
HAL Id: tel-04526188
https://hal.science/tel-04526188

Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolutions of the Software Flow for Automated Testing
Michele Portolan

To cite this version:
Michele Portolan. Evolutions of the Software Flow for Automated Testing. Automatic. Université
Grenoble Alpes, 2024. �tel-04526188�

https://hal.science/tel-04526188
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir l’Habilitation à Diriger des Recherches (HDR) de

L’UNIVERSITÉ GRENOBLE ALPES
École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du
Signal (EEATS)
Spécialité : Nano électronique et Nano technologies
Unité de recherche : Laboratoire TIMA (Techniques de l'Informatique et de la
Microélectronique pour l'Architecture des systèmes intégrés)

Évolutions du flux logiciel pour les tests automatisés
Evolutions of the Software Flow for Automated Testing
Présentée par :

Michele PORTOLAN
Thèse soutenue publiquement le 19/03/2024, devant le jury composé de :

Alberto BOSIO
Professeur, Ecole Centrale de Lyon, INL (France) Président du jury

Olivier SENTIEYS
Professeur, Université de Rennes (France) Rapporteur

Henri-Pierre CHARLES
Directeur de Recherches, CEA LIST Grenoble (France) Rapporteur

Arnaud VIRAZEL
Professeur, LIRMM Montpellier (France) Rapporteur

Matteo SONZA REORDA
Professeur, Politecnico di Torino (Italie) Examinateur

Régis LEVEUGLE
Professeur, Laboratoire TIMA Grenoble (France) Examinateur

Jeff REARICK
Senior Fellow, AMD (USA) Invité

Acknowledgments

First of all, I would like to thank the Reviewers and all the members of this HdR jury for their

participation.

Thanks to Régis, Suresh and Brad: without your help, guidance and tutoring, I would never have

become the professional I am now.

To my wife Nadia, thank you from the bottom of my heart for all your love and support and for

helping me being myself.

A special thanks to my sons, Clovis and Cléante, for always keeping me on my toes with their

questions and for showing me the world with new, enthusiastic eyes.

“The Road goes ever on and on,

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say"

Bilbo Baggins, The Lord of the Rings

iv

Table of Contents

Introduction.. 1

1 Curriculum Vitae ... 3

1.1 Curriculum Vitae ... 3

1.2 Teaching Activities .. 6

1.3 Career Synthesis .. 9

1.3.1 Project Participation: ... 9

1.3.2 Supervisions and Management ... 10

1.3.2.1 PhD : .. 10

1.3.2.2 Erasmus + : .. 10

1.3.2.3 Master Thesis .. 10

1.3.2.4 Short Term Contracts .. 10

1.3.2.5 PhD Jurys .. 10

1.3.2.6 Recruitment Jurys .. 11
1.4 Scientific Themes ... 12

1.4.1 Software Methods for Next-Generation Test Standards .. 12

1.4.1.1 Kalapana Senthamarai Kannan: “Performance and Safety/Security

Management in automotive and IoT Application” .. 12

1.4.1.2 Jules Quentin KOUAMO: Software Methods and Architectures for the test of

Mixed-Signal SoCs ... 13
1.4.2 Early Reliability and Security Analysis .. 14

1.4.2.1 Kais Chibani “Robustness analysis of Integrated Digital Systems” 15
1.4.3 Design Exploration for Approximate Computing .. 16

1.4.4 Autonomous deployment of Small Cells ... 17

1.5 Publications .. 18

1.6 Patents and Software Filings .. 21

2 Motivations and State of the Art ... 25

2.1 The Automated Test Flow .. 25

2.2 The Role of Standards and Patents .. 27

2.2.1 JTAG ... 30

2.2.1.1 JTAG Internal Architecture ... 31

2.2.1.2 Operations ... 33

2.2.1.3 Boundary Scan Description Language (BSDL) .. 34

2.2.1.4 System-Level Architecture .. 35
2.2.2 Domain Specific Languages... 37

2.2.3 Evolutions, limitations and new usages of JTAG ... 38

2.2.4 Core Testing : 1500 .. 39

2.2.5 IEEE 1687 or IJTAG ... 41

2.2.5.1 ICL : Dynamic Topologies .. 42

2.2.5.2 PDL : Test Intent ... 45
2.2.6 Putting it all together: retargeting ... 48

2.3 Open Standards ... 53

2.4 Security Issues .. 55

2.4.1 Scan Authentication .. 55

v

2.4.2 Scan Encryption .. 58

3 The need for a New Test Flow .. 60

3.1 Limitations of the Legacy Automated Test Flow .. 60

3.1.1 Topology resolution (vertical retargeting) limitations ... 60

3.1.2 Concurrency (horizontal retargeting) limitation ... 62

3.1.3 Interactive behavior .. 63

3.1.4 Interface Domains ... 64

4 A New Automated Test Flow: Specification ... 66

4.1 High Level Requirements ... 66

4.2 Relocatable Test Executable ... 69

4.3 Circuit Model ... 70

4.3.1 Retargeting... 70

4.3.2 Interfaces .. 72

4.3.3 Conclusions ... 75

4.4 Test Manager .. 76

4.4.1 Vertical Retargeting .. 76

4.4.2 Concurrency (Horizontal Retargeting)... 79

4.5 Domain Crossing and RVF propagation .. 81

5 A New Automated Test Flow: Implementation ... 83

5.1 Early Developments : Test Instruction Set Architecture and NSDL: 2007 → 2013 83

5.2 First Abstractions: New System-Level Test (NeSLT : 2013 →2015).................................... 89

5.3 A General Solution: MAnager for Soc Test (MAST: 2015→2017) .. 90

5.4 New Perspectives with MAST: 2018→ Present.. 97

5.4.1 Interface Independence and P1687.1 .. 97

5.4.2 Interactive IJTAG .. 101

5.4.3 Unified Test Middleware: “Test Operating System” .. 103

5.4.4 Security as part of the Test Flow ... 106

5.4.5 Analog Interfaces .. 108

6 Short-to-Mid Term Perspectives ... 110

6.1 Silicon Lifetime Management .. 110

6.2 Security ... 110

6.3 Scaling up : FPGAs .. 111

6.4 Mixed Signal Testing ... 112

7 Conclusions and Long-Term Directions.. 113

8 Bibliographie ... 116

9 Glossary .. 122

vi

Figure Index

Figure 1: The Ecosystem of Automated Testing .. 25

Figure 2 Example of Scan Insertion .. 26

Figure 3 Cross-cut section of BGA mounted circuit (from Wikipedia) ... 30

Figure 4 A boundary-scannable board design", from [1149].. 31

Figure 5 JTAG standard architecture (source JTAG Technologies) ... 31

Figure 6 An example of boundary-scan register cell, from [1149] ... 32

Figure 7 The JTAG Finite State Machine, from [1149.1] ... 32

Figure 8 JTAG Usage Setup ... 33

Figure 9 Example of a BSR description from [1149] .. 34

Figure 10 Example of TAP Instruction Mapping in BSDL, from [1149] .. 35

Figure 11 Daisy-Chain JTAG Topology, from [1149] .. 35

Figure 12 JTAG Star topology, from [1149].. 36

Figure 13 JTAG Retargeting .. 36

Figure 14 STIL Usage model, from [1450] .. 37

Figure 15 Example of an SVF program from [SVF99] ... 38

Figure 16 Standard IEEE 1500 Wrapper components, from [1500] ... 40

Figure 17 IEEE 1687 (IJTAG) Use Model .. 41

Figure 18 Example of an IJTAG Reconfigurable Scan Network, from [1687] ... 42

Figure 19 Example of a SIB, from [1687] .. 43

Figure 20 Example of a SIB-enabled hierarchy [DWO13]... 43

Figure 21 Example of a 1500 Wrapper from section E.20 of [1687] .. 44

Figure 22 ICL Description of Figure 21, from [1687] ... 44

Figure 23 Internal Setup of the 1687 Tool of Figure 17 ... 45

Figure 24 Sequence of Operations during an iApply , from [1687] ... 46

Figure 25 Example generic Instrument from Annex E.2 of [1687] ... 49

Figure 26 Raw Instrument connected to a Scan Register .. 50

Figure 27 Partitioned Retargeting [J.4] ... 51

Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4] ... 52

Figure 29 Vertical Retargeting of a SIB, from [J.4] ... 52

Figure 30 Hypothetical P1687.1 Retargeting Flow, from [J.4] .. 53

Figure 31 Envisioned EDA ecosystem to support structured analog DFT and testing, from [SAR17] 54

Figure 32 Locking SIB and Secure SIB Implementations .. 55

Figure 33: FGA Challenge response protocol, from [7] .. 56

Figure 34 SSAK's procedural key generation and distribution, from [7] .. 57

Figure 35: SSAK Authentication architecture, from [7] .. 57

Figure 36 Principles of Scan Encryption .. 58

Figure 37 Example of a deeply hierarchical system .. 61

Figure 38 IJTAG Legacy Top-Down Retargeting Backend for PDL-0, from [J.4] ... 62

Figure 39 Interactive IEEE 1687 Tool Setup ... 63

Figure 40 IJTAG Legacy Retargeting Backend for PDL-0, from [J.4] ... 63

Figure 41 Domain Translation between Scan and JTAG .. 64

Figure 42 Domain Translation between multiple interfaces .. 64

Figure 43 Software Compilation with Static Memory Mapping .. 66

Figure 44 Principles of the Software Relocation Flow .. 67

Figure 45 Information flow in the Automated Test Flow ... 68

vii

Figure 46 New Automated Test Flow .. 69

Figure 47 Details of the Compilation Step ... 69

Figure 48 Tree Representation of a Scan Chain ... 70

Figure 49 Tree Representation of a ScanMux .. 71

Figure 50 Extraction of Active Scan Path through depth-first tree transversal .. 71

Figure 51 Complete Specification of a Linker Node, from [1] .. 72

Figure 52 Domain Crossing through the Relocatable Vector Format .. 72

Figure 53 RVF Translation for a JTAG - to - I2C Translator ... 74

Figure 54 Complete Specification of the Interface Translator Node .. 74

Figure 55 Specification of the Access Interface Node ... 75

Figure 56 Complete Circuit Model Abstraction ... 75

Figure 57 Complete Setup for Vertical Retargeting .. 76

Figure 58 Circuit Model and CUT status at time 0.. 77

Figure 59 Status mismatch caused by a PDL instruction.. 77

Figure 60 Sequence of n CM state reaching STARGET(CM) from S0(CM) ... 78

Figure 61 Horizontal Retargeting in the new Test Flow ... 80

Figure 62 Circuit Model Abstraction for Horizontal Retargeting .. 80

Figure 63 Circuit Model Abstraction for Horizontal and Vertical Retargeting .. 81

Figure 64 RVF Packet Propagation on the Circuit Model ... 82

Figure 65 P1687 Demonstrator (2007-2008).. 84

Figure 66 TISA Principles .. 85

Figure 67 TISA Single-Algorithm Use Model .. 85

Figure 68 Complete TISA Setup, from [J.5] .. 86

Figure 69 TISA Scheduler protocol, from [J.5] ... 87

Figure 70 TISA Hardware demonstrator on Zynq .. 88

Figure 71 Execution of the TISA Hardware demonstrator, from [J.5] ... 88

Figure 72 TISA Scheduling Performances, from [J.5]... 88

Figure 73 Final MAST Software Architecture.. 92

Figure 74 Doxygen-Generated UML Class Diagram for MAST System Model ... 93

Figure 75 Benchmark Module a), its SIT Description b) and the corresponding abstraction c) 94

Figure 76 "Random" Testbench algorithm ... 94

Figure 77 Details of the MAST Compilation flow for the Testbench... 94

Figure 78 Execution of the Random testbench .. 95

Figure 79 MAST performances for Horizontal Retargeting [J.4] .. 95

Figure 80 MAST performances for Vertical Retargeting [J.4] .. 96

Figure 81 MAST performances for joint Horizontal and Vertical Retargeting [J.4] 96

Figure 82 First Domain Crossing Abstraction ... 97

Figure 83 UML Class Diagram for the SVF Emulation Protocol.. 98

Figure 84 Propagation and synchronization of RVF packets inside MAST .. 98

Figure 85 RVF Packet flow for a T-2-T I2C-to-JTAG Translator .. 99

Figure 86 RVF Packet flow for a Bit-Banging I2C-to-JTAG Translator ... 99

Figure 87 Factory Pattern applied to Translators .. 100

Figure 88 Implicit PDL-1 Execution Model ... 101

Figure 89 Fully Interactive Flow with MAST .. 102

Figure 90 Top-Level Specification of the Interactive Demo ... 102

Figure 91 Experimental setup for the Interactive Demo. .. 103

viii

Figure 92 MAST Portability through the Design Cycle .. 104

Figure 93 Circuit Prototyping and ATE Bring-Up with MAST ... 105

Figure 94 Embedded Test Controller with MAST... 105

Figure 95 SSAK-Secured Scan Chain and its Abstraction .. 106

Figure 96 SIT Description of the SSAK example ... 107

Figure 97 Trivium Stream Cypher and its Abstraction... 107

Figure 98 SIT Description of the Trivium Example .. 107

Figure 99 Experimental Setup for Secure Scan Chain Access .. 108

Figure 100 Example of a P1687.2 system, from [VSTA20] .. 108

Figure 101 PMIC Abstraction and its SIT representation ... 109

Figure 102 Xilinx/AMD 7-Series High-Level architecture a) and Slice details b) .. 111

ix

Table Index

Table 1 First part of PDL Commands list, from [1687] ... 47

Table 2 Second part of PDL Commands list, from [1687] .. 47

Table 3 PDL Level-1 commands, from [1687] ... 48

Table 4 Specification of the Relocatable Vector Format (RVF) ... 73

Table 5 Technology Readiness Level definition, adapted from Wikipedia .. 90

 1

Introduction

During his career, a Researcher naturally follows different directions and topics. There are many

reasons: for personal interests, to exploit collaboration opportunities, to learn new skills, etc..

There is no need, and neither strictly speaking any value, in enforcing coherence between the

different topics as long as it is possible to correctly apply and expand one own’s competences and

be able to contribute to the field. And, why not, taking pleasure in it.

The way a Scientific Theme is addressed is well-known: first, it must be studied to understand its

current State of the Art and, more importantly, its Open Questions and Evolution Potential.

Second, a Theoretical analysis must be applied to find the common elements, the missing ones

and elaborate a strategy to introduce new ideas. Last, the Abstraction must be Implemented to

demonstrate its feasibility and its real contribution. Once some results are reached, the cycle starts

from the beginning: well-known does not mean easy.

In this document, after giving a through description of my career in Chapter 1 “Curriculum

Vitae”, I decided to focus on one of my Research Themes, which I had the opportunity to build

from the ground up over a period of almost 15 years, from my first Role after my PhD to the

current time through different positions and employers : the Evolutions of the Software Flow for

Automated Testing.

As its name states, Chapter 2 gives the “Motivations and State of the Art” of the topic, while

Chapter 3 “The need for a New Test Flow” tackles the issue by providing an in-depth Theoretical

Analysis of the current shortcomings. Chapter 4 “A New Automated Test Flow: Specification”

provides and justifies the final Abstraction to improve the filed. Chapter 5 “A New Automated

Test Flow: Implementation” provides a description of the different iterations done over the years

to refine the Abstraction, Implement it and use to provide innovative solutions. Based on these

results, Chapters 6 provides the “Short-to-Mid Term Perspectives” of these topics. Lastly,

Chapter 7 draws “Conclusions and Long-Term Directions” from a more general point of view.

 3

1 Curriculum Vitae

1.1 Curriculum Vitae

Name: Michele Portolan

Birth Date: 9/7/1979 in Trento (Italy)
Married
Nationality: Italian
Professional Address:
 : TIMA Laboratory
 46 Av. Felix Viallet
 38031 Grenoble
 France
 : 04 76 57 48 55
@ : michele.portolan@grenoble-inp.fr

 Current Position

Senior Associate Professor at Grenoble-INP Phelma, working at TIMA lab

Phelma Co-Head for the Major « Embedded Systems and Connected Objects »

 Professional Experience

Oct 2021-Today Senior Associate Professor at Grenoble-INP Phelma

Sep 2018- Sep 2019 Invited Professor at the Politecnico of Torino, Italy

Sep 2013- Sep 2021 Associate Professor at Grenoble-INP Phelma

2007 -August 2013 Member of Techical Staff at Alcatel-Lucent Bell Labs Ireland and France

2006-2007 Lecturer at Institut National Polytechnique de Grenoble

Academic Experience

2006 PhD in Microelectronics, defended on December 6th 2006

2003 September Italian Master Degree in Electronics Engineering, awarded by the Politecnico di

Torino, grade 110/110 Cum Laude.

Master of Advanced Studies (DEA) in Microelectronics, with honors, delivered by

Université Joseph Fourier, Grenoble

2003 June French Master Degree in Telecommunication Engineering, with honors, delivered

by the Département Télécoms of INPG

Language Skills

Italian Mother Tongue
French Bilingual
English Bilingual
Japanese Lower Intermediate

mailto:michele.portolan@grenoble-inp.fr

4

Competences

Test Standards, Hardware Design Flow, Automated Test Flow, Software Design, C/C++, Operating

Systems, Compilation and Languages, FPGA Prototyping, Embedded Systems, Reliability and

Dependability, Hardware Safety and Security, Hardware/Software mixed systems, Modeling and

Simulation, Fixed Networks and 3G/4G.

Internantional Scientific Experience

• Secretary of the IEEE 1687 Renewal Working Group.

• Signing member of the IEEE 1687-2014 Standard.

• Valorization Liaison for the TIMA Laboratory

• Member of the standardization working groups IEEE P1687.1, IEEE P2654

• 30+ publications at International Conference, 7 Journal Papers

• 17 US and European Patents, 100% grant rate.

• APP (Agence pour la Protection des Programmes) filings for protection of original
software

• Coordinator of several internal projects in Bell Labs.

• « Development of a safe and secure Embedded System», PhD Thesis

Teaching Experience

• Responsible for Industrial Liaisons for the SEOC Major of Phelma

• Supervisor for several Master Degree internship

• Joint Supervisor of two PhDs

• Development of teaching support materials

• Head of the SLE (Embedded Systems and Software) from 2014 to 2017

• Co founder of the SEOC Major in 2017 as the fusion of SLE and ISSC (Signals, Internet,
Services and Connected Systems)

Awards and Promotions

• Promotion to Senior Associate Professor, October 2021. Reserved to the top ~10/20% of
Associate Professors

• Prime d’Encadrement et De Recherche (PEDR) (French Research and Supervision Bonus,
awarded following an evaluation over 5 years of activity, awarded to the top 20%) 2020-
2024

International Experience

• Global Coordinator of TTTC’s « E.J. McCluskey Best Doctoral Thesis Award » 2013 →
present

• Program Chair for the “1st Test Access, Automation and Adoption Workshop”, 2021

• Chair of « 3rdTest Standards Application Workshop (TESTA) », 2018

• Vice General Chair of « 2ndTest Standards Application Workshop (TESTA) », 2017

• Organiser of « 1st International Test Standards Application Workshop (TESTA) », 2016

• Program Committee Member of the Latin-American Test symposium (LATS) since 2016

• « Awards co-Chair » for the « Test Technology Technical Council» (TTTC) since 2012

• « Industrial Liaison co-Chair » for the « 2012 European Testing Symposium » (ETS12),
Annecy, France, Mai 2012

5

• « Peer Reviewer » International Conferences (ITC, ETS, DDECS, etc…) and journals (IEEE
Design and Test, Journal of Electronic Testing : Theory and Applications »)

• « Publication Chair » for the « 12th International On-Line Testing Symposium »
(IOLTS06), Como, Italy, July 2006

• « Audio-visual Chair » for the « 11th International On-Line Testing Symposium »
(IOLTS05), Saint Raphael, France, July 2005

Personal Interest and Hobbies

• Classical, Medieval and Contemporary Literature (English, French and Italian)

• Road Cycling, Mountain Hiking, Golf

• Analog Film Photography

6

1.2 Teaching Activities

Classes taught as PhD candidate and Lecturer (2004 à 2007)

Title University Level Year Hours Type

Computer Architecture Département Télécom BAC+4 2007 13,5h TD

Operating Systems ENSERG BAC+4 2007 32h TD

SoC Project ENSERG BAC+5 2006 24h Project

Computer Architecture Département Télécom BAC+4 2006 10,5h TD

Digital Circuit Design Département Télécom BAC+3 2006 15h TD

VHDL ENSERG BAC+4 2006 21h TD

C Project ENSERG BAC+4
2004 à

2006
116h Project

Computer Architecture Département Télécom BAC+3 2005 18h TP Project

Computer Architecture Département Télécom BAC+3 2006 32h Project

VLSI Design and Test Département Télécom BAC+4 2004 6h TD

Classes taught as Associate Professor

Digital Design University Level Year Hours Type

System Integration Ensimag BAC+4 2013-14-15-16 ~15/an CM

System Integration Ensimag BAC+4 2013 ~18/an TPTD

Design of Integrated Digital Systems Ensimag BAC+4
2017-19-20-21-22-

23
~20/an TPTD

Design of Integrated Digital Systems Ensimag BAC+4
2017-19-20-21-22-

23
~15/an CM

Implementation of a Embedded System Use

Case
Ensimag/Phelma BAC+5

2013-14-15-16- 17-

19-20-21-22-23
~40/an Projet

Design of mixed integrated functions Phelma BAC+4
2014-15-16- 17-19-

20-21-22-23*
~50/an Projet

VLSI - ASIC + FPGA Phelma BAC+4 2014 12 TPTD

Analysis and integration of a complex

integrated system
Phelma BAC+5

2016-17-19-20-21-

22
~30/an Projet

* class scheduled in the second semester

Reliability and Test University Level Year Hours Type

Fault Tolenance Ensimag BAC+5 2013-14-15-16-17 ~27/an CM

7

Test of circuits Phelma BAC+5
2015-16-17-19-20-

21-22-23*
~8/an TPTD

Hardware Reliability and Security Ensimag/Phelma BAC+5 2019-20-21-22-23 ~13/an CM

Hardware Reliability and Security Ensimag/Phelma BAC+5 2019-20-21-22-23 ~16/an TP

* class scheduled in the second semester

Computer Science University Level Year Hours Type

Computers and Microprocessors Phelma BAC+3 2014 16 TD

Computer Science Project in C Phelma BAC+4
2014-15-16-17-19 -

20-21
~20/an TPTD

Computer Science Projet (SEI) Phelma BAC+4 2014 35 TD+TP

Operating Systems and Parallel

Programming
Phelma BAC+4 2022 6 CM

Operating Systems and Parallel

Programming
Phelma BAC+4 2022 22 TD

Operating Systems and Parallel

Programming
Phelma BAC+4 2022 6 TP

Miscellanous University Level Year Hours Type

Préorientation - SEI : Conception analogique

et numérique
Phelma BAC+3 2013 8 TD

Préorientation - SLE : Circuits numériques Phelma BAC+3 2013-14-14 ~20/an TD

Préorientation - SEOC - Systèmes

Embarqués et Obj. Connectés
Phelma BAC+3

2016-17-19-20-21-

22-23*
~9/an CM

Group Projects Phelma BAC+3 2014-15-16 ~16/an Projet

Group Projects Phelma BAC+3 2015 17 Projet

* : heures prévues pour le deuxième semestre

Tutoring and Oral Defenses University Level Year Hours Type

Retour d’Expérience (REX) PHELMA BAC+4 2013 1 TD

2nd Year Internship Tutor Phelma BAC+2 2013-14 6 Tutorat

3rd Year Internship Tutor ENSIMAG BAC+5 2013-2017-19-20-

21-22-23

~6/an PFE

3rd Year Internship Oral Defenses ENSIMAG BAC+5 2014-16-17-19-

2021-22-23

 ~25/an PFE

8

Tutoring for Apprentices PHELMA BAC+3 2013-14-15-16-17-

18-19-20

~10/an Tutorat

Industrial Projects Phelma BAC+4 2016 48 PFE

* : heures prévues pour le deuxième semestre

Pedagogic Responsibilities University Year Hours Type

Responsibility for SLE Major PHELMA 2013-14-15-16-17-19-20 24/an Resp

Responsibility for SEOC Major PHELMA 2021-22-23 ~40/an Resp

External Relationships with the “Grenoble

University Space Center”
PHELMA 2015 12 Resp

Jury Pré sélection AP-CSI PHELMA 2016 3 Jury

Jury Pré sélection AP-CSI PHELMA 2017 6 Jury

Dossiers Admis Sur Titre (AST) PHELMA 2016-17-19 6/an Jury

Doctoral Level Classes

 University Level Year Hours Type

Test and Design for Test for Integrated

Circuits

Ecole doctorale

EEATS
Doctorat 2014,16 6 CM

Advanced Techniques for Digital Testing
Politecnico di

Torino
Doctorat 2020,2021,2022,

2023

~8/an CM

Summary of hours taught per year:

2013-

2014

2014-

2015

2015-

2016

2016-

2017

2017-

2018

2018-

2019

2019-

2020

2020-

2021

2021-

2022

2022-

2023

200 410,75 346,25 373,75 295,75* 192* 355* 344,75 372,75 348,5

*years taking part of a MOISE inter-annual modulation

9

1.3 Career Synthesis

When I arrived at the TIMA laboratory in 2013, my Research group was in a “down” phase:

several big projects were coming to an end, and classic themes were looking for a new ideas and

directions. In this context, I immediately took the 50% supervision of Kais Chibani's thesis, and I

committed myself to both integrate the group’s open themes and develop my own topics. In the

theme of Reliability, we have unsuccessfully submitted several ANR subjects over the years,

regularly reaching Phase 2, which prevented us from launching any PhD theses in this subject.

At the same time, my Test theme was gaining strength and allowed me to obtain my own funding.

Unfortunately, the durations of these Projects were too short to finance PhD, and I had to fall back

on short-term contracts to have the subject mature and develop. Thanks to these results, in 2017

I was able to participate in the European HADES Project, which allowed me to start the 50%

supervision of Kalpana Senthamarai Kannan's thesis. The withdrawal of the German partners

forced a budget reduction, which prevented me from supervising a second Phd student. During

the Project, I also actively participated in the supervision of the second doctoral student in our

group, Vincent Reynaud, even though this was not planned in advance and therefore I was not

officially registered as a supervisor. My participation allowed Vincent to broaden the scope of his

thesis towards my own themes (Standards and EDA for Test), which resulted in several high-end

joint publications. The results of Kalpana Senthamarai Kannan's work allowed us to begin a

collaboration with the DAUIN laboratory at the Politecnico di Torino: in this context we were

able to launch an ERAMUS + exchange to welcome a doctoral student, Sandro Sartoni, which I

supervised during his stay in Grenoble and resulted in a joint publication.

In 2023, I started a new collaboration with Emmanuel Simeu from the “Reliable RF and Mixed-

signal Systems” (RMS) group to explore the synergies between Digital and Mixed Signal testing;

through the PhD Thesis of Jules Quentin Kouamo, started in November through a “Thèse flechée”

of the EEATS Doctoral School.

1.3.1 Project Participation:

- ICT Standardisation Observatory and Support facility in Europe 6th Call (StandICT.eu

2023, part de H2020),“Advance Design-for-Test standards for complex electronics

systems”, Budget ~10k€ over 6 Moth, Project Owner

- Eramus + Project EMNESS (European Master Network On Embedded System Security

394.5 K€) - Work Package Leader et Phelma Referent.

- Europen Project HADES (Hierarchy-Aware and secure embedded test infrastructure for

Dependability and performance Enhancement of integrated Systems 15 M€), 2017-2020,

Task Leader, PhD Co-Supervisor

- Technology Maturation project MAST financed by Linksium, 2015-2016, (138,7 k€) ,

Project Owner, Supervision of two Short-Term Contracts

- Technology Incubation project MAST financed by Linksium, 2017, (57,7 K€), Sceintific

Advisor, Supersion of a Short-Term Contract

10

- IRS Project (Initiatives de Recherche Stratégiques) CADI, « Calcul Approché et Distribué

dans les systèmes Intégrés », 2019, 10% research time, Supervision of two Master Degree

Thesis

- IRS Project (Initiatives de Recherche Stratégiques) AVOCAM, « Analyse de durée de Vie

pour l'Optimisation de Calcul Approché Matériel », 2020/2021, 20% research time,

Supervision of three Master Degree Thesis

- IRT40 Cybersécurité, Development of lab classes dedicated to Hardware Security

UGA/G-INP, années 2020-2021 (21k) 20% research time, Supervision of one Master

Degree Thesis

1.3.2 Supervisions and Management

1.3.2.1 PhD :

1. Jules Quention Kouamo , PhD with the Université de Grenoble, started in November 2023,

50% supervision with Emmanuel Simeu, Professor at UGA

2. Senthamarai Kannan Kalpana, PhD with the Université de Grenoble, Defended on July

2015, 50% supervision with Lorena Anghel, Professor at G-INP → now FPGA Firmware

Engineer at ASML, Netherlands

3. Chibani Kais, PhD with the Université de Grenoble, Defended in 2016, 50% supervision

with Régis Leveugle, Professor at G-INP → now Sr. Digital Verification Engineer at ST

Microelectronics, Grenoble

1.3.2.2 Erasmus + :

Sandro Sartoni, Doctorant au Politecnico di Torino, Italie, April 2022 -July 2022. Subject:

Aging Prediction for a RISC-V processor in FDSOI 28nm

1.3.2.3 Master Thesis

1. Mert Arisoy, Politecnico di Torino, Italy;

2. Pierpaolo Iannicelli, Politecnico di Torino, Italy ;

3. Xavier Gros, Master 2 MISTRE, UGA, Grenoble

4. Atoine Cerf, Master 2 MISTRE, UGA, Grenoble

5. Provent Thomas, M2 - Université Claude Bernard Lyon 1 ;

6. Muller Meireles Assumpçao Joao Pedro, ENSIMAG ;

7. Josef Ahmad, Politecnico di Torino, Italy;

1.3.2.4 Short Term Contracts

1. Coulon Jean-Francois, 15 month over three contracts between 2016 and 2017 ;

2. Niels Grateloup, 3 months in 2016

1.3.2.5 PhD Jurys

I participated to several PhD Jurys, being also a Reviewer in Italy where the rules allowed me to.

I have been proposed to be reviewer for Elshamy, but I had to decline because of my lack of HdR.

11

• 2021 : Jury Member for Mohamed Elshamy, Université de la Sorbonne, Laboratoire

LIP6, France, July 2021

• 2021 : Reviewer for Davide Piumatti, Politecnico di Torino Doctorate School, Italy,

February 2020

• 2020 : Reviewer for Marco Restifo, Politecnico di Torino Doctorate School, Italy,

February 2020

• 2017 : Reviewer for Alejandro Velasco, Politecnico di Torino Doctorate School, Italy,

February 2020

• 2017 : Jury Member for Riccardo Cantoro, Politecnico di Torino Doctorate School, Italy,

February 2020

• 2015 : Jury President for the XXVII cycle of the « Phd in Computer Science and

Information Systems ”of the Politecnico di Torino Doctorate School, Italy

1.3.2.6 Recruitment Jurys

Member of the Recruitment jury for an Associate Professor (Maitre de Conférences Section

63) at the INP Toulouse, May 2019

12

1.4 Scientific Themes

Since my PhD, I worked on several scientific themes, of which I will give a brief summary in this

section. However, in the rest of the document, I decided to develop in details my main Scientific

Theme: Software Methods for Next-Generation Test Standards. It is a line of Research that I have

been developing on my own since my arrival in Bell Labs Ireland in 2007 over a span of more

than 15 years.

1.4.1 Software Methods for Next-Generation Test Standards

The complexity of today’s electronic systems, the production volumes and the quality imposed

by critical applications such as the automobile are putting traditional testing approaches under

great pressure. To overcome this problem, the testing field is going through a period of profound

evolution, dominated by new “Design for Test” techniques that push automation to the very heart

of systems. This field has always been dominated by the simple and extremely effective “Scan

Test” for structural testing, where the integrity of a circuit is checked by seeing it as a network of

nodes. These approaches have difficulty following system scaling because of their combinatorial

complexity. Moreover, they are not at all adapted to new design paradigms such as “IP-based

Design” or to new issues such as security. Often seen by Academics as mere collections of already

existing solutions, Standards are on the contrary very powerful tools for pushing new approaches

towards manufacturers, who see in standardization a guarantee of quality and support. My direct

experience in the development of the P1687 standard between 2007 and 2014 allowed me to

foresee its impact on current practices and development flows. In particular, I identified a series

of criticalities in the associated EDA tools, caused by the axioms and paradigms which are at their

heart, and which cannot be resolved through simple incremental corrections. This research theme

is therefore based on the analysis and theoretical abstraction of current practices to formalize new

needs and develop the corresponding software suites. This line of research generated several

publications, as well a Technology Transfer project, with several APP (Software Protection) filings

and a Patent. It should be noted that this Patent is an integral part of the current proposal to the

IEEE P1687.1 Standard Working Group and it was therefore the subject of a “Letter of Assurance

for Essential Patent Claims” to the IEEE, which guarantees its possible commercial exploitation.

future.

The PhDs of Kalapana Senthamarai Kannan and Jules Quention Kouamo, are part of this line of

research as explorations of long-term impact and applications.

1.4.1.1 Kalapana Senthamarai Kannan: “Performance and Safety/Security

Management in automotive and IoT Application”

Due to technology scaling and transistor size getting smaller and closer to atomic size, the last

generation of CMOS technologies such as FDSOI presents important variability of several

physical parameters. As a consequence, it becomes more and more difficult to guarantee circuit

functionality for all Process, Voltage, Temperature (PVT) corners and in turn, to compensate for

different sources of variability. Moreover, circuit wear-out degradation leads to additional

temporal variations, potentially resulting in timing and functional failures. Under normal

operation conditions, a transistor can be affected by various aging effects such as Hot Carrier

Injection (HCI), Negative/Positive Bias Temperature Instability (NBTI,PBTI), and Time-

13

Dependent Dielectric Breakdown (TDDB). In advanced technologies, such as FDSOI, local and

global variability, NBTI and HCI phenomena are considered as critical reliability issues. Hence,

considering these phenomena as early as possible in the design steps (i.e. during the standard

cells characterization step, or at the circuit and system design) are mandatory, especially for high

reliable application such as automotive applications, or mixed critical applications.

Indeed, the above-mentioned reliability threats can severely degrade performances, and in the

worst case, provoke system failures, affecting safety goals of critical reliable systems. Accurate

simulations with physical degradation models of aging phenomena combined with actual silicon

measures are, de facto, necessary to better understand and assess the reliability impact on

complex digital designs. To handle such problems, one conventional method consists in

providing bigger safety margins (also called guard bands) at design-time. Adding pessimistic

timing margins (or their equivalent voltage margins) to guarantee all Operating Points under

worse case conditions is not possible anymore due to the huge impact on design costs, with an

upward trend as technology moves further. Therefore, the usage of delay violation monitors,

usually placed at the end of potential critical paths, becomes necessary. Placing the monitors in a

given design is a critical task: the designer has to select the endpoints that will age the most, as it

may become a potential point of failure. Monitor warnings signals can trigger adaptive

techniques, such as Adaptive Voltage Scaling (AVS) or Dynamic Voltage Frequency Scaling

(DVFS). They are then used to adapt dynamically the frequency and the voltage according to the

operating conditions and the application needs. In addition to the reduction of design margin,

monitors also help compensate performance and power degradation. Sometimes, the circuit’s

lifetime can be extended. It is worth noticing that the area overhead induced by the monitor

placement should be carefully considered and should remain reasonable. The number of selected

endpoints for monitor insertion should be as small as possible, but still cover the most important

critical endpoints of the design. However, endpoint selection is an extremely complex task which

requires a deep knowledge of both the target technology and the final workload.

To alleviate these restrictions, in this PhD we explored Machine Learning approaches to find

methods that starting from a limited set of technological parameters are able to efficiently predict

the delay degradation of paths depending on a given workload and available Operating

Performance Points (OPP) expressed in terms of Voltage and Frequency. The aim was to obtain a

lightweight, embeddable solution that can be used in conjunction with delay violation monitors

in order to alleviate monitor insertion complex task, but also and to identify the best OPPs

following different optimization strategies. The ML framework obtained during this PhD has

been validated and compared with the State-of-the-Art data with excellent results, and used as

the base of innovative System-level applications to identify Aging-aware Path Slack Ranking and

proposes an adaptative OPP strategy optimizing both performance and lifetime.

1.4.1.2 Jules Quentin KOUAMO: Software Methods and Architectures for the test of

Mixed-Signal SoCs

The complexity of current electronic systems, the production volumes and the quality level

required in critical applications, like for instance in automotive, challenge traditional approaches

14

to testing integrated systems. To overcome these difficulties, the field of testing is currently

undergoing a period of profound evolution, dominated by new “Design for Test” techniques

which push automation to the very heart of systems. This field has long been dominated by “Scan

Test”, which is simple and very effective for structural testing, which consists of verifying the

integrity of the circuit as a network of nodes. However, these approaches have difficulty in

keeping up with the scaling of systems due to their combinatorial complexity. In addition, they

are not at all adapted to new design paradigms such as “Design by IP” or to systems that integrate

analog modules, the tests of which are often functional and interactive. Often seen by Academics

as collections of already existing solutions, Standards are on the contrary very powerful tools for

transferring new approaches to industry, where standardization is seen as a guarantee of quality

and support. This is particularly true for the IEEE 1687-2014 standard, also known as “Internal

JTAG”, which for the first time integrates functional testing and dynamic architectures at the very

heart of its proposal. Unfortunately, the most innovative and disruptive elements of the standard

are not integrated into current CAD flows, which are rather focused on incremental

developments with high ROI (Return Of Investment). The importance and weight of Analog in

modern System-on-Chip (SoC) continues to grow, but its complex interaction with Digital has

not yet been fully explored. Several initiatives are underway, including an attempt to extend

IJTAG to analog testing thanks to the IEEE P1687.2 standardization committee. While custom

solutions to specific problems exist, the systematic consideration of the peculiar constraints of

these areas for a unified and coherent solution has never been addressed. For example, analog

testing is dominated by Built-In-Self-Test (BIST), where a hardware component is developed ad-

hoc and integrated into the chip, with almost no interaction with the outside. This is of course

efficient, but takes a long time to develop and is very resource-intensive.

The work proposed in this thesis aims to develop an infrastructure that will allow for hybrid

software and hardware approaches optimized according to the needs of designers. Particular

attention will be paid to the life cycle: a Mixed-Signal System must pass through multiple phases

of Design, Validation and Test, and each has its own tools and constraints which make

information sharing and solution porting almost impossible. An objective of the thesis work is to

fill the technological “gap” between these stages and to evaluate the feasibility of a unified

approach.

1.4.2 Early Reliability and Security Analysis

Today's computing is a true continuum that runs from IoT devices or smartphones to large,

mission-critical data center servers, often performing crucial tasks. In this context, the security

and reliability of microprocessor-based computer systems are therefore major challenges. The

concepts are closely related: while reliability defines the probability that a system will not be

subject to failures, safety guarantees that even in the presence of such failures, the system will not

generate any dangerous results. While the first describes a characteristic of the system itself, the

second is more focused on the interaction with the environment, and therefore its usage. Faults

15

affecting hardware components (e.g., microprocessor, memory,) are then propagated through the

software and can induce failures such as loss of information, incorrect behavior, up to complete

unavailability of the system. All this can be described in terms of reliability or security. These

qualities are now mainly quantified through costly and complex Fault Injection or Radiation

campaigns. This means that a new campaign must be performed for each software or hardware

change. Additionally, at an early stage of design, the final architecture of the microprocessor may

not yet be defined. These campaigns can therefore be very long and impact Time-To-Market,

especially if reliability levels are not achieved and a correction of part of the system is necessary.

This research theme is therefore focused on the research and formalization of alternative

approaches allowing early analysis: light from a computational point of view but still precise, it

is capable of coherently identifying critical elements of hardware and software. The goal is to

obtain a set of tools that can be used repeatedly during the design phase to ensure that the final

system will meet the target reliability and security constraints. This is one of the driving themes

of my TIMA research group that I have pursued since my thesis work, and which has enabled

significant scientific advances and also an industrial impact, evidenced by the APP deposit of the

EARS software resulting from this thematic and the thesis of Kais Chibani which I co-supervised

with Régis Leveugle.

1.4.2.1 Kais Chibani “Robustness analysis of Integrated Digital Systems”

Many applications are today concerned with soft errors, i.e. spurious bit modifications occurring

in a circuit at runtime. Such errors can be provoked by environmental disturbances, without any

physical defect induced in the circuit. In some cases, they can also result from malicious attacks.

No matter their origin, a designer must consider the potential consequences of such errors. It is

well known that not all soft errors lead to application failures; the probability of failure strongly

depends not only on the target circuit’s architecture, but also on the application characteristics,

the induced usage of the hardware elements and the execution scenario. The real sensitivity of a

circuit (defined here as the probability of failure, assuming a soft error occurred) must therefore

be evaluated with respect to a given situation in order to avoid large over-estimations.

The first type of analysis required at design time is an evaluation of the intrinsic sensitivity. If the

probability of failure is too large with respect to the application requirements, mitigation

techniques can then be applied on the most critical parts. In this work, we focus on the intrinsic

sensitivity evaluation, before any specific method is implemented for fault tolerance. However,

the analysis must allow a designer to identify the most critical parts for selective hardening. The

analysis must also be done early in the design flow in order to reduce the cost of rework or

mitigation insertion, when necessary. Preliminary analyses can occur very early, based on the

pure behavioral descriptions of the circuit, obtaining what is usually called an Architecture

Vulnerability Factor. However, these analyses are usually extremely conservative and tend to

over-estimate the sensibility of the system, resulting in high overheads which are not always

acceptable. In order to obtain accurate quantifications, the registers actually implemented in the

final circuit and potentially subject to soft errors must be known – a Register-Transfer Level (RTL)

description is therefore often the earliest used in the studies. In this work, we will assume that

16

such a description is available, as well as a testbench defining an execution scenario

representative of the use of the circuit in the final system. The precise sensitivity is usually

evaluated by means of fault injection campaigns, which require a specific set-up, can be very long

and expensive and can be performed only when the final circuit is available. As a result, if a major

weakness is found, a redesign iteration can be extremely long and directly impact the whole

project’s timeline.

In this PhD, the focus is to avoid fault injections and the need for specific equipment or skills. The

aim is to obtains tools and strategies that can be applied early in the design flow to obtain

robustness estimations which can help the Designer’s choices. The results are not meant to give

a precise value of the system’s robustness, but rather to identify the components which are more

critical, so that they might be selectively hardened. This loop evaluation→hardening should be

lightweight enough to be repeatable several times in the Design phase to obtain incremental gains

and increase the confidence in the system’s robustness. To estimate the “criticality” of an element,

this work relied on the most classical metric, i.e. lifetime of data in the registers. At a given

moment in time, not all flip-flops in a circuit contain useful data, while data re-used after a large

number of clock cycles has a higher probability to be corrupted by random disturbances than

some piece of information used only during a few cycles. So, the more often a register is “alive”,

i.e. it contains data that will be reused later, the more critical it will be.

The work started by making an architecture analysis of an existing open source processor, the

Leon 3: we built a model of its Pipeline with a particular emphasis on the data transfer between

registers (both visible to the User or hidden in the Architecture), and used traces from an

execution to compute the Lifetime of each one of them. This proved the feasibility of the approach

and its capability to provide estimate coherent with the State of the Art. We then moved to main

part of the PhD, where we extended the approach to generic Digital Circuits expressed in RTL

(VHDL). The resulting tool, called EARS, was able to give precise estimations of the criticality of

each Register in the circuit with no a-priori information on its architecture by analyzing the

simulation traces of a given payload against an internal model of the circuit. As opposed to

simulation-based fault injections, only one simulation has to be run, with an important

performance gain. The approach was run on the Leon 3 VHDL description for several workloads

and consistently provided result coherent with emulation-based fault injections, but at a fraction

of the computational effort. The EARS tool has been the subject of an APP depot, and has been

reused several times in the context of TIMA’s research in this subject.

1.4.3 Design Exploration for Approximate Computing

Approximate computing is a design methodology aimed at increasing the efficiency of electronics

systems. As its name suggests, it involves accepting a result which is not necessarily exact, on

condition of gaining in terms of energy consumption, calculation speed and/or complexity of the

implemented system. Of course, an exact calculation must not be essential for correct operation.

The loss of precision must then remain within a “reasonable” margin of error. To situate some of

the areas of application, it is of course possible to mention image processing for which, for

example, the exact value of a certain percentage of pixels might no impact on the finale result (ex:

“light green” or “dark green” in a traffic light recognition). Major application areas currently

include classification problems, artificial intelligence, etc. In addition to the relative novelty of

17

this type of approach (it is still considered "a new calculation paradigm"), the main obstacle to its

application comes from the difficulty for a designer to be able to evaluate early enough and

effectively which part of the system can be approximated without unacceptably degrading the

service provided to the user. This new theme, coming directly from my Visiting Professor period

of 2018-2019, is a synergy between TIMA's own themes (most notably, the EARS tool developed

by Kais Chibani) and the research of the Politecnico di Torino focused on the statistical study of

the effects of local approximations on the overall result. In the literature, the choice of elements

to be approximated is always left to the expertise of the developer through qualitative and ad-

hoc analyses: if the error measured is unacceptable, the only choice is to start from scratch, with

a considerable cost. In this theme, possible thanks to the complementary skills of TIMA and

Politecnico, we reverse the problem and aim at the formalization and development of automated

methods and tools capable of analyzing a system and identifying the circuit areas that can be

approximated with the least impact on the final result, with considerable savings in time and

resources during specification and design.

1.4.4 Autonomous deployment of Small Cells

When deploying dense cellular networks, Quality of Service (QoS) depends not only by the Area

Coverage, but from a multiplicity of dynamic parameters, such as for instance the user density,

their usage behavior or their movement patterns. These conditions are extremely difficult to

estimate through a priori models. Moreover, in the early 2000’s a new deployment paradigm

started being developed by actors such as Alcatel-Lucent: Small Cells. The correct term would

rather we “a base station inside a small box”: a PC-sized cabinet able to support a small number

of users (usually a few dozens) in a restricted area. The concept has been pushed even further

with the introduction of “femto cells”, small boxes able to provide 3G coverage in a really small

area (usually no more than 20-30 meters) to half a dozen users, and using the ADSL Box as

backhaul. These have been commercially distributed under the name of either “femto cells” or

“range extenders”. As they are supposed to be plug-and-play into unknown environments

(usually in close spaces) their centralized management and optimization is close to impossible.

Upon me joining Bell Labs Ireland, a lot of work had been done in developing autonomous QoS

genetic optimization algorithms, but all were based on centralized Matlab simulations. In this

topic, I focused on the porting of these approaches to real-world scenarios by providing an

abstraction from the Matlab simulation based on measurable distributed values, and ported a

demonstrator on an actual Alcatel-Lucent product: a femto cell based on a Montavista Linux and

IBM Rational Rose, commercialized by Vodaphone. Even though the results were promising, I

was forced to interrupt this line of research when I moved to TIMA and lost access to the Alcatel-

Lucent Intellectual Property.

18

1.5 Publications

 ORCID profile: https://orcid.org/0000-0002-8284-3823

• Journal Publications

[J.1] L. Anghel, R. Cantoro, R. Masante, M. Portolan, S. Sartoni and M. S.

Reorda, "Self-Test Library Generation for In-field Test of Path Delay faults,"

in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, doi: 10.1109/TCAD.2023.3268210.

[J.2] M. Portolan, E. Valea, P. Maistri, G. Di Natale, "Flexible and Portable

Management of Secure Scan Implementations Exploiting P1687.1

Extensions", IEEE Design & Test on 30/9.2021, DOI :

10.1109/MDAT.2021.3117875

[J.3] K. Kannan, M. Portolan, L. Anghel ,“ Activity-aware prediction of Critical

Paths Aging in FDSOI technologies”, Microelectronics Reliability Volume 124,

September 2021, 114261, https://doi.org/10.1016/j.microrel.2021. 114261

[J.4] Portolan M., “Automated Test Flow: the Present and the Future”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(IEEE-TCAD), December 2019, DOI:10.1109/TCAD.2019.2961328

[J.5] Portolan M., Goyal S., Van Treuren B.,, «Executing IJTAG: Are Vectors

Enough? » IEEE Design & Test, vol.30, no.5, pp.15,25, Oct. 2013

[J.6] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and

Cook T.B., « A Common Language Framework for Next-Generation

Embedded Testing » IEEE Design & Test of Computers Volume: 27 , Issue: 5

, Pp: 36 – 49, 2010

[J.7] Portolan M., Leveugle R., « A Highly Flexible Hardened RTL Processor Core

Based on LEON », IEEE Transactions on Nuclear Science (IEEE-TNS),

Volume 53, Issue 4, Part 1, Aug. 2006 Page(s):2069 - 2075

• Standards:

1687-2014 - IEEE Standard for Access and Control of Instrumentation Embedded

within a Semiconductor Device, Electronic ISBN: 978-0-7381-9416-5, DOI:

10.1109/IEEESTD.2014.6974961, 5 Dec. 2014

• Proceedings in International Conferences

[1] M. Portolan, V. Reynaud, P.Maistri, R. Leveugle, G. Di Natale “Security EDA

Extension through P1687.1 and 1687 Callbacks”, , 2021 International Test

Conference (ITC21), November 2021, ISBN: 978-1-6654-1695-5, ISSN: 2378-2250

[2] Maistri P., Reynaud V., Portolan M., Leveugle R. " Secure Test with RSNs:

Seamless Authenticated Extended Confidentiality ", 19th IEEE International New

Circuits and Systems Conference (NEWCAS), June 2021

[3] H. -M. von Staudt, B. Van Treuren, J. Rearick, M. Portolan and M. Keim, "Exploring

and Comparing IEEE P1687.1 and IEEE 1687 Modeling of Non-TAP

Interfaces," 2021 IEEE European Test Symposium (ETS), 2021, pp. 1-10, doi:

10.1109/ETS50041.2021.9465438.

https://orcid.org/0000-0002-8284-3823
https://doi.org/10.1016/j.microrel.2021.%20114261

19

[4] M. Laisne , A. Crouch, M. Portolan,; M. Keim, H.M. Von Staudt , M. Abdalwahab, B.

Van Treuren, J. Rearick,, “Modeling Novel Non-JTAG IEEE 1687-Like

Architectures”, 2020 International Test Conference (ITC20), November 2020,

Washington DC, US

[5] L. Anghel, R. Cantoro, D. Foti, M. Portolan, S. Santoni. M. Sonza Reorda, “New

Perspectives on Core In-Field Path-Delay Test”, 2020 International Test Conference

(ITC20), November 2020, Washington DC, US

[6] Portolan M. et al., “A Comprehensive End-to-end Solution for a Secure and

Dynamic Mixed-signal 1687 System”, 2020 International Symposium on On-Line

Testing and Robust System Design (IOLTS 2020), Naples, Italy

[7] Portolan M., Reynaud V., Maistri P., Leveugle R., “Dynamic Authentication-Based

Secure Access to Test Infrastructure”, 2020 European Test Symposium (ETS 2020),

Tallin, ESTONIA, 25 mai au 1 juin 2020

[8] Portolan M., Rearick J., Keim M., Linking Chip, Board, and System Test via

Standards”, 2020 European Test Symposium (ETS 2020), Tallinn, ESTONIA, 25

mai au 1 juin 2020

[9] A. Damljanovic, A. Jutman, M. Portolan, E. Sanchez, G. Squillero, A. Tsertov,

“Simulation-based Equivalence Checking between IEEE 1687 ICL and RTL”, 2019

International Test Conference, November 2019

[10] M. Portolan, R. Cantoro, E. Sanchez, “A Functional Approach to Test and

Debug of IEEE 1687 Reconfigurable Networks”, 2019 European Test Symposium,

May 2019

[11] A. Savino, M. Portolan, S. Di Carlo and R. Leveugle, “Approximate computing

design exploration through data lifetime metrics”, 2019 European Test Symposium,

May 2019

[12] R. Leveugle, M. Portolan, S. Di Carlo, A. Savino, G. Di Natale and A. Bosio,

“Alternatives to Fault Injections for Early Safety/Security Evaluations”, Embedded

Tutorial at the 2019 European Test Symposium, May 2019

[13] M. Portolan, M. J. Barragan, R.Alhakim, S. Mir , “Mixed-signal BIST

computation offloading using IEEE 1687”, 2017 22nd IEEE European Test

Symposium (ETS), Year: 2017, Pages: 1 - 2, DOI: 10.1109/ETS.2017.7968222

[14] G. Di Natale, M. Kooli ; A. Bosio, M. Portolan, R.Leveugle, “Reliability of

computing systems: From flip flops to variables”, 2017 IEEE 23rd International

Symposium on On-Line Testing and Robust System Design (IOLTS), 2017

[15] Portolan M., “Accessing 1687 systems using arbitrary protocols”, 2016 IEEE

International Test Conference (ITC),Year: 2016, Pages: 1 - 9, DOI:

10.1109/TEST.2016.7805839

[16] K. Chibani; M. Portolan; R. Leveugle, “Evaluating application-aware soft error

effects in digital circuits without fault injections or probabilistic computations”, 2016

IEEE 22nd International Symposium on On-Line Testing and Robust System Design

(IOLTS),Year: 2016, Pages: 54 - 59, DOI: 10.1109/IOLTS.2016.7604672

[17] M. Portolan, R. Rolland, “Student-driven development of a digital tester”, 2016

11th European Workshop on Microelectronics Education (EWME), Year: 2016,

Pages: 1 - 3, DOI: 10.1109/EWME.2016.7496479

[18] K Chibani, M Portolan, R Leveugle, “Application-aware soft error sensitivity

evaluation without fault injections-Application to Leon3”, European Conference on

Radiation and its Effects on Components and Systems (RADECS'16), 2016

20

[19] Portolan M., “A novel test generation and application flow for functional access

to IEEE 1687 instruments”, 21th IEEE European Test Symposium (ETS), Year:

2016, Pages: 1 - 6, DOI: 10.1109/ETS.2016.7519302

[20] K Chibani, M Ben-Jrad, M Portolan, R Leveugle, “Fast accurate evaluation of

register lifetime and criticality in a pipelined microprocessor”, Very Large Scale

Integration (VLSI-SoC), 2014 22nd International Conference on, October

[21] K. Chibani, M Portolan, R Leveugle, “Fast register criticality evaluation in a

SPARC microprocessor”, Microelectronics and Electronics (PRIME), 2014 10th

Conference on Ph. D. Research in, June 2014

[22] K. Chibani ; S. Bergaoui ; M. Portolan ; R. Leveugle, “Criticality evaluation of

embedded software running on a pipelined microprocessor and impact of

compilation options”, 2014 21st IEEE International Conference on Electronics,

Circuits and Systems (ICECS), 2014

[23] Cherubini D., Portolan M., “Automatic Equivalent Model Generation and

Evolution for Small Cell Networks”, Fourth International Workshop on Indoor and

Outdoor Small Cells 2013 (WiOPT), Tsukuba, Japan, Mai 2013

[24] Portolan M., « Packet-based JTAG for remote testing », 2012 International

Test Conference (ITC12), Anaheim CA, 4-9 November 2012

[25] Portolan M., Goyal S. and Van Treuren B., « Scan chain Securization through

Open-circuit Deadlocks », Poster for the 2010 International Test Conference

(ITC10), Austin TX, November 2010

[26] Portolan M., Goyal S. and Van Treuren B., « Scalable and efficient integrated

test architecture », 2009 International Test Conference (ITC09), Austin TX,

November 2009

[27] Vanhauwaert, P.; Portolan, M.; Leveugle, R.; Roche, P., « Usefulness and

effectiveness of HW and SW protection mechanisms in a processor-based system»,

15th IEEE International Conference on Electronics, Circuits and Systems (ICECS

2008), 2008

[28] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and Cook

T.B., « A New Language Approach for IJTAG», 2008 International Test Conference

(ITC08), San Francisco CA, October 26-30 2008

[29] Portolan M., Leveugle R., « A Highly Flexible Hardened RTL Processor Core

Based on LEON », 8th European Conference on Radiation and Its Effects on

Components and Systems (RADECS 05) – 2005

[30] Portolan M., Leveugle R., « Towards a Secure and Reliable System » – 2005

IFIP International Conference on Embedded and Ubiquitous Computing (EUC'2005)

– 2005

[31] Portolan M., Leveugle R., « On The Need for Common Evaluation Methods for

Fault Tolerance Costs in Microprocessors » 11th International On-Line Testing

Symposyum (IOLTS05) – 2005

[32] Portolan M., Leveugle R., « Operating systems function Reuse to achieve Low-

Cost Fault-Tolerance », 10th International On-Line Testing Symposyum (IOLTS04)

– 2004

[33] Portolan M., Leveugle R., « A Context-Switch Based checkpoint And Rollback

Scheme » –XIX Conference on Design of Circuits and Integrated Systems (DCIS

04) – 2004

• Workshops et Posters

21

[W1] "Targeting Approximation through Data Lifetime: A Quest for Optimization

Metrics”, A. Savino, M. Portolan, S. Di Carlo and R. Leveugle, AxC 2019 : Fourth

Workshop on Approximate Computing, May 2019

[W2] M.Portolan, R.Cantoro, E.Sanchez,M. Reorda, “A Functional Approach to Test

and Debug of IEEE 1687 Reconfigurable Networks”, 2018 International Test

Conference, October 2018

[W3] K. Kannan, M. Portolan, L. Anghel ,“Run-Time Aging Prediction Through

Machine-Learning”, ”, 2018 International Test Conference, October 2018

[W4] M. Portolan, M. J. Barragan, H. Malloug, S. Mir, “Interactive Mixed-Signal

Testing Through 1687”, First International Test Standards Application Workshop

(TESTA'16)

[W5] Portolan M., Goyal S., Van Treuren B. « A New Execution Model for

Interactive JTAG Applications », 2013 European Test Symposium (ETS13),

Avignon, France, May 2013

[W6] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and Cook

T.B., « A new description language for SoC testing », 2008 European Test

Symposium (ETS08), Verbania, Italy, May 25-29, 2008

[W7] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and Cook

T.B., « A Novel Hardware Description language for efficient debug and diagnosis of

digital circuits », 2008 IEEE International Workshop on Silicon Debug and Diagnosis

(SDD2008), San Diego, CA , April 27- May 1st, 2008

• National conferences

Portolan M., Leveugle R., « Réalisation d’une Tolérance aux Fautes à Bas Coût dans

les SoCs en Utilisant le Système d’Exploitation » – Actes des Journées Nationales du

Réseau Doctoral de Microélectronique – 2004

• Invited Presentations

Anghel L., Portolan M., Managing Wear out and Variability Monitors: IEEE 1687 to

the Rescue, Keynote talk, East West Design and test Symposium, Yerevan,

ARMENIA, 13 au 16 October 2016

Portolan M., “Standards: Can they co-exist for System Level Test?, Invited Talk”,

VLSI Test Symposium, Las Vegas, NE, UNITED STATES, 25 au 27 avril 2016

Portolan M., “Flexible and Extendable System-level JTAG Manager”, Invited Talk,

International Test Conference, Anaheim, CA, USA, October 2015

1.6 Patents and Software Filings

 Only the original filings are listed: for a complete listing of international extensions,

please referrer to the Lens aggregator. (102 items in October 2023)

https://www.lens.org/lens/profile/305697555/patent

http://tima.imag.fr/tima/fr/timalaboratory/persopage_id944.html
http://tima.imag.fr/tima/fr/mediatheque/artconf/result_2336.html
http://tima.imag.fr/tima/fr/timalaboratory/persopage_id944.html
https://www.lens.org/lens/profile/305697555/patent

22

Patents for the MAST Software

[P1] Application : FR1754491A·2017-05-19 Publication : FR3066606A1·2018-11-23

Patents Granted in the field of Testing

[P2] “Method And Apparatus For Describing And Testing A System-On-Chip”, US

Patent 7,958,479, June 2011

[P3] “Method And Apparatus For Describing Components Adapted For Dynamically

Modifying A Scan Path For System-On-Chip Testing”, US Patent 7,962,885

June 2011

[P4] “Method And Apparatus For Describing Parallel Access To A System-On-Chip”,

US Patent 7,949,915 May 2011

[P5] “Apparatus And Method For Isolating Portions Of A Scan Path Of A System-

On-Chip”, US Patent 7,958,417 June 2011

[P6] “Apparatus And Method For Controlling Dynamic Modification Of A Scan Path”,

US Patent ,7,954,022 May 2011

[P7] “Method And Apparatus For Providing Scan Chain Security, US Patent

8,495,758 July 2013

[P8] “Method And Apparatus For System Testing Using Multiple Instruction Types”,

US Patent 8,533,545, September 2013

[P9] “Method And Apparatus For Virtual In-Circuit Emulation”, US Patent Number

8,621,301 December 2013

[P10] “Method And Apparatus For System Testing Using Multiple Processors”,

US Patent 8,677,198

[P11] “Method And Apparatus For Position-Based Scheduling For JTAG

Systems”, US Patent Number 8,775,884, 8 Jul 2014

[P12] “Method And Apparatus For Deferred Scheduling For JTAG Systems”,

US Patent Number 8,719,649, May 2014

[P13] “Packet-Based Propagation Of Testing Information”, US Patent number

9,341,676, May 17, 2016

[P14] “Systems and methods for dynamic scan scheduling”, Michele Portolan,

Suresh Goyal , Bradford Van Treuren, US Patent Number 9,183,105,

November 10, 2015

Patents Granted in the field of Telecommunications

[P15] “A Telecommunications Network, And A Method Of Configuring Nodes

Of A Telecommunications Network, EU Patent EP2346209, Mars 2013

[P16] “Device and Method for transmitting samples of a digital baseband

signal, EU Patent Number EP2683102, Avril 2014

[P17] “Apparatuses, Methods And Computer Programs For A Remote Unit

And A Central Unit”, EU Patent Number EP2720429A1,

[APP1] APP filing for the NeSLT/MAST softwares

- V1 : IDDN.FR.001.260016.000.S.P.2015.000.10600

23

- V2 : IDDN.FR.001.260016.001.S.P.2015.000.10600

- V2.1 : IDDN.FR.001.260016.002.S.P.2015.000.10600

- V3 : IDDN.FR.001.260016.003.S.P.2015.000.10600

APP filing for the EARS software

 [APP2] IDDN.FR.001.530007.000.S.P.2016.000.10600, Décembre 2016

 25

2 Motivations and State of the Art

The world of Testing is under constant pressure: arriving at the very end of the Design cycle, the

Testing phase has a direct impact on Time-To-Market and the final quality of the product. This

pressure to deliver is one of the most fascinating aspects of the domain, but also one of its limiters.

Actors tend to “use what works” and are extremely conservative toward new approaches. There

is little time and desire to try and understand “why” something is done, and “what if” things

were done differently. Similarly, failure is not an option for a Test Engineer: faced with a problem,

he/she will always find some way to solve it, and stick to this workaround even if it is

cumbersome or unstable “because it does work”.

In my work, I focused exactly on these “why”s and “what-if”s to find abstractions and solutions

that could be applied as widely and generally as possible without custom workaround or patches.

In this Chapter, I will provide an analysis of the current State of the Art with a particular emphasis

in the missing pieces, which will then be covered in terms of both Abstraction and

Implementation in Chapters 3, 4 and 5.

2.1 The Automated Test Flow

Automation is at the core of testing: the sheer size of modern systems, as well as the need to

guarantee quantifiable quality in a reasonable test time led to the development of a rich, codified

ecosystem, depicted in Figure 1

Figure 1: The Ecosystem of Automated Testing

In the upper part, a simplified view of the Implementation flow going from Design to the Physical

Circuit is given, highlighting the intermediate Circuit Netlist. Coming after Synthesis, it is the

first step where the system is seen as graph of interconnected logical nodes (typically, flip-flops

and Boolean gates). It is the abstraction level where Fault Models can be defined: they are a logical

representation of physical defects, expressed as “faults” in their Boolean functionality. The most

famous and widely used is the “Stuck-At” model: a certain node is stuck to a logical value (‘0’ or

‘1’) and is therefore unable to perform the desired operation. An automated tool applies Fault

ExecutionGeneration

Design Circuit
Netlist

Fabrication
Backend

Physical Circuit

Generation
Tools

Automated Test
Equipement

« Good » Circuit

« Bad » Circuit

DfT
Information

Fault
Models

Input
Patterns

Expected
Patterns

26

Models to the System Under Test and computes the set of operations needed to both Activate and

Detect those faults through a process named Automated Test Pattern Generation (ATPG). In this

context, a “Pattern” or “Vector” is a set of binary Input values that can be applied to the SUT, and

the expected Output values that a “sane” system should produce. These sets of patterns are then

applied to the SUT through dedicated Automated Test Equipment (ATE). In this scheme, all

intelligence is regrouped in the Generation phase, while Patterns are simply a collection of static

vectors to be applied by the ATE. This process is optimized for factory testing, where the Key

Performance Indicator is speed: testing time must be minimized to reduce costs.

The greatest value of ATPG is its quantitative nature: it can precisely compute the number of

possible Faults a system might encounter, which one are “covered” by a set of Patterns and which

one are “untestable”. These precise coverage metrics are precious because they provide a direct

measure of the effectiveness of the ATPG algorithm, something that is not possible with

functional testing. However, pure ATPG rapidly hit a computational limit: Test Point Erosion

[iNEMI09]. Following Moore’s law, the density of circuit has been growing exponentially over

the last decades, but access capabilities (i.e. the number of possible Input and Output pins) has

been growing at a much slower scale. As a result, there is a big Controllability and Observability

problem: it is more and more difficult to properly set the value of deeply integrated nets and/or

to observe their values from the Functional Inputs and Outputs. This directly impacts ATPG

algorithms, with coverage rates dropping and Pattern set size exploding. The solution is what is

called Design-for-Test (DfT): the design is modified to boost its testability while maintaining the

same functionality and impacting as little as possible its performances. Among the wide range of

DfT solutions, we will focus on the most widely used: Scan Testing and Built-In-Self Test (BIST).

Scan Testing, represented in Figure 2, is a direct solution to Test Point Erosion [AGRA84]. A

traditional circuit, depicted in the upper half is composed to both Combinatory and Sequential

logic, and is accessed through its primary Inputs and Outputs. In order to Activate a fault in the

combinatorial logic, a value must be loaded into one or more Sequential memorization points

(represented as D Filp-Flops in the Figure) from the Primary Inputs PI. Similarly, to Detect a fault

the result of the Combinatorial logic must be saved in the FF and read from the Primary Outputs

PO. These routings PI→FF and FF→PO are what cause Test Point Erosion as they can be

extremely difficult to compute and might require pipelining through several cycles.

Figure 2 Example of Scan Insertion

D Q

Test

Mode

Combinatory logic

D Q

CLK

SI
D Q D Q

SO

D Q

Combinatory logic

D Q

CLK

D Q D Q

Original Circuit

Scan-Enabled Circuit

P
ri

m
a
ry

In
p

u
ts

P
rim

a
ry

O
u

tp
u

ts
P

ri
m

a
ry

In
p

u
ts

P
rim

a
ry

O
u

tp
u

ts

27

To solve the issue Scan Testing, depicted in the lower half, applies a simple principle: through

the introduction of some multiplexer and a control signals, all Flip-Flops can be connected serially

to form a shift register. The strengths of this approach are that its cost is low (a few muxes and

additional pins) and that both controllability and observability are total, as any FF can be directly

accessed without going through the Combinatorial logical. The downside is performances: a

“full-scan” of a modern design might be composed of thousands of FF, requiring a huge number

of cycles to completely shift it. Moreover, as the Scan Control signals need to cover the whole

circuit, timing closure is difficult and Scan Clocks are usually significantly slower than the

Functional Clock. To boost performances in factory testing, several shorter Scan Chains are

implemented in parallel: this requires adding specific Test Pins, but this is usually not an issue at

die-level, where the access capabilities are higher than after packaging. Solutions like Scan

Compression [KAPU08], which allow accessing several chains in parallel though a reduced set of

scan interfaces are now commonplace.

On the other hand, Built-In-Self-Test tackles the issue of Scan Test Erosion in the opposite way:

instead of enhancing access capabilities, new components are added inside the system so that it

is able to test itself without the need of external communication. The most typical example is

Memory Testing: instead of having thousands of vectors writing and reading back values

[GOOR90], a Memory BIST (MBIST) is a component able to generate and compare them on the

fly [WEST81]. Similarly, Logic BIST (LBIST) [KELL90] allows testing of embedded logic. These

approaches allow for high fault coverage with little or no data exchange: they just need to be

initialized (when needed), triggered and then their results can be collected.

Scan Testing and BIST are two faces of the same medal are complementary: any modern system

will implement both to achieve its coverage requirements.

2.2 The Role of Standards and Patents

The world of testing is composed by a variety of actors, each with his own specialization. For

instance, DfT insertion might be done by a team, test generation by another and the final testing

on actual circuit by yet someone else. Each one’s contribution might come at different times and

places, due to the long time taken for projects and to the distributed nature of the of the electronics

supply chain, and with different EDA Toolchains. In reality, things are even more complex: the

final system is nowadays composed by several third-party IPs, each with its own Design, DfT

and EDA Toolchain choices, but each (supposedly) inter-operable. The only way to make such a

complex setup work is for everyone to speak the same language: standardization. Defined in the

Shorter Oxford English Dictionary as “A document embodying an official statement of a rule or

rules […] having a recognized and long-lasting value” a Standard is an irreplaceable tool in

Engineering: by agreeing on a common set of rules and best practices, the actors are guaranteed

inter-operability of their proprietary solution. By being standard-compliant, a company can have

a reasonable guarantee of market acceptance for a new product, and therefore justify the

investment to develop it. But the impact goes far beyond marketing: a successful standard can

shape its technological domain for years, guiding not only Product development but also

Research directions. When working in technologies at their mid-TRL stages [TLR-EU] [TLR-

NASA], both Companies and Academia will be more willing to invest time and resources to

28

develop standard-related technologies whose acceptance is almost guaranteed. As such, a

standard is usually the synonym of a whole ecosystem of IPs, Software and best practices: Users

tend to avoid non-standard technologies that would force them to leave the comfort and safety

of such an environment. The effort of using custom solutions is usually so high to nullify its

potential advantages.

In all technological fields, there are solutions and best practices that are so effective and

widespread that become de-fact standards. The most famous example in testing is Scan Testing:

virtually any digital circuit includes one or more scan chains because it is the only way to reach

a satisfying coverage rate. Each Toolchain implements it in equivalent ways, but each solution

will be slightly different and not necessarily compatible. For instance, a Scan Chain inserted by

Synopsys’s Design Compiler [SYNO] will not necessarily be exactly the same as one inserted by

Siemens EDA’s Tessent [SEDA]. However, this is not necessarily an issue: to reduce the

complexity of the flow, a Designer will tend to use the same Toolchain from DfT Insertion to

Pattern generation. The need for inter-operability comes after: one the one hand if the Design is

self-contained and is fabricated, the Patterns must be accepted by any ATE. On the other hand, if

the Design is just an IP to be inserted in a bigger system, the two DfT must be compatible.

Traditionally, this meant that the DfT for all IPs in a system was developed using the same

Toolchain. While this is reasonable for a system where all IPs are developed in-house, the

widespread usage of IP-based design is putting a serious strain on this usage model for two

reasons. The first is that as IPs grow in size and complexity, Third-party Providers tend to

implement their own DfT. This allows for better testability, and also allows the Provider to reveal

as little as possible about its IP internal implementation. Strictly related, the second is that there

is no guarantee that the IP Provider will have used the same Toolchain as the System Integrator.

Unfortunately, the de-facto standard paradigm is not valid in this situation.

In the domain of Testing, formal Standards are defined by Standardization Bodies, i.e. entities

that handle the Standard Development process and publish the Reference Documents. In the

world of Electronics, the main standardization entity is the IEEE Standard Association [IEEESA]:

its role is to centralize efforts by providing a process to propose, develop and publish reference

standards. The development itself is carried out as a volunteering work by contributors, which

can come from both Industry and Academia. The process is well documented and controlled by

a set of bylaws, the most important assuring that no individual or company might use a standard

as a way to obtain an unfair advantage over the competition. The usual steps are:

- People interested in developing a new Standard can ask the IEEE to open a Study Group.

This is an informal group where members can discuss their ideas and objectives. The goal is

to come up with a PAR (Project Authorization Request) to the IEEE. It must “define the scope,

purpose, and contact points for the new project.” [IEEESA].

- Upon approval, a Working Group (WG) is formed, and the project is assigned a number. This

can either be a sequential number (ex: P1687) for a completely new standard, or a “dot”

number for a new member of an existing standard family (ex: P1687.1). The “P” stands for

“Progress”, meaning that the standard has not been approved yet.

29

- A PAR is valid for a given time, usually two to three years. The WG can ask for one or more

Extension if they can justify the reasons for the delay (for instance, new problems

encountered or the need to finalize editing).

- The WG is supposed to write a Draft of the Standard document. Following a precise template

and editing rules, a Draft is composed by Explanatory parts to help understanding the

contents and by the Rules to be followed.

- A WG is led by three elected officers: the Chair and Co-Chair, who lead the discussions and

are responsible for interfacing with IEEE, and the Secretary, who has to produce the official

Meeting Minutes and maintain the Attendance Record and Voting Rights. Optionally, there

can also be an Editor to coordinate the writing of the Draft. The mandate for Officer is two

years, with no limits for re-election.

- When finished, the Draft is submitted to IEEE SA to be put under Ballot. The Ballot is a group

of volunteers not related to the WG who can vote the acceptance of the Draft, and who

usually ask for corrections and clarifications.

- When the balloting process ends and all corrections have been considered, the Standard is

released. The “P” is dropped and the publication date is added, obtaining names such as

IEEE 1687-2014.

- A Standard is valid for 10 years. After this period, it can either become inactive if it has not

been successful, or it can be Renewed for another 10 years. The renewal process is similar to

the Proposal: a PAR is issues and a WG formed to propose amendments and corrections, and

then the new draft is put to ballot. The new standard will have the date changed: for instance,

IEEE 1149.1-1991 has been renewed twice as 1149.1-2001 and 1149.1-2013 [1149.1]

The actual content of a Standard changes of course greatly depending on its subject. However,

one important point is often overlooked: their innovation potential. Researchers, especially from

Academia, tend to look at Standards as a collection of existing best practices, and as a way for

Companies to push their solutions as “the” solution for the market. Even though there is a part

of truth in that statement, that is only one small part of the big picture. First of all, Standards are

supposed to shape their field for at least one decade: they need to provide solutions not only for

today, but more especially for the future. As such, there is often the need to compare existing

technologies, find their strength and weaknesses and come up with a common, future-proof

solution. This can demand an important effort: for instance, the IEEE 1687-2014 [1687] standard

took more than nine years in the making, from the first mentions [REA05] to the final publication.

Second, Standard entities have safeguards against companies gaining unfair advantages by

including proprietary technology. Working Group members are required to disclose the existence

of any Patent they might be aware of, and the Patent Holder have then to file a Letter of Intent

(LoI, for standards in their Draft stage) or a Letter of Assurance (LoA, for active standards). This

document engages the Patent Holder to provide licensing to the protected technology in

“Reasonable And Non-Discriminatory”” (RAND) term, i.e. with reasonable fees and without

using them as a lever for excluding competitors. Failure to comply result in the technology being

removed from the standard, regardless of its technological value. In fact, companies have two

complementary interests in having patents included in a standard:

- One of the most difficult and expensive parts in Patent protection is proving infringement,

as the burden of providing proof is on the plaintiff. This might require a lot of time and effort,

30

and sometimes might even result in the original patent being declared null. It is a high-

budget and high-risk operation, which is why patent infringement fees are usually extremely

heavy. On the other hand, when a patent is included in a standard, any compliant product

will automatically be using it: the infringement is implicit, with no need to prove it. The more

the standard is successful, the more potential infringements. This means that the Holder can

be satisfied with low royalties, but repeated over a huge number of infringers. A famous

example is Qualcomm, whose patents are at the heart of the Code Division Multiple Access

(CDMA) technology, which is the foundation of the 3G cellular network standard from

[3GPP]. As any chip and company involved with 3G Cellphone had to pay royalties, the

small fees added up to a significant amount, so much that someone even doubted the fairness

of Qualcomm’s interpretation of “RAND” [CHA20]

- When a company files for a patent, it means that they are expert enough in that field to

develop something new. So, apart from the direct gains from royalties, having a patent in a

standard gives the Holder a strategic advantage: they already know and have potentially

implemented the technology, so they can directly use it from Day One of the Standard’s

release. This is probably the main reasons for Companies to be involved in these activities,

so much that they are willing to accept more stringent patent policies that in the past.

To conclude this section, we will give a small introduction to the most important Standards in the

field of Testing.

2.2.1 JTAG

The most famous scan-based Standard is undoubtedly IEEE 1149.1 [1149.1] that is best known as

JTAG, the acronym of the “Joint Test Action Group”. Its full name “IEEE Standard Test Access

Port and Boundary-Scan Architecture” perfectly resume its goals: provide an easy and portable

way to access the Boundary of devices. It has been developed in the 1990’s, when board-based

systems were rapidly growing in size and new mounting technologies such a Ball Gate Array

(BGA) [KAP99] becoming widespread. Engineers were confronted with what is commonly called

“Test Point Erosion”: as system became larger, it was becoming more and more difficult to get

physical access to the pins to test that their soldering was correct and the PCB traces were

operational. BGA is the best example: connectors are hidden between the chip and the board, as

can be seen for instance in Figure 3, making physical access impossible.

Figure 3 Cross-cut section of BGA mounted circuit (from Wikipedia)

https://en.wikipedia.org/wiki/Ball_grid_array

31

JTAG solved the problem by providing logical access to the connection pins from the inside of

the device thanks to a standardized Boundary Scan Chain, as depicted in Figure 4

Figure 4 A boundary-scannable board design", from [1149]

2.2.1.1 JTAG Internal Architecture

The idea is simple and yet effective: instead of physically accessing the pins, JTAG allows the user

to drive logical values ‘1’ or ‘0’ on output pins and read them back on input pins. Inside a device,

a JTAG architecture look like Figure 5, and it composed by four main elements: the Boundary

Scan Register Cell (BSC), the Instruction Register, the Test Access Port (TAP) and the TAP

Controller.

Figure 5 JTAG standard architecture (source JTAG Technologies)

The BSC, depicted in Figure 6, is the key element of JTAG: it applies the same principle as internal

Scan Testing but with a key difference: the cell is actually composed by two registers. The first

one is responsible for either Loading data from the Signal-In or Shifting data received from the

Scan-In. The second one’s role is to provide a stable value to Signal Out when the test Mode is

selected. In Figure 6, the value of the two registers is updated through a rising edge of ClockB,

32

but that is just an example. Several other designs of a BSC are possible, for instance having just

one clock using a Capture and an Update signal to control the loading of the first and second

register respectively.

Figure 6 An example of boundary-scan register cell, from [1149]

The Test Access Port is the interface with the outside world and is it composed by 4 compulsory

pins and 1 optional one, depicted in red in Figure 5:

- Test Data In (TDI): Input port for the Data

- Test Data Out (TDO): Output port for Data

- Test Clock (TCK): the clock source used for the JTAG infrastructure

- Test Mode Signal (TMS): the signal used to operate the JTAG infrastructure

- Test Reset (TRSTn): optional reset signal, active low.

The Instruction Register is a Scan Register like the Boundary Register, but it has a special purpose.

This register is used to operate a JTAG system: depending on its value, the system will behave

differently, as explained later in this section.

The TAP Controller is the real heart of JTAG: it is composed by a Finite State Machine (FSM)

which is controlled by the TMS and by a decoding circuit connected to the Instruction Register.

By driving the FSM with TMS, the User can read/write values in either the Instruction Register

or the current Data Register, as shown in Figure 7

Figure 7 The JTAG Finite State Machine, from [1149.1]

33

The FSM is divided in two branches: the DR and IR branch, which allow access to the Data

Registers and Instruction Register respectively. The operation is the same and it is done in three

steps:

- first data is Captured at the input of the Register,

- then this data is Shifted out through TDO while the new data is shifted in through TDI

- last, the register is Updated as with the new value.

2.2.1.2 Operations

Operations are done following the scheme of Figure 8: the JTAG-Wrapped Design Under Test

(DUT), is connected to the outside thanks to the TAP. On the Test Host, a JTAG controller

implements a “Master” FSM whose role is to generate the right sequence of TAP signals (TCK

and, most importantly, TMS) to drive the “Slave” FSM of the DUT through the desired states.

Figure 8 JTAG Usage Setup

The Test Host can be not only an ATE, but also a Desk-Top computer using a JTAG controller

(cheap USB dongle cables are now commonplace [FTDI]) or an Embedded Controller. The

synchronization between Master and Slave FSM is the key of operating a JTAG system: the

Controller must at all times know the state of the DUT to drive it correctly. The Standard does

not offer any type of introspection in the DUT state: if by any chance the synchronization is lost

the only solution is to reset the system to bring it back to a known state. To reduce the occurrence

of such situations, JTAG imposes several restrictions to the DUT’s architecture, the main being:

Registers must have a constant length, known in advance and documented. This greatly

simplifies the DUT state tracing, but it turns out to be one serious limitation, as will be explained

in the following sections.

Basically, a JTAG infrastructure can do two things: shift data to/from Data Registers or perform

Instructions. The first is done through the DR branch: by exploiting the ShiftDR state, any number

of bits can be shifted through the active Data Register using the Capture-Shift-Update (CSU)

protocol. A JTAG system usually has several Data Registers, selected through the IR, the most

important being:

- The Boundary Scan Register, BSR, selected by several instructions such as EXTEST or

INTEST;

Test Host

« Master »
FSM

« Slave »
FSM

JTAG

Cable

TA
P

DUT

JTAG-Wrapped DUT

TA
P

JTAG controller

34

- A one-bit Bypass Register, selected by the BYPASS instruction. Its role it to reduce the length

of the total scan chain when the current device is not under use, while guaranteeing that there

are no unbounded paths between devices (which could happen with a direct TDI-TDO

connection

- The ID Register, selected by the IDCODE instruction, which contains a unique Identifier

Code. This allows identification for the current device without visual inspection

- Optionally, any number of USER registers can be defined and connected. They are not part

of the JTAG operations, but can be used to add new non-fully compliant features.

Apart from selecting the current DR, the Instruction Register can also be used to perform

operations in the DUT or system. The most important are:

• EXTEST : The BSR is selected, and it is connected (input and outputs) to the external pins of

the DUT. This allows testing the PCB connections between JTAG-enabled devices.

• INTEST : the BSR is selected, and it is connected (input and outputs) to the internal DUT.

This allows testing patterns to be applied to the device to test that it has not been damaged

during assembly

• RUNBIST : This instruction allows the usage of internal BIST components, most notably by

generating an internal clock. If several BIST are present inside the DUT, they might need to

be selected/activated first using other Instructions.

• USER INSTRUCTION: these care custom instructions that the User can define to either access

User Registers or trigger specific actions.

Please note that the Standard only defines the Instruction names and their role, but not their

actual binary mapping, which is up to the Designer.

2.2.1.3 Boundary Scan Description Language (BSDL)

As seen in the previous paragraph, a JTAG infrastructure can be quite complex and have

numerous parameters. For this reason, the Standard comes with its own Domain Specific

Language, the Boundary Scan Description Language (BSDL). Its roles are multiple, the most

important in this context being the description of the BSR and of the TAP. As a language, BSDL

has been developed using the syntactical rules of VHDL: it can be parsed with no error by a

VHDL parser, but its semantics are different and need special processing. Figure 9 show a BSDL

snippet describing a Boundary Scan Register:

Figure 9 Example of a BSR description from [1149]

35

Syntactically, the rule is incapsulated into a VHDL “Attribute” rule as a character string. Inside

the string, each Boundary Cell (BC) is assigned a number and its parameters, defined in the

standard document, are set. Semantically, BSDL is most of the times just an enumeration of

options and parameters that are defined in the Standard Document. This is even more flagrant

when looking at the description of the TAP, depicted in Figure 10

Figure 10 Example of TAP Instruction Mapping in BSDL, from [1149]

The binary mapping of each instruction is encapsulated into the string of the

INSTRUCTION_OPCODE attribute: a separate parsing will be needed to interpret it.

To resume, BSDL is a simple yet effective language whose role is to provide a direct description

and parametrization of a JTAG system, whose hardware implementation is fixed by the Standard.

2.2.1.4 System-Level Architecture

As shown in Figure 4, the main strength of JTAG is the capability of accessing all the Devices in

a board without needing physical access apart from the TAP. In its 30-year history JTAG has

been applied in a variety of topologies: the most important and widely used is daisy-chaining,

where devices are added in a serial fashion as shown in Figure 11. In such a setup, all IRs are

chained together and accessed in one operation, as are all active DRs.

Figure 11 Daisy-Chain JTAG Topology, from [1149]

Upon reset, all Devices are put in Bypass mode, so the Controller can use IR writes to only turn

on and select the desired DUTs. This simple solution is in fact quite fragile: if one of the DUTs is

faulty or powered off, no access it possible. JTAG also offers the possibility of using a Star

topology, where the same TAP is used to access multiple DUTs in parallel, as in Figure 12.

36

Figure 12 JTAG Star topology, from [1149]

This solution is more robust, but less efficient: each DUT needs its own TDI/TDO. Moreover, the

devices all receive the same commands and data: if they are not identical, only one can be active

at a time. Of course, all combinations of Daisy and Star topologies are also possible.

The main interest of having standard-supported topologies is reuse: in Figure 1 we showed how

Patterns are obtained from the Fault List and the DfT description of a given device. In a System,

each JTAG-compliant device will have its set of pre-computed patterns, and the BSDL description

of its wrapper. By combining this information is therefore possible to compose Device-Level

patterns to obtain System-level one. This process, depicted in Figure 13, is called Retargeting.

Figure 13 JTAG Retargeting

Please note that JTAG is an interface made for easy accessibility, not for performances: the TAP

signals need to travel along the whole PCB board, with important delays. Even inside a chip,

control signals need to reach the whole design, down to its boundaries. As such, usual TCK speed

are around 10 to 100 Mhz, even in systems where the functional clocks are in the Ghz range.

Input
Patterns

Output
Patterns

Test
Generation

Tool

T
e

s
t A

c
c
e

s

P
o

rt (T
A

P
)

T
e

s
t

C
o

n
tro

lle
r

JTAG

C1C2

Cn

Go/noGo

Fault
Models

BSDL
description

Input
Patterns

Expected
Patterns

Fault
Models

BSDL
description

Test
Generation

Tool

Input
Patterns

Expected
Patterns

Fault
Models

BSDL
description

Test
Generation

Tool

C1

Cn

37

2.2.2 Domain Specific Languages

As introduced in the previous section, Standards are needed when different actors have to

exchange information. As such, a really important part is played by Domain Specific Languages

(DSL), which are used to encode information. A complete survey is impossible and of little

interest, so we will focus here on the two main languages used to exchange digital Test Patterns:

STIL and SVF.

The Standard Interface Test Language (STIL) [1450] is an IEEE standard that is used primarily to

provide ATPG patterns to ATE for their execution. As any given SUT can implement a great

variety of DfT architectures, test patterns are more than just binary information: they must also

describe the protocols needed to apply and interpret the data, in terms of sequences, waveforms,

success conditions, error handling, etc... STIL provides this flexibility, while maintaining a

simple-enough structure to be easily parsed and interpreted by ATEs. Its usage model is depicted

in Figure 14.

Figure 14 STIL Usage model, from [1450]

In the context of this document, STIL can be considered as the exemplary output format:

regardless of the complexity of the internal Design for Test, the final pattern set is supposed to be

expressed in STIL. We will see in Sections 5 and 6that this is not necessarily true, even though

few people anticipated it.

The Serial Vector Format (SVF) is a de-facto standard language developed by Asset Intertech

[SVF99] and universally used to express JTAG operations, of which it provides a one-to-one

representation, as shown in Figure 15. It is extremely easy to read, and allows a JTAG expert to

immediately understand what the Test is supposed to do. It is the reference Vector language for

Board and System testing, where JTAG is the most used interface.

38

Figure 15 Example of an SVF program from [SVF99]

However, its lack of flexibility is an issue: SVF is only able to configure the JTAG TAP, push

vectors and do bit-wise comparisons. When a User needs to do something slightly more complex,

like composing and comparing vectors, he needs to add a lot of custom processing and

infrastructure [VTB03][VTB05]. More sophisticated alternatives do exist like the Standard Test

and Programming Language [STAPL], but they are seldom used apart in the niche applications

they have been developed for. So far, no solution is flexible and comprehensive enough to adapt

and cover all the needs.

2.2.3 Evolutions, limitations and new usages of JTAG

JTAG is undoubtedly one of the most successful IEEE standards: it is present in virtually any

digital circuit of reasonable size. But it is also extensively used far outside of its original scope

and is therefore clearly showing some limitations.

The first strain came from Topology: boards and systems can rapidly become extremely complex

and difficult to handle efficiently with just daisy chains or stars. Solutions like [BSCAN2] allows

multiplexing using a sort of “TAP of TAPs”, while the Brocade selector [LIHN06] uses I2C (often

preferred for configuration and setup [I2C14] because of its simplicity) for multiplexing different

TAPs. Both solutions are conceptually simple and efficient, but they share the same issue: they

are not JTAG-compliant and so they need custom software in addition to standard EDA Tools.

What might seem a minor issue has become over the years a big problem: most companies ended

up having reals “flows over the flows” with set of custom scripts and languages making pre and

post-processing over EDA tools. This code base is not only intrinsically unstable as it depends on

assumption on third-party tools, but also extremely complex and time consuming to maintain

and debug. As such, in the later decade we have assisted to a big push toward standardization

by the designer wishing to free themselves form the burden of maintaining in-house tools. A

typical example is the IEEE 1687 Standard, which will be discussed in details in Section 2.2.5.

The second big evolution problem comes from Instrumentation: as detailed in Section 2.2.1.2,

JTAG defines a “RUNBIST” instruction that can be used to run internal BIST instruments. This

implicitly implied that any DUT would have just a few embedded instruments which could be

controlled from the outside: if this was true in the 1990ies, evolution far surpassed the most

optimistic expectations. Modern circuits can have dozens of instruments, and this trend can only

continue as designs become bigger and technology nodes smaller. As such, having only one

“RUNBIST” instruction was not enough, and designer were extremely creative in either defining

39

new Custom instructions or defining sequences of IR/DR operations to select and run specific

subsets of instruments. Although theses sequences can be described as Scan Operations in SVF

or STIL, their intent is outside of the scope of test DSLs which can push and receive data but not

analyze it apart from basic mismatch. So, the portability of these solutions is extremely limited.

Moreover, adding so may complex Custom Instruction and Data Registers can seriously impact

the TAP Controller, which can become too big and slow for practical applications.

Last but not least, ironically the biggest problem for JTAG comes from its success itself: being

virtually omnipresent in any circuit and having an important Software support, JTAG started

being seen as the ideal “entry point”, and being applied to usages far removed from its original

scope. It is for instance the main interface used for Firmware programming, but is has also been

used to interface and test Analog and RF systems. All these usages are completely non-JTAG

compliant and need their own software infrastructure. This sometimes resulted in new Standards

(for instance IEEE 1532 for FPGA programming [1532]), but more often in proprietary solutions

like for instance the “Hierarchical Boundary Scan Standard Language” from Asset Intertech

[HSDL] which extends BSDL’s topology description capabilities, or the CASLAN language from

Goepel Electronics [EHR09] for instrument operations. Some of their features were incorporated

in revision of existing standard (for instance, IEEE 1149.1-2013 added to BSDL several HSDL

ideas) but most notably gave rise to the two most influential Testing Standards of the 2010s : IEEE

1500 and IEEE 1687.

2.2.4 Core Testing : 1500

The “IEEE Standard for Core Testing” was published in 2005 [1500] and it has been a huge

success: a quick search on scientific publication database will immediately show hundreds of hits.

And this is without considering the thousands of Designs which simply implemented it. So, what

is the reason for such a success?

In certain terms, 1500 is the perfect answer to the perfect storm: at the turning of the century, the

principle of IP-based designs became predominant. By dividing a big System into a set of

independently-developed IPs, the cost of design is lowered thanks to the reuse of existing IP or

by the integration of third-party IP. However, this raised an issue for testing. Traditionally, ATPG

is done at the end of the flow on the whole design. This means that it cannot take advantage of

IP-based “divide and conquer”, and is therefore takes the brunt of increasing complexity.

Moreover, running ATPG means having a complete knowledge of the Design: Third-Party

companies are willing to license their IP and provide enough information for them to be used,

but not to be replicated. As such, providing full netlist for ATPG might be delicate for them.

The new 1500 brought a solution by replicating at IP-level what JTAG had been doing at circuit

level: IPs can be Wrapped using a standardized DfT architecture, and the ATPG vectors defined

as these boundaries. The similarities between the IEEE 1500 wrapper, depicted in Figure 16, and

the JTAG wrapper are undeniable and completely intentional.

40

Figure 16 Standard IEEE 1500 Wrapper components, from [1500]

The IP is surrounded by a Wrapper Boundary Register (WBR), and can be accessed through a

Wrapper Serial Port (WSP). A Wrapper Instruction Register (WIR) decides whether the BSR or a

Wrapper Bypass Register (BPY) is selected. The WIR can also be used to load operational

instructions, such as for instance “WS_EXTEST”. The access to the WIR is done in the same way

as for the WSP our WSP, with the difference that a “select WIR” signal (part of the WSP) must be

asserted. The parallel with TAP operations is complete. However, the specific needs of Core-

based design necessitated specific additions, as for instance the optional Wrapper Parallel Port

(WPP) to accommodate high-bandwidth data transmission, or the definition of the Core Test

Language (CTL) to express describe both the Wrapper and the vectors applied to it. This language

became soon so complex to become a Standard by itself and was eventually incorporate into the

STIL family [1450.6]. Even though a CTL description is formally required in the Standard

document for compliance [1500], it is not unheard-of having IP wrapped in hardware but not

having a CTL description, especially when they are developed and used in-house.

The IEEE 1500 Wrapper offers several benefits, one of the most important being the possibility of

using retargeting: test patterns can be defined at the Wrapper level and then be composed to

obtain the system-level vectors. Third-Party Providers can therefore deliver the Test Patterns as

part of their IP, and when the same IP is replicated multiple times (as, for instance, the different

Cores of a CPU), pattern generation can be done only on one instance and then replicated for the

others [MCLA12].

But apart from these similarities, the two standards are in fact quite different. An IEEE 1500

Wrapper is not supposed to be directly connected to an IEEE 1149.1 for two main reasons. First,

the wrapper is not JTAG compliant: the “Select WIR” is not part of the TAP, and necessitates

therefore some “glue logic” to be generated. And even if this was done, the bandwidth offered

by JTAG is much too limited for time-critical tasks as high-volume factory testing. But more

importantly, the 1500 Wrapper allows the selection of several registers (WBR, WIR, etc…) of

different lengths: this is formally prohibited by JTAG, making it indescribable in BSDL and non-

compliant with its Tooling.

41

For all these reasons IEEE 1500 did not specify a specific interface, but rather left the user to define

his own Test Access Mechanism (TAM). In practice, TAMs are usually provided by an EDA

Company as part of its commercial package to speed up integration. For instance, Synopsys

proposes its own STAR Hierarchical Subsystem [STARSY] to deploy 1500 Wrappers. While these

solutions are usually effective and powerful, over the year this has become a serious limitation to

inter-operability: while 1500 Wrappers are standardized, the final solution is based on the

vendor’s TAM, limiting the freedom of the designer to change EDA provider or to accept third-

party systems based on different toolchains.

2.2.5 IEEE 1687 or IJTAG

As explained in the previous Section, the IEEE 1500 provides a solution for Core Testing, but

sidesteps the Topology issue by leaving the TAM implementation dependent. Moreover, a 1500

Wrapper is not adapted to control internal Instruments such as BISTs: the wrapper is too bulky,

and CTL can express rich vector operations but is not able to convey the “test intent” of using an

instrument (i.e. it can express “how to run it” but not “what it does”).

The “Internal JTAG” or “Instrument JTAG” initiative started in around 2005 to tackle these two

issues [REA05], and resulted in the IEEE 1687-2014 Standard [1687]. It has been defined as a

“paradigm shift” [REA12] because the solution hinged on two major innovations:

- The topology is not modeled in a top-down approach (i.e. the parametrization of a fixed

solution), but rather as a bottom-up composition of base elements;

- For the really first time, the operation is based on a Functional approach: instruments can be

operated by read/write operations in custom procedures, while JTAG has always been

agnostically shifting bits.

The Standard purposefully decided to be descriptive and allow users to compose their own

solutions rather than be prescriptive and define one fixed solution for all. This choice allows 1687

to be extremely flexible and propose a huge number of applications and innovation, several of

which unforeseen by their authors. To achieve this goal IJTAG proposes the Use Model of Figure

17, based on two Domain-Specific Languages: ICL and PDL

Figure 17 IEEE 1687 (IJTAG) Use Model

Input
Patterns

Expected
Patterns

PDL Files

1687 Tool

T
e

s
t C

o
n

tro
lle

r

Design
Under
Test

Go/noGo

Return
Data

PDL0

PDL1

ICL Files
ICL

42

The parallel with the ATPG flow of Figure 1 is intentional: IJTAG aims at transporting the know-

how of system-level test generation to the IP level: by taking a description of the topology (in

ICL) and of the “Test Intent” (in PDL), a Tool will be able to generate top-level Patterns that can

be applied to the DUT in the usual way. One of the novelties is also the possibility of a Return

path, where the actual Data received from the DUT can be propagated back to the original PDL

flow. In this Section we will provide a brief introduction of the main features and novelties.

2.2.5.1 ICL : Dynamic Topologies

IJTAG hardware is designed to be IEEE 1149.1 compliant, and it is focused on proposing a

Reconfigurable Scan Network (RSN) that can be accessed as one of the user TDR registers. For

the first time, IJTAG embraces dynamic topologies as the key of its architecture, as depicted in

Figure 18. The main elements of the Standard are present:

- A JTAG TAP controller as the Access Mechanism, in the top left-hand corner;

- The Instruments to be accessed, in the right-hand side

- The TDRs used to access each Instrument.

- A Mux (called ScanMux in the standard) that selects which TDR(s) are active

- A Scan Register (labelled S1) which controls the Mux

Figure 18 Example of an IJTAG Reconfigurable Scan Network, from [1687]

While it might seem trivial at first sight, the presence of the ScanMux is a small revolution in

JTAG terms: the length of the active Scan Chain can vary depending on the values of the Scan

Registers themselves, without the need to modify the IR. IJTAG calls each TDR section whose

inclusion is controlled by a ScanMux a “Segment”. Muxes can be freely instantiated in the

topology, but the standard provides a reference setup, the Segment Insertion Bit (SIB) depicted

in Figure 19, with a Mux and its controlling register side-by-side.

43

Figure 19 Example of a SIB, from [1687]

Thanks to this innovation, IEEE 1687 is able to support complex topologies of arbitrary

hierarchical depth, as for instance in Figure 20, while optimizing test application time by keeping

the active scan chain as short as possible.

Figure 20 Example of a SIB-enabled hierarchy [DWO13]

In fact, SIBs are often the preferred choice by DfT Designers to create regular and easy-to-

understand topologies. However, the standard is much richer than this and allows for more

complex and even extravagant topologies, as explored for instance by the BASTION benchmarks

[TSE16] [BAST19]. In order to provide Tool support for such rich topologies, IEEE 1687 proposes

its own DSL: the Instrument Connectivity Language (ICL) [1687].

This document is not the place for an in-depth tutorial on the complexity of ICL, so we will just

focus on its main elements: it is a “light” structural language whose role is to describe how “Raw

Instruments”, defined by their inputs and outputs, are connected to a scan-based infrastructure

ending in an IEEE 1149.1 Test Access Port. While avoiding the complexity of a full-fledged HDL,

the language allows the precise description of the connectivity of both data and control paths, so

that an IJTAG-compliant tool (often referred to as “Solver” or “Retargeter”) can understand how

the topology can be configured and how data can be delivered to/collected from the Raw

Instruments. The standard document [1687] provides several examples in its Annex E, as for

instance the description of an IEEE 1500 wrapper reproduced in Figure 21

44

Figure 21 Example of a 1500 Wrapper from section E.20 of [1687]

Its description in ICL reproduces the hierarchy, as well as the different connections, as reported

in Figure 22.

Figure 22 ICL Description of Figure 21, from [1687]

There is a crucial point in ICL: connectivity is always described backwards, from the output

backtracking to the input. This algorithm applied to Figure 22 would execute as this:

1. The starting point is the ScanOutPort SO, which in line 3 is connected to the ScanOutPort of IR_MUX

(implicit reference).

2. IR_MUX is declared in lines 19. It can be either connected to WIR or to DR_MUX

a. The Selection is decided by the UpdateValue of SWIR (line 19):

b. When ‘1’, the next connection is WIR (line 20)

i. After WIR, the next connection is SWIR (line 8)

1. Module WSP1500_SWIR {

2. ScanInPort SI; CaptureEnPort CE; ShiftEnPort SE;

3. UpdateEnPort UE; SelectPort SEL; ResetPort RST;

4. TCKPort TCK; ScanOutPort SO { Source IR_MUX; }

5.

6. ScanRegister SWIR {ScanInSource SI; ResetValue 1'b1;}

7. ScanRegister WBY {ScanInSource SWIR; ResetValue 1'b1;}

8. Instance WIR Of SReg { InputPort SI = SWIR; Parameter Size = 2;}

9.

10. Instance WI1 Of WrappedInstr { InputPort SI = SWIR; }

11. Instance WI2 Of WrappedInstr { InputPort SI = SWIR; }

12. Instance WI3 Of WrappedInstr { InputPort SI = SWIR; }

13.

14. ScanMux DR_MUX SelectedBy WIR[1:0] {2'b00 : WBY;

15. 2'b01 : WI1.SO;

16. 2'b10 : WI2.SO;

17. 2'b11 : WI3.SO;

18. }

19. ScanMux IR_MUX SelectedBy SWIR {1'b0 : DR_MUX;

20. 1'b1 : WIR[0];

21.

22. }

23. }

45

ii. SWIR is connected to ScanInPort SI: connection is complete

c. When ‘0’, the next connection is DR_MUX (line 19)

i. DR_MUX is selected by the Update value of WIR (line 14)

ii. When “00”, the next connection is WBY (line 14)

1. WBY is connected to SWIR (line 7)

2. SWIR connection already resolved in 2.b.ii

iii. When “01”, the next connection is WI1 (line 15)

1. WI1 is connected to SWIR (line 10)

2. SWIR connection already resolved in 2.b.ii

iv. When “10”, the next connection is WI2 (line 16)

1. WI2 is connected to SWIR (line 11)

2. SWIR connection already resolved in 2.b.ii

v. When “11”, the next connection is WI3 (line 17)

1. WI2 is connected to SWIR (line 12)

2. SWIR connection already resolved in 2.b.ii

The topology of Figure 21 is unambiguously described, in terms of both Scan and Control paths.

As the name ICL clearly states, the focus is put on the Connectivity, which must be tracked

through the arbitrary deep hierarchy. While undoubtedly powerful, ICL is quite difficult and

error-prone to write. Moreover, its coherence with the actual HDL description of the circuit is not

assured and needs to be verified [9]

After constructing a model of the SUT for the ICL description, a Solver must also be able to track

the state of each Mux to construct the active scan chain at any moment. It must also be able to

identify the state of the SUT which allows the access to a given segment, and construct the

sequence of operations to achieve it.

2.2.5.2 PDL : Test Intent

The second great innovation of IJTAG is the possibility of describing the functional behavior of

an instrument directly inside the standard thanks to its second DSL: the Procedural Description

Language (PDL). The aim of this language is to go beyond pushing binary patterns and rather be

able to provide “Test Intent”. This means that PDL must be able to describe the operations that

are supposed to be executed on one or more instrument in a formal way which is not necessarily

executable: the Test Tool is supposed to parse PDL files and process them in order to obtain the

operations corresponding to their description. To better explain this process, Figure 23 provides

a detailed description of the internal setup of a 1687 Tool.

Figure 23 Internal Setup of the 1687 Tool of Figure 17

The ICL parser builds an Internal Model of the Design Under Test, which is not only used for

topology resolution, as explained in the previous section, but also as the target of PDL operations.

1687 Tool
Input

Patterns

Expected
Patterns

Go/noGo

Return
Data

PDL0

TC
L

Sh
e

ll

PDL1

1687
Solver

ICL ICL Parser

DUT
Model

46

The language has been built to be syntactically compatible with TCL, which is universally used

to provide Interactive Shells in EDA tools: by interpreting a PDL file line-by-line, an EDA tool

will therefore be able to produce JTAG-level patterns, expressed for instance in STIL or SVF. The

language is divided in two “Levels”:

- PDL Level 0 is supposed to express the procedures to operate an instrument “in terms of

stimuli and expected responses for the ports and/or registers described in the ICL module

for the instrument” [1687]. It provides the same functionalities of traditional ATE testing

(writing data, setting expected outputs, etc…), but can also use TCL to write rich test static

routines.

- PDL Level 1 targets “instruments whose functionality requires a more complex

representation or in environments where interaction with the device determines the flow of

the test, a high-level programming language is essential” [1687]. The main difference with

PDL 0 is the possibility of collecting the actual data from the SUT and use it to dynamically

modify the behavior and flow control of the test procedure.

PDL follows a queuing scheme: users can request to write a value to a register (iWrite) or set an

expected value to it (iRead). These commands are queued by the 1687 Solver and converted into

Patterns when an iApply command is received. This scheme allows the Solver to collect requests

to different Segments and resolve them together at the iApply synchronization edge, as shown

in Figure 24

Figure 24 Sequence of Operations during an iApply , from [1687]

The iApply Time Frame reproduces at the Instrument Level the same type of Vector operations

that can be done at a JTAG TAP or in an IEEE 1500 Instrument: the sequence of “Capture-Shift-

Update”, preceded by Parallel Input and Outputs. While the sequence in fixed to ensure

predictability and coherence, each step in the frame can be skipped going through a “Nop” node.

This is to take into account ICL connectivity: the Select, Capture and Update signals might be

gated or inactive in certain situations, to the Solver can take into account when retargeting. This

also leaves some optimization freedom (for instance, not Capturing data in frame if it is not used

in the following one).

The PDL language, presented in Table 1 and Table 2, is quite rich as it presents commands to

both provide retargeting information and configure the JTAG interface, as well as commands

aimed at writing more user-readable code.

47

Table 1 First part of PDL Commands list, from [1687]

Please refer to [1687] for a full description of PDL. In this document, we will focus on three

command subsets.

Table 2 Second part of PDL Commands list, from [1687]

The first group is the subset related to vector handling:

- “iWrite $target $value”: queues $value to be written to $target (can be a register, a port or an

alias of one of the two);

48

- “iRead $target $value” queues expected $value to be compared with the data read from

$target (can be a register, a port or an alias on one of the two);

- “iScan $ScanInterface -si $siData -so $soData”. Queues both $siData to write and $soData to

be compared from a $ScanInterface. It can be used to express the result of retargeting (see

next section) or to drive black-boxes

- “iApply”: executes all queued operations. It is used as a synchronization edge in PDL code

- “iRunLoop “$cyclecount” : Issues a number of clock cycles. It is useful to run internal

instruments which are clocked by TCK, in the same way RUNBIST does at the TAP level.

The second subset includes some utility commands to gain programming capabilities, such as:

- ‘iProc $name”: defines a wrapper for a PDL procedure that can be called elsewhere in the

code;

- ‘iCall $name”: invokes the iProc of the same name

The third subset is composed by the commands related to retargeting: they are iMerge, iTake

and iRelease, whose behavior will be analyzed in the next section.

All these commands are part of “PDL Level 0” or “PDL 0”, as they define a static behavior: the

result of their retargeting can be directly expressed in terms of Input Patterns and Expected

patterns, as depicted in the upper right-hand corner of Figure 23. Dynamic Behavior is achieved

in “PDL Level 1” thanks to the 4 commands listed in Table 3.

Table 3 PDL Level-1 commands, from [1687]

These commands allow a PDL program to query the Solver for the Return Data that need to have

been stored in the DUT Model.

2.2.6 Putting it all together: retargeting

The combination of ICL and PDL allows the tool to perform retargeting optimization and

therefore reduce the overall test system. To better explain the process, we will use the

“Instrument Example” provided in the standard document and reproduced in Figure 25 as a

base Use Case and provide a step-by-step unrolling of an IEEE 1687 retargeting operation.

49

Figure 25 Example generic Instrument from Annex E.2 of [1687]

It is the simplest setup possible in IJTAG: a “raw instrument” having an Input and an Output

port. Its ICL description is straightforward:

Module Instrument {

 DataInPort DI[7:0];

 DataOutPort DO[7:0];

}

The DI and DO ports can be used as targets for PDL commands, as in this example:

iWrite DI 0b01010000

iApply

iWrite DI[7] 0b1

iApply

iWrite DI[7] 0b0

iApply

iRead DO[1] 0b1

iApply

iRead DO[0] 0b1

iApply

iRead DO[7:2]

The “Test Intent” of this sequence is easy to understand:

1) Apply the binary value to “0101000” to the Input port DI

2) Apply the binary value ‘1’ to bit 7 of the Input port DI

3) Apply the binary value ‘0’ to bit 7 of the Input p ort DI

4) Check that the value of bit 1 of output port DO is 1

5) Check that the value of bit 0 of output port DO is 1

6) Capture the value of bits 7 to 2 of output port DO

This sequence represents a typical usage of an Instrument such a BIST. Aliases can be defined in

the ICL file to boost PDL readability, obtaining for instance the following, more meaningful code:

iWrite mode blue

iWrite enable No

iWrite data 0b100

iApply

iWrite enable Yes

iApply

iWrite enable No

iApply

iRead done Yes

iApply

iRead okay Pass

iApply

iRead count

50

Regardless of this last “cosmetic” change, the Solver can covert this PDL sequence in a pattern set

on ports DI/DO, expressed for instance in the following pseudo-STIL code:

 V {DI = 01010000}
 V {DI = XXXXXX0X}

 V {DI = XXXXXX1X}

 V {D0 = XXXXXX1X}

 V {D0 = XXXXXX0X}

 V {D0 = XXXXXXXX}

The application of this sequence on the DI/DO ports realizes the Test Intent expressed in the PDL

file: Retargeting is finished.

Using ICL, it is possible to reuse this IP (both the register and its PDL Test Intent) in more complex

topologies : the Solver will continue the retargeting until the edge of the 1687 Network. For

instance, the Instrument might be connected to Scan Register, as in Figure 26, obtained by

combining figures E.2 and E.3 of [1687].

Figure 26 Raw Instrument connected to a Scan Register

 In this case, the Solver needs to move the retargeting scope to the Scan Interface on the left-hand-

side: the values for DI and DO need to be propagated through the scan chain. A pseudo-STIL of

the retargeting result would look like this (‘T’ meaning “Toggle”):

 #shift value "01010000"

 V {SEL = 1, CE=1, SE=0, UE=0, TCK=T}

 V { SEL = 1, CE=0, SE=1, UE=0, SI=0, TCK=T }

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T }

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T }

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T }

 V { SEL = 1, SE=0, SE=1, UE=0, SI=1, TCK=T }

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T }

 V { SEL = 1, CE=0, SE=1, UE=0, SI=1, TCK=T }

 V { SEL = 1, CE=0, SE=1, UE=0, SI=0, TCK=T }

 V { SEL = 1, CE=0, SE=0, UE=1, SI=0, TCK=T }

#shift value "XXXXXX0X"

 V {SEL = 1, CE=1, SE=0, UE=0, TCK=T}

[…]

51

This pattern set might be applied by an ATE on the Scan Interface to realize the same Test Intent

as the original PDL code. Please note that the same pattern could also be expressed as iScan

Operations in the ScanInterface:

iScan -si 0b01010000

iApply

iScan -si 0b XXXXXX0X

iApply

iScan -si 0b XXXXXX1X

iApply

iScan -so 0b XXXXXX1X

iApply

iScan -so 0b XXXXXX0X

iApply

iScan -so 0b XXXXXXXX

iApply

This representation can be used to retarget PDL locally to a hierarchical element, to be re-

instantiated in a bigger topology.

This example is purposefully basic so that the work of the Solver can be easily explained, but it is

not so far from reality. In the face of an extremely complex system, or in an IP-based design

paradigm, the EDA Tool might choose to partition the retargeting in smaller and easier-to-

compute subsystems, and then compose the final result as in Figure 27

Figure 27 Partitioned Retargeting [J.4]

In a real system the Solver will need to both configure the Dynamic Topology and compose PDL

operations on Registers in the same active scan chain. We called these two operations “Vertical

Retargeting” and “Horizontal Retargeting” in [J.4].

Horizontal Retargeting is the process of assembling PDL sequences defined on instruments

belonging to the same Scan Chain, as depicted in Figure 29. The assumption is that the PDL

associated to a given instrument will be regrouped in one or more procedures (“iProc” in PDL

terms), and a top-level PDL routine will call them using the appropriate “iCall” command. When

handling these iCalls, the tool cannot simply sequentially flatten operations, because it would

IP
Input

Patterns

Expected
Patterns

Fault
Models

BSDL
description

Test
Generation

Tool

IP-level ATPG

Scan chain

IP

Scan chain

TA
PJTAG

Test C
o

n
tro

ller

Go/noGO

IP 1

IP 1

IP 2

IP 2

IP n

IP n

Fault
Models

Design Level
BSDL

Test
Generation
Tool (TGT)

Design

Design

TA
PJTAG

Test C
o

n
tro

ller

Go/noGO

IP 1 IP 2

IP n

Final Design

a)
b) c)

d)
e)

52

incur in serious timing penalties. It will rather need to examine the code execution and

dependencies to identify and extract potential parallelism. The “iMerge” command (Table 2) aims

at helping this task by explicitly exposing concurrency, but there is no clear method on how to

handle it: it is simply a markup/pragma. The usual solution, shown in the examples of the

standard document, is to perform a static scheduling, where PDL operations happening during

the same cycle on segments belonging to active chain are regrouped in a flattened top-level PDL

operation (usually an iScan). Static Scheduling is a well-known problem with a vast literature,

but its computational complexity and difficult setup limits its application field to specialized

fields such as, for instance, real-time or high-performance systems [PARHI91].

Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4]

This “top-level sequential execution” paradigm is a general assumption of the traditional Test

Generation Flow, which always aims at computing the “final test program”. IEEE 1687 amplifies

the problem because while introducing concurrency it also completely changes the scale of the

application. While traditional JTAG considers a moderate number of components, a fully-fledged

1687 System on Chip could easily be composed of hundreds or even thousands of instruments.

In Vertical Retargeting, the Solver must consider a hierarchical topology needing the

configuration of one or more ScanMuxes. Figure 29 depicts the most typical example: a register

targeted by the PDL code behind an SIB.

Figure 29 Vertical Retargeting of a SIB, from [J.4]

Top-Level
PDL
…

iCall Inst_1
iCall Inst_2

…
iCall Inst_3
iCall Inst_1

…
iCall Inst_3
iCall Inst_1
iCall Inst_2

…

In
st

ru
m

en
t 1

iP
ro

c
In

st
_1

In
st

ru
m

e
n

t 2
In

st
ru

m
en

t
3

To
p

-L
ev

el
M

o
d

u
le

 (
IC

L)

iP
ro

c
In

st
_2

iP
ro

c
In

st
_3

Retargeting

Top-Level PDL
…

Merged Inst_1+Inst_2
…

Merged Inst_3+Inst_1
…

Merged
Inst_3+Inst_1+Inst_2

…

SIB

Control

BIST

iProc doBist {} {

iWrite BIST.Control 2b01

iApply

iRead BIST.control 2b0x

iApply

}

1687 retargeting
(SIB=1)

1687 retargeting
(SIB=0)

iProc doBist {} {

iScan BIST 2 -SI b01

iApply

iScan BIST 2 -S 1b1x

iApply

}

iProc doBist {} {

iScan BIST 1 -SI b1

iApply

iScan BIST 2 -SI b01

iApply

iScan BIST 2 -S 1b1x

iApply

}

53

The result of the retargeting operation is different depending on the value of the SIB control

register: it is up to the Solver to track the status of the DUT in its internal Model (ref. Figure 23)

and modify it as needed. This means that the functional operation of the retargeted vector

depends on the actual status of the Design Under Test: if the retargeting is partitioned and the

sub-system of Figure 29 is pre-computed, the Solver needs to keep the two possibilities and

choose which one to use at the time of composition. Please note that while the SIB is just a two-

way selection, the standard allows for multiplexers of any size: this is an exciting and promising

feature for DfT designers, but makes the retargeting problem even more difficult. In such a setup,

a Solver would be forced to compute and retarget for all possible ScanMux state combinations.

Vertical retargeting is also extremely problematic in terms of concurrency: static PDL merging

cannot work in presence of dynamic topologies, as the scheduling would need to be adapted to

the current state of each dynamic elements. The only solution so far has been to force static

topology resolution, which is sub-optimal, difficult to reuse and incompatible with interactive

execution.

2.3 Open Standards

Almost immediately after the release of 1687, early adopters started investigating the possibility

of extending the standard to support other interfaces than pure JTAG. This led to the creation of

the IEEE P1687.1 Working Group [P1687.1].After an initial analysis phase, the WG started

converging towards a possible solution [3][4][8]. So far consensus is going towards a direct

extension of the 1687 standard, both in terms for hardware requirements and descriptive

languages, while maintaining the status quo as far as Generation and Execution flow, obtaining

the hypothetical flow of Figure 30. The general expectation is that thanks to some kind of

standardized “adapter” and its description in an extended version of ICL, vectors computed for

a JTAG-based system (a) will be translated to the new interface (b).

Figure 30 Hypothetical P1687.1 Retargeting Flow, from [J.4]

In such a setup the conversion would be done between pattern languages (in the example, from

SVF to some I2C scripting language). Text-based conversions based on macro expansions and/or

templates are theoretically possible, but they all have the same problem: they are completely

agnostic of the system. In the retargeting example Section 2.2.6 of we had to infer some

1687
Retargeting

IP

Scan chain

TA
PJTAG

a) b)

SIR 8 TDI(04)

SDR 7 TDI(1A)

ICL

PDL

IP

Scan chain

TA
PJTAG

A
d

ap
ter

I2C

ICL
2.0

I2C_read(….)

I2C_write(….)

I2C_write(….)

I2C_read(….)

P1687.1
Retargeting

54

information from the BSDL to move from chain-based PDL to interface-based SVF. Similarly, a

conversion like the one in Figure 30 would require I2C-specific information (address table,

register mapping, etc..). This information is completely lost once the retargeting is done: the

generation flow would need each time to start from scratch, negating the advantages of

retargeting. Another open point is debug: as vectors are transformed from one interface to

another, it becomes more and more difficult to keep track of the original design. We have been

contributing to the WG since its establishment, ad proposed several key innovations, which will

be detailed later Sections.

As already stated, the move toward SoC-based architectures is blurring the boundaries between

Architecture, Chip, Board and System: problems that once were restricted to one domain are now

occurring at several abstraction levels, regardless of the physical boundaries. Another long-

standing standardization Group called “System JTAG” (SJTAG) was facing similar problems: the

need to test chips in a board/system having different access interfaces in a coordinated way.

Roughly at the same time as P1687.1 they filed a PAR to establish the “System Test Access

Management” standard, labelled as IEEE P2654. As several members are shared between the two

WG, a special attention is being given for the two future solutions to be compatible, as can be

seen in a series of common publications [3][4][8].

Another domain has been looking with interest to IEEE 1687: Analog and Mixed Signals. Modern

SoCs are never either fully-analog or fully-digital, but rather a mixture of the two, usually in

terms of “Small A – Big D “ (a little bit of Analog for a lot of Digital) of “Big A – Small D”. Analog

testing is in several ways the polar opposite of digital testing: little or no automation, and a lot of

interactive functional testing. The complexity of testing Analog circuits comes from several

factors [MIL94], like for instance the huge variability of test targets and the difficulty in coming

up with quantitative Fault Models, but one of the most important in undoubtedly the lack of a

standardized and automated framework [SUN09]. IJTAG promise to provide interactive

functional testing has been taken up but several actors, reunited in the P1687.2 Working Group

[SAR17]. The aim of the Working Group is to develop an overset of the existing 1687 standard

family, where Analog testing can benefit from the same automation capabilities, as shown for

instance in Figure 31

Figure 31 Envisioned EDA ecosystem to support structured analog DFT and testing, from [SAR17]

55

2.4 Security Issues

The omnipresence of electronics devices, along its diverse and fragment Design and Test flow

raised in recent year a new concern: security. While using DfT to grant access into a circuit is

unavoidable for test quality, these same facilities may create an important security backdoor into

the circuit, which may be used by malicious users. Possible outcomes may consist in leakage of

sensitive and critical data [SKSU13], illegal tampering of circuit behavior [BAR17], or theft of

Intellectual Property. Therefore, to seal this security breach it is mandatory to implement a

protection layer over the test infrastructure. Over the years, two solutions families have been

proposed: Scan Authentication and Scan Encryption.

2.4.1 Scan Authentication

The principle of Scan Authentication is to limit the access to certain portions of the scan path to

protect sensitive information. Few solutions currently exist [DWO13] [RAFA15] [MERA19],

where the access to the test infrastructure is granted only after the User has successfully

performed some kind of authentication thanks to at least one secret key. The security potential of

the SIB has been recognized quite early: the Locking Segment Insertion Bit (LSIB) [DWO13],

depicted in Figure 32.a, needs a specific binary condition to unlock access to the scan segment.

Figure 32 Locking SIB and Secure SIB Implementations

Access to the segment is therefore not automatic, but needs a secret Boolean condition. This key

is spread and hidden inside the DfT infrastructure so that, in principle, an attacker would need

to know its value and exact position to unlock the LSIB. In practice, however, the key will be

stored in plain text inside the Pattern Set: this setup is vulnerable to Replay or Man-in-the-Middle

type of attacks, where the key can be inferred from the data.

a)

b)

56

In a secure setup, when using an insecure channel like a scan chain, the key should never be

transferred in plain text. The Fine-Grained-Access (FGA) solution [RAFA15] uses a challenge-

response protocol to perform the authentication before granting access to a sensitive scan chain

segment. It is a classic scheme, where the two parties share a secret used to generate a one-time

transaction token, while the secret keys themselves are never transmitted on the insecure

medium, making replay attacks ineffective.

Figure 33: FGA Challenge response protocol, from [7]

Furthermore, FGA is also able to provide a personalized access to the reconfigurable scan

network by using instrument-level keys: users have to know the key for each instrument they

want to access. The authorization controller checks if the user’s response is correct; it then allows

the user to access the secure scan chain by propagating the authorization through the specially

introduced Secure Segment Insertion Bit (S²IB) visible on Figure 32.b. [RAFA15]

In [MERA19], the authors propose some modifications to the FGA approach with the objective to

allow usage of reprogrammable memory for the secret key and reduce the average authentication

time. To obtain a faster authentication, the instrument keys are replaced by configuration keys or

Segment Set Authorization Keys (SSAK). To avoid the need of storing the secret keys on the

System, the authors propose the procedural generation key mechanism presented in Figure 34,

where all the configurations keys of a circuit instance are dynamically generated from the unique

secret key of the circuit and a configuration vector containing the list of targeted instruments. The

generation consists in an encryption of the configuration vector using the circuit key as

encryption key. The security provider can distribute credentials composed of configuration and

SSAK to the users. On the other side, only the Circuit Key is securely stored in the reconfigurable

memory of the Authorization Controller.

57

Security provider

User credential

Configuration

SSAK

Authentication
controller

Configuration

Authorized instrument

User ID

Circuit KeyEncryption

SSAK

Circuit Key

TRNG | Challenge generator

p
lain ke

y

Figure 34 SSAK's procedural key generation and distribution, from [7]

Concerning the authentication protocol, only the challenge resolution is performed. The

controller receives the configuration vector from the user, and then thanks to the procedural key

generation, it is able to compute the associated SSAK, using its embedded encryption processor.

Then, still using the same encryption hardware, the controller can resolve the challenge with this

SSAK. On the user side, the process is easier as the SSAK is already known, so the user only needs

to encrypt the challenge with the key contained in the credentials. Once the authentication is

done, the controller needs to unlock the S²IBs targeted by the user. Figure 35 shows the scheme

of the SSAK solution architecture: the different S²IBs are linked together by the so-called secure

scan chain, driven by the authentication controller.

Figure 35: SSAK Authentication architecture, from [7]

In terms of hardware overhead, the LSIB approach is flexible and inexpensive in case of small

implementations; it is also compatible with the traditional Test Flow as its usage can be expressed

in terms of plain vector operations. However, its overall security level may be insufficient due to

the plaintext key exchange. FGA and SSAK solutions have both a more secure protocol for

authorization. In addition, they are quite efficient even for a large number of protected

58

instruments. As the number of instruments increases, SSAK becomes clearly the more efficient

and secure alternative, thanks to the constant authentication overhead. From this data alone, FGA

and SSAK seem to have an overwhelming advantage.

However, this comparison does not consider a fundamental point: the dynamic nature of the

challenge/response protocol cannot be expressed in terms of a Pattern Set, making these

approaches incompatible with the legacy Automated Test Ecosystem. As a result, their actual

implementation requires a significant and custom development by the user, effectively limiting

their applicability.

2.4.2 Scan Encryption

When accessing a Scan Chain, all the data exchanged on the JTAG interface is accessible by

anyone in both directions, allowing Snooping or Mad-in-The-Middle attacks. The principle of

Scan Encryption is to obscure the data being transmitted, as depicted in Figure 36 : a Scan Cypher

is inserted before the TAP and is charged to the Decryption of the Vector sent to the SUT, and of

the Encryption of its output, so that all communication is obscured. This means that the Plaintext

Vectors computed by an EDA Tool must be Encrypted before transmission, and similarly the

Outputs from the SUT must be Decrypted before processing.

Figure 36 Principles of Scan Encryption

The scan encryption technique sits on the cryptographic foundation of the symmetric encryption

schemes. These primitives provide confidentiality to the communication between two parties: in

the test scenario, the two communicating parties are the tester and the device under test. Both of

them share a secret key, which the circuit manufacturer properly deploys to authorized testers

and, at the same time, stores it inside the target device in a secure memory. All data that is

exchanged between the tester and the device is encrypted/decrypted thanks to cryptographic

modules that are placed at the TDI/TDO interfaces of the device.

When scan encryption is implemented, the typical test procedure is executed through the

following steps, performed by the red elements in Figure 36:

1. All data produced by the tester is fully encrypted with a secret key that is known being

associated to the device under test;

2. Encrypted data is shifted through the TDI interface of the device, where it is decrypted through

a decryption module that is located at the interface with the rest of the test infrastructure;

3. All results of the test procedure, which are sent through the TDO interface of the device, are

first encrypted by a cryptographic module;

4. Encrypted results are retrieved by the tester, decrypted, and analyzed.

1687
Network

R
egister

T
A
P

Scan
Cipher

System Under Test

Encoded
Vectors

Scan
CipherEDA Tool

Plaintext
Vectors

Encoded
Output

Plaintext
Outputs

59

Scan encryption can be classified according to the kind of cipher that is employed, namely stream

ciphers or block ciphers. Scan encryption can be based on block ciphers, or block-based scan

encryption, as for instance in [DASIL19] in with a negligible area overhead (less than 0.5%) when

implemented on complex SoCs. However, block ciphers need to process test data in blocks of a

fixed size (usually 128 bits), thus requiring a careful parsing of test data and its subsequent

padding in order to fit a multiple of the block size. Even if it does not cause a significant overhead

on the test time, it complicates the interface between the serial test interface and the

encryption/decryption modules. In scan encryption, based on stream ciphers [ROS10],

encryption is performed serially when processing the data. This property conveniently fits with

the serial structure of test infrastructure interfaces, leading to perfectly transparent

encryption/decryption operations that do not impact on the performance of the test procedure.

Moreover, the capability of stream ciphers to adapt inherently to any input length makes them

ideal candidates for IEEE 1687. A good example is the TRIVIUM stream cipher which is often

exploited as reference stream cipher implementation because it is a “trade-off soft spot” which

provides good security properties for a very limited hardware overhead [VAL19].

While its lightweight hardware implementation is undoubtedly Scan Encryption strongest point,

its great Achilles’s heel is its software part. Coding and decoding of vectors has to happen outside

of the traditional Test Flow, demanding had-hoc post-processing and imposing constraints on

the design. For instance in [THIE19] the authors need to impose a specific hardware architecture

(a PUK for every protected segment) and an extremely heavy software infrastructure that needs

to modify both the input PDL/ICL files and post-process the retargeted vector, completely

outside any standardized EDA flow (ex: by manually modifying the shift cycle count). These

implementation choices limit its applicability, scalability and portability.

60

3 The need for a New Test Flow

In the previous Section, we introduced some of the novelties the Testing field is going through,

exemplified by the emergences of new standards like IEEE 1687. While most of the actors in the

field have been considering them as simple incremental updates to solve contingent problems,

they actually have much deeper roots and wider ramifications and might usher in a profound

change in how Testing is done, and its relationships with the other steps of the Electronics Design

cycle. In this Section, we will highlight the true potential of these evolutions through an in-depth

theoretical analysis followed by the presentation of the results of our research. The reason why

IEEE 1687 is so important and disruptive is that instead of simply codifying a specific solution

for a given problem like most standards (like, for instance JTAG), it is rather an “enabler”: it

provides strategies and tools for users to tackle new problems and try to put some order in a mess

of workaround and custom solutions. For this reason, its implications go much further than what

was originally intended by its developers. As mentioned in the previous Section, there are three

points that put the traditional flow at risk: Topology Resolution, Concurrency and Interactive

behavior.

3.1 Limitations of the Legacy Automated Test Flow

3.1.1 Topology resolution (vertical retargeting) limitations

First introduced in Section 2.2.6 and Figure 29, the aim of Vertical Retargeting is to identify the

topology state that allows access to one or more registers which are the target of PDL operations.

Usually, scan based system apply a top-down approach: starting from a top-level command, an

algorithmic method identifies the low-level operations that perform it. Figure 29 is a perfect

example: from the top-level need of writing a value to the “control” register, the Retargeter

computes the operations needed to access it, i.e. the SIB configuration.

Replica of Figure 29: Vertical Retargeting of a SIB, from [J.4]

Top-down approaches are easy to understand and to implement, but have difficulty in scaling.

Complex SoC might have several layers of hierarchy: take for instance the system of Figure 37 :

in order to reach “Control”, the Retargeter needs to configure a big number of SIBs. The

combinatorial complexity of finding the Shortest Path quickly explodes: a traditional Dijkstra

SIB

Control

BIST

iProc doBist {} {

iWrite BIST.Control 2b01

iApply

iRead BIST.control 2b0x

iApply

}

1687 retargeting
(SIB=1)

1687 retargeting
(SIB=0)

iProc doBist {} {

iScan BIST 2 -SI b01

iApply

iScan BIST 2 -S 1b1x

iApply

}

iProc doBist {} {

iScan BIST 1 -SI b1

iApply

iScan BIST 2 -SI b01

iApply

iScan BIST 2 -S 1b1x

iApply

}

61

algorithm as an O(X2) complexity (with X being the number of nodes, i.e SIBs), and optimized

versions are usually no better than O(XlogX).

Figure 37 Example of a deeply hierarchical system

The problem is even more complex when considering multiple registers: still in reference to

Figure 37, let us consider a test that needs to write both register “Control” and read register

“Result” : the configuration needs either to find a Network State NS(Control,Register) where are

both accessible, or if it is not possible the two states NS(Control) and NS(Register) and the

Transition between the two NS(Control)→NS(Register): several NS might be needed to correctly

configure the network. Of course, the Transition it not reversible:

NS(Control)→NS(Register) ≠ NS(Register)→NS(Control)

In more general terms, any Transition is dependent on the initial Network State, NS(Start). This

means that the Retargeter cannot make one “absolute” retargeting for PDL codes defined at a

register level, but must always consider the initial state. This is a serious limitation to code reuse:

the retargeting of an IP cannot be fully resolved until the whole 1687 Network is known.

There are no real solutions to this problem: to reduce its impact industry tools usually perform

retargeting using a reference Safe state: NS(Control) is in reality NS(Safe → Control →Safe), so

that:

 NS(Control→Register) = NS(Safe → Control →Safe) + NS(Safe → Register →Safe) =

NS(Safe → Control → Safe → Register → Safe)

Of course, most tools won’t stop at this suboptimal solution but will run additional optimization

steps to end up with NS(Safe → Control → Register → Safe). However, the combinatorial cost of

these additional steps can be computationally high, with serious scaling issues which are difficult

to overcome while keeping a top-down approach.

T
A

P

R
e
s
u
lt

C
o
n
tro

l

62

3.1.2 Concurrency (horizontal retargeting) limitation

The base element of IEEE 1687 is the Instrument: however, it is never used alone. In a real system

the user will have N Instruments, over which N PDL procedures might be defined. For these, a

Top-Down Retargeter has to compute the top-level PDL operation which corresponds to the

execution of the N PDL subroutines, as depicted in Figure 38.

Figure 38 IJTAG Legacy Top-Down Retargeting Backend for PDL-0, from [J.4]

In most Tools, and in the 1687 Standard document itself, the assumption is that the User will write

a Top-Level PDL file which will iCall the PDL subroutines defined at the Instrument level. From

there, the Retargeter will try and merge the individual iApply groups defined in the called iProcs

to obtained a flattened Top-Level PDL. It is the flow already documented in Figure 28,

reproduced here for easier reference. The “iMerge” instruction is used to “expose potential

concurrency”[1687] to the Tool, .i.e mark the PDL sections that might be parallelized.

Reproduction of Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4]

This scheme is intellectually easy to understand, but it actually computationally extremely

intensive: extracting parallelism from a sequential program is a complicate and well-known

problem in computer science [GIRK92], and its application is usually limited to specific use cases

due to its complexity. In the case of IJTAG the problem is even more complicated because of the

need to consider the dynamic topology of the network connecting the Instruments.

Instrument 1

Instrument 1
PDL-0

Instrument 2 Instrument n

Top-Level Module (ICL)

Module
PDL-0

Top-Level Module (ICL)

Instrument 2
PDL-0

Instrument n
PDL-0

Automated Testing Ecosystem

Generation Pattern Set
Automated Test

Equipement « Bad » Circuit

« Good » Circuit

Top-Level
PDL
…

iCall Inst_1
iCall Inst_2

…
iCall Inst_3
iCall Inst_1

…
iCall Inst_3
iCall Inst_1
iCall Inst_2

…

In
st

ru
m

en
t 1

iP
ro

c
In

st
_1

In
st

ru
m

e
n

t 2
In

st
ru

m
en

t
3

To
p

-L
ev

el
M

o
d

u
le

 (
IC

L)

iP
ro

c
In

st
_2

iP
ro

c
In

st
_3

Retargeting

Top-Level PDL
…

Merged Inst_1+Inst_2
…

Merged Inst_3+Inst_1
…

Merged
Inst_3+Inst_1+Inst_2

…

63

3.1.3 Interactive behavior

As stated in the previous Chapter, one of the big novelties of IEEE 1687 is the native support of

Interactive Behavior thanks to the PDL-1 instruction set. The most important is “iGetReadData”,

which returns the last data value read from the target Register. As PDL has been developed to

be syntactically compatible with TCL, the natural implementation of PDL-1 as described in the

Standard is an interpreter linked to a Retargeting tool executing an algorithm composed of both

TCL and PDL-1, obtaining the setup of Figure 39.

Figure 39 Interactive IEEE 1687 Tool Setup

The combinatorial complexity of Vertical and Horizontal retargeting, as described in the previous

sections, seriously limits the applicability of this setup: the Tool needs a serious amount of

resources to run the algorithms, so it cannot be run on constrained setups such as embedded

controllers. Moreover, there is no clear path for portability and retargeting: how can such a setup

be compatible with the traditional retargeting flow, as depicted in Figure 40 ?

Figure 40 IJTAG Legacy Retargeting Backend for PDL-0, from [J.4]

Pattern languages cannot express interactive behavior when Flow Control decisions (ex: if-then-

else) depend on data retrieved from the SUT. A direct solution would be to execute PDL-1 on the

fly, but TCL interpreter are notoriously resource-hungry and difficult to support in Execution

Backends other thank PC, like for instance ATE.

As of now, support for Interactive IEEE 1687 from Industrial Tool is tenuous at most.

1687 Tool

TC
L

Sh
e

ll
1687

Solver

ICL ICL Parser

CUT
Model

Algorithm

PDL-1

Circuit Under Test
(CUT)

Instrument 1

Instrument 1
PDL-1

Instrument 2 Instrument n

Top-Level Module (ICL)

Instrument 2
PDL-1

Instrument n
PDL-1

TCL Intepreter

Algorithm 1

TCL Intepreter

Algorithm 2

TCL Intepreter

Algorithm n

Top-Level Module (ICL)

Merged
PDL-1

TCL Intepreter

Algorithm 1 Algorithm 2 Algorithm n

Automated Testing Ecosystem

Generation Pattern Set
Automated Test

Equipement « Bad » Circuit

« Good » Circuit

64

3.1.4 Interface Domains

Usually, EDA Tools work in a well-specified Domain: Retargeters work on Scan-Chains, JTAG

tools on JTAG systems, etc… By Domain we mean a system that can be accessed or controlled

only through a specific set of Primitive Operations. For instance, a JTAG system can only perform

either operations that are possible in the standardized FSM (most notably, going through the

Capture-→ Shift →Update (CSU) sequence on either the IR or DR scan chain), or Instructions

defined in the Standard (INTEST, EXTEST,etc…). On the other hand, a Scan Domain will have a

richer set of data Primitives (not only CSU, but also CS, SU, S, etc…), but no Instructions. There

is a lot of variability: domains such as I2C will rather have primitives focused on Writing and

Reading to specific addresses, etc… This allows each Tool to exploit the specifications of its

domain to process the required operations and express them in the Primitive of its domain.

However, a complete system is seldom composed by a single Domain, so the Tool will have to

Translate between them. Sometimes it is easy, as for instance in Figure 41 : Scan and JTAG

domains are purposefully extremely similar, so Tools can easily translate between them thanks

to a-priori knowledge of the domains (obtained from their Standard specifications) and store the

resulting primitives in a DSL file, such as for instance SVF.

Figure 41 Domain Translation between Scan and JTAG

The generic case is much more complex: take for instance the system of Figure 42 : the connection

between I2C and JTAG is not standardized, so the Tool has no easy way to make the translation.

Figure 42 Domain Translation between multiple interfaces

Ctrl Of CTRL

SI (ScanInPort)

SO

(ScanOutPort)

B
IT

1

SE (ShiftEnPort)

TCK (TCKPort)

DO (DataOutPort)

Inst1 Of ONE

DI (DataInPort)

Inst2 Of ONE
DI (DataInPort)

DO (DataOutPort)

DO (DataOutPort)

B
IT

2

DI2 (DataInPort)

DI1 (DataInPort)

0

1

EXAMPLE

0

1
BIT3

CE (CaptureEnPort)

UE (UpdateEnPort)

Scan Domain

TAP
IR

JTAG Domain

TCK

TMS

TDI

TDO

CSUSDRSVF File

Ctrl Of CTRL

SI (ScanInPort)

SO

(ScanOutPort)

B
IT

1

SE (ShiftEnPort)

TCK (TCKPort)

DO (DataOutPort)

Inst1 Of ONE

DI (DataInPort)

Inst2 Of ONE
DI (DataInPort)

DO (DataOutPort)

DO (DataOutPort)

B
IT

2

DI2 (DataInPort)

DI1 (DataInPort)

0

1

EXAMPLE

0

1
BIT3

CE (CaptureEnPort)

UE (UpdateEnPort)

Scan Domain

TAP
IR

JTAG Domain

TCK

TMS

TDI

TDO

CSUSDR

I2
C

C
o
n

tro
lle

r

I2C Domain

?

SDA

SCL

SVF
File

I2C
File

65

Such setups are in fact quite common, and most of the times users need to rely on custom routines

which parse the DSL files and convert among them exploiting the built-in knowledge of the

Translation. This is usually done through in-house tools, whose validation and maintenance can

require important resources. Efforts like the [P1687.1] Working Group are trying to develop a

standardized Domain Translation methodology [3] [4], but so far, no solution have been officially

ratified yet.

66

4 A New Automated Test Flow: Specification

As we pointed out in the previous Sections, the main limitations come from legacy features in the

Automated Test Flow. The most important and limiting one if the dichotomy between “Smart

Generation” and “Dumb Application” [J.4]: the need of resolving all computation offline imposes

a series of “a priori” decisions to obtain a static Patten Set based on a reference setup. When the

setup changes, undoing the computations and adapting the set demands a lot of effort and

actually makes the operation much more difficult that it could have been if done correctly the

first time.

4.1 High Level Requirements

It is useful to make a comparison with Computer Science, where a Source Code written in a high-

level language (ex: C) is compiled into a Binary program which can then be stored in a Memory

to be finally executed by a Processor. The direct, naïve flow is depicted in Figure 43-a): The High-

Level program is first converted into low-level Assembler instructions, which are then mapped

into the Memory. This requires the knowledge of the exact start address of the program in the

memory to solve all addressing in the Assembler instructions (the absolute Jumps, but most

importantly the location of Data Variables).

Figure 43 Software Compilation with Static Memory Mapping

If the program needs to be executed in another memory location, it must be remapped, as

depicted in Figure 43-b): first the Binary Program must be reconstituted, potentially dumping it

from the Memory, and then remapped to the new Address. This requires parsing the whole

binary data, identify the variables from the Assembler operations accessing them, compute their

new locations and substitute all the references in the binary code. This is of course not impossible,

but extremely time-consuming, suboptimal and not scalable. This problem is solved by the

concept of Relocation, depicted in Figure 44. The Assembler code is not directly converted in pure

Source 1

Source n
Compilation

Text Data

Assembler
Assembly

Text Data

Binary
Program

Memory

Start @

Binary
Program

Binary
Program

Memory

Start @

Binary
ProgramMemory

Dump

Remapper

New @

Remapped
Bynary

Program

Remapped
Binary

Program

Memory

New @

a) Compilation with Static Memory Mapping

b) Remapping a Static Bynary Program

67

Binary, but in an intermediate format where some placeholders (called “symbols”) are set in place

of the addresses. In a BareMetal approach, these symbols are resolved when the final Memory

Mapping is available, to obtain a static binary representation. When an Operating System is

present, the linking is done at execution time by a specific component, the Loader. Each

compilation toolchain and Operating System has its format: in Linux-Gnu, for instance it is the

“Executable and Linking Format” [ELF95], in Windows the “Portable Executable” [PE15]. This

procedure is also what allows the inclusion and usage of Static and Dynamic software libraries.

Figure 44 Principles of the Software Relocation Flow

The strongest point of Software Relocation is the capability of distributing processing during the

whole flow: each piece of information is treated as soon as it is available, but only as far as it is

possible. If some operation cannot be completely performed, some Symbols are placed into the

binary code with all the available information, to be used later when new elements are collected.

If we apply the same analysis to the Automated Test Flow, we end up with the scheme of Figure

45-a). During Patten Generation, the Design and Domain Specific Language files (ICL/PDL) are

the Source Files, and the Generation step has the same role as Compilation. Pattern files are the

same as Assembler files, and Retargeting is functionally the same as Memory Mapping: it

establishes the binary pin-level representation. Similarly, Figure 45-b) shows that Pattern

Retargeting if functionally the same as Static Remapping: to change Interface (ex: going from

JTAG to I2C), a Tool first need to extract the Test Instructions corresponding to the flattened

Patterns, convert them to the new Protocol and then recompute the patterns.

Source 1

Source n
Compilation

Relocatable
Object file

Linking

Relocatable
Exe file

Mapping

Libraries

Text Data
Binary Data Binary Data

Assembler
Assembly

Text Data

Memory
Mapping

Information

Binary
Program

Memory

Start @
Relocatable
Object file

a) Baremetal Linking

Source 1

Source n
Compilation

Relocatable
Object file

Linking

Relocatable
Exe file

Loading

Static
Libraries

Text Data
Binary Data Binary Data

Assembler
Assembly

Text Data

Binary
Program

Memory

Start @
Relocatable
Object file

a) Operating-System Linking

D
yn

am
ic

Li

b
ra

ri
es

OS Loader
Memory
Mapping

Information

68

Figure 45 Information flow in the Automated Test Flow

From this analysis it is easy to understand the weak points of the current Automated Test Flow:

because of the strict Generation vs Application dichotomy, all data and information processing is

done in one step, ending up with static Patterns which have knowledge of neither the original

Algorithms nor of the System Under Test. To retarget, a Tool needs first to extract the original

Test Instructions from the flat Pattern files: this is often close to Reverse-Engineering as the

Pattern files contain no Intermediate Information to help processing.

To resume, if we want to apply the Relocation Flow to Testing we have to avoid needless and

counter-productive a-priori operations, resolving them only when all the necessary information

is available. Based on the State of the Art of Chapter 2 and the analysis of Section 3.1, we can

identify the critical elements are follow:

1. Vertical Retargeting: to resolve the Topology, the Tool needs knowledge of the system

Network State

2. Horizontal retargeting: to resolve Concurrency, the Tool needs knowledge of both the

Execution and Network Stage

3. Interactive Behavior: to resolve Flow Control, the Tools needs the data coming back from the

SUT

These requirements can be satisfied by the Flow proposed in Figure 46 : the “Generation vs

Application” dichotomy is broken, to obtain a more nuanced flow inspired by the Relocation

Flow of Figure 44.

- Instead of being completely resolved, Test Algorithms (in the upper right-hand corner) are

simply compiled, to obtain a Test Executable in a Relocatable Test Executable in a format

such as ELF or PE, depending on the Test Host.

- Topology and Interface information contained into the DfT files (such as ICL, BSDL, etc..) is

processed to compose a model of Circuit Under Test

Design
Files

DSL Files
Generation

Pattern
File Retargeting

Pattern
File

Final
Pattern

Test Host

Text Data
Text Data

Text Data

DSL Files

Test
Instruction

Extraction

Retargeter

New Interface

Test
Instructions

for new
Interface

a) Patten Genaration

b) Pattern Retargeting

Interface-
Level

Patterns

Interface-
Level

Patterns

69

- During Execution, a Test Manager on the Test Host runs the Test Executable. Both the

algorithmic execution and the CUT Model can be updated depending on the data exchanged

with the actual Circuit Under Test.

Figure 46 New Automated Test Flow

The heart of the approach is the Test Manager: it is the middleware that provides interaction

between the Software (the Test Algorithms) and the Hardware (the CUT). It has therefore the

same role as an Operating System.

In the following paragraphs, we will detail the specifications of the different components.

4.2 Relocatable Test Executable

The role of the Relocatable Test Executable is to collect both Pattern, Algorithmic and PDL

information in a ready-to-use container. For the first two it is quite straightforward: Patterns are

nothing more than Data, and Algorithms can be compiled to ISA instructions. Formats such as

[ELF] have provisions for both. PDL instructions on the other hand have been developed to

convey “Test Intent”, and as such it is not possible to compile them. However, each instruction is

precisely specified both in terms of input/outputs and expected behavior (See Tables 1 to 3 or

Sections 7 and 8 of [1687]). This means that PDL is an ideal candidate for an API approach: at

compilation time, PDL instructions are treated as external functions for which the compiler

creates the appropriate Relocation Symbols. The Test Manager will implement the actual library,

and therefore be able to eventually resolve them. The final setup is shown in Figure 47. Almost

all programming languages have provisions for this flow: for instance, in C/C++ the header

would be a .h/.hpp file.

Figure 47 Details of the Compilation Step

Relocatable
Test

executable

Elaboration/
Compilation

DfT Files
(ICL,BSDL,

etc..)

Test Host

Test
Manager

CUT
Model

Circuit Under Test
(CUT)

Parsing /
Analysys

Libraries

Relocatable
Test

executable

Test Host

Test
Manager

Circuit Under Test
(CUT)

PDL
Library

PDL
Header

Compiler

PDL
Symbols

70

There is however a limitation: this flow depends on a compilation step, while [1687] points TCL

as the PDL overlay language. This requires an adaptation step to existing IJTAG programs, an

example of which will be given in Section 5. This might not be necessary in the future, as the 1687

Refresh Working Group is discussing the possibility of opening up the Standard to other

languages.

4.3 Circuit Model

The Circuit Model has several roles:

- Store all information needed for Retargering

- Track the current state of the CUT;

- Assist the Manager in handling the Dynamic Topology configuration;

- Make the connection between PDL operations and the corresponding Instruments

- Handle the connection with the CUT

- Convert scan-level bitstreams into Interface operations.

In this section, we will detail a Model able to satisfy all these requirements.

4.3.1 Retargeting

The choice of a correct Data Structure is of primary importance. As detailed in Section 2.2.5, in

IJTAG the segments can either be connected serially, or selected through Multiplexers. This type

of hierarchy is naturally described through a Tree. The aim is to represent the hierarchical

relationships of the different IEEE 1687 elements through the shape of the Tree, so that we will

be able to extract and modify the Topology state by analyzing the Data Structure through

strategies such as Visitors or Iterators. In an Object-Oriented modelling, this can be achieved

through three nodes:

- As the leaf, a Register node which stores both the value of the register inside the CUT,

obtained from previous interactions, and the Future Value, which the System wishes the

Register to reach. This can be the result of either PDL operations (ex: an iWrite which queues

a value modification) or configuration algorithms (ex: wanting to open a closed SIB).

- A Chain node to concatenate Registers. The order of the children reflects the order in the scan

Chain and can be extracted through a standard Transversal, as depicted in Figure 48

Figure 48 Tree Representation of a Scan Chain

- A Linker node which codifies the dynamic hierarchy introduced by a ScanMux, as depicted

in Figure 49.

Register 1

Chain

Register 3

Child 1 Child 3

Parent
Register 1

R
egister

2

Register3

TDI

TD0
Register 2

Child 2

Register 1 Register 2 Register3

71

Figure 49 Tree Representation of a ScanMux

While for a Chain node all its children are always connected, for the Linker node the selection of

each node depends on the value of the Control register. This can be used to guide a Depth-First

Transversal of the tree, as depicted for instance in Figure 50.

Figure 50 Extraction of Active Scan Path through depth-first tree transversal

In Figure 50-a), the Linker is selecting “Child 1”, so when the Visitor reaches the node, the

recursion in propagated to that child (therefore reaching “Register 2”), but no to “Child 2”, which

is not selected (therefore “Register 3” is not reachable). The inverse happens in Figure 50-b). The

information about selection can be easily extracted from the ICL (rule “SelectedBy”, Chapter 6 of

[1687]). We propose to code it into the Linker node through these elements:

- an is_active(n) method, which returns True when child “n” is selected, and False otherwise;

- a select(n) method, that sets the future value of the Control Register to select Child “n”;

- a deselect(n) method, that sets the future value of the Control Register to deselect Child “n”;

The triplet is_active/select/deselect, which we will call PathSelector, is the key to the abstraction:

regardless of the mux coding or even origin of the selection signals, a Test Manager will always

Register 1

Chain

Register 4

Child 1 Child 3

Parent

Register 1

Register 4

TDI

TD0 Register 2

Child 2R
eg

is
te

r
2

Linker

Sc
an

M
u

x

Control

Control

R
eg

is
te

r
3

Register 3

Child 2Child 1

Register 1

Chain

Register 4

Child 1 Child 3

Parent

Register 1

Register 2

Child 2

Linker
Control

Register 3

Child 2Child 1

Register 2 Register 4

Active Scan Chain

Register 1

Chain

Register 4

Child 1 Child 3

Parent

Register 1

Register 2

Child 2

Linker
Control

Register 3

Child 2Child 1

Register 3 Register 4

Active Scan Chain

a) Linker Selects « Child 1 »

b) Linker Selects « Child 2 »

72

be able to manage the Linker without needed to change its internal Topology Configuration

algorithms. The final modelling of the Linker was first presented in [1], and it is reproduced in

Figure 51

Figure 51 Complete Specification of a Linker Node, from [1]

4.3.2 Interfaces

The problem of Domain Translation needs an additional abstraction step: as depicted in Figure

42, the usual approach is to extract the Primitive Operations expressed in a DSL, process and

convert them into the new Domain and express them once more in a new DSL. This solution is

an extension of the legacy Static Retargeting of Figure 45, and suffers from the same limitation:

by forcing a static resolution, useful information is lost and each step has to recreate it from

scratch. Moreover, hardware description languages like ICL are based on a structural approach,

which is ideal for ATPG or pattern generation, but not for Domain Translation. It is in fact

extremely difficult to extract behavior from structure: for instance, if a Tool can easily parse ICL

and use the connectivity information for Retargating, it cannot understand how to use a JTAG or

I2C interface just from their AccessLink descriptions. Even doing it from an HDL such as VHDL

and Verilog is not an easy task, as any Validation expert knows well. To avoid these issues, we

propose the abstraction depicted in Figure 52.

Figure 52 Domain Crossing through the Relocatable Vector Format

The principle is to exploit a new piece of data, the “Relocatable Vector Format” (RVF), detailed

in Table 4, to express the Primitive operations in each domain, and use it to cross the boundaries

Li
n

ke
r Register

Register

Path 1

Path n

Select(path i)

DeSelect(path i)

isActive(path i)

PathSelector

Register

Control

Ctrl Of CTRL

SI (ScanInPort)

SO

(ScanOutPort)

B
IT

1

SE (ShiftEnPort)

TCK (TCKPort)

DO (DataOutPort)

Inst1 Of ONE

DI (DataInPort)

Inst2 Of ONE
DI (DataInPort)

DO (DataOutPort)

DO (DataOutPort)

B
IT

2

DI2 (DataInPort)

DI1 (DataInPort)

0

1

EXAMPLE

0

1
BIT3

CE (CaptureEnPort)

UE (UpdateEnPort)

Scan Domain

TAP
IR

JTAG Domain

TCK

TMS

TDI

TDO

I2
C

C
o
n
tro

lle
r

I2C Domain

SDA

SCL

RVF
Request

RVF
Request

RVF
Request

RVF
Response

RVF
Response

RVF
REsponse

E
x
e

c
u

tio
n

E
n
v
iro

n
m

e
n

t

DSL File

Circuit Under Test
(CUT)

Interface
Translator

Interface
Translator

Interface
Translator

Interface
Translator

Retargeter

73

through some Interface Translation. As it name clearly states, the principle is to reproduce the

Software Relocation Flow. The RVF format was firstly introduced in [J.4] and is based on a

Request-Response protocol: for each Domain, the Tool generates an RVF Request to perform a

certain Primitive, and passes it to next Domain. There, the Request will be processed and if

needed forwarded to the next Domain. At the end of processing, each Domain will generate an

RVF Response which can contain both Status information and return Data (in an interactive

approach).

Table 4 Specification of the Relocatable Vector Format (RVF)

RVF Request

Field Name Type Description

Data Binary Binary representation of the vector to be sent to the SUT

Primitive_idf String Primitive identifier

Optional Data binary Primitive-specific data

RVF Result

Field Name Type Description

Status String Information about the execution of the previous RVF Request

Data Binary Binary representation of the vector received from the SUT

The RVF format contains the Minimum Information Set which is needed to make a Translation

between Domains as it expresses only the Primitive itself. The key abstraction points are:

- Data is stored in Binary terms, to avoid the complexity of expressing it to specific string

formats (ex: SVF if right-aligned, while I2C usually prefers left-alignment);

- A Primitive is expressed as string. This is for both debug and inter-operability: using Binary

Enumeration can be more optimized in terms of memory space, but it can lead to confusion

especially when different Tool Providers are in play

- The “Optional Data” field allows RVF to vehiculate data which is proper to the interface and

not directly expressible in ICL. For instance, I2C or SPI need the target addresses for

Read/Write operations.

For instance, and “SDR 0x1234”command can be directly coded as (“SDR”,0x1234), while an

“I2C_Write(data=0x1234,address=0x27) command will become (“I2C_Read”,0x1234,0x27).

The Interface Translators of Figure 52 are the final point in solving the issue: moving away from

a purely structural point of view, the abstraction embraces a Functional approach. In coherence

with the localized Linker abstraction of the previous section, each Interface is responsible for

providing a Translator that is able to convert RVF requests coming from its right-hand side in a

Protocol (i.e. a set of Primitive) into one or more RVF Requests in another Protocol on its left-

hand side, and vice-versa for the Response path. Each Translator is based on the behavior of its

74

corresponding hardware, extracted rather from the Data Sheet and documentation than from the

HDL. For instance, Figure 53 proposes an example of RVF Translation for a JTAG-to-I2C

translator which expresses “SDR” operations as a sequence of a Write and a Read at address

0x12.

Figure 53 RVF Translation for a JTAG - to - I2C Translator

In terms of Circuit Model, this abstraction is summarized by the Interface Translator Node,

depicted in Figure 54. The “Channel” models the different connections to the Interface. For

instance, a JTAG TAP has two channels, connected to the IR and DR chains respectively. The

“Translate” method is supposed to completely process one right-side RVF Request, if needed

generating multiple Requests on its left-hand side and composing the left-hand side Responses,

finally returning the result as a unique RVF Response on its right-hand side.

Figure 54 Complete Specification of the Interface Translator Node

The scheme of Figure 52 supposes that the Retargeter is able to issue RVF Requests and process

RVF Responses. However, this might not always be the case, especially for legacy tools. To allow

compatibility, we therefore propose the AccessInterface node, depicted in Figure 55, which

instead of receiving RVF Requests uses the Primitive Identifier and Data computed by the

Retargeter on its right-hand side to start an RVF flow on its left-hand side.

I2C
Translator

RVF Request

0x1234

SDR

RVF Request

0x12

I2C_Write

0x12

RVF Response

OK/ACK

RVF Request

0x34

I2C_Write

0x12

RVF Response

OK/ACK

RVF Response

OK/ACK

Channel 1

Channel n

Translate(channel i,RVF Request)

Translator-Specific Data

Translator Protocol

In
te

rf
ac

e
Tr

an
sl

at
o

r

Right-Hand
Protocol

Left-Hand
Protocol

75

Figure 55 Specification of the Access Interface Node

4.3.3 Conclusions

To conclude, the different building blocks of the Circuit Model introduced in this Section are

assembled in Figure 56. The Test Manager can interact with it thanks to the methods defined at

each Node.

Figure 56 Complete Circuit Model Abstraction

Please also notice that the PathSelectors and Protocols are not necessarily part of the EDA Tool

itself: as they are exclusively based on the RVF abstraction, they can be developed separately

(typically, either by the IP Designer or the System Integrator) and included as separate modules.

Section 6 will provide an example of this process.

Retargeting DomainTransaction Domain
A

cc
es

s
In

te
rf

ac
e

Channel 1

Channel n

Translate(channel i,Primitive_IDF, Data)

Interface-Specific Data

InterfaceProtocol

RVF Operations

Register

Register

Li
n

ke
r

A

Li
n

ke
r

Register

Register

Li
n

ke
r

Register

Register

In
te

rf
ac

e

Tr
an

sl
at

o
r

C
h

ai
n

Register

System Model

EDA TOOL

Path
Selector

Interface
Protocol

Translator
Protocol

Path
Selector

Path
Selector

Test Manager

76

4.4 Test Manager

As depicted in Figure 46, the Test Manager is responsible for the interface and coordination

between the Test Algorithms and the Circuit Under Test. The actual algorithms and methods are

implementation-dependent: the role of the Test Manager in the Abstraction if therefore of a place-

holder/black box that is in the ideal place to collect the information provided by the other element

and act upon it. In the following two sections we will show examples of how the Test Manager

can fulfill its role to solve the issues of Vertical and Horizontal Retargeting, and how the Circuit

Model Abstraction can provide the necessary information and data.

4.4.1 Vertical Retargeting

For Vertical Retargeting, the Test Manager must be able to link the PDL operations and the

Registers they target. Figure 57 depicts the complete setup: a PDL algorithm, in the upper left-

hand corner, requires access to a specific Target register. As explained earlier, this source code is

compiled into a Relocatable Executable, which contains the API Calls for PDL. If we consider the

Instructions specifications as reported in [1687] in Table 1 and 2, their implementation by the

System Manager by exploiting the Circuit Model (CM) can be done in three ways:

- Modifications to the CM. For instance, an “iWrite” instruction modifies the Future Value its

Target register (as defined in Section 4.3.1), having it effectively queued as required in the

Standard. As a result, the State of the CM is no longer fully synchronized with the State of

the CUT : S(SM)≠S(CUT).

- Queries from the CM. For instance, an “iRead” returns the last value read from the CUT and

stored in the CM;

- CM/CUT Synchronization. Instructions such as iApply require queued modifications to be

applied, therefore restoring the equality between S(CM) and S(CUT)

Figure 57 Complete Setup for Vertical Retargeting

The actual implementation of the PDL Library is not part of this Abstraction, so each Test

Manager can implement it as it better suits its constraints and goal. The same goes for the

CM/CUT synchronization Algorithm, which can exploit the Circuit Model abstraction to identify

the S(CM) needed to satisfy the PDL instruction and guide the S(CUT) to it. However, the Circuit

Model provides all the information and methods needed to manipulate both S(CM) and S(CUT).

T
a

rg
e

t

Test Host

Test
Manager

[…]
iWrite Target 0b100

iApply
[…]

Compiler

Circuit Model

Circuit Under Test

T
A

P

PDL
API

77

To demonstrate its usage, we will unroll the solution of the example of Figure 57. First, we will

call S0(CM) and S0(CUT) the states of CM and CUT respectively at the beginning of the execution

of the provided PDL code. Figure 58 depicts this setup, where for simplicity, we considered that

at that at time 0 all ScanMuxes are closed. The dotted line highlights the Active Scan Path in both

CM and CUT, while the red arrow the execution position in the PDL code.

Figure 58 Circuit Model and CUT status at time 0

The result of the execution of the iWrite command is shown in Figure 59

Figure 59 Status mismatch caused by a PDL instruction

The iApply instruction demands a synchronization between S(CM) and S(CUT). For this, the Task

Manager needs to compute the STARGET(CM) for which the Target Register is part of the Active

T
A

P

T
a
rg

e
t

S0(CM)==S0(CUT)

Circuit Under TestCircuit Model

[…]
iWrite Target 0b100

iApply
[…]

T
A

P

T
a
rg

e
t

S1(CM)!=S1(CUT)

Circuit Under TestCircuit Model

[…]
iWrite Target 0b100

iApply
[…]Future = 0b100

78

Scan Chain, and the sequence “n” states which will bring the CM to the desired state.

Figure 60 depicts one possible sequence. Please note how each Selection Request of a Linker queues a

state modification for its controlling register, and how each Si(CM) in the sequence can resolve at least

one of these requests. For readability’s sake this Configuration requests are marked on the Linkers in

Figure 60, but in reality, they result as Future Values change requests in the controlling register(s),

as explained in Section 4.3.1 and depicted in Figure 49 and Figure 50.

Figure 60 Sequence of n CM state reaching STARGET(CM) from S0(CM)

S2(CM) S1(CM)

STARGET(CM)

S3(CM) SN(CM) == STARGET(CM)

S2(CM) S1(CM)

STARGET(CM)

S3(CM) SN(CM) == STARGET(CM)

S2(CM) S1(CM)

STARGET(CM)

S3(CM) SN(CM) == STARGET(CM)

79

The computation of both STARGET(CM) and the sequence S0→N(CM) is not unique and is left to the

Implementation of the Abstraction. It could use classical solutions like Dijkstra, any modern

shortest-path algorithms or even incremental algorithms as in the MAST Implementation that

will be described in Section 5. Once the sequence of states is known, the Test Manager can apply

them to the CSU until SN(CPU)== STARGET(CM) and the processing of PDL operations can

continue. As this unrolling shows, a great part of the Task Manager is implementation-

dependent, leaving a lot of freedom to each EDA implementation. However, all variants are only

possible thanks to this Abstraction, in particular to the information stored in the Circuit Model.

4.4.2 Concurrency (Horizontal Retargeting)

In Horizontal Retargerting, the Test Manager must be able to make the connection between

several PDL Instructions that need to be pushed to the SUT. In the traditional approach, depicted

in Figure 28 and reproduced here for easier reference, the EDA Tool aims at producing a top-level

PDL Stream by statically extracting concurrency from a PDL stream: the iMerge instruction is

provided to highlight sections whose execution might be parallelized. The principle is that

“everything is sequential if not told otherwise”.

Reproduction of Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4]

This is a direct evolution of the classical flow, where the User manually composes the top-level

Test Strategy. However, the extraction of concurrency from a sequential program is a problem

that is computationally extremely complex. In Computer Science, especially when an Operating

System is present, the general assumption is the opposite: “everything is parallel if not told

overwise”. Processes and threads are executed in parallel thanks to the Scheduler, and provisions

are given to force sequential behavior when needed (such as semaphore, rendez-vous, etc…)

[TANE15]. This same principle can be applied to Testing: each IP comes with a set of Test

Procedures, which must be executed in parallel to test the whole system. Our new Test Flow can

support parallel execution in the same way, as depicted in Figure 61. The Test Manager has the

same role of the OS: arbitrating the access requests from the Test Algorithms to the limited

resources of the CUT, through the often-unique interface.

Top-Level
PDL
…

iCall Inst_1
iCall Inst_2

…
iCall Inst_3
iCall Inst_1

…
iCall Inst_3
iCall Inst_1
iCall Inst_2

…

In
st

ru
m

en
t 1

iP
ro

c
In

st
_1

In
st

ru
m

e
n

t 2
In

st
ru

m
en

t
3

To
p

-L
ev

el
M

o
d

u
le

 (
IC

L)

iP
ro

c
In

st
_2

iP
ro

c
In

st
_3

Retargeting

Top-Level PDL
…

Merged Inst_1+Inst_2
…

Merged Inst_3+Inst_1
…

Merged
Inst_3+Inst_1+Inst_2

…

80

Figure 61 Horizontal Retargeting in the new Test Flow

Regardless of the concurrency principle chosen in a given implementation, once more, the Circuit

Model provides the key to the resolution: thanks to the PDL API, each Test Algorithm will either

iRead data from it, or iWrite modifications to it. As a result, the S(CM) loses its synchronization

with S(CUT) while storing all the modifications as changes to the Future values of the target

registers, as depicted in Figure 62.

Figure 62 Circuit Model Abstraction for Horizontal Retargeting

Horizontal retargeting is once more solved thanks to a tree transversal that identifies the Active

Scan Path, and can therefore service the queued PDL operations. On the other hand, the way

these modifications are queued and how the concurrency of the Algorithm is handled is left to

the Tool Implementation. In the following Chapter we will show the Implementation chosen in

the MAST tool, and also some possible variations using the same Abstraction introduced here.

The clear advantage of this Abstraction is that both Horizontal and Vertical retargeting are solved

through an analysis/transversal of the Circuit Model. It is therefore possible to solve the two at

the same time, as shown in Figure 63

Relocable
Test

executable

Elaboration/
Compilation

DfT Files
(ICL,BSDL,

etc..)

Test Host

Test
Manager

CUT
Model

Circuit Under Test
(CUT)

Parsing /
Analysys

Libraries

Relocable
Test

executable

Elaboration/
Compilation

Relocable
Test

executable

Elaboration/
Compilation

In
st

ru
m

e
n

t
1

iP
ro

c
In

st
_1

In
st

ru
m

e
n

t
2

In
st

ru
m

e
n

t
3

To
p

-L
ev

el
M

o
d

u
le

 (
IC

L)

iP
ro

c
In

st
_2

iP
ro

c
In

st
_3

Instrument
2

Instrument 1

TAP

Future = 0b100 Future = 0b101

Instrument 3

Future = 0b111

iScan TAP -si 0b100101111

Future = 0b100

81

Figure 63 Circuit Model Abstraction for Horizontal and Vertical Retargeting

Both PDL Operations and Configuration actions result in Modifications Requests to S(CM) and

in a desynchronization with S(CUT), so they can be solved in the same way through the

algorithms and strategy presented in this Section.

4.5 Domain Crossing and RVF propagation

The last role of the Test Manager to handle the Domain crossing, so that the operations defined

in a Protocol (i.e. a set of Primitives) can be translated to another, eventually obtaining Primitives

for the interface with the CUT. This is done by propagating the Operations expressed as RVF

Messages through the Interface and Translator nodes introduced in Section 4.3.2 through the

Circuit Model nodes, as depicted in Figure 64. The transformation and forwarding of the

messages are left to the of the Protocols defined into each node of the Abstraction, and introduced

earlier in this Chapter.

T
A

P

T
a
rg

e
t C

T
a
rg

e
t B

T
a
rg

e
t A

Target B

Target A

TAP

Future = 0b100

Future = 0b101

Target B

Future = 0b111

[…]
iWrite TargetA 0b100

iApply
[…]

[…]
iWrite TargetB 0b101

iApply
[…]

[…]
iWrite TargetC 0b100

iApply
[…]

Future = 0b1

Future = 0b1

82

Figure 64 RVF Packet Propagation on the Circuit Model

Once more, the actual shape of the RVF Messages inside the tool and the Messaging Layer

responsible of their propagation is left to the Implementation, of which an example will be given

in the next section for the MAST Tool.

Scan Domain

JTAG
TAP

I2C

Interface

Scan Domain

IJTAG Domain

I2C Domain

Interface Domain

83

5 A New Automated Test Flow:

Implementation

The Abstraction presented in the previous Chapter is the result of almost 15 years of work. In this

Chapter, I will retrace the iterations between Analysis and Implementations that allowed not only

to develop and refine the Abstraction itself, but also to focus the work to the actual needs of the

Testing Field.

5.1 Early Developments : Test Instruction Set Architecture and NSDL:

2007 → 2013

I started working in the field of Automated Testing in 2007, upon my arrival in Bell Labs Ireland,

by joining the IEEE P1687 Standardization Working Group. At that moment in time Alcatel-

Lucent did not have any major ASIC project: rather than influencing the internal DfT strategy,

the priority was to push into the Standard features that would be useful later in the Design flow.

As a new member of its Research & Development Division, my manager Suresh Goyal put me in

relationships with three Bell Labs Senior Members, Bradford Van Treuren, Tapan Chakraborty

and Chen-Huan Chiang, each having more than 20 years of experiences in the historical locations

of Whippany and Murray Hill in New Jersey, USA. Together we formed a distribute research

group where my role was to collect their requirements and expectations and transmit them to the

new Standard. The aim was to both understand the direction the standard was going and to

influence its development in a 5-to-10 years window.

The first step was to develop an internal demonstrator for the P1687 proposals and testbench it

against the most use Boundary-Scan tools used in Alcatel-Lucent, such as for instance ScanWorks

from Assett Intertech. The result, depicted in Figure 65, comes from the feedback from the expert

user and mimics the real flow used by Test Engineer in the company: the Circuit Under Test

(CUT) in the right-hand side is a VHDL-based FPGA implementation of a P1687 network as it is

was being discussed in the WG at that moment in time (registers and simple SIBs). Its TAP can

be accessed from a Test Host using the Impact tool of the Xilinx ISE suite, which exploits their

proprietary JTAG controller and a built-in IP which redirects the bitstream inside of the FPGA

rather than to its configuration memory. Impact accepts SVF files, which are generated by the

ScanWorks tool from the BSDL description of the ML505 board, provided by Xilinx. Inputs and

outputs of the P1687 networks can be set/observed using onboard components (Leds and Dip-

switch respectively). Last but not least, the Chipscope tool from Xilinx allows monitoring of

internal signals of the P1687 network by means of a “virtual oscilloscope”. The content of the

BSDL and SVF files must be manually edited to add the new P1687 features.

84

Figure 65 P1687 Demonstrator (2007-2008)

Extensive experiments on this platform highlighted two main criticalities:

- The inadequacy of BSDL to describe the dynamic SIB-based topologies of P1687

- The limitations of SVF to express functional operations over P1687 instruments

As the Standard discussions were focusing on the Language issue, and I had experience in both

Grammars and Compilers, I decided to focus on it. Moving away from both the enumeration-

based BSDL and the structure-based RTL, I specified and implemented NSDL, the “New Scan

Description Language”. For the first time in Boundary Scan, NSDL proposed a description based

on the hierarchy of the system rather than on its signal-level connectivity, and allowed functional

procedures to be freely mixed with the hardware description. This was achieved by leveraging

the capabilities of VHDL, the base language for BSDL, which already contained most of the

desired features (components, hierarchy, functions, etc…) and adding only the specificity of

P1687. Through an informal collaboration with the University of Maynooth, Ireland, we modified

a VHDL parser (the front-end of the Open-Source tool GAUT [MAR93]) to verify NSDL and

produce and intermediate XML file that could be fed to EDA tools, therefore proving its

usefulness in a real flow as the one in Figure 65

First presented at some workshops ([W6], [W7]), NSDL rapidly raised interest in the field and we

were able to publish at conferences [28] and journals [J.6]. In parallel, following the aggressive IP

policy of Bell Labs we filed several patents to cover the language, all of which were eventually

granted [P2][P3][P4]. NSDL was presented to the P1687 Working Group and was for some time

one of the candidates to become the Standard’s language, but it was eventually discarded for

several technical and political reasons. Technically speaking, NSDL had two shortcomings:

- It was based on VHDL, which is a language mostly used in Europe, while most (or all) of the

WG member were American and had therefore little familiarity with it. VHDL’s strict typing

and grammar makes it difficult for the newcomers, and that difficulty was transferred to

NSDL;

- The hierarchy-based abstraction was too high-level for the point of view of the WG members,

which preferred to stick to a more classical structural view, which eventually became ICL.

X
ilin

x

J
T
A

G

c
o
n
tro

lle
r

Test Host (PC)

JTAG

Cable

JT
A

G

IP

ML505 FPGA (CUT)

Chipscope IP

P1687 Network

Leds
Dip Switch

Xilinx

Impact

Xilinx Chipscope
Xilinx Chipscope

ScanWorks

SVF
File

BSDL
File

Manual Edit

85

Politically, the patenting policy of Bell Labs backfired: even though the company promptly

produced Letter of Assurances (cfr. Section 2.2) the WG did not want to risk selecting proprietary

solutions and risk a “patent blockade” (it was the period of the Apple vs Samsung controversy).

Even if it was not finally retained, NSDL still had a deep impact on P1687 by pushing the limits

of what was possible to describe, and influenced the final version of ICL.

In parallel with NSDL, I focused on the second P1687 shortcoming: the lack of a proper way to

express functional operations over Instruments. This was caused by the limitations of DSLs like

SVF, which could only express JTAG operations and nothing else. In strict collaboration with my

New Jersey colleagues, in particular Brad Van Treuren, we decided to explore a completely new

direction: instead of enriching the DSL with algorithmic capabilities as done for instance in

[STAPL] and STIL [1450], we decided to enrich the processing capabilities of a CPU with Scan

features. We therefore developed the “Test Instruction Set Architecture” (TISA) a set of processor

instructions able to control a JTAG TAP in the same way an SVF file can. The actual

implementation of the TISA instructions is proprietary to Bell Labs, so in this document I will

focus on its high-level goals and abstractions which have been disclosed either in publications

[J.5][26][W5] or in Patents [P6][P8][P9][P10][P11][P12][P14].

The principle of TISA is depicted in Figure 66:in order to shift a scan chain composed of several

Segments, TISA Instructions can be used to reference each segment separately, instead of having

a single top-level SDR command. Each instruction will activate the TAP signals (most notably the

clock) to shift enough bits for the length of the Segment it is referencing. The execution of the

sequence of TISA Instructions has therefore the effect of shifting the whole scan chain: Horizontal

Retargeting is reduced to a simple sequencing problem.

Figure 66 TISA Principles

TISA and traditional ISA instructions can be freely mixed inside an executable file such as

[ELF95], so the execution of a TISA-enriched algorithm can be expressed using the Use Model of

Figure 67.

Figure 67 TISA Single-Algorithm Use Model

Segment 1

Se
gm

e
n

t
2

Segment 3

TDI

TD0

TISA_shift(Segment3)
TISA_shift(Segment2)
TISA_shift(Segment1)

Relocable
Test

executable

TISA-Enhanced
CPU

Circuit Under Test
(CUT)

Compiler

TISA
Instructions

Test
Algorithm

Segment

86

For the first time, it was possible to fully integrate Test and Software flows. However, the flow

required the Compiler to accept TISA instructions, and the User to correctly (and manually) write

the sequence of TISA Instruction, considering also the status of the SIB. To remove these locks,

we developed thanks to the Master Internship of Josef Ahmad the setup of Figure 68.

Figure 68 Complete TISA Setup, from [J.5]

 First of all, we defined a target CPU for the TISA extension: the Leon2 processor from Gaisler

Research [GAI]. Now replaced by its newer versions (such as Leon5), it was at that moment in

time one of the few Open Source Softcore processors with a fully-functional software stack, and

I had experience with it thanks to my PhD. I first defined a binary mapping for TISA instructions

compatible with the Sparc-V8 ISA [SPARCV8] exploiting the “unimplemented” field values, and

then the Master Thesis started by adding a modified Leon2 architecture target to GCC to support

the new extension set in the ELF flow. Then we developed the system of Figure 68, which is the

first embryo of the Abstraction detailed in Section 4. The TISA instructions were both

implemented in a VHDL co-processor for simulation and FPGA emulation and in software to

generate on-screen debug messages and traces.

 There were however some limitations:

- The Circuit Model was incomplete and only supported a simplistic version of the SIB;

- The Circuit Model was to be built directly into the code, and the correspondence between

nodes and Instrument threads done manually through named mutexes.

- The Instrument threads would not execute PDL commands, but needed TISA assembler

instructions to be hard-coded as inline “asm” code;

- The arbitration mechanism was based on the over-mentioned mutexes, with each Instrument

thread encasing its TISA instructions inside a Critical Section [TANE15], and communicating

with the Scheduler thanks to Request/Acknowledge protocol, depicted in Figure 69

87

Figure 69 TISA Scheduler protocol, from [J.5]

Regardless of these limitations, by the end of the Internships we had a fully functional demo,

which proved the feasibility of the TISA approach.

The next improvement of the TISA setup was boosted by un unexpected opportunity: upon me

joining the Paris Bell Labs location in 2011, I had access to one of the first ZC702 cards available

in France, [ZC702] : Xilinx has just released its new Zynq SoC concept joining the flexibility of an

FPGA fabric and the performances of a dual-core Cortex A9 ARM hard processor, along with a

set of 4G-oriented IPs, and was aggressively advertising it to Alcatel-Lucent, one of its main

customers (most of the specialized hardware of Base Stations at that time was implemented using

Xilinx PFGAs). I therefore decided to port the hardware version of TISA on the new platform to

leverage the significant software performance gain: the hard-macro ARM processor had a

working frequency configurable between 0,5 and of 1Ghz, while the Leon 2 soft core had a

working frequency of 50Mhz. This meant also porting the Software TISA flow to the processor:

luckily in contrast with the SPARC V8, the ARM v7a ISA contains some dedicated co-processor

instructions [ARMv7] which can be used by an implementer for his own hardware accelerator. I

was therefore immediately able to cross-compile and use the complete TISA setup of Figure 68

without needing any custom change in the GCC cross-compiler. JTAG being notoriously slow,

performances were not an issue so I opted for a classical co-processor setup on the AXI bridge,

depicted in Figure 70 : the TISA coprocessor is plugged to the AXI bus of the ARM core as a Slave,

and interacts with outside thanks to one of the GPIO banks of the card. The TISA test algorithm

can be directly compiled by GCC, but as the ARM core is a hard macro, it is not possible to modify

its Decode stage: Coprocessor instructions will therefore trigger an Illegal Instruction

Interruption. The Handler is used a driver: it decodes the instructions and performs the memory-

mapped communication with the TISA processor to execute it.

88

Figure 70 TISA Hardware demonstrator on Zynq

With this demonstrator the TISA ecosystem was finally complete and we could demonstrate its

usage on a complete FPGA target. Figure 71 reports the experimental results: the chronograms

are a direct replica of the waveform captured on an oscilloscope (which did not have a record

function).

Figure 71 Execution of the TISA Hardware demonstrator, from [J.5]

We also measured TISA scheduling time depending on the number of parallel threads, and

demonstrated its capability to scale linearly. At the moment of the publication of [J.5], no other

solution could boast similar performances.

Figure 72 TISA Scheduling Performances, from [J.5]

ARM Core

FPGA Fabric

TISA
Coprocessor

A
X

I
Sl

av
e

JT
A

G
TA

P

TCK

TMS
TDI

TDO

G
P

IO

AXI
Bus

SIGILL
IRQ

Handler

TISA Test
Algorithm

GCC
Compiler

TISA
Coprocessor
Instructions

TCK
TMS

TDI
TDO

Tap State sDR cDR Shift-DRRTI

Segment input

Segment output

0100
0011

1
0

0011
1000

Segment 1.3
Segment 1.2

Segment 1.1 Segment 2.1

00000
00110

Segment 3

111
100

uDR RTIeDR

00110

TISA Segment operations

Equivalent JTAG scan operation

Segment 4Head

TCK
TMS

TDI
TDO

sDR cDR Shift-DRRTI

Scan Input: 0100100110000011100110
Scan output: 0011010000011010010000

uDR RTIeDRTap State

TCK
TMS

TDI
TDO

sDR cDR Shift-DRRTI

Scan Input: 0100100110000011100110
Scan output: 0011010000011010010000

uDR RTIeDRTap State

CPU CPU CPU CPU CPU

10000

CPU
CPU
S1.3
CPU

CPU

S1.3
CPU

CPU
S1.2
CPU

CPU

S1.2
CPU

CPU
S1.1
CPU

CPU
S2.1
CPU

CPU

S2.1
CPU

CPU
S3
CPU

CPU

S3
CPU

CPU
S4
CPU

Instruction Execution Flow

89

5.2 First Abstractions: New System-Level Test (NeSLT : 2013 →2015)

In 2013, I decided to leave Alcatel-Lucent and join Grenoble-INP Phelma as an Associate

Professor. This resulted in the impossibility to access the TISA technology that remained

propriety of my previous employer. Through Grenoble-INP Valorisation Department, in

particular thanks to the efforts of Wahiba Robert and Isabelle Chery, I launched a licensing project

with Bell Labs to achieve Research access rights to the technology, but the promising discussions

were halted by internal problems. Alcatel-Lucent entered a Restructuring phase which ultimately

ended up with the closing of Bell Labs Ireland. All my contacts were either fired or moved to

different positions, effectively ending the project.

I took this setback as the opportunity to come back to the drawing board and develop a

completely new setup which would be independent from by Bell Labs’ work and able to

overcome its limitations. In fact, upon a closer inspection a practical usage of TISA was limited

by these factors:

- the execution of the setup strictly relied on the correct sequence of TISA instructions

belonging to different Segments. In a real setup, each Test Algorithm might come from

different actors and EDA tools suites, which would be responsible of the translation of PDL

commands into TISA instructions. Any ambiguity or difference in the translation algorithm

would result into non-compatible sequences, with unpredictable behavior;

- the Request/Acknowledge protocol had to be directly implemented in each thread. An error

in one of them (ex: a thread not releasing its mutex or executing TISA instructions outside of

a Critical Section) would also result in unpredictable behavior or deadlocks;

- The Circuit Model was simplistic and relied a simplified model of the SIB, making extensions

to other types of Topologies close to impossible;

- The need of a specialized Co-Processor restricted the application domain to embedded

controllers, cutting out the most used Execution Environments such as ATE or Desktop.

- Last but not least TISA was completely JTAG-centric and unable to support any type of

alternate Interface.

To solve these issues, I developed two fundamental bricks of the Abstraction of Section 4:

- The Linker Abstraction, which reduces SIB as a simple example;

- The Test Manager and the PDL API, which replaced the Scheduler.

The second point is probably the most important: in contrast with the TISA Scheduler, which

simply decides in which order each Thread can communicate with the CUT through the TISA

instructions, the Test Manager is the single access point to the CUT. This allows a solution for

each of the previously-mentioned weaknesses:

- Threads can queue their modification requests inside the Circuit Model, but only the Test

Manager can propagate them to the real hardware. This excludes the possibility of

unpredictable operations on the CUT.

- The PDL commands are directly implemented by the Test Manager, rather than by a third

party. This means that the Request/Acknowledge protocol is part of the Manager itself,

making their usage predictable and excluding bad usage (in the absence of bugs).

90

- The Linker Abstraction makes the Circuit Model extendable to arbitrary topologies

- Interaction with the CUT is centralized by the Test Manager, which is therefore responsible

for controlling the Interface. There is therefore a specific step where JTAG instructions are

created, and which could be modified to support other Interface types.

- The translation between retargeted vectors and Interface operation is done purely in

software, without the need for specialized hardware

Following the usual method, I developed an Implementation of this Abstraction: the “New

System-Level Test” (NeSLT). Written in C following an Object-Oriented approach [OOC], it

implemented the new Abstraction from scratch, without reusing any line of code of the TISA

Scheduler to guarantee independence. I quickly realized that for the complete implementation

of the Abstraction I needed more manpower and expertise that I could manage by myself. I

therefore looked for Financing opportunity: given its industrial value and potential impact, I

engaged discussions with Grenoble-INP Valorisation department: after a first “APP” Software

Depot [APP1], I was selected for a Maturation Project by Linksium, the Technology Transfer

Accelerators (SATT, from the French “Societé d’Accéleration du Transfer Technologique”) of the

Grenoble Region. The project was coordinated by Christophe Poyet of Linksium, and the team

was soon strengthened by Olivier Bolon, an expert of the EDA market looking for investment

opportunities.

5.3 A General Solution: MAnager for Soc Test (MAST: 2015→2017)

As its name states, the aim of a Maturation project is to take a promising technology and make it

mature so that is closer to industrial applications. This is usually measured by the TRL, or

“Technology Readiness Level”. The wording can be slightly different, but the general consensus

reproduced in Table 5, is clear. From this definition, NeSLT was clearly a TRL 3: “Experimental

Proof of Concept”. The aim of the Maturation project was to bring it to TRL 5/6 and ideally up

to TRL 7.

Table 5 Technology Readiness Level definition, adapted from Wikipedia

TRL NASA usage [TRL-NASA] European Union [TRL-EU]

1

Basic principles observed and reported Basic principles observed

2

Technology concept and/or application formulated Technology concept formulated

3

Analytical and experimental critical function and/or
characteristic proof-of concept

Experimental proof of concept

4

Component and/or breadboard validation in
laboratory environment

Technology validated in lab

5

Component and/or breadboard validation in
relevant environment

Technology validated in relevant environment (industrially
relevant environment in the case of key enabling technologies)

91

6

System/subsystem model or prototype
demonstration in a relevant environment (ground or
space)

Technology demonstrated in relevant environment (industrially
relevant environment in the case of key enabling technologies)

7

System prototype demonstration in a space
environment

System prototype demonstration in operational environment

8 Actual system completed and "flight qualified"

through test and demonstration (ground or space)

System complete and qualified

9

Actual system "flight proven" through successful
mission operations

Actual system proven in operational environment (competitive
manufacturing in the case of key enabling technologies; or in
space)

A quick inspection NeSLT made it clear it was impossible for it to mature. The Abstraction was

Object-Oriented, but I wrote the code in “Object-Oriented C” (OCC) because I lacked the

necessary Software Development skills in C++. While it is sometimes claimed that OOC is “more

performing” than pure OO code, I never found any real data to support this assumption.

However, the need to manipulate, convert and allocate a huge number of pointers to mimic

Objects and Methods indisputably made the code base difficult to read and maintain. Moreover,

performances were not a Key Performance Indicator in the Project: the priority for Linksium was

the TRL enhancement with the intention of launching a Start-Up. For me, to have a code easy to

maintain and expand even after the Project was finished. I therefore decided for a completely

new development with the following goals:

- C++ as the language, to marry performances and maintainability

- Modern Project Management facilities, such as CMake for compilation, GIT for version

control, Unit Testing for code quality, etc…

- Replicate NeSLT features from the ground up, without any code reuse

- Privilege code maintainability and readability with reasonable performances

- Extreme portability

Portability was the most important and constraining point: to avoid ending up in the same hyper-

specialized solution as TISA, the coding style should follow strict constraints:

- Guarantee OS-independence (targeting Linux and Windows)

- Guarantee Architecture-Independence, notably in terms of Endianness;

- No IDE dependence in the build flow;

- Use only standard C++ library, avoiding solutions such as [BOOST];

The latter point might seem over-the-top, but it is actually key: while libraries like BOOST are

widely used and are described as “portable”, they are not always included in constrained

installation such as Embedded Controllers or even ATEs, where streamlined distributions with

the strict minimum of modules are usually preferred.

Through Linksium’s channels I was able to recruit Jean-Francois Coulon, a C++11 Developer with

more than 30 years of experience. This supervision was also the opportunity for me to raise my

competences in C++11 and Software Engineering: we set up an Agile-like methodology, with

regular meetings (at least once each couple of days) to validate developments and decide new

92

tasks. This timeline might remind a Scrum Project Management, but I took ownership mostly of

the development guidelines and choice of tools and algorithms, while Jean-François proposed

and actuated the low-level task partitioning. In the 10 months of contract we were able to develop

a complete solution, the “MAnager for Soc Test” (MAST), which answered all the constraints.

After the Maturation project ended, with Linksium we passed into an Incubation project, with

another 5 months of contract for Jean-François. Olivier took on the role of Project Lead, and the

Linkisum supervision was passed on to Luc Oba. At that moment in time, I was also able to recruit

Niels Grateloup, a young Grenoble-INP engineer, for 3 months thanks to a budget transfer from

another Incubation project in TIMA which was terminated by its Project Leader, Stéphane

Mancini.

The final form of MAST, protected by 2 updates to the original [APP1] filing, is depicted in Figure

73. Maintained as GIT project on UGA’s GitLab server, the project is composed of a total of 2473

files, of which 329 C++ Headers and 392 source files for more than 150K lines of code. The build

process is handled by CMake, and all modules are doubled by a CTest infrastructure, not shown,

with a rough total of 5000 Unit Tests. All code is extensively commented, with a Doxygen-

generated HTML Documentation.

Figure 73 Final MAST Software Architecture

The main part of the software is the MAST Core, developed during the Maturation project, which

by itself is responsible for 294 source files and 470 Headers for ~27K lines of code. This contains

the Implementation of the Abstraction of Section 4, and is completely self-contained. Libraries

that can be used for specific setups are regrouped into an Optional library set, whose inclusion

can be controlled through build parameters. External libraries have their own set, and are

included as source code to avoid dependencies on the host platform. The core can be extended

through specific APIs, and a Factory Design Pattern [DEPA94] is implemented to allow run-time

loading of custom extensions compiled as Shared Executables (.so in Linux, .dll in Windows).

MAST
CORE

Readers

ICL

SIT

System
Model

API

Logger
YamlPDL API

User Code Plugin

MastRpC

OpenOCD

SPI

Optional External

xmlrpc-c

openOCD

libFTDI

tclap

Custom Code Plugin

Factory API

Interfaces/Protocols/Configuration/Output format

Extension
APIs

Kiss-FFT

93

The Circuit Model implemented into the Mast Core, shown in Figure 77, is a direct

implementation of the Abstraction, and can be built from ICL thanks to a dedicated parser.

Figure 74 Doxygen-Generated UML Class Diagram for MAST System Model

However, ICL is an extremely detailed and error-prone language and it is not adapted to quick-

iteration experimentations. Its parsing and elaboration is quite complex: experimenting new rules

can be an extremely time-consuming task. For these reasons, MAST implements also its own DSL,

called “Simplified ICL Tree” (SIT): born as a simple textual dump for MAST’s System Model, it

developed into a fully-fledged DSL able to describe complex hierarchical systems. Without going

into syntactical details, we will show some usage example. The role of SIT is not to become “the

new 1687 Language”, but rather to be the sandbox to test new rules and approaches which should

eventually make them way to ICL.

To demonstrate how MAST implements the complete abstraction of Figure 46 and Figure 47, we

will provide a step-by-step description of its usage through a benchmark module, depicted in

Figure 75. It is a simple 8-bit register called reg_8, over which we want to execute a Test Algorithm

94

called “Random”. For easier usage, it is wrapped into a chain called “base_example”, which can

be used in the SIT syntax but which will not appear in the path of PDL module names.

Figure 75 Benchmark Module a), its SIT Description b) and the corresponding abstraction c)

The “Random” algorithm is reproduced in Figure 76 : a set of “loopCount” iWrites to the target

register of random values. Thanks to the C++ wrapping, we can freely use standard libraries as

in a classical programming setup.

Figure 76 "Random" Testbench algorithm

The compilation flow for the Testbench is detailed in Figure 77: as in the TISA setup, the test

executable contains the Test information, but this time they are Relocation Symbols for PDL

operations: the result is completely portable with no dependencies on specialized hardware. Of

course, the actual symbols are mangled by GCC [HERY98], but as they are referenced through

the C++ Header this is transparent from the user’s point of view.

Figure 77 Details of the MAST Compilation flow for the Testbench

Execution, depicted in Figure 78, is a direct implementation of the Abstraction: the test executable

is loaded at Runtime, and it is executed against the Circuit Model obtained from the SIT/ICL file

to obtain the output patterns. Some implementation details are omitted for clarity’s sake (ex: the

8-bit
register

TDI

TDO

CHAIN base_example NOT_IN_PATH

PDL Random

{

REGISTER reg_8 8 Hold_value Bypass: "0x00"

}

« Random »
Test

Algorithm Base_
example

Reg_8

a) b) c)

void Random ()

{

auto seed = chrono::high_resolution_clock::now().time_since_epoch().count();

auto word_rand = std::bind(std::uniform_int_distribution<int>(0,1<<registerSize),

mt19937(seed));

auto loopCount = 10u;

auto i = 0u;

while (i<loopCount)

{

iWrite(reg_8, word_rand());

iApply();

i++;

}

}

Random.cpp

API calls
with

Algorithm

PDL_API.hpp

Compiler libRandom.so

[…]

0000000000000000 F *UND* 0000000000000000

_ZN4mast6iApplyEv

[…]

0000000000000000 F *UND* 0000000000000000

_ZN4mast6iWriteENSt12experimental15fundamentals_v117basic_string

_viewIcSt11char_traitsIcEEEi

PDL
Relocation
Symbols

95

usage of a Factory Pattern to link the C++ PDL function name with the SIT file reference), but the

information flow is complete.

Figure 78 Execution of the Random testbench

Please note how in the SIT file, the base example can be directly instantiated from the TAP

description. By acting on this top-level description we can measure MAST’s performances for

Retargeting, first published in [J.4]. By replicating the INSTANCE in the SIT file, we can

benchmark the retargeting times for Horizontal Retargeting: the results are reported in Figure 79

for different “loopCount” values: 10, 100 and 1000.

Figure 79 MAST performances for Horizontal Retargeting [J.4]

There are two takeaways: first of all, the retargeting times are extremely small: the most complex

example (1000 iWrites replicated 1000) takes less than 50 seconds on a standard laptop. Second,

apart from the OS noise (we measure wall-time execution) the complexity is clearly linear, the

best possible result for scaling.

To measure Vertical retargeting, we follow the same scheme but we put a SIB before the “base

example”, which then we replicate “n” times to obtain the results of Figure 80: once more, MAST

guarantees linear performances with limited absolute execution times.

JTAG_TAP TAP SVF_Emulation 4 1

(

INSTANCE Replica_1 OF base_example .sit

)

8-bit
register

TDI

TDO

« Random »
Test

Algorithm

a)

b)
c)

TA
P

SVF
Output

Test Host

Test
Manager

Circuit Model

PDL
API

Base_
example

Reg_8

TAP

SVF
Output

Random
.sit

Random
.cpp

00:00,0

00:08,6

00:17,3

00:25,9

00:34,6

00:43,2

00:51,8

0 200 400 600 800 1000 1200

R
et

ar
ge

tu
n

g
 t

im
e

(s
)

Concurrent iProcs/Register Count

Horizontal Retargeting time

N=10

N=100

N=1000

Pattern set size

96

Figure 80 MAST performances for Vertical Retargeting [J.4]

Last but not least, one of the promises of the Abstraction is to efficiently handle both Horizontal

and Vertical retargeting, as demonstrated in Figure 81

Figure 81 MAST performances for joint Horizontal and Vertical Retargeting [J.4]

In all the testbenches, the size of the computed Pattern Set was extremely close to the theoretical

optimum.

Scientifically, the Maturation and Incubation projects are a success: the MAST software is a

completely functional implementation of our Abstraction, and can boast performances no other

commercial Tool can match, at least on published data. It is also the only complete

implementation of PDL-1 interactive behavior.

However, the Incubation project was stopped in 2018 in common accord with Linkisum and the

Incubation Project Leader, Olivier Bolon, when the financing ran out. The projected Start-Up was

not able to secure the initial, key First Customer to finance the final TRL improvement and gain

a market share. This was due to several reasons, the most important being that the MAST

software was probably still too advanced and “different” for the cautious Testing Market. We

contacted several key actors in the Semiconductor, EDA and Instrumentation businesses and

received an extremely positive feedback, but we were never able to secure a deal. While being

“too advanced” is a flattering formulation in scientific terms, it also means that MAST did not

answer to a clearly-identifiable industrial need: from a customer’s perspective its market value

was therefore too weak to justify an investment. In hindsight, during the Incubation phase we

should have probably identified a Target Market Segment and focus development on it, but we

lacked this feedback at the time.

00:00,0

00:08,6

00:17,3

00:25,9

00:34,6

00:43,2

00:51,8

01:00,5

01:09,1

01:17,8

0 200 400 600 800 1000 1200

R
et

ar
ge

ti
n

g
ti

m
e

(s
)

Hierarchy Depth

Vertical Retargeting time

00:00,0

00:00,9

00:01,7

00:02,6

00:03,5

00:04,3

00:05,2

0 20 40 60 80 100 120

R
et

ar
ge

ti
n

g
Ti

m
es

 (
s)

Hierarchical Levels/ Register Count

Joint Horizontal and Vertical Retargeting time

97

5.4 New Perspectives with MAST: 2018→ Present

Even though the Incubation project did not result in a Start-Up launch, the scientific objective of

developing a first Implementation of the Abstraction was successful. In this Section, I will resume

the main innovations that I was able to build using MAST as a working base.

5.4.1 Interface Independence and P1687.1

The last part of the Abstraction, described in Section 4.5, is the handling of Domain Crossing

through RVF Propagation, as depicted in Figure 64, reproduced here for easier reference.

Reproduction of Figure 62 RVF Packet Propagation on the Circuit Model

This information flow is the result two steps of Abstractions. The first was implemented in the

Maturation and Incubation version of MAST, and is depicted in Figure 82 : it is a one-step

Translation, where “To_SUT” vectors computed in the Scan Domain through retargeting are

translated into top-level Operations on the scan interface. Similarly, the return “From_SUT”

bitstream is extracted from these.

Figure 82 First Domain Crossing Abstraction

The merit of this Abstraction is to provide a single Translation function for each Access Interface.

In this version, MAST could define any number of AccessInterface Protocols inside its Core

thanks to an Inheritance Strategy. For instance, Figure 83 shows the Doxygen UML Class Diagram

for the “SVF_Emulation” protocol used in the benchmarks of [J.4] described in Section 5.3.

Scan Domain

JTAG
TAP

I2C

Interface

Scan Domain

IJTAG Domain

I2C Domain

Interface Domain

Ctrl Of CTRL

SI (ScanInPort)

SO

(ScanOutPort)

B
IT

1

SE (ShiftEnPort)

TCK (TCKPort)

DO (DataOutPort)

Inst1 Of ONE

DI (DataInPort)

Inst2 Of ONE
DI (DataInPort)

DO (DataOutPort)

DO (DataOutPort)

B
IT

2

DI2 (DataInPort)

DI1 (DataInPort)

0

1

EXAMPLE

0

1
BIT3

CE (CaptureEnPort)

UE (UpdateEnPort)

Scan Domain

A
cc

es
s

In
te

rf
ac

e

From_SUT=Translate(channel i,to_SUT)

InterfaceDomain

To_SUT
Bitstream

From_SUT
Bitstream

Top-Level
Operations

98

Figure 83 UML Class Diagram for the SVF Emulation Protocol

This solution did allow MAST to support any type of Interface thanks to the Protocol Abstraction,

but it had two main weakness:

- It could only support one interface at a time. Translators such as an “I2C to JTAG” would

need to be complexly incapsulated into the “Translate” function. This seriously limited

flexibility and code reuse;

- To profit from the Inheritance and be included in MAST, a Protocol needed to be compiled

as part of the Core. This effectively prevented Third-Party development of Translators

The first point was solved by developing the RVF abstraction: instead of solving everything in

one step, each Translate function uses RVF packets as inputs and outputs. The flow of Figure 64

is realized through a series of Blocking Message Queues [TANE15], as detailed in Figure 84. Each

Translator is blocked on its “To_SUT_Queue”, where RVF Requests are deposited by the Parent

translator. Upon reception, it the Translator function processes the RVF packet, and can Push

one or more RVF Request(s) to the lower level translator. If a return is needed from the SUT it

(being data or status information), it can Pop a RVF_Request from its “From_SUT” queue.

Figure 84 Propagation and synchronization of RVF packets inside MAST

Each RVF packet is therefore handled locally by its Translator. Please note that for this scheme to

work the Translator must be able to generate RVF Responses in the format needed by its Parent,

as part of an exchange contract. This behavior is usually part of the Documentation or Data Sheet

of the Translator, and can therefore be easily implemented.

For instance, the example of Figure 53 presents a Transaction-to-Transaction I2C-to-JTAG

translator: each JTAG instruction corresponds to an I2C Write/Read on a given address. In this

JTA
G

TA

P

I2
C

In
te

rface

Sc
an

 D
o

m
ai

n

(r
et

ar
ge

te
r)

Translator

Pop

From_SUT_Queue

To_SUT_Queue

Push

Translator

To_SUT_Queue To_SUT_Queue

From_SUT_Queue

From_SUT_Queue

Translator

99

case, in the scheme of Figure 84, a single JTAG “Blue” RVF request would result in two “Green”

RVF Request, as depicted in Figure 85 : one to Write the data to be transmitted to the SUT and

one to retrieve the data coming back from the SUT. This would result in two Green SVF Result:

the Green translator would use the first (related to the I2C Write request) to check for errors and

the second (related to the I2C Read request) to retrieve the data for its own Blue Response.

Figure 85 RVF Packet flow for a T-2-T I2C-to-JTAG Translator

However, this solution is not unique. A really common setup is the so-called bit-banging: the I2C

controller writes to a 4-bit register, and each bit is used to generate a TAP signal (TCK, TMS, TDI,

TDO). The TAP control chronogram is therefore generated through a set of write/reads on this

register. Far from optimal, this solution is nevertheless extremely simple to implement in

hardware and widely used. This means that a single “Blue” RVF request/response pair will

result in a myriad of Green pairs, as in Figure 86.

Figure 86 RVF Packet flow for a Bit-Banging I2C-to-JTAG Translator

The key takeaway is that the Abstraction is not impacted: the only modification is in the

Translator function itself, while the flow remains the same. This is a major innovation: it is the

first (and so far, unique) solution able to provide support not only for arbitrary Interfaces, but

also for any number of Translations between them.

From_SUT_Queue

Translator

To_SUT_Queue
To_SUT_Queue

From_SUT_Queue

From_SUT_Queue

Translator

To_SUT_Queue
To_SUT_Queue

From_SUT_Queue

100

The second limitation of the original MAST solution was the need to develop Interface

Translators as part of the tool’s build flow. As introduced previously, we solved this issue by the

systematic implementation of the Factory Design Pattern [DEPA94] in MAST, as detailed in

Figure 87.

Figure 87 Factory Pattern applied to Translators

The problem of having the Translator code compiled separately is that its function names are

mangled by the compiler [HERY98]: it is impossible to reference to them in a consistent way. It

is, for instance, impossible to call a Constructor for a class compiled in an external module. The

idea of a Factory Pattern is to avoid this reference: each Translator can register its Constructor in

a Factory, where the internal pointer is mapped to a string (ex: “JTAG”). The External code is

compiled against a Factory Header which provides the required API calls. Upon Startup, MAST

loads the Shared Libraries and executes the Registrations through this same API, populating the

Factory. Each time we need to use the constructor (for instance, during the System Model

construction by the Parser), we query the Factory for it and use it to generate a Local object. The

implementation of this process can be complex, but it is done only once inside the Tool. The

result is quite powerful: any User can develop his/her own Translators, and have MAST

automatically use it. The Factory Pattern is extensively used in MAST: apart from Translators, it

is also used for Linker’s Path Selectors, for loading the PDL functions referenced in the SIT/ICL

and for the Topology configuration algorithms.

This solution has been developed outside of the Maturation and Incubation projects on a separate

Branch, and is the subject of the third version of [APP1]. We also proposed it to the IEEE P1687.1

and P2654 Working Group, where it had a big impact. The principle of Primitive Domain

Crossing, RVF Packets and their Propagation flow as described in Section 4 and [J.4] has been

fully embraced and will be undoubtedly part of the Standard. However, the discussions are still

ongoing and no definitive decision has been made on the final implementation inside of the

Standard, which could be significantly different from solution presented in this Section.

Factory

Translator
Library

Dynamic
Library (so/dll)

Local
Translator

Object

ICL/SIT with
« NAME »

<NAME constructor>

<NAME constructor>

<NAME constructor>Startup
Code

ICL/SIT
Reader

Translator
Node
Pointer

Factory Wrapping

Translator
Code GCC

Factory
Headers

MAST

101

5.4.2 Interactive IJTAG

As explained in Section 2, the usual setup for JTAG and its derivates is offline generation vs test

application. IEEE 1687 has been the first to introduce the idea of functional behavior thanks PDL

and the possibility of using TCL as a language superset, but the main Use Mode never really

changed. The possibility of reading data back from the System Under Test is present thanks to

the iGetReadData Instruction, but not really developed. For most Users, the principle is to be able

to read configuration or identification data from a CUT (like, for instance, a serial number) and

adapt the test execution accordingly. However, the possibility of having a completely interactive

setup, where the whole test algorithm depends on the data received from the CUT was never

considered a possibility, mostly because of the already mentioned technical limitations of the

legacy Automated Test Flow. The Execution model was not directly mandated into the Standard

document, but is it implicitly referred to what is usually called “ATE Bring-Up” or “ATE Debug”,

depicted in Figure 88 : the TCL script containing the PDL-1 code is executed by the shell of an

EDA tool, which is able to communicate to an ATE in order to push to the SUT the vectors

computed from the iApply operations, and provide to the iGetReadData commands the data

captured from it.

Figure 88 Implicit PDL-1 Execution Model

This is a complex setup that even if not impossible (some industrial vendors propose similar

solutions [SEDA-IN]) is quite cumbersome and resource-hungry. The access to an EDA tool might

not always possible (for instance, if testing is done by a third-party company) or its execution

might be impossible by the target platform (for instance, when performing online testing through

an embedded controller).

Thanks to the new Automated Test Flow we presented and its implementation through MAST,

we were able to break the Generation/Execution barrier to obtain the completely interactive setup

of Figure 89, which is a direct implementation of the new Abstraction. As the Text Executable still

contains the Algorithms, interactive execution and debug can be done using traditional Computer

Science tools, such as for instance GDB.

TCL Script

ED
A

 T
o

o
l

PDL-1 Code

PDL-1 Code

iGetReadData

iWrite

iRead

iApply

ATE

A
T

E

C
o

n
tr

o
ll

e
r

SUT

102

Figure 89 Fully Interactive Flow with MAST

To demonstrate these capabilities, we developed an FPGA-based demo representative of an

interactive signal processing setup and visually compelling: music volume bars. The setup,

depicted in Figure 90, is functionally quite simple: a 1687 Instrument samples music coming from

an audio stereo source, and the digital samples are collected by a PDL-1 function which performs

an FFT to extract the Volume level of the right and left channels, which are then sent to a

visualization 1687 Instrument.

Figure 90 Top-Level Specification of the Interactive Demo

The first version has been developed by Niels Grateloup as part of the MAST Maturation project,

using [OPENOCD] as the Interface library to communicate with the [FTDI] dongle, and custom

VHDL IPs to command the on-board components of a Xilinx ML505 card. The final setup is

shown in Figure 91-a). During the execution, the Left and Right volume bars move depending on

the music’s volume on each channel, while the actual audio samples are displayed on the user

prompt for debugging, as shown in Figure 91-b)

MAST Testing Ecosystem

Test
executable

Test Host

System Under
Test

MAST

Configuration
(ICL)

Terminal

User

Topology
Snapshot

PDL
Headers

gcc

AD1981

Audio
Jack

AC97
Instrument

LCD
Instrument

TM162VBA6

LCD Screen

1687 Network

FPGA

G
P

IO
 H

ea
d

e
r

ML505 Board

FTDI dongle

Host PC

USB JTAGMAST

PDL-1
FFT

Speaker
out

103

Figure 91 Experimental setup for the Interactive Demo.

We later simplified the approach by replacing this complex Interface developed for an earlier

version of MAST with a streamlined RVF-based Translator which directly communicates with

the FTDI chip. This library was developed by Clement Tardy, a Phelma 2nd Year student as part

of his “Assistant Engineer” internship.

Another innovative application of Interactive IJTAG has been published in [9] and [W2] : the

complexity of 1687 Networks make their integrity Validation and Debug extremely difficult. This

was one of the research subjects of my host at Politecnico di Torino during my Visiting period,

most notably for Giovanni Squillero [DAM19] and Riccardo Cantoro[CAN18]. During my stay,

we demonstrated how Interactive execution of IJTAG testbenches could be used both for boosting

post-silicon debug of scan chain integrity [W2] and to verify the correctness of the ICL description

of the 1687 network [9].

Such a solution would have been close to impossible using the Legacy Automated Test Flow, and

it is still the only example of a real interactive 1687 flow.

5.4.3 Unified Test Middleware: “Test Operating System”

While in this document we focused on the limitations of the legacy Generation/Application

duality, this solution also has some points that justified its success. Its greatest asset is

undoubtedly its simplicity: by making no assumption on the Execution backend, a Pattern Set

can be played on basically any type of platform. The price to pay for this portability is the lack of

information conveyed in the format itself, as pointed out in Section 3. In our proposed new

Automated Flow, the Pattern Player is replaced by the Test Manager, as depicted in Figure 46,

reproduced here for easier reference.

Audio
input

LCD Display

JTAG TAP
signals

FPGA

FTDI Dongle

Host PC

a)

b)

104

Reproduction of Figure 44 New Automated Test Flow

The position and role of the Test Manager is quite similar to that of an Operating System: it

provides an Abstraction of the Hardware (in this case, the CUT), which the Software can access

and exploit thanks to a set of standardized System Calls (in this case, the PDL Instructions). The

Translators take the role of Hardware Abstraction Level, responsible for interacting the actual

hardware. This means that thanks to our Abstraction and MAST as the “Test Operating System”,

we are able to provide a unified solution to port and execute complex Test Algorithms over any

platform, as for instance is depicted in Figure 92 : the Test Algorithm can be developed from the

Specification, and executed on MAST using an “Emulation Translator”, which generates debug

logs and Topology Snapshots to verify the 1687 Network, while the Software debugging can be

done using standard tools like GDB coupled with a Graphical Debugger.

Figure 92 MAST Portability through the Design Cycle

By simply changing the Translator the setup can be ported to a new Execution setup, in the same

way an OS can be ported to a new Processor by porting its HAL. In the middle of Figure 92, we

Relocable
Test

executable

Elaboration/
Compilation

DfT Files
(ICL,BSDL,

etc..)

Test Host

Test
Manager

CUT
Model

Circuit Under Test
(CUT)

Parsing /
Analysys

Libraries

Test Host

MAST

Test
executable

Emulation
(Loopback)
Translator

Test Host Design Under
Test

MAST

SystemVerilog DPI
Translator

Modelsim/VCS

Linux PC

Linux PC

Linux-x86

toolchain

Test Host

MAST

Linux PC

Pattern Player

Pattern
File

(SVF,
STIL,
etc..)

Debug
Log

Graphical
Debugger

Topology
Snapshot

GDB

105

show in the middle co-simulation with an HDL thanks to Translator that can interface with the

Design Under Test using the SystemVerilog DPI libraries. These two steps can be used both at IP

and System Level, following the development of the DfT infrastructure to all its steps. After Sign-

Off, a “Pattern Player” can be used to generate traditional Pattern Files (SVF, STIL, etc..) for

backward compatibility with the legacy Automated Flow.

The big novelty of the new Flow is that this same setup can follow the Design to its prototyping

phase, as shown in Figure 93. Thanks to an FTDI Translator MAST can directly communicate

with a Circuit Under Test in a bench-top environment. Similarly, we developed a Proof-of-

Concept with MAST being executed on an Advantest 93k and communicating with the SmarTest

suite controlling the ATE.

Figure 93 Circuit Prototyping and ATE Bring-Up with MAST

Last but not least, thanks to the portability constraints we imposed in MAST specifications, we

were able to validate its portability on Embedded Processors, as shown in Figure 94, for both Big-

and Little-endian targets. We ran our experiments on Embedded Linux for both targets, but

theoretically MAST should also be able to run on BareMetal, as long as multithreading is

supported.

Figure 94 Embedded Test Controller with MAST

All the examples in this Section have been fully implemented and verified on real targets. In

particular, the ATE Proof-of-Concept was developed and benchmarked thanks to the

Test Host

MAST

Test
executable

FTDI Translator

CircuitUnder
Test

Linux PC

Linux PC

Test Host

MAST

SmartRDI
Callback

SmarTest

Advantest 93k
(Linux) Circuit Under

Test

Linux-x86

toolchain

Graphical
Debugger

Topology
Snapshot

GDB

USB Dongle

Test Host

MAST

Embedded
Callback

Embedded Controller
(arm/risc-V)

Circuit Under
Test

Test
executable

Algorithm

PDL-1

arm/risc-v toolchain

106

collaboration of the [FMNT] in the person of Beatrice Pradavelli, who gave us remote access to

the machine located in Montpellier, and the technical support of Advantest Grenoble in the

persons of Brocheton Herve and Bruno Bourgeois.

This portability spanning the whole Design and Development cycle is absolutely unique for

MAST, and will be the base of several research directions in the future, some of which will be

detailed in the next Section.

5.4.4 Security as part of the Test Flow

In Section 2.4 we highlighted how several setups have been proposed to enhance the security of

Scan Testing, but how regardless of their technical merit they remain had-hoc solution outside of

any Flow, needing custom adaptations. However, the new Abstraction and its implementation

using MAST allowed us to solve this issue, as published in [J.2][1][2][7][6].

As previously explained, the first family of Scan Security solutions is Scan Authentication, i.e.

limiting the access to specific portions of the Scan Path by submitting the Opening/Closing of

one or more SIBs to some credentials. The SSAK secure setup can be easily expressed in the new

Abstraction by defining two Path Selectors which implement the Authentication algorithm, as

shown in Figure 95

Figure 95 SSAK-Secured Scan Chain and its Abstraction

The first Path Selector is the “Secure SIB”(S2IB), on the right-hand side of the Circuit Model. It is

a simple modification of a traditional SIB: instead of just changing the value of the controlling

register (SSIB_1_ct, not shown in the scan chain diagram), it also asks for the SSAK-Controller to

be “Selected”. This second Path Selector “SSAK” implements the Authentication proper: its

“Select” method implements the challenge through a set of 1687 operations:

- First, it reads the challenge from the” SSAK_Control_Reg”;

- It computes the response based in its credentials

- It writes the computed response back in” SSAK_Control_Reg”;

- It reads from “SSAK_Control_Reg” the status: authentication successful or not

Only if the last step is successful the Linker is considered as Open, otherwise an error is generated.

This is completely automated, with no modification needed to MAST’s core and it is transparent

from the User’s point of view, who just needs to provide his/her credentials as part of the 1687

Description: it is the red string in Figure 96.

107

Figure 96 SIT Description of the SSAK example

This is a perfect case for justifying the instruction of SIT: describing such a setup in ICL would

have been quite complicated, and would have required adding several custom rules, ending up

in any case with a non-compliant solution.

Scan Encryption was actually extremely simple: the role of the Stream Cypher is to Transform

Plaintext to Cyphertext and the other way around, i.e. to handle the Domain Crossing between

Secure and Non-Secure areas. It can therefore be directly expressed as an Interface Translator, as

shown in Figure 97

Figure 97 Trivium Stream Cypher and its Abstraction

The SIT description is extremely simple too:

Figure 98 SIT Description of the Trivium Example

The great novelty of our Abstraction is that neither Authentication nor Encryption are a special

case, but they can be freely used inside a Design without neither modification to MAST nor User

intervention. To demonstrate this “plug-and-play” capabilities, we devised the experimental

setup of Figure 99 : we execute MAST against an RTL Circuit Under Test, simulated in Modelsim.

The connection between MAST and the Simulator is assured through a Translator, as explained

in Section 5.4.3. The RTL implementations of the SSAK Controller and the Trivium Stream Cypher

come from the PhD work of Vincent Reynaud (TIMA) and Emanuele Valea (LIRMM)

respectively, completely reused without any modification.

SIB SSAK_SIB POST HIGH
 (
 LINKER SSAK_Controller SSAK SSAK_CONTROL_REG 1 "0x72c4358f5a8a07af3d0f7d560a872a2b

13"
 (
 REGISTER SSAK_CONTROL_REG 128 Bypass: "0x00000000000000000000000000000000")
)
REGISTER S2IB_1_ctrl 1 Hold_value Bypass: "0b0"
LINKER S2IB_1 S2IB SSAK_Controller,S2IB_1_ctrl 1 "1"
 (REGISTER Target 12 Bypass: "0xABC")

TA
PTDI

TDO

Extern
al

In
terface

TMS

TCK

Trivium

Is_shifting

TO
P

Tr
iv

iu
m

TA
P

Trivium

TRANSLATOR top Simulation
 (
 TRANSLATOR Secure Trivium "0F62B5085BAE0154A7FA 288FF65DC42B92F960C7"

(
 …

108

Figure 99 Experimental Setup for Secure Scan Chain Access

Thanks to MAST’s interactive capabilities, we can perform both Stream Encryption and

Authentication on the fly, simply providing the Translation Libraries. The Testbench is

configurable: the assembly of SSAK and Trivium can be changed at will, and MAST can support

any setup just by providing it the right SIT description. From the User’s point of view everything

is transparent: the PDL Algorithm is executed in the same way against its Target register,

regardless of the security features in the middle.

This experiment also proves MAST capability of leveraging existing libraries: in the over-

mentioned PhD works, the software parts were done using C for SSAK and Python for Trivium.

We were able to directly reuse the original code by simply using standard API interfaces to C++,

such as for instance [PYBIND].

This experimental setup is the first, and to this day unique, example of Security solutions fully

integrated in the Test Flow in a true plug-and-play fashion.

5.4.5 Analog Interfaces

As stated in Section 2, several efforts are being deployed to extend 1687 to support the testing of

Analog and Mixed Signal circuits. While these systems are not part of our Abstraction and are

therefore not fully supported, features such as Interface portability and Interactive execution can

be useful in that context. To prove this, we took the example of Figure 100: it is a Power

Management IC (PMIC), a Small-D/Big-A design from Renesas. It is a system proving both an

Analog Test Bus and a Digital Core, and it can be controlled through either an I2C controller

(SDL/SCL), a GPIO Pin or an ATE interface (ATB).

Figure 100 Example of a P1687.2 system, from [VSTA20]

Slave TA
PTrivium

TDI

TDO

TDI

TDO

M
aster
TA

P

TMS

TCK

Modelsim

MAST

libTrivium.so trivium.py

SIT (or ICL)
PDL Algo

Sim
u

latio
n

Tran
slato

r

Target

S2IBSIB

SSAK
Controller

libSSAK.so

SSAK.c

Digital Core

ATB

LDO
core

atb_en

atb_pden

ATB0
ATB1

GPIO1

SDA

SCL

OD

I²C

TDRs

109

In the paper, the authors showed how it was possible to define PDL commands inside the PMIC,

and retarget them (manually) to obtain commands at the Interface levels. It is one of the first

examples of the operation of such a Mixed Signal system being described in an EDA-friendly way

thanks to DSLs, even though the software part was still unavailable.

We decided to apply our Abstraction to the system, obtaining the setup of Figure 101 : the three

Interfaces can be modeled through their Protocol, while the internal Registers and Selection

muxes can be directly described.

Figure 101 PMIC Abstraction and its SIT representation

As ICL lacks several elements to describe such a setup, as for instance bidirectional signals/ports,

we described the System in SIT, with some minor liberties (ex: depicting “ports” as “registers”).

The aim was not to “solve” the P1687.2 problem, but rather demonstrate our capability to tackle

it. This was a success: MAST was able to perfectly replicate the manually-computed retargeted

patterns, demonstrating the feasibility of exploiting its features also in this domain.

TRANSLATOR top MPSG

PDL LDO_PDL

(

ACCESS_INTERFACE LDO_Top NOT_IN_PATH I2C "0x00, 0x10, 0x20, 0xF2"

(

REGISTER GPIO_CTRL 8 Bypass: "0x00"

REGISTER LDO1_CTRL 8 Bypass: "0x00"

REGISTER DMUX_CTRL 8 Bypass: "0x00"

)

ACCESS_INTERFACE ATB1 NOT_IN_PATH AnalogPort "ATB0"

(

LINKER ATB1_ACCESS Table_Based LDO1_CTRL 1 "0b01000000, 0b10000000,

0b01000000, 0b01000000"

(

REGISTER vout_s 8 Bypass: "0x00"

)

)

ACCESS_INTERFACE GPIO1 NOT_IN_PATH DataPort "GPIO1"

(

LINKER GPIO1_Mux Table_Based GPIO_CTRL 5 "0b00000000, 0b10000000,

0b10000001, 0b10000101, 0b10000110, 0b10000111, 0b00000000,

0b00000000, 0b00000001, 0b00000101, 0b00000110, 0b00000111 "

(

REGISTER zero 1 Bypass: "0b0"

REGISTER one 1 Bypass: "0b1"

REGISTER ldo1_startup 1 Bypass: "0b0"

REGISTER ldo1_ilimit 1 Bypass: "0b0"

REGISTER ldo1_ov 1 Bypass: "0b0"

)

)

)

110

6 Short-to-Mid Term Perspectives

In this document, we presented the results of a research effort that spanned over more than 15

years. From the beginning, the aim was to identify the Directions with the biggest novelty and

impact potential, and Develop the Abstractions and Solutions necessary to enable them. For these

reasons, the Short-to-Mid Terms perspectives are focused on the usage of our Abstraction and

the MAST tool as the enablers to explore new research directions, rather than on direct evolutions.

6.1 Silicon Lifetime Management

As mentioned in the State of the Art and in the summary of Kalpana Senthamarai Kannan’s PhD,

one of the big weaknesses of the most recent technological node is variability: one the one hand,

physical parameters might have big differences at fabrication time, making calibration and testing

extremely difficult, as highlighted in several places in this manuscript. However, the growing

impact of aging is also being recognized as a key problem: systems will age differently depending

on unpredictable parameters such as usage profiles, working environment, etc. This problem has

left the pure theoretical speculations and is impacting the industry. The main EDA providers put

their solutions at the forefront of their offers: for Synopsys the “Silicon Lifecycle Management”

[SLM23], for Siemens EDA the “Tessent Silicon Lifecycle Solutions” [TSLS23]. Both solutions are

focused on a “fleet management” approach, where data is collected in all stages of the life of a

system, from production to deployment. A particular emphasis is put on the collection of lifetime

data from embedded sensor and their centralization into cloud-based analytics.

However, all solutions are still centered in the Generation/Application duality. Embedded

controllers can do little more than collect the data from the sensor, but cannot act on them.

Moreover, embedded controllers have difficulty in handling DfT architectures such a 1687’s

dynamic topologies. Most of time, access to embedded instrument happens through pre-

computed static sequences or through ad-hoc connections, with little or no hardware/software

reuse from the Testing phase.

In this space, our Abstraction and MAST have a great role to play by pushing intelligence to the

edge, i.e. to the systems themselves. For instance, a Machine Learning setup as the one developed

during Kalpana’a PhD work is lightweight enough to be embedded. Thanks to MAST, we could

use aging monitors to fine-tune the Aging model, and directly act on the DVFS commands with

no external intervention. This was, in fact, the original target of the PhD. In coming years, we plan

on pursuing in this direction by looking for collaborations in the field of Embedded

Instrumentations, with a particular emphasis on RISC-V based systems and on the reuse of DfT

infrastructure thanks to MAST’s dynamic retargeting capabilities.

6.2 Security

In this document, we demonstrated how Security can become part of the standardized Test Flow,

by integrating Scan Authentication and Scan Encryption into our new Abstraction. However, this

is just the tip of the iceberg: Security must find its way in all steps of the Flow, from Factory

Testing to Lifetime management. This can be done only by developing dedicated solutions that

111

can leverage the new integration, which are difficult to imagine at this moment in time. A possible

direction could be, for instance to integrate Secret Key management into the Abstraction by

modelling constructs like Physically Unclonable Functions, or to explore new partitioning of

Cryptographic algorithms between the Hardware and Software parts of 1687-inspired solutions.

We already started by proposing some extensions to the concept of Scan Encryption [J.2]. Last

but not least, there are completely different solutions like Logic Locking that could be explored,

or different threats models like Hardware Trojans or Side Channels. TIMA is well versed in such

topics thanks to the work of Paolo Maistri, Regis Leveugle or Giorgio Di Natale, which we can

leverage and expand.

6.3 Scaling up: FPGAs

Field Programmable Gate arrays have become so useful and commonly used that we tend to see

them only as the valuable tool for prototyping they are, but rarely as a target in themselves. In

fact, an FPGA is not so different from a 1687-based DfT target: as shown in Figure 102, they are

modular systems, with a high number of resources (Slice/Instruments) connected through

configurable routing (Switch Matrix/ScanMux), the whole accessed through a JTAG connection.

Figure 102 Xilinx/AMD 7-Series High-Level architecture a) and Slice details b)

The Bitstream that is used to configure an FPGA is exactly the same as a Test Vector: a bit-by-bit

assignment of internal resources, without any knowledge of the role of each bit; computed by an

external EDA Tool (in Xilinx’s flow, it is Vivado). This means that even if recent FPGA provide

sophisticated dynamic reconfiguration capabilities, everything needs to be computed offline and

bitstreams are simply pushed to the FGPA.

It is possible to image representing an FPGA fabric as a 1687 network described in ICL, with PDL

routines used to deliver configuration bits. The routing information would be distributed through

both ICL and PDL, so that the retargeting result would be the configuration bitstream. In such a

setup, an application of our Abstraction and MAST would allow to convey routing information

to the final bitstream, allowing true dynamic reconfiguration depending on both the user

requirements and the FPGA status (ex: rerouting to avoid faulty locations).

a) b)

112

However, such a research direction would demand a lot of inside information on both the FPGA

architectures and the Routing algorithms. This could be done either through Open-Source

solutions or looking for partnerships with FPGA providers.

6.4 Mixed Signal Testing

In Section 5.4.5, we demonstrated how both our Abstraction and MAST can be useful in the

domain of Mixed-Signal Testing. However, we did not go further than a feasibility proof: as it

stands, it is neither directly usable nor scientifically relevant. However, the subject is extremely

interesting: the Abstraction, User Needs and Best Practices of Digital and Analog Testing are

extremely different, and most often than not contradictory. Where the former is based on a set of

quantitative models and abstractions, the latter rather relies on a deep knowledge and qualitative

“know-how”. A real solution to the problem must start by a deep analysis of the two worlds,

identifying not only the common points but also the biggest differences and critical points. Only

then it will be possible to understand the problem and propose new automation strategies that

will be really adapted to the field and be able to provide both added value and scientific

innovation.

It extremely difficult to find someone having the right mix of competences to tackle this issue.

For this reason, I started collaborating with Emmanuel Simeu, Professor at the Université

Grenoble Alpes and member of TIMA, expert in Analog and Mixed signal testing. With our

complementary competences and skill sets we jointly advise the PhD of Jules Quentin Kouamo,

started in November 2023 and focused on this topic.

113

7 Conclusions and Long-Term Directions

"If a tree were to fall on an island where there were no human beings, would there be any

sound?"1. It is a classical philosophical question, whose typical (but far from unique) answer is:

Does a sound really matters if no one is there to appreciate it? The same question can be applied

to our field of interest: if no one knows about a new exciting technology, will it really make a

difference?

On the one hand, Academic Researchers have the privilege of looking at the “bigger picture”,

looking for new ways of solving open problems. But looking too far, one might lose sight of what

happens close to home: this sort of “research presbyopia” can prevent excellent results to be truly

exploited, simply because they solve issues that are too specific or too far-fetched.

On the other hand, Industrial Researchers have the privilege of working on real-world problems

that can solve real needs and have wide applications. But while getting caught in the pressure of

obtaining fast and efficient solutions for the problem at hand one can easily lose sight of the bigger

picture. The risk of this “research myopia” is to get stuck in an endless loop of fixes and patches,

where the accumulation of small solutions does not generate any real value because it does not

have any real direction.

The “sweet spot” lays in the middle: Industry can be an invaluable source of information and

propose exciting challenges, but only if Research can keep looking far ahead at the bigger picture.

This balance is not easy to find and maintain, but once achieved it can start a virtuous cycle and

produce unique results.

In this manuscript, we showed how the Testing flows is getting richer and more complex.

Designers need to take these aspects in account as early as possible, all the while requiring new

and sophisticated features. The now mainstream “Design for Test” is often declined in “Design

for X”, with X ranging from Manufacturing to Reliability and pretty much everything in between

depending not only on the Designer’s specifications but also on the final User’s needs and

constraints. These domains have traditionally been hardware driven: companies would

implement their own devices and architectures, and then use in-house tool or custom software

fixes to insert them into the final design. This has now changed: solutions like IEEE 1687 have a

rather small hardware component and are mostly software-based, requiring dedicated Software

suites of important size. In the meantime, the pressure for lowering cost still kept increasing: few

companies, even the biggest ones, can still afford to support in-house development. Moreover,

the shift of DfX towards the early phases of Design puts a serious stress also on both custom Tool

1 The Chautauquan, June 1883, Volume 3, Issue 9, p. 543

114

and commercial EDA solutions, as they need to remain compatible downstream in the

heterogenous Design and Manufacturing flow.

From this melting pot of diverse and somewhat contradictive requirements, two clear tendencies

have been emerging:

- The shift from in-house software, too expensive and difficult to maintain, to commercial
EDA tools;

- The development of Standards to maximize reuse and assure inter-vendor portability.

Unfortunately, behind highly-flying commercial announcements, EDA companies are actually

playing the safe card and only proposing incremental improvements in legacy flows and are not

really embracing this “paradigm shift” [REA12]. The only true way forward is through a deep

evolution of the whole Test Flow and its relationships with the Design and Verification ones. Such

changes, as shown in Section 3, 4 and 5, are the perfect example of the virtuous research cycle we

try to achieve: a deep Analysis of a real problem, followed by a rigorous Abstraction and an

efficient Implementation. This last step is pivotal: only by having a working platform we are able

to both demonstrate the benefits of the new abstractions and leverage them to tackle new

problems. The actors of the world of Testing are extremely conservative: new technologies are

accepted and deployed only if they provide significant and concrete advantages. The results

presented in Section 5 do demonstrate the full portability of Functional Routines from Simulation

to ATE and in-field Embedded Testing, but their real value is in their usage. In fact, these

approaches and tools are powerful “enablers”: by leveraging them, we can tackle “impossible”

problems that traditional tools cannot handle because of their intrinsic limitations. For instance,

in Section 5.4.4 we showed how the new Test Flow is able to efficiently include Security into the

standard flow, and in Section 5.4.5 how Analog Test can be part of it too. Both these results have

been deemed “impossible” for a long time.

Future research will build upon the basis we have developed and will follow mainly four

strategical axes: Automation, Integration, Extension and Proximity

Automation is key: the results presented in Section 5 demanded a significant effort in terms of

analysis, abstraction and development, in a period spanning more than a decade. It was essential

to develop the new Test Flow, and to demonstrate it is both effective and useful. However, to

obtain real traction it is not feasible to ask the same type of effort for new users, being them

academic or industrial. Automation is therefore needed to guarantee ease of use. This is not

simply a short-term development but rather a whole rethinking of the different steps and their

usage: information must be collected, processed and results assembled in a completely automated

way. A new abstraction must be analyzed, specified and implemented. Only in this way it will

be able to sustain the burden of extreme scaling. In this category fall the evolutions presented in

Section 6, which in their turn will be the stepping stones for longer-terms goals.

115

Integration is the other side of the same medal: the whole field of Design and Test relies on a set

of shared Abstraction levels and of the Flow that connects them. Incremental innovations usually

happen outside of the traditional flows and require significant effort to be implemented. It is the

difference between a promising Proof-of-Concept and a real-implementation: the so-called Valley

of Death [ELL22] that lays between TRLs 4 and 6. The only way to reach Automation is to interface

with existing Tool suites: this is where Standards come into place. By influencing their scope and

development process, we are able to prepare the road to integration: standards are the best way

to interact with third-party proprietary tools, and guarantee that your solutions will be actually

usable. Solutions such as MAST ally research excellence with compatibility with the IEEE 1687

and IEEE P1687.1 standards to propose innovative solutions to real-world problems. These

results will be the base of future discussions with industrial partners for both technology transfers

and new use cases.

The domain of Electronics systems is in constant Evolution. Short-term solutions might answer

today’s challenges, but swiftly become obsolete. This is especially true for Standards: certifying

the status-quo might solve the immediate issue, but it will not pass the trial of time. Only active

interaction with the Standard bodies and Working Groups can guarantee that the solutions will

remain future-proof by continuously challenging and pushing their boundaries with new

applications and use cases. Evolution also constantly shifts the edges between Physical and

Functional elements: the push toward System-on-Chips resulted in integrating into the same chip

IP traditionally on different physical supports. Solutions like Chiplets are blurring even more the

picture, spreading functionalities over different, but not fully independent, supports. All these

continuous changes open new, exciting opportunities.

This leads to the last axis, the one with the biggest research potential: Proximity. The current

Flows lack the capability of exchanging information between Abstractions, leading to dead-ends

due to the impossibility of leveraging the capabilities of neighboring domains. A particularly

interesting example is indeed the hand-off between the Design and the Test flows. Design ends

at the Validation/Verification step, where an in-depth analysis is done to prove that the final

Circuit Design truly follows the high-level Specifications. It is probably the step where there is

the deepest understanding of the System. However, all this is lost when passing to the Test step:

Structural test only needs the circuit itself, and makes no assumptions on it. As explained in

several parts of this Document, this choice is made both because it allows a quantitative

measurement of the circuit’s “correctness”, but also because the Testing Execution phase is

traditionally extremely limited. Thanks to our Abstraction this is now not true anymore: Testing

can also benefit from a powerful and flexible execution environment. In the following years, we

will explore ways to export the knowledge of Verification/Validation and leverage it during the

Testing, to obtain new and exciting possibilities.

Annexes

___ ________

8 Bibliographie

[1149.1] "IEEE Standard for Test Access Port and Boundary-Scan Architecture," in IEEE Std

1149.1-2013 (Revision of IEEE Std 1149.1-2001), vol., no., pp.1-444, 13 May 2013, doi:

10.1109/IEEESTD.2013.6515989, first published in 1990, revised in 2001 and 2013

[1450] "IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data," in IEEE

Std 1450-1999 , vol., no., pp.1-140, 1 Sept. 1999, doi: 10.1109/IEEESTD.1999.90563.

[1450.6] "IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data-Core Test

Language (CTL)," in IEEE Std 1450.6-2005, vol., no., pp.1-120, 5 April 2006, doi:

10.1109/IEEESTD.2006.8328064.

[1500] "IEEE Standard Testability Method for Embedded Core-based Integrated Circuits," in

IEEE Std 1500-2022 (Revision of IEEE Std 1500-2005) , vol., no., pp.1-168, 12 Oct. 2022, doi:

10.1109/IEEESTD.2022.9916221.

[1532] "IEEE Standard for In-System Configuration of Programmable Devices," in IEEE Std

1532-2002 (Revision of IEEE Std 1532-2001), vol., no., pp.0_1-141, 2003, doi:

10.1109/IEEESTD.2003.94229.

[1687] "IEEE Standard for Access and Control of Instrumentation Embedded within a

Semiconductor Device," in IEEE Std 1687-2014, vol., no., pp.1-283, 5 Dec. 2014, doi:

10.1109/IEEESTD.2014.6974961.

[3GPP] 3GPP Homepage, https://www.3gpp.org/ , regularly updated

[7SER] “7-Series Architecture Overview”, https://xilinx.eetrend.com/files-eetrend-

xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf, 2013, retrieved

12/2023

[AGRA84] D. Agrawal, S.K. Jain, and D.M. Singer, "Automation in Design for Testability",

Proc. IEEE Custom Integrated Circuits Conf, 1984, pp.159-163.

[ARMv7], “ARM® Architecture Reference Manual ARMv7-A and ARMv7-R edition” ,

https://developer.arm.com/documentation/ddi0406/latest/

[BAR17] Mark Barnes, "Alexa, are you listening?", MWR Info Security,

https://labs.mwrinfosecurity.com/blog/alexa-are-you-listening/, Aug 1st 2017.

[BAST19] BASTION Benchmarks Homepage, https://gitlab.com/IJTAG/benchmarks , last

updated in 2019

[BOOST] “Boost C++ Libraries”, https://www.boost.org/

[BSCAN2] “BSCAN2 – Multiple Scan Port Linker” Reference Design RD1002, Lattice

Semiconductor, March 2014

https://www.3gpp.org/
https://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf
https://xilinx.eetrend.com/files-eetrend-xilinx/forum/201509/9204-20390-7_series_architecture_overview.pdf
https://developer.arm.com/documentation/ddi0406/latest/
https://gitlab.com/IJTAG/benchmarks
https://www.boost.org/

117

[CAN18] R. Cantoro et al. F. G. Zadegan, M. Palena, P. Pasini, E. Larsson, and M. Sonza

Reorda, “Test of reconfigurable modules in scan networks,” IEEE Transactions on Computers,

2018.

[CHA20] Chafkin, Max; King, Ian (October 4, 2017). "Apple and Qualcomm's Billion-Dollar

War Over an $18 Part". Bloomberg.com. Archived from the original on December 4, 2020.

Retrieved October 4, 2017.

[DAM19] A. Damljanovic, A. Jutman, G. Squillero, and A. Tsertov, “Post-silicon validation of

ieee 1687 reconfigurable scan networks,” in 24th IEEE European Test Symposium (ETS) IEEE,

2019.

 [DASIL19] M. Da Silva et_al, "Preventing Scan Attacks on Secure Circuits Through Scan Chain

Encryption," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2019, doi: 10.1109/TCAD.2018.2818722.

 [DEPA94] “Design Patterns: Elements of Reusable Object-Oriented Software”, Gamma, Helm,

Johnson and Vlissides, Addison-Wesley, 1994, ISBN 0-201-63361-2

 [DWO13] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz, and M. Thornton, “Don’t forget

to lock your SIB: hiding instruments using P1687,” in Proc. IEEE Int. Test Conf. (ITC), Sep.

2013.

[EHR09] Ehrenberg, Heiko; WENZEL, Thomas. Combining Boundary Scan and JTAG

Emulation for advanced structural test and diagnostics. White Paper, GOEPEL electronics,

2009.

[ELF95] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification

Version 1.2 (May 1995)

[ELL22] Ellwood P. et al, “Crossing the valley of death: Five underlying innovation processes”,

Technovation, Volume 109, 2022, ISSN 0166-4972, https://doi.org/10.1016/

j.technovation.2020.102162 .

[FTDI] Future Technology Devices International Homepage, https://ftdichip.com/, updated

on a regular basis

[FNMT] Homepage of the Fédération des Micro et Nanotechnologies, https://fmnt.fr/

[GAIS] FrontGrade Gaisler Homepage, https://gaisler.com/index.php/

[GIRK92] Girkar, Milind, and Constantine D. Polychronopoulos. "Extracting task-level

parallelism." ACM Transactions on Programming Languages and Systems (TOPLAS) 17.4

(1995): 600-634.

https://doi.org/10.1016/%20j.technovation.2020.102162
https://doi.org/10.1016/%20j.technovation.2020.102162
https://ftdichip.com/
https://fmnt.fr/

Annexes

___ ________

[GOOR90] A.J. Goor and C.A. Verruijt, "An overview of deterministic functional RAM chip

testing", ACM Computing Surveys, vol. 22, no. 1, March 1990.

[HERY98] Herity, Dominic. "C++ in embedded systems: Myth and reality." Embedded

Systems Programming 11.2 (1998): 48-71.

[HSDL] “Hierarchical Scan Description Language”, http://www.asset-

intertech.com/support/hsdl.html, 1992

[I2C14] “I2C-bus specification and user manual”, http://www.nxp.com/ documents/

user_manual/ UM10204.pdf, April 2014

[IEEE] Institute of Electrical and Electronics Engineers Homepage, https://ieee.org/,

regularly Updated

[IEEESA] IEEE Standard Association’s Homepage, https://standards.ieee.org/, regularly

Updated

[iNEMI09] 2009 iNEMI Roadmap, https://www.inemi.org/pr040109

[KAP99] G. Kaplan, "Industrial electronics [technology 1999 analysis and forecast]," in IEEE

Spectrum, vol. 36, no. 1, pp. 68-72, Jan. 1999, doi: 10.1109/6.738329.

 [KAPU08] R. Kapur, S. Mitra and T. W. Williams, "Historical Perspective on Scan

Compression," in IEEE Design & Test of Computers, vol. 25, no. 2, pp. 114-120, March-April

2008, doi: 10.1109/MDT.2008.40.

[KELL90] B.L.Keller and T.J. Snethen, “Built-In Self-Test Support in the IBM Engineering

Design System," IBM Journal of Research and Development,Vol. 34(2/3),pp. 406-415,1990

[LIHN06] Lihn H., Reusable, Low-cost, and Flexible Multidrop System JTAG

Architecture.”ITC'06. IEEE International. IEEE, 2006. p. 1-10.

[MAR93] E. Martin, O. Sentieys, H. Dubois and J. L. Philippe, "GAUT: An architectural

synthesis tool for dedicated signal processors," Proceedings of EURO-DAC 93 and EURO-

VHDL 93- European Design Automation Conference, Hamburg, Germany, 1993, pp. 14-19,

doi: 10.1109/EURDAC.1993.410610.

[MCLA12] T. McLaurin, F. Frederick and R. Slobodnik, "The DFT challenges and solutions for

the ARM® Cortex™-A15 Microprocessor," 2012 IEEE International Test Conference, Anaheim,

CA, USA, 2012, pp. 1-9, doi: 10.1109/TEST.2012.6401534.

[MERA19] Marc Merandat, Vincent Reynaud, Emanuele Valea, Jerome Quevremont, Nicolas

Valette, Paolo Maistri, Regis Leveugle, Marie-Lise Flottes, Sophie Dupuis, Bruno Rouzeyre,

Giorgio Di Natale, “A Comprehensive Approach to a Trusted Test Infrastructure,” in

International Verification and Security Workshop, Rhodes 2019.

https://ieee.org/
https://standards.ieee.org/
https://www.inemi.org/pr040109

119

[MIL94] L. Milor, A Sangiovanni-Vincentelli, "Minimizing Production Test Time to Detect

Faults in Analog Circuits," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol 13, No. 6, June 1994.

[OOC] ”Object Oriented C Programming”, https://staff.washington.edu/gmobus/

Academics/TCES202/Moodle/OO-ProgrammingInC.html, retrieved on December 2023

[OPENOCD] Open On-Chip Debugger Homepage, https://openocd.org/

[P1687.1] IEEE P1687.1 WG website, https://ieee-sa.imeetcentral.com/16871/, updated on a

regular basis

[PYBIND] https://pybind11.readthedocs.io/en/stable/advanced/pycpp/index.html

[RAFA15] B. Rafal, K. Michael A and H.-J. Wunderlich, “Fine-Grained Access Management in

Reconfigurable Scan Networks,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 34, pp. 934-947, 2015.

[PARHI91] K.K. Parhi, D.G. Messerschmitt, “Static rate-optimal scheduling of iterative

data-flow programs via optimum unfolding”, IEEE Transactions on Computers, Volume: 40 ,

Issue: 2 , Feb 1991

[PE15] Andersson, Henrik (2015-04-23). "application/vnd.microsoft.portable-executable".

IANA. Retrieved 2017-03-26.

[REA05] J. Rearick et al., "IJTAG (internal JTAG): a step toward a DFT standard," IEEE

International Conference on Test, 2005., Austin, TX, USA, 2005, pp. 8 pp.-815, doi:

10.1109/TEST.2005.1584044.

[REA12] Jeff Rearick, “DFT and Testing vs. Inflection Points and Paradigm Shift”, "Keynote

address," 2012 IEEE International Test Conference, 2012, pp. 8-10, doi:

10.1109/TEST.2012.6401519.

[ROS10] K. Rosenfeld and R. Karri, "Attacks and Defenses for JTAG," in IEEE Design & Test

of Computers, Jan.-Feb. 2010, doi: 10.1109/MDT.2010.9.

[SAR17] P. Sarson and J. Rearick, "Use models for extending IEEE 1687 to analog test," 2017

IEEE International Test Conference (ITC), Fort Worth, TX, USA, 2017, pp. 1-8, doi:

10.1109/TEST.2017.8242068.

[SEDA] Siemens EDA Homepage, https://eda.sw.siemens.com/, regularly updated

[SEDA-IN] Siemens Silicon Insight, https://eda.sw.siemens.com/en-US/ic/tessent/test/

siliconinsight/

[SKSU13] Sk Subidh Ali, Samah Saeed, Ozgur Sinanoglu, Ramesh Karri. New Scan-Based

Attack Using Only the Test Mode and an Input Corruption Countermeasure. 21th IFIP/IEEE

https://staff.washington.edu/gmobus/%20Academics/TCES202/Moodle/OO-ProgrammingInC.html
https://staff.washington.edu/gmobus/%20Academics/TCES202/Moodle/OO-ProgrammingInC.html
https://openocd.org/
https://eda.sw.siemens.com/
https://eda.sw.siemens.com/en-US/ic/tessent/test/%20siliconinsight/
https://eda.sw.siemens.com/en-US/ic/tessent/test/%20siliconinsight/

Annexes

___ ________

International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct

2013, Istanbul, Turkey. pp.48-68, ff10.1007/978-3-319-23799-2_3ff.

[SLM23] “Silicon Lifecycle Management”, https://www.synopsys.com/solutions/silicon-

lifecycle-management.html, retrieved on 12/08/2023

[SPARCV8], “The SPARC Architecture Manual Version 8”, https://www.gaisler.com/doc/

sparcv8.pdf

[STAPL] Altera Jam STAPL Software, https://www.altera.com/support/software/

download/programming/jam/jam-index.jsp

[STARSY] Synopsys’s STAR Hierarchical Subsystem (SHS) homepage,

https://www.synopsys.com/implementation-and-signoff/test-automation/designware-

shs.html , updated on a regular basis

[SUN09]S. Sunter, "EDA for Analog DFT? – Designers Must Get on the Bus," Panel 2.3, IEEE

International Test Conference, 2009.

[SVF99] “Serial Vector Format Specification”, ASSET InterTech Inc. Revision E, 8 March 1999

[SYNO] Synopsys Homepage, https://www.synopsys.com/, regularly updated

[TANE15] Tanenbaum, A. S., Bos H., “Modern Operating Systems (4 ed.)”. Pearson Education,

2015, Inc. ISBN 978-013359162-0

[THIE19] Thiemann et al , “On Integrating Lightweight Encryption in Reconfigurable Scan

Networks,” , Proc European Test Symp. (ETS 2019)

[TLR-EU] "Technology readiness levels (TRL); Extract from Part 19 - Commission Decision

C(2014)4995", https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/

annexes/h2020-wp1415-annex-g-trl_en.pdf 2014. Retrieved 11 November 2019

[TRL-NASA] "Technology Readiness Level Definitions" https://www.nasa.gov/wp-

content/uploads/2017/12/458490main_trl_definitions.pdf . Retrieved 6 September 2019

[TSE16] A. Tšertov et al., "A suite of IEEE 1687 benchmark networks," 2016 IEEE International

Test Conference (ITC), Fort Worth, TX, USA, 2016, pp. 1-10, doi: 10.1109/TEST.2016.7805840.

[TSLS23] “Tessent Silicon Lifecycle Solutions”, https://eda.sw.siemens.com/en-

US/ic/tessent/, retrieved on 12/08/2023

[VAL19] E.Valea et al., “Stream vs block ciphers for scan encryption”, Microelectronics

Journal,2019,doi:10.1016/j.mejo.2019.02.019.

[VSTA20] “Industrial Application of IJTAG Standards to the Test of Big-A/little-d Devices –

plus Updates to the Latest State of IEEE P1687.2” , H. M. von Staudt, M. Benhebibi,J. Rearick,

M. Laisne, Distinguished ITC 2020 Paper INTERNATIONAL TEST CONFERENCE ASIA

https://www.synopsys.com/solutions/silicon-lifecycle-management.html
https://www.synopsys.com/solutions/silicon-lifecycle-management.html
https://www.gaisler.com/doc/%20sparcv8.pdf
https://www.gaisler.com/doc/%20sparcv8.pdf
https://www.altera.com/support/software/
https://www.synopsys.com/implementation-and-signoff/test-automation/designware-shs.html
https://www.synopsys.com/implementation-and-signoff/test-automation/designware-shs.html
https://www.synopsys.com/
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/%20annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/%20annexes/h2020-wp1415-annex-g-trl_en.pdf
https://www.nasa.gov/wp-content/uploads/2017/12/458490main_trl_definitions.pdf
https://www.nasa.gov/wp-content/uploads/2017/12/458490main_trl_definitions.pdf
https://eda.sw.siemens.com/en-US/ic/tessent/
https://eda.sw.siemens.com/en-US/ic/tessent/

121

[VTB03] B. G. Van Treuren and J. M. Miranda, "Embedded boundary scan," in IEEE Design &

Test of Computers, vol. 20, no. 2, pp. 20-25, March-April 2003, doi: 10.1109/MDT.2003.1188258.

[VTB05] B. G. Van Treuren, B. E. Peterson and J. M. Miranda, "JTAG-based vector and chain

management for system test," IEEE International Conference on Test, 2005., Austin, TX, USA,

2005, pp. 10 pp.-787, doi: 10.1109/TEST.2005.1584041.

[WEST81] D. Westcott, "The Self Assist Test Approach to Embedded Arrays," Proc. Intl Test

Conf, 1981, pp.203-207.

[ZC702] Zynq-7000 All Programmable SoC ZC702 Evaluation Kit Quick Start Guide

https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/zc70

2_zvik/xtp310-zc702-quickstart.pdf

https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/zc702_zvik/xtp310-zc702-quickstart.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/boards_and_kits/zc702_zvik/xtp310-zc702-quickstart.pdf

Annexes

___ ________

9 Glossary

ATE: Automated Test Equipment, i.e. the machine responsible for applying test patterns to a

target SUT

ATPG: Automated Test Pattern Generation.

BIST: Built-In Self Test. An instrument embedded inside a component to test it independently

from external data.

BSDL : Boundary Scan Description Language, the normative language for JTAG

CSU: Capture-Shift-Update, the base date exchange operation of JTAG

DfT: Design for Test. Features added to a design to boost its testability

DSL: Domain Specific Language. A language developed to

DUT: Design Under Test

HAL: Hardware Abstraction Layer, the part of an Operating System responsible for interaction

with the Hardware

HDL: Hardware Description Language. A computer language used to describe an electronic

component

ICL: Instrument Connectivity Language. A DSL used to describe IEEE 1687 hardware

topologies

IJTAG: Internal (or Instrument) JTAG, a denomination of the IEEE 1687 Standard

IP: Intellectual Property. In Electronics design, it usually refers to a sub-system described in

an HDL that can be reused in a bigger design

IP-Based Design: a design paradigm where a system is seen as a composition of independely-

developed IPs

JTAG: Joint Test Action Group, a denomination of the IEEE 1149.1 Standard

Pattern: A set of input vectors and the expected outputs for a fault-free element.

PCB: Printed Circuit Board

PDL: Procedural Description Language, used in IJTAG to describe Test Intent

123

PUK: Physical Unclonable Key. An hardware component providing an unique key based on

the physical variability of a given circuit.

RSN: Reconfigurable Scan Network. A scan network whose topology can dynamically change

RTL: Register Transfer Level. The abstraction level used to model digital circuits

Solver: in IJTAG, it is the software responsible for topology resolution

Retargeter: the software responsible for translation device-level pattern to top-level

Segment: In IJTAG, a TDR subset which is selectable through a ScanMux

SIB: Segment Insertion Bit, the reference dynamic topology element for IEEE 1687

SUT: System Under Test

TAP: Test Access Port

TCL: Tool Command Language, a scripting language used for interacting with EDA tools.

TDR: Test Data Register, a register selected by the DR branch of the JTAG TAP FSM

Résumé

La complexité des systèmes électroniques actuels, les volumes de production et la qualité
imposée par des applications critiques telles que l’automotive mettent les approches de test
structurel traditionnelles sous forte pression. Pour surmonter ce problème, le domaine des
tests connaît une évolution profonde, dominée par des nouvelles techniques de « Design for
Test » qui poussent l'automatisation au cœur même des systèmes et par des nouveaux
standards comme IEEE 1687. Mais ces nouveautés génèrent elles-mêmes des nouvelles
contraintes, telle que la sécurité ou le besoin de supporter des systèmes mixtes analogiques/
numériques. Dans cette soutenance, nous passerons en revue 15 années de recherche
dans le domaine des tests automatisés afin de spécifier, développer et mettre en œuvre de
nouveaux flux logiciels capables de dépasser les limitations existantes et de permettre la
nouvelle (r)évolution.

Mots-clés : Test, Standards, Flot de Conception Aidée par Ordinateur (CAO), IEEE 1687,
IJTAG, Système sur puce

Abstract

The complexity of today’s electronic systems, the production volumes and the quality imposed
by critical applications such as the automobile are putting traditional structural-based testing
approaches under great pressure. To overcome this problem, the testing field is going
through a profound evolution, dominated by new “Design for Test” techniques that push
automation to the very heart of systems and new standards like IEEE 1687 and its
derivations. But these same novelties generate new constraints such as security, or the need
to handle mixed analog/digital systems. In this defense, we will review 15 years of Research
in the field of Automated Testing in order to specify, develop and implement new Software
Flows able to over legacy limitations and enable the new (r)evolution.

Keywords: Test, Standards, Electronics Design Automation (EDA) Flow, IEEE 1687,
IJTAG, SoC

VATAJELU Elena-Ioana - HDR

	PORTOLAN_Michele_HDR_TIMA_cover.pdf
	Table of Contents
	List of Figures
	List of Tables
	Summary
	Curriculum Vitae
	Personal Information
	Education
	Current Position
	Past Positions
	Executive Summary

	Summary of Scientific Activities
	Memory – Robustness, Reliability & Test
	Neuromorphic computing – design & test
	In-Memory computing – design & security
	Design of security primitives

	Supervision and Mentoring Activities
	Ph.D. Candidates
	Research Engineer
	Interns (Master Students)

	Teaching Activities
	Scientific Projects and Collaborations
	Project Coordination
	Project Participation
	Collaborations

	Dissemination of knowledge
	Invited Presentations
	Publications
	Organisation of Scientific Events
	Program Committee and Reviewer
	Student Activities and Training Programs
	Awards and Certificates

	Institutional Responsibility

	Research Activities
	Preamble
	Introduction
	Memory - Robustness, Reliability Test
	Design and Evaluation of Hardware Security Primitives
	Design, Test and Security of Emerging Computing Paradigms

	Memory - Robustness, Reliability & Test
	SRAM Robustness Metrics
	Methodology for Statistical SRAM Robustness Analysis
	SRAM under SEU and Process Variability
	Variability Aware and Adaptive STAM Test
	STT-MRAM reliability evaluation and boosting techniques

	Design of Security Primitives
	Design and Evaluation of Phisical Unclonable Functions
	Design and Evaluation of Chip IDs
	Design and Evaluation of True Random Number Generators

	In-Memory Computing
	Comparative Study of Memristive Logic-in-Memory (LiM) Implementations
	Feasibility of complex Boolean functions using memristive-based LiM

	Neuromorphic Computing - Design & Robustness Assessment
	Introduction
	Variability of fully-connected spiking neural network
	The design of a versatile analog spiking neuron in in 28nm UTBB FD-SOI technology
	The Design of a Probabilistic Spintronic Synapse
	Definition of Fault Models for Spiking Neural Networks
	Fault Injection Platform for Artificial Neural Networks
	Analysis of SNN Fault Tolerance

	Teaching and Supervision Activities
	Teaching Activities
	Supervision and Mentoring Activities
	Master Students
	PhD Candidates
	Supervision and Mentoring Strategy

	Funded Projects and Scientific Cooperation
	Funded Projects
	Research Collaborations

	Research Perspectives
	Perspectives on Reliability and Test
	In-Memory Computing (IMC) Solutions
	Neuromorphic Computing Solutions

	Perspectives on Security
	Physical Unclonable Functions (PUFs)
	Security of In-Memory Computing (IMC) Solutions

	Perspectives on Circuit Design for New Materials

	Publications
	Journal Publications
	Conference Proceedings
	Workshops without Formal Proceedings

	References

	PORTOLAN_Michele_HDR_TIMA_back.pdf
	Table of Contents
	List of Figures
	List of Tables
	Summary
	Curriculum Vitae
	Personal Information
	Education
	Current Position
	Past Positions
	Executive Summary

	Summary of Scientific Activities
	Memory – Robustness, Reliability & Test
	Neuromorphic computing – design & test
	In-Memory computing – design & security
	Design of security primitives

	Supervision and Mentoring Activities
	Ph.D. Candidates
	Research Engineer
	Interns (Master Students)

	Teaching Activities
	Scientific Projects and Collaborations
	Project Coordination
	Project Participation
	Collaborations

	Dissemination of knowledge
	Invited Presentations
	Publications
	Organisation of Scientific Events
	Program Committee and Reviewer
	Student Activities and Training Programs
	Awards and Certificates

	Institutional Responsibility

	Research Activities
	Preamble
	Introduction
	Memory - Robustness, Reliability Test
	Design and Evaluation of Hardware Security Primitives
	Design, Test and Security of Emerging Computing Paradigms

	Memory - Robustness, Reliability & Test
	SRAM Robustness Metrics
	Methodology for Statistical SRAM Robustness Analysis
	SRAM under SEU and Process Variability
	Variability Aware and Adaptive STAM Test
	STT-MRAM reliability evaluation and boosting techniques

	Design of Security Primitives
	Design and Evaluation of Phisical Unclonable Functions
	Design and Evaluation of Chip IDs
	Design and Evaluation of True Random Number Generators

	In-Memory Computing
	Comparative Study of Memristive Logic-in-Memory (LiM) Implementations
	Feasibility of complex Boolean functions using memristive-based LiM

	Neuromorphic Computing - Design & Robustness Assessment
	Introduction
	Variability of fully-connected spiking neural network
	The design of a versatile analog spiking neuron in in 28nm UTBB FD-SOI technology
	The Design of a Probabilistic Spintronic Synapse
	Definition of Fault Models for Spiking Neural Networks
	Fault Injection Platform for Artificial Neural Networks
	Analysis of SNN Fault Tolerance

	Teaching and Supervision Activities
	Teaching Activities
	Supervision and Mentoring Activities
	Master Students
	PhD Candidates
	Supervision and Mentoring Strategy

	Funded Projects and Scientific Cooperation
	Funded Projects
	Research Collaborations

	Research Perspectives
	Perspectives on Reliability and Test
	In-Memory Computing (IMC) Solutions
	Neuromorphic Computing Solutions

	Perspectives on Security
	Physical Unclonable Functions (PUFs)
	Security of In-Memory Computing (IMC) Solutions

	Perspectives on Circuit Design for New Materials

	Publications
	Journal Publications
	Conference Proceedings
	Workshops without Formal Proceedings

	References

	PORTOLAN_Michele_HDR_TIMA_cover.pdf
	Table of Contents
	List of Figures
	List of Tables
	Summary
	Curriculum Vitae
	Personal Information
	Education
	Current Position
	Past Positions
	Executive Summary

	Summary of Scientific Activities
	Memory – Robustness, Reliability & Test
	Neuromorphic computing – design & test
	In-Memory computing – design & security
	Design of security primitives

	Supervision and Mentoring Activities
	Ph.D. Candidates
	Research Engineer
	Interns (Master Students)

	Teaching Activities
	Scientific Projects and Collaborations
	Project Coordination
	Project Participation
	Collaborations

	Dissemination of knowledge
	Invited Presentations
	Publications
	Organisation of Scientific Events
	Program Committee and Reviewer
	Student Activities and Training Programs
	Awards and Certificates

	Institutional Responsibility

	Research Activities
	Preamble
	Introduction
	Memory - Robustness, Reliability Test
	Design and Evaluation of Hardware Security Primitives
	Design, Test and Security of Emerging Computing Paradigms

	Memory - Robustness, Reliability & Test
	SRAM Robustness Metrics
	Methodology for Statistical SRAM Robustness Analysis
	SRAM under SEU and Process Variability
	Variability Aware and Adaptive STAM Test
	STT-MRAM reliability evaluation and boosting techniques

	Design of Security Primitives
	Design and Evaluation of Phisical Unclonable Functions
	Design and Evaluation of Chip IDs
	Design and Evaluation of True Random Number Generators

	In-Memory Computing
	Comparative Study of Memristive Logic-in-Memory (LiM) Implementations
	Feasibility of complex Boolean functions using memristive-based LiM

	Neuromorphic Computing - Design & Robustness Assessment
	Introduction
	Variability of fully-connected spiking neural network
	The design of a versatile analog spiking neuron in in 28nm UTBB FD-SOI technology
	The Design of a Probabilistic Spintronic Synapse
	Definition of Fault Models for Spiking Neural Networks
	Fault Injection Platform for Artificial Neural Networks
	Analysis of SNN Fault Tolerance

	Teaching and Supervision Activities
	Teaching Activities
	Supervision and Mentoring Activities
	Master Students
	PhD Candidates
	Supervision and Mentoring Strategy

	Funded Projects and Scientific Cooperation
	Funded Projects
	Research Collaborations

	Research Perspectives
	Perspectives on Reliability and Test
	In-Memory Computing (IMC) Solutions
	Neuromorphic Computing Solutions

	Perspectives on Security
	Physical Unclonable Functions (PUFs)
	Security of In-Memory Computing (IMC) Solutions

	Perspectives on Circuit Design for New Materials

	Publications
	Journal Publications
	Conference Proceedings
	Workshops without Formal Proceedings

	References

	PORTOLAN_Michele_HDR_TIMA_cover.pdf
	Table of Contents
	List of Figures
	List of Tables
	Summary
	Curriculum Vitae
	Personal Information
	Education
	Current Position
	Past Positions
	Executive Summary

	Summary of Scientific Activities
	Memory – Robustness, Reliability & Test
	Neuromorphic computing – design & test
	In-Memory computing – design & security
	Design of security primitives

	Supervision and Mentoring Activities
	Ph.D. Candidates
	Research Engineer
	Interns (Master Students)

	Teaching Activities
	Scientific Projects and Collaborations
	Project Coordination
	Project Participation
	Collaborations

	Dissemination of knowledge
	Invited Presentations
	Publications
	Organisation of Scientific Events
	Program Committee and Reviewer
	Student Activities and Training Programs
	Awards and Certificates

	Institutional Responsibility

	Research Activities
	Preamble
	Introduction
	Memory - Robustness, Reliability Test
	Design and Evaluation of Hardware Security Primitives
	Design, Test and Security of Emerging Computing Paradigms

	Memory - Robustness, Reliability & Test
	SRAM Robustness Metrics
	Methodology for Statistical SRAM Robustness Analysis
	SRAM under SEU and Process Variability
	Variability Aware and Adaptive STAM Test
	STT-MRAM reliability evaluation and boosting techniques

	Design of Security Primitives
	Design and Evaluation of Phisical Unclonable Functions
	Design and Evaluation of Chip IDs
	Design and Evaluation of True Random Number Generators

	In-Memory Computing
	Comparative Study of Memristive Logic-in-Memory (LiM) Implementations
	Feasibility of complex Boolean functions using memristive-based LiM

	Neuromorphic Computing - Design & Robustness Assessment
	Introduction
	Variability of fully-connected spiking neural network
	The design of a versatile analog spiking neuron in in 28nm UTBB FD-SOI technology
	The Design of a Probabilistic Spintronic Synapse
	Definition of Fault Models for Spiking Neural Networks
	Fault Injection Platform for Artificial Neural Networks
	Analysis of SNN Fault Tolerance

	Teaching and Supervision Activities
	Teaching Activities
	Supervision and Mentoring Activities
	Master Students
	PhD Candidates
	Supervision and Mentoring Strategy

	Funded Projects and Scientific Cooperation
	Funded Projects
	Research Collaborations

	Research Perspectives
	Perspectives on Reliability and Test
	In-Memory Computing (IMC) Solutions
	Neuromorphic Computing Solutions

	Perspectives on Security
	Physical Unclonable Functions (PUFs)
	Security of In-Memory Computing (IMC) Solutions

	Perspectives on Circuit Design for New Materials

	Publications
	Journal Publications
	Conference Proceedings
	Workshops without Formal Proceedings

	References

