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THÈSE

présentée et soutenue publiquement le 4 décembre 2023
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Abstract

Nonlinear transport in high-temperature plasmas due to turbulence and phase-
space vortices is investigated through numerical simulations and theory. In this work,
we investigate the diffusion of charged particles due to the presence of a prescribed
turbulent electric field (Langmuir and ion-acoustic waves with random phases), the
diffusion due to phase-space vortices in a turbulent background, and the dynamics of
solitary phase-space vortex. In this work, two codes were used, one for test particle
trajectories named PERKS used for the diffusion studies, and a second kinetic, Vlasov-
Poison solver named COBBLES used to perform the analysis of phase-space vortices.
Turbulent diffusion at a low Kubo number, defined as the ratio between the autocor-
relation time and characteristic trapped bounce time of the electric field K = τ0/τb,
is correctly predicted by quasi-linear theory, including resonance broadening. How-
ever, for large Kubo numbers, a new regime is reached where the diffusion coefficient
increases and scales as a power law E3/2, which is explained by a random-walk dif-
fusion of the centers of trapped-particle trajectories. In the presence of phase-space
vortices, diffusion is divided into two regimes: The first one is where diffusion is dom-
inant, particles experience random-walk trajectories, and diffusion is predicted as if no
structure is present in the plasma. In the second case, where structures are dominant
over turbulence, particle dynamics is that of trapped-particle trajectories, and diffusion
is predicted by the one generated due to the structure. Finally, the dynamic of solitary
Schamel phase-space vortices is investigated. Limits and discrepancies of the analyti-
cal theory with respect to numerical simulations are discussed, particularly the large
impact the ion-distribution function and small variations of distribution gradients have
over the dynamics of electron vortices.

Keywords: Diffusion, Phase-Space, Turbulence, Vortex, Fusion.

Résumé

Le transport non linéaire dans les plasmas à haute température dû à la turbulence et
aux vortex de l’espace des phases est étudié par des simulations numériques et par
la théorie. Dans ce travail, nous étudions la diffusion de particules chargées due à
la présence d’un champ électrique turbulent prescrit (ondes de Langmuir et ondes
ioniques-acoustiques avec phases aléatoires), la diffusion due aux vortex de l’espace
des phases dans un fond turbulent, et la dynamique des vortex solitaires de l’espace
des phases. Dans ce travail, deux codes ont été utilisés, l’un pour les trajectoires des



particules test appelé PERKS utilisé pour les études de diffusion, et un second solveur
cinétique de Vlasov-Poison appelé COBBLES utilisé pour effectuer l’analyse des tour-
billons de l’espace des phases. La diffusion turbulente à un faible nombre de Kubo,
défini comme le rapport entre le temps d’autocorrélation et le temps de rebond car-
actéristique du champ électrique K = τ0/τb, est correctement prédite par la théorie
quasi-linéaire, y compris l’élargissement par résonance. Cependant, pour de grands
nombres de Kubo, un nouveau régime est atteint où le coefficient de diffusion augmente
et s’échelonne comme une loi de puissance E3/2, ce qui s’explique par une diffusion
par marche aléatoire des centres des trajectoires des particules piégées. En présence
de tourbillons dans l’espace des phases, la diffusion est divisée en deux régimes : Dans
le premier cas, la diffusion est dominante, les particules ont des trajectoires de marche
aléatoire et la diffusion est prédite comme si aucune structure n’était présente dans le
plasma. Dans le second cas, où les structures sont dominantes par rapport à la tur-
bulence, la dynamique des particules est celle des trajectoires de particules piégées,
et la diffusion est prédite par celle générée par la structure. Enfin, la dynamique des
tourbillons solitaires de Schamel dans l’espace des phases est étudiée. Les limites et
les divergences de la théorie analytique par rapport aux simulations numériques sont
discutées, en particulier l’impact important de la fonction de distribution des ions et
les petites variations des gradients de distribution sur la dynamique des tourbillons
d’électrons.

Mots-clés: Diffusion, Espace des phases, Turbulence, Tourbillon, Fusion.
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Chapter 1. Introduction

1.1 High-temperature plasmas

1.1.1 Plasmas
The fundamental theoretical concepts of plasma physics were developed in the first
half of the 20th century. However, due to the lack of heating techniques, the temper-
ature of experimental plasmas was generally low, in the order of a few electron volts.
Within the "low-temperature" plasmas regime, many practical applications were found
and developed in manufacturing, medicine, or communication domains. It was not un-
til the middle of the century that the use of plasmas for the production of energy via
Fusion reactions was considered. This new goal shifted the relevant energy levels of
many orders of magnitude (tens of kilo electron volts) and accelerated the development
of modern plasma physics.

At such high energy levels, most particles in the plasma are ionized, we call this a
high-temperature or highly ionized plasma. In this case, plasma can be thought of as a
collection of free-charged particles with a very small fraction of neutral particles. The
behavior of such a state of matter becomes collective in nature, dictated by long-range
electromagnetic forces: Themotion of a typical particle is governed by electromagnetic
interactionswith a collection of distant particles instead of binary interactions between
neighboring particles, in contrast to the strong coupling among individual particles
governing neutral fluids.

Aside from the potential practical importance of plasmas, investigations into plasma
dynamics hold inherent interest to physicists on multiple fronts. On a macroscopic
scale, the coupling between various motions and fluctuating electromagnetic fields
gives rise to considerable studies of plasma instabilities. On amicroscopic level, plasma
consists of a collection of interacting particles through long-range forces, thus, pre-
senting an N-body problem of immense academic interest. Lastly, it could lead to sig-
nificant progress in the understanding and connection between the microscopic and
macroscopic description of a plasma, such as the transport of particles and energy.

1.1.2 Plasmas models
Since plasma is a collection of charged particles, in principle, a simple model such as
Newton’s equations of motion will correctly describe the dynamics of the plasma. Nev-
ertheless, modeling the long range interaction between particles is a difficult task, and
will require enormous resources to characterize all the interactions between particles
of the plasma.

A fluid-like approach can solve this problem by considering not individual par-
ticles but macroscopic plasma sections. Through this model, one assumes a plasma
to be a smoothly energy-distributed collection of particles, similar to a neutral gas,
where quantities such as density, flow velocity, pressure, and temperature dictate the

6



1.1. High-temperature plasmas

evolution of the fluid. However, in a high-temperature plasma, this assumption is not
true. Specifically, in high-temperature plasmas collisions between particles are few
and far between, as a consequence, particles can resonate strongly with electromag-
netic waves and induce strong departures from a smooth-fluid distribution. An accu-
rate portrayal of such mechanisms calls for a more accurate theory, the Kinetic model.
In the collision-less regime, plasma is correctly modeled by the Vlasov-Maxwell sys-
tem of equations, which describes the time evolution of particle distributions f in a
6D (3D-3V) phase-space. Relevant kinetic-Vlasov plasmas are astrophysical, laser, or
magnetic confinement plasmas.

1.1.3 High-temperature plasmas
In literature, different terms can be encountered depending on the nature of the plasma,
such as: ”high-temperature”, ”weakly-coupled”, ”Vlasov”, or ”collision-less”. In astro-
physical and interplanetary plasmas, which are low-density plasmas, the absolute tem-
perature reaches levels where the thermal kinetic energy significantly exceeds the po-
tential energy of interactions among charged particles. On the other hand, in magnetic
confinement plasmas, the temperature of ions and electrons is of the order of Millions
of degrees. Such plasmas are confined in strong magnetic fields, where the collisional
frequency (or mean-free-path) is of multiple orders larger than the size of the machine.

Figure 1.1: High-temperature plasma in a solar flare

One of the challenges in studying high-temperature plasmas is the intricate and
complex dynamics displayed by plasma parameters such as particle densities, temper-
atures, or magnetic fields across various time scales. In the short term, instabilities or
fluctuations in these quantities emerge. Some causes includewave-particle resonances,

7



Chapter 1. Introduction

fast-evolving species like electrons, or nonlinear effects. For intermediate times, the
plasma experiences the growth of linear instabilities and transitions toward equilib-
rium. This includes the development, growth, and dissipation of coherent phase-space
structures or the generation of plasma turbulence. And for large timescales, a quasi-
stationary state is characterized by strong nonlinear saturation and stabilization of
plasma fluctuations. Understanding and controlling all the mechanisms involved in
plasma dynamics through theoretical and numerical modeling is of considerable sci-
entific interest, whichwill result in significant progress for humanity, likemagnetically
confined fusion energy or space propulsion systems.

1.2 Turbulence and transport in plasmas

Plasma turbulence plays an important role in natural and laboratory plasmas, a no-
table example is the small-scale turbulence in magnetic confinement fusion, which
determines the energy confinement time and performance of the devices. Fundamen-
tally, turbulence and transport are examples of nonlinear dynamics for high degrees of
freedom systems, such as plasmas. Which can be triggered by for instance by instabil-
ities or wave-particle resonances. Some examples of very effective transport processes
in plasmas are particle and energy flows, or electromagnetic collisions. These result
in large mass, charge, and energy transfers, which tend to bring the system toward
thermodynamical equilibrium.

1.2.1 Turbulence

Measurements on astrophysical and laboratory plasmas have shown that most high-
temperature plasmas of interest are turbulent in nature. This turbulence manifests
as particle density or electromagnetic potential fluctuations spanning a broad range of
scales. Within these fluctuations, energy cascades between scales, leading to small and
large-scale chaotic particle motion, transport of momentum and heat, and the genera-
tion of highly dynamical plasma structures.

Turbulence theories aim to model and predict the statistical behavior of micro-
scopic fluctuations and their macroscopic consequences within the entire plasma sys-
tem through the use of internal quantities such as plasma parameters, electromag-
netic fields, and external sources and sinks of particles and energy. Early plasma the-
ories borrowed concepts coming from turbulence theories of neutral fluids, such as
near-equilibrium where spectral cascades transfer energy from large to small scales,
or mean-field approaches where relaxation mechanisms drive unstable particle dis-
tributions. However, research showed that high-temperature plasmas depart greatly
from neutral fluid turbulence due to significant non-linear and kinetic effects such as
resonances.

8



1.3. Phase-space structures

1.2.2 Theories and numerical simulations

One of the first theories considering wave-particle resonances is the Quasi-Linear the-
ory [Romanov and Filippov, 1961; Drummond and Pines, 1962; Vedenov et al., 1962]
of plasmas turbulence, with several corrections to consider neglected non-linear ef-
fects years later, such as resonance broadening [Dupree, 1966; Weinstock, 1968]. The
Quasi-linear theory aims to study the problem of plasmas outside equilibrium by ne-
glecting strong non-linear particle trapping and coupling between modes. It has been
shown throughout the decades that for a relatively large number of plasmas, quasi-
linear theory and resonance broadening are sufficient and correctly predict plasma
turbulence. However, for many astrophysical or laboratory high-temperature plas-
mas, it has been shown that strong particle trapping and non-linear effects take place
and drive the dynamics of the plasma. More sophisticated theories have been built in
the past decades, which hope to improve the understanding of non-linear turbulence
and transport [Berman et al., 1982; Dupree, 1983].

On the other hand, in recent years, thanks to the technological improvement of
electronics, complex kinetic numerical simulations have seen a surge in the investi-
gation of plasma turbulence and transport. The use of numerical simulations allows
researchers to develop new exciting scenarios onwhich they can verify analytical theo-
ries before implementing them in expensive laboratory devices. Some examples of nu-
merical codes are COBBLES [Lesur et al., 2006a; Lesur, 2010], TERESA [Sonnendrücker
et al., 1999; Depret et al., 2000; Sarazin et al., 2005], or GYSELA [Abiteboul et al., 2011;
Grandgirard, 2016], which are kinetic codes in two, four, and five-dimensional phase-
spaces, respectively. However, the agreement between simulations, theories, and ex-
periments remains incomplete. Numerically relying on arbitrary or non-physical input
parameters, a narrow set of approximations, numerical diffusion, or an insufficiently
discretized phase-space due to outdated computational capabilities. And analytically,
relying on simplified models, extremely limited conditions of validity, or hypotheses
that neglect or average-out effects like phase-space structures.

Nevertheless, using analytical theory and numerical simulations to understand
plasma turbulence better remains extremely valuable for researchers. In particular,
theories and simulations which include full non-linearities, wave-particle resonances,
and phase-space structures.

1.3 Phase-space structures

Phase-space structures are specific arrangements of particle distribution phase-space
density. They are known in various contexts of plasma turbulence, such as Bump-on-
tail, two-stream or ion-acoustic instabilities, Landau damping, atmospheric plasmas,
magnetic reconnection, and magnetic-confinement devices.
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Chapter 1. Introduction

A variety of phase-space structures are described in the literature, one particular is
a vortex-like structure of localized negative phase-space density fluctuation, δf < 0,
that leads to strong local trapping of particles, which is called a phase-space hole. Other
structures known as phase space bums or plateaus have local positive δf > 0 or null
δf = 0 phase-space density fluctuation, respectively.

Figure 1.2: Schematic of the different electrostatic quantities for a phase-space
electron-hole. In blue is the charge density perturbation, in black is the electric field,
and in green is the electric potential. And lastly, the phase space of the electron trajec-
tories: orange for free-passing electrons, brown for trapped electrons, and red for the
separatrix.

Phase-space holes are the result of localized kinetic non-linear particle-trapping
through their own electrostatic potential; figure 1.2 shows the relation between a
phase-space structure (in this case and electron-hole), the density and potential pertur-
bation. Phase-space holes were observed through numerical simulation [Roberts and
Berk, 1967], later analyzed by theory [Bernstein et al., 1957; Schamel, 1971; Ghizzo,
1987], and observed in a variety of stellar and laboratory plasmas [Boström et al., 1988;
Ergun et al., 1998; Khotyaintsev et al., 2010; Kamaletdinov et al., 2021].

1.3.1 Dynamics of structures
Studies have observed phase-space to have rich and complex dynamics: They can ex-
plore the phase-space by accelerating and decelerating, grow in size and depth, be

10



1.4. Objective and Outline

dispersed or destroyed, and interact or merge with each other. However, quantita-
tively and predictively little is known about phase-space hole dynamics, except for the
non-linear growth rate of an isolated hole [Boutros-Ghali and Dupree, 1982; Berman
et al., 1985], and the attractive interaction between different structures [Ghizzo et al.,
1987].

Fig. 1.3 shows the life of an isolated phase-space hole: Starting as a small phase-
space perturbation, which grows by accelerating and trapping an increasing number
of particles, saturating at a phase-velocity close to the average particle velocity of the
species, and finally getting destroyed due to non-linear effects with the particle distri-
butions or other phase-space structures.

Figure 1.3: Mechanism of the development of a phase-space structure: Small perturba-
tion, growth and acceleration, saturation, and destruction.

This work attempts to quantitatively study the dynamics of isolated phase-space
holes through numerical kinetic simulations and analytical theory. Furthermore, an
effort was made to investigate the binary interactions between phase-space structures
with the aim of predicting the dynamics of the involved structures.

1.4 Objective and Outline

The aim of this thesis is to improve the understanding of particle dynamics, namely dif-
fusion, and transport of particles, develop a strong database of numerical simulations,
and develop a strong analytical foundation of the mechanisms in question.

In chapter 2, we describe the analytical scaffold and present the numerical code
for the study of particle dynamics in prescribed electric fields. We discuss how the
simple problem of particles in a two-wave system presents localized regions of strong
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chaos and stochasticity. In particular, we focus on the behavior and statistics of particle
trajectories through time and space.

In chapter 3, we show the study of particle dynamics in a prescribed turbulent
electric field. We present quasi-linear and resonance-broadening theories applied to
plasma waves. Moreover, we show the results of numerical simulations in different
regimes of turbulence, including an expression at strong turbulence.

In chapter 4, we present the analytical theory necessary for the construction of a
stable phase-space structure in the context of the kinetic code COBBLES. Moreover,
we show the implementation in the code and the necessary steps to ensure long-time
stability.

In chapter 5, we show the dynamics of phase-space holes through kinetic simula-
tions and theory. We present the dynamics of isolated phase-space holes, including
growth, acceleration, and saturation. And we show the results of binary-interactions
between phase-space holes.

In chapter 6, we show the effects of phase-space holes in the dynamics of charged
particle trajectories. We compare the predicted diffusion of phase-space holes against
numerical simulations and how it affects quasi-linear theory.

Finally, in chapter 7, we summarize the principal results and propose further ana-
lytical and numerical investigations that can be pursued based on these findings.

12
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Chapter 2. 1D Particle trajectories in one, and two, wave(s) electric field

Throughout the years, the study of nonlinear dynamical problems has been at the
center of numerous studies in different domains, such as astronomy, particle physics,
statistical mechanics, quantum mechanics, and plasma physics. The pendulum is ar-
guably the oldest and most important non-linear problem in all physics, with records
showing that it was first studied in the early 17th century by Galileo Galilei. One of the
most critical uses for centuries was as the most precise timekeeping method, thanks
to the regular oscillations of the pendulum. Today pendulums are used in various sci-
entific instruments like seismometers and accelerometers or for leisure in amusement
parks. Academically, the pendulum represents one of the fundamental problems for
any future physicist since it corresponds to the dynamics of a system under a simple
sinusoidal wave.

As one increases the number of waves in the system, an issue arises, the system’s
dynamics become chaotic. Indeed, as the number of degrees of freedom increases, the
Hamiltonian systems transition to a phenomenon known as large-scale chaos. This
topic has been the subject of extensive research during the latter half of the 20th cen-
tury, as documented by researchers such as Chirikov [Chirikov, 1969], Escande [Es-
cande and Doveil, 1981], and Brandon [Brandon et al., 1995]. This chapter will delve
into the system’s dynamic of single and a pair of sinusoidal waves. Additionally, we
will introduce the PERKS code, a tool used to study these systems.

2.1 Deterministic Hamiltonian system

2.1.1 Particle trapping

In classical mechanics, a potential well represents a specific region in space where a
particle with a certain energy level can be confined. This confinement is due to the
presence of a higher potential surrounding the particle. This is analogous to a ball
resting at the bottom of a valley, where it is trapped unless provided enough energy to
climb over the surrounding hills.

In the context of classical physics, potential wells can be used to describe a large
variety of physical phenomena, such as the oscillations of a pendulum, the orbits of
planets in the solar system, or the trapping of charged particles in electric or magnetic
fields. In such problems, the characteristics of the potential well, in particular the shape
and depth, play an important role in determining the particle’s motion. The motion of
particles within a potential well can be classified into two categories: Trapped and Pass-
ing particles. Trapped particles are any particles with insufficient energy to overcome
the potential barrier, and these particles will remain captured within the well. On the
other hand, Passing particles, also known as Free particles, are all particles possessing
sufficient energy to escape the potential well. A particle will remain either trapped or
free within the potential well unless provided a mechanism for energy exchange, such
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2.1. Deterministic Hamiltonian system

as particle collisions, energy dissipation, or particle-wave resonances.
Analytically, one can express the trapping condition starting from the total energy

equation of a particle, which writes:

E(x, v) = mv2

2 + V (x) (2.1)

where E(x, v) is the particle’s total energy, V (x) is the classical potential energy of
the system, andm, v, and x, are the particle mass, velocity, and position, respectively.

If the particle’s energy is lower than the maximum value of the potential energy
E < Vmax, then the particle is said to be trapped in the potential. Otherwise, if the
particle’s energy is higher than the maximum potential energy E > Vmax, it is said to
be a free or passing particle. Note the case where both the total andmaximum potential
energy are equal E = Vmax. In this case, this trajectory is named the Separatrix,
which is the boundary separating the two different particle behavior, and its velocity
is defined to be:

v(x) = ±
√

2
m

(
Vmax − V (x)

)
(2.2)

2.1.2 Pendulum: Sinusoidal wave

In general, the problem of trapped particles in an arbitrary potential can not be solved
analytically. As a result, it becomes necessary to address specific cases independently
of each other. One of the most important one-dimensional models in all of physics
is the Pendulum problem. This problem is a staple in all first-year university courses
on classical mechanics. Nevertheless, it is rarely solved in its entirety. Indeed, tra-
ditionally the problem is simplified into the Harmonic oscillator, which can easily be
solved.

For the Pendulum problem, the Hamiltonian of the system, denoted as H(v, x), is
expressed as follows:

H(v, x) = mv2

2 − A cos kx (2.3)

where A is the positive amplitude of the potential energy A = +|A|, and k the wave
number of the potential energy. The potential energy of the pendulum takes the form
of a sinusoidal wave. This implies the presence of potential wells in which particles
can become trapped. This makes the Pendulum problem a useful model for studying
the behavior of trapped particles in potential wells. In order to find the characteristic
equations of motion for the Pendulum, we first find the Action-Angle variables J and
ωb.

From equation 2.3, one can rewrite the Hamiltonian in terms of the generalized
coordinates (q, p) and obtain a relationship between the momentum p and generalized
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position q = kx

p = ±
√

2m
k2

√
H0 + A cos q , (2.4)

where H0 is the constant total energy of an arbitrary trajectory. Here the value of the
ratio H0

A
gives the type of trajectory will perform: Trapped for H0

A
< 1 and Passing for

H0
A
> 1. By definition, the action of a couple of generalized variables (q, p) is defined

as:
J = 1

2π

∮
p dq (2.5)

where p is the generalized momentum of equation 2.4 in other words

J = 1
2π

√
2m
k2

∮ √
H0 + A− 2A sin2 q/2 dq (2.6)

where the cos q of equation 2.4 was replaced by the half-angle identity. From this
equation, we define the quantity

a =
√
H0 + A

2A (2.7)

referred to as the elliptic modulus, note that a = 1 defines the separatrix. Moreover,
since a particle trajectory are symmetrical in both the horizontal and vertical direction,
we can reduce the contour integral to an integral over a quarter of the trajectory, i.e.
from q = 0 to q = qm, the maximum value of the generalized coordinate q. And by
reorganizing the equation, we obtain the following:

J = 4a
π

√
mA

k2

∫ qm

0

√
1 − 1

a2 sin2 q/2 dq . (2.8)

Passing particles

To solve 2.8 for passing particles, a > 1, we consider only the particle trajectories at
positive momentum, in other words, those in the top half of the phase space. Then
we define the action J of a passing particle as half of equation 2.8. Note that since the
potential energy is periodic in the q direction, then passing particle trajectories will
also be periodic in the same direction. Therefore, the maximum q is given at qm = π.
By choosing the change of variable θ = q/2 and simplifying the action equation 2.8,
we simplify the action as:

J = 4a
π

√
mA

k2

∫ π/2

0

√
1 − 1

a2 sin2 θ dθ . (2.9)
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Note that the right-hand side of equation 2.9 is by definition the complete elliptic inte-
gral of the second kindE(a). Therefore, we can simplify the action of passing particles
as:

J = 4
π

√
mA

k2 aE
(1
a

)
. (2.10)

Note that the argument of the elliptic integral of the first kind must satisfy the inequal-
ity 0 < 1/a < 1, which in this case is true, since for passing particles a > 1.

To obtain the characteristic frequency of oscillation of particles, in other words, the
time it takes a particle to perform one periodic orbit, we use the frequency equation
of Hamiltonian mechanics defined as:

ωb =
(
∂J

∂H

)−1

. (2.11)

From equation 2.10, we deduce that the oscillation frequency of a passing particle with
elliptic modulus a is equal to

ωb,P = π

√
k2A

m

a

K
(

1
a

) , (2.12)

where K(z) is the complete elliptic integral of the first kind.

Trapped particles

In order to solve 2.8 for trapped particles, a < 1, we choose the change of variables
1
a

sin2 a/2 = sinφ, which leads us to rewrite the integral of equation 2.8 as,

J = 8a2

π

√
mA

k2

∫ π/2

0

1 − sin2 φ√
1 − a2 sin2 φ

dφ . (2.13)

Note that the maximum of q occurs when p = 0, therefore from equation 2.4, we obtain
qm = 2 arcsin a. Which in addition to the change of variable gives us qm = π/2.
Thus trapped particle action can be rewritten as a function of the first and second kind
complete elliptic integrals K(a) and E(a):

J = 8
π

√
mA

k2

[
E(a) − (1 − a2)K(a)

]
, (2.14)

note that the elliptic modulus a must satisfy the inequality 0 < a2 < 1, which in the
case of trapped particles is satisfied.
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To obtain the characteristic frequency of oscillation of trapped particles, we once
again inject the action variable of trapped particles into equation 2.11. We deduce that
the oscillation frequency of a trapped particle with elliptic modulus a is equal to

ωb,T = π

2

√
k2A

m

1
K(a) (2.15)

Knowing this previous methodology, we can solve the equations of motion for
trapped particle trajectories in the Pendulum problem. Indeed from equation 2.5, we
can deduce that the differential equation of x can be written as:

dx

dt
= ±2a

√
A

m

√
1 − 1

a2 sin2 kx/2 . (2.16)

To simplify this expression, we choose the change of variable sin kx/2 = a sin z, which
leads us to rewrite the differential equation as,

dz

dt
= ±

√
Ak2

m
cos kx/2 . (2.17)

After a few algebraic calculations, this expression can be transformed into the incom-
plete elliptic integral of the first kind K(z, a)

∫ t

0

√
Ak2

m
dt′ =

∫ z

0

dz′√
1 − a2 sin2 z′)

= K(z, a) (2.18)

where z is known as the Jacobi elliptic amplitude used to define the Jacobi elliptic
functions. Moreover, the elliptic amplitude is also known as the inverse function of
the incomplete elliptic integral of the first kind z = K−1(

√
Ak2

m
t + ϕ0, a), here ϕ0 is

the integration constant of the left term of equation 2.18. In other words, by inject-
ing equation 2.18 into the change of variable sin z = sin kx/2/a we can obtain the
equations of motion (x, v):

x(t, a) = 2
k

arcsin
a sn

√Ak2

m
t+ ϕ0, a

 (2.19)

v(t, a) = ±2a
√
A

m

√√√√√1 − sn2

√Ak2

m
t+ ϕ0, a

 (2.20)

where sn(ϕ, a) is the Jacobi elliptic sinus function, defined as sn(ϕ, a) = sin(z(ϕ, a)).
Note that ϕ0 is obtained trough equation 2.18 for t = 0, in other words ϕ0 = K(π/2, a).
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2.1.3 Harmonic Oscillator limit
The harmonic oscillator is one of the well most known problems in physics. Most
physicist learns how to solve the Harmonic oscillator during their studies, yet it is
the most underestimated problem by students for its simplicity and strong hypothesis.
Nevertheless, it is used in countless physics domains to solve the world’s fundamental
questions.

Since the Harmonic oscillator is the small perturbation limit of the Pendulum prob-
lem, one obtains the equivalent quantities by taking the respective limit of the equa-
tions shown in the previous section 2.1.2. Indeed by taking the limit of deeply trapped
particles, in other words, a << 1, we can simplify the trapped particle frequency as:

ωb,0 =
√
k2A

m
. (2.21)

Since in the limit a << 1,K(a) → π/2. Moreover, equations 2.19 and 2.20 are simpli-
fied into the classical Harmonic oscillator,

x(t) = x0 cos (ωb,0t+ ϕ0) , (2.22)

v(t) = −x0ωb,0 sin (ωb,0t+ ϕ0) , (2.23)

where x0 and ϕ0 are the initial particle position and phase.

2.2 PERKS code

2.2.1 Principle
In order to study particle dynamics, we have developed a numerical code that performs
the computation of test particle trajectories in the presence of an external, non-self-
consistent, one-dimensional electric field based on a fourth-order Runge-Kutta algo-
rithm. We have named this code PERKS, which stands for Parallel Electrostatic Runge-
Kutta Solver.

PERKS is designed to solve Newton’s one-dimensional equation of motion for N
independent test particles. An important feature of this code is its parallelization across
particle space. This means that each processor is assigned to compute the trajectories
of a subset of the total number of particles, thereby improving computational efficiency.
The Runge-Kutta method, specifically the fourth-order used in PERKS, is a numerical
technique used to solve ordinary differential equations. It provides a balance between
computational complexity and accuracy, making it an ideal choice for our work.

The concept of test particles refers to an ensemble of particles that are used to study
the statistical effects of the electric field on particle dynamics. In our case, these test
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Figure 2.1: Numerical phase-space trajectories for the pendulum problem. Trapped
particles in black, passing particles in blue, and the separatrix in red.

particles are independent of each other, meaning that the motion of one particle does
not affect the other particles or the electric field. In other words, our code does not
account for particle-particle collisions nor retroactive effects on the electric field, im-
plying that its behavior will be prescribed with external parameters. This assumption
simplifies the approach, allowing us to focus on the desired effects we want to study.

At t = 0, N test particle trajectories are initialized with random positions x0,i and
velocities v0,i, and here the i stands for the particle index. In particular, particle posi-
tions are distributed uniformly in a simulation box of length Lx. In other words, in the
interval [0;Lx[. Similarly, particle velocities are distributed around a mean velocity v0
with a Gaussian probability distribution function. In practice, an external electric field
E(x, t) is provided as an analytical function from which the algorithm can calculateE
at the particle position, up to machine precision (double float).

Particle trajectory diagnostics are computed at each time step, such as particle dis-
tributions in both velocity and position space, the first four statistical moments (mean,
variance, Skewness, and Kurtosis), and the maximum finite-time Lyapunov exponents.
For more information on these diagnostics, please refer to section 3.4.1 and section
3.4.2.
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2.2. PERKS code

Figure 2.2: Numerical relative error of test particles in a sinusoidal potential as a func-
tion of time.

2.2.2 Application to the Pendulum

In order to verify and quantify the accuracy of the PERKS code, we studied numerical
particle trajectories in the presence of a sinusoidal potential of amplitude A. From
the theory in section 2.1.2, we expect two types of particle trajectories, passing and
trapped particles, separated by a separatrix.

We performed a series of simulations for particles initialized with zero initial po-
sitions x0,i, i.e. in the wave reference frame, and initial velocity v0,i = 0. Analytically
we calculated each particle’s elliptic modulus ai trough equation 2.7, which in the case
of particles with such initial conditions, is proportional to the initial particle velocity.

Figure 2.1 shows different pendulum phase-space trajectories calculated through
the numerical code PERKS. Trapped particles are shown in black, passing particles in
blue, and the analytical separatrix in red.

PERKS relative error

As with any numerical algorithm to solve differential equations, the primary source of
numerical error is the order of small-parameter expansion of the method used. In our
case, we use the fourth-order Runge-Kutta method meaning that the total accumulated
error is on the order ofO(dt4), while the local truncation error is on the order ofO(dt5),
where dt is the time-step.

Numerically we obtain figure 2.2, which shows the relative error in total energy
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between numerical simulations and theory as a function of time for different time step
values. As anticipated, the larger the time step, the larger the error on the total en-
ergy. For small values of dt (< 0.1/ωP ), the numerical error on the energy remains
smaller than 10−9, at a final time of tfin = 103/ωP , which considering the number
of iterations performed is more than enough for a correct description of particle tra-
jectories (We observed important changes in the behavior of a few trajectories for
tfin = [104, 105] /ωP , and many for tfin = 106/ωP ). This manuscript’s numerical
simulations with the PERKS code have a time step smaller than 0.1/ωP .

2.3 Two waves: Standard map

At the start of the 20th century, physicists began to delve into the dynamics of parti-
cles influenced by the presence of two sinusoidal waves. At first glance, this problem
appears straightforward, only requiring the addition of a second wave to the existing
wave from the Pendulum problem. However, as is often the case in physics, reality
proved to be more complicated. In practice, the system showed unpredictable behav-
ior, what is known as chaos or stochasticity.

Throughout the years, the exploration of chaos often led to intriguing mathemati-
cal scaffolding, one of which is the Standard Map, also known as the Chirikov–Taylor
map [Chirikov, 1969; Brandon et al., 1995]. This mathematical model allows the easy
visualizations of particle dynamics for systems with two degrees of freedom, such as
the double pendulum. These types of systems are prevalent in various fields, like stel-
lar mechanics, particle physics, chemistry, fluid dynamics, solid-state physics, or in the
interest of this manuscript, plasma physics.

2.3.1 Transition to Hamiltonian stochasticity
In the field of chaos and stochasticity, two key questions often arise: How can the
chaotic motion be predicted, and when does a system transition into chaotic behavior?
This has been partially solved since, for a straightforward Hamiltonian system, the
degree of stochasticity is quantified using the Chirikov resonance-overlap criterion,
denoted as Λ first introduced by Chirikov [Chirikov, 1960], also commonly referred to
as the stochasticity parameter s. Λ is defined as,

Λ = ∆1/2v0 + ∆1/2v1

∆vϕ
0,1

(2.24)

where ∆1/2vi =
√

2Ai

m
is the maximum half-width of the separatrix along the velocity

direction of the ith wave, Ai the amplitude of the potential of the ith wave. And ∆vϕ
0,1

is the difference in phase velocity between the first and zeroth waves.

22



2.3. Two waves: Standard map

The Chirikov resonance-overlap parameter measures the increase in stochasticity
in the system, which is directly proportional to the overlap between the two interacting
waves. As the value of Λ increases, stochasticity transitions from local to global. Since
in a two-degree-of-freedom system, such as the one studied in this section, as the
overlap between the waves increases, particles within the system’s boundaries can
begin exploring all allowed regions of phase-space rather than being confined to one
trajectory or a limited region of phase-space. Therefore it measures the fraction of the
phase-space area where chaos is present.

Amore natural characterization of the transition to stochasticity is that as the strength
of the perturbation increases, then the regions of phase-space in between the separa-
trixes will present an increasingly larger stochastic motion. These regions have been
studied in detail trough the KAM,Kolmogorov-Arnold-Moser, theory [Kolmogorov, 1954;
Möser, 1962; Arnold, 1963]. Some examples of problems where KAM theory is used for
are the 3-body problem, double coupled pendulum, pr magnetic islands on magnetic
fusion devices.

2.3.2 Standard map
In order to study the transition between periodic-bounded orbits and stochastic orbits,
that can explore a large area of phase-space, we use the standard map model. This
map describes the Poincaré section of the system. The mapping is obtained from the
2π periodic time-dependent Hamiltonian equations of motion 2.3,

xi+1 = xi + 2πvi+1 (2.25)
vi+1 = vi − A sin kxi+1 (2.26)

where xi and vi are the particle position and velocity for the ith iteration of mapping,A
is the amplitude of the time-dependent perturbation wave, and k is the wave number.
Every iteration of this map generates one point of the Poincaré map of the system,
whereas, with the traditional numerical integration of the equations of motion, tens
to hundreds of steps are necessary to get one point of the Poincaré map. Therefore, in
terms of numerical resources, the standard map allows for a more efficient approach
to studying such systems.

Figures 2.3, 2.4 and 2.5 show the Poincaré section for the two-waves problem. These
figures show the characteristic orbits for three different Chirikov overlap parameters,
Λ = 0.50 for 2.3, Λ = 0.70 for 2.4, and Λ = 1.10 for 2.5. Each color represents a
different initial condition; note that some colors are repeated.

In these figures, four types of regions can be observed:

• Firstly, a region of phase-space where orbit follows passing, or free, particle tra-
jectories, similarly to the passing particle trajectories of figure 2.1 for the pendu-
lum. These orbits can be better observed in figure 2.3. They are located around
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Figure 2.3: Poincaré section of the two-wave system, with a spatial periodicity of 2π,
and a Chirikov overlap parameter of Λ = 0.50. Obtain via particle integration with
the PERKS code.

Figure 2.4: Poincaré section of the two-wave system, with a spatial periodicity of 2π,
and a Chirikov overlap parameter of Λ = 0.70. Obtain via particle integration with
the PERKS code.
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Figure 2.5: Poincaré section of the two-wave system, with a spatial periodicity of 2π,
and a Chirikov overlap parameter of Λ = 1.10. Obtain via particle integration with
the PERKS code.

the individual separatrixes and in between the waves. As for the pendulum, par-
ticles in this region are free of any potential and will only explore a limited range
of velocities. Note that only a few passing particle orbits above the resonance
are shown to prevent cluttering.

• Secondly, two regions where trajectories follow the trapped, or closed, orbits
in phase-space, such as the two large regions at phase-velocity of 1vT and 2vT .
Here, particles are strongly trapped in each wave’s potential and follow slightly
deformed trapped particle trajectories, similar to the trapped orbits in figure 2.1
for the pendulum.

• Smaller localized regions of phase space where particles follow trapped-like or-
bits; however, they are regular trajectories. In these regions, particles are trapped
in what is known as secondary islands generated via the interaction of the two
waves or main islands. These are generally localized in the intersection between
bothwaves, in this case with a phase-velocity of 1.5vT , but also found in between
layers of trapped particle orbits from the main islands, like the ones around a
phase-velocity of 2vT and spatial coordinate of 1λD on figure 2.4, or the four
secondary islands, clearly visible due to their size, around the main islands in
figure 2.5. One property of the Standard map is that if we zoom in on one of
these secondary islands, we would observe fractal property, in which new sec-
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ondary islands would appear.

• And finally, a region where stochasticity and chaos dominate the behavior or
particle trajectories. This stochastic region can be better observed in figure 2.5
due to the large overlap parameter. Here, any initial condition located in this
region will, with enough time, explore the entirety of the stochastic region. Here
the secondary islands are confined to around the main islands with a few small
secondary islands in the intersection at phase-velocity 1.5vT .

The standard map problem for two interacting waves shows an intermediate step
between a single wave (pendulum) dynamics and what occurs in plasmas where reso-
nances between many waves can occur. It displays the transition between determin-
istic trajectories of single isolated waves and the stochastic behavior of particles in a
system of two coupled waves.

2.4 Conclusion

In summary, in this chapter, we recalled the basic mechanism of particle trapping in
potential wells, in particular for the pendulum problem and harmonic oscillator. We
presented the test particle code PERKS used in this manuscript, the basic algorithm and
we applied it to the pendulum problem and the two waves system. For the latter, we
presented the Standard map and the notion of stochasticity in a system of two coupled
waves, as well as the Chirikov overlap criterion which characterizes the stochasticity
of a system with two or more coupled waves.

This chapter serves as an introduction and intermediate to the more complicated
system of many interacting waves. The following chapter 3 presents the problem of
charged particles in the presence of a prescribed turbulent electric field, where a more
comprehensive study on stochasticity and diffusion of particles is presented.
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Chapter 3

Turbulent electric field: Many
interacting waves
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Chapter 3. Turbulent electric field: Many interacting waves

In the following chapter, we delve into the effects turbulent electric fields have
on charged particle trajectories. The content is primarily drawn from an article we
published in early 2023 [Guillevic et al., 2023], with minor modifications to ensure
consistency of notation and a restructuring of the sections to provide a comprehensive
narrative.

Charged particle velocity-space diffusion in a prescribed one-dimensional turbu-
lent electric field is investigated through numerical trajectories in phase-space (1D1V)
and compared against quasi-linear theory (QL), including resonance broadening (RB).
A Gaussian spectrum electric field of variable amplitude E is studied in conjunction
with two plasma dispersion relations, namely the Langmuir and ion-acoustic disper-
sion. A first parameter scan shows that RB effects become significant for a Kubo num-
berK of a few percent. A Kubo number scan shows that diffusion increases as a power
law of D ∝ K3 ∝ E3/2 for large Kubo numbers. Moreover, at large Kubo numbers,
transport processes include significant diffusion measured at velocities much higher
than the resonant region, where QL and RB predict negligible diffusion. For times
much larger than the trapped particle flight time τb and the autocorrelation time τ0,
the velocity distribution departs from a Gaussian. Nevertheless, measurements show
that the variance increases linearly in time, with a Hurst parameter ofH ∼ 0.5, where
the diffusion scales asK5/2 ∝ E5/4 andK3/2 ∝ E3/4 for small and large Kubo number
respectively.

3.1 Introduction

The full description of charged particle dynamics in an electric field including several
waves is sometimes divided into two categories: First, in the small amplitude limit,
each particle interacts linearly with only one of the waves, and the dynamics are regu-
lar. Second, as the amplitude of the waves grows, particles interact with more than one
wave leading to chaotic dynamics. From the point of view of the waves, the non-linear
wave-particle interactions lead to energy cascades from one wave towards many other
waves [Kolmogorov, 1941], leading to the generation of lower and higher modes, here
the modes refer to the eigenfunction of the system. In fully developed turbulence, the
electric field modes can be in random phase between each other, and the dynamics
become complex; particles can be trapped in a wave and again de-trapped due to the
interaction of a different mode. In a collision-less plasma, turbulence is one of the lead-
ing causes of particle transport and energy losses through plasma wave-particle reso-
nances. In addition, a significant impact of turbulence is in the heating of the plasma
in the form of particle acceleration [Mcbride et al., 1972]. The heating of particles has
substantial consequences when energetic particles drive instabilities, in magnetic re-
connection in space plasmas [Hamilton and Petrosian, 1992; Liu et al., 2008], stimulated
Raman scattering [Gorbunov, 1973], or laser-plasma interactions [Bychenkov, 2018].

28



3.1. Introduction

In the early 60s, turbulence studies saw a surge with the introduction of quasi-
linear theory [Romanov and Filippov, 1961; Drummond and Pines, 1962; Vedenov et al.,
1962], and resonance broadening [Dupree, 1966;Weinstock, 1968]. Quasi-linear theory
first aimed to study the problem of plasma dynamics outside equilibrium by neglect-
ing mode coupling, considering part of the non-linear terms, and the evolution in time
of particle distribution, in which it is assumed that turbulence does not trap particles.
Under these conditions, it is possible to derive an expression for transport as an ex-
pansion of the electric field amplitude. For moderate amplitudes (or low dispersion),
non-linear terms are no longer negligible, which leads to a broadening of wave-particle
resonances andmode coupling effects. Including the effect of QL diffusion in themodel
of particle motion, known as re-normalization, enables the account of this broadening
[Adam et al., 1981; Laval and Pesme, 1983].

For prescribed electric fields with random phases, studies have shown a strong
qualitative and quantitative agreement with the quasi-linear theory [Doveil and Grésil-
lon, 1982; Hirose and Ishihara, 1999] at low electric field amplitude. Here we investi-
gate the effects of high amplitude turbulence [Vlad and Spineanu, 2017; Médina et al.,
2018; Lim et al., 2020]. Regarding the self-consistent problem, that is accounting for
the modification of mean fields. It has been experimentally [Tsunoda et al., 1987b,a,
1991] and numerically [Besse et al., 2011] demonstrated that re-normalization is not
necessary at low amplitude. Nevertheless, recent numerical simulations for the self-
consistent bump-on-tail instability [Crews and Shumlak, 2022] reveal that the quasi-
linear theory fails to predict plasma processes at low amplitude, enhanced diffusivity,
and phase-space restructuring.

Analytically, one of the parameters ruling the validity of quasi-linear and resonance-
broadening theories is measured in terms of the Kubo number [Kubo, 1963]. This
quantity is defined as the ratio between the time it takes the turbulent electric field
to change its shape, referred to as the autocorrelation time τ0, and the time it takes a
trapped particle to complete an orbit, referred to as the flight time or bounce time τb.
In other words, the Kubo number is

K = τ0/τb (3.1)

Alternatively, by rewriting this expression as a function of the electric field ampli-
tude, we obtain the expressionK ∝ E1/2, since τb ∝ E−1/2. Note that, for quasi-linear
and resonance broadening theories to be applied, the Kubo number should be much
lower than unity K ≪ 1 [Vedenov et al., 1962].

The importance of the Kubo number is ubiquitous in the literature related to tur-
bulence. First, it allows the differentiation of the type of trajectory performed. As a
mental representation, one may picture particles jumping between arcs of trapped tra-
jectories for K ≪ 1, and particles performing multiple trapped orbits separated by
small jumps (or arcs) between two different trapped particle trajectories [Vlad et al.,
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Chapter 3. Turbulent electric field: Many interacting waves

2004; Escande and Sattin, 2007] for K ≥ 1. Furthermore, the Kubo number emerges
in multiple plasma turbulence theories, such as quasi-linear and mean-field theories
[Diamond et al., 2010; Lenard, 1960; Balescu, 1963], the latter describing the relaxation
transport in plasmas.

Calculations based on mixing length theory assume that the Kubo number is close
to unity K ≃ 1 [Dupree, 1972; Diamond et al., 2010], rather than K ≪ 1, as required
for the validity of the quasi-linear theory. However, mixing-length and quasi-linear
theories are often used simultaneously.

This study investigates the statistical diffusion coefficient of test particles in a pre-
scribed one-dimensional turbulent electric field. We compare results from numerical
trajectories against quasi-linear theory, including resonance broadening. Diffusion is
investigated for ion-acoustic and Langmuir dispersion relations to compare the effects
of dispersivity, and a Gaussian amplitude electric potential spectrum is adopted. Dif-
ferent regimes of particle trapping [Doveil and Grésillon, 1982; Hirose and Ishihara,
1999] are investigated,K ≥ 1 in particular. We address the following questions: How
far quasi-linear theory works from the K ≪ 1 regime? Is there a way to expand,
correct, or replace quasi-linear theory to describe a plasma in the K > 1 regime?
These questions are deeply connected with standard map problem [Chirikov, 1969,
1979; Rechester et al., 1981; Escande, 1982]. In this work, we are concerned with many
resonances.

In section 3.2, quasi-linear and resonance-broadening theories are presented. We
introduce the analytical description for the prescribed electric field in section 3.3 in
the case of plasma waves. Numerical results are reported in sections 3.5.1 and 3.5.2 for
small and large Kubo number regimes, respectively. Finally, a conclusion is provided
in section 3.6.

3.2 Turbulent autocorrelation time and quasi-linear
theory

In this section, we introduce the quasi-linear theory [Vedenov et al., 1962; Sagdeev,
1966] and resonance broadening correction [Dupree, 1966, 1967; Adam et al., 1981; Ishi-
hara et al., 1992] to study homogeneous steady-state turbulence in a one-dimensional
plasma.

3.2.1 Autocorrelation time

We focus on the Eulerian two-point autocorrelation function of the electric fieldE(x, t),
defined as ⟨E(0, 0)E(x, t)⟩, where the brackets ⟨·⟩ stand for the statistical average over
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3.2. Turbulent autocorrelation time and quasi-linear theory

an ensemble of particles, while t and x are the displacements over time and space re-
spectively.

From the point of view of a particle at a given velocity v, the electric field evolves
over a characteristic time scale called autocorrelation time. This time defines the typi-
cal time over which there is a noticeable change in the electric field shape. Analytically,
the Lagrangian autocorrelation time τ0(v) [Kubo, 1963] is defined as the integral of the
two-point autocorrelation of the electric field,

τ0(v) = 1
⟨E(0, 0)2⟩

∫ +∞

0
dt
∫ +∞

−∞
dxδ(x− vt)⟨E(0, 0)E(x, t)⟩ (3.2)

where δ(x−vt) is the Dirac delta function, and v the velocity of particles in the electric
field. By solving the space integral equation (3.2) is simplified as

τ0(v) = 1
⟨E(0, 0)2⟩

∫ +∞

0
dt⟨E(0, 0)E(vt, t)⟩ (3.3)

Note that τ0 is often interpreted as the time it takes for the electric field to change its
shape. However, for our purposes, it represents the time it takes particles to receive a
velocity kick from a low-amplitude turbulent electric field, in other words,K ≪ 1.

3.2.2 Quasi-linear theory for low amplitude fields

To study the one-dimensional motion (xi(t), vi(t)) of a charged particle, identified by
an index i, in a turbulent electric field E(x, t), we use Newton’s equation of motion

d2xi

dt2
= q

m
E(xi, t) (3.4)

where q andm are the electric charge and mass of the particle, respectively.
By integrating equation of motion (3.4) over time, the i-th particle velocity varia-

tion ∆vi(t) = vi(t) − vi(0) at time t is obtained as

∆vi(t) = q

m

∫ t

0
dt′E(x(t′), t′) (3.5)

Moreover, the statistical mean square variation σ2
v , or variance, of an ensemble of N

particles is defined as

σ2
v = 1

N

N∑
i=1

(∆vi(t))2 (3.6)

In quasi-linear theory, the unperturbed motion xi(t) = xi(0) + vit is substituted
into equations (3.5) and (3.6). Then, by considering that the electric field evolves slowly
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Chapter 3. Turbulent electric field: Many interacting waves

in time, we can simplify the double integral in the square term of (3.6) to a single
integral in time. For large enough times, it becomes

σ2
v = 2tD0(v) (3.7)

Reminiscent of Brownian motion, the velocity variance increases linearly with
time. Here, the rate of increase is given by the quasi-linear diffusion coefficient

D0(v) = q2

m2 ⟨E(0, 0)2⟩τ0(v) (3.8)

which is proportional to the autocorrelation time defined in equation (3.2) and the in-
tensity ⟨E(0, 0)2⟩ of the turbulent field for K ≪ 1, or by using expression (3.1), it
becomes a function of the Kubo number. Contrary to Brownian motion, where diffu-
sion occurs in the real space x, diffusion of charged particles in a 1D turbulent electric
field occurs in the velocity space v.

3.2.3 Resonance broadening
The diffusion coefficient D0, as given in equation (3.8), depends on two parameters:
the amplitude of the electric field and the velocity of the particle trajectories. As the
amplitude of the field increases, the assumption of an unperturbed motion is no longer
valid. The number of modes able to interact strongly with the particle increases, lead-
ing to more complex dynamics. However, interactions between particles and waves
remain local, in the sense that only waves in a range ∆v = (D0(v)/k(v))1/3 about v
induce chaotic diffusion, while the other ones act perturbatively [Dupree, 1966; Bénisti
and Escande, 1998]. This locality can help to understand intuitively that the diffusion
picture remains valid for moderate amplitude [Bénisti and Escande, 1997]. The widen-
ing of the resonant region is considered in resonance broadening theory [Dupree, 1966;
Ishihara et al., 1992; Hirose and Ishihara, 1999].

To account for this widening of resonance region and correct the diffusion coeffi-
cient, resonance broadening theory [Doveil and Grésillon, 1982] suggests computing
the diffusion coefficient through an iterative procedure. At step n, the diffusion coeffi-
cient calculated in the previous step n−1 is used to calculate a broadening probability
distribution

Pn−1(v, x, t) =
[
2πσ2

x,n−1

]−1/2
exp

[
−(x− vt)2

2σ2
x,n−1

]
(3.9)

which substitutes the Dirac distribution function in equation (3.2). The position stan-
dard deviation σ2

x,n−1 at the n− 1 iteration is defined by

σ2
x,n−1 = 2

3t
pDRB

n−1(v) (3.10)
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3.2. Turbulent autocorrelation time and quasi-linear theory

whereDRB
n−1 is the resonance-broadening diffusion coefficient defined in equation (3.11),

and p ∈]2, 4[ is a real number that gives the time-dependence of the position standard
deviation. The value of this parameter is discussed in section 3.4.3.

This procedure yields the resonance broadening diffusion coefficient at step n from
the point of view of particles initially at v:

DRB
n (v) = q2

m2

∫ +∞

0
dt
∫ +∞

−∞
dxPn−1(v, x, t)⟨E(0, 0)E(x, t)⟩ (3.11)

At step n = 1, DRB
0 (v) = D0(v) is calculated in equation (3.8) from linear or-

bits. This iterative method converges rapidly (typically in a few iterations) towards a
resonant broadening diffusion coefficient DRB

∞ (v).
In resonance broadening, the characteristic time τRB[Dupree, 1966; Cary et al.,

1990; Bénisti and Escande, 1997] is defined as

τRB ∼
(
k2D0

6

)−1/3

∝ K−4/3 (3.12)

where D0 is the quasi-linear regime diffusion coefficient, and k the resonant wave
number.

Note that, if the autocorrelation function is given, one can solve the quasi-linear
diffusion (3.8), and resonance broadening diffusion (3.11). However, when the autocor-
relation is not analytical, one can solve these equations in Fourier space. Indeed, since
we study homogeneous steady-state turbulence, and particle trajectories are well in-
side the chaotic domain, then Boltzmann’s ergodic hypothesis [Boltzmann, 1895] tells
us that ensemble and space averaging are equal ⟨·⟩ = ⟨·⟩x [Brandon et al., 1995]. Con-
sequently, one can solve this equation by transforming the autocorrelation to a sum
over the wavenumber k using a Fourier transformation of the electric field E(x, v),
and Parseval’s identity to solve the space integral. Therefore, after a few calculations,
equations (3.8) and (3.11) become respectively,

D0(v) = q2

m2

∫ +∞

0
dt
∑

k

Êk

2

2 cos [(kv − ω)t] (3.13)

DRB
n (v) = q2

m2

∫ +∞

0
dt
∑

k

Êk

2

2 e−
σ2

x,n−1k2

2 cos [(kv + ω)t] (3.14)

where the integrand in equation (3.13) corresponds to the autocorrelation function of
the electric field ⟨E(0, 0)E(x, t)⟩, the integrand in equation (3.3). First note that equa-
tion (3.13) and equation (3.14) look similar except for a coefficient and sign difference
in the cosine term. Indeed, the coefficient corresponds to the Fourier transform of the
probability distribution Pn−1 from equation (3.9), and the sign in front of ω appears as
the space integral is developed, and by assuming a symmetric dispersion relation, one
can show in the QL limit that eq. (3.14) becomes eq. (3.13).
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Chapter 3. Turbulent electric field: Many interacting waves

Figure 3.1: Turbulent electric field characteristics: In solid line wave number spectrum
from equation (3.17), in blue dashed line the Langmuir wave dispersion relation, and
in red dash-dotted the ion-acoustic wave dispersion relation, with arbitrary amplitude
a0 and parameters λDk0 = 1, λDδk = 0.4.

3.3 Application to plasma waves

Generally, when studying plasmas, a self-consistent approach is preferred, where both
the electric field and distribution function are solved simultaneously through the self-
consistent Vlasov-Poisson system. However, this study focuses on the effects of a pre-
scribed turbulent electric field on particle dynamics. Therefore a test particle approach
is preferred. Note that this approach is simpler than the self-consistent problem that
led to the development of QL theory; nevertheless, quality information can be gathered
through this method.

3.3.1 Dispersion relation and amplitude electric field

For one-dimensional plasma, two ubiquitous waves are the Langmuir plasmawave and
ion-acoustic wave (IA). Their respective dispersion relations are

ωL(k) =
√
ω2

p + 3v2
thk

2 (3.15)

ωIA(k) =
√

c2
sk

2

1 + λ2
Dk

2 (3.16)
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3.3. Application to plasma waves

where ωp, λD, and cs are the electron plasma frequency, Debye length, and ion sound
velocity, respectively. We choose to study both Langmuir and ion-acoustic waves since
they have qualitatively distinct properties regarding the evolution of frequency (con-
stant for small k and linear for large k for Langmuir and opposite for ion-acoustic
waves), resulting in a broad vision of the phenomena present in a one-dimensional
plasma.

In this paper we chose a simple Gaussian amplitude spectrum Êk

G(k) [Doveil and
Grésillon, 1982] defined as

Êk

G(k) = ka0

√
2

δk
√
π

exp
−

(
k − k0

2δk

)2
 (3.17)

where k0, δk2, and a0 are themeanwavenumber, variance, and amplitude of the electric
field spectrum, respectively. Figure 3.1 shows the typical dispersion relation functions
and Gaussian spectrum of arbitrary amplitude, used in this paper as a function of the
wavenumber k.

3.3.2 Test particles in a prescribed turbulent electric field

Figure 3.2: Correlation function of the electric field with Langmuir dispersion and for
a spectrum with parameters k0 = 1, δk = 0.4,M = 201 and a0 = 8.0 × 10−4. (a) Cor-
relation as a function of time and distance, dashed diagonal line for x = v0,maxt, where
v0,max corresponds to the velocity where QL diffusion is maximal. And (b) correlations
functions at x = v0t for different velocities v0.

The numerical study of test particle trajectories requires us to prescribe a "turbu-
lent" electric field. In other words, the modes of the electric field have random phases.
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Chapter 3. Turbulent electric field: Many interacting waves

In this paper, the electric field is chosen to be a sum ofM sinusoidal modes with ran-
dom phases, defined as

E(x, t) =
M∑

j=1
Êk

G sin(ωjt− kjx+ βj) (3.18)

where kj is the wave number distributed uniformly between [−2.2, 4.2], the standard
deviation of the k distribution δk = 0.4, and the mean k0 = 1, all in units of λD.
ωj is the frequency from equations (3.15) and (3.16), and βj the initial random phase
uniformly distributed between [0, 2π[ of the j-th mode. Êk

G is the amplitude function
of each mode, in our case defined by equation (3.17) and plotted in figure 3.1. Since this
electric field is discrete in the reciprocal space (M modes), it possesses a periodicity
length ofL = 2π/∆k, where∆k = ki−ki−1 is the constant interval of k discretization.
In the following sections, turbulence refers to a large number of overlapping modes,
with random phases, of the electric field.

Figure 3.2(a) shows, in the case of Langmuir dispersion, an example of the autocor-
relation function which corresponds to the integrand term in equation (3.13), plotted
as a function of the displacement in time t and space x, for a discrete spectrum with
M = 201 modes. The black dashed diagonal with equation x = v0,maxt shown in figure
3.2(a); note that v0,max corresponds to the velocity of maximum-diffusion, which will be
discussed later in this section, graphically it aligns with the monotonous curve of ori-
gin (x = 0, t = 0). Figure 3.2(b) shows different autocorrelation functions at different
velocities as a function of time, in particular the maximum-diffusion autocorrelation
(black solid line). As observed in both figures, the autocorrelation function is a smooth,
continuous, and non-monotonic function (only for v0,max the function is monotonic),
which converges to zero for large values of the time. These properties allow for sim-
ple numerical integration and, therefore, calculation of diffusion coefficients, equation
(3.13).

Since the electric field is periodic, the autocorrelation function also presents a pe-
riodicity in both space and time directions called echoes. In our case, we chose the
number of modes and spacing ∆k such that these echoes are located far apart and do
not interfere with the integration of the autocorrelation function. Moreover, as shown
in the previous section 3.2.3, we calculate the diffusion coefficients by integrating the
autocorrelation function over time. Numerically, we transform the indefinite integral
to a definite integral with a finite upper bound as long as the autocorrelation goes
to zero after a few ω−1

p , which is the case for Langmuir and ion-acoustic dispersion
relations (shown in figure 3.2(b) for Langmuir dispersion).

To compare against theory, we study the dynamics of test particles in the prescribed
turbulent electric field. We developed an algorithm that calculates N particle trajec-
tories using a fourth-order Runge-Kutta algorithm in the prescribed electric field. At
t = 0, N test particles are initialized with random velocities v0,i and positions x0,i.
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3.3. Application to plasma waves

Notably, particle velocities are distributed in a narrow Gaussian probability around a
mean velocity v0. Particle positions are distributed uniformly in one periodicity in-
terval of the electric field [0;L[. Every time step, trajectory diagnostics are computed,
such as: particle distributions, statistical moments, and the maximum finite-time Lya-
punov exponents.

For each simulation, two quantities are computed: The velocity-diffusion coeffi-
cientD by measuring the initial slope of the velocity variance σ2

v , and the p parameter
of equation (3.10) by measuring the time dependence of the spatial variance σ2

x. More
details are given in section 3.4.4 and section 3.4.3, respectively.

3.3.3 Single particle trajectories and trapped particle time

As presented in section 2.1.2, in a simple sinusoidal electric field, the movement of
a charged particle is known to be an oscillation in time and space. This trajectory
can be represented in phase space (x,v) as either closed trajectories or oscillating open
trajectories as shown in figure 2.1, named Trapped particles and Passing particles, re-
spectively. Since trapped particle trajectories are closed in phase space, one can define
a characteristic time/frequency for which it takes a particle to complete one orbit τb/ωb,
named bouncing time/frequency. A simple expression of the bouncing time for deeply
trapped particles is defined as a function of the wave number and electric field ampli-
tude (k and E) as

τb = 2π
√

m

|q|kE
(3.19)

and the corresponding bouncing frequency ωb = 2π/τb. Note that this section’s elec-
tric field is expressed as a sum of sinusoidal waves; therefore, we chose a definition
of bouncing time/frequency where the product kE from equation (3.19) is replaced by
< k2E(0, 0)2 >1/2. Note that alternatively, one can use k < E(0, 0)2 >1/2 where k
is either the average wave number (k = k0) or the wave number from the resonant
mode (k = kj), however, for the values used in this chapter, these only give variations
on the bouncing time of less than 15%.

Two examples of test particle trajectories in turbulent electric fields of low and high
amplitude, respectively shown in figures 3.3(a) and 3.3(b). As prescribed by quasi-linear
theory, trajectories in a low amplitude electric field (small Kubo number), figure 3.3(a),
follow Brownian-like motion in phase-space. On the other hand, in a large amplitude
field (large Kubo number), figure 3.3(b), particles are trapped in potential wells and
follow closed orbits in phase-space, which get disrupted occasionally when particles
jump to a neighbor potential well, reminiscing of random-walk motion of the centers
of trapped-particle trajectories. Nevertheless, on average, particle trajectories are ran-
domized after several bounce times τb due to the turbulent field. This randomization
allows us to calculate statistics on particle trajectories such as statistical moments, the
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Chapter 3. Turbulent electric field: Many interacting waves

Figure 3.3: Example of particle trajectories in the wave reference framexi − v0,it and
vi, for a small K = 1.3 · 10−3 (a) and large K = 4.0 (b) Kubo number.

maximum finite-time Lyapunov exponents (FTLE), and in the case of our study, diffu-
sion coefficients.

3.4 Diffusion diagnostics

3.4.1 Statistics on particle trajectories

Figure 3.4: Plots of the maximum finite-time Lyapunov exponent in (a), and the first
four statistical moments in (b), for an arbitrary simulation with N = 480 000 test
particles.
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3.4. Diffusion diagnostics

As stated in section 2.2.1, during a simulation, our code calculates different statisti-
cal quantities, particularly the first four velocity moments (Mean difference, variance,
skewness, and kurtosis), the spatial and velocity distributions, the FTLE, and the stan-
dard velocity deviation σ2

v of equation (3.6). In particular, the first three quantities
(moments, distribution, and FTLE) allow us to determine the regime of transport par-
ticles follow in the turbulent electric field.

For the transport generated by the electric field to be considered to be diffusion,
these quantities should respect some rules:

- First, the FTLE can tell us if the transport is stochastic if, in the limit of long times
(t → +∞), the exponent is positive. In this paper, we define the FTLE as [Benettin
et al., 1976],

λ = 1
tn − t0

n∑
i=1

ln
(
d(ti)
d0

)
(3.20)

where d0 and d(ti) are the distance separating two trajectories at t = 0 and t = ti
respectively. Figure 3.4(a) shows the FTLE as a function of time. For short and inter-
mediary times, λP S is positive and grows until it reaches a maximumwhere it remains
for a couple of τb. This is followed by a decrease in the FTLE for large times, outside the
time scales of any simulation performed in this paper. Consequently, we can consider
particle trajectories as stochastic in the initial time interval, where the FTLE is finite
and positive. However, after tωp ∼ 500, λP S decreases and seems to converge to a
negative power of time; however, it remains one-two orders of magnitude larger than
the initial FTLE. Therefore, we can consider that particle trajectories remain stochastic
for simulation times larger than 500ω−1

p .
- Second, since particles are initialized with a Gaussian velocity distribution around

v0, a pure, homogeneous diffusion will only lead to an increase in particle distribution
variance, while the other moments should stay null. However, since diffusion is a
function of particle velocity (equations (3.13) and (3.14)), one would expect the devel-
opment of an asymmetry in the distribution of particles, increasing the amplitude of
moments other than the variance. Nevertheless, if these moments remain small with
respect to the variance, and as long as the standard deviation remains much smaller
than the scale of variation of D(v) then the transport generated by the electric field
can be considered as a diffusion. Figure 3.4(b) shows the evolution of the first four
velocity moments as a function of time for an arbitrary simulation with a small Kubo
number (The same results are found for a large Kubo number). We observe that at the
start of the simulation, the variance remains considerably larger than the other three
moments, until at tωp = 155, the kurtosis increases and becomes significant.

Hence, the transport generated by a turbulent electric field of the form presented
in section 3.3.1 leads to the stochastic diffusion of particles in a time interval of several
τ0. For later times we can not guarantee that the transport is diffusive.
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Figure 3.5: Velocity distribution of the local Chirikov overlap criterion Λ, normalized
to the Kubo number K .

3.4.2 Chirikov overlap criterion
The Chirikov parameter or Chirikov resonance-overlap criterion [Chirikov, 1960]mea-
sures the ratio of superposition of two neighboring waves to characterize the chaotic
motion in deterministic Hamiltonian systems. Mathematically it is defined as,

Λ = ∆1/2vi + ∆1/2vi+1

∆vϕ
i,i+1

(3.21)

where ∆1/2vi =
√

2qEi

mki
is half of the maximum width of the separatrix along the ve-

locity direction, here Ei and ki are the i − th mode electric field amplitude and wave
number. And ∆vϕ

i,i+1 is the difference between the i and i+ 1 modes phase velocities.
For regular dynamics, the Chirikov criterion takes values much lower than unity

Λ ≪ 1, and for chaotic dynamics Λ ≥ 1. For values closer to unity, Λ ≲ 1, the width of
the chaotic domain in phase space is smaller compared to the case where it is Λ ≳ 1.
For example, at Λ = 0.5, the chaotic region will be narrow and localized near the
separatrix, and for Λ > 1, the chaotic region will become significant, encompassing
the whole domain.

Figure 3.5 shows the velocity distribution of the local Chirikov overlap criterion
normalized to the Kubo number. We choose to normalize the Chirikov criterion by
the Kubo number since, for two arbitrary waves, the numerator is proportional to
the square amplitude of the electric field, in other words, ∆1/2vi ∝

√
E which is the

same dependence as the Kubo numberK ∝
√
E. Note that the Chirikov distribution is
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3.4. Diffusion diagnostics

Figure 3.6: The resonance broadening p parameter distribution as a function of particle
velocity for three values of Kubo number, Gaussian amplitude, and Langmuir disper-
sion relation.

comparable to the QL diffusion coefficient of the figure 3.9(a); it is a bell-shape function
with a maximum at v ∼ 1.9vT and a tail that approaches zero as v/vT increases.

3.4.3 Resonance broadening p parameter

In resonance broadening theory, the p parameter describes the evolution of the position
standard deviation as the p power function of time, defined in eq. (3.10). Analytically,
p is expected to converge to p = 3 when t → +∞. Indeed, Dupree [Dupree, 1966]
shows in equation (7.1) that for the self-consistent kinetic problem, p = 3 is a solution.
Moreover, Doveil and Grésillon [Doveil and Grésillon, 1982] define the asymptotic p
as such. However, a measurement of their σ2

x from numerical simulations was not
performed.

In our simulations, we observed the p parameter to fluctuate in the interval ]2, 4[,
and indeed for large enough times to converge to p = 3. However, the diffusion regime
of a simulation is located in the time interval of several τ0, as shown in section 3.4.1.
Therefore, we measured and characterized the p parameter for different Kubo numbers
and initial velocities. The results are plotted in figure 3.6.

Figure 3.6 shows the numerical p parameter against velocities for the Langmuir set
of simulations. First, we observe that this p parameter is not constant over particle
velocities for the three values of the Kubo number, and it takes values varying around
p = 3, which corresponds to the asymptotic value of p for large enough times [Dupree,
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Chapter 3. Turbulent electric field: Many interacting waves

1966; Doveil and Grésillon, 1982]. The dashed curves in figure 3.6 show the smoothed
out distribution function of p used to compute the analytical resonance broadening
diffusion coefficients in equation (3.14).

We smoothed out the numerical distribution of p (shown in dashed lines) for the
analytical resonance broadening diffusion coefficient calculation. This methodology
allows us to use resonance broadening in the diffusion regime and compare it against
numerical results. Furthermore, as presented in section 3.5.1, we have a qualitative and
quantitative agreement between numerical results and theory for the Kubo number of
a few percent.

3.4.4 Diffusion estimation: σ2
v slope measurement

Figure 3.7: In solid lines, the velocity standard deviation as a function of time for two
arbitrary simulations with Langmuir dispersion, and in red dashed line, the linear fit
in the diffusion regime. In (a) with Kubo numberK = 1.3 ·10−2. And in (b) with Kubo
number K = 1.3.

As written in equation (3.7), a diffusion coefficient is defined as the slope of the
velocity variance σ2

v . Therefore, we estimate diffusion coefficients by measuring the
linear slope of σ2

v over a dozen of τ0. Figure 3.7, and figure 3.8 show the velocity
variance σ2

v for a small, medium and large Kubo number in a solid black line, and the
linear slope in red dashed line.

Three phases can be observed in the evolution of σ2
v : In the first phase, where σ2

v

evolves parabolically. After around one τ0, a second phase of variable length starts
where σ2

v grows linearly. Here diffusion is estimated by the measurement of the lin-
ear slope in this time interval. Finally, a third phase begins when the first slope of
σ2

v changes amplitude drastically. However, due to previous arguments, this quantity
statistically can not be equated to a diffusion coefficient.
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3.5. Results

Figure 3.8: In solid line, velocity standard deviation of a typical simulation with Lang-
muir dispersion at Kubo number K = 2.7. The red dashed line is the linear fit during
the second slope regime.

3.5 Results

3.5.1 Case of Gaussian spectrum, small Kubo number

First, we focus on the quasi-linear theory regime for Kubo numberK << 1. We select
three different electric field amplitudes a0, corresponding to K = [1.3 · 10−2, 7.3 ·
10−2, 1.3 · 10−1], where τ0 = 12.9ω−1

p and τ0 = 13.1ω−1
p are the Lagrangian auto-

correlation time of the electric field at v0,max calculated from eq. (3.2), for the Langmuir
and ion-acoustic dispersion, respectively. And the typical resonance broadening time
at v0,max for the three values of Kubo and the Langmuir dispersion relation are τRBωp ∼
[551, 56, 26]. We perform a series of simulations for each dispersion relation at different
particle mean velocities v0.

The analytical quasi-linear and resonance broadening diffusion is compared against
diffusion from numerical simulations in figures 3.9(a) and 3.9(b), for Langmuir and
ion-acoustic dispersion simulations, respectively. We find qualitative and quantitative
agreement between theory and numerical results for the two dispersion relations and
the three values of the Kubo number.

Note that for K ≤ 1.3 · 10−2, the numerical and resonance broadening diffusion
coefficients converge to the quasi-linear diffusion coefficient. On the other hand, reso-
nance broadening effects become significant for Kubo of a few percent (K ≃ 7.3 ·10−2,
which corresponds to a0 ≃ 10−3 in terms of electric field amplitude). These effects cor-
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Chapter 3. Turbulent electric field: Many interacting waves

Figure 3.9: Comparison of analytic (solid, dotted, and dashed lines) and numerical
(points, crosses, and stars) diffusion coefficients as a function of the initial velocity
of particles v for three different initial electric field amplitudes. (a) simulations with
Langmuir dispersion relation, and (b) with ion-acoustic dispersion relation.

respond to a flattening of the diffusion curves, an increase in the maximum-diffusion
velocity, and an enlargement of the velocity interval where particles diffuse, as ex-
plained in section 3.2.3. For these Kubo numbers, particles are partially, or fully trapped
in the electric field, therefore, exploring a wider range of velocities around the initial
velocity. These variations result in an increase in the number of waves interacting
with the particle, but with a limited, relatively local, range. This leads to an effective
average operation on the diffusion felt by particles.

Furthermore, the diffusion coefficients are bell-shaped for the chosen dispersion
relations. Indeed, the maximum diffusion, located at v0,max, corresponds to the velocity
of maximum resonance between waves and particles. This resonance corresponds to
the velocity shown as a diagonal in the autocorrelation function in the figure 3.2(a).

From numerical simulations, we observe a broadening and decrease in amplitude
of the particle diffusion as expected from resonance broadening theory for Langmuir
and ion-acoustic dispersion relations. However, for the ion-acoustic dispersion rela-
tion, figure 3.9(b), we observe a difference in diffusion coefficients between resonance
broadening theory and numerical simulations. Simulation diffusion is greater than
predicted for values at the boundaries of the velocity interval. This effect becomes
more noticeable as the Kubo number increases or for less-dispersive waves, such as
ion-acoustic waves. This effect is studied in detail in the next section for Langmuir
dispersion simulations and high Kubo numbers.
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3.5. Results

Figure 3.10: Comparison of analytic (solid, dotted, and dashed lines) and numerical
(points, crosses, and stars) diffusion coefficients as a function of the initial velocity of
particles v for Kubo number of 1.8 and 4.0, with Langmuir dispersion relation.

3.5.2 Large Kubo number

For the second study, we have investigated the evolution of the diffusion coefficient
outside the validity range of the quasi-linear theory regime. In other words, for Kubo
numbers larger than one (K ≥ 1) with Langmuir dispersion relation. First, we chose
two values of the electric field amplitude corresponding to K ≃ 1.8 and K ≃ 4.0,
respectively. The results are shown in figure 3.10. We find that RB theory predicts the
order of magnitude of diffusion for velocities around the resonance velocity (v < 4vT ),
but a significant discrepancy in the shape of the diffusion coefficient is observed. Note
that the ratio between the analytical and numerical diffusion coefficients is not con-
stant and depends on simulation parameters. Furthermore, we measure a significant
diffusion from numerical simulations for fast particles, while negligible diffusion is
predicted by quasi-linear theory and resonance broadening. Finally, we observe that
the diffusion coefficients converge regardless of the Kubo number for particle veloci-
ties over v > 8vT and K > 1. Indeed, as explained in section 3.5.1, the electric field
is discrete and distributed for the most part around the resonance velocity region of
v < 4vT , with a small number of modes located at velocities outside this region. There-
fore, a small diffusion coefficient is measured for high enough particle velocities where
only two chains of islands overlap. Moreover, as the electric field amplitude increases,
the overlap of these few modes increases, and particle stochasticity and diffusion in-
crease, pushing the boundaries of the plateau to higher velocities.
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Chapter 3. Turbulent electric field: Many interacting waves

Figure 3.11: Numerical diffusion coefficient in crosses as a function of the Kubo number
K , for v0 = 1.95. The power law fit dependence on Kubo number of diffusion is in
solid and dashed lines.

We have studied the dependence of the diffusion coefficient as a function of the
Kubo number at fixed v0 in two different time intervals. First, for times of the order of
τ0, figure 3.11 shows the normalized diffusion coefficient from numerical simulations
as a function of the Kubo number. We observe three different regimes: ForK ≪ 1, the
normalized diffusion is constant as predicted by quasi-linear theory. This is followed
by a transition regime where the Kubo number is of the order of a few percent, here
the diffusion coefficient decreases non-linearly as observed in the previous section
3.5.1 and predicted by resonance broadening [Doveil and Grésillon, 1982; Hirose and
Ishihara, 1999]. And for the case of K > 0.5, the normalized diffusion evolves as a
power of the Kubo number K−1. Similar results are found for ion-acoustic dispersion
relation.

As of the writing of this manuscript, there is no theory or method to predict dif-
fusion in the large Kubo regime accurately. Nevertheless, we observed particle tra-
jectories to resemble those originating from a random walk of the centers of trapped-
particle trajectories in velocity space. Therefore we suppose that the diffusion coeffi-
cient takes the form D = ∆vRW

2∆t
. Here we define the elapsed time between jumps as

∆t = τb, the time for a particle to perform one trapped orbit. We define the velocity
step to be the resonance broadening [Dupree, 1966] ∆vRW = ∆vT B = (D/6k)1/3,
which corresponds to the range of velocities particles can interact with neighbor elec-
trostatic modes. This approximation shows that forK ≫ 1 diffusion scales as a power
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3.5. Results

Figure 3.12: Numerical S coefficient in crosses as a function of the Kubo number K
after a time much larger than τ0, for v0 = 1.95. The power law fit dependence on Kubo
number of diffusion is in solid and dashed lines.

of the electric field: D = CE3/2, where C = k3/288, matching the results of figure
3.11. Note that this expression predicts the proper electric field scaling but may not
predict the exact value of diffusion. In our case, by denormalizing the diffusion co-
efficient and using the second expression of the Kubo number, K ∝ E2, our results
become: In the quasi-linear regime,D is proportional toK4 ∝ E2, and for large Kubo
numbers, D is proportional to K3 ∝ E3/2.

Finally, we studied the second slope on σ2
v located at times much larger than τb

and τ0, as shown in section 3.4.4. In this regime, we measure the first four statistical
moments and the maximum finite-time Lyapunov exponent (FTLE) [Benettin et al.,
1976; Brandon et al., 1995; Falessi et al., 2015] to characterize the second slope on σ2

v .
First, in the FTLE diagnostic, we observe that for times of the order of a couple τb (less
than 500ω−1

p ), the FTLE is positive, and it converges to a plateau. For larger times,
we observe that the FTLE starts to decrease with time; this gives us an upper limit in
simulation time. Nonetheless, particle trajectories remain stochastic for times larger
than 500ω−1

p since the value of the FTLE remains positive and, in particular, one-two
orders of magnitude higher than for the initial FTLE. Furthermore, by examining par-
ticle statistics and distribution, we observe that the excess kurtosis becomes important
compared to the variance at larger times. Moreover, the particle distribution becomes
non-Gaussian after the time corresponding to the first slope (see figure 3.4(a)). Thus,
this indicates that for longer times, particles do not follow what can be strictly defined
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as a diffusion despite measuring a slope on σ2
v , or in other words, a Hurst parameter

of H ∼ 0.5. Therefore, we name this quantity the slope coefficient S.
In figure 3.12, we show the normalized slope coefficient as a function of the Kubo

number. First, we observe that S is several orders of magnitude smaller than in the
previous figure 3.11, and we observe two different regimes where S evolves as a power
of the Kubo number, a first at a relatively low Kubo number, K < 0.5, where S ∝
K5/2 ∝ E5/4, and a second for a larger Kubo number, K > 0.5, where S ∝ K3/2 ∝
E3/4.

3.6 Conclusion

In summary, we investigated the diffusion of charged particles in a prescribed one-
dimensional turbulent electric field bymeans of numerical simulations and quasi-linear
theory. We measured statistical diffusion coefficients at different Kubo number val-
ues using a Gaussian amplitude spectrum and realistic plasma dispersion relations:
Langmuir and ion-acoustic dispersions. First, diffusion at a low Kubo number was
investigated as a function of the initial particle velocity. The results from numerical
simulations are in qualitative and quantitative agreement with quasi-linear theory, in-
cluding resonance broadening as well as with previous papers [Doveil and Grésillon,
1982; Hirose and Ishihara, 1999], which studied diffusion at low Kubo numbers and for
non-physical dispersion relations. Secondly, a study of diffusion coefficients outside
the quasi-linear regime, for large Kubo numbers, was performed as a function of the
Kubo number, where wemeasured diffusion to scale as a power law,K3 ∝ E3/2, which
we explain to be a randomwalk diffusion of the centers of trapped-particle trajectories
in the velocity direction. And finally, for times much larger than τ0 and τb, we measure
two power laws for the evolution of the slope coefficient S in the form ofK5/2 ∝ E5/4

and K3/2 ∝ E3/4 for small and large Kubo number respectively.
In conclusion, in the case of realistic plasma dispersion relations and a prescribed

turbulent electric field, quasi-linear and resonance-broadening theories in the limit of
small Kubo numbers (K < 10%) accurately predict particle diffusion. Remarkably,
a simple random walk expression (D ∝ E3/2), generally employed in other condi-
tions, predicts the evolution for large Kubo numbers K ≫ 1. However, further work
is required to improve the understanding of turbulence, transport, and diffusion. This
study is subject to two caveats: Firstly, the incorporation of the Poisson equation to get
a complete self-consistent problem where particle distributions are allowed to modify
the electric field, and secondly, by considering the evolution of phase-space structures
[Bernstein et al., 1957; Berk et al., 1970; Schamel, 1971; Dupree, 1972; Schamel, 1972;
Berk et al., 1997; Lesur et al., 2014]. Consequently, the next step of this study is to con-
sider phase-space structures by prescribing a relationship between the initial phases
of the electric field modes, as observed in laboratory plasmas [Tsunoda et al., 1987b,a,
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1991], and studying the self-consistent (Vlasov-Poisson) kinetic problem.
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Chapter 4. Vlasov plasmas and kinetic phase-space structures

In the second half of the 19th century, Boltzmann developed a statistical descrip-
tion of the behavior of a thermodynamical system out of equilibrium, named the Ki-
netic theory of ideal gases. This theory assumes that any interaction between par-
ticles other than collisions is negligible. But it was not until the early 20th century
that the collisionless-Boltzmann equation, also known as the Vlasov equation, was
applied to charged particle systems, coupling it with Maxwell’s electromagnetic equa-
tions. Therefore, unlike the kinetic theory of ideal gases, the kinetic theory of plasmas
considers the significant long-range interactions that dominate in high-temperature
plasmas.

Nevertheless, most high-temperature plasmas of interest do not strictly follow the
Vlasov equation. Plasmas are subject to external forces, small amounts of collisions,
and sources or sinks of energy and particles, to citep a few. However, in some cases,
these processes’ time and space scales allow researchers to separate or neglect them,
allowing the approximation of the system by the Vlasov equation.

4.1 Kinetic model: Vlasov-Poisson

In general, the Kinetic model describes the evolution of species s through a 6 + 1
dimension particle distribution fs(x,v, t), wherex, and v are the position and velocity
vectors respectively, and t is the time coordinate. The distribution function measures
in every point of the phase-space the particle density, such that at an arbitrary time t,
fs(x,v, t)dxdv gives the expected number of particles in a small phase-space volume
of size dxdv.

The equation reigning over the evolution of the distribution function is known as
the Boltzmann equation. It describes the evolution of fs as a series of convection terms
in phase-space plus a collision term. It writes:

∂fs

∂t
+ v

∂fs

∂x
+ qs

ms

(E + v × B)∂fs

∂v
= Cs (4.1)

where Cs is the collisional term of species s. However, as mentioned previously, high-
temperature plasmas are considered to be collision-less. Therefore, we can neglect the
Cs term on the right of the equation, changing the equation’s name to the Vlasov equa-
tion. And E and B are electric and magnetic fields, given by the Maxwell equations.

4.1.1 One-dimensional equations

Since we study a two-species (ions and electrons) one-dimensional plasma, the Vlasov-
Maxwell system of equations is greatly simplified. For this, quantities such as the
distribution function or the fields are rewritten as a function of the scalar space x and
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velocity v, fs(x, v, t) andE(x, t) respectively. Following this simplification, it is trivial
to deduce that the new 1D system of equations written as,

∂fs

∂t
+ v

∂fs

∂x
+ qs

ms

E
∂fs

∂v
= 0 , (4.2)

∂E

∂x
= e

ε0

∫ +∞

−∞
[fi − fe] dv (4.3)

the Vlasov and the Poisson equations of a 1D plasma consisting of electrons and single-
charge ions. Where E is the scalar electric field in the direction of the movement, e is
the elementary charge, and fi and fe are the ion and electron distribution functions.

4.1.2 Equilibrium

Figure 4.1: Initial equilibrium distribution function of ions (blue) and electrons
(red), normalized to the maximum of the electron equilibrium distribution function
fe,0,max = ns,0/ve,T

√
2π, for a mass ratio of mi/me = 36, and a drift velocity of

vd = 2vT .

The equilibrium state of charged particles in the 1D plasma is defined as any so-
lution to the Vlasov-Poisson system, in other words, any couple of fs and E. One of
these equilibriums, and mainly used in this manuscript, is known as a Maxwellian or
Gaussian equilibrium. By definition, this equilibrium has no electric field present in
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the plasma, and the distribution function is defined as:

fs,0(v) = ns,0

vs,T

√
2π

exp
−1

2

(
v − vs,0

vs,T

)2
 (4.4)

where ns,0, vs,T and vs,0 are the initial particle density, thermal velocity, and average
velocity of species s. In this manuscript, the laboratory frame of reference is that of
the ions, in other words, vi,0 = 0. On the other hand, the average velocity of electrons
vi,0, also known as the electron drift velocity vd = ve,0, remains a free variable. More-
over, since we study systems near statistical equilibrium, such as those found in stellar
plasmas, the electron drift velocity is generally not zero. Figure 4.1 shows the typical
equilibrium distribution function of ions and electrons for an artificial mass ratio of
mi/me = 36 and a drift velocity of vd = 2vT .

This equilibrium, under certain conditions, is a stable equilibrium. However, for
values of the drift velocity larger than a critical value, the system becomes unstable,
which leads to an unstable equilibrium where E ̸= 0. This instability is known as
the Current-Driven Ion-Acoustic instability, which has seen considerable interest from
scientists in the second half of theXXth century [Kindel and Kennel, 1971; Hasegawa,
1974; Papadopoulos, 1977].

4.2 BGK structures

High-temperature plasmas, such as fusion, ionospheric or astrophysical, can be con-
sidered collision-less since the collisional mean-free-path of these plasmas can be con-
sideredmuch larger than the wavelengths of dominant electromagnetic modes. Conse-
quently, particle distributions tend to often deviate from Gaussian distributions. Many
studies in collision-less Vlasov plasmas have shown the analytical [Bernstein et al.,
1957; Schamel, 1971; Dupree, 1982] and experimental [Roberts and Berk, 1967] exis-
tence of self-consistent steady-state nonlinear solutions to the Vlasov-Poisson system
of equations known as BGK (Bernstein-Green-Kruskal) structures (or modes) [Bern-
stein et al., 1957]. They represent nonlinear electrostatic waves that propagate and trap
particles of a collision-less plasma. These trapped particles’ populations play an essen-
tial role in the transport of particles and energy, instability triggering, and disturbance
on plasma confinement.

The BGKmethod, also known as the integral approach method, starts with a given,
often physical, electric potential ϕ(x) and a distribution of free particles ffe, deriving
a distribution of trapped particles. The difficulty with this method is that it does not
ensure that the distribution function will be physically meaningful or stable in time.
Often it results in undesirable effects like negative values or singularities. To overcome
the problems with the BGK method, a differential approach, also known as a pseudo-
potential, Sagdeev, or Schamel method/approach, proceeds the inverse way. It imposes
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4.2. BGK structures

a physically meaningful distribution function, from which the Vlasov-Poisson system
is solved to find a self-consistent electric potential.

4.2.1 Schamel model of electron-holes

Figure 4.2: Electron Schamel distribution function slice at x = xh normalized to the
maximum of the electron equilibrium distribution function fe,0,max = ns,0/ve,T

√
2π,

for a mass ratio of mi/me = 36, and parameters ϕ0 = 0.10, βh = −5.80, and δve,h =
0.70vT .

After Bernstein-Green-Kruskal’s formulation, H. [Schamel, 1971] provided a for-
mulation to study time-stable BGK structures. The technique used by Schamel is
known as the differential equation technique [Schamel, 1971]. This method divides the
total distribution function into two phase-space regions, corresponding to the free and
trapped particle distribution function. For a one-dimensional plasma the total particle
distribution of species s writes as [Schamel, 1971, 2000; Luque and Schamel, 2005]:

fs,h(x, v) = ns,0

vs,T

√
2π

exp


−1

2

(
δvs,h

vs,T

)2
− βh

Es

msv2
s,T
, if Es ≤ 0

− 1
2v2

s,T

(
σv

√
2 Es

ms
− δvs,h

)2
, if Es > 0 .

(4.5)

where δvs,h = vs,0 − vh,0 is the shift in velocity between the drift velocity vs,0 and
the initial phase velocity vh,0 of the BGK structure, σv = sgn

(
v − δvs,h

)
is the sign

of the velocities difference. βh is named the trapping parameter corresponding to the
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coefficient determining the curvature of the structure: βh < 0 is a hole, βh = 0 a
plateau, and βh > 0 for a hump in the distribution. And Es is the energy of particles
from species s in the reference frame of the structure, defined by,

Es(x, v) = 1
2ms

(
v − (vs,0 − δvs,h)

)2
+ qsϕ(x− xh) . (4.6)

where ϕ(x) is the localized electric potential of a Schamel structure of amplitude ϕ0.
Figure 4.2 shows a slice of the electron distribution functions at the center of the

electron-hole x = xh, the Schamel distribution function fe,h and the equilibrium dis-
tribution function fe,0, for a mass ratio of mi/me = 36, and parameters ϕ0 = 0.05,
βh = −6.56, and δve,h = 0.45vT .

Following the Schamel approach, the particle density obtained from the distribu-
tion function from equation 4.5 is used to derive the electric potential ϕ(x) by solv-
ing the Poisson equation through the Sagdeev potential, or pseudo-potential, method.
Following this technique, a family of bell-shaped localized electric potentials can be
derived.

4.2.2 Generalized electron structures

Figure 4.3: Electron-hole Schamel sech4 hole-potential with amplitude ϕ0 = 0.05Te/e.

In this manuscript, we focus on the study of electron structures. In particular, we
study the dynamics of local electrostatic holes in the electron phase-space. Therefore,
in the case of Schamel’s theory, ions are considered to be a neutralizing background
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species. The ion distribution function, for the purposes of this theory, is defined to be
a Maxwellian, in other words, equal to equation 4.4, fi(x, v) = fi,0(v).

Figure 4.4: Electron-hole distribution function phase-space for a mass ratio of
mi/me = 36, and parameters ϕ0 = 0.05, βh = −6.56, and δve,h = 0.45vT .

Since the ion fluctuations are neglected, the Schamel pseudo-potential method
leads to the derivation of a solitary electric potential pulse characterized by electron
trapping. In this manuscript, this structure is referred to as sech4 defined as:

ϕ(x) = ϕ0 sech4
(
x− xh,0

∆xh

)
(4.7)

where ϕ0 is the electric potential amplitude, xh,0 is the initial position of the structure,
and ∆xh the structure characteristic width defined by the hole parameters, as:

∆xh =

√√√√√√ π

ϕ0

15 exp
(
δv2

s,h/2
)

(1 − βh − δv2
s,h) (4.8)

Figure 4.3 shows the typical Schamel sech4 electric potential for an electron-hole
in phase-space from equation 4.7. The sech4 is a bell-shaped function with a maximum
ϕ = ϕ0 at x = xh, where the skirts converge to ϕ = 0 in the limit |x− xh| → +∞.
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Figure 4.4 shows an arbitrary Schamel electron-hole distribution function in phase-
space (x, v). As observed, at distances much larger than ∆xh, in other words, away
from the electron-hole center, the distribution function is equal to the equilibrium dis-
tribution from equation 4.4. Note that the size of electron-holes in the velocity direction
is equal to

√
8ϕ0 in units of electron thermal velocities.

Figure 4.5: Schamel electron-hole slices at x = xh for different parameter values. In a)
three different values of ϕ0, in b) four different values of hole velocity δve,h, and in c)
multiple values of βh.

Figure 4.5 shows three different figures with different, arbitrary Schamel electron
distribution function values. In a), three different values of the amplitude of the electric
potential ϕ0 are plotted. This parameter modifies both the velocity size of the hole as
well as the depth of the hole. In b), three values of the electron-hole velocity δve,h

are shown: one value for a negative δve,h, one at the electron drift velocity and one
at positive δve,h. And finally, in c), six values of βh are plotted, three for negative βh,
which represents a hole, one for βh = 0 corresponding to a plateau, and finally two
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for positive βh corresponding to a hump.
In summary, a sech4 structure is defined through three parameters: ϕ0, βh, and

δvs,h, where two are independent parameters. In our simulations, we chose the inde-
pendent parameters to be ϕ0 and δvs,h, while βh is calculated from the quasi-neutrality
condition of the plasma. This method is explained in more detail in section 4.3.3.

4.3 Implementation of numerical code

4.3.1 Kinetic code: COBBLES

In order to study the dynamics of Schamel sech4 electron-holes in a two-species plasma,
we use the self-consistent Kinetic electrostatic code COBBLES [Lesur et al., 2006b;
Lesur, 2010]. COBBLES is an initial value problem solverwhich solves the one-dimensional
Kinetic Vlasov-Maxwell system of equations using a semi-Lagrangian method [Dur-
ran, 1999] trough a Cubic-Interpolated-Propagation scheme in a formwhich conserves
exactly elements of phase-space, and splitting method [Nakamura et al., 2001]. COB-
BLES is written in FORTRAN 90 language parallelized using MPI. It was developed by
Maxime Lesur [Lesur et al., 2006b; Lesur, 2010] to solve the Vlasov-Poisson system for
the Landau Damping and Berk-Breizman problems and ion-acoustic turbulence.

A semi-Lagrangian scheme consists in solving the system of equations on a fixed
grid of points by using interpolated trajectories of particles at the previous time-step.
At each iteration, the COBBLES solves different parts of the Vlasov-Poisson system
separately. First, for a half-time-step∆t/2 it solves the position-space advection therm,
followed by the collisional and source terms, and lastly, it solves the Poisson equation.
Secondly, for a full-time-step ∆t, the code solves the velocity-space advection term of
the Vlasov equation with the newly calculated species distribution function fs. And
finally, the first three steps are repeated backward for another half-time-step ∆t/2, the
Poisson equation, followed by the collision and source terms, and the position-space
advection. In summary, after one time-step, COBBLES calculates the new distribution
function for each species and new electric field.

4.3.2 Implementation problems: density and periodicity

At the initial time, theCOBBLES code defines two distribution functions for electrons
fe and ions fi inside a box of length Lx and periodic in the position-direction and
discretized by a grid of points of size Nx × Nv, where Nx and Nv are the numbers of
points in the position and velocity spaces respectively. Two conditions are required
for the code to function: The first one is that all particle distributions must be small
enough at the edges of the velocity direction. This can be achieved by defining the
distribution function as a bell-shaped curve like the Maxwellian distribution and by

59



Chapter 4. Vlasov plasmas and kinetic phase-space structures

choosing an adequate maximum and minimum velocity on which the cutoff of the
distribution occurs. And secondly, the global quasi-neutrality condition of the plasma
inside the periodic box must be satisfied.

To study the simulated plasma, we add a perturbation to the distribution func-
tion. This perturbation in COBBLES is initialized in three different ways: First, by
sinusoidal waves with wave number 2π/Lx, secondly by creating a local deficit of
phase-space density, or thirdly, in the context of the present work, I implemented the
initialization of a Schamel phase-space hole. All these three methods need to verify
the global quasi-neutrality condition of the plasma.

For the sinusoidal wave, the global quasi-neutrality condition is naturally achieved
by choosing a wave mode with the same periodicity as the box. However, the other
two perturbations require numerical adjustments, such as re-normalizing one of the
species distribution functions to fulfill global quasi-neutrality. While, in principle, re-
normalizing one of the distribution functions solves the global quasi-neutrality prob-
lem, this does not solve an inherent problem that any plasma at electrostatic equilib-
rium is defined to have no local electrostatic field. Indeed, this definition becomes a
problem when studying phase-space holes with a periodic plasma with numerical sim-
ulations since the plasma must remain at equilibrium far away from the phase-space
hole. Re-normalizing one of the distribution functions creates a small constant charge
in those regions, generating a linear electric field and electric potential.

Therefore, to study the dynamics of phase-space holes, one needs to find a distri-
bution function that allows for a local deficit of phase-space density while allowing for
a neutral plasma far away from the perturbation. In the case of a Schamel sech4 phase-
space hole, the parameter βh allows the adjustment of the distribution function’s shape
so that quasi-neutrality in the box is achieved.

4.3.3 Minimization of total charge

As suggested in section 4.2.1, a Schamel phase-space hole is defined by three param-
eters ϕ0, βh, and δvs,h. In general, ϕ0 and δvs,h describe the velocity-size and hole
phase velocity, respectively. We chose these two parameters to be independent in this
manuscript. This will allow us to customize and study a large variety of different phase-
space holes. The third parameter, βh, is the main parameter adjusting the depth and
length of the hole. Nevertheless, if we want a quasi-neutral plasma, the parameter βh

becomes a non-linear function βh(δvs,h, ϕ0).
In order to find the value βh takes for each set (δvs,h, ϕ0), we wrote a minimization

algorithm that searches to optimize the Schamel sech4 phase-space hole parameter for
quasi-neutrality in the simulation box. In other words,

0 = e

ε0

∫ Lx

0

∫ +∞

−∞
fi,0(v)dvdx− e

ε0

∫ Lx

0

∫ +∞

−∞
fe,h(x, v)dvdx . (4.9)
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Equation 4.9 expresses the quasi-neutrality condition of the plasma in a box of
length Lx. Since all the plasma parameters, namely ns,0, vs,T , and ms, and hole pa-
rameters are fixed, the only way to achieve quasi-neutrality is by varying the βh such
that the regions of negative charge density are compensated by positive regions; this
is shown in figure 4.6 where the electron charge density shows three extrema, two
negative and one positive.

Figure 4.6: Electron charge density perturbation of a plasma with a phase-space
electron-hole, for a mass ratio ofmi/me = 36, and parameters ϕ0 = 0.05, βh = −6.56,
and δve,h = 0.45vT .

4.3.4 Application: Stationary hole in COBBLES

In summary, an electron-hole with phase velocity such that 0 < vh < vd will experi-
ence an acceleration due to a repulsive force due to the ions and electron distributions
gradients ∂vfe,h|vh

∂vfi,h|vh
. The electron-hole will then climb the electron distribution

and grow in size and depth. This force and hole acceleration are investigated in 5.
To verify the stability of the Schamel electron-hole in the COBBLES code, we

performed a simulation with one initial electron-hole, with parameters ϕ0 = 0.05,
βh = −7.29, and δve,h = 0. In this case, vh,0 = ve,0, the hole will not receive any
repulsive force that will lead to an electron-hole’s acceleration or deceleration. For
the Schamel electron-hole distribution to be considered a stable equilibrium distribu-
tion function in our code, this electron-hole must experience a negligible acceleration
during the simulation time and remain quasi-stationary.
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Figure 4.7: Electron-hole at t = 0, for a mass ratio of mi/me = 36, and parameters
ϕ0 = 0.05, βh = −7.29, and δve,h = 0. a) the 2D distribution function, b) slice of fe at
x = xh, c) spatially averaged distribution ⟨fe⟩, d) charge density perturbation, e) the
electric potential and a sech4 fit. Here, the distribution functions are normalized to the
maximum of the electron equilibrium distribution function fe,0,max = ns,0/ve,T

√
2π.

Figure 4.7 and figure 4.8 show the electron distribution function, slices of the distri-
bution function, the spatially-averaged electron distribution, the charge density per-
turbation and the electric potential (and a sech4 fit) for the initial time and final time
of the simulation, t = 1500ω−1

P . At t = 0, we verify that the electric potential, charge
density perturbation, and distribution function are that of a Schamel electron-hole.
On the other hand, for t = 1500ω−1

P we observe that the distribution function and
the slices at x = xh did not change in shape nor amplitude. We observe that the
electric potential increased slightly in amplitude; it went from around 4 × 10−2Te/e
to 5 × 10−2Te/e. Nevertheless, the shape of the electric potential remained mostly
unmodified. And lastly, we observe that the charge density perturbation of both elec-
trons and ions changed. In the case of the ion charged density perturbation, there is
a slight increase around x = xh. In the case of the electron charge density perturba-
tion, we observe a slight positive shift of the function everywhere in the box and a
slight decrease in the maximum value of the perturbation around x = xh, and this is
to compensate for the increase of ion perturbation at the same position. In summary,
the Schamel electron-hole distribution function is stable enough for a large enough

62



4.4. Conclusion

Figure 4.8: Electron-hole at t = 1500ω−1
P , for a mass ratio ofmi/me = 36, and parame-

ters ϕ0 = 0.05, βh = −7.29, and δve,h = 0. a) the 2D distribution function, b) slice of fe

at x = xh, c) spatially averaged distribution ⟨fe⟩, d) charge density perturbation, e) the
electric potential and a sech4 fit. Here, the distribution functions are normalized to the
maximum of the electron equilibrium distribution function fe,0,max = ns,0/ve,T

√
2π.

simulation time, to enable our subsequent study of hole acceleration (which can be
measured on timescales of the order of 10 − 100 ω−1

P ) at fixed hole parameters.

4.4 Conclusion

In the context of the Vlasov-Poisson kinetic model governing the dynamics of a one-
dimensional plasma, we presented the Schamel distribution function for solitary electron-
holes, which describes the shape of an electron-hole by means of three parameters,
where two of them are independent. We implemented the Schamel distribution func-
tion into the kinetic self-consistent code COBBLES and solved the implementation
problems related to the charge density and periodicity by minimizing the trapping
parameter βh. And finally, we showed, via numerical simulations, that the Schamel
electron-hole is a stable solution for large enough simulation times. This allows us to
perform in the next chapters an in-depth study of the dynamics of electron-hole for
unstable initial conditions.
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Chapter 5. Dynamics of a single electron-hole

5.1 Phase-space hole dynamics

An electron-hole has rich and complex dynamics in phase-space. One of the impor-
tant processes is the rapid acceleration of the hole to higher velocities and the deepen-
ing, or growth, of the electron-hole phase-space density and phasetrophy. These two
quantities are studied in detail in this chapter via numerical simulations through the
COBBLES Vlasov-Poisson Kinetic code.

5.1.1 State of the art

An electron-hole’s stability in phase-space is a delicate balance between the electro-
magnetic forces of the plasma and the momentum associated with the hole. As men-
tioned in chapter 4, when an electron-hole’s velocity takes particular values, the in-
teraction between the trapped electrons and the ions leads to an acceleration of the
electron-hole and a growth of the amplitude of the initial perturbation. In the sec-
ond half of the XXth century, observation in a variety of stellar [Mozer et al., 1997],
laboratory [Fox et al., 2012], and numerical plasmas [Davidson et al., 1970; Ghizzo
et al., 1987; Bégué et al., 1999] proved the existence of electron-holes rich dynamics,
including acceleration, growth, decay, and binary interactions. In the early 80s, a se-
ries of analytical [Boutros-Ghali and Dupree, 1982] [Dupree, 1982, 1983] [Tetreault,
1983] and numerical [Berman et al., 1982, 1985] papers proposed a theory predicting
the acceleration and growth-rate of phase-space holes. However, it is not until the
past few decades, through the improvement in diagnostics in spacecraft [Kamaletdi-
nov et al., 2021], and numerical simulation [Hosseini-Jenab and Spanier, 2016; Zhou
and Hutchinson, 2016; Hosseini-Jenab and Brodin, 2019; Mandal et al., 2020; Schamel
et al., 2020], that more in-depth and precise studies have taken place in order to under-
stand, explain, categorise, and predict the mechanisms of electron-hole acceleration.

5.1.2 Phase-space hole acceleration andphasetrophy growth-rate

The theories presented in the series of papers in the early 80s describe how small-
scale phase-space granulation of the distribution function, known as clumps, grows
and evolves in phase-space over time. These clumps, are a group of particles or phase-
space density, all moving at roughly the same speed. One special type of these clumps
is the phase-space electron-holes.

In order to describe the dynamics of a single hole, they considered the general
situation where an electron hole is located at a velocity in between the maxima of
the ion and electron (shifted by a given drift velocity) Gaussian distribution function,
in other words, with positive hole velocity 0 < vh < vd. This situation is shown in
figure 5.1, where a narrow-square electron-hole initialized at a low velocity accelerates
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and grows in depth to a higher velocity in a period of t = δt, climbing the electron
distribution function in the process.

Figure 5.1: Schematic of an electron-hole acceleration and growth mechanism after
a time δt between the two distributions. Ion equilibrium distribution function in
blue, initial electron distribution in solid red, and final electron distribution in dashed
red, normalized to the maximum of the electron equilibrium distribution function
fe,0,max = ns,0/ve,T

√
2π. The mass ratiomi/me = 4, and the drift velocity vd = 1.5vT

are reduced for the sake of readability of the figure.

Since an electron-hole is a region of plasma with a deficit of electrons, in other
words, positively charged, thus one can consider an electron-hole as a macroparticle
with negative mass and positive charge. In this region of space, ions will, as a con-
sequence, be reflected by the electric field generated by the electron-hole. If there
are more ions moving at velocities slower than the electron-hole, rather than slower,
then reflecting resonant ions will give energy and momentum to the hole. That is, ac-
celerating the electron-hole, which moves it to a region of phase-space with a larger
distribution function value, and since the latter must remain constant along particle
trajectories to satisfy Louiville’s theorem, the hole grows deeper. Physically this means
that if an electron hole is located at a velocity in-between the maxima of the ion and
electron distribution functions, it will tend to accelerate to a higher velocity and grow
in depth and size, as shown in figure 5.1.

Clumps, including electron-hole, tend to be destroyed by particle collisions and
electromagnetic turbulence in the plasma during their lifetime. However, when these
collisional and electromagnetic effects occur in time scales much larger than the life-
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time of an electron-hole (Which is relevant for our studies and fusion plasmas), a clump
can grow before decaying. It is this rate of growth that the previously mentioned pa-
pers and this manuscript investigate.

There exist multiple ways of measuring the growth-rate of a phase-space hole. Two
proportional ways to measure the same quantity are the acceleration of the clump in
phase-space and the rate of growth of a global quantity known as phasetrophy. The
phasetrophy ψh, was first introduced by P. H. Diamond as an analogy of the 2D ideal
fluid enstrophy for a 1D-1V phase-space plasma [Diamond et al., 2010, 2011]. Indeed,
phase-space structures resemble vortices in 2D fluid turbulence [Mcwilliams, 1984] in
more than just the shape. Both systems are constrained by two invariants: the energy
and enstrophy (mean square vorticity) for fluids and wave energy and the distribution
perturbation square for the Vlasov plasma. Hence, the term phasetrophy stands for
phase-space enstrophy.

For a 1D-1V plasma phasetrophy is defined as

ψh =
∫

⟨δf 2
e ⟩dv , (5.1)

where ⟨δf 2⟩ is the spatial average of the distribution perturbation square. And the
phasetrophy growth-rate defined as

γh = 1
ψh

dψh

dt
. (5.2)

By using the conservation of
∫
f 2dv,

d

dt

∫
⟨f 2⟩dv = d

dt

∫
⟨f⟩2dv + dψh

dt
, (5.3)

equation 5.2 can be simplified into

γh = − 2
ψh

∫
⟨fe⟩

∂⟨fe⟩
∂t

dv , (5.4)

which links the phasetrophy with the relaxation of f . After substituting the derivative
term with the conservation of the phase-space density equation

∂⟨fe⟩
∂t

+ qe

me

E
∂⟨δfe⟩
∂v

= 0 , (5.5)

and performing integration by parts, it yields an exact expression for the phasetrophy
production

γh = − 2
ψh

qe

me

∫ d⟨fe⟩
dv

⟨Eδfe⟩dv . (5.6)
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Assuming that the gradient of fe remains relatively constant in the velocity interval
bounded by the electron-hole velocity width ∆vh, the d⟨fe⟩

dv
term can be considered

as constant and be taken out of the integral. What is left in the integral is a term
proportional to the electric field and the distribution perturbation

γh = − 2
ψh

d⟨fe⟩
dv

qe

me

∫
⟨Eδfe⟩dv . (5.7)

Note that the integral term in equation 5.7 is defined as the electron-hole acceleration,

ah ≡ qe

me

∫
⟨Eδfe⟩dv . (5.8)

In other words, we get that the phasetrophy growth-rate and the electron-hole’s ac-
celeration are proportional to each other γh ∝ ah.

For consistency, thismanuscript quantifies a phase-space hole’s growth-rate through
its phasetrophy, but via the hole’s acceleration is equally valid.

Multiple theories predicting a hole’s growth-rate emerged from the series of papers
published in the 80s. One of them takes a series of assumptions on the hole’s shape,
size, and depth [Berman et al., 1985] to deduce a simple equation for the phase-space
hole growth-rate. By considering a rectangular hole, in other words, a phase-space
density with a rectangular base of size ∆xh × ∆vh, constant depth δfh, and mean
velocity vh, then the growth-rate of the phase-space hole is given by

ah

ωP

= −2 ∆vh

∆xh

v2
T∂vfe,0|vh

∂vfi,0|vh

(λD/λ)2 + 4 [∂vfi,0|vh
]2

(5.9)

where λ is the shielding length. The negative sign in equation 5.9 is consistent with
the fact that ah is positive for an electron-hole located in-between the maxima of the
ion and electron distributions, then: the ion distribution gradient ∂vfi,0|vh

is negative,
and the electron distribution gradient is ∂vfe,0|vh

positive.
Nevertheless, this equation remains a crude approximation of the growth-rate due

to the assumption of the shape of the electron-hole. We compared against our numer-
ical results and did not find agreement between simulations and theory. An improved
growth-rate formula might be obtained by considering a Schamel electron-hole; how-
ever, it is not clear whether the calculations are tractable. Regardless, equation 5.9
gives us some indices on the important parameters the growth-rate could depend on.
In the following section, we investigate the growth-rate of electron-holes as a function
of the parameters vh, ∂vfe,0|vh

, ∂vfi,0|vh
, and ϕ0.

5.2 Single hole dynamics

In this section, we use the numerical code COBBLES to study the dynamics of isolated
electron-holes over time. Hereafter, we study a two-species plasma, ions, and electrons
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with a mass ratiome/me = 36; such a small mass ratio reduces the time necessary to
perform numerical simulations and improves the numerical handling of the phase-
space while retaining a significant separation of scales between electrons and ions.
The system size is Lx = 10πλD. The initial velocity distribution of each species is a
Gaussian. Ion mean velocity is vi,0 = 0. The ion and electron temperatures are chosen
to be equal to each other Te = Ti. Note that our normalization is such that our results
are valid for any reasonable temperature (as long as collision and relativistic effects
are negligible). The spatial resolution is chosen to be Nx = 4096. On the other hand,
the variable parameters are the velocity-space resolution Nv, electron drift velocity
ve,0 = vd, relative electron-hole velocity δvh, and the Schamel potential amplitude ϕ0,

5.2.1 Time evolution of a single electron-hole

To study electron-hole’s acceleration and growth, we consider electron-holes in the
growth regimes, which corresponds to hole velocities in the regime 0 < vh < vd.
In terms of the Schamel hole parameter, the growth regime corresponds to positive
relative hole velocity δvh > 0, in other words a hole located in between the maxima
of the ions and electrons distribution functions. Note that for small values of δvh, the
value of the growth-rate is such that any measurement will require significantly large
simulations, which increases time-related numerical error.

To observe this acceleration, we performed a simulationwith a single initial electron-
hole, with parameters vd = 1vT , ϕ0 = 0.05, βh = −6.56, and δve,h = 0.45vT .

Figure 5.2 and figure 5.3 show the electron distribution function (more precisely the
fluctuation δfe = fe − ⟨fe⟩, slices of the distribution function, the spatially-averaged
electron distribution (noted ⟨fe⟩), the charge density perturbation and the electric po-
tential (and a sech4 fit) for the initial time and final time of the simulation, t = 620ω−1

P .
At t = 0, we verify that the electric potential, charge density perturbation, and dis-
tribution function are exactly that of a Schamel electron-hole, as prescribed. After a
simulated time of 620ω−1

P , we observe that the hole quantities evolved and changed.
In particular:

• The hole’s velocity vh and hole’s depth δfe(xh, vh) increased during the simula-
tion as a result of the hole’s acceleration.

• We observe an increase of the electric potential amplitude from 4.15 × 10−2

to 6.71 × 10−2. Which results in an increase of the hole’s velocity width ∆vh.
Moreover, we observe a slight deviation from the sech4 potential prescribed by
Schamel far away from the hole but remaining of the form sech4 as a whole.

• The hole’s width ∆xh increased during the simulation. In particular, ∆xh in-
creases during the first stages of acceleration, which happen between t = 0 and
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Figure 5.2: Electron-hole at t = 0, for a mass ratio of mi/me = 36, and parameters
ϕ0 = 0.05, βh = −6.56, and δve,h = 0.45vT . a) the 2D distribution function, b) slice
of fe at x = xh, c) spatially averaged distribution ⟨fe⟩, d) charge density perturbation,
e) the electric potential and a sech4 fit which is indistinguishable. Here, the distribu-
tion functions are normalized to the maximum of the electron equilibrium distribution
function fe,0,max = ns,0/ve,T

√
2π.

t = 100ω−1
P , then it remains constant. This is due to the hole changing its shape

in order to attain a self-consistent and stable shape.

• We observe narrow horizontal bands of negative density in phase-space, rem-
iniscent of filamentation. These bands can be thought of as the wake the hole
leaves as it moves and accelerates in phase-space. Indeed, as the hole starts mov-
ing, fluctuations at low velocities of the initial hole are left behind by the hole.
These bands then accelerate (since they can be considered phase-space struc-
tures on their own) and accumulate vertically at each passage of the hole. Note
that the number of bands shown in phase-space is equal to the number of times
the hole has moved by a distance of Lx.

• And finally, we observe differences between the initial and final electron and ion
charge density. In particular, there is a large increase in the ion charge density at
the hole center, and secondly, an increase in the absolute value of both charged
densities far away from the hole center.
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Figure 5.3: Electron-hole at t = 620ω−1
P , for a mass ratio of mi/me = 36, and pa-

rameters ϕ0 = 0.05, βh = −6.56, and δve,h = 0.45vT . a) the 2D distribution func-
tion and a horizontal line at the initial velocity of the hole, b) slice of fe at x = xh,
c) spatially averaged distribution ⟨fe⟩, d) charge density perturbation, e) the electric
potential and a sech4 fit which is almost indistinguishable. Here, the distribution func-
tions are normalized to the maximum of the electron equilibrium distribution function
fe,0,max = ns,0/ve,T

√
2π.

In summary, as the hole accelerates and evolves in phase-space, its physical char-
acteristics change in order to attain a more self-consistent shape. This is shown in
the increase of the hole’s velocity, depth, and spatial and velocity width. Moreover,
spatially large fluctuations of the electron distribution, or bands, develop at velocities
inferior to that of the hole and accumulate vertically during the hole’s acceleration.
Finally, we observe a significant increase in the local ion charge density perturbation
around the position of the electron-hole, which induces a corresponding change in
the shape of both the ion and electron distributions far from the hole’s position. In
conclusion, a Schamel electron-hole at a velocity in between the maxima of the ions
and electrons distributions is not a stable self-consistent structure. Initially, it will seek
equilibrium by accelerating, changing its shape, and modifying the charge density and
electric potential until a stable equilibrium is obtained after a time of several orders of
magnitude.

As explained in the previous section 5.1, a solitary hole in a non-equilibrium con-
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Figure 5.4: Time evolution of the electron-hole velocity in a), fe and δfe hole depth in
b), and the hole phasetrophy in c). For initial parameters: vd = 1vT , ϕ0 = 0.05Te/e,
βh = −6.56 and δvh = 0.45vT

dition, such as having a non-zero δvh, results in an acceleration of the hole, and an
increase of the hole phasetrophy. Moreover, the Vlasov equation states that the phase-
space distribution function f(x, v) along particle trajectories is a conserved quantity.
Therefore, at the hole’s center, the distribution’s value along deeply trapped particle
trajectories must remain constant through time. We can observe these three quanti-
ties in figure 5.4, which shows the time evolution of the electron-hole velocity, hole
phasetrophy, and hole depth. We observe the predicted increase of both the hole ve-
locity and phasetrophy, and we verify that the value of the distribution at the center of
the hole remains constant over time. Analytically, in this case, we expect a decrease in
both the hole acceleration and growth-rate amplitude as the hole’s velocity increases.
This is mainly due to a decrease in the ions and electrons equilibrium distribution gra-
dient factors. Therefore, in for our measurements, we estimate these two quantities for
our electron-hole in a time interval starting after the initial stabilization of the hole at
around 100ω−1

P and finishing at the noticeable decrease in the velocity slope at around
400ω−1

P . We obtain that our electron-hole has an acceleration of 1.06 × 10−3vTωb

(1.49 × 10−4vTωP ) and a growth-rate of 2.95 × 10−3ωb (4.16 × 10−4ωP ), where ωb is
the bounce frequency of the deepest trajectories of the electron-hole. Note that we
have oscillations in both the hole velocity and phasetrophy (more noticeable in the
velocity rather than phasetrophy). These oscillations are the result of small changes
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in the hole velocity since, as it accelerates, the ions push and pull on the electron-hole
to find a stable equilibrium, which is only reached after very large times (due to colli-
sions or its numerical equivalent). Nevertheless, these oscillations are averaged in the
measurement interval and do not contribute to the overall acceleration or growth-rate.

In the following sections, we chose arbitrarily to focus on the study of the phasetro-
phy growth-rate instead of the acceleration since they both are a measurement of the
effects on the dynamics of a phase-space electron-hole.

5.3 Parameter evolution of the phasetrophy growth-
rate

In this section, we performed a series of electron-hole simulations through three pa-
rameter scans: δvh, vd, and ϕ0. These simulations will allow us to understand the
main dependencies of electron-holes acceleration and phasetrophy growth-rate. As
shown in equation 5.9, the acceleration is non-linearly dependent on the hole velocity
vh = vd −δvh trough the electron and ion equilibrium distribution gradients ∂vfe,0(vh)
and ∂vfi,0(vh), noted in the rest of this chapter as f ′

e,h and f ′
i,h, and non-linearly de-

pendent on ϕ0 trough the velocity width ∆vh and ∆xh.

5.3.1 Relative hole velocity δvh

The first parameter scan we will look at is the relative hole velocity δvh. The varia-
tion of this parameter permits the study of the hole velocity while the drift velocity
remains constant, which allows the space between distributions to stay constant while
modifying the equilibrium gradients felt by the electron-hole.

We performed 10 simulationswith initial parameters: vd = 1vT , andϕ0 = 0.05Te/e.
We varied the initial δvh from 0.65vT up to −0.30vT . Five simulations are done at pos-
itive δvh, which translates into a positive electron gradient f ′

e,h > 0, and five other
simulations at nil or negative δvh corresponding to f ′

e,h < 0, and in all cases negative
ion gradient f ′

i,h < 0. The phasetrophy growth-rate for this parameter scan is plotted
in figure 5.5 as a function of the average relative electron-hole velocity at the measure-
ment. Note that we chose the average relative electron-hole velocity at the moment of
the measurement instead of the initial relative electron-hole velocity since holes with
relatively low initial velocity (close to the maxima of the ion distribution function) will
experience a strong initial acceleration resulting from a reorganization of the phase-
space due to interactions with the ion distribution. However, we are not interested
in this initial acceleration in this study. Therefore for this and the following studies,
we chose the velocity in the middle point of the interval where the growth-rate and
acceleration are measured.
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5.3. Parameter evolution of the phasetrophy growth-rate

Figure 5.5: Absolute value of the electron-hole phasetrophy growth-rate as a func-
tion of the average relative electron-hole velocity at the moment of the measurement,
where the y axis is in logarithmic scale. In black crosses is the growth-rate from nu-
merical simulations, and in solid blue and red lines are exponential fits of the data in
the two δvh regimes.

Firstly, for positive δvh, we observe an exponential increase in the growth-rate with
the relative hole velocity. In particular, at low δvh, between 0 and 0.45vT , we observe
a small deviation with respect to the exponential fitting with a coefficient of 28.4/vT ,
while for larger values of δvh, a discrepancy is observed, which we assume is the result
of an increase of the interactions between the electron-hole and the ion distribution.
Indeed, the velocity width of this set of electron-holes is equal to ∆vh = 0.64vT (or
0.32vT from the center to the edge), which is around two ion thermal velocities, where
vT,i = (36)−1/2 ∼ 0.17vT . In other words, as an electron-hole approaches the ion dis-
tribution, the interaction between each other becomes increasingly important, which
results in a strong and rapid non-linear initial acceleration and an abhorrent measured
growth-rate. Therefore, to measure a correct acceleration and growth-rate, it is pre-
ferred to simulate electron-holes with a hole velocity such that the separatrix is sepa-
rated from the ion distribution by a few ion thermal velocities. For more information
on the effects of the ion distribution on electron-hole dynamics, a more precise param-
eter scan on this ion distribution and hole velocity gap is performed in the following
section, section 5.3.3.

Lastly, for nil or negative δvh, between −0.3vT and 0, we observe in figure 5.5 an
increase of the absolute value of the growth-rate with the decrease of δvh. Note that
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the sign of the growth-rate in this region is negative, but since it is difficult to show
negative values on a logarithmic scale, we chose to show the absolute growth-rate
instead. In the negative δvh regime, for all values, including the case where δvh =
0, we observe exponential growth with a fitting coefficient of 0.53/vT . Two things
occur in this interval: First, the hole experiences negative gradients for both f ′

i,h and
f ′

e,h. Secondly, while f ′
i,h remains relatively constant, f ′

e,h increases in amplitude with
the decrease in δvh. In other words, an electron-hole with δvh/vT = [−0.30, 0.00]
experiences a slow decrease in its phasetrophy, contrary to the rapid increase a hole
with positive δvh experiences.

5.3.2 Local electron distribution gradient ∂vfe,0

In this section, we studied the effects a change in the electron gradient f ′
e,h has on

the phasetrophy growth-rate. To do this, we fixed both the amplitude of the Schamel
potential ϕ0 and the electron-hole velocity vh, while varying the relative hole velocity
δvh. We performed six simulations at a constant hole velocity of vh = 0.55vT , and
potential amplitude ϕ0 = 0.05. And varied the the relative hole velocity δvh/vT =
[0.00, 0.60], the electron mean velocity vd is modified accordingly to equation vd =
δvh − vh, taking the values vd/vT = [0.55, 1.15].

Figure 5.6: Phasetrophy growth-rate as a function of the electron equilibrium distri-
bution gradient at the average hole velocity at the moment of the measurement. In
black crosses is the growth-rate of from numerical simulations, and in solid red and
blue lines are two linear fittings of the data.
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This parameter scan allows us to isolate the phasetrophy growth-rate dependency
on f ′

e,h since f ′
i,h remains constant between all the simulations. The results of this

parameter scan are shown in figure 5.6, where the phasetrophy growth-rate is plotted
as a function of f ′

e,h, at the average hole velocity at the measurement.
We observe a linear relationship between f ′

e,h and the value of the phasetrophy
growth-rate for values smaller than f ′

e,h < 12.5%, corresponding to values of δvh <
0.40vT . This result seems to be in agreement with the dependence shown in equation
5.9 that predicts the hole acceleration to be linear with f ′

e,h. On the other hand, for
values of the gradient larger than 12.5%, the measurements of the growth-rate deviate
from the low gradient linear fit. We observewhat could be a second linear slope. Unfor-
tunately, we do not possess enough simulation points to verify if this is indeed a linear
dependence or a non-linear effect due to the large f ′

e,h. Note that all the theories of
single hole dynamics, presented in section 5.1.2 assume a relatively small hole located
in a region of phase-space where the variations of both f ′

i,h and f ′
e,h are small. Thus,

one possibility is that since the hole velocity-width extends to velocities where these
variations are no longer negligible, which in practice results in a force gradient that
tends to accelerate the structure unevenly. Altogether, this force gradient increases the
acceleration the whole structure feels, resulting in a larger growth-rate than expected
from the extrapolation at lower f ′

e,h.

5.3.3 Local ion distribution gradient ∂vfi,0

In this section, we studied the effects a change in the ion gradient f ′
i,h has on the

phasetrophy growth-rate. To do this, we fixed both the amplitude of the Schamel po-
tential ϕ0 and the relative electron-hole velocity δvh = 0, while varying the hole veloc-
ity vh. We performed seven simulations at a constant relative hole velocity of δvh = 0,
and ϕ0 = 0.05, and varied the other parameter in the interval vh/vT = [0.35, 1.00],
and in this case vh/vT = vd/vT .

Note that analytically a hole with δvh = 0 will experience no acceleration and
growth since f ′

e,h = 0. Nevertheless, choosing this value of relative velocity allows
us to isolate all the effects due to f ′

e,h, in particular effects related to the variations on
both f ′

i,h and f ′
e,h, which are considered to be small by theories, since a small velocity

width hole is assumed. Thus, this parameter scan allows us to isolate the phasetrophy
growth-rate dependency on f ′

i,h. The results of this parameter scan are shown in figure
5.7, where the phasetrophy growth-rate is plotted as a function of f ′

i,h at the average
hole velocity at the measurement.

Similar to the results for f ′
e,h, we observe a linear dependence of the growth-rate

with f ′
i,h. Note that the figure is in logarithmic scale for the x and y axis, but the fitting

is precisely linear. We observe that the growth-rate increases with the f ′
i,h, which is

to be expected since large values of f ′
i,h correspond to a hole located closer to the ion

distribution (low hole velocity). Therefore, they experience stronger effects of f ′
i,h, in
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Chapter 5. Dynamics of a single electron-hole

Figure 5.7: Phasetrophy growth-rate as a function of the absolute value of the ion
equilibrium distribution gradient at the average hole velocity at the moment of the
measurement. In black crosses is the growth-rate of from numerical simulations, and
in solid red lines is a linear fitting of the data in the high amplitude regime.

particular those related to variations on f ′
i,h, which is in agreement with the "aberrant"

points observed in figure 5.5 and 5.6.
Moreover, for smaller values of f ′

i,h, we observe that the phasetrophy growth-rate
abruptly approaches zero, around 2 × 10−3, or in terms of vh ∼ 0.75vT , which is
expected, since at such velocities f ′

i,h ∼ 0. This value provides a limit at which the
effects of ion distribution over an electron-hole’s dynamics become negligible.

5.3.4 Electric potential amplitude ϕ0

Finally, we studied the effects of the electric potential amplitude on an electron-hole
phasetrophy growth-rate. To do this, we performed a parameter scan of six simulations
by fixing the relative hole velocity δvh = 0.45vT , and electron drift velocity vd =
1.00vT , and varying the electric field amplitude in the interval ϕ0 = [5 × 10−3, 1 ×
10−1]Te/e.

As we saw in section 5.3.2 and 5.3.3, electron-hole dynamics strongly depend on the
value of the ion and electron equilibrium distributions. However, changing ϕ0 changes
the width of the hole in the velocity direction. Therefore an arbitrary electron-hole will
experience different gradients on the high-velocity side compared to the low-velocity,
with all the intermediate gradients in between. To accommodate for the effect, we
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5.3. Parameter evolution of the phasetrophy growth-rate

Figure 5.8: Phasetrophy growth-rate as a function of the initial Schamel electric po-
tential amplitude. In black crosses is the growth-rate of from numerical simulations,
and in solid red and blue lines are the linear fitting of the data in the low and high
amplitude regime, and in red crosses is the effective electron equilibrium gradient nor-
malized to the data.

introduce the effective electron equilibrium gradient ∂vfeq, eff defined as the value of
f ′

e,h weighted by the width of the electron-hole, in other words ∂vfeq, eff ∼ ∂vfe,0
√
ϕ0.

The results of this parameter scan are shown in figure 5.8, where the phasetrophy
growth-rate is plotted against ϕ0. Firstly, we observe two regimes where the growth-
rate is a power law of the potential amplitude: For ϕ0 < 3 × 10−2Te/e, we measure
γh ∼ ϕ1.3

0 , while for larger amplitudes, it increases as γh ∼ ϕ0.8
0 . Note that the point

exactly at ϕ0 = 3 × 10−2Te/e correctly fits both power laws.
Secondly, in figure 5.8, we show ∂vfeq, eff normalized to the data. For large val-

ues of ϕ0, we observe qualitative and quantitative agreement between the effective
gradient and the growth-rate from numerical simulations. On the other hand, for the
low-amplitude regime, a large discrepancy is observed. These results allow us to con-
clude that for small electron-holes, where the difference in gradient between the two
extremums of the hole is small, then the value of the gradient is sufficient to describe
the electron-hole dynamics. On the other hand, for large electron-holes, the differ-
ent regions of the electron-hole experience distinct gradients and, as a consequence, a
different acceleration and increase of the phasetrophy. Thus the width of the electron-
hole must be taken into account. Note that the Schamel electron-holes limit our ability
to study this mechanism since the spatial and velocity widths are linked by equation
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4.8, which states that the spatial width is inversely proportional to the square root of
the velocity width. Thus, by decreasing ∆vh we increase ∆xh. However, this result
is not physical since we know that the ratio between phase-space structures remains
narrow over a large ensemble of structures, which is the case for the electron-holes
simulated in this manuscript.

5.4 Conclusion

In summary, we have presented the acceleration and phasetrophy growth processes
of electron-holes in phase-space. Firstly, we measured the effects of the discretization
of phase-space, which results in an effective collisional operator that accelerates and
smoothes phase-space holes. We performed four parameter scans on each of the hole
parameters, such as the relative electron-hole velocity, Schamel potential amplitude,
and f ′

i,h and f ′
e,h. We have observed similarities between numerical and analytical

electron-hole dynamics in these parameter scans. In particular, some similarities are:

• Hole growth is exponentially dependent on the relative hole velocity

• Linearly dependent on the electron and ion equilibrium gradients

• And a power law of the electric potential amplitude

Nevertheless, discrepancies between numerical and analytical results were observed,
such as:

• For holes at negative δvh, positive growth is observed while negative growth is
predicted by theory. Resulting from the numerical discretization of phase-space.

• A larger acceleration is observed for holes at low velocities. This is due to a
stronger repulsion due to the proximity in phase-space between the hole and
the ion distribution.

• Effective gradient effects, resulting from small variations in the distribution gra-
dients, f ′

i,h and f ′
e,h, for holes with a large velocity width.

In conclusion, we have shown the validity and limits of analytical theories in predicting
electron-hole growth by means of numerical simulations. In particular, we observed
strong influences on the dynamics of an electron-hole by the ion distribution. More-
over, we found a more accurate approximation of hole growth to take into account the
strong deviations resulting from variation in distribution gradients over the width of
the hole by means of an effective gradient.
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Chapter 6. Prescribed phase-space hole in a turbulent electric field

In the previous chapters, we studied the dynamics of charged particles in the pres-
ence of a prescribed turbulent electric field in different Kubo number regimes 3 but in
the absence of phase-space structures (assuming an ensemble of waves with random
phases), and the dynamics of phase-space electron-holes through a self-consistent ki-
netic Vlasov-Poisson code 5. In this chapter, we study the dynamics of charged par-
ticles in a prescribed turbulent electric field, including a Schamel electron-hole. This
study is an intermediary step in the study of diffusion in a self-consistent problem, aim-
ing for a deeper understanding of the dynamics generated by phase-space structures
in stellar or laboratory plasmas.

6.1 Diffusion generated by an electron phase-space
hole

Before addressing the numerical simulations, let us develop an analytical formulation
for the diffusion coefficient of a single, isolated, phase-space electron-hole.

In general, an electron-hole can be described by a bell-shaped electric potential
ϕ(x). As shown in section 2.1.1, in the presence of a phase-space hole, charged particles
can be separated into two different trajectories:

Trapped particles follow closed orbits in phase-space, and passing, or free, particles
are free of any electrostatic potential due to their large kinetic energy.

Moreover, by definition, we separate these two types of trajectories by the separa-
trix, which defines the last closed orbit of passing particles. Figure 2.1 in section 2.2.2
show the two types of trajectories and the separatrix.

Particle trajectories in the presence of a single phase-space structure are non-stochastic
and can be analytically determined as for the case of a sinusoidal electric potential, as
shown in section 2.1.2. Therefore, a different definition of the diffusion coefficient is
needed. In this section, we define the diffusion coefficient of a phase-space hole as
the rate of change in the velocity variance of trapped and passing particles and show
analytically how phase-space structures contribute to a system’s particle transport.

6.1.1 Phase-space structure diffusion coefficient
As written in section 3.2.2, the diffusion coefficient is defined to be the linear slope of
the standard deviation σ2

v as shown in equation 3.7. In the case of phase-space trapped
particle trajectories, the velocity standard deviation is defined as,

σ2
v,h(t) = 1

N

N∑
i=1

[
v(t, hi) − v(0, hi)

]2
(6.1)

whereN → ∞ is the total number of trapped particle trajectories, and v is the velocity
of a trapped particle. hi is the elliptic modulus, which defines the ith trajectory orbit
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and energy level, defined as,

hi =

√√√√Hi + |qϕ0|
2|qϕ0|

, (6.2)

which takes values in the interval [0, 1[. Here Hi is the particle’s total energy, q is the
species’ electric charge, and ϕ0 is the amplitude of the phase-space structure’s electric
potential.

Since we only consider trapped particle orbits, we can replace the sum over all
trajectories i with an integral over all energy levels h. Indeed, if we use the following
relation:

lim
N→∞

1
N

N∑
i=1

f(hi) = 1
L− l

∫ L

l
f(h)dh (6.3)

where f(h) is an arbitrary function of the energy level h. L and l are the maximal and
minimal values h can takes, in our case L = 1 and l = 0.

Therefore, we can rewrite equation 6.1 as,

σ2
v,h(t) =

∫ 1

0

[
v(t, h) − v(0, h)

]2
dh . (6.4)

If an analytical expression of the trapped particle trajectories velocities can be obtained,
and the function is integrable, then equation 6.4 can be solved analytically. Otherwise,
the integral can be solved with the use of numerical schemes.

6.1.2 Approximation of the Schamel potential
As shown in chapter 2, one can solve the equations of motion for two different electric
potentials: The case of the harmonic oscillator 2.1.3, and the case of a sinusoidal poten-
tial 2.1.2. However, these two potentials are qualitatively different from the Schamel
electron-hole.

Firstly, the Schamel electron-hole is a single bell-shaped curve with positive convex
curvature at its maximum value at the position of the hole x = xh,0, with amplitude
ϕ0. Moreover, the Schamel hole is a strictly positive function everywhere in space that
approaches zero at |x| → ∞. On the other hand, the harmonic oscillator potential is
a quadratic function that goes to infinity as x → ∞, and the pendulum potential is
a 2π/k periodic function with maximum and minimum values of ±φ0. Therefore, to
approximate the Schamel electric potential by the harmonic oscillator or the pendulum,
we define a piecewise potential, where inside an interval, it takes the values of the
approximation fApprox(x), and outside it is defined to be equal to zero. In other words:

ϕ(x) =
{
ϕ0fApprox(x) −π

k
≤ x− xh,0 ≤ π

k

0 0 < |x− xh,0|
(6.5)
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where 2π
k
is the size in the x direction of the electric potential, and k the wavenumber

of the potential.

Figure 6.1: Schamel phase-space hole electric potential in black, and the pendulum and
harmonic oscillator electric potential approximations in dashed blue and dotted red,
respectively. With amplitude ϕ0 = 1.Te/e and xh,0 = 0.

Figure 6.1 shows the Schamel electron-hole potential, the piecewise pendulum ap-
proximation from equation 6.6, and the piecewise harmonic oscillator approximation
from equation 6.11. In the two approximations, the k coefficient was chosen such that
the piecewise electric potential correctly approximates the Schamel potential’s most
deeply trapped particle trajectories. In other words, they must resemble the Schamel
potential the most around the maximum, i.e., x = xh,0.

Pendulum electric potential

First, we approximate the Schamel electron-hole potential by the piecewise sinusoidal
potential of the pendulum,

ϕ(x) =
{

ϕ0
2

(
1 + cos k(x− xh,0)

)
−π

k
≤ x− xh,0 ≤ π

k

0 π
k
< |x− xh,0|

. (6.6)

Here the cos function is shifted upwards so that it resembles a bell-shaped function
instead of being asymmetric around the horizontal axis. The wave vector k is defined
as

k = 2
√

2
∆xh

, (6.7)
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where ∆xh is the structure characteristic length defined in equation 4.8. Figure 6.1
shows this piecewise sinusoidal potential in dashed blue line.

As shown in section 2.1.2, in the case of the pendulum potential, the velocity of
trapped particles follows the parametric equation 2.20. For charged trapped particles in
the piecewise electric potential of equation 6.6, particle velocities are described through
the equation:

v(y, h) = ±2
k
hωb

√
1 − sn2 [ωbt+ α0, h] + v(0, h) (6.8)

where ωb =
√

|qϕ0|k2/m is the bounce frequency, v(0, h) the particle initial velocity,
and α0 the initial phase, defined by

α0 = K(π/2, h) =
∫ π/2

0

dz√
1 − h2 sin2 z

(6.9)

where K(π/2, h) is the complete elliptic integral of the first kind.
By replacing the trapped particle velocity of equation 6.8 in equation 6.4, we can

rewrite the standard deviation as,

σ2
v,h(t) = 4

k2ω
2
b

∫ 1

0

[
h2 − h2 sn2 [ωbt+ α0, h]

]2
dh . (6.10)

Unfortunately, as of the writing of this manuscript, equation 6.10 can not be solved
analytically. Therefore, this integral needs to be integrated via numerical methods.
Once the standard deviation is calculated, the maximum tangent gives the diffusion
coefficient generated by one period of a shifted sinusoidal electric potential.

Harmonic oscillator approximation

Since the integral in the standard deviation of the pendulum approximation can not
be solved analytically, we opt for a stronger approximation in the form of the shifted
Harmonic oscillator with piecewise electric potential:

ϕ(x) =

 ϕ0
(
1 − k2(x−xh,0)2

4

)
− 2

k
≤ x− xh,0 ≤ 2

k

0 π
k
< |x− xh,0|

(6.11)

This eclectic potential is plotted in figure 6.1 in a dotted red line. Similarly to the
pendulum approximation, the wave vector k is defined to be equal to that of equation
6.7.

Since this shifted electrostatic potential is slightly modified with respect to the
Harmonic oscillator of section 2.1.3, the trapped particle’s velocity now writes as,

v(t) = −x0
ωb√

2
sin

(
ωb√

2
t
)
, (6.12)
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where ωb =
√

|qϕ0|k2/m. Note the
√

2 term under all the instances of ωb. This is due
to the shifting of the potential, which results in a halving of the amplitude in front of
the parabola term with respect to the classical Harmonic oscillator.

By injecting the trapped particle velocity of equation 6.12, into the standard devia-
tion, equation 6.4, an integrating over all initial positions x0 instead of all energy levels
h, we obtain

σ2
v,h(t) = kω2

b

4π sin2
(
ωb√

2
t
) ∫ π/k

−π/k
x2dx . (6.13)

This gives a simple expression that can be easily integrated over the 2π/k period, giv-
ing the analytic expression of the standard deviation of a shifted section of a harmonic
oscillator:

σ2
v,h(t) = ω2

bπ
2

6k2 sin2
(
ωb√

2
t
)
, (6.14)

which is an oscillating function over time, with frequency ω2
b/

√
2.

Since the diffusion coefficient is defined to be half of the maximum slope of the
standard deviation, the slope, or tangent, is maximum when the second derivative of
the standard deviation is equal to zero. In other words, at

tM =
√

2π
4ωb

(6.15)

Therefore, the diffusion coefficient generated by a shifted section of a harmonic
oscillator is equal to

Dh = ω3
bπ

2

12
√

2k2
. (6.16)

which is a function of the electric potential potential, Dh ∝ ϕ
3/2
0 .

Note that this diffusion coefficient is the diffusion generated only by trapped parti-
cles, in other words, the diffusion of particles inside a box corresponding to one period
of the electric potential, with length 2π/k. However, in general, the size of a phase-
space hole is much smaller than the characteristic length of a plasma. Therefore, the
effective diffusion coefficient needs to be multiplied by the ratio between the lengths
of the phase-space hole Lhole and the plasma LPlasma, namely,

Dh,eff = Lhole

LPlasma

ω3
bπ

2

12
√

2k2
. (6.17)

Moreover, if particles are assumed to be uniformly distributed on the spatial, x,
direction and with initial velocities equal to that of the hole velocity, v = vh (as in
the case of our simulations), this ratio is equal to the ratio between the total number
of particles and the number of particles inside the phase-space structure. Note that if
the initial velocity is different from the hole velocity, and between vh ± ∆vh/2, the
length Lhole will be smaller and equal to the distance between the separatrix sides at
the particle velocities.
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6.1.3 Diffusion coefficient of a solitary hole

For the first study, we compare the analytical and numerical diffusion generated by a
single Schamel phase-space hole. For this, we implemented the Schamel hole in the
numerical code PERKS and initialized a set of simulations with N = 48 000 particles
where their initial position are uniformly distributed in the simulation box, and their
initial velocity distributed in a narrow (much narrower than the hole velocity width)
Gaussian velocity with mean velocity < v0,i >= 1.95vT . We varied the amplitude ϕ0
of the Schamel hole potential and measured the diffusion of particles.

Figure 6.2: Analytical effective diffusion coefficient of a shifted Harmonic oscillator
from equation 6.17, in solid black, and numerical diffusion coefficient of a Schamel
potential in green dot, as a function of the electric potential amplitude ϕ0. With wave
number k =

√
2/λD

The results are shown in figure 6.2, where the analytical diffusion coefficient of
a shifted harmonic oscillator of equation 6.16, and numerical diffusion coefficient of
a Schamel potential are plotted as a function of the hole electric potential amplitude.
Note that the theoretical prediction of the diffusion coefficient is overestimated by
3% with respect to the numerical diffusion coefficient, this is due to approximating
the Schamel phase-space hole electrostatic potential and trajectories by the harmonic
oscillator. Nonetheless, as seen in figure 6.2, despite the extreme hypothesis, there is
a strong qualitative and quantitative agreement between both theory and numerical
results.

In conclusion, the diffusion of a single Schamel phase-space hole from numerical
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simulations can be predicted, with a reasonably good agreement, through theory by
considering that particle trajectories are those of a shifted harmonic oscillator.

6.2 Diffusion in the presence of a phase-space hole

In the following section, we aim to study the effects of the diffusion of charged par-
ticles in Schamel phase-space holes with a turbulent electric field background. Since
we study a Newtonian system, we can make use of the superposition principle on the
electric field to include the electric field from a Schamel hole. In other words, we con-
sider a total electric field composed of the prescribed turbulent electric field, previously
studied in chapter 3 of this manuscript, and the electric field of a Schamel phase-space
hole.

6.2.1 Particle trajectories of a phase-space hole in turbulence

Since the total electric field is a superposition of the turbulent electric field and the
one of a Schamel hole, we expect particle trajectories to express characteristics of both
dynamics. In particular, near the phase-space hole, we expect particles to experience
trapped particle orbits, like those shown in figure 2.1, while far from the hole, we
expect them to behave similarly to those shown in figure 3.3.

Figure 6.3 shows charged particle phase-space trajectories for a Schamel phase-
space hole of amplitude ϕ0 = 3.60 × 10−3Te/e, and various turbulent electric fields
amplitudes with turbulent Kubo number of K = 1.40 × 10−2, K = 1.98 × 10−2,
K = 2.81 × 10−2, and K = 6.27 × 10−2.

As expected, for particles inside the separatrix of the Schamel hole, trajectories are
predominantly those of trapped particles, while for those outside the separatrix, tra-
jectories resemble random-walk. Nevertheless, since there is a turbulent background,
all particles experience velocity kicks that result in changes of particle’s orbits. In the
case of particles close to the separatrix, these velocity kicks can lead to particle trap-
ping and detrapping, and for deeply trapped particles inside the hole’s separatrix, it
leads to changes in the particle’s energy (orbit), which can result in the transport of
deeply trapped particles to higher energy orbits or vise-versa.

Finally, as the amplitude of the turbulence increases, we observe an increase in
the particle velocity variation, which is to be expected from the results of chapter 3.
Moreover, as the turbulence amplitude increases, particles’ trapping and detrapping
near the separatrix increase as observed in figure 6.3.c. And finally, for large amplitude
turbulence, figure 6.3.d, we observe that particle trajectories become dominated by
turbulence, with only a few deeply trapped particles remaining inside the Schamel
hole.
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Figure 6.3: Charged particle trajectories in the presence of a background turbulent elec-
tric field and a solitary Schamel phase-space hole of amplitude ϕ0 = 3.60 × 10−3Te/e.
In a) for a turbulent Kubo number ofK = 1.40 × 10−2, in b) forK = 1.98 × 10−2, in
c) for K = 2.81 × 10−2, and in d) for K = 6.27 × 10−2.

6.2.2 Diffusion coefficient of charged particles in a superposi-
tion of electric fields

For the second study on Schamel hole diffusion coefficients, we have investigated the
diffusion coefficients from numerical simulations of a superposition of electric fields.
We performed a series of simulations where we vary the amplitude of turbulence while
maintaining the Schamel phase-space hole amplitude ϕ0 and size ∆xh constant.

Figure 6.4 shows the diffusion coefficient normalized to the characteristic turbulent
electric field amplitude against the turbulent Kubo number, K , in the lower horizon-
tal axis, and against the ratio between the characteristic Schamel hole and turbulent
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Figure 6.4: Normalized diffusion coefficient against turbulent electric field Kubo num-
berK , and the ratio between a Schamel electron-hole’s characteristic electric field am-
plitude and turbulence R. In black crosses, dotted blue and solid lines are the results
from chapter 3 for a turbulent electric field. In red crosses is the diffusion of charged
particles for a superposition of electric fields, and in solid green lines is the analytical
prediction of a solitary electron-hole from equation 6.17.

electric fields, ⟨E2
h⟩ and ⟨E2

T urb⟩ respectively,

R = ⟨E2
h⟩

⟨E2
T urb⟩

. (6.18)

In order to better compare the results of this series of simulations, we plotted in
figure 6.4, the diffusion coefficient due to a turbulent electric field already presented in
3.11, the numerical diffusion coefficient, the quasi-linear diffusion, and the high Kubo
number diffusion. In addition to those results, we have added the diffusion coefficient
due to a superposition between the turbulent and hole electric fields and the analytical
phase-space hole diffusion presented in section 6.1.2.

We observe that diffusion can be categorized into two distinct regimes: A first
regime to the left of figure 6.4, where the dynamics of particles are dominated by the
phase-space hole, and a second, to the right of figure 6.4, where the dynamics of par-
ticles are dominated by the turbulent electric field. Moreover, we observe that the
transition occurs at a characteristic electric field ratio of R ∼ 0.8. We did not measure
a smooth transition between these two regimes, where both dynamics can co-exist,
but a sudden transition where particle orbits change from stochastic to deterministic
trajectories, or vice versa.
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6.3 Conclusion

In summary, we investigated the diffusion of charged particles in a prescribed one-
dimensional phase-space Schamel hole electric field by means of analytical theory and
numerical simulations. First, we calculated analytically the diffusion generated by a
phase-space hole by assuming that the electric potential has the shape of a shifted sec-
tion of a harmonic oscillator. Secondly, we measured statistical diffusion coefficients at
different phase-space hole amplitudes ϕ0 and found qualitative and quantitative agree-
ment between simulations and theory. Finally, we performed a study of diffusion co-
efficients of charged particles in a superposition of the Schamel hole and turbulent
electric fields where we measured diffusion and observed two regimes of particle dy-
namics: A first, where the dynamics of the particles are dominated by the phase-space
structure, and a second where turbulence dominates the dynamics of the plasma.

Figure 6.5: Schematic of the expected diffusion for an arbitrary number of electron-
holes. In a) trapped orbits in five electron-holes of arbitrary sizes. In b), the schematic
of the expected diffusion of a sum of electron-holes as a function of velocity.

In conclusion, we find strong qualitative and quantitative agreement between nu-
merical simulations and the theory developed in this chapter to predict the diffusion of
a single phase-space structure. In the presence of a turbulent electric field, we observe
that the dynamics of the plasma are dominated by the dominant effect: If turbulence
dominates over phase-space structures, then turbulent diffusion is the dominant mech-
anism. On the other hand, if the amplitude of phase-space structures is large enough,
then the behavior of the plasma will be dictated by the dynamics of the structure.

In the case where multiple phase-space structures are present in the plasma, we ex-
pect diffusion to be a superposition of the diffusion of individual holes, as schematized
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in figure 6.5 where an image of the expected diffusion in the presence of multiple holes
of various sizes and velocities is shown. However, further work is required to improve
the understanding of turbulence, transport, and diffusion. In particular, integrating the
Poisson equation is a crucial step for achieving the complete self-consistent problem,
where particle distributions are allowed to modify the electric field, and phase-space
structures are inherently present [Bernstein et al., 1957; Berk et al., 1970; Schamel, 1971;
Dupree, 1972; Schamel, 1972; Berk et al., 1997; Lesur et al., 2014]. Note that, although
we have the tools to study the diffusion of particles in a turbulent electric field gener-
ated via self-consistent simulations, we chose to split the problem into small steps to
understand the individual effects that will contribute to turbulent transport in plasmas.
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Conclusion

Turbulence and transport of particles and energy are fundamental processes in plas-
mas. Understanding turbulence and transport can help improve the understanding and
control of natural or laboratory plasmas, like those of fusion devices. In one half of this
manuscript, we studied one of the many mechanisms of transport, namely the diffu-
sion of charged particles in the presence of turbulent electric fields and in the presence
of phase-space structures through analytical theory, including quasi-linear and reso-
nance broadening theories and numerical simulations. On the other hand, we studied
the dynamics of phase-space structures, in particular electron-holes. We measure the
growth of the structures through two methods, by means of the structure acceleration
and by means of the growth-rate of the structure’s phasetrophy.

We developed a test particle code to solve the trajectories of charged particles in
one-dimensional turbulent electric fields. PERKS verified, qualitatively and quantita-
tively, the diffusion coefficients in the quasi-linear and resonance broadening regimes
at different initial particle velocities for two plasma dispersion relations, namely Lang-
muir and ion-acoustic turbulence. Moreover, a comprehensive study of diffusion as a
function of the Kubo number of turbulence showed that diffusion in turbulent elec-
tric fields occurs in three different regimes: Firstly, in the quasi-linear regime, where
particles follow random-walk-like trajectories in phase-space and diffusion evolves as
the square of the turbulent electric field amplitude. Secondly, diffusion evolves non-
linearly with the electric field in the resonance broadening regime, which occurs for
the Kubo number of a few percent. Thirdly, for high Kubo numbers where diffusion
increases as the 3/2 power of the electric field (E3/2), whichwe explain to be a random-
walk diffusion of the centers of trapped particle trajectories in the velocity direction.
Finally, for times much larger than τ0 the autocorrelation time of the turbulence and
τb the bounce time, we measure a second regime of diffusion where this one evolves
as a E5/4 for low Kubo number and E3/4 for high Kubo number.

This manuscript delves deeper into the dynamics of phase-space structures, specif-
ically focusing on Schamel electron-holes within phase-space. When initialized in an
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unstable equilibrium of the kinetic Vlasov-Poisson model, these electron-holes un-
dergo acceleration and eventually reach a stable equilibrium. Utilizing the kinetic code
COBBLES, we studied these electron-holes acceleration and growth-rate phasetrophy
based on various hole parameters. These parameters include initial velocity, electric
potential amplitude, and the gradient of both ion and electron equilibrium distribution
functions. Notably, our observations revealed discrepancies with theoretical predic-
tions. Specifically, an electron-hole can exhibit growth even in conditions where no
growth is theoretically anticipated. Furthermore, we noted that effective gradient ef-
fects, which arise from small variations in the equilibrium distribution gradients for
holes with a large velocity width, demonstrate more favorable behavior than previ-
ously theorized. Nevertheless, as expected from theoretical predictions, we observed
an exponential growth of the whole growth-rate and acceleration for different values
of hole velocities. Moreover, we observe linear dependence on the equilibrium gradi-
ents and a power law on the electric potential amplitude for an initial hole far from
the ion distribution. In summary, electron-hole dynamics is a more complex domain
than previously thought that needs further research in both numerical simulations and
analytical theory.

Finally, we studied the effects phase-space structure has on the diffusion of charged
particles. We calculated the analytical diffusion generated by an electron-hole with the
shape of a shifted section of a harmonic oscillator and found that diffusion is propor-
tional to the 3/2 power of the amplitude of the electric potential of the structure. We
verified through numerical simulations that the predicted diffusion correctly matches,
both qualitatively and quantitatively, the diffusion of a Schamel electron-hole. Finally,
we studied the diffusion of charged particles in the presence of both a turbulent electric
field and a single Schamel electron-hole. We observed two regimes of particle dynam-
ics: A first, where the dynamics of particles are dominated by the phase-space struc-
ture. In this regime, particles near the structure follow trapped particle trajectories,
while those far from it follow random-walk-like trajectories. The diffusion of particles
is dominated by that generated by the structure. On the other hand, when turbulence
dominates the structure, particles behave as if there is no structure in the plasma, and
diffusion is given by turbulence. In the case of multiple phase-space structures, we ex-
pect diffusion to be a superposition of the diffusion of individual structures. However,
further work is required to verify this assumption.

In conclusion, we showed that charge particle diffusion is a function of the am-
plitude of the turbulent electric field, in particular for large Kubo numbers where it
increases slower than what is predicted by quasi-linear and resonance broadening
theories. Moreover, we showed that in the regime of granulation where phase-space
structures are present in turbulence, the structures can dominate the behavior of the
plasma by generating a stronger diffusion than the turbulent background. Finally, we
showed that the acceleration and growth of these phase-space structures dependent
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on the different hole parameters is more complex than previously thought. By taking
into account all the results from this thesis, we can expect that in the presence of large
enough accelerating phase-space structures, charged particle dynamics, diffusion, and
transport will be dominated by the behavior of the structure, withminimal effects com-
ing from the turbulent background. A more in-depth study on hole dynamics needs
to be performed, particularly for the case where multiple electron-holes are present in
phase-space, which has been shown [Ghizzo et al., 1987; Lesur et al., 2014] to interact
attractively between each other and merging into one larger structure after an asymp-
totically long time. In addition, the study of test particles should be continued in the
presence of a self-consistent electric field like those generated from Vlasov-Poisson
simulations.
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Appendix A

Effective collisional operator

A.0.1 Effects of numerical collisions on hole growth-rate
As for any numerical code, the COBBLES code introduces errors originating from nu-
merical operations performed during the calculations of new distribution functions.
This numerical error can be modeled in the form of an effective collision rate γCOBBLES.
A paper by M. Lesur [Lesur, 2016] studies the effects of numerical errors in particle
distribution, using the COBBLES code.

The effective collision rate exhibits an inverse relationship with phase-space res-
olution in COBBLES. In other words, as the number of grid points in the velocity di-
rection Nv decreases, the effective collision rate increases accordingly. Practically, an
effective collision operator leads to smoothing both the ion and electron distribution
functions, which has the consequences of destroying small phase-space structures and
flattening or smoothing large phase-space structures.

We performed two series of simulations with a single Schamel phase-space hole at
varying velocity grid points Nv, one series for an electron drift velocity of vd = 1vT

and the other for vd = 0.25vT . The base parameters of the simulations are a spacial
resolution Nx = 4096 and simulation box length Lx = 10πλD. And for the Schamel
electron-hole: Relative hole-phase velocity δvh = −0.15vT , Schamel electric potential
amplitude ϕ0 = 0.05Te/e, and trapping parameter βh = −7.21.

Figure A.1 shows the relative phase-space hole growth-rate with respect to the
simulation at Nv = 8192,

εγh
= |γNv

h − γ8192
h |

γ8192
h

, (A.1)

and the same electron drift velocity as a function of the number of grid points Nv in
the velocity direction. Where γ8192

h (vd = 1vT ) = 8.505 × 10−8ωP and γ8192
h (vd =

0.25vT ) = 5.095 × 10−5ωP . In both series of simulations, we observe that the growth-
rate increases inversely proportional to the number of grid points, implying that the
phase-space hole growth-rate increases with the effective collision rate. Note that on
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Figure A.1: Relative phase-space hole growth-rate |γNv
h − γ8192

h |/γ8192
h as a function

of the number of grid points in the velocity direction Nv. Where γ8192
h (vd = 1vT ) =

8.505×10−8ωP and γ8192
h (vd = 0.25vT ) = 5.095×10−5ωP . In black dots, for an initial

electron drift velocity vd = 1vT , and in red crosses for vd = 0.25vT .

the simulations at vd = 1vT , we observe an increase of almost 200% for Nv = 2048.
This increase, while big, the growth-rate of this simulation is still of the order of 10−7,
which in our simulations is negligible with respect to larger increases at lower hole
velocities. In other words, the error originating from effective collisions, atNv = 2048,
is acceptable for the simulation times we chose.

Moreover, in figure A.1, we observe that this growth-rate gain increases with the
electron drift velocity value. We observe that the relative growth-rate is smaller ampli-
tude than for the simulations at vf = 2vT . This is due to the already large acceleration
felt by the electron-hole due to the interactions with the ion distribution. Indeed, as
shown in section 5, the gradients of particle distributions are an important parameter
of a phase-space hole growth-rate. Therefore, the position of the hole with respect to
the ion and electron distributions is significant. Thus, the increase in growth-rate due
to the effective collision rate is non-linearly related to the velocity of a hole. For more
information on the effects of distribution gradients on the phasetrophy growth-rate,
an in-depth study is performed in section 5.3.2 and section 5.3.3.

In conclusion, we observed that the discretization of the phase-space results in
an effective collisional operator, which increases the amplitude of the phase-space
electron-hole growth-rate. Furthermore, we observed that this increase in the hole’s
growth-rate depends on both the number of grid points in the velocity direction and
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the hole’s velocity with respect to the ion and electron distribution maxima. During
all the other simulations of phase-space holes via the COBBLES code, we arbitrarily
choseNv = 4096 since it is a compromise between numerical accuracy and simulation
time.
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1. Plasmas

Les concepts théoriques fondamentaux de la physique des plasmas ont été développés
dans la première moitié du 20e siècle. Cependant, en raison de l’absence de technolo-
gies, la température des plasmas expérimentaux était généralement basse, de l’ordre
de quelques électronvolts. Dans le régime des plasmas à "basse température", de nom-
breuses applications pratiques ont été envisagées et développées dans plusieurs do-
maines dont l’industriel, de la médecine ou de la communication. Ce n’est qu’au milieu
du siècle que l’utilisation des plasmas pour la production d’énergie par des réactions de
fusion nucléaire a été considère. Ce nouvel objectif a déplacé les niveaux d’énergie per-
tinents de plusieurs ordres de grandeur (des dizaines de kiloélectronvolts) et a accéléré
le développement de la physique moderne des plasmas.

À des niveaux d’énergie aussi élevés, la plupart des particules du plasma sont ion-
isées, ce que l’on appelle un plasma à haute température ou hautement ionisé. Dans ce
cas, le plasma peut être considéré comme un ensemble de particules chargées librement
avec une très petite fraction de particules neutres. Le comportement d’un tel état de la
matière devient collectif par nature, dicté par des forces électromagnétiques à longue
portée : Le mouvement d’une particule typique est régi par des interactions électro-
magnétiques avec une collection de particules distantes au lieu d’interactions binaires
entre particules voisines, contrairement au couplage fort entre particules individuelles
qui régit les fluides neutres.

Outre l’importance pratique potentielle des plasmas, les recherches sur la dynamique
des plasmas présentent un intérêt inhérent pour les physiciens sur de multiples fronts.
À l’échelle macroscopique, le couplage entre divers mouvements et les champs élec-
tromagnétiques fluctuants donne lieu à des études considérables sur les instabilités du
plasma. Au niveau microscopique, le plasma est constitué d’une collection de partic-
ules interagissant par le biais de forces à longue portée, présentant ainsi un problème
à N corps d’un immense intérêt académique. Enfin, il pourrait conduire à des progrès
significatifs dans la compréhension et la connexion entre la description microscopique
et macroscopique d’un plasma, comme le transport des particules et de l’énergie.

Dans la littérature, différents termes peuvent être rencontrés en fonction de la na-
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ture du plasma, tels que : "haute température", "faiblement couplé", "Vlasov" ou "sans
collision". Dans les plasmas astrophysiques et interplanétaires, qui sont des plasmas
de faible densité, la température absolue atteint des niveaux où l’énergie cinétique
thermique dépasse considérablement l’énergie potentielle des interactions entre les
particules chargées. En revanche, dans les plasmas à confinement magnétique, la tem-
pérature des ions et des électrons est de l’ordre de quelques millions de degrés. Ces
plasmas sont confinés dans des champs magnétiques puissants, où la fréquence des
collisions (ou le libre parcours moyen) est supérieure de plusieurs ordres à la taille de
la machine.

L’un des défis de l’étude des plasmas à haute température réside dans la dynamique
complexe que présentent les paramètres du plasma, tels que les densités de partic-
ules, les températures ou les champs magnétiques, à différentes échelles de temps. À
court terme, des instabilités ou des fluctuations de ces quantités apparaissent. Parmi
les causes, on peut citer les résonances onde-particule, les espèces à évolution rapide
comme les électrons, ou les effets non linéaires. À moyen terme, le plasma connaît
une croissance des instabilités linéaires et des transitions vers l’équilibre. Cela inclut
le développement, la croissance et la dissipation de structures cohérentes dans l’espace
des phases ou la génération de turbulences dans le plasma. Et pour les grandes échelles
de temps, un état quasi-stationnaire est caractérisé par une forte saturation non linéaire
et une stabilisation des fluctuations du plasma. La compréhension et le contrôle de
tous les mécanismes impliqués dans la dynamique des plasmas par la modélisation
théorique et numérique présentent un intérêt scientifique considérable, qui se traduira
par des progrès significatifs pour l’humanité, comme la production d’énergie par fusion
a confinement magnétique, ou des systèmes de propulsion spatiale.

2. Structures de l’espace des phases

Les structures de l’espace des phases sont des arrangements spécifiques de la distri-
bution des particules de la densité de l’espace des phases. Elles sont connues dans
divers contextes de turbulence du plasma, tels que le Bump-on-tail, les instabilités à
deux faisceaux, sur des ondes acoustiques-ioniques, l’amortissement de Landau, les
plasmas atmosphériques, la reconnexion magnétique ou les dispositifs a confinement
magnétique.

2.1 Types de structures

Une variété de structures de l’espace des phases est décrite dans la littérature, notam-
ment une structure de type vortex de fluctuation négative localisée de la densité de
l’espace des phases, δf < 0, qui conduit à un fort piégeage local des particules, qui
est appelé un trou de l’espace des phases. D’autres structures, appelées "bums" ou
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"plateaux" de l’espace des phases, présentent respectivement une fluctuation positive
de la densité de l’espace des phases δf <> 0 ou une fluctuation nulle de la densité de
l’espace des phases δf = 0.

Figure 1: Schéma des différentes grandeurs électrostatiques pour un trou d’électron
dans l’espace des phases. En bleu, la perturbation de la densité de charge, en noir,
le champ électrique et en vert, le potentiel électrique. Enfin, l’espace des phases des
trajectoires des électrons : orange pour les électrons libres, marron pour les électrons
piégés et rouge pour la séparatrice.

Les trous de l’espace des phases sont le résultat d’un piégeage cinétique non linéaire
localisé de particules par leur propre potentiel électrostatique ; la figure 1 montre la
relation entre une structure de l’espaces des phases (dans ce cas, un trou d’électron),
la densité et la perturbation du potentiel. Les trous de l’espace des phases ont été ob-
servés par simulation numérique [Roberts and Berk, 1967], puis analysés par la théorie
[Bernstein et al., 1957; Schamel, 1971; Ghizzo, 1987], et observés dans divers plasmas
stellaires et de laboratoire [Boström et al., 1988; Ergun et al., 1998; Khotyaintsev et al.,
2010; Kamaletdinov et al., 2021].

2.2 Dynamique des structures
Des études ont permis d’observer que l’espaces des phases présente une dynamique
riche et complexe : Les trous peuvent explorer l’espace-phase en accélérant et en
décélérant, croître en taille et en profondeur, être dispersés ou détruits, et interagir
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ou fusionner les uns avec les autres. Cependant, la dynamique des trous dans l’espace
des phases est quantitativement et qualitativement peu connue, à l’exception du taux
de croissance non linéaire d’un trou isolé [Boutros-Ghali and Dupree, 1982; Berman
et al., 1985], et de l’interaction attractive entre différentes structures [Ghizzo et al.,
1987].

Ce travail tente d’étudier quantitativement la dynamique des trous isolés dans
l’espace des phases à l’aide de simulations cinétiques numériques et de la théorie an-
alytique. En outre, un effort a été fait pour étudier les interactions binaires entre les
structures de l’espace-phase dans le but de prédire la dynamique des structures im-
pliquées.

3. Diffusion de particules charge dans des champs élec-
triques

Dans un premier temps, nous avons étudié la diffusion de particules chargées dans un
champ électrique turbulent unidimensionnel prescrit à l’aide de simulations numériques
et de la théorie quasi-linéaire. Nous avons mesuré les coefficients de diffusion statis-
tique à différentes valeurs du nombre de Kubo en utilisant un spectre d’amplitude
Gaussienne et des relations de dispersion plasma réalistes : dispersions de Langmuir
et ion-acoustiques. Et deuxièmement, nous avons étudié la diffusion de particules
chargées dans un champ électrique de trou de Schamel unidimensionnel prescrit dans
l’espace-phase au moyen d’une théorie analytique et de simulations numériques. Nous
avons calculé analytiquement la diffusion générée par un trou dans l’espace-phase en
supposant que le potentiel électrique a la forme d’une section décalée d’un oscilla-
teur harmonique. Ensuite, nous avons mesuré les coefficients de diffusion statistique
à différentes amplitudes du trou de l’espace-phase ϕ0 et nous avons trouvé un accord
qualitatif et quantitatif entre les simulations et la théorie.

En résume, nous avons fait une étude approfondie sur les coefficients de diffusion
en dehors du régime quasi-linéaire, à de grands nombres de Kubo. Nous avons mesuré
la diffusion évolue sous la forme d’une loi d’échelle de puissance, K3 ∝ E3/2, que
nous expliquons être une diffusion aléatoire des centres des trajectoires des partic-
ules piégées dans la direction de la vitesse. Également, nous avons réalisé une étude
des coefficients de diffusion de particules chargées dans une superposition du trou de
Schamel et de champs électriques turbulents? Ici nous avons mesuré la diffusion et
observé deux régimes de dynamique des particules : Un premier, où la dynamique
des particules est dominée par la structure de l’espace des phases, et un second où la
turbulence domine la dynamique du plasma. Ces résultats sont affiche dans la figure 2

Finalement, nous avons étudie les processus d’accélération et de croissance des
trous électroniques dans l’espace des phases. Nous avons mesuré les effets de la dis-
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Figure 2: Coefficient de diffusion normalisé en fonction du champ électrique turbulent,
nombre de Kubo K , et rapport entre l’amplitude du champ électrique caractéristique
d’un électron-trou de Schamel et la turbulence R. Les croix noires se sont les simula-
tions avec uniquement un champ turbulent, les croix rouges représentent la diffusion
dans un champ turbulent avec trou de Schamel, les lignes bleues pointillées la théorie
quasi lineaire, les lignes rouge le regime haut nombre de kubo, et la ligne verte la pré-
diction analytique d’un trou d’électron.

crétisation de l’espace des phases, qui se traduit par un opérateur collisionnel effectif
qui accélère et lisse les trous de l’espace des phases. Nous avons observé des similitudes
entre les dynamiques numériques et analytiques des trous. Cependant, des divergences
entre les résultats numériques et analytiques ont été observées. En conclusion, nous
avonsmontré les limites des théories analytiques dans la prédiction de la croissance des
trous à l’aide de simulations numériques. En particulier, les effets marqués de la dis-
tribution ionique sur la dynamique d’un trou d’électrons. De plus, nous avons trouvé
une approximation correcte de la croissance du trou pour prendre en compte les fortes
déviations résultant de la variation des gradients de distribution sur la largeur du trou.
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