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And whither then? I cannot say"  
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Introduction 

 

During his career, a Researcher naturally follows different directions and topics. There are many 

reasons: for personal interests, to exploit collaboration opportunities, to learn new skills, etc..  

There is no need, and neither strictly speaking any value, in enforcing coherence between the 

different topics as long as it is possible to correctly apply and expand one own’s competences and 

be able to contribute to the field. And, why not, taking pleasure in it.  

The way a Scientific Theme is addressed is well-known: first, it must be studied to understand its 

current State of the Art and, more importantly, its Open Questions and Evolution Potential. 

Second, a Theoretical analysis must be applied to find the common elements, the missing ones 

and elaborate a strategy to introduce new ideas. Last, the Abstraction must be Implemented to 

demonstrate its feasibility and its real contribution. Once some results are reached, the cycle starts 

from the beginning: well-known does not mean easy.  

In this document, after giving a through description of my career in Chapter 1 “Curriculum 

Vitae”, I decided to focus on one of my Research Themes, which I  had the opportunity to build 

from the ground up over a period of almost 15 years, from my first Role after my PhD to the 

current time through different positions and employers : the Evolutions of the Software Flow for 

Automated Testing.  

As its name states, Chapter 2 gives the “Motivations and State of the Art” of the topic, while 

Chapter 3 “The need for a New Test Flow” tackles the issue by providing an in-depth Theoretical 

Analysis of the current shortcomings. Chapter 4 “A New Automated Test Flow: Specification” 

provides and justifies the final Abstraction to improve the filed. Chapter 5 “A New Automated 

Test Flow: Implementation” provides a description of the different iterations done over the years 

to refine the Abstraction, Implement it and use to provide innovative solutions. Based on these 

results, Chapters  6 provides the “Short-to-Mid Term Perspectives” of these topics.  Lastly, 

Chapter 7 draws “Conclusions and Long-Term Directions” from a more general point of view.  
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1 Curriculum Vitae 

1.1 Curriculum Vitae 
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Birth Date:  9/7/1979 in Trento (Italy)     
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Nationality: Italian 
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 Current Position 
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• Vice General Chair of « 2ndTest Standards Application Workshop (TESTA) », 2017 

• Organiser of « 1st International Test Standards Application Workshop (TESTA) », 2016 
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• « Peer Reviewer » International Conferences (ITC, ETS, DDECS, etc…) and journals (IEEE 
Design and Test, Journal of Electronic Testing : Theory and Applications » ) 

• « Publication Chair » for the « 12th International On-Line Testing Symposium » 
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1.2 Teaching Activities 

Classes taught as PhD candidate and Lecturer (2004 à 2007) 

Title University Level Year Hours Type 

Computer Architecture Département Télécom BAC+4 2007 13,5h  TD 

Operating Systems ENSERG BAC+4 2007 32h TD 

SoC Project ENSERG BAC+5 2006 24h Project 

Computer Architecture Département Télécom BAC+4 2006 10,5h TD 

Digital Circuit Design Département Télécom BAC+3 2006 15h TD 

VHDL ENSERG BAC+4 2006 21h TD 

C Project ENSERG BAC+4 
2004 à 

2006 
116h  Project 

Computer Architecture Département Télécom BAC+3 2005 18h TP Project 

Computer Architecture Département Télécom BAC+3 2006 32h  Project 

VLSI Design and Test Département Télécom BAC+4 2004 6h  TD 

 

Classes taught as Associate Professor 

Digital Design University Level Year Hours Type 

System Integration Ensimag BAC+4 2013-14-15-16 ~15/an CM 

System Integration Ensimag BAC+4 2013 ~18/an TPTD 

Design of Integrated Digital Systems Ensimag BAC+4 
2017-19-20-21-22-

23 
~20/an TPTD 

Design of Integrated Digital Systems Ensimag BAC+4 
2017-19-20-21-22-

23 
~15/an CM 

Implementation of a Embedded System Use 

Case  
Ensimag/Phelma BAC+5 

2013-14-15-16- 17-

19-20-21-22-23 
~40/an Projet 

Design of mixed integrated functions Phelma BAC+4 
2014-15-16- 17-19-

20-21-22-23* 
~50/an Projet 

VLSI - ASIC + FPGA Phelma BAC+4 2014 12 TPTD 

Analysis and integration of a complex 

integrated system 
Phelma BAC+5 

2016-17-19-20-21-

22 
~30/an Projet 

* class scheduled in the second semester 

 

Reliability and Test University Level Year Hours Type 

Fault Tolenance Ensimag BAC+5 2013-14-15-16-17 ~27/an CM 
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Test of circuits Phelma BAC+5 
2015-16-17-19-20-

21-22-23* 
~8/an TPTD 

Hardware Reliability and Security Ensimag/Phelma BAC+5 2019-20-21-22-23 ~13/an CM 

Hardware Reliability and Security Ensimag/Phelma BAC+5 2019-20-21-22-23 ~16/an TP 

* class scheduled in the second semester 

Computer Science University Level Year Hours Type 

Computers and Microprocessors Phelma BAC+3 2014 16 TD 

Computer Science Project in C Phelma BAC+4 
2014-15-16-17-19 -

20-21 
~20/an TPTD 

Computer Science Projet (SEI) Phelma BAC+4 2014 35 TD+TP 

Operating Systems and Parallel 

Programming 
Phelma BAC+4 2022 6 CM 

Operating Systems and Parallel 

Programming 
Phelma BAC+4 2022 22  TD 

Operating Systems and Parallel 

Programming 
Phelma BAC+4 2022 6 TP 

 

Miscellanous University Level Year Hours Type 

Préorientation - SEI : Conception analogique 

et numérique 
Phelma BAC+3 2013 8 TD 

Préorientation - SLE : Circuits numériques Phelma BAC+3 2013-14-14 ~20/an TD 

Préorientation - SEOC - Systèmes 

Embarqués et Obj. Connectés 
Phelma BAC+3 

2016-17-19-20-21-

22-23* 
~9/an CM 

Group Projects Phelma BAC+3 2014-15-16 ~16/an  Projet 

Group Projects Phelma BAC+3 2015 17 Projet 

* : heures prévues pour le deuxième semestre 

Tutoring and Oral Defenses University Level Year Hours Type 

Retour d’Expérience (REX) PHELMA BAC+4 2013 1 TD 

2nd Year Internship Tutor Phelma BAC+2 2013-14 6 Tutorat 

3rd  Year Internship Tutor ENSIMAG BAC+5 2013-2017-19-20-

21-22-23 

~6/an PFE 

3rd  Year Internship Oral Defenses ENSIMAG BAC+5 2014-16-17-19-

2021-22-23 

 ~25/an PFE 
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Tutoring for Apprentices PHELMA BAC+3 2013-14-15-16-17-

18-19-20 

~10/an Tutorat 

Industrial Projects Phelma BAC+4 2016 48 PFE 

* : heures prévues pour le deuxième semestre 

Pedagogic Responsibilities University Year Hours Type 

Responsibility for SLE Major PHELMA 2013-14-15-16-17-19-20 24/an Resp 

Responsibility for SEOC Major PHELMA 2021-22-23 ~40/an Resp 

External Relationships with the “Grenoble 

University Space Center” 
PHELMA 2015 12 Resp 

Jury Pré sélection AP-CSI PHELMA 2016 3 Jury 

Jury Pré sélection AP-CSI PHELMA 2017 6 Jury 

Dossiers Admis Sur Titre (AST) PHELMA 2016-17-19 6/an Jury 

Doctoral Level Classes 

 University Level Year Hours Type 

Test and Design for Test for Integrated 

Circuits 

Ecole doctorale 

EEATS 
Doctorat 2014,16 6 CM 

Advanced Techniques for Digital Testing 
Politecnico di 

Torino 
Doctorat 2020,2021,2022, 

2023 

~8/an CM 

 

Summary of hours taught per year: 

2013-

2014 

2014-

2015 

2015-

2016 

2016-

2017 

2017-

2018 

2018-

2019 

2019-

2020 

2020-

2021 

2021-

2022 

2022-

2023 

200 410,75 346,25   373,75   295,75* 192* 355* 344,75 372,75 348,5 

*years taking part of a MOISE inter-annual modulation 
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1.3 Career Synthesis 

When I arrived at the TIMA laboratory in 2013, my Research group was in a “down” phase: 

several big projects were coming to an end, and classic themes were looking for a new ideas and 

directions. In this context, I immediately took the 50% supervision of Kais Chibani's thesis, and I 

committed myself to both integrate the group’s open themes and develop my own topics. In the 

theme of Reliability, we have unsuccessfully submitted several ANR subjects over the years, 

regularly reaching Phase 2, which prevented us from launching any PhD theses in this subject. 

At the same time, my Test theme was gaining strength and allowed me to obtain my own funding. 

Unfortunately, the durations of these Projects were too short to finance PhD, and I had to fall back 

on short-term contracts to have the subject mature and develop. Thanks to these results, in 2017 

I was able to participate in the European HADES Project, which allowed me to start the 50% 

supervision of Kalpana Senthamarai Kannan's thesis. The withdrawal of the German partners 

forced a budget reduction, which prevented me from supervising a second Phd student. During 

the Project, I also actively participated in the supervision of the second doctoral student in our 

group, Vincent Reynaud, even though this was not planned in advance and therefore I was not 

officially registered as a supervisor. My participation allowed Vincent to broaden the scope of his 

thesis towards my own themes (Standards and EDA for Test), which resulted in several high-end 

joint publications. The results of Kalpana Senthamarai Kannan's work allowed us to begin a 

collaboration with the DAUIN laboratory at the Politecnico di Torino: in this context we were 

able to launch an ERAMUS + exchange to welcome a doctoral student, Sandro Sartoni, which I 

supervised during his stay in Grenoble and resulted in a joint publication. 

In 2023, I started a new collaboration with Emmanuel Simeu from the “Reliable RF and Mixed-

signal Systems” (RMS) group to explore the synergies between Digital and Mixed Signal testing; 

through the PhD Thesis of Jules Quentin Kouamo, started in November through a “Thèse flechée” 

of the EEATS Doctoral School.     

1.3.1 Project Participation:  

 

- ICT Standardisation Observatory and Support facility in Europe 6th Call (StandICT.eu  

2023, part de H2020),“Advance Design-for-Test standards for complex electronics 

systems”, Budget  ~10k€ over 6 Moth, Project Owner 

- Eramus + Project EMNESS (European Master Network On Embedded System Security 

394.5 K€) - Work Package Leader et Phelma Referent. 

- Europen Project HADES (Hierarchy-Aware and secure embedded test infrastructure for 

Dependability and performance Enhancement of integrated Systems 15 M€), 2017-2020, 

Task Leader, PhD Co-Supervisor 

- Technology Maturation project MAST financed by Linksium, 2015-2016, (138,7 k€) , 

Project Owner, Supervision of two Short-Term Contracts 

- Technology Incubation project MAST financed by Linksium, 2017, (57,7 K€), Sceintific 

Advisor, Supersion of a Short-Term Contract 
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- IRS Project (Initiatives de Recherche Stratégiques) CADI, « Calcul Approché et Distribué 

dans les systèmes Intégrés »,  2019, 10% research time, Supervision of two Master Degree 

Thesis 

- IRS Project (Initiatives de Recherche Stratégiques) AVOCAM, « Analyse de durée de Vie 

pour l'Optimisation de Calcul Approché Matériel », 2020/2021, 20% research time, 

Supervision of three Master Degree Thesis 

- IRT40 Cybersécurité, Development of lab classes dedicated to Hardware Security 

UGA/G-INP, années 2020-2021 (21k) 20% research time, Supervision of one Master 

Degree Thesis 

1.3.2 Supervisions and Management 

1.3.2.1 PhD : 

1. Jules Quention Kouamo , PhD with the Université de Grenoble, started in November 2023, 

50% supervision with Emmanuel Simeu, Professor at UGA 

2. Senthamarai Kannan Kalpana, PhD with the Université de Grenoble, Defended on July 

2015, 50% supervision with Lorena Anghel, Professor at G-INP → now FPGA Firmware 

Engineer at ASML, Netherlands 

3. Chibani Kais, PhD with the Université de Grenoble, Defended in 2016, 50% supervision 

with Régis Leveugle, Professor at G-INP → now Sr. Digital Verification Engineer at ST 

Microelectronics, Grenoble 

1.3.2.2 Erasmus + : 

Sandro Sartoni, Doctorant au Politecnico di Torino, Italie, April 2022 -July 2022. Subject: 

Aging Prediction for a RISC-V processor in FDSOI 28nm  

1.3.2.3 Master Thesis 

1. Mert Arisoy, Politecnico di Torino, Italy; 

2. Pierpaolo Iannicelli, Politecnico di Torino, Italy ; 

3. Xavier Gros, Master 2 MISTRE, UGA, Grenoble 

4. Atoine Cerf, Master 2 MISTRE, UGA, Grenoble 

5. Provent Thomas, M2 - Université Claude Bernard Lyon 1 ; 

6. Muller Meireles Assumpçao Joao Pedro, ENSIMAG ; 

7. Josef Ahmad, Politecnico di Torino, Italy; 

1.3.2.4 Short Term Contracts 

1. Coulon Jean-Francois, 15 month over three contracts between 2016 and 2017 ; 

2. Niels Grateloup, 3 months in  2016 

1.3.2.5 PhD Jurys 

I participated to several PhD Jurys, being also a Reviewer in Italy where the rules allowed me to. 

I have been proposed to be reviewer for Elshamy, but I had to decline because of my lack of HdR. 
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• 2021 : Jury Member for Mohamed Elshamy, Université de la Sorbonne, Laboratoire 

LIP6, France, July 2021 

• 2021 : Reviewer for Davide Piumatti, Politecnico di Torino Doctorate School, Italy, 

February 2020 

• 2020 : Reviewer for Marco Restifo, Politecnico di Torino Doctorate School, Italy, 

February 2020 

• 2017 : Reviewer for Alejandro Velasco, Politecnico di Torino Doctorate School, Italy, 

February 2020 

• 2017 : Jury Member for Riccardo Cantoro, Politecnico di Torino Doctorate School, Italy, 

February 2020 

• 2015 : Jury President for the XXVII cycle of the « Phd in Computer Science and 

Information Systems ”of the Politecnico di Torino Doctorate School, Italy 

1.3.2.6 Recruitment Jurys 

Member of the Recruitment jury for an Associate Professor (Maitre de Conférences Section 

63) at the INP Toulouse, May 2019 
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1.4 Scientific Themes 

Since my PhD, I worked on several scientific themes, of which I will give a brief summary in this 

section. However, in the rest of the document, I decided to develop in details my main Scientific 

Theme: Software Methods for Next-Generation Test Standards. It is a line of Research that I have 

been developing on my own since my arrival in Bell Labs Ireland in 2007 over a span of more 

than 15 years.  

1.4.1 Software Methods for Next-Generation Test Standards 

The complexity of today’s electronic systems, the production volumes and the quality imposed 

by critical applications such as the automobile are putting traditional testing approaches under 

great pressure. To overcome this problem, the testing field is going through a period of profound 

evolution, dominated by new “Design for Test” techniques that push automation to the very heart 

of systems. This field has always been dominated by the simple and extremely effective “Scan 

Test” for structural testing, where the integrity of a circuit is checked by seeing it as a network of 

nodes. These approaches have difficulty following system scaling because of their combinatorial 

complexity. Moreover, they are not at all adapted to new design paradigms such as “IP-based 

Design” or to new issues such as security. Often seen by Academics as mere collections of already 

existing solutions, Standards are on the contrary very powerful tools for pushing new approaches 

towards manufacturers, who see in standardization a guarantee of quality and support. My direct 

experience in the development of the P1687 standard between 2007 and 2014 allowed me to 

foresee its impact on current practices and development flows. In particular, I identified a series 

of criticalities in the associated EDA tools, caused by the axioms and paradigms which are at their 

heart, and which cannot be resolved through simple incremental corrections. This research theme 

is therefore based on the analysis and theoretical abstraction of current practices to formalize new 

needs and develop the corresponding software suites. This line of research generated several 

publications, as well a Technology Transfer project, with several APP (Software Protection) filings 

and a Patent. It should be noted that this Patent is an integral part of the current proposal to the 

IEEE P1687.1 Standard Working Group and it was therefore the subject of a “Letter of Assurance 

for Essential Patent Claims” to the IEEE, which guarantees its possible commercial exploitation. 

future.  

The PhDs of Kalapana Senthamarai Kannan and Jules Quention Kouamo, are part of this line of 

research as explorations of long-term impact and applications.  

1.4.1.1 Kalapana Senthamarai Kannan: “Performance and Safety/Security 

Management in automotive and IoT Application” 

Due to technology scaling and transistor size getting smaller and closer to atomic size, the last 

generation of CMOS technologies such as FDSOI presents important variability of several 

physical parameters. As a consequence, it becomes more and more difficult to guarantee circuit 

functionality for all Process, Voltage, Temperature (PVT) corners and in turn, to compensate for 

different sources of variability. Moreover, circuit wear-out degradation leads to additional 

temporal variations, potentially resulting in timing and functional failures. Under normal 

operation conditions, a transistor can be affected by various aging effects such as Hot Carrier 

Injection (HCI), Negative/Positive Bias Temperature Instability (NBTI,PBTI), and Time-
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Dependent Dielectric Breakdown (TDDB). In advanced technologies, such as FDSOI, local and 

global variability, NBTI and HCI phenomena are considered as critical reliability issues. Hence, 

considering these phenomena as early as possible in the design steps (i.e. during the standard 

cells characterization step, or at the circuit and system design) are mandatory, especially for high 

reliable application such as automotive applications, or mixed critical applications.  

Indeed, the above-mentioned reliability threats can severely degrade performances, and in the 

worst case, provoke system failures, affecting safety goals of critical reliable systems. Accurate 

simulations with physical degradation models of aging phenomena combined with actual silicon 

measures are, de facto, necessary to better understand and assess the reliability impact on 

complex digital designs. To handle such problems, one conventional method consists in 

providing bigger safety margins (also called guard bands) at design-time. Adding pessimistic 

timing margins (or their equivalent voltage margins) to guarantee all Operating Points under 

worse case conditions is not possible anymore due to the huge impact on design costs, with an 

upward trend as technology moves further. Therefore, the usage of delay violation monitors, 

usually placed at the end of potential critical paths, becomes necessary. Placing the monitors in a 

given design is a critical task: the designer has to select the endpoints that will age the most, as it 

may become a potential point of failure. Monitor warnings signals can trigger adaptive 

techniques, such as Adaptive Voltage Scaling (AVS) or Dynamic Voltage Frequency Scaling 

(DVFS). They are then used to adapt dynamically the frequency and the voltage according to the 

operating conditions and the application needs. In addition to the reduction of design margin, 

monitors also help compensate performance and power degradation. Sometimes, the circuit’s 

lifetime can be extended. It is worth noticing that the area overhead induced by the monitor 

placement should be carefully considered and should remain reasonable. The number of selected 

endpoints for monitor insertion should be as small as possible, but still cover the most important 

critical endpoints of the design. However, endpoint selection is an extremely complex task which 

requires a deep knowledge of both the target technology and the final workload.  

To alleviate these restrictions, in this PhD we explored Machine Learning approaches to find 

methods that starting from a limited set of technological parameters are able to efficiently predict 

the delay degradation of paths depending on a given workload and available Operating 

Performance Points (OPP) expressed in terms of Voltage and Frequency. The aim was to obtain a 

lightweight, embeddable solution that can be used in conjunction with delay violation monitors 

in order to alleviate monitor insertion complex task, but also and to identify the best OPPs 

following different optimization strategies. The ML framework obtained during this PhD has 

been validated and compared with the State-of-the-Art data with excellent results, and used as 

the base of innovative System-level applications to identify Aging-aware Path Slack Ranking and 

proposes an adaptative OPP strategy optimizing both performance and lifetime. 

1.4.1.2 Jules Quentin KOUAMO:  Software Methods and Architectures for the test of 

Mixed-Signal SoCs 

The complexity of current electronic systems, the production volumes and the quality level 

required in critical applications, like for instance in automotive, challenge traditional approaches 
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to testing integrated systems. To overcome these difficulties, the field of testing is currently 

undergoing a period of profound evolution, dominated by new “Design for Test” techniques 

which push automation to the very heart of systems. This field has long been dominated by “Scan 

Test”, which is simple and very effective for structural testing, which consists of verifying the 

integrity of the circuit as a network of nodes. However, these approaches have difficulty in 

keeping up with the scaling of systems due to their combinatorial complexity. In addition, they 

are not at all adapted to new design paradigms such as “Design by IP” or to systems that integrate 

analog modules, the tests of which are often functional and interactive. Often seen by Academics 

as collections of already existing solutions, Standards are on the contrary very powerful tools for 

transferring new approaches to industry, where standardization is seen as a guarantee of quality 

and support. This is particularly true for the IEEE 1687-2014 standard, also known as “Internal 

JTAG”, which for the first time integrates functional testing and dynamic architectures at the very 

heart of its proposal. Unfortunately, the most innovative and disruptive elements of the standard 

are not integrated into current CAD flows, which are rather focused on incremental 

developments with high ROI (Return Of Investment). The importance and weight of Analog in 

modern System-on-Chip (SoC) continues to grow, but its complex interaction with Digital has 

not yet been fully explored. Several initiatives are underway, including an attempt to extend 

IJTAG to analog testing thanks to the IEEE P1687.2 standardization committee. While custom 

solutions to specific problems exist, the systematic consideration of the peculiar constraints of 

these areas for a unified and coherent solution has never been addressed. For example, analog 

testing is dominated by Built-In-Self-Test (BIST), where a hardware component is developed ad-

hoc and integrated into the chip, with almost no interaction with the outside. This is of course 

efficient, but takes a long time to develop and is very resource-intensive.  

The work proposed in this thesis aims to develop an infrastructure that will allow for hybrid 

software and hardware approaches optimized according to the needs of designers. Particular 

attention will be paid to the life cycle: a Mixed-Signal System must pass through multiple phases 

of Design, Validation and Test, and each has its own tools and constraints which make 

information sharing and solution porting almost impossible. An objective of the thesis work is to 

fill the technological “gap” between these stages and to evaluate the feasibility of a unified 

approach. 

 

 

 

1.4.2 Early Reliability and Security Analysis 

Today's computing is a true continuum that runs from IoT devices or smartphones to large, 

mission-critical data center servers, often performing crucial tasks. In this context, the security 

and reliability of microprocessor-based computer systems are therefore major challenges. The 

concepts are closely related: while reliability defines the probability that a system will not be 

subject to failures, safety guarantees that even in the presence of such failures, the system will not 

generate any dangerous results. While the first describes a characteristic of the system itself, the 

second is more focused on the interaction with the environment, and therefore its usage. Faults 
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affecting hardware components (e.g., microprocessor, memory,) are then propagated through the 

software and can induce failures such as loss of information, incorrect behavior, up to complete 

unavailability of the system. All this can be described in terms of reliability or security. These 

qualities are now mainly quantified through costly and complex Fault Injection or Radiation 

campaigns. This means that a new campaign must be performed for each software or hardware 

change. Additionally, at an early stage of design, the final architecture of the microprocessor may 

not yet be defined. These campaigns can therefore be very long and impact Time-To-Market, 

especially if reliability levels are not achieved and a correction of part of the system is necessary. 

This research theme is therefore focused on the research and formalization of alternative 

approaches allowing early analysis: light from a computational point of view but still precise, it 

is capable of coherently identifying critical elements of hardware and software. The goal is to 

obtain a set of tools that can be used repeatedly during the design phase to ensure that the final 

system will meet the target reliability and security constraints. This is one of the driving themes 

of my TIMA research group that I have pursued since my thesis work, and which has enabled 

significant scientific advances and also an industrial impact, evidenced by the APP deposit of the 

EARS software resulting from this thematic and the thesis of Kais Chibani which I co-supervised 

with Régis Leveugle. 

1.4.2.1 Kais Chibani “Robustness analysis of Integrated Digital Systems” 

Many applications are today concerned with soft errors, i.e. spurious bit modifications occurring 

in a circuit at runtime. Such errors can be provoked by environmental disturbances, without any 

physical defect induced in the circuit. In some cases, they can also result from malicious attacks. 

No matter their origin, a designer must consider the potential consequences of such errors. It is 

well known that not all soft errors lead to application failures; the probability of failure strongly 

depends not only on the target circuit’s architecture, but also on the application characteristics, 

the induced usage of the hardware elements and the execution scenario. The real sensitivity of a 

circuit (defined here as the probability of failure, assuming a soft error occurred) must therefore 

be evaluated with respect to a given situation in order to avoid large over-estimations. 

The first type of analysis required at design time is an evaluation of the intrinsic sensitivity. If the 

probability of failure is too large with respect to the application requirements, mitigation 

techniques can then be applied on the most critical parts. In this work, we focus on the intrinsic 

sensitivity evaluation, before any specific method is implemented for fault tolerance. However, 

the analysis must allow a designer to identify the most critical parts for selective hardening. The 

analysis must also be done early in the design flow in order to reduce the cost of rework or 

mitigation insertion, when necessary. Preliminary analyses can occur very early, based on the 

pure behavioral descriptions of the circuit, obtaining what is usually called an Architecture 

Vulnerability Factor. However, these analyses are usually extremely conservative and tend to 

over-estimate the sensibility of the system, resulting in high overheads which are not always 

acceptable. In order to obtain accurate quantifications, the registers actually implemented in the 

final circuit and potentially subject to soft errors must be known – a Register-Transfer Level (RTL) 

description is therefore often the earliest used in the studies. In this work, we will assume that 
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such a description is available, as well as a testbench defining an execution scenario 

representative of the use of the circuit in the final system. The precise sensitivity is usually 

evaluated by means of fault injection campaigns, which require a specific set-up, can be very long 

and expensive and can be performed only when the final circuit is available. As a result, if a major 

weakness is found, a redesign iteration can be extremely long and directly impact the whole 

project’s timeline.  

In this PhD, the focus is to avoid fault injections and the need for specific equipment or skills. The 

aim is to obtains tools and strategies that can be applied early in the design flow to obtain 

robustness estimations which can help the Designer’s choices. The results are not meant to give 

a precise value of the system’s robustness, but rather to identify the components which are more 

critical, so that they might be selectively hardened. This loop evaluation→hardening should be 

lightweight enough to be repeatable several times in the Design phase to obtain incremental gains 

and increase the confidence in the system’s robustness. To estimate the “criticality” of an element, 

this work relied on the most classical metric, i.e. lifetime of data in the registers. At a given 

moment in time, not all flip-flops in a circuit contain useful data, while data re-used after a large 

number of clock cycles has a higher probability to be corrupted by random disturbances than 

some piece of information used only during a few cycles. So, the more often a register is “alive”, 

i.e. it contains data that will be reused later, the more critical it will be.  

The work started by making an architecture analysis of an existing open source processor, the 

Leon 3: we built a model of its Pipeline with a particular emphasis on the data transfer between 

registers (both visible to the User or hidden in the Architecture), and used traces from an 

execution to compute the Lifetime of each one of them.  This proved the feasibility of the approach 

and its capability to provide estimate coherent with the State of the Art. We then moved to main 

part of the PhD, where we extended the approach to generic Digital Circuits expressed in RTL 

(VHDL). The resulting tool, called EARS, was able to give precise estimations of the criticality of 

each Register in the circuit with no a-priori information on its architecture by analyzing the 

simulation traces of a given payload against an internal model of the circuit. As opposed to 

simulation-based fault injections, only one simulation has to be run, with an important 

performance gain. The approach was run on the Leon 3 VHDL description for several workloads 

and consistently provided result coherent with emulation-based fault injections, but at a fraction 

of the computational effort. The EARS tool has been the subject of an APP depot, and has been 

reused several times in the context of TIMA’s research in this subject.   

1.4.3 Design Exploration for Approximate Computing 

Approximate computing is a design methodology aimed at increasing the efficiency of electronics 

systems. As its name suggests, it involves accepting a result which is not necessarily exact, on 

condition of gaining in terms of energy consumption, calculation speed and/or complexity of the 

implemented system. Of course, an exact calculation must not be essential for correct operation. 

The loss of precision must then remain within a “reasonable” margin of error. To situate some of 

the areas of application, it is of course possible to mention image processing for which, for 

example, the exact value of a certain percentage of pixels might no impact on the finale result (ex: 

“light green” or “dark green” in a traffic light recognition). Major application areas currently 

include classification problems, artificial intelligence, etc. In addition to the relative novelty of 
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this type of approach (it is still considered "a new calculation paradigm"), the main obstacle to its 

application comes from the difficulty for a designer to be able to evaluate early enough and 

effectively which part of the system can be approximated without unacceptably degrading the 

service provided to the user. This new theme, coming directly from my Visiting Professor period 

of 2018-2019, is a synergy between TIMA's own themes (most notably, the EARS tool developed 

by Kais Chibani) and the research of the Politecnico di Torino focused on the statistical study of 

the effects of local approximations on the overall result. In the literature, the choice of elements 

to be approximated is always left to the expertise of the developer through qualitative and ad-

hoc analyses: if the error measured is unacceptable, the only choice is to start from scratch, with 

a considerable cost. In this theme, possible thanks to the complementary skills of TIMA and 

Politecnico, we reverse the problem and aim at the formalization and development of automated 

methods and tools capable of analyzing a system and identifying the circuit areas that can be 

approximated with the least impact on the final result, with considerable savings in time and 

resources during specification and design.  

1.4.4 Autonomous deployment of Small Cells 

When deploying dense cellular networks, Quality of Service (QoS) depends not only by the Area 

Coverage, but from a multiplicity of dynamic parameters, such as for instance the user density, 

their usage behavior or their movement patterns. These conditions are extremely difficult to 

estimate through a priori models. Moreover, in the early 2000’s a new deployment paradigm 

started being developed by actors such as Alcatel-Lucent: Small Cells. The correct term would 

rather we “a base station inside a small box”: a PC-sized cabinet able to support a small number 

of users (usually a few dozens) in a restricted area. The concept has been pushed even further 

with the introduction of “femto cells”, small boxes able to provide 3G coverage in a really small 

area (usually no more than 20-30 meters) to half a dozen users, and using the ADSL Box as 

backhaul. These have been commercially distributed under the name of either “femto cells” or 

“range extenders”. As they are supposed to be plug-and-play into unknown environments 

(usually in close spaces) their centralized management and optimization is close to impossible. 

Upon me joining Bell Labs Ireland, a lot of work had been done in developing autonomous QoS 

genetic optimization algorithms, but all were based on centralized Matlab simulations. In this 

topic, I focused on the porting of these approaches to real-world scenarios by providing an 

abstraction from the Matlab simulation based on measurable distributed values, and ported a 

demonstrator on an actual Alcatel-Lucent product: a femto cell based on a Montavista Linux and 

IBM Rational Rose, commercialized by Vodaphone. Even though the results were promising, I 

was forced to interrupt this line of research when I moved to TIMA and lost access to the Alcatel-

Lucent Intellectual Property.  
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May 2019 

[11] A. Savino, M. Portolan, S. Di Carlo and R. Leveugle, “Approximate computing 

design exploration through data lifetime metrics”, 2019 European Test Symposium, 

May 2019 

[12] R. Leveugle, M. Portolan, S. Di Carlo, A. Savino, G. Di Natale and A. Bosio, 

“Alternatives to Fault Injections for Early Safety/Security Evaluations”, Embedded 

Tutorial at the 2019 European Test Symposium, May 2019 

[13] M. Portolan, M. J. Barragan, R.Alhakim, S. Mir , “Mixed-signal BIST 

computation offloading using IEEE 1687”, 2017 22nd IEEE European Test 

Symposium (ETS), Year: 2017, Pages: 1 - 2, DOI: 10.1109/ETS.2017.7968222 

[14] G. Di Natale, M. Kooli ; A. Bosio, M. Portolan, R.Leveugle, “Reliability of 

computing systems: From flip flops to variables”, 2017 IEEE 23rd International 

Symposium on On-Line Testing and Robust System Design (IOLTS), 2017 

[15] Portolan M., “Accessing 1687 systems using arbitrary protocols”, 2016 IEEE 

International Test Conference (ITC),Year: 2016, Pages: 1 - 9, DOI: 

10.1109/TEST.2016.7805839 

[16] K. Chibani; M. Portolan; R. Leveugle,  “Evaluating application-aware soft error 

effects in digital circuits without fault injections or probabilistic computations”, 2016 

IEEE 22nd International Symposium on On-Line Testing and Robust System Design 

(IOLTS),Year: 2016, Pages: 54 - 59, DOI: 10.1109/IOLTS.2016.7604672 

[17] M. Portolan, R. Rolland,  “Student-driven development of a digital tester”, 2016 

11th European Workshop on Microelectronics Education (EWME), Year: 2016, 

Pages: 1 - 3, DOI: 10.1109/EWME.2016.7496479 

[18] K Chibani, M Portolan, R Leveugle, “Application-aware soft error sensitivity 

evaluation without fault injections-Application to Leon3”, European Conference on 

Radiation and its Effects on Components and Systems (RADECS'16), 2016 
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[19] Portolan M., “A novel test generation and application flow for functional access 

to IEEE 1687 instruments”,  21th IEEE European Test Symposium (ETS), Year: 

2016, Pages: 1 - 6, DOI: 10.1109/ETS.2016.7519302 

[20] K Chibani, M Ben-Jrad, M Portolan, R Leveugle, “Fast accurate evaluation of 

register lifetime and criticality in a pipelined microprocessor”, Very Large Scale 

Integration (VLSI-SoC), 2014 22nd International Conference on, October 

[21] K. Chibani, M Portolan, R Leveugle, “Fast register criticality evaluation in a 

SPARC microprocessor”, Microelectronics and Electronics (PRIME), 2014 10th 

Conference on Ph. D. Research in, June 2014 

[22] K. Chibani ; S. Bergaoui ; M. Portolan ; R. Leveugle, “Criticality evaluation of 

embedded software running on a pipelined microprocessor and impact of 

compilation options”, 2014 21st IEEE International Conference on Electronics, 

Circuits and Systems (ICECS), 2014 

[23] Cherubini D., Portolan M., “Automatic Equivalent Model Generation and 

Evolution for Small Cell Networks”, Fourth International Workshop on Indoor and 

Outdoor Small Cells 2013 (WiOPT), Tsukuba, Japan, Mai 2013 

[24] Portolan M., « Packet-based JTAG for remote testing », 2012 International 

Test Conference (ITC12), Anaheim CA, 4-9 November 2012 

[25] Portolan M., Goyal S. and  Van Treuren B., « Scan chain Securization through 

Open-circuit Deadlocks », Poster for the  2010 International Test Conference 

(ITC10), Austin TX,  November 2010 

[26] Portolan M., Goyal S. and  Van Treuren B., « Scalable and efficient integrated 

test architecture », 2009 International Test Conference (ITC09), Austin TX, 

November 2009 

[27] Vanhauwaert, P.; Portolan, M.; Leveugle, R.; Roche, P., « Usefulness and 

effectiveness of HW and SW protection mechanisms in a processor-based system»,  

15th IEEE International Conference on Electronics, Circuits and Systems (ICECS 

2008), 2008 

[28] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and Cook 

T.B., « A New Language Approach for IJTAG», 2008 International Test Conference 

(ITC08), San Francisco CA, October 26-30 2008 

[29] Portolan M., Leveugle R., « A Highly Flexible Hardened RTL Processor Core 

Based on LEON », 8th European Conference on Radiation and Its Effects on 

Components and Systems (RADECS 05) – 2005  

[30] Portolan M., Leveugle R., « Towards a Secure and Reliable System » – 2005 

IFIP International Conference on Embedded and Ubiquitous Computing (EUC'2005) 

– 2005 

[31] Portolan M., Leveugle R., « On The Need for Common Evaluation Methods for 

Fault Tolerance Costs in Microprocessors »  11th International On-Line Testing 

Symposyum (IOLTS05) – 2005 

[32] Portolan M., Leveugle R., « Operating systems function Reuse to achieve Low-

Cost Fault-Tolerance », 10th International On-Line Testing Symposyum (IOLTS04) 

– 2004 

[33] Portolan M., Leveugle R., « A Context-Switch Based checkpoint And Rollback 

Scheme » –XIX Conference on Design of Circuits and Integrated Systems (DCIS 

04) – 2004 

 

• Workshops et Posters 
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[W1] "Targeting Approximation through Data Lifetime: A Quest for Optimization 

Metrics”, A. Savino, M. Portolan, S. Di Carlo and R. Leveugle, AxC 2019 : Fourth 

Workshop on Approximate Computing, May 2019 

[W2] M.Portolan, R.Cantoro, E.Sanchez,M. Reorda, “A Functional Approach to Test 

and Debug of IEEE 1687 Reconfigurable Networks”, 2018 International Test 

Conference, October 2018 

[W3] K. Kannan, M. Portolan, L. Anghel ,“Run-Time Aging Prediction Through 

Machine-Learning”, ”, 2018 International Test Conference, October 2018 

[W4] M. Portolan, M. J. Barragan, H. Malloug, S. Mir, “Interactive Mixed-Signal 

Testing Through 1687”, First International Test Standards Application Workshop 

(TESTA'16) 

[W5] Portolan M., Goyal S., Van Treuren B.  « A New Execution Model for 

Interactive JTAG Applications », 2013 European Test Symposium (ETS13), 

Avignon, France, May 2013 

[W6] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and Cook 

T.B., « A new description language for SoC testing », 2008 European Test 

Symposium (ETS08), Verbania, Italy, May 25-29, 2008 

[W7] Portolan M., Goyal S., Van Treuren B., Chiang C_H., Chakraborty T. and Cook 

T.B., « A Novel Hardware Description language for efficient debug and diagnosis of 

digital circuits », 2008 IEEE International Workshop on Silicon Debug and Diagnosis 

(SDD2008), San Diego, CA , April 27- May 1st, 2008 

 

• National conferences 

 

Portolan M., Leveugle R., « Réalisation d’une Tolérance aux Fautes à Bas Coût dans 

les SoCs en Utilisant le Système d’Exploitation » – Actes des Journées Nationales du 

Réseau Doctoral de Microélectronique – 2004 

 

• Invited Presentations 

Anghel L., Portolan M., Managing Wear out and Variability Monitors: IEEE 1687 to 

the Rescue, Keynote talk, East West Design and test Symposium, Yerevan, 

ARMENIA, 13 au 16 October 2016 

Portolan M., “Standards: Can they co-exist for System Level Test?, Invited Talk”, 

VLSI Test Symposium, Las Vegas, NE, UNITED STATES, 25 au 27 avril 2016 

Portolan M., “Flexible and Extendable System-level JTAG Manager”, Invited Talk, 

International Test Conference, Anaheim, CA, USA, October 2015 

1.6 Patents and Software Filings 

 Only the original filings are listed: for a complete listing of international extensions, 

please referrer to the Lens aggregator. (102 items in October 2023) 

https://www.lens.org/lens/profile/305697555/patent  

http://tima.imag.fr/tima/fr/timalaboratory/persopage_id944.html
http://tima.imag.fr/tima/fr/mediatheque/artconf/result_2336.html
http://tima.imag.fr/tima/fr/timalaboratory/persopage_id944.html
https://www.lens.org/lens/profile/305697555/patent
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Patents for the MAST Software 

[P1] Application : FR1754491A·2017-05-19 Publication : FR3066606A1·2018-11-23 

 

Patents Granted in the field of Testing 

[P2] “Method And Apparatus For Describing And Testing A System-On-Chip”, US 

Patent 7,958,479, June 2011 

[P3] “Method And Apparatus For Describing Components Adapted For Dynamically 

Modifying A Scan Path For System-On-Chip Testing”,  US Patent 7,962,885 

June 2011 

[P4] “Method And Apparatus For Describing Parallel Access To A System-On-Chip”, 

US Patent 7,949,915 May 2011  

[P5] “Apparatus And Method For Isolating Portions Of A Scan Path Of A System-

On-Chip”, US Patent 7,958,417 June 2011 

[P6] “Apparatus And Method For Controlling Dynamic Modification Of A Scan Path”, 

US Patent ,7,954,022 May 2011 

[P7] “Method And Apparatus For Providing Scan Chain Security, US Patent 

8,495,758 July 2013 

[P8] “Method And Apparatus For System Testing Using Multiple Instruction Types”, 

US Patent 8,533,545, September 2013 

[P9] “Method And Apparatus For Virtual In-Circuit Emulation”, US Patent Number 

8,621,301 December 2013 

[P10] “Method And Apparatus For System Testing Using Multiple Processors”, 

US Patent 8,677,198 

[P11] “Method And Apparatus For Position-Based Scheduling For JTAG 

Systems”, US Patent Number 8,775,884, 8 Jul 2014 

[P12] “Method And Apparatus For Deferred Scheduling For JTAG Systems”, 

US Patent Number 8,719,649, May 2014 

[P13] “Packet-Based Propagation Of Testing Information”, US Patent number 

9,341,676, May 17, 2016  

[P14] “Systems and methods for dynamic scan scheduling”,  Michele Portolan, 

Suresh Goyal , Bradford Van Treuren, US Patent Number 9,183,105, 

November 10, 2015 

 

Patents Granted in the field of Telecommunications 

 

[P15] “A Telecommunications Network, And A Method Of Configuring Nodes 

Of A Telecommunications Network, EU Patent EP2346209, Mars 2013 

[P16] “Device and Method for transmitting samples of a digital baseband 

signal, EU Patent Number EP2683102, Avril 2014 

[P17] “Apparatuses, Methods And Computer Programs For A Remote Unit 

And A Central Unit”, EU Patent Number EP2720429A1,  

 

[APP1] APP filing for the NeSLT/MAST softwares  

- V1 : IDDN.FR.001.260016.000.S.P.2015.000.10600 
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- V2 : IDDN.FR.001.260016.001.S.P.2015.000.10600 

- V2.1 : IDDN.FR.001.260016.002.S.P.2015.000.10600 

- V3 : IDDN.FR.001.260016.003.S.P.2015.000.10600 

 

APP filing for the EARS software 

 [APP2] IDDN.FR.001.530007.000.S.P.2016.000.10600, Décembre 2016  
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2 Motivations and State of the Art 

The world of Testing is under constant pressure: arriving at the very end of the Design cycle, the 

Testing phase has a direct impact on Time-To-Market and the final quality of the product. This 

pressure to deliver is one of the most fascinating aspects of the domain, but also one of its limiters. 

Actors tend to “use what works” and are extremely conservative toward new approaches. There 

is little time and desire to try and understand “why” something is done, and “what if” things 

were done differently. Similarly, failure is not an option for a Test Engineer: faced with a problem, 

he/she will always find some way to solve it, and stick to this workaround even if it is 

cumbersome or unstable “because it does work”.  

In my work, I focused exactly on these “why”s and “what-if”s  to find abstractions and solutions 

that could be applied as widely and generally as possible without custom workaround or patches. 

In this Chapter, I will provide an analysis of the current State of the Art with a particular emphasis 

in the missing pieces, which will then be covered in terms of both Abstraction and 

Implementation in Chapters 3, 4 and 5.  

2.1 The Automated Test Flow 

Automation is at the core of testing: the sheer size of modern systems, as well as the need to 

guarantee quantifiable quality in a reasonable test time led to the development of a rich, codified 

ecosystem, depicted in Figure 1 

 
Figure 1: The Ecosystem of Automated Testing 

In the upper part, a simplified view of the Implementation flow going from Design to the Physical 

Circuit is given, highlighting the intermediate Circuit Netlist. Coming after Synthesis, it is the 

first step where the system is seen as graph of interconnected logical nodes (typically, flip-flops 

and Boolean gates). It is the abstraction level where Fault Models can be defined: they are a logical 

representation of physical defects, expressed as “faults” in their Boolean functionality. The most 

famous and widely used is the “Stuck-At” model: a certain node is stuck to a logical value (‘0’ or 

‘1’) and is therefore unable to perform the desired operation. An automated tool applies Fault 
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Models to the System Under Test and computes the set of operations needed to both Activate and 

Detect those faults through a process named Automated Test Pattern Generation (ATPG). In this 

context, a “Pattern” or “Vector” is a set of binary Input values that can be applied to the SUT, and 

the expected Output values that a “sane” system should produce. These sets of patterns are then 

applied to the SUT through dedicated Automated Test Equipment (ATE). In this scheme, all 

intelligence is regrouped in the Generation phase, while Patterns are simply a collection of static 

vectors to be applied by the ATE. This process is optimized for factory testing, where the Key 

Performance Indicator is speed: testing time must be minimized to reduce costs.  

The greatest value of ATPG is its quantitative nature: it can precisely compute the number of 

possible Faults a system might encounter, which one are “covered” by a set of Patterns and which 

one are “untestable”. These precise coverage metrics are precious because they provide a direct 

measure of the effectiveness of the ATPG algorithm, something that is not possible with 

functional testing. However, pure ATPG rapidly hit a computational limit: Test Point Erosion 

[iNEMI09]. Following Moore’s law, the density of circuit has been growing exponentially over 

the last decades, but access capabilities (i.e. the number of possible Input and Output pins) has 

been growing at a much slower scale. As a result, there is a big Controllability and Observability 

problem: it is more and more difficult to properly set the value of deeply integrated nets and/or 

to observe their values from the Functional Inputs and Outputs. This directly impacts ATPG 

algorithms, with coverage rates dropping and Pattern set size exploding. The solution is what is 

called Design-for-Test (DfT): the design is modified to boost its testability while maintaining the 

same functionality and impacting as little as possible its performances. Among the wide range of 

DfT solutions, we will focus on the most widely used: Scan Testing and Built-In-Self Test (BIST).  

Scan Testing, represented in Figure 2, is a direct solution to Test Point Erosion [AGRA84]. A 

traditional circuit, depicted in the upper half is composed to both Combinatory and Sequential 

logic, and is accessed through its primary Inputs and Outputs. In order to Activate a fault in the 

combinatorial logic, a value must be loaded into one or more Sequential memorization points 

(represented as D Filp-Flops in the Figure) from the Primary Inputs PI. Similarly, to Detect a fault 

the result of the Combinatorial logic must be saved in the FF and read from the Primary Outputs 

PO. These routings PI→FF and FF→PO are what cause Test Point Erosion as they can be 

extremely difficult to compute and might require pipelining through several cycles.  

 
Figure 2 Example of Scan Insertion 
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To solve the issue Scan Testing, depicted in the lower half, applies a simple principle: through 

the introduction of some multiplexer and a control signals, all Flip-Flops can be connected serially 

to form a shift register. The strengths of this approach are that its cost is low (a few muxes and 

additional pins) and that both controllability and observability are total, as any FF can be directly 

accessed without going through the Combinatorial logical. The downside is performances: a 

“full-scan” of a modern design might be composed of thousands of FF, requiring a huge number 

of cycles to completely shift it. Moreover, as the Scan Control signals need to cover the whole 

circuit, timing closure is difficult and Scan Clocks are usually significantly slower than the 

Functional Clock. To boost performances in factory testing, several shorter Scan Chains are 

implemented in parallel: this requires adding specific Test Pins, but this is usually not an issue at 

die-level, where the access capabilities are higher than after packaging. Solutions like Scan 

Compression [KAPU08], which allow accessing several chains in parallel though a reduced set of 

scan interfaces are now commonplace.  

On the other hand, Built-In-Self-Test tackles the issue of Scan Test Erosion in the opposite way: 

instead of enhancing access capabilities, new components are added inside the system so that it 

is able to test itself without the need of external communication. The most typical example is 

Memory Testing: instead of having thousands of vectors writing and reading back values 

[GOOR90], a Memory BIST (MBIST) is a component able to generate and compare them on the 

fly [WEST81]. Similarly, Logic BIST (LBIST) [KELL90] allows testing of embedded logic. These 

approaches allow for high fault coverage with little or no data exchange: they just need to be 

initialized (when needed), triggered and then their results can be collected. 

Scan Testing and BIST are two faces of the same medal are complementary: any modern system 

will implement both to achieve its coverage requirements.  

2.2     The Role of Standards and Patents 

The world of testing is composed by a variety of actors, each with his own specialization. For 

instance, DfT insertion might be done by a team, test generation by another and the final testing 

on actual circuit by yet someone else. Each one’s contribution might come at different times and 

places, due to the long time taken for projects and to the distributed nature of the of the electronics 

supply chain, and with different EDA Toolchains. In reality, things are even more complex: the 

final system is nowadays composed by several third-party IPs, each with its own Design, DfT 

and EDA Toolchain choices, but each (supposedly) inter-operable. The only way to make such a 

complex setup work is for everyone to speak the same language: standardization. Defined in the 

Shorter Oxford English Dictionary as “A document embodying an official statement of a rule or 

rules […] having a recognized and long-lasting value” a Standard is an irreplaceable tool in 

Engineering: by agreeing on a common set of rules and best practices, the actors are guaranteed 

inter-operability of their proprietary solution. By being standard-compliant, a company can have 

a reasonable guarantee of market acceptance for a new product, and therefore justify the 

investment to develop it. But the impact goes far beyond marketing: a successful standard can 

shape its technological domain for years, guiding not only Product development but also 

Research directions. When working in technologies at their mid-TRL stages [TLR-EU] [TLR-

NASA], both Companies and Academia will be more willing to invest time and resources to 
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develop standard-related technologies whose acceptance is almost guaranteed. As such, a 

standard is usually the synonym of a whole ecosystem of IPs, Software and best practices: Users 

tend to avoid non-standard technologies that would force them to leave the comfort and safety 

of such an environment. The effort of using custom solutions is usually so high to nullify its 

potential advantages.  

In all technological fields, there are solutions and best practices that are so effective and 

widespread that become de-fact standards. The most famous example in testing is Scan Testing: 

virtually any digital circuit includes one or more scan chains because it is the only way to reach 

a satisfying coverage rate. Each Toolchain implements it in equivalent ways, but each solution 

will be slightly different and not necessarily compatible. For instance, a Scan Chain inserted by 

Synopsys’s Design Compiler [SYNO] will not necessarily be exactly the same as one inserted by 

Siemens EDA’s Tessent [SEDA]. However, this is not necessarily an issue:  to reduce the 

complexity of the flow, a Designer will tend to use the same Toolchain from DfT Insertion to 

Pattern generation. The need for inter-operability comes after: one the one hand if the Design is 

self-contained and is fabricated, the Patterns must be accepted by any ATE. On the other hand, if 

the Design is just an IP to be inserted in a bigger system, the two DfT must be compatible. 

Traditionally, this meant that the DfT for all IPs in a system was developed using the same 

Toolchain. While this is reasonable for a system where all IPs are developed in-house, the 

widespread usage of IP-based design is putting a serious strain on this usage model for two 

reasons. The first is that as IPs grow in size and complexity, Third-party Providers tend to 

implement their own DfT. This allows for better testability, and also allows the Provider to reveal 

as little as possible about its IP internal implementation. Strictly related, the second is that there 

is no guarantee that the IP Provider will have used the same Toolchain as the System Integrator. 

Unfortunately, the de-facto standard paradigm is not valid in this situation.   

In the domain of Testing, formal Standards are defined by Standardization Bodies, i.e. entities 

that handle the Standard Development process and publish the Reference Documents. In the 

world of Electronics, the main standardization entity is the IEEE Standard Association [IEEESA]: 

its role is to centralize efforts by providing a process to propose, develop and publish reference 

standards. The development itself is carried out as a volunteering work by contributors, which 

can come from both Industry and Academia. The process is well documented and controlled by 

a set of bylaws, the most important assuring that no individual or company might use a standard 

as a way to obtain an unfair advantage over the competition. The usual steps are: 

- People interested in developing a new Standard can ask the IEEE to open a Study Group. 

This is an informal group where members can discuss their ideas and objectives. The goal is 

to come up with a PAR (Project Authorization Request) to the IEEE. It must “define the scope, 

purpose, and contact points for the new project.” [IEEESA].  

- Upon approval, a Working Group (WG) is formed, and the project is assigned a number. This 

can either be a sequential number (ex: P1687) for a completely new standard, or a “dot” 

number for a new member of an existing standard family (ex: P1687.1). The “P” stands for 

“Progress”, meaning that the standard has not been approved yet.  
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- A PAR is valid for a given time, usually two to three years. The WG can ask for one or more 

Extension if they can justify the reasons for the delay (for instance, new problems 

encountered or the need to finalize editing). 

- The WG is supposed to write a Draft of the Standard document. Following a precise template 

and editing rules, a Draft is composed by Explanatory parts to help understanding the 

contents and by the Rules to be followed.  

- A WG is led by three elected officers: the Chair and Co-Chair, who lead the discussions and 

are responsible for interfacing with IEEE, and the Secretary, who has to produce the official 

Meeting Minutes and maintain the Attendance Record and Voting Rights. Optionally, there 

can also be an Editor to coordinate the writing of the Draft. The mandate for Officer is two 

years, with no limits for re-election.  

- When finished, the Draft is submitted to IEEE SA to be put under Ballot. The Ballot is a group 

of volunteers not related to the WG who can vote the acceptance of the Draft, and who 

usually ask for corrections and clarifications.  

- When the balloting process ends and all corrections have been considered, the Standard is 

released. The “P” is dropped and the publication date is added, obtaining names such as 

IEEE 1687-2014.  

- A Standard is valid for 10 years. After this period, it can either become inactive if it has not 

been successful, or it can be Renewed for another 10 years. The renewal process is similar to 

the Proposal: a PAR is issues and a WG formed to propose amendments and corrections, and 

then the new draft is put to ballot. The new standard will have the date changed: for instance, 

IEEE 1149.1-1991 has been renewed twice as 1149.1-2001 and 1149.1-2013 [1149.1] 

The actual content of a Standard changes of course greatly depending on its subject. However, 

one important point is often overlooked: their innovation potential. Researchers, especially from 

Academia, tend to look at Standards as a collection of existing best practices, and as a way for 

Companies to push their solutions as “the” solution for the market. Even though there is a part 

of truth in that statement, that is only one small part of the big picture. First of all, Standards are 

supposed to shape their field for at least one decade: they need to provide solutions not only for 

today, but more especially for the future. As such, there is often the need to compare existing 

technologies, find their strength and weaknesses and come up with a common, future-proof 

solution. This can demand an important effort: for instance, the IEEE 1687-2014 [1687] standard 

took more than nine years in the making, from the first mentions [REA05] to the final publication. 

Second, Standard entities have safeguards against companies gaining unfair advantages by 

including proprietary technology. Working Group members are required to disclose the existence 

of any Patent they might be aware of, and the Patent Holder have then to file a Letter of Intent 

(LoI, for standards in their Draft stage) or a Letter of Assurance (LoA, for active standards). This 

document engages the Patent Holder to provide licensing to the protected technology in 

“Reasonable And Non-Discriminatory”” (RAND) term, i.e. with reasonable fees and without 

using them as a lever for excluding competitors. Failure to comply result in the technology being 

removed from the standard, regardless of its technological value. In fact, companies have two 

complementary interests in having patents included in a standard:  

- One of the most difficult and expensive parts in Patent protection is proving infringement, 

as the burden of providing proof is on the plaintiff. This might require a lot of time and effort, 
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and sometimes might even result in the original patent being declared null. It is a high-

budget and high-risk operation, which is why patent infringement fees are usually extremely 

heavy. On the other hand, when a patent is included in a standard, any compliant product 

will automatically be using it: the infringement is implicit, with no need to prove it. The more 

the standard is successful, the more potential infringements. This means that the Holder can 

be satisfied with low royalties, but repeated over a huge number of infringers. A famous 

example is Qualcomm, whose patents are at the heart of the Code Division Multiple Access 

(CDMA) technology, which is the foundation of the 3G cellular network standard from 

[3GPP]. As any chip and company involved with 3G Cellphone had to pay royalties, the 

small fees added up to a significant amount, so much that someone even doubted the fairness 

of Qualcomm’s interpretation of “RAND” [CHA20] 

- When a company files for a patent, it means that they are expert enough in that field to 

develop something new. So, apart from the direct gains from royalties, having a patent in a 

standard gives the Holder a strategic advantage: they already know and have potentially 

implemented the technology, so they can directly use it from Day One of the Standard’s 

release. This is probably the main reasons for Companies to be involved in these activities, 

so much that they are willing to accept more stringent patent policies that in the past.  

To conclude this section, we will give a small introduction to the most important Standards in the 

field of Testing.  

2.2.1 JTAG 

The most famous scan-based Standard is undoubtedly IEEE 1149.1 [1149.1] that is best known as 

JTAG, the acronym of the “Joint Test Action Group”. Its full name “IEEE Standard Test Access 

Port and Boundary-Scan Architecture” perfectly resume its goals: provide an easy and portable 

way to access the Boundary of devices. It has been developed in the 1990’s, when board-based 

systems were rapidly growing in size and new mounting technologies such a Ball Gate Array 

(BGA) [KAP99] becoming widespread. Engineers were confronted with what is commonly called 

“Test Point Erosion”: as system became larger, it was becoming more and more difficult to get 

physical access to the pins to test that their soldering was correct and the PCB traces were 

operational. BGA is the best example: connectors are hidden between the chip and the board, as 

can be seen for instance in Figure 3, making physical access impossible.  

 

Figure 3 Cross-cut section of BGA mounted circuit (from Wikipedia) 

https://en.wikipedia.org/wiki/Ball_grid_array
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JTAG solved the problem by providing logical access to the connection pins from the inside of 

the device thanks to a standardized Boundary Scan Chain, as depicted in Figure 4 

 

Figure 4 A boundary-scannable board design", from [1149] 

2.2.1.1 JTAG Internal Architecture 

The idea is simple and yet effective: instead of physically accessing the pins, JTAG allows the user 

to drive logical values ‘1’ or ‘0’ on output pins and read them back on input pins. Inside a device, 

a JTAG architecture look like Figure 5, and it composed by four main elements: the Boundary 

Scan Register Cell (BSC), the Instruction Register, the Test Access Port (TAP) and the TAP 

Controller. 

 

Figure 5 JTAG standard architecture (source JTAG Technologies) 

The BSC, depicted in Figure 6, is the key element of JTAG: it applies the same principle as internal 

Scan Testing but with a key difference: the cell is actually composed by two registers. The first 

one is responsible for either Loading data from the Signal-In or Shifting data received from the 

Scan-In. The second one’s role is to provide a stable value to Signal Out when the test Mode is 

selected. In Figure 6, the value of the two registers is updated through a rising edge of ClockB, 
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but that is just an example. Several other designs of a BSC are possible, for instance having just 

one clock using a Capture and an Update signal to control the loading of the first and second 

register respectively.  

 

Figure 6 An example of boundary-scan register cell, from [1149] 

The Test Access Port is the interface with the outside world and is it composed by 4 compulsory 

pins and 1 optional one, depicted in red in Figure 5:  

- Test Data In (TDI): Input port for the Data 

- Test Data Out (TDO): Output port for Data 

- Test Clock (TCK): the clock source used for the JTAG infrastructure 

- Test Mode Signal (TMS): the signal used to operate the JTAG infrastructure  

- Test Reset (TRSTn): optional reset signal, active low.  

The Instruction Register is a Scan Register like the Boundary Register, but it has a special purpose. 

This register is used to operate a JTAG system: depending on its value, the system will behave 

differently, as explained later in this section.   

The TAP Controller is the real heart of JTAG: it is composed by a Finite State Machine (FSM) 

which is controlled by the TMS and by a decoding circuit connected to the Instruction Register. 

By driving the FSM with TMS, the User can read/write values in either the Instruction Register 

or the current Data Register, as shown in Figure 7 

 
Figure 7 The JTAG Finite State Machine, from [1149.1] 
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The FSM is divided in two branches: the DR and IR branch, which allow access to the Data 

Registers and Instruction Register respectively. The operation is the same and it is done in three 

steps:  

- first data is Captured at the input of the Register,  

- then this data is Shifted out through TDO while the new data is shifted in through TDI 

- last, the register is Updated as with the new value.  

2.2.1.2 Operations 

Operations are done following the scheme of Figure 8: the JTAG-Wrapped Design Under Test 

(DUT), is connected to the outside thanks to the TAP. On the Test Host, a JTAG controller 

implements a “Master” FSM whose role is to generate the right sequence of TAP signals (TCK 

and, most importantly, TMS) to drive the “Slave” FSM of the DUT through the desired states.  

 

Figure 8 JTAG Usage Setup 

The Test Host can be not only an ATE, but also a Desk-Top computer using a JTAG controller 

(cheap USB dongle cables are now commonplace [FTDI]) or an Embedded Controller. The 

synchronization between Master and Slave FSM is the key of operating a JTAG system: the 

Controller must at all times know the state of the DUT to drive it correctly. The Standard does 

not offer any type of introspection in the DUT state: if by any chance the synchronization is lost 

the only solution is to reset the system to bring it back to a known state. To reduce the occurrence 

of such situations, JTAG imposes several restrictions to the DUT’s architecture, the main being:  

Registers must have a constant length, known in advance and documented. This greatly 

simplifies the DUT state tracing, but it turns out to be one serious limitation, as will be explained 

in the following sections.  

Basically, a JTAG infrastructure can do two things: shift data to/from Data Registers or perform 

Instructions. The first is done through the DR branch: by exploiting the ShiftDR state, any number 

of bits can be shifted through the active Data Register using the Capture-Shift-Update (CSU) 

protocol. A JTAG system usually has several Data Registers, selected through the IR, the most 

important being:  

- The Boundary Scan Register, BSR, selected by several instructions such as EXTEST or 

INTEST;  
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- A one-bit Bypass Register, selected by the BYPASS instruction. Its role it to reduce the length 

of the total scan chain when the current device is not under use, while guaranteeing that there 

are no unbounded paths between devices (which could happen with a direct TDI-TDO 

connection 

- The ID Register, selected by the IDCODE instruction, which contains a unique Identifier 

Code. This allows identification for the current device without visual inspection 

- Optionally, any number of USER registers can be defined and connected. They are not part 

of the JTAG operations, but can be used to add new non-fully compliant features.  

Apart from selecting the current DR, the Instruction Register can also be used to perform 

operations in the DUT or system. The most important are:  

• EXTEST : The BSR is selected, and it is connected (input and outputs) to the external pins of 

the DUT. This allows testing the PCB connections between JTAG-enabled devices.  

• INTEST : the BSR is selected, and it is connected (input and outputs) to the internal DUT. 

This allows testing patterns to be applied to the device to test that it has not been damaged 

during assembly 

• RUNBIST : This instruction allows the usage of internal BIST components, most notably by 

generating an internal clock. If several BIST are present inside the DUT, they might need to 

be selected/activated first using other Instructions.  

• USER INSTRUCTION: these care custom instructions that the User can define to either access 

User Registers or trigger specific actions.  

Please note that the Standard only defines the Instruction names and their role, but not their 

actual binary mapping, which is up to the Designer.  

2.2.1.3 Boundary Scan Description Language (BSDL) 

As seen in the previous paragraph, a JTAG infrastructure can be quite complex and have 

numerous parameters. For this reason, the Standard comes with its own Domain Specific 

Language, the Boundary Scan Description Language (BSDL). Its roles are multiple, the most 

important in this context being the description of the BSR and of the TAP. As a language, BSDL 

has been developed using the syntactical rules of VHDL: it can be parsed with no error by a 

VHDL parser, but its semantics are different and need special processing. Figure 9 show a BSDL 

snippet describing a Boundary Scan Register:  

 
Figure 9 Example of a BSR description from [1149] 
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Syntactically, the rule is incapsulated into a VHDL “Attribute” rule as a character string. Inside 

the string, each Boundary Cell (BC) is assigned a number and its parameters, defined in the 

standard document, are set. Semantically, BSDL is most of the times just an enumeration of 

options and parameters that are defined in the Standard Document. This is even more flagrant 

when looking at the description of the TAP, depicted in Figure 10 

 

Figure 10 Example of TAP Instruction Mapping in BSDL, from [1149] 

The binary mapping of each instruction is encapsulated into the string of the 

INSTRUCTION_OPCODE attribute: a separate parsing will be needed to interpret it.  

To resume, BSDL is a simple yet effective language whose role is to provide a direct description 

and parametrization of a JTAG system, whose hardware implementation is fixed by the Standard.  

2.2.1.4 System-Level Architecture 

As shown in Figure 4, the main strength of JTAG is the capability of accessing all the Devices in 

a board without needing physical access apart from the TAP. In its 30-year history JTAG has 

been applied in a variety of topologies: the most important and widely used is daisy-chaining, 

where devices are added in a serial fashion as shown in Figure 11. In such a setup, all IRs are 

chained together and accessed in one operation, as are all active DRs.  

 

Figure 11 Daisy-Chain JTAG Topology, from [1149] 

Upon reset, all Devices are put in Bypass mode, so the Controller can use IR writes to only turn 

on and select the desired DUTs. This simple solution is in fact quite fragile: if one of the DUTs is 

faulty or powered off, no access it possible.  JTAG also offers the possibility of using a Star 

topology, where the same TAP is used to access multiple DUTs in parallel, as in Figure 12. 
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Figure 12 JTAG Star topology, from [1149] 

This solution is more robust, but less efficient: each DUT needs its own TDI/TDO. Moreover, the 

devices all receive the same commands and data: if they are not identical, only one can be active 

at a time. Of course, all combinations of Daisy and Star topologies are also possible.  

The main interest of having standard-supported topologies is reuse: in Figure 1 we showed how 

Patterns are obtained from the Fault List and the DfT description of a given device. In a System, 

each JTAG-compliant device will have its set of pre-computed patterns, and the BSDL description 

of its wrapper. By combining this information is therefore possible to compose Device-Level 

patterns to obtain System-level one. This process, depicted in Figure 13, is called Retargeting.  

 

Figure 13 JTAG Retargeting 

Please note that JTAG is an interface made for easy accessibility, not for performances: the TAP 

signals need to travel along the whole PCB board, with important delays. Even inside a chip, 

control signals need to reach the whole design, down to its boundaries. As such, usual TCK speed 

are around 10 to 100 Mhz, even in systems where the functional clocks are in the Ghz range.   
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2.2.2 Domain Specific Languages 

As introduced in the previous section, Standards are needed when different actors have to 

exchange information. As such, a really important part is played by Domain Specific Languages 

(DSL), which are used to encode information. A complete survey is impossible and of little 

interest, so we will focus here on the two main languages used to exchange digital Test Patterns: 

STIL and SVF.  

The Standard Interface Test Language (STIL) [1450] is an IEEE standard that is used primarily to 

provide ATPG patterns to ATE for their execution. As any given SUT can implement a great 

variety of DfT architectures, test patterns are more than just binary information: they must also 

describe the protocols needed to apply and interpret the data, in terms of sequences, waveforms, 

success conditions, error handling, etc... STIL provides this flexibility, while maintaining a 

simple-enough structure to be easily parsed and interpreted by ATEs. Its usage model is depicted 

in Figure 14.  

 

Figure 14 STIL Usage model, from [1450] 

In the context of this document, STIL can be considered as the exemplary output format: 

regardless of the complexity of the internal Design for Test, the final pattern set is supposed to be 

expressed in STIL. We will see in Sections 5 and 6that this is not necessarily true, even though 

few people anticipated it.  

The Serial Vector Format (SVF) is a de-facto standard language developed by Asset Intertech 

[SVF99] and universally used to express JTAG operations, of which it provides a one-to-one 

representation, as shown in Figure 15. It is extremely easy to read, and allows a JTAG expert to 

immediately understand what the Test is supposed to do. It is the reference Vector language for 

Board and System testing, where JTAG is the most used interface.  



 
38 

 
Figure 15 Example of an SVF program from [SVF99] 

However, its lack of flexibility is an issue: SVF is only able to configure the JTAG TAP, push 

vectors and do bit-wise comparisons. When a User needs to do something slightly more complex, 

like composing and comparing vectors, he needs to add a lot of custom processing and 

infrastructure [VTB03][VTB05]. More sophisticated alternatives do exist like the Standard Test 

and Programming Language [STAPL], but they are seldom used apart in the niche applications 

they have been developed for. So far, no solution is flexible and comprehensive enough to adapt 

and cover all the needs.  

2.2.3 Evolutions, limitations and new usages of JTAG 

JTAG is undoubtedly one of the most successful IEEE standards: it is present in virtually any 

digital circuit of reasonable size. But it is also extensively used far outside of its original scope 

and is therefore clearly showing some limitations.  

The first strain came from Topology: boards and systems can rapidly become extremely complex 

and difficult to handle efficiently with just daisy chains or stars. Solutions like [BSCAN2] allows 

multiplexing using a sort of “TAP of TAPs”, while the Brocade selector [LIHN06] uses I2C (often 

preferred for configuration and setup [I2C14] because of its simplicity) for multiplexing different 

TAPs. Both solutions are conceptually simple and efficient, but they share the same issue: they 

are not JTAG-compliant and so they need custom software in addition to standard EDA Tools.  

What might seem a minor issue has become over the years a big problem: most companies ended 

up having reals “flows over the flows” with set of custom scripts and languages making pre and 

post-processing over EDA tools. This code base is not only intrinsically unstable as it depends on 

assumption on third-party tools, but also extremely complex and time consuming to maintain 

and debug. As such, in the later decade we have assisted to a big push toward standardization 

by the designer wishing to free themselves form the burden of maintaining in-house tools. A 

typical example is the IEEE 1687 Standard, which will be discussed in details in Section 2.2.5.  

The second big evolution problem comes from Instrumentation: as detailed in Section 2.2.1.2, 

JTAG defines a “RUNBIST” instruction that can be used to run internal BIST instruments. This 

implicitly implied that any DUT would have just a few embedded instruments which could be 

controlled from the outside: if this was true in the 1990ies, evolution far surpassed the most 

optimistic expectations. Modern circuits can have dozens of instruments, and this trend can only 

continue as designs become bigger and technology nodes smaller. As such, having only one 

“RUNBIST” instruction was not enough, and designer were extremely creative in either defining 
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new Custom instructions or defining sequences of IR/DR operations to select and run specific 

subsets of instruments. Although theses sequences can be described as Scan Operations in SVF 

or STIL, their intent is outside of the scope of test DSLs which can push and receive data but not 

analyze it apart from basic mismatch. So, the portability of these solutions is extremely limited. 

Moreover, adding so may complex Custom Instruction and Data Registers can seriously impact 

the TAP Controller, which can become too big and slow for practical applications.  

Last but not least, ironically the biggest problem for JTAG comes from its success itself:  being 

virtually omnipresent in any circuit and having an important Software support, JTAG started 

being seen as the ideal “entry point”, and being applied to usages far removed from its original 

scope. It is for instance the main interface used for Firmware programming, but is has also been 

used to interface and test Analog and RF systems. All these usages are completely non-JTAG 

compliant and need their own software infrastructure. This sometimes resulted in new Standards 

(for instance IEEE 1532 for FPGA programming [1532]), but more often in proprietary solutions 

like for instance the “Hierarchical Boundary Scan Standard Language” from Asset Intertech 

[HSDL] which extends BSDL’s topology description capabilities, or the CASLAN language from 

Goepel Electronics [EHR09] for instrument operations. Some of their features were incorporated 

in revision of existing standard (for instance, IEEE 1149.1-2013 added to BSDL several HSDL 

ideas) but most notably gave rise to the two most influential Testing Standards of the 2010s : IEEE 

1500 and IEEE 1687.  

2.2.4  Core Testing : 1500  

The “IEEE Standard for Core Testing” was published in 2005 [1500] and it has been a huge 

success: a quick search on scientific publication database will immediately show hundreds of hits. 

And this is without considering the thousands of Designs which simply implemented it. So, what 

is the reason for such a success?  

In certain terms, 1500 is the perfect answer to the perfect storm: at the turning of the century, the 

principle of IP-based designs became predominant. By dividing a big System into a set of 

independently-developed IPs, the cost of design is lowered thanks to the reuse of existing IP or 

by the integration of third-party IP. However, this raised an issue for testing. Traditionally, ATPG 

is done at the end of the flow on the whole design. This means that it cannot take advantage of 

IP-based “divide and conquer”, and is therefore takes the brunt of increasing complexity. 

Moreover, running ATPG means having a complete knowledge of the Design: Third-Party 

companies are willing to license their IP and provide enough information for them to be used, 

but not to be replicated. As such, providing full netlist for ATPG might be delicate for them.  

The new 1500 brought a solution by replicating at IP-level what JTAG had been doing at circuit 

level: IPs can be Wrapped using a standardized DfT architecture, and the ATPG vectors defined 

as these boundaries. The similarities between the IEEE 1500 wrapper, depicted in Figure 16, and 

the JTAG wrapper are undeniable and completely intentional.  
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Figure 16 Standard IEEE 1500 Wrapper components, from [1500] 

The IP is surrounded by a Wrapper Boundary Register (WBR), and can be accessed through a 

Wrapper Serial Port (WSP). A Wrapper Instruction Register (WIR) decides whether the BSR or a 

Wrapper Bypass Register (BPY) is selected. The WIR can also be used to load operational 

instructions, such as for instance “WS_EXTEST”. The access to the WIR is done in the same way 

as for the WSP our WSP, with the difference that a “select WIR” signal (part of the WSP) must be 

asserted.  The parallel with TAP operations is complete. However, the specific needs of Core-

based design necessitated specific additions, as for instance the optional Wrapper Parallel Port 

(WPP) to accommodate high-bandwidth data transmission, or the definition of the Core Test 

Language (CTL) to express describe both the Wrapper and the vectors applied to it. This language 

became soon so complex to become a Standard by itself and was eventually incorporate into the 

STIL family [1450.6]. Even though a CTL description is formally required in the Standard 

document for compliance [1500], it is not unheard-of having IP wrapped in hardware but not 

having a CTL description, especially when they are developed and used in-house.  

The IEEE 1500 Wrapper offers several benefits, one of the most important being the possibility of 

using retargeting: test patterns can be defined at the Wrapper level and then be composed to 

obtain the system-level vectors. Third-Party Providers can therefore deliver the Test Patterns as 

part of their IP, and when the same IP is replicated multiple times (as, for instance, the different 

Cores of a CPU), pattern generation can be done only on one instance and then replicated for the 

others [MCLA12].  

But apart from these similarities, the two standards are in fact quite different. An IEEE 1500 

Wrapper is not supposed to be directly connected to an IEEE 1149.1 for two main reasons. First, 

the wrapper is not JTAG compliant: the “Select WIR” is not part of the TAP, and necessitates 

therefore some “glue logic” to be generated. And even if this was done, the bandwidth offered 

by JTAG is much too limited for time-critical tasks as high-volume factory testing. But more 

importantly, the 1500 Wrapper allows the selection of several registers (WBR, WIR, etc…) of 

different lengths: this is formally prohibited by JTAG, making it indescribable in BSDL and non-

compliant with its Tooling.   
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For all these reasons IEEE 1500 did not specify a specific interface, but rather left the user to define 

his own Test Access Mechanism (TAM). In practice, TAMs are usually provided by an EDA 

Company as part of its commercial package to speed up integration. For instance, Synopsys 

proposes its own STAR Hierarchical Subsystem [STARSY] to deploy 1500 Wrappers. While these 

solutions are usually effective and powerful, over the year this has become a serious limitation to 

inter-operability: while 1500 Wrappers are standardized, the final solution is based on the 

vendor’s TAM, limiting the freedom of the designer to change EDA provider or to accept third-

party systems based on different toolchains.  

2.2.5  IEEE 1687 or IJTAG 

As explained in the previous Section, the IEEE 1500 provides a solution for Core Testing, but 

sidesteps the Topology issue by leaving the TAM implementation dependent. Moreover, a 1500 

Wrapper is not adapted to control internal Instruments such as BISTs: the wrapper is too bulky, 

and CTL can express rich vector operations but is not able to convey the “test intent” of using an 

instrument (i.e. it can express “how to run it” but not “what it does”).  

The “Internal JTAG” or “Instrument JTAG” initiative started in around 2005 to tackle these two 

issues [REA05], and resulted in the IEEE 1687-2014 Standard [1687]. It has been defined as a 

“paradigm shift” [REA12] because the solution hinged on two major innovations: 

- The topology is not modeled in a top-down approach (i.e. the parametrization of a fixed 

solution), but rather as a bottom-up composition of base elements;  

- For the really first time, the operation is based on a Functional approach: instruments can be 

operated by read/write operations in custom procedures, while JTAG has always been 

agnostically shifting bits.  

The Standard purposefully decided to be descriptive and allow users to compose their own 

solutions rather than be prescriptive and define one fixed solution for all. This choice allows 1687 

to be extremely flexible and propose a huge number of applications and innovation, several of 

which unforeseen by their authors. To achieve this goal IJTAG proposes the Use Model of Figure 

17, based on two Domain-Specific Languages: ICL and PDL 

 

 

Figure 17 IEEE 1687 (IJTAG) Use Model 
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The parallel with the ATPG flow of Figure 1 is intentional: IJTAG aims at transporting the know-

how of system-level test generation to the IP level: by taking a description of the topology (in 

ICL) and of the “Test Intent” (in PDL), a Tool will be able to generate top-level Patterns that can 

be applied to the DUT in the usual way. One of the novelties is also the possibility of a Return 

path, where the actual Data received from the DUT can be propagated back to the original PDL 

flow. In this Section we will provide a brief introduction of the main features and novelties. 

2.2.5.1 ICL : Dynamic Topologies 

IJTAG hardware is designed to be IEEE 1149.1 compliant, and it is focused on proposing a 

Reconfigurable Scan Network (RSN) that can be accessed as one of the user TDR registers. For 

the first time, IJTAG embraces dynamic topologies as the key of its architecture, as depicted in 

Figure 18. The main elements of the Standard are present:  

- A JTAG TAP controller as the Access Mechanism, in the top left-hand corner;  

- The Instruments to be accessed, in the right-hand side 

- The TDRs used to access each Instrument. 

- A Mux (called ScanMux in the standard) that selects which TDR(s) are active 

- A Scan Register (labelled S1) which controls the Mux   

 

Figure 18 Example of an IJTAG Reconfigurable Scan Network, from [1687] 

While it might seem trivial at first sight, the presence of the ScanMux is a small revolution in 

JTAG terms: the length of the active Scan Chain can vary depending on the values of the Scan 

Registers themselves, without the need to modify the IR. IJTAG calls each TDR section whose 

inclusion is controlled by a ScanMux a “Segment”. Muxes can be freely instantiated in the 

topology, but the standard provides a reference setup, the Segment Insertion Bit (SIB) depicted 

in Figure 19, with a Mux and its controlling register side-by-side.  
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Figure 19 Example of a SIB, from [1687] 

Thanks to this innovation, IEEE 1687 is able to support complex topologies of arbitrary 

hierarchical depth, as for instance in Figure 20, while optimizing test application time by keeping 

the active scan chain as short as possible.  

 

Figure 20 Example of a SIB-enabled hierarchy [DWO13] 

In fact, SIBs are often the preferred choice by DfT Designers to create regular and easy-to-

understand topologies. However, the standard is much richer than this and allows for more 

complex and even extravagant topologies, as explored for instance by the BASTION benchmarks 

[TSE16] [BAST19]. In order to provide Tool support for such rich topologies, IEEE 1687 proposes 

its own DSL: the Instrument Connectivity Language (ICL) [1687].  

This document is not the place for an in-depth tutorial on the complexity of ICL, so we will just 

focus on its main elements: it is a “light” structural language whose role is to describe how “Raw 

Instruments”, defined by their inputs and outputs, are connected to a scan-based infrastructure 

ending in an IEEE 1149.1 Test Access Port. While avoiding the complexity of a full-fledged HDL, 

the language allows the precise description of the connectivity of both data and control paths, so 

that an IJTAG-compliant tool (often referred to as “Solver” or “Retargeter”) can understand how 

the topology can be configured and how data can be delivered to/collected from the Raw 

Instruments. The standard document [1687] provides several examples in its Annex E, as for 

instance the description of an IEEE 1500 wrapper reproduced in Figure 21 
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Figure 21 Example of a 1500 Wrapper from section E.20 of [1687] 

Its description in ICL reproduces the hierarchy, as well as the different connections, as reported 

in Figure 22.  

 

Figure 22 ICL Description of Figure 21, from [1687] 

There is a crucial point in ICL: connectivity is always described backwards, from the output 

backtracking to the input. This algorithm applied to Figure 22 would execute as this: 

1. The starting point is the ScanOutPort SO, which in line 3 is connected to the ScanOutPort of IR_MUX 

(implicit reference).  

2. IR_MUX is declared in lines 19. It can be either connected to WIR or to DR_MUX 

a. The Selection is decided by the UpdateValue of SWIR (line 19): 

b. When ‘1’, the next connection is  WIR (line 20) 

i. After WIR, the next connection is SWIR (line 8) 

1. Module WSP1500_SWIR { 

2. ScanInPort SI; CaptureEnPort CE; ShiftEnPort SE; 

3. UpdateEnPort UE; SelectPort SEL; ResetPort RST; 

4. TCKPort TCK; ScanOutPort SO { Source IR_MUX; } 

5.

6. ScanRegister SWIR {ScanInSource SI; ResetValue 1'b1;} 

7. ScanRegister WBY {ScanInSource SWIR; ResetValue 1'b1;} 

8. Instance WIR Of SReg { InputPort SI = SWIR; Parameter Size = 2;} 

9.

10. Instance WI1 Of WrappedInstr { InputPort SI = SWIR; } 

11. Instance WI2 Of WrappedInstr { InputPort SI = SWIR; } 

12. Instance WI3 Of WrappedInstr { InputPort SI = SWIR; } 

13.

14. ScanMux DR_MUX SelectedBy WIR[1:0] {2'b00 : WBY; 

15. 2'b01 : WI1.SO;  

16. 2'b10 : WI2.SO;  

17. 2'b11 : WI3.SO; 

18. } 

19. ScanMux IR_MUX SelectedBy SWIR {1'b0 : DR_MUX; 

20. 1'b1 : WIR[0];  

21.

22. } 

23. }
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ii. SWIR is connected to ScanInPort SI: connection is complete 

c. When ‘0’, the next connection is  DR_MUX (line 19) 

i. DR_MUX is selected by the Update value of WIR (line 14) 

ii. When “00”, the next connection is WBY (line 14) 

1. WBY is connected to SWIR (line 7) 

2. SWIR connection already resolved in 2.b.ii 

iii. When “01”, the next connection is WI1 (line 15) 

1. WI1 is connected to SWIR (line 10) 

2. SWIR connection already resolved in 2.b.ii 

iv. When “10”, the next connection is WI2 (line 16) 

1. WI2 is connected to SWIR (line 11) 

2. SWIR connection already resolved in 2.b.ii 

v. When “11”, the next connection is WI3 (line 17) 

1. WI2 is connected to SWIR (line 12) 

2. SWIR connection already resolved in 2.b.ii 

 

The topology of Figure 21 is unambiguously described, in terms of both Scan and Control paths. 

As the name ICL clearly states, the focus is put on the Connectivity, which must be tracked 

through the arbitrary deep hierarchy.  While undoubtedly powerful, ICL is quite difficult and 

error-prone to write. Moreover, its coherence with the actual HDL description of the circuit is not 

assured and needs to be verified [9] 

After constructing a model of the SUT for the ICL description, a Solver must also be able to track 

the state of each Mux to construct the active scan chain at any moment. It must also be able to 

identify the state of the SUT which allows the access to a given segment, and construct the 

sequence of operations to achieve it.  

2.2.5.2 PDL : Test Intent 

The second great innovation of IJTAG is the possibility of describing the functional behavior of 

an instrument directly inside the standard thanks to its second DSL: the Procedural Description 

Language (PDL). The aim of this language is to go beyond pushing binary patterns and rather be 

able to provide “Test Intent”. This means that PDL must be able to describe the operations that 

are supposed to be executed on one or more instrument in a formal way which is not necessarily 

executable: the Test Tool is supposed to parse PDL files and process them in order to obtain the 

operations corresponding to their description. To better explain this process, Figure 23 provides 

a detailed description of the internal setup of a 1687 Tool.  

 

Figure 23 Internal Setup of the 1687 Tool of Figure 17 

The ICL parser builds an Internal Model of the Design Under Test, which is not only used for 

topology resolution, as explained in the previous section, but also as the target of PDL operations. 
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The language has been built to be syntactically compatible with TCL, which is universally used 

to provide Interactive Shells in EDA tools: by interpreting a PDL file line-by-line, an EDA tool 

will therefore be able to produce JTAG-level patterns, expressed for instance in STIL or SVF. The 

language is divided in two “Levels”:  

- PDL Level 0 is supposed to express the procedures to operate an instrument “in terms of 

stimuli and expected responses for the ports and/or registers described in the ICL module 

for the instrument” [1687]. It provides the same functionalities of traditional ATE testing 

(writing data, setting expected outputs, etc…), but can also use TCL to write rich test static 

routines.   

- PDL Level 1 targets “instruments whose functionality requires a more complex 

representation or in environments where interaction with the device determines the flow of 

the test, a high-level programming language is essential” [1687]. The main difference with 

PDL 0 is the possibility of collecting the actual data from the SUT and use it to dynamically 

modify the behavior and flow control of the test procedure.  

PDL follows a queuing scheme: users can request to write a value to a register (iWrite) or set an 

expected value to it (iRead). These commands are queued by the 1687 Solver and converted into 

Patterns when an iApply command is received. This scheme allows the Solver to collect requests 

to different Segments and resolve them together at the iApply synchronization edge, as shown 

in Figure 24 

 

Figure 24 Sequence of Operations during an iApply , from [1687] 

The iApply Time Frame reproduces at the Instrument Level the same type of Vector operations 

that can be done at a JTAG TAP or in an IEEE 1500 Instrument: the sequence of “Capture-Shift-

Update”, preceded by Parallel Input and Outputs. While the sequence in fixed to ensure 

predictability and coherence, each step in the frame can be skipped going through a “Nop” node. 

This is to take into account ICL connectivity: the Select, Capture and Update signals might be 

gated or inactive in certain situations, to the Solver can take into account when retargeting. This 

also leaves some optimization freedom (for instance, not Capturing data in frame if it is not used 

in the following one).  

The PDL language, presented in Table 1 and Table 2,  is quite rich as it presents commands to 

both provide retargeting information and configure the JTAG interface, as well as commands 

aimed at writing more user-readable code.  
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Table 1 First part of PDL Commands list, from [1687] 

 

Please refer to [1687] for a full description of PDL. In this document, we will focus on three 

command subsets. 

Table 2  Second part of PDL Commands list, from [1687] 

 

The first group is the subset related to vector handling: 

- “iWrite $target $value”: queues $value to be written to $target (can be a register, a port or an 

alias of one of the two);  
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- “iRead $target $value” queues expected $value to be compared with the data read from 

$target (can be a register, a port or an alias on one of the two); 

- “iScan $ScanInterface -si $siData -so $soData”. Queues both $siData to write and $soData to 

be compared from a $ScanInterface. It can be used to express the result of retargeting (see 

next section) or to drive black-boxes 

- “iApply”: executes all queued operations. It is used as a synchronization edge in PDL code 

- “iRunLoop “$cyclecount” : Issues a number of clock cycles. It is useful to run internal 

instruments which are clocked by TCK, in the same way RUNBIST does at the TAP level.  

The second subset includes some utility commands to gain programming capabilities, such as:  

- ‘iProc $name”: defines a wrapper for a PDL procedure that can be called elsewhere in the 

code;  

- ‘iCall $name”: invokes the iProc of the same name 

The third subset is composed by the commands related to retargeting:  they are iMerge, iTake 

and iRelease, whose behavior will be analyzed in the next section.  

All these commands are part of “PDL Level 0” or “PDL 0”, as they define a static behavior: the 

result of their retargeting can be directly expressed in terms of Input Patterns and Expected 

patterns, as depicted in the upper right-hand corner of Figure 23. Dynamic Behavior is achieved 

in “PDL Level 1” thanks to the 4 commands listed in Table 3.  

Table 3 PDL Level-1 commands, from  [1687] 

 

These commands allow a PDL program to query the Solver for the Return Data that need to have 

been stored in the DUT Model.  

2.2.6 Putting it all together: retargeting 

The combination of ICL and PDL allows the tool to perform retargeting optimization and 

therefore reduce the overall test system. To better explain the process, we will use the 

“Instrument Example” provided in the standard document and reproduced in Figure 25 as a 

base Use Case and provide a step-by-step unrolling of an IEEE 1687 retargeting operation.  
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Figure 25 Example generic Instrument from Annex E.2 of [1687] 

It is the simplest setup possible in IJTAG: a “raw instrument” having an Input and an Output 

port. Its ICL description is straightforward:  

Module Instrument {  

  DataInPort  DI[7:0];  

  DataOutPort DO[7:0];  

}  

The DI and DO ports can be used as targets for PDL commands, as in this example:  

iWrite DI 0b01010000  

iApply  

iWrite DI[7] 0b1  

iApply  

iWrite DI[7] 0b0  

iApply  

iRead DO[1] 0b1  

iApply  

iRead DO[0] 0b1  

iApply  

iRead DO[7:2] 

The “Test Intent” of this sequence is easy to understand:  

1) Apply the binary value to “0101000” to the Input port DI 

2) Apply the binary value ‘1’ to bit 7 of the Input port DI 

3) Apply the binary value ‘0’ to bit 7 of the Input p ort DI 

4) Check that the value of bit 1 of output port DO is 1 

5) Check that the value of bit 0 of output port DO is 1 

6) Capture the value of bits 7 to 2  of output port DO 

This sequence represents a typical usage of an Instrument such a BIST. Aliases can be defined in 

the ICL file to boost PDL readability, obtaining for instance the following, more meaningful code:  

iWrite mode blue  

iWrite enable No  

iWrite data 0b100  

iApply  

iWrite enable Yes  

iApply  

iWrite enable No  

iApply  

iRead done Yes  

iApply  

iRead okay Pass  

iApply  

iRead count 
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Regardless of this last “cosmetic” change, the Solver can covert this PDL sequence in a pattern set 

on ports DI/DO, expressed for instance in the following pseudo-STIL code:  

  V {DI = 01010000} 
 V {DI = XXXXXX0X} 

 V {DI = XXXXXX1X} 

 V {D0 = XXXXXX1X} 

 V {D0 = XXXXXX0X} 

 V {D0 = XXXXXXXX} 

The application of this sequence on the DI/DO ports realizes the Test Intent expressed in the PDL 

file: Retargeting is finished.  

Using ICL, it is possible to reuse this IP (both the register and its PDL Test Intent) in more complex 

topologies : the Solver will continue the retargeting until the edge of the 1687 Network. For 

instance, the Instrument might be connected to Scan Register, as in Figure 26, obtained by 

combining figures E.2 and E.3 of [1687].  

 

Figure 26 Raw Instrument connected to a Scan Register  

 In this case, the Solver needs to move the retargeting scope to the Scan Interface on the left-hand-

side: the values for DI and DO need to be propagated through the scan chain. A pseudo-STIL of 

the retargeting result would look like this (‘T’ meaning “Toggle”):  

 #shift value "01010000" 

 V {SEL  = 1, CE=1, SE=0, UE=0, TCK=T} 

 V { SEL = 1, CE=0, SE=1, UE=0, SI=0, TCK=T } 

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T } 

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T } 

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T } 

 V { SEL = 1, SE=0, SE=1, UE=0, SI=1, TCK=T } 

 V { SEL = 1, SE=0, SE=1, UE=0, SI=0, TCK=T } 

 V { SEL = 1, CE=0, SE=1, UE=0, SI=1, TCK=T }  

 V { SEL = 1, CE=0, SE=1, UE=0, SI=0, TCK=T } 

 V { SEL = 1, CE=0, SE=0, UE=1, SI=0, TCK=T } 

 

#shift value "XXXXXX0X" 

 V {SEL  = 1, CE=1, SE=0, UE=0, TCK=T} 

[…] 
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This pattern set might be applied by an ATE on the Scan Interface to realize the same Test Intent 

as the original PDL code. Please note that the same pattern could also be expressed as iScan 

Operations in the ScanInterface:  

iScan -si 0b01010000 

iApply 

iScan -si 0b XXXXXX0X 

iApply 

iScan -si 0b XXXXXX1X 

iApply 

iScan -so 0b XXXXXX1X 

iApply 

iScan -so 0b XXXXXX0X 

iApply 

iScan -so 0b XXXXXXXX 

iApply 

This representation can be used to retarget PDL locally to a hierarchical element, to be re-

instantiated in a bigger topology.  

This example is purposefully basic so that the work of the Solver can be easily explained, but it is 

not so far from reality. In the face of an extremely complex system, or in an IP-based design 

paradigm, the EDA Tool might choose to partition the retargeting in smaller and easier-to-

compute subsystems, and then compose the final result as in Figure 27 

 

Figure 27 Partitioned Retargeting [J.4] 

In a real system the Solver will need to both configure the Dynamic Topology and compose PDL 

operations on Registers in the same active scan chain. We called these two operations “Vertical 

Retargeting” and “Horizontal Retargeting” in [J.4].  

Horizontal Retargeting is the process of assembling PDL sequences defined on instruments 

belonging to the same Scan Chain, as depicted in Figure 29. The assumption is that the PDL 

associated to a given instrument will be regrouped in one or more procedures (“iProc” in PDL 

terms), and a top-level PDL routine will call them using the appropriate “iCall” command. When 

handling these iCalls, the tool cannot simply sequentially flatten operations, because it would 
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incur in serious timing penalties. It will rather need to examine the code execution and 

dependencies to identify and extract potential parallelism. The “iMerge” command (Table 2) aims 

at helping this task by explicitly exposing concurrency, but there is no clear method on how to 

handle it: it is simply a markup/pragma. The usual solution, shown in the examples of the 

standard document, is to perform a static scheduling, where PDL operations happening during 

the same cycle on segments belonging to active chain are regrouped in a flattened top-level PDL 

operation (usually an iScan). Static Scheduling is a well-known problem with a vast literature, 

but its computational complexity and difficult setup limits its application field to specialized  

fields such as, for instance, real-time or high-performance systems [PARHI91].  

 

Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4] 

This “top-level sequential execution” paradigm is a general assumption of the traditional Test 

Generation Flow, which always aims at computing the “final test program”. IEEE 1687 amplifies 

the problem because while introducing concurrency it also completely changes the scale of the 

application. While traditional JTAG considers a moderate number of components, a fully-fledged 

1687 System on Chip could easily be composed of hundreds or even thousands of instruments.  

In Vertical Retargeting, the Solver must consider a hierarchical topology needing the 

configuration of one or more ScanMuxes. Figure 29 depicts the most typical example: a register 

targeted by the PDL code behind an SIB.  

 

Figure 29 Vertical Retargeting of a SIB, from [J.4] 
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The result of the retargeting operation is different depending on the value of the SIB control 

register: it is up to the Solver to track the status of the DUT in its internal Model (ref. Figure 23) 

and modify it as needed. This means that the functional operation of the retargeted vector 

depends on the actual status of the Design Under Test: if the retargeting is partitioned and the 

sub-system of Figure 29 is pre-computed, the Solver needs to keep the two possibilities and 

choose which one to use at the time of composition. Please note that while the SIB is just a two-

way selection, the standard allows for multiplexers of any size: this is an exciting and promising 

feature for DfT designers, but makes the retargeting problem even more difficult. In such a setup, 

a Solver would be forced to compute and retarget for all possible ScanMux state combinations.  

Vertical retargeting is also extremely problematic in terms of concurrency: static PDL merging 

cannot work in presence of dynamic topologies, as the scheduling would need to be adapted to 

the current state of each dynamic elements. The only solution so far has been to force static 

topology resolution, which is sub-optimal, difficult to reuse and incompatible with interactive 

execution.  

2.3 Open Standards 

Almost immediately after the release of 1687, early adopters started investigating the possibility 

of extending the standard to support other interfaces than pure JTAG. This led to the creation of 

the IEEE P1687.1 Working Group [P1687.1].After an initial analysis phase, the WG started 

converging towards a possible solution [3][4][8]. So far consensus is going towards a direct 

extension of the 1687 standard, both in terms for hardware requirements and descriptive 

languages, while maintaining the status quo as far as Generation and Execution flow, obtaining 

the hypothetical flow of Figure 30. The general expectation is that thanks to some kind of 

standardized “adapter” and its description in an extended version of ICL, vectors computed for 

a JTAG-based system (a) will be translated to the new interface (b).  

 

Figure 30 Hypothetical P1687.1 Retargeting Flow, from [J.4] 

In such a setup the conversion would be done between pattern languages (in the example, from 

SVF to some I2C scripting language). Text-based conversions based on macro expansions and/or 

templates are theoretically possible, but they all have the same problem:  they are completely 

agnostic of the system. In the retargeting example Section 2.2.6 of we had to infer some 
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information from the BSDL to move from chain-based PDL to interface-based SVF. Similarly, a 

conversion like the one in Figure 30 would require I2C-specific information (address table, 

register mapping, etc..). This information is completely lost once the retargeting is done: the 

generation flow would need each time to start from scratch, negating the advantages of 

retargeting. Another open point is debug: as vectors are transformed from one interface to 

another, it becomes more and more difficult to keep track of the original design. We have been 

contributing to the WG since its establishment, ad proposed several key innovations, which will 

be detailed later Sections.  

As already stated, the move toward SoC-based architectures is blurring the boundaries between 

Architecture, Chip, Board and System: problems that once were restricted to one domain are now 

occurring at several abstraction levels, regardless of the physical boundaries. Another long-

standing standardization Group called “System JTAG” (SJTAG) was facing similar problems: the 

need to test chips in a board/system having different access interfaces in a coordinated way. 

Roughly at the same time as P1687.1 they filed a PAR to establish the “System Test Access 

Management” standard, labelled as IEEE P2654. As several members are shared between the two 

WG, a special attention is being given for the two future solutions to be compatible, as can be 

seen in a series of common publications [3][4][8].  

Another domain has been looking with interest to IEEE 1687: Analog and Mixed Signals. Modern 

SoCs are never either fully-analog or fully-digital, but rather a mixture of the two, usually in 

terms of “Small A – Big D “ (a little bit of Analog for a lot of Digital) of “Big A – Small D”. Analog 

testing is in several ways the polar opposite of digital testing: little or no automation, and a lot of 

interactive functional testing. The complexity of testing Analog circuits comes from several 

factors [MIL94], like for instance the huge variability of test targets and the difficulty in coming 

up with quantitative Fault Models, but one of the most important in undoubtedly the lack of a 

standardized and automated framework [SUN09]. IJTAG promise to provide interactive 

functional testing has been taken up but several actors, reunited in the P1687.2 Working Group 

[SAR17]. The aim of the Working Group is to develop an overset of the existing 1687 standard 

family, where Analog testing can benefit from the same automation capabilities, as shown for 

instance in Figure 31 

 
Figure 31  Envisioned EDA ecosystem to support structured analog DFT and testing, from [SAR17] 
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2.4 Security Issues 

The omnipresence of electronics devices, along its diverse and fragment Design and Test flow 

raised in recent year a new concern: security. While using DfT to grant access into a circuit is 

unavoidable for test quality, these same facilities may create an important security backdoor into 

the circuit, which may be used by malicious users. Possible outcomes may consist in leakage of 

sensitive and critical data [SKSU13], illegal tampering of circuit behavior [BAR17], or theft of 

Intellectual Property. Therefore, to seal this security breach it is mandatory to implement a 

protection layer over the test infrastructure. Over the years, two solutions families have been 

proposed: Scan Authentication and Scan Encryption. 

2.4.1 Scan Authentication 

The principle of Scan Authentication is to limit the access to certain portions of the scan path to 

protect sensitive information. Few solutions currently exist [DWO13] [RAFA15] [MERA19], 

where the access to the test infrastructure is granted only after the User has successfully 

performed some kind of authentication thanks to at least one secret key. The security potential of 

the SIB has been recognized quite early: the Locking Segment Insertion Bit (LSIB) [DWO13], 

depicted in Figure 32.a, needs a specific binary condition to unlock access to the scan segment.  

 

Figure 32 Locking SIB and Secure SIB Implementations 

Access to the segment is therefore not automatic, but needs a secret Boolean condition. This key 

is spread and hidden inside the DfT infrastructure so that, in principle, an attacker would need 

to know its value and exact position to unlock the LSIB. In practice, however, the key will be 

stored in plain text inside the Pattern Set: this setup is vulnerable to Replay or Man-in-the-Middle 

type of attacks, where the key can be inferred from the data. 

a)

b)
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In a secure setup, when using an insecure channel like a scan chain, the key should never be 

transferred in plain text. The Fine-Grained-Access (FGA) solution [RAFA15] uses a challenge-

response protocol to perform the authentication before granting access to a sensitive scan chain 

segment. It is a classic scheme, where the two parties share a secret used to generate a one-time 

transaction token, while the secret keys themselves are never transmitted on the insecure 

medium, making replay attacks ineffective.   

 

Figure 33: FGA Challenge response protocol, from [7] 

Furthermore, FGA is also able to provide a personalized access to the reconfigurable scan 

network by using instrument-level keys: users have to know the key for each instrument they 

want to access. The authorization controller checks if the user’s response is correct; it then allows 

the user to access the secure scan chain by propagating the authorization through the specially 

introduced Secure Segment Insertion Bit (S²IB) visible on Figure 32.b. [RAFA15] 

In [MERA19], the authors propose some modifications to the FGA approach with the objective to 

allow usage of reprogrammable memory for the secret key and reduce the average authentication 

time. To obtain a faster authentication, the instrument keys are replaced by configuration keys or 

Segment Set Authorization Keys (SSAK). To avoid the need of storing the secret keys on the 

System, the authors propose the procedural generation key mechanism presented in Figure 34, 

where all the configurations keys of a circuit instance are dynamically generated from the unique 

secret key of the circuit and a configuration vector containing the list of targeted instruments. The 

generation consists in an encryption of the configuration vector using the circuit key as 

encryption key. The security provider can distribute credentials composed of configuration and 

SSAK to the users. On the other side, only the Circuit Key is securely stored in the reconfigurable 

memory of the Authorization Controller. 
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Figure 34 SSAK's procedural key generation and distribution, from [7] 

Concerning the authentication protocol, only the challenge resolution is performed. The 

controller receives the configuration vector from the user, and then thanks to the procedural key 

generation, it is able to compute the associated SSAK, using its embedded encryption processor. 

Then, still using the same encryption hardware, the controller can resolve the challenge with this 

SSAK. On the user side, the process is easier as the SSAK is already known, so the user only needs 

to encrypt the challenge with the key contained in the credentials. Once the authentication is 

done, the controller needs to unlock the S²IBs targeted by the user. Figure 35 shows the scheme 

of the SSAK solution architecture: the different S²IBs are linked together by the so-called secure 

scan chain, driven by the authentication controller. 

 

Figure 35: SSAK Authentication architecture, from [7] 

In terms of hardware overhead, the LSIB approach is flexible and inexpensive in case of small 

implementations; it is also compatible with the traditional Test Flow as its usage can be expressed 

in terms of plain vector operations. However, its overall security level may be insufficient due to 

the plaintext key exchange. FGA and SSAK solutions have both a more secure protocol for 

authorization. In addition, they are quite efficient even for a large number of protected 
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instruments. As the number of instruments increases, SSAK becomes clearly the more efficient 

and secure alternative, thanks to the constant authentication overhead. From this data alone, FGA 

and SSAK seem to have an overwhelming advantage.  

However, this comparison does not consider a fundamental point: the dynamic nature of the 

challenge/response protocol cannot be expressed in terms of a Pattern Set, making these 

approaches incompatible with the legacy Automated Test Ecosystem. As a result, their actual 

implementation requires a significant and custom development by the user, effectively limiting 

their applicability.  

2.4.2 Scan Encryption  

When accessing a Scan Chain, all the data exchanged on the JTAG interface is accessible by 

anyone in both directions, allowing Snooping or Mad-in-The-Middle attacks. The principle of 

Scan Encryption is to obscure the data being transmitted, as depicted in Figure 36 : a Scan Cypher 

is inserted before the TAP and is charged to the Decryption of the Vector sent to the SUT, and of 

the Encryption of its output, so that all communication is obscured. This means that the Plaintext 

Vectors computed by an EDA Tool must be Encrypted before transmission, and similarly the 

Outputs from the SUT must be Decrypted before processing.  

 

Figure 36 Principles of Scan Encryption 

The scan encryption technique sits on the cryptographic foundation of the symmetric encryption 

schemes. These primitives provide confidentiality to the communication between two parties: in 

the test scenario, the two communicating parties are the tester and the device under test. Both of 

them share a secret key, which the circuit manufacturer properly deploys to authorized testers 

and, at the same time, stores it inside the target device in a secure memory. All data that is 

exchanged between the tester and the device is encrypted/decrypted thanks to cryptographic 

modules that are placed at the TDI/TDO interfaces of the device. 

When scan encryption is implemented, the typical test procedure is executed through the 

following steps, performed by the red elements in Figure 36: 

1. All data produced by the tester is fully encrypted with a secret key that is known being 

associated to the device under test; 

2. Encrypted data is shifted through the TDI interface of the device, where it is decrypted through 

a decryption module that is located at the interface with the rest of the test infrastructure; 

3. All results of the test procedure, which are sent through the TDO interface of the device, are 

first encrypted by a cryptographic module; 

4. Encrypted results are retrieved by the tester, decrypted, and analyzed. 
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Scan encryption can be classified according to the kind of cipher that is employed, namely stream 

ciphers or block ciphers. Scan encryption can be based on block ciphers, or block-based scan 

encryption, as for instance in [DASIL19] in with a negligible area overhead (less than 0.5%) when 

implemented on complex SoCs. However, block ciphers need to process test data in blocks of a 

fixed size (usually 128 bits), thus requiring a careful parsing of test data and its subsequent 

padding in order to fit a multiple of the block size. Even if it does not cause a significant overhead 

on the test time, it complicates the interface between the serial test interface and the 

encryption/decryption modules. In scan encryption, based on stream ciphers [ROS10], 

encryption is performed serially when processing the data. This property conveniently fits with 

the serial structure of test infrastructure interfaces, leading to perfectly transparent 

encryption/decryption operations that do not impact on the performance of the test procedure. 

Moreover, the capability of stream ciphers to adapt inherently to any input length makes them 

ideal candidates for IEEE 1687. A good example is the TRIVIUM stream cipher which is often 

exploited as reference stream cipher implementation because it is a “trade-off soft spot” which 

provides good security properties for a very limited hardware overhead [VAL19].  

While its lightweight hardware implementation is undoubtedly Scan Encryption strongest point, 

its great Achilles’s heel is its software part. Coding and decoding of vectors has to happen outside 

of the traditional Test Flow, demanding had-hoc post-processing and imposing constraints on 

the design. For instance in [THIE19] the authors need to impose a specific hardware architecture 

(a PUK for every protected segment) and an extremely heavy software infrastructure that needs 

to modify both the input PDL/ICL files and post-process the retargeted vector, completely 

outside any standardized EDA flow (ex: by manually modifying the shift cycle count). These 

implementation choices limit its applicability, scalability and portability.    
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3 The need for a New Test Flow 

In the previous Section, we introduced some of the novelties the Testing field is going through, 

exemplified by the emergences of new standards like IEEE 1687. While most of the actors in the 

field have been considering them as simple incremental updates to solve contingent problems, 

they actually have much deeper roots and wider ramifications and might usher in a profound 

change in how Testing is done, and its relationships with the other steps of the Electronics Design 

cycle. In this Section, we will highlight the true potential of these evolutions through an in-depth 

theoretical analysis followed by the presentation of the results of our research.   The reason why 

IEEE 1687 is so important and disruptive is that instead of simply codifying a specific solution 

for a given problem like most standards (like, for instance JTAG), it is rather an “enabler”: it 

provides strategies and tools for users to tackle new problems and try to put some order in a mess 

of workaround and custom solutions. For this reason, its implications go much further than what 

was originally intended by its developers. As mentioned in the previous Section, there are three 

points that put the traditional flow at risk: Topology Resolution, Concurrency and Interactive 

behavior.  

3.1 Limitations of the Legacy Automated Test Flow 

3.1.1 Topology resolution (vertical retargeting) limitations 

First introduced in Section 2.2.6 and Figure 29, the aim of Vertical Retargeting is to identify the 

topology state that allows access to one or more registers which are the target of PDL operations. 

Usually, scan based system apply a top-down approach: starting from a top-level command, an 

algorithmic method identifies the low-level operations that perform it. Figure 29 is a perfect 

example: from the top-level need of writing a value to the “control” register, the Retargeter 

computes the operations needed to access it, i.e. the SIB configuration.  

 

Replica of Figure 29: Vertical Retargeting of a SIB, from [J.4] 

Top-down approaches are easy to understand and to implement, but have difficulty in scaling. 

Complex SoC might have several layers of hierarchy: take for instance the system of Figure 37 : 

in order to reach “Control”, the Retargeter needs to configure a big number of SIBs. The 

combinatorial complexity of finding the Shortest Path quickly explodes: a traditional Dijkstra 
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algorithm as an O(X2) complexity (with X being the number of nodes, i.e SIBs), and optimized 

versions are usually no better than O(XlogX).  

 

Figure 37 Example of a deeply hierarchical system 

The problem is even more complex when considering multiple registers: still in reference to 

Figure 37, let us consider a test that needs to write both register “Control” and read register 

“Result” : the configuration needs either to find a Network State NS(Control,Register) where are 

both accessible, or if it is not possible  the two states NS(Control) and NS(Register) and the 

Transition between the two NS(Control)→NS(Register): several NS might be needed to correctly 

configure the network. Of course, the Transition it not reversible:  

NS(Control)→NS(Register) ≠ NS(Register)→NS(Control) 

In more general terms, any Transition is dependent on the initial Network State, NS(Start). This 

means that the Retargeter cannot make one “absolute” retargeting for PDL codes defined at a 

register level, but must always consider the initial state. This is a serious limitation to code reuse: 

the retargeting of an IP cannot be fully resolved until the whole 1687 Network is known.  

There are no real solutions to this problem: to reduce its impact industry tools usually perform 

retargeting using a reference Safe state: NS(Control) is in reality NS(Safe → Control →Safe), so 

that:  

 NS(Control→Register) = NS(Safe → Control →Safe) + NS(Safe → Register →Safe) =  

NS(Safe → Control → Safe → Register → Safe) 

Of course, most tools won’t stop at this suboptimal solution but will run additional optimization 

steps to end up with NS(Safe → Control → Register → Safe). However, the combinatorial cost of 

these additional steps can be computationally high, with serious scaling issues which are difficult 

to overcome while keeping a top-down approach.  
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3.1.2 Concurrency (horizontal retargeting) limitation 

The base element of IEEE 1687 is the Instrument: however, it is never used alone. In a real system 

the user will have N Instruments, over which N PDL procedures might be defined. For these, a 

Top-Down Retargeter has to compute the top-level PDL operation which corresponds to the 

execution of the N PDL subroutines, as depicted in Figure 38. 

 

Figure 38 IJTAG Legacy Top-Down Retargeting Backend for PDL-0, from [J.4] 

In most Tools, and in the 1687 Standard document itself, the assumption is that the User will write 

a Top-Level PDL file which will iCall the PDL subroutines defined at the Instrument level. From 

there, the Retargeter will try and merge the individual iApply groups defined in the called iProcs 

to obtained a flattened Top-Level PDL. It is the flow already documented in Figure 28, 

reproduced here for easier reference. The “iMerge” instruction is used to “expose potential 

concurrency”[1687] to the Tool, .i.e mark the PDL sections that might be parallelized.  

 

Reproduction of Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4] 

This scheme is intellectually easy to understand, but it actually computationally extremely 

intensive: extracting parallelism from a sequential program is a complicate and well-known 

problem in computer science [GIRK92], and its application is usually limited to specific use cases 

due to its complexity. In the case of IJTAG the problem is even more complicated because of the 

need to consider the dynamic topology of the network connecting the Instruments.  
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3.1.3 Interactive behavior 

As stated in the previous Chapter, one of the big novelties of IEEE 1687 is the native support of 

Interactive Behavior thanks to the PDL-1 instruction set. The most important is “iGetReadData”, 

which returns the last data value read from the target Register.  As PDL has been developed to 

be syntactically compatible with TCL, the natural implementation of PDL-1 as described in the 

Standard is an interpreter linked to a Retargeting tool executing an algorithm composed of both 

TCL and PDL-1, obtaining the setup of Figure 39.  

 

Figure 39 Interactive IEEE 1687 Tool Setup 

The combinatorial complexity of Vertical and Horizontal retargeting, as described in the previous 

sections, seriously limits the applicability of this setup: the Tool needs a serious amount of 

resources to run the algorithms, so it cannot be run on constrained setups such as embedded 

controllers. Moreover, there is no clear path for portability and retargeting: how can such a setup 

be compatible with the traditional retargeting flow, as depicted in Figure 40 ?  

 

Figure 40 IJTAG Legacy Retargeting Backend for PDL-0, from [J.4] 
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3.1.4 Interface Domains 

Usually, EDA Tools work in a well-specified Domain: Retargeters work on Scan-Chains, JTAG 

tools on JTAG systems, etc… By Domain we mean a system that can be accessed or controlled 

only through a specific set of Primitive Operations. For instance, a JTAG system can only perform 

either operations that are possible in the standardized FSM (most notably, going through the 

Capture-→ Shift →Update (CSU) sequence on either the IR or DR scan chain), or Instructions 

defined in the Standard (INTEST, EXTEST,etc…). On the other hand, a Scan Domain will have a 

richer set of data Primitives (not only CSU, but also CS, SU, S, etc…), but no Instructions. There 

is a lot of variability:  domains such as I2C will rather have primitives focused on Writing and 

Reading to specific addresses, etc… This allows each Tool to exploit the specifications of its 

domain to process the required operations and express them in the Primitive of its domain. 

However, a complete system is seldom composed by a single Domain, so the Tool will have to 

Translate between them. Sometimes it is easy, as for instance in Figure 41 : Scan and JTAG 

domains are purposefully extremely similar, so Tools can easily translate between them thanks 

to  a-priori knowledge of the domains (obtained from their Standard specifications) and store the 

resulting primitives in a DSL file, such as for instance SVF.  

 

Figure 41 Domain Translation between Scan and JTAG 

The generic case is much more complex: take for instance the system of Figure 42 : the connection 

between I2C and JTAG is not standardized, so the Tool has no easy way to make the translation.  

 

Figure 42 Domain Translation between multiple interfaces 
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Such setups are in fact quite common, and most of the times users need to rely on custom routines 

which parse the DSL files and convert among them exploiting the built-in knowledge of the 

Translation. This is usually done through in-house tools, whose validation and maintenance can 

require important resources. Efforts like the [P1687.1] Working Group are trying to develop a 

standardized Domain Translation methodology [3] [4], but so far, no solution have been officially 

ratified yet.  
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4 A New Automated Test Flow: Specification  

As we pointed out in the previous Sections, the main limitations come from legacy features in the 

Automated Test Flow. The most important and limiting one if the dichotomy between “Smart 

Generation” and “Dumb Application” [J.4]: the need of resolving all computation offline imposes 

a series of “a priori” decisions to obtain a static Patten Set based on a reference setup. When the 

setup changes, undoing the computations and adapting the set demands a lot of effort and 

actually makes the operation much more difficult that it could have been if done correctly the 

first time.  

4.1 High Level Requirements 

It is useful to make a comparison with Computer Science, where a Source Code written in a high-

level language (ex: C) is compiled into a Binary program which can then be stored in a Memory 

to be finally executed by a Processor. The direct, naïve flow is depicted in Figure 43-a): The High-

Level program is first converted into low-level Assembler instructions, which are then mapped 

into the Memory. This requires the knowledge of the exact start address of the program in the 

memory to solve all addressing in the Assembler instructions (the absolute Jumps, but most 

importantly the location of Data Variables). 

 

Figure 43 Software Compilation with Static Memory Mapping 

If the program needs to be executed in another memory location, it must be remapped, as 

depicted in Figure 43-b): first the Binary Program must be reconstituted, potentially dumping it 

from the Memory, and then remapped to the new Address. This requires parsing the whole 

binary data, identify the variables from the Assembler operations accessing them, compute their 

new locations and substitute all the references in the binary code. This is of course not impossible, 

but extremely time-consuming, suboptimal and not scalable. This problem is solved by the 

concept of Relocation, depicted in Figure 44. The Assembler code is not directly converted in pure 
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Binary, but in an intermediate format where some placeholders (called “symbols”) are set in place 

of the addresses. In a BareMetal approach, these symbols are resolved when the final Memory 

Mapping is available, to obtain a static binary representation. When an Operating System is 

present, the linking is done at execution time by a specific component, the Loader. Each 

compilation toolchain and Operating System has its format: in Linux-Gnu, for instance it is the 

“Executable and Linking Format” [ELF95], in Windows the “Portable Executable” [PE15]. This 

procedure is also what allows the inclusion and usage of Static and Dynamic software libraries.  

 

Figure 44 Principles of the Software Relocation Flow 
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Patterns, convert them to the new Protocol and then recompute the patterns.  
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Figure 45 Information flow in the Automated Test Flow 

From this analysis it is easy to understand the weak points of the current Automated Test Flow: 

because of the strict Generation vs Application dichotomy, all data and information processing is 

done in one step, ending up with static Patterns which have knowledge of neither the original 

Algorithms nor of the System Under Test. To retarget, a Tool needs first to extract the original 

Test Instructions from the flat Pattern files: this is often close to Reverse-Engineering as the 
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SUT 
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Flow of Figure 44.  
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- During Execution, a Test Manager on the Test Host runs the Test Executable. Both the 

algorithmic execution and the CUT Model can be updated depending on the data exchanged 

with the actual Circuit Under Test.  

 

Figure 46 New Automated Test Flow 

The heart of the approach is the Test Manager: it is the middleware that provides interaction 

between the Software (the Test Algorithms) and the Hardware (the CUT). It has therefore the 

same role as an Operating System.  

In the following paragraphs, we will detail the specifications of the different components.  

4.2 Relocatable Test Executable 

The role of the Relocatable Test Executable is to collect both Pattern, Algorithmic and PDL 

information in a ready-to-use container. For the first two it is quite straightforward: Patterns are 

nothing more than Data, and Algorithms can be compiled to ISA instructions. Formats such as 

[ELF] have provisions for both. PDL instructions on the other hand have been developed to 

convey “Test Intent”, and as such it is not possible to compile them. However, each instruction is 

precisely specified both in terms of input/outputs and expected behavior (See Tables 1 to 3 or 

Sections 7 and 8 of [1687]). This means that PDL is an ideal candidate for an API approach: at 

compilation time, PDL instructions are treated as external functions for which the compiler 

creates the appropriate Relocation Symbols. The Test Manager will implement the actual library, 

and therefore be able to eventually resolve them. The final setup is shown in Figure 47. Almost 

all programming languages have provisions for this flow: for instance, in C/C++ the header 

would be a .h/.hpp file. 
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There is however a limitation: this flow depends on a compilation step, while [1687] points TCL 

as the PDL overlay language. This requires an adaptation step to existing IJTAG programs, an 

example of which will be given in Section 5.  This might not be necessary in the future, as the 1687 

Refresh Working Group is discussing the possibility of opening up the Standard to other 

languages.  

4.3 Circuit Model  

The Circuit Model has several roles:  

- Store all information needed for Retargering 

- Track the current state of the CUT;  

- Assist the Manager in handling the Dynamic Topology configuration; 

- Make the connection between PDL operations and the corresponding Instruments 

- Handle the connection with the CUT 

- Convert scan-level bitstreams into Interface operations.  

In this section, we will detail a Model able to satisfy all these requirements.  

4.3.1 Retargeting 

The choice of a correct Data Structure is of primary importance. As detailed in Section 2.2.5, in 

IJTAG the segments can either be connected serially, or selected through Multiplexers. This type 

of hierarchy is naturally described through a Tree. The aim is to represent the hierarchical 

relationships of the different IEEE 1687 elements through the shape of the Tree, so that we will 

be able to extract and modify the Topology state by analyzing the Data Structure through 

strategies such as Visitors or Iterators. In an Object-Oriented modelling, this can be achieved 

through three nodes: 

- As the leaf, a Register node which stores both the value of the register inside the CUT, 

obtained from previous interactions, and the Future Value, which the System wishes the 

Register to reach. This can be the result of either PDL operations (ex: an iWrite which queues 

a value modification) or configuration algorithms (ex: wanting to open a closed SIB).   

- A Chain node to concatenate Registers. The order of the children reflects the order in the scan 

Chain and can be extracted through a standard Transversal, as depicted in Figure 48 

 

Figure 48 Tree Representation of a Scan Chain 
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Figure 49 Tree Representation of a ScanMux 

While for a Chain node all its children are always connected, for the Linker node the selection of 

each node depends on the value of the Control register. This can be used to guide a Depth-First 

Transversal of the tree, as depicted for instance in Figure 50. 

 

Figure 50 Extraction of Active Scan Path through depth-first tree transversal 
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be able to manage the Linker without needed to change its internal Topology Configuration 

algorithms. The final modelling of the Linker was first presented in [1], and it is reproduced in 

Figure 51 

 

Figure 51 Complete Specification of a Linker Node, from [1] 

4.3.2 Interfaces 

The problem of Domain Translation needs an additional abstraction step: as depicted in Figure 

42, the usual approach is to extract the Primitive Operations expressed in a DSL, process and 

convert them into the new Domain and express them once more in a new DSL. This solution is 

an extension of the legacy Static Retargeting of Figure 45, and suffers from the same limitation: 

by forcing a static resolution, useful information is lost and each step has to recreate it from 

scratch. Moreover, hardware description languages like ICL are based on a structural approach, 

which is ideal for ATPG or pattern generation, but not for Domain Translation. It is in fact 

extremely difficult to extract behavior from structure: for instance, if a Tool can easily parse ICL 

and use the connectivity information for Retargating, it cannot understand how to use a JTAG or 

I2C interface just from their AccessLink descriptions. Even doing it from an HDL such as VHDL 

and Verilog is not an easy task, as any Validation expert knows well. To avoid these issues, we 

propose the abstraction depicted in  Figure 52.  

 

Figure 52 Domain Crossing through the Relocatable Vector Format 

The principle is to exploit a new piece of data, the “Relocatable Vector Format” (RVF), detailed 

in Table 4, to express the Primitive operations in each domain, and use it to cross the boundaries 

Li
n

ke
r Register

Register

Path 1

Path n

Select(path i)

DeSelect(path i)

isActive(path i)

PathSelector

Register

Control

Ctrl Of CTRL 

SI (ScanInPort)

SO

(ScanOutPort)

B
IT

1

SE (ShiftEnPort)

TCK (TCKPort)

DO (DataOutPort)

Inst1 Of ONE

DI (DataInPort)

Inst2 Of ONE
DI (DataInPort)

DO (DataOutPort)

DO (DataOutPort)

B
IT

2

DI2 (DataInPort)

DI1 (DataInPort)

0

1

EXAMPLE

0

1
BIT3

CE (CaptureEnPort)

UE (UpdateEnPort)

Scan Domain

TAP
IR

JTAG Domain

TCK

TMS

TDI

TDO

I2
C

 

C
o
n
tro

lle
r

I2C Domain

SDA

SCL

RVF 
Request

RVF 
Request

RVF 
Request

RVF
Response

RVF 
Response

RVF 
REsponse

E
x
e

c
u

tio
n
 

E
n
v
iro

n
m

e
n

t

DSL File

Circuit Under Test 
(CUT)

Interface 
Translator 

Interface 
Translator 

Interface 
Translator 

Interface 
Translator 

Retargeter



 

 

 

 

 

73 

through some Interface Translation. As it name clearly states, the principle is to reproduce the 

Software Relocation Flow. The RVF format was firstly introduced in [J.4] and is based on a 

Request-Response protocol: for each Domain, the Tool generates an RVF Request to perform a 

certain Primitive, and passes it to next Domain. There, the Request will be processed and if 

needed forwarded to the next Domain. At the end of processing, each Domain will generate an 

RVF Response which can contain both Status information and return Data (in an interactive 

approach).  

Table 4 Specification of the Relocatable Vector Format (RVF) 

RVF Request 

Field Name Type Description 

Data Binary Binary representation of the vector to be sent to the SUT 

Primitive_idf String Primitive identifier 

Optional Data binary Primitive-specific data 

RVF Result 

Field Name Type Description 

Status String Information about the execution of the previous RVF Request  

Data Binary Binary representation of the vector received from the SUT 

 

The RVF format contains the Minimum Information Set which is needed to make a Translation 

between Domains as it expresses only the Primitive itself. The key abstraction points are: 

- Data is stored in Binary terms, to avoid the complexity of expressing it to specific string 

formats (ex: SVF if right-aligned, while I2C usually prefers left-alignment);  

- A Primitive is expressed as string. This is for both debug and inter-operability: using Binary 

Enumeration can be more optimized in terms of memory space, but it can lead to confusion 

especially when different Tool Providers are in play 

- The “Optional Data” field allows RVF to vehiculate data which is proper to the interface and 

not directly expressible in ICL. For instance, I2C or SPI need the target addresses for 

Read/Write operations.  

For instance, and “SDR 0x1234”command can be directly coded as (“SDR”,0x1234), while an 

“I2C_Write(data=0x1234,address=0x27) command will become (“I2C_Read”,0x1234,0x27).  

The Interface Translators of Figure 52 are the final point in solving the issue: moving away from 

a purely structural point of view, the abstraction embraces a Functional approach. In coherence 

with the localized Linker abstraction of the previous section, each Interface is responsible for 

providing a Translator that is able to convert RVF requests coming from its right-hand side in a 

Protocol (i.e. a set of Primitive) into one or more RVF Requests in another Protocol on its left-

hand side, and vice-versa for the Response path. Each Translator is based on the behavior of its 
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corresponding hardware, extracted rather from the Data Sheet and documentation than from the 

HDL. For instance, Figure 53 proposes an example of RVF Translation for a JTAG-to-I2C 

translator which expresses “SDR” operations as a sequence of a Write and a Read at address 

0x12.  

 

Figure 53 RVF Translation for a JTAG - to - I2C Translator 

In terms of Circuit Model, this abstraction is summarized by the Interface Translator Node, 

depicted in Figure 54. The “Channel” models the different connections to the Interface. For 

instance, a JTAG TAP has two channels, connected to the IR and DR chains respectively.  The 

“Translate” method is supposed to completely process one right-side RVF Request, if needed 

generating multiple Requests on its left-hand side and composing the left-hand side Responses, 

finally returning the result as a unique RVF Response on its right-hand side.  

 

Figure 54 Complete Specification of the Interface Translator Node 

The scheme of Figure 52 supposes that the Retargeter is able to issue RVF Requests and process 

RVF Responses. However, this might not always be the case, especially for legacy tools. To allow 

compatibility, we therefore propose the AccessInterface node, depicted in Figure 55, which 

instead of receiving RVF Requests uses the Primitive Identifier and Data computed by the 

Retargeter on its right-hand side to start an RVF flow on its left-hand side.  
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Figure 55 Specification of the Access Interface Node 

4.3.3 Conclusions 

To conclude, the different building blocks of the Circuit Model introduced in this Section are 

assembled in Figure 56. The Test Manager can interact with it thanks to the methods defined at 

each Node.  

 

Figure 56  Complete Circuit Model Abstraction 

Please also notice that the PathSelectors and Protocols are not necessarily part of the EDA Tool 

itself: as they are exclusively based on the RVF abstraction, they can be developed separately 

(typically, either by the IP Designer or the System Integrator) and included as separate modules. 

Section 6 will provide an example of this process.  
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4.4 Test Manager 

As depicted in Figure 46, the Test Manager is responsible for the interface and coordination 

between the Test Algorithms and the Circuit Under Test. The actual algorithms and methods are 

implementation-dependent: the role of the Test Manager in the Abstraction if therefore of a place-

holder/black box that is in the ideal place to collect the information provided by the other element 

and act upon it. In the following two sections we will show examples of how the Test Manager 

can fulfill its role to solve the issues of Vertical and Horizontal Retargeting, and how the Circuit 

Model Abstraction can provide the necessary information and data.  

4.4.1 Vertical Retargeting 

For Vertical Retargeting, the Test Manager must be able to link the PDL operations and the 

Registers they target. Figure 57 depicts the complete setup: a PDL algorithm, in the upper left-

hand corner, requires access to a specific Target register. As explained earlier, this source code is 

compiled into a Relocatable Executable, which contains the API Calls for PDL. If we consider the 

Instructions specifications as reported in [1687] in Table 1 and 2, their implementation by the 

System Manager by exploiting the Circuit Model (CM) can be done in three ways:  

- Modifications to the CM. For instance, an “iWrite” instruction modifies the Future Value its 

Target register (as defined in Section 4.3.1), having it effectively queued as required in the 

Standard.  As a result, the State of the CM is no longer fully synchronized with the State of 

the CUT : S(SM)≠S(CUT).  

- Queries from the CM. For instance, an “iRead” returns the last value read from the CUT and 

stored in the CM;  

- CM/CUT Synchronization. Instructions such as iApply require queued modifications to be 

applied, therefore restoring the equality between S(CM) and S(CUT) 

 

Figure 57 Complete Setup for Vertical Retargeting 

The actual implementation of the PDL Library is not part of this Abstraction, so each Test 

Manager can implement it as it better suits its constraints and goal.  The same goes for the 

CM/CUT synchronization Algorithm, which can exploit the Circuit Model abstraction to identify 

the S(CM) needed to satisfy the PDL instruction and guide the S(CUT) to it. However, the Circuit 

Model provides all the information and methods needed to manipulate both S(CM) and S(CUT).  
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To demonstrate its usage, we will unroll the solution of the example of Figure 57. First, we will 

call S0(CM) and S0(CUT) the states of CM and CUT respectively at the beginning of the execution 

of the provided PDL code. Figure 58 depicts this setup, where for simplicity, we considered that 

at that at time 0 all ScanMuxes are closed. The dotted line highlights the Active Scan Path in both 

CM and CUT, while the red arrow the execution position in the PDL code.  

 

Figure 58 Circuit Model and CUT status at time 0 

The result of the execution of the iWrite command is shown in Figure 59 

 

Figure 59 Status mismatch caused by a PDL instruction 
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Scan Chain, and the sequence “n” states which will bring the CM to the desired state. 

  

Figure 60 depicts one possible sequence. Please note how each Selection Request of a Linker queues a 

state modification for its controlling register, and how each Si(CM) in the sequence can resolve at least 

one of these requests. For readability’s sake this Configuration requests are marked on the Linkers in 

  

Figure 60, but in reality, they result as Future Values change requests in the controlling register(s), 

as explained in Section 4.3.1 and depicted in Figure 49 and Figure 50. 

  

Figure 60 Sequence of n CM state reaching STARGET(CM) from S0(CM) 
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The computation of both STARGET(CM) and the sequence S0→N(CM) is not unique and is left to the 

Implementation of the Abstraction. It could use classical solutions like Dijkstra, any modern 

shortest-path algorithms or even incremental algorithms as in the MAST Implementation that 

will be described in Section 5. Once the sequence of states is known, the Test Manager can apply 

them to the CSU until SN(CPU)== STARGET(CM) and the processing of PDL operations can 

continue. As this unrolling shows, a great part of the Task Manager is implementation-

dependent, leaving a lot of freedom to each EDA implementation. However, all variants are only 

possible thanks to this Abstraction, in particular to the information stored in the Circuit Model. 

4.4.2 Concurrency (Horizontal Retargeting) 

In Horizontal Retargerting, the Test Manager must be able to make the connection between 

several PDL Instructions that need to be pushed to the SUT. In the traditional approach, depicted 

in Figure 28 and reproduced here for easier reference, the EDA Tool aims at producing a top-level 

PDL Stream by statically extracting concurrency from a PDL stream: the iMerge instruction is 

provided to highlight sections whose execution might be parallelized.  The principle is that 

“everything is sequential if not told otherwise”.  

 

Reproduction of Figure 28 Horizontal Retargeting Merging for a 3-instrument 1687 system [J.4] 

This is a direct evolution of the classical flow, where the User manually composes the top-level 

Test Strategy. However, the extraction of concurrency from a sequential program is a problem 

that is computationally extremely complex.  In Computer Science, especially when an Operating 

System is present, the general assumption is the opposite: “everything is parallel if not told 

overwise”. Processes and threads are executed in parallel thanks to the Scheduler, and provisions 

are given to force sequential behavior when needed (such as semaphore, rendez-vous, etc…) 

[TANE15]. This same principle can be applied to Testing: each IP comes with a set of Test 

Procedures, which must be executed in parallel to test the whole system. Our new Test Flow can 

support parallel execution in the same way, as depicted in Figure 61. The Test Manager has the 

same role of the OS: arbitrating the access requests from the Test Algorithms to the limited 

resources of the CUT, through the often-unique interface.  

Top-Level
PDL
…

iCall Inst_1
iCall Inst_2 

…
iCall Inst_3
iCall Inst_1 

…
iCall Inst_3 
iCall Inst_1 
iCall Inst_2

… 

In
st

ru
m

en
t 1

iP
ro

c
In

st
_1

In
st

ru
m

e
n

t 2
In

st
ru

m
en

t 
3

To
p

-L
ev

el
M

o
d

u
le

 (
IC

L)

iP
ro

c
In

st
_2

iP
ro

c
In

st
_3

 

Retargeting

Top-Level PDL
…

Merged Inst_1+Inst_2 
…

Merged Inst_3+Inst_1 
…

Merged
Inst_3+Inst_1+Inst_2

… 



 
80 

 

Figure 61 Horizontal Retargeting in the new Test Flow 

Regardless of the concurrency principle chosen in a given implementation, once more, the Circuit 

Model provides the key to the resolution: thanks to the PDL API, each Test Algorithm will either 

iRead data from it, or iWrite modifications to it. As a result, the S(CM) loses its synchronization 

with S(CUT) while storing all the modifications as changes to the Future values of the target 

registers, as depicted in Figure 62.  

 

Figure 62 Circuit Model Abstraction for Horizontal Retargeting 

Horizontal retargeting is once more solved thanks to a tree transversal that identifies the Active 

Scan Path, and can therefore service the queued PDL operations. On the other hand, the way 

these modifications are queued and how the concurrency of the Algorithm is handled is left to 

the Tool Implementation. In the following Chapter we will show the Implementation chosen in 

the MAST tool, and also some possible variations using the same Abstraction introduced here. 

The clear advantage of this Abstraction is that both Horizontal and Vertical retargeting are solved 

through an analysis/transversal of the Circuit Model. It is therefore possible to solve the two at 

the same time, as shown in Figure 63  
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Figure 63 Circuit Model Abstraction for Horizontal and Vertical Retargeting 

Both PDL Operations and Configuration actions result in Modifications Requests to S(CM) and 

in a desynchronization with S(CUT), so they can be solved in the same way through the 

algorithms and strategy presented in this Section.  

4.5 Domain Crossing and RVF propagation 

The last role of the Test Manager to handle the Domain crossing, so that the operations defined 

in a Protocol (i.e. a set of Primitives) can be translated to another, eventually obtaining Primitives 

for the interface with the CUT. This is done by propagating the Operations expressed as RVF 

Messages through the Interface and Translator nodes introduced in Section 4.3.2 through the 

Circuit Model nodes, as depicted in Figure 64. The transformation and forwarding of the 

messages are left to the of the Protocols defined into each node of the Abstraction, and introduced 

earlier in this Chapter. 
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Figure 64 RVF Packet Propagation on the Circuit Model 

Once more, the actual shape of the RVF Messages inside the tool and the Messaging Layer 

responsible of their propagation is left to the Implementation, of which an example will be given 

in the next section for the MAST Tool. 
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5 A New Automated Test Flow: 

Implementation 

The Abstraction presented in the previous Chapter is the result of almost 15 years of work. In this 

Chapter, I will retrace the iterations between Analysis and Implementations that allowed not only 

to develop and refine the Abstraction itself, but also to focus the work to the actual needs of the 

Testing Field.   

 

5.1 Early Developments : Test Instruction Set Architecture and NSDL: 

2007 → 2013 

I started working in the field of Automated Testing in 2007, upon my arrival in Bell Labs Ireland, 

by joining the IEEE P1687 Standardization Working Group. At that moment in time Alcatel-

Lucent did not have any major ASIC project: rather than influencing the internal DfT strategy, 

the priority was to push into the Standard features that would be useful later in the Design flow. 

As a new member of its Research & Development Division, my manager Suresh Goyal put me in 

relationships with three Bell Labs Senior Members, Bradford Van Treuren, Tapan Chakraborty 

and Chen-Huan Chiang, each having more than 20 years of experiences in the historical locations 

of Whippany and Murray Hill in New Jersey, USA. Together we formed a distribute research 

group where my role was to collect their requirements and expectations and transmit them to the 

new Standard. The aim was to both understand the direction the standard was going and to 

influence its development in a 5-to-10 years window.  

The first step was to develop an internal demonstrator for the P1687 proposals and testbench it 

against the most use Boundary-Scan tools used in Alcatel-Lucent, such as for instance ScanWorks 

from Assett Intertech. The result, depicted in Figure 65, comes from the feedback from the expert 

user and mimics the real flow used by Test Engineer in the company: the Circuit Under Test 

(CUT) in the right-hand side is a VHDL-based FPGA implementation of a P1687 network as it is 

was being discussed in the WG at that moment in time (registers and simple SIBs). Its TAP can 

be accessed from a Test Host using the Impact tool of the Xilinx ISE suite, which exploits their 

proprietary JTAG controller and a built-in IP which redirects the bitstream inside of the FPGA 

rather than to its configuration memory. Impact accepts SVF files, which are generated by the 

ScanWorks tool from the BSDL description of the ML505 board, provided by Xilinx. Inputs and 

outputs of the P1687 networks can be set/observed using onboard components (Leds and Dip-

switch respectively). Last but not least, the Chipscope tool from Xilinx allows monitoring of 

internal signals of the P1687 network by means of a “virtual oscilloscope”. The content of the 

BSDL and SVF files must be manually edited to add the new P1687 features.  
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Figure 65 P1687 Demonstrator (2007-2008) 

Extensive experiments on this platform highlighted two main criticalities: 

- The inadequacy of BSDL to describe the dynamic SIB-based topologies of P1687 

- The limitations of SVF to express functional operations over P1687 instruments 

As the Standard discussions were focusing on the Language issue, and I had experience in both 

Grammars and Compilers, I decided to focus on it. Moving away from both the enumeration-

based BSDL and the structure-based RTL, I specified and implemented NSDL, the “New Scan 

Description Language”. For the first time in Boundary Scan, NSDL proposed a description based 

on the hierarchy of the system rather than on its signal-level connectivity, and allowed functional 

procedures to be freely mixed with the hardware description. This was achieved by leveraging 

the capabilities of VHDL, the base language for BSDL, which already contained most of the 

desired features (components, hierarchy, functions, etc…) and adding only the specificity of 

P1687. Through an informal collaboration with the University of Maynooth, Ireland, we modified 

a VHDL parser (the front-end of the Open-Source tool GAUT [MAR93]) to verify NSDL and 

produce and intermediate XML file that could be fed to EDA tools, therefore proving its 

usefulness in a real flow as the one in Figure 65 

First presented at some workshops ([W6], [W7]), NSDL rapidly raised interest in the field and we 

were able to publish at conferences [28] and journals [J.6]. In parallel, following the aggressive IP 

policy of Bell Labs we filed several patents to cover the language, all of which were eventually 

granted [P2][P3][P4]. NSDL was presented to the P1687 Working Group and was for some time 

one of the candidates to become the Standard’s language, but it was eventually discarded for 

several technical and political reasons. Technically speaking, NSDL had two shortcomings: 

- It was based on VHDL, which is a language mostly used in Europe, while most (or all) of the 

WG member were American and had therefore little familiarity with it. VHDL’s strict typing 

and grammar makes it difficult for the newcomers, and that difficulty was transferred to 

NSDL;  

- The hierarchy-based abstraction was too high-level for the point of view of the WG members, 

which preferred to stick to a more classical structural view, which eventually became ICL.  
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Politically, the patenting policy of Bell Labs backfired: even though the company promptly 

produced Letter of Assurances (cfr. Section 2.2) the WG did not want to risk selecting proprietary 

solutions and risk a “patent blockade” (it was the period of the Apple vs Samsung controversy).  

Even if it was not finally retained, NSDL still had a deep impact on P1687 by pushing the limits 

of what was possible to describe, and influenced the final version of ICL.  

In parallel with NSDL, I focused on the second P1687 shortcoming: the lack of a proper way to 

express functional operations over Instruments. This was caused by the limitations of DSLs like 

SVF, which could only express JTAG operations and nothing else. In strict collaboration with my 

New Jersey colleagues, in particular Brad Van Treuren, we decided to explore a completely new 

direction: instead of enriching the DSL with algorithmic capabilities as done for instance in 

[STAPL] and STIL [1450], we decided to enrich the processing capabilities of a CPU with Scan 

features. We therefore developed the “Test Instruction Set Architecture” (TISA) a set of processor 

instructions able to control a JTAG TAP in the same way an SVF file can. The actual 

implementation of the TISA instructions is proprietary to Bell Labs, so in this document I will 

focus on its high-level goals and abstractions which have been disclosed either in publications 

[J.5][26][W5] or in Patents [P6][P8][P9][P10][P11][P12][P14]. 

The principle of TISA is depicted in Figure 66:in order to shift a scan chain composed of several 

Segments, TISA Instructions can be used to reference each segment separately, instead of having 

a single top-level SDR command. Each instruction will activate the TAP signals (most notably the 

clock) to shift enough bits for the length of the Segment it is referencing. The execution of the 

sequence of TISA Instructions has therefore the effect of shifting the whole scan chain: Horizontal 

Retargeting is reduced to a simple sequencing problem.  

 

Figure 66 TISA Principles 

TISA and traditional ISA instructions can be freely mixed inside an executable file such as 

[ELF95], so the execution of a TISA-enriched algorithm can be expressed using the Use Model of  

Figure 67.  

 

Figure 67 TISA Single-Algorithm Use Model 
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For the first time, it was possible to fully integrate Test and Software flows. However, the flow 

required the Compiler to accept TISA instructions, and the User to correctly (and manually) write 

the sequence of TISA Instruction, considering also the status of the SIB. To remove these locks, 

we developed thanks to the Master Internship of Josef Ahmad the setup of Figure 68. 

 

Figure 68 Complete TISA Setup, from [J.5] 

 First of all, we defined a target CPU for the TISA extension: the Leon2 processor from Gaisler 

Research [GAI]. Now replaced by its newer versions (such as Leon5), it was at that moment in 

time one of the few Open Source Softcore processors with a fully-functional software stack, and 

I had experience with it thanks to my PhD. I first defined a binary mapping for TISA instructions 

compatible with the Sparc-V8 ISA [SPARCV8] exploiting the “unimplemented” field values, and 

then the Master Thesis started by adding a modified Leon2 architecture target to GCC to support 

the new extension set in the ELF flow. Then we developed the system of Figure 68, which is the 

first embryo of the Abstraction detailed in Section 4. The TISA instructions were both 

implemented in a VHDL co-processor for simulation and FPGA emulation and in software to 

generate on-screen debug messages and traces. 

 There were however some limitations: 

- The Circuit Model was incomplete and only supported a simplistic version of the SIB;  

- The Circuit Model was to be built directly into the code, and the correspondence between 

nodes and Instrument threads done manually through named mutexes. 

- The Instrument threads would not execute PDL commands, but needed TISA assembler 

instructions to be hard-coded as inline “asm” code;  

- The arbitration mechanism was based on the over-mentioned mutexes, with each Instrument 

thread encasing its TISA instructions inside a Critical Section [TANE15], and communicating 

with the Scheduler thanks to Request/Acknowledge protocol, depicted in Figure 69  
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Figure 69 TISA Scheduler protocol, from [J.5] 

Regardless of these limitations, by the end of the Internships we had a fully functional demo, 

which proved the feasibility of the TISA approach.  

The next improvement of the TISA setup was boosted by un unexpected opportunity: upon me 

joining the Paris Bell Labs location in 2011, I had access to one of the first ZC702 cards available 

in France, [ZC702] :  Xilinx has just released its new Zynq SoC concept joining the flexibility of an 

FPGA fabric and the performances of a dual-core Cortex A9 ARM hard processor, along with a 

set of 4G-oriented IPs, and was aggressively advertising it to Alcatel-Lucent, one of its main 

customers (most of the specialized hardware of Base Stations at that time was implemented using 

Xilinx PFGAs). I therefore decided to port the hardware version of TISA on the new platform to 

leverage the significant software performance gain: the hard-macro ARM processor had a 

working frequency configurable between 0,5 and of 1Ghz, while the Leon 2 soft core had a 

working frequency of 50Mhz. This meant also porting the Software TISA flow to the processor: 

luckily in contrast with the SPARC V8, the ARM v7a ISA contains some dedicated co-processor 

instructions [ARMv7] which can be used by an implementer for his own hardware accelerator. I 

was therefore immediately able to cross-compile and use the complete TISA setup of Figure 68 

without needing any custom change in the GCC cross-compiler. JTAG being notoriously slow, 

performances were not an issue so I opted for a classical co-processor setup on the AXI bridge, 

depicted in Figure 70 : the TISA coprocessor is plugged to the AXI bus of the ARM core as a Slave, 

and interacts with outside thanks to one of the GPIO banks of the card. The TISA test algorithm 

can be directly compiled by GCC, but as the ARM core is a hard macro, it is not possible to modify 

its Decode stage: Coprocessor instructions will therefore trigger an Illegal Instruction 

Interruption. The Handler is used a driver: it decodes the instructions and performs the memory-

mapped communication with the TISA processor to execute it. 
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Figure 70 TISA Hardware demonstrator on Zynq 

With this demonstrator the TISA ecosystem was finally complete and we could demonstrate its 

usage on a complete FPGA target. Figure 71 reports the experimental results: the chronograms 

are a direct replica of the waveform captured on an oscilloscope (which did not have a record 

function).  

 
Figure 71 Execution of the TISA Hardware demonstrator, from [J.5] 

We also measured TISA scheduling time depending on the number of parallel threads, and 

demonstrated its capability to scale linearly. At the moment of the publication of  [J.5], no other 

solution could boast similar performances.  

 

Figure 72 TISA Scheduling Performances, from  [J.5] 
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5.2 First Abstractions:  New System-Level Test (NeSLT : 2013 →2015) 

In 2013, I decided to leave Alcatel-Lucent and join Grenoble-INP Phelma as an Associate 

Professor. This resulted in the impossibility to access the TISA technology that remained 

propriety of my previous employer. Through Grenoble-INP Valorisation Department, in 

particular thanks to the efforts of Wahiba Robert and Isabelle Chery, I launched a licensing project 

with Bell Labs to achieve Research access rights to the technology, but the promising discussions 

were halted by internal problems. Alcatel-Lucent entered a Restructuring phase which ultimately 

ended up with the closing of Bell Labs Ireland. All my contacts were either fired or moved to 

different positions, effectively ending the project.  

I took this setback as the opportunity to come back to the drawing board and develop a 

completely new setup which would be independent from by Bell Labs’ work and able to 

overcome its limitations. In fact, upon a closer inspection a practical usage of TISA was limited 

by these factors:  

- the execution of the setup strictly relied on the correct sequence of TISA instructions 

belonging to different Segments. In a real setup, each Test Algorithm might come from 

different actors and EDA tools suites, which would be responsible of the translation of PDL 

commands into TISA instructions. Any ambiguity or difference in the translation algorithm 

would result into non-compatible sequences, with unpredictable behavior;  

- the Request/Acknowledge protocol had to be directly implemented in each thread. An error 

in one of them (ex: a thread not releasing its mutex or executing TISA instructions outside of 

a Critical Section) would also result in unpredictable behavior or deadlocks;  

- The Circuit Model was simplistic and relied a simplified model of the SIB, making extensions 

to other types of Topologies close to impossible;  

- The need of a specialized Co-Processor restricted the application domain to embedded 

controllers, cutting out the most used Execution Environments such as ATE or Desktop.  

- Last but not least TISA was completely JTAG-centric and unable to support any type of 

alternate Interface. 

To solve these issues, I developed two fundamental bricks of the Abstraction of Section 4: 

- The Linker Abstraction, which reduces SIB as a simple example;  

- The Test Manager and the PDL API, which replaced the Scheduler.  

The second point is probably the most important: in contrast with the TISA Scheduler, which 

simply decides in which order each Thread can communicate with the CUT through the TISA 

instructions, the Test Manager is the single access point to the CUT. This allows a solution for 

each of the previously-mentioned weaknesses:  

- Threads can queue their modification requests inside the Circuit Model, but only the Test 

Manager can propagate them to the real hardware. This excludes the possibility of 

unpredictable operations on the CUT.  

- The PDL commands are directly implemented by the Test Manager, rather than by a third 

party. This means that the Request/Acknowledge protocol is part of the Manager itself, 

making their usage predictable and excluding bad usage (in the absence of bugs).  
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- The Linker Abstraction makes the Circuit Model extendable to arbitrary topologies 

- Interaction with the CUT is centralized by the Test Manager, which is therefore responsible 

for controlling the Interface. There is therefore a specific step where JTAG instructions are 

created, and which could be modified to support other Interface types.  

- The translation between retargeted vectors and Interface operation is done purely in 

software, without the need for specialized hardware 

Following the usual method, I developed an Implementation of this Abstraction: the “New 

System-Level Test” (NeSLT). Written in C following an Object-Oriented approach [OOC], it 

implemented the new Abstraction from scratch, without reusing any line of code of the TISA 

Scheduler to guarantee independence. I quickly realized that for the complete implementation 

of the Abstraction I needed more manpower and expertise that I could manage by myself. I 

therefore looked for Financing opportunity: given its industrial value and potential impact, I 

engaged discussions with Grenoble-INP Valorisation department: after a first “APP” Software 

Depot [APP1], I was selected for a Maturation Project by Linksium, the Technology Transfer 

Accelerators (SATT, from the French “Societé d’Accéleration du Transfer Technologique”) of the 

Grenoble Region. The project was coordinated by Christophe Poyet of Linksium, and the team 

was soon strengthened by Olivier Bolon, an expert of the EDA market looking for investment 

opportunities. 

5.3 A General Solution: MAnager for Soc Test (MAST: 2015→2017) 

As its name states, the aim of a Maturation project is to take a promising technology and make it 

mature so that is closer to industrial applications.  This is usually measured by the TRL, or 

“Technology Readiness Level”. The wording can be slightly different, but the general consensus 

reproduced in Table 5, is clear. From this definition, NeSLT was clearly a TRL 3: “Experimental 

Proof of Concept”. The aim of the Maturation project was to bring it to TRL 5/6 and ideally up 

to TRL 7.  

 

Table 5 Technology Readiness Level definition, adapted from Wikipedia 

TRL NASA usage [TRL-NASA] European Union [TRL-EU] 

1 

Basic principles observed and reported Basic principles observed 

2 

Technology concept and/or application formulated Technology concept formulated 

3 

Analytical and experimental critical function and/or 
characteristic proof-of concept 

Experimental proof of concept 

4 

Component and/or breadboard validation in 
laboratory environment 

Technology validated in lab 

5 

Component and/or breadboard validation in 
relevant environment 

Technology validated in relevant environment (industrially 
relevant environment in the case of key enabling technologies) 
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6 

System/subsystem model or prototype 
demonstration in a relevant environment (ground or 
space) 

Technology demonstrated in relevant environment (industrially 
relevant environment in the case of key enabling technologies) 

7 

System prototype demonstration in a space 
environment 

System prototype demonstration in operational environment 

8 Actual system completed and "flight qualified" 

through test and demonstration (ground or space) 

System complete and qualified 

9 

Actual system "flight proven" through successful 
mission operations 

Actual system proven in operational environment (competitive 
manufacturing in the case of key enabling technologies; or in 
space) 

 

A quick inspection NeSLT made it clear it was impossible for it to mature. The Abstraction was 

Object-Oriented, but I wrote the code in “Object-Oriented C” (OCC) because I lacked the 

necessary Software Development skills in C++. While it is sometimes claimed that OOC is “more 

performing” than pure OO code, I never found any real data to support this assumption. 

However, the need to manipulate, convert and allocate a huge number of pointers to mimic 

Objects and Methods indisputably made the code base difficult to read and maintain. Moreover, 

performances were not a Key Performance Indicator in the Project: the priority for Linksium was 

the TRL enhancement with the intention of launching a Start-Up. For me, to have a code easy to 

maintain and expand even after the Project was finished. I therefore decided for a completely 

new development with the following goals: 

- C++ as the language, to marry performances and maintainability 

- Modern Project Management facilities, such as CMake for compilation, GIT for version 

control, Unit Testing for code quality, etc… 

- Replicate NeSLT features from the ground up, without any code reuse 

- Privilege code maintainability and readability with reasonable performances 

- Extreme portability   

Portability was the most important and constraining point: to avoid ending up in the same hyper-

specialized solution as TISA, the coding style should follow strict constraints: 

- Guarantee OS-independence (targeting Linux and Windows) 

- Guarantee Architecture-Independence, notably in terms of Endianness; 

- No IDE dependence in the build flow;  

- Use only standard C++ library, avoiding solutions such as [BOOST];  

The latter point might seem over-the-top, but it is actually key: while libraries like BOOST are 

widely used and are described as “portable”, they are not always included in constrained 

installation such as Embedded Controllers or even ATEs, where streamlined distributions with 

the strict minimum of modules are usually preferred.  

Through Linksium’s channels I was able to recruit Jean-Francois Coulon, a C++11 Developer with 

more than 30 years of experience. This supervision was also the opportunity for me to raise my 

competences in C++11 and Software Engineering: we set up an Agile-like methodology, with 

regular meetings (at least once each couple of days) to validate developments and decide new 
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tasks. This timeline might remind a Scrum Project Management, but I took ownership mostly of 

the development guidelines and choice of tools and algorithms, while Jean-François proposed 

and actuated the low-level task partitioning. In the 10 months of contract we were able to develop 

a complete solution, the “MAnager for Soc Test” (MAST), which answered all the constraints. 

After the Maturation project ended, with Linksium we passed into an Incubation project, with 

another 5 months of contract for Jean-François. Olivier took on the role of Project Lead, and the 

Linkisum supervision was passed on to Luc Oba. At that moment in time, I was also able to recruit 

Niels Grateloup, a young Grenoble-INP engineer, for 3 months thanks to a budget transfer from 

another Incubation project in TIMA which was terminated by its Project Leader, Stéphane 

Mancini.   

The final form of MAST, protected by 2 updates to the original [APP1] filing, is depicted in Figure 

73. Maintained as GIT project on UGA’s GitLab server, the project is composed of a total of 2473 

files, of which 329 C++ Headers and 392 source files for more than 150K lines of code. The build 

process is handled by CMake, and all modules are doubled by a CTest infrastructure, not shown, 

with a rough total of 5000 Unit Tests. All code is extensively commented, with a Doxygen-

generated HTML Documentation. 

 

 

Figure 73 Final MAST Software Architecture 

The main part of the software is the MAST Core, developed during the Maturation project, which 

by itself is responsible for 294 source files and 470 Headers for ~27K lines of code. This contains 

the Implementation of the Abstraction of Section 4, and is completely self-contained. Libraries 

that can be used for specific setups are regrouped into an Optional library set, whose inclusion 

can be controlled through build parameters. External libraries have their own set, and are 

included as source code to avoid dependencies on the host platform. The core can be extended 

through specific APIs, and a Factory Design Pattern [DEPA94] is implemented to allow run-time 

loading of custom extensions compiled as Shared Executables (.so in Linux, .dll in Windows). 
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The Circuit Model implemented into the Mast Core, shown in Figure 77, is a direct 

implementation of the Abstraction, and can be built from ICL thanks to a dedicated parser.  

 

Figure 74 Doxygen-Generated UML Class Diagram for MAST System Model 

However, ICL is an extremely detailed and error-prone language and it is not adapted to quick-

iteration experimentations. Its parsing and elaboration is quite complex: experimenting new rules 

can be an extremely time-consuming task. For these reasons, MAST implements also its own DSL, 

called “Simplified ICL Tree” (SIT): born as a simple textual dump for MAST’s System Model, it 

developed into a fully-fledged DSL able to describe complex hierarchical systems. Without going 

into syntactical details, we will show some usage example. The role of SIT is not to become “the 

new 1687 Language”, but rather to be the sandbox to test new rules and approaches which should 

eventually make them way to ICL. 

To demonstrate how MAST implements the complete abstraction of Figure 46 and Figure 47, we 

will provide a step-by-step description of its usage through a benchmark module, depicted in 

Figure 75. It is a simple 8-bit register called reg_8, over which we want to execute a Test Algorithm 
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called “Random”. For easier usage, it is wrapped into a chain called “base_example”, which can 

be used in the SIT syntax but which will not appear in the path of PDL module names.   

 

Figure 75 Benchmark Module a), its SIT Description b) and the corresponding abstraction c) 

The “Random” algorithm is reproduced in Figure 76 : a set of “loopCount” iWrites to the target 

register of random values. Thanks to the C++ wrapping, we can freely use standard libraries as 

in a classical programming setup.  

 

Figure 76 "Random" Testbench algorithm 

The compilation flow for the Testbench is detailed in Figure 77: as in the TISA setup, the test 

executable contains the Test information, but this time they are Relocation Symbols for PDL 

operations: the result is completely portable with no dependencies on specialized hardware. Of 

course, the actual symbols are mangled by GCC [HERY98], but as they are referenced through 

the C++ Header this is transparent from the user’s point of view.   

 

 

Figure 77 Details of the MAST Compilation flow for the Testbench 
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usage of a Factory Pattern to link the C++ PDL function name with the SIT file reference), but the 

information flow is complete.  

 

Figure 78 Execution of the Random testbench 

Please note how in the SIT file, the base example can be directly instantiated from the TAP 

description.  By acting on this top-level description we can measure MAST’s performances for 

Retargeting, first published in [J.4]. By replicating the INSTANCE in the SIT file, we can 

benchmark the retargeting times for Horizontal Retargeting: the results are reported in Figure 79 

for different “loopCount” values: 10, 100 and 1000.  

 

Figure 79 MAST performances for Horizontal Retargeting  [J.4] 
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Figure 80  MAST performances for Vertical Retargeting [J.4] 

Last but not least, one of the promises of the Abstraction is to efficiently handle both Horizontal 

and Vertical retargeting, as demonstrated in Figure 81  

 

Figure 81 MAST performances for joint Horizontal and Vertical Retargeting [J.4] 
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5.4 New Perspectives with MAST: 2018→ Present 

Even though the Incubation project did not result in a Start-Up launch, the scientific objective of 

developing a first Implementation of the Abstraction was successful. In this Section, I will resume 

the main innovations that I was able to build using MAST as a working base.  

5.4.1 Interface Independence and P1687.1 

The last part of the Abstraction, described in Section 4.5, is the handling of Domain Crossing 

through RVF Propagation, as depicted in Figure 64, reproduced here for easier reference.   

 

Reproduction of Figure 62 RVF Packet Propagation on the Circuit Model 

This information flow is the result two steps of Abstractions. The first was implemented in the 

Maturation and Incubation version of MAST, and is depicted in Figure 82 : it is a one-step 

Translation, where “To_SUT” vectors computed in the Scan Domain through retargeting are 

translated into top-level Operations on the scan interface. Similarly, the return “From_SUT” 

bitstream is extracted from these. 

 

Figure 82 First Domain Crossing Abstraction 
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Figure 83 UML Class Diagram for the SVF Emulation Protocol 

This solution did allow MAST to support any type of Interface thanks to the Protocol Abstraction, 

but it had two main weakness: 

- It could only support one interface at a time. Translators such as an “I2C to JTAG” would 

need to be complexly incapsulated into the “Translate” function. This seriously limited 

flexibility and code reuse;  

- To profit from the Inheritance and be included in MAST, a Protocol needed to be compiled 

as part of the Core. This effectively prevented Third-Party development of Translators 

The first point was solved by developing the RVF abstraction: instead of solving everything in 

one step, each Translate function uses RVF packets as inputs and outputs. The flow of Figure 64 

is realized through a series of Blocking Message Queues [TANE15], as detailed in Figure 84. Each 

Translator is blocked on its “To_SUT_Queue”, where RVF Requests are deposited by the Parent 

translator. Upon reception, it the Translator function processes the RVF packet, and can Push 

one or more RVF Request(s) to the lower level translator. If a return is needed from the SUT it 

(being data or status information), it can Pop a RVF_Request from its “From_SUT” queue.   

 

Figure 84 Propagation and synchronization of RVF packets inside MAST 
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case, in the scheme of Figure 84, a single JTAG “Blue” RVF request would result in two “Green” 

RVF Request, as depicted in Figure 85 : one to Write the data to be transmitted to the SUT and 

one to retrieve the data coming back from the SUT. This would result in two Green SVF Result: 

the Green translator would use the first (related to the I2C Write request) to check for errors and 

the second (related to the I2C Read request) to retrieve the data for its own Blue Response.  

 

Figure 85 RVF Packet flow for a T-2-T I2C-to-JTAG Translator 

However, this solution is not unique. A really common setup is the so-called bit-banging: the I2C 

controller writes to a 4-bit register, and each bit is used to generate a TAP signal (TCK, TMS, TDI, 

TDO). The TAP control chronogram is therefore generated through a set of write/reads on this 

register. Far from optimal, this solution is nevertheless extremely simple to implement in 

hardware and widely used. This means that a single “Blue” RVF request/response pair will 

result in a myriad of Green pairs, as in Figure 86. 

 

Figure 86 RVF Packet flow for a Bit-Banging I2C-to-JTAG Translator 
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The second limitation of the original MAST solution was the need to develop Interface 

Translators as part of the tool’s build flow. As introduced previously, we solved this issue by the 

systematic implementation of the Factory Design Pattern [DEPA94] in MAST, as detailed in 

Figure 87.  

 

Figure 87 Factory Pattern applied to Translators 

The problem of having the Translator code compiled separately is that its function names are 

mangled by the compiler [HERY98]: it is impossible to reference to them in a consistent way. It 

is, for instance, impossible to call a Constructor for a class compiled in an external module. The 

idea of a Factory Pattern is to avoid this reference: each Translator can register its Constructor in 

a Factory, where the internal pointer is mapped to a string (ex: “JTAG”). The External code is 

compiled against a Factory Header which provides the required API calls. Upon Startup, MAST 

loads the Shared Libraries and executes the Registrations through this same API, populating the 

Factory. Each time we need to use the constructor (for instance, during the System Model 

construction by the Parser), we query the Factory for it and use it to generate a Local object. The 

implementation of this process can be complex, but it is done only once inside the Tool. The 

result is quite powerful: any User can develop his/her own Translators, and have MAST 

automatically use it. The Factory Pattern is extensively used in MAST: apart from Translators, it 

is also used for Linker’s Path Selectors, for loading the PDL functions referenced in the SIT/ICL 

and for the Topology configuration algorithms.  

This solution has been developed outside of the Maturation and Incubation projects on a separate 

Branch, and is the subject of the third version of [APP1]. We also proposed it to the IEEE P1687.1 

and P2654 Working Group, where it had a big impact. The principle of Primitive Domain 

Crossing, RVF Packets and their Propagation flow as described in Section 4 and [J.4]  has been 

fully embraced and will be undoubtedly part of the Standard. However, the discussions are still 

ongoing and no definitive decision has been made on the final implementation inside of the 

Standard, which could be significantly different from solution presented in this Section.  
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5.4.2 Interactive IJTAG 

As explained in Section 2, the usual setup for JTAG and its derivates is offline generation vs test 

application. IEEE 1687 has been the first to introduce the idea of functional behavior thanks PDL 

and the possibility of using TCL as a language superset, but the main Use Mode never really 

changed. The possibility of reading data back from the System Under Test is present thanks to 

the iGetReadData Instruction, but not really developed. For most Users, the principle is to be able 

to read configuration or identification data from a CUT (like, for instance, a serial number) and 

adapt the test execution accordingly. However, the possibility of having a completely interactive 

setup, where the whole test algorithm depends on the data received from the CUT was never 

considered a possibility, mostly because of the already mentioned technical limitations of the 

legacy Automated Test Flow. The Execution model was not directly mandated into the Standard 

document, but is it implicitly referred to what is usually called “ATE Bring-Up” or “ATE Debug”, 

depicted in Figure 88 : the TCL script containing the PDL-1 code is executed by the shell of an 

EDA tool, which is able to communicate to an ATE in order to push to the SUT the vectors 

computed from the iApply operations, and provide to the iGetReadData commands the data 

captured from it.  

 

Figure 88 Implicit PDL-1 Execution Model 

This is a complex setup that even if not impossible (some industrial vendors propose similar 

solutions [SEDA-IN]) is quite cumbersome and resource-hungry. The access to an EDA tool might 

not always possible (for instance, if testing is done by a third-party company) or its execution 

might be impossible by the target platform (for instance, when performing online testing through 

an embedded controller).   

Thanks to the new Automated Test Flow we presented and its implementation through MAST, 

we were able to break the Generation/Execution barrier to obtain the completely interactive setup 

of Figure 89, which is a direct implementation of the new Abstraction. As the Text Executable still 

contains the Algorithms, interactive execution and debug can be done using traditional Computer 

Science tools, such as for instance GDB.  
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Figure 89 Fully Interactive Flow with MAST 

To demonstrate these capabilities, we developed an FPGA-based demo representative of an 

interactive signal processing setup and visually compelling: music volume bars. The setup, 

depicted in Figure 90, is functionally quite simple: a 1687 Instrument samples music coming from 

an audio stereo source, and the digital samples are collected by a PDL-1 function which performs 

an FFT to extract the Volume level of the right and left channels, which are then sent to a 

visualization 1687 Instrument.   

 

Figure 90 Top-Level Specification of the Interactive Demo 

The first version has been developed by Niels Grateloup as part of the MAST Maturation project, 

using [OPENOCD] as the Interface library to communicate with the [FTDI] dongle, and custom 

VHDL IPs to command the on-board components of a Xilinx ML505 card. The final setup is 

shown in Figure 91-a). During the execution, the Left and Right volume bars move depending on 

the music’s volume on each channel, while the actual audio samples are displayed on the user 

prompt for debugging, as shown in Figure 91-b) 
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Figure 91 Experimental setup for the Interactive Demo. 

We later simplified the approach by replacing this complex Interface developed for an earlier 

version of MAST with a streamlined RVF-based Translator which directly communicates with 

the FTDI chip. This library was developed by Clement Tardy, a Phelma 2nd Year student as part 

of his “Assistant Engineer” internship.  

Another innovative application of Interactive IJTAG has been published in [9] and [W2] : the 

complexity of 1687 Networks make their integrity Validation and Debug extremely difficult. This 

was one of the research subjects of my host at Politecnico di Torino during my Visiting period, 

most notably for Giovanni Squillero [DAM19]  and Riccardo Cantoro[CAN18]. During my stay, 

we demonstrated how Interactive execution of IJTAG testbenches could be used both for boosting 

post-silicon debug of scan chain integrity [W2] and to verify the correctness of the ICL description 

of the 1687 network [9]. 

Such a solution would have been close to impossible using the Legacy Automated Test Flow, and 

it is still the only example of a real interactive 1687 flow.  

5.4.3 Unified Test Middleware: “Test Operating System”  

While in this document we focused on the limitations of the legacy Generation/Application 

duality, this solution also has some points that justified its success.  Its greatest asset is 

undoubtedly its simplicity: by making no assumption on the Execution backend, a Pattern Set 

can be played on basically any type of platform. The price to pay for this portability is the lack of 

information conveyed in the format itself, as pointed out in Section 3. In our proposed new 

Automated Flow, the Pattern Player is replaced by the Test Manager, as depicted in Figure 46, 

reproduced here for easier reference.  
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Reproduction of Figure 44 New Automated Test Flow 

The position and role of the Test Manager is quite similar to that of an Operating System: it 

provides an Abstraction of the Hardware (in this case, the CUT), which the Software can access 

and exploit thanks to a set of standardized System Calls (in this case, the PDL Instructions). The 

Translators take the role of Hardware Abstraction Level, responsible for interacting the actual 

hardware. This means that thanks to our Abstraction and MAST as the “Test Operating System”, 

we are able to provide a unified solution to port and execute complex Test Algorithms over any 

platform, as for instance is depicted in Figure 92 : the Test Algorithm can be developed from the 

Specification, and executed on MAST using an “Emulation Translator”, which generates debug 

logs and Topology Snapshots to verify the 1687 Network, while the Software debugging can be 

done using standard tools like GDB coupled with a Graphical Debugger.  

 

Figure 92 MAST Portability through the Design Cycle 

By simply changing the Translator the setup can be ported to a new Execution setup, in the same 

way an OS can be ported to a new Processor by porting its HAL. In the middle of Figure 92, we 
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show in the middle co-simulation with an HDL thanks to Translator that can interface with the 

Design Under Test using the SystemVerilog DPI libraries. These two steps can be used both at IP 

and System Level, following the development of the DfT infrastructure to all its steps. After Sign-

Off, a “Pattern Player” can be used to generate traditional Pattern Files (SVF, STIL, etc..) for 

backward compatibility with the legacy Automated Flow.  

The big novelty of the new Flow is that this same setup can follow the Design to its prototyping 

phase, as shown in Figure 93. Thanks to an FTDI Translator MAST can directly communicate 

with a Circuit Under Test in a bench-top environment. Similarly, we developed a Proof-of-

Concept with MAST being executed on an Advantest 93k and communicating with the SmarTest 

suite controlling the ATE.  

 

Figure 93 Circuit Prototyping and ATE Bring-Up with MAST 

Last but not least, thanks to the portability constraints we imposed in MAST specifications, we 

were able to validate its portability on Embedded Processors, as shown in Figure 94, for both Big- 

and Little-endian targets. We ran our experiments on Embedded Linux for both targets, but 

theoretically MAST should also be able to run on BareMetal, as long as multithreading is 

supported.  

 

Figure 94 Embedded Test Controller with MAST 

All the examples in this Section have been fully implemented and verified on real targets. In 

particular, the ATE Proof-of-Concept was developed and benchmarked thanks to the 
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collaboration of the [FMNT] in the person of Beatrice Pradavelli, who gave us remote access to 

the machine located in Montpellier, and the technical support of Advantest Grenoble in the 

persons of Brocheton Herve and Bruno Bourgeois.  

This portability spanning the whole Design and Development cycle is absolutely unique for 

MAST, and will be the base of several research directions in the future, some of which will be 

detailed in the next Section.  

5.4.4  Security as part of the Test Flow 

In Section 2.4 we highlighted how several setups have been proposed to enhance the security of 

Scan Testing, but how regardless of their technical merit they remain had-hoc solution outside of 

any Flow, needing custom adaptations. However, the new Abstraction and its implementation 

using MAST allowed us to solve this issue, as published in [J.2][1][2][7][6].  

As previously explained, the first family of Scan Security solutions is Scan Authentication, i.e. 

limiting the access to specific portions of the Scan Path by submitting the Opening/Closing of 

one or more SIBs to some credentials. The SSAK secure setup can be easily expressed in the new 

Abstraction by defining two Path Selectors which implement the Authentication algorithm, as 

shown in Figure 95 

 

Figure 95 SSAK-Secured Scan Chain and its Abstraction 

The first Path Selector is the “Secure SIB”(S2IB), on the right-hand side of the Circuit Model. It is 

a simple modification of a traditional SIB: instead of just changing the value of the controlling 

register (SSIB_1_ct, not shown in the scan chain diagram), it also asks for the SSAK-Controller to 

be “Selected”. This second Path Selector “SSAK” implements the Authentication proper: its 

“Select” method implements the challenge through a set of 1687 operations: 

- First, it reads the challenge from the” SSAK_Control_Reg”; 

- It computes the response based in its credentials 

- It writes the computed response back in” SSAK_Control_Reg”; 

- It reads from “SSAK_Control_Reg” the status: authentication successful or not 

Only if the last step is successful the Linker is considered as Open, otherwise an error is generated. 

This is completely automated, with no modification needed to MAST’s core and it is transparent 

from the User’s point of view, who just needs to provide his/her credentials as part of the 1687 

Description: it is the red string in Figure 96.  
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Figure 96 SIT Description of the SSAK example 

This is a perfect case for justifying the instruction of SIT: describing such a setup in ICL would 

have been quite complicated, and would have required adding several custom rules, ending up 

in any case with a non-compliant solution. 

Scan Encryption was actually extremely simple: the role of the Stream Cypher is to Transform 

Plaintext to Cyphertext and the other way around, i.e. to handle the Domain Crossing between 

Secure and Non-Secure areas. It can therefore be directly expressed as an Interface Translator, as 

shown in Figure 97 

 

Figure 97 Trivium Stream Cypher and its Abstraction 

The SIT description is extremely simple too:  

 

Figure 98 SIT Description of the Trivium Example 

The great novelty of our Abstraction is that neither Authentication nor Encryption are a special 

case, but they can be freely used inside a Design without neither modification to MAST nor User 

intervention. To demonstrate this “plug-and-play” capabilities, we devised the experimental 

setup of Figure 99 : we execute MAST against an RTL Circuit Under Test, simulated in Modelsim. 

The connection between MAST and the Simulator is assured through a Translator, as explained 

in Section 5.4.3. The RTL implementations of the SSAK Controller and the Trivium Stream Cypher 

come from the PhD work of Vincent Reynaud (TIMA) and Emanuele Valea (LIRMM) 

respectively, completely reused without any modification.  

 

SIB SSAK_SIB POST HIGH   
 (     
  LINKER SSAK_Controller SSAK SSAK_CONTROL_REG  1 "0x72c4358f5a8a07af3d0f7d560a872a2b 

13"      
   (       
     REGISTER SSAK_CONTROL_REG 128 Bypass: "0x00000000000000000000000000000000"     )     
    )    
REGISTER S2IB_1_ctrl 1 Hold_value Bypass: "0b0"   
LINKER S2IB_1 S2IB SSAK_Controller,S2IB_1_ctrl  1 "1"   
  (   REGISTER Target 12 Bypass: "0xABC"   ) 
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Figure 99 Experimental Setup for Secure Scan Chain Access 

Thanks to MAST’s interactive capabilities, we can perform both Stream Encryption and 

Authentication on the fly, simply providing the Translation Libraries. The Testbench is 

configurable: the assembly of SSAK and Trivium can be changed at will, and MAST can support 

any setup just by providing it the right SIT description. From the User’s point of view everything 

is transparent: the PDL Algorithm is executed in the same way against its Target register, 

regardless of the security features in the middle.  

This experiment also proves MAST capability of leveraging existing libraries: in the over-

mentioned PhD works, the software parts were done using C for SSAK and Python for Trivium. 

We were able to directly reuse the original code by simply using standard API interfaces to C++, 

such as for instance [PYBIND].  

This experimental setup is the first, and to this day unique, example of Security solutions fully 

integrated in the Test Flow in a true plug-and-play fashion.  

5.4.5 Analog Interfaces 

As stated in Section 2, several efforts are being deployed to extend 1687 to support the testing of 

Analog and Mixed Signal circuits. While these systems are not part of our Abstraction and are 

therefore not fully supported, features such as Interface portability and Interactive execution can 

be useful in that context. To prove this, we took the example of Figure 100: it is a Power 

Management IC (PMIC), a Small-D/Big-A design from Renesas. It is a system proving both an 

Analog Test Bus and a Digital Core, and it can be controlled through either an I2C controller 

(SDL/SCL), a GPIO Pin or an ATE interface (ATB).  

 

Figure 100 Example of a P1687.2 system, from [VSTA20] 
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In the paper, the authors showed how it was possible to define PDL commands inside the PMIC, 

and retarget them (manually) to obtain commands at the Interface levels. It is one of the first 

examples of the operation of such a Mixed Signal system being described in an EDA-friendly way 

thanks to DSLs, even though the software part was still unavailable.  

We decided to apply our Abstraction to the system, obtaining the setup of Figure 101 : the three 

Interfaces can be modeled through their Protocol, while the internal Registers and Selection 

muxes can be directly described.  

 

Figure 101 PMIC Abstraction and its SIT representation 

As ICL lacks several elements to describe such a setup, as for instance bidirectional signals/ports, 

we described the System in SIT, with some minor liberties (ex: depicting “ports” as “registers”). 

The aim was not to “solve” the P1687.2 problem, but rather demonstrate our capability to tackle 

it. This was a success: MAST was able to perfectly replicate the manually-computed retargeted 

patterns, demonstrating the feasibility of exploiting its features also in this domain.  
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REGISTER DMUX_CTRL 8 Bypass: "0x00"

)
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6 Short-to-Mid Term Perspectives 

In this document, we presented the results of a research effort that spanned over more than 15 

years. From the beginning, the aim was to identify the Directions with the biggest novelty and 

impact potential, and Develop the Abstractions and Solutions necessary to enable them. For these 

reasons, the Short-to-Mid Terms perspectives are focused on the usage of our Abstraction and 

the MAST tool as the enablers to explore new research directions, rather than on direct evolutions.  

6.1 Silicon Lifetime Management 

As mentioned in the State of the Art and in the summary of Kalpana Senthamarai Kannan’s PhD, 

one of the big weaknesses of the most recent technological node is variability: one the one hand, 

physical parameters might have big differences at fabrication time, making calibration and testing 

extremely difficult, as highlighted in several places in this manuscript. However, the growing 

impact of aging is also being recognized as a key problem: systems will age differently depending 

on unpredictable parameters such as usage profiles, working environment, etc. This problem has 

left the pure theoretical speculations and is impacting the industry. The main EDA providers put 

their solutions at the forefront of their offers: for Synopsys the “Silicon Lifecycle Management” 

[SLM23], for Siemens EDA the “Tessent Silicon Lifecycle Solutions” [TSLS23]. Both solutions are 

focused on a “fleet management” approach, where data is collected in all stages of the life of a 

system, from production to deployment. A particular emphasis is put on the collection of lifetime 

data from embedded sensor and their centralization into cloud-based analytics.  

However, all solutions are still centered in the Generation/Application duality. Embedded 

controllers can do little more than collect the data from the sensor, but cannot act on them. 

Moreover, embedded controllers have difficulty in handling DfT architectures such a 1687’s 

dynamic topologies. Most of time, access to embedded instrument happens through pre-

computed static sequences or through ad-hoc connections, with little or no hardware/software 

reuse from the Testing phase.  

In this space, our Abstraction and MAST have a great role to play by pushing intelligence to the 

edge, i.e. to the systems themselves. For instance, a Machine Learning setup as the one developed 

during Kalpana’a PhD work is lightweight enough to be embedded. Thanks to MAST, we could 

use aging monitors to fine-tune the Aging model, and directly act on the DVFS commands with 

no external intervention. This was, in fact, the original target of the PhD. In coming years, we plan 

on pursuing in this direction by looking for collaborations in the field of Embedded 

Instrumentations, with a particular emphasis on RISC-V based systems and on the reuse of DfT 

infrastructure thanks to MAST’s dynamic retargeting capabilities.  

6.2 Security 

In this document, we demonstrated how Security can become part of the standardized Test Flow, 

by integrating Scan Authentication and Scan Encryption into our new Abstraction. However, this 

is just the tip of the iceberg: Security must find its way in all steps of the Flow, from Factory 

Testing to Lifetime management. This can be done only by developing dedicated solutions that 
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can leverage the new integration, which are difficult to imagine at this moment in time. A possible 

direction could be, for instance to integrate Secret Key management into the Abstraction by 

modelling constructs like Physically Unclonable Functions, or to explore new partitioning of 

Cryptographic algorithms between the Hardware and Software parts of 1687-inspired solutions. 

We already started by proposing some extensions to the concept of Scan Encryption [J.2]. Last 

but not least, there are completely different solutions like Logic Locking that could be explored, 

or different threats models like Hardware Trojans or Side Channels. TIMA is well versed in such 

topics thanks to the work of Paolo Maistri, Regis Leveugle or Giorgio Di Natale, which we can 

leverage and expand.  

6.3 Scaling up: FPGAs  

Field Programmable Gate arrays have become so useful and commonly used that we tend to see 

them only as the valuable tool for prototyping they are, but rarely as a target in themselves. In 

fact, an FPGA is not so different from a 1687-based DfT target: as shown in Figure 102, they are 

modular systems, with a high number of resources (Slice/Instruments) connected through 

configurable routing (Switch Matrix/ScanMux), the whole accessed through a JTAG connection.  

 

Figure 102 Xilinx/AMD 7-Series High-Level architecture a) and Slice details b) 

The Bitstream that is used to configure an FPGA is exactly the same as a Test Vector: a bit-by-bit 

assignment of internal resources, without any knowledge of the role of each bit; computed by an 

external EDA Tool (in Xilinx’s flow, it is Vivado). This means that even if recent FPGA provide 

sophisticated dynamic reconfiguration capabilities, everything needs to be computed offline and 

bitstreams are simply pushed to the FGPA.   

It is possible to image representing an FPGA fabric as a 1687 network described in ICL, with PDL 

routines used to deliver configuration bits. The routing information would be distributed through 

both ICL and PDL, so that the retargeting result would be the configuration bitstream. In such a 

setup, an application of our Abstraction and MAST would allow to convey routing information 

to the final bitstream, allowing true dynamic reconfiguration depending on both the user 

requirements and the FPGA status (ex: rerouting to avoid faulty locations).  

a) b)
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However, such a research direction would demand a lot of inside information on both the FPGA 

architectures and the Routing algorithms. This could be done either through Open-Source 

solutions or looking for partnerships with FPGA providers.  

6.4 Mixed Signal Testing 

In Section 5.4.5, we demonstrated how both our Abstraction and MAST can be useful in the 

domain of Mixed-Signal Testing. However, we did not go further than a feasibility proof: as it 

stands, it is neither directly usable nor scientifically relevant. However, the subject is extremely 

interesting: the Abstraction, User Needs and Best Practices of Digital and Analog Testing are 

extremely different, and most often than not contradictory. Where the former is based on a set of 

quantitative models and abstractions, the latter rather relies on a deep knowledge and qualitative 

“know-how”. A real solution to the problem must start by a deep analysis of the two worlds, 

identifying not only the common points but also the biggest differences and critical points. Only 

then it will be possible to understand the problem and propose new automation strategies that 

will be really adapted to the field and be able to provide both added value and scientific 

innovation.  

It extremely difficult to find someone having the right mix of competences to tackle this issue. 

For this reason, I started collaborating with Emmanuel Simeu, Professor at the Université 

Grenoble Alpes and member of TIMA, expert in Analog and Mixed signal testing. With our 

complementary competences and skill sets we jointly advise the PhD of Jules Quentin Kouamo, 

started in November 2023 and focused on this topic.  
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7 Conclusions and Long-Term Directions 

"If a tree were to fall on an island where there were no human beings, would there be any 

sound?"1. It is a classical philosophical question, whose typical (but far from unique) answer is: 

Does a sound really matters if no one is there to appreciate it? The same question can be applied 

to our field of interest: if no one knows about a new exciting technology, will it really make a 

difference? 

On the one hand, Academic Researchers have the privilege of looking at the “bigger picture”, 

looking for new ways of solving open problems. But looking too far, one might lose sight of what 

happens close to home: this sort of “research presbyopia” can prevent excellent results to be truly 

exploited, simply because they solve issues that are too specific or too far-fetched.  

On the other hand, Industrial Researchers have the privilege of working on real-world problems 

that can solve real needs and have wide applications. But while getting caught in the pressure of 

obtaining fast and efficient solutions for the problem at hand one can easily lose sight of the bigger 

picture. The risk of this “research myopia” is to get stuck in an endless loop of fixes and patches, 

where the accumulation of small solutions does not generate any real value because it does not 

have any real direction.  

The “sweet spot” lays in the middle: Industry can be an invaluable source of information and 

propose exciting challenges, but only if Research can keep looking far ahead at the bigger picture. 

This balance is not easy to find and maintain, but once achieved it can start a virtuous cycle and 

produce unique results.  

In this manuscript, we showed how the Testing flows is getting richer and more complex.  

Designers need to take these aspects in account as early as possible, all the while requiring new 

and sophisticated features. The now mainstream “Design for Test” is often declined in “Design 

for X”, with X ranging from Manufacturing to Reliability and pretty much everything in between 

depending not only on the Designer’s specifications but also on the final User’s needs and 

constraints. These domains have traditionally been hardware driven: companies would 

implement their own devices and architectures, and then use in-house tool or custom software 

fixes to insert them into the final design. This has now changed: solutions like IEEE 1687 have a 

rather small hardware component and are mostly software-based, requiring dedicated Software 

suites of important size.  In the meantime, the pressure for lowering cost still kept increasing:  few 

companies, even the biggest ones, can still afford to support in-house development. Moreover, 

the shift of DfX towards the early phases of Design puts a serious stress also on both custom Tool 

                                                     

 

1 The Chautauquan, June 1883, Volume 3, Issue 9, p. 543 
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and commercial EDA solutions, as they need to remain compatible downstream in the 

heterogenous Design and Manufacturing flow. 

From this melting pot of diverse and somewhat contradictive requirements, two clear tendencies 

have been emerging: 

- The shift from in-house software, too expensive and difficult to maintain, to commercial 
EDA tools;  

- The development of Standards to maximize reuse and assure inter-vendor portability.    
 

Unfortunately, behind highly-flying commercial announcements, EDA companies are actually 

playing the safe card and only proposing incremental improvements in legacy flows and are not 

really embracing this “paradigm shift” [REA12]. The only true way forward is through a deep 

evolution of the whole Test Flow and its relationships with the Design and Verification ones. Such 

changes, as shown in Section 3, 4 and 5, are the perfect example of the virtuous research cycle we 

try to achieve: a deep Analysis of a real problem, followed by a rigorous Abstraction and an 

efficient Implementation.  This last step is pivotal: only by having a working platform we are able 

to both demonstrate the benefits of the new abstractions and leverage them to tackle new 

problems. The actors of the world of Testing are extremely conservative: new technologies are 

accepted and deployed only if they provide significant and concrete advantages. The results 

presented in Section 5 do demonstrate the full portability of Functional Routines from Simulation 

to ATE and in-field Embedded Testing, but their real value is in their usage. In fact, these 

approaches and tools are powerful “enablers”: by leveraging them, we can tackle “impossible” 

problems that traditional tools cannot handle because of their intrinsic limitations.  For instance, 

in Section 5.4.4 we showed how the new Test Flow is able to efficiently include Security into the 

standard flow, and in Section 5.4.5 how Analog Test can be part of it too. Both these results have 

been deemed “impossible” for a long time.  

 

Future research will build upon the basis we have developed and will follow mainly four 

strategical axes: Automation, Integration, Extension and Proximity  

Automation is key: the results presented in Section 5 demanded a significant effort in terms of 

analysis, abstraction and development, in a period spanning more than a decade. It was essential 

to develop the new Test Flow, and to demonstrate it is both effective and useful. However, to 

obtain real traction it is not feasible to ask the same type of effort for new users, being them 

academic or industrial. Automation is therefore needed to guarantee ease of use. This is not 

simply a short-term development but rather a whole rethinking of the different steps and their 

usage: information must be collected, processed and results assembled in a completely automated 

way. A new abstraction must be analyzed, specified and implemented.  Only in this way it will 

be able to sustain the burden of extreme scaling. In this category fall the evolutions presented in 

Section 6, which in their turn will be the stepping stones for longer-terms goals.   
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Integration is the other side of the same medal:  the whole field of Design and Test relies on a set 

of shared Abstraction levels and of the Flow that connects them. Incremental innovations usually 

happen outside of the traditional flows and require significant effort to be implemented. It is the 

difference between a promising Proof-of-Concept and a real-implementation: the so-called Valley 

of Death [ELL22] that lays between TRLs 4 and 6. The only way to reach Automation is to interface 

with existing Tool suites: this is where Standards come into place. By influencing their scope and 

development process, we are able to prepare the road to integration: standards are the best way 

to interact with third-party proprietary tools, and guarantee that your solutions will be actually 

usable. Solutions such as MAST ally research excellence with compatibility with the IEEE 1687 

and IEEE P1687.1 standards to propose innovative solutions to real-world problems. These 

results will be the base of future discussions with industrial partners for both technology transfers 

and new use cases.  

The domain of Electronics systems is in constant Evolution. Short-term solutions might answer 

today’s challenges, but swiftly become obsolete. This is especially true for Standards: certifying 

the status-quo might solve the immediate issue, but it will not pass the trial of time. Only active 

interaction with the Standard bodies and Working Groups can guarantee that the solutions will 

remain future-proof by continuously challenging and pushing their boundaries with new 

applications and use cases. Evolution also constantly shifts the edges between Physical and 

Functional elements: the push toward System-on-Chips resulted in integrating into the same chip 

IP traditionally on different physical supports. Solutions like Chiplets are blurring even more the 

picture, spreading functionalities over different, but not fully independent, supports. All these 

continuous changes open new, exciting opportunities.    

This leads to the last axis, the one with the biggest research potential: Proximity. The current 

Flows lack the capability of exchanging information between Abstractions, leading to dead-ends 

due to the impossibility of leveraging the capabilities of neighboring domains. A particularly 

interesting example is indeed the hand-off between the Design and the Test flows. Design ends 

at the Validation/Verification step, where an in-depth analysis is done to prove that the final 

Circuit Design truly follows the high-level Specifications. It is probably the step where there is 

the deepest understanding of the System. However, all this is lost when passing to the Test step: 

Structural test only needs the circuit itself, and makes no assumptions on it. As explained in 

several parts of this Document, this choice is made both because it allows a quantitative 

measurement of the circuit’s “correctness”, but also because the Testing Execution phase is 

traditionally extremely limited. Thanks to our Abstraction this is now not true anymore: Testing 

can also benefit from a powerful and flexible execution environment. In the following years, we 

will explore ways to export the knowledge of Verification/Validation and leverage it during the 

Testing, to obtain new and exciting possibilities.  
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9 Glossary 

ATE: Automated Test Equipment, i.e. the machine responsible for applying test patterns to a 

target SUT 

ATPG: Automated Test Pattern Generation. 

BIST: Built-In Self Test. An instrument embedded inside a component to test it independently 

from external data.  

BSDL : Boundary Scan Description Language, the normative language for JTAG 

CSU: Capture-Shift-Update, the base date exchange operation of JTAG 

DfT: Design for Test. Features added to a design to boost its testability 

DSL: Domain Specific Language. A language developed to  

DUT: Design Under Test 

HAL: Hardware Abstraction Layer, the part of an Operating System responsible for interaction 

with the Hardware 

HDL: Hardware Description Language. A computer language used to describe an electronic 

component 

ICL: Instrument Connectivity Language. A DSL used to describe IEEE 1687 hardware 

topologies 

IJTAG: Internal (or Instrument) JTAG, a denomination of the IEEE 1687 Standard 

IP: Intellectual Property. In Electronics design, it usually refers to a sub-system described in 

an HDL that can be reused in a bigger design  

IP-Based Design: a design paradigm where a system is seen as a composition of independely-

developed IPs 

JTAG: Joint Test Action Group, a denomination of the IEEE 1149.1 Standard 

Pattern: A set of input vectors and the expected outputs for a fault-free element.  

PCB: Printed Circuit Board 

PDL: Procedural Description Language, used in IJTAG to describe Test Intent  
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PUK: Physical Unclonable Key. An hardware component providing an unique key based on 

the physical variability of a given circuit.  

RSN: Reconfigurable Scan Network. A scan network whose topology can dynamically change 

RTL: Register Transfer Level. The abstraction level used to model digital circuits 

Solver: in IJTAG, it is the software responsible for topology resolution 

Retargeter: the software responsible for translation device-level pattern to top-level 

Segment: In IJTAG, a TDR subset which is selectable through a ScanMux 

SIB: Segment Insertion Bit, the reference dynamic topology element for IEEE 1687 

SUT: System Under Test 

TAP: Test Access Port 

TCL: Tool Command Language, a scripting language used for interacting with EDA tools. 

TDR: Test Data Register, a register selected by the DR branch of the JTAG TAP FSM 

 

 

 

 

 



Résumé 

La complexité des systèmes électroniques actuels, les volumes de production et la qualité 
imposée par des applications critiques telles que l’automotive mettent les approches de test 
structurel traditionnelles sous forte pression. Pour surmonter ce problème, le domaine des 
tests connaît une évolution profonde, dominée par des nouvelles techniques de « Design for 
Test » qui poussent l'automatisation au cœur même des systèmes et par des nouveaux 
standards comme IEEE 1687. Mais ces nouveautés génèrent elles-mêmes des nouvelles 
contraintes, telle que la sécurité ou le besoin de supporter des systèmes mixtes analogiques/
numériques.  Dans cette soutenance, nous passerons en revue 15 années de recherche 
dans le domaine des tests automatisés afin de spécifier, développer et mettre en œuvre de 
nouveaux flux logiciels capables de dépasser les limitations existantes et de permettre la 
nouvelle (r)évolution.

Mots-clés : Test, Standards, Flot de Conception Aidée par Ordinateur (CAO), IEEE 1687, 
IJTAG, Système sur puce 

Abstract 

The complexity of today’s electronic systems, the production volumes and the quality imposed 
by critical applications such as the automobile are putting traditional structural-based testing 
approaches under great pressure. To overcome this problem, the testing field is going 
through a profound evolution, dominated by new “Design for Test” techniques that push 
automation to the very heart of systems and new standards like IEEE 1687 and its 
derivations. But these same novelties generate new constraints such as security, or the need 
to handle mixed analog/digital systems. In this defense, we will review 15 years of Research 
in the field of Automated Testing in order to specify, develop and implement new Software 
Flows able to over legacy limitations and enable the new (r)evolution.

Keywords: Test, Standards, Electronics Design Automation (EDA) Flow, IEEE 1687, 
IJTAG, SoC
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