/reconstruction
(likelihood around −40) trade-off is attained with σ2

x = 0.1, although the Completeness
score remains low.

Overall, it stands out that annotation information is captured by z1 in early training
stages, and tends to be conveyed by z2 in further training steps. As z2 is conditioned
to learn sequence level variations, this is the expected behavior. However, Completeness
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Legend ■ Channel ■ Gender ■ Height ■ Weight
■ Education ■ Smoker ■ Age ■ Log likelihood

Table 3.15 – Factor-wise Completeness depending on the training epoch of FHVAE, on
Bref120
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Legend ■ Gender ■ Region ■ Age ■ Height
■ Ethnicity ■ Education ■ Log likelihood

Table 3.16 – Factor-wise Completeness depending on the training epoch of FHVAE, on
TIMIT
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scores remain poor for most factors, especially on TIMIT. When some label Completeness
scores reach values above 0.2, it appears that it may be related to a bias with the gender
attribute, i.e., height and weight Completeness seem to be closely correlated with gender.
As DCI does not consider relations between factors, and assumes them to be independent,
Completeness can be misleading, as observed in those experiments. Furthermore, higher
Completeness scores are reached with higher σ2

x, which comforts the intuitions developed
in Subsection 2.2.3.

3.4 Conclusions and discussions

Along this chapter, disentanglement learning has been studied, from preliminary works
on synthetic images in Section 3.1, through similar experiments on synthetic vowels in
Section 3.2, to end with investigations towards real speech disentanglement in Section 3.3.

Leveraging disentanglement_lib, experiments on synthetic images with the models
described in Section 2.2 have been performed, and analyzed with the metrics detailed in
Section 2.4. Intuitions about model performances, disentanglement/reconstruction trade-
off and hyperparameter aftermath have been provided through reconstructions, traversals,
and graphs of metrics and reconstruction loss.

With those insights, similar experiments have been described on an introduced corpus
of synthetic vowels, diSpeech. It has been demonstrated that a β-VAE model can suc-
cessfully disentangle formants, but struggles to deal with temporal variations of pitch. An
attempt to disentangle TIMIT’s vowels has been performed, employing a β-VAE model
trained on TIMIT and inferred on diSpeech.

The proposed synthetic playground, diSpeech, is a first step to bridge the gap between
disentanglement of synthetic images and real speech data. With a more advanced model,
FHVAE, experiments have been conducted to assess the disentanglement of annotated
factors on real speech corpora, Bref120 and TIMIT, though with reserved results. This
highlights the exploratory state of this research direction, and the complexity of transfer-
ring theoretical advancements in disentangling models to real-life cases. It also discloses
the lack of a well-acknowledged taxonomy of speech attributes, as discussed in Section 1.1,
which prevents one from relying on clear reference points: what constitutes speech is still
unclear, and interactions between voice characteristics are intricate and complex to deal
with, especially for disentanglement purposes. More generally, assessing the disentangle-
ment of speech data appears to be a complex and tedious task, in its current state.
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3.4. Conclusions and discussions

Experiments also revealed that, in addition to requiring knowledge of true generative
factors, disentanglement metrics can be convoluted to read and interpret. With this con-
cern in mind, Chapter 4 digs further into inconsistent behaviors experienced with DCI
metric, and proposes to address them with a Mutual Information (MI)-based importance
matrix. A Partial Information Decomposition (PID)-based framework is also advanced,
which is believed to better coincide with the disentanglement desiderata stated in Sec-
tion 2.1.
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Chapter 4

MEASURING DISENTANGLEMENT

Assessing disentanglement is still an open problem, as discussed in Section 2.4. De-
pending on the adopted definition of “what is a disentangled representation”, a wide
spectrum of metrics have been proposed and challenged [21, 149]. Furthermore, most re-
lated studies handle image disentanglement, and conveniently use synthetic image datasets
(Section 2.3) as true factors of variations are known, which is required to measure disen-
tanglement. Concerning speech, the toy dataset diSpeech [247] introduced in Section 3.2
is for now the only available analogous dataset. The described study is basically tied to
such a synthetic corpus, as using a realistic voice dataset implies relying on annotated
attributes (and not true independent factors of variations) which may not be exhaustive
or well-balanced enough to assess metric reliability. The experiments described in Sec-
tion 3.3 try to disentangle such annotations on Bref120 and TIMIT, with mixed results
and conclusions.

It has been demonstrated in Chapter 3 that metrics can uncover interesting behaviors
within disentangling models. Nevertheless, considering a single disentanglement score for
a model remains too high-level to truly disclose hidden disentanglement-related behav-
iors. As concluded by Carbonneau et al. (2021) [21], metrics should be considered for
each factor separately, to gain a better perception of the performances of a given model.
Therefore, a deeper analysis is described in Section 4.1, based on DCI [55], to extend
one’s interpretation of latent / factor relations in a β-TCVAE trained on diSpeech. A
latent decimation process is then proposed, for disentanglement analysis. Applied to diS-
peech, it reveals misleading outcomes of the existing metrics in some situations. These
observations finally lead in Section 4.2 to an alternative way to compute DCI, inspired
by MIG [26], ending up to Mutual Information-based DCI (MIDCI). Experiments are
only presented on diSpeech, but it is worth noting that same results were obtained and
assessed on the various synthetic datasets and with the wide range of models implemented
in disentanglement_lib.

Furthermore, Section 4.3 steps further in the definition of disentanglement metrics,
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by proposing a PID-based measure of completeness, which has the benefit of taking into
account the intricate inter-latent and inter-factor relationships.

4.1 Latent decimation for metric consistency

The review of disentanglement metrics proposed by Carbonneau et al. lists a range of
metrics based on different approaches and assumptions. Even for synthetic datasets with
a limited number of generative factors and latents, the disentanglement measure may
vary significantly from one metric to another, as shown by Locatello et al. [149, Fig 2],
Carbonneau et al. [21, Fig 3] and in Subsection 3.1.2. Obviously, it makes it difficult to
choose an appropriate metric, and it thus appears useful to compare their assumptions
and the approximations they rely on, so as to emphasize their advantages and drawbacks.

This is developed in Subsection 4.1.1, with a focus on the DCI, MIG and Zdiff [84]
metrics. It is then described in Subsection 4.1.2 disentanglement evaluations on diSpeech
augmented with in-depth analysis of metrics.

4.1.1 Metrics comparison

One major advantage of the DCI metrics is that they provide three indicators, that
measure three different aspects of the disentanglement (Section 2.4). This is in line with
Carbonneau et al.’s advice that disentanglement properties should be considered distinctly.

Also, the DCI [55] metrics are computed thanks to an importance matrix in which each
component represents the relationship between the latents and the generative factors. This
is useful as it allows a per-factor analysis instead of a global score. Indeed, as a general
rule, some factors can be well disentangled while others are not, due to the structure of
the data, the nature of the factor, or its impact on the data generation.

On the other hand, the components of the importance matrix (the importance weights)
are deduced from the parameters of a regressor (or classifier when categorical factors
are concerned) trained to predict the factors knowing the latents. Although they are
clearly influenced by the information about each factor contained in each latent, which is
relevant for the metrics, these amounts can be altered by the kind of regressor used, the
implementation, the assumed relationship between latents and factors (is it linear or not?
), and so on.

Information-based approaches such as the MIG [26] score do not suffer these draw-
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backs, as they rely on the computation of the MI between factors and latents, which is
often used as a generalized correlation coefficient [209]. But still, there are algorithmic
parameters to be chosen. In addition, correlations between latents and between factors
are ignored. Also, the metric relies on gaps between the most and second most important
MI for each factor, favoring information to be located in a single latent for each factor,
and disadvantaging cases where a factor might need two latents to be perfectly captured.
This point has been further discussed in Subsection 2.1.2. In addition, it totally misses
out the Disentanglement part of DCI as the latents capturing multiple factors are not
penalized [21].

The Z-diff metric [84] and its variants also use a prediction algorithm to provide their
outcome, but through a low-complexity linear classifier, by design. Thus, the score is less
dependent on tunable parameters. Nevertheless, its principle consists in finding the most
correlated latent to a given factor, ignoring possible correlations to other latents, which
often makes its disentanglement evaluation too optimistic, as observed in Subsection 3.1.2.

Following [21, Tab 2], DCI is the metric that covers the most characteristics. Prag-
matically, it is indeed convenient to have a precise idea of latent / factor relationships,
factor-wise Completeness and latent-wise Disentanglement. MIG has the advantage of not
being influenced by predictor intricacies, but has a too restrictive assumption of disen-
tanglement by using MI gaps.

4.1.2 A closer look to metrics

Thanks to disentanglement_lib [149], a broad range of experiments of disentangling
models on diSpeech corpus have been conducted. Here are the retained results of β-
TCVAE trained with β = 10 and 8 latent dimensions, as it reached good performances,
but similar observations were made with other models and datasets. Zdiff, MIG, and DCI 1

analyses are presented in Figure 4.1. Metrics values are reported in Figure 4.1a. As in
Subsection 3.1.2, Z-diff suggests a really good disentanglement, while other metrics are
more mitigated, especially MIG.

But these global measures keep the disentanglement of each factor hidden. Hence,
Figure 4.1b reports MIG, Completeness and Informativeness for each factor, showing
that performances highly depend on the considered factor. Formants (F1, F2, and F3)
seem well disentangled, while pitch (F0) and fade have poor MIG, Completeness and

1. implemented with XGBoost library, for faster computation

131



Part II, Chapter 4 – Measuring disentanglement

Zdiff MIG D C I0

0.2

0.4

0.6

0.8

1

metric

sc
or

e

(a) MIG, Zdiff and DCI
scores

F1 F2 F3 F0 fade0

0.2

0.4

0.6

0.8

1
MIG
C
I

(b) Factor-wise MIG,
Completeness and
Informativeness

0

0.5

1

D C
I

99  0  0  0  0  0  0  0

 0  0  0  0 100  0  0  0

 0  0  0 98  0  0  0  0

10  5  5  5  8  6  9 51

 8  5  4  4  5  5  5 64

0 1 2 3 4 5 6 7

F1

F2

F3

F0

fade

0 0.5 1 0 0.5

D C I D weight C weight

(c) DCI with importance matrix and in-depth
measures

Figure 4.1 – diSpeech disentanglement evaluation

Informativeness.

A closer look at the DCI importance matrix in Figure 4.1c indicates which latent dis-
entangles each formant : F1: latent 0, F2: latent 4, and F3: latent 3. Cell values are the
percentage of importance (feature importance × 100). Figure 4.1c also aligns the impor-
tance matrix with entropy-based factor-wise Completeness (right part) and latent-wise
Disentanglement (up part), and factor-wise Informativeness. Latent and factor variable
importance weights (ρ in [55]) are also reported next to their respective values (thin dark
bars). Figure 4.1c is thus an informative yet condensed view of factor / latent relations.
It is also suggested by traversals in Table 4.1, where the corresponding formants (F1, F2,
and F3) are clearly moving in dimensions 0, 4, and 3, respectively, and only in them.
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Latent -2 Traversal frames 2

0

1

2

3

4

5

6

7

Table 4.1 – β-TCVAE traversals on diSpeech

4.1.3 Procedure description

In order to figure out if metric outcomes correctly reflect the disentanglement proper-
ties of a latent representation, experiments based on a procedure coined latent decimation
are conducted. The idea is to remove the most informative latents with respect to a given
factor, and measure how much of its information has been lost. This loss is evaluated
thanks to a predictor (same as DCI), trained to predict the factor from the remaining
latents, and the accuracy drop is used to measure the information loss. Thus, if a factor
is well disentangled, removing its most important latent should result in a drastic drop in
accuracy.

The consistency of the predicted importance can be further challenged by considering
the new importance order without the most important latent, and removing the most
important once again among the remaining latents. This process is repeated until only one
is left, and the importance order is reported at each step, to ensure that latent importances
stay consistent throughout the process. A reliable importance matrix is hence expected
to exhibit a latent importance ordering stable across decimation steps.

4.1.4 Results on diSpeech

The latent decimation performed with the model described in Subsection 4.1.2 is de-
picted in Figure 4.2. For each factor, the most important latent (with respect to DCI
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importance matrix) is removed to rerun prediction. Then, the latents importance is de-
duced again, and the new most important latent is removed. This process is repeated until
one latent is left. The R2 scores of each iteration and factor are plotted in Figure 4.2a.
Contra-intuitively, from the results in Subsection 4.1.2, factors are still predictable with
decent accuracy, meaning that factors’ information is not only contained in the most
important latents, and not that well disentangled as suggested by DCI.

At each decimation step, one can keep track of latent importances order to assess
consistency throughout iterations. The ordered latents at each decimation for F1 are
logged in Figure 4.2b: in each column, latent index are stacked in a importance ascending
order, and the color scale reflects the importance value. It appears that the importance
order is not consistent: latent 7 is the second most important latent at the beginning, but
is reported to be the most important only 5 steps further. Similar inconsistent behavior
can be observed, with latent 4 and 2, for instance. Similar behaviors are observed with
other factors: for F2 in Figure 4.2c, latent 3 starts as the second most important latent, but
is decimated only at step 4. With F3 in Figure 4.2d, latent 6 is the fourth most important
latent in the initial step, but is the most important in the next step. It also still achieves
a prediction accuracy above 0.8, according to Figure 4.2a, while being assigned a very
low relative importance in the initial state in Figure 4.2d. For F0 in Figure 4.2e and fade
in Figure 4.2f, latent orders are quite stable, although some inconsistencies can still be
noticed, for instance: latent 5 for F0 or latent 0 for fade.

These changes underline that information about factors can be spread in other latents,
while being announced disentangled by metrics (Figure 4.1a). The traversals in Table 4.1
are also misleading. Hence, it is hypothesized that factor information can be conveyed by
multiple latents, but is neither used by predictors (for DCI computation) nor decoders
(for transversal generation).

As pointed out, the good disentanglement of formants deduced by DCI is compromised
by the latent decimation sanity check. This is following Locatello et al.’s [149] conclusion
on the importance of the assessment of the practical benefit of disentanglement. Biases
induced by predictors lead to misleading DCI scores. It can be overcome by using an
importance matrix based on MI.
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Figure 4.2 – diSpeech latent decimation

4.2 MIDCI

DCI appears in the literature and the experiments in Subsection 4.1.2 as a useful metric
to disclose factor / latent relations. But it has also been shown that DCI assessments can
be contradicted by the latent decimation procedure. Hence, the Mutual Information-based
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DCI (MIDCI) metric is proposed, which is detailed hereafter. Its accordance with latent
decimation is then demonstrated.

4.2.1 Definition

In order to overcome predictor biases in DCI, it is proposed to compute an importance
matrix based on MI as done in MIG and deduce Disentanglement and Completeness as
in DCI. Let i ∈ {1, . . . , l} and j ∈ {1, . . . , m}, with l the number of factors and m the
number of latents. The MI matrix is defined as:

Ri,j = I(fi; zj)
H(fi)

, (4.1)

with I(f; z) the MI between factor f and latent z. MI is divided by H(f), f’s entropy, so
that Ri,j ∈ [0, 1]. Straightforwardly, Disentanglement and Completeness are defined as
Eastwood et al. [55], by using entropy along latents and factors, respectively.

Note that S = ∑l
j=1 Ri,j does not necessarily equal 1, as Ri,j embodies fi’s rate of

information captured by zj which can be incomplete (S ≤ 1) or redundant (S ≥ 1), due
to “cross-information” shared with other latents.

One can also define an information-theory-based formulation of the factor-wise Infor-
mativeness Infoi, as:

Infoi = I(fi; z1, . . . , zm)
H(fi)

. (4.2)

Extended to a global measure of Informativeness Info along all factors, the formulation
becomes:

Info = I(f1, . . . , fl; z1, . . . , zm)
H(f1, . . . , fl)

. (4.3)

Those definitions are illustrated through Venn diagrams in Figure 4.3. In Figure 4.3a are
represented the interactions between information (i.e., entropy) conveyed by two latents
z1 and z2 and a factor fi. The Informativeness defined in (4.2) is represented in the orange
area, being the part of fi overlapped by either factor. This orange part is then normalized
by the factor’s entropy, H(fi), to get a score between 0 and 1, the higher the better.
Note that it is different from summing fi’s Mutual Information with each latent, as it
would count multiple times the interaction information, being the area at the intersection
of the three variables, in the center of Figure 4.3a. To be generalized with more than
one factor, Figure 4.3b illustrates how intricate the interactions can become when two
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Figure 4.3 – Informativeness Venn diagrams

latents and two factors, f1 and f2, are considered. Here again, the orange area is the
amount of factor information captured by latents, being normalized by the total amount
of information conveyed by factors in (4.3). The total amount of information is expressed
as the joint entropy of all factors, taking into account the correlations between factors.
This is believed to be a more representative definition of informativeness than the mean
prediction accuracy of multiple predictors.

Nevertheless, in practice, the great number of data points and a possibly important
number of latents and factors result in a multivariate distribution, which makes the com-
putation of Infoi and Info a complex challenge, as efficiently estimating MI is still an
open challenge. This definition of MIDCI takes benefits from both DCI and MIG: MI
based importance matrix overcomes predictor biases, and latent-wise Disentanglement /
factor-wise Completeness provides in-depth insights into latent/factor relationships.

4.2.2 Consistency assertion

Coming back to diSpeech disentanglement, applying MIDCI is equivalent to replacing
the importance matrix in Figure 4.1c with the MI matrix, resulting in Figure 4.4a. In
conformity with latent decimation, Completeness appears less optimistic.

In order to assess if MIDCI is closer than DCI to latent decimation latents ordering,
Normalized Kendall τ distance (Kn) [105] is employed. Intuitively, the normalized Kendall
τ distance Kn(τ1, τ2) between two orderings τ1 and τ2 is the number of steps a bubble-sort
algorithm would take to align an ordering with the other, normalized by the maximum
number of swaps to perform in the worst case, where τ1 is the inverse of τ2, to have
Kn ∈ [0, 1]. More precisely, Kn considers all possible pairs (i, j) of element indexes to
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Figure 4.4 – MIDCI metric and importance consistency on diSpeech

order, and counts the number of cases when τ1 and τ2 disagree on the relative ordering
of the pair, i.e., when τ1(i) > τ1(j) and τ2(i) < τ2(j), or τ1(i) < τ1(j) and τ2(i) > τ2(j).
Accordingly, the lower Kn(τ1, τ2), the better the accordance between τ1 and τ2. Therefore,
this measure of rank correlation is used to assess the agreement between the order by which
latents are decimated, with the ordering forecasted by either MI or DCI predictor’s feature
importances. Roughly speaking, each diagonal ordering in Figure 4.2 is compared through
Kn distance with either its respective first column (the DCI feature importance ordering)
or the ordering obtained from computing the MI of the concerned factor with each latent
(as done in MIG). Figure 4.4b shows that for several models (used in Section 3.1 and
trained on diSpeech), with several numbers of latents (8, 16, 32), Kn is, for each latent,
on average smaller with MIDCI than with DCI. Hence, better accordance is achieved
when using MI, demonstrating improved reliability.

The described experiments have been extended to the visual synthetic datasets de-
scribed in Section 2.3: dSprites, Cars3D, and SmallNORB, and for each of them, Kn

scores comparing DCI and MI-based importance consistency are displayed in Figure 4.5.
Results are overall similar to what is observed with diSpeech, but one can notice some
fluctuations for complex factors where DCI has a better Kn than MIDCI: the orientation
on dSprites in Figure 4.5a, the azimuth on Cars3D in Figure 4.5b, and the azimuth and
elevation on SmallNORB in Figure 4.5c, are better handled with DCI-based importance.
They, however, share the common point of being complex and poorly disentangled, while
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other factors, better disentangled by models, are more reliably handled with a MI-based
importance matrix.

4.2.3 Conclusions and discussions

As experienced in Chapter 3, investigating unsupervised disentanglement is a complex
endeavor. Manually assessing disentanglement through traversal is a tedious task, espe-
cially for speech, and metrics still need to rely on ground-truth generative factors. It is
hence crucial to ensure that the metrics used are reliable when they assert that a given
factor is well disentangled.

Throughout the experiments described in this section, inconsistencies in the compu-
tation of the latent importance have been exposed: latents expected to have only one
important latent were revealed to be still predictable when removing it, and the ordering
of latents according to their importance has been demonstrated to be somehow unstable
under the latent decimation sanity check procedure.

To address this inconsistency, MIDCI has been proposed, which exhibits better coher-
ence under latent decimation on diSpeech and also on synthetic image corpora. Overall, a
new analysis grid is proposed, through a more reliable version of DCI relying on mutual
information, avoiding regressor or predictor biases. It is believed that this study serves
as a preliminary research work, which can be beneficial to further investigations in the
assessment of disentanglement.

It has also been disclosed through this work that Mutual Information, and more gen-
erally, information theory measures, are more reliable as quantifiers of latent / factor
relationship strength. With this in mind, a new metric of completeness is proposed in
Section 4.3, which builds on the direction initiated by the metric UniBound [221] (de-

139



Part II, Chapter 4 – Measuring disentanglement

scribed in Subsection 2.4.2), and digs further in the decomposition of the information
flows when multiple latents and factors are implied.

4.3 Decomposing information to quantify disentan-
glement

As advanced in Section 4.2, information theory-based quantities are reliable measures
to assess disentanglement. Nevertheless, a redundant drawback of the proposed disentan-
glement metrics is that they do not consider correlations between latents and correlations
between factors. This insight is unveiled by Tokui and Sato (2021) [221], which try to
discard from MIG [26] redundant information and unique information coming from other
latents when computing each latent importance. The definition of Informativeness pro-
posed in Section 4.2 also follows this intuition, that correlations between factors should
be taken into account. Hence, following Partial Information Decomposition (PID) frame-
work described in Subsection 2.4.2, hints towards the definition of new metrics measuring
completeness and disentanglement that deal with inter-latent and inter-factor correlations
are provided.

It is thus proposed in Subsection 4.3.1 to go further in the decomposition of la-
tent/factors information by considering the unique information as the only source of
completeness for factors.

4.3.1 Disentangling pieces of information

The uniqueness-based completeness of factor fi, denoted as Ci, is defined as the sum
of the unique information captured by each latent zj, normalized by the entropy of factor
fi:

Ci =
∑

j U(fi; zj)
H(fi)

. (4.4)

In the more general scenario when multiple factors are involved, the global measure of
completeness based on uniqueness is defined as the very same sum of unique information
of each latent zj, but regarding the joint distribution of factors {f1, . . . , fl}:

C =
∑

j U(f1, . . . , fl; zj)
H(f1, . . . , fl)

(4.5)
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Both scenarios are illustrated in Figure 4.6. The main intuition behind factor-wise
completeness, Ci, is that only the parts of fi captured by only one latent is considered
disentangled. In other words, parts that are redundantly or synergistically captured are
considered entangled 2. This definition also has the benefit of favoring cases when multiple
latents convey information about a factor, as long as they do not convey the same kind of
information, i.e., if several latents explain distinct parts of a factor, the latter is considered
to exhibit good completeness. It is illustrated in Figure 4.6a, where the hatched part in
the left Venn diagram corresponds to the region described by PID framework. Within
this area, the decomposition is pictured in the right Venn diagram, with redundant R,
synergistic S, and unique U information pieces. Hence, the orange and blue regions are
the unique information captured by z1 and z2, respectively, about fi, which are summed
in the defined completeness Ci. In the more general case of multiple factors, Figure 4.6b
shows that the very same intuition is followed, except that factors are considered jointly.
It is hence considered that, if correlations subsist between factors, latents capturing in a
“unique” way those variations are counted positively.

The same concerns, about correlations between latents and factors, can be derived for
the measure of the modularity property, i.e., minimizing the number of latents informative
about each factor. An uniqueness-based metric to quantify modularity, analogous to Ci

and C, could be relevant and constitute a whole PID-based disentanglement analysis
framework. But in contrast to completeness, there is no reason to allow a latent to capture
multiple factors. Hence, it is believed that such a modularity metric cannot be expressed
in the very same way as its completeness counterparts Ci and C. This direction calls for
further investigations, in order to find a proper PID-based measure, fitting the definition
of modularity.

In the literature, the UniBound [221] metric is the closest proposition to the proposed
uniqueness-based metric. However, the distinction from UniBound is two-fold: on the one
hand, in Ci and C, a factor can be disentangled by several latents, as long as they convey
distinct information pieces, whereas UniBound enforces the uniqueness of a single latent
and penalizes other unique information coming from other latents; on the other hand,
C considers the correlations between factors, which are highly likely to be encountered
in practice where the ground-truth generative factors are unknown, while UniBound
averages quantities computed for each factor, discarding their relationships.

2. Unique, redundant, and synergistic information pertaining to PID framework, are described in
Subsection 2.4.2, with UniBound metric.
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Figure 4.6 – Completeness Venn diagrams

4.3.2 Computing partial information pieces

It is believed that the proposed measure fits the completeness property. The challenge
remains in the way to compute the partial information pieces. While the notion of PID
is proposed by Williams and Beer (2010) [234], their definition of redundancy is argued
by Ince (2017) [99] to not represent the actual amount of redundant information, but
only the minimum amount captured. Interesting alternatives are then proposed by Ince
with the common change in surprisal measure of redundancy (ICCS), or by Makkeh et al.
(2021) [153] with the shared exclusion principle (Isx

∩ ). Both measures of redundancy lead
to different results, hence, the way to properly interpret those quantities and which one
better fits disentanglement endeavor will be the concern of further investigations. Some
preliminary experiments have already been conducted with simple and synthetic cases,
i.e., Cartesian coordinates in a 2D space as factors and polar coordinates as latents, or a
rotation being described by its angle as factor, and through its sin and cos components
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4.4. Conclusions and discussions

as latents. However, neither ICCS nor Isx
∩ metrics have led to satisfying and easy-to-read

results.
Their computation is also not straightforward, as information theory-based measures

when many possible combinations are involved imply a great number of operations to
cover distributions. Future work will then explore how to efficiently compute the proposed
completeness measure, by discarding irrelevant partial information pieces.

A similar definition of modularity property, which might also benefit from PID frame-
work granularity, is left for further investigation.

4.4 Conclusions and discussions

The difficulty of learning disentangled representations, especially for speech, has been
experienced in Chapter 3. It is therefore of great importance to ensure that the evaluation
protocols used are reliable. To this end, a sanity-check procedure, latent decimation, has
been proposed. The metric DCI, acknowledged to be convenient and reliable, is demon-
strated to exhibit inconsistent behaviors under latent decimation. The metric Mutual
Information-based DCI (MIDCI) has then been proposed, to address the inconsistencies,
thanks to a Mutual Information-based importance matrix.

However, the common drawback of the literature’s metrics is that correlations between
factors and between latents are not considered. Thus, promising hints are introduced based
on Partial Information Decomposition (PID), to dig deeper into the intricate interactions
between factors and latents, and to advance a measure of completeness based on the
unique information captured by latents.

All in all, measuring disentanglement properties remains convoluted, mainly due to
the lack of a formal definition of disentanglement. Despite some attempts through sym-
metry [85] or causality [213], no natural way to quantify the degree of disentanglement of
a learned model arises.
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CONCLUSION

Speech is human’s most efficient, yet intricate, means of communication. Beyond the
linguistic content, speech conveys way more information, about speaker’s emotional state
or intents, and about the speaker himself. With the recent advances in machine learning,
unprecedented performances of speech “understanding” have been achieved by computers
in the past few years, approaching the near-human level in speech transcription and
synthesis.

While deep learning demonstrated impressive results in very specific tasks through su-
pervised learning, the recent trend to leverage huge amounts of data in a self-supervised
approach settles a new era, where such pre-trained models fine-tuned on underlying tasks
are exhibiting groundbreaking efficiency. Despite all this progress, speech attributes re-
main hard to comprehend for learning algorithms.

Speech production mechanisms are now well understood. But it remains fuzzy, even for
humans, to formally link articulatory cues to one’s perceptual interpretations of prosody,
emotion, or identity. It is even more difficult for machines, as no formal taxonomy of
speech attributes has yet been acknowledged. Among the neural network-based approaches
aiming to learn insightful abstract representations, disentanglement learning stands out as
a promising paradigm, that has the purpose of separating independent factors of variations
in distinct axes in learned latent space. It is therefore believed that captured independent
variations pertaining to a set of observations are tied to its interpretable generative and
explanatory factors. Such a model successfully trained on speech data has the potential
to isolate speech characteristics, until then intricate in speech variabilities, and control
them in speech synthesis scenarios.

Key contributions

Therefore, this thesis endeavors to explore the junction between disentanglement meth-
ods and speech processing, with the first key contribution being the proposition of a
dataset of synthetic vowels, analogous to synthetic image corpora widely used in disen-
tanglement studies. Hence, the proposed corpus diSpeech [247] is defined based on five

145



generative factors: the first three first formants F1, F2, and F3, the fundamental fre-
quency F0, and its fade rate. French vowels are covered through formants, harmonic cues
are controlled with pitch, and temporal variabilities are added with pitch’s fade rate. The
disentanglement of diSpeech is subsequently experienced with β-VAE model, and eval-
uated with latent space traversals and disentanglement metrics. The disentanglement of
TIMIT’s vowels is then tested with a β-VAE trained on TIMIT and inferred on diSpeech,
with limited yet interesting results.

Investigating speech disentanglement is, however, shown to be tedious, as searching
for the best model and hyperparameter setting involves a bunch of models that cannot
all be traversed manually, and the various proposed disentanglement metrics rarely agree
with each other and are hence hard to read. According to Carbonneau et al. (2021) [21],
DCI [55] stands as a metric with good properties, as it measures distinct disentanglement
properties, and can be leveraged for factor-wise and latent-wise analysis. It is however
demonstrated that predictor and regressor-based importance matrix computed by DCI
exhibit inconsistencies under latent decimation procedure [246]: factors stated well disen-
tangled are still predictable when removing their most important factor, and the latent
importance ordering is unstable when removing the most important latent and comput-
ing importance again. MIDCI is hence introduced, which advances a Mutual Informa-
tion-based computation of the importance matrix, similarly to MIG. MIDCI scores are
thus more mitigated, which better matches latent decimation forecasts, and Kendall τ

distance demonstrates that the MI-based importance ordering is more consistent with
latent decimation procedure ordering.

Discussions and perspectives

The redundant issue encountered throughout the experiments conducted in this thesis
is the lack of a consensual definition of disentangled representation. It is thence difficult
to know what to measure, how, and which metric to rely on. Interesting directions are
provided from symmetry theories [85], causality [213], but require further developments
to be followed practically in unsupervised scenarios. It is believed that a promising Par-
tial Information Decomposition (PID)-based definition of disentanglement is hinted in
Section 4.3, although it still does not provide explicit mechanisms to learn disentangled
representations.

Disentanglement is a non-trivial task per se, and dealing with speech data, being
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highly subjective and conveying multiple information at different time scales, makes speech
disentanglement a very arduous desiderata. The development of sophisticated inductive
biases, such as Capacitron [11] or GMVAE [93] with hierarchical latent space structure,
is a promising research direction to enforce the disentanglement of speech latents, by
introducing the prior knowledge of the multi-scale information organization in speech.
Evaluation protocols, more tailored to speech data than traversals, would also be beneficial
towards the assessment of disentangled speech representations.

All in all, the difficulty in disentangling speech attributes is deeply rooted in the lack
of a widely acknowledged taxonomy of speech attributes. It is perilous to design speech
disentanglement models, when one does not know exactly what to disentangle, and from
what. Many approaches deal with this uncertainty by supervising the disentanglement
of known labels (e.g. speaker identity, style, emotion) and leaving the neural network
to handle the remaining variabilities which cannot be pigeonholed. The elaboration of
techniques able to rely on available knowledge to better focus on the extraction of the
missing information, in a semi-supervised fashion, is therefore a research topic with great
potential. To another extent, it pertains to linguistic research efforts to establish proper
frameworks to decompose and describe speech attributes, and their relationships.

In addition, taking a step back, one may have noticed that a great deal of disciplines
are utilized throughout the work exposed in this manuscript: linguistics, acoustics, ma-
chine learning, information theory, Bayesian inference, and references to symmetry in
physics and causality are also worth mentioning. This multidisciplinary of the thesis topic
highlights how complex but fascinating the study of speech attribute disentanglement is.

To conclude, promising approaches are developed towards the disentanglement of data
underlying factors of variations, and more generally towards structured latent spaces,
with the properties advanced by Bengio et al. (2013) [13]. On the other hand, well-
elaborated speech processing systems have recently been deployed with outstanding results
in speech synthesis, voice cloning, dubbing, and so on. But such models are actually
clueless about the hidden and intricate structure of speech attributes. Hopefully, this thesis
will contribute to bridge the gap between speech and disentanglement, beyond hearing and
towards listening machines. In an era where Large Language Models (LLMs) are already
changing human’s relation with artificial intelligence, deep learning systems are constantly
raising the limits of neural networks’ complexity and capacity to absorb information. But
the challenge of the incoming groundbreaking advances resides in systems’ capacity to
disentangle world’s intricacies, to build models more rational, reliable, explainable, robust
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and aligned with human’s intuitions.
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Titre : Méthodes neuronales pour le traitement de la parole : vers le démêlage des attributs de
la voix
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Résumé : Les récentes avancées de l’ap-
prentissage profond ont mené à des résul-
tats sans précédent dans une grande va-
riété de tâches et de modalités. Un nombre
grandissant de systèmes parvenant à des
performances proches de l’humain en ana-
lyse (transcription, reconnaissance du locu-
teur) et en génération de la parole (conver-
sion, synthèse vocale) sont proposés. De
telles solutions émergent dans l’industrie, et
commencent à atteindre le grand public. Ce-
pendant, la complexité et la taille grandis-
santes des réseaux de neurones induisent un
manque important d’interprétabilité. De plus,
les représentations profondes ne sont pas en-
couragées pour être structurées. C’est pour-
quoi l’apprentissage de représentations dites

démêlées a fait son apparition, et a pour prio-
rité la structuration des représentations ap-
prises, en rapport avec les facteurs généra-
tifs des données, et si possible alignées avec
la perception humaine. Un tel paradigme a le
potentiel pour reconnaître les attributs de la
parole (identité du locuteur, émotion), pouvant
alors être exploité dans la synthèse vocale. À
noter que le démêlage est encore un domaine
de recherche récent, nécessitant des données
simples et synthétiques pour être développé.
Ainsi, cette thèse vise à combler le fossé entre
le traitement de la parole et le démêlage, en
exploitant des modèles de démêlage à l’état
de l’art pour identifier les attributs de la parole
de manière automatique, et à terme améliorer
le contrôle de la synthèse vocale.

Title: Neural methods for speech processing: towards speech attributes disentanglement

Keywords: voice analysis, neural networks, disentanglement

Abstract: The past few years’ advances in
deep learning have brought unprecedented
performances in a wide range of tasks and
modalities. An increasing number of close-
to-human accuracy speech analysis (e.g.,
ASR, ASV) and near-natural speech genera-
tion (e.g., conversion, TTS) models are pro-
posed. Such solutions are emerging in the
industry and are reaching the public. Nev-
ertheless, the growing complexity and size
of neural networks are causing a signifi-
cant lack of interpretability. Moreover, well-
structured representations are, by design, not
enforced. Hence, disentangled representa-
tions have emerged, which aim to prioritize

representation structuring, related to data ex-
planatory factors, hopefully aligned with hu-
man perceptions. Such a paradigm can be ex-
pected to properly recognize speech attributes
(e.g., speaker identity, gender, and emotion),
which may be leveraged for speech synthe-
sis. However, disentanglement learning is a
research topic still in its early stages, need-
ing simple and synthetic data to be developed.
Thus, this thesis endeavors to bridge the gap
between speech processing and disentangle-
ment, examining how state-of-the-art disen-
tangling models can be leveraged to automat-
ically recover speech attributes, and ultimately
improve control over synthesized speech.
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