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For many years, scientists have been mixing powders for different purposes, mainly by the 

method of stirring. Recently, particle design, structuring and optimization of physical and 

chemical properties to achieve a combination of the desired effects, has grown in importance. 

Powder coating is a method that focuses on improving or modifying some specific properties 

of powders that the natural product does not offer. It is an essential operation in the 

preparation of pharmaceutical materials for controlled–drug delivery within the body, food 

manufacture which must combine a desirable appearance, aroma and enhance shelf life, 

plastic processing, ceramic materials, fertilizer production, mining industry and powder 

metallurgy industry. The importance of powder coating resides in the fact that it is not only 

the base material which determines the properties of end products, but also, they are guest 

materials and process conditions.  

At present, most commercial coatings of particles, grains, granules or pellets are done using 

wet coating processes. The most popular methods employed by industry are pan coaters or 

fluidized bed coaters with various flow patterns and solution spraying nozzles or by wet 

chemistry based techniques such as coacervation and interfacial polymerization. These 

methods need suitable solvents (aqueous or organic based) to form a barrier or film between 

the host particle and its environment, to dissolve or suspend the coating materials to form the 

solution/suspension, and the tiny liquid droplets are sprayed to the surface of the substrate 

particles in the fluidized zone. During processing, the coated particles are simultaneously 

dried and the end product is obtained. There are several major disadvantages of the existing 

wet coating techniques. First of all, it is the potential environmental hazard due to the use of 

volatile solvents. Also, wet coating systems are expensive to operate and it requires a drying 

stage. The disadvantages of wet coating techniques forced researchers in the field of powder 

technology to find an alternative or other suitable methods for coating powders. Dry particle 

coating is the alternative method that does not produce any hazardous waste products and 

does not require and kind of binders, solvent or even water for coating. It doesn’t need any 

drying step since it doesn’t require any kind of solvents, so energy savings makes the dry 

particle coating process more economical compared to traditional wet coating.       

Dry particle coating has been developed from a powder mixing concept that was introduced 

by Hersey in 1975, which is the “ordered mixture”. In ordered mixing, cohesive fine powder 

is mixed with coarser particles (the particle size ratio of fine and coarser particles is between 

10 and 100), the fine particles (guest) would adhere and create a particle layer on the surface 
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of the larger particles (host) because of the inter-particular forces between the particles are 

stronger than the weight of the fine particles (Stephenson et al., 1980, Bannister et al., 1983, 

Staniforth et al., 1985). In dry particle coating process the same procedure happens but 

additionally, different equipments, which generate mechanical forces such as impact and 

shear, are used in order to break the fine agglomerates and coat the coarser particles with 

them. The surface covering would be more permanent than ordered mixing because of a 

stronger physical (or chemical) bonding (Alonso et al., 1999).  

Dry particle coating process has 3 main terms that are; powder couple (host & guest 

particles), process (equipment, operating conditions) and the end-use properties of the 

composite particles. It is very complex to understand the relationship between these 

parameters. As an example, in order to obtain specific end-use properties for a certain powder 

couple which equipment and what operating conditions should be chosen? The current state 

of art approach is to use a trial and error procedure to answer this question. It is necessary to 

understand the physicochemical principles that govern the coating process to predict the 

choice of machines and the right combination of process variables needed to produce 

composite materials with desired end-use properties. In this study, which is a partner of the 

European Union 6th Framework Program-Biopowders Project (Appendix IX), the general aim 

is to develop a fundamental knowledge in dry particle coating process, to better understand 

the interactions between the powder couple, process and the end-use properties and also to 

classify the criteria (operating conditions, equipment used, choice of powders, particle size 

distribution etc…) that affect the end-use properties of the particles. In order to simplify the 

complexity of the problem some “model couples” have been chosen. There are some criteria 

for model couple (host and guest particles) linked to characterization techniques. For 

example, the particles should have a simple chemical composition and structure; they should 

be spherical so that the layer of guest particles on the host particles can be characterized by 

different characterization methods. Moreover, the particles should have certain particle size 

ratio between them (like 10 times), in order to benefit from the ordered mixture concept in dry 

particle coating process.    

Poly(methyl methacrylate) (PMMA) and talc particles have been chosen as the first model 

couple because of certain reasons. First of all they are both bio-powders (pharmaceutical, food 

powders) and they have particle size ratio more than 10 times so that they are available for 

ordered mixture concept. In addition to being a bio-powder, PMMA particles have a regular 
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spherical shape and smooth surface which enables us to see the coating performance easily by 

visual methods and by different characterization techniques.  

Cellets particles, which are simply microcrystalline cellulose, and talc particles, have been 

used as the second model couple since cellets particles are also bio-powder and has a suitable 

morphology for being analyzed by different characterization methods.  

In the first chapter of the thesis, a background on the dry particle coating process will be 

constructed by reviewing early studies in the scientific literature. The description of the dry 

particle coating process and its advantages, its mechanism, the relationship with different 

physico-chemical phenomena, different dry particle coating equipments and various dry 

particle coating applications in different domains will be presented.  

In the second chapter, the model couples and the equipments that were used for dry particle 

coating trials will be presented. Moreover, the principles of different characterization methods 

that were used to study the modification of the end-use properties of the particles will be 

described in detail.  

In the third chapter,  we focus on the different dry particle coating equipments and their 

operating conditions influencing the coating phenomena, end-use properties of PMMA and 

talc particles (first model couple) and to the development of the AFM technique (AFM study 

has been done with collaboration to Centre CIS, Ecole des Mines de St. Etienne,)  to derive 

coating coverage information. The feasibility of dry coating of PMMA with talc particles 

using different dry particle coating equipments (Nara Hybridizer, Cyclomix, Turbula) will be 

studied. Several characterisation methods are used to study the physico–chemical properties 

(mechanical coating strength and flowability) of the coated PMMA particles in different 

equipments with different operating conditions.  

In the forth chapter, two different particle size distributions of cellets and talc particles 

(second model couple) are chosen for dry coating process in different equipments in order to 

study the influence of the size of the host and guest particles on the different end-use 

properties (mechanical coating strength, wettability and water affinity) of the particles.   

At the end, the general conclusions of the thesis according to the principle results that were 

obtained and the future perspectives will be presented.  
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1. INTRODUCTION  

Particle coating or surface modification technology has been used for the synthesis of 

composite materials with desired end–use properties in many industries, including 

pharmaceuticals, food, cosmetics, ceramics, electronics and special chemicals. At present, 

most commercial powder coatings are done by wet coating methods such as sol-gel processes, 

wet chemical deposition, spray coating, dip coating, spinning disc coaters and a variety of 

fluidized bed coaters. Wet particle coating is used primarily to form a barrier or film between 

the host particle and its environment. The coating material usually consists of a solute 

dissolved in an organic solvent or an aqueous suspension of the solute. The organic solvent is 

usually highly volatile (VOC). VOCs have been implicated as a major precursor in the 

production of photochemical smog, which causes atmospheric haze, eye irritation and 

respiratory problems and even some VOCs are carcinogenic. These environmental drawbacks 

of wet coating methods have forced researchers in the powder technology field to find 

alternative methods for coating of powders (Yokoyama et al., 1987, Tanno, 1990, Naito et al., 

1993a).  

Dry particle coating is a relatively new and alternative approach to wet coating methods and it 

has drawn attention of many researchers. It uses mechanical forces (mechanical impact, 

shearing etc.) in order to attach submicron–sized fine particles (guest) on to relatively larger 

micron–sized (host) particles without using any solvents, binders or even water (Pfeffer et al., 

2001). Since the size of the guest particles is so small, Van der Waals interactions are strong 

enough to keep them firmly attached to the host particles (Ramlakhan et al., 2000). 

Depending on choice of equipment, operating conditions and particle properties, either a 

discrete or continuous coating of guest particles can be obtained (figure I.1). 

 

 

Figure I.1. Dry Particle Coating Process 
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2. ADVANTAGES OF DRY PARTICLE COATING  

Dry particle coating is used to make modifications of the properties or functionality of the 

host particle and create new generation of composite particles. Some examples of surface 

properties that can be improved or modified are flowability, dispersibility, solubility, 

wettability (hydrophilic/hydrophobic properties), electrostatic, electric, magnetic, optical, 

colour, flavour, taste, particle shape/sphericity, sinterability and solid phase reactivity (Pfeffer 

et al., 2001). So, dry coating process opens up many different applications in different areas 

like pharmaceutical, food technology, herbal/cosmetics, agricultural, powder processing 

industries etc.  

In addition to producing materials with different functionality, dry coating process has an 

advantage of being cost effective due to the reduced use of high–price or rare materials since 

the more expensive material (guest) can be coated onto the cheaper carrier material (host) and 

also there is no need for drying the products which results in substantial energy savings. 

Another major advantage of dry particle coating process is that it is environmentally benign, 

producing none of the organic (gas or liquid) or aqueous waste streams, which usually are 

present in wet coating processes (Honda et al. 1994, Sreejith et al., 2000, Pfeffer et al. 2001).  

3. ORIGIN OF DRY PARTICLE COATING 

The research in dry particle coating process started in Japan about twenty years ago and it is 

still a developing technology.  

3.1. Ordered Mixture 

The subject of dry particle coating is closely related to the subject of dry mixing of powders. 

Theoretically, a binary mixture process should mix two different species of powders so that 

any sample taken from the mixture would contain the same proportion of the two powders. 

This is very hard to achieve practically when the powders are either cohesive or they are very 

different in particle size. When powders are cohesive, they naturally form agglomerates and 

mixing of these powders requires breaking up of the agglomerates preliminarily. When the 

powders are very different in particle size, there is an increased tendency for segregation as 

the particle size becomes larger. However, when the particles to be mixed are very different in 

particle size (one or two orders of magnitude), then the small particles tend to adhere on the 

surface of the coarser particles. The adhesion force between the smaller particle and the larger 

particle is greater than the weight of the smaller particle so the detachment of small particles 



Background on Dry Particle Coating 

   

Serkan OTLES 

 

21 

from the surface of larger particles is difficult (Pfeffer et al., 2001). Hersey (1975) coined the 

term “ordered mixture” for this kind of mixture, to distinguish it from the random mixture that 

results when non–cohesive powders are mixed. Figure I.2 shows the concept of ordered 

mixture.    

   

 

Figure I.2. Ordered Mixture 

 
The advantage of ordered mixture is that it provides a much better degree of homogeneity 

than random mixing as long as the particle size distribution of the larger size particles is not 

too wide (Hersey, 1975, Bannister et al., 1983). So, in terms of subsequent segregation, 

ordered mixtures are more stable than random mixtures (Hersey, 1975, Yip et al., 1977, 

Alonso, 1989a). It was also shown by early researchers that having a very wide size 

distribution of the large size particles may lead to “ordered unit segregation”, because of the 

nature of the poly-disperse coarse particles (Hersey, 1977, Yip et al., 1977, Thiel et al., 1982).        

Egermann (Egermann et al., 1983) called the term “regimented” mix or “interactive mix” for 

this phenomenon. Staniforth and colleagues also studied ordered mixtures applicable to the 

pharmaceutical industry (Staniforth et al., 1985). 

Bannister and Harnby (1983) explained the ordered mixing process qualitatively. They 

identified the ordered mixing process in to 3 stages. It starts with separation of the 

agglomerates of the fine particles in to their primary particles then the bonding of these fines 

to carrier particles fallows. It finishes with redistribution and exchange of fine particles 

among the carrier particles until a random distribution is achieved. The real process may not 

take place exactly in that order but it is sure that the de-agglomeration of fine particles must 

occur in order to have the ordered mixture. Therefore in order to achieve ordered mixing, 
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sufficient mechanical energy to promote de-agglomeration of fine particles must be used, 

which means to create particle collisions by mechanical impact and shearing forces. Machines 

that can be used for this purpose are high shear mixers and grinding machines. Yeung and 

Hersey (1977) showed that, it is easier to break up fine agglomerates into primary particle size 

in the presence of coarser particles in the mix when processed in a high shear mixer, than 

having fine particle agglomerates alone. Since, the host particles act as the media and help the 

de-agglomeration of the fine particles in this phenomenon.  

3.2. Dry Particle Coating Mechanism 

In a typical dry particle coating process, coarse particles are mechanically mixed with fine 

cohesive powder. The resulting mixture is expected to have a layer of fine (guest) particles 

adhering to the surface of large particles. Alonso and colleagues studied the mechanism of dry 

particle coating (Alonso et al., 1988, 1989a and b, 1990, 1999, 2001). They tried to explain 

the kinetics of fine particle transfer on carriers in dry particle coating processes by using a 

statistical model and experimental observations. The model was used to simulate the stages of 

coating process and understand the influence of some parameters like the effect of the particle 

size ratio between the coarse and fine particles and the concentration of fine particles in the 

mixture. They explained the stages of dry particle coating in a special type of mixer, the 

Angmill Mechanofusion System.  

 

 

Figure I.3. Mechanism of Dry Particle Coating in Mechanofusion 

(I) Initial condition, (II) Formation of first carriers, (III) Carriers transferring fines to non-

coated particles, (IV) Breaking up of agglomerates and dispersion of fines on the surface of 

carriers, (V) Mechanofusion     

 

(I)  (II (III)  (IV)  (V) 
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As it can be seen from figure I.3, at the beginning of the operation the fine aggregates adhere 

to the coarse particles in their immediate vicinity. When a coarse particle carrying fines 

adheres its surface collides with a non-coated particle, it transfers part of its fines to the latter. 

By friction and collision between the particles, the agglomerates of fines are gradually 

dispersed onto the surface of the carriers, which results in an increase in the coated surface 

area. Afterwards, the mechanofusion system greatly modifies the surface texture by giving a 

high level of mechanical energy to the particles. Locally melting and a partial or total 

penetration of the fine component into the body of the larger particles take places. The 

dispersion of fines actually occurs from the earlier stages of the process. The dispersion rate 

and the degree to which the agglomerates are broken up depend strongly on the mechanical 

energy input and therefore, on the type of mixer used.    

These authors coated Poly(methyl methacrylate) particles (50 µm mean particle size) with 

magnetite black spheres (0.17 µm mean particle size) in mechanofusion system in order to 

analyze the different stages of dry particle coating. From the former experiments and direct 

observation, they concluded that the spreading of fines within the mixture occurs by collisions 

between coated and non–coated particles and they found that a reaction of type C+N → C+C 

between coated (C) and non–coated (N) particles was a suitable analogy to describe the 

process (Alonso et al., 1989b).  

Honda and co-workers (1991, 1994) were interested on the adhesion mechanism of particles 

by dry particle coating process. They considered that the principal forces involved in dry 

particle coating process are Coulomb and Van der Waals forces. This study also showed the 

effect of particle size ratio between the host and guest particles on dry particle coating 

process.         

The concept of ordered mixing and dry coating process were also described in a series of 

papers by early researchers (Honda et al., 1987, 1988, 1989, 1991, 1992, 1994, 1995, 1997 

and 1998). They observed that, an ordinary dry mixing process would result in an ordered 

mixture, as the fine particles attach to the larger host particles through electrostatic forces 

(Honda et al., 1991). However, a shear mixer would generate high impulsive forces which 

cause the fine particles to become attached to the host particle and a coated composite particle 

is obtained. This device, called the Hybridizer, is manufactured by Nara Machinery of Japan. 

The hybridizer has proven very useful for pharmaceutical applications; for example, it 
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accelerated indometacine dissolution when coated onto a carrier particle such as potato starch 

(Ishizaka et al., 1993a). 

However, the earliest reference to a device specifically used for dry particle coating comes 

from Japan (Yokoyama et al., 1987). The grinding device, called the Angmill, was used for 

creating particulate materials with different surface properties due to the strong mechanical 

force acting on the particles. Since the combination of high shear and compression forces 

acting on the host and guest particles produced some surface fusion, the treatment was termed 

mechanofusion and the device is also called Mechanofusion which is manufactured by 

Hosokawa Micron.  

On the other hand, Hosokawa recently developed another type of high shear mixer, called the 

Cyclomix, for dry particle coating applications. It uses mechanical impact and shearing forces 

in order to mix and coat the particles. It is considered to be a high shear mixer for dry particle 

coating process (Ghadiri et al., 2007a and b, Hassanpour et al., 2008, Rahmanian et al., 2008).   

The Mechanofusion and Hybridizer can also produce chemical interactions as well as physical 

surface interactions between the host and guest particles. These equipments are responsible 

for the adhesion between the host and guest particles and also the de-agglomeration of the 

guest particles. Moreover, these devices may cause change in the chemical and electrostatic 

states of the host and guest particles as a result of the mixing caused by the mechanical forces 

generated by the machines. In addition to physical adhesion, a chemical reaction may occur at 

the interface of host-guest particles and causes new surface properties of the composite 

particles. The process is called mechano-chemical reaction (mechanochemistry). Watanabe 

and colleagues (2002, 2003) studied the mechano–chemical reaction by mixing indometacine 

with silica nano-particles. Watano and co–workers (2000) worked on changing the end use 

properties of some special type of food powder by coating them with hydrophilic silica 

(SiO2). They tried to understand the phenomenon of mechano–chemical reaction in dry 

particle coating processing. They observed that reaction between hydrophilic OH groups of 

food fibre and silanol groups -Si(OH)- results in dehydration (fig. I.4), which leads to 

suppression of the hygroscopic properties of the food fibre.  
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Figure I.4. Mechano–chemical Reaction (Watano et al., 2000) 

 
The mechanofusion, hybridizer and cyclomix are considered to be high shear mixers. They 

produce coated particles by using high level mechanical forces. In certain applications, these 

high forces are not necessary or they may even cause excessive size reduction of the host 

particles. For this purpose, there are some other dry particle coating devices that apply smaller 

level of forces on the particles. For example the theta composer, an elliptical rotor–type 

powder mixer, was developed for this purpose and manufactured by the Tokuju Company. 

Several articles describe the operation of the theta composer, which has been found to be very 

useful for dry coating of certain pharmaceutical and food powders (Fukumori et al., 1998, 

Kawashima, 1998, Watano et al., 2000).  

A V–blender is also another equipment that has been used by early researchers for the 

purpose of dry coating of particles. The V–blender mixes the powders gently by using 

rotational movement and achieves good powder mixing at the end (Yang et al., 2005).  

There is another softer dry coating method which is called magnetically assisted impaction 

coater (MAIC) uses a magnetic field to accelerate and spin larger magnetic particles, mixed 

with the host and guest particles thus promoting collisions between the particles and with the 

walls of the device (Singh et al., 1997, Ata et al., 1998).  

Rotating fluidizer bed coater (RFBC) is also another dry particle coating equipment that 

applies small level of mechanical forces on the particles. This equipment is developed by 

New Jersey Institute of Technology and it is based on the principle of centrifugal fluidization 

(Watano et al., 1998).   

During dry particle coating process, individual particles are in contact with each other and 

with the surface of the equipment used. The degree of interaction between the particles and 

between the particles and the surfaces of the equipment determines the properties of the 
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composite particles. Inter-particular forces influence the interaction between the particles and 

play an important role in the dry particle coating process. In the following section, the 

adhesion mechanism of particles and the inter-particular forces between the particles will be 

discussed.  

4. INTER-PARTICULAR FORCES 

The nature and degree of particle interactions determine the surface properties of the 

composite particles (Podczeck, 1997). There are two principle interaction mechanisms 

between the particles, which are adhesion and friction. Adhesion is the result of the inter-

particular forces between the particles or a particle with a surface that are in contact. It may 

occur between the particles and surfaces with different chemical nature or with the same 

chemical nature which is termed as cohesion. With respect to single particle interactions, the 

term cohesion is applicable only when the particles are as close as an atomic distance between 

each other. Friction is the force preventing the tangential displacement of two solid or particle 

surfaces in contact (Podczeck, 1997). 

Adhesion between particles and between particles and surfaces are primarily due to Van der 

Waals Forces, capillary forces, electrical forces and electrostatic coulomb forces. They 

usually arise because of the interactions between dipole-dipole, charge-dipole, charge-charge, 

covalent, charge-non-polar, dipolar-non-polar, non-polar-non-polar and also hydrogen 

bonding (Seville et al., 1997). The inter-particular forces depend on the particle size and the 

distance between the two acting particles and on the other hand on the shape including surface 

properties and deformation, as well as the chemical identity of the particles. 

In the following section, different inter-particular forces will be introduced and the parameters 

influencing the forces will be described.  

4.1. Van der Waals Forces  

Van der Waals forces (Fvdw) are a class of intermolecular forces which arise when molecules 

are polarized and becoming dipoles or multi-poles. Three different Van der Waals forces exist 

between molecules. These are; Keesom forces, Debye forces and London forces. The Keesom 

forces are the attractive forces between permanent dipole molecules. The Debye forces are the 

attractive forces between a permanent dipole molecule and an induced dipole molecule. An 

induced dipole molecule is a non-polar molecule which was induced to become a dipole 

molecule by the attractive force of another dipole molecule. London forces are attractive 
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forces between two non-polar molecules. They are also called as induced dipole-induced 

dipole forces.  

In order to determine the Van der Waals interactions between particles, two different 

approaches are described in the literature. The microscopic approach, which is also called as 

the Hamaker integration, is based on the interactions between atoms and molecules (Hamaker, 

1937). It can be calculated by integrating the molecular density over the entire volume of the 

solids (Israelachvili, 1991).  The calculation is performed using the Hamaker constant; 

 

BAABH CA σσπ 2=           (Eqn.I.1) 

Where σA and σB are the number of atoms per unit volume of molecule A and B, C is the 

coefficient in the atom–atom pair potential.  

In reality the van der Waals forces between two molecules are changed by the presence of a 

third molecule. This problem of additivity is completely avoided in the macroscopic theory 

developed by Lifshitz (1956). Lifshitz neglects the discrete atomic structure and the solids are 

treated as continuous materials with bulk properties. It is related to the Hamaker coefficient 

by; 

                                                                ϖ
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3=                                                     (Eqn.I.2) 

Table I.1 shows different models of Van der Waals forces, considering the surface geometry 

of the two partners (flat surface/flat surface, flat surface/sphere, sphere/sphere). It is assumed 

that the surfaces are smooth and there is no particle deformation (no surface roughness) and 

that the distance is between 0.4 nm and 100 nm.  

 
Table I.1. Van der Waals Forces (Fvdw) Between the Model Partners 
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Fatah (2007) calculated Van der Waals forces between alumina (3 and 13 µm) and titanium 

oxide (204, 159 and 167 nm) powders with taking into account the effect of surface 

roughness. For two identical, spherical particles with a certain surface roughness (a), the Van 

der Waals forces can be calculated by using the equation I.3; 
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                                 (Eqn.I.3) 

Where, R is the radius of the identical particles. 

4.2. Capillary Forces 

Capillary forces (Fc) arise from the moisture in the gap between contiguous bodies that form 

liquid bridges to adhered surfaces (fig.I.5). They are very important for powder flow. Moist 

powders usually exhibit poor flow properties, sticking to the walls of hoppers or other 

surfaces during powder handling. In the case of hydrophilic porous materials, moisture is 

trapped in the pores that build up liquid bridges to adhered surfaces. In some cases, moisture 

in the gap between contiguous bodies condenses, giving rise to capillary forces (Seville et al., 

1997). 

 

Figure I.5. Scheme of a Liquid Bridge (Israelachvili, 1991) 

 
Capillary forces due to moisture condensation depend on the geometry of the gap, properties 

of the materials in contact, surface free energy, wettability and surface roughness. Moisture 

starts condensing in the gap in air at a relative humidity of about 50%. Also, above a relative 

humidity of 65% to 75%, capillary forces dominate the adhesion force (Massimilla et al., 

1976).  

In the literature different approaches for the calculation of capillary forces are performed 

considering the geometry of the particles (Naidich, 1967, Toussaint, 1997, Rabinovich, 2005). 
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When the liquid condenses between a sphere and a surface, the Laplace pressure developed 

due to the curved liquid surface pulls the sphere and the plane together. A critical distance is 

described depending on the volume of the liquid bridge. By overstepping this distance the 

capillary will shear and the force will disappear. Israelachvili (1991) proposed an equation to 

calculate the capillary force: 

 
                   ( ) slLc RF γπθπγ 4cos4 +=                                        (Eqn.I.4) 

Where γL, is the surface tension of the condensed liquid, and γsl is the solid/liquid interfacial 

free energy, R is the radius of the adhered sphere; θ is the contact angle between the adhered 

particle and the liquid. Adamson (1976) proved that capillary forces are proportional to the 

product of the wetted area of surfaces and the tension arising from the liquid pressure. 

Consequently, there will be a maximum capillary force at an intermediate value of the liquid 

tension, which is the quotient between surface tension and the radius of curvature of the liquid 

meniscus. 

4.3. Electrostatic Forces 

Electrostatic forces (Coulomb forces) (Fel) emerge between charged particles. When the 

particles are both either positively or negatively charged, the force is repulsive. When they are 

of opposite charge, it is attractive. The force can result from friction or even by contacting 

solid surfaces and building up an electric potential. Due to electron transfers between the 

particles the potential emerges. The particle, which needs less energy to release the electrons, 

delivers them to the other particle. The charging of isolators and electronic conductors is 

depending on the electron surface density (Visser, 1989). 

The force acting on one charged particle having charge q1 by another charged particle having 

charge q1 is given by Coulomb's law as; 

 

                                                              
2
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=                                           (Eqn.I.5) 

Where, ε0 is the permittivity of vacuum. The force of interaction between a spherical particle 

of radius R and charge Q, interacting with an adjacent uncharged particle with a separation 

distance H due to it's own image charge is given by; 
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However, the electron density of surfaces is inhomogeneous and cannot be determined and 

the charging can be influenced by adsorbed impurities covering the surfaces. Thus, the 

calculation of Fel is difficult and often leads to only an approximate value.  

4.4. Dependency of Inter-particular Forces on Different Parameters 

There are four main mechanical factors influencing adhesion namely: surface roughness, 

particle size and shape, material hardness and elasticity and the work of adhesion and surface 

free energy. Surface roughness is one of the most important mechanisms influencing adhesion 

because it is strongly related to the geometry of contact. As it is illustrated in figure I.6, the 

Van der Waals forces will be approximately zero for the case (a) and (b), because the surface 

is rough which limits the approach of two particles and hence low contact area. However for 

cases (c), (d) and (e), the Van der Waals forces are high, as there is large contact area between 

the particles. 

 

 

Figure I.6. Surface Roughness and Geometrical Factors on Van der Waals Forces (Visser, 

1989) 

 
Moreover, the effect of surface roughness on the inter-particular forces is demonstrated by 

Goetzinger and Peukert (2003), using the model of a flat surface and a spherical particle. The 

spherical particle has a certain surface roughness, which increases the distance between the 

particle and the surface. Van der Waals forces are very sensitive on changes in the diameter. 

By increasing the diameter of the roughness of the spherical particle the amount of the forces 

is decreased as the distance between the spherical particle and the flat surface enlarges until a 

(a) 
(b) 

(c) 
(d) 

(e) 
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certain surface roughness diameter. The relation between the different diameters and the inter-

particular force are shown in figure I.7, showing the proportional relation of the particle’s 

diameter and the inter-particular forces. The curves of the different diameters meet after 

passing through the minimum due to the fact that the forces in this diagram just depend on the 

model roughness with a constant diameter. The electrostatic forces show a similar effect 

passing a minimum at a certain diameter, however, the effect is less intensive as the slope of 

the electrostatic forces is decreased compared to the slope of the Van der Waals forces.  

 

 

Figure I.7. Dependency of the Inter-particular Forces on the Surface Roughness (Schubert, 

2003) 

 
The capillary force depends on the volume of the liquid. When the volume is high enough, the 

liquid will surround the roughness and the force of the capillary will be based on the diameter 

of the particle and will be slightly decreased by the increase in the diameter of the surface 

roughness. When the volume is smaller, the capillary force will be build up between the 

roughness and the flat surface. So, by increasing the diameter of the roughness the force will 

be decreased. Above a certain diameter of the roughness the capillary force increases linearly 

with the log diameter of the roughness.  

Podczeck (1999) proposed that when two particles or a particle and surface are in contact, real 

contact occurs only at the surface asperities where the contact pressure is very high. If the 

particle size is much larger than the distance between the asperities, then only few contacts 

will occur between the particle and the asperities. Thus, the contact area is proportional to the 
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number of asperities, and increasing the particle size will increase the contact area. If the 

particle size is smaller than the distance between the asperities, the particles will be placed in 

the valley between asperities and they have a higher contact area with the surface and though 

the inter-particular forces will increase. This is called nesting and is showed in figure I.8. This 

effect is further promoted if the particles are needle shaped. The adhesion force is smallest for 

ideal spherical particles and largest for cubical shaped particles. 

 

 

Figure I.8. Relationship between Particle Size and Asperity Size (Podczeck, 1999) 

 
The distance between the particles is another parameter that has an important role on inter-

particular forces. In figure I.9, the effect of the distance between a spherical particle and a flat 

surface is shown.  

 

 

Figure I.9. Dependency of the Inter-particular Forces on the Distance between a Flat Surface 

and a Spherical Particle (Schubert, 2003) 

 
The inter-particular forces decrease by increasing the distance between the sphere and the flat 

surface. The acting range of Van der Waals forces is very short. At almost distances above  
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10-7 m the Van der Waals force becomes weak and is negligible. The electrostatic forces have 

a more extensive acting range. For capillary forces, increasing the distance between the 

partners, the liquid bridge would be pulled off and the capillary force would be vanished.  

Particle size is also another factor that affects the adhesion of the particles. Small particles are 

more strongly affected by inter-particular forces compared to larger particles. Figure I.10 

shows the relationship between the particle diameter and the inter-particular forces.  

 

 

Figure I.10. Dependency of the Inter-particular Forces on the Particle Diameter (Schubert, 

2003) 

 
With respect to the small diameter, capillary forces are the strongest forces closely followed 

by the Van der Waals forces. The electrostatic forces are lower compared to the Van der 

Waals forces but still have an influence on the small particles. Increasing the diameter of the 

spherical particle (above 100 µm) changes the relation between the force and the weight of the 

spherical particle (gravitational force). This is an important phenomenon for the flowability of 

powders. According to the volume of a spherical particle, the weight increases with the cubic 

diameter of the sphere in contrast to the inter-particular forces, which are in a linear relation to 

the diameter. So, the force increases by decreasing the diameter of the spherical particle 

leading to a stronger adhesion. Consequently, the flowability of the smaller particles is 

decreased. This phenomenon is the reason, why fine powders flow less well than coarse 

powders (Castellanos, 2005).  
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As it has been mentioned before, in dry particle coating process particles are subjected to 

mechanical forces (mechanical impact, shear, centrifugal force, etc.) greater than their inter-

particular forces in order to break them into their primary constituent particles and adhere the 

fine (guest) particles on the larger (host) particles. There are some devices available for this 

reason and they will be explained with details in the following part. 

5. DRY PARTICLE COATING EQUIPMENT 

There are several dry particle coating equipments that have been used successfully by many 

investigators to produce composite particles with improved/modified functionality. These 

devices, although different in their manner of supplying the necessary mechanical forces, all 

have the aim of promoting the de-agglomeration of the guest particles and their adhesion onto 

the surface of the host particles.  

5.1. Mechanofusion 

Mechanofusion is a batch operated device which consists of a cylindrical chamber that rotates 

at very high-speed (200 to 1600 rpm), while a stationary inner piece (which has a cylindrical 

surface at the end) creates intense shear of the host and guest powder mix pinned against the 

cylindrical container. There is also a scraper, which prevents powder from caking against the 

wall. The clearance space between the inner piece and the chamber inner wall is adjustable, 

which is generally set to 4 to 5 mm. The clearance between the scraper blade and the chamber 

is much smaller, usually around 0.5 mm. Those clearances are adjustable and are determined 

by many factors such as, powder properties, particle size, requirements of final products, etc 

(Naito et al., 1993b, Pfeffer et al., 2001).  A schematic representation of the mechanofusion 

system is shown in figure I.11.  

 

 

Figure I.11. Mechanofusion System (Pfeffer et al., 2001) 
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In the mechanofusion process, a measured amount of host and guest particles is placed into 

the rotating vessel. When the chamber rotates, the powder is forced on the chamber wall by 

centrifugal action. While particles passing through the converging space between the inner 

piece and chamber wall; mechanical interactions, mainly in the form of high shear-rate 

collisions, take place between the particles and between the particles and solid boundaries of 

the chamber inner wall and the rounded piece. As the particles come out of the space between 

the inner piece and chamber wall, they adhere to each other and to the chamber wall. The 

blade helps to scrape off the powders attached to the chamber wall. The powder mixture is 

then dispersed inside the chamber and gets again into the inner piece region. The powder 

continuously undergoes this process of compression, attrition, and frictional shearing while 

the chamber is rotating. As the chamber rotates at high speeds, the interactions are intensive 

and a considerable amount of thermo-mechanical energy is generated, which results in 

generation of new composite materials (Chen et al., 2004). 

Naito and co-workers (1993b) used mechanofusion in order to investigate qualitatively the 

dry particle coating process of glass beads and titanium oxide (TiO2) fine particles. The ratio 

of fine particles fixed onto host particles and the BET specific surface area of the processed 

particles were measured as a function of the processing time. They described the process in 

mechanofusion in two steps; in the first step, the fine particles adhere to the surface of the 

host particles. The second step is described as the compaction of the fine particle layers. They 

have found that the BET specific surface area of the processed powder was correlated with the 

energy consumption per weight of material in the mechanofusion. 

Youles (2003) worked on dry coating of PMMA particles (5-15 µm) with TiO2 particles (15-

50 nm) in mechanofusion system in order to modify the flowability properties of the particles. 

It was observed that each component displays a high angle of repose but the composite 

material is so free-flowing that an angle of repose can no longer be measured (fig.I.12). 

 

 

Figure I.12. Mechanofusion Effect on Flow Properties of the Particles (Youles, 2003) 

PMMA (5 µm) TiO2 (0.015 µm)  

 

 

 
Composite Particles 
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More recently, Jiang and colleagues (2006) coated micro-size PMMA particles with nano-size 

TiO2, Al2O3 and SiO2 particles in mechanofusion in order to study the effect of treatment in 

mechanofusion on the particle-wall interactions of the composite particles. The particles after 

treatment were dispersed on a flat metal surface and an experiment on particle entrainment on 

particle entrainment was carried out in an airflow channel to evaluate particle-wall interaction. 

Relationship between particle entrainment efficiency and air velocity, which corresponds to 

the distribution of the particle-wall interaction force, were obtained under various conditions, 

showing that the particle-wall interaction force tends to decrease with the increase in the 

concentration of added nano-particles.  

5.2. Hybridizer  

Hybridizer is another dry particle coating equipment that was developed by Nara Machinery, 

Japan (fig.I.13). In this study, the chosen powder couples (host & guest) have been coated in 

the hybridizer in order to create new composite particles with different surface properties. The 

properties of the hybridizer and its methodology will be explained in detail in chapter II. 

 

   

                     (a)           (b) 

Figure I.13. Nara Hybridization Systems 

a) NHS – 0 (Honda et al., 1991), b) NHS – 1 (Schmidt et al.,2004) 

 
There are two different types of Nara Hybridization Systems, which are NHS–0 and NHS–1. 

The main differences between them are the design (place of powder inlet–outlet, recycle tube 

etc) and the capacity of the equipments.  Figure I.13 shows the parts of the NHS–0 and    

NHS–1 equipments. The hybridizer has several advantages that make it a powerful dry 
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coating device. The rotor of the hybridizer can rotate at very high speeds (up to 16000 rpm). 

Due to the strong forces applied to the materials at these high rotational velocities, very short 

processing times are required to achieve coating. Moreover, the device consists of a re-

circulating unit that continuously moves the particles in and out of the processing vessel and 

against the blades of the rotor (Pfeffer et al., 2001). 

In the hybridizer, there are three different principle processes; 

Rounding: In rounding of particles, normally only one material is treated in the hybridizer. 

The rounding effect is established depending on the material. Its aims are improvement of 

flow characteristics, adjustment of bulk density and surface area.   

Deformable particles like metals and various plastics can be mechanically deformed in a way 

that the irregular surface is smoothened and rounded by impact forces (Yoshihara et al., 

1999). 

 

 

 

 

Figure I.14. Rounding Effect in the Hybridizer (Yoshihara et al., 1999) 

 
Embedding: The guest particles are forced to be embedded to the surface of the host particles 

by the impact force (fig. I.15). The technique is not only limited to surface modification but 

also creation of composite material (Yoshihara et al., 1999). 

 
 
 
 
 
 
 
 

 
Figure I.15. Embedding Process  

 
Filming: In the filming process two (usual) or more powders are used as in the embedding 

process. The upper particle size for the host particle is limited by its stability. If the stability 
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of the host particle is not strong enough, breakage by impact force may happen. Breakage 

often occurs for crystalline and agglomerated substances.  

For all processes with two or more powders the size ratio of 1/10 for host and guest particles 

might be used as criteria for the feasibility of the process (Yoshihara et al., 1999).  

One main field for hybridizer is pharmaceutical research. In the pharmaceutics area there are 

some examples of major concern like the controlled release of a medicine, the change of the 

mechanical and physical character of a drug as well as the improvement of the properties of 

the drug and its functionability. Ishizaka and co-workers (1989) coated starch particles in 

hybridizer with various medicines (oxyphenbutazone, prednisolone, theophylline, 

indometacin, phenacetin, aspirin, particle sizes< 100 µm), which are hardly dissoluble in 

water, in order to increase the solubility of the medicines. They observed that after the 

process, these medicines dissolved very rapidly. In order to have a long dissolving time or 

controlled release the hybridizer products were coated by carnauba wax as the first layer then 

a second layer. They observed that the dissolution is very quick after the medicine is coated 

on the starch. Moreover, the dissolution time is prolonged very much when the composite 

particles are coated by one and even more when coated by two carnauba wax layers.  

As an interesting application of the hybridizer, Pieper and Mattern (2004) coated potato starch 

with praziquantel in order to mask the taste of the drug. Analysing the content of praziquantel 

composite powders with respect to drug content showed that it did not decrease due to 

processing compared to the weight ratio of the material at the start. Moreover, they observed 

that the release of praziquantel in water is very fast after hybridizing it with potato starch. On 

the other hand, although the initial dissolution of the composite particles is rather fast there is 

tremendous difference in taste compared to the initial states of the particles.  

Ouabbas and co-workers (2006) studied the surface modification of silica particles by dry 

coating with magnesium stearate (MgSt) in hybridizer. Visual analysis showed that MgSt was 

softened and smeared over host particles after treatment in hybridizer. The flowability of the 

silica particles was not strongly affected by coating. They also observed that the coating of 

silica gel particle by hydrophobic MgSt improved the compressibility and moisture resistance 

of the composite particles.  

5.3. Cyclomix 

The cyclomix is defined as a high shear mixer/granulator, manufactured by Hosokawa Micron 

B.V. As it can be seen from figure I.16, it consists of a conical shaped vessel and there is rotor 
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in the centre of the vessel with an impeller and four sets of blades. It applies high mechanical 

impact, shearing forces on the particles in order to break the fine agglomerates and coat them 

on the host particles. In this study cyclomix has also been used an equipment for dry particle 

coating of the chosen powder couples. The properties and the working principle of the 

cyclomix will be explained in detail in the chapter II.     

 

       

    (a)          (b) 

Figure I.16. Hosokawa Cyclomix,  

(a) Cyclomix, (b) Schematic Representation of Cyclomix (Ghadiri et al., 2007) 

 
Kwan and colleagues (2005) worked on the effect of the scale of cyclomix on the structure, 

properties and strength of the granules. They treated glass beds particles in two different 

capacities (1 L and 5 L) of Cyclomix. They observed that the different configurations of the 

impeller in the 5 L and 1 L Cyclomix affected considerably the flow field of the particles. For 

the two primary top blade tip speeds (4.1 and 2.1 m/s) they found very different behaviour 

with the higher tip speed resulting in particles concentrating on top of the lid while at the 

lower tip speed the particles concentrated at a lower level in the bowl.  

Another dry particle coating study with the Cyclomix has been done by Rahmanian and co-

workers (2008). They studied the influence of operation scale and impeller speed of high 

shear mixer granulators on the strength of granules. Calcium carbonate particles were 

granulated in four scales of a geometrically similar high shear granulator (Cyclomix) with 1, 

5, 50 and 250 L capacities. They observed that the granulation operations produce granules 

with a similar strength of the particles for all four cases.  

Ouabbas et al. (2008) coated silica particles with different mass percentages of magnesium 

stearate in cyclomix in order to understand the effect of coating on surface properties of the 
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particles. They observed that the flowability of the silica gel powder was significantly 

decreased after treatment by the Cyclomix mixer with 15% of MgSt.  

 

 

               1% MgSt  5% MgSt             15% MgSt 

Figure I.17. Effect of MgSt Coating on the Wettability of the Particles (Ouabbas et al., 2008) 

 
As it can be seen from figure I.17, they also found that the coating by hydrophobic MgSt in 

the Cyclomix reduced the high affinity between silica gel and water after treatment with 5% 

and 15% of MgSt. 

5.4. Magnetically Assisted Impaction Coater 

Mechanofusion, hybridizer and cyclomix apply high level of mechanical forces on the 

particles for dry particle coating process. In certain applications (food, pharmaceutical etc.), 

these high forces are unnecessary or even may damage to the final coated product, for 

example, excessive size reduction of the host particles. Devices that produce more gentle 

coating by applying a smaller level of forces have also been introduced. Magnetically assisted 

impaction coating (MAIC) is one of these methods (Ramlakhan et al., 2000). 

It can be used in both continuous mode and in batch mode. Figure I.18 shows the schematic 

representation of MAIC system. A measured mass of both host and guest particles are placed 

into a processing vessel (200-ml glass bottle). The magnetic particles are made of barium 

ferrite and coated with polyurethane to help prevent contamination of the coated particles. An 

external oscillating magnetic field is created using a series of electromagnets surrounding the 

processing vessel. When a magnetic field is created, the magnetic particles are excited and 

move furiously inside the vessel. These agitated magnetic particles then impart energy to the 

host and guest particles, causing collisions and allowing coating to be achieved by means of 

impaction of the guest particles onto the host particles (Pfeffer et al., 2001). 
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Figure I.18. Magnetically Assisted Impaction Coater (Pfeffer et al., 2001) 

 
There are several unique features of MAIC that make it advantageous as a dry particle coating 

device. Firstly, the MAIC can coat soft organic host and guest particles without causing major 

changes in the material shape and size. Secondly, although there is some heat generated on a 

microscopic level due to the collisions of particles, there is negligible heat generation on a 

macroscopic level and hence no increase in temperature of the material during processing by 

MAIC. This is desirable when processing temperature sensitive powders such as 

pharmaceuticals. Lastly, the device can be operated both as a batch and continuous system 

making it versatile in the amount of material it can process (Ramlakhan et al., 2000). 

In the pharmaceutical industry MAIC is used to improve some properties of the powders like 

flowability and hydrophobicity. In the literature there are examples; one of them is done by 

M. Ramlakhan and co–workers (2000). In this study they aimed to improve the flowability 

characteristics of PMMA, cornstarch and cellulose by coating them with alumina guest 

particles.  

The angle of repose (AOR) is a commonly used index for flowability; hence it is used in this 

work to evaluate the coating effectiveness in terms of improving flow properties. The results 

for the AOR of cornstarch to powder mass ratios are shown in figure I.19. The AOR for 

untreated cornstarch is approximately 59°, and it decreases as processing time increases for 

both magnetic particles to powder mass ratio, indicating improvement in the flow of 

cornstarch due to a surface coating of silica.  
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Figure I.19. Angle of Repose of Cornstarch as a Function of Processing Time for Tow 

Different Magnetic Particles to Powder Mass Ratios (Ramlakhan et al., 2000) 

 
Chen and colleagues (2006) coated cornstarch and aluminium powders with different types 

(hydrophilic/hydrophobic) of fumed silica nano-particles in MAIC in order to reduce the 

cohesion force between the particles and improve the fluidization of the powders. They 

observed that the dry coating of the particles in MAIC improved the fluidization of cohesive 

powders dramatically and it appeared that such a coating can transform the behaviour of 

group C powders (Geldart class of powders) to group A powders. 

5.5. Theta Composer 

Theta composer is considered to be another dry particle coating device that produces gentle 

coating. The theta composer consists of a slow rotating elliptical vessel (around 30 rpm) and a 

faster (500–3000 rpm) elliptical rotor. As the rotor rotates inside the vessel, the powder 

mixture consisting of host and guest particles is subjected to shear and compressive stresses as 

it is forced into the small clearance between the vessel and the rotor (fig.I.20). As the rotor 

continues to move and the clearance between the vessel wall and the rotor becomes large, 

there is bulk mixing of the host and guest particles (Pfeffer et al., 2001). 

 

 

Figure I.20. Movements of Powder inside the Theta Composer (Watano et al., 2000) 
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Watano and co–workers (2000) worked on changing the end use properties of some special 

type of food powder fibres by coating them with hydrophilic silica (SiO2). They observed that 

in dry particle coating processing, between hydrophilic OH groups of food fibre and silanol 

groups -Si(OH)- results in dehydration (mechano–chemical reaction). It leads to suppression 

of the hygroscopic properties of food fibres. The hygroscopic property was analyzed using a 

water adsorption method in a temperature and humidity controlled chamber. According to the 

results it was observed that flowability of the particles was increased because of the good 

surface coverage of the food fibre by using theta composer. 

Another dry particle coating study with theta composer have been done by Coowanitwong 

and co-workers (2003). They coated Al2O3 particles with nano-size CuO particles in theta 

composer and studied the effect of mass percentage of guest particles and operating 

conditions on the coating obtained. They observed that the product surface area increased 

with higher nano-particle loadings. They also found that the degree of dispersion and 

homogeneous distribution of CuO nano-particles on the surface of Al2O3 particles increased 

with the processing time.  

5.6. V–Blender 

V–blenders are designed for batch operation. It consists of two cylindrical section joined at an 

angle of around 90°. The mixer is rotated about a horizontal axis with resulting from the 

tumbling motion of the particles. Internal baffles are sometimes used to improve mixing 

performance. The powders are mixed as the vessel is rotated slowly, and during each rotation 

the powders flow into the two arms followed by powder pouring back towards the apex of the 

system. A picture of V–blender is shown in figure I.21. 

 

 

Figure I.21. V–Blender (Yang et al., 2005) 
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In the literature, one of the studies with V–blender was done by J. Yang and co–workers 

(2005). They tried to understand the effect of dry coating process, the choice of the equipment 

and the guest particle size on the end–use properties of the composite powders. They coated 

cornstarch with different types of fumed silica particles by using V–blender and afterwards 

they studied the modification of flowability properties of the particles by angle of repose 

measurements. In their apparatus, the vessel was operated at 25 rpm and an agitator bar that 

rotated at 3600 rpm, was used to enhance the mixing behaviour inside the chamber. The tips 

of the intensifier bar extend 55 mm from the rotational axis. For each batch, 150 g of particles 

is charged into a 4-quart vessel and processed for 2 to 40 min.  

Figure I.22 shows the results of angle of repose of cornstarch coated with different fumed 

silica particles with different methods. The angle of repose of coated cornstarch particles in 

V–blender got lower value than initial cornstarch particles which shows that the flowability of 

cornstarch particles was improved by dry coating in V–blender.  

 

 

Figure I.22. Angle of Repose of Coated Cornstarch Samples in Different Equipments 

(Yang et al., 2005) 

5.7. Rotating Fluidizer Bed Coater 

Rotating fluidizer bed coater (RFBC) is also considered as a gentle coating equipment that 

were developed recently by New Jersey Institute of Technology (Pfeffer et al., 2001). The 

host and guest powder mixture are placed into the rotating bed and is fluidized by the radial 

flow of gas through the porous wall of the cylindrical distributor, as seen in figure I.23. 
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Figure I.23. Rotating Fluidizer Bed Coater (Pfeffer et al., 2001) 

 
Due to the high rotating speeds, high centrifugal forces are developed within the fluidized 

gas-powder system leading to the break-up of the agglomerates of the guest particles and 

coating them onto host particles (Pfeffer et al., 2001).   

The RFBC was used to coat PMMA particles (200 µm) with alumina particles (0.7 µm) by 

Pfeffer and colleagues (2001) in order to analyze the effect of different parameters on the 

coating performance of the equipment. The measurements of surface morphology (SEM) of 

the surface of the coated particles showed that the larger and more uniform surface coating of 

PMMA with alumina was achieved with increases in processing time.    

6. APPLICATIONS ON DRY PARTICLE COATING 

There are many applications of dry particle coating process in different domains. Early work 

from the Japanese literature report several interesting applications. PMMA particles coated 

with 10% of TiO2 particles using mechanofusion in order to improve the flowability of the 

particles. They observed that the composite particles flowed freely and had a near zero angle 

of repose. In contrast, both the original PMMA and TiO2 particles did not flow well and had 

an angle of repose greater than 30° (Yokoyama et al., 1987). It was also reported that 

processing of ground polystyrene resin of 10 µm size with carbon black in mechanofusion 

produced easily flowing toner material of rounded shape (Yokoyama et al., 1987). 

Mujumdar and co–workers (2004), used mechanofusion to enhance the moisture resistance of 

ground magnesium powder (primary size 75 µm) by coating its surface with carnauba wax 

(primary size 15 µm). The uncoated and coated samples are characterized by scanning 

electron microscopy (SEM), humidity tests and X–ray diffraction methods. 
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                 a)          b) 

Figure I.24. SEM Pictures of a) Ground magnesium particles, b) After Mechanofusion 

Treatment (Mujumdar et al., 2004)  

 
According to SEM pictures (fig. I.24) they observed that after mechanofusion treatment, 

magnesium particles were covered with carnauba wax. According to the humidity tests as 

seen in figure I.25, they indicated that dry coating of magnesium powders with carnauba wax 

by using mechanofusion generated a material which is much hydrophobic compared to 

ground magnesium particles. 

 

 

Figure I.25. Humidity Tests for the Composite Particles from Mechanofusion (Mujumdar et 

al., 2004)  

 
Most of the early work reported using the hybridizer involved processing of pharmaceutical 

drugs to produce controlled-release properties (Ishizaka et al., 1989, 1993a, b). As an 

example, 5% isoproterenol HCl were coated onto potato starch (70 µm) followed by a coating 

of 5% carnauba wax in order to achieve time released control of isoproterenol HCl (Ishizaka 
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et al., 1989). Moreover, Schmidt et al. (1998) studied many examples of different applications 

of dry particle coating with hybridizer in different domains (cosmetic, pharmaceutical, toner, 

electronic).  

On the other hand, some researchers showed that multi-layer dry particle coating could also 

be obtained by using hybridizer system (Kangwabtrakool et al., 2001, 2002, 2003, Tang et al., 

2006). In one of the studies, Kangwabtrakool and colleagues (2002) coated WC particles first 

with TiC and then with Al2O3 in order to modify the hot hardness of the particles. They 

observed that the hot hardness of the composite particles increased with higher amount of TiC 

whereas increasing Al2O3 additions reduced the hardness.     

The list of different dry particle coating applications in different domains (pharmaceutical, 

food, ceramic, metallurgy, etc.) with different equipments in order to modify certain surface 

properties of particles (electrostatic, flowability, wettability, taste masking, solubility, 

dissolution kinetics etc) is presented in Appendix I.    

7. CONCLUSION 

Dry particle coating process has been constructed onto the concept ordered mixture which has 

been introduced to the scientific literature long time ago. Since some years, there are lots of 

studies about dry particle coating process in the scientific literature. In these studies, different 

dry particle coating equipments (in lab scale) were used for different applications. Each 

equipment has a different working principle so the choice of the equipment, the operating 

conditions and also the powder properties defines what kind of particle coating would be 

obtained.  

There are very few studies about the modelling of the dry particle coating process because of 

the lack of understanding the physico-chemical interactions between particles in dry particle 

coating process and also the mechanism of the applied mechanical forces on the particles by 

each equipment. The understanding of these mechanisms are essential in order to estimate for 

a given powder couple (host & guest) which equipment and operating conditions should be 

chosen to achieve desired end-use properties. Since the lack of this information, the dry 

particle coating process is not commonly used in industry even it has certain advantages from 

environmental point of view and also being cost effective.  

In the following chapter, the materials and the equipments that were used for dry particle 

coating process and the characterization methods that were used to analyse different 

properties of the particles will be explained in detail.  
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1. INTRODUCTION  

In this study, three different mixers have been used to generate composite materials with 

modified surface properties by dry coating method. Each equipment uses different mechanical 

forces (mechanical impact, compression, shearing etc) to be able to break up the agglomerates 

and coat the particles. Different characterization methods have been used, in order to compare 

the quality of obtained coating from different equipments and study the evolutions of the 

physicochemical properties of the particles after dry coating process.  

In this chapter, the powder couples, the dry coating equipment, that were used for the 

experiments and different characterization methods, that were used in order to analyze 

different properties of the particles, will be presented in detail.          

2. DRY PARTICLE COATING EQUIPMENTS 

Two high force mixers (Nara Hybridizer, Hosokawa Cyclomix) and a conventional mixer 

(Turbula) have been used for dry coating experiments. In this part, it is aimed to present the 

specifications and methodologies of the dry coating equipments.   

2.1.  Nara Hybridizer 

The Nara Hybridization System (NHS) is a machine developed by Nara Machinery for the 

purpose to create new powder combinations and thereby design particles with new properties. 

The small (guest) particles are attached to the surface of the core (host) particles by 

mechanical forces in hybridizer (Pieper, 1996).  

The main application areas of the hybridizer are: 

• the production of new functional composite materials 

• to save high–precise and rare materials by combining cheap raw materials to give 

hybrid powders 

• to improve/modify material properties 

The hybridization process is operating in a particle range of 1–500 µm for the host particles 

which are processed with fine particles in a range of 0.1 to 50 µm as coating material 

(Yoshihara et al., 1999).  
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   (a)      (b) 

Figure II.1. Nara Hybridizer, (a) Stator of Nara Hybridizer (NHS–0), (b) Schematic 

Representation of Stator and Recirculation Tube of Nara Hybridizer (NHS–0) (Vilela et al., 

2005) 

In this study NHS–0 type Nara Hybridization System has been used for the experiments. 

Figure II.1 shows the parts of the Nara Hybridizer (NHS–0) equipment. It can be seen that the 

hybridizer (NHS-0) itself has three main parts; the rotor (12 cm diameter) with 6 blades, the 

stator and recycling tube. The stator is jacketed for either cooling or heating. As the rotor is 

switched on, host and guest particles mix and collide with each other as well as with the walls 

of the chamber because of the high operating velocity (up to 16000 rpm). Due to high 

centrifugal forces, particles move to the upper part of the rotating chamber and recycle 

continuously till the end of the process. The constant recirculation of some particles in this 

batch process assures that every particle is treated the same way. The hybridization system 

also has a temperature sensor, which monitors the temperature developed inside the mixing 

chamber during the operation. The maximum batch size of hybridizer is 50 g. The unique 

feature of this system is the two-way motion of the particles during the operation, one in the 

mixing chamber and the other through the recirculating pipe which provides a distinct 

advantage over the other dry coating machines from the coating point of view as one would 

expect more collisions between the particles to take place.  

The maximum batch size is around 50 g for NHS–0 trials. According to nature of the product, 

treatments with maximum batch size may cause problems in recirculation of the powders. In 

order to avoid recirculation problems (have untreated particles), it is advised to use less than 

the maximum batch size. 

The movement of powders inside the hybridizer can be seen in figure II.2. The powder 

mixture is introduced into the centre of the rotor by feed chute (fig. II.2.a). Afterwards, the 
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particles collide with each other and the walls of the rotor, because of the high speed of the 

rotor (up to 16000 rpm) that generates centrifugal force (fig.2.b). Consequently, the powder 

receives mechanical impact on its surface and is blended, powder reaching the periphery re-

enters the recirculation tube and returns to the centre of the rotor. This recycling system is 

repeated continuously. As the powder is repeatedly impacted, the fine particles become 

attached to the large host particles (Honda et al., 1991). At the end, the treated powder is 

transported from the rotor to the powder collector by purging air system and the treated 

particles can be recovered in the powder collector.  

 

 

                      (a)                                             (b)                                               (c) 

Figure II.2. Moving Track of Powder in Nara Hybridization Systems (Honda et al., 1991) 

2.2. Hosokawa Cyclomix 

The cyclomix is a high shear mixer/granulator, manufactured by Hosokawa Micron B.V. 

Figure II.3 shows the configuration of cyclomix. 

The Cyclomix has a conical shaped vessel with 1 L capacity. The vessel is surrounded with a 

cooling/heating jacket in order to control the temperature of the vessel. At the bottom of the 

vessel there is a valve in order to recover the powders at the end of the treatment. There is a 

rotor in the centre of the vessel, consists of an impeller with four sets of blade. The angle of 

the flat blades is 30° to the vertical axis; the angle of the first (bottom) and the third pairs of 

the impellers is opposite to that of the second and fourth (top) pairs such that when the shaft is 

turned clockwise, the first and the third pairs give upwards agitation while the second and 

fourth pairs give downwards agitation (fig. II.3). The gaps between the impellers and the 

vessel wall are 5 mm at the side and 2 mm at the bottom. 
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   (a)                     (b) 

Figure II.3. Hosokawa Cyclomix 

a) Schematic Diagram of Cyclomix (Ouabbas et al., 2008), b) Cyclomix 

 
The working principle of the cyclomix differs markedly from the existing mixing techniques 

owing to the specific interaction between mixing element and vessel wall. The powder (host 

and guest particles) is loaded into the conical mixing vessel from the top; the degree of filling 

can range between 30 and 100%. Together, the high-speed rotation (up to 3000 rpm) of the 

paddles and the conical shape of the vessel force the product from the bottom to the upper 

zone of the vessel. Upon reaching the top, the product flows downwards into the centre of the 

vessel. This flow pattern results in fast macro-mixing. During the upward motion, the 

particles are accelerated by the paddles and intensively mixed by friction with vessel walls 

(Ghadiri et al., 2008). 

2.3. Turbula Mixer 

Turbula is a conventional shaker/mixer, manufactured by WAB (Willy A. Bachofen) AG. It 

uses centrifugation and gravitational force in order to mix the particles. It has a mixing basket 

which can hold any form container, from test tubes up to containers having volumes of 2 

litres. Containers are held tightly by twisted rubber rings. By adjusting the position of the 

drive belts on the 5–step pulley, the speed can be varied (22, 32, 46, 68 or 96 rpm). The 

mixing container is set into three-dimensional movement that exposes the product to always 

changing, rhythmically pulsing motion.  Figure II.4 shows an image of turbula mixer and the 

possible containers for treatments. 
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Figure II.4. Turbula Mixer (Chéry et al., 2007) 

3. CHARACTERIZATION METHODS 

In this study different characterization methods have been used before and after treatments. 

The surface morphology of the particles have been analysed by environmental scanning 

electron microscopy (ESEM) and atomic force microscopy (AFM) techniques. The ESEM 

allows us to analyse the surface morphology of the particles and also identify the guest 

particles on the surface of the host particles. The ESEM visual analysis has also been 

confirmed by AFM. AFM has been used for two different reasons; in the first part we have 

topographical analysis of the particles (surface roughness) and in the second part we measure 

the adhesion force between the particles.  

Malvern Mastersizer 2000 laser diffraction granulometer has been used in order to analyse the 

different size distributions (number & volume) of the particles and also to evaluate 

qualitatively the interactions between the guest and host particles (coating strength) by 

changing dispersing air pressures. 

Modification of different surface properties of the particles has been analysed by using 

different techniques. Freeman technology powder rheometer (FT4) and Erweka tapped 

density tester have been used in order to analyse the flowability properties of the powders. 

The wettability of the powders have been analysed by angle of contact with sessile drop 

method and the dynamic vapour sorption (DVS) method have been used in order to 

understand the water affinity of the particles.  
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3.1. Environmental Electron Scanning Microscopy (ESEM) 

The ESEM is a common method for visual analysis of the different surfaces. It allows us to 

observe the surface morphology of the sample with different ambient pressures and in 

different media (dry & wet). It consists of an electron column that creates a beam of electrons; 

a sample chamber, where the electron beam interacts with the sample; detectors, that monitor 

a variety of signals resulting from the beam–sample interaction; and a viewing system that 

constructs an image from the signal (fig. II.5).   

 

 

Figure II.5. Schematic Representation of ESEM (Techniques de l’ingenieur) 

 
An electron gun at the top of the column generates the electron beam. In the gun, an 

electrostatic field directs electrons, emitted from a very small region on the surface of an 

electrode, through a small spot called the crossover. The gun then accelerates the electrons 

down the column toward the sample with energies typically ranging from a few hundred to 

tens of thousands of electron volts.  

The electrons emerge from the gun as a divergent beam. A series of magnetic lenses and 

apertures in the column finds and focuses the beam into a de-magnified image of the 

crossover. Near the bottom of the column a set of scan coils deflects the beam in a scanning 

pattern over the sample surface. The final lens focuses the beam into the smallest possible 

spot on the sample surface. 
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The beam exits from the column into the sample chamber. The chamber incorporates a stage 

for manipulating the sample, a door for inserting and removing the sample and access ports 

for mounting various signal detectors and other accessories. As the beam electrons penetrate 

the sample, they give up energy, which is emitted from the sample in a variety of ways. There 

are two major ways of emission: 

Secondary Electrons (SE) are sample atom electrons that have been ejected by interactions 

with the primary electrons of the beam. They generally have very low energy (by convention 

less than fifty electron volts). Because of their low energy they can escape only from a very 

shallow region at the sample surface. As a result they offer the best imaging resolution. 

Contrast in a secondary electron image comes primarily from sample topography. More of the 

volume of interaction is close to the sample surface, and therefore more secondary electrons 

can escape, for a point at the top of a peak than for a point at the bottom of a valley. Peaks are 

bright and valleys are dark. This makes the interpretation of secondary images very intuitive 

as they look the same as the corresponding visual image would look (Paqueton et al., 2006). 

Backscattered Electrons (BSE) are primarily beam electrons that have been scattered back 

out of the sample by elastic collisions with the nuclei of sample atoms. They have high 

energy, ranging (by convention) from fifty electron volts up to the accelerating voltage of the 

beam. Their higher energy results in a larger specific volume of interaction and degrades the 

resolution of backscattered electron images. Contrast in backscattered images comes 

primarily from point to point differences in the average atomic number of the sample. High 

atomic number nuclei backscatter more electrons and create bright areas in the image. 

Backscattered images are not as easy to interpret, but properly interpreted, can provide 

important information about sample composition. Each emission mode is potentially a signal 

from which to create an image (Kimseng et al., 2001).  

ESEM also allows us to have elemental analysis or chemical characterization of a sample by 

Energy dispersive X-ray spectrometer (EDS) technique. As a type of spectroscopy, it relies on 

the investigation of a sample through interactions between electromagnetic radiation and 

matter, analyzing x-rays emitted by the matter in response to being hit with charged particles. 

Its characterization capabilities are due in large part to the fundamental principle that each 

element has a unique atomic structure allowing x-rays that are characteristic of an element's 

atomic structure to be identified uniquely from each other. 
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In this study the ESEM type XL30, manufactured by Philips have been used in order to have 

the visual analysis of the particles before and after treatments. The ESEM observations have 

been done all the time in dry media with 1–20 torrs pressure. The EDS method has also been 

used in order to have chemical characterization of the surface of the particles.  

3.2. Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) is an useful tool for investigating both the surface 

morphological characterizations of solid materials (three dimensional surface topography of 

the sample) and mechanical interactions occurring at material/tip interfaces at micro- or nano-

dimensions. Figure II.6 shows a typical configuration of an AFM. It uses mechanical effects 

between sample and tip. The tip is mounted on a flexible cantilever which moves along in 

XYZ directions on the sample. The deflection of the cantilever is recorded with the help of a 

laser beam and permits the evaluation of the forces between tip and sample. This procedure 

allows also an investigation of non-conducting samples and the characterization of surfaces 

with atomic resolution due to the small tip size at the nano scale. It is often used to study 

surface topography. Specific probes can be used to analyze lateral variations of frictional, 

elastic, thermal, electrical and magnetic properties. For AFM measurements a special sample 

treatment is not necessary. Furthermore, the surface analysis can be performed in liquid or 

gaseous environment. Additionally, AFM can be used to determine inter-particle forces (Butt 

et al., 2005).  

 

 

Figure II.6. Schematic Representation of Basic Configuration of AFM  
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AFM has different methods to operate and analyze the different properties of the samples. In 

this part the different operating methods of AFM will be presented in detail. 

A. Tapping Mode 

In the tapping mode, AFM operates by scanning a tip attached to the end of an oscillating 

cantilever across the sample surface. The cantilever is oscillated at or slightly below its 

resonance frequency with an amplitude ranging typically from 20 nm to 100 nm. The tip 

lightly “taps” on the sample surface during scanning, contacting the surface at the bottom of 

its swing (fig. II.7.a). The feedback loop maintains a constant oscillation amplitude by 

maintaining a constant root mean square of the oscillation signal acquired by the split 

photodiode detector. The vertical position of the scanner at each (x,y) data point in order to 

maintain a constant “set point” (reduced) amplitude is stored by the computer to form the 

topographic image of the sample surface (fig. II.7.b). By maintaining a constant oscillation 

amplitude, a constant tip–sample interaction is maintained during imaging. The reflected laser 

beam reveals different information. The vertical height of the sample surface, the variation in 

the amplitude and the phase contrast data are taken simultaneously.    

 

   

(a)                 (b) 

Figure II.7. Tapping Mode of AFM 

a) AFM Cantilever, oscillating on the Sample b) Free & Reduced Amplitude in Tapping 

Mode (AFM Manual, Veeco)  

 
The images of the vertical height of the sample surface can be also evaluated in order to find 

different surface roughness parameters of the sample. There are many statistical values which 
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define the surface roughness of the samples. The most used surface roughness definitions by 

the scientists are; 

Ra : Arithmetic average of the absolute values of the surface height deviations measured from 

the mean plane. 
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Rmax : Maximum vertical distance between the highest and lowest data points in the image. 
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RMS (Rq): Root mean square average of height deviations taken from the mean data plane, 

expressed as; 
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The variation in the amplitude signal is used as a feed–back mechanism in order to correct the 

displacement of the cantilever in z direction and to keep constant amplitude on the sample 

surface.  

The difference in the reference signal and the created signal (by oscillation of the cantilever 

on the sample surface) is used for phase contrast images as it can be seen in the figure II.8. 

The phase contrast images of the sample gives some characteristics of the sample material 

itself. These material characteristics may include elasticity, magnetic and electric forces 

present (Berquand et al., 2003).  

 

 

Figure II.8. AFM Tapping Mode, Phase Contrast Signal (AFM Manual, Veeco)  
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The phase angle (contrast) measurements give different information about the interaction 

between the cantilever tip and the sample surface more specifically for heterogenic materials. 

Some theoretical studies have been done about derivation of phase contrast signal by different 

authors (Anczykowski et al, 1996, Burnham et al., 1997, Magonov et al., 1997, Boisgard et al. 

1998, Cleveland et al., 1998, Marth et al., 1999, Wang et al., 1999, Garcia et al., 1999 and 

2000, Durig, 2000, San Paulo et al., 2001, Sabastian et al., 2001, Yeh et al. 2004, Liu et al. 

2005 ). On the other hand, a systematic explanation of the phase angle images is very difficult 

(Chen et al., 2002), because the difference in the phase angle values could be related to 

different reasons (viscoelastic properties, surface height etc).  

The experimental observations show that the height and phase contrast images depend on the 

ratio between the free amplitude (AF) and reduced amplitude (set point) (ASP) which is used 

as feed back mechanism (Whangbo et al., 1998). The ratio between these amplitudes has very 

important role for analysing material surface (Magonov et al., 1997).   

B. Contact Mode 

In contact mode, the cantilever tip is placed to contact with the sample surface. Repulsion 

force (F) acting upon the tip is related to the cantilever deflection value (x) under Hooke's 

law; 

 
  xkF ∗−=         (Eqn.II.4) 

where k is cantilever spring constant. The spring constant value for different cantilevers 

usually varies from 0.01 to several N/m. The schematic illustration of contact mode can be 

seen in figure II.9. In contact mode, there are two possible methods for surface imaging: 

Constant force: the deflection of the cantilever is maintained constant by a feed back 

mechanism while moving on the sample. The change in the force is interpreted as the 

topography of the sample. The sensibility of the method is up to 0.1 nm.  

Constant height: the height of the sample is maintained constant and the deflection of the 

cantilever is interpreted in order to find the surface characteristic of the sample.  

The contact mode has some disadvantages. Speed of scanning is restricted by the response 

time of feedback system. When exploring soft samples (like polymers, biological samples, 

Langmuir-Blodgett films etc.) they can be destroyed by the scratching because the probe 

scanning tip is in direct contact with the surface. Therefore, under scanning soft 

inhomogeneous samples the local flexure of sample surface varies. As a result acquired 
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topography of the sample can prove distorted. Possible existence of substantial capillary 

forces imposed by a liquid adsorption layer can decrease the resolution (AFM manual, 

Veeco).  

 

 

Figure II.9. Feed-back Loop of the Contact Mode (AFM Manual, Veeco) 

 
On the other hand, contact mode gives us also the possibility to measure the adhesion force 

between the cantilever tip and the sample.  

Adhesion Force Measurements 

Conventional force plots are simply a plot of cantilever deflection on the Y-axis versus Z-

piezo position on the X-axis. They normally include two traces, an approach curve and a 

retract curve. On a hard surface in air, a curve similar to that shown in Figure II.10 is 

commonly obtained.  
 

 

Figure II.10. A Force Plot of AFM in Contact Mode (Roberts, 2005) 
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The tip – sample distance decreases as the curve goes from right to left (approach). Very close 

to the surface, the tip snaps into contact with the surface due to short range attractive forces 

(contact). As the piezo continues to extend, the tip is pressed harder into the surface and the 

cantilever deflection increases (repulsion). The piezo then reverses direction and begins to 

increase the tip-sample distance, thus decreasing the cantilever deflection (attraction). As the 

piezo continues to retract, the cantilever strains against this force until it finally breaks free 

and returns to its non-contact value (pull – off) (Cappela et al., 1999). 

C.  Non – Contact Mode 

In non – contact mode of AFM, the cantilever is oscillated at a frequency which is slightly 

above the cantilever’s resonance frequency typically with an amplitude of a few nanometers 

(<10nm), in order to obtain an AC signal from the cantilever. The tip does not contact the 

sample surface, but oscillates above the adsorbed fluid layer on the surface during scanning. 

The cantilever's resonant frequency is decreased by the Van der Waals forces, which extend 

from 1 nm to 10 nm above the surface, and by other long range forces which extend above the 

surface. (fig. II.11)  

 

 

Figure II.11. Interparticular Forces Between Cantilever Tip & Sample Surface (Picoforce 

Manual, Veeco) 

 
The decrease in resonant frequency causes the amplitude of oscillation to decrease. The 

feedback loop maintains a constant oscillation amplitude or frequency by vertically moving 

the scanner at each (x,y) data point until a “setpoint” amplitude or frequency is reached. The 
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distance the scanner moves vertically at each (x,y) data point is stored by the computer to 

form the topographic image of the sample surface (AFM Manual, Veeco). 

In this study, Multimode Nanoscope IIIA atomic force microscopy from Digital Instruments, 

Veeco Metrology Group® has been used. In tapping mode, MPP 11100, phosphorus (n) 

doped silicon cantilever probe with spring constant (k) 40 N/m has been used in order to have 

topographical analysis of the initial host and guest particle surface and also talc coated host 

particle surface in hybridizer. In contact mode, NP, silicon nitride cantilever probe with spring 

constant (k) 0.32 N/m was used in order to study the adhesion forces between the particles. 

The properties of the used cantilever probes in tapping and contact mode measurements are 

presented in details in appendix V.    

3.3. Laser Diffraction Granulometer  

The particle size distribution of the powders was measured by a laser diffraction method using 

the Mastersizer 2000 from Malvern Instruments Ltd. The equipment uses the diffraction of 

laser beam in order to find the particle size distribution of powders between 0.02 µm and 

2000 µm range.   

The Mastersizer essentially consists of a laser transmitter and a receiver (300 RF lens) unit, 

detectors, a dry powder feeder unit with an air venturi in order to control the dispersing air 

pressure and a cyclone (fig. II.12).  

 

 

Figure II.12. Basic Configuration of Laser Diffraction Granulometer  
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A representative powder sample is placed in the feeder unit and a vacuum is switched on. The 

vacuum draws the powder sample into the instrument with chosen dispersing air pressure (up 

to 4 bars). The dispersed powder passes through the laser beam. The dispersed powder 

scatters laser light at angles that are inversely proportional to the size of the particles, i.e. large 

particles scatter light at small forward angles, whereas small particles scatter light at wider 

angles (Figure II.13). This scattering is captured by an array of detectors. Hence, there is a 

direct relationship between the distribution of the scattered light energy on these detectors and 

the particle size distribution (Chatelet, 1996). 

 

   

    (a)      (b) 

Figure II.13. Principle of Laser Diffraction Granulometer  

a) Laser Diffraction Unit of the Granulometer b) Interactions of laser light and particles 

 
In this apparatus powder de-agglomeration is controlled by adjusting the dispersing air 

pressure. The variation of the pressure (P) with corresponding air velocity (V) in the venturi 

can be seen in figure II.14.b.   
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Figure II.14. Air Venturi of the Granulometer 

a) Dimensions of the Venturi b) Pressure vs. Corresponding Air Velocity in the Venturi 
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Here we determine at which dispersing air pressure the guest particle start to be liberated from 

the host particles. The presence of liberated fine particles can be detected by making a 

comparison between number particle size distributions with different pressures (Vilela, 2006).  

It is important to note that the diameters from the laser diffraction method are calculated 

assuming spherical particles, so incorrect values may be obtained for irregular or needle-

shaped particles. Thus the size distribution for all the test powders was checked by image 

analysis using a scanning electron microscope.  

3.4. Helium Pycnometer  

The solid density of the powders was measured using a helium pycnometer (Accupyc 1330, 

Micromeritics) which works on the basis of gas displacement. The instrument determines the 

solid density of solid objects or powders based on the following equation assuming an ideal 

gas: 

  

2

11
P

P
V

VV a
CP

−
+=

        (Eqn.II.5) 

The general principle is that the solid powder sample of unknown volume VP is placed in a 

known sample cell volume VC, and pressurized with helium gas to the desired target pressure 

P1. The pycnometer has an internal “added volume” chamber (Va) which is added to the cell 

volume by opening a valve between the two chambers. The resulting lower pressure P2 is then 

recorded, allowing the calculation of VP. The pycnometer is programmed to perform the 

above pressurizations and valve 22 openings automatically. Va and VC are known through 

accurate calibration using the provided calibration spheres. The helium is able to fill all 

spaces open to the atmosphere, including the pores inside the powder sample. The solid 

density is calculated from the volume of sample and the known sample mass. The instrument 

reports an average value from the number of runs specified by the user. The specified number 

of runs is input with a numeric keypad on the front of the pycnometer. 

3.5. Tapped Density Tester 

In this study, the tapped density (sample mass/tapped volume of the sample) and apparent 

density (sample mass/ initial volume of the sample) of the powders have been calculated by 

using a tapped density tester (Erweka Ltd.) in order to predict the flowability properties of the 

powders.  
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The tester essentially consists of 2 graduated cylinders placed on the tester platform. The 

tapping action is generated by a camshaft which lifts the platform and allows it to drop back 

to its original position. The normal speed is 300 taps per minute. The number of taps can be 

selected from a user interface. In this technique, taps were applied until a maximum packing 

condition was achieved. The level of powder in the graduated cylinder was checked after 

every 10 taps till there was no further reduction in level. This was taken as the tapped volume 

which was used for calculating the tapped density. The measurements were done in three 

times and an average value was reported. 

By using tapped and apparent density values, the ability of the powder to flow (table II.1) and 

its compressibility (table II.2) can be predicted by calculating Carr index (Ic) (eqn. II.6) and 

Hausner Ratio (Hr) (eqn. II.7). 
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=                                                    (Eqn.II.7)  

Table II.1. Flowability of the Powders According to Carr Index 

Carr Index (%) Flowability Powder State 

5 – 15  Excellent Sand-like powder without fibres & fine particles  

15 – 18  Good Sand-like powder without fibres & fine particles 

18 – 22  Mediocre Powder with small amount of fines particles 

22 – 35  Bad Powder with fine particles 

35 – 40  Very Bad Cohesive powder 

> 40 Execrable Very cohesive powder 

 

Table II.2. Compressibility of the Powders According to Hausner Ratio 

Hausner Ratio Compressibility 

< 1.25  Few compressibility 

1.25 – 1.4     Intermediate compressibility 

> 1.4 High compressibility  
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3.6. Freeman Technology Powder Rheometer (FT4) 

The FT4 Powder Rheometer is a device that is able to classify powders by their flowability. 

The aim of this device is to provide an automated testing program that is relatively 

independent of the operator and is quick. It has a special profile propeller type blade which 

can be rotated and simultaneously moved axially into a powder cell and the axial force and 

the rotational force can be measured (fig.II.15).  

 

         

Figure II.15. FT4 Powder Rheometer (Freeman, 2006) 

 
There are different kinds of control variables on both axis such as velocity, force and torque. 

All powder samples are pre-conditioned using the instrument’s conditioning methodology to 

have a homogeneously packed powder bed. The conditioning blade action gently disturbs the 

powder bed and creates a uniform, lightly packed test sample that can be readily and 

consistently reproduced. The conditioning cycle comprises a traverse of the blade downward 

towards to the bottom of the powder cell and then a traverse upward as shown in figure II.16. 

The downward traverse would typically use a 5° positive helix in order that the blade action is 

more slicing than compacting. The upward traverse would typically use a 5° negative helix 

that gently lifts the powder and drops it over the blade.  In both upward and downward 

movement of the blade for conditioning the tip speed of the blade is constant and 100 mm/s. 

This process removes any packing history such as pre-consolidation or excess air (Freeman, 

2008). 

 



Materials & Methods 

   

Serkan OTLES 

 

69 

           

Figure II.16. Downward and Upward Conditioning Cycles of FT4 Powder Rheometer 

(Freeman, 2006) 

 
After the conditioning step, there are different types of test programs for different rheological 

characteristics of powders can be used. In the test programs, the blade moved along a 

downward helical path, but in the opposite direction, to impose a compaction regime, thereby 

forcing the power to flow around the blade. In this study, flow rate index (FRI) program, 

which includes 4 different test cycles with 4 different blade tip speeds (100 mm/s, 70 mm/s, 

40 mm/s, 10 mm/s) has been used in order to characterize the flowability properties of the 

powders. It allows determining the sensitivity of the powder samples to the stirrer blade 

speed. The flow rate index values for the powders are calculated by dividing the 11th total 

energy value to the 8th total energy value. Higher the FRI value, lower the flowability of the 

particles (Freeman, 2006). A typical total energy according to tip speed graph can be seen in 

figure II.17.  
 

 

Figure II.17. A Typical Graph of Total Energy Consumed vs. Blade Tip Speed  

Conditioning 

FRI  
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3.7. Contact Angle Measurement 

The contact angle measurement is used to determine the wettability property of a solid by a 

liquid. Generally, the determination of the contact angle is conducted using the sessile drop 

method. The liquid is dropped by a micro syringe on the solid and the contact angle between 

the baseline of the drop and the tangent at the drop boundary is measured. Young formulated 

a relation between the interfacial tension γ at a point on a 3 phase contact line (fig.II.18).  

 

 

 

 

 

 

Figure II.18. Scheme of the Contact Angle 

 
The indices ‘S’ and ’L’ stand for solid and liquid, γSL and γLV describe the surface tension 

components of the two phases whereas γSL represents the interfacial tension between the 

phases and θ stands for the contact angle corresponding to the angle between vector γSL and 

γLV. Young formulated the relationship between these quantities; 

 
       

SLSVLV γγθγ −=∗ cos                                        (Eqn.II.8) 

In contact angle measurements, powder beds have been prepared for each powder sample. A 

liquid drop of controlled volume (10 µl and around 3 mm diameter) is placed on the powder 

bed of the particles and then photographed. The contact angle is determined by drawing a 

tangent to the profile at the point of three-phase contact after the drop profile has been 

enlarged by image projection.  

3.8. Dynamic Vapour Sorption (DVS) 

Dynamic vapour sorption (DVS) analysis is a technique in which a solid sample is subjected 

to varying conditions of relative humidity and temperature in order to understand the moisture 

sorption affinity of solids. A schematic view of a dynamic vapour sorption (DVS) analyser 

(Surface Measurement Systems Ltd.) is given in figure II.19. The apparatus consists in a twin 

pan microbalance with a high resolution, housed inside a temperature controlled incubator. A 

given amount of the solid sample is placed in the sample holder and suspended to one side of 

θ 

γLV 

γSV γSL 
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the balance whereas a reference holder is suspended to the other side. A part of carrier gas 

(usually nitrogen) is bubbled through the test liquid and humidified. The desired humidity of 

carrier gas is achieved by mixing dry and humid gas flows in the correct proportions using 

automated mass flow controllers. 

 
 

 

 

 

 

 

 

 

 

Figure II.19. Scheme of the Dynamic Vapour Sorption (Lazghab et al., 2005) 

 
The gas is divided into two equal parts, flowing past the sample holder and the reference 

holder. In order to reduce uncertainties caused by vapour adsorption/desorption on sample 

holder’s wall, the net liquid uptake is determined by comparing the sample holder to the 

reference holder. Continuous monitoring of the sample weight permits to follow the liquid 

adsorption from the beginning up to equilibrium. Prior to being exposed to any vapour, the 

samples (around 100 mg) are equilibrated at 0% RH to remove any surface adsorbed vapour 

and to establish a dry mass baseline. Next, the samples are exposed to carrier air with varying 

relative humidity. The relative humidity is increased step by step during adsorption and 

decreased during desorption. At each step, the sample mass is allowed to reach equilibrium 

before humidity is varied. The two basic results can be derived from DVS data is the sorption 

kinetics and equilibrium adsorption isotherms (Lazghab et al., 2005) 

4. MATERIALS 

In this study, two different “model couples” have been used for dry coating trials. 

Poly(methyl methacrylate) (PMMA) with Talc particles (1st model couple) and Cellets with 

Talc particles (2nd model couple) have been used as host and guest particles in dry particle 

coating trials.   
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4.1. Poly(methyl methacrylate) (PMMA) 

Poly(methyl methacrylate) (PMMA) is a thermoplastic and transparent plastic. Chemically, it 

is the synthetic polymer of methyl methacrylate. It has the chemical formula of (C5O2H8)n. 

The structure of the PMMA can be seen in figure II.20..   

 

 

Figure II.20. Chemical Structure of PMMA 

 
Methyl methacrylate is the basic molecule, or monomer, from which PMMA is formed 

(fig.II.21). The chemical formula for this material is CH2=C(CH3)COOCH3. There are 

different methods for PMMA synthesis. These techniques have been explained by early 

researchers (Limmer et al. 2002, Ahmad et al., 2007, Ma et al., 2008, Kuan et al., 2008, Zhu 

et al. 2008).  

 

 

Figure II.21. Chemical Structure of Methyl Methacrylate and PMMA  

 
PMMA is an important commercial plastic and it has different properties (odourless, tasteless, 

nontoxic etc.) which make it very interesting for different applications. It has a good impact 

strength property. It is softer and can be easily scratched. Zhu et al. (2008) used PMMA 

particles as filler for improving mechanical properties of PVC matrix. They have observed 

that the tensile strength of PVC matrix increased from 21.4 MPa to 42.9 MPa and the 

elongation at break is enhanced greatly from 17.9% to 36.8% because of the PMMA particles 

in the mixture (5 wt%).  
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PMMA has been used in a wide range of areas and applications, such as in aircraft windows, 

signs, lighting, dentures, food-handling equipment and contact lenses. PMMA has also been 

used as bone cement, to affix implants and to remodel lost bone. It is supplied as a powder 

with liquid methyl methacrylate (MMA). Surgeons can judge the curing of the PMMA bone 

cement by pressing their thumb on it. Mendicino et al. (2008) explained the fabrication of an 

antibiotic impregnated PMMA intramedullary rod. PMMA is also used as carrier for 

sustained local delivery of drugs (Vallet–Regi et al., 1998, Tao et al., 2003). Elvira et al. 

(2004) loaded PMMA microspheres with different amounts of cholesterol by using 

supercritical carbon dioxide in order to understand the drug release properties of the loaded 

particles. They observed that the drug release rate of PMMA particles decreases significantly 

when the cholesterol amount on the PMMA carrying particles increases. PMMA has also 

been used as model particle for studying the surface properties of composite powders by dry 

coating method in early studies (Ramlakhan et al., 2000, Pfeffer et al., 2001). Horiuchi et al. 

(1999) used PMMA particle as carrier particle for different pigments. They observed that 

although PMMA has a high Tg, and high particle size, the pigment coated PMMA particles 

had a homogeneous coating structure with good integrity.    

In this study, PMMA particles from Acros Organics used as the host component in dry 

coating trials. It has the volume mean diameter (d[4;3]v) 160 µm, average molecular weight 

(Mw) 35000 g/mol and 1.2 g/ml density (ρ). The properties of the PMMA particles are also 

presented in table II.3. 

 
Table II.3. Properties of PMMA Particles 

d[4.3] (µm) d[1.0] (µm) ρ (g/ml) Mw (g/mol) 

160 130 1.24 35000 

 
PMMA particles have a regular spherical shape and smooth surface as it can be seen from 

figure II.22 that was taken by ESEM. The morphology of the particles enables us to see the 

coating performance easily by visual methods and it is also suitable for different 

characterization methods.  

 



Materials & Methods 

   

Serkan OTLES 

 

74 

        

Figure II.22. Surface Morphology of PMMA Particles 

4.2. Cellets 

Cellets are pellets made of microcrystalline cellulose. It has a wide range of particle sizes, the 

standard types start with Cellets 90 (100–200 µm) and end with Cellets 1000 (1000–1400 

µm). It is odourless, tasteless and extremely versatile. It is insoluble in water. As inert 

carriers, they are mainly used for controlled release formulations, homogeneous distribution 

of the active agent and for drug delivery. It has high abrasion resistance which improves the 

coating process. Cellets particles have a regular spherical shape, smooth surface as it can be 

seen from figure II.23 and they have very high mechanical strength property. 

 

        

(a)                 (b) 

Figure II.23. Surface Morphology of Cellets Particles 

a) Cellets 90 b) Cellets 200 

 
Laarhoven et al. (2008) coated cellets particles with Poly(vinly alcohol), Poly(ethylene 

glycol) and (hydroxypropyl) methyl cellulose in order to study the strength against attraction 

with a repeated impact tester. They observed that during attraction testing the uncoated cellets 
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granules do not show any attrition. When cellets particles are coated, all the attrition observed 

is due to the failure of the coating.   

Cellets 90 and cellets 200 particles, from Pharmatrans Sanaq AG, used as two different host 

components in dry coating trials. Basically, the only difference between the cellets 90 and 

cellets 200 particles is the particle size distributions. The density (ρ) of cellets particles is 1.52 

g/ml. The properties of the cellets 90 and cellets 200 particles can also be seen in table II.4. 

 
Table II.4. Properties of Cellets Particles 

 d[4.3] (µm) d[1.0] (µm) ρ (g/ml) 

Cellets 90 100 74 1.52 

Cellets 200 305 217 1.52 
 

4.3. Talc 

Talc is a mineral composed of hydrated magnesium silicate with the chemical formula 

Mg3Si4O10(OH)2 which corresponds to 4.8% H2O, 31.7% MgO and 63.5% SiO2. Its 

elementary sheet is composed of a layer of magnesium-oxygen/hydroxyl octahedra, 

sandwiched between two layers of silicon-oxygen tetrahedral as it can be seen from the    

figure II.24.   

 

Figure II.24. Chemical Structure of Talc (Mulryan, 1992) 

 
The main or basal surfaces of this elementary sheet do not contain hydroxyl groups or active 

ions, which makes talc very hydrophobic and inert material. Talc is practically insoluble in 

water and in weak acids and alkalis. It is neither explosive nor flammable. Although it has 

very little chemical reactivity, talc has a marked affinity for some organic chemicals. Talc's 

melting point is at 1500°C and the density is 2.8 g/ml (Balard, 2001). 

Talc is the softest material according to Mohs scale of mineral hardness. Its smoothness, high 

lubricating and hiding power and ability to absorb oil and grease makes it very important 
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material for industrial applications. It has been used as filling material in paper, plastic and 

ceramic industries (Lopez, 1998). In the pharmaceutical applications, talc has been used as 

lubricant, anti–caking agent. It has also been used in order to improve the brightness of the 

tablets (Kablitz et al., 2006). In food industry, talc is widely used as technological additive in 

a number of foods and as processing aids in the mechanical extraction of virgin olive oil.  

In this study, talc particles from Luzenac S.A have been used as guest particles in dry coating 

experiments. The volume mean diameter (d[4;3]v) of the particles is 14 µm. In order to obtain 

talc particles with smaller particle size distributions, some talc particles have been treated in 

hybridizer at 16000 rpm operating velocity for 6 minutes. At the end, it has been obtained talc 

particles, which is called as talc 16000, with 4 µm volume mean diameter. The properties of 

talc particles are presented in table II.5. 

 
Table II.5. Properties of Talc Particles 

 d[4.3] (µm) d[1.0] (µm) ρ (g/ml) 

Talc 14 8 2.8 

Talc 16000 4 1 2.8 

 
It can be seen from the figure II.25, both talc and talc 16000 particles have slab geometry. 

  

        

        

       (a)              (b) 

Figure II.25. Surface Morphology of Talc Particles 

a) Talc b) Talc 16000 
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5. CONCLUSION 

In this chapter, the descriptions of the dry coating equipments, different characterization 

methods that have been used for analysing different physicochemical properties (flowability, 

wettability, surface morphology etc.) and the characteristics of the powders that were used for 

dry coating trials have been explained in detail. In the following chapter the obtained results 

will be presented and discussed.       
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1. INTRODUCTION  

As it has been discussed previously, it is very complex to understand the relationship between 

the couple (host & guest particles), process (equipment, operating conditions, etc.) and their 

effect on the end–use properties or for a certain end–use property, the required material 

properties (size ratio, initial affinity of adhesion etc), process (equipment, energy that the 

equipment needs to supply, etc.) of the particles. To be able to simplify the problem, it has 

been chosen some model couples.  

In this part of the study, it is aimed to coat the first model couple, poly(methyl methacrylate) 

(PMMA) (host particle) particles with talc particles (guest particles), by different dry particle 

coating devices and operating conditions (mass percentage of talc, operating velocity) in order 

to understand the effect of the equipment and operating conditions on the end–use properties 

of the new generated particles. Nara Hybridizer (NHS–0), Cyclomix Hosokawa and Turbula 

mixers have been used as three different dry particle coating equipments (Chapter II). These 

equipments have certain differences according to the way they function and also the energy 

that they supply to the powder sample to obtain coating on the surface of the host particles. 

The feasibility of dry coating of the PMMA – Talc particles was investigated for each dry 

particle coating equipment. Several characterisation methods are used to study the physico–

chemical properties of the coated particles. Visualisation before and after coating is performed 

with an Environmental Scanning Electron Microscopy (ESEM), it enables us to qualitatively 

estimate the type of coating obtained and the amount of deposited guest particles on the host 

particles. The particle size distributions and coating strength of the composite particles have 

been studied by using a laser diffraction granulometer (in dry feed mode). In this apparatus 

the powder de-agglomeration is controlled by adjusting the dispersing air pressure. It has been 

found the maximum dispersing pressure that the coating can resist. 

An Atomic Force Microscopy (AFM) has been used in order to understand guest particle 

deposition on host particle, analyze the surface morphology of the particles and also to find 

the adhesion force between the particles. According to the results that have been obtained, it 

enables us to calculate the amount of guest particles on the surface of the host particles by 

using a model for adhesion force. 

The flowability of the PMMA particles has been analyzed before and after the coating process 

in different equipments by using a Freeman Technology powder tester (FT4) and a tapped 

density tester.   
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2. DRY COATING OF PARTICLES IN HYBRIDIZER 

The Nara Hybridization System (NHS – 0) has been used as dry coating equipment with 

different mass percentages of Talc particles. In hybridization, high mechanical impact forces, 

compression and shearing are used in order to coat the particles.  

First of all, it is necessary to find the optimum operating conditions of Hybridizer for the 

model couple and also to understand the fragmentation behaviour of the powders. For that 

reason, a preliminary study has been done for PMMA and Talc particles individually. In 

preliminary study, the PMMA and talc particles are individually treated in the hybridizer at 

different rotational velocities and their fragmentation characteristics have been studied. 

PMMA particles with different mass percentages of talc particles have been treated at 

different operating velocities for dry coating experiments. In this part, the characterisation of 

powders before and after coating is presented in detail.  

2.1. Hydrodynamic Properties of Nara Hybridizer 

In order to have an idea about the effect of rotational velocity of hybridizer on generated air 

velocity, a study of hydrodynamic properties of Hybridizer has been done. 

The air velocity inside the hybridizer was measured by using an anemometer. A reference 

point in order to detect the air velocity has been chosen in the recirculating chamber of the 

hybridizer as it can be seen from Figure III.1. 

 

 

 

 

Figure III.1.  Scheme of Experimental Setup 

 
Nara Hybridizer has been operated (empty) with 10 (from 1000rpm to 9600 rpm) different 

velocities and 4 different pressures (0 bar, 0.1 bars, 0.2 bars, 0.3 bars).   

Anemometer inside of the 

recirculating chamber  
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In the experiments, the anemometer has been used with the time program in which it takes the 

all data in specific time range (>1 data per second) and after it calculates the mean value for 

this specific time range. In this study, the time ranges has been defined as 10 seconds (that 

means for one velocity more that 10 values) and 2 minutes in order to compare the data.  

It can be seen from figure III.2 that the velocity of the air increases with increasing rotational 

velocity of hybridizer as expected. It was observed that there is no significant effect of air 

(purge) pressure on the circulating air velocity inside the hybridizer. It shows that the            

de-agglomeration of the particles is affected by rotation of the rotor. 
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Figure III.2.  Air Velocity Inside of the Recirculating Chamber of Nara According to 

Different Air (Purge) Pressures 

2.2. Preliminary Study of Poly(methyl methacrylate) Particles 

In the preliminary study, the PMMA particles have been treated at different rotational 

velocities. The particle size of the final PMMA has been determined with the Malvern 

Mastersizer laser diffraction granulometer and expressed as the d[3:2] or surface weighted 

mean diameter. In addition, we have determined the yield of the hybridizer that is the 

percentage of material removed from the device at the end of an experiment with respect to 

the amount of introduced powders in the beginning. 

The rotational velocity of the Hybridizer is up to 16000 rpm, here we used 2500 rpm (15.6 

m/s), 4000 rpm (25 m/s), 5600 rpm (35 m/s), 9600 rpm (60 m/s) and 15000 rpm (93.8 m/s) as 

operating velocities.  

The effect of operating time has been also studied. According to early studies that have been 

done by Vilela et al. (2005), it was seen that the operating time has no significant effect (after 
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couple of minutes) on the particle fragmentation. In hybridizer treatments, 6 minutes has been 

chosen as the fixed operating time.  

The maximum batch size of the Hybridizer (NHS–0) is about 50 g. According to work has 

been done by Pfeffer et al. (2001), the advised initial charge should be between 25 and 35 g in 

order to have a good powder circulation in the mixing chamber. For that reason, the initial 

charge of the powders has been fixed at 30g.  

2.2.1. General Mass Balance 

The initial charge of 30 g powder is introduced to the Hybridizer. For the each rotational 

velocity, the percentage of the PMMA removed from the device at the end of the experiment 

with respect to initial charge has been compared. In the figure III.3, the % of the collected 

powder according to different operating velocities can be seen. 

 

Figure III.3. Effect of rotational velocity on Amount of PMMA Collected     

 
It can be seen that the amount of PMMA collected rises from 60 % at low velocities of 

rotation up to a stable value of about 90 % for rotational velocities greater 5600 rpm. This can 

be explained by the fact that, air flow generated by rotational velocity of the rotor is not high 

enough to have a good recirculation of the powder so that some of the powder stays in the 

recirculation tube.  

2.2.2. Effect of Rotational Velocity on Particle Size Distributions 

Here, it is aimed to understand the fragmentation behaviour of the particles with different 

operating velocities. The particle size distribution analyses of PMMA particles have been 

done for each 5 operating velocities of Hybridizer (between 2500 rpm – 15000 rpm). The 
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figures III.4 and III.5 show the volume and number distributions of PMMA particles before 

and after treatment in hybridizer with different operating velocities.   

 
 

 

 

 

 

 

 

     

 

 
It can be seen that the treated PMMA particles at 9600 rpm and 15000 rpm have a fine 

particle population (<20 µm) compared to other velocities because of the particle breakage. 

These fine populations can be seen easily in the number particle size distributions (Fig. III.5).  
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Figure III.6. Effect of Rotational Velocity on Particle Sizes of PMMA   

  
The evolution of the surface weighted mean diameter (d[3,2]) for PMMA particles before and 

after the treatments confirms the observations about the particle size distributions (Fig. III.6).  

The powders, that are produced at low rotational velocities, has an initial particle size d[3,2] 

of about 160 µm, but the mean particle size is reduced with higher rotational velocities, 
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Figure III.4. Volume Particle Size Distribution of 

PMMA Particles Before and After Treatment with 

Different Operating Velocities 

Figure III.5. Number Particle Size Distribution of 

PMMA Particles Before and After Treatment with 

Different Operating Velocities 
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falling to less than 10 µm for rotational velocities greater than 5600rpm. This would indicate 

particle breakage at these high rotational velocities. It is also confirmed by visual observation 

with the ESEM as seen in the figure III.7.  

 

         

       

   (a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

Figure III.7. Surface Morphology of PMMA Particles after Treatments in Hybridizer 

2.3. Preliminary Study of Talc Particles 

In the preliminary study with talc particles, the particles has been treated at 4000, 5600 and 

9600 rpm operating velocities for 6 minutes operating time as it has been done for PMMA 

particles. The initial talc particles have a volume mean particle diameter (d[4:3]v) around 14 

µm.  

The figures III.8 and III.9 show the volume and number particle size distributions of the talc 

particles before and after the treatments. It can be seen that the talc particles keep their 

particle size for each operating velocity. It shows us that, up to 9600 rpm operating velocity of 

Nara Hybridizer talc particles are not broken. It is also confirmed by visual observation as 

seen in figure III.10. 
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It can be seen that the talc particles are generally agglomerates and have slab morphology. 

 

          

           

  (a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

Figure III.10. Surface Morphology of Talc Particles after Treatments in Hybridizer 

 
In the preliminary study of the PMMA and talc particles, it has been observed that the particle 

recovery varies from 60% up to 90%, at 9600 rpm most of the PMMA particles are broken 

but on the other hand talc particles keep their particle size for each operating velocities.  
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Figure III.8. Volume Particle Size Distribution of 

Talc Particles Before and After Treatment with 

Different Operating Velocities 

Figure III.9. Number Particle Size Distribution of 

Talc Particles Before and After Treatment with 

Different Operating Velocities 
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After the preliminary study, 4000 rpm (25 m/s), 5600 rpm (35 m/s) and 9600 rpm (60 m/s) 

have been chosen as operating velocities to coat PMMA particles with 2 different mass 

percentages (1%, 5%) of talc particles for 6 minutes. 5% mass percentage of Talc corresponds 

to theoretical monolayer coating percentage in hexagonal packing of the PMMA particles. 

(Appendix II)    

2.4. Dry Coating of Poly(methyl methacrylate) with Talc 

In this study, it is aimed to understand the effect of the energy that the hybridizer applies to 

powder sample, which is directly related to the operating velocity, and mass percentage of talc 

particles on the end–use properties of the generated powders. More precisely, we are 

interested to analyse the effect of the operating conditions of hybridizer and mass percentage 

of talc on the coating strength and flowability properties of the particles. On the other hand, 

we are also interested to analyse the topographical modifications by AFM and afterwards it is 

also interesting to calculate the amount of talc particles on the surface of PMMA particles by 

using an adhesion force model. The results of PMMA coated with 1% and 5% talc particles 

for each operating conditions of hybridizer will be presented (table III.1). Then, the results of 

the hybridizer trials will be compared with the results of basic mixed PMMA and Talc 

particles.  

 
Table III.1. Operating Conditions of Dry Coating Treatments in Hybridizer 

Host 
Particles 

Guest 
Particles 

Operating 
Velocity 
(rpm) 

Operating 
Time 
(min) 

 Mass % 
of Guest 
Particles 

Batch 
Size  
(g) 

Temperature 
of Cooling 
Jacket (°C) 

 

PMMA 

 

Talc 

4000 

5600 

9600 

 

6 

 

1 % 

 

30 

 

13 

 

PMMA 

 

Talc 

4000 

5600 

9600 

 

6 

 

5 % 

 

30 

 

13 

 
In basic mixing, PMMA particles initially treated (in hybridizer at 4000, 5600, 9600 rpm) and 

initial talc particles with 2 different mass percentages (1% & 5%) are put into a tube (30 g 

batch) and they are mixed by shaking by hand for 6 minutes. It can be considered as a simple 

approach to the concept of ordered mixture. 
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2.4.1. General Mass Balance 

In the figure III.11 the results of the percentage of powder recovery of PMMA and PMMA 

coated with 1% and 5% talc particles for 4000 rpm, 5600 rpm and 9600 rpm rotational 

velocities are presented.  
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Figure III.11. Effect of Rotational Velocity and Mass Percentage of Talc on the Amount of 

Powder Collected After Treatments in Hybridizer 

 
It can be seen that the percentage of powder recovery increases with increasing operating 

velocity. It was also observed that the particle recovery of PMMA coated with 5% talc 

particles is higher than 1% talc coating and alone PMMA particles for each velocity. This is 

probably due to the lubricant properties of talc particles which helps particles to flow easily 

inside the recirculation tubes of the hybridizer. On the other hand, it was observed that the 

unrecovered particles generally stayed on the walls of stator, inside the recirculation tube and 

the small space between the rotor and stator. In order to understand the reason of particle 

accumulation on the walls of the stator and inside the recirculation tube, the electrostatic 

properties of the particles have been analysed by diminution of particle charge method. The 

method is explained and the results are shown in the Appendix IV. It was found that both 

lubricant and electrostatic discharging properties of talc particles decreases particle 

accumulation in hybridizer trials.      

2.4.2. Measure of Solid Densities of the Dry Coated Particles 

The solid densities of PMMA coated with talc particles for each mass percentage of talc 

particles and for each operating velocities have been determined by using a helium 
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pycnometer. It was found that the solid density of the PMMA and the talc was unchanged by 

treating in the Hybridizer for all speeds of rotation. This is not unexpected. 

Another measure of the overall performance of the operation is done by comparing the solid 

densities of the coated particles with the calculated values by assuming all the talc guest 

particles are fixed on the PMMA host particles. 

 

TalcPMMA

Mixture xx

ρρ

ρ
+−

=
)1(
1                                  (Eqn.III.1)  

Figure III.12 shows that, the solid density values are close to the expected values for the 

mixture, indicating that there is good recovery of powders from the Hybridizer.  

 

 

Figure III.12. Variation of Solid Densities of Coated Particles According to Talc Percentage 

 
However the densities of the coated particles are always less than the calculated values for the 

mixture. The tendency is for the experimental values to be closer, the higher the speed of 

rotation which suggests improved coating with greater mechanical action. In addition, it can 

be seen that the values for 1 % talc coating are within about 99 % of the theoretical values 

whereas the values for 5% coating are only with 97 % of the theoretical values. This indicates 

that it is more difficult to add particles to an existing coating. These conclusions should 

however be treated with caution as the differences between the density of the talc and the 

PMMA is not great enough to give a good precision and the values are at the detectable limit 

of the method. 
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2.4.3. Characterization of Surface Morphology of the Particles 

Environmental scanning electron microscopy (ESEM) has been used to observe the surface 

morphology of the particles as shown in the figure III.13. It can be seen that the hybridizer 

seems to embed the talc particles on the PMMA particles for each rotational speed. As it 

would be expected, the amount of talc particles on the surface of the PMMA particles is 

greater for the 5 % talc coating than 1 % talc coating. 

 

       
 

       

(a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

Figure III.13. Surface Morphology of PMMA Particles Coated by 1% and 5% Talc Particles 

in the Hybridizer 

 
The shape and size of the PMMA host particles are not changed by the 4000 rpm and 5600 

rpm treatments in hybridizer. However the observation of the results for 9600 rpm treatment 

shows evidence of big changes both in particle shape and size and the amount of background 

debris. This confirms the particle size analysis results shown in figure III.6 which suggests 

extensive breakage of the PMMA particles at 9600 rpm. 

The surface morphology analyses have also been done for the basic mixed particles. It can be 

seen that 9600 rpm pre-treated PMMA particles with talc particles are all broken. It was 

observed that there are free agglomerates of talc particles for PMMA with 5% talc coating 

PMMA + 1% Talc 

PMMA + 5% Talc 
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experiments (for 4000 and 5600 rpm pre-treatments) compared to results of coated particles in 

the hybridizer (fig.III.14). It shows the effect of mechanical forces of Hybridizer. In basic 

mixing, the force generated is not sufficient to break the agglomerates of talc particles and 

attach them on the surface of the PMMA particles, for this reason the agglomerates rest in the 

powder sample.  

   

     

   

     

(a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

Figure III.14. Surface Morphology of PMMA Particles Coated by 1% and 5% Talc Particles 

by Basic Mixing Method 

2.4.4. Characterization of the Particles by Atomic Force Microscopy  

In this part of the study, an Atomic Force Microscopy (AFM) has been used in order to 

examine the topographical analysis of the coated, uncoated particles and to understand the 

guest particle deposition on host particle, and also to find the adhesion force between the 

particles. Afterwards, according to the results that have been obtained, the percentage of 

surface coverage of the particles was calculated by using a model for adhesion force. 

 

 

 

PMMA + 1% Talc 

PMMA + 5% Talc 
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A. Topographical Analysis of the Particles 

In the topographical analysis of the particles, the AFM has been used on the different surface 

ranges (from 10x10 µm² to 1x1µm²) of the PMMA and talc initial particles and also PMMA 

with 1% and 5% talc coated particles.  

The tapping mode of the AFM is used for analysing surface topography of the samples. For 

each trial, height, amplitude and phase angle values are registered simultaneously. Cantilevers 

with a phosphorus doped silicon tip of about 15–20 µm in height and a spring constant of  

0.40 N/m were used (MPP–11120) (Appendix V). The scan rate of the piezo tube was kept at 

0.6 Hz, the tip velocity was kept at 1.20 µm/s and the resonant frequency of the tip was 

between 275 – 325 kHz (according to the tip) during the measurements. The ratio between the 

free amplitude (AF) and the amplitude set point (ASP) has been chosen as 0.8. This ratio has 

been found by comparing the quality of surface topography images of several experiments. It 

is seen that the cantilever probe hasn’t got any damage by touching the sample and also it 

gives remarkable height and phase results at this ratio.  

The results of initial PMMA particles, talc particles and PMMA coated with 1% and 5% talc 

particles will be presented.  

A.1. Topographical Analysis of the PMMA Particles 

Surface topography of the initial PMMA sample has been studied by using 10 different 

representative particles (according to particle shape & size) with 3 different magnitudes of 

imaging (1x1 µm, 2x2 µm, 5x5 µm). The AFM cantilever can be seen during a topographical 

analysis of a PMMA particle in figure III.15.     

In figures III.16 and III.17, the height images of a PMMA particle (in 2D and 3D formats) can 

be seen. According to these images, the surface roughness analysis has been done by an AFM 

software. There are different values to characterise the surface roughness but most of the time 

average surface roughness (Ra) and root mean square average of surface roughness (RMS) are 

used by researchers (Heng et al., 2000, Chen et al., 2002, Li et al., 2006, Liang et al., 2007) . 

10 different particles with 5x5 µm² imaging magnitude has been used for surface roughness 

analysis, a Ra value has been obtained for the PMMA particles, between 60 nm–120 nm 

(Raave:86) and the RMS value varies between 80 nm–160 nm.(table III.2)    
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A.2. Topographical Analysis of the Talc Particles 

Surface topography of the initial talc sample was difficult to analyse more precisely for large 

magnitudes of imaging like 5x5 µm². The talc particles are very soft and have a very small 

particle size (between 1µm–18µm) compared to PMMA particles and because of that, while 

the cantilever probe is analysing the particle surface, the cantilever tip may touch to the 

particles and move them. The AFM cantilever can be seen during a topographical analysis of 

Talc particles in the figure III.18. 

Figure III.15 . PMMA Particle 

and Cantilever of AFM 

Figure III.16 . Height Image of 5x5 µm² 

Surface of PMMA Particle by AFM 

Figure III.17 . 3D Height Image of 5x5 µm² 

Surface of PMMA Particle by AFM 
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In figure III.19 and III.20, images of surface roughness of talc particles can be seen. It is 

observed that the surface roughness is much higher and more evident for talc particles 

compared to PMMA particles and it is found the Ra value for the talc particles is between  

100 nm–220 nm (Raave:131) and the RMS value varies between 140 nm–270 nm.(table III.2) 

A.3. Topographical Analysis of the PMMA Coated with 1% and 5% Talc Particles 

The topographical analysis has been done also for 1% and 5% talc coated PMMA particles. 

The idea was to study the effect of talc coating on the surface roughness of the PMMA 

particles after coating. Figure III.22 and III.23 show the height images of 1% talc coated 

PMMA particles.   

Figure III.18 . Talc Particles and 

Cantilever of AFM 

Figure III.19 . Height Image of 5x5 µm² 

Surface of Talc Particle by AFM 

Figure III.20 . 3D Height Image of 5x5 µm² 

Surface of Talc Particle by AFM 
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The surface roughness values of PMMA with 1% talc coating has been determined for Ra 

between 70 nm–140 nm (Raave:91 nm) and RMS varies between 100 nm–190 nm. It is 

observed that the surface roughness increased because of the existence of talc on the surface. 

The change in the surface roughness is not much compared to initial PMMA particle which is 

due to the small amount of talc particles on the surface of PMMA particles. 

The height images of 5% talc coated PMMA particles are presented in figure III.25 and III.26. 

The surface roughness values have been found much higher for the PMMA coated with 5% 

talc compared to initial PMMA particles as expected. The Ra value is between 88 nm–180 nm 

(Raave:105 nm) and RMS is between 90 nm–200nm. (Table III.2) 

 

Figure III.21 . PMMA Coated with 1% 

Talc Particles and Cantilever of AFM 

Figure III.22 . Height Image of 5x5 µm²  

Surface of PMMA + 1% Talc  

Coated Particle by AFM 

Figure III.23 . 3D Height Image of 5x5 µm²  

Surface of PMMA+1% Talc Coated Particle  

by AFM 
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Table III.2. Surface Roughness Values of Uncoated and Coated Particles (5x5 µm²) 

Material Ramin – Ramax 
(nm) 

Raave (nm) RMSmin – RMSmax 
(nm) 

RMSave (nm) 

PMMA 60 – 120  86 80 – 160 118 

TALC 100 – 220  131 140 – 270  186 

PMMA + 1% Talc  70 – 140  91 100 – 190 132 

PMMA + 5% Talc  88 – 180  105 90 – 200  155 

 
It has been seen that, coating with talc has certain effects on the surface roughness of the 

PMMA particles. But, how can we be sure if there are talc particles on the surface? To be able 

to answer that question, a study has been done to be able to understand the existence of talc 

Figure III.24 . PMMA Coated with 5% 

Talc Particles  

Figure III.25 . Height Image of 5x5 µm²  

Surface of PMMA with 5% Talc Coated  

Particle by AFM 

Figure III.26 . 3D Height Image of 5x5 µm² 

Surface of PMMA with 5% Talc Coated 

Particle by AFM 
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particles on the surface of PMMA particles by comparing height results with phase contrast 

results. 

B. Phase Contrast Analysis of the Particles 

An interesting feature of the AFM tapping mode is its capability of detecting the phase angle 

of the AFM cantilever oscillation. This phase angle provides information on localized AFM 

probe–sample interactions and has become an important mode in AFM applications on 

recognizing heterogeneous (different surface roughness, chemical composition, elasticity etc.)  

materials. However interpretation of the phase contrast has some difficulties. (Chen et al. 

2002)  

In this part, it is aimed to distinguish the talc particles deposition on the surface of the PMMA 

particles according to different surface characteristics of the particles that are obtained in the 

topographical analysis and phase difference.  

It is known that talc particles are much softer than PMMA particles, because of that we 

suppose phase contrast results would give us different phase angles in the coated particles.   

The results of initial PMMA, talc and PMMA coated with 1% and 5% talc particles will be 

presented in this part. 

B.1. Phase Contrast Analysis of the PMMA Particles 

In the figure III.27, III.28, the height, phase angle and amplitude data of the same PMMA 

particle with different magnitudes of imaging can be seen.  

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure III .27. Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of PMMA 

Particle by AFM 

       

Height Phase Angle Amplitude 
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Figure III.28.  Height, Phase Angle and Amplitude Images of 2x2 µm² Surface of PMMA 

Particle by AFM 

 
It was observed that in the same section of images of height and phase angle, the phase angle 

data varies up to 40° (fig.III.27) which is probably the reason for the difference in height of 

the surface (surface roughness). The same study has been done for 10 different particles with 

5x 5 µm² magnitude of imaging and it is found that the phase angle varies between -100° and 

40° for initial PMMA particles. (table III.3)       

B.2. Phase Contrast Analysis of the Talc Particles 

The results of height and phase angle data have also been compared for talc particles. In the 

figure III.29 and III.30 the images of height, phase angle and amplitude of talc can be seen. 

 

 

 

 

 

 

 

 

 
Figure III.29.  Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of Talc 

Particle by AFM 

 
 
 

Height Phase Angle Amplitude 

     

     

Height Phase Angle Amplitude 
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Figure III.30.  Height, Phase Angle and Amplitude Images of 2x2 µm² Surface of Talc 

Particle by AFM 

 
It has been observed that the phase angle of talc is more evident than PMMA. The reason is 

the surface roughness and also because of the material surface characteristics. Talc is much 

softer than PMMA and because of that we have obtained variety of phase angle values 

(between -130° and 110°). (table III.3) 

B.3. Phase Contrast Analysis of the PMMA Coated with 1% and 5% Talc Particles 

The results of phase angle, height and amplitude values of PMMA coated with 1% and 5% 

talc particles can be seen in the figure III.31 and III.32 for 1x1 µm² magnitude of imaging. 

 

 

 

 

 

 

 

 

 
Figure III.31.  Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of PMMA 

coated with 1% Talc Particles by AFM 

 
In the figure III.31, a talc particle which is attached vertically on the surface of the PMMA 

particle can be seen. On the other hand, if we compare the phase angle and height results, we 

can see that for the same section of the particle the surface roughness seems stable but the 

     

Height Phase Angle Amplitude 

     

Height Phase Angle Amplitude 
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phase angle gives different values between 50° and 60° which is a characteristic result of Talc 

particles. 

 
 
 

 

 

 

 

 

 

Figure III.32.  Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of PMMA 

coated with 5% Talc Particles by AFM 

 
For 5% talc coating we have also evidence, it shows the existence of talc particles on the 

surface of PMMA particles. In figure III.32, a single talc particle on the PMMA surface can 

be easily recognized because of the morphological characteristics. Also the phase angle scale 

is up to 85°which is much higher than PMMA scale (-100°<x<40°). The results of phase 

angle, height and amplitude values with 2x2 µm² imaging magnitude for PMMA coated with 

1% and 5% talc particles can be also seen in the figure III.33.  

The height and phase angle comparison has been done for 10 different particles with 5x5 µm² 

imaging magnitude. It can be seen from table III.3, that for 1% talc coating the phase angle 

values are between -100° and 60° but on the other hand for 5% Talc coating the phase angle 

values are between -100° and 85°.  The probable reason should be the difference in mass 

percentage of talc particles in the samples.  

 
Table III.3. Phase Angle Values of Uncoated and Coated Particles (5x5 µm²) 

Material Phase Anglemin (°)  Phase Anglemax (°) 

PMMA - 100 40 

TALC - 130 110 

PMMA + 1% Talc - 100 60 

PMMA + 5% Talc - 100 85 
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In order to show the existence of talc particles on the surface of PMMA particle, the AFM 

images has been analysed numerically. In this part of the study, the numerical results of 

height–phase angle global profiles of the particles (5x5 µm² - 10 images) have been taken and 

converted into a graph of height versus phase angle values. Each image has 256 pixel 

resolutions so there are 256x256x10 points for the height and phase angle graphs of each 

sample. This allows visualizing the difference between the different samples. At the same 

imaging magnitude, results of initial PMMA and talc graphs have been compared with 1% 

and 5% talc coated PMMA particles. In the figure III.34, the graph of initial PMMA and talc 

particles signature can be seen. It can be observed that the PMMA and talc particles have 

different phase angle characteristics as it has been observed from the AFM images. 

 

                           

 

                           

Height Phase Angle Amplitude 

PMMA Coated with 1% Talc 

PMMA Coated with 5% Talc 

Figure III.33 . Height, Phase Angle and Amplitude Images of 2x2 µm² Surface of PMMA coated 

with 1% and 5% Talc Particles by AFM 
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Figure III.34.  Height vs. Phase Angle Profiles for Initial PMMA and Talc Particles 

 
In figure III.35, the graph of initial PMMA, talc and PMMA coated with 1% and 5% talc 

particles are shown. It is observed that, the signature of the 1% trial is not very different from 

the initial PMMA values but when increasing to 5%, the signature gets closer to the signature 

of the talc. If we compare the signatures of PMMA coated with 1% and 5% talc particles, it 

can be seen that for PMMA coated with 5% talc particles, there are many more points with 

high phase angle values which shows us the effect of coating percentage of talc particles. 

 

    

Figure III.35.  Height vs. Phase Angle Profiles for Initial PMMA, Talc and PMMA Coated 

with 1% and 5% Talc Particles  
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As it has been discussed in the literature review, in dry particle coating technology adhesion 

forces between the particles have very important role. The adhesion forces between the 

particles were examined by using contact mode of the AFM and the results are presented in 

the next part. 

C. Measurement of Adhesion Forces Between the Particles  

The adhesion forces between the material surface and a fixed particle at the cantilever tip can 

be measured by using the contact mode of AFM. The piezo scanner moves the substrate on 

which the adhesion force of the fixed particle is measured in vertical direction. Due to the 

deflection of the cantilever in relation to the movement of the piezo the adhesion force can be 

measured. In this study a triangular NP probe (made of silicon nitride) with the spring 

constant k = 0.32 N/m has been used to determine the adhesion forces between the fixed talc 

particles at the tip and coated, uncoated PMMA and talc particles.  

The accuracy of force measurements depends in part on the sensitivity of the AFM, but also 

on the accuracy of the value of the spring constant. The value of the spring constant is most 

sensitive to the variation of the cantilever thickness. The spring constant of an AFM 

cantilever is usually estimated by the manufacturer, and noted on the documentation that 

accompanies the probe. Generally, the nominal spring constant values that are supplied by the 

manufacturer can be in error. In order to calibrate the spring constant of the cantilever probe, 

thermal tuning has been done. In thermal tuning, the cantilever’s mechanical response to 

thermal noise is measured. This is the cantilever’s motion in response to thermal agitation. As 

it can be seen in the figure III.36, by fitting the frequency spectrum to a Lorentzian line shape, 

the AFM software arrives at an estimate of the cantilever’s spring constant. The spring 

constant has been found as k = 0.51 N/m by thermal tuning. 

 

 

Figure III.36.  Thermal Tuning of the Cantilever Probe 
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Adhesion force measurement between a fixed particle at the cantilever tip and a sample has 

been done previously by other researchers. Aimé et al. (2005) have characterized force– 

displacement curves on rigid and soft polymer films in controlled atmosphere. The authors 

point out several causes of misinterpretation of force–displacement curves: the lack of an 

accurate knowledge of the cantilever stiffness and of the tip size and the difficulty in 

separating viscoelastic, elastic, and plastic effects. Cleaver et al. (2004) has also studied the 

adhesion forces by AFM. They studied the influence of relative humidity and applied load on 

the adhesion forces between individual polystyrene particles. The adhesion forces between the 

polystyrene particles were found to be between 200 nN–350 nN for 1% relative humidity. 

Another study has been done for pharmaceutical powders by Louey et al. (2001). They have 

determined the adhesion forces between a fixed silica particle at the cantilever tip and lactose 

particles. In their study they used a silicon nitride probe with k = 0.42 N/m and found 

adhesion force values between 40 nN and 120 nN.    

In adhesion force analysis, talc particles have been glued by epoxy resin at the cantilever tip. 

By using an optical microscopy, the talc particles have been glued at the triangular cantilever 

tip symmetrically in order to have a representative data. It can be seen in the figure III.37, 

before and after the adhesion force experiments the cantilever tip has been checked to make 

us sure that the talc particles stay on the tip after the experiments. 

 

             

 

Figure III.37.  The Talc Particles on the Cantilever Tip Before and After the Analysis  

 
In this study, the adhesion forces between talc particles and the coated and uncoated PMMA 

particles have been found and also the variation of adhesion forces according to mass 

percentage of talc in the mixture has been studied. For each powder sample, around 600–700 

adhesion force curves have been obtained by analysing minimum 15 particles and 6 different 

surfaces.  

Before After 
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In figure III.38, an example of an adhesion force between talc particles at the cantilever tip 

and a sample of PMMA, and as the second case the adhesion force between the talc particles 

at the cantilever tip and a sample of talc can be seen. The force peak between the sample and 

the cantilever tip corresponds to the pull-off movement of the tip from the sample.  

 

 

Figure III.38.  Adhesion Force Curves between Talc–PMMA and Talc–Talc Particles 

 
It has been found that, the adhesion forces between the talc particles vary between 5 nN and 

220 nN with an average value of 55 nN. For the case of the adhesion forces between talc and 

PMMA particles, the data range is between 0 nN and 90 nN with an average value of 13 nN. 

It has been found that 98% of the adhesion force curves (total 660) between talc and PMMA 

particles have values between 0 nN and 40 nN and just 2% of adhesion curves have values 

between 40 nN and 90 nN. According to obtained adhesion force values, it has been observed 

that the talc particles have much more affinity for adhesion with talc particles than with 

PMMA particles. (Table III.4). The initial affinity of the particles has also been analysed by 

theoretically calculating the adhesion energy between the particles. The results can be seen in 

the Appendix.VI.  

 
Table III.4. Adhesion Force Values for Uncoated and Coated Particles  

Material Average Adhesion 
Force (nN) 

Standard Deviation 

PMMA 13 14.5 

TALC 55 5.2 

PMMA + 1% Talc 21 10.6 

PMMA + 5% Talc 27 8.3 

Talc – PMMA 

Talc – Talc 
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The adhesion force analysis have been also done for the coated PMMA particles with 

different mass percentages of talc particles in order to understand the variation of adhesion 

forces according to different coating percentages. In figure III.39, the distributions of the 

adhesion forces between the talc particles that are fixed at the cantilever tip and the coated 

and uncoated PMMA particles are given. 
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Figure III.39.  Distributions of Adhesion Forces between Talc and PMMA Coated with 1% & 

5% Talc Particles 

 
It can be seen that coating of PMMA particles with talc particles has a certain effect on the 

distribution of adhesion forces. It was observed that the adhesion force values have a 

tendency to increase with increasing mass percentage of talc particles in the coating. As it can 

be seen from the figure III.40, for the initial PMMA particles the 98% of the adhesion forces 

are between the range of 0–40 nN and this adhesion force frequency decreases to 85% for 1%  

talc coated PMMA particles and 70% for 5% talc coated PMMA particles. At the end we have 

obtained average adhesion force values, 21 nN for 1% talc coated PMMA particles and 27 nN 

for 5% talc coated PMMA particles.  
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Figure III.40.  Distributions of Adhesion Forces between Talc and PMMA Coated with 1% & 

5% Talc Particles (between 0 – 95 nN) 

 
As it was described in the first chapter, Van der Waals forces have an important role in 

particle adhesion. The reason of having dry particles and according to particle sizes of PMMA 

and talc particles, the Van der Waals forces are probably the most dominant adhesion forces 

for our case. In order to have a rough estimation about the Van der Waals forces between the 

PMMA and talc particles, Hamaker integration (chapter I) including surface roughness has 

been used (eqn.I.3).   

The average surface roughness values (Ra) from AFM measurements have been taken as 

surface roughness values for the calculations. The Van der Waals forces between the PMMA 

and Talc particles has been found as 10 nN for 86 nm average surface roughness (Raave). 

Compared to the average adhesion force value between the PMMA and talc particles that 

have been obtained from AFM measurements (13 nN), this rough estimation of Van der 

Waals forces have a close value.  

On the other hand, the AFM results of the particles have been used in order to theoretically 

calculate the adhesion force by using a model. The model that has been generated by Thomas 

and Ouabbas (2008) uses the ordered mixture concept. It is assumed that all the particles are 

spherical and there is monolayer coating as it can be seen in the figure III.41. 
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Figure III.41. Concept of the Adhesion Force Model 

 
The aim is to calculate the adhesion force values between the fixed talc particles at the 

cantilever tip and coated PMMA particles according to different mass percentages of talc 

particles. The total adhesion force between the particles has been described as: 

 

1100 SFSFF +=                  (Eqn.III.2) 

The equation is based on the idea that, in the AFM adhesion force trials the fixed talc particle 

at the cantilever may have attraction either with another talc particle on the surface of the 

PMMA particle or with directly to the PMMA particle. According to this assumption, the total 

adhesion force has been described as the summation of the force between the PMMA and talc 

particle (F0) multiplied by the surface fraction of talc free PMMA surface (S0), and the 

adhesion force between the talc particles (F1) multiplied by the surface fraction of the talc 

particles on the surface of the PMMA particle (S1).  

According to assumptions of monolayer ordered mixture coating (the particles are attached 

singly on the surface) we have: 

      110 =+ SS        (Eqn.III.3) 

Afterwards by putting equation III.3 inside to equation III.2, it is obtained: 

 

( )0110 FFSFF −+=      (Eqn.III.4) 

On the other hand, the volume fraction of talc (V1) particles in the mixture has been described 

according to mass fraction (W1) and the equation III.5 was obtained: 

Sproj 

Cantilever Tip 

Talc 

PMMA 

r0 

r1 
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     (Eqn.III.5) 

The authors tried to derive the surface fraction of guest particles on the surface of the host 

particle as a function of volume fraction. The surface fraction of guest particles was taken to 

be the ratio of projected surface area of guest particles to the total surface area of the host 

particle; 
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Afterwards the surface fraction of talc particles on the surface of the PMMA particle is 

described as a function of volume fraction as it can be seen in the equation III.7; 
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At the end the total adhesion force has been described according to adhesion forces between 

the talc–talc and PMMA–talc particles (they are obtained from AFM measurements) and mass 

fraction of talc particles; 
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    (Eqn.III.8)  

In our case, the average adhesion force between the PMMA and talc particles (F0) was found 

to be 13 nN and between the talc particles (F1) it was found to be 55 nN. According the 

model, the total adhesion force between the talc particles at the cantilever tip and talc coated 

PMMA particles have been calculated. For 1% talc coated PMMA particles the adhesion 

force was found to be 15.8 nN and for 5% Talc coated PMMA it was found to be 27.7 nN. It 

can be seen from figure III.42 that the calculated values are similar to the AFM experimental 

data (up to 10% coating) when the adhesion force increases linearly. In order to better 

understand the adhesion force model, 10% and 25% talc coated PMMA particles have also 
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been analysed. It can be seen that the difference between the calculated and experimental 

adhesion force values becomes larger for 25% talc coated PMMA particles because the model 

is only valid for a monolayer coating. The results show that 25% mass percentage of talc 

particles corresponds to more than a monolayer coating.  
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Figure III.42. Experimental & Calculated Adhesion Force Values between Talc Coated 

PMMA Particles and Talc Particles 
 

Figure III.43 shows the evaluation of adhesion force values according to mass percentage of 

talc in the coating. The 5% talc coating corresponds to the theoretical hexagonal compact 

monolayer of the particles. But at this level the average force (27 nN) is much less than        

55 nN, corresponding to talc–talc interactions. This shows that, there are still low talc–PMMA 

interaction forces. If we increase the adhesion force linearly with the percentage, we cross the 

55 nN level at 26 %. This would correspond to the percentage where the talc headed 

cantilever probe never comes in contact with PMMA surface, i.e. a continuous coating.  
 

 
Figure III.43.  Evaluation of Adhesion Force with Talc Percentage 

26 % 
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There is another interesting feature of the adhesion force model. It also allows us to calculate 

the amount of guest particles on the surface of the host particle according to AFM measured 

adhesion force values. The results are presented in the next part.  

2.4.5. Calculation of Talc Particle Deposition on the Surface of the Coated Particles 

This part of the study aims to calculate the amount of talc particles on the surface of the 

PMMA particles by using the model that has been used for calculation of adhesion forces 

between the fixed talc particles at the cantilever tip and different mass percentages talc coated 

PMMA particles.  

As described in the early part of the study, the model enables us to calculate adhesion force 

values according to mass fraction of the guest particles. This means that, it is also possible to 

calculate the mass fraction of the guest particles on the surface of the host particle if the 

adhesion forces between the coated particles and the fixed guest particle at the cantilever tip is 

known.  

In the AFM adhesion force measurement for each particle (from 15 different particles), 6 

different surfaces have been chosen in order to have representative values as it can be seen in 

figure III.44. In that case, according to the average adhesion force values which have been 

obtained from each 6 different surfaces (an average of minimum 100 adhesion force values), 

the mass fraction of the talc particles for each particle has been calculated.    

 
 
 
 

 

 

 

 
Figure III.44. The Different Particle Zones of Adhesion Force Measurements 

 
In equation III.8, the adhesion force between the talc and PMMA (F0) has been taken as 13 

nN and the adhesion force between the talc particles (F1) has been taken as 55 nN which are 

the AFM measured average adhesion force values (table III.4). 
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Table III.5 shows an example of the calculation of the mass fraction of talc particles 

according to the adhesion force between the fixed talc particles at the cantilever tip and each 

chosen surface of a 1% talc coated PMMA particle. According to this example (table III.5), it 

can be seen that the talc particles are not homogeneously distributed on the PMMA surface. It 

is observed that at second and sixth surface zones we have much more talc particles compared 

to other surface zones. The amount of talc particle deposition has been calculated for all 15 

different particles of 1% talc coated PMMA particles. It was found that the deposition of talc 

particles on the surface of the PMMA particles has values between 0.6% and 4% with an 

average value of 2.3%. The average value is more than the initial mass fraction of the talc 

particles which is 1%. The possible reason could be the existence of the non analyzed zones 

on the PMMA particle surface.  

 
Table III.5. An Example of Calculated Amount of the Talc Particles on a 1 % Coated PMMA 

Particle 

Surface Number Measured Average 
Adhesion Forces (nN) 

Real Mass Fraction of 
Talc Particles 

1st  19 2.1 % 

2nd  32 6.4 % 

3rd 16 1.1 % 

4th 15 0.7 % 

5th 14 0.4 % 

6th 35 7.3 % 

Total Surface 21.8 3 % 

 
The amount of talc particle deposition on the PMMA particles has also been calculated for 

5% talc coated PMMA particles. In the table III.6, an example of the measured adhesion force 

for each surface zone of a 5% talc coated PMMA particle and mass fraction of talc particles 

for can be seen.    
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Table III.6. An Example of Calculated Amount of the Talc Particles on a 5 % Coated PMMA 

Particle 

Surface Number Measured Average 
Adhesion Forces (nN) 

Real Mass Fraction of 
Talc Particles 

1st  22 3.1 % 

2nd  18 1.8 % 

3rd 25 4.1 % 

4th 36 7.6 % 

5th 33 6.7 % 

6th 29 5.4 % 

Total Surface 27.2 4.8 % 

 

As it can be seen from the table III.6 that the talc particle deposition has been found as 4.8%, 

which is very close to the initial mass fraction. The same study has also been done for the rest 

15 different PMMA coated with 5% talc particles. The talc deposition has been found 

between 3.9% and 6.5% with an average value of 4.4 %. There is a small difference between 

the initial mass fraction of talc particles in the system (5%) and the calculated amount of talc 

deposition on the PMMA surface (average 4.4%). The non analyzed zones of the coated 

PMMA particles may be one of the reason and also the lost of talc particles after treatment in 

the Hybridizer has to be considered. On the other hand, agglomeration of talc particles on the 

surface of the PMMA particle (more than monolayer coating) would prevent the cantilever to 

reach the PMMA surface and it can be another reason for this result.    

2.4.6. Characterization of Coating Strength of the Particles 

A Malvern Mastersizer laser diffraction granulometer with dry powder feed has been used to 

evaluate the strength of the coating on the host particles. In this apparatus powder de-

agglomeration is controlled by adjusting the dispersing air pressure. Here we determine at 

which dispersing air pressure the guest particle start to be liberated from the host particles. 

The presence of liberated fine particles can be detected by making a comparison between 

number particle size distributions with different pressures.  

In this study, the laser diffraction granulometer has been used with each dispersing air 

pressure between 0.1 bar and 4.0 bar in order to determine more precisely the liberation 

pressure for the particles. Afterwards, the pressure of particle liberation, an approach to the 
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generated kinetic energy of the treatment (according to operating velocity) and mass 

percentage of talc particles have been compared. The results of hybridizer and basic mixing 

experiment have also been compared at the end.  

A. Effect of Operating Velocity on Coating Strength of the Particles 

The coating strength analysis has been done for each operating velocity for PMMA coated 

with 1% and 5% talc particles. To be able to understand effect of velocity on the coating 

strength, PMMA with 1% talc coating results has been chosen to be presented. Analyses have 

been done for each dispersing pressure. First of all, the results of 0.5, 1.5, 2.5 and 3.5 bar will 

be presented then the particle liberation pressures for each velocity will be presented more 

precisely. 

 
 
 

 

 

 

 

 

 

 

 

 
It can be seen in figure III.45, at 0.5 bar, the particle size distributions of coated particles at 

4000 rpm and 5600 rpm are similar to initial PMMA particles which are around 145 µm. On 

the other hand, coated particles at 9600 rpm are smaller in size than those at 4000 and 5600 

rpm. At this velocity the particles have also a similar distribution with PMMA treated at the 

same velocity, it is around 1 µm and the initial talc particles have a number mean particle size 

distribution at 0.5 µm.  

In figure III.46 the particles size distributions of the particles with 1.5 bar dispersing pressure 

can be seen. It can be observed that there is a shift to the left side for the coated particles at 

4000 rpm. It shows a population of particles at around 5 µm. It means that the dispersing 

pressure for the liberation of the PMMA particles at 4000 rpm is between 0.5 and 1.5 bar. The 

rest of the particles keep their particle size distributions at that pressure. 
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Figure III.45. Number Particle Size Distribution 

of Coated and Uncoated Particles at 0.5 bar 

Dispersing Pressure 

Figure III.46. Number Particle Size Distribution 

of Coated and Uncoated Particles at 1.5 bar 

Dispersing Pressure 
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At 2.5 bar pressure, it can be seen that for the particles coated at 5600 rpm and 9600 rpm still 

keep their particle size distributions (fig.III.47). The particle size distribution of coated 

particles at 4000 rpm have the same fine particle population at 5 µm as it was at 1.5 bar 

dispersing pressure.  

 
 

 

 

 

 

 

 

 

 

 

 

At 3.5 bar pressure, it can be seen that the graph of particles coated at 5600 rpm makes a shift 

to the left (fig.III.48). It has a fine particle population at around 3 µm. It shows us that the 

particle liberation pressure is between 2.5 and 3.5 bar for coated particles at 5600 rpm. For 

particles coated at 9600 rpm, the initial particle size distribution is retained which means even 

the 3.5 bar pressure is not high enough against the particle interactions between the Talc and 

PMMA particles. It was also observed that for each operating velocity, the particle size 

distributions of the coated particles were higher than the particle size distribution of alone talc 

particles at any pressures. It shows the difficulty of the detachment of talc particles from the 

surface of the PMMA particles because of the strong interactions between the particles. 

Figure III.49 gives more precisely the particle liberation pressures for each operating velocity. 

Figure III.47. Number Particle Size Distribution 

of Coated and Uncoated Particles at 2.5 bar 
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It was observed that the liberation pressure is 1.3 bar for particles treated at 4000 rpm, 2.8 bar 

for particles treated at 5600 rpm and 3.7 bar for particles treated at 9600rpm. Table III.7 

shows the particle liberation pressures and corresponding air velocity in the venturi for 1% 

talc coated PMMA particle at different operating velocities of the hybridizer. It can be seen 

that the dispersing pressure for particle liberation increases with increasing rotational velocity. 

This is probably related to the energy that the system gives to the powder sample. However, it 

should be remembered that the change in the particle size distribution could be either because 

of particle detachment or also fragmentation of particles or agglomerates. Especially at 9600 

rpm treatments most of the particles are broken and the difference in the particle size 

distribution could be reason of detachment of talc particles and also breakage of particles.  
 

Table III.7.  Dispersing Pressures and Air Velocities for Particle Detachment for 1% Talc 

Coated PMMA Particles in Hybridizer 

Material Dispersing Air Pressure Air Velocity  

PMMA + 1% Talc at 4000 rpm 1.3 bar 64 m/s 

PMMA + 1% Talc at 5600 rpm 2.8 bar 107 m/s 

PMMA + 1% Talc at 9600 rpm 3.7 bar 122 m/s 

 

 

Figure III.49. Number Particle Size Mean vs. Dispersing Pressure  

For 1% Coated and Uncoated PMMA Particles 
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B. Effect of Mass Percentage of Talc on Coating Strength of the Particles 

In this part of the study, it is aimed to study the effect of the mass percentage of the talc 

particles on the coating strength. The PMMA particles have been treated with 1% and 5% 

Talc particles at 4000, 5600 and 9600 rpm for 6 minutes.  

 

 

      

 

 

 

 

 

 

 

         

The particle size distributions of particles, that are treated at 4000 and 5600 rpm in the 

hybridizer, according to dispersing pressures can be seen in the figure III.50 and III.51. It is 

observed that for 4000 rpm treatments, 1% Talc coated particles start to have particle 

detachment (or fragmentation) at 1.3 bar dispersing pressure and for 5% coated particles, it is 

at 1.7 bar. On the other hand, for 5600 rpm treatments, 1% Talc coated particles the particle 

liberation pressure is 2.8 bar but contrarily to the results of 4000 rpm, for 5% Talc coated 

particles the liberation pressure is lower than 1% which is 2.6 bar. Figure III.52 shows the 

number particle size distributions of 1% and 5% talc coated PMMA particles at 9600 rpm in 

hybridizer. It can be seen that the particle liberation pressure is 3.7 bar for 1% talc coating and 

3.4 bar for 5% talc coated PMMA particles. According to results of coated particles in the 

hybridizer (table III.8), it is concluded that there is no observed effect of mass percentage of 

talc on the coating strength of the particles that are treated in the hybridizer. 
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Figure III.50 . Number Particle Size Mean vs. 

Dispersing Pressure for 1% and 5% Talc 

Coated and Uncoated Particles at 4000 rpm 

 

Figure III. 51. Number Particle Size Mean vs. 

Dispersing Pressure for 1% and 5% Talc 

Coated and Uncoated Particles at 5600 rpm 
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Table III.8.  Dispersing Pressures and Air Velocities for Particle Detachment for 1% and 5% 

Talc Coated PMMA Particles in Hybridizer 

Material Dispersing Air Pressure Air Velocity  

PMMA + 1% Talc at 4000 rpm 1.3 bar 64 m/s 

PMMA + 1% Talc at 5600 rpm 2.8 bar 107 m/s 

PMMA + 1% Talc at 9600 rpm 3.7 bar 122 m/s 

PMMA + 5% Talc at 4000 rpm 1.7 bar 77 m/s 

PMMA + 5% Talc at 5600 rpm 2.6 bar 103 m/s 

PMMA + 5% Talc at 9600 rpm 3.4 bar 118 m/s 

 
In basic mixing trials, it is observed that the particle liberation pressure for PMMA treated at 

4000 rpm with 1% talc coating is 0.9 bar and for 5% talc coating the particle liberation 

pressure is 0.8 bar (Appendix III). For PMMA at 5600 rpm with 1% talc the particle liberation 

pressure is 1.1 bar and for 5% Talc coating the liberation pressure decreases to 0.7 bar. Also 

for PMMA at 9600 rpm with 1% talc coating, the particles start to detach (or break up) at 1.9 

bar and for 5% talc coating the particle liberation pressure is 1.3 bar. According to these 

results, for the particles that are treated by basic mixing method, the particle liberation 

pressure decreases with increasing talc percentage in the coating (Appendix.III). 

 
 
 

Figure III.52. Number Particle Size Mean vs. Dispersing Pressure for 1% and 5% 

Talc Coated and Uncoated Particles at 9600 rpm 
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C. Effect of Equipment on Coating Strength of the Particles 

It was observed that there is a relation between the coating strength of the particles and the 

operating velocity of the hybridizer in the early part of the study. In this part, we compare the 

coating strength of the particles that are treated by hybridizer and by basic mixing method. 

We are interested to compare hybridizer and basic mixing according to a simple approach of 

the kinetic energy (per mass) that they give to the system. In that case, for the hybridizer the 

kinetic energy per mass has been simply calculated according to rotational velocity of the 

blades. The linear velocity (V) (m/s) of hybridizer blades was calculated by using equation 

III.9. Where, n corresponds to rotational velocity (tours/second) of the rotor.  

 
rnsmV π2)/( =                  (Eqn.III.9) 

The linear velocities of the hybridizer trials has been found as; 25 m/s (for 4000 rpm), 35 m/s 

(for 5600 rpm) and 60 m/s (for 9600 rpm). For basic mixing 1 m/s has been assumed as the 

shaking velocity and the kinetic energy per mass has been calculated according to this value. 

Afterwards kinetic energy per mass values were calculated by using equation III.10 according 

to the linear velocities.   

 

  2

2

1
VEK =                            (Eqn.III.10) 

The particle liberation pressure and the corresponding air velocity according to the kinetic 

energy per mass that the equipments give to the powder sample can be seen in the figure 

III.53 and III.54. 

 
 

 

 

 

 

 

 

 

 

 

    
Figure III.53. Effect of Equipment on Particle 

Liberation Pressure for 1% Coated Particles by 

Hybridizer and Basic Mixing Method 

Figure III.54 . Effect of Equipment on Particle 

Liberation Pressure for 5% Coated Particles by 

Hybridizer and Basic Mixing Method 
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It was observed that the particle liberation pressure increases almost 2 times whenever the 

assumed kinetic energy generated by hybridizer also increases 2 times. This result shows 

there is a proportional relation between the particle liberation pressure and the supplied 

kinetic energy of the system. It is also observed that the particle liberation pressures of the 

particles that have been treated by hybridizer are higher than basic mixed particles for each 

case. It is probably related to the mechanical force that the equipment applies to the particles. 

On the other hand, it should be remembered that there are many factors (elastic properties, 

surface roughness, surface energy etc.) that affect the mechanical coating strength.   

As it was observed from the ESEM images, the talc particles are attached on the surface of the 

PMMA particles for basic mixing trials but on the other hand talc particles are more 

embedded on the surface of the PMMA particles for hybridizer trials because of the 

mechanical forces. 

It can be seen from figure III.55, similar results have also been obtained for the particles that 

are treated at 9600 rpm by hybridizer and PMMA initially treated 9600 rpm and coated with 

1% and 5% Talc particles by basic mixing method. In addition, we can see that the particle 

liberation pressure ratio between the particles from hybridizer and basic mixing increases 

when the operating velocity gets higher.  

 

 

Figure III.55. Effect of Equipment on Particle Liberation Pressure for Coated Particles by 

Hybridizer at 9600 rpm and Basic Mixing Method 

 
 
 
 



Chapter III – Dry Coating of PMMA & Talc Particles 

   

Serkan OTLES 

 

122 

2.4.7. Characterization of Flowability Properties of the Particles 

The flowability properties of the uncoated and coated PMMA particles have been determined 

by Erweka Tapped Density Tester and Freeman Technology Powder Rheometer (FT4). The 

methodologies of the flowability analysis have been explained in the chapter II (material and 

methods). The apparent density is the density that includes the air gaps inside the powder 

sample. The tapped density has been found by making 600 strokes to the powder samples 

inside graduated cylinder. 

The modification of flowability properties PMMA powders has been analysed according to 

different operating velocities of hybridizer and different mass percentages of talc particles in 

the coating. At the end we have also compared the results of powders that have been treated in 

hybridizer and by basic mixing method. 

A. Effect of Operating Velocity on Flowability Properties of the Particles 

The flowability properties of particles has been analysed for each operating velocity of 

PMMA coated with 1% and 5% talc particles. To be able to understand effect of velocity on 

modification of the flowability properties, PMMA with 1% talc coating results has been 

chosen to be presented. In the figure III.56, the variation of the tapped densities for uncoated 

and 1% talc coated PMMA particles can be seen.   
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Figure III.56. Evaluation of Tapped  Densities of PMMA Particles Before and After Coating 

with Talc According to Different Operating Velocities of Hybridizer 

 
The PMMA particles have a good flowability (Hr= 1.01 CI= 0.99) initially. According to the 

graph, it can be observed that the dry coated PMMA particles by talc have much better 
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flowability properties than ground PMMA particles. Also it can be observed that the high 

operating velocities of the hybridizer decrease flowability of the particles due to the particle 

breakage that causes increase in the contact surface of the particles. The results of Hausner 

Ratio and Carr Index for each sample can be seen in the table III.9. 
 
Table III.9. Carr Index and Hausner Ratio for Uncoated and 1% Coated PMMA Particles  

Materials Carr Index (%) Flowability Hausner Ratio 

Initial PMMA 0.99 ± 0.02 Excellent 1.01 ± 0.02 

PMMA at 4000 rpm 16.03 ± 0.04 Good 1.19 ± 0.04 

PMMA at 5600 rpm 18.72 ± 0.05 Mediocre 1.23 ± 0.05 

PMMA at 9600 rpm 35.81 ± 0.05 Very Bad 1.56 ± 0.05 

PMMA+1% Talc at 4000 rpm 3.04 ± 0.03 Excellent 1.03 ± 0.03 

PMMA+1% Talc at 5600 rpm 8.20 ± 0.02 Excellent 1.09 ± 0.02 

PMMA+1% Talc at 9600 rpm 27.82 ± 0.04 Bad 1.39 ± 0.04 

 
Figure III.57 and III.58 show the results of FT4 experiments. It can be seen that we have 

homogeneous mixture at the end of conditioning step for each powder sample.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of the Freeman Technology Powder Tester (FT4) can be seen in the table III.10. 

The flowability data is inversely proportional with Flow Rate Index data. It is observed that 

the results of uncoated and coated PMMA particles by FT4 give good correlations with the 

results of the tapped density tester. It can be observed that the treated PMMA particles in 

     
Figure III.57 . FT4 Results of Initial and 

Treated PMMA Particles in Hybridizer 

 

Figure III.58 . FT4 Results of Initial and 1% 

Talc Coated PMMA Particles in Hybridizer 

 

Conditioning Conditioning 

FRI FRI 
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Hybridizer have a lower flowability than the dry coated particles, at each operating velocity. 

(4000 rpm, 5600 rpm and 9600 rpm). 

 
Table III.10. Evaluation of Flowability of Uncoated and 1% Coated PMMA Particles by FT4  

Materials 8th Cycle (mj) 11th Cycle (mj) FRI 

Initial PMMA 273 ± 0.03 293 ± 0.03 1.10 ± 0.03 

PMMA at 4000 rpm 105 ± 0.05 122 ± 0.05 1.16 ± 0.05 

PMMA at 5600 rpm 101 ± 0.05 121 ± 0.05 1.20 ± 0.05 

PMMA at 9600 rpm 54 ± 0.08 296 ± 0.08 5.48 ± 0.08 

PMMA+1% Talc at 4000 rpm 108 ± 0.03 119 ± 0.03 1.08 ± 0.03 

PMMA+1% Talc at 5600 rpm 99 ± 0.05 114 ± 0.05 1.15 ± 0.05 

PMMA+1% Talc at 9600 rpm 60 ± 0.09 263 ± 0.09 4.39 ± 0.09 

 
The FRI data also shows that the dry coated PMMA particles treated at 9600 rpm have very 

bad flowability. The reason for this can be attributed to the breakage of the large PMMA 

particle into fines. 

B. Effect of Mass Percentage of Talc on Flowability Properties of the Particles 

This part of the study aims to study the effect of the mass percentage of talc particles on the 

flowability properties of the coated particles. The results of the tapped and apparent densities 

of the 1% and 5% talc coated PMMA particles at 4000, 5600 and 9600 rpm operating 

velocities and for 6 minutes operating time can be seen in the figure III.59. 
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Figure III.59. Evaluation of Flowability of PMMA Particles Before and After Coating with 

1% and 5% Talc for Each Operating Velocity  
 

According to the graph, it hasn’t been seen a significant difference between the 1% and 5% 

talc coated PMMA particles at any velocities. It can be seen in the table III.11, the Hausner 

Ratio and Carr Index values of 1% and 5% talc coated PMMA particles are similar.   
 
Table III.11. Carr Index and Hausner Ratio for 1% and 5% Talc Coated PMMA Particles 

Materials Carr Index (%) Flowability Hausner Ratio 

PMMA+1% Talc at 4000 rpm 3.04 ± 0.03 Excellent 1.03 ± 0.03 

PMMA+1% Talc at 5600 rpm 8.20 ± 0.02 Excellent 1.09 ± 0.02 

PMMA+1% Talc at 9600 rpm 27.82 ± 0.04 Bad 1.39 ± 0.04 

PMMA+5% Talc at 4000 rpm 3.02 ± 0.03 Excellent 1.03 ± 0.03 

PMMA+5% Talc at 5600 rpm 8.63 ± 0.03 Excellent 1.09 ± 0.03 

PMMA+5% Talc at 9600 rpm 29.01 ± 0.04 Bad 1.41 ± 0.04 

 
The results of FT4 also shows that for 4000 and 5600 rpm treatments there is no difference 

between 1% and 5% coatings but contrarily, for 9600 rpm treatments it has been observed that  

there is a certain effect of coating percentage on the flowability properties of the particles. 

The results of FT4 can be seen in the table III.12.   
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Table III.12. Evaluation of Flowability of 1% and 5% Coated PMMA Particles by FT4  

Materials 8th Cycle (mj) 11th Cycle (mj) FRI 

PMMA+1% Talc at 4000 rpm 108 ± 0.03 119 ± 0.03 1.08 ± 0.03 

PMMA+1% Talc at 5600 rpm 99 ± 0.05 114 ± 0.05 1.15 ± 0.05 

PMMA+1% Talc at 9600 rpm 60 ± 0.09 263 ± 0.09 4.39 ± 0.09 

PMMA+5% Talc at 4000 rpm 100 ± 0.04 109 ± 0.04 1.09 ± 0.04 

PMMA+5% Talc at 5600 rpm 119 ± 0.03 135 ± 0.03 1.13 ± 0.03 

PMMA+5% Talc at 9600 rpm 71 ± 0.08 287 ± 0.08 4.04 ± 0.08 

 
It can be seen that for 9600 rpm treatments, 5% talc coated PMMA particles have better 

flowability than 1% talc coated particles. In order to verify the effect of FT4 analysis on the 

coating of the PMMA particles, the coated PMMA particles have been reanalysed visually by 

ESEM after the analysis with the FT4. The results can be seen in the figure III.60. 

 

       
 

       

(a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

 

 

PMMA + 1% Talc 

PMMA + 5% Talc 

Figure III.60. Surface Morphology of PMMA Particles Coated by 1% and 5% Talc 

Particles in the Hybridizer after Analysing by FT4 
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It has been seen that the talc particles are still on the surface of the PMMA particles after 

analysing with FT4. The coating strength of the particles has been also reanalysed after the 

measurements with FT4 and no difference is seen before and after analysing with FT4 for the 

liberation pressures of the particles.   

In order to understand the effect of the dry coating equipment on the flowability properties of 

the particles, the results have been compared with the results of the particles that have been 

treated by basic mixing method.  

C. Effect of Equipment on Flowability Properties of the Particles 

In this part of the study, we compare the flowability properties of the particles that were 

treated by hybridizer and by basic mixing method. The FT4 analysis of uncoated and 5% talc 

coated PMMA particles can be seen in the table III.13. 

 
Table III.13. Effect of Equipment on the Flowability Properties of Coated PMMA Particles  

Materials 8th Cycle 

(mj) 

11th Cycle 

(mj) 

FRI 

PMMA at 4000 rpm 105 ± 0.05 122 ± 0.05 1.16 ± 0.05 

PMMA at 5600 rpm 101 ± 0.05 121 ± 0.05 1.20 ± 0.05 

PMMA at 9600 rpm 54 ± 0.08 296 ± 0.08 5.48 ± 0.08 

PMMA+5% Talc at 4000 rpm 100 ± 0.04 109 ± 0.04 1.09 ± 0.04 

PMMA+5% Talc at 5600 rpm 119 ± 0.03 135 ± 0.03 1.13 ± 0.03 

PMMA+5% Talc at 9600 rpm 71 ± 0.08 287 ± 0.08 4.04 ± 0.08 

PMMA at 4000 rpm + 5% Talc Basic Mixing 102 ± 0.03 115 ± 0.03 1.13 ± 0.03 

PMMA at 5600 rpm + 5% Talc Basic Mixing 112 ± 0.04 129 ± 0.04 1.15 ± 0.04 

PMMA at 9600 rpm + 5% Talc Basic Mixing 60 ± 0.08 291 ± 0.08 4.88 ± 0.08 

 
It is observed that for each operating velocity, the particles that were coated by hybridizer 

have better flowability than the particles that were coated by basic mixing method. The 

possible reason could be that the talc particles are more de-agglomerated and better dispersed 

on the surface of the PMMA particles in hybridizer trials because of the applied mechanical 
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forces on the particles. On the other hand, in basic mixing trials the talc particles may rest as 

agglomerates and not well dispersed on the surface of the PMMA particles.    

2.5. Conclusions 

The PMMA–talc model couple has been coated successfully by dry coating method in 

hybridizer and also by basic mixing technique. The effect of the equipment, the operating 

conditions and the mass percentage of guest particles on the end–use properties of the 

particles has been studied. A preliminary study was performed in order to determine the 

optimum operating conditions of Hybridizer for PMMA and talc particles and their 

fragmentation behaviour. In the preliminary study, the effect of different operating velocities 

of hybridizer on the particle fragmentation and amount of final powder recovery has been 

studied for PMMA and talc particles separately. Afterwards, the particles were dry coated 

with different operating conditions and mass percentages of talc particles.  

Several characterisation methods were used to study the physico–chemical properties of the 

coated particles. Visualisation before and after coating was performed with an Environmental 

Scanning Electron Microscopy (ESEM), enables us to qualitatively evaluate guest particle 

deposition on the host particles. It was observed that, for the particles that are processed in 

hybridizer or generated by the basic mixing method, there is discrete coating of talc particles 

on the surface of the PMMA particles.  

The topographical analysis of the uncoated and coated particles has been done by tapping 

mode of the AFM. It was observed that the surface roughness is more evident and irregular 

for Talc particles compared to PMMA particles.     

It was seen that the coating of PMMA particles with different mass percentages of talc 

particles had certain effects on the surface roughness of the PMMA particles. The obtained 

surface roughness and phase angle values show that the topography of the surface of the 

PMMA particles has been modified because of coating with talc particles. 

Phase angle analysis of tapping mode enables us to distinguish the talc particles deposition on 

the surface of the PMMA particles. It was observed that the height, phase angle and amplitude 

data are similar for initial PMMA particles. It was seen that the difference in the phase angle 

data is due to the surface roughness of the PMMA particles and varies between -100° and 40°. 

On the other hand, it has been observed that the phase angle data of talc particles are more 

evident than PMMA particles, which is probably due to the surface roughness and also the 

difference in material surface characteristics. It is known that the talc particles are much softer 
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than PMMA particles. It was found that the phase angle values go up to 110° for initial talc 

particles.  

The difference in the topographical characteristics of the initial PMMA and talc powders 

enable us to understand the existence of talc particles on the surface of the PMMA particles 

by comparing the results of height, phase angle and amplitude for 1% and 5% talc coated 

PMMA particles. The analyses have been done on many different sections of coated particles. 

For each section, two different phase angle data ranges at stable surface height prove us the 

existence of talc particles on the surface of the PMMA particles. In a novel approach, the 

height and phase angle images have been analysed numerically and the presence of talc 

particles on the surface and the effect of coating percentage was seen. The results of 

topographical analysis by AFM also corresponded to the visual observation and showed that 

discrete coating has been obtained for both 1% and 5% talc coated PMMA particles.  

The adhesion forces between talc particles that are fixed at the cantilever tip and coated and 

uncoated PMMA particles has been measured by using the contact mode of AFM. The results 

show that the adhesion forces between the talc particles are higher than the adhesion forces 

between PMMA and talc particles. The effect of mass percentage of talc particles on the 

evaluation of adhesion forces between the particles has been also studied. It was observed that 

the adhesion force values have a tendency to increase with increasing mass percentage of talc 

particles in the coating. 

The adhesion force analyses have shown us the effect of the amount of coating on the 

adhesion force between the particles. It was observed that the adhesion forces increase with 

increasing mass percentage of talc particles. The reason is the adhesion force between the talc 

particles is much higher than the adhesion force between the talc and PMMA particles. On the 

other hand, it should be also considered that in interpreting the results of an AFM experiment 

is not always straightforward. The absolute distance between the surfaces is usually not 

known exactly, and neither is the tip geometry. In addition, the fine tips and the surfaces often 

deform elastically or plastically during a measurement, which further complicates 

interpretation of the results. 

Talc deposition on the surface of the PMMA particles has also been examined by using the 

adhesion force model. The results show that the talc particles are not homogeneously 

distributed on the surface of the PMMA particles. At 1% talc coated PMMA particles the 

calculated talc deposition have been found higher than 1% (2.3%), but for 5% coating we 
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have calculated a very close value (4.4%). The non analyzed zones of the coated PMMA 

particles may be one of the reason and also the loss talc particles after treatment in the 

hybridizer has to be considered. On the other hand agglomeration of talc particles on the 

surface of the PMMA particle (more than monolayer coating) can be another reason for these 

results. 

The coating strength of the composite particles has been studied by using a Malvern 

Mastersizer laser diffraction granulometer. We have determined at which dispersing air 

pressure, the guest particle start to be liberated from the host particles. The effect of operating 

velocity and mass percentage of talc particles on coating strength was studied. In order to 

understand the effect of equipment on coating strength of the particles, the coating strength 

results of the particles that have been treated by hybridizer also compared with the particles 

that were generated by basic mixing method. It was seen that the dispersing pressure for 

particle liberation increases with increasing rotational velocity which is probably related to 

the energy that the system gives to the powder sample. On the other hand, an effect of mass 

percentage of talc particles on the coating strength of the particles that are treated in the 

hybridizer has not been observed. At 4000 rpm treatments, the coating strength increases with 

increasing mass percentage of talc particles but contrary to that result, at 5600 rpm treatments 

the particle liberation pressure is 2.8 bar for 1% talc coated particles and that value decreases 

to 1.6 bar for 5% talc coated particles. In addition concerning the particles that are treated in 

hybridizer, it was seen that the coating strength of the particles is inversely proportional to the 

mass percentage of talc particles for the particles that are generated by basic mixing method. 

On the other hand, it was observed that the coating strength of the particles is much stronger 

for the particles that are treated in the hybridizer than for those generated by the basic mixing 

method. This is probably related to the kinetic energy that the equipment applies to the 

particles. On the other hand, when analysing the granulometric results it should be considered 

that the difference in the particle size distributions of the particles with different dispersing 

pressure could be either detachment of guest particles or also particle fragmentation.   

In order to complete the visual analysis by ESEM, an Atomic Force Microscope (AFM) has 

been used to study guest particle deposition on host particles and to analyze surface 

morphology of the particles (surface roughness, phase difference etc.). The evaluation of 

adhesion forces between particles has also been studied.  
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The flowability properties of the uncoated and coated PMMA particles have been determined 

by using a tapped density tester and Freeman Technology Powder Rheometer (FT4). The 

effects of operating velocity, coating percentage and equipment on the flowability properties 

of the powders have been studied. It was seen that the dry coated PMMA particles by talc 

have better flowability properties than grinded PMMA particles. It was seen that that the high 

operational speeds of the hybridizer decrease flowability of the particles due to particle 

breakage which causes increase in the contact surface of the particles. No effects of coating 

percentage have been observed on the flowability properties of the powders for low operating 

velocity treatments but on the other hand, for 9600 rpm treatments, it was seen that the 5% 

talc coated particles have better flowability than 1% talc coated particles. The results of 

tapped and apparent densities and FT4 show us that for each operating velocity, the particles 

that were coated by hybridizer have better flowability than the particles that were coated by 

the basic mixing method. The applied mechanical force on the particles by the hybridizer 

causes de-agglomeration and good dispersion of talc particles on the surface of PMMA 

particles which is not the case for basic mixing trials so it shows us the reason of the effect of 

the equipment on the flowability properties of the powders.  

As a conclusion, it has been seen that dry coating can be made by simple stirring or with the 

Nara Hybridizer. The hybridizer uses mechanical forces for dry coating and that gives great 

coating strength to the coated particles. It was observed that the dry coating of the particles by 

each method had modified the flowability properties of the particles. 
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3.  DRY COATING OF PARTICLES IN CYCLOMIX 

The Hosokawa Cyclomix is another type of high force mixer that has been used for dry 

particle coating process in this study. The Cyclomix uses high mechanical impact forces, 

compression and especially shearing in order to coat the particles. Cyclomix is a batch system 

like hybridizer but it has a much larger batch size compared to hybridizer. The batch size of 

the hybridizer is limited to 50 g powder but the conical shaped mixing vessel of the cyclomix 

can be filled maximum up to1 litre powder (about 1 kg). The operating velocity of the 

cyclomix can reach up to 3000 rpm. 

A preliminary study of the model couple (PMMA–talc) in the cyclomix has been made in 

order to find the optimum operating conditions and the fragmentation behaviour of the 

particles in the Cyclomix.  

Afterwards, according to preliminary study the operating conditions have been defined and 

the PMMA with (1%, 5%) talc particles were treated in the cyclomix.  

The characterizations of the powders were done before and after coating. At the end, the 

results are compared with the results for the hybridizer in order to understand the effect of 

equipment on the end – use properties of the powders.             

3.1. Preliminary Study of Poly(methyl methacrylate) Particles 

The PMMA particles have been processed at 3 different operating velocities of cyclomix for a 

fixed 6 minutes operating time. The particle size distributions of the treated particles have 

been analysed by the Malvern Mastersizer laser diffraction granulometer. The visual analyses 

of the powders have been done by the Environmental Scanning Electron Microscopy (ESEM) 

before and after the treatments. 

The operating velocities of the cyclomix were chosen as 1020 rpm (8.5 m/s), 1600 rpm (13.4 

m/s), 3000 rpm (25m/s). 

As described in the chapter II, the cyclomix is equipped with a jacket at the vessel, a cover 

and an outlet valve for cooling/heating purposes. In the trials the temperature of the cooling 

jacket was fixed at 13°C. 

In order to have good recirculation of the powders in cyclomix, it is advised by the company 

Hosokawa to choose initial filling charges between 500 ml and 700 ml. In this study, the 

initial filling charges of the powders were fixed at 500 ml.        
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3.1.1. General Mass Balance 

The 500 ml PMMA particles were introduced to the cyclomix. After the treatment, the 

powder exits at the bottom is opened and the treated particles are recovered. The recovered 

powders after the treatments are compared with the initial charge with different operating 

velocities. It can be seen from the figure III.61, there is a high percentage of particle recovery 

for each operating velocity.   

 
 
 
 
 
 
 

 

 

 

 
Figure III.61. Effect of Rotational Velocity on % of Collected PMMA Particles 

3.1.2. Effect of Rotational Velocity on Particle Size Distributions 

The particle size distribution analyses of PMMA particles have been performed for each 

operating velocity of the cyclomix (1020 rpm, 1600 rpm, 3000 rpm). The volume and number 

particle size distributions of PMMA particles before and after treatments in cyclomix can be 

seen in the figure III.62 and III.63.  
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Figure III.62. Volume Particle Size Distribution 

of PMMA Particles Before and After Treatment 

with Different Velocities 

Figure III.63. Number Particle Size Distribution 

of PMMA Particles Before and After Treatment 

with Different Velocities 
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According to the volume and number particle size distributions of the treated PMMA 

particles, there is no particle fragmentation for each velocity of the cyclomix. As it can be 

seen in the figure III.64, the surface weighted mean particle sizes of the treated PMMA 

particles also confirm that observation for each velocity. 
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Figure III.64.  Effect of Rotational Velocity on Particle Sizes of PMMA 

 
The visual observation of the treated PMMA particles has also been done for each operating 

velocity of the cyclomix. It can be seen from the figure III.65, these show no particle 

fragmentation for each operating velocity of the cyclomix.  

 

       

       

   (a) 1020 rpm       (b) 1600 rpm   (c) 3000 rpm 

Figure III.65. Surface Morphology of PMMA Particles after Treatments in Cyclomix 
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In the preliminary study, it was observed that the PMMA particles keep their particle size and 

shape for each operating velocity. Afterwards, PMMA particles have been coated with 1% 

and 5% talc particles at different operating velocities of cyclomix for 6 minutes fixed 

operating time.  

3.2. Dry Coating of Poly(methyl methacrylate) with Talc 

In this study, PMMA particles have been coated with 1% and 5% talc particles with different 

operating velocities of cyclomix (table III.14). The operating time has been fixed at 6 minutes 

like for the trials with hybridizer. The effects of operating velocities and mass percentages of 

talc on the end–use properties of the particles have been studied.  

At the end, the results of cyclomix trials are compared with hybridizer trials in order to 

understand the effect of equipment on the coating strength and flowability properties of the 

particles.   

 
Table III.14. Operating Conditions of Dry Coating Treatments in Cyclomix 

Host 
Particles 

Guest 
Particles 

Operating 
Velocity 
(rpm) 

Operating 
Time 
(min) 

 Mass % 
of Guest 
Particles 

Batch 
Size  
(ml) 

Temperature 
of Cooling 
Jacket (°C) 

 

PMMA 

 

Talc 

1020 

1600 

3000 

 

6 

 

1 % 

 

500 

 

13 

 

PMMA 

 

Talc 

1020 

1600 

3000 

 

6 

 

5 % 

 

500 

 

13 

3.2.1. General Mass Balance 

The figure III.66 shows the percentage of recovered powder after the treatments in cyclomix 

for each operating velocity. The initial filling charge of the vessel was 500 ml that 

corresponds to around 620 g particles. It was observed that the recovered powder ratio is very 

high for each operating velocity and mass percentage of talc particles. 
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Figure III.66. Effect of Rotational Velocity and Mass Percentage of Talc on the % of Powder 

Recovered After Treatments in Cyclomix 

 
It was also seen that the mass percentage of talc particles in the mixture increases the powder 

recovery percentage in a very small amount as shown in the figure III.67. It can be seen that 

the maximum powder recovery was reached for 5% talc coating at 3000 rpm treatments in 

cyclomix. The effect of lubricant properties of the talc particles may have a role for this result.  

 

 

Figure III.67. Evaluation of Loss Powder Percentage in Cyclomix 

3.2.2. Measure of Solid Densities of the Dry Coated Particles 

The solid densities of the particles that were treated in cyclomix and hybridizer have been 

compared. It can be seen from the figure III.68, the solid densities of the particles that were 

treated in cyclomix or hybridizer are less than the calculated values for the mixture (eqn III.1) 

and they increase with increasing mass percentage of talc particles in the mixture as expected.  



Chapter III – Dry Coating of PMMA & Talc Particles 

   

Serkan OTLES 

 

137 

1,2

1,21

1,22

1,23

1,24

1,25

1,26

1,27

1,28

1,29

1,3

0% 1% 2% 3% 4% 5% 6%

Talc (%)

S
ol

id
 D

en
si

ty
 (

g/
m

l) 
   

   
   

   
   

.

ρsolid at 4000 rpm Hyb ρsolid at 5600 rpm Hyb

ρsolid at 9600 rpm Hyb Mixture Density

ρsolid at 1020 rpm Cyc ρsolid at 1600 rpm Cyc

ρsolid at 3000 rpm Cyc

 
Figure III.68. Solid Densities of Coated Particles in Cyclomix and Hybridizer 

On the other hand, the solid densities of the particles from cyclomix are higher compared to 

the particles from hybridizer and or much closer to the perfect coating. The loss of talc 

particles in hybridizer trials may be a reason for this result, even though the difference 

between the densities of talc and PMMA is too small to have a good precision.    

3.2.3. Characterization of Surface Morphology of the Particles 

The surface morphology of the particles have been analysed by using ESEM as for the 

hybridizer trials.  

     
 

       
(a) 1020 rpm       (b) 1600 rpm   (c) 3000 rpm 

 

Samples from 

Cyclomix 

Samples from 

Hybridizer 

PMMA + 1% Talc 

PMMA + 5% Talc 

Figure III.69 . Surface Morphology of PMMA Particles Coated by 1% and 5% Talc 

Particles in the Cyclomix 
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It can be seen from the figure III.69 that the particle size and shape are not changed in all 

operating velocities of cyclomix. The amount of talc particles on the surface of the PMMA 

particles is greater for the 5% coating than 1% talc coating as expected.   

3.2.4. Characterization of Coating Strength of the Particles 

The particle liberation pressures have been found by comparing the number particle size 

distributions with different dispersing air pressures for the coated particles in cyclomix as it 

was done for the coated particles in hybridizer.  

The effects of operating velocity and mass percentage of talc in the mixture on the coating 

strength have been studied individually for cyclomix treatments. Afterwards, the results of the 

cyclomix trials are compared with the trials of hybridizer in order to understand the effect of 

the equipment on the coating strength of the coated particles. 

A. Effect of Operating Velocity on Coating Strength of the Particles 

The coating strength analysis has been done for 1% and 5% talc coated PMMA particles for 

each operating velocity of the cyclomix. 0.5, 1.5, 2.5, 3.5 bar air dispersing pressures have 

been chosen in the first part then the particle liberation pressures have been found more 

precisely.  

 

 

 

 

 

 

 

 

 

 

 

It can be seen from the figure III.70, initial PMMA and 1% talc coated PMMA particles have 

similar particle size distributions around 160 µm. Afterwards, whenever the dispersing air 

pressure increases to 1.5 bar, it was observed a shift of particle size distribution to the smaller 

particle sizes for coated PMMA particles at 1020 rpm (fig.III.71). It shows that the particle 
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Figure III.70. Number Particle Size Distribution 

of Coated and Uncoated Particles at 0.5 bar 

Dispersing Pressure 

Figure III.71 . Number Particle Size Distribution 

of Coated and Uncoated Particles at 1.5 bar 

Dispersing Pressure 
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liberation pressure for coated PMMA particles at 1020 rpm is between 0.5 and 1.5 bar. The 

other talc coated PMMA particles keep their particle size distributions at 1.5 bar pressure.  

   

 

 

 

 

 

 

 

 

 
 
 
 
At 2.5 bar pressure, talc coated PMMA particles at 1600 rpm has a smaller particle size 

distribution (3.8 µm) compared to 1.5 bar pressure because of the particle liberation 

(fig.III.72). On the other hand, coated PMMA particles at 3000 rpm have still the same 

particle size distribution at this pressure. But at 3.5 bar pressure the particle size distribution 

for the coated particles at 3000 rpm decreases to 3 µm. Moreover, other talc coated PMMA 

particles at 1020 and 1600 rpm become much closer to the talc particle size distribution at 3.5 

bar pressure as it can be seen from the figure III.73. In the figure III.74, the particle liberation 

pressures for each operating velocity can be seen more precisely.  
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Figure III.74. Number Particle Size Mean vs. Dispersing Pressure  

for 1% Coated and Uncoated PMMA Particles 
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Figure III.72. Number Particle Size Distribution 

of Coated and Uncoated Particles at 2.5 bar 

Dispersing Pressure 

Figure III.73 . Number Particle Size Distribution 

of Coated and Uncoated Particles at 3.5 bar 

Dispersing Pressure 
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As it can be seen from the table III.15, the particle liberation pressures increase with 

increasing operating velocity of cyclomix. The reason is probably the generation of high 

mechanical impact and shearing forces at high operating velocities. In addition, it should be 

remembered that the difference in particle size distributions of the particles could be also 

reason of the particle fragmentation.  
 

Table III.15. Dispersing Pressures and Air Velocities for Particle Detachment for Coated 

Particles in Cyclomix 

Material Dispersing Air Pressure Air Velocity  

PMMA + 1% Talc at 1020 rpm 1.1 bar 56 m/s 

PMMA + 1% Talc at 1600 rpm 2.3 bar 95 m/s 

PMMA + 1% Talc at 3000 rpm 2.9 bar 109 m/s 

B. Effect of Mass Percentage of Talc on Coating Strength of the Particles 

The effect of mass percentage of talc on the coating strength of the particles has also been 

studied for cyclomix trials. In the figure III.75, III.76 and III.77 number particle size 

distributions of particles that were treated at 1020, 1600 and 3000 rpm operating velocities 

with 1% and 5% talc particles are presented. 

 
 

 

 
 

 

 

 

 

 

 

 

 
It was observed that for 1020 rpm treatments the particle liberation pressure is 1.1 bar for 1% 

talc coating, whenever the mass percentage of talc particles in the mixture increases to 5%, 

the particle liberation pressure decreases to 0.9 bar (fig.III.75). At 1600 rpm treatments, we 
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Figure III.75 . Number Particle Size Mean vs. 

Dispersing Pressure for PMMA at 1020 rpm 

with 1% and 5% Talc Coating 

Figure III.76 . Number Particle Size Mean vs. 

Dispersing Pressure for PMMA at 1600 rpm 

with 1% and 5% Talc Coating 
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had the same observation, the particle liberation pressure is 2.3 bar for 1% coating and 

decrease to 2.1 bar for 5% talc coated particles (fig.III.76). Moreover, at 3000 rpm treatments 

the particle liberation pressure is 2.9 bar for 1% talc coated particles and decreases to 2.5 bar 

for 5% talc coated particles (fig.III.77).  
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Figure III.77. Number Particle Size Mean vs. Dispersing Pressure  

for PMMA at 3000 rpm with 1% and 5% Talc Coating 

 
As it can be seen from the table III.16, the particle liberation pressures decrease with 

increasing mass percentage of talc particles in the mixture. The high percentage of talc 

coating may cause some multi-layering of talc particles (agglomeration) on the surface of 

PMMA particles. In particle size analysis, there are impacts between particles, particles and 

the walls of the granulometer and also particles with the dispersing air. Multi-layering may 

increase the impact shock surface and because of this it would be easier to break up talc 

particles on the surface at higher coating percentages       

As it was seen for the hybridizer trials, for each operating velocity of the cyclomix, the coated 

PMMA particles always had greater particle size distributions compared to talc particles for 

all pressures. This is probably the reason of the difficulty to detach talc particles from the 

surface of PMMA particles because of the strong interactions between talc and PMMA 

particles. In addition, as it was noticed in the hybridizer trials, the difference in the particle 

size distributions could be due to particle fragmentation.   
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Table III.16. Dispersing Pressures and Air Velocities for Particle Detachment for 1% and 5% 

Talc Coated PMMA Particles in Cyclomix 

Material Dispersing Air Pressure Air Velocity  

PMMA + 1% Talc at 1020 rpm 1.1 bar 56 m/s 

PMMA + 1% Talc at 1600 rpm 2.3 bar 95 m/s 

PMMA + 1% Talc at 3000 rpm 2.9 bar 109 m/s 

PMMA + 5% Talc at 1020 rpm 0.9 bar 48 m/s 

PMMA + 5% Talc at 1600 rpm 2.1 bar 90 m/s 

PMMA + 5% Talc at 3000 rpm 2.5 bar 100 m/s 

 

C. Effect of Equipment on Coating Strength of the Particles 

In this part of the study, in order to understand the effect of equipment on the coating strength 

of the particles, the results of 1% and 5% talc coated particles in cyclomix have been 

compared with the hybridizer trials. Figure III.78 and III.79 show the evaluation of the 

particle liberation pressures of cyclomix and hybridizer trials for 1% and 5% talc coated 

PMMA particles.  

 
 

 

 

 

 

 

 

 

 

 

 

 
The kinetic energy per mass has also been simply calculated according to rotational velocity 

of cyclomix as has been done for the hybridizer trials. The linear velocities (V) of the 

    
Figure III.78 . Effect of Equipment on Particle 

Liberation Pressure for 1% Coated Particles by 

Cyclomix and Hybridizer 

Figure III.79 . Effect of Equipment on Particle 

Liberation Pressure for 5% Coated Particles by 

Cyclomix and Hybridizer 
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cyclomix blades were calculated for each 3 blades by using the equation III.9. The results are 

shown in table III.17. (dblade: diameter of the blade)  

 
Table III.17. Linear Velocities of 3 Blades of the Cyclomix Corresponding to the Rotational 

Velocities 

Rotational Velocity V1 (dblade:12 cm) V2 (dblade:10 cm) V3  (dblade:6.5cm) 

1020 rpm 6.4 m/s 5.3 m/s 3.2 m/s 

1600 rpm 10.1 m/s 8.4 m/s 5 m/s 

3000 rpm 18.8 m/s 15.7 m/s 9.4 m/s 

 

Afterwards the kinetic energy per mass value was calculated for each blade by using the 

equation III.10. Then the average value has been taken as the energy per mass value of the 

cyclomix for the given rotational velocity. 

The results show us that the coated particles in cyclomix have higher particle liberation 

pressures at the similar kinetic energy per mass values compared to the coated particles in 

hybridizer (figure III.78 and III.79). The difference in the operation methodologies of the 

equipments, usage of different mechanical forces in different orders (impact, shearing) is 

probably the reason for this result. 

3.2.5. Characterization of Flowability Properties of the Particles 

The flowability properties of the treated particles in cyclomix has been determined by Erweka 

tapped density tester and Freeman Technology powder rheometer (FT4) as it has been done 

for treated particles in hybridizer.  

The effects of operating velocity of cyclomix and different mass percentages of talc particles 

in the mixture on the modification of flowability properties of the powders have been studied. 

The results of flowability properties of treated particles in cyclomix have also been compared 

with the results of treated particles in hybridizer in order to understand the effect of 

equipment on the modification of flowability properties of the powders. 
 

A. Effect of Operating Velocity on Flowability Properties of the Particles 

The flowability properties of 1% and 5% talc coated PMMA particles for each operating 

velocity of cyclomix have been analysed. The tapped density results of uncoated and 1% talc 

coated PMMA particles can be seen in the figure III.80.  



Chapter III – Dry Coating of PMMA & Talc Particles 

   

Serkan OTLES 

 

144 

0,5

0,55

0,6

0,65

0,7

0,75

0 100 200 300 400 500 600 700 800

Total Strokes

D
en

si
ty

(g
/m

l) 
   

   
   

   
   

   
   

   
.

PMMA Initial

PMMA+1% Talc,V=1020 rpm

PMMA+1% Talc,V=1600 rpm

PMMA+1% Talc,V=3000 rpm

 

Figure III.80. Evaluation of Flowability of PMMA Particles Before and After Coating with 

Talc According to Different Operating Velocities of Cyclomix 

 
The coated PMMA particles and individually treated PMMA particles in cyclomix have very 

good flowability properties as it can be seen from the table III.18. The reason is probably, that 

there is almost no particle fragmentation in cyclomix trials. In addition, at 3000 rpm trials 

(maximum operating velocity of cyclomix), we can see that the flowability becomes excellent 

after coating with 1% talc particles.   

 
Table III.18. Carr Index and Hausner Ratio for Uncoated and 1% Coated PMMA Particles  

Materials Carr Index (%) Flowability Hausner Ratio 

Initial PMMA 0.99 ± 0.02 Excellent 1.01 ± 0.02 

PMMA at 1020 rpm 9.63 ± 0.04 Excellent 1.11 ± 0.04 

PMMA at 1600 rpm 13.51 ± 0.04 Excellent 1.16 ± 0.04 

PMMA at 3000 rpm 19.32 ± 0.05 Mediocre 1.24 ± 0.05 

PMMA+1% Talc at 1020 rpm 5.74 ± 0.03 Excellent 1.06 ± 0.03 

PMMA+1% Talc at 1600 rpm 8.42 ± 0.02 Excellent 1.09 ± 0.02 

PMMA+1% Talc at 3000 rpm 9.10 ± 0.05 Excellent 1.10 ± 0.05 

 

The Freeman Technology powder tester (FT4) has also been used in order to complete 

analysing the flowability properties of the particles (Table III.19).   
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Figure III.81 and III.82 show the results of FT4 experiments. It can be seen that we have 

homogeneous mixture at the end of conditioning step for each powder sample. 

 
Table III.19. Evaluation of Flowability of Uncoated and 1% Coated PMMA Particles by FT4  

Materials 8th Cycle (mj) 11th Cycle (mj) FRI 

Initial PMMA 273 ± 0.03 293 ± 0.03 1.10 ± 0.03 

PMMA at 1020 rpm 109 ± 0.07 125 ± 0.07 1.15 ± 0.07 

PMMA at 1600 rpm 107 ± 0.03 127 ± 0.03 1.19 ± 0.03 

PMMA at 3000 rpm 112 ± 0.08 144 ± 0.08 1.29 ± 0.08 

PMMA+1% Talc at 1020 rpm 102 ± 0.03 115 ± 0.03 1.13 ± 0.03 

PMMA+1% Talc at 1600 rpm 98 ± 0.03 114 ± 0.03 1.16 ± 0.03 

PMMA+1% Talc at 3000 rpm 105 ± 0.06 127 ± 0.06 1.21 ± 0.06 

 
It was observed that for each operating velocity of cyclomix the talc coated PMMA particles 

have better flowability than treated PMMA particles in cyclomix. The FRI values of 1020 and 

1600 rpm trials don’t have much difference. For 3000 rpm treatments the FRI values are 

higher than other particles and shows little decrease in the flowability properties.    

 

 
 

   
Figure III.81. FT4 Results of Initial and 

Treated PMMA Particles in Cyclomix 

Figure III.82. FT4 Results of Initial and 1% 

Talc Coated PMMA Particles in Cyclomix 
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B. Effect of Mass Percentage of Talc on Flowability Properties of the Particles 

In this part of the study, the effect of mass percentage of talc particles on the flowability 

properties of the coated PMMA particles has been studied. The results of the tapped and 

apparent densities of 1% and 5% talc coated PMMA particles at 1020, 1600 and 3000 rpm for 

6 minutes operating time are shown in the figure III.83. 

0,5

0,55

0,6

0,65

0,7

0,75

0 100 200 300 400 500 600 700 800

Total Strokes

D
en

si
ty

(g
/m

l) 
   

   
   

   
   

   
   

   
.

PMMA Initial

PMMA+1% Talc,V=1020 rpm

PMMA+1% Talc,V=1600 rpm

PMMA+1% Talc,V=3000 rpm

PMMA+5% Talc,V=1020 rpm

PMMA+5% Talc,V=1600 rpm

PMMA+5% Talc,V=3000 rpm

 

Figure III.83. Evaluation of Flowability of PMMA Particles Before and After Coating with 

1% and 5% Talc for Each Operating Velocity 

 
The Carr index and Hausner ratio values of 1% and 5% talc coated PMMA particles are 

presented in the table III.20. It can be seen that for all cases we have excellent flowability 

according to tapped and apparent density analysis. It hasn’t been observed a significant 

difference of flowability properties between the results of 1% and 5% talc coated PMMA 

particles.  
 
Table III.20. Carr Index and Hausner Ratio for 1% and 5% Coated PMMA Particles  

Materials Carr Index (%) Flowability Hausner Ratio 

PMMA+1% Talc at 1020 rpm 5.7 ± 0.03 Excellent 1.06 ± 0.03 

PMMA+1% Talc at 1600 rpm 8.4 ± 0.02 Excellent 1.09 ± 0.02 

PMMA+1% Talc at 3000 rpm 9.1 ± 0.05 Excellent 1.10 ± 0.05 

PMMA+5% Talc at 1020 rpm 4.9 ± 0.03 Excellent 1.05 ± 0.03 

PMMA+5% Talc at 1600 rpm 8.1 ± 0.04 Excellent 1.09 ± 0.04 

PMMA+5% Talc at 3000 rpm 8.9 ± 0.04 Excellent 1.10 ± 0.04 
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The FT4 has also been used to understand the effect of talc percentage on the flowability 

properties of the powders. It can be seen that the FRI values are around 1.1 and 1.2, it shows 

us that the particles have very good flowability for both 1% and 5% talc coatings. On the 

other hand, we didn’t observe much difference between the results of 1% and 5% talc coated 

PMMA particles since in cyclomix trials; there is no observed particle fragmentation       

(table III.21).   
 
Table III.21. Evaluation of Flowability of 1% and 5% Coated PMMA Particles by FT4  

Materials 8th Cycle (mj) 11th Cycle (mj) FRI 

PMMA+1% Talc at 1020 rpm 102 ± 0.03 115 ± 0.03 1.13 ± 0.03 

PMMA+1% Talc at 1600 rpm 98 ± 0.03 114 ± 0.03 1.16 ± 0.03 

PMMA+1% Talc at 3000 rpm 105 ± 0.06 127 ± 0.06 1.21 ± 0.06 

PMMA+5% Talc at 1020 rpm 100 ± 0.01 110 ± 0.01 1.10 ± 0.01 

PMMA+5% Talc at 1600 rpm 95 ± 0.04 106 ± 0.04 1.12 ± 0.04 

PMMA+5% Talc at 3000 rpm 107 ± 0.06 126 ± 0.06 1.18 ± 0.06 

 
C. Effect of Equipment on Flowability Properties of the Particles 

In this part of the study, the flowability properties of coated particles in cyclomix and 

hybridizer have been compared with each other in order to understand the effect of the 

equipment on the flowability properties of the powders.    
 
Table III.22. Effect of Equipment on the Flowability Properties of Coated PMMA Particles  

Materials 8th Cycle 

(mj) 

11th Cycle 

(mj) 

FRI 

PMMA+5% Talc at 4000 rpm Hybridizer 100 ± 0.05 109 ± 0.05 1.09 ± 0.05 

PMMA+5% Talc at 5600 rpm Hybridizer 119 ± 0.05 135 ± 0.05 1.13 ± 0.05 

PMMA+5% Talc at 9600 rpm Hybridizer 71 ± 0.05 287 ± 0.05 4.04 ± 0.05 

PMMA+5% Talc at 1020 rpm Cyclomix 100 ± 0.01 110 ± 0.01 1.10 ± 0.01 

PMMA+5% Talc at 1600 rpm Cyclomix 95 ± 0.04 106 ± 0.04 1.12 ± 0.04 

PMMA+5% Talc at 3000 rpm Cyclomix 107 ± 0.06 126 ± 0.06 1.18 ± 0.06 
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The results of FT4 for 5% talc coated PMMA particles in cyclomix and hybridizer can be 

seen in the table III.22. As it has been observed before, for all operating velocities the coated 

particles have better flowability properties than treated particles either in cyclomix or 

hybridizer. The results of cyclomix trials are similar with low operating velocity hybridizer 

treatments. The only difference between the cyclomix and hybridizer trials is, at high 

operating velocity of hybridizer (9600 rpm) there is particle fragmentation of PMMA particles 

that decreases the flowability of the particles and at that velocity the particles have bad 

flowability than initial state. But for cyclomix trials the particles have good flowability for all 

operating velocities because we didn’t observe any particle fragmentation at any operating 

velocities of cyclomix.   

3.3. Conclusions 

The Cyclomix uses mechanical impact forces, compression and shearing as hybridizer does in 

dry particle coating. The difference between cyclomix and hybridizer probably, in hybridizer 

the mechanical impact force is more significant but on the other hand in cyclomix shearing is 

more significant than other mechanical forces. This difference affects the particle 

fragmentation and end use properties of the powders. 

The preliminary study has been done for initial PMMA particles in order to understand its 

fragmentation behaviour in cyclomix at different operating velocities. It has been observed 

that contrarily to the hybridizer trials, even at the highest operating velocity there is no 

particle fragmentation of PMMA particles in cyclomix. It may be explained by the difference 

of type and amount of mechanical forces that the equipment applies on the particles.  

It was observed that the loss particle amount is less in cyclomix treatment than hybridizer 

treatments. The probable reason is that, in hybridizer there are empty spaces between the rotor 

and the wall of the hybridizer where the particles may stay but the conical shaped mixing 

vessel of the cyclomix doesn’t have empty spaces between the walls and blades. 

Visualisations before and after coating was performed with an ESEM, in order to analyse the 

morphology of the particles and deposition of guest particles on the host particles. It has been 

observed that, dry coating of the particles in cyclomix concludes with discrete coating of talc 

particles on the surface of the PMMA particles.  

It has been observed that, like in the hybridizer trials, the particle liberation pressures increase 

with increasing operating velocity of cyclomix because of the generation of high mechanical 

impact and shearing forces at high operating velocities. On the other hand, it was found that 
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for 1% talc coated PMMA particles, after 1900 rpm operating velocity of cyclomix the 

particle liberation pressure is stable until the maximum operating velocity (3000 rpm). For 5% 

trials, the particle liberation pressure is stable after1890 rpm operating velocity until 3000 

rpm. On the other hand, it was seen that the particle liberation pressures decrease with 

increasing mass percentage of talc particles in the mixture. It should be also considered that 

the particle size difference could be reason of either particle fragmentation or detachment of 

talc particles or both of them at the same time. At the end, the cyclomix trials have been 

compared with hybridizer trials in order to understand the effect of equipment on the coating 

strength of the particles. The kinetic energy per mass values has been simply calculated 

according to rotational velocity of cyclomix and hybridizer. It was observed that the coated 

particles in cyclomix have higher particle liberation pressures at similar kinetic energy per 

mass values compared to the coated particles in hybridizer. The difference in the operation 

methodologies of the equipments, usage of different mechanical forces in different orders 

(impact, shearing) can be probably reasons of this result. 

Contrary to the coated particles in hybridizer, the coated PMMA particles and individually 

treated PMMA particles in cyclomix have very good flowability properties because of no 

particle fragmentation in cyclomix trials. As it has been observed for the hybridizer trials, for 

each operating velocity of cyclomix the talc coated PMMA particles have also better 

flowability properties than treated PMMA particles in cyclomix. The effect of mass 

percentage of talc particles on the flowability of the particles has also been studied. It was 

seen that there is no significant difference of flowability properties between the results of 1% 

and 5% talc coated PMMA particles in cyclomix. 

As a conclusion, it was seen that the cyclomix is also an useful equipment for dry particle 

coating process. Cyclomix uses mechanical forces (specially shearing) in order to coat the 

particles and gives very high coating strength property to the new generated particles. Dry 

coating of PMMA with talc particles improves their flowability compared to the treated 

PMMA particles in cyclomix.      
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4.  DRY COATING OF PARTICLES IN TURBULA 

Turbula is also another type of mixer that has been used for dry particle coating experiments. 

It allows us to mix powders by rotational movements of the chamber (chapter II). The 

particles are mixed in a closed container that has 1L volume. The mixing container is set in 

three–dimensional movement that exposes the product to an always changing, rhythmically 

pulsing motion.  

In this study, PMMA particles were pre–treated individually in hybridizer in order to be able 

to compare the results with high force mixers (hybridizer & cyclomix). Afterwards, the 

treated PMMA particles with 1% and 5% talc particles were mixed by turbula.      

The characterization of particles has been done before and after the treatments and the results 

have been compared with the results of hybridizer and cyclomix trials. 

4.1. Preliminary Study of Poly(methyl methacrylate) Particles 

In this part, the effect of rotational velocity of turbula on PMMA particles has been studied. 

PMMA particles have been initially treated in hybridizer at 4000, 5600 and 9600 rpm for 6 

minutes. After the hybridizer treatment, PMMA particles have been treated inside a 1L 

container (30 g) at 96 rpm operating velocity for 6 minutes operating time by turbula. The 

volume and number particle size distributions of PMMA that were treated by turbula particles 

can be seen in the figure III.84 and III.85.       

 

 

 

 

 

 

 

 

 

 

 

It can be seen that the particle size distributions of pre-treated particles at 4000 and 5600 rpm 

in hybridizer then treated by turbula have similar particle size distributions with initial state of 

PMMA particles. On the other hand, pre-treated particles at 9600 rpm then treated by turbula 
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Figure III.84. Volume Particle Size Distribution 

of Treated PMMA Particles by Turbula 

Figure III.85. Number Particle Size Distribution 

of Treated PMMA Particles by Turbula 



Chapter III – Dry Coating of PMMA & Talc Particles 

   

Serkan OTLES 

 

151 

has a fine particle population around 8 µm, which shows the particle fragmentation. The 

visual analysis by ESEM has also been done before and after treatments. As it can be seen 

from the figure III.86, the results confirm the granulometric analysis.   
 

       

 

 

Figure III.86. Surface Morphology of PMMA Particles Pre-Treated in Hybridizer then by 

Turbula 
 

At the end, if we compare the results of turbula with hybridizer trials (figure III.6 and III.7), it 

can be observed that there is no effect of operating velocity of turbula on the particle 

fragmentation as expected. Because turbula is a conventional mixer not a high shear mixer 

like hybridizer or cyclomix.  

4.2. Dry Coating of Poly(methyl methacrylate) with Talc 

PMMA particles were pre–treated in hybridizer at different velocities (4000, 5600, 9600 rpm) 

then treated PMMA particles have been coated with 1% and 5% talc particles by turbula at  

96 rpm operating velocity for 6 minutes (table III.23). In turbula trials, 30 g batch mass has 

been treated as hybridizer trials.  
 
Table III.23. Operating Conditions of Dry Coating Treatments in Turbula 

 
Host 

Particles 

Pre-Treatment 
in Hybridizer 
Velocity (rpm) 

 
Guest 

Particles 

Mass % 
of Guest 
Particles 

Operating 
Velocity 

of Turbula 
(rpm) 

Operating 
Time 
(min) 

Batch 
Size 
(g) 

1 %  

PMMA 

4000 

5600 

9600 

 

Talc 
5 % 

 

96 

 

6 

 

30 

(a) 4000 rpm Hybridizer –  

Turbula 

(b) 5600 rpm Hybridizer – 

Turbula 

(c) 9600 rpm Hybridizer – 

Turbula 
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The effect of mass percentage of talc on the coating strength and flowability properties of 

particles has been studied as it was done for hybridizer and cyclomix trials. At the end, the 

results of turbula have been compared with hybridizer, cyclomix and basic mixing trials.  

4.2.1. Measure of Solid Densities of the Dry Coated Particles 

The solid densities of the particles that were treated by turbula have been measured and 

compared with the solid densities of the particles that were treated in hybridizer. It can be 

seen from the figure III.87, the solid densities of coated particle by turbula has similar values 

with calculated mixture values (eqn III.1). The reason is that, the particles stay inside a closed 

container so we can have an almost perfect particle recovery in turbula trials.   

 

 
Figure III.87. Solid Densities of Coated Particles in Turbula and Hybridizer 

 
It should also be remembered that the difference in the solid densities of the particles can be 

reason of sampling and inhomogeneity of the mixture.   

4.2.2. Characterization of Surface Morphology of the Particles 

ESEM has also been used to observe the surface morphology of the coated particles by 

turbula as shown in the figure III.88. It can be seen that there are free agglomerates of talc 

particles in the 5% talc mixture because turbula doesn’t give enough mechanical energy to  

de-agglomerate the talc particles.  

On the other hand, the effect of pre-treatments in hybridizer can be distinguished easily. It 

was observed that at 9600 rpm pre-treatments in hybridizer, PMMA particles are broken at 

this velocity.  

Samples from 

Turbula 

Samples from 
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(a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

Figure III.88. Surface Morphology of Pre-Treated PMMA Particles in Hybridizer and Coated 

with 1% and 5% Talc Particles in the Turbula 
 

4.2.3. Characterization of Coating Strength of the Particles 

The coating strength of the particles has been found by analysing the changes on the number 

particle size distributions of the particles. The effect of mass percentage of talc particles on 

the coating strength has been studied. Finally, the coating strength results of the particles that 

were treated by turbula have been compared with hybridizer, cyclomix and basic mixing 

trials. 

A. Effect of Mass Percentage of Talc on Coating Strength of the Particles 

The pre-treated PMMA particles (4000, 5600 9600 rpm in hybridizer) with 1% and 5% talc 

coating by turbula at 96 rpm for 6 minutes operating time can be seen in the figure III.89, 

III.90 and III.91.  

It was observed that the particle liberation pressure is 1.0 bar for pre-treated PMMA particles 

at 4000 rpm coated with 1% talc by turbula and it decreases to 0.8 bar pressure for 5% talc 

coating. 

 

PMMA + 5% Talc 

PMMA + 1% Talc 
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For 5600 pre-treated PMMA particles, the particle liberation pressure is 1.2 bar for 1% 

coating and 0.9 for 5% talc coating. The 9600 rpm pre-treated PMMA particles coated with 

talc particles by turbula has also similar coating strength characteristic. The particle liberation 

pressure is 2.1 bar for 1% talc coating and it decreases to 1.8 bar for 5% talc coating. As it can 

be seen from the table III.24, the particle liberation (or fragmentation) pressure is higher for 

1% talc coatings than 5% talc coating for all the cases.     
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Figure III.89 . Number Particle Size Mean vs. 

Dispersing Pressure for 4000 rpm Pre-treated 

PMMA with 1% and 5% Talc by Turbula 

 

Figure III.90 . Number Particle Size Mean vs. 

Dispersing Pressure for 5600 rpm Pre-treated 

PMMA with 1% and 5% Talc by Turbula 

 

Figure III.91 . Number Particle Size Mean vs. Dispersing Pressure for 9600 rpm Pre-treated 

PMMA with 1% and 5% Talc by Turbula 
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Table III.24. Dispersing Pressures and Air Velocities for Particle Detachment for 1% and 5% 

Talc Coated Particles by Turbula 

Material Dispersing Air Pressure Air Velocity  

PMMA 4000 rpm+ 1% Talc  1.0 bar 52 m/s 

PMMA 5600 rpm+ 1% Talc  1.2 bar 60 m/s 

PMMA 9600 rpm+ 1% Talc 2.1 bar 90 m/s 

PMMA 4000 rpm+ 5% Talc  0.8 bar 44 m/s 

PMMA 5600 rpm+ 5% Talc  0.9 bar 68 m/s 

PMMA 9600 rpm+ 5% Talc 1.8 bar 81 m/s 

 

B. Effect of Equipment on Coating Strength of the Particles 

In order to understand the effect of equipment on the coating strength of the particles, the 

kinetic energy per mass has been simply calculated for each equipment according to operating 

velocities. The linear velocities have been calculated by using equation III.9 for 

corresponding rotational velocities of the equipments. Afterwards the kinetic energy per mass 

have been calculated by using equation III.10 the high shear mixers apply on the particles 

probably has an important role for that result.    
 
 

 

 

 

 

 

 

 

 

 
 
 
It can be seen from the figure III.92 and III.93, at 4000 and 5600 rpm pre-treated PMMA with 

1% and 5% talc coatings by turbula have a little bit higher particle liberation pressures 

compared to basic mixing trials. On the other hand, it can be seen that the particle liberation 

           
Figure III.92 . Effect of Equipment on Particle 

Liberation Pressure for 1% Coated Particles 

Figure III.93 . Effect of Equipment on Particle 

Liberation Pressure for 5% Coated Particles 
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pressures of the particles that were treated by turbula or basic mixing have similar values with 

the particles that were treated at 1020 rpm in cyclomix. Moreover, it was observed that at 

higher velocities of hybridizer and cyclomix, the particle liberation pressures are much higher 

than turbula trials. The effect of mechanical energy that the high shear mixers apply on the 

particles probably has an important role for that result.    

4.2.4. Characterization of Flowability Properties of the Particles 

The flowability properties of the particles have been analysed by using tapped & apparent 

densities and FT4 results. The effects of mass percentage of talc particles in the mixture and 

effect of equipment on the flowability properties of the particles has been studied.  

 
A. Effect of Mass Percentage of Talc on Flowability Properties of the Particles 

In this part of the study, the 1% and 5% talc coated particles have been compared with each 

other in order to understand the effect of the mass percentage on the flowability properties of 

the particles. In the figure III.94, evaluations of tapped densities of the coated particles are 

shown.  

 

Figure III.94. Evaluation of Flowability of PMMA Particles Before and After Coating with 

1% and 5% Talc by Turbula 

 
It can be  seen from the table III.25, 1% and 5% talc coated PMMA particles have better 

flowability than pre-treated PMMA particles in hybridizer. It was also observed that at 9600 

rpm pre-treated PMMA particles in hybridizer have very bad flowability properties because of 

the particle fragmentation at this operating velocity of hybridizer. On the other hand, it was 
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observed that there is no significant difference between the results of 1% and 5% talc coated 

particles according to tapped and apparent densities.    

 
Table III.25. Carr Index and Hausner Ratio for Coated and Uncoated PMMA Particles 

Materials Carr Index (%) Flowability Hausner Ratio 

Initial PMMA 0.99 ± 0.02 Excellent 1.01 ± 0.02 

PMMA at 4000 rpm Hyb 16.03 ± 0.04 Good 1.19 ± 0.04 

PMMA at 5600 rpm Hyb 18.72 ± 0.05 Mediocre 1.23 ± 0.05 

PMMA at 9600 rpm Hyb 35.81 ± 0.05 Very Bad 1.56 ± 0.05 

PMMA 4000 rpm+1% Talc Turbula 3.32 ± 0.04 Excellent 1.03 ± 0.04 

PMMA 5600 rpm+1% Talc Turbula 8.91 ± 0.05 Excellent 1.09 ± 0.05 

PMMA 9600 rpm+1% Talc Turbula 27.53 ± 0.05 Bad 1.38 ± 0.05 

PMMA 4000 rpm+5% Talc Turbula 3.70 ± 0.03 Excellent 1.04 ± 0.03 

PMMA 5600 rpm+5% Talc Turbula 8.12 ± 0.03 Excellent 1.09 ± 0.03 

PMMA 9600 rpm+5% Talc Turbula 29.40 ± 0.08 Bad 1.42 ± 0.08 

 

The FT4 has also been used to study the flowability properties of the particles. The results of 

the FT4 trials can be seen from the figure III.95 and III.96. It can be observed that, at the end 

of the conditioning step we have obtained a homogeneous powder mixture (stable total energy 

value) for each sample. 

 
 

 

 

 

 

 

 

 

 

 

   

Conditioning 
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Conditioning FRI 

Figure III.95. FT4 Results of Initial and Pre -

Treated PMMA Particles in Hybridizer 

Figure III.96. FT4 Results of Initial and  

1% & 5% Talc Coated (Pre – Treated) PMMA 

Particles by Turbula 
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It was observed that, the 1% and 5% talc coated PMMA particles have better flowability 

properties than just pre-treated PMMA particles as it was observed from the tapped and 

apparent density results. On the other hand, we didn’t observe much difference between the 

FRI results of 1% and 5% talc coated PMMA particles. (table III.26)   

 
Table III.26. Evaluation of Flowability of 1% and 5% Coated PMMA Particles by FT4  

Materials 8th Cycle (mj) 11th Cycle (mj) FRI 

Initial PMMA 273 ± 0.03 293 ± 0.03 1.10 ± 0.03 

PMMA at 4000 rpm Hybridizer 105 ± 0.05 122 ± 0.05 1.16 ± 0.05 

PMMA at 5600 rpm Hybridizer 101 ± 0.05 121 ± 0.05 1.20 ± 0.05 

PMMA at 9600 rpm Hybridizer 54 ± 0.08 296 ± 0.08 5.48 ± 0.08 

PMMA 4000 rpm+1% Talc Turbula 105 ± 0.03 116 ± 0.03 1.11 ± 0.03 

PMMA 5600 rpm+1% Talc Turbula 103 ± 0.05 117 ± 0.05 1.14 ± 0.05 

PMMA 9600 rpm+1% Talc Turbula 68 ± 0.09 289 ± 0.09 4.25 ± 0.09 

PMMA 4000 rpm+5% Talc Turbula 103 ± 0.04 119 ± 0.04 1.16 ± 0.04 

PMMA 5600 rpm+5% Talc Turbula 107 ± 0.03 128 ± 0.03 1.20 ± 0.03 

PMMA 9600 rpm+5% Talc Turbula 76 ± 0.08 313 ± 0.08 4.12 ± 0.08 

 

B. Effect of Equipment on Flowability Properties of the Particles 

In this part of the study, the flowability properties of coated particles by turbula have been 

compared with the coated particles in hybridizer and cyclomix in order to understand the 

difference between a conventional mixer and high force mixers for the flowability properties 

of the particles.    

It can be seen from the table III.27, the flowability of the coated particles in the high force 

mixers (hybridizer & cyclomix) have better flowability than coated particles by turbula. The 

generated high mechanical forces in high force mixers would cause de-agglomeration and 

better dispersion of talc particles on the surface of PMMA particles. On the other hand, lack 

of high mechanical forces causes fine particle agglomeration and a worse dispersion of talc 
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particles on the PMMA surface compared to composite particles from the high force mixers 

which would be the probable reason of this result.   

 
Table III.27. Effect of Equipment on the Flowability Properties of Coated PMMA Particles  

Materials 8th Cycle 

(mj) 

11th Cycle 

(mj) 

FRI 

Initial PMMA 273 ± 0.03 293 ± 0.03 1.10 ± 0.03 

PMMA+5% Talc at 4000 rpm Hybridizer 100 ± 0.05 109 ± 0.05 1.09 ± 0.05 

PMMA+5% Talc at 5600 rpm Hybridizer 119 ± 0.05 135 ± 0.05 1.13 ± 0.05 

PMMA+5% Talc at 9600 rpm Hybridizer 71 ± 0.05 287 ± 0.05 4.04 ± 0.05 

PMMA+5% Talc at 1020 rpm Cyclomix 100 ± 0.01 110 ± 0.01 1.10 ± 0.01 

PMMA+5% Talc at 1600 rpm Cyclomix 95 ± 0.04 106 ± 0.04 1.12 ± 0.04 

PMMA+5% Talc at 3000 rpm Cyclomix 107 ± 0.06 126 ± 0.06 1.18 ± 0.06 

PMMA 4000 rpm+5% Talc Turbula 103 ± 0.04 119 ± 0.04 1.16 ± 0.04 

PMMA 5600 rpm+5% Talc Turbula 107 ± 0.03 128 ± 0.03 1.20 ± 0.03 

PMMA 9600 rpm+5% Talc Turbula 76 ± 0.08 313 ± 0.08 4.12 ± 0.08 

 

4.3. Conclusions 

PMMA particles have been coated by different mass percentages of talc particles by turbula 

mixer in order to understand the difference between a conventional mixer and high force 

mixers (hybridizer & cyclomix) and their effect on the end–use properties of the particles.  

The PMMA particles have been pre-treated in hybridizer at 4000, 5600 and 9600 rpm 

operating velocities (to be able to make a comparison with high force mixer trials) than they 

were coated with different percentage of talc particles by turbula. In the preliminary study, it 

was observed that there is no effect of turbula mixer on the fragmentation of the particles. 

Afterwards, the pre-treated PMMA particles have been coated with 1% and 5% of talc 

particles by turbula at 96 rpm operating velocity (maximum velocity of turbula) for 6 minutes. 

The visual analysis has also been done before and after coating. According to the ESEM 

analysis, it was observed that, we have obtained a discrete talc coating on the surface of 

PMMA particles in turbula trials like in hybridizer and cyclomix trials. On the other hand, it 
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was observed that there were free talc agglomerates in the mixture because of insufficient 

mechanical forces in turbula trials. 

The laser diffraction granulometer has been used in order to understand the particle size 

evaluation and coating strength of the coated particles. The effect of mass percentage of talc 

particles on the coating strength of the particles has been studied. It was observed that particle 

liberation pressure decreases with increasing mass percentage of talc particles in the mixture. 

On the other hand, the results of coated particles by turbula have been compared with the 

results of coated particles in hybridizer, cyclomix and basic mixing methods in order to 

understand the effect of equipment on the coating strength of the particles. It was observed 

that coated particles by turbula have a little bit higher particle liberation pressures compared 

to basic mixing trials. On the other hand, it was observed that the treated particles by turbula 

have similar particle liberation pressures with the treated particles in cyclomix at low 

operating velocity (1020 rpm) but contrarily, at high operating velocities the coated particles 

in hybridizer and cyclomix have very high particle liberation pressures compared to treated 

particles by turbula mixer. The effect of mechanical energy that the high shear mixers 

(hybridizer & cyclomix) apply on the particles probably has an important role for that result. 

Moreover, as it has been discussed in the hybridizer and cyclomix trials, the granulometric 

results should be analysed carefully and it should be remembered that either particle breakage 

or guest particle liberation may cause difference in the particle size distributions of the 

particles with difference dispersing pressures.       

As it was observed for the coated particles in hybridizer and cyclomix, talc coated PMMA 

particles have better flowability properties than just pre-treated PMMA particles for both 1% 

and 5% talc coatings. On the other hand, we didn’t observe much difference in flowability 

properties between the results of 1% and 5% talc coated PMMA particles. It was also 

observed that the flowability properties of the coated particles in the high force mixers 

(hybridizer & cyclomix) have better flowability than coated particles by turbula since in high 

force mixers talc particles have better dispersion on the surface of PMMA particles. 

At the end, it was seen that the dry coating of PMMA particles with talc particles is also 

possible by turbula. On the other hand, it was also observed that utilization of conventional 

mixers or high shear mixers for dry particle coating process modifies the end–use properties 

of the particles.  
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5. CONCLUSIONS  

In this study, PMMA particles (host particle) with a volume mean particle diameter (d[4:3]v) 

around 160 µm have been coated with 1% and 5% talc particles (guest particles) 

(d[4:3]v:14µm) by using different dry particle coating equipments in order to understand the 

effect of mass percentage of talc particles, effect of equipment and their operating conditions 

on the end–use properties of the new generated particles.  

The feasibility of dry coating of the particles and their fragmentation behaviour has been 

studied in preliminary study of the particles. PMMA and talc particles have been treated 

individually in hybridizer, cyclomix and turbula with different operating conditions and 

afterwards, the operating conditions have been determined for dry coating trials.  

5.1. Visual Analysis of The Dry Coated Particles in Different Equipments 

Environmental scanning electron microscopy (ESEM) has been used to observe the surface 

morphology of the coated particles by each equipment. It was observed that for all the mixers 

that we have used and also for basic mixing trials, we have obtained a discrete type of talc 

coating on the PMMA particles.    

The difference in the surface coverage of the particles is related to the mechanical force that 

the equipment applies on the particles coating. Hybridizer and cyclomix uses mechanical 

impact, compression and shearing forces in order to coat the particles. Due to these 

mechanical forces, the talc particles are forced on the surface of the PMMA particles and we 

have obtained embedded talc particles on the PMMA particles.   

On the other hand, turbula is a conventional mixer and it uses very low centrifugal forces to 

coat the particles. As it would be expected, the impact of the particles is much less and softer 

compared to high force mixers. Because of that reason, it was observed that the talc particles 

are just firmly attached on the surface of PMMA particles in turbula and basic mixing trials. 

In addition, the lack of applied mechanical forces on the particles in turbula and basic mixing 

trials, we have observed that there are some free talc agglomerates in the mixture. The 

generated force is not sufficient to break the agglomerates of talc particles and attach them on 

the surface of the PMMA particles, because of that reason the agglomerates rest in the powder 

sample in turbula and basic mixing. 
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5.2. Coating Strength of The Dry Coated Particles in Different Equipments 

The coating strength of the coated particles by different dry coating equipments have been 

analysed by using a laser diffraction granulometer with dry feed mode. According to 

evaluation in the particle size distributions of the particles, the particle liberation pressures 

have been found.   

The effect of operating velocity on the particle liberation pressure has been studied. It was 

seen that the particle liberation pressure increases with increasing operating velocity for 

hybridizer and cyclomix trials. The generated mechanical forces by the mixers are directly 

related to the operating velocity of the equipments. So, higher velocity would generate higher 

mechanical forces and higher mechanical forces would cause stronger interactions between 

the host and guest particles.  As it was observed in the visual analysis, high mechanical forces 

in hybridizer and cyclomix enables us to obtain embedded talc particles on the PMMA 

surface.    

The effect of mass percentage of talc particles on the coating strength of the particles has also 

been studied. It was observed that particle liberation pressure decreases with increasing mass 

percentage of talc particles in the mixture for cyclomix, turbula and basic mixing trials. But 

for dry coated particles in hybridizer, it was observed that for different operating velocities, 

mass percentages of talc particles have different effects on the coating strength of the 

particles. 

In order to understand the effect of equipment on the coating strength of the particles, the 

kinetic energy that the equipment generates was simply calculated by using the operating 

velocity of the equipment. It was seen that the dry coated particles in hybridizer and cyclomix 

have much higher particle liberation pressures compared to coated particles by turbula and 

basic mixing method. It was observed that the particle liberation values increase with 

increasing calculated kinetic energy per mass values which is directly related to operating 

velocity of the equipment. 

There is an important point that should be remembered that the evolution of the particle size 

distributions with different dispersing pressures could be related to particle detachment and 

also particle fragmentation.  
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5.3. Modification of Flowability Properties of Dry Coated Particles in Different 

Equipments  

The flowability properties of PMMA particles before and after dry coating with talc particles 

in different equipments has been analysed by using Freeman Technology powder tester (FT4) 

and a tapped density tester. 

In hybridizer trials, it was observed that the dry coated PMMA particles with talc (1% & 5%) 

have better flowability properties than treated PMMA particles in hybridizer. Also it can be 

observed that the high operating velocities of the hybridizer decrease flowability of the 

particles due to the particle breakage that causes increase in the contact surface of the 

particles. 

In cyclomix trials, it was observed that both the dry coated PMMA particles (1% & 5%) and 

individually treated PMMA particles (except at 3000 rpm) in cyclomix have very good 

flowability properties. In cyclomix trials, there is almost no particle fragmentation at any 

operating velocities so it would be the reason for the particles to have good flowability 

properties. At 3000 rpm, (maximum velocity of cyclomix), the flowability becomes mediocre 

for individually treated PMMA particles at this operating velocity but it becomes excellent 

after dry coating with talc particles.  

In turbula trials, it was seen that the dry coated PMMA particles (1% & 5%) have better 

flowability than pre-treated PMMA particles in hybridizer. The flowability properties of dry 

coated particles in different equipments have also been compared. It was seen that the dry 

coated particles in hybridizer and cyclomix have better flowability properties than dry coated 

particles by turbula. As it has been discussed before, high force mixers apply high mechanical 

force on the particles which causes de-agglomeration and good dispersion of talc particles on 

the surface of the PMMA particles. On the other hand, in turbula trials there are some talc 

agglomerates because the mechanical energy that the turbula generates is not high enough to 

break the agglomerates and disperse them on the PMMA surface. So this may explain the 

difference between flowability properties of particles from hybridizer, cyclomix and 

conventional turbula mixer.  

The host and guest particle size on the end–use properties of the particles may also have an 

important role. In Chapter IV, 2 different particle size distributions of Cellets and Talc 

particles has been chosen as the second model couple, in order to understand influence of 

particle size ratio between the host and guest particles on the end–use properties of the 
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particles. Mechanical strength is tried to be related to an estimation of the energy provided in 

every process, and to the theoretical calculation of the van der Waals forces (initial 'affinity'). 

The hydrophilic properties of the powders will be studied by dynamic vapour sorption and 

angle of contact characterization methods. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV 

Effect of Particle Size on the End–Use Properties  

of the Composite Particles 
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1. INTRODUCTION  

In the second part of this thesis, the aim is to understand the effect the particle size of host and 

guest particles on the end–use properties of the dry coated particles. For this reason, Cellets 

particles (with 2 different particle size distributions) and Talc particles (with 2 different 

particle size distributions) have been chosen as the second model couple of the study for dry 

coating.  

In the first part, in order to understand the effect of host particle size on the end–use 

properties of the particles, Cellets 90 (d[4;3]v:100 µm) and Cellets 200 (d[4;3]v:305 µm) 

particles have been coated with talc particles (d[4;3]v:14 µm) by different dry particle coating 

equipments. The Nara Hybridizer, Hosokawa Cyclomix and a Turbula Mixer have been used 

to coat the particles. In addition, Cellets 90 and Cellets 200 particles have also been mixed 

with talc particles by basic mixing method. These samples will be compared with those 

prepared with the Hybridizer, Cyclomix and Turbula. 

In the second part, Cellets 200 (d[4;3]v:305 µm) particles and talc particles with 2 different 

particle size distributions (d[4;3]v:14 µm and d[4;3]v:4 µm) were chosen for dry coating trials 

to study the influence of the guest particle size on the end–use properties of the particles. 

Hybridizer, Cyclomix and Turbula have also been used for dry coating of the Cellets 200 

particles with different particles sizes of talc particles.  

The preliminary study of the particles was investigated in order to understand fragmentation 

behaviour of the particles and also to define the operating conditions for dry coating trials in 

different equipments. Several characterisation methods have been used to study the physico–

chemical properties of the initial and coated particles. Environmental Scanning Electron 

Microscopy (ESEM) was used before and after dry coating trials for visual analysis of the 

particles. An Atomic Force Microscopy (AFM) has also been used in order to understand the 

guest particle deposition on the host particle surface, to analyse the surface morphology of the 

particles and also to find the adhesion forces between the particles. The initial affinity of the 

powders has been studied by calculation of Van der Waals forces between the particles. The 

particle size distributions and coating strength of the composite particles have been studied by 

laser diffraction (in dry feed mode). Coating strength is tried to be related to an estimation of 

the energy provided in each process to understand the effect of equipment. Also the 

hydrophilic properties of the powders have been studied before and after the coating by 

dynamic vapour sorption (DVS) and contact angle characterization methods. The amount of 
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guest particle deposition on the host particle has also been calculated by using the model for 

adhesion force. 

2. EFFECT OF HOST PARTICLE SIZE ON THE END – USE PROPERTIES OF 

THE DRY COATED PARTICLES 

Here, Cellets 90 (d[4;3]v:100 µm) and Cellets 200 (d[4;3]v:305 µm) particles have been 

coated with talc particles (d[4;3]v:14 µm) by different dry particle coating equipments in order 

to understand the effect of host particle size on the end–use properties of the coated particles. 

In the preliminary study, Cellets 90 and Cellets 200 particles have been individually treated in 

Hybridizer and Cyclomix with different operating velocities. At the end of the preliminary 

study, the optimum operating conditions for the dry coating trials have been defined. 

The theoretical monolayer coating percentage for hexagonal surface packing has been 

calculated for Cellets 90 and Cellets 200 particles and the mass percentages of talc particles 

for each dry coating trial has been found. In this part, the results of the different 

characterization methods for powders before and after talc coating have been presented in 

details. 

2.1.  Preliminary Study of Cellets 90 and Cellets 200 Particles 

In the preliminary study, Cellets 90 and Cellets 200 particles have been individually treated 

with different operating velocities of the different dry coating equipments for 6 minutes 

operation time. The particle size of the final cellets particles have been determined with the 

Malvern Mastersizer laser diffraction granulometer and expressed as the d[4:3]v or volume 

mean diameter. In addition, we have also determined the yield of the hybridizer and cyclomix 

trials which is the percentage of material removed from the devices at the end of an 

experiment with respect to the introduced amount at the start.  

In Hybridizer trials, samples of Cellets 90 and Cellets 200 have been processed alone for 6 

minutes at 4000 rpm (25 m/s), 5600 rpm (35 m/s), and 9600 rpm (60 m/s) rotational 

velocities. For each trial, initial powder charge was fixed at 30 g.  

In Cyclomix trials, 1600 rpm (13.4 m/s), 1900 rpm (15.9 m/s) and 2600 rpm (21.8 m/s) 

rotational velocities and 6 minutes operating time have been chosen as operating conditions 

for preliminary study of the Cellets particles. The initial filling of the equipment has been 

fixed at 500 ml for the treatments.    
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2.1.1. General Mass Balance 

In hybridizer trials, 30 g of cellets 90 and cellets 200 particles were individually processed in 

the hybridizer at 4000 rpm, 5600 rpm and 9600 rpm operating velocities for 6 minutes. At the 

end, the treated particles were recovered from the powder collector. For each operating 

velocity, the percentage of recovery for cellets 90 and cellets 200 particles has been calculated 

by dividing the amount of recovered powder to the initial charge (30g). In the figure IV.1, the 

% of the recovered powder according to different operating velocities is presented. 

 

 

Figure IV.1. Effect of Rotational Velocity of Hybridizer on the Amount of Collected 

Particles 

It can be seen that the percentage of recovery for hybridizer trials are very high for both 

cellets 90 and cellets 200 particles. It was observed that the percentage of recovery is about 

87% at 4000 rpm and it increases to 95% at 9600 rpm operating velocity. High operating 

velocity causes good recirculation of the powders inside the hybridizer, so higher the 

operating velocity the higher the percentage of particle recovery. 

  

 

Figure IV.2. Effect of Rotational Velocity of Cyclomix on the Amount of Collected Particles 
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In cyclomix trials, 500 ml cellets 90 and cellets 200 particles have been individually treated at 

1600 rpm, 1900 rpm and 2600 rpm for 6 minutes operating time. The results of particle 

recovery for each operating velocity are shown in the figure IV.2. It can be seen that there is a 

high percentage of particle recovery (between 89% and 98%) for each operating velocity.    

2.1.2. Effect of Rotational Velocity on Particle Size Distributions 

The particle size distribution analyses of cellets 90 and cellets 200 particles have been 

measured for each chosen operating velocities of hybridizer and cyclomix by using the laser 

diffraction granulometer. The figures IV.3 and IV.4 show the volume and number particle 

size distributions of cellets 90 and cellets 200 particles before and after treatments in 

hybridizer with different operating velocities.  

  

 

 

 

 

 

 

 

 

 

 
 

It can be seen that the treated cellets 90 particles at 5600 rpm and 9600 rpm have a fine 

particle population compared to initial and 4000 rpm treated cellets 90 particles because of 

particle fragmentation. The fine population can be distinguished easily by the number particle 

size distributions (Fig. IV.4).  

At 4000 rpm, the particles have the same particle size distribution with initial cellets 90 

particles, because of no particle breakage at this operating velocity. For 5600 rpm treatments, 

there are two different particle populations, big particles at around 90–100 µm and a fine 

population at around 20 µm. This shows that some of the particles are broken in the 

treatments. For 9600 rpm processing the fine particle population decreases to 1 µm and it also 

shows that most of the particles are broken. 
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Figure IV.3. Volume Particle Size Distribution of 

Cellets 90 Particles Before and After Treatments in 

Hybridizer 

Figure IV.4. Number Particle Size Distribution of 

Cellets 90 Particles Before and After Treatments in 

Hybridizer 
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Figure IV.5 and IV.6 show the volume and number particle size distributions of treated  

cellets 200 particles in hybridizer with different operating velocities. It can be seen that,   

4000 rpm treatments doesn’t cause particle fragmentation. On the other hand, for 5600 rpm 

and 9600 rpm treatments, a fine particle population was observed because of particle breakage 

at these operating velocities. The volume mean diameter of the treated cellets 90 and cellets 

200 particles and the percentage of recovery after the trials in hybridizer for each operating 

velocity can be seen in the figure IV.7 and IV.8.   

 

 
 

 

 

 

 

 

 

 

 

 

 
It can be seen that the powders, which were processed at low speeds of rotation, have an 

initial particle size d[4;3] of about 100 µm for Cellets 90 and 305 µm for Cellets 200, but the 

   
Figure IV.7. Volume Mean Diameter vs. % of 

Recovery for Treated Cellets 90 Particles in 

Hybridizer  

Figure IV.8. Volume Mean Diameter vs. % of 

Recovery for Treated Cellets 200 Particles in 

Hybridizer 
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Figure IV.5. Volume Particle Size Distribution of 

Cellets 200 Particles Before and After Treatments 

in Hybridizer 

Figure IV.6. Number Particle Size Distribution of 

Cellets 200 Particles Before and After Treatments 

in Hybridizer  
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mean particle size reduces with rotational velocities greater than 5600 rpm. This indicates that 

there is particle breakage at these high operating velocities. This is confirmed by visual 

observations with ESEM as shown in the fig. IV.9. It was observed that there are some 

particle fragments in 5600 and 9600 rpm treatments for cellets 90 and cellets 200 particles 

because of the generation of high mechanical forces by the equipment at these velocities. It 

can be seen that there are more cellets 90 fragments at 9600 rpm treatment compared to 5600 

rpm treatments as expected. 

 

       
 

       

   (a) 4000 rpm       (b) 5600 rpm   (c) 9600 rpm 

Figure IV.9. Surface Morphology of Cellets 90 and Cellets 200 Particles after Treatments in 

Hybridizer 
 

The volume and number particle size distributions of treated particles in cyclomix have also 

been determined. The particle size distributions of cellets 90 and cellets 200 particles before 

and after treatments in cyclomix with different operating velocities can be seen in the figure 

IV.10 and IV.11.  

It was observed that, the initial and treated cellets 90 particles have the same particle size 

distributions (volume) for all operating velocities of cyclomix. On the other hand, at 1900 and 

2600 rpm treatments the number particle size distributions are around 70 µm. This may 

indicate a slight fragmentation of the particles at these velocities.   

Cellets 200 
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Figure IV.12 and IV.13 show the particle size distributions of initial and treated cellets 200 

particles in the cyclomix. It was observed that, at 1600 rpm treatments the cellets 200 

particles keep initial particle size distribution. Contrary to 1600 rpm treatments, at 1900 and 

2600 rpm treatments there are fine particle populations.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The volume mean diameter of the treated cellets 200 particles for each operating velocity of 

cyclomix and particle recovery after the trials can be seen in the figure IV.14 and IV.15. It can 

be seen that the volume mean particle size distribution decreases at high operating velocities 

because of the particle fragmentation.  
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Figure IV.12. Volume Particle Size Distribution 

of Cellets 200 Particles Before and After 

Treatments in Cyclomix 

Figure IV.13. Number Particle Size Distribution 

of Cellets 200 Particles Before and After 

Treatments in Cyclomix 
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Figure IV.10. Volume Particle Size Distribution 

of Cellets 90 Particles Before and After 

Treatments in Cyclomix 

Figure IV.11. Number Particle Size Distribution 

of Cellets 90 Particles Before and After 

Treatments in Cyclomix 
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ESEM has also been used to have visual analysis of the particles. As it can be seen in the 

fig.IV.16 there is no particle fragmentation either cellets 90 and cellets 200 particles at 1600 

rpm treatments. At 1900 and 2600 rpm treatments, high mechanical forces cause some 

particle breakage.  

 

       

 

       

   (a) 1600 rpm       (b) 1900 rpm   (c) 2600 rpm 

Figure IV.16. Surface Morphology of Cellets 90 and Cellets 200 Particles after Treatments in 

Cyclomix 

Cellets 200 

Cellets 90 

Figure IV.14. Volume Mean Diameter vs. % of 

Recovery for Treated Cellets 90 Particles in 

Cyclomix 

Figure IV.15. Volume Mean Diameter vs. % of 

Recovery for Treated Cellets 200 Particles in 

Cyclomix 
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To understand the effect of host particle size on coating strength of the particles we have to 

protect our host particles against particle breakage. For this reason, we chose rotational speeds 

where the host particles retain the initial particle size distribution. For the hybridizer trials 

4000 rpm and for the cyclomix trials 1600 rpm has been chosen as the operating velocities. 

For turbula and basic mixing trials 4000 rpm has been chosen for pre-treatments of cellets 

particles in hybridizer.  

2.2. Dry Coating of Cellets 90 and Cellets 200 with Talc 

In the preliminary study, the operating conditions for dry coating of cellets particles with talc 

have been determined. Monolayer coating percentage in hexagonal packing of the cellets 90 

and cellets 200 particles has been calculated (Appendix II). It was found that, 9.6 % talc for 

cellets 90 particles and 3 % talc for cellets 200 particles are needed for monolayer coating of 

the cellets particles. The operating conditions of the dry coating trials can be seen in the   

table IV.1.       

 
Table IV.1. Operating Conditions of Dry Coating Treatments 

 
Host 

Particles 

 
Guest 

Particles 

 
Equipment 

Operating 
Velocity 
(rpm) 

Operating 
Time 
(min) 

 Mass % 
of Guest 
Particles 

Batch 
Size  
(g) 

Cooling 
Jacket 
(°C) 

Cellets  

90 

 

9.6 % 

Cellets 

200 

 

 

Talc 

 

 

Hybridizer 

 

 

4000 

 

 

6  

3 % 

 

 

30 

 

 

13 

Cellets  

90 

 

9.6 % 

Cellets 

200 

 

 

Talc 

 

 

Cyclomix 

 

 

1600 

 

 

6  

3 % 

 

 

500 

 

 

13 

PreTreated 

Cellets 90  

 

9.6 % 

PreTreated 

Cellets200 

 

 

Talc 

 

 

Turbula 

 

 

96 

 

 

6  

3 % 

 

 

30 

 

 

none 
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In Turbula trials, cellets 90 and cellets 200 particles were pre-treated in hybridizer at 4000 

rpm rotational velocity. Afterwards, the pre-treated cellets particles have been processed with 

talc particles in a 1 L container (30 g) at 96 rpm operating velocity for 6 minutes by turbula. 

In addition, the basic mixing method has been also used for dry coating of the particles. In 

basic mixing, cellets 90 and cellets 200 particles are pre-treated in hybridizer at 4000 rpm 

operating velocity and then mixed with talc particles by shaking them by hand as for the 

PMMA and talc model couple (chapter III).   

Different characterization methods have been used before and after dry coating trials to 

understand the effect of host particle size on the end–use properties of the coated particles. 

More precisely, we are interested to understand the effect of host particle size on the coating 

strength of the particles and also on the modification of hydrophilic properties of the particles. 

ESEM has been used for morphological analysis of the particles before and after coating. 

AFM has also been used in order to understand the topographical properties of the particles 

and to find the adhesion forces between the particles. The adhesion force values also enable 

us to calculate the guest particle deposition on the host particle by the adhesion force model. 

Malvern Mastersizer laser diffraction granulometer has been used to analyse the coating 

strength properties of the particles. On the other hand, Dynamic vapour sorption (DVS) and 

contact angle methods have been used to understand the evolution of the hydrophilic 

properties of the particles after coating with talc particles. 

2.2.1. Characterization of Surface Morphology of the Particles 

Figure IV.17 shows the ESEM images of talc coated cellets 90 and cellets 200 particles in 

different equipments. It can be seen that there is no particle fragmentation of coated particles 

in any of the dry coating equipment. It was observed that, there are some talc agglomerates in 

the cellets 90 coated with 9.6% talc particles probably because of the high mass percentage of 

talc particles in the mixture. It can be seen that, there are many talc agglomerates in the 

turbula trials but on the other hand there are very few amount of talc agglomerates for 

hybridizer and cyclomix trials. This shows us the effect of applied mechanical forces on the 

particles by the equipments. It was also observed that for hybridizer and cyclomix trials, most 

of the talc particles are embedded on the surface of the cellets particles but for turbula trials it 

can be seen that talc particles are weakly attached on the surface of the host particles. 
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(a) Hybridizer       (b) Cyclomix   (c) Turbula 

 

 
 

The visual analysis has also been done for the coated particles from the basic mixing method. 

It can be seen that there are talc agglomerates on the surface of the cellets particles (fig. IV.18 

& IV.19). It was also observed that the talc particles are just attached on the surface of the 

cellets particles because of the inter-particular forces between the particles.  

 

        

(a) Cellets 90 coated with Talc Particles     (b) Cellets 200 coated with Talc Particles  

 

 

Figure IV.17. Surface Morphology of Monolayer Talc Coated Cellets 90 and Cellets 

200 Particles in Different Equipments 

Cellets 200 + 3 % Talc 

Cellets 90 + 9.6 % Talc 

Figure IV.18. Surface Morphology of Monolayer Talc Coated Cellets 90 and Cellets 

200 Particles by Basic Mixing Method 
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The Scanning Electron Microscope is equipped with an Energy Dispersive Spectrometer 

(EDS). SEM/EDS provides chemical analysis of regions of minute particles (chapter II). The 

SEM/EDS was used to analyse the chemical composition of the coatings. Figure IV.19 shows 

the SEM/EDS results of an example of a talc coated cellets 90 particle in hybridizer. It can be 

seen that in one of the regions of the particle surface, we have silicon and magnesium which 

are the chemical components of talc. This shows the existence of talc particles on the surface. 

On the other hand, it was observed that in another region of the surface of the cellets 90 

particle there was neither silicon nor magnesium so this part of the surface there is no talc 

particle. The result shows that we have obtained a discrete talc coating on the surface of 

cellets 90 particle. The same study has also been done for cyclomix and turbula trials and it 

was observed that for all equipments we have obtained discrete type of coating. (Appdix.VII)       

 

 

 

 

 

 

 

 

 

 
Figure IV.19. Chemical Analysis of the Surface of Talc Coated Cellets 90 Particle in 

Hybridizer 

2.2.2. Characterization of the Particles by Atomic Force Microscopy 

The topographical analysis of the coated and uncoated cellets 90 and cellets 200 particles 

have been done by using an Atomic Force Microscopy (AFM). The adhesion force between 
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the particles has also been found by using the AFM with contact mode and afterwards the 

guest particle deposition on the host particles has been calculated by using the adhesion force 

model. (Eqn.III.8) 

A. Topographical Analysis of the Particles 

In the topographical analysis of the particles, the AFM has been used with different imaging 

magnitudes (from 5x5 µm² to 1x1 µm²) on the initial and coated cellets 90 and cellets 200 

particles (10 different representative particles). The tapping mode of the AFM is used for 

analysing surface topography of the samples. For each trial height, amplitude and phase 

values are registered simultaneously. The same experimental apparatus and conditions of 

PMMA and talc trials were used (chapter III) in particular the same ratio (0.8) between the 

free amplitude (AF) and the amplitude set point (ASP) since it gives images with good 

resolution also for the case of cellets and talc particles. The results of initial and coated   

cellets 90 and cellets 200 particles will be presented in the next part.  

A.1. Topographical Analysis of the Initial Cellets 90 and Cellets 200 Particles 

Surface topography of the initial cellets 90 sample has been studied by using 10 different 

representative particles (according to particle shape & size) with 3 different magnitudes of 

imaging (1x1 µm, 2x2 µm, 5x5 µm). Figure IV.20 shows the AFM cantilever while having a 

topographical analysis of a cellets 90 particle. Figures IV.21 and IV.22 show the height 

images of a cellets 90 particle in 2D and 3D formats. Height images with 5x5 µm² imaging 

magnitude have been used for surface roughness analysis. According to these images, it was 

found that the average surface roughness (Ra) is 165 nm and root mean square average of 

surface roughness (RMS) is 207 nm for initial cellets 90 particles. (table IV.2) 

 

 

 

 

Figure IV.20. Cellets 90 Particles 

and Cantilever of AFM 
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The topographical analysis of initial cellets 200 particles has also been studied. In the figure 

IV.23 cellets 200 particles and the cantilever of the AFM can be seen. Figure IV.24 and IV.25 

show the height images of an initial cellets 200 particle with 5x5 µm² imaging magnitude.  
 

        

 

 

                       

 

Figure IV.21. Height Image of 5x5 µm² 

Surface of Cellets 90 Particle by AFM 

Figure IV.22. 3D Height Image of 5x5 µm² 

Surface of Cellets 90 Particle by AFM 

Figure IV.23. Cellets 200 

Particles and Cantilever of AFM 

Figure IV.24. Height Image of 5x5 µm² 

Surface of Cellets 200 Particle by AFM 

Figure IV.25. 3D Height Image of 5x5 µm² 

Surface of Cellets 200 Particle by AFM 
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At the end of the topographical analysis, it was found that the Ra value is between 48 nm and 

188 nm with an average 111 nm and RMS value is between 62 nm and 263 nm with an 

average 141 nm for the initial cellets 200 particles. For talc particles, the Ra and RMS values 

have been used from chapter III. The surface roughness values of the initial host and guest 

particles are presented in table IV.2.   

 

Table IV.2. Surface Roughness Values of Initial Cellets and Talc Particles (5x5 µm²) 

Material Ramin – Ramax 
(nm) 

Raave (nm) RMSmin – RMSmax 
(nm) 

RMSave  
(nm) 

Cellets 90 88 – 206  165 113 – 257  207 

Cellets 200 48 – 188  111 62 – 263  141 

Talc 100 – 220  131 140 – 270  186 

A.2. Topographical Analysis of the Coated Cellets 90 and Cellets 200 Particles 

In this part, the aim is to understand the effect of talc coating on the surface roughness of the 

initial cellets 90 and cellets 200 particles. The topographical properties of 9.6 % talc coated 

cellets 90 and 3 % talc coated cellets 200 particles have been analysed by using 10 different 

particles in order to have representative results. Figure IV.26 shows the AFM cantilever while 

having a topographical analysis of a 9.6% talc coated cellets 90 particle. The height images of 

cellets 90 coated with 9.6% talc particle can be seen in the figure IV.27 and IV.28. 

 

       

 

 

Figure IV.26. Cellets 90 coated with 

9.6%Talc Particles and Cantilever of AFM 
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The Ra value has been determined between 72 nm and 131 nm and RMS varies between      

91–165 nm for talc coated cellets 90 particles. It was observed that the surface roughness of 

cellets 90 particles decreases after coating with talc particles.  

 

            

 

 

Figure IV.29 shows the cantilever and 3% talc coated cellets 200 particles while the AFM 

treatment. The height images of cellets 200 with talc particles can be seen in the figure IV.30 

and IV.31. 

 

Figure IV.27. Height Image of 5x5 µm² 

Surface of Cellets 90 coated with 9.6%Talc 

Particles by AFM 

Figure IV.28. 3D Height Image of 5x5 µm² 

Surface of Cellets 90 Coated with 9.6%Talc 

Particles by AFM 

Figure IV.29. Cellets 200 coated with 

3%Talc Particles and Cantilever of AFM 
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It was found that the Ra value is between 24 nm and 73 nm and the RMS value is between 28 

nm and 100 nm for coated cellets 200 particles. Table IV.3 shows the different surface 

roughness values of initial and talc coated cellets 90 and cellets 200 particles in hybridizer. 

 
Table IV.3. Surface Roughness Values of Uncoated and Coated Particles (5x5 µm²) 

Material Ramin – Ramax 
(nm) 

Raave (nm) RMSmin – RMSmax 
(nm) 

RMSave  
(nm) 

Cellets 90 88 – 206  165 113 – 257  207 

Cellets 200 48 – 188  111 62 – 263  141 

Talc 100 – 220  131 140 – 270  186 

Cellets 90 + 9.6% Talc 72 – 131  96 91 – 165  125 

Cellets 200 + 3% Talc 24 – 73  50 28 – 100  64 

 
It was observed that the coating with talc particles affects the surface roughness of the host 

particles (cellets 90 and cellets 200). The valleys and holes on the surface (surface roughness) 

of the cellets particles could be either filled by talc particles or closed because of the slab 

geometry of the talc particles (fig.IV.32) and this would be the possible reason of the decrease 

in surface roughness of cellets particles after coating with talc particles. 

Figure IV.30. Height Image of 5x5 µm² 

Surface of Cellets 200 coated with 3%Talc 

Particles by AFM 

Figure IV.31. 3D Height Image of 5x5 µm² 

Surface of Cellets 200 Coated with 3%Talc 

Particles and Cantilever by AFM 
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Figure IV.32. Possible Surface Coating of Cellets Particles with Talc Particles (Grey) 

In order to be sure about the existence of talc particles on the surface of the host particles, the 

phase angle and height results of talc coated cellets particles have been compared.  

B. Phase Contrast Analysis of the Particles 

In order to be able to distinguish the talc particles on the surface of the cellets particles, the 

phase and height results have been compared for coated cellets particles. We suppose that 

phase contrast results would give us different phase angles in the coated particles. The results 

of initial and coated cellets particles will be presented in this part. 

B.1. Phase Contrast Analysis of the Initial Cellets 90 and Cellets 200 Particles 

Figure IV.33 and IV.34 show the height, phase angle and amplitude images of an initial 

cellets 90 and cellets 200 particles.    

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.33. Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of Cellets 90 

Particle by AFM 

       
Height Phase Angle Amplitude 
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Figure IV.34. Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of Cellets 200 

Particle by AFM 
 

It was found that the phase angle values vary between -90° and 15° for cellets 90 and for 

cellets 200 particles the phase angle values are between -100° and 15° (table IV.4).   

It was observed that in the same section of images of height and phase angle, the variety is 

probably the reason of difference in height of the surface (surface roughness). It was also 

observed that the phase angle range of cellets 90 and cellets 200 particles are similar because 

basically they are the same material and only difference between them is the particle size 

distributions (table IV.4). 

B.2. Phase Contrast Analysis of the Talc Coated Cellets 90 and Cellets 200 Particles 

The results of phase angle, height and amplitude values of talc coated cellets 90 and cellets 

200 particles can be seen in the figure IV.35 and IV.36 for 1x1 µm² magnitude of imaging. 

 
 

 

 

 

 

 

 

 
Figure IV.35. Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of Cellets 90 

Coated with 9.6% Talc Particles by AFM 

Height Phase Angle Amplitude 

     

     

Height Phase Angle Amplitude 
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In the figure IV.35, some talc particles that are attached on the surface of the cellets 90 

particle can be seen. On the other hand, if we compare the phase angle and height results, we 

can see that, for the same section of the particle, the surface roughness seems stable but the 

phase angle gives different values between -30° and 40°, which is probably related to the 

existence of talc particles on the surface of cellets 90 particle. 

 
 

 

 

 

 

 

 

 
Figure IV.36. Height, Phase Angle and Amplitude Images of 1x1 µm² Surface of Cellets 200 

Coated with 3% Talc Particles by AFM 
 

In the figure IV.36, part of a talc particle on the PMMA surface can be easily recognized 

because of the slab morphology which is characteristic for talc particles. Also the phase angle 

scale is up to 45° which is much higher than cellets 200 scale (-100°<x<15°). The height and 

phase angle comparison has been done for 10 different particles with 5x5 µm² imaging 

magnitude. It can be seen from table IV.4, that for 9.6% talc coated cellets 90 particles the 

phase angle values are between - 95° and 65°, but on the other hand for 3% talc coated cellets 

200 particles the phase angle values are between -125° and 63°. 

 
Table IV.4. Phase Angle Values of Uncoated and Coated Particles (5x5 µm²) 

Material Phase Anglemin (°)  Phase Anglemax (°) 

Cellets 90 - 90 15 

Cellets 200 - 100 15 

Talc - 130 110 

Cellets 90 + 9.6% Talc - 95  65 

Cellets 200 + 3% Talc - 125  63 

 

     
Height Phase Angle Amplitude 
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It was observed that the phase angle range is higher for talc coated cellets 90 particles than 

talc coated cellets 200 particles because of probably higher mass percentage of talc particles 

(9.6%) for talc coated cellets 90 particles compared to talc coated (3%) cellets 200 particles.  

Moreover, the height and phase angle images of the particles have been analysed numerically 

in order to understand existence of talc particles on the surface of cellets 90 and cellets 200 

particles like it has been done for PMMA and talc particles (chapter III). The numerical 

results of height and phase angle global profiles of the particles (5x5 µm² - 10 images) have 

been taken and they have been converted into a graph of height versus phase angle values. 

Each image has 256 pixel resolutions so there are 256x256x10 points for the height and phase 

angle graphs of each sample. Figure IV.37 and IV.38 show the signature of initial cellets 90, 

cellets 200 and talc particles.  

 

    

 

 

 

It was observed that cellets 90 and cellets 200 particles have similar phase angle signatures 

which is not unexpected because they are the same material with different particle sizes. On 

the other hand, the height and phase angle profiles of 9.6% talc coated cellets 90 particles and 

3% talc coated cellets 200 particles with initial cellets 90, cellets 200 and talc particles can be 

seen in the figure IV.39 and IV.40. 

 

Figure IV.37. Height vs. Phase Angle  

Profiles for Initial Cellets 90  

and Talc Particles 

Figure IV.38. Height vs. Phase Angle  

Profiles for Initial Cellets 200  

and Talc Particles 
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It was observed that, 9.6 % talc coated cellets 90 particles have some higher phase angle 

values than initial cellets 90 particles, which is characteristic of talc particles (table.IV.4). It 

can be seen from the figure IV.39 that between -400 nm – 400 nm height ranges and 15° and 

65° and also between -95° and -90° phase angle of talc coated cellets 90 particles shows the 

existence of talc particles on the surface. On the other hand, it was observed that for talc 

coated cellets 200 particles there are also higher phase angle values than initial cellets 200 

particles, which corresponds to existence of talc particles on the surface. It was observed that 

there are less phase angle points which are higher than initial cellets signature for talc coated 

cellets 200 particles compared to talc coated cellets 90 particles. It is probably the reason of 

difference in the mass percentages of talc particles in the mixtures.       

C. Measurement of Adhesion Forces Between the Particles 

In the adhesion force analysis, talc particles have been glued by epoxy resin at the cantilever 

tip. It can be seen in the figure IV.41, before and after the adhesion force experiments the 

cantilever tip has been checked to make us sure the talc particles stay on the cantilever tip. 

 

Figure IV.39. Height vs. Phase Angle  

Profiles for Initial and Coated Cellets 90  

and Talc Particles 

Figure IV.40. Height vs. Phase Angle  

Profiles for Initial and Coated Cellets 200  

and Talc Particles 
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Figure IV.41. The Talc Particles on the Cantilever Tip Before and After the Analysis  

 
In this study, the adhesion forces between talc particles and the coated and uncoated cellets 

particles have been determined. Basically, cellets 90 and cellets 200 particles have the same 

chemical composition, they have similar phase contrast signatures and a large common 

surface roughness range. On the other hand, the AFM measurements are very local so the 

difference in particle size is not a factor that affects the adhesion force measurements. 

Moreover, the talc particles on the cantilever tip are very fragile so in order to eliminate their 

erosion and avoid the modification of the cantilever tip (geometry, spring constant etc.) the 

treatments have been limited with essential experiments. So, the measurements of adhesion 

forces between initial cellets and talc particles have been done just between cellets 90 and talc 

particles and the values have been used both for cellets 90 and cellets 200 particles. For each 

powder sample, around 600–700 adhesion force curves have been obtained by analysing 

minimum 15 particles and 6 different surfaces. In the figure IV.42, an example of an adhesion 

force between talc particles at the cantilever tip and a sample of cellets 90, and the adhesion 

force between the talc particles at the cantilever tip and a sample of talc can be seen. The 

force peak corresponds to pull-off movement of the cantilever tip from the sample.  

 

 

Figure IV.42. Adhesion Force Curves between Talc–Cellets 90 and Talc–Talc Particles 

Before After 

Talc – Cellets 90 

Talc – Talc 
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As it was presented in the chapter III, the adhesion forces between the talc particles vary 

between 5 nN and 220 nN with an average value of 55 nN. It was found that the average 

adhesion forces between talc and cellets 90 particles is 24 nN, the data range is between 0 nN 

and 190 nN. It was determined that 92.7% of the adhesion force values between talc and 

cellets 90 particles vary between 0–80 nN. The results show that the average adhesion force 

value between the talc particles is higher than the average adhesion force values between talc 

and cellets 90 particles. (table IV.5)   
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Figure IV.43. Distributions of Adhesion Forces between Talc, Cellets and Talc Coated 

Cellets Particles  

 
On the other hand, the average adhesion forces between talc and talc coated cellets 90 and 

cellets 200 particles has been determined (table IV.5). It was found that the average adhesion 

force of cellets particles increases after coating with talc particles as expected. It was observed 

that the 80.9% of the adhesion force values of initial cellets 90 particles are between 0–80 nN 

and it decreases to 76.5% for 3% talc coated cellets 200 particles and 72.9% for 9.6% talc 

coated cellets 90 particles (figure IV.43). At the end, we have obtained 28 nN average 

adhesion force value for 3% talc coated cellets 90 particles and 32 nN for 9.6% talc coated 

cellets 90 particles.   
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Table IV.5. Adhesion Force Values for Uncoated and Coated Particles  

Material Average Adhesion 
Force (nN) 

Standard Deviation 

Cellets 90 24 2.8 

Talc 55 5.2 

Cellets 90 + 9.6 % Talc 32 1.5 

Cellets 200 + 3 % Talc 28 2.9 

 

2.2.3. Calculation of Talc Particle Deposition on the Surface of the Coated Particles 

In this part of the study, the aim is to calculate the amount of talc particles on the surface of 

the cellets 90 and cellets 200 particles by using the model that has been used for calculation of 

adhesion forces between the fixed talc particles at the cantilever tip and different mass 

percentages talc coated PMMA particles. (Chapter III)  

As it has been described in the chapter III, the model enables us to calculate the mass fraction 

of the guest particles on the surface of the host particle if the adhesion forces between the 

coated particles and the fixed guest particle at the cantilever tip is known.  

In the AFM adhesion force measurement for each particle, 6 different surfaces have been 

chosen in order to have representative values as it was done for PMMA–talc model couple 

(chapter III). According to the average adhesion force values which have been obtained from 

each 6 different surfaces (an average of minimum 100 adhesion force values), the mass 

fraction of the talc particles for each particle has been calculated.    

The adhesion force between the talc and cellets (F0) has been taken as 24 nN, and the 

adhesion force between the talc particles (F1) has been taken as 55 nN which are the measured 

average adhesion force values by AFM. Table IV.6 shows an example of the calculation of 

the mass fraction of talc particles according to the adhesion force between the fixed talc 

particles at the cantilever tip and each chosen surface of a 9.6 % talc coated cellets 90 particle.  

According to the table IV.6, it can be seen that the talc particles are not homogeneously 

distributed on the surface of the cellets 90 particles. It was also observed that the calculated 

talc percentage values are lower than 9.6%, which is the introduced mass percentage of talc 

particles in the mixture. The same study has been done for 15 different talc coated cellets 90 

particles, it was calculated that the mass percentage of talc particles vary between 4.4 % and 
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9.2 % with an average of 7.8% talc particles. The non-analyzed zones on the cellets surface 

and agglomeration of talc particles (multilayer) could be possible reasons for this result. 

  
Table IV.6. Calculated Amount of the Talc Particles on a 9.6 % Coated Cellets 90 Particle 

Surface Number Measured Average 
Adhesion Forces (nN) 

Real Mass Fraction of 
Talc Particles 

1st  33.2 8.9 %  

2nd  29.1 5.2 %  

3rd 30.3 6.3 %  

4th 32.5 8.3 %  

5th 31.6 7.5 %  

6th 29.8 5.8 %  

Total Surface 31.1 7 %  

 
The amount of talc particle deposition on the cellets 200 particles has also been calculated. 

Table IV.7 shows the results of an example of measured adhesion force for each surface zone 

of the talc coated cellets 200 particle and mass fraction of talc particles for a 3 % talc coated 

cellets 200 particle can be seen.    
 
 Table IV.7. Calculated Amount of the Talc Particles on a 3 % Coated Cellets 200 Particle 

Surface Number Measured Average 
Adhesion Forces (nN) 

Real Mass Fraction of 
Talc Particles 

1st  31.4 2.5 %  

2nd  27.9 2 %  

3rd 28.1 1.4 %  

4th 30.1 2.1 %  

5th 28.4 1.4 %  

6th 29.8 2 %  

Total Surface 29.3 1.9 %  

 
It was observed that for all 6 surface zones the calculated amount of talc is less than 3%. The 

same study has also been done for 15 representative talc coated cellets 200 particles. It was 

found that the range of calculated mass percentage of talc particles is between 0.4% and 2.4%. 
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The non analyzed zones of the particles could be one of the reasons and also analysing more 

particles would give us more reliable results.    

2.2.4. Calculation of the Van der Waals Forces Between the Particles 

The objective of this part is to have a rough estimation of effect of host particle size on Van 

der Waals forces between the particles in order to understand the initial affinity of the 

particles.  It is known that the surface roughness may have an important effect on the Van der 

Waals forces between the particles that we have chosen but in this preliminary estimation it 

won’t be taken into account.  

For an approximate calculation, the Hamaker constant for Cellets (90&200) has been taken 

from the literature as the Hamaker constant of microcrystalline cellulose as shown in        

table IV.12 and put inside the equation of the microscopic calculation for 2 spherical particles 

from table I.1 (chapter I).  

It can be seen the calculated Fvdw values for each powder couple in table IV.8. For all 

calculations it is assumed that the particles are spherical and rigid and also the distance 

between the particles is much smaller than the particle diameter.  

 
Table IV.8.The Fvdw Between Cellets (90&200) Particles & Cellets (90&200)–Talc Couples 

Powder Couples Hamaker Constants  
(10-19J) 

Estimated Fvdw  
(10-7 N) 

Cellets 90 with Cellets 90 1,12 3 

Cellets 200 with Cellets 200 1,12 9 

Talc with Talc 0,84 3 

Cellets 90 with Talc 0,97 62 

Cellets 200 with Talc 0,97 68 

 
 
These estimated Van der Waals forces give some interesting trends. The adhesion between 

Cellets–Talc is greater than between the host particles and between the guest particles. Hence 

the dry coating process is helped by the initial adhesion properties of the chosen powders. It is 

also observed that the adhesion between Cellets–Talc is increasing with increasing size of the 

cellets diameter (expected from the equation for microscopic calculation of Fvdw between 2 

spherical particles), more precisely with the increase of the size ratio of host particle and guest 

particle. The link between the initial “affinity” and the “mechanical coating strength” is not 
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straightforward. Actually the process action and the elastic–ductile properties of the materials 

must also play an important role and are still not taken into account. Nevertheless, in this 

simplified approach there is a link between the coating strength and the size of the host 

particle for all the studied processes.   

2.2.5. Characterization of Coating Strength of the Particles 

In this part of the study, the aim is to understand the effect of host particle size on the coating 

strength of the particles. In the first part, the coating strength results of 9.6 % talc coated 

cellets 90 and 3 % talc coated cellets 200 particles are compared. Afterwards, the coating 

strength results of the talc coated cellets particles from different equipments have been 

compared to understand the effect of equipment on the coating strength properties of the 

particles. The method used to evaluate the strength of the coating on the host particles is 

based on particle size analysis by Malvern Mastersizer laser diffraction granulometer in dry 

feed mode. Increasing the dispersing air pressure causes liberation of the guest particles from 

the surface of the host particles, and this liberation is detected by following the number size 

distribution. 
 

A. Coating Strength of the Particles in Hybridizer Trials 

Here the coating strength of the monolayer talc coated cellets 90 and cellets 200 particles in 

hybridizer are compared. The volume and number particle size distributions of talc coated 

cellets 90 particles can be seen in the figure IV.44 and IV.45. It was observed that from 0.5 

bars to 2.5 bars pressure, the coated particles have the same particle size distributions with the 

initial cellets 90 particles. 
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Figure IV.44. Volume Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Hybridizer 

Figure IV.45. Number Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Hybridizer 
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On the other hand, it can be seen that when the dispersing pressure increases to 3.5 bars, there 

is a fine population of talc coated cellets 90 particles. It can be also observed from the     

figure IV.46 that at 4.0 bars pressure the volume of fine particle population is increasing 

compared to 3.5 bars pressure. It is also easy to distinguish these fine particle populations in 

number particle size distributions of the particles as shown in the figure IV.47.   

 
 

 

 

 

 

 

 

 

 

 

 

Volume and number particle size distributions of talc coated cellets 200 particles at 0.5, 1.5, 

2.5 and 3.5 bars are presented in the figure IV.48 and IV.49. It can be seen that up to 3.5 bars 

pressure, there is no particle liberation because of the strong interactions between the 

particles.  
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Figure IV.46. Volume Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Hybridizer 

Figure IV.47. Number Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Hybridizer 
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Figure IV.48. Volume Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Hybridizer 

Figure IV.49. Number Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Hybridizer 
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It was observed that at 4.0 bars pressure (maximum particle liberation pressure of the 

mastersizer), there is a fine population of particles around 15 µm in the volume particle size 

distribution (fig.IV.50 and IV.51). This corresponds to the shift of the number particle size 

distribution of talc coated cellets 200 particles to the smaller particle size. It shows that the 

particle liberation pressure for talc coated cellets 200 particles is between 3.5 and 4.0 bars 

pressures.  

 

 

 

 

 

 

 

 

 

 

 

 
The particle liberation pressure of talc coated cellets 90 and cellets 200 particles are presented 

more precisely in the figure IV.52. It was found that at 3.4 bar pressure, talc coated cellets 90 

particles start to be liberated (or broken) and move to the distribution of alone talc particles 

which is around 1 µm. This indicates that cellets 90 coated with 9.6% talc particles by 

hybridizer remain coated until 3.4 bar pressure. On the other hand, the results of cellets 200 

particles with 3% talc particle couple show that up to 3.8 bar dispersing pressure the particle 

size distributions are similar and are around 305 µm. At 3.9 bar pressure the particle size 

distribution of the particle couple comes closer to the distribution of talc particles. This 

indicates that particle detachment (or fragmentation) for cellets 200 with 3% talc particles 

starts at 3.9 bar dispersing pressure. 
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Figure IV.50. Volume Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Hybridizer 

Figure IV.51. Number Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Hybridizer 
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Figure IV.52. Number Particle Size Mean vs. Dispersing Pressure  

For Talc Coated and Initial Cellets 90 and Cellets 200 Particles in Hybridizer 

 
It can be seen that the dispersing air pressure for particle liberation is higher for talc coated 

cellets 200 particles compared to talc coated cellets 90 particles (Table IV.9). This is probably 

related to the particle size ratio between the host and guest particles which has an important 

role for inter-particular forces. On the other hand, it should be considered that both particle 

detachment and fragmentation may cause decrease in the particle size distribution of the 

particles.   

 
Table IV.9. Dispersing Pressures and Air Velocities for Particle Detachment for Talc Coated 

Cellets 90 and Cellets 200 Particles in Hybridizer 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Cellets 90 + 9.6% Talc 7.1 3.4 bar 118 m/s 

Cellets 200 + 3% Talc  21.8 3.9 bar 124 m/s 

 
B. Coating Strength of the Particles in Cyclomix Trials 

The coating strength properties of the monolayer talc coated cellets 90 and cellets 200 

particles in cyclomix has also been studied. Figure IV.53 and IV.54 show the volume and 

number particle size distributions of coated and uncoated cellets 90 particles for 0.5, 1.5 and 

2.5 bars air dispersing pressures.  
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It was observed that up to 2.5 bars dispersing pressure 9.6% talc coated cellets 90 particles 

keep their particle size distribution. At 3.5 bars dispersing pressure it can be seen that some of 

the talc coated cellets 90 particles are smaller so the particle liberation pressure for coated 

cellets 90 particles in cyclomix is between 2.5 and 3.5 bars (figure IV.55 and IV.56).  

 

 

 

 

 

 

 

 

 

 

 

The same study has also been done for 3% talc coated cellets 200 particles in cyclomix. It can 

be seen that until 2.5 bars dispersing pressure talc coated cellets 200 particles also keep their 

particle size distributions like coated cellets 90 particles. (fig. IV.57 & IV.58)  
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Figure IV.55. Volume Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Cyclomix 

Figure IV.56. Number Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Cyclomix 
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Figure IV.53. Volume Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Cyclomix 

Figure IV.54. Number Particle Size Distribution 

of 9.6 % Talc Coated Cellets 90 Particles in 

Cyclomix 
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On the other hand, whenever the dispersing air pressure increases to 3.5 bar pressure, it can be 

see in the figure IV.59 and IV.60 there is a fine population of coated cellets 200 particles. 

This shows us that the particle liberation (or fragmentation) pressure for coated cellets 200 

particles is also between 2.5 and 3.5 bars pressures. 
 
 

 

 

 

 

 

 

 

 

 

 

Afterwards, the particle size distributions of coated cellets 90 and cellets 200 particles in 

cyclomix have been analysed for each dispersing pressure between 2.5 and 3.5 bars in order 

to find the particle liberation pressures more precisely. It was found that the particle liberation 

(or fragmentation) pressure for 9.6 % talc coated cellets 90 particles in cyclomix is 2.9 bars 

and for 3 % talc coated cellets 200 particles the particle liberation pressure is 3.4 bars        

(fig. IV.61).  
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Figure IV.57. Volume Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Cyclomix 

Figure IV.58. Number Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Cyclomix 

Figure IV.59. Volume Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Cyclomix 

Figure IV.60. Number Particle Size Distribution 

of 3 % Talc Coated Cellets 200 Particles in 

Cyclomix 
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Figure IV.61. Number Particle Size Mean vs. Dispersing Pressure  

For Talc Coated and Initial Cellets 90 and Cellets 200 Particles in Cyclomix 

 
As it can be seen from the table IV.10 that the air pressure required for dispersion increases 

with increasing particle size ratio between the host and guest particles for cyclomix trials as it 

was observed for the hybridizer trials. The size ratio between the host and guest particles has 

effect on the inter–particular forces between the particles. In addition, it should be taken in 

account that the difference in particle size distribution could also be due to particle breakage.  

   
Table IV.10. Dispersing Pressures and Air Velocities for Particle Detachment for Talc 

Coated Cellets 90 and Cellets 200 Particles in Cyclomix 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Cellets 90 + 9.6% Talc 7.1 2.9 bar 109 m/s 

Cellets 200 + 3% Talc  21.8 3.4 bar 118 m/s 

 

C. Coating Strength of the Particles in Turbula Trials 

The volume and number particle size distributions of pre-treated cellets 90 particles (in 

hybridizer at 4000 rpm for 6 min) and then coated with talc particles by turbula at 0.5 and 1.5 

bars dispersing pressures can be seen in the figure IV.62 and IV.63. It was observed that 

coated cellets 90 particles keep their particle size distribution at 0.5 bars but at 1.5 bars 

dispersing pressure there is a fine particle population. It shows that particle liberation (or 

breakage) pressure for talc coated cellets 90 particles by turbula is between 0.5 and 1.5 bar 

dispersing pressures.       
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Figure IV.64 and IV.65 show the volume and number particle size distributions of coated 

cellets 90 particles at 1.5, 2.5 and 3.5 bars dispersing pressures. It can be seen that the volume 

of fine particle population increases with increasing dispersing pressure. On the other hand, it 

can be seen that at 2.5 and 3.5 bars dispersing pressures, the coated cellets 90 particles has the 

same number particle size distributions with initial talc particles.     

 

 
 

 

 

 

 

 

 

 

 

 
 
The coating strength analysis has also been done for pre-treated cellets 200 particles (in 

hybridizer at 4000 rpm for 6 min) and then coated with 3% talc particles by turbula. It can be 

seen that up to 1.5 bars dispersing pressure, the coated cellets 200 particles have the same 

particle size distribution with the initial cellets 200 particles. (fig. IV.66, IV.67.)   
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Figure IV.64. Volume Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles in Turbula 

Figure IV.65. Number Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles in Turbula 

0

2

4

6

8

10

12

14

16

18

20

22

24

0,1 1 10 100 1000
Particle Size (µm)

V
o

lu
m

e
 (

%
) 

  
  

  
  

  
  

  
  

  
  

  
  

  
 .

Cellets 90 HYB + 9.6 % Talc at 0,5 bar

Cellets 90 HYB + 9.6 % Talc at 1,5 

Cellets 90 Initial

Talc Initial

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0,1 1 10 100 1000

Particle Size (µm)

N
u

m
b

er
 (

%
) 

  
  

  
  

  
  

  
  

  
  

  
  

  
.

Cellets 90 HYB + 9.6% Talc at 0,5 bar
Cellets 90 HYB + 9.6% Talc at 1,5 bar
Cellets 90 Initial
Talc Initial

 
Figure IV.62. Volume Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles in Turbula 

Figure IV.63. Number Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles in Turbula 
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On the other hand, it was observed that the particle size distribution decreases at 2.5 bars 

dispersing pressure. This shows that the particle liberation (or fragmentation) pressure for 

coated cellets 200 particles is between 1.5 and 2.5 bars dispersing pressures. In addition, the 

volume of the fine particle population increases when the dispersing pressure increases to 3.5 

bar pressure (fig. IV.68 and IV.69).  

 

 

 

 

 

 

 

 

 

 

 
Figure IV.70 shows the particle size distributions of coated cellets 90 and cellets 200 particles 

precisely. It was found that the particle liberation pressure is 1.2 bars for coated cellets 90 

particles and 1.8 bars for coated cellets 200 particles.  
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Figure IV.66. Volume Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles in Turbula 

Figure IV.67. Number Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles in Turbula 
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Figure IV.68. Volume Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles in Turbula 

Figure IV.69. Number Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles in Turbula 
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Figure IV.70. Number Particle Size Mean vs. Dispersing Pressure  

For Talc Coated and Initial Cellets 90 and Cellets 200 Particles in Turbula 
 
Table IV.11 shows the particle liberation pressures and corresponding air velocities for coated 

cellets 90 and cellets 200 particles more precisely. It was observed that particle liberation (or 

fragmentation) pressure is higher for coated cellets 200 particles compared to coated       

cellets 90 particles also in turbula trials. On the other hand, the particle breakage should also 

be considered as a reason of particle size decrease.   

 
Table IV.11. Dispersing Pressures and Air Velocities for Particle Detachment for Talc 

Coated Pre-treated Cellets 90 and Cellets 200 Particles by Turbula 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Pre-Treated Cellets 90  

+ 9.6% Talc 

7.1 1.2 bar 60 m/s 

Pre-Treated Cellets 200  

+ 3% Talc  

21.8 1.8 bar 81 m/s 

 

D. Coating Strength of the Particles in Basic Mixing Trials 

The coating strength analysis has also been done for the coated cellets 90 and cellets 200 

particles by basic mixing method. The volume and number particle size distributions of 

coated cellets 90 particles at 0.5 and 1.5 bars dispersing pressures can be seen in the figure 

IV.71 and IV.72. It can be seen that the coated cellets 90 particles keep their particle size 

distribution at 0.5 bars dispersing pressure but at 1.5 bars there is particle detachment (or 
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breakage). It shows that the particle liberation pressure is between 0.5 and 1.5 bars for coated 

cellets 90 particles by basic mixing method. 

 

  

 

 

 

 

 

 

 

 
 
Figure IV.73 and IV.74 show the particle size distributions of coated cellets 90 particles at 

higher dispersing pressures. It was observed that the volume of fine particle population, which 

has almost the same particle size with initial talc particles, increases at higher dispersing 

pressures as expected.    
 
 
 

 

 

 

 

 

 

 

 

 

The volume and number particle size distributions of coated cellets 200 particles at 0.5 and 

1.5 bars dispersing pressures are shown in figure IV.75 and IV.76. It was observed that the 
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Figure IV.71. Volume Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles by Basic Mixing Method 

Figure IV.72. Number Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles by Basic Mixing Method 
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Figure IV.73. Volume Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles by Basic Mixing Method 

Figure IV.74. Number Particle Size Distribution 

of 9.6 % Talc Coated Pre-treated Cellets 90 

Particles by Basic Mixing Method 
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particle liberation pressure for coated cellets 200 particles is also between 0.5 and 1.5 bars 

dispersing pressures. 

 
 

 

 

 

 

 

 

 

 

 

 
 
At 2.5 and 3.5 bars dispersing pressures, the fine particle population increases also for the 

coated cellets 200 particles. (fig.IV.77 and IV.78). Contrary to the results of coated cellets 90 

particles by basic mixing method, the fine particles of coated cellets 200 particles by basic 

mixing method have higher number particle sizes than initial talc particles.    
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Figure IV.75. Volume Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles by Basic Mixing Method 

Figure IV.76. Number Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles by Basic Mixing Method 
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Figure IV.77. Volume Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles by Basic Mixing Method 

Figure IV.78. Number Particle Size Distribution 

of 3 % Talc Coated Pre-treated Cellets 200 

Particles by Basic Mixing Method 
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It was found that, the particle liberation (or fragmentation) pressure is 0.7 bar for coated 

cellets 90 particles and 1.1 bars for coated cellets 200 particles by basic mixing method. 

(fig.IV.79) 
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Figure IV.79. Number Particle Size Mean vs. Dispersing Pressure  

For Talc Coated and Initial Cellets 90 and Cellets 200 Particles by Basic Mixing Method 

 
Table IV.12 shows the particle liberation pressures and corresponding air velocities for coated 

cellets 90 and cellets 200 particles by basic mixing method. It was observed that particle 

liberation (or breakage) pressure increases with increasing size ratio between the host and 

guest particles as expected. The particle breakage with increasing dispersing pressures should 

also be considered like in hybridizer and cyclomix trials. 

 
Table IV.12. Dispersing Pressures and Air Velocities for Particle Detachment for Talc 

Coated Pre-treated Cellets 90 and Cellets 200 Particles by Basic Mixing Method 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Pre-Treated Cellets 90  

+ 9.6% Talc 

7.1 0.7 bar 40 m/s 

Pre-Treated Cellets 200  

+ 3% Talc  

21.8 1.1 bar 56 m/s 

 

In addition, it was observed that cellets 90 particles coated by the basic mixing method and in 

turbula trials have the same number particle size distributions with initial talc particles at 2.5 
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and 3.5 bar pressures. For hybridizer and cyclomix trials the coated particles never had the 

same number particle size distributions with initial talc particles. This difference probably 

shows the effect of the equipment on the coating strength of the particles. Figure IV.80 shows 

the particle liberation pressures of coated cellets 90 and cellets 200 particles in different 

equipments to the simple calculation of kinetic energy per mass values of the equipments.  

 

 

Figure IV.80. Particle Liberation Pressures for Coated Cellets 90 and Cellets 200 Particles in 

Different Equipments 

 
The linear velocities (m/s) of the equipments from have been calculated by putting the 

rotational velocities (tours/second) in the equation III.9. Then, the kinetic energy per mass 

values have been calculated for each equipment by putting the calculated linear velocity 

values in the equation III.10.   

It was observed that the coating strength between the cellets 200 and talc particles is stronger 

than the coating strength between the cellets 90 and talc particles for all the cases. It would be 

related to the difference in inter-particular forces between talc-cellets 90 and talc-cellets 200 

particles. On the other hand, it can be seen that the particle liberation pressures are higher for 

the particles that were treated in high force mixers (hybridizer and cyclomix) compared to 

coated particles in turbula and basic mixing method since the high force mixers apply 

mechanical forces on the particles which causes strong interactions between the particles.       

2.2.6. Characterizations of the Hydrophilic Properties of The Particles  

In this part of the study, it is aimed to understand the effect of talc coating, which is a 

hydrophobic material, on the water affinity of the cellets 90 and cellets 200 particles. In order 

to understand the modification of the water affinity of the coated cellets 90 and cellets 200, 
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particles have been characterized before and after coating trials by different methods. Contact 

angle measurements with sessile drop technique (chapter II) was used for characterization of 

wettability property of the particles and dynamic vapour sorption (DVS) (chapter II) 

measurement have been realized in order to understand the water vapour adsorption and 

desorption behaviour of the particles.      

 
A. Characterization of the Wettability of the Particles  

The contact angle measurements have been done before and after coating of the particles in 

order to understand the effect of coating on the wettability of the particles. Figure IV.81 

shows the contact angle measurements of individually treated and talc coated cellets 90 

particles in hybridizer. It can be seen that the water droplet, on the treated (in hybridizer at 

4000 rpm for 6 minutes) cellets 90 particles, almost disappears just after 3 seconds. On the 

other hand, it was observed that the water droplet keeps the initial contact angle even after 30 

seconds on the 9.6% talc coated cellets 90 particles.   

 

                                

                                                           

Figure IV.81. Contact Angle Measurements of (A) Individually Treated Cellets 90 Particles 

(B) Talc Coated Cellets 90 Particles in Hybridizer 

 
Figure IV.82 shows the contact angle measurement of individually treated and talc coated 

cellets 200 particles in hybridizer. It can be seen that 5 seconds after putting the water droplet 

on the surface of the treated cellets 200 particles in hybridizer, the powder bed absorbs the 

water droplet. On the other hand, for 3% talc coated cellets 200 particles in hybridizer, the 

water droplet still stays on the surface of the powder bad after 30 seconds. The rest of the 

images of contact angle measurements for talc coated cellets 90 and cellets 200 particles in 

different dry coating equipments are presented in appendix VIII.  

 

3 seconds after 

30 seconds after 

(A) 

(B) 
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Figure IV.82. Contact Angle Measurements of (A) Individually Treated Cellets 200 Particles 

(B) Talc Coated Cellets 200 Particles in Hybridizer 

 
The contact angle measurements have been done 3 times for each powder sample and at the 

end, the average contact angle values for uncoated and coated particles were found  

(Appendix VIII). It was observed that the average contact angle for individually treated cellets 

90 particles in hybridizer is 53.4° and it increases to 62.7° after coating them with talc 

particles in hybridizer. Cellets 200 particles show the same characteristic that is the increase 

in contact angle after coating with talc particles. The results show that the coating of cellets 

particle with talc particles decreases the wettability of the particles because of the 

hydrophobic nature of talc. 

 
B. Characterization of the Particles by Dynamic Vapour Sorption Method 

Dynamic vapour sorption method (DVS) has been used in order to understand the affinity of 

water vapour adsorption/desorption characteristics of the particles. In DVS measurements, the 

dry powder samples (around 100 mg) are equilibrated at 0% relative humidity to remove any 

surface adsorbed vapour and to establish a dry mass baseline. Afterwards, the isotherms were 

measured at 25°C by increasing/decreasing the relative humidity by 10% between 0% and 

90% relative humidity. (Chapter II)  

Figure IV.83, IV.84 and IV.85 show the adsorption/desorption isotherms of initial cellets 90, 

cellets 200 and talc particles.  
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Figure IV.85. Water Vapour Adsorption/Desorption Isotherm of Talc Particles (at 25°C) 

 
It was observed that the amount of water uptake for the cellets 90 and cellets 200 particles are 

different, which is probably reason of the difference in the total surface area. It shows that the 

same material with different particle size distributions may have different surface properties. 

It was also observed that the water uptake increases linearly with increasing relative humidity 

for cellets (90 & 200) and talc particles. It can be seen that the cellets 90 particles adsorbs 

12% water vapour and cellets 200 particles adsorbs 8.5% water vapour at 90% relative 

humidity. On the other hand, it can be observed from figure IV.85 that the talc particles 

adsorb just 0.3% water vapour. It can be also seen that the both cellets (90&200) and talc 

particles releases all the water vapour that they hold at 0% relative humidity.   
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Figure IV.83. Water Vapour 

Adsorption/Desorption Isotherm  

of Initial Cellets 90 Particles (at 25°C) 

Figure IV.84. Water Vapour 

Adsorption/Desorption Isotherm  

of Initial Cellets 200 Particles (at 25°C) 
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Figure IV.86 and IV.87 shows water vapour adsorption of the coated cellets 90 and        

cellets 200 particles in different dry coating equipments. It was observed that the water 

vapour adsorption percentage of cellets 90 particles decreases 21% (from 12% to 9.5%) after 

coating with talc particles in hybridizer. It can be also seen that the talc coated cellets 90 

particles in cyclomix, turbula and by basic mixing method have similar water adsorption 

percentage (8.3%–8.5%) which is 30% less than water vapour adsorption percentage of initial 

cellets 90 particles. It shows that the coating with talc particles decreased the affinity of water 

vapour adsorption of cellets 90 particles. On the other hand, it wasn’t observed a significant 

difference between the results of water vapour adsorption percentages of initial and coated 

cellets 200 particles. It was also observed that the water vapour adsorption percentage of 

coated cellets 90 and cellets 200 particles are higher than water vapour adsorption percentage 

of talc particles, since in all different dry coating trials, it has been obtained discrete type of 

coating so that the water vapour may penetrate the talc coating and reach the cellets particle.     

 
 
 

 

 

 

 

 

 

 

 

 
      
As a perspective, it would be also interesting to study the water vapour adsorption kinetics of 

the particles, in different relative humidity, before and after coating in order to understand the 

effect of coating on the water vapour adsorption kinetics of the particles.    
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Figure IV.86. Water Vapour Adsorption Isotherm 

of Initial and  Talc Coated Cellets 90 Particles (at 

25°C)  

Figure IV.87. Water Vapour Adsorption Isotherm 

of Initial and  Talc Coated Cellets 200 Particles (at 

25°C)  
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2.3. Conclusions 

The effect of the host particle size on the end–use properties of the coated particles has been 

studied. The initial host particles (cellets 90 and cellets 200) have been treated individually in 

hybridizer and cyclomix. At the end of the preliminary study, the operating conditions of the 

dry coating trials have been determined by considering no particle fragmentation at the 

chosen operating velocities. 

Different characterization methods have been used before and after coating the particles. 

Environmental Scanning Electron Microscopy (ESEM) has been used for morphological 

analysis of the particles. It was observed that there are some talc agglomerates in the turbula 

and basic mixing trials compared to trials in high force mixers (hybridizer & cyclomix). It 

shows that the generated mechanical energy is not sufficient to break the talc agglomerates in 

turbula and basic mixing trials. On the other hand, it was also observed that the talc particles 

are embedded in hybridizer and cyclomix trials because of the generated high mechanical 

energy but in turbula and basic mixing trials the talc particles are more like weakly attached 

on the surface of the host particles. In addition, the chemical composition analysis of the 

coated particles has been done by using ESEM equipped with Energy Dispersive 

Spectrometer (EDS). It was observed that, at the end of dry coating of cellets particles we 

have obtained discrete type of coating for each dry coating trial with different equipments.  

The topographical analysis of the particles has been done before and after coating by using an 

AFM. It was observed that the average surface roughness is higher for cellets 90 particles 

compared to cellets 200 particles. It was also found that the surface roughness of cellets 90 

and cellets 200 particles decreases after coating with talc particles. Filling up or closing of the 

holes and valleys on the surface of the cellets particles by talc particles could be a possible 

reason of decrease in surface roughness of cellets particles after coating with talc particles.  

The phase angle results of cellets 90 and cellets 200 particles show that both cellets 90 and 

cellets 200 particles have similar phase angle signature because the only difference between 

them is the size of the particles. Moreover, it was observed that coating of cellets particles  

(90 & 200) with talc causes increase in the phase angle values which shows us the existence 

of talc particles on the surface since the signature of talc particles have higher phase angle 

values than cellets particles. On the other hand, the comparison of phase angle values show 

that the talc coated cellets 90 particles have more phase angle points in the higher phase angle 

range than initial cellets particles compared to talc coated cellets 200 particles. It is probably 
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the reason of coating with higher mass percentage of talc particles (9.6 %) for cellets 90 

particles than talc coated cellets 200 particles (3%).    

The adhesion forces between the particles have been measured by using AFM with contact 

mode. It was found that the average adhesion force between the talc particles is higher than 

the average adhesion force between talc and cellets particles. On the other hand, it was 

observed that the average adhesion force between cellets and talc particles increases for talc 

coated cellets particles as expected. The adhesion force model allowed us to calculate the talc 

particle deposition on the cellets 90 and cellets 200 particles by using the obtained adhesion 

force values from AFM measurements. It was found that the calculated amount of talc 

percentage on the surface of cellets particles are less than introduced amounts. The 

agglomeration of talc particles and non – analyzed surface zones of the particles could be 

possible reasons. AFM measurements with more particles would give more reliable results.  

The Malvern Mastersizer laser diffraction granulometer have been used to study the coating 

strength of the particles. It was found that for all the dry coating trials with different 

equipments the coating strength between cellets 200 and talc particles are stronger than the 

coating strength between the cellets 90 and talc particles. It shows that the increasing size 

ratio between the host and guest particles increases the coating strength between the particles. 

In addition, it should be remembered that the decrease in particles size could be either particle 

detachment or breakage.   

The hydrophilic properties of the particles before and after coating have been studied by 

contact angle and dynamic vapour sorption (DVS) measurements. The results of contact angle 

measurements show that coating of cellets particles (90 & 200) with talc particles increases 

the contact angle values which means that the wettability of the coated particles are less 

compared to the initial state. As an example, it was found that the contact angle value of 

individually treated cellets 90 particles in hybridizer is 53.4° and it is increased to 62.7° after 

coating with talc particles in hybridizer.  

The DVS measurements showed that the water affinity of the cellets 90 particles decreases 

after coating with talc particles. It was found that at 90% relative humidity, the water vapour 

adsorption value is 12% for initial cellets 90 particles which decreases 21% after coating with 

talc particle in hybridizer and it decreases 30% for talc coated cellets 90 particles in cyclomix, 

turbula and by basic mixing methods. On the other hand, it was observed that there is no 
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significant difference between the results of water vapour adsorption percentage of initial and 

coated cellets 200 particles.   

At the end, it was seen that the dry coating of particles can be done by using high shear 

mixers or even by simple stirring of the particles. It was observed that the particle size ratio is 

an important parameter that affects the coating strength proportionally, but also it should be 

remembered that, there are many other factors (viscoelastic properties, surface roughness, 

surface free energy etc.) that should be considered for analysing coating strength.      
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3. EFFECT OF GUEST PARTICLE SIZE ON THE END – USE PROPERTIES OF 

THE DRY COATED PARTICLES 

In the second part of the study, in order to understand the effect of guest particle size on the 

end–use properties of the particles, Cellets 200 (d[4;3]v:305 µm) particles have been coated 

with 2 different particle size distributions of talc particles (d[4;3]v:14 µm and d[4;3]v:4 µm) 

by different dry particle coating equipments. In the first part, cellets 200 particles have 

already been coated with the talc particles that have 14 µm volume mean diameter. In order to 

obtain talc particles with smaller size, the particles have been treated individually in 

hybridizer at 16000 rpm operating velocity (maximum operating velocity) for 6 minutes. At 

the end, we have obtained talc particles (talc 16000) that have 4 µm volume mean diameter. 

The cellets 200 particles have been coated with talc 16000 particles (d[4;3]v:4 µm) and the 

results have been compared with the talc (d[4;3]v:14 µm) coated cellets 200 particles. 

The preliminary study of the initial Cellets 200 particles has already been done in the first part 

of the study so in this part the same operating conditions have been used. 

The theoretical monolayer coating percentage in hexagonal packing has also been calculated 

for cellets 200 with talc 16000 particles and the dry coating trials have been realized in 

different equipments.  

3.1. Dry Coating of Cellets 200 Particles with Talc and Talc 16000 

The monolayer coating percentage in hexagonal packing of the cellets 200 with different 

particle size distributions of talc particles have been calculated (Appendix II). It was found 

that, for cellets 200 with talc particles the monolayer coating percentage is 3 % and for cellets 

200 with talc 16000 particles the monolayer coating percentage becomes 1.6%. The operating 

conditions of the dry coating trials can be seen in the table IV.13.       

In Turbula trials, cellets 200 particles were pre-treated in hybridizer at 4000 rpm rotational 

velocity. Afterwards, the pre-treated Cellets 200 particles have been treated with talc and talc 

16000 particles inside a 1lt container (30 g) at 96 rpm operating velocity for 6 minutes by 

turbula. 

The cellets 200 with talc and talc 16000 particles have also been coated by basic mixing 

method. In basic mixing, cellets 200 particles are also pre-treated in hybridizer at 4000 rpm 

operating velocity and then mixed with guest particles by shaking them by hand as it was 

done in the first part of the study.  
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Table IV.13. Operating Conditions of Dry Coating Treatments 

 
Host 

Particles 

 
Guest 

Particles 

 
Equipment 

Operating 
Velocity 
(rpm) 

Operating 
Time 
(min) 

 Mass 
% of 
Guest 

Particles 

Batch 
Size  
(g) 

Cooling 
Jacket 
(°C) 

 

Talc 

 

3 % 

 

Cellets 

200 Talc 

16000 

 

 

Hybridizer 

 

 

4000 

 

 

6  

1.6 % 

 

 

30 

 

 

13 

 

Talc 

 

3 % 

 

Cellets 

200 Talc 

16000 

 

 

Cyclomix 

 

 

1600 

 

 

6  

1.6 % 

 

 

500 

 

 

13 

 

Talc 

 

3 % 

  

PreManip. 

Cellets200 Talc 

16000 

 

 

Turbula 

 

 

96 

 

 

6  

1.6 % 

 

 

30 

 

 

none 

 

In order to have the morphological analysis of the particles, the ESEM has been used before 

and after coating of the particles. The coating strength of the particles has been studied by 

using Malvern Mastersizer laser diffraction granulometer. In order to understand the effect of 

guest particle size on the coating strength of the particles, the results of the granulometer for 

coated cellets 200 particles with different particle size of talc particles have been compared 

with each other.    

3.1.1. Characterization of Surface Morphology of the Particles 

The figure IV.88 shows the ESEM images of coated cellets 200 particles with different 

particle size of talc particles in different dry coating equipments. It was observed that there is 

no particle breakage after dry coating treatments in any equipment. It can be seen that the talc 

particles on the surface of cellets 200 particles are more distinctive than talc 16000 particles 

on the cellets 200 particles because of their higher particle size distribution compared to talc 

16000 particles and also higher mass percentage in the mixture. On the other hand, it was also 

observed that there are more talc agglomerates in the mixture in turbula trials than hybridizer 
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and cyclomix trials probably reason of the mechanical energy that the equipment applies on 

the particles in dry coating process. 

 

       
 

       
(a) Hybridizer       (b) Cyclomix   (c) Turbula 

Figure IV.88. Surface Morphology of Coated Cellets 200 Particles with Talc and Talc 16000 

Particles in Different Equipments 
 

The visual analysis has been also done for the coated particles by basic mixing method. It can 

be seen that there are talc agglomerates on the surface of the cellets 200 particles                

(fig. IV.89 a & b). It was also observed that the talc particles are just attached on the surface 

of the cellets particles because of the inter-particular forces between the particles.  
 

                             

(a) Cellets 200 coated with Talc Particles   (b) Cellets 200 coated with Talc 16000 Particles 

Figure IV.89. Surface Morphology of Coated Cellets 200 Particles with Talc and Talc 16000 

Particles by Basic Mixing Method 

Cellets 200 + 1.6 % Talc 16000 

Cellets 200 + 3 % Talc 
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The SEM/EDS was also used to analyse the chemical composition of the surface of the coated 

particles. Figure IV.89 shows the SEM/EDS results of a talc coated cellets 200 particle in 

cyclomix. It can be seen that, in some regions we have the components of talc particles 

(silicon and magnesium) but in some regions we don’t have these components. It shows that 

we have obtained a discrete talc coating on the surface of cellets 200 particle.  

 

 

 

 

 

 

 

 

 

 

 

Figure IV.90. Chemical Analysis of the Surface of Talc Coated Cellets 200 Particle in 

Cyclomix 

The same study has also been done for talc 16000 coatings in different equipments and it was 

observed that for all equipments we have obtained discrete type of coating for both talc and 

talc 16000 coatings. (Appendix.VII)       

3.1.2. Characterization of Coating Strength of the Particles 

In this part of the study, the Malvern Mastersizer in dry feed mode has been used to find the 

particle size distribution of the particles with different air dispersing pressures. The coating 

strength results of talc coated cellets 200 particles have been compared with talc 16000 coated 
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cellets 200 particles for each dry coating equipment. At the end, the effect of the equipment 

on the coating strength of the particles has also been studied. 

 
A. Coating Strength of the Particles in Hybridizer Trials 

In this part, the coating strength of cellets 200 coated with two different particle size 

distributions of talc particles in hybridizer have been compared. The volume and number 

particle size distributions of talc 16000 coated cellets 200 particles can be seen in the      

figure IV.91 and IV.92. 

  

 

 

 

 

 

 

 

 

 

 
 
It can be see that for all dispersing pressures, coated cellets 200 particles have the same 

particles size distributions. Even at 4.0 bar dispersing pressure (maximum air pressure of the 

granulometer) we didn’t observe any fine particle populations. This results show that the 

coating strength of the talc 16000 coated cellets 200 particles in hybridizer, is high enough 

even at 4.0 bar dispersing pressure. The particle liberation pressure of the talc 16000 coated 

cellets 200 particles is higher than the dispersing air pressure range of the granulometer.  

On the other hand, the particle liberation pressure for 3% talc coated cellets 200 particles have 

already been determined in the first part of the study. It was found that the particle liberation 

pressure is 3.9 bar and it corresponds to 124 m/s air velocity.  

Table IV.14 shows the particle liberation pressures and corresponding air velocities for coated 

cellets 200 particles. It can be seen that for the same host particle with smaller size of guest 

particle has higher particle liberation pressure compared to the same guest particle with higher 

particle size distribution. It shows the particle size ratio between the host and guest particles 
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Figure IV.91. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Cellets 200 Particles 

in Hybridizer 

Figure IV.92. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Cellets 200 Particles 

in Hybridizer 
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has an important role for inter-particular forces. On the other hand, it should be remembered 

that the decrease in particle size distribution of the particles may also correspond to particle 

fragmentation. 

 
Table IV.14. Dispersing Pressures and Air Velocities for Particle Detachment for Talc and 

Talc 16000 Coated Cellets 200 Particles in Hybridizer 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Cellets 200 + 3 % Talc  21.8 3.9 bar 124 m/s 

Cellets 200 + 1.6 % Talc 

16000  

76.3 > 4.0 bar > 124 m/s 

 
 

B. Coating Strength of the Particles in Cyclomix Trials 

The coating strength of talc coated cellets 200 and talc 16000 coated cellets 200 particles in 

cyclomix have also been studied. Figure IV.93 and IV.94 show the volume and number 

particle size distributions of coated and uncoated particles at 0.5, 1.5 and 2.5 bars dispersing 

pressures.  

 

 

 

 

 

 

 

 

 

 

 
 

It was observed that the talc 16000 coated cellets 200 particles have the same particle size 

distributions at 0.5, 1.5 and 2.5 bars dispersing pressures. The particle size distributions of 

cellets 200 with talc 16000 particles at 3.5 and 4.0 bars can be seen in the figure IV.95 and 

IV.96. It was observed that at 4.0 bars there is fine population of the coated cellets 200 
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Figure IV.93. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Cellets 200 Particles 

in Cyclomix 

Figure IV.94. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Cellets 200 Particles 

in Cyclomix 
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particles. It shows that the particle liberation pressure is between 3.5 and 4.0 bars for talc 

16000 coated cellets 200 particles.  

 
 

 

 

 

 

  

 

 

 

 

 

The particle size distributions of the talc 16000 coated cellets 200 particles have been 

analysed for each pressure between 3.5 and 4.0 bars in order to find the particle liberation 

pressure more precisely. The particle liberation pressure for talc coated cellets 200 particles 

was already found in the first part and it is 3.4 bars. It was found that the particle liberation 

pressure increases to 3.8 bars for talc 16000 coated cellets 200 particles. (fig.IV.97)   
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Figure IV.97. Number Particle Size Mean vs. Dispersing Pressure for Talc and Talc 16000 

Coated Cellets 200 Particles in Cyclomix 
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Figure IV.95. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Cellets 200 Particles 

in Cyclomix 

Figure IV.96. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Cellets 200 Particles 

in Cyclomix 
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Table IV.15 shows the particle liberation pressures for coated cellets 200 particles with talc 

and talc 16000 particles. Cyclomix trails also shows that the increasing particle size ratio 

between the host and guest particles causes higher coating strength property for the coated 

particles. In addition, the possible particle fragmentations in the granulometric analysis should 

also be considered as a reason for decrease in particle size distributions of the particles. 

   
Table IV.15. Dispersing Pressures and Air Velocities for Particle Detachment for Talc and 

Talc 16000 Coated Cellets 200 Particles in Cyclomix 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Cellets 200 + 3 % Talc  21.8 3.4 bar 118 m/s 

Cellets 200 + 1.6 % Talc 

16000  

76.3 3.8 bar 123 m/s 

 

C. Coating Strength of the Particles in Turbula Trials 

The volume and number particle size distributions of pre-treated cellets 200 particles (in 

hybridizer at 4000 rpm for 6 min) coated with talc 16000 particles at 0.5 and 1.5 bars can be 

seen in the figure IV.98 and IV.99.  

 

 

 

 

 

 

 

 

 

 

 

 

It was observed that coated cellets 200 particles keep their particle size distribution until     

1.5 bars dispersing pressure. At 2.5 bars dispersing pressure, it can be seen that there is 2 

different particle size populations for coated cellets 200 particles. It shows that the particle 
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Figure IV.98. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles in Turbula 

Figure IV.99. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles in Turbula 
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liberation pressure is between 1.5 and 2.5 bars for 1.6% talc 16000 coated cellets 200 

particles. On the other hand, it can be seen that the volume of fine population increases at 3.5 

bars dispersing pressure as expected (figure IV.100, IV.101). 

 

 

  

 

 

 

 

 

 

 

 

 

At the end, it was found that the particle liberation pressure is 2.1 bars for talc 16000 coated 

cellets 200 particles. The particle liberation pressure has already been determined for talc 

coated cellets 200 particles in turbula in the first part and it is 1.8 bars. (fig.IV.102) 
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Figure IV.102. Number Particle Size Mean vs. Dispersing Pressure  

For Talc and Talc 16000 Coated Cellets 200 Particles in Turbula 
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Figure IV.100. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles in Turbula 

Figure IV.101. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles in Turbula 
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Table IV.16 shows the particle liberation pressures for coated cellets 200 particles with talc 

and talc 16000 particles in turbula. It was observed that, the particle liberation (or 

fragmentation) pressure increases with increasing size ratio between the host and guest 

particles also in turbula trials.  

 
Table IV.16. Dispersing Pressures and Air Velocities for Particle Detachment for Talc and 

Talc 16000 Coated Cellets 200 Particles in Turbula 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Pre-Treated Cellets 200 

+ 3 % Talc  

21.8 1.8 bar 81 m/s 

Pre-Treated Cellets 200 

+ 1.6 % Talc 16000  

76.3 2.1 bar 89 m/s 

 

D. Coating Strength of the Particles in Basic Mixing Trials 

The coating strength of the pre-treated cellets 200 particles coated with talc particles have 

already been determined in the first part of the study. It was found that the particle liberation 

pressure is 1.1 bars for the particles. In this part, the coating strength of the pre-treated cellets 

200 particles coated with talc 16000 particles have been studied. The volume and number 

particle distributions of 1.6 % talc 16000 coated cellets 200 particles at 0.5 and 1.5 bars 

pressures can be seen in the figure IV.103 and IV.104. 
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Figure IV.103. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles by Basic Mixing Method 

Figure IV.104. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles by Basic Mixing Method 
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It was observed that there is no particle detachment up to 1.5 bars dispersing pressures. On the 

other hand, it can be seen that there is a population of fine particles at 2.5 bars dispersing 

pressure (fig. IV.105 and IV.106) and volume of that population increases at 3.5 bar pressure.  

 

 

 

 

 

 

 

 

 

 

 

 

In order to find the particle liberation for talc 16000 coated cellets particles more precisely, 

the particle size analysis have been realized between the 0.5–1.5 bars pressure range. It was 

found that the particle liberation pressure is 1.6 bars for talc 16000 coated cellets 200 

particles. (fig. IV.107) 
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Figure IV.107. Number Particle Size Mean vs. Dispersing Pressure  

For Talc and Talc 16000 Coated Cellets 200 Particles by Basic Mixing Method 
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Figure IV.105. Volume Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles by Basic Mixing Method 

Figure IV.106. Number Particle Size Distribution 

of 1.6 % Talc 16000 Coated Pre-treated Cellets 

200 Particles by Basic Mixing Method 
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The particle liberation pressures and the corresponding air velocities for the coated particles 

can be seen more precisely in the table IV.17. It can be seen that the particle liberation 

pressure is higher for talc 16000 coated cellets 200 particles compared to talc coated       

cellets 200 particles also for the basic mixing trials. It shows the effect of particle size ratio 

between the host and guest particles on the coating strength of the particles.  

 
Table IV.17. Dispersing Pressures and Air Velocities for Particle Detachment for Talc and 

Talc 16000 Coated Cellets 200 Particles by Basic Mixing Method 

Material Particle Size Ratio 
(Host/Guest) 

Dispersing Air 
Pressure 

Air Velocity  

Pre-Treated Cellets 200 

+ 3 % Talc  

21.8 1.1 bar 56 m/s 

Pre-Treated Cellets 200 

+ 1.6 % Talc 16000  

76.3 1.6 bar 74 m/s 

 
 
At the end, it was observed that the coating strength between the cellets 200 and talc particles 

is higher than the coating strength between the cellets 200 and talc 16000 particles for all dry 

coating trials with different equipments (table IV.18).  

 
Table IV.18. Dispersing Pressures and Air Velocities for Particle Detachment for Talc and 

Talc 16000 Coated Cellets 200 Particles in Different Equipments 

 
Material 

 
Equipment 

Dispersing 
Air Pressure 

(bar) 

Air Velocity 
(m/s) 

Cellets 200 + 3 % Talc  3.9 124 

Cellets 200 + 1.6 % Talc 16000  

 

Hybridizer >4.0 >124 

Cellets 200 + 3 % Talc  3.4 118 

Cellets 200 + 1.6 % Talc 16000  

 

Cyclomix 3.8 123 

Pre-Treated Cellets 200 + 3 % Talc  1.8 81 

Pre-Treated Cellets 200 + 1.6 % Talc 16000  

 

Turbula 2.1 89 

Pre-Treated Cellets 200 + 3 % Talc  1.1 56 

Pre-Treated Cellets 200 + 1.6 % Talc 16000  

Basic 

Mixing 1.6 74 
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In addition, it was observed that the particle liberation pressures are higher for the particles 

that were treated in hybridizer and cyclomix compared to coated particles in turbula and basic 

mixing method because of the difference in the supplied mechanical energy on the particles 

by the equipment. 

3.2. Conclusions 

Cellets 200 particles have been coated with two different particle size distributions of talc 

particles in different dry coating equipments. The preliminary study has been done for the 

cellets 200 particles in order to understand the fragmentation behaviour of the particles in 

different equipments and afterwards the operating conditions for the dry coating trials have 

been determined.  

Visual analysis has been done before and after coating of the particles by ESEM. It was 

observed that in turbula and basic mixing trials there are some agglomerates of guest particles 

because of the lack of generated mechanical forces by the equipment probably.  

The ESEM/EDS analysis has also taken a place in order to understand the chemical 

composition of the surface of the particles. The results show that we have obtained discrete 

coating for both cellets 200 with talc and cellets 200 with talc 16000 coatings in all dry 

coating trials with different equipments.   

The coating strength of the particles has been studied by using the granulometer. The results 

show that the coating strength is higher between the cellets 200 and talc 16000 particles 

compared to cellets 200 with talc particles. It shows that coating strength between the 

particles increases with increasing particle size ratio between the host and guest particles. On 

the other hand, it should be remembered that the decrease in the particle size distribution in 

granulometric analysis could be also reason of particle fragmentation. In order to have better 

analyse of granulometric results it would be a nice idea to recover the particles after 

granulometric analysis and visually analyse them again by ESEM then it would be possible to 

understand if the decrease in particle is reason of particle detachment of fragmentation.   

 

 

 

 

 

 



Chapter IV – Dry Coating of Cellets & Talc Particles 

   

Serkan OTLES 

 

228 

4. CONCLUSIONS 

In this study, cellets particles with two different particle size distributions (d[4;3]v:100 µm 

and d[4;3]v:305 µm) have been coated with two different particle size distributions of talc 

particles (d[4;3]v:14 µm and d[4;3]v:4 µm) by different dry coating equipments in order to 

understand the effect of host and guest particle size on the end–use properties of the particles. 

The theoretical monolayer coating percentage in hexagonal packing has been calculated for 

the particles.  

In the first part, cellets particles with two different particle sizes have been coated with talc 

particles. In the second part, cellets 200 particles have been coated with two different particle 

size distributions of talc particles. The operating conditions of the equipments for dry coating 

trials have been determined in the preliminary study of the particles. Afterwards, cellets 

particles have been coated with talc particles in different dry coating equipments. 

Different characterization methods have been used before and after coating of the particles. 

The visual analysis showed that for all the dry coating trials we have obtained discrete type of 

coating.  

The AFM has been used to have the topographical analysis (surface roughness, chemical 

composition, elasticity etc.) of the particles. It was observed that cellets 90 and cellets 200 

particles have similar phase angle signatures because basically they are the same material but 

with different size distributions. On the other hand, it was found that cellets 90 particles have 

higher surface roughness values than cellets 200 particles. The surface roughness of both 

cellets 90 and cellets 200 particles decrease after coating with talc particles.  

The Van der Waals forces have an important role on particle adhesion and may give an idea 

of the initial adhesion affinity between the powders. A rough estimation of the Van der Walls 

forces between the particles has been calculated. It was observed that the Van der Waals 

forces between Cellets–Talc is greater than between the host particles (cellets) and between 

the guest (talc) particles. It shows that the guest particles have much more affinity to have 

adhesion with host particles than with guest particles so the dry coating has also been helped 

by the initial adhesion affinity properties of the chosen particles. On the other hand, it should 

be remembered that there are many other factors (process action, elastic – ductile properties, 

surface energy etc.) that have effects on the mechanical coating strength of the particles.   

The adhesion forces between the particles have been measured by using AFM with contact 

mode. Afterwards, the guest particle deposition on the host particles has been calculated by 
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using the adhesion force model. The results show that calculated amount of talc particles is 

less than introduced amount. The possible reasons could be agglomeration of talc particles, 

non–analyzed surface zones. 

The Malvern Mastersizer laser diffraction granulometer have been used to study the coating 

strength of the particles. The coating strength of the particles depends on the way the host and 

guest particles are brought into contact and on the physico–chemical interactions between 

them. It was observed that the larger the size ratio of host and guest particles the stronger the 

coating strength for all the different processes used. On the other hand, it should be 

considered that there are many factors influencing adhesion: particle size and shape, surface 

roughness, material hardness and elasticity and the work of adhesion and surface free energy. 

Surface roughness is one of the most important characteristic influencing the adhesion 

because it is strongly related to the geometry of contact.  

The water affinity of the particles before and after coating has been studied by contact angle 

and dynamic vapour sorption (DVS) measurements. The contact angle results show that the 

cellets (90&200)–talc composite particles have lower wettability than individually treated 

cellets 90 and cellets 200 particles because of very hydrophobic characteristic of talc particles. 

The DVS results shows that the talc coated cellets 90 particles in any dry coating equipment 

has lower water vapour adsorption percentage compared to initial cellets 90 particles. On the 

other hand, it was seen that the water vapour adsorption percentages of initial and coated 

cellets 200 particles are the same.   

As conclusion, it was observed that the coating of the host particles by guest particles can be 

achieved by high energy impact coating devices and also even by simple stirring method. It 

was seen that the particle size ratio between the host and guest particles affects proportionally 

the mechanical coating strength of the particles. On the other hand, it was also observed that 

the particle size ratio between the host and guest particles, hasn’t affected the water affinity 

and wettability properties of the composite particles.  
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In this study, dry particle coating has been successfully used for the synthesis of materials 

with new/improved end–use properties.  

In the first part; it is aimed to understand the effect of the dry particle coating equipment and 

operating conditions on the end-use properties of the particles. Three different dry coating 

equipments (Hybridizer, Cyclomix, Turbula) with different operating conditions have been 

used. Some key parameters that affect the end–use properties of the particles have been 

studied for a model couple of PMMA (d[4;3]v:160 µm) coated with two different mass 

percentages of talc (d[4;3]v:14 µm) particles. The feasibility of the dry coating process has 

been examined, both quantitatively and qualitatively, and the results have been compared with 

coating by simple mechanical mixing (basic mixing method).  

The hybridizer, cyclomix and turbula have different characteristics according to their working 

mechanism/principle and type of mechanical energy that they apply on the particles. In order 

to understand the fragmentation behaviour of the particles and to define the operating 

conditions for each equipment, the particles have been treated individually in “preliminary 

study” with different operating conditions for the dry coating trials. 

The theoretical monolayer coating percentage in hexagonal packing has been calculated for 

the particles. It was found that 5 % talc is needed for monolayer coating of PMMA particles. 

1% has been chosen as the second coating percentage in order to understand the effect of 

coating percentage of talc on the end–use properties of the particles. Afterwards, dry coating 

of PMMA with talc particles has been done in different equipments.  

In the hybridizer trials, it was observed that due to intense impaction forces in hybridizer, the 

materials underwent severe size reduction in the preliminary study. It was seen that the 

particle size of the PMMA particles was reduced to less than 10 µm at high rotational 

velocities. On the other hand, talc particles could keep their particle size for each operating 

velocities. In addition, it was observed that the particle recovery varies from 60% and goes up 

to 90% for 9600 rpm operating velocity. 

Visual analysis shows that we have obtained discrete type of talc coating for each operating 

velocities of the hybridizer trials. Moreover, the amount of talc particles on the surface of the 

PMMA particles is greater for the 5 % talc coating than 1 % talc coating, as it was expected.  

In order to have the topographical analysis of the particles (surface roughness, phase 

difference etc.) and to find the adhesion forces between the particles the Atomic Force 

Microscopy (AFM) has been used with tapping mode. It was found that the talc particles have 
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higher surface roughness (Raave:131 nm, RMSave:186 nm) values than initial PMMA particles 

(Raave:86 nm, RMSave:118 nm). On the other hand, it was observed that talc coating increases 

surface roughness of the PMMA particles. Moreover, it was found that 5% talc coated PMMA 

particles have higher surface roughness values than 1% talc coated PMMA particles, as it can 

be expected. 

On the other hand, in AFM analysis, the phase angle values have been also determined for 

initial and coated particles. It was found that the talc particles have larger phase angle range 

(between -130° and 110°) than PMMA (between -100° and 40°) particles. The reason is 

probably the difference in the surface roughness but also the difference in softness between 

PMMA and talc particles. It was found that coating of PMMA with talc particles causes to 

have higher phase angle values for coated particles.   

The adhesion forces between the particles have been found by using the AFM on contact 

mode. In the AFM trials, the adhesion forces between the uncoated/coated PMMA particles, 

talc particles and talc particles that were fixed on the cantilever tip have been determined. It 

was observed that the adhesion forces between the talc particles are higher than the adhesion 

forces between talc and PMMA particles. This results show that, the talc particles have much 

more affinity to adhere with talc particles rather than PMMA particles.  

Afterwards, the talc particle deposition on the PMMA particles has been calculated by using a 

adhesion force model. It was obtained the calculated values of talc particle deposition are very 

close to 1% and 5% values. To explain the difference, the non analyzed zones of the particles 

may be one of the reason and also the loss talc particles after treatment in the hybridizer has to 

be considered. On the other hand, agglomeration of talc particles on the surface of the PMMA 

particle (more than monolayer coating) can be one of the reasons. It is sure that more AFM 

experiments would give more reliable results.   

The coating strength of the composite particles has been studied by using a Malvern 

Mastersizer laser diffraction granulometer. It was observed that the particle liberation pressure 

increases with increasing rotational velocity, which is probably related to the energy that the 

system supplies to the particles in order to break the agglomerates and coat the host particles. 

On the other hand, while analysing the granulometric results of the particles, it should be 

remembered that the decrease in particle size could be reason of particle detachment and also 

particle fragmentation. 
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A tapped density tester and Freeman Technology Powder Rheometer (FT4) have been used in 

order to study the flowability properties of the particles and the effects of operating velocity, 

coating percentage and equipment on the flowability properties of the powders. It was 

observed that the flowability of the PMMA particles decreases at high operating velocities 

since the particles are either all broken or there are some fragments of the particles at these 

velocities, which causes increase in the contact surface of the particles. 

The results of tapped density tester and the FT4 show that the dry coated PMMA particles 

with talc particles (1% and 5%) have better flowability properties than grinded PMMA 

particles at all of the operating velocities.  

In the cyclomix trials, the results of the preliminary study showed that there is no particle 

fragmentation at even high operating velocities of cyclomix, which is defined also as a high 

force mixer, like hybridizer. The difference in the results of preliminary study of the particles 

from hybridizer and cyclomix should be the way of operating the particles and type of 

mechanical forces they apply on the particles. In hybridizer, the mechanical impact forces 

take an important place in the treatments, but on the other hand, cyclomix uses shearing 

forces mainly. The results of preliminary study also showed that there is a high percentage of 

particle recovery (> 94%) for each operating velocity of the cyclomix.  

The ESEM observations show that the particles keep their particle size and shape and at the 

end of the dry coating trials in cyclomix, discrete particle coating have been obtained for all 

operating conditions. 

In the coating strength analysis of the particles, it was observed that, similar to the hybridizer 

trials, the coating strength of the coated particles in cyclomix increases with increasing 

operating velocity, since the generated mechanical energy by the equipment is probably 

related to operating velocity. 

The analysis of flowability properties of the treated particles in cyclomix shows that either 

just treated PMMA particles or PMMA coated with talc particles have very good flowability. 

The possible reason of this result should be having no particle fragmentations in cyclomix 

trials. On the other hand, it was observed that the talc coated PMMA particles have always 

better flowability than individually treated PMMA particles in cyclomix.  

In the turbula trials, the PMMA particles have been pre-treated in hybridizer to be able to 

compare the results with other mixers. The preliminary study shows that mixing of particles 
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in turbula doesn’t affect the particle characteristics (size and shape) of the pre-treated PMMA 

particles in hybridizer.  

The visual analysis shows that there is discrete type of talc coating on the PMMA particles 

after coating them with talc particles in turbula. Moreover, it was also observed that there are 

some talc agglomerates in the mixture, because of the insufficient mechanical forces in 

turbula trials. 

The results of the granulometer show that particle liberation pressure decreases with 

increasing mass percentage of talc particles in the mixture for all the cases.  

Tapped density and FT4 results show that both 1% and 5% talc coated pre-treated PMMA 

particles in turbula have better flowability than just pre-treated PMMA particles because of 

the lubricant property of talc particles.   

In the basic mixing trials, like the other coated PMMA particles from different equipments, 

the visual analysis shows that we have obtained discrete coating after coating of particles by 

basic mixing. So, it means that coating of the host particles by guest particles can be achieved 

by high energy impact coating devices and also even by simple stirring method. 

It was observed that the coating strength of the particles is inversely proportional to the mass 

percentage of talc particles for the particles that are generated by basic mixing method. 

Increasing mass percentage of talc particles in the mixture creates more talc agglomerates on 

the surface of the PMMA particles. In the granulometric analysis, having more agglomerates 

on the surface (more impact shock contact surface) make them easier to be broken after 

having impacts with other particles or with the walls of the granulometer.  

The flowability analysis also shows that the talc coated PMMA particles by basic mixing 

method have better flowability than pre-treated PMMA particles in hybridizer. 

The effect of equipment on the end–use properties of the particles, has been studied at the 

end. It was observed that the coating strength of the particles that were treated in hybridizer 

and cyclomix are much stronger compared to the particles that were coated in turbula and by 

basic mixing method. The effect of mechanical energy that the high force mixers (hybridizer 

& cyclomix) apply on the particles to break up the agglomerates and coat the host particles, 

probably has an important role in this result. 

The flowability results show that the flowability of the talc coated particles in hybridizer and 

cyclomix is better than the coated particles in turbula and basic mixing trials. Since, contrary 

to high force mixers, turbula and basic mixing method can not supply sufficient mechanical 
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energy to break-up the talc agglomerates and disperse them well on the surface of the PMMA 

particles.   

In the second part; the effect of particle size ratio between host and guest particles on the 

end–use properties of the particles has been studied. In this part, two different particle sizes of 

cellets particles have been coated with two different particle sizes of talc particles in 

hybridizer, cyclomix, turbula and by basic mixing methods. 

In the preliminary study, the particles have been individually treated with different operating 

conditions of each equipment. The operating conditions have been chosen according to the 

principle that the particles should keep their particle size in order to understand the effect of 

particle size ratio on the end–use properties of the particles. Afterwards the particles have 

been coated with theoretical monolayer coating percentage of talc particles in different 

equipments. 

The visual analysis and also chemical analysis of the coating surface (ESEM/EDS) showed 

that, for all of the dry coating trials, we have obtained discrete type of coating like in the first 

part of the study. It would be reason of the equipment, operating conditions or the 

characteristics of the particles.  

The topographical analysis by using the AFM has been done for initial and talc coated cellets 

90 and cellets 200 particles. It was found that the surface roughness of the cellets 90 particles 

gets lower after coating with talc particles. On the other hand, it was observed that the surface 

roughness of the cellets 200 particles also decreased after coating with talc particles. The 

possible reason should be the filling and closing up the gaps and valleys on the surface of the 

cellets particles by talc.    

The initial affinity of the particles has been studied by roughly calculating the Van der Waals 

forces between the particles. It was found that the guest particles have much more affinity to 

adhere on the host particles than to guest particles. On the other had, it should be considered 

that the initial affinity of the particles and particle adhesion is not straightforward. 

By using the AFM, the adhesion forces between the particles have also been found. It was 

observed that the adhesion forces between talc particles are much higher than talc and cellets 

particles. It was also seen that after coating of cellets particles with talc, the adhesion force 

increases because of contacts between talc-talc particles. 

The mass percentage of talc particles on the surface of the cellets particles have been 

calculated by using the results of the AFM and the adhesion force model. It was observed that 
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the introduced mass percentages of talc particles are higher than the calculated amounts on the 

cellets 90 and cellets 200 particles. Agglomeration of talc particles and non–analyzed surface 

zones of host particles could be considered as some possible reasons for this result.    

The coating strength of the particles was one of the end–use property that has been studied. It 

was seen that coating strength of the particles increases with increasing particle size ratio 

between the particles, either by decreasing guest particle size, or increasing host particle size, 

for all the cases. On the other hand, it should be remembered that there are many parameters 

that affect the particle adhesion, like surface roughness, hardness, elasticity and surface free 

energy. Surface roughness is one of the most important characteristic of the particles that 

influences the adhesion between the particles, because it is strongly related to the geometry of 

contact.  

Contact angle and DVS methods have been used in order to understand the water affinity of 

the particles before and after coating with talc particles. It was observed that the talc coated 

cellets 90 and cellets 200 particles have lower wettability compared to individually treated 

cellets 90 and cellets 200 particles for all dry coating trials with different equipment. It was 

seen that, there is no significant effect of talc coating on the water affinity of the cellets 200 

particles but on the other hand, it was observed that the water affinity of the cellets 90 

particles decreases, after coating with talc particles in any dry coating equipment because of 

hydrophobic characteristic of talc.   
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Future Perspectives 

In this research, dry particle coating has been successfully used for the synthesis of particles 

and the modification of the coating strength, flowability and water affinity properties of the 

particles have been studied. There are however many other applications where dry particle 

coating technology can be used for the production of improved composites. One such area is 

in the dispersing kinetics of the coated particles which is another research and has been 

studying by Guillaume Lefebvre in RAPSODEE. 

In the area of particle adhesion, there are numerous factors that still need to be studied. First, 

the ability of the dry coating to de-agglomerate and effectively disperse the guest particles 

should be investigated both experimentally and theoretically. A study in order to model and 

predict whether a guest particle would de-agglomerate based on the forces they are subjected 

to in the devices would greatly simplify the choice of equipment and operating conditions for 

chosen particles. 

The methodology of the coating strength analysis with the laser granulometer would be 

improved by recovery of the samples after the experiments and visually analyse them in order 

to be sure if the change in particle size is because of the particle detachment or breakage of 

the particles.  

To study the effect of coating on the mechanical properties of a single particle would be also 

another interesting approach. An equipment that is called Micromanipulator allows to find the 

single mechanical properties of the particles. It also enables the operator to find the adhesion 

forces between two single particles and afterwards the results would be compared with the 

AFM in order to have two different approaches to the particle adhesion phenomena.      

Dry particle coating process is very charming because of its certain advantages compared to 

traditional coating methods in the industry. So, different dry coating applications with specific 

powder couples (food, metallurgy, cosmetic etc.) and a scale up study of the dry coating 

process would be necessary and interesting for the industrial applications. 
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Host Particles Guest Particles Equipment Objectives Author 

PMMA  

(5µm) 

TiO2  

(15 nm) 

- Improvement of flowability of  PMMA 

- Improvement of wettability of PMMA 

Polystyrene resin 

(10 µm) 
Black Carbon 

- Rounding of the particles 

- Improvement of flowability 

PMMA 

(0,5 µm) 

Polytetrafluoroethylene 

(PTFE ; 10 µm) 

Mechanofusion 

- Decreasing electrostatic charge of PMMA 

Yokoyama et al., 

1987 

PMMA 

(50 µm) 

Black Magnetic Spheres 

(0.17 µm) 
Mechanofusion 

- Evaluation of coating mechanism of 

particles 

Alonso et al., 

 1989 (b) 

PMMA 

(50 µm) 

Silver 

(1 µm) 
Mechanofusion 

- Creation of super conductive materials by 

coating  

- Understand the effect of size of metal 

particles and their concentration on 

conductivity 

Alonso et al., 

1990 et 1991 

Magnesium Niobate 

(PMN) 

Magnesium Stearate 

(MgSt) 
Mechanofusion 

- Microencapsulation of ceramic powders  

- Improving of solid phase reactivity  

Mort et al., 

1992 

EXAMPLES OF DRY PARTICLE COATING APPLICATIONS 
1. By Mechanofusion 
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Host Particles Guest Particles Equipment Objectives Author 

Ag-Ni Alloy  

(386 µm) 

Ni 

(1 µm) 
Mechanofusion 

- Development of  electro – conductive 

material for industry 

Satoh et al., 

1992 

Glass Spheres (23 µm) 

PMMA (12 µm) 

Silica powder (26 µm) 

TiO2 

(0,015 µm) 
Mechanofusion 

- Characterization of composite particles 

- Analyzing the difference in surface energy 

after coating 

Naito et al., 

1993 (b) 

Fe0.91Mn0.09Si2 

(5 – 8 µm) 

Black Carbon 

(0,02 – 0,3 µm) 
Mechanofusion 

- Improvement of thermo – conductivity of 

the particles 

Kita et al.,  

1997 

Cu 

  (30 µm) 

α-Al 2O3 

(0,15 µm) 

Al 2O3 

  (45 µm) 

Cu 

(0,2 µm) 

Mechanofusion 

- Preparation of metal oxide composites by 

mechanofusion 

- Study of surface state and compactness of 

the coating  

Kaga et al., 

1997  

Ni 

(8 µm) 

CoO 

(0,3 µm) 
Mechanofusion 

- Creation of new composite materials for 

fuel cells (MCFCs).  

Fukui et al.,  

2001 

Fe 

(150 µm) 

Al 2O3  

(9 µm) 
Mechanofusion 

- Dry coating of Fe with Al2O3 particles in 

order to compare the temperature resistance 

of the composite particles before and after 

coating 

Jay et al., 

2006 
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Host Particles Guest Particles Equipment Objectives Author 

PMMA 

(200 µm) 

Alumina 

(20 µm) 
MAIC 

- Effect of some parameters (particle size, 

collision frequency, treatment time) on dry 

coating 

Ata et al., 

1993 

PMMA 

Alumina 

Nickel Hydroxide 

Titanium 

Alumina 

Argent 

Cobalt Oxide 

MAIC 

- Feasibility of MAIC for dry coating 

process  

- Influence of some parameters (hardness of 

material, particle size, particles adhesion) on 

coating   

Singh et al., 

1997 a) et b) 

Starch 

(15 µm) 

Silica 

(0,3 µm) 

Cellulose 

  (180/40 µm) 

Silica 

(0,3 µm) 

PMMA 

  (200 µm) 

Alumina 

(0,05, 0,2, 0,4 et 1 µm) 

 

MAIC 

- Modification of flowability and water 

affinity properties of starch and cellulose  

- Optimization of process parameters : 

process time, particle size ratio, velocity of 

magnetic particles  

Ramlakhan et al., 

2000  

PMMA 

  (200 µm) 

Alumina 

(0,7 µm) 
MAIC - Optimization of dry coating process time  

Singh et al.,  

2001 

2. By Magnetically Assisted Impact Coater (MAIC) 
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Host Particles Guest Particles Equipment Objectives Author 

PMMA (50 µm) 

Calcium Carbonate 

(2,38 µm) 

 Iron Oxide  

(0,21 µm) 
Theta Composer 

- Evaluation of coating performance of theta 

composer 

Miyanami et al., 

1994  

Cellulose 

(149 - 180 µm) 

Carbazochrome Sodium 

Sulfonate (CCSS) (5,4 

µm) 

 

Theta Composer 

- Multilayering & preparation of ethyl 

cellulose microcapsules 

- Control of dissolution and liberation of 

CCSS microcapsules   

Fukumori et al., 

1998 

Food Fibre 

sorbitol + glucose 

(80 µm) 

 

Hydrophilic Silica 

(8 µm) 

 

Theta Composer 

- Modification of surface properties of food 

fibres : flowability and water affinity 

- Influence of operating conditions on water 

adsorption, flowability, particle size and 

dispersion of the particles  

Watano et al., 

2000  

Copper 

  (69,1 µm) 

Alumina 

(0,4 µm) 
Theta Composer 

- Determination and optimization of 

operating conditions of theta composer by 

analysing necessary energy of guest particle 

immobilization  

Iwasaki et al.,  

2002 

α-Al 2O3 Fiber 

(116,7 µm) 

γ-Al 2O3 (27 - 56 nm) 

CuO (16 – 32 nm) 
Theta Composer 

- Influence of initial particle charge & 

process time on the process 

Coowanitwong 

et al., 2003 

3. By Theta Composer 
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Host Particles Guest Particles Equipment Objectives Author 

Silica 

 (9,3 µm) 

Zinc Oxide  

(0,02 µm) 
Theta Composer 

- Optimizing the dry coating process Iwazaki et al.,  

2003 

Copper (69.1 µm) 

 

γ-Alumina – 1 ( 0.4 µm) 

γ-Alumina – 2 (1.3 µm) 
Theta Composer 

- Optimization of operating conditions 

- Effect of guest particles amount on the 

particle hardness 

Iwazaki et 

al.2004 

Cellulose  

(150 – 177 µm) 

Sodium Phosphate 

 (5.4 µm) 

Riboflavine (3.3 µm) 

Indometacine (6.7 µm) 

Naproxen (5.2 µm) 

Nifedipine (2.1 µm) 

Theta Composer 

- Study the quality of the coating 

- Improvement of flowability of the particles 

Yoshikawa et al. 

2005 
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Host Particles Guest Particles Equipment Objectives Author 

Nylon 12 (5 µm) 

PMMA (0.3 µm) 

Titanium dioxide  

(0.3 µm) 

Hybridizer 

- Modification of wettability and water penetration ratio 

properties of the particles 

- Comparison with OM Dizer 

H. Honda et al., 

1987 

Nylon 12  

Polyethylene  

Hypoxia Resin (5 µm) 

Graphite fluorure  Hybridizer 

- Preparation of microspheres by dry coating method  

- Comparison with a binary mixing powder method  
H. Honda et al.,  

1988 

Starch 

Phenbutazone 

Prednisolone 

Theophylline 

Indometacin 

Phenacetine 

Aspirin 

Hybridizer 

- Preparation of hybrid powders for pharmaceutical 

industry by dry coating method  

- Evolution of crystalline structure and surface of hybrid 

powders according to process time in hybridizer  

Ishizaka et al., 

1989 

Nylon 12 (5µm) 

Polyethylene (5 µm) 

Polyethylene 

(2-10 µm) 

PMMA  (0,4 µm) 

Silica (0,6 µm) 
Hybridizer 

- Effect of electrostatic charge of powders on the 

composite particles 

- Study the mechanism of adhesion in the preparation of 

Polyethylene/Silica powders 

H. Honda et al., 

1989 

Candelilla Wax  Zinc Phosphate  Hybridizer 
- Improvement of dissolution in water property of the 

particles  

Nakaya et al., 

1991 

4. By Hybridizer 
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Host Particles Guest Particles Equipment Objectives Author 

Polyethylene (5 µm) 

Nylon 12 (5 µm) 

Silica (0,4 µm) 

PMMA (0,4 µm) 
Hybridizer 

- Analysing the surface morphology of 

coated particles and modification of 

electrostatic charges of the powders  

- Study of adhesion mechanism in dry 

coating process and necessary energy for 

preparation of coated particles 

H. Honda et al., 

1991 

Boride molybdenum 

(MoB ; 3,2 µm)  

Nickel 

(0,2 µm) 
Hybridizer 

- Dry coating of particles in order to improve 

thermal resistance of the particles  

Oki et al., 

1992 

Titanium (Ti) 

(150 µm) 

Calcium Phosphate 

(Hydroxypatite) 
Hybridizer 

- Dry coating of porous biomaterials  Oki et al., 

1992 

Polyethylene 

(5 et 10 µm) 

Silica 

(0,3 - 0,6 – 0,9 µm) 
Hybridizer 

- Improving the performance of column 

chromatography (CLHP) 

F. Honda et al., 

1992 

Starch Indometacin (γ) Hybridizer 
- Effect of dry coating on the dissolution of 

Indometacine  

Ishizaka et al., 

1993 (a) 

Polyethylene (FB) 

N-methylol acrylamide  

(N-MMA ; solide 

monomère réactif) 

Hybridizer 

- Polymerization of  composite particles 

- Effect of rotational velocity and mass 

fraction on the ratio of polymerisation 

Ishizaka et al., 

1993 (b) 
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Host Particles Guest Particles Equipment Objectives Author 

Polyethylene 

(5 et 10 µm) 

Silica  

(0,3 – 0,6 et 0,9 µm) 
Hybridizer 

- Estimation of adhesion energy (electrostatic & London 

Van der Waals interactions) on the formation of 

monolayer guest particle coating  

H. Honda et al., 

1994 

Polyethylene 

(10 µm) 
Hydroxyapatite (HA) Hybridizer 

- Evaluation of separation capacity of composite 

proteins and their mechanical stability  

F. Honda et al., 

1995 

Hydroxyapatite (HAP) 

(9,32 µm) 

Zirconium (PSZ) 

(0,12 µm) 
Hybridizer 

- Formation of agglomerates of HAP/PSZ and study of 

structure and their mechanical resistance  

Matsuno et al., 

1996 

Polyethylene 

(13,1 µm) 

Silica (0,3 µm) 

Titanium (0,017 µm) 
Hybridizer  

- Preparation and characterization of surface of 

multilayered composite particles   

F. Honda et al., 

1997 

Polyethylene 

(10 et 40 µm) 

Cattle Bonne Powder 

(CBP) 
Hybridizer 

- Utilisation of CBP composite particles for purification 

of proteins 

F. Honda et al., 

1998 

Titanium 

(< 150 µm) 

PMMA 

Insulator materials 

Hydroxyapatite 

Eudragit 

Conductor materials 

Hybridizer 

- Improvement of biomaterials for using in pulverisation 

- Improvement of dissolution 

- Improvement of conductivity 

Shmidt et al., 

1998 
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Host Particles Guest Particles Equipment Objectives Author 

Polyethylene 

(40 et 180 µm) 

Red Bengara Powder 

(0,14 µm) 
Hybridizer 

- Modification of colour and luminosity of 

the particles by dry coating 

- Effect of mass fraction, operation time, 

operating velocity and average particle size 

of host particles on degree of homogeneity 

of the mixture   

Shinohara et al., 

2000 

Tungsten carbide 

(WC ; 6 µm) 

Cobalt ( Co ; 1,6 µm) 

Aluminium Oxide  

( Al2O3 ; 0,5 µm) 

Titanium carbide  

(TiC ; 0,9 µm) 

Hybridizer 

- Effect of particle size on the mixing quality  

- Effect of mixing quality on the mechanical 

properties of the composite particles 

Kangwantrakool et 

al., 2001 

Tungsten carbide 

(WC ; 6 µm) 

Cobalt ( Co ; 1,4 µm) 

   Aluminium Oxide 

( Al2O3 ; 0,5 µm) 

Titanium carbide 

(TiC ; 0,9 µm) 

Hybridizer 

- Evaluation of hardness of the composite 

materials according to different mass 

fractions of guest particles anc comparison 

with WC – Co alloys 

Kangwantrakool et 

al., 2002 

Nylon (10 µm) 
Polyethylene (5µm) 

Fe3O4 (200 nm) 
Hybridizer 

- Improving magnetic properties of the 

particles 

Li et al., 

2003 
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Host Particles Guest Particles Equipment Objectives Author 

Tungsten carbide 

(WC ; 6 µm) 

Cobalt ( Co ; 1,4 µm) 

Aluminium Oxide 

( Al2O3 ; 0,5 µm) 

Titanium carbide 

(TiC ; 0,9 µm) 

Hybridizer 

- Sintering study and its effect on the 

microstructure and mechanical properties of 

the WC – Co/TiC – Al2O3 particles 
Kangwantrakool et 

al., 2003 

Glass Spheres (300 µm) 

PMMA (200 µm) 

γ-Alumina (80 µn) 

Silica – Alumina (40 µm)  

Silica carbide 

 (SiC ; 3,2 µm) 

Mechanofusion, MAIC 

and Hybridizer 

- Discrete coating of materials by dry 

coating techniques in order to increase the 

agglomeration temperature of the host 

particles by coating them with high 

temperature resistant materials (SiC)  

Mohan et al., 

2003 

Activated Carbon  

(1-50 µm) 

Starch (≤50 µm) 

Praziquantal 

(1-50 µm) 
Hybridizer 

- Optimisation of taste masking and 

improving the liberation kinetics of 

Praziquantal by dry coating technique 

Pieper et al., 

2004 

Grinded Magnesium 

(75 µm) 

Carnuba Wax 

(15 µm) 

MAIC, Hybridizer and 

Mechanofusion 

- Protecting pyrotechnic properties of 

magnesium powder by dry coating 

- Improving the humidity resistance of 

magnesium by dry coating 

Mujumdar et al., 

2004 
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Host Particles Guest Particles Equipment Objectives Author 

Cohesive Starch 

(15 µm) 

Hydrophilic/hydrophobic 

Silica 
MAIC and Hybridizer 

- Improving the flowability of starch by 

dry coating method 

Yang et al., 

2005 

Active principle 

(50 µm) 

Magnesium Stearate 

(2 µm) 
Hybridizer 

- Evolution of interparticular forces 

between host and guest particles  

Vilela et al., 

2005 

TiB2 (6 – 13 µm) BN (0.6 µm) Hybridizer 

- Study the influence of rotational velocity 

and operating time on the end use 

properties of the particles 

Feng et al., 

2005 

Polyethylene 

(85 µm) 

Silica 

0,3 – 0,5 et 1 µm 
Hybridizer 

- Effect of process and filling rate of the 

hybridizer on quality of coating  

Uchiyama et al., 

2006 

Silica Gel (55 µm) 
Magnesium Stearate 

 (5 µm) 

Hybridizer and 

Cyclomix 

- Modification of flowability and 

wettability properties of powders 

- Study of powder ageing  

Ouabbas et al., 

2008 (a) 

Silica Gel (55 µm) 

Corn Starch (13 µm) 

 

Aerosil R200 (0.12 nm) 

Aerosil R974 (0.12 nm) 

MgSt (5 µm) 

 

Hybridizer and 

Cyclomix 

- modification of wettability & flowability 

of powders  

- Study of particle coating strength 

- Study of discharging kinetics of particles 

Ouabbas et al., 

2008 (b) 
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CALCULATION OF MASS PERCENTAGE OF GUEST PARTICLES F OR 

MONOLAYER COATING 

The number of guest particles on host particles in order to have a monolayer coating 

can be calculated by using the ratio of particle size and density between the host and 

guest particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.1. Concept of the Monolayer Coating Model 

 
Figure A.1 shows the concept of the model basically. The model considers that the all 

particles (host & guest) are spherical, have the same diameter and there is no particle 

deformation in the dry coating trials.    

In order to calculate the percentage of guest particles on the host particle surface, 

there are two hypotheses; 

• The particle size ratio between the host and guest particles is in the range of 

‘ordered mixture’ concept (10< x<100) 

• The guest particles appear as hexagonal packing on the surface of the host 

particle 

D 

ρh 

d 

ρ 

Effective Diameter 

D + d 
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The hexagonal packing of the particles can be simply calculated by using 

trigonometry as it can be seen from Figure A.2. 

 

 

Figure A.2. Concept of Hexagonal Packing 

 
There are 3 circles, 2 half circles in the section and the black and grey coloured parts 

can also be calculated. The surface of the sphere that has the diameter of “D + d” can 

be calculated as; 

 
( )2dDSA += π               (Eqn.A.1) 

The projected surface area spherical guest particles can be calculated as; 

 
2

4
dCSA

π=                           (Eqn.A.2) 

If the number of guest particles in the mixture is n and the number of host particles is 

N, then the number of contacts (z) between a host and guest particles become; 

  

DC
CSA

SA
z 2=                           (Eqn.A.3) 

Where, C2D refers to compactness in 2 dimensions in hexagonal packing. The number 

of contacts can also be represented as the ratio between the number of guest and host 

particles in the mixture; 
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Where; 

m : mass of guest particles (g) 

M : mass of host particles (g) 

d : diameter of guest particles (µm) 

D : diameter of host particles (µm) 

ρ : density of guest particles (g/cm3) 

ρh : density of host particles (g/cm3) 

The mass of host particles (M) and the mass of guest particles (m) can be calculated 

by using the equations A.5 and eqn.A.6; 

NDM h

3

6

πρ=                             (Eqn.A.5) 

                                                ndm 3

6

πρ=                  (Eqn.A.6) 

Then the ratio between the number of guest and host particles in the mixture 

becomes; 
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This expression can be also converted into the mass fraction of guest particles in the 

mixture (Wc); 

  
Mm

m
Wc +

=                           (Eqn.A.8) 
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COATING STRENGTH OF TALC COATED PMMA PARTICLES BY B ASIC 

MIXING METHOD  

Figure A.3, A.4 and A.5 shows the number particle distribution and particle 

liberation pressure of 1% and 5% talc coated PMMA particles by basic mixing 

method.  

 

 

 

 

 

 

 

 

 

 

 

 
 
It is observed that the particle liberation pressure is 0.9 bars for 4000 rpm treated 

PMMA with 1% talc particles and it decreases to 0.8 bar for 5% talc coating. For 

PMMA at 5600 rpm with 1% talc the particle liberation pressure is 1.1 bar and it 

decreases to 0.7 bar for 5% talc coating  
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Figure A.5. Number Particle Size Mean vs. Dispersing Pressure for Coated and 

Uncoated PMMA at 9600 rpm by Basic Mixing 
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Figure A.3. Number Particle Size Mean vs. 

Dispersing Pressure for Coated and Uncoated 

PMMA at 4000 rpm by Basic Mixing 

Figure A.4. Number Particle Size Mean vs. 

Dispersing Pressure for Coated and Uncoated 

PMMA at 5600 rpm by Basic Mixing 
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PMMA treated at 9600 rpm with 1% talc coating, the particles start to detach (or 

break up) at 1.9 bar and for 5% talc coating the particle liberation pressure is 1.3 bar. 

According to these results, for the particles that are treated by basic mixing method, 

the particle liberation pressure decreases with increasing talc percentage in the 

coating.(table A.1) 

 
Table A.1. Dispersing Pressures and Air Velocities for Particle Detachment for 1% 

and 5% Talc Coated PMMA Particles by Basic Mixing 

Material Dispersing Air Pressure Air Velocity  

PMMA at 4000 rpm + 1% Talc 0.9 bar 48 m/s 

PMMA at 5600 rpm + 1% Talc 1.1 bar 56 m/s 

PMMA at 9600 rpm + 1% Talc 1.9 bar 84 m/s 

PMMA at 4000 rpm + 5% Talc 0.8 bar 44 m/s 

PMMA at 5600 rpm + 5% Talc 0.7 bar 39 m/s 

PMMA at 9600 rpm + 5% Talc 1.3 bar 64 m/s 
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EFFECT OF TALC COATING ON THE ELECTROSTATIC PROPERT IES 

OF PMMA PARTICLES 

As it has been discussed previously, it was observed some accumulation of PMMA 

particles in hybridizer trials. It was observed that, generally the uncoated PMMA 

particles stayed on the walls of stator, inside the recirculation tube and the small 

space between the rotor and stator (fig. A.6)  

 

     

Figure A.6. Rotor and Stator of the Hybridizer after PMMA Treatment   

 
In order to understand the particle accumulation inside hybridizer, the electrostatic 

properties of the particles have been analysed by diminution of particle charge 

method. Diminution of electrostatic charge of particles measurements are made using 

a high voltage corona discharge to deposit a small patch of charge on the material to 

be tested with a fast response field mill electrostatic field – meter used to measure 

how quickly the deposited charge migrates away by the decrease in the surface 

voltage (Chubb, 2002). A physical arrangement for diminution of electrostatic charge 

of particles measurement is shown in Figure A.7.  

 

 

Figure A.7. Experimental Setup of Diminution of Electrostatic Charge 

Measurements (Chubb, 2002) 



Appendix IV 

 

     262 

The corona discharge is created by a brief pulse of high voltage (in the range ±2.5 to 

±10kV) applied to a cluster of discharge points mounted on a moveable plate a short 

distance above the surface to be tested. The corona discharge deposits a local patch 

of charge on to the surface without contact. As soon as charge has been deposited the 

moveable plate is moved away (in 20 – 30ms). A fast response field mill electrostatic 

field–meter, that has been shielded by this plate, is used to measure, without contact, 

the voltage developed on the surface by this charge and how quickly this voltage falls 

(to % 40 of the initial value) as the charge migrates away (Chubb, 2002). 

The measurements have been done at 20°C temperature and 18–26 % relative 

humidity. Figure A.8 shows the evaluation of surface voltage according to time.  
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Figure A.8. Discharging Time for Initial and Coated Materials 

 
The results show that, the discharging time of initial talc particles is very short (in 7 

seconds). On the other hand, initial PMMA particles need 3.5 months and treated 

PMMA particles at 4000 rpm need 1 month for discharging. The results of coated 

PMMA particles show the effect of talc coating that is the increasing mass 

percentage of talc particles in the mixture decreases discharging time of the 

composite particles. The discharging time for each material can be seen in the table 

A.2. 
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Table A.2. Discharging Time for Initial and Coated Materials 

Material Time of Discharging 

Talc Initial 7.3 second 

PMMA Initial 74.5 days 

PMMA at 4000 rpm 30.2 days 

PMMA + 1 % Talc at 4000 rpm 11.9 days 

PMMA + 5 % Talc at 4000 rpm 19 minutes 

 

As conclusion, it was observed that the talc coating has an important role on the 

modification of discharge time of composite particles. It shows that both lubricant 

and electrostatic discharging properties of talc particles decreases particle 

accumulation in hybridizer trials.  
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CHARACTERISTICS OF DIFFERENT AFM PROBES 

 
1. Characteristics of Tapping Mode Probe (MP11120) and Cantilever 
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2. Characteristics of Contact Mode Probe (NP) and Cantilever 
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CALCULATION OF ADHESION ENERGY BETWEEN PMMA & TALC 

PARTICLES 

Dry particle coating devices impart energy to systems of host and guest particles by 

the application of mechanical forces, causing the particles to impact each other. 

Impacting guest particles can either adhere to the host particle or rebound becoming 

detached from the host particle, depending on the magnitude of the adhesion forces 

between the host and the guest particles after impaction. Therefore, in this part it was 

aimed to theoretically calculate the adhesion energy between PMMA and talc 

particles. According to this information, it would be possible to predict the initial 

affinity of the two materials adhering to each other after an impaction. 

Ramlakhan et al. (2001) presented a model to describe adhesion of particles due to 

elastic-plastic impacts with a surface. The model considers elastic deformation in the 

two impacting bodies and plastic deformation in the softer of the two bodies. For a 

guest particle G, impacting on a host particle H, the criteria which allows the particle 

to rebound is given by: 

 
        ( ) API QQQ >−                            (Eqn.A.9) 

Where QI is the impacting energy due to an impacting velocity (v), Qp is the energy 

dissipation in plastic deformation, QA is the adhesion energy between guest and host 

particles after collision. 

The model is based on elastic and plastic deformations on one of the impacting 

bodies, with only elastic deformation occurring in the other. There are two stages of 

the first phase for the interaction between the impacting bodies. The first stage is 

characterized by the purely elastic deformations of the two bodies due to impaction. 

The impact progresses until the pressure between the two bodies reaches the elastic 

yield limit of the softer of the two bodies. For the model to be valid the impaction 

velocity (v) must be larger than the elastic limiting velocity (φ): 
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Where y is the elastic yield limit of the softer of the two bodies, ρ is the density of the 

impacting particle and K is defined by the eqn.A.11; 
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With; 

       ( )
( )i

i
i E

k
π

υ 21−
=

                          (Eqn.A.12) 

Where υi is the Poisson ratio and Ei is the Young’s modulus of particle i. The 

properties of the materials, which would be used for the calculations, are given in 

table A.3. 

 
Table A.3. Properties of the Materials 

Properties PMMA (160 µm) Talc (15 µm) 

Elastic Yield Limit (Pa) 10 x 106 5 x 106 

Density (kg/m3) 1190 2691 

Poisson’s Ratio 0.5 0.268 

Young’s Modulus (Mpa) 3300 7380 

Hardness (Mohs) 1.50 1 

Dispersive Surface Energy 

(mJ/m²) 

38 41.2 

 

By using the eqn.A.12, k value for PMMA (k1) was found 7.21*10-11 and k value for 

talc (k2) was found 4.01*10-11. Afterwards the K was found 3.78*109 by using k1 and 

k2 values in the eqn.A.11. 

Therefore the elastic limiting velocity is: 
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The second stage continues until the two particles have zero relative velocity. During 

this stage, there is growth of a region of plastic deformation of the softer of the two 

particles. This area of plastic deformation is surrounded by an annulus in which only 

elastic deformation occurs. Using conversation of energy, the total kinetic energy of 

the impaction QI can be expressed as: 
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2
                         (Eqn.A.13) 

 Where Qe is the energy stored as elastic deformations in the annular region and Qpe 

is the energy stored as elastic deformations in the area of plastic deformation. v is the 

impacting velocity and m is the mass of the impacting guest particle which is talc in 

our system. In this calculation v has been chosen as 1 m/s and afterwards the QI was 

found 1.9*10-12 j.   

The energy used to produce the plastic deformation and the energy stored as elastic 

energy in the area of plastic deformation can be expressed as: 
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             (Eqn.A.14) 

For our system QP was found 1.88*10-12 j. Then, it is possible to find the erngy for 

rebound by using the eqn.A.9: 

 

        jQQ PI

141212 10*210*88.110*9.1 −−− =−=−  

The adhesion energy of the two particles that holds particles together after impaction 

is found from the expression: 

 

SMT UUU +=                          (Eqn.A.15) 

Where UT is the total adhesion energy and is equal to QA, UM is the adhesion due to 

mechanical energy and US is the adhesion due to surface energy. UM and US is 

defined by following equations. 
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Where P0 is the external force applied to the contacting particles (P0=mg), m is the 

mass of the guest particle, g is the gravitational force, ∆γ is the surface adhesive 

energy per unit area and Rc is the contact geometry parameter.  
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P0 was found 3.8*10-11 N for our system. ∆γ and Rc was found by using the 

following equations: 

 
        ( ) 5.0

212 ddγγγ =∆                                      (Eqn.A.18) 

        
       

21

111

RRRc

+=
                                     (Eqn.A.19) 

Where γd
i is the dispersive energy component of particle i, R1 is the radius of host 

particle and R2 is the radius of the guest particle. For our system, ∆γ was found 0.079 

J/m² and Rc was found 6.45*10-6.  

The projected radius of plastic deformation that the particle undergoes is found by 

the following expression: 

   

( )[ ] 2/12

0

2

001 33 PRPRPP cc −∆++∆+= γπγπ      (Eqn.A.20) 

The P1 value was found 9.6*10-6 N for our system. Afterwards it is possible to 

calculate UT(=QA) by using eqn.A.15, eqn.A.16 and eqn.A.17 in order to predict 

whether talc particle would adhere to or rebound from the surface of PMMA particle.  

 

ASMT QjUUU ==+=+= −−− 2142 10*26.010*6.110*26.0                         

The QI – QP relation has already been found and it was 2*10-14 j. It shows that the 

talc particles have initial affinity to adhere on the surface of the PMMA particles, 

because;  

 
( ) API QQQ <−  
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CHEMICAL ANALYSIS OF THE PARTICLE SURFACE WITH ENER GY 

DISPERSIVE SPECTROMETER (EDS) 

The EDS was used to analyse the chemical composition of the talc coated cellets 90 

and cellets 200 particles in order to understand the type of coating (discrete, 

continuous). 

 

 

      

Figure A.9. Chemical Analysis of Talc Coated Cellets 90 Particle in Cyclomix 
 
 

 
 

           

Figure A.10. Chemical Analysis of Talc Coated Cellets 90 Particle in Turbula 
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Figure A.11. Chemical Analysis of Talc Coated Cellets 90 Particle by Basic Mixing  

 
 

 

 

      

Figure A.12. Chemical Analysis of Talc Coated Cellets 200 Particle in Hybridizer 
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Figure A.13. Chemical Analysis of Talc Coated Cellets 200 Particle in Turbula 

 
 

 

 

      

Figure A.14. Chemical Analysis of Talc Coated Cellets 200 Particle by Basic 

Mixing Method  

 
It was observed that there are silicon and magnesium peaks in some regions of 

surface of both coated cellets 90 and cellets 200 particles for all the cases. It shows 

that there are talc particles in these surface zones but on the other hand, there are 
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some surface regions where there is just carbon and oxygen peaks. It shows us that, 

we have obtained discrete type of talc coating on both cellets 90 and cellets 200 

particles in all different coating equipments.   
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CONTACT ANGLE MEASUREMENTS OF TALC COATED CELLETS P ARTICLES 

The contact angle measurements of talc coated cellets particles have been done with sessile 

drop technique in order to understand the effect of talc coating and dry coating equipment on 

the wettability property of the composite particles.   

Figure A.15 and A.16 show the images contact angle measurements for talc coated cellets 90 

and cellets 200 particles in different dry coating equipments. It was observed that there is no 

significant difference between coated cellets 90 and cellets 200 particles. Moreover, it can be 

seen that there is no significant difference between the coated particles in hybridizer, 

cyclomix or basic mixing technique. It was observed that the water droplet stays on the 

particles surface even after 30 seconds.   

  

                               

 

                               

 

                               

 

Figure A.15. Contact Angle Measurements of (A) Coated Cellets 90 Particles in Cyclomix 

(B) Coated Cellets 90 Particles in Turbula (C) Coated Cellets 90 Particles by Basic Mixing 
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Figure A.16. Contact Angle Measurements of (A) Coated Cellets 200 Particles in Cyclomix 

(B) Coated Cellets 200 Particles in Turbula (C) Coated Cellets 200 Particles by Basic Mixing 

 
Table A.4. Average Contact Angle Values of the Particles 

SAMPLE Ave. Contact Angle (θ°) 

Talc 66 ± 3.3 

Cellets 90 Hybridizer 53.4 ± 7.1                        

Cellets 200 Hybridizer 57.6 ± 5.4 

Cellets 90 + 9.6 % Talc Hybridizer 62.7 ± 4.8 

Cellets 200 + 3 % Talc Hybridizer 63.8 ± 3.3 

Cellets 90 Cyclomix 54.4 ± 6.2 

Cellets 200 Cyclomix 54.5 ± 4.3 

Cellets 90 + 9.6 % Talc Cyclomix 62.3 ± 2.7 

Cellets 200 + 3 % Talc Cyclomix 64.4 ± 5.5 

Pre-Treated Cellets 90 + 9.6 % Talc Turbula 64.9 ± 7.1 

Pre-Treated Cellets 200 + 3 % Talc Turbula 61.3 ± 1.8 

Pre-Treated Cellets 90 + 9.6 % Talc Basic Mixing 60.1 ± 8.6 

Pre-Treated Cellets 200 + 3 % Talc Basic Mixing 61.6 ± 4.3 

(A) 

(B) 

(C) 

30 seconds after 

30 seconds after 

30 seconds after 
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EUROPEAN UNION 6th FRAMEWORK PROGRAM BIOPOWDERS PROJECT 

This work has been supported by the EU 6th framework program “Biopowders” Marie Curie 

research training network. The focus of the project is to highlight industry problems, 

knowledge barriers and research and development opportunities in relation to food powders. 

It highlights the priority research needs for development of new and improved powder 

products and processes. It is envisaged that this will act as a necessary step in fostering the 

potential for future research ideas and collaborative research.   

This work has been presented in several conferences;  

• International Congress on Particle Technology, Nuremberg, Germany, 27-29 March 

2007 

• Mini conference of Biopowders Project (Research Methodology & research project 

management), Delft, Netherlands, 13-17 March 2007 

• Mini conference of Biopowders Project (Advances in Powder Technology), Budapest, 

Hungary, 13-14 September 2007 

• International Symposium Reliable Flow of Particulate Solids IV, Tromso, Norway, 

10-12 June 2008 

• Particulate System Analysis 08, Warwickshire, United Kingdom, 2-4 September 2008 

• Mini conference of Biopowders Project (Biopowders), Massy, France, 18-19 

September 2008 
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The work has also been published in several communications; 

• OTLES S., CHAMAYOU A., GALET L., LECOQ O., DODDS J., (2008), Adhesive 

Forces and Surface Modification in Dry Particle Coating, In Proc: Particulate Systems 

Analysis, Warwickshire, UK  

• OTLES S., CHAMAYOU A., GALET L., LECOQ 0., DODDS J., (2008), Dry Particle – 

High Impact – Coating of Biopowders – Coating Stregth of Biopowders, In 

Proc:International Symposium Reliable Flow of Particulate Solids IV, Tromso, Norway 

(This paper was also submitted in Powder Science and Technology) 

• OTLES S.,CHAMAYOU A., GALET L., LECOQ O., DODDS J., (2007), Flowability 

Improvement of Biopowders by Dry Particle – High Impact – Coating, Advances in the 

Powder Technology, ISBN 978-963-9696-23-5 

• OTLES S., CHAMAYOU A., GALET L., LECOQ O., DODDS J., (2007), Biopowders 

Surface Modification by Dry Particle – High Impact – Coating, In Proc: International 

Congress on Particle Technology, Nuremberg, Germany 
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Abstract 
 

Powder coating is an important process for many different industries. It focuses on 
modifying the surface properties and/or functionality of powders that the natural product does 
not offer. Surface modification of particles can be done by wet and dry coating methods. 
However, wet coating methods have become less desirable recently because of environmental 
concerns over the resulting waste streams and possible VOC emissions. Dry powder coating 
is an alternative technology avoiding the previous drawbacks, and with the advantages of 
having small processing time, of being environmentally friendly and with relatively low 
energy costs.  

Dry particle coating consists of three main terms: powder couple, process and the end-
use properties of the composite particles. The objective of this study is the have a fundamental 
knowledge on dry particle coating to better understand the interactions between these terms 
and also classify the criteria that affect the end-use properties of the particles. In this work, 
two different model couples have been treated by different equipments and the end-use 
properties of the composite particles have been compared with each other by using several 
characterization techniques. In the first part of the study, we focus on the processes and their 
operating conditions influencing the coating phenomena and to the development of the AFM 
technique to derive coating coverage information. In the second part the influence of the size 
of the host and guest particles on the end-use properties are studied.  
 
Key Words: Biopowders, Dry Particle Coating, Composite Particles, Interparticular Forces, 
Coating Strength, Atomic Force Microscopy 
 
Résumé 

 
L'enrobage des poudres est un procédé important dans le monde industriel. Ce procédé 

consiste en la modification des propriétés de surface et/ou des propriétés fonctionnelles de 
poudre qui ne possède pas ces propriétés initialement. La  modification de la surface des 
particules peut être effectuée par enrobage en voi humide ou sèc. Cependant, l'enrobage 
humide devient de moins en moins souhaitable en raison de préoccupations 
environnementales due au reject de COV. Ainsi, l'enrobage à sec paraît être la technologie 
alternative adaptée pour éviter les inconvénients précédents tout en ayant des avantages tel 
qu'un faible temps de traitement, un faible coût énergétique ou encore d'être plus respectueux 
de l'environnement. 

L'enrobage à sec met en avant trois termes importants : le couple de poudre, le procédé 
et les propriétés d'usage des particules composites. L'objectif de cette étude est d'ameliorer 
connaissance fondamentale du procédé d'enrobage à sec pour mieux comprendre les 
interactions entre ces termes et aussi de classifier les critères qui affectent les propriétés 
d'usage des particules composées. Dans ce travail, deux différents couples modèls ont été 
traités avec différents équipements et les propriétés d'usage des particules ainsi obtenus ont 
été étudiées grâces à des techniques de caractérisation diverses. Dans la première partie de ce 
travail, nous avons d'une part, étudié le procédé et les conditions opératoires qui influencent le 
phénomène d'enrobage et d'autre part développé la technique AFM pour obtenir des 
informations sur la nature de l'enrobage effectué. La seconde partie quant à elle, traite de 
l'influence de la taille des particules hôtes et invitées sur les proprétés d’usage.  
 
Mots Clés: Biopoudres, Enrobage à Sec, Particules Composés, Solidité d’enrobage, 
Microscopie de Force Atomique  
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