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Note introductive du document : 

Ce manuscrit propose de présenter un résumé de mes activités de recherche couvrant la période de 2012 à 

2022. Ces travaux ont été réalisés au CNRS à l’Institut d’Électronique, de Microélectronique et de 

Nanotechnologies depuis 2012 et au Laboratoire Nanotechnologies et Nanosystèmes de 2017 à 2020. A 

travers ce manuscrit, je propose d’illustrer mes travaux centrés sur l’électronique neuromorphique et ayant 

cherchés à étudier comment différentes technologies pouvaient être utilisées dans ce contexte. Notamment, 

les composants de type memristor à base de TiO2 m’ont permis une approche classique en 

microélectronique visant à travailler sur la montée en maturité d’un composant et son intégration au niveau 

circuit et systèmes pour la réalisation de puces neuromorphiques. Un deuxième volet de mes travaux s’est 

intéressé à utiliser des mécanismes non-conventionnels observés dans les nanotechnologies pour réaliser 

des fonctions innovantes en électronique neuromorphique. Ces travaux sont restés à un niveau très amont 

visant principalement les preuves de principe et se sont attachés à diversifier les matériaux et composants, 

depuis les conducteurs ioniques aux matériaux organiques et des composants mémoires aux transistors 

électrochimiques. Enfin, le dernier volet de mes travaux concerne une approche largement interdisciplinaire 

combinant plusieurs thématiques autour de l’électronique neuromorphique. Je m’intéresse à l’utilisation de 

concepts de traitement de l’information issus de l’électronique neuromorphique (ou bio-inspirée) pour le 

fonctionnement de réseaux de capteurs organiques couplés aux réseaux de neurones biologiques. Ces 

travaux ont été initiés depuis 2015 dans le cadre d’une collaboration avec le laboratoire JPArc (LilleNeuroCog) 

et sont au cœur de mon projet de recherche actuel et futur.   

Le premier chapitre se présente comme un article de perspective sur l’électronique neuromorphique. Il 

présente un état de l’art superficiel du domaine et s’attache à identifier les grands enjeux et objectifs sous 

différents angles. Ce chapitre propose une analyse suivant trois axes principaux : (i) une comparaison aux 

réseaux de neurones artificiels, (ii) les enjeux de l’implémentation matérielle et (iii) les perspectives offertes 

par la biologie.  

Le deuxième chapitre est un article de revue publié en 2020 qui propose une synthèse des différents enjeux 

liés a l’intégration des memristors sur CMOS. Au niveau applicatif, les memristors sont ici considérés pour 

des applications de type réseaux de neurones statiques mais les défis identifiés pour les systèmes hybrides 

CMOS/memristors restent valides pour l’électronique neuromorphique. Ce chapitre propose une structure 

classique depuis les composants, l’intégration au niveau circuit, jusqu’aux défis au niveau système. Il permet 

notamment de montrer que l’innovation attendue pour les systèmes de type calcul en mémoire à partir de 

composants memristors nécessite un travail largement interdisciplinaire allant du matériau au système de 

traitement de l’information. Ce travail a été réalisé principalement en collaboration avec Amirali 

Amirsoleimani. 

Le chapitre 3 a été publié en 2015 et couvre les travaux de thèse de Selina La Barbera. L’idée maitresse de 

ces travaux était d’exploiter la physique des composants mémoires filamentaires pour réaliser différentes 

formes de plasticité synaptique. Notamment, utiliser la volatilité de ces cellules mémoires liée à l’instabilité 

du filament conducteur a permis de mimer les mécanismes de plasticité court terme (STP) et long terme 

(LTP). Ces travaux ont été poursuivis ensuite pour étudier comment ces mécanismes pouvaient être utilisés 

pour réaliser des apprentissages non-supervisés. 

Le chapitre 4 est un article publié en 2018 montrant comment les concepts issus de l’électronique 

neuromorphique peuvent être utilisés dans le contexte d’un réseau de capteurs ioniques de type transistors 

électrochimiques. Ces travaux montrent comment la dynamique des capteurs et leur variabilité permettent 

d’implémenter des fonctions non-triviales de classification de signaux dynamiques. Ces travaux ont été 

réalisés en collaboration principalement avec Sebastien Pecqueur.  

Enfin, le chapitre 5 présente mon projet de recherche qui s’intéresse à utiliser le traitement de l’information 

neuromorphique et bio-inspiré pour développer des interfaces innovantes aux réseaux de neurones 

biologiques. L’idée directrice de ces travaux et d’utiliser un paradigme de traitement de l’information le plus 

proche des systèmes biologiques et d’intégrer des fonctions de traitement des signaux directement au niveau 

de l’interface des réseaux de neurones biologiques.  
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1. CHAPTER 1 

Neuromorphic computing and engineering 

overview 
 

1.1. INTRODUCTION 
 

What is really intelligence? This simple question is today stimulating multiple answers, which depend 

strongly on the angle used to analyze it. From a human-centered approach, intelligence is associated to the 

ability of human to formulate complex ideas, understand non-trivial mechanisms or planned elaborated 

strategies to anticipate future events. From a biological viewpoint, intelligence can appear through multiple 

forms such as collective behaviors in animals and vegetals, or ability to optimized resources for survival of all 

living species. But todays, this question is not restricted anymore to living organisms and we start to believe 

that intelligence could be embedded in artificial objects. The Artificial Intelligence revolution (AI), started 

decades ago with the first computers, offers a new substrate for researchers to tackle this question: in 

addition to the philosophical or biological angles, engineering is now a new domain in which intelligence 

could be considered. Indeed, these past years have seen impressive progresses in this direction with 

computers solving complex problems such as the Go game played by AlphaGo, image recognition surpassing 

human capacity in the ImageNet challenge or autonomous vehicles and robots evolving in real-life 

environment. However, this story is not only an engineering question. It is the result of the integration of 

multiple discoveries, from biological and computational neurosciences, computer sciences and mathematics, 

to material and physical sciences. Consequently, any attempt to expose how engineering is today progressing 

toward the development of intelligent systems should consider an interdisciplinary approach and could not 

be limited to the development of hardware materials. 

In this chapter, we will present an overview of a specific domain that is intimately linked to AI. 

Neuromorphic computing and engineering (NCE), a term coined by Carver Mead in the 70s, is indeed 

emerging as a central aspect of AI and is bridging together multiple scientific domains. Progresses in AI have 

been deeply marked by machine learning in general, and Artificial Neural Networks (ANNs) in particular. 

ANNs, and their more recent development toward deep networks were at the origin of the second AI 

revolution that occurs in the 2010’s. Inspired by the computing principles of the brain, ANNs rely on neurons 

(activation functions) and synapses (weighted connections) to compute data. They are also integrating the 

key ingredient of learning through mathematical models to define the synaptic weights. Neuromorphic 

computing is based on the same key ingredients but is using some very distinctive elements. Section 2 will 

present how NCE is capitalizing on spike encoding to represent information and what is the impact of this 

choice on data processing. Notably, spike encoding implies deep modification on the activation function of 

neurons, which represents a significant difference in between Spiking Neural Networks (SNNs) and ANNs. 

We will present in section 3 the incidences of spike coding on learning rules used in SNNs.  In particular, we 

will expose the main learning rules used in SNNs and what are the most promising strategies. Another 

important distinction of NCE with machine learning is its profound connection to the hardware used to 

compute information. This aspect was already present in the pioneering work of Carver Mead, which 

considered the analogy between an ionic channel and a transistor as a foundation for NCE. This leads today 

to strongly hardware-oriented strategies for NCE that will be presented through two main point of view. 

Section 4 will put the emphasis on the energy consumption challenge that NCE is trying to solve. This energy 

consumption is directly linked to the hardware substrates used to implement SNNs. Section 5 will present 
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the challenges of integration to reach the density of components (i.e. neurons and synapses) comparable to 

what biology can do.  

 

1.2. DATA REPRESENTATION IN SNNS. 
 

One of the major difference that we can recognize today in between ANNs and SNNs is based on the data 
encoding used in both approaches. In the one hand, ANNs are computing data with analog values through 
their layered structures. Input data can be considered as vectors {𝑥𝑖} 𝜖 𝑅𝑛 presented at the input layer. The 
synaptic conductances in between two layers corresponds to matrices W = (wij). The vector.matrix operation 
is the essential operation realized to compute the output vector that is passed through the neurons activation 
function to generate the input vector of the next layer. In this sense, ANNs can be considered as frame-based 
operator where data are organized into series of vectors. Consequently, ANNs are clocked systems where 
the notion of throughput (number of operations per second) is a relevant metric. In the other hand, SNNs 
are encoding continuous analog information through spikes. The simplest data representation corresponds 
to a rate-coding scheme, i.e. the analog value of the signal carrying information (or strength of a stimuli) is 
associated to the average frequency of the train of pulses. The neuron can then transmit some analog signals 
through its mean firing rate (figure 1a). A second coding scheme is known as temporal-coding in which each 
individual neuron is using the timing of the spike with respect to others neurons in order to encode the signal. 
The first spike is carrying a strong analog value while the later ones are associated to smaller analog values 
(figure 1b). Both coding schemes are used to encode continuous signals, at the opposite to “frame-based” 
ANNs. It is to note that spike coding raises an important issues for data representation. Both rate-based and 
time-based are somehow ubiquitous in real spiking signals, but moving from one representation to the other 
is not straightforward. It turns out that an alternative description of the spike encoding that could describe 
both strategies would be to consider a probability of spikes. Quantum physics theory, where both the time 
and localization of a particle cannot be known at the same time, but only its probability of presence, is an 
interesting analogy.  

 

Figure 1: (a) Rate-based representation of analog signals. (b) Time-based representation of analog signals 

 

In SNNs, spikes are discrete events, which could be associated to a digital value (i.e. “0” or “1”). Their 
temporal organization is carrying the analog features of the signal. In order to decode this analog 
information, neurons rely on the integration of the spikes. Various neurons models are used for NCE, with 
Leaky Integrate and Fire (LIF) being the most popular [2]. Each incoming spike contributes to increase the 
membrane potential of the neuron (Vmem). Vmem tends to leak with a given time constant. When the potential 
Vmem exceeds a threshold, the neuron fires an output spike and the membrane potential is reset to its resting 
state. This mechanism means that the neuron in itself is responsible for holding in its membrane potential 
part of the analog information (at least until Vmem leaks completely or a spike is emitted). This mechanism is 
often associated to a memory effect of the neuron. To some extends, an additionnal memory effect, which 
we describe here as the trace of the information in the network, can be identified through the recurrent 
connections and the delay of propagation. When propagating in the network and finally coming back to the 
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same place, a spike can “live” in a local point (i.e. a specific neuron) for a given duration. These considerations 
are used here to highlight a major difference in between ANNs and SNNs operation, which is intimately linked 
to the data representation. ANNs are data-driven system where static neurons and synapses compute the 
analog signals, only data are modified (this holds for inference only, not learning obviously). At the opposite, 
in SNNs, data are represented in the network through the combination of various dynamics of the elements 
that compose the SNNs. This representation of data (i.e. data are in the computing elements) is a major 
departure from the traditional way of considering data processing.   

The spike encoding is an essential aspect that is limiting the development of SNNs. The conservative 
way of dealing with data processing is to consider data from sensors separately from the computing 
elements. However, as pointed out by H. Barlow 60 years ago [3]: “it is foolish to investigate sensory 
mechanisms blindly—one must also look at the ways in which animals make use of their senses”. In other 
words, the way data are encoded at the sensory level cannot be separated from the higher computing levels. 
Along this line, developing SNNs for processing requires converting analog sensory signals into spikes. This 
analog-to-spike conversion is often under considered but is in fact a critical element of the processing itself. 
During the spike conversion, either the totality of the signal is converted or features from the signal can be 
enhanced or suppressed in order to convey only the meaningful part of information. For example, the 
simplest data conversion is to convert an analog signal into a train of spikes following the rate-coding 
strategy. In this technic, the limitation is mostly on the sampling of the analog signal since a minimal interval 
is required to define a mean frequency, but all information is transmitted without discrimination. More 
elaborated spike conversion are considering a more event-driven conversion by associating a spike to an a-
priori important aspect of the signal such as a change in intensity (see for example BSA technic [4]). The latest 
progresses in this direction are now trying to develop finer features extraction such as in sparse coding 
strategies where filters of features need to be learn from the signal based on relevant criterion such as 
performances and sparsity.  
Ultimately, NCE needs to consider not only SNN for processing but also the sensory elements of the circuit 
[5]. In this direction, the most significant achievements have been done with event-based camera that are 
emulating vision. The same bio-inspired approach has been applied to artificial cochlea implementation for 
sound processing. There is still lots of room for innovation in this domain if we think about the different 
sensory modalities used by living species to interact with their environment or to the large amount of sensors 
that are currently deployed on various Edge Computing applications. 

Nevertheless, NCE is maybe somehow overestimating the importance of spikes. Analysis of 
electrophysiological signals reveals that signals in the brain present complex components such as 
subthreshold membrane potentials changes, collective Local Field Potential (LFP) resulting from the 
synchrony of populations of cells, or low frequency oscillations that are carrying an important part of the 
information (at least for some specific tasks). These different data representation are not integrated in 
current SNNs that are considering the spikes as the quantum of information. More recent progresses in 
biological neurosciences are now putting the emphasis on the role of additional elements to neurons to 
process / transmit information. The example of the tri-partite synapse where the astrocyte supervised the 
synaptic activity is a striking example of this issue. This could be extended further to the role of multiple 
chemical such as hormones in the way information is represented and processed in biological networks. The 
question that needs to be answered is: “is the spike enough to reproduce the complexity and performances 
of biological brains?”   

 

1.3. LEARNING RULES IN SNNS 
 

One of the keys of success of ANNs, and deep network in particular, is the backpropagation of error 

algorithm (backprop). Nevertheless, backprop required to be able to differentiate the activation function of 

neurons to compute the synaptic weights modification. Since spiking neurons are non-differentiable 

functions, backprop cannot be directly transposed to SNNs. Until recently, this made deep SNNs (i.e. 

multilayer) and recurrent SNNs hard to train and was preventing SNNs to reach equivalent performances as 
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deep networks. Several strategies have started to emerge and were proposing alternative to make SNNs 

compatible with backprop algorithms. The key idea here is to find some equivalent technic to compute the 

gradient descent, which involves differentiating the neuron activation function. Smoothing of the activation 

functions or surrogate functions to the gradient are very attracting options that have demonstrated 

equivalent performances of multi-layer SNNs with their equivalent ANNs. Nevertheless, these technics are 

approximation of gradient descent technics and are unlikely to bring SNNs above ANNs performances [6].  

A very distinctive aspect of NCE with ANNs for learning is to consider more bio-inspired learning rules. A 

very famous example is the proposition of Spike Timing Dependent Plasticity (STDP). STDP is a variation 

around the seminal Hebb’s idea of “who fire together, wire together” and was identified in biology. Spike 

timing is used to define correlation in between a pre and post-neuron (pre fires before post) and anti-

correlation (post fires before pre). The correlation (anti-correlation) of activity is used to define weight 

potentiation (depression) during learning.  A key aspect of STDP, which is not present in ANNs, is to propose 

a local learning rule (i.e. weight modification depends only on pre and post-neuron activity). This is highly 

desirable from a hardware perspective since it could enable the development of massively parallel hardware 

substrates where information doesn’t need to travel extensively in between computing nodes. At the 

opposite, backprop suffers from the spatial credit assignement issue, which consists in the problem of 

calculating the weight modification based on some loss function calculated at the output of the network and 

to retro-propagate this error across it. Nevertheless, STDP was limited until recently to single layers SNNs 

and was not adapted to deep SNNs. A direct consequence was a poor level of performances with respect to 

ANNs. There has been recently some breakthroughs along this line with the proposition of neo-hebbian 

learning rules [7]. In these extensions of Hebb’s rule, a third factor is added to the standard two factors (e.g. 

pre-neuron activity and post-neuron activity in STDP) and result in three-factor learning rules. For example, 

an additional learning signal to the STDP can be used to indicate how much the local learning is useful with 

respect to an objective function describing the network performances. This strategy, even if trading-off the 

locality of learning, was able to demonstrate high performances of multi-layer SNNs and could be a game 

changer in the development of deep SNNs. 

From a different angle, important progresses has been realized recently toward high performances SNNs. 

In these approaches, the key idea is to find a way to calculate the error of the network based on local 

information only. In other words, the the idea is to calculate locally the backprop signal. Equilibrium 

propagation (eq-prop) corresponds to an energy-based model of the network and was used to derive a 

learning rule, which was able to backpropagate the error [8]. In eq-prop, error retro-propagation is based on 

two main ingredients. Weights modification is associated to a local term that depends on the local activity of 

the pre and post neuron, and on a global term describing the network performances. This approach is again 

promoting locality with respect to standard backprop algorithm. The local learning term was also 

demonstrated to be equivalent to some extend to STDP. Note that this proposition belongs to a broader 

stream that tends to bring ideas from ANNs to SNNs [9]. A second promising direction was also proposed for 

recurrent SNNs. Eligibility propagation (e-prop) is proposing to define learning based on a local learning term 

and some eligibility traces that are indicating to the network “when to learn” based on the global objective 

function to implement [10]. E-prop have shown equivalent performances to LSTM ANNs, which are one of 

the most widely used recurrent ANNs network. While important differences exist in between eq-prop and e-

prop, both are offering new perspective for deep SNNs deployment since locality of learning is preserved to 

some extend and could be deployed on massively parallel hardware substrates. 

Biology is also pointing toward a combination of local / global learning in neural network [11]. An example 

of this idea is the tri-partite synapse. In this synaptic model, learning depends in addition to pre and post-

synaptic factors (e.g. spike activity, membrane potential,…) on the astrocyte signal that is supervising the 

actual learning. Astrocytes are non-spiking cells that are known to regulate calcium ions concentration 

(among other functions) across multiple neuronal cells. Through this calcium regulation, learning can be 

strengthened or weakened. Other evidence coming from biology are also strengthening the combination of 

local and global effects. For instance, dopamine release during learning has been demonstrated to be a 
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reward signal triggering synaptic plasticity. All these elements can find analogy to some extend to the 

previously mentioned learning rules. But it is to note that these mechanisms are involving complex spatial 

and temporal dynamics during learning that are making bio-realist learning algorithms hard to define. 

 

 

1.4. ENERGY CONSUMPTION CHALLENGES  
 

Energy consumption remains a major challenge for the development of AI. If ANNs algorithms have 

demonstrated attractive performances for various tasks, their deployment on edge applications that requires 

strong constraints on the hardware energy budget is still limited. ANNs are indeed data intensive systems 

that require massive exchange of information in between the computing nodes and the off-chip memory 

(these signals could be either input data or models parameters such as synaptic weights). Conventionnal 

hardware are mostly using DRAM memory to store data and parameters and most of the energy is dissipated 

through data movement in between the different element of the system. Note that this statement applies 

for both conventional CPU and GPU, even if the later is allowing for higher throughput (throughput being the 

number of operations per second, TOPS). To this end, in-memory computing (IMC) has attracted a deep 

interest to reduce energy consumption associated to data movement [12]. IMC is intimately linked to the 

hardware concept of embedded memory where the physical devices for memory are integrated along with 

the CMOS computing elements, thus limiting the physical distance of data movements. If IMC could be 

realized with various technologies (embedded DRAM, SRAM, for instance), a very attractive option is to used 

resistive memory technologies (RRAM or memristors). In this approach, memristors are used to implement 

synaptic weights and the Kirchoff’s laws are used to realize the key operation of dot product (note that dot 

products, vector matrix multiplication and Multiply And ACcumulate are essentially the same basic 

operation). Benefits of this approach are two sides: (i) IMC of dot product allows for reduce latency since the 

operation could be realized in principle in a single time step and, (ii) data movement is limited thanks to on-

chip synaptic weight. This later aspect is of first interest for implementation of on-chip learning strategies. 

Note that the dot product operation in itself doesn’t present a significant interest in term of energy with 

todays technologies since memristors require to sink a significant current during writing and reading. But if 

IMC with memristor is still a very active research direction for ANNs implementation that could enable high 

throughput with low energy (TOPS/W), challenges still exisits regarding the variability of memristors, which 

makes them good candidates for low accuracy computing, but less attractive for conventional backprop 

algorithms requiring high accuracy weight updates during gradient descent.  

Innovative hardware (i.e. IMC) are partially solving the energy consumption issue of ANNs but power 

consumption of biological systems seems still out of reach. Note that this applies for both ANNs and SNNs. 

Nevertheless, SNNs are pointing toward the possibility of better energy performances with respect to ANNs 

thanks to their distinctive data representation. Spike encoding of information is pointing toward a very 

efficient way of computing information if spatial and temporal sparsity is obtained. Spatial sparsity 

corresponds to a good distribution of the information along the different nodes of the network. Temporal 

sparsity corresponds to a representation of signals with as few spikes as possible. Both spatial and temporal 

sparsity are also favored by encoding only the essential part of the signal. For instance, when computing  

ANNs models involves dense vector matrix operation at each “frame” of the signal, SNNs are distributing 

over time the same operation, thus limiting instantaneous power consumption.  A second aspect that spike 

computing seems to offer is the ability to compute with low accuracy and large noise, while preserving 

efficient performances. Indeed, biological networks are using 2-3 bits resolution for synapses and their signal 

to noise ratio are well behind the requirements of digital technologies. In term of energy, this have a direct 

impact since accuracy in electronic systems comes at the price of higher energy consumption and higher 

latencies.  
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From a hardware perspective, biology is also pointing toward key differences with current approaches. 

An interesting example is to compare the subthreshold voltage slope used by ionic channels in comparison 

to transistors channel in the seminal work of Carver Mead [13]. This important difference could be explain 

to some extend by multiple aspects. (i) Biology is using various carriers of information, and in particular ions, 

for computing. For instance, divalent ions are reducing by a factor of two the energy required to overcome 

the thermal barrier used for charge separation in a physical systems (this Boltzmann limit in transistor 

corresponds directly to the subthreshold voltage slope of about 60 mV in transitors). (ii) Electronic systems 

are relying on fast moving and confined electrons through drift and diffusion, which implies important Joule 

effects. At the opposite, biology is based on slow motion of ions in a dilute conductor (i.e. the electrolyte) 

mostly driven by diffusion. (iii) Separation of charges in biology doesn’t rely solely on electrostatic effects but 

also employs mechanical components such as ionic pumps. These elements suggests that reaching the energy 

performances of biology with current approaches would require rethinking profoundly the choice of 

substrate used for computing. 

 

1.5. THE INTEGRATION CHALLENGE 
 

In 2010, the Synapse project proposed a roadmap for the development of brain-inspired hardware. The 

most critical metric was the synaptic connection since density of synapses is around 10000 times larger than 

neurons. They estimated the footprint of an electronic synapse to be 100 nm2. Such ultimate footprint would 

ensure ultra-high integration of synaptic elements to match what is observed in the brain. Memristors have 

been strongly considered to fill this requirement since sub-5 nm devices has been demonstrated (note that 

flash technology scaling has been stopped at the 28 nm node). In addition to ultra-small footprint, memristor 

in its simplest version is also compatible with crossbar integration scheme, which could allow for high-density 

integration. Nevertheless, passive crossbar (i.e. memristor are integrated at the crosspoint of two metal 

wires without selector) have faced several challenges that still need to be answered. The most critical ones 

are crosstalk effects (i.e. undesired programming of adjacent memristors during writing of a specific one) and 

mismatch of the crossbar wires impedance with the memristors. This later effect worsen when scaling the 

crossbar dimensions and would require important effort at the technological level to decrease wire 

resistance and increase memristor resistance.  

Another important limitation to high-density integration of memristor appears to be the complexity of the 

overhead circuitry required to drive the memristor elements. This overhead increase when writing scheme 

of the memristors becomes more complex, in particular during learning of the synaptic weights. It appears 

today that 1T1R integration is favored to solve the crosstalk issue. But integrating complex writing schemes 

to implement synaptic plasticity are requiring 2T1R for STDP implementation, and up to 6T2R1C for 

backpropagation [14]. A very attractive option to limit this increased footprint associated to the writing 

circuitry is to rely on the physics of memristor technologies to implement locally various plasticity rules and 

synaptic mechanisms. For instance, various drawbacks of conventional memories such as retention or 

stochastic switching could be turn into advantages to reproduce synaptic effects during learning and 

operation.  

An additional difficulty associated with integration density in ANNs and SNNs is the interconnection of the 

different nodes in a parallel manner. Since conventional CMOS technologies are bounded to a 2D integration 

of the transistors, important interconnects in the middle-end of line are required. This constraint is pointing 

toward the necessity of 3D integration of computing elements, and in particular of the synaptic connections. 

There is a true potential to integrate memristors in 3D but this objective will require important technological 

efforts.  

A more fundamental limitation in the development of computing substrates that could match the 

requirements of high density of neurons and synapses in ANNs and SNNs is the top-down approach imposed 

by conventional technologies. If general-purpose computers are offering a large abstraction between the 
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algorithms and the physical substrates, the development of neuromorphic circuits is creating a strong link in 

between both. It means that the complexity of the algorithm (number of nodes and parameters) is directly 

mapped on the physical substrate used for computing and need to be known before fabrication. Even if 

sparse networks are obtained after learning by using pruning technics for example, the initial network 

topology needs to be over-estimated in order to enable learning. Definition of the optimal topologies that 

could be used without trading too much on the flexibility is a very important question that is only partially 

answered today. At the opposite, biological networks are using relaxed device dimensions (i.e. neurons are 

about 30 um and synapses are 100-200 nm).  However, they evolved following a bottom-up strategy, which 

implies that material resources are created when required and are used very efficiently. This aspect, in 

addition to the truly 3D integration of the brain could be a key ingredient that technology would need to 

reproduce in order to reach the level of performances of its biological counterparts. 

 

1.6. CONCLUSION: TOWARD A TRUE ARTIFICIAL INTELLIGENCE? 
 

NCE appears as a promising solution to bring current AI toward its next generation. The first practical 

aspect of bringing AI to the next level is to unlock the energy consumption challenge. This could result in the 

deployment of AI on a variety of embedded applications near sensors, which are regrouped into the class of 

edge computing applications. Having intelligent computing embedded on portable devices will reduce the 

bottleneck of data exchange to / from the cloud and its (often not displayed) related energy consumption. 

This aspect is two sides since it will reduce the energy sink of large data centers and reduce the pressure on 

the battery lifetime of portable devices. From the previous elements describe above, we see that the main 

vector for this “AI revolution” is based on hardware innovation that NCE is promoting thanks to its strong 

roots with hardware physics and on how moving from bio-inspired observations to hardware 

implementations. Nevertheless, reaching this goal needs to approach the problem globaly and to consider 

both data encoding (section 1.2), learning (section 1.3), energy consumption at the device (section 1.4) and 

system level (section 1.5).  

But there is also a more profound impact of NCE on the future of AI. Today, ANNs are currently surpassing 

all other approaches in terms of performances for a large variety of AI tasks. This is suggesting that there is 

not a real need in innovation in computing, but continuous scaling of ANNs could be enough to sustain the 

deployment of AI. Nevertheless, ANNs are still not convincing on their ability to promote a “real” intelligence. 

It seems that some ingredients to engineer intelligence on hardware systems are still missing. This requires 

of course to define what can be considered an intelligent behavior, and to have some metrics to compare 

the performances of a deep network with the one of a sea cucumber or a fly. NCE is holding some promises 

to this end since it could promote a truly interdisciplinary research at the frontiers in between biology, 

neurosciences, computer science, and electrical engineering. This interdisciplinary approach could help us 

progressing toward the understanding of data representation in the brain (section 1.2), learning (section 1.3) 

and biological wetware principles (sections 1.4 and 1.5). If it is hard to identify a safe methodology toward 

this goal, an engineering approach would certainly benefit from material integration of the different NCE 

concepts toward embodiment of AI on hardware that could integrate every levels from sensing to computing. 

This should require sustained efforts on neuromorphic sensors development, online (even continual) learning 

circuits and autonomous computing systems deployment.   
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2. CHAPTER 2 

 

In-Memory Vector-Matrix Multiplication in 

Monolithic CMOS-Memristor Integrated Circuits: 

Design Choices, Challenges, and Perspectives 
 

 

2.1. INTRODUCTION 
The semiconductor technology sector, and particularly its research core, are currently undergoing 

fundamental changes. After decades of predictable evolution based on the strategy relying on 

CMOS scaling1 yielding incremental processor performance improvements, new solutions are 

required2. The first driving force for this revolution is energy consumption, which remains a major 

challenge for the ubiquitous deployment of electronic chips on an ever-increasing number of 

devices3. Solving this challenge would enable both: the integration of more computing functions on 

a variety of portable miniaturized devices with demanding energy/form-factor constraints, and 

more generally, conserving the total energy required to power billions of electronic devices. The 

second driving force is the massive deployment of artificial intelligence (AI) in our everyday life, 

which is redefining the basic principles of the hardware architecture required for computing. In 

particular, von Neumann computing architecture4 is not well adapted to machine learning (ML) 

implementation, which is a main vector for the widespread adoption of AI. Indeed, implementations 

of ML algorithms on standard CPUs are typically inefficient in term of speed due to the constant 

dataflow between arithmetic units (AUs) and the memory, limited by the von Neumann bottleneck. 

There is consequently an important need to improve computing efficiency from both an energy 

consumption and throughput perspective. To this end, hardware innovation is expected to play a 

major role by offering viable solutions to sustain the deployment of electronics. 

Specialized hardware such as GPUs5, which are highly parallelized versions of classical von Neumann 

CPUs, have been game changers in the acceleration of ML. However, they are offering only a partial 

solution to the speed and energy challenges. More precisely, GPUs are a first step toward hardware 

specialization where the key operation of Multiply and Accumulate (MAC) has been parallelized in 

order to offer important speed improvements. Since MAC operation represents the most intensive 

calculation required for ML algorithm implementation, it explains why GPUs have led to important 

breakthroughs in acceleration of ML by enabling training and operation of deep neural networks6 in 

a reasonable amount of time. But parallelization solely cannot solve the energy challenge for two 

reasons: (i) intensive data movement between the different physical elements of the hardware 

results in important energy consumption (i.e. data movement between on-chip memory and AU, 

but also data movement in between the different on-chip and off-chip memory level) 7; (ii) as in 
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CPU, the fundamental algorithmic operation is still realized with the same elementary logical 

operations, which require the same energy budget.   

Improving both energy and speed requires to rethink more deeply hardware design principles and 

prudently explore emerging computing technologies. Along this line, more advanced solutions 

exploit hardware specialization even further and propose to design application processing units 

(APUs), which optimize the throughput and energy requirement for a specific application (Figure 

1(a)). In these approaches, innovation is more supported by hardware diversification and 

specialization, rather than by software innovation to make a balance between their functional 

flexibility and performance 2. By deploying hardware specialization, there have been several low 

power research chips, data center chips and cards proposed in addition to recent advancements in 

CPUs and GPU-based neural engines. However, it should be noted that reaching an end-to-end 

solution for an efficient hardware will require scrutinizing other computing paradigms and 

technologies. In this context, in-memory computing architectures enable efficient computing with 

negligible data movement by co-locating memory and processing unit. This path has been explored 

with various technological solutions, from mainstream SRAM and DRAM to more emerging ones 

such as eDRAM 8. Beyond charge-based digital memory technologies, in-memory computing based 

on non-volatile resistive switching devices (RS) monolithically integrated on CMOS is opening new 

perspectives for ultra-efficient MAC operation engine development 9. Firstly, monolithic integration 

of memory in close vicinity of logical units reduces significantly the distance for data trafficking, and 

thus should reduce energy consumption and throughput limitation9-11. Secondly, in-memory 

computing represents a new physical implementation of the basic MAC operation with potential for 

important improvements with respect to the same criterions.  

In this paper, we aim to review the main limitations and opportunities of in-memory computing with 

resistive memories for MAC operation engine, also known as Vector Matrix Multiplication engine 

(VMM engine). On this basis, as shown in Figure 1(b), the challenges hindering toward the path of 

monolithically integrated resistive memory and CMOS VMM engines to become a mainstream 

hardware have been categorized into three different levels: physical constraints, circuit-level 

challenges and system-level challenges. Initially, we define the main issues corresponding to 

physical limitations of this specific class of hardware e.g. accuracy, integration, scalability and speed. 

Subsequently, we assess the circuit-level challenges and analysed the input and output circuit design 

costs and opportunities. Finally, system-level obstacles such as data movement and data conversion 

issue have been discussed. Also, we propose a rational analysis of such APUs performance and their 

trade-offs in the context of ML applications, but the same reasoning could be applied to a wider 

range of applications 12 such as image processing13,14, combinatorial optimization 15-19, sparse coding 
20,21, associative memory 22-26, deep learning inference/training 27-30, unclonable functions 31-34, 

principle component analysis 35,36, spiking neural networks37-41, solving linear 42, and partial 

differential equations 43 and reservoir computing 44-46.  Our intent is to provide a comprehensive 

analysis to assess the novelty of the reviewed examples and discuss different design choices to 

better understand this emerging class of hardware and to rationalize performances evaluation.  
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Figure 1: Different computing hardware performance overview and challenges and limitations hindering the 

path toward of monolithic CMOS-memristor VMM integrated circuits to become mainstream AI hardware. 

(a) Here, a simple view of APU platform’s energy efficiency performance and its flexibility in terms of 

application range is compared with conventional platforms like CPUs and GPUs. Different RS-based APU 

classes with low to high resolution weight networks are displayed in terms of energy efficiency and 

application spectrum flexibility. At the opposite to the trade-off between flexibility and energy that current 

hardware are experiencing, Spiking Neural Networks (SNN) observed in biology combine both flexibility and 

low energy consumption. Finding the keys for this implementation seems a disruptive direction for future 

hardware design. (b) The challenge has been divided into three different categories: physical constraints, 

circuit-level challenges and system-level challenges.  (c) Manuscript’s tree structure. 

 

2.2. PHYSICAL IMPLEMENTATION OF IN-MEMORY COMPUTING WITH RRAM 

2.2.1. Background 
VMM is the main operation module required to implement neural network structure (Figure 2(a)). 

The first basic function required for VMM physical implementation is the multiplication between 

two real numbers a and b (a×b = c). In digital logic, multiplication is realized by pipelining multiple 

full-adders (Figure 2(b)). The precision of the multiplication is defined by the digital representation 

of the real numbers (number of bits, floating/fixed point). Resistive memory on the other hand 

offers a new concept for implementing multiplication leveraging Ohm’s law where the current I is 

equal to voltage V multiplied by conductance G (V×G = I) (Figure 2(b-c)). The advantages of this 

approach are two-fold:  (i) only a single time step is required to compute the multiplication versus 

multiple time steps in digital implementation and (ii)  energy consumption is considerably lower. 
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Projected resistive memories performance for an average resistance of R = 1 MOhm, read voltage 

of 0.1 V with pulse duration of 1 ns, the energy consumption equals E1 = 0.1×10-7×10-9 = 10-17 J. Note 

that with todays performances, the energy calculation should consider R = 10-100 kOhms, V = 0.1 V 

and t = 1 µs leading to E2 = 0.1×10-5/-6×10-6 = 10-12/-13 J. These energy consumption should be 

compared with 8-bit digital multiplication of E3 = 0.2 pJ with 45 nm CMOS technology 

node~\cite{horowitz20141} pointing out the important gain attainable only if resistive memory 

improvement is sustained.  

The second basic operation required by VMM is the addition. While this operation is carried out by 

adders in digital electronics, this can also be implemented physically in the analog domain by 

summing all currents resulting from each multiplicative element in a shared metal line (Kirchoff’s 

law). This strategy shows a clear advantage for speed improvement due to its highly parallel manner 

as the Add operations are carried out within multiple parallel channels of the crossbar 

simultaneously in a single clock cycle with the multiplications. For the sake of comparison, one 8-bit 

full-adder uses approximately 200 gates in conventional CMOS design and requires number of 

computing cycles proportional to the Add operation precision. These two basic multiplication and 

addition operations correspond to the fundamental MAC operation or dot-product, which 

constitutes the core of VMM. 

While this qualitative analysis highlights the advantages in terms of speed and energy consumption 

of in-memory computing for VMM engine implementation, a fair comparison with digital CMOS 

technology is more complex and limitations start to appear due to non-ideal parameters such as 

physical constraints, overhead circuit design and system level operation.  
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Figure 2: (a) A basic neural network structure is shown including input vector, weight matrix and output 

vector. (b) Schematic of the digital and analog vector matrix multiplication and their implementations. VMM 

digital implementation is realized by pipelining multiple adder and multiplier digital blocks. Analog VMM on 

M×N RS-based crossbar is realized by summing currents from M lines in N columns. (c) The physical 

implementation of RS-based VMM engine shows input vector is applied as a voltage vector into the world-

line of the array (bottom electrode), weight matrix is stored on RS device conductance and output is sensed 

as accumulated current in the bit-line (top electrode). (d) 3D illustration of RS-based crossbar monolithically 

integrated on top of the CMOS using back-end-of-line (BEOL). 

2.2.2. Dot-product Precision  
Resistive switching (RS) devices have been developed following two main research directions. On 

the one hand, resistive switching mechanism has been investigated as a potential solution for the 

development of a universal memory. This kind of binary memory, called Resistive Random Access 

Memory (RRAM),  could combine high switching speed (sub-ns), low energy (pJ range) and high 

endurance (1012 cycles) of DRAM and SRAM with non-volatility (>10 years retention) and scalability 

(<10 nm) (Figure 3(a-b)). Various RRAM cell candidates, among which HfOx and TaOx RRAM are the 

best representatives (figure 3c), are already integrated in fabrication lines of industry and integrated 

with CMOS technology47. They take advantage from CMOS technological maturity and reliability and 

have been exploited mostly in digital applications such as storage class memories (i.e. Flash). Some 

recent works have investigated the possibility to store few discrete conductance levels in a single 

memory cell resulting in up to 3-bit multi-level cells. This kind of device can either implement a 1-

bit dot-product or a low resolution, e.g. < 3-bit dot-product 48.  
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On the other hand, many research groups have focused on resistive switching mechanism for 

memristor or memristive device implementation (Figure 3d). The association between the 

theoretical concept proposed by Chua 49 and a possible physical implementation of this new circuit 

element 50 has open new perspectives for circuit design, and specially for VMM. In the ideal 

memristor framework, resistive switching is used to implement a variable resistor where continuous 

resistive states can be reached by controlling the voltage (or current) applied to (through) the 

switching material. In that scope, the number of conductance states that can be stored in the 

memristive element directly defines the precision of the in-memory dot-product computation. In 

recent years, optimization of memristive device has focused on the resolution and controllability of 

the analog switching using various switching mechanisms and materials such as transition metal 

oxides, ferroelectric tunnel junctions or more exotic materials (See 51 for a review of the different 

options). Memristive devices have demonstrated analog switching controlled by analog pulses of 

voltage equivalent to 8-bit accuracy, paving the way for 8-bit dot-product 52. The 8-bit accuracy has 

been demonstrated on discrete devices and only 4- to 5-bit resolution has been reported for 

integrated devices due to parasitic effects induced from other circuit elements53.  

The maturity of memristive technologies is not as developed as the RRAM technology, which results 

in inferior performance regarding endurance, retention and speed. There are still several research 

opportunities in this area and efforts need to be pursued to improve memristive devices overall 

performance.  However, there is currently no strategy nor materials allowing to reach the 32-bit 

dot-product precision offered by digital approaches. This imposes limitations in terms of VMM 

applications, such as deep neural networks  that relies deeply on high accuracy calculation of the 

synaptic weights during training 54. In that scope, innovations in integration schemes could greatly 

improve the accuracy of the memristor-based VMM. For instance, while RRAMs differ from analog 

memristive devices by the difficulty to access to intermediate resistance states, there is, in principle, 

no physical limitation to have multi-level analog states in RRAM. HfOx-based RRAM, usually 

exhibiting sharp SET and semi-gradual RESET55, can be better controlled by using analog current 

limitation mechanism through an access transistor to implement analog switching close to 5-bit 

precision56. The trade-off here is between a more complex cell design and a higher precision of 

programming. Along this line, one interesting approach proposed by 57 consists in a hybrid 

architecture, where two Phase Change Memories (PCM)resistive cells are coupled with six 

transistors and one capacitor (1C6T2R). Small weight increments, or decrements, are accumulated 

on a capacitor and stored back in the non-volatile resistive element once accumulated changes fall 

within the resolution range. Such integration widens the range of VMM applications like in-situ 

training while decreasing energy consumption compared to contemporary von Neumann 

architectures.  This resolution improvement comes at the cost of more complex resistive cells design 

and additional shared control circuitry. Short- and mid-term efforts should be dedicated to more 

complex resistive cells design that would leverage design complexity with controllability and 

precision for analog VMM implementation. 
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Fig. 3.  (a) In this spider diagram, RRAM, DRAM, SRAM, and Flash memories are compared in terms of the 
cost, read time, write time, energy consumption, endurance and retention. (b) In this diagram, RRAM, DRAM, 
SRAM and Flash memories are compared in terms of other criteria: flexibility, footprint size, maturity, 
density, variability and potential of the scalability. (c) The i-v curve of the prototypical RRAM digital HfOx  and 
its sharp switching behavior in SET and RESET regions are depicted. (d) The switching behaviour for the 
prototypical memristive TiOx analog device is displayed 58. Both RRAM and memristive devices belongs to 
resistive memories family and are used to construct the spider diagrams. 

 

2.2.3.  Integration 
One of the substantial advantages of RS devices is their advanced integration potential thanks to 

their excellent scalability. Sub-10 nm switching crosspoints have been reported in59 and60, paving 

the way to surpass the scaling limitations of Flash and DRAM. In addition, the two-terminal structure 

of RS devices enables ultra-dense integration in crossbar arrays, in which a memory device is located 

at each intersection between two metallic wires resulting in a matrix-like organization. Finally, RS 

devices and crossbar arrays can be fabricated with CMOS high-volume manufacturing processes and 

materials allowing monolithic 3D integration in CMOS BEOL. This ideal approach (see Figure 2(d)) 

results in a 4F2 footprint for a single memory crosspoint, F being the critical dimension of the metal 

line interconnect). Monolithic 3D BEOL integration of resistive memories presents a major 

advantage compared to other on-chip memory technologies such as SRAM, which requires a 

footprint of ~200F2 in the front-end-of-line (FEOL). This very attractive approach could relax CMOS 

scaling requirements by providing additional integration opportunities in the vertical dimension. In 

addition to BEOL attractiveness, the possibility to stack multiple crossbars on top of each other has 

been demonstrated experimentally and could be conveniently integrated with CMOS for ultra-high-
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density memory circuit design33,61. There are  still important engineering challenges to address in 

order to bring these concepts to their full potential: (i) compatibility of advanced lithography steps 

with BEOL metal layout, (ii) impact of monolithic 3D fabrication processes on the performance of 

previously fabricated devices, (iii) process homogeneity and yield ensuring high-quality fabrication 

for each layer and (iv) high-conductivity interconnects even for ultra-fine pitch. While crossbar 

architecture offers a truly parallel organization that could map directly the VMM operation, the 

main limitation comes from the difficulty to access individual memory cell accurately. Parasitic 

sneak path, currents coming from other resistive cells in the array, are preventing an accurate 

reading of each resistive element individually.  

RRAM and memristive devices can be addressed with or without the use of a selector. On the one 

hand, RRAM requirements have favored optimizations towards accessibility and controllability of 

individual memory cell by adding a selector, usually a FEOL transistor, in series with the two-terminal 

element leading to 1T1R cells. This solution requires a transistor per memory cell with the allocation 

of additional silicon area and interconnects for memory management, decreasing the attractiveness 

of two terminal resistive memory. The resulting integration scheme is then only considered as a 

pseudo-crossbar array. Two-terminal selectors, such as threshold switching elements or non-linear 

diodes, are today attracting lots of attention toward 1S1R cells. Those passive elements can prevent 

sneak path currents and preserve two-terminal interconnection of each memory cell 62. Still, 1S1R 

integration is facing important challenges such as (i) large variability coming from the selector itself 

and (ii) shorter endurance in the case of switching selectors that needs to be switched for each read 

operation. Detailed review in this topic can be found in63.  

On the other hand, memristor-based approaches for physical VMM have favored the concept of 

selector-less passive crossbar integration. While RAM operations require precise access to individual 

memory cell, memristor-based dot-product is different since this operation is not affected by sneak 

paths (e.g. all lines and columns are polarized at the same time and all resistive cells are read at the 

same time). More exploratory in-memory computing paradigms such as neuromorphic computing, 

or bio-inspired spiking neural networks, can also take advantage of a similar principle. The trade-off 

being to favor parallelism and aggressive integration at the cost of less accurate access to individual 

crosspoints sequentially. It should be noted that practical integration of crossbar on chip still 

requires access transistors at the N input lines and M output columns of the crossbar thus leading 

to (N+M)T(N×M)R actual footprint on silicon. There is consequently a strong interest in improving 

passive crossbar dimensions above the 64 × 64 size report so far53. 

2.2.4.  Scalability 
In digital approaches, computational scalability of the Add operation is ensured by pipelining simple 

logical operations of single bits, thus allowing for very large vector-matrix manipulation (adding 

multiple dot-product, for instance). The digital approach is based on a trade-off between scalability 

of the operation, and computing time (e.g. how many clock cycles and basic operation are required). 

In RS-based Add operation, adding multiple dot-products is realized in a single time step. This 

advantage comes at the price of higher instantaneous power requirements. Adding currents from 

multiple dot-products results in a large current summation that could become a bottleneck for the 

VMM operation (Figure 4(a,c)). Adding infinite size of dot-products results in infinite time in digital 

scheme while it results in infinite power for Kirchoff’s law-based approach. Practically, memristor-

based VMM has been reported for matrix size of up to 128×64 14. While this was demonstrated with 

pseudo-crossbar having micron size electrodes, such limitations in matrix size should become a 
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serious computational scalability challenge with electrodes in the tenth of nanometer range that 

would prevent sinking large currents through them. 64×64 VMM operation was demonstrated in53 

using purely passive crossbar with a more advanced patterning process (<200 nm). Dot-product 

demonstration with other integrated approaches76,77 are today limited to small vectors dimensions, 

with vector dimension below 25, and impose restrictions on the VMM application. There is a 

concern that this limitation will get worse by decreasing the metal linewidth and will require high 

aspect-ratio lines to achieve a high conductivity interconnect60. Alternatively, increasing the mean 

resistance of RS devices would increase scalability significantly by reducing power consumption at 

the cost of lower VMM operation speed. The inference operation speed is determined based on the 

delay induced from the input circuits, RS-based crossbar array and output circuits. In very large RS 

arrays, there are several parameters which should be considered to determine the delay such as 

interconnect resistance, interconnect capacitance, RS cell resistance, overhead circuit’s impedance 

and capacitance. The inference delay is calculated based on the Elmore delay model as follow,     

 

Where tsettling is the settling time of the output circuit. As it can be seen in Figure 4(b), the parameters 

τ1, τ2, τ3 and τ4 are the delays from row, RS cell, column and output circuit, respectively 78. By 

considering the LRS resistance of the device much larger than the interconnect resistance between 

each two adjacent cells, the delays τ3 and τ4 are dominant in very large arrays. By increasing the LRS 

of the RS cell, the inference time delay increases as it is impacting both τ3 and τ4. Therefore, the 

throughput of the system will be reduced accordingly. However, increasing the size of the array 

would also impact the inference delay e.g. increasing the number of rows will make τ3 the dominant 

term to impact the total delay and it will reduce the delay. On the other hand, increasing the number 

of columns will increase the latency. Crossbar and pseudo-crossbar scalability challenges can also 

be related to computing performance (e.g. accuracy). Unlike digital approaches where input digital 

signals margins allow to cope with noise and parasitic, analog VMM implementation accuracy is 

negatively impacted in the case of large vector operations. The resulting mismatch between the 

resistance of the memory cells and the one of metal interconnects becomes critical in large crossbar 

arrays (figure 4(d)). The same bias applied on the word-line is seen differently by each cell in the 

crossbar due to linear voltage drops which leads to a decrease of accuracy for the VMM operation. 

A straightforward physical solution to these constraints is to limit the size of the crossbar array and 

thus the VMM performed in one step. Note that small VMM dimensions are largely used for 

convolutions in Convolutional Neural Networks (CNN). In conclusion, scalability of memristor-based 

VMM operation represents a future research direction that requires innovative solutions at both 

technological and system levels.  
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Fig. 4. 

Scalability challenges and RC tree Elmore delays model for RS crossbar array is displayed. (a) The 

scalability challenges including large bit-line current and word/bit-line resistance has been shown 

to get worse by increasing the size of the RS crossbar array. (b) RS crossbar RC Elmore delay model 

is displayed by dividing the array delay into four regions corresponding to τ1, τ2, τ3 and τ4 are the 

delays from row, RS cell, column and output circuit, respectively. (c) Increasing the number of rows 

increase the accumulated current in the column and could become a major bottleneck for output 

circuits design. Same limitation applies for large number of columns requiring to inject large current 

into the row and affecting input circuits design (d) The line resistance is another challenge for 

scalability of RS-based array due to the voltage degradation in the rows (ΔVROW) and columns (ΔVCOL) 

that can be leveraged by engineering optimization and/or compensated from input/output circuits 

strategies. 
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----------------------------------------------------- BOX1 ------------------------------------------------------------------ 

Addressing non-ideal parameters of RS-based system which impacts neural network accuracy 

 

Fig. 5. Schematic classification of memristor-based system’s non-idealities according to the way they 
influence Artificial Neural Network (ANN) accuracy. Each arrow connection should be read as "could have a 
significant influence on" but with no consideration for their relative impact level. The first column "Indirect 
Impact" can be considered as hyper-parameters that only impact the ANN accuracy through their influence 
on other parameters. The second column "Direct Impact" represents the fundamental parameters that 
directly influence the ANN accuracy. The third column "Functional constraints" lists some measurements that 
are often used as reference to quantify a memristive device performance. 

 

Designing a RS-based system compatible with established microelectronic industrial technologies 

and large-scale production is only one part of the challenge. Since RS devices have inherent physical 

imperfections ~\cite{wang2019cross,adam2018challenges,Sung2018}, it is necessary to find 

efficient ways to deal with them. The impact level of such non-ideal parameters can be varied on 

different applications and here we focus on how they influence VMM-based ML applications, 

specifically, the accuracy of physically implemented Artificial Neural Network (ANN).  

The accuracy of an ANN denotes the output success rate for a task for which it has been trained. For 

example, the accuracy of digit recognition using the MNIST database corresponds to the proportion 

of correctly classified image from a test dataset. In the context of RS-based ANN, we can distinguish 

two training strategies: in-situ and ex-situ ~\cite{alibart2013pattern}. In the in-situ scheme, the 

training is performed directly on the hardware by updating weights (i.e. the conductance of all 

devices) after each training epoch. This approach is notably impacted by all device non-ideal 

parameters that affect the conductance writing accuracy 

~\cite{pan2020strategies,chen2015mitigating,hu2018memristor} (Figure 5) because this operation 

is repeated several times during in-situ training. In the case of ex-situ, the weight matrix is initially 

calculated in software ANN before to be transferred to the device array by encoding the determined 
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weights into the conductance for each cell. In that scope, the conductance programming process 

occurs only one time per device, which make it viable to apply advanced methods to mitigate non-

ideal parameters related to writing ~\cite{pan2020strategies,alibart2012high}. Finally, a hybrid 

strategy showed some interesting results by fine tuning the network weights after the transfer 

~\cite{yao2020fully}. 

To better understand the different impacts of RS-based system non-ideal parameters on training 

strategies, it is interesting to not only consider their impact on functional constraints (write/read 

accuracy, latency, energy consumption…) but also the inter-dependence between the different 

parameters. For example, the switching endurance, which represents the average number of cycles 

before losing resistive switching behavior, directly impacts minimum and maximum conductance 

values over cycles ~\cite{lee2010evidence}, which in turn contribute to determine the total number 

of conductance state. Therefore, poor switching endurance could indirectly lead to low number of 

conductance state, or even failure such as stuck-at-fault where only one conductance state exists 

~\cite{xia2018fault}. The impossibility to update the conductance decreases the ANN accuracy 

~\cite{li2018efficient}, even more so for ex-situ training where weights are supposed to be mapped 

on working devices. The same analyse can be made with the device to device variability parameter, 

which become a problem only if this variability concerns critical device characteristics like cycle to 

cycle variability ~\cite{adam2018challenges} or the overall asymmetry of the conductance variation 

~\cite{pan2020strategies}. 

Further work should be conducted on the interactions between all non-ideal parameters in order to 

clarify their direct and indirect impact on the accuracy of physically implemented ANN, which could 

help the design and demonstration of mitigation strategies. 

----------------------------------------------------------------------------------------------------------------------------------- 

 

2.3.  CIRCUIT DESIGN CHALLENGES FOR VMM IMPLEMENTATION  

2.3.1.  Background  

As mentioned previously, projected energy consumption for a single dot-product operation can 
indeed be as small as 0.01 fJ, while 0.2 pJ are consumed with 8-bit digital VMM based on 45 nm 
CMOS technology node~\cite{horowitz20141}. However, this comparison is not a complete picture 
since it does not consider energy consumption for input/output signals generation. A more rigorous 
evaluation of memristor-based dot-product energy consumption should be done by considering 8-
bit digital-to-analog converter (DAC) at the input and 8-bit analog-to-digital converter (ADC) at the 
output where both components consume approximately 0.1 mW and can be run at the frequency 
of 1 GHz (1 ns clock cycle). The total energy required to compute the 8-bit dot-product with RS 
devices becomes largely dominated by these DAC/ADC-based overhead circuits since EDAC + EADC = 
2×0.1×10-3×10-9 = 0.2 pJ. This simple example therefore highlights the importance of the overhead 
circuitry in the assessment of VMM engine performance. While most of the approaches so far have 
been using software-emulated or custom printed circuit boards (PCB), there are recently only a few 
fully integrated chip demonstrations. These demonstrations benefits are two sides: (i) exploring 
CMOS design overhead circuits and their compatibility with RS devices and (ii) exploring various 
strategies at the system level for building a fully operational chip.   These choices are defining the 
application field of the VMM engine and impacting both the energy and accuracy performances.  
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2.3.2.  Input circuits   

VMM engines are mostly envisioned to boost energy and speed performances of conventional 

hardware (CPU and GPU) for specific tasks such as image compression, machine learning algorithms, 

combinatorial optimizations or solving linear and partial differential equations. In these 

applications, the VMM operation needs to be integrated into a digital environment used to manage 

the higher order functions such as data management and VMM definition/programing. Generating 

an analog input voltage from digital input data can be implemented with Digital-Analog Converters 

(DAC) which implies a trade-off between DAC’s resolution and energy consumption.  Since dot-

product operation is limited to 8-bit by the RS conductance available states, there is no interest in 

using DACs with resolution higher than 8-bits. However, using high resolution DAC circuits will result 

in higher cost and reducing area and power efficiency of the VMM platform. For RS-based VMM 

engines, the foremost parameters used for describing the performance of the DAC are area, power 

consumption and more importantly the output impedance as it limits the number of memristors 

that one DAC can drive.  In other words, the maximum output current is bounded by the DAC output 

impedance for a given voltage supply. The following paragraph describes an analysis method 

regarding the trade-off among essential DAC parameters for VMM engine applications. This method 

analyzes the design trade-off of a high-resolution digital-to-analog converter (DAC) with low output 

impedance, which is a resistive DAC with an operational amplifier (OP-AMP) follower output stage. 

A similar approach can be used for estimating the design trade-off among bandwidth, resolution, 

die-area, and power consumption for a DAC with a different architecture. 

The most power-hungry blocks in the DAC are: (i) the analog circuitry that is used for driving the 
memristor devices, (ii) the digital circuitry that is used for storing the data and distributing the 
clocks. The power dissipation of the DAC can be roughly divided into the switching/leakage power 
of the digital circuit, and the static/dynamic power of the analog circuits.  The power dissipation of 
digital circuits can be estimated by,  

PD = f2bCpV2 + PLeakage     

where f2b  is the DAC maximum output frequency that equals twice the bandwidth, C is the total 

parasitic capacitance, V is the supply voltage and PLeakage is the leakage power that depends on 

technology node (around several pico-Watts for an inverter in 65nm technology from 1V power 

supply). For resistive DAC the main analog power is from the OP-AMP follower output stage, which 

usually employs a class-A output stage that has a maximum power efficiency of 50%.   َAlso, the 

analog power can be estimated using, 

PA = n × V2/R, 

where n and R parameters are the number of devices which are biased by the DAC and RS device 

resistance, respectively. Assuming the minimum resistance of each RS device is 50 kΩ, and the 

power supply voltage is 3.3 V, the estimated total power consumption is shown in the Figure 6(a). 

It has been shown that the power consumption is almost proportionate with number of devices 

below 100 MSample/s operating frequency and this is because the analog power is dominating 

when the quantity of RS devices becomes relatively large. While in higher operating frequencies 
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than 100 MSample/s the power consumption will be impacted mainly by operating frequency rather 

than number of devices when digital power becomes a dominant term.  

 

Fig 6. (a) The DAC area usages versus the sample frequency and effective number of bits. In the following two specific cases 

has been described by sub figures. (i) Area usage versus sample frequency at effective number of bit (ENOB) equals 12. (ii) 

Area usage versus ENOB at sample frequency of 100 MS/s. (b) The DAC power consumption versus sample frequency and 

device count (the number of memristor devices driven by one DAC), assuming the total parasitic capacitance is 10 pF. In the 

following two specific cases has been described by sub figures.  (iii) The power dissipation versus sample frequency when the 

device count is 500. (iv) The device count versus power consumption at sample frequency of 100 MS/s. 

 

The die-area is mainly constrained by the need DAC resolution. The die-area is mainly constrained 

by the needed DAC resolution that limited by the element matching and noise. For resistive DAC, 

the major noise is from the amplifier at the output stage, and input-referred noise is given, 

 

where W and L are the width and length of the input pairs, respectively. Parameter K is Boltzmann’s 

constant, Cox is the gate capacitance per unit area, and f1 and f2 are the low corner and high corner 

frequencies, respectively~\cite{carusone2011analog}. The matching of the resistor is described as 

follows, 

 

where WR is the width of each resistor and R is the resistance, and ka and kp are the constants that 

highly depend on the technology representing the contributions of area and peripheral fluctuations 
80. Figure 6(b) shows the estimated area of resistive DAC versus the operating frequency and the 
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effective number of bits. The area is changing almost linearly with the operating frequency and 

exponentially with the effective number of bits. Similar approach can be used for estimating the 

area and power consumption for the DAC with different architecture. 

In addition to undesirable high energy consumption of the high-resolution DACs, delivering perfect 
analog input signal on each memory cell is challenging since it can be easily deteriorated by crossbar 
arrays imperfections. As mentioned previously, voltage drop along the metal lines (Figure 4(c)) 
induces analog values distortion (each resistive memory from a line will be subjected to analog 
voltage drops when the distance from the input circuit increases). This issue can be solved by 
additional computing overhead via software processing of the data as proposed by72. In this 
approach, voltage drop along the metal lines is calculated and compensated by RS conductance 
adjustment. Another limitation affecting the VMM accuracy when the input data is encoded with 
the analog voltage amplitude signals is the non-linearity of the current-voltage characteristic of RS 
elements. In this case, the actual conductance of the RS element is input-dependent and can impact 
the VMM resolution. This problem could again be tackled by data pre-processing including the effect 
of RS devices’ non-ideal parameters into the analog input but can become quickly very complicated 
if high variability in RS device is to be integrated in pre-processing. Alternatively, 76 proposed a 
method to solve this limitation by encoding the analog input signal with pulse width modulation. 
This strategy comes at the cost of multiple clock cycles for each encoded input but mitigate I-V non-
linearity. In this chip, each channel includes one read DAC, and 2 write DACs as input circuits. A 
digital controller converts a 6-bit input into an n-element pulse train of identical Return to Zero (RTZ) 
pulses where n is the input data. The digital output from controller drives a 1-bit DAC, which delivers 
a pulse train of read-voltage pulses to the crossbar row. An advantage of using RTZ pulses is that 
the non-idealities introduced at pulse transitions are proportional to the input and show up as a 
gain error that can be canceled in software. Finally, digital-analog conversion can be also avoided 
by using analog inputs in their digitized form. Each bit from the analog input number is computed 
sequentially from the least significant bit to the most significant one. This strategy will increase the 
number of operations to compute a single VMM but will preserve the analog resolution.    

 

2.3.3. Output circuits  
Output signals from a RS-based VMM operation are analog currents that needs to be converted into 

digital numbers. A straightforward solution is to use ADC and Trans-Impedance Amplifiers (TIA). ADC 

resolution depends directly on both the conductance resolution of each RS element and the VMM 

size. For example, 1-bit RS conductance with a vector dimension of 256 (256 lines connecting to one 

bit-line) requires at least 8-bit of resolution to discriminate all output levels. 5-bit RS memories with 

the same vector dimension requires 13-bit ADC, which represent in itself a serious design challenge 

to preserve energy consumption/area efficiency. Employing high resolution ADC in such arrays is 

one option for distinguishing the analog output levels which requires a careful cost and overhead 

analysis. Many parameters are used to assess the performance of an ADC such as input impedance, 

supply rejection, metastability rate, power consumption, die area, signal to noise and distortion 

ratio (SNDR) and etc 81. In a typical RS-based VMM engine, the most important metrics to consider 

for the ADCs are their resolution, their sampling frequency (fs) and their surface area on the die 

which affect accuracy, throughput and cost respectively.  Figure 7 reveals the main aspects trade-

off of the ADC published in the International Solid-State Circuits Conference (ISSCC) from 1997 to 

2020. Technology node is the fundamental factor that constrains the area of an ADC (Figure 7(f), 

whereas a survey of state-of-the-art ADCs 82 reveals that, for smaller technology node and more 
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diminutive voltage supply headroom, the power consumption is usually bounded by the thermal 

noise so that one added bit demands quadrupled power rather than only proportional fCV2.  The 

ADCs with higher resolutions are slower and less power-efficient (Figure 7(c)) while the ADCs with 

higher sampling frequency have worse energy-efficiency and lower resolution (Figure 7 (b,d)). The 

achievable performance of the ADC can be predicted by two well-known the figure of merits (FOM) 
83-85. 

        

where ERBW is the bandwidth of the ADC, P is the total power dissipation. 

 

where ENOB is the effective number of bits.  

In general, the achievable best FOMS is decreasing along with the increasing of frequency, e.g. 

doubling fs or increasing 1-bit resolution postulates quadrupled power consumption (Figure 7(e)). 

In addition, reducing FOMW demands an increase of die-area, e.g. 50% power reduction or 1-bit 

more resolution need 25% more die-area (Figure 7(f)). Overall, the choice of ADC architecture 

depends on the needs of the application. If each memristor crossbar word-line or bit-line requires 

one high-resolution ADC (>10-bit), successive approximation register (ADC) or delta-sigma (DSM) 

ADC can be utilized as SAR ADC and DSM have slightly smaller form factors (Figure 7(a)) and 

significantly better SNDR. Voltage control oscillator (VCO) based ADC or SAR ADC are more suitable 

to smaller technology node implementation since they do not rely on high gain/bandwidth 

amplifiers that limited by intrinsic transistor gain 86. If the inference operation takes longer than 

10ns, low resolution/high-speed flash ADC can be applied via time-multiplexing to minimize die-

area since an 8-bit ADC is usually needed for a typical neural network to achieve more than 90% 

classification accuracy 76,87. The best possible ADC performance can be estimated based on the 

system requirement. A decent system-level design can reduce the needed performance of the ADC 

significantly. The dashed line shown in Figure 7(b) marked the lowest possible ADC power 

consumption for a given sampling frequency, and the dashed line shown in Figure 7(c) marks the 

maximum possible ADC SNDR for a given power consumption limit. Therefore, the trade-off among 

speed, power, and accuracy of ADC can be described by the following equation, 

, 

where FOMW,min = 2×10-15 for the best state-of-art ADC designed in 28 nm technology. The 

relationship between the peak SNDR and ENOB is 

 . 

The dashed line in Figure 7(d) labels inevitable trade-off between the peak SNDR and sampling 

frequency within the current state-of-art ADC  

 . 
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Figure 7(f) reveals the trade-off between the energy efficiency matrix and area efficiency. The area 

and energy efficiency improves with shrinking the technology nodes, while they are roughly 

bounded by the following relationships, 

 , 

where A is the technology depended factor that equals to 2×10-3 for 14nm technology. 

The analysis shown above is used for estimating the performance of relatively low-resolution ADC 

(<14-bit). For higher resolution ADC (>14-bit), adding one more bit means increasing 6 dB SNR, 

quadrupled less noise power and four-fold larger overall capacitance, as the thermal noise at the 

input of the ADC equals to KT/C (where K is Boltzmann constant, T is Kelvin temperature, and C is 

the capacitance at the input of the ADC). This relation is well defined by Shreier's FOM83. Figure 7(e) 

shows the relationship between the Shreier's FOM and sampling frequency, the maximum 

achievable FOM at low frequency (<10MHz) is 192 dB, and at higher frequencies (>10MHz), the best 

achievable FOM equals to 

. 

An alternative sensing approach is to replace the TIA block by a charge-based accumulation circuit. 

This strategy was used to cope with pulse width modulation encoding that excludes the utilization 

of TIA76. Note that the same approach could be used along with other encoding techniques such as 

digitization of inputs and pulse amplitude modulation. To maintain precision of the RS-based VMM 

hardware, the same trade-off in the ADC resolution with crossbar array size is applicable and 

requires a design optimization in terms of energy consumption and footprints.  
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Fig. 7. Main aspects trade-off of the ADC published in the International Solid-State Circuits Conference (ISSCC) 

from 1997 to 2020. (a) ADC area increases with SNDR and is classified based on different ADC architectures. (b) 

ADC power consumption increments with the increase of Nyquist sampling frequency and marked based on 

different resolutions. (c) ADC power consumption versus the SNDR has been displayed for different design 

operating frequencies. (d) ADC sampling frequency versus the SNDR has been shown for different ADC 

architectures. (e) ADC FOM versus sampling frequency is displayed and classified based on CMOS technology node 

(in um). (f) ADC area versus FOM is shown and categorized based on different CMOS technology node. 

2.3.4.  Recent chips demonstration on integrating CMOS circuits and RS devices 
Implementation of VMM hardware using in-memory computing property of RS-based array has 

become a topic of interest for AI hardware research groups in recent years. Some of these efforts 
14,88 have used discrete integrated circuit components connected to the RS array and they did not 

present a complete integrated system in a single chip. However, there are few fully integrated 
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CMOS/RS devices chips implemented for VMM-based applications. These fully integrated VMM 

engines can be categorized into various design choices based on the precision of the selected 

weight, input and output. However, this categorization can be complemented by considering the 

classification of these platforms into current-based and time-domain designs. As can be seen in the 

Figure 8, choices for input, output and weight cell includes binary, ternary, multi-bit and analog. 

However, selecting a design choice is directly depending on the target application requirements and 

its functional aspects e.g. accuracy level, speed and etc. There have been several device-, circuit- 

and system-level concepts proposed to enhance the efficiency and functionality for each of these 

design choices. As an example, for a binary weight cell design with a circuit level proposition for 

input and output circuits, a non-volatile intelligent processor (NIP) 89 has been designed by using 4 

kb 1T1R binary HfOx-based cells and using 150 nm CMOS technology. This work proposes a non-

volatile flip flop circuit by integrating two RS cells into its design for the input and output sensing 

blocks to avoid high cost DAC and ADC blocks. The output sensing circuit has an adaptive design and 

can support from 1-bit to 3-bits of resolution. This design improves energy and area efficiency by 

eliminating the data conversion circuits overhead and turning off the unwanted cells by input-

controlled access transistor scheme in 1T1R array. The other physically implemented chip is a binary 

VMM engine presented in90 by using 2T2R differential weights with input-controlled access 

transistor scheme and a pre-charged sense amplifier (PCSA) circuit. This chip was developed for 

binarized neural network demonstration but consists essentially in a binary dot-product operation. 

The 2 kb HfOx-based RS devices have been integrated on top of the fourth metal layer in CMOS 130 

nm technology node. The PCSA circuit is differential and connected to the both bit-lines of the 2T2R 

cells in each column. Due to the binarized neural network properties91, the weights and activation 

functions are binary and there is no need for multipliers. This design is very efficient for in-memory 

computing applications where activation functions are implemented by XNOR gates and additions 

are carried out by popcount gates.  This chip is purely digital and it is free from any D/A or A/D 

conversion which results a high energy and area efficiency performance. 

  In addition to the mentioned design choices, for ternary weight design, a 1 Mb 1T1R array and its 

CMOS peripheral circuits were integrated on a single chip in 65 nm CMOS technology node77. This 

implementation proposed new circuit peripherals and architecture level idea to enhance the area 

and energy efficiency. This platform implements configurable logic operations (XOR, AND and OR) 

in addition to inference operation. Binary inputs and ternary weights are implementing inference 

with positive and negative weights located in two separate sub-arrays. Partial MAC results 

computed from each sub-array are added together to compute a partial MAC.  To avoid using costly 

DAC circuits, this work proposes Dual Word Line Driver (D-WLDR) circuit to apply inputs in both 

memory and inference modes. These circuits include small digital buffers occupying small area and 

fitting with the pitch size of the 1T1R cell in the word line. To overcome the issue of area efficiency 

due to high precision ADC blocks and to enable a highly parallel inference operation, small offset 

current mode sense amplifier (ML-CSA) and input-aware reference current generator circuit (MIA-

RCG) are proposed. MIA-RCG is generating various reference currents in reference arrays to increase 

the bit-line signal margin between different states for each mode of operation (logic or inference). 

ML-CSA is minimizing the offset in sense amplifier due to the mismatch of CMOS devices in the bit-

line. To further, enhance the readout accuracy and tolerance for small read out margin, Distance 

Racing Current Mode sense amplifier (DR-CSA) is proposed and shows an improvement in sensing 

margin by two times in comparison with the mid-point sensing scheme. The platform demonstrates 

a promising energy efficiency and inference accuracy for various precision values (1-, 2- and 3-bit), 

but with limited array size (VMM is limited to dimension 12). In the other work92, a 158kb VMM 
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engine is designed in 130 nm CMOS technology and it is tried to mitigate the issue of large sensing 

current in the columns, ADC circuit overhead, problem of voltage drops and transient error of MAC 

operation in large VMM. A signed weight 2T2R cell has been used in order to reduce the column’s 

sensing current by getting benefit from the differential current. In this work, a quasi-3-bit weight (7-

level) is used by positive and negative 1T1R cells which locally cancels their current in the shared 

column and this should fairly solve both problems of large sensing current and voltage drop impact. 

This work also presented a low power adjustable resolution ADC circuit (LPAR-ADC) which is 

reconfigurable from 1-bit to 8-bit precision. The integration and quantization scheme in LPAR-ADC 

suppressed overshoot and fluctuation of the sensing current which improves the transient error due 

to the sensing stage. The proposed VMM engine is providing a high energy efficiency of 78.4 

TOPS/W when sensing the output by 1-bit precision and high inference accuracy around 94% for 

MLP of MNIST classification task with 8-bit sensing precision in both ADC stages of the network. 

 For multi-level weight design choice, 54 proposed a hardware implementation of CNN using 1T1R 

RS-based VMM engine in 130 nm CMOS technology node. In this hardware, eight 2 kb processing 

element chips have been integrated on a custom designed PCB to implement a five-layer CNN 

network. Each of these PE chips, in addition to the RS-based array, includes switching matrix circuits 

for input and output, 8-bit ADC and shift and add blocks. 4-bit differential pair of 1T1R cells is 

deployed as weights by tuning the 8-level RS devices. Analog inputs are encoded into 8-bit binary 

sequential pulses in eight time-intervals and applied via external voltage generator to PE chips.  Each 

PE chips include 4 ADC blocks with 8-bit precision to sense 128×16 RS array. Each ADC block is shared 

between 4 columns by sample and hold (S/H) circuits for time multiplexing to reduce the overhead 

cost of the analog to digital conversion. To reduce the latency of inference, each of these 4 columns 

are connected via a pair of S/H blocks. In first inference step, one S/H block in each pair is sampling 

the output of its corresponding column. During the next inference step the other S/H block in each 

pair samples the output while the ADC carries out sensing of the output from all four blocks which 

sampled in the previous inference cycle (first inference output). This inference scheme reduces the 

inference latency by pipelining the computation. Hybrid training scheme is utilized to avoid accuracy 

loss due to the device- and array-level imperfections. This was done by mapping the ex-situ weights 

on all PE chips in initial steps and subsequently apply multiple runs of in-situ learning on the shared 

fully connected layer PE chips. This VMM engine design has a very high computational efficiency 

(1.164 TOPS/mm2) and energy efficiency (11 TOPS/W) and it enhanced the inference accuracy for 

MNIST classification task up to 95.57%. 

First demonstration of VMM engine with analog weight deploying a passive RS crossbar by the size 

of 54×108 monolithically integrated with CMOS in 180 nm technology node on a single chip is 

presented in76. In this work, a charge-based inference is targeted to overcome the I-V non-linearity 

of the RS devices. In this context, the analog input is encoded by applying the discrete-time pulse 

train with the fixed-amplitude into a 6-bit time-domain DAC. The DAC then apply the corresponding 

6-bit width modulated input pulse into the array. The bit-line accumulated charges are sensed by 

an incremental charge-integrating ADC. High resolution hybrid 13-bit ADC circuit is placed in both 

rows and column to enable bi-directional inference operation and it is comprised of 5-bit first order 

incremental ADC, 8-bit SAR ADC and additional 1-bit redundancy stage. OpenRISC processor with 

64 kB SRAM along with timing generation blocks has been integrated in the chip to initiate different 

operation modes and control of the DAC and ADC blocks. High resolution input and output circuits 

and bi-directional inference capability make this platform highly flexible to implement different 

blend of machine learning applications. However, this flexibility brings cost as the number of ADCs 

is doubled beside the fact that high-resolution ADC consumes more power and area too. 
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Each of these VMM engine design choices offers different performance behavior and making a 

trade-off between accuracy, energy efficiency and area efficiency by considering the application 

constraints and demands will be vital for the appropriate selection. The detail specification and 

performance of hardware implemented RS-based VMM engines is presented in Table 1. 

 

Fig. 8. Design choices for RS-based VMM engines are defined based on the combination of the input, weight 

cell and output precision targeted for specific applications. Here a combination lock is displayed as VMM 

design choices which may be unlocked with different combination of the input, weight and output. The input, 

weight and output choices are binary, ternary, multi-bit and analog input.  Here, we have displayed four 

examples of different design choices from the recent fully integrated CMOS/RS-based chips 76,77,89,90.   
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Table 1: Comparison of in-memory computing hardware with non-volatile memory blocks by 
considering capacity of larger than 1 kb.  
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2.4.  SYSTEM LEVEL DEVELOPMENT OF RS-BASED VMM ENGINES.  

2.4.1.  Leveraging the cost of mixed analog/digital approaches and data trafficking 

Performances of VMM engines appears to be strongly affected by the analog-to-digital and digital-
to-analog conversion operations, even if the analog MAC operation by itself is very energy efficient. 
Note that this trade-off between in-memory computing of the MAC operation and overhead circuits 
cost should evolve favorably by increasing the dimensions of RS-based VMM engines. Indeed, as 
N + M DACs and ADCs are required to drive a N × M crossbar array, the energy consumption and the 
analog/digital interface circuitry per operation should be thus decreased in the case of large-scale 
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VMM engines. This is to be analyzed in the light of the important challenges that crossbar arrays 
scaling is facing (see discussion in section 1.3) and represents a vital point for the development of 
future RS-based VMM engines.  

In the previous sections, we pointed out the important trade-off between in-memory computing of 
the MAC operation with the overhead circuitry required to drive the crossbar array. The proposed 
analysis considers only the potential improvement in terms of energy and speed offered by 
computing the MAC operation physically. It doesn’t consider energy consumption associated to data 
trafficking at higher levels, which has been identified in conventional computing platforms (e.g. 
GPU) as the most expensive operation. Moving data corresponds to both moving parameters of the 
MAC operation (e.g. matrix components) but also the input and output data (e.g. vectors to be 
computed / output vectors of the VMM). As can be seen in Figure 10(a-b), in the conventional von 
Neumann computing systems and Near-Memory Computing (NMC) architectures all input, weigh 
and output data are moving between the processing unit and memory. However, the traveling 
distance in NMC systems are significantly smaller than the conventional von Neumann computing 
architectures. On the other hand, In-memory computing of the MAC operation is proposing to store 
“permanently” the matrix component into a dedicated non-volatile memory and thus reducing 
drastically the data movement for these parameters (Figure 10 (c)). Nevertheless, I/O data still 
needs to be moved and can represent the main bottleneck of the overall system. Note that I/O data 
can also be used numerous times in the system for specific applications such as convolutional neural 
network and could be benefited from limited movements (i.e. data re-use). A more detailed analysis 
of this case needs to be considered for assessing the overall performances of RS-based VMM and 
system level analysis should address this question. 

 

 

Fig. 10. Three different computing architectures are displayed with their corresponding data movement 
(input, weight and output) to carry out vector matrix multiplication operation. (a) Conventional von 
Neumann computing architecture is displayed comprising of processing unit and conventional memory. It 
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has been shown that a high data movement for both inputs and weights as data needed to be fetched from 
or stored in the memory at different stages of the operation. Also, the digital MAC increases the computation 
time as several consecutive digital operation will be needed to perform large VMM. (b) Near-memory 
computing architecture (NMC) is displayed in this part and, in addition to the main processing unit, near 
memory processing units (NMPU) have been placed in vicinity of DRAM and NVM blocks. This reduces the 
data movement cost significantly as the commute distance of data is reduced by placing the processing unit 
close to the memory. Although in NMC the distance of memory to processing unit is decreased, there is still 
a significant amount of data commute in between for input, weight and output data. Also, the problem of 
high computation time due to the digital MAC exists. (c) In-memory computing architectures (IMC) 
implement computing within the memory. Specifically, in RS-based IMC, the RS-array can implement highly 
parallel VMM operation in one step and it also stored the weight matrix which will completely omit the 
weight movement during the operations. The only data movement in the IMC corresponds to input data. In-
memory VMM (iVMM) is implemented over RS-based array in fully parallel manner by implementing several 
parallel in-memory MAC (iMAC) operations.  

 

2.4.2.  Current system-level propositions for RS-based VMM engines 
In addition to physically implemented RS-based VMM engines, there are promising system-level 

propositions that are considering more complex ADC optimization and shared circuitry which could 

be viable for designing very energy efficient APUs. APUs are specialized hardware with a better 

performance in comparison with CPUs and GPUs to carry out specific tasks and applications. As can 

be seen in Figure 11(a), RS-based APUs are categorized based on the precision of their weight cells 

into binarized, ternary, multi-level and analog weight networks. The possibility of implementing 

wider ranges of applications with high resolution weight networks bring more flexibility in 

comparison with lower precision peers e.g. binarized and ternarized weight networks. On the other 

hand, low resolution APUs provides better energy efficiency and lower CMOS circuitry overhead 

which results in higher storage efficiency. 

 One of the notable RS-based systems is ISAAC which is a convolutional neural network 

accelerator97. ISAAC consists of tiles which includes eDRAM buffer, pooling unit, adders, and In-situ 

Multiply Accumulate (IMA) units. Inputs are sent through the eDRAM to IMA units which consist of 

RRAM crossbars and peripheral circuits (e.g. DAC and ADC) in a h-tree network topology. The dot-

product computation of each crossbar is stored in the local sample and hold block. Subsequently, 

the 8-bit ADCs and shift-and-add circuits are carrying out the digitized outputs computations. This 

platform applied 16-bit input by digitizing it into 16 cycles of 1-bit pulse generated with 1-bit DACs. 

Also, 16-bit weights are distributed in 8 columns with each RRAM cell providing 2-bit 

precision. Further enhancement of ISAAC has been proposed98, which utilized various ADC 

optimization techniques such as adaptive ADC scheme and different multiplication methods (e.g. 

Karatsuba99 and Strassen’s algorithm100). This approach reduces the ADC 

computational overhead and leverage analog resolution of the MAC operation. In addition to these, 

Newton proposed buffer management techniques and new mapping scheme to overcome the data 

communication and storage problems, respectively.  

 The other important system to be noted here is PRIME101 which is a general platform enabling both 

memory and computation modes by deploying three RS-based sub-arrays as its memory bank: 

memory sub-array, FF sub-array and buffer sub-array. FF sub-array is utilized for both storage and 

computation purposes, memory array is employed only for storage purpose and buffer sub-array is 

used as the data buffer for FF sub-array. These three sub-arrays have been proposed as an 
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optimization strategy for data trafficking. In terms of circuit overhead for RS-based VMM operation, 

PRIME avoids the need for high cost ADC circuits with reconfigurable precision (up to 8-bit) by 

designing a specific sense amplifier circuit block whose precision is controlled with a counter. Since 

PRIME has been proposed as a ML-specific platform, rectified linear unit (ReLU) activation function 

and a block to support max pooling is added after the sense amplifier circuit to provide more 

efficient properties for applications like CNN.  

Alternatively, 3D-aCortex architecture102 based on 3D NAND flash memories proposes to use 

time- domain encoding of the information that relax drastically the cost of digital/analog 

conversions. In this strategy, both input and resulting output are consistently encoded 

into the pulse width allowing to pipeline multiple VMM operations without converting data back 

into the digital domain. 3D-aCortex has been presented as a 3D integrated version of 2D-aCortex 103 

which is a current-based architecture based on 2D NOR-flash memories and offers more than two 

orders of magnitude better area efficiency while maintaining same throughput at the cost of low 

energy efficiency degradation in comparison with its 2D version. However, integrating the partial 

sums in the output for this time-domain designs requires a large capacitor which is a bottleneck in 

terms of energy and area efficiency for large sized VMM. To overcome this problem, SIR VMM 

approach has been proposed in104 based on the successive integration and rescaling (division) of the 

input bits. Unlike the previous time-domain encoding techniques, each bit of the digital input is 

encoded into binary pulses. To reduce the size of the load capacitor, in addition to this successive 

scheme, the accumulated charges will be divided via charge sharing mechanism. Utilization of SIR 

approach on the same architecture of 2D-aCortex using 1T1R 4-bit cells provide around 2.5 times 

higher energy and area efficiency in comparison with conventional VMM methods. Three different 

design concepts of VMM engines for analog/digital input encoded by amplitude, analog input 

encoded by pulse duration and digital input encoded by duration is displayed in Figure 11(b-d). 
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Fig. 11. . (a) Different RS-based APUs are compared in terms of energy efficiency, storage efficiency and 

flexibility. Each implementation presents a balance between memory functionalities (from binary to analog) 

and CMOS circuits overhead complexity and cost (b) VMM engine design88 with 0T1R analog weight network 

is displayed based on input amplitude encoding and its corresponding sensing circuit with feedback resistor 

in an op-amp follower block in the bit-line. (c) VMM engine design95 with 0T1R analog weight network by 

utilizing input pulse duration encoding scheme and its corresponding sensing circuit for amplitude encoded 

analog output is displayed. (d) VMM engine design concept96 for 1T1R weight network by using digital input 

pulse duration encoding scheme and its corresponding sensing circuit for pulse duration encoded digital 

output. 

------------------------------------------------------------- BOX2--------------------------------------------------------------
- 

Performance Metrics Discussion for ML Accelerators: 

Evaluation of the AI accelerators performance for training and inference in ML is a key step in today’s 
competitive race toward building future AI platforms. Performance can be measured for various 
aspects like Inference Accuracy (IA), Storage Efficiency (SE), Energy Efficiency (EE), and 
Computational Efficiency (CE). Specific applications will favor some performance metric to another 
depending on the application constraint (e.g. embedded, high precision computing, low power, …). 
Specialized hardware developed for ML applications are considering various precision, from 32-bit 
floating point to binary that makes consistent comparison of IA challenging. As a rule of thumb, 
conventional ML algorithm can be implemented with limited accuracy of 8-bit integer without 
compromising too much inference performance. Lower accuracy requires to adapt significantly the 
algorithms and becomes consequently much more specialized to a specific application. For CE, the 
important metrics is the throughput, which defines the number of trainings/inferences that can be 
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carried out by the training/inference engine in a certain amount of time. Conventionally, the 
numerical computing performance of digital computing systems is measured in Floating Point 
Operations Per Second (FLOPS). However, due to IA inhomogeneity, throughput unit is usually 
considered as Terra Operations Per Second (TOPS or TOP/s) for ML accelerators. Also, evaluation of 
the hardware throughput performance accounting for integration efficiency considers TOPS/mm2. 
Regarding EE, the number of inference operations is normalized by energy consumption and results 
in TOPS/W (TOP/s/W or TOP/J). Finally, storage efficiency tracks the on-chip memory capacity for 
weights per unit area and is defined in MB/mm2. 

In addition to TOPS, the term TMACS (Tera Multiply ACcumulates per Second) is widely used for 
defining the throughput of the digital neural network (NN) processors which are mostly focused on 
convolution-centric applications. In the digital APUs inference accelerator as depicted in Figure 9(a), 
the Multiply Accumulate (MAC) operation consists in successive multiplication and addition 
operations. This means that, when accelerator manufacturers report the performance of their 
accelerator in TMACS, this value is equal to 2 times the performance in TOPS. While in analog VMM 
engines the MAC is considered as one operation (Figure 9(b)) which is a simple summation of 
currents over each synaptic device in the bit-line.  

In Figure 9(c), the performance comparison of the state of art inference accelerators have been 
displayed based on throughput and energy efficiency metrics. In this comparison figure, we mostly 
selected the inference accelerators and tried to include different blend of designs including system 
solutions: ISAAC97NEWTON98, 2D-aCortex102, 3D-aCortex103, SIR104, PUMA107, CMOS-based 
application specific integrated circuits (ASICs): ENVISION108, AIStorm109, DNPU110, UNPU111, EIE112, 
TrueNorth113, THINKER114, EdgeTPU115, TPU116, Cambricon117, GOYA118, QUEST119, PuDianNao120, 
MovidiusX121, DianNao122, ShiDianNao123, DaDianNao124,  RockChip125, EYERISS V1105, EYERISS V2106, 
and fully integrated CMOS-RRAM VMM chips: UMich76, Panasonic93 , Tsinghua chips54,77,89,92, 
CNRS90, IBM PCM57 by considering their peak performance values. 

Despite the common usage of the TOPS for ML processing unit evaluation, there is a concern 
whether this figure is not sufficiently comprehensive for direct evaluation with respect to a given 
application. For instance, embedded applications do not need necessarily to maximize throughput 
but would require more drastic limitation in energy consumption. In addition, these reported 
performance numbers depend on various factors such as network compatibility with the computing 
platform. For example, different deep NN with the same number of MACs may result in different 
throughput performance number on the same computing platform.  
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Fig. 9. Implementation of multiply accumulate operation is depicted for both digital and analog domain. Also, 
the AI accelerator performance comparison is presented. (a) The digital implementation of MAC operation 
consists of two computational steps, multiplication and addition. Each of these steps are considered one 
operation (OP). Therefore, digital MAC is two OPs. (b) The analog implementation of MAC is displayed on RS-
based array by using Ohm’s law and Kirchhoff’s law in one computational step. The analog MAC unlike digital 
MAC is one OP. (c) The inference accelerator performances have been compared in terms of throughput and 
energy efficiency. The conventional CMOS-based digital ASIC chips, system solutions and RS-based chips are 
compared by considering the computation precision. Some of these systems or chips are reporting different 
performance numbers for multiple computation precision while here we demonstrate their performance for 
one of their reported precisions. Also, this plot may not be a full picture to show these chips and systems 
performance. As an example, although Eyeriss chips V1 105 and V2106 are showing a low energy efficiency 
below 0.5 TOPS/W in comparison with other systems but they are very low power e.g. Eyriss V1 spends only 
around 1.67 pJ per MAC operation. This plot shows RS-based systems and chips are the most energy efficient 
ones. Newton98, PUMA107 and ISAAC97 are also show promising throughput performance in comparison with 
state of art CMOS-based ASIC chips.  

 -------------------------------------------------------------------------------------------------------------------- 

                                                                                                                  

2.5.  CONCLUSIONS AND PERSPECTIVES    
 
The competition toward an ideal VMM engine with high performance metrics is an ongoing race 
between research groups and companies these days. However, lots of factors need to be considered 
to achieve high reported performance numbers for each of these hardware. In order to reach the 
reported performance numbers, overcoming the common problems results in reducing the 
throughput of the deep network inference is primary. Memory access is a limiting factor for 
achieving high processing speed for the processor as it is going to dominate the computation 
latency. Increasing the memory bandwidth, reducing the number of memory access in the DNN 
implementation by scheduling the computation steps, and increasing the arithmetic intensity of the 
layers which defines the ratio of the computation over the memory access are some of the possible 
solutions to reduce this effect on the accelerator throughput. To more tighten the gap of the tested 
throughput with the reported amount, there are some other strategies which needs to be 
mentioned like maximizing the parallelism to benefit from the full capacity of the hardware 
resources, reducing the input data transfer time, considering cooling and thermal envelop factor 
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and heterogonous structure of todays’ processors. The approaches described above in this 
manuscript are examples of generic VMM engines that could be embedded within a digital 
platform. In order to sustain performances improvement, future hardware deployment based on 
the basic VMM operation should consider more specialized VMM engine designed for a specific 
application.  
 
Since RS-based VMMs are analog engines, a clear benefit would be to eliminate Analog/Digital 
conversions. There are numerous analog applications that could benefit from a local pre-processing 
of signals based on VMM operation. For instance, RS-based VMM could be embedded into the front-
end of sensors networks to compute directly analog signals. Other very demanding applications in 
terms of VMM operation are ML algorithms. Both synaptic weights and neurons 
are intrinsically analog elements. By integrating the analog neuron models directly into hybrid 
CMOS/RS processors, these platforms could maintain ultra-low power consumption and 
take advantage of purely analog computing. Note that spiking neural networks (e.g. neuromorphic 
hardware) would benefit from the same scheme since implementing digitally bio-realistic spiking 
neurons can become very costly while analog approaches seem very efficient.  The trade-off here is 
to favor performances to flexibility since neurones models need to be specified a priori.  
From the other side of the spectrum, VMM engine can also be adapted to pure digital operation. 
For instance, binarized neural networks are machine learning models implemented with simple 
digital activation function (i.e. neurons), binary input vectors and binary weights. They cannot be 
used to map all ML algorithms but have demonstrated high performances for tasks that can tolerate 
binarized data. Their physical implementation with RS-based VMM are highly cost effective and 
doesn’t suffer from limitations such as accuracy and digital/analog conversion. Implementation of 
the neuron function with CMOS is based on simple XOR majority gates and digital memory in 1T1R 
configuration for the weights. This approach is somehow reminiscent of biological neural networks 
that are operating with low resolution synapses and digital action potentials. Including the time 
encoding strategy used in biological networks into BNNs could lead to an interesting physical 
implementation of bio-inspired computing. This strategy could potentially reconcile energy 
efficiency and flexibility of biological computing system that are still the most inspiring objective for 
future hardware development.  
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3. CHAPTER 3 

Filamentary switching: Synaptic plasticity 

through device volatility 
 

 

3.1. INTRODUCTION 
Massive amounts of heterogeneous data are generated each day in our society. In this context, computing 

systems face important challenges in providing suitable solutions for information processing. Saturation of 

conventional computer performances due to material issues (i.e., clock frequency and energy limitations) 

and more fundamental constraints inherent in the Von Neumann bottleneck have forced researchers to 

investigate new computing paradigms that will allow for more powerful systems. The bio-inspired approach 

(or, more precisely, neuromorphic engineering) is a promising direction for such an objective. Recent 

breakthroughs at the system [ref1], circuit [ref2], and device levels [ref3] are very encouraging indicators for 

the development of computing systems that can replicate the brain’s performances in tasks such as 

recognition, mining, and synthesis [ref4]. To achieve such an ambitious goal, research efforts are needed for 

understanding the computing principles of biological systems, elucidating how spike-coding information is 

computed and stored in neuron and synapse assemblies, and exploring neuromorphic approaches that 

define hardware functionalities, performances, and integration requirements. Emerging nanotechnologies 

could play a major role in this context, by offering devices with attractive bio-inspired functionalities and 

associated performances that would ensure the future development of neuromorphic hardware.  

Some studies have investigated the possibility of implementing neurons in nanoscale devices 

[ref5,6]. Most of these efforts have been devoted to the realization of synaptic elements with emerging 

memory devices, such as RRAM technologies, with the goals of matching the critical integration density of 

the synaptic connections [ref7] and replicating the synaptic plasticity mechanisms that correspond to the 

modification of synaptic conductance during learning and computing. Indeed, modification of the synaptic 

weight as a function of neuronal activity (i.e., spiking activity) is widely recognized as a key mechanism for 

the processing and storage of information in neural networks.  

Plasticity mechanisms are commonly categorized as short- and long-term plasticity (STP and LTP, 

respectively). STP corresponds to a neuronally induced synaptic weight modification that tends to relax 

toward a resting state, thereby providing activity-dependent signal processing. In LTP, the synaptic weight 

modification can last for days to months. Thus, LTP provides the information storage capability to the 

network. Spike timing-dependent plasticity is a variation of Hebb’s rule [ref8,9] that has attracted a lot of 

attention. Although not involved in all mechanisms of learning, spike timing-dependent plasticity has been 

demonstrated in various nanoscale memory or memristive devices [ref10-17]. Other important expressions 

of plasticity that have been displayed in memristive systems include STP [ref18,19], demonstrated based on 

the volatile memory effect, and the STP to LTP transition [ref20-23], displayed in filamentary memory devices 

in which electrical conductivity is modulated by growth of a conductive filament. Conductive filament growth 

is induced by the accumulation of electrical stress and leads to an increase in device conductivity. By analogy 

to long-term memorization processes, which involve the accumulation of short-term effects, and to the idea 

of reinforcement learning [ref24], conductive filament growth has been directly correlated with increased 

filament stability, corresponding to long-term storage of the conductive state. In these different works, while 

the strong analogy between biological synapses and nanoscale filamentary memory devices is evidenced, 
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transition between STP and LTP is intrinsic to the material system considered (i.e. ionic species, ionic 

conductor) and cannot be controlled and tuned during operation.     

In this paper, we demonstrate that more complex plastic behaviors can emerge from nanoscale 

memristive devices, thus allowing a greater number of features to be embedded in a single component and 

potentially permitting more complex computing systems. By considering more complex filament shapes, 

such as dendritic metallic paths of different branch densities and widths, we show that the 

volatile/nonvolatile regime can be tuned independently, leading to an independent control of STP and LTP.  

Based on the observation of metallic filaments in macroscale electrochemical metallization (ECM) 

cells, we investigated the growth and stability properties of dendritic filaments. The results were used as a 

basis for the development of nanoscale solid-state synapses that display independent control of STP and LTP 

processes via spiking excitation and past history modification. When this behavior was interpreted from the 

framework of the phenomenological modeling developed for synaptic plasticity, the results revealed a strong 

analogy between our solid-state device and biological synapses. The additional functionality of independent 

control of STP and LTP could lead to new learning and computing strategies for neuromorphic engineering 

and artificial neural networks.  

3.2. RESULTS AND DISCUSSION 

3.2.1. Ag2S filamentary switching 

The basic structure of the synaptic device (Figure 1a) corresponds to a conventional ECM cell, as described 

by Waser [ref25]. Inert and reactive Pt and Ag electrodes, respectively, are separated by a Ag2S ionic 

conductor material (60 nm), which ensures the migration of oxidized Ag+ ions between the electrodes. A 

positive bias (with a grounded Pt electrode) induces the oxidation of Ag into Ag+ ions at the Ag electrode, the 

migration of ions from the Ag anode to the Pt cathode, and the reduction of Ag+ ions into Ag filaments across 

the insulating Ag2S, thereby turning the device from an insulating OFF state to a conductive ON state (SET 

transition). A negative bias induces the oxidation of Ag from the filament into Ag+ ions and reduction at the 

Ag electrode, leading to a disruption of the conductive path that turns the device OFF (RESET transition). To 

gain insight into the filament shape and growth mechanism, we performed optical microscopic imaging 

during the current-voltage (I-V) measurement on millimeter-scale devices with a square-shaped Pt electrode 

on top of a Ag/Ag2S substrate (Figure 1b). 

 

Figure 1: Filamentary switching. (a) Basic switching mechanism of ECM cells. (b) Device configuration at the millimeter 
scale (top: 0.1 mm × 0.1 mm active area) and nanometer scale (bottom: 200 nm × 200 nm cross-point active area).  

Consistent with the switching scenario described above, a positive bias induced the formation of Ag 

dendritic filaments from the Pt cathode toward the Ag anode (SET transition, Figure 2a, snapshot 1 to 3). 



49 
 

Application of a negative bias induced a partial destruction of the conducting paths, with remaining filament 

traces corresponding to preferential paths for subsequent switching (RESET transition, Figure 2a, snapshot 

4). After an identical positive SET transition, an intermediate situation was observed, in which the device was 

kept grounded for 5 minutes with a slow dissolution of the metallic dendrites (Figure 2b, snapshot 4*). Such 

filament relaxation can be attributed to the Ag+ ion diffusion in the Ag2S ionic conductor and to the reverse 

oxidation-reduction process of the Ag filaments [ref26].  

A second analysis of the filament formation was realized by varying the compliance current (IC) during the 

SET process. This approach is commonly used in ECM cells to tune the conductance of the ON state and to 

limit the formation of filaments [ref  10.1109/TED.2009.2016019]. If tuning the conductance by limiting the 

growth of a single filament is considered straightforward (i.e., because the filament diameter corresponds 

directly to the conductance state), then a more complex picture was obtained for ECM cells that had complex 

dendritic filament morphologies. Increasing the density or width of the dendritic branch can correspond to 

an increase of conductance. Due to the resolution of the optical microscope, it was not possible to obtain an 

accurate assessment of filament diameter. However, we effectively measured a larger filament expansion 

and dendritic tree density with a larger IC (Figure 2c). This observation indicates a direct correlation between 

IC and the fractal geometry of the dendritic filaments (see Supporting Information, Figure S1). Again, after 

RESET, the remaining filament traces corresponded to preferential paths for subsequent switching. 

 

Figure 2: Millimeter-scale ECM cell configuration. (a) I-V characteristics and associated optical microscope imaging (0.1 
mm × 0.1 mm) of filament growth. (b) Natural relaxation of the filament. After a positive SET transition (1–3), the device 
was kept grounded for 5 minutes (4*). (c) Relationship between IC and dendritic expansion/shape. 

Using the previous analysis as a guideline for describing nanoscale filament stability, we implemented the 

same structure in nanoscale devices consisting of Ag/Pt cross-points with a 200 nm × 200 nm active area 

separated by Ag2S (Figure 1b). This device configuration offers the potential for cross-bar integration (cross-

point of metallic wires) and for the realization of dense synaptic arrays. Due to the high mobility of the Ag+ 

ions in the Ag2S ionic conductor, the device was operated at low voltages, close to the biological electrical 

potential recorded in neuronal cells during spiking (200 mV vs. 80 mV).  

As expected, controlling the IC value during SET transition limited the filament growth and tuned the ON 

conductance state. ON states at IC values of 100 nA to 50 µA were strongly volatile, whereas ON states at IC 

values above 50 µA were stable, with RESET transition observed at a negative bias (Figure 3a). A linear I-V 

relationship, defining the ON conductance state GON, was obtained in all ON states, indicating that the 

filaments bridged the gap between the electrodes. Consequently, the large dynamic range of ON states 

presented in Figure 3b—namely, from high resistance at low IC (i.e., 1 MΩ at 100 nA, corresponding to a 
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switching power < 100 nW), to low resistance at high IC (i.e., 1 kΩ at 1 mA, corresponding to a switching 

power of 300 µW)—can be attributed to a modification of the bridging filament morphology, rather than to 

a modulation of the tunnel barrier length (which is a plausible mechanism in the case of a non-bridging 

filament).  

As a first level of interpretation, the low IC region can be reasonably described by weak filaments that 

tend to dissolve very quickly once the voltage is removed. The high IC region can be considered to correspond 

to strong bridging filaments with slower relaxation. This effect has been described thermodynamically in Ag 

filaments [ref27] as a competition between the surface and volume energies: thin filaments tend to be 

disrupted because the surface energy is higher than the volume energy, whereas thick filaments tend to 

stabilize because the volume energy is higher than the surface energy. Such relaxation of the conductive 

paths has been reported in nanoscale devices [ref22,23] and was the basis for the implementation of STP 

and the STP to LTP transition. After the conductive filament forms via a strong stimulation, the filaments tend 

to dissolve and the device relaxes toward its insulating state, leading to STP behavior. Stronger stimulation 

of the device during the SET transition leads to stronger filaments and higher conductance states with more 

stable characteristics, resulting in LTP. In this case, the conductance state is correlated directly with the 

volatility.  

Assuming that similar dendritic processes occur at the nanometer and millimeter scales (Figure 2a), we 

can draw a more complex picture for the interpretation of filament stability. Specifically, the different ON 

states can be described by dendritic trees, in which the resistance is modulated equally by the density and 

diameter of the branches. At the nanoscale, the same ON state can be obtained by filaments with dense and 

thin branches as can be obtained by filaments with less dense and thick branches (Figure 3c). Both 

configurations should lead to different volatilities, emulating different plasticity properties. 

 

Figure 3: Nanoscale ECM cell configuration. (a) I-V switching characteristics for different values of the compliance 
current, IC. When IC = 100 nA, the ON state is unstable and tends to relax very quickly (OFF transition is not measurable). 
When IC = 100 µA or 800 µA, conventional bipolar switching hysteresis loops are obtained, corresponding to the stable 
ON state. (b) ON state conductance as a function of IC. Limiting the current during SET limits filament formation. When 
IC = 100 nA to 50 µA (region I), the bridging filaments show a high volatility; when IC > 1 µA (region II), the ON states are 
stable. (c) Schematic of the proposed scenario describing switching in ECM cells. Both the density and diameter of the 
dendritic branches can induce an increase in the ON state. The isoconductance state can be obtained with two different 
filament configurations. 
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3.2.2. Synaptic plasticity implementation 

To evaluate the plasticity properties of our electronic synapses, we performed pulsed measurements with 

simplified pulses equivalent to the spike rate-coding scheme observed in biological networks. First, a full SET 

and RESET cycle was realized by voltage sweeping and limiting the current in the SET transition, with the 

conditioning loop resulting in an initial OFF state equivalent to Figure 3a. Then, the device was exposed to a 

train of pulses (5 kHz) with fixed amplitude (0.42 V) and width (100 μs), resulting in potentiation of the device 

(i.e., conductance increase). Relaxation of the synaptic efficiency was sampled over six decades of time by 

short read pulses with lower voltage (0.1 V) and short duration (100 μs), to minimize the effect on the 

relaxation mechanism (Figure 4a). Different excitatory bursts, obtained by varying the number of pulses, 

were used to modulate the potentiation obtained at the end of the pulse sequence, corresponding to the 

conductance at the end of a burst of pulses, Gmax. These bursts were fitted by a simple exponential function 

(Figure 4b).  

Consistent with our previous observation that low stability is obtained at a low ON state due to the 

thinner filaments, we obtained a short relaxation time constant for the lowest ON state. Increasing Gmax led 

to a higher time constant and more stable filaments. When we analyzed the evolution of the relaxation time 

as a function of Gmax for different IC values during the conditioning loop (Figure 4c), a second parameter for 

volatility control emerged. At high IC values, there was a sharp transition between the low and high time 

constants. A smoother transition was obtained as Gmax increased when lower IC values were used. 

 

Figure 4: Implementation of the synaptic plasticity. (a) Protocol for the measurement of pulse relaxation. A burst of 
pulses at 5 kHz and (0.42 V) induced potentiation. Current relaxation was measured at a lower voltage (0.1 V). (b) 
Measurements of conductance relaxation (blue points) and fitting (red line) on six time decades for different 
potentiation Gmax values, obtained by varying the number of pulses (15, 50, and 150 pulses). Low and high Gmax values 
led to STP (complete relaxation over time) and LTP (no relaxation over time), respectively. (c) Relaxation time constant 
as a function of IC and conductance state at the end of the burst of pulses, Gmax.  

Another formulation of this result is presented in Figure 5a. If we consider the conductance state 100 s 

after the end of the excitatory burst, then different transitions from STP (relaxation of the conductance state 

after 100 s; Gmax > G100s) to LTP (no relaxation of the conductance state after 100 s; Gmax ≈ G100s, blue area in 

Figure 5a) can be identified as a function of IC. This behavior can be attributed to the combination of two 

effects. Namely, both IC and the strength of the excitatory burst (i.e., number of pulses) contribute to the 

definition of the conductive paths. After the conditioning loop, the device is in its OFF state. Traces for the 

remaining dendritic branches (defined by IC) correspond to preferential paths for filament formation during 

the excitatory burst. By analogy with filament formation obtained on millimeter-scale devices, higher IC 
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should lead to denser dendritic trees. Thus, the first parameter for plasticity tuning is the IC value used during 

conditioning. This value controls the average conductance of the filament during switching in pulse mode, by 

defining the switching path (i.e., dendrite density). The second parameter that controls the STP to LTP 

transition is the excitation strength (i.e., number of pulses, which controls Gmax). This parameter can be 

associated with an increase of the branch diameter. These two parameters, the past history of the device 

through the conditioning loops, and the spiking activity during potentiation can be changed independently 

of each other to modify the device conductance and the filament volatility. Such mechanism is consistent 

with simulation and experimental results obtained in [ref Pan]. In this work, large filaments are obtained at 

low surface overpotentials (voltage applied at the electrode/ionic conductor interface) and long switching 

time while thin filaments results from large surface overpotentials and short switching time. In our case, as 

the applied voltage is constant, we should consider the voltage redistribution across the full device (i.e. top 

and bottom interfaces and the ionic conductor’s bulk): for low Ic value used during conditioning, the 

remaining paths correspond to higher bulk’s resistivity (low dendritic density) in comparison to high Ic value 

that leads to denser dendritic paths with lower bulk’s resistivity. Consequently, at fixe pulse amplitude, the 

surface overpotential can be significantly larger in the case of high Ic conditioning loops than in the low Ic 

regime. In order to reach an equivalent ON state, low Ic conditioning requires a larger switching time (i.e. 

larger pulse number) leading to large filaments while the high Ic conditioning leads to shorter switching time 

(i.e. lower pulse number) and thin filaments. 

 

Figure 5: Implementation of the synaptic plasticity. (a) After a conditioning loop (full SET and RESET cycle with current 
compliance, IC), the device is stressed with a burst of spikes, which induce a potentiation from the OFF state to a final 
conductive ON state, Gmax. Device conductance is measured 100 s after the end of the burst to evaluate the relaxation. 
Different transitions from STP to LTP are obtained with different conditioning IC values (IC = 100, 250, and 800 µA). (b) 
Two examples of LTP (cases 1 and 2) and STP (cases 3 and 4), for the case in which the number of pulses is set as the 
key plasticity factor and the IC value is set as the dendritic path definition. The density (through IC) and diameter (through 
burst excitation) of the dendritic branches can be tuned independently to reproduce various STP/LTP combinations. 

To illustrate the improved functionality obtained with our approach, we used the biological model of 

synaptic plasticity developed by Markram [ref28] to fit our different synaptic potentiation experiments 

(Figure 5b). This model describes the excitatory postsynaptic potentiation response produced by a train of 
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presynaptic action potentials (APs). After a number of APs (n), the postsynaptic current response to the n+1th 

AP is given by: 

  (1) 

where the absolute synaptic efficiency, ASE, corresponds to the maximum possible synaptic efficiency; the 

fraction of available synapses, R, corresponds to the neurotransmitter resources that are available in the 

presynaptic connection (0 < R < 1); and the utilization of the synaptic efficacy, U, corresponds to the amount 

of neurotransmitter that is released from the pre- to the postsynaptic connection (0 < U < 1). Thus, Rn+1 and 

Un+1 are given by: 

  (2) 

The facilitating behavior observed during a burst of spikes is associated with the parameter USE, which is 

modified with the characteristic time τfac and applied to the first AP in a train (i.e., R1 = 1 – USE). Recovery of 

the synaptic efficiency (or available neurotransmitters) is associated with the characteristic time τrec. This 

biological model allows us to reproduce different kinds of plasticity observed in synapses relative to different 

mechanisms. Plasticity can be controlled through the neurotransmitter dynamics in the presynaptic 

connection (i.e., recovery of the available neurotransmitters or increase in the neurotransmitter release 

probability), by the improvement of neurotransmitter detection in the postsynaptic connection or even by a 

structural modification of the synaptic connection (i.e., increase in the size of a given synapse or the overall 

number of synapses connecting two neurons). For a detailed review of synaptic plasticity, see ref. [ref29]. 

Consequently, the synaptic efficiency of a given spike is determined by a combination of parameters that 

lead to different synaptic responses and expressions of synaptic plasticity. 

 

 

By accounting for the parameters of the bio-model (Equation 1), four different cases may be analyzed as a 

function of the number of pulses and IC (Table 1). If we consider experiments 1 and 3 in Figure 5b, the same 

potentiation (i.e., Gmax) can lead to LTP (case 1 with 150 pulses and IC = 100 μA) or STP (case 3 with 10 pulses 

and IC = 250 μA). The STP to LTP transition is mainly associated with an increase of the facilitating time 

constant, τfac. This increase is obtained by increasing the number of pulses during the excitatory burst. Slightly 

increasing IC is mostly represented by an increase in ASE. This observation is also evident by comparing case 

2 with case 4. The difference in conductance level between cases 1 and 2, which showed qualitatively 

equivalent LTP responses, is mainly attributed to an increase of ASE. We cannot establish a one-to-one 

correspondence between biological processes (e.g., neurotransmitter dynamics, structural modifications, 

etc.) and filament growth or relaxation in our experiments because most of the parameters are coupled in 
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both cases. Additional experiments, such as the in situ observation of filament shape, would provide more 

insights in order to formulate of more refined equivalence. 

3.2.   DISCUSSION 
Obtaining the synaptic density has been a major challenge in neuromorphic engineering. From a practical 

perspective, we believe that developing devices that are more functional (i.e., have properties closer to 

biological synapses) will allow the construction of more complex systems. In a previous report describing the 

STP to LTP transition [ref14,22], the transition was controlled by a single parameter (i.e., device 

conductance). Such behavior was proposed as a direct solution for the implementation of the multistore 

memory model [ref] which considers that learning events contribute to the formation of short term memory 

(where memory is used in the sense of psychology) before being transferred into long term memory 

(STM/LTM transition). If a direct equivalence between STP/LTP and STM/LTM is not straightforward, it seems 

realistic to consider synaptic plasticity as a key element in the formation of memory. The device presented 

in this paper features a tunable STP/LTP transition that could be a key parameter for defining the appropriate 

activity threshold that determines when information storage needs to be moved from a short term to a long 

term regime, or, in other words, how long an information needs to be sustained (i.e. how long the device will 

remain in its ON state).  

Additionally, if STP/LTP transition is only controlled by the device’s conductance, synaptic weight 

modification and STP/LTP transition cannot be uncorrelated. We argue that the rate-coding property 

obtained in the STP regime, as observed in the facilitation of synaptic signal transmission during a high 

frequency burst of spikes and the subsequent relaxation at lower frequencies, disappears once the device 

enters into its LTP regime and, thus, becomes a linear resistor. From a circuit perspective, if we consider a 

simple integrate-and-fire neuron associated with linear synapses, the node (neuron and synapses) is 

equivalent to a simple linear filter (if the variable is the average spiking rate). The node is a nonlinear filter in 

the STP regime with frequency-dependent synaptic conductance. The overall network functionality is 

reduced when learning moves synapses from their STP to their LTP domain. An interesting property offered 

by the presented devices in order to preserved such rate coding functionality is to allow for weight 

modification through the control of the ASE parameter while maintaining the frequency dependent response 

by keeping the device into its short term regime (see case 3 and 4, figure 5). For the device presented in this 

paper, learning can be realized by modifying the dendritic filament density and increasing the ASE during the 

conditioning procedure. The frequency coding property can be ensured by controlling the filament diameter 

and relaxation. 

Finally, the activity dependent STP/LTP transition and synaptic weight modification in this work is only 

obtained as a function of the input frequency, thus corresponding to the pre-neuron activity. Such 

mechanism is defined in biology as a facilitating synapse. A complementary mechanism that cannot be 

reproduce with our system is the depressing synapse (i.e. decrease of the synaptic weight when pre-neuron 

activity increase). In order to implement practical learning systems, this results will have to be extended to 

hebbian learning strategies in which weight modification is dependent on both pre- and post-neuron activity. 

Among the different hebbian learning strategies considered to date, STDP has attracted a large attention. 

One implementation of such learning protocol is based on overlapping pulses (spike timing difference 

between pre- and post-neuron is then encoded as a voltage drop across the device). Figure SXXX presents 

similar results to figure 5 when voltage is used as a key plasticity factor instead of spiking frequency that 

should allow for STDP realization. While not measured in this paper, one interesting future direction would 

be to add to previously report STDP results obtained on non-volatile systems [ref Jo] the STP/LTP capacity in 

order to demonstrate neuromorphic circuits with richer dynamical behaviors. 
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3.3. CONCLUSIONS 
We report a single synaptic device that highly resembles its biological counterpart, opening the field to more 

complex neuromorphic systems. Biological synaptic plasticity has been successfully implemented in our 

nanoscale memristive device by considering the filament stability of ECM cells, in terms of competition 

between the density and diameter of the dendritic branches. STP and LTP regimes can be controlled by tuning 

the device volatility. The first parameter for plasticity tuning, IC, is used during conditioning and controls the 

average conductance of the filament during switching in pulse mode. The second parameter handles the STP 

to LTP transition and corresponds to the excitation strength (number of pulses), which controls Gmax. The 

second parameter can be associated with an increase of the branch diameter. These two parameters can be 

tuned independently of each other to modify the device conductance and filament volatility. Future work 

should investigate how such synaptic properties can be advantageous for large-scale neuromorphic circuits. 

To improve the efficiency of future bio-inspired computing systems, interdisciplinary research is needed to 

obtain a better understanding of the contributions of STP and LTP mechanisms to memory construction and 

spike-coding information processing. 

 

1. Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; 

Nakamura, Y. A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface. 

Science 2014, 345, 668–673. 

2. Alibart, F.; Zamanidoost, E.; Strukov, D. B. Pattern Classification by Memristive Crossbar Circuits Using Ex Situ and In 

Situ Training. Nat. Commun. 2013, 4, 403–405. 

3. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The Missing Memristor Found. Nature 2008, 453, 80–83. 

4. Liang, B.; Dubey, P. Recognition, Mining and Synthesis. Intel Technol. J. 2005, 9, 99–174. 

5. Pickett, M. D.; Medeiros-Ribeiro, G.; Williams, R. S. A Scalable Neuristor Built with Mott Memristors. Nat. Mater. 2013, 

12, 114–117. 

6. Sharad, M.; Augustine, C.; Panagopoulos, G.; Roy, K. Spinbased Neuron Model with Domain-wall Magnets as Synapse. 

IEEE Trans. Nanotechnol. 2012, 11, 843–853. 

7. Strukov, D. B. Nanotechnology: Smart Connections. Nature 2011, 476, 403–405. 

8. Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs 

and EPSPs. Science 1997, 275, 213–215. 

9. Hebb, D. The Organization of Behavior: A Neuropsychological Theory; Psychology Press: New York, 1949; pp 4356. 

10. Bi, G.-q.; Poo, M.-m. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, 

Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci. 1998, 18, 10464–10472. 

11. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale Memristor Device as Synapse in 

Neuromorphic Systems. Nano Lett. 2010, 10, 1297–1301. 

12. Kuzum, D.; Jeyasingh, R. G.; Lee, B.; Wong, H.-S. P. Nanoelectronic Programmable Synapses Based on Phase Change 

Materials for Brain-inspired Computing. Nano Lett. 2011, 12, 2179–2186. 

13. Choi, S.-J.; Kim, G.-B.; Lee, K.; Kim, K.-H.; Yang, W.-Y.; Cho, S.; Bae, H.-J.; Seo, D.-S.; Kim, S.-I.; Lee, K.-J. Synaptic 

Behaviors of a Single MetalOxideMetal Resistive Device. Appl. Phys. A 2011, 102, 1019–1025. 

14. Kim, K.; Chen, C.-L.; Truong, Q.; Shen, A. M.; Chen, Y. A Carbon Nanotube Synapse with Dynamic Logic and Learning. 

Adv. Mater. 2013, 25, 1693–1698. 

15. Zeng, F.; Li, S.; Yang, J.; Pan, F.; Guo, D. Learning Processe Modulated by the Interface Effects in a Ti/conducting 

polymer/Ti Resistive Switching Cell. R. Soc. Chem. Adv. 2014, 4, 14822–14828. 

16. Krzysteczko, P.; Münchenberger, J.; Schäfers, M.; Reiss, G.;Thomas, A. The Memristive Magnetic Tunnel Junction as 

a Nanoscopic Synapse-Neuron System. Adv. Mater. 2012, 24, 762–766. 

17. Alibart, F.; Pleutin, S.; Bichler, O.; Gamrat, C.; Serrano-Gotarredona, T.; Linares-Barranco, B.; Vuillaume, D. A 

Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing. Adv. Funct. Mater. 2012, 22, 609–

616. 

18. Alibart, F.; Pleutin, S.; Guérin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D. An Organic 

Nanoparticle Transistor Behaving as a Biological Spiking Synapse. Adv. Funct. Mater. 2010, 20, 330–337. 

19. Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial Synapse Network on Inorganic Proton Conductor for 

Neuromorphic Systems. Nat. Commun. 2014, 5, 1–7. 



56 
 

20. Josberger, E. E.; Deng, Y.; Sun, W.; Kautz, R.; Rolandi, M. Two-Terminal Protonic Devices with Synaptic-Like Short-

Term Depression and Device Memory. Adv. Mater. 2014, 4986–4990. 

21. Kim, S.; Choi, S.; Lu, W. Comprehensive Physical Model of Dynamic Resistive Switching in an Oxide Memristor. ACS 

Nano 2014, 8, 2369–2376. 

22. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski J. K.; Aono, M. Short-Term Plasticity and Long-Term 

Potentiation Mimicked in Single Inorganic Synapses. Nat. Mater. 2011, 10, 591–595. 

23. Yang, R.; Terabe, K.; Liu, G.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J. K.; Aono, M. On-Demand Nanodevice With 

Electrical and Neuromorphic Multifunction Realized by Local Ion Migration. ACS Nano 2012, 6, 9515–9521. 

24. McGaugh, J. L. Memory;a Century of Consolidation. Science 2000, 287, 248–251. 

25. Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Electrochemical Metallization Memories Fundamentals, 

Applications, Prospects. Nanotechnology 2011, 22, 254003. 

26. Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in Redox-

Based Resistive Switches Require Extension of Memristor Theory. Nat. Commun. 2013, 4, 1771. 

27. Russo, U.; Kamalanathan, D.; Ielmini, D.; Lacaita, A. L.; Kozicki, M. N. Study of Multilevel Programming in 

Programmable Metallization Cell (PMC) Memory. IEEE Trans. Electron Devices 2009, 56, 1040–1047. 

28. Hsiung, C.-P.; Liao, H.-W.; Gan, J.-Y.; Wu, T.-B.; Hwang, J.-C.; Chen, F.; Tsai, M.-J. Formation and Instability of Silver 

Nanofilament in Ag-Based Programmable Metallization cells. ACS Nano 2010, 4, 5414–5420. 

29. Pan, F.; Yin, S.; Subramanian, V. A Detailed Study of the Forming Stage of an Electrochemical Resistive Switching 

Memory by KMC Simulation. IEEE Electron Devices Lett. 2011, 32, 949–951. 

30. Markram, H.; Pikus, D.; Gupta, A.; Tsodyks, M. Potential for Multiple Mechanisms, Phenomena and Algorithms for 

Synaptic Plasticity at Single Synapses. Neuropharmacology 1998, 37, 489–500. 

31. Zucker, R. S.; Regehr, W. G. Short-Term Synaptic Plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. 

32. Collingridge, G. L.; Peineau, S.; Howland, J. G.; Wang, Y. T. Long-Term Depression in the CNS. Nat. Rev. Neurosci. 

2010, 11, 459–473. 

33. Atkinson, R. C.; Shiffrin, R. M. Human Memory: A Proposed System and its Control Processes. Psychol. Learn. Motiv. 

1968, 2, 89–195. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

4. CHAPTER 4 

Neuromorphic Time-Dependent Pattern 

Classification with Organic Electrochemical 

Transistor Arrays 

 

4.1. INTRODUCTION 
In biological systems, dynamical and complex information is processed efficiently by highly redundant and 
parallel network of cells while standard computing systems are quickly reaching their limitations for 
equivalent information processing tasks. For instance, at the opposite to top-down circuits with highly 
uniform devices used for general purpose computers, bottom-up assembly of neural cells with high level of 
variability, can process auditory, visual or olfactive stimuli and generate complex actions very efficiently. 
Material implementation of such bio-inspired principles for sensing and computing has been a stimulating 
direction that has reached significant milestones with the development of neuromorphic sensors (retina, 
cochlea…) and circuits.[1] While initially relying on standard silicon-based devices (i.e. CMOS), emerging 
materials and devices are opening new avenues for neuromorphic engineering by offering new basic 
mechanisms for emulating biology and new devices and circuits concepts to build computing systems. 
Notably, neuromorphic systems with non-volatile memories (and resistive memory in particular) have been 
the focus of strong research efforts. 

Here, we capitalize on organic electro chemical transistors (OECTs) that have been recently proposed 
ubiquitously as basic building blocks in neuromorphic computing applications (i.e. memory devices, for 
instance) and as bio-sensors thanks to their intrinsic sensitivity to ions. While this paper does not present 
sensor properties assessment, we build on this intrinsic feature of OECT to demonstrate neuromorphic 
computing application. Based on an array of organic ionic transistors, this work shows how sensing and 
processing can be realized at the interface with an analyte by taking advantage of OECTs intrinsic physics and 
on neuromorphic concepts. In particular, we show how highly variable material engineering routes that are 
not adapted to standard information processing technologies (i.e. relying on top-down fabrication of near-
ideal components and circuits) can be turned into an advantage when bio-inspired concepts are used to 
engineer computing system. 

We propose an adaptation of the recent proposition of reservoir computing (RC),[2,3] to demonstrate that 
both sensing and computing can be obtained from the intrinsic properties of a transistor array, limiting the 
separation between these two elementary levels (i.e. sensing and computing). In one hand, from the 
neuromorphic computing side, RC concept has been developed for dynamical signal processing (e.g. speech 
recognition),[4] and use the idea of learning from a simple read-out layer (i.e. a feedforward perceptron) the 
dynamics associated to the projection of a given stimuli into a complex and random network of non-linear 
elements (i.e. neurons or nodes). In the other hand, from the sensing perspective, monitoring and analyzing 
biological activity in medium such as neural cells assembly or bloods composition, for instance, consist in 
processing dynamical signals and would strongly benefit from the RC approach to classify such dynamical 
patterns from complex and poorly define biological medium.  Thus developing RC strategies for processing 
information out of a network of ion-sensitive transistors could open new perspectives in biological sensors. 
The key elements of RC are (i) non-linearity of the reservoir’s nodes (non-linear conversion from input signal 
to output signal) and (ii) a fading memory effect keeping the history of the stimuli active in the network on a 
given duration. Material implementations of RC have been proposed recently with optical or magnetic 
oscillators.[5-9] For both, time multiplexing was used in order to emulate spatial nodes in the network from 
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one single non-linear element and memory effect was associated whether to a feedback loop connection or 
to the transient dynamics of the non-linear element. Here, we propose the implementation of a spatial 
reservoir composed of an array of OECTs that present a non-linear response to the stimulus propagating in 
an analyte (an input voltage applied to the analyte is converted into a resistance state of the OECT. The 
memory effect is associated to the transient dynamics of ions penetrating into the OECT with a given 
relaxation time implementing the fading memory. We show in this paper that this spatial reservoir take 
advantage of (i) the variability in the OECTs array inherent to the bottom up fabrication of the OECTs using a 
newly synthesized electropolymerizable polymer, (ii) of the transient dynamics of the devices for an implicit 
representation of time and (iii) of the number of redundant OECTs to discriminate simple dynamical patterns. 

4.2. RESULTS 

4.2.1.  Transient dynamics of OECTs as implicit time representation 

Figure 
1. a, Optical micrographs of the OECTs array. OECT devices are three terminal devices with spiral-shape S and 
D electrodes leading to a large channel width over length ratio (W/L=1100) over a confined area (615 μm²). 
The gate electrode (not represented) is realized with macroscopic metal wire contacting the electrolyte. b, 
After electrode patterning, the organic material, Scanning Electron Microscope images of three different 
devices. High variability in the electro-polymerization is apparent in the polymer structure. c, Transfer 
characteristics of one of the OECT  in a 0.1 M KCl(aq) electrolyte, displaying the p-type accumulation-mode 
field-effect (inset: TEDOT monomer used for the semiconductor electrodeposition). Blue line: drain current, 
green line: square-root of drain current, black line: gate current. 

The OECT array (Figure 1a, and Methods) consists in organic electrochemical transistors composed of electro-
polymerized, glycol crosslinked, 2-(2-thienyl)-(3,4-ethylenedioxythiophene) (TEDOT) molecules (Figure 1 and 
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Supplementary Figure S1). Alternative materials based on glycol-side-chain polythiophene have 
demonstrated high performances while operating in accumulation mode.[13,14] We used the monomer TEDOT 
(Figure 1) to conceive, after electro-polymerization, a new polythiophene functionalized with ethylene glycol 
chains, patterned locally on each OECT. After the polymer electrodeposition (see Methods), all devices 
showed gate modulation of source-drain current (Figure 1c), despite the large variability of the material 
morphology (Figure 1b). The polymer thickness could not be estimated by profilometry due to this textured 
morphology of all devices. From the consideration of a materials density of 2 g/cm-3, the dimensions of the 
device cavities and the charge flow controlled over the potentiostatic deposition, we evaluated a thickness 
of a theoretical thin film of 6 μm with seems to agree with the experiment (practically the polymer patches 
fill the Parylene C cavities). The basic mechanisms of OECT is based on the redox doping/dedoping of the 
organic material.[15,16] A negative gate voltage (VG) applies to the 0.1 M KCl(aq) (the analyte) forces negative 
ions to penetrate into the organic material, increasing the electronic conductance of the organic layer (source 
grounded and drain potential constant VD=+100 mV). When VG is turned off, ions diffuse back to the 
electrolyte, out of the organic material that recovers its high resistance state. Non-linear relationship 
between VG and device’s resistance is evident from Figure 1b. In addition, slow dynamics of ions through the 
electrolyte/organic interface is apparent in the hysteresis loop when sweeping VG at 0.1 V/s. Figure 2a 
presents the transient response of an OECT to a sequence of pulses with increasing amplitude. The transient 
behavior of the OECT is used to implement short-term memory effect (Figure 2c),[17,18] as observed in 
biological synapses (Short-Term Plasticty).[19] When the OECT is stressed with a train of pulses of constant 
amplitude, short-term facilitation (increase of the average output current with number of pulse) is 
implemented.[17,20] 

 

Figure 2. a, Typical response of the OECT to a gate voltage with different amplitudes and constant 
VD=+100mV. Green (blue) dashed line shows the fitting of the doping (dedoping), transient resulting from 
ions injected (removed) to (from) the organic semiconductor for a step voltage of 0 to -900 mV (-900 mV to 
0 V). b, Characteristic charge and discharge time constants for the full array of 12 OECTs obtained from fitting 
the transient current in (a) by exponential functions (dashed lines in (a)). c, Constant gate voltage stimulation 
(­900 mV, 200 ms width) with variable frequencies showing short-term facilitation. Red dashed lines 
correspond to the average conductance reach in steady-state showing frequency-dependent potentiation. 
Short-term memory effect is evidenced by the single pulse applied 25 seconds after the potentiation.  Green 
lines are guide to the eyes to evidence the stronger potentiation/relaxation ratio after higher frequency 
stimulation. 
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This short-term memory effect is due to the accumulation of ions from pulse to pulse and on the unbalanced 
relaxation between each stimulation resulting in higher steady-state mean conductance at high frequency 
(larger amount of ions are accumulated) and lower steady-state conductance at low frequency (lower 
amount of ions are accumulated). In each case in Figure 2c, a single control pulse is applied after 25 s of 
relaxation to evidence the short-term memory effect. The absolute value of the current from trial-to-trial 
presents some variability in current level (evidenced in the very first pulse when the OECT was previously at 
rest, for instance) that was mostly due to a poor control of the electrolyte concentration from trial-to-trial 
and to the strong effect of the concentration on the quantitative response of the OECT. Nevertheless, the 
qualitative response showing higher potentiation at higher frequency with respect to the control pulse (green 
lines in Figure 2c) remained consistent. The transient behavior was analyzed by fitting the charge/discharge 
in the transient drain current characteristics of Figure 2a with a single exponential function. Characteristic 
times with a large dispersion are obtained (Figure 2b), inherent to the bottom-up fabrication process of the 
organic material. Characteristic transient times in an OECT depend on the electrical resistance of the polymer 
and the resistance and capacitance values of the electrolyte [Bernards], affecting the device behavior under 
pulse modulation [Dual Sensing]. Since the polymer and electrolyte resistances as well as the device-to-
electrolyte capacitance are intrinsically function of the thickness of the polymer materials and the areas of 
their interfaces, the variability of polymer morphology (as shown in Figure 1b) is the source of variability of 
the measured device time constants. This will be one central element that we exploit in the following for the 
implementation of RC. Characteristic time constants for charging are on average shorter (from 1.08 to 13.7 s) 
than discharging (from 2.03 to 43.7 s). The level of memory of each individual device can be define along two 

metrics: (i) mean , the average value of discharge and charge and (ii) the discharge / charge ratio. When discharge / 

charge  1 (equivalent to a capacitor), the device is a purely short-term memory. When discharge / charge tends 
to higher values, the memory moves from short-term to long-term memory (note that non-volatile memory 

tends to maximize this ratio with discharge > 10 years and  charge < 1 ns). Figure S5 and S6 represents the  discharge 

/ charge ratio and mean showing that OECTs devices are in the short term regime of memory. In the following, 

this short term memory effect will be used to define the global memory of our system. The collection of mean 
available in our system due to variability will be used to reconstruct a memory time window. This 
characteristic memory time window directly determines the typical duration of dynamical patterns that can 
be processed by the reservoir of OECTs (i.e. a device can keep memory of its previous history on a time 
window of up to tenths of seconds). In its initial version, RC used recurrent connections into the reservoir to 
implement fading memory effect. Feedbacks (i.e. delays) into the reservoir ensure that signals are kept for a 
given time active in the network. Also, strength of this recurrent connections was used to set the reservoir 
in an optimal state in terms of sensitivity to input signal (i.e. edge of chaotic regime).[21] In our case, the 
reservoir consists in a purely feed-forward network (i.e. no recurrent connections) and fading memory effect 
is implemented with the transient responses of OECTs (more precisely by the collection of time constant 
from each individual OECT). The optimal VG range of operation of the OECTs is defined based on the device 
ID(VG) characteristics. Too large voltage biases (>1.0 V) might lead to irreversible material damage by water 
electrolysis,[22] hindering the stability of the electrochemical system. Too small voltages result in too weak 
modulation of the conductance. As a trade of, we use voltage pulses VG of -900 mV. 

4.2.2. Reservoir computing: dynamical signal processing with network of OECTs 
Various Artificial Neural Networks (ANNs) approaches have been proposed so far for time-dependent pattern 
classification (speech, for example). Recurrent networks or Time Delay Neural Network are of particular 
interest for this task since they offer the possibility to encode the time signature of such signals explicitly. 
More recently, time-dependent signals processing has been revitalized with the concept of Reservoir 
Computing (RC). RC is based on the basic idea of projecting the input signal on the nodes of a large 
dimensional space in order to separate simple features from the input signal. These simple features are then 
used to classify patterns at the read-out layer (i.e. a simple perceptron trained with standard learning 
technics). In time-multiplexed RC approaches used for speech recognition,[5,8] the dimensionality of the 
reservoir is ensured by the virtual neurons (i.e. virtual nodes) that hold the signature of the signal at different 
time intervals. Reconstruction on the read-out layer of the time-dependent signals out of these virtual nodes 
is then used to classify patterns (i.e. speech signals). This approach corresponds to an explicit representation 
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of time where the first neuron is associated to the first time interval, second neuron to the second time 
interval… and so on.[23] Here, we use an implicit representation of time through the transient dynamics of 
each OECT in the network (Figure 3a). Due to the variability in their transient responses (Figure 2), each OECT 
will keep the temporal signature of the signal on a different memory window. Each OECT is then used to 
collect different features from the reservoir and to perform classification at the read-out layer.  

To test this concept, we designed low complexity signals consisting in square waves of constant amplitude -
900 mV and 1 s duration applied to the global gate with variable frequencies. The two signals used to 
demonstrate time-dependent signal classification are built with square-type and triangle-type pulse-
frequency modulation between 0.3 and 0.8 Hz.[24] If classification of these two signals is trivial when one have 
access to the full recording over a complete period of the signals, discrimination of the two signals on a 
restricted time interval (typically no more than two successive pulses) becomes impossible without some 
memorization of the past events. Here we show that the RC concept can be used to classify in real time these 
signals based on the intrinsic memory of each OECT and on pre-requisite learning. Figures 3b-c present the 
typical response of an OECT to the two signals, respectively. Light grey lines correspond to the as recorded 
signal. The blue and green lines correspond to the average current response in each time step. 

 

Figure 3. a, Schematic of the experiment and analysis. The network of 12 OECTs is used to sense the response 
of the electrolyte to the global gate signal. The perceptron is implemented in software and realize signal 
weighting, summation and activation function. b and c, Typical response of an OECT to the two different 
patterns (square and triangle, respectively) used for classification. Black/grey lines are the raw data 
measurement and blue/green line are smoothed signals corresponding to the average current value sense 
by the device. As in Fig. 2c, highest (lowest) frequencies tends to accumulate more (less) ions in the organic 
material and increase (decrease) the mean conductance levels of the OECT via doping effect. d and e, 
Response of the 12 OECTs to the two input patterns (square type and triangle type, respectively). We observe 
variability from device to device on the modulation amplitude and the shape of the mean current. Average 
currents of OECT #6 and #7 differ of about two orders of magnitude, and amplitude of the current 
modulations between OECT #1 and #4 differ of about one order of magnitude. 

Figures 3d-e present the responses of the 12 OECTs in the array to the same signal applied at the common 
gate. We observe variability from device to device on the modulation amplitude and the shape of the mean 
current. The observed variability on the mean current is not only due to the device time constant variability, 
but also to the device steady state current and its current modulation. Both correlated to the hole 
conductivity of the polymer between source and drain electrodes, these two features being highly influenced 
by the polymer morphology (Figure 1b shows very characteristic polymer grain boundaries between three 
OECTs with different base currents and current modulations displayed in Figure 3d-e). This large variability 
represents a severe limitation of bottom-up fabrication technics that RC can leverage efficiently. 
Implementation of the reservoir target classification of the two patterns (square-type and triangle-type) with 
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a simple read-out equivalent to a simple perceptron implemented here in software (i.e. one neuron with 
m=12 weighted input). Output current from each OECT is sampled over time and will be use to define the 
state of the reservoir at each time step, for a given location into the reservoir. The collection of outputs from 
the array of OECTs correspond to the state at time t of the reservoir in response to a given stimuli. This output 
values are then used as input to a simple perceptron in charge of classification through learning (i.e. the 
perceptron function is limited to signal weighting, summation and activation function).  We use a 1 ms 
sampling rate of the signals. For each time step, we associate a given vector {Xi}(t) of dimension (1x12). A 
total of 11750 vectors are recorded from each pattern composed of three repetitions of one period of square 
(triangle, respectively) elementary pattern. Each vector is then fed to a simple perceptron with m=12 
weighted inputs. The total output Y(t) from the perceptron before activation function at time t is then 

𝑌(𝑡) =  ∑ 𝑤𝑖 ∙ 𝑋𝑖(𝑡)𝑚=12
𝑖=1      (1) 

with wi the synaptic weight of the ith input line, Xi(t) the current value at time t of OECT #i. Vectors {Xi} 
belongings to the triangle-type pattern are associated to class “1” (i.e. output neuron is activated) and 
square-type pattern to class ”0” (i.e. output neuron is not activated). The activation function rule of the 
output neuron is then 

   Output = “1” if Y(t) > Yth 

   Output = “0” if Y(t) < Yth 

with Yth the threshold activation value (O.5 in our example) chosen based on the distribution of the different 
output values. We define the training vectors (or training examples) by choosing randomly n vectors from 
each pattern. Training protocol is realized with pseudo-inverse learning (i.e. Moore Penrose operator)[25] to 
determine the value of the 12 synaptic weights (Supplementary Figure S2). Testing is realized on the full set 
of vectors (i.e. 11750) from the two classes. Classification performances are then calculated as the 
percentage of errors averaged on 20 iterations with 2n training vectors randomly chosen among the entire 
set. Figures 4a-b show the error rate as a function of training vectors used for learning the synaptic weights. 
As in standard learning technics, more examples lead to better performances. With more than n=300 vectors 
(only 2.6% of the total vectors set), the system reaches classification of the signal with an error rate at the 
order of 0.001%. 

 

Figure 4. Error rate (i.e. the number of vectors given a mistaken recognition over the total number of tested 
vectors) for classification of the two patterns as a function of number of training vectors n in each class. 
Testing is performed on the entire vector set (11750 vectors). a, linear scale. b, logarithmic scale. 

The present classification task is a toy problem and any quantitative discussion on the error rate is pointless. 
The important aspect here is to show that the system after learning can classify in real time input signals 
since the only operation to be realized out of the OECT array is current weighting, summation and 
thresholding (excluding the learning stage which require a significant initial computing power and time). Note 
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that we used the average value of current that can be easily implemented in hardware with a simple 
integration circuitry. 

These results are based on two important aspects. (i) The number of OECTs used for pattern classification 
that we have associated to the number of features collected from the reservoir. (ii) The variability from device 
to device that affects how much each feature is different from the other. For instance, two identical OECTs 
will provide the same feature while very different OECTs will provide very different features (i.e. different 
transient time between two devices will provide different memory window and consequently, different type 
of features). To demonstrate that RC takes directly advantage of both number of features and variability in 
the OECT array, we realize the same classification task with only “partial” arrays of m OECTs, with 1 ≤ m ≤ 12. 

4.2.3.  Influence of the number of OECT in the reservoir 
Performance of classification should be directly linked to the number of features (associated to each OECT) 
used to classify the patterns. To test this hypothesis, we evaluate the performances of the reservoir, 
degrading it on-purpose by removing sequentially OECTs one by one. Figures 5a-b present the error rate as 
a function of the number of training vectors n when one OECT is removed from one batch to the other. 

 

Figure 5. Error rate of the classification task when the OECTs’ array is progressively degraded by removing 
sequentially OECTs one-by-one. 

A minimum of three OECTs is required to classify patterns. When more than 300 training vectors are used, a 
clear relationship between number of OECTs and performances is extracted with the later improving 
exponentially with the number of OECT used to classify the pattern. Performances of classification are 
directly linked to the number of OECT used to compute the pattern out of the reservoir, or equivalently, to 
the number of features used to describe the patterns. Referring to the general idea of RC, increasing the 
number of OECT in the network corresponds to increasing the dimensionality of the space used to project 
the input signal. The expected effect is consequently to ease the readout layer (i.e. the perceptron) to classify 
the patterns. In this sense, more OECTs are better for classifying time-dependent signals. Classification of 
more complex patterns (i.e. patterns with higher level of similarity, for example) should require more OECTs 
in the array. We notice that small arrays (m<6) require less training vectors to reach error rate of about 10%. 
In agreement with theoretical prediction from ref. [26], this effect implies that for a relatively small number 
of training vectors, it exists an optimal number of features to reach the best accuracy. In other words, it 
shows that the training shall be adapted to the size of the OECT array, which should be adapted to the task 
complexity. 

4.2.4.  Influence of the variability in the reservoir 
Another important issue is to know what type of features could lead to better performances. Figure 6a shows 
the error rate for the particular case of 6 OECTs out of 12 when all combinations (i.e. 924) are tested. Figure 
6a clearly shows that some set of OECTs perform better than other, but it was not possible to extract a 
possible empirical rule correlating the error rate to the level of variability in transient dynamics and/or mean 
current level (see Supplementary Figure S4 for details). Nevertheless, important insights are obtained by 
considering the average performances of the array as a function of number, m, of OECTs. Figures 6b-c show 
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the error rate for different sizes of array (m) obtained with n=3 (small training set) and n=300 (large training 
set) training vectors. Each value is obtained by extracting the mean error rate from 10 randomly chosen sets 
of OECTs (the same sets for both n=3 and 300). Figure 6b confirms theoretical prediction[26] that there exists 
an optimal error rate performance for a finite number of training vectors n. This effect attenuates when the 
number of training vectors increase and disappears for n>6 (Figure 6c) where performance improves 
monotonically with the number of features when n=300 (Supplementary Figure S3). We can speculate at this 
stage that: (i) the propose concept requires variability. One or two OECTs are not enough to perform 
classification at a better level than chance. Since the output of each OECT is weighted by the perceptron (i.e. 
corresponding to synaptic weighting, signal summation and activation function), 12 OECTs without variability 
and providing the same response would be strictly equivalent to a perceptron with a single weight . This 
system, equivalent to a Boolean logic gate, cannot be used for classification task. (ii) The reservoir concept is 
rather resilient to the nature of variability presents in each individual OECT since absolute performance as a 
function of m is larger than mean deviation for each m values (see error bars in Figure 6b). In other words, 
the number of OECTs seems to play a more critical role on performances than the possible effect of a 
particular set of OECT (i.e. a particular set of features). The consequence of this point is to consider that 
increasing the number of OECTs allows coping with uncontrolled variability. More insights about the nature 
of variability should require higher OECTs’ array with more complex input patterns in order to extract 
relevant trends between variability and performances. 

 

Figure 6. a, Error rate of the classification task obtained for all combination possible out of the 12 OECTs of 
the array as a function of number of training vectors. Performances for different array size m with b n=3 (b) 
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and n=300 (c) training vectors. Average performances as a function of m is obtained by calculating the mean 
value and deviation on 10 randomly chosen set of vectors for each m value (vector set displayed in 
Supplementary Table S1). 

4.3.  CONCLUSION 
We demonstrated in this study that despite the high level of inherent variability in our bottom-up ion-sensing 
devices, we successfully discriminated dynamic patterns out of our OECT network by using a well-established 
neuromorphic learning algorithm. We showed that the RC approach can efficiently cope with many-fold 
variabilities in both transistor characteristic time constants and non-linear current levels to recognize 
frequency-modulated pulsed signal. Although it was not possible to correlate the dispersion of each device 
properties with the recognition performance of the OECT array, this work shows that neuromorphic sensing 
takes advantage of these variabilities, considered as drawbacks for standard sensing. While today’s transistor 
technologies are based on high reproducibility and fast response, we point out the potential to rethink the 
excellence criteria for sensing in a neuromorphic data analysis context, and open up possible directions for 
future sensing technologies based on variability-rich materials, grown by bottom up approaches. 
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5. CHAPTER 5 

An iono-electronic neuromorphic interface for 

communication with living systems 
 

 

5.1.  INTRODUCTION 
 Our understanding of the computing principles originating our capacity to realize complex tasks, learn and 

adapt to our environment has done tremendous progresses in the last few decades. Boosted by technological 

breakthrough such as advanced imaging techniques with unprecedented resolution (i.e. two-photons 

imaging1, for example) and computer performances for modeling large populations of cells2, new 

perspectives to understand this complex machinery are foreseen. Sustained by large-scale projects such as 

the BRAIN initiative in US, HBP flagship in EU, the MIND project in Japan and more recently the China Brain 

Initiative, more is expected in the coming decades3. From the applicative side, this revolution brings lots of 

hope with the development of complex neuroprosthesis for arms and legs replacement4 toward full 

exoskeleton, artificial sensors for vision5 and audition6 and brain disease treatment via deep brain 

stimulation7 or basic brain degeneracy understanding.  

Nevertheless, this appealing trend should be balance by fundamental limitations that are already appearing 

and that we need to address to sustain this evolution: if our understanding of the brain has made huge 

progresses, we are still inefficient in interfacing biological systems with electronics, both in terms of energy 

and integration potential. Pushed by the need to use conventional computers for building complex systems 

dedicated to brain interface applications, we have mostly capitalized on technologies and architectures 

inherits from microelectronic that are intrinsically not adapted to interface living systems. Standard 

electronics relies on fast charges (i.e. electrons) confined in (semi)conductors while biological neural 

networks capitalize extensively on distributed ions with slow dynamics to reach ultra-low power 

consumption and tolerance to noise and variations. I propose to explore a new field of research by 

developing innovative materials and devices that would bridge ideally these two world. In addition to 

rethinking the electronic used to interface the brain circuitry a real breakthrough would be to change our 

conception of data processing and signal representation. While conventional electronics separate physically 

sensing and computing, with the inherent fundamental bottleneck effect for data exchange, brain computing 

merges completely signal transmission and computing in its highly parallel organization of neural cells. 
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https://biblio.ugent.be/publication/416607
http://ieeexplore.ieee.org/document/1054102/
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Reproducing bio-inspired concepts directly at the interface and designing devices and circuit matching this 

computing paradigm could profoundly improve our ability to interact with the brain.   

I propose in the IONOS project to shift the brain interface paradigm by developing new technologies 

designed to interact intimately with biological cells and to bridge ideally the biological and the artificial 

world (figure 1). I will exploit an optimal computing paradigm, the bio-inspired computing (or 

neuromorphic computing) to implement an innovative interface to the living system. I will capitalize on 

iono-electronic materials that offer an optimal transduction from ionic signal to electronic one (and 

reciprocally) thanks to their mix ionic-electronic charges transport properties. Designing devices based on 

these materials and using ions dynamics for implementing innovative computing functions will offer the 

possibility to replicate key biological computing features at work in biological neural networks. My approach 

clearly proposed to merge sensing and computing at the interface in order to optimize communication 

between the biological medium and an artificial system. I propose to demonstrate efficient communication 

between an artificial system and a living system by integrating these technologies in a neuromorphic 

interface that will be connected to in-vitro cells’ culture. 

 

 

 

Figure 1: Communication consists in sending an analog input signal (a sensory stimulus, for example) to the neural cells and to 

record/compute the evoked activity in order to extract some meaningful output (an action, for example). (a) Conventional 

communication architecture used to interface biological neural networks. Electrical stimulation and sensing are performed with 

discrete electrodes (green). (b) The proposed concept of neuromorphic interface merging sensing and computing based on iono-

electronic devices. Stimulation is realized via neurotransmitters (NT) release with (I) ionic pump (red triangle). Spatio-temporal 

integration and recording of the cells’ activity is realized by (II) dendritic-like OECTs that extend into the neural cells assembly. The 

amplified signal by OECT is transmitted directly to the memory device implementing the (III) artificial synaptic array 
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5.2. OBJECTIVES: BRINGING NEUROMORPHIC ENGINEERING AT THE INTERFACE 

WITH BIOLOGY 
While conventional approaches to brain interfaces consider separately the sensing and computing level, 

these two concepts are ubiquitous in biological networks. Computing features are embedded in the way 

information is exchanged between cells. When a spike is generated at the soma and propagates along the 

axono-dendritic tree to finally release neurotransmitters and stimulate the next cells, lots of elementary 

processes are contributing to the overall spike processing. When organized into large network, these 

elementary processes give rise to collective effects and to complex computing functions.  

Neuromorphic engineering8, which aims at developing material implementations of these bio-inspired 

computing features, is considered as a promising way for interfacing living systems since it capitalizes on the 

same computing paradigm and offers advance energy consumption performances for high-end computing 

tasks. Nevertheless, it has only been considered separately from the biological world and rely on standard 

interface technologies for connecting it. Extending the neuromorphic concepts at the interface where the 

hardware interact with the biological world is my objective and represents the clear novelty of the IONOS 

project. In addition, mainstream researches in sensing technologies rely on smart sensors with a rich set of 

conventional features (amplification, ADC, multiplexing).9 I propose here a new strategy of sensing based 

on bio-inspired features. This approach will unlock the fundamental bottleneck for exchanging information 

between two systems, the biological and the artificial one.   

5.2.1. Objective 1: in-situ synaptic learning on biological signals with resistive 

memory devices 
It is now well recognized that biological networks acquired their functionality through synaptic plasticity. 

Spiking activity in the network modify the synaptic weight between two neurons, thus strengthening 

meaningful information paths and weakening non-useful one. I will capitalize on the ability of resistive 

memory devices, or memristive devices, to mimic synapses to realize this function directly at the interface 

with living cells (figure 2). The basic idea consists in taking advantage of tunable analog resistive memory to 

implement in a dense and energy efficient array the synaptic weight10. Several works have successfully 

implemented variations around synaptic learning with resistive memory devices reproducing the Long Term 

Plasticity (LTP) observed in biological synapses during learning11-15. Going into the detail of the physics of 

resistive switching, direct analogies between ions dynamics in the memory cell and synaptic processes 

observed in biology have been established. Short Term Plasticity (STP), corresponding to a volatile memory 

effects, was implemented with organic transistors16. Capitalizing on the mix drift-diffusion of ions in resistive 

memory, STP to LTP transition, reminiscent of memory consolidation in biology, was successfully 

demonstrated17-19. More recently, a direct analogy between Ca2+ delivery during spiking and ions dynamics 

in Electro Chemical Metallization (ECM) cells was proposed.20  

Nevertheless, these interesting features are today only considered as a solution for computing in artificial 

systems. I propose to demonstrate that this ability of memory devices to mimic biology can be used to 

interact directly with living cells and to realize the fundamental synaptic learning directly on biological 

signals. The major limitation of this approach is the gap in switching voltage and current of memory elements 

and the effective voltage produced by a cell on a passive electrode (<1mV). The challenge is then to develop 

further memory technologies with ultra-low switching current and voltages in order to reduce this gap. 

Some of our preliminary work18,21 and other from literature22 have shown that ECM cells were promising 

solutions to reach this goal (V < 100 mV and I < 1μA). Other technologies based on 2D materials such as 

MoOx/MoS2 will be also considered thanks to their promising performances demonstrated recently23,24. Since 

V < 1mV is unlikely to switch any memory device, we will capitalize on local amplification realized by Organic 

Electro Chemical Transistors (OECT) that demonstrated record transconductance25 well adapted to drive a 

memory array and which are ideal sensors.  
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Figure 2 : (top) the OECT perform recording and integartion of the biological signal while memory device adapt and learn on the 

signal. (bottom) Example of learning on a biological signal with an artificial feedback. The memory potentiates (depresses) when V 

is above (below) the threshold 

5.2.2. Objective 2: Spatio temporal integration of the signal with dendritic sensors 

and synaptic actuators.  
Computation in biological networks is largely realized by successive integrations of the transmitted signal. 

Spatial extension of the axono-dendritic tree is very efficient for spatially integrating the neighboring cells’ 

activity. Ion dynamics across the membrane and NT release at the synaptic terminal reproduce also a rich set 

of temporal integration processes. We propose to engineer on-purpose iono-electronic devices that will 

provide spatio-temporal integration in addition to optimal sensing and actuation. Realizing both computing 

and sensing based on ionic processes represents a challenge that we propose to address in this project.  

Iono-electronic devices with mix ionic-electronic transport properties represent a shift in the basic working’s 

principle of sensing/actuating since ions-electrons interaction is not based anymore on capacitive coupling 

across an interface (surface effect) but results from manipulation of ions penetrating the material (bulk 

effect) and interacting with electronic charges. At the sensing side, Organic Electro-Chemical Transistors25 

(OECT) where ionic signal is transduced into an electronic one via organic material (de)doping, offer local 

amplification (with high transconductance thanks to their bulk transport properties) and have demonstrated 

record performances for electrical activity recording in living systems26. At the stimulating side, since 

transistors are not adapted to electrical stimulation, the same basic iono-electronic materials have been used 

to implement Ionic Pump (IP)27. In this technology, the electronic signal is converted into a flux of ions. In 

particular, IP have demonstrated the ability to deliver neurotransmitters (NT) such as Acetylcholine to in-

vitro living cells stimulation28.  
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Figure 3 : (top) concept of metaplasticity implemented with multi-layer stacking with different permeability to ions. (bottom) 

concept of dendritic computing. Output current is a combination of spatial and temporal integration showing preferential direction 

I propose to capitalize on these technologies and on the dynamics of ions exchange in these solid-state 

devices to reproduce spatio-temporal integration features observed in biology for sensing and stimulating 

(figure 3). Ions exchange across the PEDOT/liquid medium interface is likely to reproduce temporal 

integration observed in biological networks. Using ions dynamics, STP effects have been reported in OECT29. 

I will push further this idea by engineering the permeability of PEDOT to ions in order to tune the effective 

capacitance of the organic materials and consequently adapting the temporal response of the sensor. This 

strategy project to implement the metaplasticty concept proposed in computational neurosciences30 as an 

optimal memorization mechanism in biological networks. Spatial integration will be realized by engineering 

long OECT that will interact with multiple cells. Recent works have shown that localization of stimulation on 

OECT can induce spatial signal integration31. This effect will be used for implementing dendritic computing 

functions32. At the stimulation side, IP will be further developed to reproduce the dynamics of NT release at 

the synaptic connection such as synaptic facilitation and synaptic depression.  

5.2.3. Objective 3: demonstration of efficient communication on a classification task.  
 In order to demonstrate the capability of my interface, I target to demonstrate a bio-inspired function: 

pattern classification. Efficient communication between a biological system and an artificial one will be 

demonstrated on a neuromorphic platform that will integrate the different technologies developed 

previously. Proof of concept will be realized on in-vitro neural cells’ network coupled to the neuromorphic 

interface (figure 4).  
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Figure 4 (a) physical implementation. IP stimulates cells with NT release. OECT sense the cell activity and amplify current for the 

memory array. (b) example of two analog signal to be classified and converted in spike. (c) Schematic of RC. Output neurons activates 

in response to signal 1 or 2 after proper learning. 

By communication, I mean a global system that can send, receive and process information for some 

meaningful task. I will demonstrate that a biological network associated to the neuromorphic interface can 

realize the basic function of classification. I will implement a computing task inspired by the recent work 

around the concept of reservoir computing (RC)33. RC has been simultaneously developed for machine 

learning (echo state network33) and computational neurosciences (Liquid state machine34) and will provide a 

well-adapted formalism to understand and explore the overall computing system capability.  

RC is based on the idea of projecting an input signal on a large and random recurrent neural network of high 

dimension. The projected signal is sampled with a limited read-out circuitry (a basic single layer perceptron) 

that performs classification through learning (adaptation of the weights of the read-out layer). RC capitalizes 

on both the reservoir non-linearity and on learning for realizing complex tasks. In terms of structure, RC 

topology is directly transposable to our concept: the input will be realized by the ionic pump stimulation, the 

reservoir will be associated to the biological cells network and the read-out circuitry will be implemented by 

the dendritic OECT and adaptive synaptic array.  

An example of the classification task is presented in figure 4. Conventional supervised learning and bio-

inspired learning of the read-out synaptic array with STDP or other learning/adaptation mechanisms 

developed during the project will be implemented on the platform. This proof of concept will clearly 

demonstrate our ability to communicate with biological network and will open new avenues for brain 

computing deciphering and for brain machine interactions.  

5.3. BREAKTHROUGH, IMPACT AND COMPLEMENTARITY WITH OTHER 

APPROACHES 
The breakthrough of this project is to propose a new interface concept between artificial systems and living 

cells. This approach is possible by adopting an innovative strategy at the material and device engineering 

level. I will develop a new class of electronic that will extensively capitalize on ionic dynamics for 

implementing features closer to biological world such as synaptic learning and spatio-temporal integration. 

This idea open new directions for device engineering, with new functions and concepts extracted from 
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computational neurosciences and biology. Iono-electronic materials are only in their infancy. Our project will 

challenge these materials with new engineering objectives and practical implementations.  

Bringing new materials and devices in the neuromorphic computing field will increase the perspectives for 

neuromorphic engineers. Developing practical solutions for dendritic computing and advanced synaptic 

plasticity (i.e. metaplasticity) represent a new direction for neuromorphic engineering. Furthermore, 

capitalizing on fully analog and time dependent signal through spatio-temporal integration represents a real 

shift in the way we conceive signal representation and processing in brain machine interfaces.  

My approach also proposes a shift in the sensing paradigm. I propose to develop neuromorphic concepts at 

the interface and consequently to merge sensing and computing at this level. This approach is reminiscent 

of the recent field of “compressed sensing”. Reproducing the intrinsic communication principles observed in 

biological networks directly at the interface offers a direct solution to the bottleneck effect between sensing 

and computing. 

This project targets a very strategic position since the interface is a natural bridge between different 

scientific communities. The neuromorphic interface will stimulate new interactions between biology and 

computer science. My approach will also directly benefit from/to recent research efforts at the computing 

level such as the ERCs NeuroAgents or NanoInfer, the EU RAMP or Brainbow project (i.e. brain-inspired 

computing). Development in neuroengineering with the Connexio ERC project developing in-vitro cell’s 

cultures and in biology in general with organ-on-chip and 3D cell’s culture will also strongly benefit to our 

long-term perspectives of interfacing more complex biological systems. I have already developed strong 

relationship with various leaders in these neighboring fields to ensure strong scientific exchanges and 

research stimulation. 
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EDUCATION 

 

2004-2008                                         PhD THESIS                                    UPJV Amiens-

(FRANCE) 

Laboratoire de Physique des Couches Minces (LPMC), M. BENLAHSEN 
Realization and characterization of Amorphous Carbon Thin Films (optoelectronics and microstructural 

properties). 

Realization and development of carbon-based electronic devices (OLED and Organic FET). 

   

CURRENT POSITION 

 

2020 to present               PERMANENT RESEARCHER                         IEMN-CNRS 

(FRANCE) 

Permanent researcher at IEMN-CNRS. Université de Lille.  
Development of memristive circuits and devices for neuromorphic computing. Front-end and Back-end 

interfaces for electrophysiology.  
 

PREVIOUS POSITIONS 

 

2017 - 2020                 PERMANENT RESEARCHER                                    LN2-

3IT/CNRS (Sherbrooke - CANADA) 

Associated to the LN2-3IT laboratory, University of Sherbrooke, as part of international 

exchange between CNRS and UdeS.  
Development of memristive circuits and devices for neuromorphic computing. Development of BEOL 

integration of memristive devices. Exploration of new integration strategies for 3D memory devices 

architectures. 
 

2012 to 2017                             PERMANENT RESEARCHER                IEMN-CNRS 

(FRANCE) 

Rank 1st among 120+ candidates for the tenure position. PI of the neuromorphic devices 

team - Nanostructure, Components and Molecules group (NCM) 
Development of memristive circuits and devices for neuromorphic computing. Fabrication and integration 

of oxide-based memory (TiO2 and HfO2), electrochemical metallization memory (Ag/Ag2S) and organic-

based memory. Opto-electronic interfaces to in-vitro cells’ culture. 
 

 

2010 to 2012                                      POST-DOC                  Univ. California Santa 

Barbara (USA) 

Novel Electronic Devices and Computing System Group, D. B. STRUKOV 
Starting the experimental activity of the group by developing the processes (cleanroom facility) and 

characterization setup (electrical measurement) of the memristive devices. 
Development of analog memory devices, circuits and neuromorphic applications 

 

2008-2010                                          POST-DOC                                      IEMN-CNRS 

(FRANCE) 

Nanostructure, Components and Molecules group (NCM), D. VUILLAUME 
Associated to the European Project NABAB (ICT-FP7) - C. GAMRAT 

Realization and characterization of neuro-inspired synaptic devices (NPs/OTFT technology) 

Implementation of neuro-inspired functions. 
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SUPERVISION OF GRADUATE STUDENTS AND POSTDOCTORAL FELLOWS 

 

 

Supervision of students (% of supervision / subject / source of funding): 

- Dr. Gina Adams (2010-2012), PhD candidate at UCSB. Now assistant 

professor at University of Washington 

(20%, fabrication and electrical characterization of memristor) 

- Dr. Selina La Barbera (2013-2016), PhD candidate at IEMN. Now associate 

editor at Nature Communications. 

(80%, engineering of synaptic plasticity with ECM devices) 

- Marie Minvielle (2013-2017), PhD candidate at Institut of Nanotechnology of 

Lyon, France. Now lecturer at Université de Poitiers. 

(33%, engineering of TiO2 thin films through MBE for memristor 

engineering) 

- Pierrick Charlier, PhD student, sept. 2017 to sept 2018. Quitted. Move to 

engineer position 

(33%, fabrication of memristor and co-integration on CMOS for machine 

learning accelerators, HIDATA/NSERC) 

- Abdelouadoud El Messoudy, PhD student, 2018-2022, Universite de 

Sherbrooke.   

(25%, development of BEOL compatible fabrication process for TiO2 

memristors heterogeneous integration. HIDATA/NSERC) 

- Raphael Dawant, PhD student, sept. 2019, Universite de Sherbrooke 

(20%, fabrication of 3D crossbar arrays for ultra high density memristor 

integration, HIDATA/NSERC) 

- Waqas Bashir, PhD student, sept. 2019, Universite de Sherbrooke. Quite in 

september 2020 

(33%, fabrication of memristor and co-integration on CMOS for machine 

learning accelerators, HIDATA/NSERC) 

- Mahdi Ghazal, PhD student, sept. 2019, IEMN 

(33%, development of PEDOT:PSS sensors for electrophysiology, 

IONOS/ERC) 

- Kamila Janzakova, PhD student, sept. 2019, IEMN 

(33%, neuromorphic dendritic devices based on electropolymerization of 

PEDOT materials, IONOS/ERC) 

- Ismael Balafrej, PhD student, Jan. 2020, Université de Sherbrooke 

(50%, spiking neural network design and integration of hardware constraints 

into SNN models, UNICO/ChistEra)  

- Corentin Scholaert, PhD student, oct. 2021, université de Lille 

(33%, dendritic materials and devices for neuromorphic sensing, 

IONOS/ERC and regionHdF) 

- Nikhil Garg, PhD student, oct. 2021, cotutelle Univ. Lille / Univ. Sherbrooke 

(33%, CMOS/memristor hardware for neuromorphic computing, 

IONOS/ERC) 

- Alexis Melot, PhD student, sept. 2021, univ. Sherbrooke 

(50%, sparse SNN design for bio-signals encoding and processing, Chaire 

Neuromorphic UdeS) 

- Davide Florini, PhD student, jan. 2022, Univ. Sherbrooke 



2 
 
 

 

(25%, integration of memristors with CMOS for SNN with on-chip learning, 

UNICO/ChistEra) 

- Benoit Manchon,, PhD student, oct. 2021, cotutelle UdeS / Univ. Lyon 

(20%, fabrication and characterzation of HZO ferroelectric memristors, 

bourse IRL-LN2/ univ. Lyon) 

- Joao Quintino Palhares, PhD student, oct 2021, cotutelle UdeS / 

STMicroelectronics / UGA 

(20%, exploration of non-volatile memory technologies for SNNs 

implementation on 28 nm CMOS, CIFRE/STMicroelectronics) 

 

 

Supervision of postdocs: 

- Dr. Gilbert Sassine (2013-2016), postdoc at IEMN. Now associate researcher 

at CEA, France 

- Dr. Nabil Najjari (2013-2016), posdoc at IEMN. Now IT engineer 

- Dr. Anna Susloparova (2016 to 2020), postdoc at IEMN / JPArc. Interface 

nanotechnology / biology 

- Dr. Sebastien Pecqueur (2018-2019), postdoc IEMN, now permanent 

researcher CNRS 

- Dr. Ankush Kumar, (2019 to 2022), postdoc IEMN 

 

 

 

 
GRANTS (with major implication) 
 

2012-2015 DINAMO           (PI)             ANR – Retour postdoc 

Development and integration of memory devices for 

neuromorphic computing (480k€) 

 

    

   

2015-2016 M2NP                   (PI)  PEPS-CNRS 

Development of a multifunctionnal platform for 

interface with living systems  

Coll. IEMN / JPArc / UdeMons (France) (40k€) 

 

     

         

2017-2020 HIDATA             (co-PI)        Strategic-NSERC 

Integration and packaging of passive crossbar 

arrays for machine learning applications 

Coll. UdeS / UdeT  (Canada)  (1M$) 

 

 

2018-2023 IONOS                  (PI)              Discovery-NSERC 

Development of iono-electronic materials for 

neuromorphic computing (110k$) 
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2018-2023 IONOS                    (PI)                                ERC 

A neuromorphic interface with living systems based 

on iono-electronic materials 

@ UdeS, IEMN, JPArc (1,9 M€) 

 
 

2020-2023 UNICO                    (Co-PI)                      Chist-Era 

Developpement of a spiking neural network toolkit 

for Edge Computing applications.  

Coll. UdeS, C2N,UAM, IBM-Zurich, CEZAMAT-

PW (1 M€) 

 

 

 

2022-2027 Chaire neuromorphic   (Co-PI)               MEI/UdS 

Neuromorphic computing and engineering SW/HW 

co-design.  

Research chair with Pr. Sean Wood (1 M$) 

 

 

 

   
   
   
   
   

 
 

ORGANISATION OF SCIENTIFIC MEETINGS 

2014 : Scientific board member, 1st National Workshop of GdR Oxyfun, Autrans, France (70 

participants) 

2015 : Executive/Scientific board member, 1st National Workshop of GdR BioComp, St-Paul-de-

Vence, France (70 participants) 

2016 : Executive/Scientific board member, 2nd National Workshop of GdR BioComp, Lyon, 

France (50 participants) 

2016 : Part of the Technical Program Commitee of NANOARCH 2016, Beijing, China. 

2017 : Scientific board member of Material and Device Integration on Silicon for Advanced 

Applications symposium at EMRS fall meeting 2017, Warsaw, Poland. 

 

 

INSTITUTIONAL RESPONSIBILITIES  

2014 – 2017: co-responsible de l’axe nanoélectronique du laboratoire LN2 – Sherbrooke. 

2014 – present :  Founding member and executive board member of the BioComp GdR / 

French researcher network with interest in implementation of neuromorphic computing (about 

150 participants)/France 

2014 – 2017  : Executive board member of GdR Oxyfun, French researcher network with 

interest in functional oxides (about 200 participants)/France 
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COMMISSIONS OF TRUST 

 

2016 - 2017 : Expert in the Neuromorphic group of the French Observatory of Micro and Nano 

Technologies (OMNT). 

2012-present : Member of the Examining Committee of a PhD defence (UCSB, CNRS-Thales, 

CNRS-IEF, UPJV-LPMC) 

2010-present: reviewer for Nature Communications, Scientific Reports, Sciences Advances, 

ACS Nano, ACS Materials and Interfaces, Advanced Materials, Advanced Functional 

Materials, Advanced Electronics Materials, Applied Physics Letters, IEEE TED, IEEE 

Nanotechnology, IEEE TCAS, Journal of Applied Physics. 

 

SHORT / MID TERM VISIT  

 

March 2018-July 2018: visiting scientist in D. Strukov’s group. UCSB 

 

MAJOR COLLABORATIONS  

 

Damien Querlioz, France. We collaborate on device modeling and high level computing strategies 

exploration. I am currently expert of his ERC NanoInfer for device fabrication. 

Dmitri Strukov: UCSB/ECE department (US). We collaborate on implementations of neuromorphic 

computing based on memristive devices from out two labs. 

Guilhem Larrieu (LAAS), Timothée Levy (IMS): We have launched a collaborative initiative 

gathering neuro-engineering French experts for students exchange and expertise sharing. This 

initiative is sustained by CNRS-INSIS. 

Dominique Drouin : UdeS, Chair at IBM-Bromont, Sherbrooke, Canada : We collaborate on 

integartion and packaging of memory devices. 

Luc Buée : JPArc Laboratory, INSERM. I launched our collaboration with the M2NP PEPS-CNRS 

project in 2015 (role : PI). We develop MEA and microfluidic for in-vitro cells’ recording  

 

SCIENTIFIC PRODUCTION 

Regular papers in peer-review journals 

[48] P-CRITICAL: a reservoir autoregulation plasticity rule for neuromorphic hardware 

I Balafrej, F Alibart, J Rouat 

Neuromorphic Computing and Engineering 2 (2), 024007, 2022 

[47] Theoretical modeling of dendrite growth from conductive wire electro-polymerization 

A Kumar, K Janzakova, Y Coffinier, S Pecqueur, F Alibart 

Scientific reports 12 (1), 1-11, 2022 

[46] Exploiting non-idealities of resistive switching memories for efficient machine learning 

V Yon, A Amirsoleimani, F Alibart, RG Melko, D Drouin, Y Beilliard 

Frontiers in Electronics, 8, 2022 

[45] CODEX: Stochastic Encoding Method to Relax Resistive Crossbar Accelerator Design Requirements 

T Liu, A Amirsoleimani, J Xu, F Alibart, Y Beilliard, S Ecoffey, D Drouin, R Genov 

IEEE Transactions on Circuits and Systems II: Express Briefs, 2022 

[44] Bio‐Inspired Adaptive Sensing through Electropolymerization of Organic Electrochemical Transistors 

M Ghazal, M Daher Mansour, C Scholaert, T Dargent, Y Coffinier, S Pecqueur, F Alibart 

Advanced Electronic Materials 8 (3), 2100891, 2022 

[43] Fully CMOS-compatible passive TiO2-based memristor crossbars for in-memory computing 

A El Mesoudy, G Lamri, R Dawant, J Arias-Zapata, P Gliech, Y Beilliard, S Ecoffey, A Ruediger, F Alibart, D Drouin 
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Microelectronic Engineering, 111706, 2022  

[42] Dendritic organic electrochemical transistors grown by electropolymerization for 3D neuromorphic engineering 

K Janzakova, M Ghazal, A Kumar, Y Coffinier, S Pecqueur, F Alibart 

Advanced Science, 2102973, 2021  

[41] Analog programing of conducting-polymer dendritic interconnections and control of their morphology 

K Janzakova, A Kumar, M Ghazal, A Susloparova, Y Coffinier, F Alibart and S. Pecqueur 

Nature communications 12 (1), 1-11, 2021 

[40] Oxygen vacancy engineering of TaO x-based resistive memories by Zr doping for improved variability and 

synaptic behavior 

JHQ Palhares, Y Beilliard, F Alibart, E Bonturim, DZ de Florio, FC Fonseca, D Drouin and AS Ferlauto 

Nanotechnology 32 (40), 405202, 2021 

[39] Multi-terminal memristive devices enabling tunable synaptic plasticity in neuromorphic hardware: a mini-review 

Y Beilliard, F Alibart 

Frontiers in Nanotechnology, 87, 2021 

[38] Low impedance and highly transparent microelectrode arrays (MEA) for in vitro neuron electrical activity probing 

Auteurs 

Anna Susloparova, Sophie Halliez, Séverine Begard, Morvane Colin, Luc Buée, Sébastien Pecqueur, Fabien Alibart, 

Vincent Thomy, Steve Arscott, Emiliano Pallecchi, Yannick Coffinier 

Sensors and Actuators B: Chemical, 327-128895 (2021) 

[37] In‐Memory Vector‐Matrix Multiplication in Monolithic Complementary Metal–Oxide–Semiconductor‐Memristor 

Integrated Circuits: Design Choices, Challenges, and Perspectives 

Amirali Amirsoleimani, Fabien Alibart, Victor Yon, Jianxiong Xu, M Reza Pazhouhandeh, Serge Ecoffey, Yann 

Beilliard, Roman Genov, Dominique Drouin 

Advanced Intelligent Systems, 2, 11-2000115 (2020) 

[36] AIDX: Adaptive Inference Scheme to Mitigate State-Drift in Memristive VMM Accelerators 

Tony Liu, Amirali Amirsoleimani, Fabien Alibart, Serge Ecoffey, Dominique Drouin, Roman Genov 

IEEE Transactions on Circuits and Systems II: Express Briefs (2020) 

 [35] Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-

compatible Al2O3/TiO2 resistive memories 

Yann Beilliard, François Paquette, Frédéric Brousseau, Serge Ecoffey, Fabien Alibart, Dominique Drouin 

Nanotechnology, 31, 44-445205 (2020) 

[34] Investigation of resistive switching and transport mechanisms of Al2O3/TiO2−x memristors under cryogenic 

conditions (1.5 K) 

Yann Beilliard, François Paquette, Frédéric Brousseau, Serge Ecoffey, Fabien Alibart, Dominique Drouin 

AIP Advances, 10, 2-025305 (2020) 

[33] Physical mechanisms involved in the formation and operation of memory devices based on a monolayer of gold 

nanoparticles-polythiophene hybrid materials 

T Zhang, D Guérin, F Alibart, D Troadec, D Hourlier, G Patriarche, ... 

Nanoscale Advances (2019) 

[32] A Compact Device Model for Nanoparticle-organic Memory Transistor’s Characterization 

H Van Mai, O Bichler, C Gamrat, Y Viero, F Alibart, D Vuillaume 

Communications in Physics 28 (3), 191, (2018) 
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