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Résumé

Dans ce manuscrit, on s’intéresse à l’étude et à la simulation numérique de systèmes
mécaniques formés solides en interaction: suspensions passives ou actives ou encore
milieux granulaires. On décrit dans le premier chapitre certains problèmes posés par
l’étude de ces systèmes.

On se concentre ensuite sur la simulation numérique de suspensions. Celle-ci nécessite la
résolution d’un problème couplé entre le fluide de Stokes et les structures rigides. Dans le
second chapitre, on cherche à résoudre précisément le problème quand les particules sont
proches. La méthode proposée est basée sur un développement asymptotique explicite
de la solution quand la distance inter-particulaire tend vers zéro. Dans le troisième
chapitre on s’intéresse à l’utilisation de méthodes d’éléments finis de frontière pour la
résolution du problème fluide-structure. On traite, dans le cas des équations de Stokes,
les deux difficultés classiques pour ce type de méthodes : d’une part, le développement
d’algorithmes rapides pour la résolution de systèmes pleins et d’autre part, le calcul des
intégrales singulières intervenant dans le problème.

Dans le quatrième chapitre, nous nous intéressons à la conception d’algorithmes per-
mettant de traiter les contacts (avec ou sans frottement) dans les systèmes que nous
considérons. Les algorithmes décrits sont de type Dynamique des Contacts. A chaque pas
de temps, les forces de contact sont calculées de manière implicite, comme solution d’un
problème convexe sous contrainte. On présente des études rhéologiques de matériaux
granulaires basées sur ces algorithmes.

Enfin, dans le cinquième chapitre, on s’intéresse à l’étude de micro-nageurs évoluant
dans un fluide de Stokes. On cherche à savoir si ces nageurs peuvent "nager", c’est-à-dire,
effectuer des déformations cycliques (des brassées) générant un déplacement donné.
On propose un cadre général pour répondre à cette question en réécrivant le problème
comme un problème de contrôle.
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Abstract

In this manuscript, we are interested in the study and numerical simulation of mechanical
systems composed of interacting solids: passive or active suspensions, or granular media.
The first chapter describes some of the problems raised by the study of these systems.

We then focus on the numerical simulation of suspensions. This requires the resolu-
tion of a coupled problem between the Stokes fluid and the rigid structures. In the
second chapter, we aim to solve precisely the problem when the particles are close. The
method we propose is based on an explicit asymptotic expansion of the solution when
the inter-particle distance goes to zero. In the third chapter, we focus on the use of
boundary element methods to solve the fluid-structure problem. We deal, in the case
of Stokes equations, with the two classical difficulties for these methods: on the one
hand, the development of fast algorithms to solve full systems and on the other hand, the
computation of singular integrals involved in the problem.

In the fourth chapter, we are interested in designing algorithms to deal with contacts
(with or without friction) in the systems we consider. The algorithms described are
Contact Dynamics algorithms. At each time step, the contact forces are computed in
an implicit way, as solution to a convex optimization problem. Rheological studies of
granular materials based on these algorithms are presented.

Finally, in the fifth chapter, we study micro-swimmers evolving in a Stokes fluid. We
investigate whether these swimmers can swim, that is, perform cyclic deformations (a
stroke) generating a given displacement. We propose a general framework to answer this
question by rewriting the problem as a control problem.
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Introduction 1
„A large scale numerical experiment is as difficult to

succeed as a proper experiment or an analytical
calculation leading to good results.

— Kenneth Wilson (1983)
La Recherche, 14:1004 –1007

This manuscript is dedicated to the presentation of my research work since my recruitment
in 2008. My PhD thesis was entitled “Numerical modelling of fluid/particle flows”. In that
work, I developed close interaction models between particles for numerical simulations
of suspensions. From then, my research focused on numerical simulations of both
suspensions and granular media.

This field of research has been particularly rich and stimulating for me these last years:

• First, it required the development of tools for the simulation of Stokes flows in
interaction with particles, leading to the study of fluid/structure problems. After
working with finite element discretizations of the flow, I had the opportunity to
discover and study boundary element methods.

• In addition, the consideration of close interactions between particles led me to study
contact problems, written in the framework of non-smooth convex analysis. This
opened the way to new applications such as the study of dry granular materials.

• Finally, we used the fluid/particle solver I had developed to study micro-swimmers.
This very first study opened the door to a great amount of research in the field of
control and optimal control, in which I was involved in the years following my PhD.
These works, together with those related to the study of suspensions, now opens
the way to new applications in the field of active suspensions (study of suspensions
of active particles, of swimmers).
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A great part of my research program is driven by recent advances in the study of suspen-
sion and granular media rheology.

“ rheology: the branch of physics concerned with the flow
and change of shape of matter ” [Collins English Dictionary]

I regularly have the opportunity to meet researchers working in this domain, from FAST
laboratory in Orsay, Navier laboratory (ENPC) in Marne la Vallée, LPMC in Nice, or
LiPhy in Grenoble. I was a member of ANR STABINGRAM (coordinated by P. Gondret,
FAST) and participated to GDR Mephy and GDR EGRIN. These collaborations/discussions
are fundamental to developing mathematical models and numerical tools that address
current challenges. In this spirit, I coordinate the ANR JCJC RheoSUNN (2019-2022),
bringing together researchers in the domains of mathematics, numerical analysis, HPC
and mechanics and interested in numerical simulations of dense suspensions.

In what follows, I present a state of the art on the rheology of suspensions or granular
media. It does not claim to be exhaustive. The objective is to clarify some of the questions
that arise and that have partly guided my research work. I then detail my contributions,
making the link with the highlighted issues.

1.1 Context and open questions

. Rheology of suspensions

Suspensions composed of macroscopic particles immersed in a fluid are found in many
fields, including in everyday life. These include industry (food and cosmetics, concrete, re-
inforced plastics, paper pulp, etc.), nature (silting of rivers, transport of sediments, sandy
coasts, lava, etc.), biology (blood tests, etc.) and even ecological concerns (wastewater
treatment, etc.). This wide range of applications has led to a large amount of research.
However, the flow properties of these systems remain partly poorly understood and raise
many questions.

We consider non-Brownian suspensions, i.e. grains (rigid macroscopic particles)
immersed in a viscous fluid. The forces acting on the particles reduce to hydrodynamic
forces exerted by the fluid, contact forces between particles and external forces such as
gravity. We are interested in studying the rheology of these suspensions: understanding
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how they flow or deform due to the application of a force on the system. The first studies
of suspension rheology date back to the 1900s and reference is made to [GDR04; GM11;
GP18; NSM21] for an overview of the research and issues in this field.

The seminal work dates back to Einstein’s thesis in 1905 [Ein05]. In this work he studies
the apparent viscosity of a dilute suspension as a function of its concentration. This
means that he evaluates the increase in viscosity of a Newtonian fluid when particles are
immersed in it. The link between local viscosity and density is an example of local
rheological law. Although the viscosity of a suspension is only one facet of its rheology,
its study reflects the complexity and history of the overall problem. In what follows, I
present the evolution of knowledge about the viscosity of suspensions since Einstein’s
work (for more details, see again [GP18], from which figure 1.1 is taken). The first results
date back to the 1900s, in the case of dilute suspensions. It was not until the 1970s and
1980s that results were obtained for semi-dilute suspensions. And it is only recently that
the case of dense suspensions has begun to provide answers, leaving many questions still
open. As we will see, experimental studies, theoretical developments and numerical
simulations are deeply intertwined and each has its place in the understanding of
the problem.

Fig. 1.1: The different regimes of a suspension of rigid spheres: dilute, semi-dilute (or moderately
concentrated), and concentrated regimes. Figure from [GP18].
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• Dilute suspensions. Einstein (1905). The story begins with Einstein’s work in
1905, in which he calculates the first order increase in viscosity as a function of
the particle density. To do so, he neglects the interactions between the particles.
Experimental and numerical works will later show that this approximation is valid
for densities below 0.05.

• Semi-dilute suspensions. (70’ - ). In the case of semi-dilute suspensions (density
about 0.1), the average distance between particles is of the order of their diameter
and their interactions can no longer be neglected. By taking into account the
interactions between pairs of particles, Batchelor and Green [BG72] obtained
in 1970 the second order expansion of the viscosity as a function of the density.
The expansion they obtained is in agreement with experimental and numerical
results for solid fractions of the order of 0.1-0.15. More recently, these results
have attracted the attention of mathematicians seeking to specify the limits within
which they are valid. Techniques such as reflection methods, PDEs, elements of
variational or probability methods are used to take into account the interactions
between particles (see e.g. [HM12; DG20; GH20; HW20; NS20; Gér21; GH21]).

• Numerical simulations. (80’ - ). Computing the viscosity for denser suspensions
is much more difficult. Indeed, it requires not only to compute all the multi-particle
interactions but also to determine the micro-structure of the medium: the viscosity
now depends on the arrangement of the particles. The previous expansions are
no longer valid for densities higher than 0.2. A blow up of the viscosity for a
critical value of the density around 0.5-0.6, depending on the physical conditions,
is observed in experiments (as a reminder, the maximum compactness of a random
packing of spheres is about 0.64). Understanding the behaviour of suspensions
with densities greater than 0.2 led to the development of numerical tools since the
1980s, with the widely used Stokesian Dynamics [DBB87; BB88]. This method falls
within the framework of the "Discrete Element Method" (DEM). It is a non-direct
numerical method: the velocity and pressure fields are not computed and the
movements of the particles are deduced from adapted models for the hydrodynamic
forces. Direct methods, solving the Stokes equations coupled to the solid motion,
were then developed in the 1990s (multipole expansions, finite elements, finite
volumes, boundary elements methods...). Unlike DEM methods, direct methods
provide approximations of the velocity and pressure fields in the fluid domain.
One can cite for example the Force Coupling Method [LM03] or fictitious domain
methods based on Lagrange multipliers [WT06; Wac09; Wac11; Gal+14b]. These
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numerical methods lead to efficient codes that can be used to study the rheology of
suspensions (see e.g. [CM03; Gal+14b; Est+17; RHW18; Li+20]).

• Dense suspensions. (2000 - ). The study of dense suspensions is particularly
delicate and few results are available. From a numerical point of view, the stiffness
of close interactions between particles makes the problem difficult to solve (see
next section on lubrication). Recently, the viscosity blow-up for a critical value
of the density has been observed for the first time in numerical simulations. This
behaviour could be found numerically by introducing a friction model between
the particles [Gal+14b; Mar+14]. It suggests that the consideration of solid
contact is essential in the study of dense suspensions. From a theoretical point
of view, variational methods led to a few homogenisation-like results (see [KB04;
BGN09]). One of the goals is to derive macroscopic laws, leading to continuous
modelling of these systems (such as effective fluid models or two-phase models.
See e.g. [NGP11; Bou+16]).

100 years after Einstein’s original work many questions remain open and the study of
suspensions’ rheology is still a very dynamic domain of research.

• Rheology of monodisperse suspensions. Despite the large number of works carried
out in this field, the study of suspensions composed of spheres with the same radius
(mono-disperse suspensions) has not yet revealed all its secrets. While theoretical
results for dilute suspensions have been available since the 1900s, the description of
semi-dilute or dense suspensions is more difficult. Their behaviour depends finely on
the microscopic configuration and writing laws for local macroscopic quantities and
deriving continuous models are still opened problems. Progress in the understanding of
their behaviour will require the development of numerical simulations. To carry out
such studies, it is essential to develop codes based on a direct resolution method that
takes into account close hydrodynamic interactions as well as solid contacts.

• Polydisperse suspensions and particles with more general shapes. The behaviour
of suspensions composed of spherical particles with various radii (polydisperse or even
bidisperse suspensions) is still poorly documented. Similarly, the case of non-spherical
particles has not been much addressed. Let us for example consider the case of fibers,
which are very useful from an industrial point of view. Explicit approximations can be
made at large distances in the dilute case. However, the results are much more complex
than for spherical particles. Indeed, the microstructure now affects the rheology from
the lowest concentrations: the relative positions of the fibers influence the overall
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behaviour of the system. The rheology of dense fiber suspensions is still a very open
domain of research and numerical simulation should play an important role in its
understanding.

. Lubrication and numerical simulations.

Numerical simulation of suspensions is an indispensable tool for a better understanding
of their rheology. This obviously requires a code solving the Stokes problem in the fluid
and coupled to the rigid motion of the particles. As already mentioned, a number of
solutions are available, ranging from non-direct to direct solvers. However, in general,
this is not sufficient. One of the difficulties with numerical simulation of such systems
is to take account of the interactions between the particles when they get close to each
other.

When two particles move towards each other, the fluid in the gap between the two
particles drains away. Being viscous and incompressible, it tries to oppose the deformation
induced by the movement and generates in return a force on the particles. This is the so-
called lubrication phenomena. This force opposes the relative movement of the particles.
The study of lubrication forces goes back to the 1960s with the works of Brenner and
Maude [Bre61; Mau61]. In 1974, Cox carried out the asymptotic expansion of the force
exerted between two smooth solids of any shape, evolving in a Stokes fluid [Cox74].
When the distance tends to zero, the force is proportional to the relative velocity and is
singular as the inverse of the distance. Consider for a moment a particle of radius r, mass
m, located at a distance d above a plane, immersed in a fluid of viscosity µ and subjected
to an external force f (such as gravity). We can then write a simplified model for the
evolution of d: we write the fundamental principle of dynamics and approximate the
force exerted by the fluid on the particle by the asymptotic expansion given by Cox. We
then obtain the following differential equation:

md̈(t) = −6πµr2 ḋ(t)
d(t) +mf. (1.1)

Lipschitz theorem shows that the solution of this differential equation is global: the
distance d remains strictly positive. The lubrication force is sufficiently large that there
is never contact between the plane and the particle in finite time. One can also prove
the "non-contact in finite time" property for the full model of a rigid smooth particle
immersed in a Stokes fluid (see e.g. [HT09]).
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The consideration of the lubrication force, which is singular when the distances are
small, is essential to obtain physical behaviour in the case of semi-dilute or dense
suspensions. Indeed, in this case, the pairs of close particles are numerous and their
effect becomes dominant. Unfortunately, the singularity of the phenomenon makes it
difficult to capture numerically.

• Space singularity. At each time step, the configuration being given, it is necessary
to solve the fluid/particle problem, while capturing the flow in the interstice
between the particles. An example of velocity and pressure fields obtained for two
close particles approaching each other is plot in figure 1.2 (a precise description
of the test is given in chapter 2, section 2.2). In order to capture the effects of

(a) Pressure flow (b) Horizontal velocity (c) Vertical velocity

Fig. 1.2: Reference flow for two particles with opposite velocities along the horizontal direction.

the pressure peak and the variation of the velocity field, it is essential to develop
methods that capture the singularity, while maintaining reasonable computation
times (avoiding, for example, too fine meshes between close particles in the case of
direct solvers). For example, the Stokesian Dynamics method proposes to correct the
forces computed by the solver [DBB87; BB88]. This correction was extended more
recently in [Gal+14a] in the framework of a direct method. Unfortunately, while
the effects of lubrication are taken into account when calculating the forces on the
particles, they are not transmitted to the pressure and velocity fields. Moreover,
the total force being dependent on the shape and orientation of the particles, the
contribution of lubrication cannot easily be computed for non-monodisperse
suspensions.

• Time singularity and contact model. Let us now assume that the lubrication
effects can be computed accurately using an adapted solver. The remaining nu-
merical difficulty is similar to that associated with the time discretization of the
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stiff differential equation (1.1). We already know that particles cannot touch each
other in finite time. Unfortunately, overlaps due to approximation errors cannot
be avoided at a fixed spatial and temporal accuracy. It is therefore necessary to
develop numerical strategies to avoid these numerical overlaps. Recall now that it
has been shown it was necessary to take into account solid friction in simulations of
suspension: real particles are not smooth and may touch each other. Then we see
that using a solid contact model to avoid overlaps is fully justified, both from a
physical and numerical point of view. In order to take into account the lubrication
effect due to the residual interstitial fluid layer during numerical contact, one can
also use the so-called "gluey contact" model [6] that I developed during my PhD
thesis, under the supervision of B. Maury.

Although efforts to take into account the lubrication phenomenon in numerical simulations
date back to the 1980s, the methods developed do not answer current questions about
suspensions’ rheology. Indeed, the phenomena studied are becoming more and more refined
and lead to new needs, which in turn are sources of new numerical challenges.

• Lubrication for non-spherical particles. As highlighted in the previous section, the
study of non-spherical particle suspensions is a very active domain of research. However,
techniques to take into account lubrication are currently limited to monodisperse
suspensions. There is a great need for methods that can be extended to the polydisperse
or even non-spherical case in the semi-dilute and dense regimes.

• Precise resolution of the flow. The physical phenomena studied are now more and
more sophisticated: it becomes necessary to have precise data on the behaviour of
particles (position, velocities) but also on the fluid. The development of direct methods,
solving the coupled fluid/particle problem provides numerical approximations of the
pressure and velocity fields. However, existing methods to account for lubrication do
not convey its effects on these fields and algorithms must now be designed to solve this
problem.

. From suspensions to granular media.

As already seen, for both physical and numerical reasons, simulation of suspensions
requires the development of algorithms to manage solid contact between particles. These
contact algorithms can of course be used to study dry granular materials rheology,
which is also a very active research domain.
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These materials are composed of solid particles of macroscopic size in the sense that
they are large enough not to be subject to Brownian forces. They can interact through
a wide variety of inter-particle forces and are subject to dissipative contacts that
may involve friction. They are omnipresent in our daily lives (sugar, rice, pasta in the
kitchen, piles of pebbles, legos for the youngest...), in nature (piles of sand, dunes, sandy
coasts, rock avalanches...), in industry or the agri-food industry (grain silos, storage of
medicines...).

Understanding the properties of their flows would provide answers to many industrial
and environmental questions. Being able to both "flow" like a fluid or remain motionless
like a solid, their behaviour is still poorly understood. Their behaviour is often divided
into three states. A first "dense/quasi-static" state, in which the grains undergo frictional
contact, which lasts over time, the medium then reacts like a deformable solid. In
contrast, a "diluted" state is defined by a rapid flow, leading to instantaneous collisions
between particles, the medium reacts like a gas. A final "dense intermediate" state is
described, in which there are both frictional contacts that persist and collisions, the
medium reacts like a liquid.

As for suspensions, understanding the complex rheology of these systems plays a key role
for applications. Furthermore, the transition from one state to another (fluid or solid)
also plays a major role. In this very active field of research, questions similar to those
described for suspensions arise. Indeed, one seeks to obtain rheological laws, linking
different macroscopic quantities having a mechanical meaning. The goal is to deduce
continuous models for this type of material. Again, the establishment of such models
requires the implementation of numerical simulations at microscopic level, in order for
example to determine and study the local macroscopic quantities of interest. We refer
to [FP08; GDR04; AFP13; RRD17] for the state-of-the-art of the physics of granular
media and recent advances in the field. In what follows, I give an idea of some problems
that arise and for which numerical simulations can be useful.

Local rheological laws. In the early 2000s, research focused on obtaining local rheo-
logical laws for dense cases. In the case of suspensions, it was sought to relate the local
density to the local apparent viscosity. In the case of granular media, a dimensional
analysis showed that a dimensionless number I, called the inertia number, should control
the local flow [Cru+05; LLC05]. This number links the time scale of the macroscopic
flow (global flow velocity) to the time scale of the microscopic rearrangements (rate
of change of local configurations). When this number is small, one tends towards the
dense/quasi-static regime and when it increases, one approaches the dilute regime. In
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the same articles, numerical simulations confirm, for example, a link between the local
effective friction coefficient and this dimensionless number. Local rheological laws in
agreement with the numerical results were then proposed [JFP06; Pou+06]. Attempts
have been made to develop macroscopic models, from these local laws (Navier-Stokes
models with viscosity depending on I). However, it was shown in [Bar+15] that the
resulting problem was well-posed for intermediate values of I but was unstable for large
and small values. It becomes well-posed if the fluid is considered compressible [Hey+17]
but such models involve new variables for which little information is available.

Towards non-local models. Local laws can correctly describe linear flows (e.g. shear
flows) or sufficiently fast 3D flows. Unfortunately, these local laws fail when the density of
the medium approaches the maximum compactness and quasi-static flows. Indeed, in this
case, long-range correlations are observed [RR02; LLC05]. The macroscopic properties
in these dense media are then intimately linked to the anisotropy and distribution of
contacts [Cru+05], to the formation of clusters [HE05] or arches [MLT99]. Since local
rheological laws do not allow for this type of phenomenon, non-local rheological models
have been developed. A review of these models is proposed in [Kam19]. All of them
involve a notion of intrinsic length scale of the medium, allowing non-local effects to
be taken into account. They have some success in the case of inhomogeneous systems,
where local models fail. Moreover, it has been shown that some of them are well-posed,
see [Kam19] for references on this subject.

Granular materials as a first step towards suspension modelling. From a numerical
point of view, it has been shown that the consideration of solid contacts in simulations of
suspensions is essential to obtain results in agreement with experiments. Any improve-
ment of numerical methods for dry granular materials is therefore immediately translated,
via a coupling with a fluid code, by similar progress for suspensions (see e.g. [Mar+14]
or [Gal+14b]). Beyond this numerical aspect, the study of granular media also brings
new ideas for a better modelling of dense suspensions. For example, the effect of the
presence of an interstitial fluid between the grains has been studied. This has led to
consider a new dimensionless number J similar to the inertia number I and for which
the time scale of microscopic rearrangements is replaced by a viscous time scale [CNP05;
SP05]. One then obtains local rheological laws expressing the apparent viscosity and the
solid volume fraction in terms of this new dimensionless number [GP18]. In order to
model the effects of contacts, the development of non-local rheological laws could also
be considered for dense suspensions.
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The study of dry granular materials is a rapidly expanding field with multiple applications.
Understanding the flowing properties of these materials is all the more interesting as it would
also allow progress in the study of dense suspensions.

• Need for stable, long-time simulations. Despite numerous experimental, numeri-
cal and theoretical studies, many questions concerning the continuous modelling of
granular materials remain open. Macroscopic models are based on variables whose
physical origin at the grain scale is not always clear. The difficulty is to identify the
relevant local geometrical parameters, leading to new rheological laws and well-posed
continuous problems. In order to reproduce the complexity of the medium, these
parameters must be closely related to its microscopic structure: anisotropy, orientation
of non-spherical particles, geometry of the contact network... Another challenge is the
study of length scales in the flow which are fundamental to write non-local models
for example. Numerical simulation is of great help in addressing these problems. It
requires the use of stable numerical methods, allowing long time simulations of a
large number of non-spherical particles. Note again that such algorithms would
also help to answer the questions that still arise for dense suspensions.

. From suspensions to micro-swimmers

The study of suspensions rheology leads to the question of extending (or not) the observed
behaviour to more general systems. A natural extension is the study of the so-called
"active" suspensions. These are composed of self-propelled particles and micro-organisms
that are able to swim by converting chemical energy into mechanical work. One can think
for example of bacteria, unicellular eukaryotes or special cells of multicellular organisms
such as sperm cells. Both the study of individual swimmers and the study of collections
of swimmers are of great interest.

Can a swimmer swim? Understanding the swimming strategy of micro-organisms has
several applications in biophysics or medicine. For example, this could help design
tools to limit the movement of harmful bacteria or improve the movement of cells such
as spermatozoa. Another striking application is the design of micro-robots capable of
performing in-vivo sensing and delivering drug to a given localized target. To achieve this
goals, it is essential to answer the following two questions: can the swimmer swim and
how can it do it? Although seemingly simple, this problem is difficult and has attracted
considerable attention in the recent literature, starting from the pioneering works of
Taylor [Tay51], Lighthill [Lig52] and later Berg and Anderson [BA73], Purcell [Pur77]
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and Shapere and Wilczek [SW89a; SW89b]. We refer to the paper [LP09; Gom+20] for a
description of known biological swimming mechanisms and an overview of the subject.

The problem faced by micro-organisms is to swim at low Reynolds numbers. Indeed,
the Reynolds number (Re) measures the ratio between inertial and viscous forces. Due
to the length and time scales involved, the motion of micro-swimmers is dominated by
viscosity, while inertia is negligible (see figure 1.3, from [Pur77]).

Fig. 1.3: Reynolds number (left) and Swimming at different Reynolds numbers (right). Figures
from [Pur77].

Swimming at low Reynolds numbers requires micro-organisms to adopt completely
different swimming strategies from those employed by larger organisms., such as fish, or
humans (see again figure 1.3). To better understand life at low Reynolds number, one
can follow Purcell:

“ Now imagine yourself in that condition: you’re under the swimming pool in
molasses, and now you can only move like the hands of a clock. If under those
ground rules you are able to move a few meters in a couple of weeks, you may
qualify as a low Reynolds number swimmer. ” [Pur77]

Another striking observation of Purcell (see figure 1.4) is that, at low Re, any organism
trying to swim adopting the reciprocal stroke of a scallop, which moves by opening and
closing its valves, is condemned to the frustrating experience of not having advanced
at all at the end of one cycle. Thus, whatever forward motion is achieved by the
scallop by closing its valves, it will be exactly compensated by a backward motion upon
reopening them. Since the low Re world is unaware of inertia, it will not help to close
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Fig. 1.4: The scallop theorem. Figure from [Pur77].

the valves quickly and reopen them slowly. This observation, which became known
as the scallop theorem, started a stream of research aiming at finding the simplest
mechanism by which cyclic shape changes may lead to effective self propulsion
at small length scales. Several proposals have been put forward and analyzed, see
e.g. [Tay51; Pur77; NG04; AKO05; BKS03]. A particularly simple example, due to Najafi
and Golestanian [NG04], is the three-sphere swimmer. In its simplest form, it consists of
three equal spheres of same radius a moving along a straight line.

What about collections of swimmers? The interest in active suspensions, composed of
collections of swimmers is motivated by several applications. For example, studying the
complex collective dynamics of biologically active suspensions would provide a better
understanding of biophysical processes such as bacterial transport and diffusion. On
the other hand, designing artificial active suspensions would have a wide variety of
applications, such as the mixing or transport of substances at the microscopic scale.
Active suspensions have surprising characteristics. Indeed, the coupling between the
fluid and the deformation of the particles leads to unusual rheologies, very different
from those observed for passive suspensions. For example, it has been shown that the
effective viscosity of an active suspension can decrease with the increase of volume
fraction. A second order asymptotic expansion of the viscosity as a function of the density
was derived for a specific 2d active suspension in [Hai+08]. The authors obtain the
classical result for passive suspensions with an additional term, due to self-propulsion.
This term explains the decrease in viscosity for this active suspension. Studying the
rheology of active suspensions is therefore quite fascinating. It is a particularly active and
challenging domain of research. We refer to [Sai18] for a review of existing results and
open questions on this subject.
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Swimming at low Reynolds number is an active domain of research. Understanding the indi-
vidual and collective behaviour of micro-organisms leads to both theoretical and numerical
challenges.

• Swimming mechanisms at low Reynolds numbers. A great amount of research
has been conducted to provide a theoretical framework for studying the choices of
swimming strategies available to micro-swimmers. The problem writes as a fluid-
structure problem in which the fluid domain varies with time (following the swimmer’s
shape). The objective is to understand whether there exists a succession of cyclic
deformations of the shape (a stroke) that allows swimming (moving forward, turning).
If the answer is positive, one can then look for the stroke that spends the least amount
of energy. The dependance of the solution on the shape of the swimmer is highly
non-linear which leads to challenging problems. In addition to theoretical studies,
numerical simulation of these swimmers is also important for a better understanding
of the mechanisms they use. It requires the solution of a fluid/structure problem for
a large number of different shapes. An efficient fluid/structure solver is therefore
essential.

• Rheology of active suspensions. As with passive suspensions, the aim is to write
continuous macroscopic models to describe active suspensions. Again, numerical
simulation is of great help in understanding the link between the microscopic con-
figurations and the global behaviour. The simulation of swimmers introduces new
numerical needs. For example, it becomes necessary to discretise coupled problems
between the Stokesian fluid and deformable structures. In addition, the internal
forces applied by the swimmer to deform can generate significant hydrodynamic forces.
It may then be necessary to use specific strategies to deal with lubrication forces, even
for intermediate densities.
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1.2 Contributions

I describe in this section my different contributions, making the link with the issues
highlighted in the previous section. Some of these contributions, further away from my
current research concerns, are not discussed in the manuscript. I specify the corresponding
articles and chapters where appropriate.

. Macroscopic modelling of suspensions

Lubrication: micro-macro modelling. [7]
Collaborator: Resulting from my PhD thesis - supervisor B. Maury (LMO, Orsay).
Issue: Macroscopic modelling of suspensions.

• This work is a first step towards a macroscopic description of collections of par-
ticles interacting through the lubrication force. We consider a discrete system
of aligned spheres interacting through the lubrication force. The force is mod-
elled by the asymptotic expansion given in [Cox74]. It is dissipative, and singular
near contact: it behaves like the reciprocal of the interparticle distance. We pro-
pose a macroscopic constitutive equation which is built as the natural continuous
counterpart of this microscopic lubrication model.

We establish the convergence in a weak sense of solutions to the discrete problem
towards the solution to the partial differential equation which we identified as
the macroscopic constitutive equation. It is an homogenization-like result. The
microscopic solution converges to the macroscopic one when the size of the particles
ε vanishes. The number of particles increases as 1/ε. Some previous homogenized
models for suspensions had been obtained for sets of particles in dimension 2 or 3.
The authors supposed that the configuration was periodic or that distances between
neighbouring particles were subject to behave like ε. The approach we propose
is based on a simpler model from the geometric standpoint, as the spheres are
supposed to be aligned. On the other hand it generalizes these works in the sense
that no assumption is made on the distances: the macroscopic behaviour depends
on the local solid fraction only. Contacts between neighbouring particles are even
allowed, and a special attention is paid to the way we express the continuous model
so that macroscopic clusters can be taken into account (the local viscosity within a
cluster is infinite).
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This model, which is of the newtonian type, relies on an extensional viscosity, which
is proportional to the reciprocal of the local fluid fraction. If u is the velocity, ρ the
density and f the force, the limit model writes:

∂tρ+ ∂x(ρu) = 0,

−∂x
( 1

1− ρ∂xu
)

= ρf.

. Numerical simulation of suspensions

Direct fluid solver and gluey contact model. [1,2,6]
Collaborator: Resulting from my PhD thesis - supervisor B. Maury (LMO, Orsay).
Issues: Direct numerical simulation of suspensions. Contacts and lubrication.

• During my PhD thesis, I developed a direct method to simulate suspensions. In [1,2],
a penalty method is proposed to deal with the rigid constraint: the rigid motion
is enforced by penalizing the strain tensor on the rigid domain. From a physical
point of view, this amounts to considering the rigid particles as a fluid subdomain
with infinite viscosity. This method, associated to the method of characteristics for
the time discretization leads to a generalized Stokes variational formulation on the
whole domain. It can be easily implemented from any finite element Stokes/Navier-
Stokes solver. It has been used in [1] to simulate a single body attached at one of
its points. In [2] we focus on the simulation of suspensions. In order to ensure
robustness, we describe a strategy to take collisions into account. It is based on a
time-stepping scheme for inelastic collision proposed by Bertrand Maury in [Mau06].
At each time step, the forces are computed in an implicit way, as solution to a convex
optimization problem. This leads to a stable contact algorithm which solves the
difficulty due to the stiffness of the contact forces.

• One of the main result of my PhD work, described in [6], is the development of a
model and a numerical scheme to compute the motion of rigid particles interacting
through the lubrication force. In the case of a particle approaching a plane, I
propose an algorithm and prove its convergence towards the solution to the gluey
particle model described in [Mau07]. Then, I describe a multi-particle version of
this gluey contact model which is based on the projection of the velocities onto a
set of admissible velocities. The corresponding algorithm is an extension of the one
proposed for inelastic contacts, leading to a stable numerical method to model
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lubrication. I implemented the inelastic and gluey contacts in C++ (code SCoPI -
Simulation of Collection of Particles in Interaction).

Lubrication: coupling (stable) contact models to fluid solvers. [3,4,8]
Collaborators: M. Ismail (LiPhy, Grenoble), P. Laure (Labo. JA Dieudonné, Nice), L. Lobry
(LPMC, Nice), N. Verdon (Labo. JA Dieudonné, Nice).
Issues: Direct numerical simulation of suspensions. Contacts and lubrication.

• The inelastic and gluey models proposed in [Mau06] and [6] have been coupled to
fluid solvers to simulate vesicles and suspensions.

• With P. Laure, L. Lobry and N. Verdon, we compared in [3,8] the two contact
models for the simulation of solid particles in a Stokesian fluid. The fluid solver is a
fictitious domain method and the rigid constraint is imposed using an augmented
Lagrangian method. We show that contact modelling influences the properties
of the suspension. For example, the reversibility of the Stokes equations is usually
lost in the simulations, due to numerical discretizations. Using the viscous contact
model makes it possible to recover this reversibility, thanks to the good approx-
imation of the lubrication force. We also show that by using the gluey contact
model, larger time steps can be used, while maintaining good accuracy for
close interactions.

• With M. Ismail, we used the penalty method to simulate 2D vesicles interacting
with a newtonian fluid. The inextensible membrane is modelled by a chain of
circular rigid particles which are maintained in cohesion by using two different
type of forces. First, a spring force is imposed between neighboring particles in
the chain. Second, in order to model the bending of the membrane, each triplet
of successive particles is submitted to an angular force. The inelastic contact
model prevents interpenetration of the particles. Exploring different ratios of inner
and outer viscosities, we recover the well known “Tank-Treading” and “Tumbling”
motions predicted by theory and experiments. Moreover, for the first time, two
dimensional simulations of the “Vacillating-Breathing” regime, predicted by theory
and observed experimentally, are achieved without any special ingredient (such as
thermal fluctuations).
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Lubrication before contact: a precise fluid solver. [9,10,11, Chap.2]
Collaborators: B. Merlet (Labo. Paul Painlevé, Lille), F. Nabet (CMAP, Palaiseau), T.N.
Nguyen (PhD CMAP, Palaiseau), F. Vergnet (Post-doc CMAP, Palaiseau / LJLL, Paris).
Issues: Effects of lubrication on the whole flow. Lubrication for non-spherical particles.

• The gluey contact model proposed in [6] provides a stable algorithm to take
into account lubrication in numerical simulations. However, it is coupled with
fluid solvers through a splitting method. As a result, the effects of lubrication
are transmitted to the particles but the fluid velocity and pressure fields are not
corrected. Recent rheological studies require accurate information on the whole
flow. The objective of these works is to develop a method which transmits the
effects of lubrication not only to the particles but also to the velocity and pressure
fields in the fluid domain.

• As a first step towards suspensions, we focus on the Dirichlet to Neumann problem
(particle velocities are given, we want to calculate the corresponding velocity and
pressure fields in the fluid domain). With Benoit Merlet, in the framework of T.N.
Nguyen’s PhD thesis (supervised by B. Merlet), we proposed in [9] to decompose
the whole flow into a singular part and a regular part: if (u, p) is the solution,
we write

(u, p) = (using, psing) + (ureg, preg),

where (using, psing) is the singular part of the solution arising from lubrication. It
is supposed to be known explicitly and is computed off-line. It has to be defined
such that the remaining field (ureg, preg) is regular, in the sense that it is bounded
independently of the distance between the particles. This regular field is com-
puted online. Since it is regular, an accurate solution can be computed using any
fluid/structure solver and there is no need to use a very fine mesh between the
particles. At the end of the procedure, an accurate solution (u, p), taking into
account the lubrication, can be reconstructed.

• To apply the method, it remains to say how the singular field is estimated. In [9],
we propose to decompose the singular flow on a vectorial spherical harmonic basis
and we interpolate the coordinates of the singular pressure and velocity fields in
this basis. For interpolation to be possible, the singular field must depend on a
single parameter (here, the distance between the particles). This is only the case
if we consider monodisperse suspensions (spherical particles of the same radius).
Indeed, in the opposite case, the singularity depends on the ratio between the
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radii of the spheres or on the orientation of the particles in case they are not
spherical. The proposed method therefore allows the effects of lubrication to be
accurately transmitted throughout the fluid domain but is restricted to the case
of monodisperse suspensions.

• To overcome this limitation, I proposed in [10] to use an explicit asymptotic
expansion of the solution to estimate the singular field. In [11], we propose with
Flore Nabet such an expansion and prove that the remaining field is regular. Our
singular field is an adaptation of the asymptotic expansion proposed by Hillairet
and Kelaï in [HK15], which is modified to make it more tractable from a numerical
point of view. The method is tested on 2D academic cases, using a fluid solver
based on a fitted mesh. The asymptotic expansion being available for various
shapes of particles (strictly convex near the contact point), this new method is
more general than the interpolation proposed in [9] and meets the needs of recent
rheological studies. With Fabien Vergnet and Flore Nabet, we are currently working
on extending this method to fictitious domain solvers.

Fluid solvers: development of new BEM tools for Stokes [12,13, Chap. 3]
Collaborators: F. Alouges (CMAP, Palaiseau), M. Aussal (CMAP, Palaiseau), F. Pigeonneau
(Saint Gobain Recherche), A. Sellier (LadHyX, Palaiseau).
Issues: Direct numerical simulation of suspensions or micro-swimmers.

• In these works, we are interested in the use of a Boundary Element Method (BEM)
for the simulation of suspensions. The BEM method falls into the class of direct
resolution methods. Compared to volumic methods such as finite elements or
finite volumes, one of its advantages is that it is based on a surface mesh of the
particles, which limits the number of unknowns. In view of the applications we
have in mind, another advantage of these methods is that the geometry of the
particles is accurately taken into account. This makes the method particularly
suitable for the fine study of lubrication or for the simulation of swimmer’s
strokes. However, there are two classic difficulties in implementing BEM methods:
the design of fast solvers to compute the solution of the problem (the matrix of
the discrete problem is full) and the computation of singular integrals appearing
in the coefficients of the matrices.

• In [12,13] we show how the methods developed by François Alouges and Matthieu
Aussal in the context of Helmoltz and Maxwell equations can be extended to Stokes
equations. The main difficulty being that Stokes problem is a three dimensional
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problem (three dimensional variables and unknowns). Concerning the fast solver,
we extend the so-called Sine Cardinal Sparse Decomposition (SCSD) to Stokes
kernel. This method is based on a (sparse) decomposition of radial kernels on a
basis of cardinal sines. Since Stokes kernel is not radial, the method does not apply
directly. To overcome this difficulty, we rewrite the kernel as a sum of derivatives of
radial kernels. Concerning the singular integrals, we again extend a semi-analytic
method implemented by François Alouges and Matthieu Aussal for Helmoltz and
Maxwell kernels. To do so, we express Stokes’ singular integrals as sum of boundary
terms and of singular integrals already computed for Laplace kernel. We studied on
academic cases in [12] the order of convergence and the CPU time of the method.
In [13], it is shown that the method accurately captures the close interactions
between a spheroid and a wall. This is a very encouraging result in view of its
application to simulation of suspensions.

. Numerical simulation of granular flows

A result of convergence [15, Chap. 4 Sec. 4.2]
Collaborator: F. Bernicot (Labo. Jean Leray, Nantes).
Issue: Stable contact algorithms.

• The inelastic contact algorithm proposed by Bertrand Maury [Mau07] and its
extension to viscous contacts [6] are implemented in the code SCoPI and used for
the simulation of granular media or suspensions. These methods have excellent
stability properties and good behaviour for large time steps. Bertrand Maury has
proved, in the case of a single contact, the convergence of the discrete solution to
a continuous contact model. The limit model is a Non Smooth Contact Dynamics
like model. It enters the framework of non-smooth convex analysis developed by
JJ Moreau in the 1970s. The model consists in a system of differential inclusions
of order two in time, with non-overlaping constraints between the particles. With
Frédéric Bernicot, we proved the convergence of the inelastic contact algorithm
in the multi-particle case. We follow the scheme of B. Maury’s proof for a single
contact. New arguments allow to handle multiple contacts. These arguments had
been used by Juliette Venel in [Ven11] where the author models crowd movements
by first order systems with non-overlapping constraints similar to ours.
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Some first macroscopic studies [14,16, Chap. 4 Sec. 4.2]
Collaborators: S. Faure (LMO, Orsay), P. Gondret (FAST, Orsay), A. Seguin (FAST, Orsay),
B. Semin (PMMH, ESPCI, Paris).
Issue: Rheology of granular media using numerical simulations.

• With Sylvain Faure, we optimized the code SCoPI and implemented post-processing
functions so that it can be used for rheological studies. Sylvain Faure imple-
mented a shared memory parallelism and revised the format of the output files.
The code can return local quantities of physical interests such as pressure, stresses,
density, distribution and mean number of contacts...

• In [14], with Benoît Semin, we studied the random packing of non-convex parti-
cles. The particles are composed of two interpenetrating spheres. After validating
the code for spherical particles, we studied the random compaction and the distri-
bution of contacts as a function of the interpenetration length.

• In [16], with Antoine Seguin and Philippe Gondret, we studied the flow in front
of a sphere moving into a grain cloud. We launched a simulation campaign, the
granular medium being composed of up to 900 000 grains. We studied the cluster
size in front of the moving sphere and conducted a detailed study of the rheology
inside the cluster. The results proved that a local rheology based on the inertial
number I can be observed in the case of non-parallel flows, which had never been
reported before.

Towards friction [Chap. 4, Sec. 4.3]
Collaborators: H. Martin (PhD IPGP, Paris), B. Maury (LMO, Orsay).
Issues: Stable contact algorithm for friction. Friction in simulations of suspensions.

• This recent work has been initiated in the framework of Hugo Martin’s PhD thesis,
supervised by Anne Mangeney (IPGP) and Yvon Maday (LJLL). With Bertrand
Maury, we participated in the development of a stable algorithm for dry frictional
contacts. This is a work in progress, for which an article is being prepared.

• The methods falls in the framework of Non-Smooth Contact Dynamics and can
be seen as an extension of the inelastic algorithm proposed by Bertrand Maury
in [Mau07]. The natural schemes for friction lead to linear complementarity prob-
lems which prove to be expensive to solve. Following [Mau07] and in the spirit
of [Ani06], we propose a scheme based on a single convex optimization prob-
lem to be solved at each time step. This is done to the price of a "convexification"
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of the constraint, which can generate over estimations of the non-overlapping
constraint and dilatancy of the granular media. We prove that the corresponding
optimality conditions are a discretization of the continuous problem. The cor-
responding algorithm was implemented for spherical particules by Hugo Martin
during its PhD thesis. It is verified that the convexification of the constraint is not
an obstacle to the simulation of granular collapse. To do so, we compare the results
with those obtained by a code based on the natural, non-convex scheme. Once
validated, the code was used by Hugo Martin to study three dimensional collapses
on erodible beds.

. Micro-swimmers

Some controlability results [17,18,19,20,21, Chap. 5]
Collaborators: F. Alouges (CMAP, Palaiseau), A. DeSimone (SISSA, Trieste), L. Heltai
(SISSA, Trieste), B. Merlet (Labo. Paul Painlevé, Lille).
Issue: Swimming and optimal swimming of micro-swimmers.

• In the series of articles [17,18,20,21], we study 3 self-propelled stokesian robots
composed of balls, connected by arms whose length can be controlled by the
swimmer. They can move respectively in dimension 1, 2 and 3. In these works we
provide a unified theoretical framework, based on geometric control theory. The
swimming problem is rephrased as a controllability problem: the displacement
being given, can the swimmer execute a stroke, i.e. a cyclic shape change (the
control) leading to this displacement? Once controllability is known, optimal
swimming is written as an optimal control problem: what is the stroke leading to
the minimal energetic cost? In [21], we end up proposing a general framework,
covering the 3 swimmers, and we show that each of them can swim, i.e. control its
position, as well as its orientation in 2d and 3d. Numerical computations of optimal
strokes are also reported. A similar control framework is proposed in [19] to study
general axisymmetric swimmers.
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Expected applications of the results presented in this chapter:

• Rheology of suspensions: Taking lubrication into account in numerical simulations.
Handling of non-spherical particles. Feedback on the flow.

• Micro-swimmers and active suspensions: Make it possible to manage the large lubrica-
tion forces generated by the deformations of the swimmers.
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In this chapter, I present a new method that we have developed to capture the lubrica-
tion phenomenon in numerical simulations. First, recall that lubrication is generated
by the flow of fluid in the gap between close particles. As explained in the introduction,
it is a singular phenomenon when the distance between the particles tends to zero. It is
therefore difficult to capture in numerical simulations. We focus here on the singularity in
space: at a given time, for a given configuration, with possibly very close particles, we try
to estimate as accurately as possible the effects of the fluid on the particles. Remember
that, in view of the applications targeted, we need to develop a method which allows the
simulation of non-spherical particles and which transmits the effects of lubrication
not only to the particles but also to the whole velocity and pressure fields in the
fluid domain.

We focus on the so-called Dirichlet to Neumann problem: the velocities of the particles are
imposed, we try to calculate the velocity and pressure fields as well as the corresponding
forces. This is a first step towards the numerical simulation of suspensions in which,
conversely, the forces exerted on the system are known and the velocities of the particles
are to be determined. Indeed, to calculate these unknown velocities, some methods are
based on the inversion of the resistance matrix (which associates velocities to forces).
The calculation of this matrix can be achieved via the resolution of several Dirichlet to
Neumann problems. The study of dense suspensions in three dimensions leading to high
dimensional numerical problems, some methods based on iterative solvers have also been
developed. To implement these algorithms, one needs to define a matrix/vector product
which, again, is based on a Dirichlet to Neumann type problem.

Let us first define the general Dirichlet to Neumann problem for N particles. We consider
Ω = R3 and denote by (Bi)i=1,...,N N rigid particles in Ω. We assume that the fluid
domain F = Ω \ ∪Bi is filled with a Newtonian fluid governed by Stokes equations with
viscosity µ.

We suppose that the velocity on the boundary of each particle is given: the velocity of
particle i is denoted by u?i ∈ H1/2(∂Bi). Each of the particles undergoes a rigid motion:
u?i (x) = Vi +wi ∧ (x − xi), where Vi (resp. wi) is the translational (resp. rotational)
velocity of particle i.
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The problem is written as follows,

Find (u, p) ∈ H1(F)×L2
0(F) such that

−µ∆u +∇p = 0, in F ;

div u = 0, in F ;

u = u?i , on ∂Bi, i = 1, . . . , N ;

(2.1)

where L2
0(F) = {q ∈ L2(F) :

∫
F q = 0}.

Since we suppose that Ω = R3, we add the following vanishing condition at infinity

lim
|(x,y,z)|→∞

u(x, y, z) = 0.

This, together with the rigid movement of the particles u?i , ensures that system (2.1)
admits a unique solution that we denote by

(u, p) = St(u?1, . . . ,u?N ).

To simplify the presentation, in the following, we will consider a "toy model", made of
three aligned spherical particles of radius ri, moving along the line of their centers:

B1 r1 u?1

B2 r2 u?2

B3 r3 u?3

d

ez

Fig. 2.1: Toy problem composed of 3 aligned particles. Notation.
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Particles 1 and 2 are assumed to be close to each other and the third particle is assumed
to be far away from the other two. The distance between the first two particles is denoted
by d.

The velocities (u?1,u?2,u?3) of the particles are given with u?i = uiez, ui ∈ R. One wants to
compute the solution (u, p) = St(u?1,u?2,u?3) and the corresponding forces exerted on the
particles: f = (f1, f2, f3) ∈ R3 where fi = fiez is the force exerted by the fluid on the i-th
particle.

We suppose that a fluid solver, based on a direct method, is available (finite elements,
finite volumes, ...). The size of the underlying mesh is denoted by h so that the solver
converges when h→ 0.

When two particles are close, the singularity due to the lubrication in the gap imposes to
construct a fine mesh between the particles (typically 5 to 8 cells in the gap). This makes
the computations very expensive (h small, high number of degrees of freedom). Our aim
is to propose a solution allowing to take into account the singularity, without having to
refine between the particles.

2.1 Traditional method: correction of the forces

The most commonly used method to account for lubrication consists in computing the
forces exerted on the particles with the fluid solver and then perform a correction step. It
is based on the asymptotic expansion of the forces exerted on two close particles moving
in an infinite domain.

. Two particles in an infinite domain: asymptotic expansion of the forces

Consider a single pair of particles immersed in an infinite surrounding fluid. It is assumed
that they move along the line of their centers with velocities u?1 and u?2. Using the
linearity of Stokes equations, one can decompose the boundary conditions (u?1,u?2) as
(see figure 2.2):

(u, p) = St(u?1,u?2) = u?1 − u?2
2 St(ez,−ez) + u?1 + u?2

2 St(ez, ez) (2.2)

= using
2parts + ureg

2parts
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B1 r1 u?1

B2 r2 u?2
d =

u?1 − u?2
2

ez

−ez

+
u?1 + u?2

2
ez

ez

Fig. 2.2: Decompostion of the solution for 2 particles in singular and regular fields.

We can easily convince ourselves that St(ez, ez) is regular when d goes to zero (the two
particles move with the same velocity). Consequently, the singular behaviour comes from
the first term of the sum which is proportional to the relative velocity u?1 − u?2 of the
particles.

Since [Cox74], the asymptotic expansion of the forces exerted on two isolated particules
when the distance goes to zero is known. This expansion is available for any regular
convex shape of the particle (close to the contact point) and any rigid movement of
the particles. Let us denote by (f2parts

1 , f2parts
2 ) the forces corresponding to the singular

field using
2parts. Using the symmetry of the problem together with the linearity of Stokes

equations, we write

f2parts
1 = −f2parts

2 = u?1 − u?2
2 f2parts,

where f2parts is computed from the field St(ez,−ez). From Cox’ expansion, we know that
it behaves as:

f2parts ∼ −6πµ r2
1r

2
2

(r1 + r2)2
2
d
ez when d→ 0. (2.3)

. The Stokesian Dynamics correction [DBB87]

So let us come back to our toy problem composed of 3 aligned particles. Suppose
that, using a direct solver, we can compute the forces exerted on the particles fh =
(f1,h, f2,h, f3,h) for a not too small mesh size h. The question is to find a way to correct
the numerical values obtained for the forces exerted on particles 1 and 2. Indeed, these
particles being close, the solver is not able to catch the induced lubrication phenomenon
for not too small values of h.

A widely used strategy has been proposed in [DBB87] in the context of Stokesian Dy-
namics simulations (which are non direct simulations). The founding remark is the
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following: if two particles are embedded in an infinite fluid and have the same given
radius r, then the solution St(ez,−ez) only depends on the distance d. As a consequence,
the corresponding forces f2parts exerted on the particles can be written as a function of
one variable: d → f2parts(d). Since it only depends on one parameter, it can easily be
estimated using its asymptotic expansion (2.3) for small distances, together with a mean
square approach for larger distances. Very precise computations are achieved off-line for
a discrete set of distances to construct the approximation for any value of the distance.

From this approximation, the authors in [DBB87] propose to correct the forces computed
by the fluid solver as follows:

fSDh =


f1,h

f2,h

f3,h

 + u?1 − u?2
2


f2parts(d)− f2parts

h (d)

−( f2parts(d)− f2parts
h (d) )

0

 .

The numerical values of the forces exerted on particles 1 and 2 are corrected while no
modification is done for particle 3. In order to correct the value of the forces on the
first two particles, we use the corresponding precise approximation f2parts(d): the two
particles are considered as an isolated pair, immersed in an infinite fluid domain and
the influence of the third particle is neglected. We also need to subtract the part of the
singularity that would have been computed with the solver with precision h. Doing so,
the correction goes to zero when h goes to zero and the method converges.

Note that this method can be rewritten as the sum of a singular part that is known
analytically and a remaining regular part that is estimated online, using the solver with
not too small values of h:

fSDh = f sing + f reg
h

= u?1 − u?2
2


f2parts(d)

−f2parts(d)

0

 +


f1,h −

u?1 − u?2
2 f2parts

h (d)

f2,h + u?1 − u?2
2 f2parts

h (d)

f3,h


(2.4)
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. Comments

The asymptotic expansion in [Cox74] is given for any rigid motion of the particles. As a
consequence, the method can be extended to general suspensions in 3 dimension, with
any number of particles. In that case, the contributions of all pairs of close particles are
added together. It has been largely used for non direct simulations of suspensions (see
e.g. [BB88; Lad88; Cic+94]) but also more recently in the force coupling method [YM10]
or in the framework of direct simulation [Gal+14]. Note that, since the singular part is
interpolated offline, the method is very efficient from a computational point of view.

It should also be noted that the correction (2.4) is accurate in many cases of interest,
which has made the method successful. However, it is based on pairwise interactions:
a particle in the neighborhood of two close particles is not affected by the correction.
Moreover, the correction is computed supposing that the pairs of close particles are
isolated from the other particles. Nevertheless, the interactions between two particles do
depend on the presence and on the position of other particles. Many-body interactions are
not correctly included in the correction step. As a consequence, the correction eliminates
the diagonal leading order term O(1/d) of the error (effect of a pair of close particles on
itself) but does not affect the non-diagonal terms (effect of a pair on the other particles
and vice versa). Let us consider a system of three particles B1, B2, B3, the first two
being close one to another and the third at a finite distance as in figure 2.3. If the

B1 r1 u?1

B2 r2 u?2
d B3

D

Fig. 2.3: Interaction between a pair of close particles and a distant third particle.

particles B1 and B2 have opposite velocities then the velocity field at distance O(D)
has a horizontal component of order dV/D2 resulting in a force of order dV/D2 on B3

(where dV = u?2 − u?1 is the relative velocity of the two particles). As a consequence, the
influence of the remaining error has negligible influence when we consider relatively
small hydrodynamic forces (i.e. when the close particles have nearly identical velocities:
dV is small). On the other hand, the correction may be inadequate when hydrodynamic
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forces have to balance large non-hydrodynamic forces (as it happens, for example, when
we consider micro-scale swimmers: the internal forces generate high relative velocities).
In these cases, there is a need for numerical methods which are accurate even in the
presence of large forces. These methods need to take into account the many-body
interactions.

To finish, let’s recall that, as stated in the introduction, current research in the field of
suspension rheology focuses on suspensions made of non-spherical particles and on the
study of quantities derived from the velocity and pressure fields in the fluid. The proposed
method does not allow to answer these requests. First, no correction is performed on
the numerical velocity and pressure fields. Moreover, it cannot easily be used for non-
monodisperse suspensions. Indeed, the off-line computations have to be done using very
precise three dimensional simulations, which is very costly (fine meshes are needed to
obtain precise results for close particles). Until now, it has only been achieved in case
of monodisperse suspensions, for which the forces only depend on a single parameter.
In the case of polydisperse suspensions, the forces would depend on two parameters:
(d, γ)→ f2parts(d, γ) with γ = r2

1r
2
2

(r1+r2)2 (see equation 2.3). Although possible, this precise
two-parameter approximation is very time demanding and it has never been achieved
until now. Finally, let us recall that the method is based on the calculation of the total
force exerted on the particles. These forces are highly dependent on the shape and
orientation of the particles, which makes it difficult to extend the method to non-spherical
particles.

For these reasons, we proposed with Benoît Merlet a new method, to take into account
the effect of lubrication on the flow [9]. The method natively takes into account the
multi-particle nature of the interactions. However, it still relies on an offline interpolation
and is therefore restricted to monodisperse suspensions. Then, I have adapted [10] the
method to take into account more general shapes (regular and convex) of particles. To
do so, the tabulations are replaced by explicit asymptotic expansions. With Flore Nabet,
we then modified the asymptotic expansions to be more efficient from a numerical point
of view. We describe, analyze and test the corresponding method in [11]. These works
are described in the following section.
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2.2 A new method: singular/regular splitting of the velocity
and pressure fields.

. The idea: a singular/regular decomposition of the flow

Suppose you compute an approximation (uh, ph) of (u, p) = St(u?1, . . . ,u?N ) using a direct
solver based on a mesh with size h. This discretization induces an error ‖u − uh‖u,
‖p− ph‖p for given norms, that can be estimated as follows

‖u− uh‖u ≤ C1 ‖(u, p)‖hα1 , ‖p− ph‖p ≤ C2 ‖(u, p)‖hα2 ,

where α1 and α2 depend on the chosen method and discretization space as well as on the
norm used for the error.

The founding remark of the method we propose is the following: the norm ‖(u, p)‖ of
the solution depends on the distance d and blows up when d decreases. Consequently,
h being given, it is generally observed that the error also blows up when the distance
decreases. Let us consider, for example, the configuration given in Figure 2.4 with
r1 = 0.07, r2 = 0.1, u?1 = ex, u?2 = −ex. The numerical tests are implemented in

r1 r2
u?1

u?2

y

x

Fig. 2.4: Spherical particles moving along the line of their centers.

two dimensions with FreeFEM [Hec12]. As in dimension three, the solution of the
problem in two dimensions is singular. The lubrication force behaves in this case as
ln(d). We discretize the velocity and pressure fields using the finite elements P1isoP2 and
P1 respectively. Since we do not know the exact solution to the problem, we compare
our results with a reference solution (uref, pref) computed on a very fine mesh (the
corresponding reference solution was plotted in the introduction figure 1.2). The tests are
run for three different distances between the particles: d = r2/10, d = r2/20, d = r2/30.
We display on Figure 2.5 the fine mesh used to compute the reference solution, together
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(a) Fine mesh used to
compute the

reference

(b) The coarser mesh
(h ≈ 0.2254)

(c) An intermediate mesh
(h ≈ 0.0286)

(d) The finest mesh
(h ≈ 0.0091)

Fig. 2.5: Different meshes used for the computation.

with three of the meshes used for the computations. We plot the absolute error between
the approximate solution and the reference solution (in H1

0 -norm for each component of
the velocity and in L2-norm for the pressure). The configuration being given (i.e. d being
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Fig. 2.6: Absolute error as a function of h for 3 different distances for two spherical particles.

given), one can observe the convergence rate of the method. However, one can see that
the y-intercept of the lines is increasing when the distance goes to zero.

The idea behind the method we propose is the following: replace the estimate of (u, p)
by the estimate of another "regular" field (ureg, preg) whose norm would not depend on
the distance. To do so, we are going to take advantage of the knowledge we have on the
singularity, in order to decompose the field it into a sum of a singular part (exploding
with distance) and a regular part (bounded independently of the distance):

(u, p) = (using, psing) + (ureg, preg).
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This decomposition is similar to that of the forces (2.4) in the Stokesian Dynamics case,
but we now decompose the whole velocity and pressure fields.

Suppose now that the singular field is known. Then, to solve the original problem (2.1),
it remains to approximate the solution to the following regular problem:

Find (ureg, preg) ∈ H1(F)× L2
0(F) such that

−∆ureg +∇preg = ∆using −∇psing, in F ;

div ureg = −div using, in F ;

ureg = u?i − using on ∂Bi, i = 1 . . . N.

(2.5)

To make the method work, it is necessary to construct a suitable singular field (using, psing)
such that:

• (using, psing) is known analytically or can be computed precisely offline;

• the corresponding solution (ureg, preg) to (2.5) is bounded regardless of the distance.

Doing so, the right-hand side of (2.5) can be computed precisely and the solution
(ureg, preg) may be approximated without the error increasing when the distance decreases.
To finish, suppose that using is computed exactly and that ureg

h is an approximation of ureg

with precision h. Then, the approximated solution to the initial problem with precision h
writes unew

h = using + ureg
h and the corresponding error is

‖u−unew
h ‖u = ‖(using + ureg)− (using + ureg

h )‖u = ‖ureg−ureg
h ‖u ≤ C1 ‖(ureg, preg)‖hα1 .

The norm ‖(ureg, preg)‖ is bounded independently of the distance and the same result
holds for the approximation of the pressure field. The decomposition into singular and
regular fields therefore improves the global error estimation. It should be noted, however,
that the constants C1 and C2 depend on the shape of the fluid domain and therefore
on the distance. They could blow up when the distance vanishes. We will show in the
numerical results that this is not a problem in practice.
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To sum up, the method we propose is the following:

• Analytical computation of the singular field (using, psing),

• Computation of (ureg
h , preg

h ), numerical approximation of the solution to (2.5), with-
out refining the mesh,

• Solution to the initial problem: (unew
h , pnew

h ) = (using, psing) + (ureg
h , preg

h ).

It now remains to describe how to calculate a singular field that satisfies the requirements,
which we present in the following.

Before going further, let’s make a remark on a method known as the Singular Complement
Method [ACS00; CH03]. This numerical method, in the context of variational problems
with singular solutions, also takes advantage of a decomposition in a singular and a
regular field of the solution. In that context, the fact that the solution is singular has
to be understood in the sense that it does not belong to the Hilbert space needed to
obtain optimal convergence of the numerical algorithms. One can think for example to
the Laplace problem in domains with reentrant corners [CH03]. Note that this kind of
singular behaviour is different from the one we consider. Indeed, in our case, for a given
distance, the solution belongs to the usual Hilbert spaces for Stokes problems, but we say
that its behaviour is singular when the distance tends to zero in the sense that its norm in
this space blows up.

. Decomposition of the boundary condition [9]

The first idea to choose the singular field is to transpose to the whole fluid field the cor-
rection proposed in the Stokesian Dynamics framework. This is the method we proposed
in [9] with Benoît Merlet, as part of Thanh Nhan Nguyen’s PhD thesis (supervised by
Benoît Merlet).

Let us first recall that, for a single pair of particles in an infinite domain, the singular
part of the field is generated by the relative velocity between the two particles (see
equation (2.2)). We denote in the following

(urel
2parts, p

rel
2parts) = u?1 − u?2

2 St(ez,−ez)

the solution for two particles in an infinite domain with velocities ±(u?1−u?2)/2ez. The
upper-script "rel" stands for relative velocities.
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Let us consider again our toy problem composed of 3 particles. The singularity is induced
by the relative velocity between particles 1 and 2, which are close to each other. The
solution (u, p) = St(u?1,u?2,u?3) is then decomposed as (see figure 2.7):

(u, p) = St(u?1,u?2,u?3) = (urel
2parts, p

rel
2parts) + (ureg, preg). (2.6)

B1 r1 u?1

B2 r2 u?2

B3 r3 u?3

d

ez

=

−ez

ez

urel
2parts 6= 0

u?2 − u?1
2 ×

ez

+

ez

ez

ureg 6= u?3

u?2 + u?1
2 ×

ez

Fig. 2.7: Decompostion of the solution for 2 particles in singular and regular fields.

The singular/regular decomposition (2.6) is the field counterpart of the decomposition of
forces (2.4): (urel

2parts, p
rel
2parts) contains the singular part of the solution while the remaining

part (ureg, preg) is regular. The field (urel
2parts, p

rel
2parts) is computed considering that particles

1 and 2 are isolated in an infinite domain: it does not vanish on ∂B3. Then, unlike the
method based on the correction of the forces, the contribution of the singularity between
particles 1 and 2 is now transmitted to particle 3 through the boundary condition that
the regular field ureg must satisfy on ∂B3 (see (2.5)).

In view of the decomposition (2.6), it now remains to estimate analytically (urel
2parts, p

rel
2parts).

. Two particles in an infinite domain: a tabulated singular field [9]

The first method to estimate the singular field we proposed is described in [9]. As for the
Stokesian Dynamics correction, since St(ez,−ez) only depend on one parameter (if the
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particles have the same radius), we proposed a method to approximate offline a, accurate
approximation of this singular field, as a function of the distance:

d→ St(ez,−ez) ≈ (u±1
2parts, p

±1
2parts)(d).

The approximation procedure is based on the decomposition of the flow on a vecto-
rial spherical harmonic basis. The coordinates of the pressure and velocity singular
fields in this basis only depend on one parameter (the distance) and can be accurately
approximated off-line using interpolation techniques.

This approximation at hand, decomposition (2.6) leads to the following approximation
of the solution to our three particles problem:

(u, p) = St(u?1,u?2,u?3) = (urel
2parts, p

rel
2parts) + (ureg, preg)

≈ u?1 − u?2
2 (u±1

2parts, p
±1
2parts)(d) + (ureg

h , preg
h ).

The singular field is computed using the offline approximation and ureg
h is the approxima-

tion of ureg solution to (2.5).

The method is tested in [9] for a cluster of 4 particles. We showed that it behaves
better than the Stokesian Dynamics correction. We also illustrated in [9] the efficiency
of the method to compute the displacement of the three-sphere swimmer of Najafi and
Golestanian (see chapter 5, figure 5.1), for which high hydrodynamic forces are generated,
due to the relative velocities of the spheres.

By proceeding in this way, we meet several of the needs expressed in the introduction:

• we have access to corrected velocity and pressure fields, taking into account the
lubrication phenomenon;

• the multi-particle character of the phenomenon is taken into account (a singularity
induces a correction on all particles);

• the method allows to deal with large hydrodynamic forces generated by micro-
swimmers.

On the other hand, the offline approximation of the coordinates of the singular fields
requires, as for the Stokesian Dynamics, to deal with a singular field depending only on
one parameter. It thus limits again the applications to mono-disperse suspensions.
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. Two particles in an infinite domain: an explicit asymptotic expansion [10,11]

To overcome this limitation, I proposed in [10] to use an explicit asymptotic expansion
of the solution for two particles in an infinite domain, valid for more general forms of
particles. Indeed, it is clear that in decomposition (2.6), it is not necessary to compute
the whole field (urel

2parts, p
rel
2parts): an asymptotic expansion of this field is sufficient to run

the method. In that case, the remaining regular part will then be part of (ureg, preg).

In [11], we propose with Flore Nabet a singular field (using
2parts, p

sing
2parts) for the 2 particle

problem and we prove that the remaining field is regular:

(urel
2parts, p

rel
2parts) = (using

2parts, p
sing
2parts) + (ureg

2parts, p
reg
2parts), (2.7)

with (ureg
2parts, p

reg
2parts) bounded independently of the distance. This singular field is an

adaptation of the asymptotic expansion proposed by Hillairet and Kelaï in [HK15]. It has
been modified to make it more tractable from a numerical point of view. Our estimations
for (ureg

2parts, p
reg
2parts) are based on the estimations proved in [HK15] which are used as an

intermediate result. The modifications we propose have two goals:

• Avoid too many oscillations in the singular field. Indeed, we will need to compute
precisely the right-hand side of (2.5) to solve the problem for (ureg, preg). Too many
oscillations makes this step of the method difficult. We modify the expression of
the singular field proposed in [HK15] in the gap between the particles to deal with
this problem.

• Reduce the computational cost and make it possible to parallelize the computation
of the right-hand side in case of multiple singularities. To do so, the velocity and
pressure fields are designed to cancel outside the gap between the particles, which
was not the case in [HK15]. In case of multi-particle simulations, each singularity
can then be computed independently and affects only the boundary condition on
the two particles concerned, making it possible to use parallelisation.

In order to assess the benefit of the singular/regular decomposition on the accuracy of
the numerical simulations, we consider again the two dimensional case of two spherical
particles for which the errors without correction was reported on figure 2.6. The asymp-
totic expansion of the solution can be computed in two dimensions, so that one can use
the decomposition method to compute the solution to the problem. We plot on figure 2.8
the errors we obtain using the decomposition method. To make the comparison easier,
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the errors obtained without correction are reproduced on the same graph. It can be seen
that the error now nearly no longer depends on the distance.
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Fig. 2.8: Absolute error with and without decomposition as a function of h for 3 different
distances for two spherical particles.

Of course, this implies a computational effort to compute accurately the right hand side
of problem (2.5) online. Indeed, we have to consider singular source terms on a coarse
mesh. To do so, one can for example consider the singular field as a continuous function
and use precise quadrature formula to compute the corresponding integrals. As this
method proved to be quite expensive, we chose to project the singular field on a fine mesh
(typically the one used for the computation of the reference solution) and to compute the
integrals using the fine mesh.

So let us now come back to our 3 particles toy problem. Decomposition (2.6) together
with the two particles asymptotic expansion (2.7) suggests the following singular/regular
decomposition of the flow:

(u, p) = St(u?1,u?2,u?3) = (using
2parts, p

sing
2parts) + (ureg,new, preg,new).

We proved in [11] that, using this singular field, the remaining field (ureg,new, preg,new) is
bounded independently of the distance. The techniques used in the proof are adapted
from those used in [HK15] for the two particle case. Note that, although the singular
field is non-zero only on the boundary of the two particles involved, it influences the
whole solution, through the solution of the non-local problem (2.5) for (ureg, preg).

The main difference with the method we proposed in [9] is that the singular field is
now reduced to the asymptotic expansion of the solution for the isolated pair of particles
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(instead of the whole solution, tabulated). The main advantage is that we have at our
disposal a formula for this asymptotic field, which is valid for various forms of particles
and any rigid movement. As a consequence, unlike the interpolation method in [9], this
new method should be used for much more general configurations than our toy problem.
Unfortunately, explicit computations of the singular field were carried to the end only for
the case of two spherical particles (with different radius) undergoing a relative motion of
translation along the axes joining their centers. We propose in [11] to take advantage of
these explicit computations in more general cases:

• In case of spherical particles undergoing a more general rigid relative motion, we
choose to neglect the lubrication effects due to tangential relative velocities or
rotations, which are in fact less singular than the normal translations. We then
consider the relative normal velocities of the two bodies at the contact point and
proceed as already detailed.

• In case of non-spherical particles, in order to take advantage of the previous
computations, we approximate the non-spherical boundaries by the osculating
circle at the contact point and proceed as in the previous case.

Using these approximations, one can now deal with more general shapes for the parti-
cles, undergoing general rigid movements. Note that in that case, due to the previous
approximations, the norm of (ureg, preg) now depends again on the distance but in a
less singular way than the original field (u, p). Several two dimensional tests are run in
[11]. In particular, we considered the configuration displayed on figure 2.9, composed
of three aligned non-spherical particles undergoing general rigid velocities. We choose
V1 = (1, 5), V2 = (−1,−2), V3 = (1.5,−5), w1 = 3, w2 = 5, w3 = 10, r2 = 1/20 and
the radius of the osculating circles at the contact points are r1 = 1/15 and r3 = (1.3)2/20.

B3B2B1

Fig. 2.9: Configuration for the 3 non-spherical particles. Particles, together with their osculating
circles at the contact point.
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The convergence of the method is illustrated on Figure 2.10. We can see that the two
previous simplifications did not prevent to catch the lubrication effects: the errors are
much less distance dependent when using the new method than when solving the initial
problem.
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Fig. 2.10: Absolute error in function of h for 3 aligned non-spherical particles undergoing general
rigid motions. The distance d between two neighbouring particles is varied.

The procedure can easily be extended to general three dimensional configurations with
N particles: we showed that one can simply add the singularities due to all pairs of close
particles in the singular field. Finally, compared to the tabulated singular field proposed
in [9], this method allows us to meet a new need expressed in the introduction:

• we can now take lubrication into account in numerical simulations of suspensions
for various shapes of particles (strictly convex close to the contact point).

• Note also that the asymptotic expansion in [HK15] is available for any boundary
condition u?i ∈ H1/2(∂Bi) satisfying the incompressibility condition

∫
∂Bi

u?i · n =
0. As a consequence, our method generalizes to non-rigid boundary conditions
and could be used for example to take lubrication into account in simulations of
deformable particles or bubbles for example.
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On-going work - Prospects

The method presented in this chapter allows us to take lubrication into account in
numerical simulations, meeting two needs arising from recent research on the rheology
of suspensions: capture the lubrication effects on the whole fluid flow and deal with the
case of non-spherical particles.

• The method was validated in [21] for two dimensional academic tests. The numeri-
cal tests were achieved using finite element direct method, based on a mesh fitting
the boundary of the particles. As for the three dimensional case, the simulations of
suspensions are particularly costly, and we are led to use fictitious domain methods.
This avoids remeshing at each time step. Some of these methods, based on the use
of Cartesian meshes, also allow the use of fast solvers. Following [21], we there-
fore worked with Fabien Vergnet (as part of a post-doctorate funded by the ANR
RheoSuNN) to adapt the method to the 3d fluid/particle solver CAFES [FG12]
which is based on a fictitious domain method. One of the main difficulties is to
define the singular field inside the particles. We have to take care that the remaining
u − using field is regular, including inside the particles. This work is ongoing, in
collaboration with Flore Nabet and Fabien Vergnet (who is now lecturer at the
LJLL).

• Including this method in three dimensional numerical computations will allow us
to perform new rheological studies, that cannot be achieved with the existing codes.
This is part of ANR RheoSuNN’s project which aims to design a code that meets the
current challenges in this domain. Indeed, the key point to make a breakthrough in
the understanding of some recently observed phenomena is to compute the velocity
and pressure fields in the whole fluid domain, modelling carefully the multi-body
lubrication and its feedback on the flow for general forms of particles. The method
described in this chapter meets these requirements. With Georges Gautier, from the
FAST laboratory and member of the ANR, we would like to recruit and co-supervise
a PhD student at the end of the project, in order to carry out new rheological
studies with the code resulting from the project.

• A longer term project would be to extend this decomposition method in order to
take into account lubrication in boundary element simulations (BEM methods).
Indeed, I had the opportunity to take part in the development of a BEM solver for
Stokes (see chapter 3). This kind of numerical method, discretizing precisely the
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boundary of the particles, can be of great help in the fine study of the lubrication
phenomenon between solids or in the simulation of rigid or elastic micro-swimmers.
A good consideration of lubrication in these simulations is essential to obtain
accurate results. It would therefore be interesting to think about an extension to
this new framework of the decomposition method presented in this chapter. In the
case of a Dirichlet to Neumann problem, the unknown in BEM formulations is the
local surface force exerted by the fluid on the particle boundary. The idea would
be to obtain an asymptotic expansion of this surface force field in the gap between
the particles. Then we can decompose the surface unknown in the same way as we
decomposed the fluid field in the case of a volume discretization. Note that a BEM
method coupled with a tabulation of the local force field was proposed in [ZI09].
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Expected applications of the results presented in this chapter:

• Rheology of suspensions: fast BEM solver for numerical simulation of suspensions. The
fine description of the boundaries allows a good consideration of close interactions
between solids.

• Micro-swimmers and active suspensions: Numerical computation of optimal strokes.
BEM is a good framework to simulate the deformation of elastic swimmers.
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As mentioned in the introduction, there is a great need for numerical simulation to better
understand the rheology of suspensions. This requires codes allowing the simulation of
many particles, possibly close to each other in the case of dense suspensions.

Existing numerical rheological studies are mostly based on the so-called "non-direct"
simulation methods. In that case, the flow is not resolved and the positions of the particles
are obtained by modelling the hydrodynamic forces acting on them. It is only recently
that direct methods, solving Stokes PDEs without adding any model, have been used to
simulate dense suspensions. In 2014, it was shown in [Gal+14b; Gal+14a] that current
computational resources allow the use of direct solvers to perform rheological studies. In
that work, the authors implement a fictitious domain method based on a finite difference
discretization. More recently, in [Yan+20], a boundary element method (BEM) has been
used to perform HPC simulations of dense suspensions composed of spherical particles.

It seems clear that numerical simulation of suspensions based on direct methods has
an important role to play in the better understanding of their behaviour. Until a few
years ago, I worked mainly with direct methods based on a three dimensional mesh of
the domain (think e.g. of finite element, finite difference or finite volume methods).
These methods can be divided into two classes. The first one is based on meshes fitting
the boundaries of the particles. In that case, the geometry is respected but it requires
remeshing of the fluid domain at time iteration. Although immense progress has been
made in recent years on remeshing techniques, these methods are still little used for the
study of suspension rheology. The second class of methods is based on a global mesh
of the whole fluid and solid domain, not fitting the boundary of the particles. These
methods have the advantage, for example, to avoid remeshing the fluid domain at each
time step and to allow the use of fast solvers in the case of a global Cartesian mesh.
One of their disadvantages is the difficulty to correctly take into account the geometry
of the particles, without losing accuracy when transferring the information from the
particles to the global mesh. Several strategies have been implemented to overcome this
difficulty (see e.g. [ALR05; FGM13; Wac+15]).

In 2015, Franck Pigeonneau (Saint-Gobain Recherche in 2015, now at CEMEF, Sophia
Antipolis, MINES ParisTech) and Antoine Sellier (LadHyX, Ecole Polytechnique) were
working with a boundary element solver to simulate bubbles in glass. They had a very
accurate BEM solver but it did not allow to take into account many particles. Compared
to fictitious domain solvers, one of the great advantages of BEM solvers is that they are
based on a two dimensional mesh of the particle boundary (see figure 3.1). The geometry
of the latter is thus accurately taken into account and the number of unknowns is limited.
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Fig. 3.1: Suspension of 100 ellipsoids in three dimensions. Example of two dimensional mesh of
the surface of the particles used in BEM simulations.

However, they had to face a well-known difficulty of BEM methods: the matrices of the
discrete system are full matrices and it is essential to design fast solvers to be able to
solve the problems when the number of unknowns increases (which is fatally the case
when the number of particles increases since the boundary of these particles is meshed).
To meet the needs of Saint-Gobain Research, they were looking for a fluid solver that was
able to deal with many entities in the fluid.

At the same time, at CMAP, François Alouges and Matthieu Aussal were working on a
fast solver (the SCSD) to solve Helmoltz and Maxwell’s equations using BEM. We had in
mind to extend this fast solver to the Stokes equations. Our objective was to use the BEM
solver for the numerical simulation of suspensions and micro-swimmers at low Reynolds
number. From the point of view of the simulation of dense suspensions (whether rigid
particles or bubbles), I think for example that the accurate meshing of the geometry in
BEM methods, could make it possible to better take into account and understand the
phenomena of lubrication when the particles are close.

We therefore set up project with Saint Gobain whose objective was to test the interest
and efficiency of the SCSD for the simulation of moving entities (rigid or not) in a Stokes
fluid.
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We obviously had to face the two usual difficulties of Boundary Element Methods: the
implementation of fast solvers to compute the solution of the full system, but also
the computation of singular integrals involved in the coefficients of the matrices. To
solve these two problems, François Alouges and Matthieu Aussal had developed new
methods for Helmoltz equations. Their work naturally extended to Maxwell equations
thanks to formulations based on Helmoltz kernel (see e.g. [BCS02] for such a formula-
tion). In [11,12], we further extended their methods to deal with Stokes problem. The
main difficulty was that, unlike Helmoltz kernel which is radial, Stokes kernel is entirely
three-dimensional. One consequence is that the techniques developed for Helmoltz
problem did not generalize directly to Stokes problem.

Finally, it should be noted that the numerical simulation of suspensions has some
features that are not usual in many applications of BEM (compared for example to the
Helmoltz and Maxwell domains of application). Indeed, we must keep in mind in the
following that:

• The domain over which we have to solve the equations changes at each time
step. This is very different for example from the study of the diffraction of a wave
on a given solid, for which we want to vary the incident direction on the solid.
Indeed, in that case, the domain is fixed and so is the matrix to be inverted: the
problem amounts to inverting the same matrix for many different second members.
In the case of suspensions, the fluid domain changes at each time step and so does
the matrix to be inverted. Thus, the pre-processing of the matrix that is needed
to obtain a fast matrix/vector product must be redone at each iteration. As a
consequence, the computational time needed for this pre-processing step should be
optimized.

• The domain consists of several solids that may be close to each other and for
which the distance is not controlled. Thus, the mesh of the boundary is made
of several distinct connected surfaces and the points of two of these surfaces may
be arbitrarily close. This remark is of great importance in the design of a method
approximating the singular integrals. Again, this is specific to the fact that we
consider several moving entities.

In the following, I begin with an introduction to Boundary Element Methods for the
readers that are not used to these methods. Then, for each of the two difficulties
encountered (designing a fast solver and computing singular integrals), I present the
problems that arise and the methods developed by François Alouges and Matthieu Aussal
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to solve them in the case of Helmoltz and Maxwell equations. Finally, I explain how we
adapted these methods to Stokes equations.

3.1 Introduction to Boundary Element Methods (BEM)

To better understand the issues at hand, we present in this section the main features of
Boundary Element Methods. In order to make the presentation easier to read, we focus
on the three dimensional Laplace problem and say a word about Stokes problem at the
end of the section. I refer to [Bon99] for an introduction to boundary element methods
and to [Poz92] for a reference book on boundary element methods for Stokes equation.

. Green’s functions

The free-space Green’s function of a given linear partial differential equation problem, may
also appear in the literature under the name of fundamental solution. It is the solution to
the corresponding distribution equation with a source at point x. Thus, Laplace Green’s
function, also known as Newton kernel or Newton potential, is solution to the following
distribution equation:

−4yG(x,y) = δx(y).

If T (x,y) · n(y) is the corresponding flux in direction n(y) at point y we have

G(x,y) = 1
4π|x− y| , (3.1)

T (x,y) · n(y) = ∇yG(x,y) · n(y) = (x− y) · n(y)
4π|x− y|3 .

Kernel G is also called the single layer potential while T is the double-layer potential.

. Boundary integral representation

Suppose u is solution to Laplace equation outside a domain Ω:

−4u = 0 in R3 \ Ω.
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If Γ is the boundary of Ω, we have the following boundary integral representation of u:

∀x ∈ (R3 \ Ω) \ Γ, u(x) =
∫

Γ
T (x,y) · n(y)u(y)dy−

∫
Γ
G(x,y)∂u

∂n(y) dy, (3.2)

∀x ∈ Γ, u(x)
2 =

∫
Γ
T (x,y) · n(y)u(y)dy−

∫
Γ
G(x,y)∂u

∂n(y) dy,

where n is the exterior normal to Ω and ∂u
∂n = ∇u · n.

From the first equation, we see that u is known everywhere in R3 \Ω as soon as u together
with ∂u

∂n are known on the boundary Γ. The values of u and ∂u
∂n on the boundary can be

determined from the second equation together with boundary conditions on Γ.

Suppose for example one wants to solve the exterior Dirichlet to Neumann problem:

−4u = 0 in R3 \ Ω,

u = u0 on Γ,

with decreasing properties at infinity and u0 ∈ H1/2(Γ). In that case, u is known on the
boundary Γ and we can compute ∂u

∂n on Γ solving the following boundary equation:

∀x ∈ Γ,
∫

Γ
G(x,y)∂u

∂n(y) dy =
∫

Γ
T (x,y) · n(y)u0(y)dy− u0(x)

2 . (3.3)

Equation (3.3) is called the boundary integral equation and has to be understood as an
equality in H1/2(Γ). This equation is specific to the Dirichlet to Neumann problem: there
exists many integral equations, depending on the problem one wants to solve and the
prescribed boundary conditions.

. Boundary element method

Let us now explain how the Boundary Element Method works. It is based on finite element
discretizations of boundary integral equations. To describe the method, we focus on the
Laplace Dirichlet to Neumann problem and the boundary integral equation (3.3).

Finite element discretization

The boundary Γ is discretized using a surface mesh Γh where h is the size of the elements
constituting the mesh. In the following we consider flat triangles elements (see figure 3.2)
but other kind of elements can be chosen (e.g. quadratic triangles). The unknown
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Fig. 3.2: Surface of an ellipsoid: mesh composed of flat triangular elements.

λ = ∂u
∂n ∈ H

−1/2(Γ) as well as the boundary condition u0 ∈ H1/2(Γ) are discretized using
Lagrange finite elements spaces Vh and Wh on this mesh:

λh =
Ndof∑
j=1

λjφj , u0
h =

NBC∑
j=1

u0
jψj , (3.4)

where (φj)j=1...Ndof (resp. (ψj)j=1...NBC ) is the finite element basis of Vh (resp. Wh).
The number of degrees of freedom Ndof is the dimension of the space Vh to which the
unknown λh belongs.

The boundary integral equation (3.3) is discretized as: find λh ∈ Vh such that

∫
Γh
G(x,y)λh(y) dy =

∫
Γh
T (x,y) · n(y)u0

h(y)dy− u0
h(x)
2 , (3.5)

"for all x ∈ Γ" in a sense that remains to be specified.

Collocation method.

To solve the discrete boundary integral equation (3.5) for x ∈ Γ one can use the so-called
collocation method. It consists in choosing collocation points (xi)i to evaluate the equation.
In order to obtain as many equations as there are unknowns, we have to choose Ndof

collocation points (xi)i=1...Ndof . Most often, the degrees of freedom of the Lagrange
finite elements are used. The method is then to solve the following Ndof equations: find
λh ∈ Vh such that

∀i = 1 . . . Ndof ,

∫
Γh
G(xi,y)λh(y) dy =

∫
Γh
T (xi,y) · n(y)u0

h(y)dy− u0
h(xi)

2 .
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This can be rewritten, using decomposition (3.4): find (λj)j=1...Ndof such that

∀i = 1 . . . Ndof ,

Ndof∑
j=1

(∫
Γh
G(xi,y)φj(y) dy

)
λj =

NBC∑
j=1

(∫
Γh
T (xi,y) · n(y)ψj(y)dy

)
u0
j −

1
2

NBC∑
j=1

ψj(xi)u0
j .

This in turn can be rewritten as the following matrix problem: find λ ∈ RNdof such that

Scλ = DcU0 − 1
2I

cU0, (3.6)

where λ = (λj)j ∈ RNdof , U0 = (u0
j )j ∈ RNBC and the matrices Sc, Dc and Ic are given

by

Scij =
∫

Γh
G(xi,y)φj(y) dy, 1 ≤ i, j ≤ Ndof , (3.7)

Dc
ij =

∫
Γh
T (xi,y) · n(y)ψj(y)dy 1 ≤ i ≤ Ndof , 1 ≤ j ≤ NBC ,

Icij = ψj(xi) 1 ≤ i ≤ Ndof , 1 ≤ j ≤ NBC .

Note that the matrix Sc is dense and non symmetric. In general a direct solver is used to
solve the system.

Variational method.

The second method to solve (3.3) is to consider the equality in H1/2(Γ) in a variational
framework: find λ = ∂u

∂n ∈ H
−1/2(Γ) such that

∀v ∈ H−1/2(Γ),
∫

Γ

(∫
Γ
G(x,y)λ(y) dy

)
v(x)dx =∫

Γ

(∫
Γ
T (x,y) · n(y)u0(y)dy

)
v(x)dx−

∫
Γ

u0(x)
2 v(x)dx.

Then, approximating λ and v in Vh and u0 in Wh, the corresponding discrete problem
writes, with evident notations: find λy ∈ Vh such that

∀vh ∈ Vh,
∫

Γ

(∫
Γ
G(x,y)λh(y) dy

)
vh(x)dx =∫

Γ

(∫
Γ
T (x,y) · n(y)u0

h(y)dy
)
vh(x)dx−

∫
Γ

u0
h(x)
2 vh(x)dx.
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Finally, decomposing on the basis (φj)j=1...Ndof (resp. (ψj)j=1...NBC ) of Vh (resp. Wh) the
problem becomes: find λ ∈ RNdof such that

∀v ∈RNdof ,
∑
i,j

(∫
Γ

∫
Γ
G(x,y)φi(x)φj(y) dydx

)
viλj =

∑
i,j

(∫
Γ

∫
Γ
T (x,y) · n(y)φi(x)ψj(y) dydx

)
viu

0
j −

1
2
∑
i,j

(∫
Γ
φi(x)ψj(x)dx

)
viu

0
j ,

which can be rewritten using matrices as

∀v ∈ RNdof , vTSvλ = vTDvU0 − 1
2vT IvU0,

where the matrices Sv, Dv and Iv are given by

Svij =
∫

Γh

∫
Γh
G(x,y)φj(y)φi(x) dydx, 1 ≤ i, j ≤ Ndof , (3.8)

Dv
ij =

∫
Γh

∫
Γh
T (x,y) · n(y)ψj(y)φi(x) dydx 1 ≤ i ≤ Ndof , 1 ≤ j ≤ NBC ,

Ivij =
∫

Γh
φi(x)ψj(x) dx, 1 ≤ i ≤ Ndof , 1 ≤ j ≤ NBC .

The problem is finally equivalent to solving the following linear system:

Svλ = DvU0 − 1
2I

vU0. (3.9)

Again, the matrix Sv we obtained in this variational framework is full. However, it is
now symmetric, which allows the use of non-direct iterative solvers. Note that Dv and Iv

are also symmetric (and square) if one uses the same basis to discretize H1/2 and H−1/2

(e.g. P 1 finite elements). Moreover, in this variational framework, theoretical results of
convergence can be obtained when the size of the triangles of the mesh goes to zero.

The two main difficulties in implementing BEM methods.

• The first difficulty in solving BEM problems is that it comes down to solving dense
systems. A direct resolution based on a factorization of the matrix would cost
O(N3

dof ) and require the storage of the matrix. This is impossible for large values of
Ndof . An iterative resolution reduces the cost to O(N2

dof ) and avoids the storage of
the matrix. However, it remains too slow for large values of Ndof . There is therefore
a great need to design fast algorithms to solve such systems. This problem will be
addressed in the next section 3.2.
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• The second difficulty is the computation of the matrix itself. Indeed, its coefficients
are obtained from integrals which are singular when x and y are close. The
approximation of these singular integrals is a difficult problem and it is essential,
in order to obtain accurate results, to develop adapted methods. We will deal with
this problem in section 3.3.

. Extension to Stokes’ problem

Let us come back for a moment to Stokes’ problem. The implementation of a BEM method
for this problem is similar to the one presented for the Laplace problem. The main (and
important!) difference is that it consists in four equations, for which the unknown is a set
of four scalars fields. The free-space Stokes problem writes

−µ4u +∇p = f ,

∇ · u = 0,

where the velocity u and the force f are both in R3 while the pressure p is in R. This
leads to three fundamental solutions (one for each of the three directions of the force):

−µ4yuj(x,y) + ∇ypj(x,y) = δx(y)ej ,

∇ · uj(x,y) = 0.

The solution writes

uj(x,y) = Gj(x,y)/8πµ, pj(x,y) = Πj(x,y)/8π,

where Gj(·, ·) = (Gij(·, ·))i=1...3 : R3 × R3 → R3 and Πi(·, ·) : R3 × R3 → R. The Stokes
kernel G = (Gij)ij , also called Stokeslet, can be seen as a 3× 3 matrix given by:

Gij(x,y) = δij
|x− y| + (xi − yj)(xj − yj)

|x− y|3 , 1 ≤ i, j ≤ 3. (3.10)

The corresponding pressure is Πj(x,y) = 2 xj
|x− y|3

, 1 ≤ j ≤ 3.

We define Tj(x,y) = σ1(Gj ,Πj) ∈ R3×3 where σµ(v, q) = µ(∇v + ∇Tv) − qId is the
stress tensor for viscosity µ.
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We have Tj(x,y) = [Tijk(x,y)]i,k=1...3

Tijk(x,y) = −6(xi − yi)(xj − yj)(xk − yk)
|x− y|5 , 1 ≤ i, j, k ≤ 3. (3.11)

The tensor T = (Tijk)ijk is called the Stresslet.

The boundary integral representation (3.2) as well as the integral equation (3.3) can be
generalized to Stokes’ problem using the Stokeslet and Stresslet tensors (see [Poz92] for
details about BEM for Stokes).

The natural Neumann boundary term in the case of Stokes equations is λ = σµ(u, p)n(y) ∈[
H−1/2(Γ)

]3
. This one plays for Stokes problem the role of ∂u

∂n for Laplace problem. Con-
sider (u, p), solution to Stokes equations outside a domain Ω. The boundary integral
representation (3.2) generalizes to Stokes problem: the velocity and pressure fields are
known everywhere outside Ω, as soon as u , together with λ are known on its boundary.

So suppose now that one wants to solve the exterior Stokes Dirichlet to Neumann
problem:

−µ4u +∇p = 0 in R3 \ Ω,

∇ · u = 0 in R3 \ Ω,

u = u0 on Γ,

with decreasing properties at infinity and where u0 ∈ (H1/2(Γ))3. The solution is known
everywhere provided λ = σ(u, p)n(y) is known on Γ. The corresponding vector boundary

equation now writes: find λ ∈
[
H−1/2(Γ)

]3
, such that

∀j = 1 . . . 3,∀x ∈ Γ, 1
8πµ

∫
Γ

∑
1≤i≤3

Gij(x,y)λi(y) dy = (3.12)

1
8π

∫
Γ

∑
1≤i,k≤3

u0
i (y)Tijk(x,y)nk(y)dy−

u0
j (x)
2 .

Note that, a priori, due to the vector nature of the problem, the second integral is only
defined in the sense of Cauchy principal values. The discretization using finite elements
on Γ follows the same lines as for the Laplace problem. Here, each coordinate λi of
λ must be discretized on Γ while equation (3.12) provides three equations on Γ. As a
consequence, the corresponding vector problem for Stokes equations can be seen as a
3× 3 block problem.
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3.2 First challenge: fast resolution of dense systems. The
Sparse Cardinal Sine Decomposition method (SCSD)
adapted to Stokes.

In this section, we focus on the resolution of the variational system (3.9) using an iterative
algorithm. As already said, matrix Sv (3.8) is full and one needs to design fast algorithms
to solve the system. I first present the general idea on which fast algorithms for this type
of system are based. I then describe the method on which the one we propose for the
Stokes kernel is based: the Sparse Cardinal Sine Decomposition (SCSD). This method
was designed by François Alouges and Matthieu Aussal for radial kernels. I finally explain
how we have extended it to Stokes kernels.

. Separation of variables

Let us consider a generic scalar kernel K (think for example to Laplace kernel G (3.1), or
to one of the coefficients Gij of the Stokeslet (3.10)). As far as an iterative algorithm
is used to solve the linear system, one needs to design a fast algorithm to compute the
matrix-vector product V = Svλ ∈ RNdof :

∀m = 1 . . . Ndof , Vm =
Ndof∑
j=1

(∫
Γh

∫
Γh
K(x,y)φj(y)φm(x)dydx

)
λj .

Consider a quadrature formula (xk, wk)k=1...Nint where (xk)k=1...Nint is the set of integra-
tion points on Γh and w = (wk)k=1...Nint the corresponding weights. The problem comes
down to the computation of Ṽ approximating V where

∀m = 1 . . . Ndof , Ṽm =
Ndof∑
j=1

Nint∑
k=1

Nint∑
l=1

wkwlK(xk,xl)φj(xl)φm(xk)

λj .
This can again be re-written as

Ṽ = Φ′w K Φw λ,

where Φw = (wlφj(xl))lj is the Nint ×Ndof integration matrix, and K = (K(xk,xl))kl is
a Nint ×Nint matrix. Matrix Φw being sparse, the computation of Ṽ requires only one
full matrix-vector product (by matrix K).

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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We are thus finally led to design a fast algorithm for the computation of g = Kf :

∀k, gk =
∑
l

K(xk,xl)fl, (3.13)

where f = (fl)l is given. Note that, the kernels we consider only depend on x − y:
K(x,y) = K(x− y). Consequently, g is the discrete convolution of f by kernel K. This
discrete convolution product requires a priori O(N2) operations to be computed.

The fast algorithms designed to achieve this computation are based on a common idea:
the separation of variables (together with hierarchical computations). The point of
separating the variables is easy to understand if we consider the kernel K(x,y) =
K(x− y) = |x− y|2. In that case, one can separate the variables writing

K(xk − xl) = |xk − xl|2 = |xk|2 − 2xk · xl + |xl|2. (3.14)

The corresponding discrete convolution product writes

∀k, gk =
∑
l

K(xk − xl)fl = |xk|2
∑
l

fl − 2xk ·
∑
l

xlfl +
∑
l

|xl|2fl

and can be computed in O(N) iterations instead of O(N2).

Then, the challenge to design fast BEM algorithm is to obtain counterparts of (3.14),
separating the variables x and y for the considered kernel (Laplace, Stokes...).

Before going further, let us say a word about the hierarchical matrix method (H-matrix
method). This kind of acceleration method has been successfully used to deal with
integral equations. It is based on a sum of low rank matrices (algebraic counterpart
of the separation of variables) for which the matrix-product vector is particularly fast.
As a consequence, this method is very efficient in the case of multi right-members
computations, for which a single factorization is needed before performing many matrix-
vector products. However, the computation of the factorization in low-rank matrices is
quite expensive. Let us recall that, in case of numerical simulation of suspensions, the
domain changes at each time step and the factorization must be recalculated each time.
As a consequence, the H-matrix method does not seem to be suited for our application.

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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. The Fast Multipole Method (FMM)

Let us describe the classical and well-known Fast Multipole Method. It was developed
about 40 years ago in order to realize fast matrix-vector products for full matrices resulting
from BEM discretizations. It gave rise to a large amount of research since then. The
method takes advantage of the "smoothness" in the kernel due to the distance: the mesh
is subdivised in panels and nearby panels are clustered to compute their contributions to
distant point panels. The method is accelerated using a hierarchical decomposition of the
mesh.

Let us first describe the idea behind the mono-level FMM. Consider C1 and C2 two parts
of the boundary with Mi center of Ci. When M1 is sufficiently far from M2, the idea is
to find an approximation of kernel K of the following type:

K(x− y) ≈
∑
q

F̃ q(M1x)T q(M2M1)F q(M2y), ∀x ∈ C1, y ∈ C2. (3.15)

This formula can be understood as follows: first, F q carries the information from y to M2,
then, T ensures the transfer of this information from M2 to M1 and finally, F̃ q spreads
the information form M1 to x. Doing so, the variables x and y are separated.

Suppose now that we do have such a formula and denote by ICm the set of indices l for
which xl is in Cm: ICm = {l,xl ∈ Cm}. The term in the matrix-vector product resulting
from the interaction between C1 and C2 can then be computed as

∀k ∈ IC1 , gC2
k :=

∑
l∈IC2

K(xk − xl)fldy

≈
∑
q

F̃ q(M2xk)T q(M1M2)

 ∑
l∈IC2

F q(M1xl)fl

 .
As expected, the variables are separated (see figure 3.3).

The mono-level Multipole Method consists in decomposing the mesh into cells (Cm)m∈{1...M},
to compute the interactions between each pair of cells and aggregate all the results to
obtain (gk)k. Close interactions are computed exactly. To estimate the contributions of
distant cells, the computations are driven as follows: choose a cell C2, compute the sum(∑

l∈IC2
F q(M1xl)fl

)
that do not depend on xk and then, for all cells C far from C2,

compute (gC2
k )k∈IC using the previous approximation formula. Doing so, we obtain an

algorithm much faster than O(N2).

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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Fig. 3.3: Without FMM (left) and variable separation with FMM (right).

The Fast Multiple Method (FMM) is based on this procedure, which is accelerated using a
"divide and conquer" like algorithm through a hierarchical decomposition of the mesh.
This provides an overall method with complexity O(Nlog(N)). Developed about 40 years
ago, the FMM method has given rise to a great amount of research since then, leading to
great expertise in the field. It should be noted that it is based on formula (3.15), which
must be derived independently for each kernel. First described in [GR88b; GR88a] for
the Laplace kernel, the method was extended to Helmoltz/Maxwell problem in [CRW93].
Note also that involved numerical implementation are customary when programming
FMM methods.

. The Sparse Cardinal Sine Decomposition (SCSD) for radial kernels [Alouges,
Aussal]

A new method to deal with radial kernels has been proposed in [AA15] by François
Alouges and Matthieu Aussal. Suppose that K is decomposed as

K(x) =
M∑
q=1

αqe
ix·ξq . (3.16)

Then, from the definition of (gk)k (3.13), we obtain

∀k, gk =
N∑
l=1

K(xk − xl)fl =
M∑
q=1

eixk·ξq

[
αq

(
N∑
l=1

e−ixl·ξqfl

)]
. (3.17)

Note that here, we have taken advantage of the properties of the convolution product
in Fourier space to separate the variables. Indeed, the definition of (gk)k can be seen as
a discrete counterpart of g = K ? f . Then, from equation (3.16), the (αq)q can be seen
as a discrete Fourier transform of K and finally, equation (3.17) can be understood as a
discrete counterpart of ĝ = K̂ ? f = K̂f̂ .

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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Finally, we see that, to design a fast method, one can try to decompose K as in (3.16),
with M as small as possible.

Following the previous remark, the first idea is to use a discrete Fourier transform of
(K(xk))k to obtain (3.16) and then FFT algorithms to compute the matrix-vector product.
To do so, K being known on Γ, it first has to be projected on a regular 3D grid and the
algorithm can be summarized as

(3.18)

Kgrid ← (K(xk))k, fgrid ← (f(xl))l (Interpolation from Γ to the regular grid)

ggrid = IFFT( FFT(Kgrid) FFT(fgrid) ) (FFT on the regular grid)

(gk)k ← ggrid (Interpolation from the regular grid to Γ)

Again, the separation of variables, together with the hierarchical nature of the FFT
algorithm provides a fast algorithm. As with the FMM algorithm, close interactions must
be corrected to be accurate. Unlike FMM, this new algorithm does not depend on the
kernel since the decomposition is performed by the FFT. Moreover, its implementation
is easier than that of FMM, provided one has a FFT algorithm at hand. On the other
hand, one of the difficulties comes from the 3D interpolation step: as K is singular, one
may need very fine interpolation grids in order to obtain a good accuracy. This may
lead to large values of M in decomposition (3.16), which deteriorates the speed of the
algorithm.

F. Alouges and M. Aussal proposed in [AA15] to exploit the rotational invariance of the
kernels they considered (Helmoltz, Maxwell or Laplace) to obtain a precise decompo-
sition (3.16) with small M . This new method allows, the precision and the distance
for close interactions being given, to choose the smallest M and the best coefficients
α = (αq)q, and points ξ = (ξq)q in (3.16). This improves the speed of the algorithm
while controlling the precision. As the (ξq)q do not form a regular grid, one now need to
use Non Uniform FFT (NUFFT) and the algorithm writes:

(α, ξ) = SCSD(K) (Computation of α, ξ)

(gk)k = INUFFTξ(αNUFFTξ(f) ) (NUFFT on the grid ξ)

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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To choose α and ξ, the authors in [AA15] start by writing K as the inverse Fourier
transform of its Fourier transform K̂:

K(x) = 1
(2π)3

∫
R3
K̂(ξ)eix·ξdξ. (3.19)

The idea is then to find a precise quadrature formula on R3 adapted to the radial kernel
and involving a number of points as small as possible. The two steps of the procedure
are:

1. The authors first note that, if K(x) = sinc(|x|) = sin(|x|)
|x| , K̂(x) = 1

4πδS2 and one
has

K(x) = sinc(|x|) = 1
4π(2π)3

∫
S2
eix·ξdξ ≈

M∑
q=1

ωqe
ix·ξq ,

where (ωq, ξq)q is a quadrature formula on S2. In that case, the integration domain
is reduced to S2 which limits the number of points needed.

2. Then, if the kernel is radialK(x) = K(|x|), so is its Fourier transform K̂(ξ) = K̂(|ξ|)
and one has:

K(x) = 1
(2π)3

∫
R3
K̂(ξ)eix·ξdξ

= 1
(2π)3

∫
R

∫
S2
K̂(λξ̃)eix·λξ̃λ2dλdξ̃

= 1
(2π)3

∫
R
K̂(λ)λ2

(∫
S2
eix·λξ̃dξ̃

)
dλ

= 4π
∫
R

sinc(λ|x|) K̂(λ)λ2dλ

≈
∑
p

βpsinc(λp|x|)

where (βp, λp)p is a one dimensional quadrature formula for the weighted integral.

The key point of the method is then to choose the quadrature formula(βp, λp)p in step 2 in
order to optimize both the error and the number of points. Then, putting together steps 1
and 2 provides a discretization for (3.19) and one finally obtain coefficients α = (αq)q,
and points ξ = (ξq)q for (3.16). The corresponding points ξ = (ξq)q are distributed
on concentric spheres, the radii (λp)p of these spheres are optimized for the considered
kernel, in order to minimize the error.

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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The grid for the decomposition (3.16) is not uniform and is adapted to the rotational
invariance of K. It results in a very precise approximation of the Kernel, since it comes
from an adapted 1 dimensional quadrature formula in the radial variable. The Cardinal
Sine Decomposition (step 2) is Sparse, in the sense that the number of points M is chosen
as small as possible to ensure a given tolerance for the error. This, together with the use
of Non-Uniform FFT, provides a fast algorithm for radial kernels. The method is quite
simple to implement and only depend on the kernel through the knowledge of its Fourier
transform.

To finish, note that the decomposition is achieved in such a way that (3.16) uniformly
holds. To do so, the number of points in this decomposition depends on two parameters.
First, the number of points chosen for the quadrature on S2 in step 1 depends on the
radius Rmax of the largest sphere in the final decomposition, which itself depends on
the size of the domain. Then, the cardinal sine decomposition in step 2 converges very
slowly when |x| is small (similarly to the decomposition of 1 in sine functions). Then, the
number of points in this decomposition depends on Rmin which is the minimal radius
for which the interactions between two points will be treated using SCSD (for smaller
distances, classical but non fast computations are implemented). The radius Rmin is thus
chosen in order to obtain a compromise between the computation time (and storage) of
the close interactions and the number of points of the sparse decomposition.

. SCSD adapted to Stokes kernel [12, 13]

In [12, 13], we extended the SCSD algorithm to Stokes kernel. Let us first recall that
Stokes problem is a vector problem in 3d. For example, the Stokeslet can be described by
9 scalar kernels in 3d: G = (Gij)1≤i,j≤3 (3.10). A straightforward approach to design
fast algorithms for the Stokes kernel is to use the existing fast algorithms on each of
these scalar kernels. For example, one can use this approach to extend the FFT fast
algorithm (3.18) to the Stokeslet. Unfortunately, this will lead to a total of 18 FFTs and
IFFTs which is inefficient. In [Wan+06], the authors propose an alternative scheme,
requiring 6 FFTs and IFFTs to achieve the matrix-vector product.

Concerning FFM and SCSD, the methods do not extend straightforwardly to Stokes
problem. Indeed, FMM is highly kernel dependent and SCSD is restricted to radial kernels.
To overcome this difficulty, the idea is to rewrite the kernels as sums and/or derivatives
of kernels for which the methods are available. For example, fast FMM algorithms for the
Stokes kernel, based on harmonic or biharmonic FMMs has been developed. In [TG08],
the authors present a new decomposition for which harmonic FMMs can be used as

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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"black-boxes" to compute the matrix-product vector. The method leads to 4 harmonic
FMM calls with twice the initial number of sources for both the Stokeslet and the Stresslet
(the algorithm is then optimized so that the cost is approximately that of three FMM calls
with the initial number of sources).

In the same spirit, we proposed and tested in [12, 13] an extension of the SCSD to
Stokes kernels. The idea is to decompose the kernels in sums and/or derivatives of radial
kernels, for which the SCSD method can be applied. For example, one can decompose
the Stokeslet (3.10) as:

G(x) = G1(x) + G2(x)

= 2 Id
|x| +

(x⊗ x
|x|3 −

Id
|x|

)
.

First, G1 being radial, we can apply the SCSD technique to compute the corresponding
matrix-vector product. Concerning G2, we remark that it is the Hessian matrix of the
radial function g2 : x 7→ −|x|. Achieving the SCSD of g2 and differentiating twice its
SCSD decomposition yields an approximation of G2. The matrix-product vector for the
Stokeslet then reduces to two SCSD decompositions and two NUFFT and INUFFT calls.
In a similar fashion, the Cartesian components of the Stresslet are written as sums and
derivatives of radial functions, leading to 2 SCSD decompositions and 4 NUFFT and
INUFFT calls.

In [12], academic computational examples permit us to compare the SCSD method
against a usual direct BEM solver in terms of both accuracy and convergence. For
example, solving a Dirichlet to Neumann problem on the mesh of an ellipsoid (as plotted
on Figure 3.2), we show that for a sufficiently small tolerance, the SCSD has the same
order of convergence for the error (versus the size of the mesh) than the direct BEM
method. Moreover, the CPU time is shown to behave as O(N log(N)), while, as expected,
it behaves as O(N2) for the direct BEM method. The results are plotted on Figure 3.4.

3.2 First challenge: fast resolution of dense systems. The Sparse
Cardinal Sine Decomposition method (SCSD) adapted to Stokes.
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(a) CPU time (b) Error

Fig. 3.4: Error and CPU time for the Dirichlet to Neumann problem for a given tolerance ε. BEM
with ε = 10−3 (+) or ε = 10−4 (×) and SCSD for ε = 10−3 (�) and ε = 10−4 (◦).
Functions N log(N) (dashed line) and N (solid line for error) or N2 (solid line for CPU
time) are also plotted.

3.3 Second challenge: Singular and near-singular integrals
for the Stokes kernel. A semi-analytic method.

Let us now focus on the computation of the coefficients of matrices Sc and Sv involved in
collocation (3.7) and variational (3.8) discretizations. The integrals to be computed to
solve the problem are

IK(x) =
∫

Γ
K(x− y)φ(y)dy, for x ∈ Γ,

where K is a kernel which is singular when y tends to x. Note that, in case of a variational
approximation, only the internal singular integral in (3.8) is treated, the external integral
being calculated by means of Gauss points.

If we consider applications involving only one solid (e.g. submarine, plane...), the surface
Γ is made of one connected region. Suppose now we want to simulate the dynamics of
particles or drops that can approach each other. In that case, the surface Γ is made of N
connected regions Γn, 1 ≤ n ≤ N : Γ = ∪n=1..NΓn, each particle/bubble corresponding to

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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one of these connected region. We suppose that each connected region Γn is sufficiently
regular. We then need to compute the integrals

IKn (x) =
∫

Γn
K(x− y)φ(y)dy for x ∈ Γ, n = 1 . . . N.

One can then face two possibilities (see figure 3.5. For better readability, this figure and
the following ones refer to two-dimensional problems, the generalization to 3d problems
is straightforward.):

• Singular integral. In case x ∈ Γn, the corresponding integral is singular.

• Near singular integral. In case x ∈ Γm for m different from n, the integral is no
more singular. However, if x is close to Γn, the high variations of the kernel close
to x make it difficult to compute the integral. It is therefore necessary to develop
specific strategies to obtain accurate estimations. Such near-singular integrals arise
when the two surfaces Γn and Γm are close to each other.

Γn

x

(a) Singular integral: x ∈ Γn

Γn

x Γm

(b) Near-singular integral: x /∈ Γn,
dist(x, Γn)� 1

Fig. 3.5: Integral on a connected component Γn of the boundary.

Singular integrals is known to be a difficult problem in BEM formulations. To simulate the
dynamics of suspensions, it also becomes essential to calculate precisely the numerous
near-singular integrals while maintaining the performance of fast solvers.

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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. Description of the problem.

The singularities encountered for Stokes problem are similar to those involved in Laplace
problem. Indeed, when y→ x,

Gij(x− y) = δij
|x− y| + (xi − yi)(xj − yj)

|x− y|3 = O

( 1
|x− y|

)
Tij(x− y)n(y) = −6(xi − yi)(xj − yj)

|x− y|5 (x− y) · n(y) = O

( 1
|x− y|3 (x− y) · n(y)

)

Case of singular integrals (x ∈ Γn): the single-layer potential G.

The singular integrals related to the single-layer potential are converging singular in-
tegrals. Indeed, let x ∈ Γn be given and let us consider I(x) =

∫
Γn 1/|x − y|dy. If the

surface is regular, there exists a diffeomorphism sending the Γ-neighbourhood of x onto
B2(0, 1), where B2(0, 1) is the two-dimensional ball of radius 1 and centered at (0, 0).
Then, studying the convergence of I(x) amounts to studying the convergence of the 2
dimensional integral

∫
B2(0,1) 1/|y|dy. Using a polar change of coordinates, we have

∫
B2(0,1)

1
|y|dy =

∫ 2π

0

∫ 1

0

1
ρ
ρdρdθ < +∞, (3.20)

which proves that the integral is converging.

Case of singular integrals (x ∈ Γn): the double-layer potential T .

In general, the integrals involving the double layer potential in vector problems has to be
understood in the Cauchy principle value sense. In case of Stokes double layer kernel, one
can factor the term (x− y) · n(y) into the integrand (which in not the case in general).
We show in the following that this makes the corresponding integral more regular than
expected.

Let us suppose that Γn is sufficiently regular (which is the case for suspensions if we
consider regular rigid particles). Consider (x,y) the arc on Γn joining x and y (see
figure 3.6). There exists ξ ∈ (x,y) such that y− x = |y− x|τ(ξ) where τ(ξ) is tangent
to the arc at point ξ. Using the fact that τ(y) · n(y) = 0 together with the regularity of
the surface we write:

(y− x) · n(y) = |y− x| τ(ξ) · n(y) = |y− x| (τ(ξ)− τ(y)) · n(y) = O(|x− y|2).

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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Fig. 3.6: Regularization of the second-layer potential. Notation.

From these computations we obtain that

Tij(x− y)n(y) ∼
y→x

Cx
|x− y| ,

when y tends to x. Finally, if Γn is sufficiently regular, Tij is singular as 1/|x − y| and
then, as before, the corresponding integral converges.

Case of singular integrals (x ∈ Γn): regularization of the second-layer potential.

We show in the following that the integral involving the second-layer potential can be
regularized.

To do so, let us first compute
∫

Γn Tij(x−y)n(y)dy when Γn is a closed connected surface
and x ∈ Γn. We consider the Stokes problem associated to the punctual source δxei.
Then, the map y→ Tij(x− y)n(y)dy for y ∈ Γn is the corresponding local force exerted
on the surface by the fluid located on the side of n. Let us now consider a ball centered
at point x ∈ Γn with radius ε. The surface of the ball inside Γn is denoted by Sε. We also
denote by Γε, the trace of the ball on Γn (see figure 3.7).

x ε

Sε

Γε

Γn

Fig. 3.7: Computation of
∫

Γn
Tij(x− y)n(y)dy. Notation.

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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Since we proved that the integral converges, we have∫
Γn
Tij(x− y)n(y)dy = lim

ε→0

∫
Γn\Γε

Tij(x− y)n(y)dy.

Using the fact that x is not inside (Γn \Γε)∪Sε, we know that the global force exerted on
this surface by the fluid located on the side of n is zero:

∫
(Γn\Γε)∪Sε Tij(x−y)n(y)dy = 0.

This gives ∫
Γn
Tij(x− y)n(y)dy = − lim

ε→0

∫
Sε
Tij(x− y)n(y)dy

= 6 lim
ε→0

∫
Sε

(xi − yi)(xj − yj)(x− y) · n(y)
|x− y|5 .

Using the fact that |y− x| = ε and y− x = εn(y) on Sε, and supposing that the surface
is regular at point x, we finally obtain

∫
Γn
Tij(x− y)n(y)dy = 6 lim

ε→0

∫
Sε

ε3ninjn(y) · n(y)
ε5

= 6
ε2

lim
ε→0

∫
Sε
ninj = 4πδij .

Using this result, we can now proceed to the regularization of the second-layer integral.
For any test function φ, we rewrite the corresponding singular integral as∫

Γn
Tij(x− y)n(y)φ(y)dy =

∫
Γn
Tij(x− y)n(y)(φ(y)− φ(x))dy + φ(x)

4π δij .

Since Tij(x−y)n(y) ∼ Cx
|x−y| for y→ x, the integral in the right-hand side is now regular

and can be computed using Gauss quadrature. This method is called the singularity
subtraction method.

Case of near singular integrals (x /∈ Γn and dist(x,Γn) small)

Let us first consider the double-layer potential T . In case x /∈ Γn, the term (x− y) · n(y)
in the integrand do not allow anymore to reduce the singularity and T now behaves as
1/|x− y|2 when y is close to x. Using the singularity subtraction method, we can reduce
this singularity to 1/|x− y|. As a consequence, both G and T behave as 1/|x− y| when
x is close to Γn. Although these integrals are not singular (x /∈ Γn), their high variations
in the neighborhood of x make it essential to set up specific methods to compute them
accurately.

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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Summary.

x ∈ Γn x /∈ Γn and dist(x,Γn) small
Singular integral Near-singular integral

Gij Tij Gij Tij

O(1/|x− y|) O(1/|x− y|) O(1/|x− y|) O(1/|x− y|2)

Singularity Singularity
subtraction subtraction

↪→ O(1) ↪→ O(1/|x− y|)

↪→ singular ↪→ regular ↪→ Near singular
but converging

Approximation via Classical quadrature Approximation via
specific methods specific methods

The question is now to find a way to compute the remaining singular and near-singular
integrals as accurately as possible.

. Approximation of the singular and near-singular integrals.

Approximation of the singular integrals: a well documented problem.

The calculation of singular integrals has been the subject of much research since Cruse’s
original work [Cru69] and many efficient methods have been developed. Suppose that
x ∈ Γn and that Γn,h is a discretization of Γn into elements τ . If K is a singular kernel
and φ a finite element basis function (constant, linear or polynomial with higher degree)
the corresponding singular integral can be approximated by∫

Γn
K(x− y)φ(y)dy ≈

∫
Γn,h

K(x− y)φ(y)dy =
∑

τ∈Γn,h

∫
τ
K(x− y)φ(y)dy.

The problem then comes back to evaluate the integrals over the elements τ . The integral
is singular if τ is the element that contains x. It is also necessary to pay attention to its
computation for the elements τ that do not contain x but are close to it.

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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Several methods have been proposed to evaluate these local integrals. Some of them
are based on an adequate change of variable: as in (3.20), using polar (or more subtle)
coordinates make the integrand regular. It can then be evaluated by classical quadrature.
Another group of methods consists in proposing a new quadrature formula, adapted to
the singularity. One can also compute analytically the integrals, for specific singularities,
geometries and test functions φ. We refer to [RC92; HS94; Bon99; SS11] and references
therein for an overview of the available methods. These methods for singular integrals
are known to be quite cumbersome to implement. Moreover, to make the changes of
variable or analytical computations work, they are in general restricted to the case where
τ is the element that contains x or one of its neighbours (see figure 3.8).

Γn

x

Fig. 3.8: Computation of a singular integral on Γn: corrections are achieved on the element τ
that contains x and adjacent elements (red solid line).

Case of near singular integrals: an active domain of research

As we have just seen, the specific techniques developed for the singular case do not
extend to the general case x /∈ Γn. However, some elements of Γn are close to x and
require specific treatments to be computed accurately (see figure 3.9).

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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Γn

x

η

Fig. 3.9: Computation of a near-singular integral on Γn: the close elements require specific
treatments to be computed accurately (red solid line, dist(x, τ) ≤ η).

Developing methods to compute accurate estimations of near-singular integrals is an
active domain of research. If some efficient methods have been developed in 2 dimensions
(see e.g. [HO08; BWV15]), the 3 dimensional case remains delicate. To illustrate the
difficulty of the problem, I mention here three classes of methods that have been proposed
(the list is not exhaustive, see the cited articles and references therein for an overview of
the problem):

• First, some numerical approximation methods have been developed to estimate
near-singular integrals (see e.g. [YBZ06; KT14]). Although accurate, these meth-
ods require a specific numerical work for each singular point (quadrature, grid,
expansion of the kernel...) and their cost increase rapidly if too many near-singular
integrals have to be computed. Moreover, the techniques developed are not adapted
to be integrated in fast BEM solvers. In [KT16], the authors propose a very ac-
curate numerical approximation and an accelerated implementation in case of
spheroidal bodies is detailed. Very recently, more general fast algorithms for quadra-
ture methods in three dimensions have been proposed (see e.g. [WK19; ZV21;
MRZ21]).

• Another interesting class of methods to estimate the near singular integrals is the so-
called semi-analytic methods. The "semi-analytic" term refers to the fact that, in case
of variational approximation, only the internal integral in (3.8) is approximated
by an analytical calculation, the external integral being then calculated by means
of Gauss points. Such a semi-analytic method was proposed in [BYW16] for
harmonic kernels and has been recently extended to Stokes Kernels in [TB19;

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.
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Bea20]. These semi-analytic methods are based on a decomposition of the integral
in a numerical approximation using a global gaussian quadrature and a correcting
term that is computed analytically. Doing so, the overall method do not require
specific treatments near the singularities and do not increase the complexity of
fast solvers. The correction term highly depends on the local geometry close to
the singularity (tangent vectors, surface gradient and laplacian of scalar functions,
surface divergence of a vector function, mean curvature...). The authors describe
how to compute all the needed quantities when a local Monge parameterization of
the surface is known close to the singularity.

• Note that a fully analytic method has also been proposed in [LS12]: the whole
double integrals (3.8) arising in the variational method are explicitly computed
in the specific case of flat triangular elements, coplanar or in parallel planes, and
constant test functions. This last method can then be used for non neighboring
triangles but in a specific geometrical configuration.

. A semi-analytic method for both singular and near-singular integrals.

In the following I describe the method we have set up to deal with singular and near-
singular integrals for Stokes equations. This method belongs to the class of semi-analytical
methods which is particularly adapted to the simulations of suspensions. Indeed, com-
pared to numerical approximations, the analytical computation of the singular terms
allows to take into account more easily both singular and near-singular integrals. This
is essential to deal with close particles. Moreover, these methods are based on a first
classical computation of the integrals followed by a sparse correction. Consequently, we
will see that they have the great advantage of being easy to couple with fast solvers.

The semi-analytical method on which we rely was developed by François Alouges and
Matthieu Aussal for Maxwell and Helmoltz equations. While in [TB19; Bea20], the semi-
analytical correction was achieved at the continuous level, the analytical computations
proposed by François Alouges and Matthieu Aussal are performed for a mesh composed
of flat triangles and for low order finite elements. Although the method is restricted to
specific discretizations, it has the advantage of leading to simple and easily implementable
expressions, whatever the geometry of the particle.

In what follows, I first describe the method developed by François Alouges and Matthieu
Aussal and then explain how we extended it to the Stokes kernel. These works have not
been published yet.

3.3 Second challenge: Singular and near-singular integrals for the Stokes
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A new semi-analytic method. [Alouges, Aussal]

In this method, all connected components of the boundary Γ are treated together: we
want to evaluate integrals ∫

Γ
K(x− y)φ(y)dy,

where K is a singular kernel and φ a finite element basis function. If Γh is a discretization
of Γ into elements τ , these integrals are approximated by∫

Γ
K(x− y)φ(y)dy ≈

∫
Γh
K(x− y)φ(y)dy =

∑
τ∈Γh

∫
τ
K(x− y)φ(y)dy.

Suppose that a classical quadrature formula (yp, ωp)p=1...P is chosen in a reference triangle
and extended to any triangle τ : (yτp , ωτp )p=1...P . Then François Alouges and Matthieu
Aussal proposed to approximate the integral as follows:

∫
Γ
K(x− y)φ(y)dy ≈

∑
τ∈Γh

∑
p

ωτpK(x− yτp)φ(yτp)

+
∑
τ ∈ Γh

d(x, τ) ≤ η

[∫
τ
K(x− y)φ(y)dy−

∑
p

ωτpK(x− yτp)φ(yτp)
]
.

The whole integral is first computed numerically and then, for each element close to
the singular point x, the quadrature approximation is replaced by the exact value of the
corresponding integral (which must be computed analytically). From an analytical point
of view, this formula can then be rewritten as the sum of two terms: classical quadratures
for triangles far from point x and exact integrals for triangles close to this point.

However, from an implementation point of view, it is important to consider the formula
as it is presented here: first, a classical quadrature formula is performed on all triangles
of the mesh and then the values on the triangles close to the singularity point are
corrected.

The reason for doing this is that, in this way, the first term corresponds to the usual full
matrix/vector product in BEM: it can be computed using existing fast solvers, without
taking the singularity into account. Any modification in this term (removal of triangles,
local modification of integration points...) may lead to a loss of efficiency of the code
and require the modification of existing fast solvers. On the other hand, the second
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term (correction term) is sparse and therefore has no impact on the efficiency of the
method in terms of computation time. Note also that, although this correction may seem
numerically inaccurate due to possible rounding errors, experience shows that it does not
affect the accuracy of the method.

Finally, it should be noted that the correction is calculated regardless whether x is in the
same connected component as τ or not (see figure 3.10). Doing so, both singular and
near-singular integrals are taken into account in the same way.

x

η

Fig. 3.10: Semi-analytical correction. Point x being given, the correction is achieved for all close
elements (red solid line, dist(x, τ) ≤ η): both singular and near-singular integrals are
taken into account.

This method is easy to implement and, being based on a mesh discretization, it does
not require fine knowledge on the geometry of Γ. It is also flexible in the sense that the
correction may take into account only a part of the kernel (e.g. its singular part). For
example, the knowledge of the explicit correction for the Laplace kernel 1/r can be used
to correct the Helmoltz/Maxwell kernel eikr/r. In the same way, the correction term may
not take into account the entire test function. For example, in case of a P 1 finite element
discretization, the test function in τ can be written φ(y) = a+ b · (y− x) with a ∈ R and
b ∈ R3. In that case, the constant term a generates a larger singularity than the term
proportional to y− x: one can choose to correct only this part of the integral.
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Exact computations for the Laplace Kernel.

The method can be applied to a kernel K provided one can compute analytically the
integrals ∫

τ
K(x− y)φ(y)dy,

where τ is an element of the mesh, φ is a test function and x is an arbitrary point close to
τ (but not necessarily belonging to τ).

Let us consider the single and double layer Laplace Kernels:

G(x, y) = 1
4πr and T (x, y) = 1

4π ∇y

(1
r

)
· n(y),

where r = y− x and r = |r| = |y − x|.

Exact computations for these kernels has already been carried out but are not easy to find
in the literature. In the following, we show how to calculate them in the case of finite
element approximations P 0 and P 1 on flat triangles (see e.g. [New86] for similar
computations for quadrilateral elements). As already mentioned, the integrals calculated
in the Laplace case also allow to deal with Helmoltz and Maxwell kernels. Moreover, they
will be useful to extend the method to Stokes kernel. This extension will be described in
a second step.

Let’s start by listing the singular integrals that need to be calculated.

First of all, the point x being given, we recall that any finite element function P 1 in τ can
be written φ(y) = a + b · (y − x) with a ∈ R and b ∈ R3. Therefore, we can deal with
both P 0 and P 1 finite elements provided we calculate the singular integrals for the two
test functions φ0 = 1 and φ1 = y− x = r.

Moreover, consider the case of kernel T and the affine test function φ1. Recalling that τ
is supposed to be a flat triangle we see that r ·n is constant in τ and we set δ := r ·n (see
figure 3.11).

x

τδ

n

Fig. 3.11: Analytical computations. Notation.
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Then, we can write∫
τ

(T (r) · n) r =
∫
τ

(∇yG(r) · n) r =
∫
τ

(
G′(r)∇yr · n

)
r =

∫
τ
G′(r)r

r
· n r

= δ

∫
τ
∇yG(r)dy = δ

∫
τ
∇y

(1
r

)
dy.

So one finally needs to compute analytically the following integrals:

test function φ0 = 1 φ1 = r

Kernel G I1(x) =
∫
τ

1
r
dy I2(x) =

∫
τ

r
r
dy

Kernel T I0(x) =
∫
τ
∇y

(1
r

)
· n(y) dy I3(x) =

∫
τ
∇y

(1
r

)
dy

To compute these integrals, the first step is to compute I0. Then, the three other integrals
are expressed as sums of I0(x) and boundary terms which can easily be integrated
analytically.

• Computation of I0(x). To compute I0, let us first recall that I0(x) = 4π
∫
τ T (r) ·

n(y). Then, let us recall that, by definition, T (r) · n(y) corresponds to the nat-
ural boundary condition of the studied PDE (for example, the normal flux for
Laplace equation). Now, consider the tetrahedron T with base τ and vertex x (see
figure 3.12 for notation).

Using the fact that 4yG = 0 in T \B(x, ε) and integrating by part we have

0 =
∫
T \B(x,ε)

4y

(
−1
r

)
=
∫
∂{T \B(x,ε)}

∇y

(
−1
r

)
· n(y).

Then, we note that ∇y
(

1
r

)
· n = 0 on ∂ {T \B(x, ε)}, except on τ and Sε. This,

together with r · n = −r on Sε, gives:

I0(x) =
∫
τ
∇y

(
−1
r

)
· n(y) = −

∫
Sε
∇y

(
−1
r

)
· n(y) =

∫
Sε

1
r2 = 1

ε2

∫
Sε
dσ = ω,

where ω is the solid angle of τ viewed from point x.
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x

τ
δ

n

ε

n

n

ν

ν

T

Sε

Fig. 3.12: Analytical computation of I0(x). Notation.

• Computation of I1(x), I2(x) and I3(x). The idea is to rewrite the integrand as the
sum of the tangential derivative of a given function (in the plane containing τ) and
a rest:

1
r

= 4y,2d r −
(n · r)2

r3 ,

r
r

= ∇yr = ∇y,2d r +
(∫

τ
∇yr · n

)
n,

∇y

(1
r

)
= ∇y,2d

(1
r

)
+
(∫

τ
∇y

(1
r

)
· n
)

n,

where the subscript "2d" denotes derivatives tangent to τ . The integral on τ of the
tangential derivative is then integrated by part which leads to boundary terms that
can be analytically computed. The remaining terms can be expressed as functions
of I0(x). As already mentioned, these calculations are known but difficult to find in
the literature. We refer again to [New86] for similar computations in the case of
quadrangular elements. In order to limit the technical aspects of the manuscript,
I have chosen not to details further the computations for the Laplace kernel. The
techniques are very similar to those we used to extend the method to Stokes kernel.
The latter constitute the original contribution of our work and are detailed in the
following.

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.

81



Extension to Stokes single-layer potential and constant test functions [Alouges,
Aussal, Lefebvre-Lepot].

With François Alouges and Matthieu Aussal we extended the previous method to Stokes
single layer kernel G = (Gij)ij defined in equation (3.10), page 58. Note that the
treatment of the single layer singularity is sufficient in two cases we have in mind, for
which the double layer T (3.11) does not appear in the formulations:

• Simulation of a unique body in an infinite Stokes flow [12]. In that case, since there
is only one particle, there are no near singular integrals to deal with. The singular
integrals for the double layer can be regularized using the singularity subtraction
method. Therefore, it is sufficient to treat the singular integrals related to G.

• Computation of the resistance matrix for several rigid bodies such as in suspensions
[13]. In that case, close rigid bodies can interact and both singular and near-
singular integrals have to be taken into account. For example in [13], we consider
the behaviour of a solid particle close to a wall so that a precise computation
of the near-singular integrals is needed (see figure 3.13). The resistance matrix
provides the forces, the velocities being known and is computed by solving some
Dirichlet to Neumann problems. The corresponding boundary integral formulation
only requires the inversion of G (see the corresponding integral equation (3.12)).
Moreover, the term involving the second layer potential at the right-hand side
vanishes, due to the fact that one considers rigid given velocities. Therefore, in this
case, it is sufficient to treat the singular and near-singular integrals related to G.

Fig. 3.13: Ellipsoidal particle close to the boundary of a cylinder [13].

As far as G is concerned, the integrals to be computed are
∫
τ

G(r)φ(y)dy ∈ R3 where φ

is a vectorial P 1 finite-element test function. Since G behaves as 1/|x− y|, the singular

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.

82



part of these integrals are due to the constant term a in φ where φ(y) = a + B(y− x).
We therefore choose to restrict the correction to this leading term and we refer to this in
the following as the P 0 correction for P 1 test functions. It had been checked numerically
that it was sufficient for the Laplace kernel.

So finally we need to compute analytically
∫
τ

G(r)dy, where G is the Stokes single layer

kernel. To do so, we express this integral as a sum of boundary terms and of singular
integrals already computed for the Laplace kernel. From expression (3.10) for G, we first
write ∫

τ
G(r) = 2

∫
τ

Id
r
−
∫
τ

(
Id
r
− x⊗ x

r3

)
= 2I1(x) Id−

∫
τ
∇2

y(r),

so that it remains to compute I4(x) =
∫
τ ∇2

y(r). We proceed as for the Laplace kernel:
we write ∇2

y(r) = ∇y (r/r) and the gradient is decomposed into a tangential and normal
part. The tangential part is integrated by parts on τ . If ν denotes the exterior normal to
the edges of τ (in the plane containing τ , see figure 3.12), we obtain:

I4(x) =
∫
τ
∇y

(r
r

)
=
∫
τ
∇y,2d

(r
r

)
+
∫
τ

n⊗
[
∇y

(r
r

)
n
]

=
∫
∂τ
ν ⊗ r

r
+
∫
τ

n⊗
[
∇y

(r
r

)
n
]

=
∫
∂τ
ν ⊗ r

r
+
∫
τ

n⊗
[n
r
− r · n r

r3

]
=
∫
∂τ
ν ⊗ r

r
+
∫
τ

n⊗ n
r
−
∫
τ

r · n n⊗ r
r3

Using the fact that n is constant on τ , that r · n = h on τ and that ν is constant on each
edge of τ we finally have

I4(x) =
∑
a∈∂τ

νa ⊗
∫
a

r
r

+ n⊗ n I1(x)− hn⊗ I3(x)

and the boundary integrals can be computed exactly.

In [13], the regularization we propose has been tested on the configuration described in
figure 3.13, for different distances between the spheroid and the boundary of the cylinder.
In particular, we check that the near-singular integrals are well taken into account when
the distance is small. To do so, the method is validated in the case a spherical particle:
the results are in nice agreement with the literature (see Figure 3.14). Moreover, for
small distances, we can observe the decrease of the falling velocity when the particle is
very close to the wall, sign of the effects of lubrication.
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Fig. 3.14: Settling velocity of a spherical particle in a cylinder, as a function of the distance b to
the center of the cylinder. In white circles, the results from [TPG92]. In black, our
results, using the semi-analytical regularization we proposed.

The method is then used in [13] to investigate the settling motion of a spheroid in a fluid
confined by a cylindrical tube. For volume-equivalent and equal-density spheroids the
computed settling motion is found to deeply depend not only upon the particle center of
volume location but also upon the particle orientation and slenderness ratio.

Let me finish this section with comments about the method:

• The computations are adapted to mesh discretization based on flat triangles. As a
consequence, it cannot be used to deal with singular integrals in BEM codes based
on different surface discretizations (think for example to quadrilateral or curved
elements). However, it provides an easily implementable method for those who
make the choice flat triangle panels for the discretization.

• The corrections are computed for constant test functions. First, note that this is
not a limitation since the full P 1 correction could be achieved by writing the
corresponding integrand G(r)r as a sum of∇3r3 and other terms already computed.
However, as already said, since G behaves as 1/|x − y|, the P 0 correction for P 1

test functions may be sufficient from a numerical point of view. It has been checked
that, for the Laplace kernel and P 1 test functions, taking the non-constant part
of the test function into account did not improve the convergence. Concerning
Stokes kernel, we tested the convergence for P 1 test functions and P 0 correction.
To do so, we considered an ellipsoid in an infinite domain. Suppose that (u0, p0) is
the (explicitly known) fundamental solution to the Stokes problem for a punctual

3.3 Second challenge: Singular and near-singular integrals for the Stokes
kernel. A semi-analytic method.

84



source term inside the ellipsoid. Then, (u0, σ(u0, p0)) satisfies on the boundary Γ
of the ellipsoid the following integral representation:

∀j = 1 . . . 3, ∀x ∈ Γ, u0
j (x) = 1

4π

∫
Γ

∑
i,k

u0
i (y)Tijk(x,y)nk(y)dy

− 1
4πµ

∫
Γ

∑
i

Gij(x,y)σ(u0, p0)(y) dy.

We computed numerically the right-hand side of this equality for a P 1 discretization
and plotted the L2(Γ) error with u0 when the size h of the mesh decrease. The

Fig. 3.15: Convergence for the Integral representation. Mesh of the ellipsoid for 1 000 vertices
(left) and error versus the size of the elements h (right) for different regularizations of
the integrals: no regularization (blue), singular integrals for G (red), singular integrals
for G and singularity subtraction for T (black).

numerical results on figure 3.15 show that, correcting both T with the singularity
subtraction method and G with the P 0 semi-analytic method for the singular
integrals, we obtain an O(h2) convergence.

• The corrections are computed for the single-layer potential. In view of the applications
we have in mind, this is, in my opinion, the main limitation of the current compu-
tations. For example, in case of numerical simulations of suspensions, the double
layer potential is part of the boundary integral formulation. As the particles may
be close to each other, it is essential to deal with both the corresponding singular
and near-singular integrals. However, we have seen that, while the singularity
subtraction method is sufficient to regularize singular integrals, this is not the case
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for near-singular integrals. It is therefore essential to develop a method to deal
with the singularities related to the double layer potential.

To solve this problem, let us see how we can extend the semi-analytical method we
proposed. In the case of a P 0-correction, it leads to the analytical computation of the
integrals

∫
τ [Tj(x,y)n(y)] dy ∈ R3, where Tj is defined in (3.11), page 59. To do

this, we can for example follow the computations achieved to compute I0(x) for the
Laplace Kernel (see figure 3.12). We recall that Tj(x,y)n(y) = σ1(Gj ,Πj)n(y) ∈
R3 where σ1 is the stress tensor for viscosity µ = 1 and (Gj ,Πj) is the solution to
the Stokes problem with µ = 1 and the source term δx(y)ej (see again page 59).
Integrating by part Stokes equation on the tetrahedron T and following the same
computations as for I0(x) we obtain∫

τ
[Tj(x,y)n(y)] dy = −

∫
Sε

[Tj(x,y)n(y)] dy.

Using the fact that r · n = r = ε on Sε, we have that Tjn =
(rirj
ε4

)
i=1...3

on Sε

and we finally obtain∫
τ

[Tj(x,y)n(y)]i dy = − 1
ε4

∫
Sε

rirj = −
∫
S1

rirj .

Unfortunately, unlike the radial case, this last integral cannot be easily calculated
(we recall that S1 is the part of the sphere defining the solid angle of τ viewed from
point x). The integral being regular, a solution could be to approach it numerically
using a classical quadrature method.
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On-going work - Prospects

• We currently have at hand a BEM code taking advantage of the implementation
of the SCSD for Stokes and dealing with singular integrals for the corresponding
single layer. With François Alouges and Antoine Sellier, we are currently testing
the code’s ability to perform numerical simulation of suspensions composed of
rigid particles. We first tested its behaviour on the case of two close ellipsoids by
calculating the corresponding resistance matrices. We checked that the results were
comparable to those obtained with Antoine Sellier’s very accurate BEM code (direct
solver, collocation discretization and P2 finite elements). We also investigated the
behaviour of the code for a cluster of 100 particles whose density was varied (see
figure 3.16). For the different configurations, we solved a Dirichlet to Neumann

Fig. 3.16: Configurations involving 100 particles. The parameter β measures the minimal dis-
tance dmin between the particles: for β = 0, dmin = 0.12421 (left), for β = 0.5,
dmin = 0.96323 (center) and for β = 1, dmin = 1.7874 (right). The length of the axes
of the ellipsoids is in [0.5, 2].

problem and studied both CPU time and convergence (see figure 3.17). It has to
be emphasized that for this Dirichlet to Neumann problem, the CPU time as well
as the error depend little on the distance between the particles. The code, thanks
to a precise discretization of the surface and to the semi-analytical treatment of
singular integrals, allows a good consideration of close interactions for the studied
configurations. These first results are very encouraging on the relevance of the
numerical approach for the study of the rheology of suspensions.

• As already mentioned, to go further in the numerical simulation of suspension, it
becomes essential to improve the treatment of near-singular integrals. Indeed,
near-singular integrals has to be considered as soon as two particles are close to
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Fig. 3.17: Configurations involving 100 particles. Dirichlet to Neumann problem, with Stokeslet
sources inside the particles. CPU time versus the number of degrees of freedom (left)
and L2 error versus the size of the discretization elements (right).

each other. It will be essential in the future to deal with the case of singularities
arising from Stokes double layer potential, which is not done in the current code.
There are several options for doing this. Among these, it would be interesting to
try to extend the semi-analytical method we have implemented for the single layer
potential.

• It would be interesting to develop, as for FMM, a multi-level implementation of
the SCSD fast algorithm, based on a decomposition of the mesh into cells. The
current implementation corresponds to a single-level implementation. Its cost is
related to both the minimum distance Rmin below which a direct calculation is
chosen and the maximum distance in the domain Rmax. In case of a multi-level
implementation, each pair of cells corresponds to a different pair (Rmin, Rmax).
One option would be to perform as many SCSD decompositions as there are pairs
(Rmin, Rmax). Then the interactions between each pair of cells could be computed
using the appropriate decomposition.

• As proposed in chapter 2, extending the singular/regular decomposition method
to BEM solvers could be of great interest to better take into account lubrication in
the simulations.

• To finish, a very motivating application of BEM methods is the simulation of low
Reynolds number swimmers or active suspensions. This domain of application
is discussed in chapter 5.
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suspensions for spherical and non-spherical particles.
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As mentioned in the introduction, the consideration of contacts and more particularly
of friction is essential to obtain behaviour close to experiments in numerical simu-
lation of suspensions. Moreover, the simulation of dry granular materials is also of
great interest: as for suspensions, numerical simulation still has much to contribute to
the understanding of their rheology. The models and numerical schemes developed in
the dry granular framework are reusable in the framework of simulation of suspensions
(through the coupling of the contact algorithms with a fluid-particle solver).

The first method to model the contacts between grains is the so-called Discrete Element
Method (DEM), (which is also found in the literature under the name of Molecular
Dynamics (MD)). It dates back to 1979 with the work of Cundall and Strack [CS79].
The contact is taken into account through a repulsive force which becomes very large as
the grains approach each other. The method consists of computing the explicit contact
forces and solving the ordinary differential equations resulting from the fundamental
principle of dynamics (see [Lud08] for a detailed description). It has been very successful
and has the advantage of being easy to implement. One of its main drawbacks is its
computational cost: due to the stiffness of the forces, it requires the use of small time
steps when solving the differential equation. Various refined contact force models have
been developed, which allow an accurate physical description of contact phenomena
(see for example [Cor+21] for a list of about 40 possible contact models). These models
involve a large number of parameters and the method is therefore subject to a delicate
calibration step. A parallel implementation of the method has been achieved, for example,
in the code Grains3D, where various shapes of particles can be considered [Wac+12;
RW18; Rak+19]).

Another class of methods is the so-called Non-Smooth Contact Dynamics (NSCD)
method, developed by Moreau and Jean in the1990s. It is limited to the main features
of the contact, such as the non-overlapping of the grains, without further refinement.
We refer to the seminal papers [Mor88; JM92; Mor99; Jea99] for a detailed description.
These models fall into the framework of non-smooth convex analysis (see the work of
Jean-Jacques Moreau in the 1970s [Mor66; Mor70]). This provides a solid theoretical
basis, allowing a fine study of their properties as well as of the corresponding numeri-
cal schemes. The contact forces are implicit, deduced from the Lagrange multipliers
associated with the non-interpenetration constraints. This solves the difficulty due to
the rigidity of the forces and makes it possible to obtain stable and efficient algorithms,
supporting large time steps. This type of method has been implemented for example in
the LMGC code [DJ06; DR14].
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(a) DEM/MD methods.

Distance ≥ 0

(b) NSCD methods.

Fig. 4.1: Contact modelling.

B. Maury proposed in [Mau06] an NSCD-like algorithm for frictionless contacts. It is
based on a constrained optimisation problem to be solved at each time step. During my
PhD thesis, I extended this model into a so-called viscous contact model in order to model
lubrication between the grains. I implemented the frictionless and viscous models, which
led to the code SCoPI (Simulation of Collection of Particles in Interaction).

In what follows, I first describe the algorithm that was proposed in [Mau06] and which is
the starting point of the work presented in this chapter. I then detail the convergence
result that we obtained for this scheme with Frédéric Bernicot [15]. Then, I show how,
with Sylvain Faure, we have improved the code SCoPI to make it an efficient tool, adapted
to rheological studies of granular materials. The resulting code has led to collaborations
with Benoît Semin, now at the PMMH laboratory of ESPCI [14], and Philippe Gondret
and Antoine Seguin of the FAST laboratory in Orsay [16].

Finally, I present a recent on-going work, initiated in the framework of Hugo Martin’s
thesis on dry granular flows, supervised by Anne Mangeney (IPGP) and Yvon Maday
(LJLL). With Bertrand Maury, we participated to the development of a stable algorithm
for frictional contacts. The idea driving this work is to follow the frictionless case and
to design an algorithm based on a single resolution, at each time step, of a convex
optimization problem.
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4.1 Non Smooth Contact Dynamics for frictionless contacts

. A toy problem

For the sake of simplicity, I present the models and algorithms in the case of a single
spherical particle located above an inclined plane Π (see figure 4.2). The normal to

•
C?

×c

•
C

n

Π

D

v

Fig. 4.2: Toy problem. Notation.

the plane, oriented upwards is denoted by n. The rigid sphere has given fixed radius
r > 0, mass m > 0 and moment of inertia J . The center of sphere is denoted by c ∈ R3,
and its instantaneous velocity by v ∈ R3. Since the grain is spherical and the contact is
frictionless, we shall not follow its orientation and angular velocity.

We denote by C the point on the surface of the sphere which realizes the minimal
distance and C? its projection on plane Π (with C = C? if the sphere is in contact with
the plane).

The signed distance between the sphere and the plane is defined by :

D(c) = | (c−C?) | − r,

so that the non-overlapping condition writes D ≥ 0.

Since there is no friction, the contact force f exerted on the sphere at point C is collinear
to n:

f = fnn where fn ∈ R.
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. Normal contact modelling: a unilateral constraint

The specificity of the Contact Dynamics models lies in the fact that they explicitly express
that the two bodies cannot interpenetrate. This means that the distance D must remain
non negative so that the set of admissible configurations is:

Q =
{
c ∈ R3, D(c) ≥ 0

}
.

This implies that the normal force fnn is a repulsive force at contact: fn ≥ 0. Moreover,
the contact force must vanish as soon as the contact is broken. This can be expressed by
the equality Dfn = 0 which implies that fn cannot be active (i.e. it has to vanish) as long
as the distance is not zero. These conditions are known as the Signorini conditions:

D(c) ≥ 0, fn ≥ 0, D(c) fn = 0.

We will see later that the force fn can be seen as the Lagrange multiplier associated
to the constraint D ≥ 0. The last equality in Signorini conditions then translates the
corresponding complementarity condition.

When two rigid bodies come into contact, expressing the Signorini condition is not
sufficient to determine the motion. Indeed, if the reaction fn must be positive, no
information is given on its value. The model lacks an impact law, relating the normal
impact velocity before contact to the velocity after contact.

Let us denote in the following PC the orthogonal projection on a given set C, and w+

(resp. w−) the right-sided (resp. left-sided) limit of a given function w.

One can for example write the inelastic contact law as:

v+ = PCcv− where Cc =
{
v ∈ R3, ∇D(c) · v ≥ 0 if D(c) = 0

}
. (4.1)

The set Cc is the so-called set of admissible velocities. It reflects the fact that, to avoid
overlaps, the distance must increase as soon as it vanishes. Since ∇D(c) = n, any
admissible speed satisfies n · v+ ≥ 0. The particle being spherical, we obtain that the
relative normal velocity at point C must be positive after contact: n · v+

C ≥ 0. Moreover,
due to the projection step, we finally have that it cancels after the contact, modelling as
desired an inelastic contact.

Let us note, at this point of the discussion, that the velocity of the particle is likely to
be non-smooth. In particular, the post-collisional velocity v+ can be different from the
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pre-collisional velocity v−. This raises the question of the meaning to be given to the
different equations stated. To deal with the discontinuous character of the velocity, the
space to consider is the space of functions with bounded variations. This allows to define
the velocities before and after contact time. In that case, the force fn is an impulse
at contact time and, since the distance is continuous, the Signorini conditions can be
understood in the sense of distributions or even in the sense of measures.

So we can now state the equations of dynamics, driven by the fundamental principle of
dynamics. We consider that no external torque is exerted on the grains. f ext ∈ R3 is the ex-
ternal force exerted on the particle and we define the mass matrix asM = diag (m,m,m) .
The equations of motion writes, in the sense of distributions or measures:

ċ = v, (4.2)

M
dv
dt

= f ext + fnn, (4.3)

D(c) ≥ 0, fn ≥ 0, D(c) fn = 0, (4.4)

v+ = PCcv−. (4.5)

4.2 A convex scheme for frictionless contacts

. A natural time stepping discretization, leading to a convex optimization prob-
lem

We denote the time step by ∆t, by ck ∈ R3 the center of particle at time k∆t and by
vk ∈ R3 the velocity at step k. The scheme is based on a Euler discretization to compute
the position at time k + 1:

ck+1 = ck + ∆tvk+1.

To compute vk+1, the founding algorithms [JM92; Jea99] discretize the set of admissible
velocities Cc (4.1) using the corresponding discrete constraint

∇D(ck) · vk+1 ≥ 0 if D(ck) ≤ 0.

Doing so, the constraint is implicit in the velocity unknown. However, if D(ck) > 0,
vk+1 is not constrained and the time discretization can make D(ck+1) = D(ck + ∆tvk+1)
strictly negative so that the particle overlaps the plane. To avoid this situation, a Taylor
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expansion of the constraint is used in [Mau06] where the author defines the discrete set
of constraints as

K =
{
v ∈ R3, D(ck) + ∆t∇D(ck) · v ≥ 0

}
. (4.6)

In that case, the constraint is implicit again and one has

D(ck+1) = D(ck) + ∆t∇D(ck) · v +O(∆t2) ≥ 0.

Thus, the discrete constraint can be seen as a first order implicit approximation of the
continuous non-overlapping constraint, the error being of order O(∆t2). Moreover, due
to the convexity of the distance function, this constraint returns feasible configurations
(i.e. it avoids numerical interpenetration):

D(ck+1) ≥ D(ck) + ∆t∇D(ck) · vk+1 ≥ 0.

From this, the natural Euler-based time discretization of (4.3,4.4) proposed in [Mau06]
is

M
vk+1 − vk

∆t = f ext + fnnk, (4.7)

fn ≥ 0, D(ck) + ∆t∇D(ck) · vk+1 ≥ 0,

(D(ck) + ∆t∇D(ck) · vk+1) fn = 0.

One of the great advantages of this scheme, besides being stable and providing feasible
configurations, is that is can be seen as the optimality condition of a convex minimization
problem, submitted to an affine constraint.

Indeed, let us denote by ‖w‖M the M -norm ‖w‖2M := w ·Mw, and consider the following
problem: find v ∈ R3 solution to the minimization problem

min
v∈K

J(v), (4.8)

J(v) = 1
2

∥∥∥v−Vk+1
∥∥∥
M
, Vk+1 = vk + ∆tM−1f ext,

where K is the discrete set of admissible velocities defined in (4.6). Vk+1 is the discrete
free flight velocity: it is equal to the velocity that would be computed using an explicit
Euler scheme without contact. The particle velocity vk+1 is the projection of Vk+1 on
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the discrete set of admissible velocities K. This can be seen as a discretization of the
continuous contact law (4.5). Let us now rewrite the discrete constraint set K as

K =
{
v ∈ R3, g(v) ≤ 0

}
, g(v) = −D(ck)−∆t∇D(ck) · v. (4.9)

For each time step, one then has to minimize the convex functional J under the affine in-
equality constraint g ≤ 0. There exists a unique solution to this constrained minimization
problem. Moreover, the constraint g is qualified (scalar affine constraint). Then, if vk+1 is
solution to (4.8), there exists a Lagrange multiplier fn ≥ 0 such that the following Kuhn
Tucker optimality condition is verified:

∇J(vk+1) = −fn∇g(vk+1), (4.10)

g(vk+1) ≤ 0, fn ≥ 0, g(vk+1) fn = 0.

Computing ∇J and ∇g, and using the fact that ∇D(ck) = nk, one can see that these
optimality conditions precisely correspond to the discrete scheme (4.7). So finally,
the solution to the continuous problem can be approximated by solving the convex
constrained problem (4.8) at each time step.

. Convergence result in the multi-particle case [15]

In the multi-particle case, let us consider N rigid spherical particles. The center (resp.
the generalized velocity) of particle i is denoted by ci (resp. vi). The set of centers
c = (c1, . . . , cN ) as well as the set of generalized velocities v = (v1, . . . ,vN ) now belong
to R3N . The contact law has to be written for each pair (i, j) of particles so that the set of
admissible configurations and velocities writes:

Q =
⋂
i 6=j

{
c ∈ R3N , Dij(c) ≥ 0

}
,

Cc =
⋂
i 6=j

{
v ∈ R3N , ∇Dij(c) · v ≥ 0 if Dij(c) = 0

}
,

where Dij is the distance between particles i and j.

Then, the multi-particle scheme proposed in [Mau06] is based on the projection of the
free-flight velocity onto the discrete set of admissible velocities K:

K =
⋂
i 6=j

{
v ∈ R3N , Dij(ck) + ∆t∇Dij(ck) · v ≥ 0

}
.
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Each of the constraints leads to a Lagrange multiplier, corresponding to the contact force
between the involved particles. The convergence to the continuous problem (up to a
subsequence) is proved in [Mau06] in the case of a unique contact. It is also shown
numerically that the scheme is stable, robust and has a good behaviour for large time
steps. As for me, I have used it in the context of particles undergoing inelastic or gluey
contacts [6]. That is why, with Frédéric Bernicot, we were interested in continuing its
numerical analysis in the multi-constraint case, and proposing some extensions like the
time-dependence of the constraints [15].

Let us describe the model we considered in [15]. We place ourselves in a general
theoretical framework of which our contact model is a special case. The dimension is
denoted by n and we consider P continuous constraints depending on time:

(Admissible configurations) Q(t) =
P⋂
p=1
{c ∈ Rn, gp(t, c) ≥ 0}

(Admissible velocities) Ct,c =
P⋂
p=1
{u ∈ Rn, ∂tgp(t, c) +∇cgp(t, c) · u ≥ 0}

(Discrete admissible velocities) K =
P⋂
p=1

{
u ∈ Rn, gp(tk+1, ck) + ∆t∇cgp(tk+1, ck) · u ≥ 0

}

From a mathematical point of view, the continuous model enters in the framework
of second order differential inclusions. The admissible configuration set Q is the
intersection of complements of smooth convex sets. The existence of a solution for such
second-order problems is still open in a general framework. Furthermore, the hypotheses
of existing results are not fulfilled in the case of frictionless contacts we are interested
in. Some results were obtained for one constraint (P = 1) [Mon13; PS02] or for convex
admissible sets [Pao05]. Unfortunately, it is easy to see that the admissible configuration
set Q is not convex in general. Indeed, consider for example two circular particles in
dimension two that cannot overlap and the admissible set Q containing the position of
their centers. In this case, n = 4, P = 1 and gp is the distance between the two particles.
We can observe on figure 4.3 that the set Q is not convex: the two configurations c and c̄
belong to Q but their mean does not. In the case of non-convex sets, some results were
obtained for P = 1 in [DM07; DMP09; MP06; Sch01]. The non-convex multi-constraint
case was studied in [Pao10], supposing the linear independence of the active gradients.
Again, this result cannot be used when modelling granular media with too many particles.
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c ∈ Q c̄ ∈ Q c + c̄
2 /∈ Q

Fig. 4.3: Non convex admissible configuration set Q.

Indeed, in that case, the number of active non-interpenetration constraints can become
greater than the dimension so that their gradients cannot be linearly independent.

We prove in [15] that the solution to the numerical scheme we propose converges (up to a
subsequence) to a solution to the continuous problem, under weaker assumptions on the
gradients than the ones made in [Pao10]. This shows at the same time the existence of a
solution to the continuous model. Our assumptions are met in the case of the frictionless
contact model so that a direct consequence of this result is the convergence of the multi-
particle numerical scheme proposed in [Mau06] for frictionless contact. The proof we
propose follows the same reasoning as the proof in [Mau06] for one contact with some
new arguments in order to solve the difficulties raised by the multiple constraints and
the time-dependence. These new arguments already appeared in [Ven11] in which the
author models crowd motion using first order differential inclusions with constraint sets
similar to ours.

. C++ code SCoPI and mechanical studies [14,16]

As already said, I implemented during my PhD thesis the previous algorithm to simulate
granular flows undergoing frictionless contacts and an extension of this model taking
into account lubrication. The corresponding code C++ was named SCoPI for "Simulation
of Collection of Particles in Interaction". Since then, a part of my activity has consisted,
with Sylvain Faure (LMO), in developing and optimizing SCoPI. Our goal was to be able
to perform numerical rheological studies of granular materials using the code. Up to now,
it allowed us to realize two mechanical studies in the frictionless case.
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Dynamic numerical investigation of random packing for spherical and nonconvex
particles [14]

This work, in collaboration with B. Semin and S. Faure, was initiated during the summer
school Cemracs 2008 and continued afterwards. It gave rise to a proceeding [14]. The
project was financially supported by Lafarge and the objective was to understand how the
random compaction of a granular medium evolves according to the shape of the particles.
More precisely, we modified the code to make it possible to consider particles composed
of two interpenetrating spheres. We described the compactness as well as the mean value
and the distribution of the number of contacts of the final configuration as a function of
the interpenetration length of the spheres constituting particles (see figure 4.4). Two
post-processing functions were implemented to obtain the parameters characterizing the
packing: a Monte-Carlo method was used to compute the packing fraction of the system
in a subdomain and a function was developed to provide the distribution and the mean
numbers of contacts and neighbours for the particles contained in a subdomain.

Fig. 4.4: Random packing. Left: 16 000 spherical particles, lower half of the grains in red and
contacts in yellow tubes. Right: 10 000 non-convex particles.

Clustering and flow around a sphere moving into a grain cloud [16]

This work is the result of a collaboration that started at the beginning of the ANR
Stabingram (2011). Philippe Gondret and Antoine Seguin (FAST, Orsay) had set up an
experiment consisting in pulling a ball at constant speed in a granular medium enclosed
in a box (2d experiment). The goal was to study the rheology in the cluster formed in
front of the moving sphere. To do so, they measured the velocities as well as the contact
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forces exerted of the grains. Unfortunately, their results were tainted by noise and difficult
to interpret. We therefore decided to set up numerical simulations in order to answer
some of their questions.

Some optimization of the code were needed to run these simulations involving several
hundred thousand balls. Sylvain Faure implemented a shared memory parallelism (using
the Intel TBB library) and revised the format of the output files in order to make them
usable in view of the large amount of data generated. This allowed us to run some
tests involving about 1 million of spheres in 3 dimensions. We also developed the
post-processing capabilities in order to calculate at any point of the granular medium,
quantities of physical interest such as pressure, strain tensor, stresses or local density.

We finally launched a simulation campaign, the granular medium being composed of up
to 300 000 grains (see figure 4.5). The results were treated by Philippe Gondret and
Antoine Seguin as experimental results. They studied the cluster size in front of the
moving sphere and conducted a detailed study of the rheology of the system inside the
cluster [16]. The results proved that a local rheology based on the inertial number I (i.e.
an explicit link between the different local physical quantities and I) can be observed
even in the case of non-parallel flows, which had not been observed before.

Fig. 4.5: Sphere moving in a grain cloud. Left: physical experiment conducted at FAST laboratory
(grains on the left and pressure exerted on the grains on the right, the lighter the sphere,
the more it is compressed). Right: Corresponding numerical simulation with SCoPI
(300 000 grains), the red sphere moves to the right and the grains are colored according
to the pressure exerted on them (from blue for minimum pressure to red for maximum
pressure).
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4.3 A convex scheme for frictional contacts.

The work presented in this section has been initiated in the framework of Hugo Martin’s
PhD thesis, supervised by Anne Mangeney (IPGP) and Yvon Maday (LJLL). The objective
of Hugo Martin’s work was to develop a numerical tool to study granular collapse on
erodible beds and the relations between granular assemblies and elastic wave propaga-
tions. With Bertrand Maury (LMO), we participated in the development of an algorithm
for the numerical simulation of granular media with frictional contact. One of the main
difficulties in designing schemes for frictional contacts is that, unlike the frictionless case,
the natural Euler-based scheme do not correspond to a convex optimization problem.
This makes its resolution tricky. I present in the following an extension of the frictionless
algorithm described in the previous sections, leading to a scheme for frictional contacts
which is based on convex optimization. This is a work in progress, for which an article is
being prepared.

. Modelling friction

Notation.

We extend the notation to describe the tangential velocity and contact force. First we
now need to take into account the instantaneous rotation vector ω ∈ R3. We denote by

u = (v,ω) ∈ R6

the generalized velocity vector and we define the position vector r = C− c. The linear
operator A maps the generalized velocity field u ∈ R6 to the velocity vC ∈ R3 of point C
(see Figure 4.6):

Au = vC = v + ω ∧ r ∈ R3.

Note that, since C is the point that minimizes the distance, the normal direction to the
sphere at point C is n. We denote by Pw = w − (w · n)n the projection of a vector
w ∈ R3 on the tangent plane to the sphere at point C (which is parallel to Π). The
tangential velocity at point C is therefore PvC = PAu. As for the contact force f exerted
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Fig. 4.6: Frictional contact. Notation.

on the sphere at point C, it is decomposed into a normal component and a tangential
component as follows (see figure 4.7):

f = fnn + ft where fn ∈ R and ft = P f ∈ R3.

•
C? = C

• n

Π

fnn

f

ft

Fig. 4.7: Decomposition of the contact force f = fnn + ft.

Contact laws.

The normal contact law is still driven by the non-overlapping constraint. The grains being
spherical, the distance does not depend on the orientation of the particle: D = D(c). We
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denote its gradient along c by ∇cD ∈ R3. The constraint defining the set of admissible
velocities is:

u+ = PCcu− where Cc =
{
u = (v,ω) ∈ R6, ∇cD(c) · v ≥ 0 if D(c) = 0

}
.

As for the tangential contact law, the oldest and best known law to describe frictional
contact is Coulomb’s law, which can be written as:

If PvC
+ 6= 0 (sliding motion), ft = −µfn

PvC
+

|PvC+ |
,

If PvC
+ = 0 (no slip), | ft | ≤ µfn,

where µ is the friction coefficient and depends on the physical properties of the surfaces.
In particular, the contact force must belong to the so-called Coulomb cone:

CCoulomb
µ =

{
f ∈ R3 s.t. | ft | ≤ µfn

}
.

Dynamics.

We suppose that no external torque is exerted on the grains. If f ext ∈ R3 is the external
force exerted on the particle, we define the generalized force vector as Fext = (f ext, 0) ∈
R6. The generalized mass matrix (masses and moments of inertia) is defined as M =
diag (m,m,m, J, J, J) .

Let us finally remark that for any generalized velocity u ∈ R6 and any vector f ∈ R3, we
have Au · f = u ·AT f with

AT f = (f , r ∧ f) ∈ R6, (4.11)

so that AT maps a vector f ∈ R3 to the generalized force/moment vector corresponding
to a force f exerted on the sphere at point C.
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We can now state the corresponding equations of dynamics:

ċ = v, u = (v,ω), (4.12)

M
du
dt

= Fext +AT (fnn + ft), (4.13)

D(c) ≥ 0, fn ≥ 0, D(c) fn = 0, (4.14)

u+ = PCcu−, (4.15)

If PAu+ 6= 0 (sliding motion), ft = −µfn
PAu+

|PAu+ |
, (4.16)

If PAu+ = 0 (no slip) , | ft | ≤ µfn. (4.17)

From the expression of AT , we can decompose equation (4.12) in two equations driving
the translational and the angular velocities respectively:

m
dv
dt

= f ext + (fnn + ft),

J
dω

dt
= r ∧ (fnn + ft).

One can recognize the fundamental principle of dynamics written for the particle, sub-
mitted to the external force f ext and to the contact force fnn + ft, exerted at point C.
Equations (4.14-4.17) correspond to the normal and tangential contact laws. Again, these
equations have to be understood in the sense of distributions or measures.

. A "natural" Euler-based scheme

A natural Euler-based scheme to approximate (4.12-4.17) is

M
uk+1 − uk

∆t = Fext +Ak,T (fnnk + ft), (4.18)

fn ≥ 0, g(uk+1) ≤ 0, fn g(uk+1) = 0,

If P kAkuk+1 6= 0 (sliding motion), ft = −µfn
P kAkuk+1

|P kAkuk+1 |
,

If P kAkuk+1 = 0 (no slip) , | ft | ≤ µfn.

where P k and Ak are respectively the projection on the local tangent plane and the
velocity of the contact point associated to configuration ck. A natural choice for the
normal constraint discretization g is given by g(uk+1) = ∇D(ck)·vk+1 ifD(ck) ≤ 0 [ST96;
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AP97]. Following [Mau06], it can also be substituted by the Taylor expansion (4.9) to
generate feasible configurations.

Although these schemes are stable, in the case of multiple contacts they require solving,
at each time step, a non-convex linear complementarity problem which proves to be
expensive to solve. The most widely spread numerical strategies to deal with the friction
cone constraint are based on projection/splitting methods, Gauss-Seidel like relaxations or
generalized Newton methods (see [ABH18] for a review of these methods). Unfortunately,
no convergence result for the corresponding iterative methods are available.

. Notion of subdifferential

To make the problem easier to solve, we follow the idea of the frictionless algorithm: we
search for a time discretization leading to a convex constrained optimization problem to
be solved at each time step. To do so, we want to find an optimization problem for which
the optimality conditions are discretization of (4.12-4.17), the contact force being the
corresponding Lagrange multiplier.

However, one can see that the tangential force ft cannot be expressed as the gradient
of a constraint. For example, from equation (4.17), we only know that it belongs to the
Coulomb cone in case of sliding motion. In order to obtain this kind of optimality con-
straint, we have to consider non-differentiable constraints (of conic type) and substitute
the notion of sub-differential of a function for that of gradient.

Definition.

The notion of subdifferential allows to describe the local variations of a convex function,
not necessarily derivable. We refer to [HL93, Chap. VI] for an extensive description
of subdifferentials and their use in optimisation. Let us consider a convex function
φ : Rn → R. The subdifferential of φ at point x ∈ Rn, denoted by ∂φ[x], can be defined
through minorization by affine functions:

∂φ[x] = {y ∈ Rn/ ∀x̂ ∈ Rn, φ(x̂) ≥ φ(x) + y · (x̂− x)} .

Let us illustrate this notion in one dimension (see Figure 4.8). In that case, the subdifferi-
ential contains the slopes of the lines issued from point (x, φ(x)) and remaining under
the graph. If φ is derivable at point x0, we have ∂φ[x0] = {φ′(x0)} and if φ is left and
right derivable at point x1, ∂φ[x1] is a closed interval: ∂φ[x1] =

[
φ′(x1

−), φ′(x1
+)
]
.
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Fig. 4.8: Subdifferential. Left: the function is differentiable at point x0. Right: the function is
not differentiable at point x1.

For example, if abs : R→ R is the absolute value, abs(x) = |x|, then

∂ abs[x] =
x>0
{1}, ∂ abs[x] =

x<0
{−1}, and ∂ abs[0] = [−1, 1].

Note that, whatever is the dimension, a function φ : Rn → R is differentiable at x0 if and
only if the set ∂φ[x0] contains only one point. In that case, this point is the gradient of φ
at x0. Then we have:

φ differentiable at x0 =⇒ ∂φ[x0] = {∇φ(x0)} .

Optimality conditions and Lagrange multipliers for non-differentiable functions.

The notion of subdifferential allows to generalize optimality conditions for non-differentiable
functions. Indeed, as illustrated by the red dashed slope on figure 4.8, if φ is convex we
have

x is a minimum of φ⇐⇒ 0 ∈ ∂φ[x].

In case φ is differentiable, we find the usual optimality condition for convex functions: x
is a minimum of φ if and only if ∇φ(x) = 0.

Another generalization of optimality condition, that will be useful in the following, is the
generalization to a non-differentiable constraint of the Kuhn Tucker optimality condition
stated in the equation (4.10). Let us consider the minimization problem

min
x∈K

J(x), K = {x ∈ Rn, g(x) ≤ 0} ,

where J : Rn → R is a differentiable convex function and g : Rn → R is convex. Then, if
the constraint at point x is qualified (see below), x is a minimum of J on K if and only

4.3 A convex scheme for frictional contacts. 109



if there exists a Lagrange multiplier λ such that the following Kuhn Tucker optimality
condition is verified [HL93, Thm. 2.1.4 p. 305 ]:

∇J(x) ∈ −λ∂g[x], (4.19)

g(x) ≤ 0, λ ≥ 0, g(x)λ = 0.

As for the differentiable case, the qualification of the constraint is needed to prove the
existence of the Lagrange multipliers when x is a minimum (it is not necessary for the
reverse implication, which follows from the convexity assumptions). In our case, we can
use the Slater qualification assumption saying that, if g is not affine, one has to check
that there exists a point x0 in K for which the constraint is strictly satisfied:

∃x0 ∈ K such that g(x0) < 0 (Slater qualification condition) (4.20)

A useful example.

Let us consider an example that will prove useful in the following. We denote by P the
projection onto a plane Π in dimension 3 and consider the following function

h : R3 → R

v → |Pv|.

Let us prove that

|Pv| 6= 0 =⇒ ∂h[v] =
{
Pv
|Pv|

}
, (4.21)

|Pv| = 0 =⇒ ∂h[v] =
{
w ∈ R3 s.t. w ∈ Π and |w| ≤ 1

}
. (4.22)

• In case |Pv| 6= 0, h is differentiable so that ∂h[v] = {∇h(v)}. To compute the
gradient of h, we simply write, using a Taylor expansion,

h(v + εw) = |P (v + εw)| = |Pv + εPw| = h(v) + ε
Pv
|Pv| · Pw + o(ε2).

It remains to remark that, since Pw−w ⊥ Π and Pv ∈ Π, we have
Pv
|Pv| · Pw =

Pv
|Pv| ·w so that

h(v + εw) = h(v) + ε
Pv
|Pv| ·w + o(ε2).
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which concludes the proof of (4.21).

• In case |Pv| = 0, h is no more differentiable at point v. Let us first prove that

∂h[v] ⊂
{
w ∈ R3 s.t. w ∈ Π and |w| ≤ 1

}
.

So let w ∈ ∂h[v]. First, we have w ∈ Π. Indeed, if n is the normal to Π, we consider
v̂λ = v + λn. Since n ⊥ Π, h(v̂λ) = |P (v + λn)| = |P (v)| = h(v). Then, from
w ∈ ∂h[v], we obtain

∀λ ∈ R, h(v) = h(v̂λ) ≥ h(v) + w · (v̂λ − v) = h(v) + λw · n,

and this cannot be true for any λ ∈ R unless w · n = 0 i.e. w ∈ Π.
Let us now prove that |w| ≤ 1. To do so, we consider v̂ = v + w. Using on the one
hand that Pv = 0 and on the other hand that Pw = w (since w ∈ Π), we obtain

|w| = |P (v + w)| = h(v̂) ≥ h(v) + w · (v̂− v) = w · (v̂− v) = |w|2,

so that |w| ≤ 1 as expected.

• In now remains to prove the reverse inclusion when |Pv| = 0. Suppose that w ∈ Π
and |w| ≤ 1. In that case, for all v̂ ∈ R3 we have

h(v)+w ·(v̂−v) =
Pv=0

w ·(v̂−v) =
w∈Π

w ·(P v̂−Pv) =
Pv=0

w ·P v̂ ≤
|w|≤1

|P v̂| = h(v̂),

which proves that w ∈ ∂h[v].

To finish with the computations of subdifferentials, let us consider

hA : Rn → R, hA(u) = h(Au) = |PAu|,

where A : Rn → R3 linear. The rule for pre-composition with a linear mapping [HL93,
Thm. 4.2.1 p. 263 ] gives ∂hA(u) = AT∂h(Au) so that

|PAu| 6= 0 =⇒ ∂hA[u] =
{
AT

PAu
|PAu|

}
, (4.23)

|PAu| = 0 =⇒ ∂hA[u] =
{
ATw,w ∈ R3 s.t. w ∈ Π and |w| ≤ 1

}
.
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. Time stepping scheme based on convex optimization

Now, in the spirit of [Ani06; TNA08], we can state the minimization problem we propose
to solve at each time step. With evident notation, we search for the generalized velocity
uk+1, solution to

min
u∈Kµ

J(u) (4.24)

J(u) = 1
2

∥∥∥u−Uk+1
∥∥∥
M
, Uk+1 = uk + ∆tM−1Fext,

Kµ =
{
u = (v,ω) ∈ R6, D(ck) + ∆t∇cD(ck) · v ≥ µ∆t|P kAku|

}
.

Let us first notice that this algorithm provides feasible configurations: we have

D(ck+1) ≥ D(ck) + ∆t∇cD(ck) · vk+1 ≥ µ∆t|P kAkuk+1|,

which is non-negative and may now be strictly positive. The constraint is over-imposed,
especially when the tangential velocity is high.

The main advantage of this scheme, compared to the linear complementarity prob-
lem (4.18), is that the constraint for variable u has been "convexified": the time sub-
problem is a conic constrained optimisation problem. This allows the use of existing and
convergent solvers to compute the velocity at each time step.

Using the framework of subdifferentials, we can check that the corresponding optimality
conditions can be seen as a discretization of the continuous frictional model (4.12-4.17).
To do so, we rewrite the discrete constraint set as

Kµ =
{
u = (v,ω) ∈ R6, g(u) ≤ 0

}
, g(u) = −D(ck)−∆t∇cD(ck) · v + µ∆t|P kAku|.

Then, under the condition that the constraint is qualified, there exists a Lagrange multi-
plier fn ∈ R such that (see (4.19)):

∇J(u) ∈ −fn ∂g[u], g(u) ≤ 0, fn ≥ 0, g(u)fn = 0. (4.25)

The aforementioned qualification of the constraint can be checked easily in the present
situation. It amounts to show that Slater condition (4.20) is verified. To do so, we can
consider for example the velocity vector u0 = (εnk, 0) with ε > 0 which satisfies g(u0) < 0
since the configuration at time k is feasible.

4.3 A convex scheme for frictional contacts. 112



From (4.23), together with ∇cD(ck) = nk, we have

If P kAku 6= 0, ∂g[u] =
{

∆tAk,T
(
−nk + µ

P kAku
|P kAku |

)}
,

If P kAku = 0, ∂g[u] =
{

∆tAk,T
(
−nk + µw

)
/ w ∈ Πk and |w | ≤ 1

}
,

where Πk is the tangent plane at step k. From this, the optimality condition (4.25) can
be written as

M
uk+1 − uk

∆t = Fext +Ak,T (fnnk − µfnw),

fn ≥ 0, g(uk+1) ≤ 0, fn g(uk+1) = 0,

If P kAkuk+1 6= 0 (sliding motion), w = P kAkuk+1

|P kAkuk+1 |
,

If P kAkuk+1 = 0 (no slip) , w ∈ Πk and |w | ≤ 1.

Setting the tangential force as ft = −µfn w, we finally obtain that uk+1 is solution to the
discrete problem

M
uk+1 − uk

∆t = Fext +Ak,T (fnnk + ft),

fn ≥ 0, g(uk+1) ≤ 0, fn g(uk+1) = 0,

If P kAkuk+1 6= 0 (sliding motion), ft = −µfn
P kAkuk+1

|P kAkuk+1 |
,

If P kAkuk+1 = 0 (no slip) , | ft | ≤ µfn,

which is a (formal) discretization of the continuous frictional problem (4.12-4.17).

.Multiparticle implementation, application to granular collapse on erodible beds

The arguments developed in the previous section for the toy model can be generalized
to granular systems composed of spherical particles. Hugo Martin implemented the
corresponding algorithm using Mosek optimization software [Mos] to solve the conic
minimization problem at each time step.
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As already said, the convex problem has been obtained to the price of a "convexification"
of the normal constraint

D(ck) + ∆t∇cD(ck) · vk+1 ≥ µ∆t|P kAkuk+1|,

that can over-estimate the non-ovelapping constraint, especially in case of high tangential
velocities. Since Hugo Martin was interested in granular collapse on erodible beds, a
2-dimensional simulation of column collapse has been achieved and compared to results
obtained in [SH05]. In that article, the authors use the natural Euler-based scheme (4.18)
for which the non-interpenetration constraint is ∇D(ck) · vv+1 ≥ 0 if D(ck) = 0. We
observed that, in that case of interest, the results of the two codes match: the modification
of the normal constraint does not influence the results. A study of the behaviour of the
algorithm as a function of the time step and the Mosek stopping parameters was also
carried out.

Hugo Martin then carried out several studies of granular collapse: comparisons with
experiments with a special attention to the flowing/static interface evolution, study of the
wave motion that appears at the beginning of the flow and exploration of the influence of
the compaction in a 3D configuration. A snapshot of a simulation of granular collapse on
an erodible bed is shown on figure 4.9.

Fig. 4.9: Granular collapse on erodible beds. Snapshot of a 3d simulation with 112 000 spheres.
The particles are colored according to their velocity (from blue for minimum velocity to
red for maximum velocity).

To finish this chapter, let us say a word about a strategy that has been proposed
in [Aca+11] to avoid the potential over-estimation of the non-overlapping constraint,
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while ensuring the convergence of each time step iterations. In that article, the authors fix
a parameter s and consider us, solution to the minimisation problem with the following
constraint:

∇cD(ck) · vk+1 ≥ µ|P kAkuk+1| − µ∆t s if D(ck) = 0.

They propose to compute the solution to the frictional contact problem with the normal
constraint

∇cD(ck) · vk+1 ≥ 0 if D(ck) = 0.

as a fixed point of F (s) = |P kAkuk+1
s |. They prove that the fixed point iterations for

F converge which ensures the convergence of their numerical algorithm at each time
step. Doing so, they manage to obtain a solution verifying the natural discretization of
the non-interpenetration constraint. This is done to the price of an unknown number of
iteration of the fixed point algorithm at each time step, each of these requiring to solve a
conic minimization problem similar to ours.

On-going work - Prospects

In this chapter we have presented algorithms for the simulation of granular materials.
A single convex optimisation problem has to be solved at each iteration, under either
affine or conical constraint, depending on whether or not the grains experience friction.
The algorithms were validated by numerical tests for spherical particles and comparisons
with experiments. They have proven to be effective in performing numerical rheological
studies. Much remains to be done in several directions:

• From the theoretical point of view, we have shown, with Frédéric Bernicot, the
convergence of the frictionless scheme. The first tests carried out with the scheme
taking friction into account are very encouraging. Thus, comparisons with experi-
ments or with other codes are positive. Moreover, the scheme allows rheological
studies to be carried out for large numbers of particles and shows good stability
behaviour. These results make us want to go further in its analysis. Results in this
direction have been shown in [Ani06] for a similar algorithm based on a discretised
Coulomb cone and leading to linear constraints. These results need to be extended
to the conic framework. Another issue is to understand the link between the velocity
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minimisation problem and energy dissipation models. The link between the two
can be made by studying the dual problem to the minimisation problem.

• We are currently working on including friction and non-spherical particles in
the code SCoPI. From a theoretical point of view, the algorithms described in this
chapter extend to any particle shape, provided that we can find the points realising
the distance. To do this, we write the equations characterising these points (such
as the collinearity of the normals) and solve them using an iterative algorithm.
We have chosen to focus on the family of super-ellipsoids. These are shapes for
which there is a parametrisation of the surface, which provides a generic formula
for the computation of normals for example. We only consider regular shapes of
this family (twice derivable boundary). This provides sufficiently varied shapes for
the applications we have in mind (see figure 4.10).

Fig. 4.10: Super-ellipsoids. Some 3d examples of available regular shapes (left) and a 2d
configuration with normals at the points realising the distances (right).

• The extension of the code to non-spherical particles and to the consideration of fric-
tion opens the way to numerous rheological studies of dry granular materials.
The main objective is to provide a code to make the link between the microscopic
configurations and the macroscopic behaviour of granular media. A better under-
standing of the different microscopic physical quantities involved would allow to
answer questions both from physicists and mathematicians, such as well-posedness
of the macroscopic models. For example, an interesting study would be that of
understanding the length scales of the chains of forces that are involved in non-local
rheological models. The simulations we achieved of the moving sphere into a gran-
ular medium have shown that the code could estimate this parameter. Furthermore,
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the behaviour of granular media composed of non-spherical particles is still poorly
understood. The inclusion of non-spherical particles in the code should help to
answer many open questions.

• Within the framework of the ANR RheoSuNN project that I am coordinating, we
plan to couple the new developments of SCoPI with the fluid solver CAFES [FG12].
This is the goal of Hélène Bloch, a post-doctoral fellow funded by RheoSuNN
from October 2021. It will allow to study the rheology of suspensions composed
of non-monodisperse spheres or non-spherical grains. Furthermore, the algorithm
we have developed for friction fits into the same framework as the gluey contact
model I developed in my PhD thesis [6]. The mixing of the two models in SCoPI
will provide a contact algorithm that takes into account both friction and lu-
brication by an implicit and stable method. Dealing with these two short-range
phenomena was essential to meet the current challenges in suspension rheology.
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Active suspensions, consisting of swimmers in a Stokes fluid, is a growing field of
research. To better understand these suspensions, it is natural to try to investigate the
behaviour of individual swimmers. Let us recall that, as stated in the introduction, swim-
ming at low Reynolds number is a complex phenomenon that is still poorly understood.
When studying such system, two questions arise: can a swimmer swim and if so, how can
he do so with the least possible energy expenditure?

In the series of articles [17,18,20,21], we studied 3 self-propelled stokesian robots
composed of assemblies of balls, moving respectively in dimension 1, 2 and 3. Swimming
is rephrased in term of controllability: the displacement being given, can we find a cyclic
shape change (the control) leading to this displacement? Once controllability is known,
i.e., it is shown that it is possible to go from A to B, one can ask the question of how to go
from A to B at minimal energetic cost. This is a question of optimal control. In [21], we
end up proposing a general framework, covering the 3 swimmers, and we show that each
of them can swim, i.e. control its position, as well as its orientation in 2d and 3d. The
question of optimal swimming is also addressed and solved using numerical simulations.
A similar framework also allowed us to study general axisymmetric micro-swimmers
moving along a straight line in [19].

In the next section, I present the 3 stokesian robots we considered and describe the main
ideas leading to the controllability result.

5.1 Stokesian robots.

The swimmers we focus on are composed of N non-intersecting balls centered at
(xi)1≤i≤N and the configurations are described by two sets of variables:

• the shape variables, denoted by ξ ∈ S, where S is an open connected subset of
RM

• the position variables, denoted by p ∈ P, which describes the global position and
orientation in space of the swimmer.

The configuration of the swimmer is entirely determined by the data of couple (ξ, p). The
swimming problem comes back to find a periodic path in the shape domain t→ ξ(t) (the
control) in order to achieve a given displacement ∆p.
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The three swimmers we consider are:

• The three sphere swimmer of Najafi and Golestanian (3S). It is composed of
three spheres aligned along the x-axis, as depicted in figure 5.1. The shape variables

ξ1 ξ2
x

x1 x2 x3 xx
x2

Fig. 5.1: The three sphere swimmer of Najafi and Golestanian (3S). Notation.

are ξ = (ξ1, ξ2) the length of the arms and we choose to locate the position of the
swimmer by that of its central sphere: p = x2. The configuration x of the swimmer
can be expressed as a function of (ξ, p):

x1 = p− ξ1, x2 = p, x3 = p+ ξ2.

• The three sphere swimmer in a plane (3SP). We consider a reference equilateral
triangle (S1, S2, S3) with center O in the horizontal plane such that dist(O,Si) = 1.
The swimmer is made of three spheres placed on the rays [OSi), as depicted in
figure 5.2. The shape variables are the length of the arms: ξ = (ξ1, ξ2, ξ3) with
dist(O,xi) = ξi. The position of the swimmer is described by a rigid displacement
of the reference triangle. The coordinates of the center of the swimmer is c ∈ R3

(but c stays confined in the horizontal plane). Its orientation is given by the angle
θ ∈ R that one arm, say arm number 1, makes with a fixed direction, say (Ox). The
position variables are p = (c, θ). Again, the configuration x can be deduced from
(ξ, p) = (ξ, c, θ).

• The four sphere swimmer (4S). The last swimmer, depicted in figure 5.3, is the
three-dimensional counterpart of the three sphere swimmer in the plane. It is
now based on a reference tetrahedron. The position of the swimmer is described
by: p = (c,R) where c ∈ R3 is the center of the tetrahedron and R ∈ SO(3) its
orientation. Its shape is given by the length of its four arms: ξ = (ξ1, ξ2, ξ3, ξ4).

5.1 Stokesian robots. 123



c

x1

x2

x3

ξ1

ξ2

ξ3

θ c
θ

Fig. 5.2: The three sphere swimmer in a plane (3SP). Notation.
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Fig. 5.3: The four sphere swimmer (4S). Notation.
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. The 3 sphere swimmer of Najafi and Golestanian (3S). [17-19]

To make the general framework clearer, let us first present the computations for the three
sphere swimmer of Najafi and Golestanian. It is the simplest of the three swimmers
considered, has two controls (ξ̇1, ξ̇2) and its position is given by p = x2 ∈ R.

We denote by U = (u1, u2, u3) = (ẋ1, ẋ2, ẋ3) the balls’ horizontal velocities and by (u, p)
the solution to the Stokes problem in the fluid domain Ω, with boundary condition
u = uiex on ∂Bi. Due to the symmetry of the problem, the forces exerted by the fluid
on the particles are along ex. We denote by F = (f1, f2, f3) ∈ R3 their horizontal
components:

fi =
(∫

∂Bi

σ(u, p) n
)
· ex ∈ R,

where σ(u, p) = µ(∇u +∇Tu)− pId is the corresponding stress tensor.

Dynamics. First, we write the dynamics of the swimmer: we express the rate of change
of its position as a function of its shape. To do so, we use three fundamental properties of
the micro-swimmer problem:

• Linearity of Stokes equations. From the linearity of Stokes equations, there exists a
matrix R (the resistance matrix) such that

F = RU.

The resistance matrix R is symmetric, positive definite. Indeed, let us consider
V = (v1, v2, v3) and (v, q) the corresponding solution to Stokes problem with
boundary condition v = viex on ∂Bi. We have

VTRU = VTF =
∑
i

vifi =
(∑

i

vi

∫
∂Bi

σ(u, p) n
)
· ex .

Now, we have(∑
i

vi

∫
∂Bi

σ(u, p) n
)
· ex =

∑
i

∫
∂Bi

vi ex · σ(u, p) n =
∑
i

∫
∂Bi

v · σ(u, p) n

=
∫
∂Ω

v · σ(u, p) n = 2µ
∫

Ω
D(u) : D(v),
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where the last equality results from an integration by part and D(w) = (∇w +
∇Tw)/2 is the rate of strain tensor. So finally, the formula being symmetric with
respect to (u,v) we obtain

VTRU =
(

2µ
∫

Ω
D(u) : D(v)

)
= UTRV

and matrix R is symmetric, definite positive.

• Self propulsion. The swimmer being self-propelled, the sum of the forces exerted by
the fluid on the balls vanishes: f1 + f2 + f3 = 0, which can be rewritten as

e1 · F = 0, where e1 = (1, 1, 1).

• Kinematics. Finally, U can be expressed as a linear function of ṗ and ξ̇: u1 = ṗ− ξ̇1,
u2 = ṗ, and u3 = ṗ+ ξ̇2, so that there is a matrix A such that

U = ṗ e1 +Aξ̇.

Finally, one obtains the following equation for ṗ:

0 = e1 · F = e1 ·RU = e1 ·R
(
ṗ e1 +Aξ̇

)
= (e1 ·Re1)ṗ+ e1 ·RAξ̇.

The coefficient e1 ·Re1 is the drag force exerted on the swimmer corresponding to a rigid
translation along Ox and does not vanish since the resistance matrix R is definite positive.
This allows us to solve ṗ uniquely and linearly in terms of ξ̇:

ṗ = V (ξ)ξ̇ with V (ξ) : R2 7→ R. (5.1)

We can decompose V as V (ξ)ξ̇ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2 with Vi(ξ) : R 7→ R so that equa-
tion (5.1) can be rewritten as

ṗ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2.

Note that the mapping ξ → V (ξ) is non linear. It is shape-dependent and encodes the
hydrodynamics interactions between the swimmer and the surrounding fluid, due to
shape changes at rate ξ̇.
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Swimming? So now, in view of equation (5.1) the question is to know wether the micro-
robot can swim. That is, can we find periodic strokes on [0, T ] (i.e. periodic changes
of shape t → ξ(t)) such that the corresponding displacement ∆p = p(T ) − p(0) is not
zero and, better still, can we control this displacement? By controlling the displacement
we mean, ∆p being given, can we find a periodic control t → ξ(t) to achieve this
displacement?

First, let us come back for a moment to the scallop theorem. In that case, the swimmer
only has one control to swim in one dimension (ξ ∈ R and V (ξ) : R 7→ R). Then, it is
easy to see from (5.1) that a periodic stroke does not induce any displacement. Indeed, if
Ψ =

∫
V is a primitive of V , using the fact that ξ(T ) = ξ(0), we have

∆p =
∫ T

0
ṗ(t)dt =

∫ T

0
V (ξ(t))ξ̇(t)dt = Ψ(ξ(T ))−Ψ(ξ(0)) = 0.

So now, can the three sphere swimmer swim in one dimension, using its two controls?
In view of (5.1), the rate of change of the position p is constrained to belong to a given
tangent plane. In fact, the tangent plane depend on the shape ξ so that ṗ belongs to a
distribution of tangent plane, varying with ξ. Is this dependance on ξ sufficient for p to
reach any given position using a periodic change of shape? The answer to this question is
not always positive. For example, as in the scallop case, if V is a gradient (if curlV = 0),
the micro-robot cannot swim: there exists W such that V = ∇W , then p = W (ξ1, ξ2) and
a periodic shape does not induce any displacement. In the general case, we have

∆p =
∫ T

0
V (ξ(t))ξ̇(t)dt =

∫
ω

curlV,

where ω is the surface enclosed in the curve t → ξ(t) in the space of shapes and
curlV = ∂ξ1V2 − ∂ξ2V1. Thus, the displacement induced by a periodic stroke is equal
to the flux of curlV through the surface ω. For example, if curlV > 0 everywhere, any
periodic stroke will induce a displacement. The swimmer can also swim locally if its
initial shape ξ(0) is such that curlV (ξ(0)) 6= 0.
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An affine control problem without drift. The good framework to answer the question
of swimming is control theory. Let us denote by X = (ξ, p) ∈ R3 the pair composed of
the shape and position variables. From the previous computations, we have

Ẋ =


ξ̇1

ξ̇2

ṗ

 =


1
0

V1(ξ)

 ξ̇1 +


0
1

V2(ξ)

 ξ̇2.

We define

g1(X) =


1
0

V1(ξ)

 , g2(X) =


0
1

V2(ξ)

 ,
so that X follows the following affine control problem without drift:

Ẋ = α1(t)g1(X) + α2(t)g2(X), (5.2)

where αi(t) = ξ̇i(t), i = 1, 2 are the controls. Note that in our case, gi(X) = gi(ξ, p) =
gi(ξ) only depend on ξ. The swimming problem in [0, T ] now reads:

• suppose the initial shape ξ(0) = ξ0 and position p(0) = p0 are given,

• suppose the final position p(T ) = pT is given,

• does there exist controls α1, α2 : [0, T ] 7→ R such that

Ẋ = α1(t)g1(X) + α2(t)g2(X)
X(0) = (ξ0, p0)

∣∣∣∣∣ =⇒ X(T ) = (ξ0, pT )?

This is a well-known control problem. Suppose for example that X is solution to (5.2)
and X(0) = X0,

• if we choose (α1, α2) ≡ (1, 0) on [0, ε] for a small value of ε, then

X(ε) = X0 + εg1(X0) +O(ε2).

• if we choose (α1, α2) ≡ (0, 1) on [0, ε] for a small value of ε, then

X(ε) = X0 + εg2(X0) +O(ε2).
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So we observe that the system can evolve, with well chosen controls, in directions that
belong to the plane generated by (g1(X0), g2(X0)). The displacement proportional to the
time ε. A plane being of dimension 2, this is of course not sufficient for X to be able to
reach any point in a neighbourhood in R3 of X0. In fact, one can prove that the system
can move in a third direction, independent of (g1(X0), g2(X0)). To do so, let us consider
the following succession of controls:

(α1, α2) ≡ (1, 0), t ∈ [0, ε]

(α1, α2) ≡ (0, 1), t ∈ [ε, 2ε]

(α1, α2) ≡ (−1, 0), t ∈ [2ε, 3ε]

(α1, α2) ≡ (0,−1), t ∈ [3ε, 4ε]

and let’s proceed to Taylor’s expansion again:

• First, Ẋ = g1(X) for t ∈ [0, ε] so that

X(ε) = X0 + εg1(X0) + ε2

2 ∇g1(X0)g1(X0) +O(ε3).

• Then, Ẋ = g2(X) for t ∈ [ε, 2ε] so that

X(2ε) = X(ε) + εg2(X(ε)) + ε2

2 ∇g2(X(ε))g2(X(ε)) +O(ε3).

and using the previous expansion for X(ε), together with further Taylor develop-
ments of g1 and g2 we obtain:

X(2ε) =X0 + ε[g1(X0) + g2(X0)]

+ ε2

2 [∇g1(X0)g1(X0) +∇g2(X0)g2(X0) + 2∇g1(X0)g2(X0)] +O(ε3).

• We proceed that same way for t ∈ [2ε, 3ε] where Ẋ = −g1(X) to obtain

X(3ε) =X0 + εg2(X0)

+ ε2 [∇g2(X0)g1(X0)−∇g1(X0)g2(X0)] + ε2

2 ∇g2(X0)g2(X0) +O(ε3).
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• and finally, using Ẋ = −g2(X) for t ∈ [3ε, 4ε], we obtain

X(4ε) = X0 + ε2 [∇g2(X0)g1(X0)−∇g1(X0)g2(X0)] +O(ε3).

We thus obtain that the system can also evolve, with well chosen controls, in the direction
of the so-called first order Lie-bracket of g1 and g2: [g1, g2](X0) = ∇g2(X0)g1(X0) −
∇g1(X0)g2(X0). The displacement is now proportional to ε2.

The question is to know wether this new direction [g1, g2](X0) will allow to move in
the whole space R3 (i.e. to be controllable, to swim). As we will see in the following,
the classical Chow’s theorem says that the answer to this question is positive (at least
locally), if the vectorial space generated by (g2(X0), g1(X0), [g1, g2](X0)) has dimension
3. In that case, the three moving directions we identified allow X to reach any point in a
neighbourhood of X0 in R3 and the system is locally controllable.

. Stokesian robots: a general framework. [20,21]

We showed in [20,21] that the control framework I presented for the 3 sphere swimmer
can be generalized to the two other swimmers we consider.

An affine control problem without drift.

Let us first recall here the M shape variables (controls) and the position variables for
each swimmer:

3S 3SP 4S

x2 cθ
c

R

position p = x2 ∈ R p = (c, θ) ∈ R2 × R p = (c,R) ∈ R3×SO(3)
shape ξ = (ξ1, ξ2) ∈ R2 ξ = (ξ1, ξ2, ξ3) ∈ R3 ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4
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Using, as previously the linearity of Stokes equations together with self-propulsion, we
showed in [21] that we can write, for any of these swimmers, ṗ linearly in terms of ξ̇:

ṗ = V (ξ)ξ̇ =
M∑
i=1

Vi(ξ)ξ̇i with V (ξ) : RM 7→ RP , (5.3)

where P is the dimension of the position space. Setting again X = (ξ, p) ∈ Rd, d = M+P
the problem reads again as an affine control problem without drift:

Ẋ =
M∑
i=1

αi(t)gi(X) with gi : Rd 7→ Rd. (5.4)

Controllability.

Using the same Taylor expansions as for the 3S swimmer, one can see that the solution to
system (5.4) can move:

• in the direction of gi(X0), 1 ≤ i ≤M , with displacement proportional to time t (for
t� 1),

• in the direction of the first order Lie-brackets [gi, gj ](X0), 1 ≤ i, j ≤ M , with
displacement proportional to t2?

In fact, Lie-bracket directions of higher order can also be reached at the price of higher
order expressions in t, leading to smaller displacements. A classical result by Rashevsky
and Chow [Jur97; AS13] states that, if the Lie algebra generated by the iterated brackets
is of full rank at X0:

Lie(gi, i = 1 . . .M)(X0) = Rd,

every direction in Rd can be reached and the system is locally controllable (the number
of moving directions is sufficient to reach any point in a neighbourhood in Rd of X0).

To prove local controllability, it is then sufficient to find d independent directions among
the iterated Lie-brackets.
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Our three swimmers are designed in such a way that, the number of generated directions
using the M controls together with their M(M − 1)/2 first-order Lie-brackets is in fact
precisely equal to d:

3S 3SP 4S

x2 cθ
c

R

position variables p = x2 ∈ R p = (c, θ) ∈ R2 × R p = (c,R) ∈ R3×SO(3)
dimension P P = 1 P = 3 P = 6

shape variables ξ = (ξ1, ξ2) ∈ R2 ξ = (ξ1, ξ2, ξ3) ∈ R3 ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4

(M controls) M = 2 M = 3 M = 4
nb. 1st order
Lie-brackets M(M−1)/2 = 1 M(M − 1)/2 = 3 M(M − 1)/2 = 6

Size of X = (ξ, p) d = M + P = 3 d = M + P = 6 d = M + P = 10

As a consequence, it is sufficient to prove that the gi(X0), 1 ≤ i ≤ M , together with
their first Lie-brackets [gi, gj ](X0), 1 ≤ i, j ≤M are independent. Indeed, in that case we
have:

dim Span ( (gi(X0))1≤i≤M , ([gi, gj ](X0))1≤i,j≤M ) = M + M(M − 1)
2 = d,

and the Lie-algebra is of full rank.

Using asymptotic expansions for large arms, we prove in [21], that for the three micro-
swimmers we consider, the full rank condition is satisfied at one point X0, with first
order Lie brackets only, proving local controllability at X0. We then go from local to
global controllability using Hermann-Nagano theorem [Jur97]: the analyticity of the
coefficients ensures that the dimension of the Lie-algebra is constant in the orbits of the
system. From this result, together with the specific form of the system and the invariance
of the problem with respect to the position, we prove that the Lie-algebra is of full rank
everywhere, so that the system is globally controllable.

Optimal swimming.

After showing the controllability of the system, i.e. showing that the swimmer reach
any target (position and orientation), it makes sense to ask how to achieve this target
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with minimal energy cost. To do so, one can follow the notion of swimming efficiency
suggested by Lighthill [Lig52] and adopt the following notion of optimality: energy
minimizing strokes are the ones that minimize the kinematic energy dissipated while
trying to reach a given net displacement.

We show in [21] that, mathematically speaking, the total energy dissipation due to a
stroke ξ : [0, T ] 7→ S can be evaluated through an adequate quadratic energy functional:

∫ T

0
ξ̇ · G(ξ)ξ̇dt,

where the energy density G is is a function with value in the space of symmetric positive
definite matrices with size P × P .

The optimal swimming problem therefore comes back to minimize this energy for (ξ, p) :
[0, T ] 7→ S × P, under the following constraints:

• Initial configuration: p(0) and ξ(0) are given

• Stroke: t→ ξ(t) is periodic

• Dynamics: p is solution to (5.3)

• Target: p(T ) is given

Note that some of these constraints can be relaxed. For example, it is possible to fix only
the periodicity of the shape, but not its initial and final values, or to fix only some of the
components of p(T ), leaving the others free to be optimized.

We present in [20,21] a numerical method to address this optimal control problem. The
coefficients V (ξ) in (5.3), encoding the dynamics, can be computed using a fluid solver.
We used a FEM solver in [20] for axisymmetric swimmers and a BEM solver in [21] for
the micro-robots we described in the previous sections.

Some optimal strokes for the three sphere swimmer of Najafi and Golestanian (3S) and
another axisymmetric swimmer (Avron’s Pushmepullyou swimmer) have been computed
in [20]. In [21], we examine in detail several optimal strokes for the three balls swimmer
in a plane (3SP) with a prescribed lateral displacement. Depending on whether the final
orientation is also prescribed, and whether the initial shape is prescribed as well, or rather
one treats it as a parameter to be optimized, we obtain dramatically different answers.
Their variety illustrates the richness of behaviour of low Reynolds swimmers.
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On-going work - Prospects

The series of articles [17-21], dating from 2008-2013, gave rise to new developments
in which I was not involved. For example, N-link swimmers were studied in [Alo+13;
Zop+17; Alo+19], elastic-swimmers in [PO12; MD15; CD16] or magneto-elastic swim-
mers in [Alo+17]. The influence of the presence of walls is studied in [AG13] and the
structure of optimal strokes for the 3SP swimmer is investigated in [AD18; AD20].

I recently started working again in the domain of low Reynolds number swimmers, having
in mind that my work on suspensions, contact or lubrication these last years could help in
understanding these systems. I describe in the following some of the projects on control
of micro-robots I am currently working on (as a co-supervisor of internships with François
Alouges). I also describe a longer term project, about numerical simulation of active
suspensions.

Control of micro-robots.

• During Philipp Weder internship (2020) we worked with François Alouges on
the description of the optimal strokes structure for the 4 sphere swimmer 4S.
This work was in continuation with [AD18; AD20], in which the optimal periodic
strokes were found to be planar ellipses for the 3 sphere swimmer. We pursued
the approach by considering the Four Sphere Swimmer 4S. In particular, using the
symmetries of the artificial swimmer, we show how the formalism of bivectors can
be used to express the optimal control problem in an elegant way for small strokes.
Strikingly enough, there is a subtle distinction to make in the study of the optimal
strokes, depending whether the prescribed displacement is a simple bivector or not.
The results of this work are currently being written up for publication.

• Jessie Levillain M2 interniship (2021) focuses on a one-dimensional swimmer,
consisting of a periodically activated rod attached to a series of elastic links
(springs). This swimmer is an extension of the one described in [MD15], composed

Controlled arm

Fig. 5.4: One dimensional elastic swimmer with a unique control.
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of a rod and a single elastic arm. In this case, the swimmer has a single control
in dimension one. A qualitative and numerical study of the problem is achieved
in [MD15]. If we place ourselves in the control framework of [17-21] that I
described, the feedback with the elastic arm leads in that case to an affine control
problem with drift and then the unique control makes it controllable. We want to
generalize this result to the case of a series of elastic links and are interested in
the description of a continuous limit model, when the number of springs tends to
infinity. The objective is to propose a one dimensional framework for a swimmer
made of a periodically activated head (the control) and a deformable body.

• The natural continuation of Jessie Levillain’s internship (who will start a PhD thesis
I will co-supervise with François Alouges) is to consider swimmers in two and
three dimensions, made of a magnetic head (controlled by a magnetic field)
and an elastic passive body. As in the one dimensional model, the deformations
of the elastic body produced by the periodic displacement of the head should
allow this swimmer to move with a single control (the magnetic field). In that
case, unlike in the one dimensional case, no simple model is available. The use of
direct simulations is then essential to compute the coefficients of the control system
encoding the hydrodynamics interactions. The BEM tool we developed these last
years, based on a discretization of the swimmer’s surface, seems to be particularly
adapted to this effect.

Towards direct simulations of active suspensions.

In most of the previous works, simplified models were used, neglecting non-local hydro-
dynamics interactions (e.g. resistive force theory for swimmers made of an assembly of
rigid links). However, it has been shown in [GHD18] that the errors made in the predic-
tion of swimming speed and efficiency was important when neglecting hydrodynamics
interactions.

I believe that the use of direct solvers for the study of swimmers should allow new
advances in the understanding of these systems, from micro-robots made of rigid spheres
or links, to deformable swimmers. For example, the rheological signature of a two
dimensional swimmer which controls its form has been studied in [Riz+19] using BEM
computations. Recently, in [Guo+21b; Guo+21a], the authors also use BEM methods to
optimize the boundary conditions (velocity or ciliary motion) for swimmers with arbitrary
axisymmetric shape.
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The internal forces exerted by a swimmer to change its shape generates large lubrication
forces. As a consequence, it is essential to take into account the effect of these forces, not
only on the swimmer, but also on other swimmers when simulating active suspensions.
Direct fluid solvers, together with the decomposition method proposed in chapter 2 seem
particularly adapted to solve this problem.

In the coming years, I would like to take advantage of my work on suspensions, both
related to BEM and close interactions, to study micro-robots, deformable swimmers
and to study the behaviour of collections of swimmers (active suspensions).

As mentioned in the introduction, the presence of active particles fundamentally changes
the rheology of suspensions in a Newtonian fluid. Numerical simulations based on
simplified models have been proposed to study the effective viscosity of suspensions of
microswimmers in [IP07] or [Jib+17]. A two dimensional direct simulation of active
bacterial suspension is reported in [DMM11], based on a finite element solver. There is
no doubt that the development of direct simulation tools for three dimensional swimmer
suspensions, taking into account contact and lubrication, would be of great help in
improving the understanding of the macroscopic behaviour of active suspensions.
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Conclusion 6
Although present in everyday life, systems of interacting solids (such as suspensions,
granular media, micro-swimmers, active suspensions, etc.) are still far from having
provided all the answers to the questions raised about their behaviour. They are indeed
particularly complex systems, each entity influencing all the others, through a very
non-linear behaviour. One of the main difficulties lies in the close link between their
microscopic and macroscopic behaviour. It is now well established that understanding
the evolution of these systems from a microscopic point of view is necessary in order to
identify macroscopic physical quantities of interest as well as well-posed macroscopic
laws. For this, numerical simulation has an important role to play.

However, the complexity of these systems makes them difficult to study and simulate
numerically: fluid/structure problems in three dimensions, demanding simulations for 3d
dense systems, stiff short range interactions due to lubrication, non continuous behaviours
due to contacts... These difficulties make this domain of research very stimulating and
challenging for mathematicians!

The mathematical modelling of the physical phenomena involved is indeed essential for
the understanding of these systems, but also for the development of codes that can answer
the questions that arise. In this manuscript, we have presented some of these questions,
which stem from current research in the domain of rheology, and for which mathematical
developments have allowed progress, each community enriching the other.

To answer these problems, I have had the opportunity to work with various mathematical
tools: asymptotic expansions of solutions to Stokes problems in order to take into account
lubrication, finite elements and boundary finite elements to solve fluid/structure problems,
fast methods and singular integrals for boundary elements methods, non-smooth convex
analysis and conic optimisation problems to model contacts, control theory to study
micro-swimmers... Again, this is only possible thanks to numerous exchanges between
different fields of mathematics.

I end this manuscript by recapitulating the various projects to which the methods I
presented opens the way:
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Rheology of suspensions.

• New rheological studies for non-spherical particles, including lubrication (chapter 2
together with the viscous contact model [6]) and friction (chapter 4)

We plan to couple the fluid solver CAFES to the contact code SCoPI (post-doctoral
fellowship funded by ANR RheoSuNN, starting in October 2021, in collaboration
with Sylvain Faure and Loïc Gouarin). The friction algorithm, together with the
viscous contact model already implemented in SCoPI, provides a contact algorithm
that takes into account both friction and lubrication and leads to an implicit and
stable method. In order to account for lubrication in the whole flow, we are currently
working on an extension of the decomposition method described in chapter 2 to
fictitious domain solvers (work in progress with Fabien Verget and Flore Nabet).
With Georges Gautier, from the FAST laboratory, we wish to recruit and co-supervise
a PhD student at the end of the ANR project, in order to carry out new rheological
studies with the code resulting from the project.

• Further developments of the Stokes BEM solver (chapter 3) in order to simulate
suspensions.

We need to choose an integral formulation and deal with the near-singular integrals
arising for the double layer kernel when particles get close one to another (on going
work with François Alouges and Antoine Sellier). To be able to deal with dense
suspensions, it might be necessary to develop a multilevel implementation of the
SCSD fast solver. Finally, I also have in mind to extend the decomposition method
(chapter 2) to handle lubrication phenomena in BEM solvers.

• Use of direct solvers based on meshes fitting the fluid domain.

To date, most rheological studies performed with direct solvers are based on
fictitious domain methods or boundary element methods. It would be interesting
to test the behaviour of direct solvers based on meshes fitting the fluid domain.
Compared to fictitious domain methods, these solvers, like the BEM solvers, respect
the geometry of the particles. They must therefore be able to take into account
precisely the close interactions. One of the difficulties in using this type of method
is the need to remesh the fluid domain at each time step. As many advances have
been made in remeshing techniques, it would now be interesting to see if these
methods are now suitable for the numerical study of suspensions.
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Rheology of granular flows.

• Theoretical study of the algorithm proposed in chapter 4.

We need to go further in the analysis of the properties of the scheme and of its link
with dissipated power models (on going work with Bertrand Maury).

• Numerical study of granular media.

Lot of questions arise on the behaviour of granular materials. I would like to
develop further the collaborations that have been set up with colleagues from FAST
and IPGP around the code SCoPI. For example, we plan to extend the algorithm for
friction developed in chapter 4 to the case of non-spherical particles, which would
open the way to many new applications (collaboration with Sylvain Faure and Loïc
Gouarin).

• From microscopic simulations to well posed rheological models.

I am convinced that the code we developed can help to better understand the
different microscopic physical quantities involved and allow to answer questions
both from physicists and mathematicians, such as well-posedness of the macroscopic
models. I am particularly interested in the non-local rheological models and the
study of the length scales of the chains of forces. Microscopic numerical simulations
could also allow the identification of parameters of interest, linked to the structure
of the medium for example, making it possible to propose new local rheological
laws, that would lead to well-posed continuous problems.

Micro-swimmers and active suspensions.

• Further study of swimming micro-robots.

We are currently studying the structure of optimal strokes for the 4S micro-robot
described in chapter 5 (Philipp Weder internship, co-supervised with François
Alouges). We also plan to use the general control framework we have developed
(chapter 5) to study more general robots such as magneto-elastic robots. We are
currently working on a N-spring swimmer attached to a periodically activated rod
in dimension one and plan to study swimmers with a magnetic head and an elastic
passive body in two or three dimensions (Jessie Levillain M2 internship and PhD
Thesis, beginning in October 2021, co-supervised with François Alouges). The
corresponding numerical simulations will be achieved using the Stokes BEM solver
we have developed (chapter 3).
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• Direct simulation of active suspensions.

The rheology of active suspensions is fundamentally different from that of passive
suspensions and is a very active domain of research. As detailed at the end of
chapter 5, the simulation of such systems would benefit greatly from the tools
I described in this manuscript. The use of direct solvers such as BEM solvers
(chapter 3) as well as a careful care to close interactions such as lubrication
(chapter 2) or friction (chapter 4) would be of great help to better understand these
systems. This direction of research, which could take advantage of many tools that
I had the opportunity to develop, would be a natural follow-up to this work.

Collective behaviour in colonies of bacteria.

• Using the code SCoPI to simulate colonies of bacteria.

A very recent and exciting project is being set up, following contacts with Vincent
Calvez (ICJ Lyon) and Tâm Mignot (laboratoire de chimie bactérienne, Marseille).
They are co-supervising a PhD thesis, one of the objectives of which is to under-
stand the collective movements of bacteria. The study is based on very precise
experimental observations at the individual level. Having developed a macroscopic
model, they now wish to work at the microscopic level. The aim is to understand
the importance of contacts between cells, which seems to play a primordial role. In
order to observe the desired patterns, it is necessary to be able to take into account
about 200 000 bacteria, moving in two dimensions and, in the first instance, of
ellipsoidal shape. The recent inclusion of non-spherical particles in the code SCoPI
should allow us to perform such simulations. Note that it is more a question here
of considering a model of crowd movement than a model of suspension or granular
media. However, the schemes for crowd motion are very similar to those used for
granular media. Indeed, if the former are of order one in time and the latter of
order two, the consideration of contacts is done in the same way.
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